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Abstract: The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in
patients with heart failure. However, the underlying causes as well as the possible consequences of
these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate
the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in
adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA
in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore,
silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4,
increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of
the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive
rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory
hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory
state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression.
By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and
Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to
confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of
this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition
from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing
heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this
reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of
heart failure.

Keywords: cardiomyocytes; cardiac remodeling; cardiac hypertrophy; uncoupling protein 2;
glucose metabolism; heart failure

1. Introduction

Cardiac hypertrophy has been considered as an adaptive process that allows the heart to
withstand systemic pressure overload. However, sustained hypertrophy may finally lead to heart
failure. Therefore, a better understanding of the molecular processes that occur at the transition from
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hypertrophy to heart failure is essential to improve diagnosis and treatment options for heart failure
patients [1].

Uncoupling proteins (UCPs) are a family of proteins located at the inner mitochondrial
membrane [2]. UCP-1 was first identified in brown adipose tissue, where it uncouples the electron
transport chain leading to heat production. In contrast, UCP-2 and UCP-3 are expressed in different
tissues in mammalians. Whereas UCP-2 shows a constitutive mRNA expression in the heart, UCP-3 is
mainly expressed in skeletal muscles. In contrast to mRNA expression, protein expression of UCP
isoforms in the heart is less well documented [3].

We showed recently that in mice hearts, UCP-2 is mainly expressed in non-myocytes. Moreover,
the absence of UCP-2 in mice improved cardiac adaptation to pulmonary arterial hypertension,
mainly by increased fibrosis [4]. However, it remains elusive whether UCP-2 is also preferentially
expressed in non-myocytes in other mammalians. Furthermore, a functional role for UCP-2 in cardiac
tissue has not yet been clarified. Potential roles for UCP-2 in cardiomyocytes include mitochondrial
uncoupling and subsequent reduction of mitochondrial-derived reactive oxygen species (ROS), but also
substrate transport into mitochondria and finally alteration of glucose metabolism [5].

In contrast to the aforementioned missing data about cell-specific expression of UCP-2 in hearts
and lack of clear identification of its function, an upregulation of UCP-2 mRNA under conditions
of heart failure has been repeatedly reported [6,7]. This suggests a potential role for UCP-2 at the
transition from cardiac adaptation to heart failure. In UCP-2 knockout mice, heart failure induced by
acute pressure overload was attenuated and cardiac function preserved [8]. This finding suggests that
the induction of UCP-2 contributes to the functional impairment in end-stage heart failure. However,
the relevance of these findings for other models of heart failure and other species, as well as the
identification of underlying mechanisms, remains elusive. Therefore, we studied in vitro and in vivo
the expression of UCP-2 in rat cardiomyocytes and its effects on left ventricular (LV) remodeling in
terms of functional and metabolic reactions during the transition to heart failure.

2. Materials and Methods

2.1. Animals and Ethical Concerns

All animal experiments conformed to the guidelines from Directive 2010/63/EU of the European
Parliament on the protection of animals used for scientific purposes and were approved by authorities
(permission numbers: GI 20/1 No. 76/2014 and 77/2014). Male Wistar rats, purchased from Janvier Labs
(Saint-Berthevin, France), were used for in vitro analysis, while female spontaneously hypertensive rats
(SHR), obtained from Envigo (Huntingdon, UK), were used as an in vivo model for LV hypertrophy.
The aldosterone receptor antagonist spironolactone was administered by dietary intake (50 mg/kg/day,
custom-made by Altromin GmbH, Lage, Germany). In addition, explanted ventricular tissues
from the Cardiac Transplant Program in Halle/Saale as well as donor hearts were investigated in
this study. Those hearts could not be transplanted for technical reasons, but none of them had
evidence of an underlying cardiac disease judged by the surgeon or had suffered a cardiac trauma.
Patient characteristics have been described previously [9]. The use of human tissue was approved
by local ethics committees (65/10, 229/18) and conformed the principles outlined in the Declaration
of Helsinki.

2.2. Isolation and Cultivation of Adult Rat Ventricular Cardiomyocytes

Ventricular cardiomyocytes and non-myocyte cell fraction of male Wistar rats (3–5 months old)
were isolated as described previously [10,11]. Briefly, rats were sacrificed by cervical dislocation
under deep anesthesia with isoflurane (5%). The hearts were excised and transferred into ice-cold
saline solution. Subsequently, they were fixated on the cannula of a Langendorff system, followed
by perfusion with Powell medium (NaCl 110 mM, KCl 2.5 mM, KH2PO4 1.2 mM, MgSO4 × 7H2O
1.2 mM, Hepes 25 mM, d(+)-glucose-monohydrate 10 mM, pH adjusted to 7.4), containing collagenase
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(25 mg/50 mL, 265 U/mg, Worthington Biochemicals, Lakewood, CO, USA) and CaCl2 (25 µM) for
25 min at 37 ◦C. Ventricular tissue was minced and incubated in the abovementioned buffer for 5 min.
The remaining cell solution was filtered through a nylon mesh (200 µm). After centrifugation and
stepwise addition of CaCl2 (250, 500, and 1000 µM), cells were plated onto 35 mm culture dishes
(Falcon, type 3001) coated with 4% (vol/vol) fetal calf serum (FCS). The supernatant was used as a
non-myocyte cell fraction. Medium 199 was used as a cell culture medium supplemented by the
following substances: carnitine (2 mM), creatine (5 mM), taurine (5 mM), penicillin-streptomycin (2%),
and cytosine-β-arabinofuranoside (10 mM). The pH was adjusted to 7.4.

Myocytes used for the determination of cell shortening were cultured for 24 h in plain medium
(see above). Load-free cell shortening was then analyzed using a cell-edge-detection system as initially
described [12]. For long-term experiments, cells were cultivated for up to 5 days in the same medium
with the addition of 20% fetal calf serum (FCS). Small interfering RNA (siRNA, 0.05 µM, QIAGEN,
Venlo, The Netherlands) was used to decrease the expression of UCP-2 and Glut-4. Scrambled siRNA
(scRNA, QIAGEN, Venlo, The Netherlands) served as a negative control. Genipin (10 µM dissolved in
DMSO, Sigma-Aldrich, Taufkirchen, Germany) was used for pharmacological inhibition of UCP-2.
To induce hypertrophy in cultured cardiomyocytes, cells were incubated with angiotensin II (Ang-II,
Sigma-Aldrich, Taufkirchen, Germany) for either 24 h (0.01, 0.1, 1, and 10 µM) or for 5 days (1 µM).

2.3. Isolation of Mitochondria and Measurement of ROS and Respiration

Cardiac mitochondria were isolated from rats by differential centrifugation [13]. After scarification
of the rats, hearts were rapidly excised into an ice-cold isolation buffer (50 mM sucrose, 200 mM
mannitol, 5 mM KH2PO4, 1 mM EGTA, 5 mM MOPS, and 0.1% BSA, pH 7.15 adjusted with KOH),
atria were removed, and 1 mm3 pieces of ventricular myocardium were homogenized (30 mL of
isolation buffer per heart) using a PT10/35 Polytron (Brinkman Instruments, Westbury, NY, USA).
Three 20 s homogenization cycles were performed on ice, and then the samples were centrifuged
for 10 min (at 750× g) using a Sorvall II centrifuge equipped with a GSA rotor. The supernatant,
containing the mitochondrial fraction, was further centrifuged at 7,000× g for 20 min, and the pellet
was resuspended in 30 mL of isolation buffer (with no EGTA) and spun at 7,000× g for 20 min. Finally,
mitochondria were resuspended in the isolation buffer (with no EGTA), and protein concentration was
determined using a protein kit (Bio-Rad, Munich, Germany). Mitochondrial suspension (30–40 mg
protein/mL) was kept on ice before experiments.

