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1 Literature survey 

 

1.1 Anatomy and histology of the testis 

The testis is surrounded by a dense connective-tissue capsule, called the tunica albuginea, 

which is covered anterior and lateral with the remnants of the processus vaginalis. The partial 

septum of the testis is called the mediastinum. This area consists of a connective tissue in 

which an anastomotic network of ducts can be identified: the rete testis. The tunica albuginea 

is formed by a connective tissue in which smooth-muscle fibers can be found, the latter being 

responsible for the capacity of the capsule to contract in response to pharmacological stimuli. 

The inner surface of the tunica albuginea is a highly vascular connective tissue termed the 

tunica vasculosa. The spermatogenic tubules extend as loops from the mediastinum testis, 

both ends of each loop communicating via single straight tubules, the tubuli recti. The 

organization of the intertubular tissue varies dramatically between species, but contains the 

blood vessels, lymphatics, and nerve fibres. The Leydig cells are scattered in groups in the 

intertubular tissue in relation to the vasculature and the lamina propria of the seminiferous 

tubules, the outer layers of which consist of modified smooth-muscle cells termed myoid cells 

(Neil and Knobil, 1988; Cerveny et al., 2005; Wrobel and Bergmann, 2006). 

1.1.1 Spermatogenesis 

Spermatogenesis is the process of germ cell development. Spermatogonia undergo successive 

mitotic and meiotic divisions (spermatocytogenesis) and a metamorphic change 

(spermiogenesis) to produce spermatozoa. The sperm cell development is a cyclic and highly 

coordinated process in which diploid spermatogonia differentiate into mature haploid 

spermatozoa (Fig. 1) (Pickett et al., 1989). This highly organized process encompasses 

different cell associations of the seminiferous epithelium called stages of spermatogenesis. 

The sequence of events that occurs from the disappearance of a given cellular association to 

its reappearance constitutes the cycle of seminiferous epithelium (Bergmann, 2006). One of 

the most productive self-renewing systems in the body is spermatogenesis, lasting between 30 

and 75 days depending on species (Russell et al., 1990). Although it is not yet established 

which genes regulate the duration of spermatogenesis, recent work has demonstrated that the 

spermatogenic cycle length is under the control of germ cell genotype (Leal and Franca, 

2006). The general organization of spermatogenesis is in all mammals a very important 

mechanism (Sharpe, 1994). However, there are some specific characteristics concerning the 
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types and the number of spermatogonial generations. The major criteria for the identification 

of the stage lie in the morphological characteristics of spermatids, in particular, in the nucleus 

and acrosomic system (Russell et al., 1990; Hess, 1990). With this method, the number of 

stages and the features used for the classification scheme will vary between species and even 

among different investigators studing the same species (Hess, 1990). Another method, the 

tubular morphology system, is based on the shape and location of spermatid nuclei, presence 

of meiotic divisions, and overall seminiferous epithelium composition. Although the basic 

structure of the testis is highly conserved among vertebrates (Capel, 2000), specific 

characteristics of the testis structure might be found for a particular species. Quantitative data 

can be used to answer important questions about the testis function and to provide a more 

complete understanding of spermatogenesis (Russell et al., 1990; França et al., 2002).  
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Fig. 1: Sector of the germinal epithelium in the stallion seminiferous tubule showing the 

relationship of germinal cells and adjacent Sertoli cells in seminiferous epithelium. 

Spermatogonia, primary spermatocytes, secondary spermatocytes, and spherical spermatids 

all develop in the space between two or more Sertoli cells and are in contact with them. 

Primary spermatocytes are moved by the Sertoli cells from the basal compartment through the 

junctional complexes and into the adluminal compartment (Pickett et al., 1989). 
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1.1.2 Mitosis and meiosis 

Mitosis is the process of cell duplication - two daughter cells are formed with exactly the 

same DNA and chromosomal content of the original diploid (2n) mother cell. Human cells 

contain 46 chromosomes - 22 pairs of homologous autosomes and one pair of sex 

chromosomes. Mitosis (M) encompasses just one step in the eukaryotic cell cycle: first gap 

(G1) > synthesis (S) > second gap (G2) > mitosis (M) > cytokinesis (C). Cells grow during the 

dominant G1 phase. Replication of chromosomes occurs in the S phase. Preparation for 

mitosis takes place during G2 - replication of organelles and synthesis of microtubules. 

