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Abstract: This methods showcase article provides a detailed overview of a mixed-
effects modeling analysis of corpus data on the use of that in object and subject com-
plementation by native speakers of English compared to its use by German and Spanish
learners of English.

“We emphasize that we do not claim that our illustrations are the
only way to carry out these analyses, but the strategy outlined
above has yielded satisfactory results.” (Bates et al., 2018, p. 5)

Keywords Mixed-effects modeling; generalized linear modeling; regression; that-
complementation

Introduction

General Introduction

Over the last 10 or so years, mixed-effects regression modeling has taken lin-
guistics by storm. Although many linguistic subdisciplines have been using
regression-based approaches for a long time—and I am including the kinds
of linear models that are still often referred to by traditional names such as
ANOVA or ANCOVA—since at least 2008, mixed-effects modeling (MEM)
has seen a meteoric rise in probably most sub-fields in linguistics. This is be-
cause 2008 saw the publication of both:
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Gries Mixed-Effects Modeling

® Baayen (2008), Chapter 7 of which was one of the first at least somewhat
introductory discussions of MEM in linguistics, and

® aspecial issue of the Journal of Memory and Language in 2008 on “Emerg-
ing Data Analysis” (Volume 59, Issue 4), whose contributors included again
Baayen, Davidson, and Bates but also Quené and van den Bergh, Barr, and
others who showcased the power of this kind of approach.

The most important advantage of MEM is the way it modifies or enriches
generalized linear models. Generalized linear models involve the assumption
that the data points (or observations or—in the usual long, case-by-variable for-
mat used by statistical software—the rows of the spreadsheet) are statistically
independent of each other, an assumption that ideally (a) informed the design
of the data collection process or the data analysis and (b) was checked after the
fact as part of model diagnostics (e.g., by checking, visually or otherwise, the
structure of the residuals of linear models especially).

In what way might data points not be statistically independent of each
other? Several possibilities are common. First, data points might be related
because they share characteristics other than those encoded in predictors, as
when subjects in experiments produce multiple/repeated measures of the re-
sponse variable. That way, all measurements of a certain subject or on a certain
stimulus might be affected by, for example, the subject’s general idiosyncratic
aptitude or motivation or the characteristics of the stimulus. In addition, sub-
jects might differ not just in an overall tendency for certain (ranges of) values
of the response variable but also in their reaction to changes of the predictor(s).
Crucially, multiple repeated-measurements structures of this type can coexist
in one experimental design, as when every subject contributes multiple mea-
surements and when there are multiple measurements for each stimulus/item.
This is often referred to as a crossed random-effects structure. Diagnostically,
such repeated-measurements structures could show up in residual plots exhibit-
ing structure (resulting from clumping of measurements from one speaker) or
from notable results in influence measures. In addition to such overall tenden-
cies and tendencies to react to predictors, subjects’ data points might also be
temporally related as when the multiple data points of a subject in an experi-
ment are subject to learning, habituation, practice, or fatigue effects or when
speakers in observational data exhibit priming and/or resonance effects. This
means that even just knowing the previous value(s) of a response variable (per-
haps even without knowing the values of any predictors) already helps predict
the current value of the response (a situation referred to as autocorrelation).

Second, data points might also be related in a more specific version of
sharing characteristics, namely, because they share multiple taxonomically or
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hierarchically organized characteristics (what Meteyard & Davies, 2020 call
“multi-stage sampling”), giving rise to what are so-called nested random ef-
fects. A frequently-used example to explain this involves educational research.
For instance, when, high school students are tested, all students within the same
classroom share the teacher (whose teaching style might have a certain impact
on all of his students), but they also share the school (whose parent-teacher
association might work in a way that is systematically different from that of
other schools), but they also share the school district (whose funding situation
might affect all its schools differently from the way funding affects schools of
other districts). This, too, might diagnostically show up in residual structure
and/or influence measures.

Although the simplest kind of MEM is statistically equivalent to a ¢ test for
dependent samples, MEM can consider multiple crossed and nested random
effects simultaneously (e.g., repeated measurements for subjects and items) in
way that such ¢ tests or different kinds of workarounds proposed for repeated-
measures ANOVAs—quasi-F and then F'|/F,/minF” analyses widely used after
Clark’s (1973) seminal paper—cannot. For instance, an experimental set-up
where each speaker and each stimulus contribute multiple data points is dealt
with by including crossed random effects in a way far superior to averaging
over subjects and/or items (see Baayen, 2008, Section 7.2; Baguley, 2012, pp.
732—733; Meteyard & Davies, 2020; and especially Brauer & Curtin, 2018,
for discussion of the disadvantages of the traditional ANOVA).

To illustrate how MEM proceeds conceptually, I present a simple linear re-
gression model in Equations 1 and 2 with a numeric dependent/response vari-
able Y (e.g., a reaction time or a duration) and a numeric independent/predictor
variable X (e.g., length or frequency of a word), where Equation 1 shows the
typical mathematical notation and Equation 2 shows how this model might be
written in R.

y=a+bx )

Im(Y ~1+X,...) ©)

In this notation, the a in Equation 1 represents the intercept and, for all
practical intents and purposes, the 1 in Equation 2 does the same. Whereas
the b in Equation 1 represents the slope of the numeric predictor X, which the
linear model in Equation 2 would estimate/return, and, from this intercept and
slope, one can compute a regression line that visualizes the relation between Y
and X. A small data set with 30 observations of a response Y and a predictor X
from Speakers 1, 2, and 3 is plotted in Figure 1 such that the speaker names are
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Data set 1: a simple linear model
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Figure 1 Scatterplot of Data Set 1 with a fixed-effects regression line (dashed).

used as point characters together with the regression line visualizing the trend
for all three speakers combined (with an intercept a/1 of 0.87 represented by
the grey point) and a slope of X of 0.168, which means that, for every one-unit
increase of the numeric predictor X, the numeric response variable Y increases
by 0.168 units.

It is obvious that the fit of the regression line for all three speakers together
is weak (multiple R?> = .022), but it is apparent that the speakers individually
exhibit what looks like a perfect correlation between y and x and that the slopes
of x for each speaker seem to be very similar. Now if all observations were
independent of each other, using one intercept for all of them could theoreti-
cally make sense, but, because the 30 data points are contributed by only three
speakers, then a mixed-effects model can take that into account. The simplest
way it can do so statistically is by letting all speakers have their own intercept
while still letting them share a single slope of X; more precisely, one would say
there is also a shared intercept, but all speakers get their own adjustment to it.!

Figure 2 shows the result of such a mixed-effects model, where the solid
lines are the speaker-specific regression lines with different intercepts (rep-
resented by the three grey points on the left when X = 0) but the same
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Data set 1: a model w/ varying intercepts
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Figure 2 Scatterplot of Data Set 1 with fixed and mixed-effects regression lines (dashed
and solid respectively).

slope (obvious from the regression lines being perfectly parallel) of 0.95. If
Figure 2 exemplified reaction times in a lexical decision task (¥, which might
be z-standardized/scaled) as a function of word lengths (X, which were trans-
formed from the original values), then it would mean that all three speak-
ers’ reaction times increased in equal measures to word length (the slope is
0.954, meaning it is approximately six times as high as in the linear model in
Figure 1), but the three speakers differed in their baseline reaction speed. The
R? of .998 of this MEM indicates how much better and appropriate this model
is for these data.”