Respiration was analyzed as described before [14]. Briefly, oxygen consumption was measured
with a Clark-type oxygen electrode (Oxygenmeter 782, Strathkelvin, Glasgow, UK) at 25 ◦C in incubation
buffer (125 mM KCl, 10 mM Tris, 1.2 mM phosphate, 1.2 mM MgCl2 0.02 mM EGTA, pH 7.4 (titrated
with MOPS)). Respiration was analyzed in the presence of 5 mM glutamate and 2.5 mM malate.
After recording basal oxygen consumption, respiration was stimulated by the addition of 40 µM ADP.
Oxygen consumption was analyzed in nmol O2 ×min−1

×mg protein−1.
Mitochondrial ROS generation was analyzed as described before [14]. Briefly, approximately 50 µg

mitochondria were incubated with incubation buffer (see above) supplemented with 5 mM glutamate
and 2.5 mM malate, 50 µM Amplex UltraRed (Thermo Fischer Scientific, Schwerte, Germany), and 0.1 U
×ml−1 horseradish peroxidase. The fluorescence was measured continuously for 4 min with a Cary
Eclipse spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) at the excitation/emission
wavelengths of 565/581 nm respectively. Background fluorescence of the buffer without mitochondria
was subtracted and the slope (fluorescence in arbitrary units/time) was calculated.

2.4. Glucose Uptake

Isolated cardiomyocytes were cultivated for 48 h in FCS-containing media in the presence of
siRNA directed against UCP-2 or scRNA, as indicated above. The culture medium was then changed
into glucose- and serum-free medium. After 4 h of glucose-deprivation, cells were incubated with
2-deoxy-d-glucose (50 µM) and radioactively-labeled 2-deoxy-d-glucose (0.5 µl/mL, deoxy-D-glucose
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2-[1-14C], Perkin Elmer, Waltham, MA, USA) for 90 min. Cells were washed thrice with phosphate
buffered saline (PBS) and then dissolved in 1 M NaOH + 0.01% SDS overnight at 37 ◦C. The radioactivity
was counted by a Tri-Carb 2810TR Low Activity Liquid Scintillation Analyzer (Perkin Elmer, Waltham,
MA, USA) and was normalized to total protein concentration.

2.5. Intracellular Lactate Levels

Intracellular lactate concentrations were measured with a bioluminescent based assay according to
the manufacturer’s protocols (Lactate-Glo™, Promega, Mannheim, Germany). Cardiomyocytes were
cultivated for 48 h in FCS-containing media in the presence of siRNA directed against UCP-2 or scRNA.
Cells were washed and then treated with an inactivation solution (0.6 N HCl) and neutralization
solution (1 M Tris base) to inactivate the endogenous lactate dehydrogenase and to prevent NADH
degradation. The cell lysates were then transferred into a 96-well plate and incubated with the assay
reagent for 60 min. Luminescence signal was detected by a microplate reader (Infinite®® M200, Tecan,
Männedorf, Switzerland).

2.6. Cell Viability Assay

Cardiomyocytes were cultivated in FCS-containing media under control conditions or in the
presence of either Ang-II, a combination of Ang-II and siUCP-2, or a combination of Ang-II, siUCP-2,
and siGlut-4. An addition of 20% FCS enables long-term cultivation of primary cardiomyocytes,
inducing a complex remodeling process, which was recently described [15]. To determine cell viability
of cardiomyocytes after 5 days of cultivation, cells were double-stained with the DNA binding dyes
Hoechst 33342 (1.2 mg/mL, Thermo Fisher Scientific, Schwerte, Germany) and propidium iodide
(20 µg/mL, Sigma-Aldrich, Taufkirchen, Germany) and analyzed by fluorescence microscopy. Therefore,
the fluorescent dyes were added to culture dishes and incubated for 5 min at 37 ◦C. Subsequently,
five pictures of each culture dish with at least 150 cells per dish were randomly taken by a fluorescence
microscope (Biozero BZ-8000K, Keyence, Neu-Isenburg, Germany). Hoechst 33342 is membrane
permeable and stains DNA of vital and dead cells, visualized as a blue color by fluorescence microscopy.
Since propidium iodide is membrane impermeable and can only enter cells with compromised
membranes, necrotic cells are stained with red fluorescence. The percentage of viable cells was
quantified blindly by counting the vital and the necrotic cells and calculated by the number of vital
cells divided by the total cell number.

2.7. RNA Isolation and Real-Time PCR

Total RNA was extracted from isolated cells or tissues using peqGOLD TriFast (Peqlab,
Biotechnologie GmbH, Erlangen, Germany), according to the manufacturer’s protocol. After conversion
into complementary DNA (cDNA) with reverse transcriptase, PCR was performed using MyiQ™
detection systems (Bio-Rad, Munich, Germany) along with the iTaq Universal SYBR Green Real-Time
PCR Supermix (Bio-Rad, Munich, Germany). A complete list of primers has been added to the
Supplementary Material (Table S1). Quantification was performed as described before [16]. Data were
normalized to hypoxanthine phosphoribosyl transferase (HPRT), as indicated.

2.8. Western Blots

Total protein was extracted from isolated cells or LV tissues using cell lysis buffer (Cell Signaling,
Technology, Frankfurt, Germany), according to the manufacturer’s protocol. Briefly, the homogenates
were centrifuged at 14,000× g for 10 min and the supernatants were treated with Laemmli buffer
(Sigma-Aldrich, Taufkirchen, Germany). The protein concentration was adjusted to either 40 µg/µL for
tissue extracts or 20 µg/µL for isolated cells. Recombinant hUCP-2 (kindly provided by Prof. Dr. E. Pohl,
University of Veterinary Medicine, Vienna, Austria) was used as a positive control. Protein samples
were loaded on NuPAGE Bis-Tris Precast gels (10%; Life Technology, Darmstadt, Germany) and
subsequently transferred onto nitrocellulose membranes. The expression of UCP-2 was analyzed with
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an antibody (also kindly provided by Prof. Dr. E. Pohl), whose specificity was evaluated before [4,17].
The Glut-4 antibody was kindly provided by Samuel W. Cushman (NIH, National Institute of Diabetes
and Digestive and Kidney Diseases, Bethesda, Montgomery, MD, USA). Expression of both proteins
was normalized to the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using an
antibody produced in mice (Calbiochem®, Schwalbach, Germany). Secondary antibodies (horseradish
peroxidase-coupled secondary antibody) directed against rabbit IgG or mouse IgG were purchased
from Dako (now Agilent Technologies, Santa Clara, CA, USA).

2.9. Assessment of LV Hypertrophy and Function

The systolic and diastolic blood pressure and the heart rate of SHR were measured using
non-invasive tail-cuff blood pressure measurement (209000 Series, TSE-Systems, Bad Homburg,
Germany). Prior to the start of the experiment, the animals were adjusted to the experimental
procedure over a week. The median of 10 consecutive measurements was calculated for each parameter
described. For echocardiographic analysis, rats were anesthetized by isoflurane inhalation (2%; 98%
O2). LV function was assessed by two-dimensional echocardiography using a 12.5 MHz probe (Vivid I,
GE Health Care, Chicago, IL, USA). All measurements were in accordance with the conventions of
the American Society of Echocardiography and conducted by the same trained, blinded sonographer,
as described before [18].