Interphase includes the combined stages G1, S, and G2. During mitosis chromosomes 

condense, the nuclear envelope disappears, spindle fibers begin to form microtubules 

(prophase), centromeres of duplicate sister chromatids align along the spindle equator 

(metaphase), chromatids separate and migrate toward opposite poles (anaphase), the mitotic 

apparatus is disassembled, autonomous nuclear envelopes are established, and the 

chromosomes uncoil (telophase) (Table 1) (for review Blow and Tanaka, 2005). The final 

stage of the cell cycle, when cell division actually occurs, is called cytokinesis (C). Meiosis is 

a special process of reductional cell division; it results in the formation of four gametes 

containing half (1n) the number of chromosomes found in somatic cells. Haploid gametes 

unite at fertilization to create a diploid zygote. In mammals the heterogametic male (XY) 

determines the sex of the embryo. Approximately one-half of spermatozoa contain either an X 

or Y chromosome (the sex chromosomal complement of mammalian females is XX, and 

therefore, the ovar can only contribute an X chromosome to the offspring). Genes carried on 

the X chromosome that inhibit spermatogenesis are inactivated in XY somatic cells (for 

review Campbell and Reece, 2001). Steps of meiosis are outlined in Table 1. Meiosis differs 

from mitosis in two critical respects. During prophase of meiosis I, chromosomes pair along 

their length and come in contact in discrete areas of synapsis (chiasmata). Chromatids can 

exchange base pairs by crossing-over. The recombination of segments of chromosomes 

allows for continual generation of genetic variability (i.e., rapid evolutionary progress) and 

provides a mechanism for correcting damage in the DNA helix. Secondly, nonidentical sister 

chromatids do not replicate between serial nuclear divisions. Meiosis II is essentially mitotic 

(Russell et al., 1990). 
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 Table 1: Meiosis 

 

INTERPHASE: replication of DNA (2n 4c) 

PROPHASE I 

 Leptotene: condensation of chromatin 

 Zygotene: conjugation of homologues 

 Pachytene: crossing-over and recombination 

 Diplotene: synaptonemal complexes dissociate 

 Diakinesis: chiasmata disappear and homologues begin to repel 

METAPHASE I: one face of each homologue centromere binds to a spindle fiber 

ANAPHASE I: homologous pairs separate and begin to move 

TELOPHASE I: chromosomes migrate to each pole, cell division (1n 2c) 

PROPHASE II: spindle fibers rearrange and chromosomes recondense 

METAPHASE II: chromosomal pairs align along spindle equator 

ANAPHASE II: sister chromatids separate and move to opposite poles 

TELOPHASE II: each daughter cell nucleus has one set of chromosomes (1n 1c) 

___________________________________________________________________________ 

1.1.3 Spermatocytogenesis 

During spermatocytogenesis, stem cells called spermatogonia proliferate by mitosis. 

Spermatogonia are diploid and the stem cells along the route of spermatogenesis. They are 

always situated in contact with the basal membrane of the seminiferous tubule. The 

spermatogenesis starts when a single A1-spermatogonium divides to form a pair of A1-

spermatogonia, this is the commitment of these germinal cells to divide futher and 

differentiate into A2-spermatogonia and ultimately give rise to spermatids and spermatozoa 

(Pickett et al., 1989). 

Type A spermatogonia have a rounded to oval nucleus with fine chromatin grains and one or 

two nucleoli, the type B spermatogonia have a more rounded nucleus with chromatin granules 

of variable sizes that are often attached to the nuclear membrane and contains one nucleolus. 

At the end of the differentiation phase, the most mature spermatogonia divide to form the 

young primary spermatocytes.  
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Specifically, type B cells divide to form preleptotene spermatocytes. Preleptotene are the last 

cells of the spermatogenic sequence to go through the S-(synthetic) phase of the cell cycle. In 

addition, the germ cell number is quadrupled after the completion of the first and second 

meiotic divisions (Fig. 2) (Bergmann, 2006). Characteristically, a long meiotic prophase in 

which recombination occurs is followed by two rapid divisions, the end result being the 

production of haploid spermatids. The presence of leptotene cells signals the initiation of 

meiotic prophase. In the transition from preleptotene to leptotene, nuclei gradually loose their 

peripheral chromatin and form fine chromatin threads that can be seen by light microscopy. In 

zygotene cells, the homologous chromosomes have become paired. In pachytene cells, the 

chromosomes have become fully paired. In virtually all mammalian species, the pachytene 

phase of meiosis occupies over a week and typically lasts 1.5-2 weeks, but has a fixed 

duration for each particular species. Genetic recombination, known as crossing over, occurs 

during this period (Russel et al., 1990). 