A second kind of MEM can be motivated by the data shown in the left
panel of Figure 3, where again the overall linear model (with an intercept a/1
of 0.94 and a slope of X of 0.41) results in a weak fit (R> = .218). However, the
right panel shows what happens when, this time, the relatedness of the 10 data
points of each speaker is accommodated not by each of the speakers getting
their own intercept adjustment but by their own slope adjustment. If Figure 3
was a similar reaction time paradigm as above, this would mean in effect that
all speakers are equally fast in general (as a kind of baseline, all speakers’
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Data set 2: a simple linear model Data set 2: a model w/ varying slopes
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Figure 3 Scatterplot of Data Set 2 with fixed and mixed-effects regression lines.

Data set 3: a simple linear model Data set 3: a model w/ corr. varying interc. & slopes
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Figure 4 Scatterplot of Data Set 3 with fixed and mixed-effects regression lines.

intercept is 0.8) but become slower differently in response to the words getting
longer. Speaker 1’s slope is predicted to be 1.52 (the shared slope) plus that
speaker’s adjustment of 1.72 for an overall 3.24 whereas, for instance, Speaker
3’ slope is predicted to be 1.52 (the shared slope) plus that speaker’s adjust-
ment of —1.13 for an overall 0.39. This model, which allows speakers’ slopes
to vary quite widely from the overall slope of 1.52, which would be used to
predict results for unseen speakers, results in an R? of .999.

Finally, a MEM can also accommodate the relatedness of each speaker’s
data points by giving individual speakers their own intercept as well as their
own slope. The left panel of Figure 4 shows a model (with an intercept a/1 of
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0.45 and a slope of X of 0.35), which results in a weak fit (R*> = .099), whereas
the right panel shows the MEM with (correlated) speaker-specific intercepts
and slopes resulting in an R*> of .999. Figure 4 would therefore mean some-
thing like all speakers have different baseline reaction speeds but also react
differently in response to the stimulus words getting longer.>

(For a more detailed discussion of these examples, see Gries to appear b,
Section 6.1, where I have the space to also discuss the consequences of us-
ing the better-suited MEMs in terms of regression/residual diagnostics.) Even
in this small example, some of the advantages of MEM should be apparent:
Trivially, one can avoid violating the independence-of-data-points assumption
of fixed-effects modeling. However, more important, because the MEM deals
with speaker- or stimulus-specific idiosyncrasies separately, so to speak, it can
help avoid incorrect decisions regarding the nature and the significance of ef-
fects. For instance, the fixed-effects regression slope in Figure 1 is not sig-
nificantly different from 0, but the overall mixed-effects regression slope in
Figure 2 is. Conversely, the fixed-effects slope in the left panel of Figure 3 is
significantly different from 0, but the overall mixed-effects regression slope in
Figure 2 is not. This of course also suggests that the fixed-effects results of
a mixed-effects model (which one would use to predict new cases from pre-
vious, unseen speakers or for previously unseen items/stimuli) will be more
robust and likely generalize better.

Data and Hypotheses

The data whose analysis I discuss here are a subset of the corpus data studied
(differently) in Wulff, Gries, and Lester (2018). The data and code are available
in the online supplementary material (Appendix S1; see https://osf.io/xmkpt/
?view_only=0d2fb75051e8449¢87dd30eded9683ab). The supplementary ma-
terial also allows readers to see exactly how the analysis was conducted. The
binary response variable for the present paper was the use or omission of an
optional that-complementizer in subject and object complementation (see Ex-
ample 1 and Example 2 respectively) by native speakers (NS) of English and
German and Spanish nonnative speakers (NNS)/learners, of English; this vari-
able was called COMPLEMENTIZER and had the levels absent (Examples 1a and
2a) and present (Examples 1b and 2b):

Example 1

(a) The problem was O the Vorlons refused to help in the war.
(b) The problem was that the Vorlons refused to help in the war.
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Example 2

(a) Ithought @ the Vorlons could have helped earlier.
(b) Ithought that the Vorlons could have helped earlier.

For this methods showcase article, I considered the following variables as
having been found to be correlated with the choice to (not) realize that in such
cases. I will explain them using the example sentence in Example 3:

Example 3

Seriously, I really hope very much that the Vorlons will help us against the
Shadows.

® REGISTER: was the example spoken or written?

e TypE: the complementation type: object or subject—here object,

e [._MATRBE4S: the length of any material before the matrix clause (in
characters)—here 9 (Seriously);

e |_MatTrSUBIJ: the length of the matrix clause subject (in characters)—here
L (;

e [_MATRS2V: the length of any material between the subject and the verb of
the matrix clause—here 6 (really);

e [._MATRV2CC: the length of any material between the verb of the matrix
clause and the complement clause—here 9 (very much);

e [_Cowmpr: the length of the complement clause—here 44 (the Vorlons will
help us against the Shadows);

e [_ComprSuss: the length of the complement clause subject—here 11 (the
Vorlons),

® [_CompPREST: the length of the rest of complement clause—here 32 (will
help us against the Shadows).

However, the main new predictor variables of interest in this particular
analysis were the following:

® DPCW, which represents AP onstruction2words @ unidirectional association
statistic which measures the degree to which that omission prefers the spe-
cific matrix clause verb;

o DPWC, which represents APyordzconstructions @ unidirectional association
statistic, which measures the degree to which the matrix clause verb prefers
that omission; given the temporal order of the two events, this is the one
with the stronger expectation of an effect;

® SURPRISAL: the degree to which the last word of the matrix clause (much
in Example 3) makes the first word of the complement clause (the first
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the in Example 3) surprising based on the (usual) negative binary log of
the weighted conditional probability p (the|much) from the British National
Corpus.

For each of these three predictors, Hypothesis 1 was that it would have an
effect on whether or not speakers use a complementizer. In addition, for each of
these predictors, Hypothesis 2 made the prediction that the NS would behave
differently from the learners because of the additional processing effort that
comes with producing in a language that is not one’s first language (L1).

Hypotheses 1 and 2, the effects of DPCW and DPWC, were motivated
by the fact that research has shown that lexical items have sometimes very
strong constructional preferences (Gries & Stefanowitsch, 2004; Stefanow-
itsch & Gries, 2003). The preference has been used in priming but now also in
complementation research (see, e.g., Jaeger, 2010, who operationalized them
as surprisal). These two verb-specificity hypotheses were operationalized with
the above-mentioned AP statistics (see Ellis, 2007, and Gries, 2013) from a
distinctive collexeme analysis based on the present data set.*

Hypothesis 3, the effect of SURPRISAL, was motivated by the growing body
of work documenting predictability/surprisal effects in NS sentence processing
(see, e.g., Jaeger & Snider, 2008; Lester, 2018; Linzen & Jaeger, 2014) and the
interest in determining whether this would also play a role in NNS.3

In this learner corpus context and for the fixed effects (henceforth, fixef), I
was also interested in the variable L1, which had the levels English, German,
and Spanish. L1 is required to interact with the three main predictors of interest
to see whether any of the effects of these predictors differ between the levels
of L1.

In terms of potential random effects (henceforth, ranef), I will consider
FILE (i.e., the speaker who produced the example) and MATCHLEMMA (i.e., the
matrix clause verb lemma, i.e., hope in Example 3). These variables are exactly
the sources of repeated-measures variation (i.e., most speakers contribute more
than one data point, most matrix clause verbs occur more than once in the
data) that, in an ANOVA context, would correspond to by-subjects/by-items
calculations.

The data to be analyzed in this showcase article had the overall basic distri-
bution shown in Table 1. The examples are from the British Component of the
International Corpus of English (Nelson, Wallis, & Aarts, 2002) for the NS
and from the International Corpus of Learner English (Granger, Dagneaux,
Meunier, & Paquot, 2009) and the Louvain International Database of Spoken
English Interlanguage (Gilquin, De Cock, & Granger, 2010) for the NNS.
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Table 1 Overview of the distribution of the data set

COMPLEMENTIZER
First Language absent present Total
English 2,493 1,176 3,669
German 727 642 1,369
Spanish 549 587 1,136
Total 3,769 2,405 6,174

In the Methods section, I discuss all aspects of the modeling process that
I can include here. In the Methods for Interpreting Mixed-Effects Models
section, I discuss the presentation of results of the modeling process before
presenting the Discussion and Concluding Remarks section. It recommends
this article be read together with the online supplementary material mentioned
above.