2.10. Statistics

Data were analyzed for normal distribution (Shapiro–Wilk test) and variance (Levene test).
Subsequently, data were analyzed by t-test, Welch’s t-test or the Mann–Whitney test (two samples)
or ANOVA with a Student–Newman–Keuls post hoc analysis (more than two groups). If possible,
exact p-values are given for all analysis with p < 0.05. SPSS 22.0 was used to calculate the data.

3. Results

3.1. Effect of UCP-2 Expression and Activity on Load-Free Cell Shortening of Adult Rat
Ventricular Cardiomyocytes

At first, we analyzed basal gene expression of UCP-2 in terminal differentiated rat cardiomyocytes
and compared its expression to that of non-myocytes. HPRT was used as a house-keeping gene
to normalize to equal loading as it showed comparable expression in myocytes and non-myocytes
(Figure 1A). UCP-2 expression was slightly higher in cardiomyocytes than in non-myocytes (p <

0.05; Figure 1B). However, after normalization to the house-keeping gene, UCP-2 expression was not
different (Figure 1C). Nevertheless, in contrast to mice hearts, cardiac myocytes and non-myocytes from
rat hearts showed comparable expression of UCP-2 mRNA. In order to analyze the effects of UCP-2
on cellular function, it was necessary to reduce its expression in cardiomyocytes. Administration of
siRNA to adult rat ventricular cardiomyocytes reduced the corresponding UCP-2 mRNA expression
by more than 40% (Figure 1D). Similarly, UCP-2 protein levels were also diminished after three days of
cultivation (Figure 1E).

The renin-angiotensin-aldosterone-system (RAAS) plays a pivotal role in the progression of
heart failure. This process can be monitored by reduced load-free cell shortening of isolated adult
rat ventricular cardiomyocytes. After incubation with Ang-II, load-free cell shortening (quantified
by percent cell shortening (∆L/L), contraction velocity, and relaxation velocity) was decreased in a
concentration-dependent way (Figure 2A–C). However, in cells exposed to siRNA directed against
UCP-2, these effects were completely attenuated (Figure 2A–C). Similarly, a reduction of UCP-2
activity by pharmacological inhibition using genipin was sufficient to attenuate these effects again
(Figure 2D–F).
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Figure 1. Basal expression levels of UCP-2 in adult rat ventricular cardiomyocytes and cardiac
non-myocytes and UCP-2 expression in cardiomyocytes after siRNA treatment. (A–B) Real-time
RT–PCR cycle thresholds (Ct) for the housekeeping gene HPRT (A), UCP-2 (B) and UCP-2 after
normalization to HPRT (Ct) expression (C) in cardiomyocytes (CMC) and cardiac non-myocytes (CNM).
Data are from n = 4 preparations and statistically analyzed using unpaired t-test (* p = 0.02959).
(D) Relative UCP-2 mRNA expression in cells exposed to small inhibitory (siRNA) against UCP-2 or
scrambled RNA (scRNA) for 24 h. Data are from n = 8 cultures out of 4 individual preparations and
statistically analyzed using unpaired t-test (* p = 0.011). (A–D) Data expressed as 25%, 50%, and 75%
quartiles with whiskers representing the total range, and dots representing the individual data points.
(E) Original Western blot showing expression of UCP-2 in cardiomyocytes after 3 or 5 days in the
presence of scRNA or siRNA directed against UCP-2. Rec. UCP-2 = control peptide.

3.2. Effects of UCP-2 Expression and Activity on Mitochondrial Function, Metabolism, and Viability

Although an exact role of UCP-2 in cardiomyocytes is still unknown, it has been suggested
that high expression of UCP-2 reduces mitochondrial ROS formation. However, inhibition of UCP-2
activity by genipin did not affect ROS production in isolated mitochondria from rat hearts (Figure 3A).
Furthermore, inhibition of UCP-2 by genipin did not affect mitochondrial respiration (Figure 3B).



Cells 2020, 9, 552 7 of 19

Figure 2. Effects of UCP-2-silencing or genipin treatment on cell shortening (A,D), contraction velocity
(B,E), and relaxation velocity (C,F) after hypertrophic stimulation. (A–C) Cardiomyocytes were
exposed to scRNA or siRNA and incubated with angiotensin-II (Ang-II 0.1–10 µM) or vehicle (Ctrl).
Data are means ± SD. from 189–252 cells (Ctrl), 36 cells (Ang-II 0.01 and 0.1 µM), 144 cells (1 µM) or
153–198 cells (10 µM). (D–F) Cardiomyocytes were exposed to genipin (10 µM) or vehicle (control
with DMSO) and incubated with Ang II (0.1–10 µM) or vehicle. Data are means ± S.D. from n = 108
(Ctrl), 36 (Ang-II 0.01 and 0.1 µM), 126 (Ang-II 1 and 10 µM). A one-way ANOVA with a subsequent
Student–Newman–Keuls test for post hoc analysis was performed (* p < 0.05 vs. Ang-II-free; # p < 0.05
vs. siRNA- or genipin-treated cells).
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Figure 3. Effect of UCP-2 silencing or inhibition on mitochondrial function, glucose metabolism,
and viability upon Ang-II stimulation. (A–B) LV mitochondria were isolated and ROS formation
(A) or respiration (B) was determined in the absence (control with DMSO) or presence of genipin
(Gen, 10 µM) from n = 4 (A) or n = 5 (B) hearts. Statistical analysis was performed with unpaired
t-test (p > 0.05). (C) mRNA expression of Glut-4 in cells exposed to siRNA directed against UCP-2 or
scrambled RNA (scRNA). Statistical analysis was performed with a Mann–Whitney test, from n = 12
cultures out of 6 individual preparations (* p = 0.038). (D) Original Western blot showing expression of
Glut-4 in cardiomyocytes exposed to siRNA against UCP-2 (siR) or scRNA (scR). (E) Quantification of
Western blots as shown in (D) normalized to GAPDH and compared to the basal expression in cultures
exposed to scRNA. Data from n = 6 cultures out of 3 individual preparations. Statistical analysis
was performed with unpaired t-test (* p = 0.030). (F) Glucose uptake of cardiomyocytes exposed
to siRNA directed against UCP-2, normalized to the controls. Data are from n = 29 cultures out of
6 individual preparations and statistically analyzed using Welch’s t-test (* p = 0.001). (G) Intracellular
lactate concentration in cardiomyocytes exposed to siRNA directed against UCP-2, normalized to
the mean of the controls (scRNA) with n = 19 cultures out of 3 individual preparations. Statistical
analysis was performed with unpaired t-test (* p = 0.00026). (H–I) Viability assay by Hoechst 33342 and
propidium iodide staining of isolated cardiomyocytes. Cells were treated with Ang-II (1 µM) alone,
to induce hypertrophic remodeling or in the presence of Ang-II and Glut-4 siRNA and/or UCP-2 siRNA,
respectively. (H) Representative images of necrotic (propidium iodide positive, red) and vital (Hoechst
33342 positive, blue) cells after 5 days of cultivation in the presence of 20% FCS. The different treatment
groups are indicated. Scale bars: 200 µM. (I) Proportion of vital cells (stained positive for Hoechst 33342
and negative for propidium iodide), from n = 16 cultures out of 4 individual preparations. A one-way
ANOVA with a subsequent Student–Newman–Keuls test for post hoc analysis was performed (* p <

0.05 vs. Ang-II-free and vs. Ang-II + siUCP-2). Data expressed as 25%, 50%, and 75% quartiles, with
whiskers representing the total range and dots representing the individual data points.
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As it was proposed that UCP-2 affects glucose metabolism [19–21], the effect of UCP-2 silencing
on the expression of glucose transporters was investigated next. In fact, a reduction of UCP-2 was
associated with an upregulation of Glut-4 on both the mRNA and protein levels (Figure 3C–E).
Moreover, in cells treated with siRNA directed against UCP-2, glucose uptake was significantly
increased (Figure 3F). To determine whether UCP-2 downregulation enhances mitochondrial glucose
oxidation, intracellular lactate accumulation was measured. UCP-2 silencing led to significantly
decreased lactate levels (Figure 3G). To study the effects of UCP-2 and Glut-4 silencing on the viability
of cardiomyocytes under stress conditions, cells were incubated with Ang-II for five days to induce
adverse remodeling. Incubation with Ang-II significantly reduced cardiomyocyte vitality, which was
prevented by the addition of UCP-2 siRNA (Figure 3H,I). In contrast, combining UCP-2- and Glut-4
silencing, Ang-II led to the same reduction in cardiomyocyte vitality as found under stimulation with
Ang-II alone (Figure 3H,I).