 

 

                                    

     

Fig. 2: Process of spermatogenesis (Bergmann, 2006). 
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1.1.4 Spermiogenesis 

Throughout spermatocytogenesis, cells retain a rounded configuration. Spermatids undergo a 

dramatic change in form during spermiogenesis - into the streamline spermatozoa adapted for 

fertilization (Fig. 3). Spermiogenesis involves nuclear condensation, formation of the 

acrosomal cap and development of the tail. The acrosome is derived from the Golgi apparatus. 

Centrioles (points of organization of spindle fibers) migrate to a postnuclear region after the 

completion of meiosis. The distal centriole provides a template for accretion of cytoskeletal 

elements comprising the contractile lattice of the tail. Mitochondria become concentrated into 

the sheath of the middle piece. Cells do not divide during spermiogenesis, which is one of the 

most phenomenal cell transformations in the body (Russel et al., 1990; Holstein et al., 2003). 

                                         

Fig. 3: Steps of spermatid differentiation: (1) Immature spermatid with round shaped nucleus. 

The acrossome vesicle is attached to the nucleus; the tail anlage fails contact to the nucleus. 

(2) The acrossome vesicle is increased and flattened over the nucleus. The tail contacted the 

nucleus. (3-8) Acrosome formation, nuclear condensation and development of tail structures 

take place. The mature spermatid (8) is delivered from the germinal epithelium. Semi-

schematic drawing on the basis of electron micrographs (Holstein et al., 2003). 
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1.1.5 Sertoli cells 

The Sertoli cells, named after the Italian histologist Enrico Sertoli (1842-1910), are easily 

identifiable by their nuclei. They are not part of the sperm cell line, but constitute „nurse 

cells” that sustain the proper environment for spermatozoa to develop (Griswold, 1998). 

Although a Sertoli cell has a very extensive and branching cytoplasmic structure, little of the 

Sertoli cell´s true extent can be seen in the light microscope (Russel, 1993a, b). 

The nucleus of Sertoli cells is ovoid or angular, large and lightly stained, slightly separated 

from the tube border and often contains one or two prominent nucleoli. The long axis of the 

nucleus is oriented perpendicular to wall of the tubule. A fold in the nuclear membrane is 

characteristic for Sertoli cell but not always visible in the light microscope (Russel, 1993a, b; 

de Kretser and Kerr, 1994) (Fig. 2). 

Sertoli cell functions are involved in maintenance of the integrity of the seminiferous 

epithelium, compartmentalization of the seminiferous epithelium, secretion of fluid to form a 

tubular lumen, participation in spermiation, phagocytosis, delivery of nutrients to germ cells, 

steroidogenesis and steroid metabolism, movement of cells within the epithelium, secretion of 

proteins, regulation of the spermatogenic cycle, target for hormones in the testis and mediator 

of hormone effects (Russel et al., 1990). 

 

1.1.6 Hormonal regulation of spermatogenesis 

The hormonal regulation of spermatogenesis is organized as a control circuit with a negative 

feed-back mechanism involving the hypothalamus, pituitary gland, and testis. Specific 

neurons of the hypothalamus synthesize gonadotropin-releasing hormone (GnRH), which 

induces the production of two hormones within the pituitary, luteinizing hormone (LH) and 

follicle stimulating hormone (FSH). While a high pulse rate of GnRH release results in the 

production of LH, a low pulse rate of GnRH results in the production of FSH. Within the 

testis, LH causes synthesis of testosterone by intertubular Leydig cells, which negatively 

influences hormone release in the hypothalamus and pituitary. The FSH acts on intratubular 