[TThere is no single correct way to implement an LMM, and ... the choices
they [researchers] make during analysis will comprise one path, however justi-
fied, amongst multiple alternatives. (Meteyard & Davies, 2020, pp. 1-2)

Methods

Let me first give an overview of a general structure of steps. The discussion
below will shed more light on each of the steps, and the online supplementary
material exemplifies everything in much detail (see also Meteyard & Davies’s,
2020, best-practice list and Gries, in press-b, Sections 6.2—6.5 for a much
more detailed discussion).

Often the question arises as to what to include in the final write-up. The
answer to that question is actually easy: Everything from Table 2 with the ex-
ceptions of the descriptive visualization of Step 1 and the things one does not
do (e.g., if one does not do model amalgamation, it does not need to be dis-
cussed). This is how the methods section becomes comprehensive enough (a)
to provide the full context for the results and their interpretation and (b) to en-
sure replicability (for more information on reporting, etc., see Norris, Plonsky,
Ross, & Schoonend, 2015, and Meteyard & Davies, 2020, especially Table 7
and their bullet list for best practice). Ideally, readers will, of course, have
access to the full analysis as is the case in the online supplementary mate-
rial to this methods showcase article held at https://osf.io/xmkpt/?view_only=
0d2fb75051e8449c87dd30eded9683ab.
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Gries Mixed-Effects Modeling

Exploration and Preparation

As Table 2 indicate, the first analytical step is one that must in fact precede
all kinds of regression analyses, not just MEMs: a thorough exploration of
one’s data. For (combinations of) categorical variables, this exploration should
minimally involve (cross-)tabulation; for (combinations of) numeric variables,
this should minimally involve numeric summaries and differently binned his-
tograms, ecdf plots;® and/or scatterplots (while paying attention to nonlinear
trends as well); and for combinations of categorical and numeric variables,
this should minimally involve boxplots, spineplots, or similar graphic displays
of the data. The purpose is always to find and maybe address distributional
peculiarities such as (extreme) skew, potential outliers, gaps in distributions,
missing data, or infrequent or nonexistent factor (variable) levels or their com-
binations (which might rule out the study of interactions or the use of certain
random slopes) and to pay attention to variables in need of transformations
or factorization/binning or to the need for interactions or required or useful
contrast settings.

As the supplementary material shows, a variety of decisions were made that
are worth mentioning. For instance, the tabulation of MATCHLEMMA indicated
the extreme Zipfian distribution of the lemmas.” Thus, to avoid data sparsity
and, consequently, likely convergence issues later, the data set was reduced to
all those levels of MAaTCHLEMMA with a frequency of >10 (which is already
low; see the supplementary material for an alternative way to proceed). The
tabulation of FILE indicated a similar, but less extreme, Zipfian distribution
and, for the same reasons as above, the data set was reduced to all those levels
of FILE with a frequency of >4, leading to a final sample size of 5,187 data
points.

The variable L1 was recoded with orthogonal a priori contrasts to make
the regression output more straightforwardly interpretable: The first contrast
pitted NS against NNS, the second German against Spanish learners, and the
contrasts were scaled such that the coefficients in the summary regression table
reflected differences in logits directly.

As one can see in the supplementary material, many of the numeric controls
and predictors exhibited very long right tails, which were dealt with in different
ways:

e Some numeric variables were factorized on the basis of the results from
separate conditional inference trees in which they were the only pre-
dictor of COMPLEMENTIZER, leading to new predictors L_MATRBE4S.FAC
and L_MATRS2VFAC (with two levels) and L_MATRSUBJORD (an ordinal
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Gries Mixed-Effects Modeling

variable with four levels). Three important comments should be made here:
(a) Factorization is not obviously unproblematic given the information loss
it incurs. However, the extreme skew of some of these variables was consid-
ered more damaging to subsequent modeling than factorization. (b) Factor-
ization could also have been done on the basis of the variables’ univariate
distribution. (c) It should be noted that L_MATRSUBJ.ORD is treated here as
an ordered factor/an ordinal variable. Most studies that use binning or inher-
ently ordinal predictors (such as an animacy hierarchy) that I see do not do
that, which also results in information loss and has no advantage of which I
know.

e Some numeric variables were Box-Cox transformed leading to the new pre-
dictors L_Compr.BCN, L_CoMPSUBI.BCN, and L_COMPREST.BCN.

® The numeric variable L_MATRV2CC had to be discarded because of its near-
constancy: 99.77% of all its values were 0.

For the two association predictors DPCW and DPWC, I first reversed their
polarity to make them more compatible with what the regression would try to
predict (presence, not absence, of the complementizer, i.e., I multiplied them
by —1, and then I checked whether they were highly correlated.). However,
although their linear correlation was very high (r > .9), this was due to two
classes of verbs that made an otherwise weaker correlation seem very strong;
visualization, by contrast, showed that clearly. Transformations did not change
the picture much and monofactorial spineplots looked promising so these pre-
dictors were left untransformed. Also, SURPRISAL was first winsorized such
that all values of <3.3 were set to the mean of those SURPRISAL values and
then Box-Cox transformed as well into SURPRISAL.WIND.BCN. This affected less
than 1.5% of the data that otherwise were extremely likely to affect subsequent
regression modeling negatively (especially given the otherwise fairly robust
correlation of SURPRISAL with COMPLEMENTIZER).

A final check for pairwise correlations between all numeric vari-
ables confirmed that, as expected, especially the variables L_CoMP.BCN and
L_CompPREST.BCN were highly correlated. Many studies faced with something
like this pick just one of these to enter into their model (often the one with the
highest correlation with the dependent variable. Instead, I computed a principal
component analysis on the two correlated variables and included as a predictor
the scores of the first principal component, which was called L_CompLCLPC
and retained approximately 98.4% of the information of the original two cor-
related variables.
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Gries Mixed-Effects Modeling

The Initial Model

As Table 2 indicates, the next step is to formulate an initial regression model
that embodies all one’s expectations about the data (for critical predictors, con-
trol variables, and random effects). One needs to consider questions such as:
What kind of modeling perspective does one adopt (frequentist vs. Bayesian)?
What is the fixed-effects structure (FES) of the predictor/control-response re-
lations to be included in a/the model (and does one need interactions and/or
curvature)? What random-effects structure (RES) does the model structure re-
quire (maximally)? These questions of course raise the issue of what to con-
sider fixed effects and what to consider random effects. As always, not every-
one agrees on how to proceed here (see Gelman & Hill, 2006, pp. 245—246,
for a discussion), but it seems that most authors consider a variable to be a
random effect:

e if the levels of the variable in the sample do not exhaust the levels that the
variable would have in the population. For example, if one does a judg-
ment experiment on contemporary American English with some stimulus
sentences, then the 40 speakers who participate are not the whole popula-
tion, and the 20 stimulus sentences that the speakers rate do not exhaust all
possible sentences that could be presented to the subjects;

e if the real interest is not so much in what exactly these particular speak-
ers and stimuli do but in generalizing from them to the population and just
controlling for speakers’ idiosyncrasies and for those of the stimuli.

Gelman and Hill (2006, p. 246) claimed that “[t]hese two recommendations
(and others) can be unhelpful.” That may be so, but these two criteria certainly
seem to underlie most of the work that I see in linguistics and other fields (see,
e.g., Brauer & Curtin 2018, p. 392).