3.3. Regulation of UCP-2 and Glut-4 During Chronic Hypertension

The aforementioned results on isolated adult rat ventricular cardiomyocytes suggest that UCP-2
downregulation is associated with increased glucose uptake. A metabolic shift from the preferential
use of fatty acids to carbohydrates is part of the hypertrophic adaptation of the heart to pressure
overload. The inverse regulation of UCP-2 and Glut-4 may be involved in this mechanism. Therefore,
we analyzed the time-dependent regulation of UCP-2 und Glut-4 in a model of essential hypertension
(spontaneously hypertensive rats, SHR). Up to the 8th week of life, SHR have normotensive blood
pressure values of 125/80 mmHg. Then they develop arterial hypertension over a period of 2 months,
with values of 175/115 mmHg (Figure 4A). The steady rise in blood pressure is followed by severe LV
hypertrophy (Figure 4B). At the latest observation point (12 months of age), cardiac function declined
as indicated by reduced LV ejection fraction (Figure 4C). Cardiac hypertrophy was accompanied by
an increase in the expression of atrial natriuretic peptide (ANP), an established marker of ventricular
hypertrophy (Figure 4D). Similarly, UCP-2 mRNA expression increased excessively at the age of
12 months—that is, when ejection fraction significantly declined (Figure 4E). Interestingly, the mRNA
expression of PGC-1α, associated with mitochondrial formation increased in the early, adaptive phase of
cardiac hypertrophy, but declined thereafter, when the expression of UCP-2 was induced and function
worsened (Figure 4F). More importantly, UCP-2 protein expression showed a biphasic expression
during our observation period: after an initial decline in UCP-2 protein expression during the onset
of hypertrophy, UCP-2 expression rose significantly at later time-points (Figure 4G–I). As expected
from our in vitro studies (see above), Glut-4 protein expression was regulated to the contrary: it rose
initially, when UCP-2 expression was low, and declined at later time-points when UCP-2 expression
increased again (Figure 4G–I).

3.4. Effect of Spironolactone on the Expression of UCP-2 and Glut-4 in Pressure-Overloaded Hearts

Results from our in vitro and in vivo experiments suggest that upregulation of UCP-2 and
a corresponding down-regulation of Glut-4 participate in the progression of heart failure under
conditions of chronic pressure overload. If this hypothesis is correct, a treatment strategy to avoid the
re-induction of UCP-2 at that time should prevent such a transition. Aldosterone treatment in rats was
shown to impair glucose uptake in the liver and skeletal muscle via inhibition of Glut-2 and Glut-4
gene expression and decrease translocation of Glut-4 to the plasma membrane [22]. Spironolactone,
an aldosterone blocker (mineralocorticoid receptor antagonist, MRA), was shown to improve insulin
sensitivity and glucose transport [23]. More importantly, spironolactone was able to prevent a
chlorthalidone-induced insulin resistance in hypertensive patients, which was not observed when
chlorthalidone was combined with the Ang-II receptor blocker irbesartan [24]. Thus, we aimed to
determine if blocking the aldosterone receptor during hypertrophic remodeling prevents the decline of
Glut-4 expression by reducing UCP-2 expression. Therefore, we started to treat SHRs at the age of
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6 months (with established myocardial hypertrophy but preserved function) for the subsequent next
four months with spironolactone.

Figure 4. Blood pressure and hypertrophy in spontaneously hypertensive rats (SHR). (A) Systolic blood
pressure in SHRs at various time-points (1.5 months n = 4; 11.5 months n = 9; all others n = 6). * p <

0.05 vs. 1.5 months. (B) LV weight normalized to tibia length (LVW/TL; 1.5 months: n = 8; 11.5 months:
n = 5; all others n = 10). * p < 0.05 vs. 1.5 months; # p < 0.05 vs. 1.5–4.5 months. (C) Ejection fraction
(EF) in SHR (n = 5–6). * p < 0.05 vs. 3 months. ANP (D), UCP-2 (E) and PGC-1α (F) mRNA expression
in the LV of SHRs (1.5–7.5 months n = 6; 11.5 months n = 12; * p < 0.05 vs. 1.5 months; # p < 0.05 vs.
1.5–7.5 months). (G) Original Western blot showing Glut-4, UCP-2, and GAPDH expression in the LV
of SHRs at an age of 1.5, 7.5, and 11.5 months. (H,I) Quantification of protein levels from Western
blots of n = 4 independent experiments, normalized to GAPDH (p < 0.05 vs. 1.5 and 11.5 months).
(A–F,H,I) Data expressed as 25%, 50%, and 75% quartiles, with whiskers representing the total range
and dots representing the individual data points. Statistical analysis was performed with a one-way
ANOVA with a subsequent Student–Newman–Keuls test for post hoc analysis.
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Treatment with spironolactone slightly reduced blood pressure (Figure 5A), did not affect
hypertrophy (Figure 5B), did not affect the mRNA expression of ANP (Figure 5D) but attenuated the
fall in ejection fraction (Figure 5C). However, it increased the expression of PGC-1α (Figure 5E) while it
subsequently reduced the expression of UCP-2, and increased that of Glut-4 (Figure 5F–G). This was
also confirmed on the protein level (Figure 5H–J). Consequently, starting MRA therapy during the
stage of compensated hypertrophy should prevent the downregulation of Glut-4 and thereby stabilize
cardiac metabolism and function.

Figure 5. Blood pressure and hypertrophy in 10-months old spontaneously hypertensive rats (SHR)
treated with (Spiro) or without (Ctr) spironolactone for the last four months. (A) Systolic blood pressure
in SHRs (n = 6). Statistical analysis was performed with unpaired t-test (* p = 0.00035). (B) LV weight
normalized to tibia length (LVW/TL; n = 12–16). Statistical analysis was performed with Welch’s t-test
(p > 0.05). (C) Ejection fraction (EF) in SHR (n = 10–12). Statistical analysis was performed with a
Mann–Whitney test (p = 0.00193). (D–G) mRNA expression of ANP (D), PGC-1α (E), UCP-2 (F) and
Glut-4 (G) in the LV of SHRs (n = 12–18). Statistical analysis was performed with unpaired t-test (p >

0.05 (ANP); * p = 0.00664 (PGC-1α); * p = 0.00704 (UCP-2); * p = 0.01404 (Glut-4)). (H, I) Quantification
of protein levels from Western blots showing Glut-4, UCP-2, and GAPDH expression in the LV of SHRs
at an age of 11.5 months, normalized to GAPDH and compared to the basal expression of the controls.
Data are from n = 6 independent experiments and are statistically analyzed using unpaired t-tests.
(H) UCP-2 (* p = 0.026) and (I) Glut-4 (* p = 0.015). (J) Original Western blot showing Glut-4, UCP-2,
and GAPDH expression in the LV of SHRs. (A–I) Data are expressed as 25%, 50%, and 75% quartiles,
with whiskers representing the total range, while the dots represent the individual data points.
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3.5. UCP-2 and Glut-4 in Human End-Stage Heart Failure

Finally, we addressed the question of whether a similar effect of UCP-2 and Glut-4 expression
holds in human hearts at end-stage heart failure. Protein levels of LV from patients with end-stage
heart failure (transplanted hearts) displayed a higher expression of UCP-2 compared to donor hearts,
but a reduced expression of Glut-4 (Figure 6A–C). Moreover, we found a reverse correlation between
UCP-2 and Glut-4 expression by pair-to-pair comparison of the expression in individual patients
(Figure 6D).