Sertoli cells and also induces the production of androgen-binding protein (ABP) by means of 

which testosterone can pass the Sertoli-Sertoli junctional complexes, and also induces the 

production of activin and inhibin by Sertoli cells which both influence hormone release in the 

hypothalamus and pituitary (for review Pickett, 1989, Holdcraft and Braum, 2004; Brehm and 

Steger, 2005) (Fig. 4). 
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Fig. 4: Hormonal regulation during the spermatogenesis of the stallion. Interrrelationship of 

hypophyseal hormones acting on Leydig cells and Sertoli cells of the seminiferous tubules 

and feedback control of gonadal hormones on the hypothalamus and adenohypophysis. An 

increased level of testosterone in pheripheral blood as a result of increased production by the 

testes, feeds back on the hypothalamus and adenohypophysis to suppress discharge of GnRH 

and LH respectively. Circulating FSH acts directly on Sertoli cells, which secrete two protein 

hormones: inhibin and activin. Adequate concentrations of testosterone and FSH must be 

present to stimulate Sertoli cells to produce an environment appropriate for normal 

spermatogenesis. (A) activin, (ABP) androgen-binding protein, (E) estradiol or other 

estrogens, (GnRH) gonadotropin-release hormone, (I) inhibin, (LH) luteinizing hormone, 

(FSH) follicle-stimulating hormone, (PRL) prolactin, (T) testosterone (Pickett, 1989). 
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1.1.7 Mammalian spermatogenic cycle, stage and wave 

The sperm cells are differentiating in distinctive associations. A spermatogenic cycle is 

defined as the time until the reappearance of the same stage within a given segment of the 

tubule (Parvinen et al., 1986). Each stage of the cycle follows in an orderly sequence along 

the length of the tubule and the distance between the same stages is called the spermatogenic 

wave (Bergmann, 2006). One tubule can contain numerous complete waves. Adjacent 

segments of the tubule communicate in some unknown manner. The number of stages in a 

particular species is thus defined as the number of morphologically recognizable germ cell 

associations within the testis. The number of stages within a spermatogenic cycle and the 

number of cycles required for the completion of spermatogenesis varies between species 

(Hess, 1990; Onyango et al., 2000) (Table 2). 

 

Table 2: Stage of the seminiferous epithelium cycle (numbers) and duration of 

spermatogenesis (days) in various species (Russell et al., 1990)  

Species  Number Cycle 

Boar  8 8.6 

Bull  8 13.5 

Dog  8 13.6 

Human  6 16 

Mouse  12 4.5 

Rat  14 4.5 

Stallion  8 12.2 
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1.1.8 Spermatogenesis of the stallion (Equus caballus) 

 

In the adult stallion, billions of spermatozoa are produced daily in the convoluted 

seminiferous tubules. The testes of an adult stallion produce about 70.000 spermatozoa each 

second during the breeding season, production of each individual spermatozoon requires 

about 57 days (Johnson, 1985, 1990). When spermatozoa are liberated from seminiferous 

epithelium, fluid carries them from the convoluted seminiferous tubules into straight 

seminiferous tubules and the tubules of the rete testis where additional fluid may be added. 

The suspension of spermatozoa is moved rapidly through ductuli efferentes testis into the 

proximal epididymis. From histologic examination of stallion testes, detailed analyses 

resulted in recognition of eight different cellular associations, or stages based on four or five 

specific types of germinal cells grouped together (Fig. 5a, b) (Johnson et al., 1990; Amann, 

1993). 

The exact number of cellular association depends on the criteria used for identification of 

each grouping of germinal cells. In each stage or cellular association, the four or five types of 

germinal cells are associated in a specific layered pattern. Each layer is one generation of 

germinal cells, which is 12.2 days more developed than the layer below. The youngest 

generation is located along the wall or lamina propria of the seminiferous tubule. Older 

generations are found closer to the tubular lumen. In a normal testis, germinal cells are always 

found in these specific cellular associations or stages. The cells present in each cellular 

association can be determined by reading upward in a column from the lamina propria toward 

the tubular lumen (generations five to one) (Amann, 1993). The width of each column depicts 

the relative duration of each cellular association. If a fixed point within a seminiferous tubule 

would be viewed over time, germinal cells developing at that point would sequentially acquire 

the appearance of each of the eight cellular associations characteristic of stallions (Johnson et 

al., 1990). 
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Description of the individual stages of the equine spermatogenic cycle according to Johnson 

et al. (1990): 