According to the discussion of that complementation above, the
first/maximal model involved a FES with:

® the three main predictors of interest: DPCW, DPWC, and Sur-
PRISAL.WIND.BCN;

® the variable L1 and its interaction with each of these predictors of interest
to see whether the effects of the main predictors of interest differed between
L1s;

® the general categorical controls REGISTER and TYPE;

® the matrix clause controls L_MATRBE4S, L_MATRSUBJ, and L_MATRS2V;

® the complement clause controls L_CompSuBJ and L_CompLCLPC.
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Gries Mixed-Effects Modeling

The RES of the first/maximal model followed Barr, Levy, Scheepers, and
Tily (2013) as much as possible, but with the expectation that it would need
to be reduced considerably. Specifically, Barr et al. (2013) argued in favor of
fitting a maximal RES, that is, varying intercepts and slopes for all predictors
of interest, here DPCW, DPWC, and SURPRISAL.WIND.BCN. However, although
this is a justifiable starting point in theory, in practice it often leads to ex-
tremely complex RESs, which in turn often lead to model convergence issues.
Matuschek, Kliegl, Vasishth, Baayen, and Bates (2017) and Bates, Kliegl, Va-
sishth, and Baayen (2018) have argued that it is acceptable or even better to
be more parsimonious in one’s RES. For the present data, I first confirmed
the relations of the three main predictors with the two sources of random-
effects variation, FILE and MATcHLEMMA. Because DPCW and DPWC were
predictable from MaTcHLEMMA, slope adjustments for these two predictors for
MatcHLEMMA were not useful. There were usually not many different values
of DPCW, DPWC, and SURPRISAL.WIND.BCN for the levels of FILE, so this situ-
ation might become quite tricky later, but this meant the maximal RES for now
consisted of:

e intercept and slope adjustments for DPCW, DPWC, and Sur-
PRISAL.WIND.BCN for the levels of FILE; these were allowed to be correlated
for the simple reason that it seems to be most people’s default and it is the
more complex model whose RES might then be simplified;

¢ intercept adjustments as well as slope adjustments for SURPRISAL.WIND.BCN
for MATCHLEMMA; these were allowed to be correlated, too.

This initial model was fit, summarized, and then subjected to a model se-
lection process.

Model/Variable Selection

Model/variable selection is one of the thorniest, most controversial is-
sues in MEM—in particular, model selection based on significance test-
ing. Some authors, with compelling reasons, make it very clear that
they are against it (Harrell, 2015, pp. 67—69; Heinze, Wallisch, & Dun-
kler, 2018; Thompson, 1995, 2001). Yet textbooks illustrate model selec-
tion based on significance testing (e.g., Crawley, 2013, pp. 390ff; Sifken,
Riigamer, Kneib, & Greven, 2018; Zuur, Ieno, Walker, Saveliev, & Smith,
2009, Section 5.7), and there are packages/functions with associated re-
viewed publications for model selection in general and for MEM in par-
ticular such as FWDselect::selection by Sestelo, Villanueva, Meira-
Machado, and Roca-Pardifias (2016), lmerTest::step by Kuznetsova,
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Gries Mixed-Effects Modeling

Brockhoff, and Christensen (2017), cAIC4: : step by Sifken et al. (2018), or
buildmer: :buildlme by Voeten (2020). In addition, one finds quotes in the
relevant literature that indicate that in related areas also using predictive mod-
eling, for example, “in machine learning, variable (or feature) selection seems
to be the standard” (Heinze et al., 2018, p. 432).°

In this study, I followed the two-step strategy outlined by Zuur et al. (2009,
Chapter 5). I first determined the best RES and then, with that RES, the best
fixed-effects structure (FES).'" In terms of variable selection, I only consid-
ered the targeted/relevant predictors for deletion/removal, but not the control
variables. As for the selection criterion of figuring out the right FES struc-
ture, I used likelihood ratio tests (LRTs) with a significance threshold set to
.1 (because, as far as I know, this is the first exploration of this specific kind
of unidirectional association and surprisal effects in learner corpus research;
for the RES, I stuck with the traditional threshold of .05; see supplementary
material). At the same time, I also monitored Akaike information criterion
(AICc) values (whose use for finding the best RES is not uncontroversial). Dur-
ing model selection, I also did some basic, but important, model diagnostics,
namely, checking for overdispersion and multicollinearity.!! After model selec-
tion, I did some more model diagnostics/model criticism (now also involving
residuals, influence measures, etc.). Like most authors in linguistics, I used
lme4: :glmer, but there are of course alternatives (e.g., nlme, lmerTest,
glmmPQL, MCMCglmm, or the Bayesian modeling packages blme and espe-
cially brms).

Finding the Best Random-Effects Structure
As so often happens, Model m. 01 came with a convergence warning, meaning
that the optimizer algorithm did not succeed in finding a robust solution, and
a PCA of the ranef covariance matrix suggested that I might need only one or
two ranef/variance components for FILE and maybe only one for MATCHLEMMA
(because of high intercorrelations of the random effects of each variable, also
indicated in the summary output). Although I will turn to the FES below, it was
encouraging to see that there were already some significant results (including
for the predictors of interest, but also for the NS vs. NNS contrast of L1),
no outsized standard errors (often a sign of multicollinearity problems), and a
preliminary round of diagnostics revealed no outrageous collinearity problems
(but see the supplementary material for a discussion of the collinearity results)
or overdispersion issues.

What to do with the convergence warning? Multiple options are available
and the online supplementary material lists the most frequently used ones (with
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Gries Mixed-Effects Modeling

code and additional references). Among the lowest-hanging fruit are refitting
the model but using as starting parameters for its estimation process the results
of Model m.01 and/or even refitting the model with a higher number of itera-
tions in the hope that more modeling time will make the algorithm converge.
I could also immediately simplify the RES of Model m.01 by deleting one of
the ranef components with the smallest variance/standard deviation.

Yet another option is to not be too concerned about convergence warnings,
at least not paranoically. Bolker, the main maintainer of 1me4, once gave the
following advice regarding convergence warnings:

® The bottom line is that your models are no more nor less trustworthy than
they used to be [after an R update]. If you have tried them with a variety
of optimizers, and if the results make sense, it’s *probably* the case that
they’re OK, and just a little unstable. (Bolker, 2014, para. 3)

® Quick thought: “nonconvergence” doesn’t necessarily mean the fit is actu-
ally bad (false positives blah blah), and in most (all?) cases you actually
get a working fitted model (i.e., you could get the C-index). (Bolker, 2019,
para. 1)

Although I am sure that Bolker would not want to give carte blanche to
ignore all convergence warnings, it should be noted that (a) over the evolution
of 1me4, the threshold values for the convergence warnings were adjusted a few
times, (b) there is/was a discussion of even dropping them altogether, (c) the
1me4 reference manual states that “warnings will occur even for apparently
well-behaved fits with large data sets” (p. 18), and (d) after a few hundred
MEMs one gets a bit of a feeling for what values in the convergence warning
are associated with dangerous volatility/unpredictability. If the volatility of the
fixefs is low and the results “make sense” (see Bolker quote above), then I am
not too reluctant to accept the results of a model if it comes with a not too
outrageous convergence warning.