Figure 6. UCP-2 and Glut-4 expression in LV from healthy donor hearts or explanted hearts of end-stage
congestive heart failure (CHF). (A) Original Western blot. (B,C) Quantification of protein levels from
Western blots normalized to GAPDH and compared to the expression of donor hearts. Data from
n = 4 (Donor) or n = 9 (CHF) hearts are expressed as 25%, 50%, and 75% quartiles, with whiskers
representing the total range. The dots represent the individual data points. Statistical analysis with
unpaired t-test. (B) UCP-2 (* p = 0.026) and (C) Glut-4 (* p = 0.015). (D) Association between UCP-2
and Glut-4 expression with Pearson’s correlation coefficient (p = 0.03093). Open symbols: donor hearts.
Filled symbols: CHF.
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4. Discussion

The current study aims to clarify the role of UCP-2 during the transition from cardiac hypertrophy
to heart failure. The most important findings of our study are (1) that silencing of UCP-2 in cultured
adult rat ventricular cardiomyocytes improves glucose uptake and preserves cell function in an Ang
II-driven model of cell dysfunction, (2) that UCP-2 expression is transiently down- and glucose uptake
clearly up-regulated during the adaptive phase of cardiac hypertrophy, but (3) that an up-regulation of
UCP-2 at the time of decompensation is associated with less Glut-4 expression and reduced function.
Finally, we were able to show that these mal-adaptive processes during the late stage of hypertrophy
can be attenuated by blockade of aldosterone pathways. Figure 7 summarizes these findings.

Figure 7. Final summary. During the adaptive phase of myocardial hypertrophy UCP-2 expression
is reduced and Glut-4 expression is increased. We hypothesize that this improves pyruvate import
into mitochondria and maintains cardiomyocyte function. During the transition to heart failure (HF),
UCP-2 expression is increased and, subsequently, Glut-4 expression reduced. UCP-2 expression would
then inhibit pyruvate entry and glucose would be metabolized in a glycolytic pathway leading to
decreased ATP levels and lactate accumulation. e- = electron. ETC = electron transport chain.
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In a previous study, we found that UCP-2 expression in cardiomyocytes from mice is low compared
to non-myocytes and that a deficiency of UCP-2 is accompanied by improved fibrotic responsiveness in
the right ventricle, which preserves cardiac output under pressure overload [4]. However, the situation
in a pressure-overloaded LV may be different as fibrosis contributes to the development of LV diastolic
dysfunction [18]. Moreover, recent studies suggest differences in the cardiac expression of UCP-2
between mice and rats, indicating a higher expression of UCP-2 in rat hearts [25]. UCP-2 seems to be
phylogenetically selected for its role in cardiac tissue from rats. Therefore, we analyzed the expression
and function of UCP-2 in adult rat ventricular cardiomyocytes.

We have not only found a constitutively high expression of UCP-2 in rat hearts but also a similar
expression level between cardiomyocytes and non-myocytes, which represents another difference
between mice and rats and suggests a specific role for UCP-2 in rat hearts. Our data contradict previous
findings suggesting that mice and rat hearts do not express UCP-2 [26].

However, there are serious concerns about the ability of different antibodies to properly detect
the level of UCP-2 protein. The antibody used in this study was validated using protein lysates from
wild-type and UCP-2 knockout mice, as described before [4,17].

Having successfully established an in vitro model to study the effects of UCP-2 in isolated heart
muscle cells by small interfering RNA, we proceeded to identify potential mechanisms by which
UCP-2 may affect cardiac hypertrophy and failure. In general, high levels of UCP-2 should reduce
ROS formation in the heart by lowering the mitochondrial membrane potential and therefore must
be considered as a protective measure [27,28]. Additionally, UCP-2 was found to be activated by
ROS [29]. Reduction of UCP-2 expression in adult rat ventricular cardiomyocytes by hyperglycemia
increases ROS formation and induces cardiomyocyte contractile dysfunction [30]. However, whether
UCP-2 affects electron transport chain activity is highly questionable. In contrast to this proposed
mechanism, it was demonstrated that in mouse heart UCP-2 revealed beneficial effects on mitochondria,
but without affecting ROS production [31]. Even more contradictory is the finding that in neonatal
cardiomyocytes, ROS triggers the downregulation of UCP-2 and, thereby, accelerates the development
of hypertrophy [32]. Moreover, we did not find any differences in mitochondrial function in the hearts
of UCP-2-deficient mice compared with those of wild-type mice [4]. Similarly, in this study, we did not
find any differences in ROS production in cardiac rat mitochondria treated with genipin, an inhibitor
of UCP-2. These data contradict the assumption that UCP-2 acts as a modifier of electron transport
chain activity in rat cardiomyocytes.

In contrast to the ROS hypothesis, other researchers favor a more recent approach for UCP-2 as a
key regulator of metabolic pathways. For example, high UCP-2 levels may favor the use of free fatty
acid oxidation in cardiac mitochondria [19,31]. Vice versa, free fatty acids have been reported to induce
the expression of UCP-2 [33,34]. During the development of cardiac hypertrophy, the situation may
differ: under these conditions, a metabolic shift from fatty acid consumption to glucose consumption is
observed. This would then require a downregulation of UCP-2 and upregulation of glucose transporters.
Glut-1 and Glut-4 are the most abundant glucose transporters in the heart [35]. Specifically, for the
insulin-sensitive Glut-4, an inverse regulation between UCP-2 and Glut-4 was reported several times in
skeletal muscles that were impaired by diabetes [36,37]. In the pancreas and in adipocytes, antidiabetic
medication induces Glut-4 and reduces UCP-2 expression [38–41]. In the heart, an induction of UCP-2
was associated with reduced expression of Glut-4 [42,43]. Using the isolated cell culture model,
we confirmed such a relationship for the first time in isolated cardiomyocytes. Silencing of UCP-2 was
associated with an increased mRNA and protein expression of Glut-4 and increased glucose uptake.

In quiescent human pluripotent stem cells (hPSC), UCP-2 was found to regulate energy metabolism
by preventing mitochondrial glucose oxidation [44]. Furthermore, during hPSC differentiation,
the repression of UCP-2 seems to be necessary to switch from glycolysis to mitochondrial glucose
oxidation, as ectopic UCP-2 expression disturbed this transition and impaired hPSC differentiation.
Moreover, it was published that UCP-2 silencing in human hepatocellular carcinoma (HepG2) cells
decreases lactate production and increases the ATP:ADP ratio, indicating that UCP-2 favors glycolytic
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pathways [21]. Within this study, it has been shown that UCP-2 transports C4 metabolites from
mitochondria to the cytosol. Therefore, it was assumed that UCP-2 limits mitochondrial oxidation of
pyruvate and enhances glycolysis and glutaminolysis. Also, in primary murine embryonic fibroblasts,
it was shown that loss of function of UCP-2 increases proliferation, associated with a metabolic switch
from fatty acid oxidation to glucose metabolism [20]. Additionally, ROS production was not increased.
In line with these results, our data indicate that the downregulation of UCP-2 favors oxidative pathways,
as assumed by decreased lactate accumulation. As cultured cells prefer glucose substrate utilization,
an increase in oxidative phosphorylation of glucose by UCP-2 would be beneficial, by providing the
cells with enough energy and limiting lactic acidosis. In accordance with this is the observation that
UCP-2 over-expression in isolated rat cardiomyocytes led to a significant decline in ATP level and
the development of acidosis [45]. More importantly, when cardiomyocytes were challenged with
hypoxia-reoxygenation, a situation where cells switch to glycolytic energy generation, UCP-2 silencing
prevented cell death [45].