Stage I.  From complete disappeareance of mature spermatids lining the tubular lumen 

to onset of elongation of spermatid nuclei 

Stage II.  From onset of elongation to end of elongation of spermatid nuclei 

Stage III.  From end of elongation of spermatid nuclei to start of the first meiotic division 

Stage IV.  From start of the first to end of the second meiotic division 

Stage V.  From end of the second meiotic division to initial appearance of type B2 

spermatogonia 

Stage VI.  From initial appearance of type B2 spermatogonia to when all bundles of 

elongated spermatids begin to migrate towards the lumen of the seminiferous 

tubule 

Stage VII. From the time all bundles of elongated spermatids have begun to migrate 

toward the tubular lumen until they reach the lumen and B2 spermatogonia are 

no longer present 

Stage VIII.  From appearance of preleptotene primary spermatocytes and when elongated 

spermatids line the tubular lumen until complete disappearance of mature 

spermatids lining the tubular lumen 
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Fig. 5a: Stage I, II, III and IV of the cycle of the seminiferous epithelium during the 

spermatogenesis of the stallion according to Johnson et al., 1990. (A) spermatogonium type 

A, (L) leptotene spermatocyte, (Z) zygotene spermatocyte, (P) pachytene spermatocyte, (SII) 

second spermatocyte, (Sd1, Sd2) spermatids. Paraffin section with haematoxylin-eosin (H&E) 

staining. Primary magnification: x 40. 
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Fig. 5b: Stage V, VI, VII and VIII of the cycle of the seminiferous epithelium during the 

spermatogenesis of the stallion according to Johnson et al.,1990. (A) spermatogonium type A, 

(B) spermatogonium type B, (pL) preleptotene spermatocyte, (P) pachytene spermatocyte, 

(Sa) round spermatid, (Sd1, Sd2) spermatids, (Rb) residual body. Paraffin section with 

haematoxylin-eosin (H&E) staining. Primary magnification: x 40. 
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1.1.9 Cryptorchism in the stallion 

The cryptorchism occurs spontaneously in many mammals and is relatively common in pigs, 

horses and humans. When the testis does not descend properly, spermatogenesis does not 

proceed and although androgens are produced, the secretion rate is usually lower than normal, 

particularly if the condition is unilateral (Cox, 1993), because then there is no compensatory 

stimulation by the increased levels of luteinizing hormone (LH) (Risbridger et al., 1981). 

Spermatogenesis can be initiated in an abdominal testis by cooling it artificially, so it appears 

that the temperature is the key (Frankenhuis and Wensing, 1979). The reason for the testis 

making this remarkable journey is not clear. Although the scrotal testis is sensitive to 

warming the body temperature, movement to a cooler environment cannot be the prime 

motive, since testicular migration within the abdominal cavity occurs in many mammals 

without any change in temperature (Carrick and Setchell, 1977). In stallions, cryptorchism is 

an anomaly and cryptorchid stallions have the distinct tendency to get spermatogenenic 

defects (spermatogenic arrest of spermatogonia, spermatogenic arrest of primary 

spermatocytes). Histologically, the seminiferous tubules of stallion cryptorchid testes are 

smaller than tubules of normal testes and contain many layers of epithelial cells at different 

stages of embryological differentiation, with scattered primordial germ cells (Al-Bagdadi et 

al., 1991).  

There are four types of cryptorchidism according to Van der Velden (1990) and Mottershead 

(2000): (1) the hardest type is a complete abdominal retention. The testicle is fully retained in 

the abdomen and is mobile within the abdominal cavity. Typically this testicle will be small 

and flabby and the testicle is not externally palpable, (2) incomplete abdominal retention is 

the testicle retained and is not mobile within the abdominal cavity, but is usually located close 

to the deep inguinal ring, with portions of the testicles attached tissue passed through the 

vaginal ring, where they can sometimes be palpated externally with the horse standing and 

often when the horse is laid down under anaesthesia, (3) the permanent inguinal retention the 

testicle has descended through the deep inguinal ring, but is trapped within the inguinal canal, 