There are, unfortunately, no easy answers and each first decision made at
this point can of course affect all that follow. In this case, I chose to first drop
the random slopes for SURPRISAL.WIND.BCN for FILE (Model m. 02) and then the
random slopes for DPWC for FILE (Model m. 03) because the random slopes
accounted for the least variability and were both supported by LRT; their re-
movals had no consistent effect on the convergence warnings. Therefore, I re-
moved the intercept adjustments for MATCHLEMMA (Model m. 04) which was
again supported by an LRT (but see the discussion in the supplementary mate-
rial); the attempt to then delete intercept adjustments for DPCW (Model m. 05)
failed (significant LRT). Next, I removed the correlation parameter for FILE

Language Learning 71:3, September 2021, pp. 757-798 774

UO1IPUOD U SWLB | 8L} 89S *[2202/TT/TZ] U0 Afeiqiauliuo A8im *Aueweo aueiypod Ad 8zt Bue|/TTTT 0T/10p/woo 8| 1w Aseiqipul|uo//Sdny Loy pepeojunmod '€ ‘T20Z ‘2266.L9tT

R A

ol

a5UBD 1 SUOWILLOD) dAIERLID 3|gealjdde ays A peusenob afe sap e O ‘8N Jo sajni Joj AriqiT auljuQ A8|IM Uo (suol



Gries Mixed-Effects Modeling

(Model m. 06), which was accepted, as was removing slope adjustments for
SURPRISAL.WIND.BCN for MATCHLEMMA (Model m. 07), but removing intercept
adjustments for FILE was not (Model m.08). In an attempt to improve Model
m. 07, it was refitted into Model m. 09 with different start parameters and more
iterations, which reduced convergence warnings considerably.

Finding the Best Fixed-Effects Structure

The exploration of the FES started with computing LRTs for deletion
for all predictors in the model, which returned the interaction term of
L1:SURPRISAL.WIND.BCN as the droppable predictor with the highest non-
significant p value (according to the principle of marginality, see Fox & Weis-
berg, 2019, Sections 4.6.2 and 5.3.4). However, another important alternative
was to consider whether any of the main predictors did not have a linear but
a curved effect. This is often not tested, it seems, although it is probably fair
to assume that many variables, especially cognitive ones such as learning, for-
getting, or priming, exhibit curved effects. Here, because (a) a linear effect of
SURPRISAL has been attested in other studies and (b) a curved effect is plausible
(such that there might be an upper limit beyond which SURPRISAL is not more
effective than before, just like with frequency effects), I explored curvature
of SURPRISAL.WIND.BCN with a second-degree polynomial. However, both an
LRT and AICc indicated that the added curvature of SURPRISAL.WIND.BCN in
Model m. 10 did not significantly improve the model (and convergence became
worse), which is why I then removed the interaction L1:SURPRISAL.WIND.BCN
for Model m. 11. Trying to improve this model by refitting it with new start
values and more iterations/modeling time (Model m.12) did not help, and
no terms still in the model—predictors and controls—could be deleted from
Model m. 11, which was therefore considered the final model and henceforth
(optimistically) called Model m. final.

Model Diagnostics

Before I discuss the results in more detail, some model diagnostics are
necessary.'? First, I checked how volatile the current fixefs and ranefs were
to the choice of optimizer. There was fairly little variability there; only one of
the optimizers returned results that were notably different from the others and
for only a limited number of effects. There was some more variability in how
the fixefs changed over the course of the model selection process (especially
with regard to SURPRISAL.WIND.BCN). Second, an exploration of the residuals
with the DHARMa package (Hartig, 2020) did not raise many red flags (in
terms of uniformity or dispersion, at least; there were some outliers). Third,
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the final tests for multicollinearity did not give great cause for concern (all
variance inflation factors < 10), and no overdispersion was found.

With regard to the ranefs, the adjustments to the intercepts for FILE were
fairly normally distributed (compared against 200 random normal distributions
with the same means and standard deviations), whereas the adjustments to the
slopes of DPWC for FILE exhibited a bit of a discrepancy, but seemingly noth-
ing major. The residuals for the different levels of FILE did exhibit some out-
liers (which one could explore post hoc, if so desired), but no problems in
terms of normality and dispersion. In sum, these diagnostic results were not
picture-perfect but also did not seem to reveal massive problems.

Finally, I computed a version of influence measures to determine how much
influence each level of FILE had on the final fixed-effects coefficients, but the
fixef results were stable no matter which speaker/level of FILE I removed. The
supplementary material contains additional code and results that one might
consider.

Model Validation

Model validation is an important issue that is essentially concerned with the
question of how well the model that one is considering would do if it was
given different data. Specifically in cases like the present one, the model re-
turned predicted probabilities for cases on which it was trained, a situation
which I usually refer to as classification. However, one is usually interested
in the performance of a model on cases on which it is not trained, a situation
which I usually refer to as prediction. To assess the degree to which the model
generalizes well to other data, one can use cross-validation. However, I think
it is fair to say that cross-validation for MEMs is far from being an obvious
standard (certainly not in linguistics), an assessment I feel is supported by the
complete absence of the topic even in the main overview articles and in many
of the standard references of the top people in the field who currently inform
MEM applications in linguistics.'?

Methods for Interpreting Mixed-Effect Models

Overall Model Results/Quality

The next series of steps was concerned with inspecting the model’s quality and
numeric results as well as visualizing its results.

Model Significance, R?, and Classification Statistics
In order to obtain an overall significance test for Model m.final, I did an LRT

between Model m.final and the so-called null model (i.e., a model with the
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same RES but no fixed effects: Model m.nofixef); that comparison indicated
that Model m. final was indeed significant, LR(18) = 951.68, p < 10>, The
difference in AIC scores between Model m.final and model m.nofixef was
very high (915.502). We should also report R*> values. For Model m.final,
I computed (as per Nakagawa, Johnson, & Schielzeth, 2017) an Rzmargmal of
.38 (the R? that summarizes only the explanatory power of the FES) and an
R? onditional Of .51 (the R? that summarizes the combined explanatory power of
the FES and the RES). It was good to see that the FES did considerably more
work than the RES.

Finally, it is useful to provide an indication of the classification accuracy
of Model m.final. For each case in the data, I computed the predicted prob-
ability of COMPLEMENTIZER being present, and if that probability was > .5,
Model m.final predicted present, otherwise, it predicted absent. These clas-
sifications were then cross-tabulated with the actual choices and returned an
accuracy of 84.21%, which, according to exact binomial tests, is significantly
better than the no-information baseline and the random-guessing baseline (see
the supplementary material for definitions). Also and more important than the
classification accuracy, I computed the C-score, a widely used measure in the
interval [.5, 1.0]; in linguistics, .8 is usually seen as a good score, and the
score of Model m.final was .91. The supplementary material also provides
precision and recall scores for both outcomes of the response variable as well
as code to bootstrap confidence intervals for the predicted probabilities and
another possible follow-up analytical step.

Fixed Effects

Numeric Results

For numeric results, it is customary to report the summary table of a MEM,
that is, the estimates/coefficients, their standard errors, test statistics (usually #
or z), and p values, often presented in a way that comes straight from R. My
own preferred format, which I have not always been able to use myself, is a
bit different because the reader can often not easily understand the estimates
and/or the intercept because not all authors state what the contrasts or reference
levels for their categorical predictors were. I therefore often prefer a table like
Table 3, (a) where the table title reveals which level of the response variable
is predicted, all of which help understanding the estimates, (b) where explicit
labeling of the coefficients is provided in the subscripts, and (c) which provides
confidence intervals of estimates.'*
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Gries Mixed-Effects Modeling

Given that the model predicted COMPLEMENTIZER: present,

® positive b values indicate that the (combination of the) listed level of a cate-
gorical/ordinal predictor and/or a one-unit increase for a numeric predictor
reflect increased (log) odds/predicted probabilities of COMPLEMENTIZER be-
ing present; whereas negative b values, obviously, reflect decreasing proba-
bilities of COMPLEMENTIZER being present;

e for the predictor for which we created planned contrasts (L1), the coeffi-
cient indicates the difference between the conditions that we encoded in our
contrasts.