To investigate these mechanisms under pathological situations, adverse remodeling of
cardiomyocytes was induced by Ang-II. Activation of the RAAS is a key step in the progression of
heart failure. In SHRs, a RAAS-driven model of essential hypertension, an upregulation of cardiac
UCP-2 expression has already been described [46]. In isolated cardiomyocytes Ang-II induced the
expression of UCP-2 and accelerated cellular aging [47]. We have previously shown that Ang II induces
a decline of load-free cell shortening of isolated cardiomyocytes that mimics the situation in the whole
heart as well [48]. In conclusion, the available data indicates that Ang-II induces the expression of
UCP-2 and a corresponding decline in cardiac function. Given the importance of these cellular and
molecular mechanisms which may directly contribute to the development of heart failure, we decided
to investigate these findings in more detail. The results of our study show that the silencing of UCP-2,
as well as inhibition of UCP-2 activity, are sufficient to abrogate the detrimental effect of Ang-II on
isolated cardiomyocytes. This protective effect of UCP-2 silencing was abolished by the simultaneous
inhibition of Glut-4 expression. Therefore, these protective effects seem to be driven by metabolic
transitions through UCP-2, improving cardiomyocyte’s energy production.

Having established a potential mechanism by which UCP-2 may influence the remodeling of
cardiomyocytes in vitro, it was important to translate these results into an in vivo setting by using SHRs.
These rats display an induction of myocardial hypertrophy (adaptive) during the first six months of
hypertension with a mal-adaptive remodeling in the following months. Results from these experiments
show that, initially, UCP-2 is downregulated, together with an increased expression of PGC-1α and
Glut-4. Mechanistically, it has been shown that Sirt-1 is required for UCP-2 downregulation by forming
a complex with FoxO3a/PGC-1α [49]. In the second (mal-adaptive) phase, UCP-2 expression rises
again with a subsequent downregulation of Glut-4. During this time, PGC-1α expression declines,
indicating a decline in mitochondrial density. In a hypertrophic heart that has lost its metabolic
flexibility due to the preferential substrate utilization of glucose, the described mechanisms may
contribute to or accelerate the development of heart failure.

Following this line, SHRs were treated with spironolactone starting at an age of six months,
before the transition from adaptive to mal-adaptive hypertrophy occurs. Indeed, cardiac function
was maintained, UCP-2 expression remained low, and Glut-4 expression remained high. These data
indicate that aldosterone might be responsible for the upregulation of UCP-2.

As mentioned before, major differences occur between rats and mice regarding the expression
and cellular distribution of UCP-2 in the heart. Therefore, it is important to analyze whether the
aforementioned regulation of UCP-2 and Glut-4 is also observable in the human heart. By comparing
the expression of UCP-2 and Glut-4 between healthy donor hearts and hearts from patients after heart
transplantation (end-stage heart failure), we observed a similar inverse correlation between UCP-2
and Glut-4 in human hearts as well. Previously, a downregulation of Glut-4 in human hearts with
end-stage heart failure has been reported; however, Glut-4 downregulation could be reversed by an
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LV-assist device [50]. Similarly, at least in the SHRs used here, downregulation of Glut-4 was attenuated
by spironolactone.

5. Study Limitations

There are two major limitations in this study that could be addressed in future research. First, as we
used the diuretic agent spironolactone, we cannot clearly discriminate whether an anti-hypertensive
effect or a possible direct effect of the drug occurred. However, the observed effect on blood pressure
was limited, as the rats still remained hypertensive. Moreover, the reduced blood pressure was not
sufficient to reduce myocardial hypertrophy, but improved EF. Nevertheless, these experiments were
performed as a curative treatment after six months of hypertension, aimed to prevent an induction of
UCP-2. Therefore, an important finding of this study is that hypertension alone does not induce a
nonreversible effect on UCP-2 and Glut-4 expression.

The second is that we still have to elucidate the mechanism of how Glut-4 metabolism is regulated
by UCP-2 expression and how UCP-2 expression affects mitochondrial ATP production. For future
experiments, it would, therefore, be important to investigate turn-over rates for ATP under UCP-2
silencing in vitro and during compensation and decompensation in hypertrophic hearts in vivo.

6. Conclusions

In summary, the results of this study demonstrate for the first time that UCP-2 seems to influence
the cardiac glucose metabolism by affecting glucose uptake through Glut-4. We suggest that low UCP-2
levels are pivotal to maintain the adaptive phase of cardiac hypertrophy in the concomitant presence
of hypertension, whereas an increased expression of UCP-2 reduces the ability of cardiomyocytes to
uptake glucose in a situation where they have lost their metabolic flexibility.
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Ang-II angiotensin II
ANP atrial natriuretic peptide
EF ejection fraction
FCS fetal calf serum
GAPDH glyceraldehyde 3-phosphate dehydrogenase
Glut-4 glucose transporter type 4
HepG2 hepatocelluar carcinoma
Hprt hypoxanthine phosphoribosyl transferase
hPSC human pluripotent stem cells
hUCP2 human UCP-2 protein
LVW/TL left ventricular weight normalized to tibia length
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MRA mineralocorticoid receptor antagonist
PBS phosphate buffered saline
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
RAAS renin-angiotensin-aldosterone-system
ROS reactive oxygen species
SD standard deviation
SE standard error
scRNA scrambled RNA (control)
SHR spontaneously hypertensive rats
siRNA small interfering RNA
UCP-2 uncoupling protein 2
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channels modulate cardiac mitochondrial function. Am. J. Physiol. 1998, 275, H1567–H1576. [CrossRef]
[PubMed]

14. Boengler, K.; Bulic, M.; Schreckenberg, R.; Schlüter, K.-D.; Schulz, R. The gap junction modifier ZP1609
decreases cardiomyocyte hypercontracture following ischaemia/reperfusion independent from mitochondrial
connexin 43. Br. J. Pharmacol. 2017, 174, 2060–2073. [CrossRef]

http://dx.doi.org/10.1016/j.bbabio.2010.02.035
http://www.ncbi.nlm.nih.gov/pubmed/20211596
http://dx.doi.org/10.1016/j.bbabio.2005.06.002
http://www.ncbi.nlm.nih.gov/pubmed/16005426
http://dx.doi.org/10.1093/cvr/cvz049
http://www.ncbi.nlm.nih.gov/pubmed/30850841
http://dx.doi.org/10.1089/ars.2006.8.1
http://dx.doi.org/10.1096/fj.00-0569fje
http://dx.doi.org/10.1016/j.yjmcc.2008.01.008
http://dx.doi.org/10.1159/000430142
http://dx.doi.org/10.1007/s00395-005-0514-4
http://dx.doi.org/10.3791/56634
http://dx.doi.org/10.1007/s00395-018-0696-8
http://www.ncbi.nlm.nih.gov/pubmed/30120595
http://dx.doi.org/10.1007/s00424-003-1187-8
http://www.ncbi.nlm.nih.gov/pubmed/14586658
http://dx.doi.org/10.1152/ajpheart.1998.275.5.H1567
http://www.ncbi.nlm.nih.gov/pubmed/9815062
http://dx.doi.org/10.1111/bph.13804