(4) temporary inguinal retention is the condition that holds the most hope for the horse's 

owner. The retained testicle may be palpable within the inguinal canal with the horse 

standing, but will certainly be palpable with the horse laid down under anaesthesia. The right 

testicle is the one most commonly affected (in more than three-quarters of cases). With this 

type of retention the testicle will usually descend spontaneously by the time the colt is three 

years of age. 
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1.2 Histone - Protamine replacement during the spermatogenesis 

 

During spermiogenesis, haploid spermatids undergo complex morphological, biochemical, 

and physiological modifications that result in the formation of mature spermatozoa. The 

replacement of histones, the major protein constituents of eukaryotic chromatin, by 

protamines, the principal basic nucleoproteins of mature spermatozoa, causes the compaction 

state of the chromatin, resulting in profound changes in both nuclear shape and size (Steger et 

al., 1999). Until now the histone-protamine replacement has been investigated more closely in 

humans than in other mammalian species (Seyedin and Kistler, 1980; Meistrich et al., 1985; 

Koppel et al., 1994; Drabent et al., 1996, 1998; Steger et al., 1998). In the stallion 

spermatogenesis, histone to protamine exchange has not yet been examined so far. In 

mammals, at least six somatic subtypes (H1.1 - H1.5 and H1○), one oocyte-specific and two 

testis-specific linker histones H1t (Lennox et al., 1983) and HILS1 are expressed (Khochbin, 

2001; Drabent et al., 1996; Iguchi et al., 2003). 

During meiosis, part of the somatic histone variants (Franke et al., 1998) are gradually 

replaced by testis-specific subtypes, such as H1t (Doenecke et al., 1994, Bartell et al., 1996). 

Both histones and nonhistone proteins are replaced by transition protein and are then 

eliminated from the cell (Steger et al., 1999). In men with normal spermatogenesis, the testis-

specific histone (H1t) mRNA can be observed in mid- and late pachytene spermatocytes 

(stage III - V), concomitant with the onset of H1t transcription. H1t protein appears in 

pachytene spermatocytes (stage III) and remains present as a nuclear protein constituent up to 

step 5 spermatids (stage V) (Steger et al., 1998). 

In humans, histones are partially retained in nuclei of mature spermatids and spermatozoa and 

occur together with protamines, which first appear in nuclei of step 4 spermatids and persist in 

all sperm nuclei (Gatewood et al., 1990; Lelannic et al., 1993; Lescoat et al., 1993; Prigent et 

al., 1996). The nuclear status of sperm is an important parameter in assessment of male 

fertility. Therefore, it is evident that stringent temporal and stage-specific gene expression is a 

prerequisite for the correct differentiation of round spermatids into mature spermatozoa 

(Steger et al., 1999). 
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1.2.1 The linker histone 

 

The basic unit of chromatin is the nucleosome, which consists of 146 base pairs of DNA 

wrapped around an octamer of core histones, including two molecules of H2A, H2B, H3 and 

H4 (Luger et al., 1997; Wolfe, 1998) (Fig. 6). In mammals, at least six somatic subtypes 

(H1.1 - H1.5 and H1○), one oocyte-specific and two testis-specific linker histones H1t 

(Lennox et al., 1983) and HILS1 are expressed (Khochbin, 2001; Drabent et al., 1996; Iguchi 

et al., 2003). Linker histones are essential for maintaining chromatin structure and regulating 

gene transcription in germinal cells. Testis-specific linker histone H1t binds more weakly to 

linker DNA than other H1 variants and may be important for DNA repair, although such a 

function has not been demonstrated in knockout mice. The H1t had also by far the least 

condensing activity (Khadake and Satyanarayana Rao, 1995). The testis-specific histone H1t 

is abundant in pachytene spermatocytes so far in rats, mice (Seyedin et al., 1981; Kremer and 

Kistler, 1991), and humans (Steger et al., 1999). Therefore it is critical for maintenance of 

chromatin structure and regulation of gene transcription in these cell types (Wilkerson et al., 

2002a). The H1t promoter contains several elements found in the promoters of other H1 

genes, but transcriptional regulation of the gene differs markedly from the other H1 family 

members. For example, H1a and H1c genes are also transcribed in primary spermatocytes but 

they are not tissue-specific like H1t. Several promoter elements are involved in the specific 

activation of the H1t promoter in spermatocytes, several additional elements are involved in 

repressing activity of the gene in non-expressing cell type (Wilkerson et al., 2002b). This may 

be important to treat some types of male infertility, therefore is necessary a better 

understanding of the transcriptional regulation by the H1t promoter or H1t promoter elements. 