For instance, the coefficient b of TYPE indicates that subject, as opposed
to object, complementation increases the occurrence of that. In addition to the
above, I also like to provide the LRT results for deletion of each predictor that,
according to the principle of marginality, is droppable, that is, what in R would
be returned as the result of dropl. This is for two reasons: First, because
the summary table does not contain significance results for any predictor with
more than one degree of freedom, that is, all categorical predictors and maybe
the interactions in which they are participating. For example, from the above
one cannot infer the one p value for the interaction L1:DPWC. Second, because
the output of drop1 contains only the droppable predictors, it focuses one’s
attention nicely, I find, on the variables to interpret: If the model contains a
significant interaction A:B, then drop1 will only return the p value of that
interaction A:B and not also those of the main effects A and B, which should
typically not be taken at face value because the whole point of the interaction
A:B is that the effect of A/B is not constant across B/A respectively. Thus, for
Model m.final, I would also want to report the results shown in Table 4.

However, the complexity of model outputs such as Table 3—especially
once nonlinear effects or higher-order interactions are involved and/or when
authors do not provide reference or predicted levels or explicit contrasts—
means that I personally always want to see visualizations of the relevant
predictors.

Visualization With Effects Plots and Interpretation

To me, the by far best representation of fixed-effects results for interpreta-
tion involves effects plots (see Fox, 2003; Fox & Weisberg, 2019), which plot
predicted values (of the response variable in linear MEMs, or of logits or, af-
ter the ilogit transformation, of predicted probabilities of the second level of
the response variable). I prefer these over what is often provided, namely, ob-
served means or slopes, because (a) if one fits a model and wants to summarize
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Gries Mixed-Effects Modeling

The effect of Surprisal
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Figure 5 Plot of the effect of SURPRISAL.WIND in Model m.final.

that model, then one should visualize the output of the model and not an ob-
served effect (also known as what one could visualize without even having a
model) and, maybe even more important, because (b) the plots implemented
in the effects package represent the effect of a predictor—one variable or
an interaction—while holding all other predictors at typical values. Holding
predictors at typical values means—by default at least—the mean of numeric
predictors and, very nicely, proportional distributions of the levels of all cate-
gorical predictors (rather than just the most frequent level). This means that,
especially for unbalanced and/or observational data, other effects are con-
trolled for when the currently relevant effect is represented/discussed, which
makes for a more accurate representation of an effect than mere observed
means/slopes. '’

I begin with the first main effect of interest, that is, SURPRISAL.WIND.BCN
(Hypothesis 3), which is shown in Figure 5. The predictor is on the x-axis
(attested values are indicated with rugs, its observed mean indicated with the
dotted vertical line), the predicted probability of that being produced from
Model m.final is on the y-axis (with the prediction cut-off point indicated
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Gries Mixed-Effects Modeling

The interaction effect L1 x Delta P construction to word
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(a priori contrasts: NS * diff from NNS, Ge ns diff from Sp)

Figure 6 Plot of the effect of the interaction L1:DPCW in Model m.final. (The let-
ters E, G, and S represent the L1s of the speakers.)

by the horizontal dotted line at y = 0.5), and the plot showing the regression
line of the predictor with its 95% confidence band. This plot is based only on
the FES because that is the result that one would apply to new speakers/files.

The result is relatively straightforward and compatible with previous work.
Speakers are more likely to produce that, the more the first word of the comple-
ment clause is surprising given the last word of the matrix clause. Thus, with
regard to the hypothesis, the result is mixed; surprisal has the expected effect,
but there is no difference between native and NNS (because SURPRISAL.WIND
does not interact with L1).

The next two effects are the two interactions of L1 with the A P values,
that is, Hypotheses 1 (for DPCW) and 2 (for DPWC). In both Figure 6 and
Figure 7, the A P predictors are on the x-axes, predicted probabilities are on
the y-axes, and each regression line with its 95% confidence band represents
one L1 background. As for the interaction L1:DPCW in Figure 6, the result
is unexpected. For NS, there is a weak and only just about significantly differ-
ent from 0 (p = .038) downward trend between DPCW and complementizer

Language Learning 71:3, September 2021, pp. 757-798 782
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Gries Mixed-Effects Modeling

The interaction effect L1 x Delta P word to construction
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Figure 7 Plot of the effect of the interaction L1:DPWC in Model m.final.

realization, but the learners differ significantly from the NS (p = .0313): For
the learners, there is an unexpected negative correlation such that if the con-
struction COMPLEMENTIZER: present (i.e., use of that) “likes” the verb more
(i.e., going from lower to higher x-axis values), the learners are predicted to
use that less(!), with German and Spanish learners not differing from each
other (p = .5556). In the supplementary material, I discuss possible reasons
for, and ways to follow up on, this surprising effect.

The corresponding plot for the interaction L1:DPWC (Figure 7), on the
other hand, exhibits the hypothesized effect direction. All three speaker groups
exhibit an effect such that when DPWC increases, that is, when the verb is
more and more attracted to COMPLEMENTIZER: present, then they are predicted
to use that more, and this effect does not differ much either between NS and
NNS or between the German and the Spanish learners.

As for the controls, which were not the focus here, they all behave as pre-
vious literature would lead one to expect. The more linguistic material (as
measured in characters) that is found in the various slots for which we coded,
that is, the higher the amount of processing load that we might associate with
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Gries Mixed-Effects Modeling

planning and producing the sentence, the more likely that is used, possibly be-
cause, given the speaker’s planning time (while producing a complementizer
that is easy to retrieve and articulate), it helps mark the syntactic structure of
the sentence for the hearer (see the supplementary material for the correspond-
ing graphs—it is obvious that, had there been any interesting deviations from
the expectations, those could have been discussed.).

Random Effects

Many studies do not explore or use the ranef results in any way, which is a bit
of shame. Not only can this be relevant for assessing model quality, the RES
can also be instructive in its own right; patterns in the ranefs can be insightful.
Miglio, Gries, Harris, Wheeler, and Santana-Paixdo (2013), for instance, found
in post hoc RES exploration that sizes and directions of varying intercepts for
speakers were correlated with their dialects. It can therefore be useful to pay
attention to the RES—either to explore it in a post hoc/bottom-up way or to
correlate ranefs with other variables or just to visualize them to understand the
spread that comes with the fixed-effects results.

In what follows, I discuss how much intercept and slope adjustments affect
behavior of one predictor—DPWC—by computing and visualizing individual
speakers’ regression lines for that interaction of the predictor with L1 for some
of the files that contributed the most data points (see Gries & Adelman, 2014,
p. 49, for an early application; Murakami, 2016, in a language learning con-
text; Meteyard & Davies, 2020, or Verbeke, Molenberghs, Fieuws, & Iddi,
2018, p. 18). To that end, I created a data frame whose rows contained all
possible combinations of predictors (with frequencies approximating their fre-
quency in the data as a crude (!) approximation of the above-mentioned logic
of effects plots) for those speakers and their L1s and computed the predictions
of Model m.final for these rows, which were then averaged over all other
predictors (which result in the weighting-by-frequency/proportion) and plotted
into a coordinate system like that of Figure 7. The result is shown in Figure 8
(the supplementary material uses color to distinguish L1 backgrounds).

This is of course just a small example but should nonetheless serve to
highlight the potential of this exploration. The variability of this interaction is
considerable and might, in a study focusing more on individual variation (see
Gries & Wulff, in press), give rise to follow-up analyses. For example, one
could use bottom-up exploratory statistics to see whether groups of speakers
can be established or try to correlate intercept/slope adjustments with metadata
regarding the speakers (much like one might do with influence measures).
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Gries Mixed-Effects Modeling

Some file-specific slopes for DPWC
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Figure 8 Plot of the effect of the interaction L1:DPWC in Model m.final.