Cells 2020, 9, 552 18 of 19

15. Nippert, F.; Schreckenberg, R.; Hess, A.; Weber, M.; Schlüter, K.-D. The Effects of Swiprosin-1 on the
Formation of Pseudopodia-Like Structures and β-Adrenoceptor Coupling in Cultured Adult Rat Ventricular
Cardiomyocytes. PLoS ONE 2016, 11, e0167655. [CrossRef]

16. Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR
and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [CrossRef]

17. Rupprecht, A.; Sokolenko, E.A.; Beck, V.; Ninnemann, O.; Jaburek, M.; Trimbuch, T.; Klishin, S.S.; Jezek, P.;
Skulachev, V.P.; Pohl, E.E. Role of the transmembrane potential in the membrane proton leak. Biophys. J.
2010, 98, 1503–1511. [CrossRef]

18. Schreckenberg, R.; Horn, A.-M.; da Costa Rebelo, R.M.; Simsekyilmaz, S.; Niemann, B.; Li, L.; Rohrbach, S.;
Schlüter, K.-D. Effects of 6-months’ Exercise on Cardiac Function, Structure and Metabolism in Female
Hypertensive Rats–The Decisive Role of Lysyl Oxidase and Collagen III. Front. Physiol. 2017, 8, 1054.
[CrossRef]

19. Abu-Elheiga, L.; Oh, W.; Kordari, P.; Wakil, S.J. Acetyl-CoA carboxylase 2 mutant mice are protected against
obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc. Natl. Acad. Sci. USA 2003, 100,
10207–10212. [CrossRef]

20. Pecqueur, C.; Bui, T.; Gelly, C.; Hauchard, J.; Barbot, C.; Bouillaud, F.; Ricquier, D.; Miroux, B.; Thompson, C.B.
Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived
pyruvate utilization. FASEB J. 2008, 22, 9–18. [CrossRef]

21. Vozza, A.; Parisi, G.; de Leonardis, F.; Lasorsa, F.M.; Castegna, A.; Amorese, D.; Marmo, R.; Calcagnile, V.M.;
Palmieri, L.; Ricquier, D.; et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and
glutamine oxidation. Proc. Natl. Acad. Sci. USA 2014, 111, 960–965. [CrossRef] [PubMed]

22. Selvaraj, J.; Muthusamy, T.; Srinivasan, C.; Balasubramanian, K. Impact of excess aldosterone on glucose
homeostasis in adult male rat. Clin. Chim. Acta 2009, 407, 51–57. [CrossRef] [PubMed]

23. Lastra, G.; Whaley-Connell, A.; Manrique, C.; Habibi, J.; Gutweiler, A.A.; Appesh, L.; Hayden, M.R.; Wei, Y.;
Ferrario, C.; Sowers, J.R. Low-dose spironolactone reduces reactive oxygen species generation and improves
insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am. J. Physiol. Endocrinol.
Metab. 2008, 295, E110–E116. [CrossRef] [PubMed]

24. Raheja, P.; Price, A.; Wang, Z.; Arbique, D.; Adams-Huet, B.; Auchus, R.J.; Vongpatanasin, W. Spironolactone
prevents chlorthalidone-induced sympathetic activation and insulin resistance in hypertensive patients.
Hypertension 2012, 60, 319–325. [CrossRef]

25. Alán, L.; Smolková, K.; Kronusová, E.; Santorová, J.; Jezek, P. Absolute levels of transcripts for mitochondrial
uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues.
J. Bioenerg. Biomembr. 2009, 41, 71–78. [CrossRef]

26. Roshon, M.J.; Kline, J.A.; Thornton, L.R.; Watts, J.A. Cardiac UCP2 expression and myocardial oxidative
metabolism during acute septic shock in the rat. Shock 2003, 19, 570–576. [CrossRef]

27. Ruiz-Ramírez, A.; López-Acosta, O.; Barrios-Maya, M.A.; El-Hafidi, M. Cell Death and Heart Failure in
Obesity: Role of Uncoupling Proteins. Oxid. Med. Cell. Longev. 2016, 2016, 9340654. [CrossRef]

28. Teshima, Y.; Akao, M.; Jones, S.P.; Marbán, E. Uncoupling protein-2 overexpression inhibits mitochondrial
death pathway in cardiomyocytes. Circ. Res. 2003, 93, 192–200. [CrossRef]

29. Mailloux, R.J.; Harper, M.-E. Uncoupling proteins and the control of mitochondrial reactive oxygen species
production. Free Radic. Biol. Med. 2011, 51, 1106–1115. [CrossRef]

30. Wang, Z.; Zhang, Y.; Guo, J.; Jin, K.; Li, J.; Guo, X.; Scott, G.I.; Zheng, Q.; Ren, J. Inhibition of protein kinase C
βII isoform rescues glucose toxicity-induced cardiomyocyte contractile dysfunction: Role of mitochondria.
Life Sci. 2013, 93, 116–124. [CrossRef]

31. Kukat, A.; Dogan, S.A.; Edgar, D.; Mourier, A.; Jacoby, C.; Maiti, P.; Mauer, J.; Becker, C.; Senft, K.; Wibom, R.;
et al. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling
activity. PLoS Genet. 2014, 10, e1004385. [CrossRef] [PubMed]

32. Yang, K.; Xu, X.; Nie, L.; Xiao, T.; Guan, X.; He, T.; Yu, Y.; Liu, L.; Huang, Y.; Zhang, J.; et al. Indoxyl
sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling
pathway. Toxicol. Lett. 2015, 234, 110–119. [CrossRef] [PubMed]

33. Van der Lee, K.A.; Willemsen, P.H.; van der Vusse, G.J.; van Bilsen, M. Effects of fatty acids on uncoupling
protein-2 expression in the rat heart. FASEB J. 2000, 14, 495–502. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0167655
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1016/j.bpj.2009.12.4301
http://dx.doi.org/10.3389/fphys.2017.00556
http://dx.doi.org/10.1073/pnas.1733877100
http://dx.doi.org/10.1096/fj.07-8945com
http://dx.doi.org/10.1073/pnas.1317400111
http://www.ncbi.nlm.nih.gov/pubmed/24395786
http://dx.doi.org/10.1016/j.cca.2009.06.030
http://www.ncbi.nlm.nih.gov/pubmed/19567248
http://dx.doi.org/10.1152/ajpendo.00258.2007
http://www.ncbi.nlm.nih.gov/pubmed/18445755
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.194787
http://dx.doi.org/10.1007/s10863-009-9201-2
http://dx.doi.org/10.1097/01.shk.0000055241.25446.5f
http://dx.doi.org/10.1155/2016/9340654
http://dx.doi.org/10.1161/01.RES.0000085581.60197.4D
http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.022
http://dx.doi.org/10.1016/j.lfs.2013.06.002
http://dx.doi.org/10.1371/journal.pgen.1004385
http://www.ncbi.nlm.nih.gov/pubmed/24945157
http://dx.doi.org/10.1016/j.toxlet.2015.01.021
http://www.ncbi.nlm.nih.gov/pubmed/25703824
http://dx.doi.org/10.1096/fasebj.14.3.495
http://www.ncbi.nlm.nih.gov/pubmed/10698964