(Wilkerson et al., 2002b). 
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Fig. 6: H1 histones bind to the linker DNA between nucleosome core particles and facilitate 

the folding of nucleosomes into the 30 nm chromatin fiber and higher order chromatin 

structures (Wolfe, 1998). 

 

1.2.2 Transcriptional regulation of the histone H1t gene 

 

There is a high degree of similarity among histone H1 promoters. The proximal promoter of 

most H1 genes contain a GC- rich region within the leader region, a TATA box, a CCAAT 

box, a GC-box and an AC box (Osley, 1991). The steady state level of H1 mRNA appears to 

play an important role in rate of synthesis of the histones (Dominski and Marzluff, 1999). The 

most H1 histone genes including H1t are clustered on chromosome 6 in humans (Albig et al., 

1993; Koppel et al., 1994). The highly conserved TATA binding protein (TBP) binds to the 

TATA box to start the formation of a transcription initiation complex (Nakajima et al., 1988). 

Factors important for enhanced transcription of the cell cycle-regulated H1 genes during S-

phase bind to the CCAAT box. There are two proteins that have been described that bind to 

the CCAAT box. One of these is HiNF-B or H1TF-2 (van Wijnen et al., 1988a, b; Gallinari et 

al., 1989; Martinelli and Heintz, 1994), which is likely identical to NF-Y, the canonical 

heteromeric CCAAT box binding protein (Mantovani, 1999). HiNF-B and H1TF-2 are 

biochemically indistinguishable heteromeric DNA binding activities. The second protein, 

which recognizes both the histone H1 CCAAT box and AC box, is HiNF-D. It contains the 

homeodomain protein CDP-cut as its DNA binding subunit (van den Ent et al., 1994; van 

Wijnen et al., 1996; Nepveu, 2001). 

Sp transcription family members, that either activate or repress transcription depending upon 

the specific factor, bind the GC-box. Sp1 is a potent transcriptional activator (Courey and 

Tjian, 1988), but Sp3 may activate or repress transcription, depending upon the gene and the 
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cell type involved (Hagen et al., 1994; Birnbaum et al., 1995). A transcriptional factor 

responsible for activating the H1 gene during S-phase of the cell cycle binds to the AC box, 

similar to the S-phase binding of factors to the CCAAT box (Coles and Wells, 1985). 

 

1.2.3 Transcriptional activation of the H1t gene 

Several regions within the testis-specific histone H1t promoter serve to activate transcription 

(Fig.7). The 40 bp TE element, important for transcription, contains three subelements. The 

TE1 and TE2 subelements are imperfect inverted repeats (Wolfe and Grimes, 1993; van Wert 

et al., 1998; Wilkerson et al., 2003), but only TE1 serves as a transcriptional activator 

(Wilkerson et al., 2002a; Wilkerson et al., 2003). The GC-box 1 located between these two 

subelements contributes to transcriptional activator (Wilkerson et al., 2002a, b). TE1 binds 

specifically to nuclear protein from primary spermatocytes to give a low mobility complex in 

electrophoretic mobility shift assays (Grimes et al., 1992a, b; Wolfe et al., 1995; van Wert et 

al., 1998). 

No other tissue or cell type produces the low mobility TE complex that is seen with this 

probe. TE1 and TE2 have similar sequences. By the EMSA competition assays it has been 

shown that the TE1 probe competes in the binding of spermatocyte nuclear proteins with the 

TE2 probe and the TE2 probe competes in the binding with the TE1 probe (Wolfe et al., 

1995). However, there are important functional differences in these two sites. TE2 appears to 

serve as a repressor binding site in some cell types (Wilkerson et al., 2003). The H1t promoter 

provides spermatocytes-specific transcription in transgenic mice (van Wert et al., 1995, 1998; 

Bartell et al., 1996). Mutagenesis of the TE site accomplished by replacing the entire TE 

element with a heterologous DNA fragment, leads to inactivation of the rat H1t promoter in 

transgenic mice (van Wert et al., 1998). 