Discussion and Concluding Remarks
Interim Summary
In sum, the main findings are that:

the overall model was significant with a decent degree of explanatory power
and classification accuracy and a good C-score; in that model, all control
variables behaved as expected,;

one of the main new predictors—the one testing Hypothesis 1, DPCW—
interacted significantly at the adopted significance level with L1 but behaved
unexpectedly (especially for the two learner groups) indicating a mismatch
between the preference of the construction and what speakers actually do;
another new predictor—the one testing Hypothesis 2, DPWC—interacted
significantly at the adopted significance level with L1 and did so in the hy-
pothesized direction. There was a match between the constructional prefer-
ence of the main-clause verb and what speakers actually do;

the final main new predictor—the one testing Hypothesis 3,
SURPRISAL.WIND.BCN—was significant at the adopted significance level
and behaved as hypothesized—but for all three L1 groups alike.
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Gries Mixed-Effects Modeling

However, the model comes with two bits of concern as well. Convergence
issues and the fact that one may not want to fully trust the main effect of
SURPRISAL.WIND.BCN because its significance was based on a tricky trimming-
the-RES decision (the step from Model m. 03 to Model m. 04).

Where to Go From Here

MEMs are here to stay, even if practices and standards are still evolving. New
suggestions, techniques, and packages emerge at a high speed and in ways that
make it really quite difficult to keep track of things. On the other hand, this
rapid pace of development, testing, and implementation has raised the bar for
what is possible and for what is getting published in ways that revolutionize
the field (see Speelman, Heylen, & Geeraerts, 2018, for a recent collection of
MEM papers in linguistics).

However, there are also limitations. One is that, compared to other kinds
of predictive modeling, regression approaches, in general, do not necessarily
have the highest degree of predictive power but excel at helping users of these
approaches to interpret the results (whereas other, more black boxy, approaches
such as support vector machines or random forests often predict better but can
be harder to interpret [see, e.g., Breiman, 2001; Kuhn & Johnson, 2013, p. 50]).
A more important limitation is how the assumptions, or data requirements, of
MEM in particular can make it very difficult to conduct the analysis in which
one is theoretically most interested, and that kind of limitation is exactly why
data exploration and preparation accounts for such an exhaustingly long part of
analyses and, here, the supplementary material. In particular with unbalanced
data (e.g., in observational studies where one might also not be able to simply
increase the sample size), there may be too low and/or uneven cell counts for
predictors, controls, and their interactions and/or for random effects, and one
may have to strike a delicate balance between creativity and resourcefulness,
between what one wanted to do and what can be realistically done with one’s
data. For instance, in this analysis, the variable L_MATRV2CC was supposed
to be entered as a control variable and was annotated accordingly, but then it
had to be discarded given its extremely low variability.

In more extreme cases, alternative methods may have to be used. In linguis-
tics, it seems as if tree-based approaches and particularly random forests are
an alternative that many people find appealing (see, e.g., Hundt, 2018; Rezaee
& Golparvar, 2017; Tagliamonte & Baayen, 2012, for applications in linguis-
tics and Strobl, Malley, & Tutz, 2009, for an excellent overview). I think ran-
dom forests can be a good alternative in particular for data whose distributions
make MEM unlikely to succeed. However, as a prediction method, the goals of
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Gries Mixed-Effects Modeling

random forests are not necessarily the same as those of regression, and their
variable importance values do not translate straightforwardly into what sig-
nificance values or effect sizes are in regressions (see Efron, 2020). Also, I
sometimes have the impression that trees/forests seem attractive for their per-
ceived simplicity because, for instance, widely used implementations (e.g.,
randomForest, Liaw & Wiener, 2002; party, Hothorn, Hornik, & Zeileis,
2006; or partykit, Hothorn & Zeileis, 2015) seem to do away with every-
thing many users hate about regression—coefficients, standard errors, and di-
agnostics. However, just because one needs only a one-liner to get variable
importance values from a random forest does not mean there are not many
similarly complex decisions to be made (e.g., tweaking hyperparameters, what
algorithm to use for computing importance scores, how to compute partial de-
pendencies, and even the difference between detecting and capturing interac-
tions; see Efron, 2020; Gries 2020, for detailed discussion and exemplifica-
tion). Thus, there are alternatives to MEM, but they are no magic wands. They
also come with different goals/characteristics, and they definitely come with
their own challenges that are only slowly being discussed in linguistics.

In terms of the continuing development of MEM practices, 1 think that
the two most important current trends about which researchers should try to
remain informed because of the potential impact on the field are (a) the in-
creasing push toward including curvature in one’s models with generalized
additive mixed models, an extremely powerful but then also extremely com-
plicated technique (see the above references, but also Baayen, van Rij, de
Cat, & Wood, 2018, or Baayen, Vasishth, Kliegl, & Bates, 2016) and (b)
the frequentist-versus-Bayesian discussion (Norouzian, de Miranda, & Plon-
sky, 2018) reinforced by the availability of powerful packages, especially
such as brms (Biirkner, 2017, 2018; see especially or McElreath, 2020; Va-
sishth, Nicenboim, Beckman, Li, & Kong, 2018). That being said, probably
just about any aspect of MEM is still undergoing lively discussion and active
development:

® convergence warnings (when are they serious and not a false positive, when
to flag them in 1mer’s output, and how to deal with them);

® model/variable selection and the role different information criteria play in it;

e validation of models with complex RES; and finally,

® power analysis for MEMs with complex RES (e.g., see Brysbaert & Stevens,
2018, as well as Meteyard & Davies, 2020, for recent discussions and the R
packages of Donohue, 2020; Martin, 2020; Reich, Myers, Obeng, Milstone,
& Perl, 2012; and Scheipl, Greven, & Kuechenhoff, 2008).
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Gries Mixed-Effects Modeling

It is probably fair to say, though, that the increased degree of technicality
and sophistication will not make access to all the fast-paced developments easy
(I myself often have that feeling), but the degree to which MEMs and new
developments can empower our statistically based findings is certainly worth
every bit of effort we can invest.

Final revised version accepted 14 January 2021

Notes

1 Such a MEM is not the same as replacing the model Im(Y~14-X) of Figure 1 with
a model like Im(Y~1+X*SPEAKER). Although the results can be similar, they
are conceptually different in two important ways. First, the MEM does something
that a fixed-effects-only model does not do: It employs something called
shrinkage, which amounts to reducing estimates for levels of random effects like,
here, SPEAKER, in a way that reflects their variance or, as Baayen (2008, p. 277)
puts it, “considering the behavior of any given subject in the light of what it knows
about the behavior of all the other subjects.” For instance, if there are only few
observations for a certain speaker, then the coefficient of a linear model for such a
speaker would not be filtered or adjusted in any way due to the relative paucity of
data, but in a MEM such a speaker’s potentially extreme adjustments get shrunk
towards the overall intercept or slope, which makes the results more robust (see
Bell, Fairbrother, & Jones, 2019, Section 3, for a brief but excellent discussion and
see Gelman & Hill, 2006, Sections 12.1-12.5, for a discussion of the way of
partial pooling of MEM differs from the complete-pooling of a single fixed-effects
model on all data or the no pooling of separate fixed-effects models for each level
of a random effect). Second, this also means that an analyst needs to decide when
to enter a variable into a model as a fixed effect or as a random effect, a question I
will discuss in the section The Initial Model of the Methods section.