Cells 2020, 9, 552 19 of 19

34. Vettor, R.; Fabris, R.; Serra, R.; Lombardi, A.M.; Tonello, C.; Granzotto, M.; Marzolo, M.O.; Carruba, M.O.;
Ricquier, D.; Federspil, G.; et al. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during
lipid infusion in rat skeletal and heart muscle. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 838–847. [CrossRef]
[PubMed]

35. Shao, D.; Tian, R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr. Physiol. 2015,
6, 331–351. [CrossRef] [PubMed]

36. Kato, M.; Suwa, A.; Shimokawa, T. Glucose catabolic gene mRNA levels in skeletal muscle exhibit
non-coordinate expression in hyperglycemic mice. Horm. Metab. Res. 2004, 36, 513–518. [CrossRef]
[PubMed]

37. Fabris, R.; Nisoli, E.; Lombardi, A.M.; Tonello, C.; Serra, R.; Granzotto, M.; Cusin, I.; Rohner-Jeanrenaud, F.;
Federspil, G.; Carruba, M.O.; et al. Preferential channeling of energy fuels toward fat rather than muscle
during high free fatty acid availability in rats. Diabetes 2001, 50, 601–608. [CrossRef] [PubMed]

38. Lee, Y.-S.; Cha, B.-Y.; Choi, S.-S.; Harada, Y.; Choi, B.-K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.-T.
Fargesin improves lipid and glucose metabolism in 3T3-L1 adipocytes and high-fat diet-induced obese mice.
Biofactors 2012, 38, 300–308. [CrossRef]

39. McAllan, L.; Skuse, P.; Cotter, P.D.; O’Connor, P.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.; Roche, H.M.;
Nilaweera, K.N. Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy
balance and the gut microbiota in C57BL/6J mice. PLoS ONE 2014, 9, e88904. [CrossRef]

40. Samadder, A.; Das, J.; Das, S.; De, A.; Saha, S.K.; Bhattacharyya, S.S.; Khuda-Bukhsh, A.R.
Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced
hyperglycemia in mice: Some novel findings. Toxicol. Appl. Pharmacol. 2013, 267, 57–73. [CrossRef]

41. Samadder, A.; Das, S.; Das, J.; Khuda-Bukhsh, A.R. Relative efficacies of insulin and poly (lactic-co-glycolic)
acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells.
Colloids Surf. B Biointerfaces 2013, 109, 10–19. [CrossRef] [PubMed]

42. Murray, A.J.; Anderson, R.E.; Watson, G.C.; Radda, G.K.; Clarke, K. Uncoupling proteins in human heart.
Lancet 2004, 364, 1786–1788. [CrossRef]

43. Neves, F.A.; Cortez, E.; Bernardo, A.F.; Mattos, A.B.M.; Vieira, A.K.; Malafaia, T.d.O.; Thole, A.A.;
Rodrigues-Cunha, A.C.d.S.; Garcia-Souza, E.P.; Sichieri, R.; et al. Heart energy metabolism impairment in
Western-diet induced obese mice. J. Nutr. Biochem. 2014, 25, 50–57. [CrossRef] [PubMed]

44. Zhang, J.; Khvorostov, I.; Hong, J.S.; Oktay, Y.; Vergnes, L.; Nuebel, E.; Wahjudi, P.N.; Setoguchi, K.; Wang, G.;
Do, A.; et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem
cells. EMBO J. 2011, 30, 4860–4873. [CrossRef]

45. Bodyak, N.; Rigor, D.L.; Chen, Y.-S.; Han, Y.; Bisping, E.; Pu, W.T.; Kang, P.M. Uncoupling protein 2 modulates
cell viability in adult rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H829–H835. [CrossRef]

46. Fukunaga, Y.; Itoh, H.; Hosoda, K.; Doi, K.; Matsuda, J.; Son, C.; Yamashita, J.; Chun, T.H.; Tanaka, T.;
Inoue, M.; et al. Altered gene expression of uncoupling protein-2 and -3 in stroke-prone spontaneously
hypertensive rats. J. Hypertens. 2000, 18, 1233–1238. [CrossRef]

47. Li, P.; Guo, X.; Lei, P.; Shi, S.; Luo, S.; Cheng, X. PI3K/Akt/uncoupling protein 2 signaling pathway may be
involved in cell senescence and apoptosis induced by angiotensin II in human vascular endothelial cells.
Mol. Biol. Rep. 2014, 41, 6931–6937. [CrossRef]

48. Mufti, S.; Wenzel, S.; Euler, G.; Piper, H.M.; Schlüter, K.-D. Angiotensin II-dependent loss of cardiac function:
Mechanisms and pharmacological targets attenuating this effect. J. Cell. Physiol. 2008, 217, 242–249.
[CrossRef]

49. Deng, M.; Wang, D.; He, S.; Xu, R.; Xie, Y. SIRT1 confers protection against ischemia/reperfusion injury in
cardiomyocytes via regulation of uncoupling protein 2 expression. Mol. Med. Rep. 2017, 16, 7098–7104.
[CrossRef]

50. Razeghi, P.; Young, M.E.; Ying, J.; Depre, C.; Uray, I.P.; Kolesar, J.; Shipley, G.L.; Moravec, C.S.; Davies, P.J.A.;
Frazier, O.H.; et al. Downregulation of metabolic gene expression in failing human heart before and after
mechanical unloading. Cardiology 2002, 97, 203–209. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/sj.ijo.0802005
http://www.ncbi.nlm.nih.gov/pubmed/12037655
http://dx.doi.org/10.1002/cphy.c150016
http://www.ncbi.nlm.nih.gov/pubmed/26756635
http://dx.doi.org/10.1055/s-2004-825752
http://www.ncbi.nlm.nih.gov/pubmed/15326559
http://dx.doi.org/10.2337/diabetes.50.3.601
http://www.ncbi.nlm.nih.gov/pubmed/11246880
http://dx.doi.org/10.1002/biof.1022
http://dx.doi.org/10.1371/journal.pone.0088904
http://dx.doi.org/10.1016/j.taap.2012.12.018
http://dx.doi.org/10.1016/j.colsurfb.2013.03.028
http://www.ncbi.nlm.nih.gov/pubmed/23603037
http://dx.doi.org/10.1016/S0140-6736(04)17402-3
http://dx.doi.org/10.1016/j.jnutbio.2013.08.014
http://www.ncbi.nlm.nih.gov/pubmed/24314865
http://dx.doi.org/10.1038/emboj.2011.401
http://dx.doi.org/10.1152/ajpheart.01409.2006
http://dx.doi.org/10.1097/00004872-200018090-00009
http://dx.doi.org/10.1007/s11033-014-3580-0
http://dx.doi.org/10.1002/jcp.21501
http://dx.doi.org/10.3892/mmr.2017.7452
http://dx.doi.org/10.1159/000063122
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Ethical Concerns 
	Isolation and Cultivation of Adult Rat Ventricular Cardiomyocytes 
	Isolation of Mitochondria and Measurement of ROS and Respiration 
	Glucose Uptake 
	Intracellular Lactate Levels 
	Cell Viability Assay 
	RNA Isolation and Real-Time PCR 
	Western Blots 
	Assessment of LV Hypertrophy and Function 
	Statistics 

	Results 
	Effect of UCP-2 Expression and Activity on Load-Free Cell Shortening of Adult Rat Ventricular Cardiomyocytes 
	Effects of UCP-2 Expression and Activity on Mitochondrial Function, Metabolism, and Viability 
	Regulation of UCP-2 and Glut-4 During Chronic Hypertension 
	Effect of Spironolactone on the Expression of UCP-2 and Glut-4 in Pressure-Overloaded Hearts 
	UCP-2 and Glut-4 in Human End-Stage Heart Failure 

	Discussion 
	Study Limitations 
	Conclusions 
	References