2 R? values are tricky beasts. Their meaning and computation are fairly
uncontroversial in the case of linear models where an unadjusted R? is the
proportion of variability of the response variable that is explained by all
predictors. Although there are R? values for generalized linear models—with
Nagelkerke’s R? values being the default, as far as I can tell—these do not have the
same function/interpretation and are therefore often called pseudo-R’s (see
discussion in Harrell, 2015, Section 10.8). For mixed-effects models, the situation
is even more complex, given that multiple sources of variability can be involved in
computing predictions. The R? value just reported here is the one that I see most
often and that is implemented in at least two R packages, namely, a so-called
R onditional of Nakagawa, Johnson, and Schielzeth (2017), which will also be used
for the main analysis reported below and defined there.
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For a more detailed discussion of these examples, see Gries (in press-b; Section
6.1) where I have the space to also discuss the consequences of using the
better-suited MEMs in terms of regression/residual diagnostics.

The values had to be computed from all the data (as opposed to just from the NS
data) to have association measures even for those verbs that were not used by NS.
Given the frequency distribution of the L1s, the NS data influenced the association
measures most strongly.

These are not, of course, all variables that one could consider. For example, I did
not include any (self-) priming effects (Gries, 2016, 2019; Jaeger & Snider, 2008)
and no time/counter variables to operationalize something like fatigue,
habituation, and so on (see Dogruéz & Gries, 2012; Gries, 2019; Scheepers, 2003,
again, or, much more sophisticated, Baayen, Vasishth, Kliegl, & Bates, 2016).
Also, I did not have any proficiency scores for the learners who produced the
essays, and I did not approximate them here with some text-based measures (as in
Gries & Wulff, in press).

The term ecdf plots refers to empirical cumulative distribution function plots,
which are extremely useful plots for seeing at one glance many central aspects of
the distribution of a numeric variable by plotting for every observed value o of a
numeric variable v the percentage of data points in v that are < 0. The advantage
of these plots over the better-known ones such as histograms and boxplots is that
ecdf plots do not bin any data and, thus, provide a more fine-grained resolution of
v (see Gries, in press-b, Section 3.1.3.3).

A distribution is Zipfian if a large number of types account for very few tokens,
and a few types account for the majority of tokens. The standard example is one of
word frequencies; often half of all word types in a corpus occur only once, but the
10 most frequent words types account for a third of all tokens.

The precision in the description of the RES should be noted. Many manuscripts
using MEMs that I have reviewed say something like “SPEAKER was included as a
random effect,” which is much too imprecise. Were there intercept
adjustments/random intercepts for SPEAKER, slope adjustments/random slopes but
no random intercepts for SPEAKER, both kinds of adjustments, and, if there were
both, were those correlated?

Part of the friction surrounding this kind of discussion might be attributable to
how statistics and, for instance, machine learning differ in their emphases on
attribution/interpretation and prediction, respectively (see Breiman, 2001, and the
comments on the paper and Efron, 2020, for discussions that I think anyone
modeling data in any way should read and that I wish I had been familiar with
much earlier).

In the case of linear MEM, selecting the RES needs to be done with restricted
maximum likelihood estimation (the default setting of the function lmer), whereas
selecting the best FES needs to be done with maximum likelihood estimation
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(which can be set with an argument to the Imer function called REML = FALSE;
see Zuur, Ieno, Walker, Saveliev, & Smith, 2009, Section 5.6).

I still often see manuscripts where authors attempt to check for multicollinearity
by checking pairwise correlations between predictor variables. Frankly, this is
mostly useless. High pairwise correlations are a sufficient condition for
multicollinearity, not a necessary one, because pairwise correlations are by
definition unable to identify more complex collinear structures arising from
multiple columns in the model matrix.

Model diagnostics above and beyond those related to convergence problems are
often only discussed rather briefly even in the otherwise best existing overview
articles (e.g., Bolker et al. 2009; Brauer & Curtin, 2018; Meteyard & Davies,
2020), but they can be extremely important for identifying problems in a model
but also for determining how to address such problems (see Gries, in press-b,
Section 6.3, for a worked example where diagnostics revealed the need for
curvature for three control variables).

In addition, one needs to bear in mind that, if one were to do a 10-fold
cross-validation, a potential model selection process would also have to be done
10 times, which, because I personally would never do a fully automatic model
selection process, would increase demands on time and computational power
considerably. If one considers only a single model, cross-validation will of course
be more feasible computationally.

In cases involving polynomials or splines (for curvature) or ordinal predictors
(like L_MATRSUBJ.ORD here), of course not all estimates will be straightforwardly
interpretable, but even then, all other coefficients would be more meaningful.

In the rare case of a perfectly balanced design with completely orthogonal
predictors, etc., the predicted results will reduce to the observed, so plotting
predicted results will generate what I think is virtually always the right kind of
plot.
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Additional Supporting Information may be found in the online version of this
article at the publisher’s website:

Appendix S1. may be found at https://osf.io/xmkpt/?7view_only=
0d2fb75051e8449c87dd30eded9683ab

Appendix: Accessible Summary (also publicly available at
https://oasis-database.org)

Introduction to (Generalized Linear) Mixed-Effects Modeling

What This Research Was About and Why It Is Important

This article is an introduction and exemplification of (generalized) linear
mixed-effects modeling to researchers in linguistics and second language ac-
quisition, an important method that allows researchers to extend the range of
“‘regular’’ regression modeling to data that involve repeated measurements or
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other kinds of hierarchical structure. The data used to exemplify this method
are concerned with whether native and two kinds of nonnative speakers of
English use the complementizer that in sentences such as I hope that/() he is
hungry. Approximately 6,200 sentences were annotated for a variety of charac-
teristics and then analyzed with a mixed-effects model to study in particular the
role that verb-specific preferences and speaker/hearer expectations play in re-
alizing or omitting the complementizer. Results show that the main-clause verb
(hope in the above example) and the degree to which the complement-clause
subject (/e in the above example) is surprising are significantly correlated with
complementizer realization.

What the Researcher Did

® The researcher described the general logic of mixed-effects models and its
implementation in R.

e The researcher extracted examples of complementation from native and
nonnative speaker corpora.

® The researcher annotated the corpora for about a dozen linguistic/contextual
characteristics of the sentences with complementation and the circum-
stances in which that was produced.

® The researcher then used a generalized linear mixed-effects model to ana-
lyze the data.

What the Researcher Found

e Complementizer realization can be predicted fairly well.

® The control variables known from previous literature had the expected kinds
of effects.

® The main-clause verb’s preference for (tendency to be used with) a comple-
mentizer had the expected effect: Verbs that "like" the complementizer were
positively associated with it being used; this effect varied mildly across the
L1s of the speakers.

® The degree to which the beginning of the complement clause is predictable
to the hearer had the expected effect: Surprising beginnings of the clause
were positively associated with the use of the complementizer.

Things to Consider

® (Generalized) linear mixed-effects modeling is a powerful but complex sta-
tistical method for linguistic and second language acquisition research.
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® Great care is needed both for the preparatory exploration of the data before
any regression modeling and also in deciding how exactly the regression
modeling process is undertaken.

e Complementizer realization is determined by a variety of processing-
related/psycholinguistic factors, some of which differ in their effects be-
tween native speakers of English and learners of English with different L1s.

Materials, data, open access article: Materials and data are publicly available
at: https://osf.io/xmkpt/?view_only=0d2fb75051e8449¢c87dd30eded9683ab.
How to cite this summary: Gries, St., Th. (2021). Introduction to (generalized
linear) mixed-effects modeling. OASIS Summary of Gries (2021) in Language
Learning. https://oasis-database.org

This summary has a CC BY-NC-SA license.
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