Sequences with homology to TE1 are found in several other testis genes. For example, the 

sequence is found in the LDHc promoter (van der Hoorn et al., 1991; Wilkerson et al., 2003), 

the D element of RT7 promoter (van der Hoorn and Tarnasky, 1992) and the D element of 

protamine 1 promoter (Johnson et al., 1988). However, it is not present in other testis-specific 

histones or core histone genes. Transgenic animal studies show an inactivation of the H1t 

promoter when the TE element is mutated. The biochemical protein-DNA binding studies and 

the sequence homologies with promoter elements in other testis genes suggests that nuclear 

transcription factors in primary spermatocytes bind to the TE1 and TE2 subelements 

(Wilkerson et al., 2002a). More recently has been demonstrated that both the TE1 subelement 

and the GC-box 1 are necessary for full activity of the H1t promoter in transient expression
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assays (Wilkerson et al., 2002a). Mutagenesis of either site caused a decrease in reporter gene 

expression in testis Leydig cells, in the germinal derived GC-2spd cell line as well as in 

C127I and NIH3T3 cells but caused an increase in promoter activity in GC-2spd, Leydig, and 

C127 cells (Wilkerson et al., 2003). 

Therefore, the TE1 and TE2 sites are functionally different and it is likely that different 

proteins bind to each site in vivo (Wilkerson et al., 2003). EMSA supershift assays show that 

Sp1 and Sp3 from total testis, from an enriched population of primary spermatocytes, and 

from cultured cell lines bind to the GC-box 1 (Wilkerson et al., 2003). 

Western blots reveal the presence of both Sp1 and Sp3 in testis primary spermatocytes 

(Wilkerson et al., 2003), but the relative abundance of Sp1 and Sp3 variants change 

dramatically as germinal cells mature. The 95 and 105 KDa forms of Sp1 are abundant in 

several rat tissue and cell lines but a previously unidentified 60 KDa form is more abundant in 

spermatocytes and early spermatids (Wilkerson et al., 2002a, b). The levels of the typical Sp1 

and Sp3 variants were highest in testis cells from sexually immature 9-day old rats, the levels 

dropped in spermatocytes and early spermatids and the levels were lowest in late spermatids 

(Wilkerson et al., 2002a). 

Coexpression of Sp1 in transient transfection assays along with an H1t-promoter luciferase 

expression vector in GC-2spd germinal cell line led to a 6-fold increase in H1t promoter 

activity. Coexpression of Sp3 also unregulated the H1t promoter but only by 2-fold in GC-

2spd cells. Expression of Sp1 and Sp3 unregulated the h1t promoter in other cell lines but to a 

lower degree. Upregulation was mediated primarily by GC-box 1, because an H1t promoter 

construct containing a mutant GC-box 1 had little change in activity with coexpression of Sp1 

or Sp3 (Wilkerson et al., 2002b). 

Finally, a region designated the H1t/Tg box, located in the distal promoter about 500 bp 

upstream from the H1t mRNA start site has been identified (Drabent and Doenecke, 1997). 

This element is reported to function cooperatively with the AC box to activate transcription in 

some cell lines (Drabent and Doenecke, 1997). Thus, several sites within the H1t proximal 

and distal promoter have been identified that can serve as binding sites for transcriptional 

activators in transient expression. 

 



– Literature survey – 

 23 

 

 

Fig. 7: Model of the histone H1t promoter. In the top panel the promoter is shown in the 

transcriptionally active state where transcriptional activators are shown bound to the TATA-

box, CCAAT-box, the TE1 element, the GC-box 1, the AC-box and the 5′end of the RE 

element. In the lower panel the promoter is shown in the transcriptionally inactive state with 

transcriptional repressors shown bound to the GC-box 2, the TE2 element, the 3′ end of the 

RE element and to the distal silencer element. Methylated CpG dinucleotides are marked with 

an M (Grimes et al., 2003). 

 

1.2.4 Transcriptional repression of the H1t gene 

To fully understand the mechanisms of transcriptional regulation of the testis-specific histone 

gene, it is important to examine not only sequence elements that lead to transcriptional 

activation but also elements that lead to transcriptional repression (Fig. 7). Transcription of 

this gene is repressed in all cells types except primary spermatocytes and several proximal 

and distal promoter regions that contribute to repression have been identified (Wilkerson et 

al., 2002a). A GC-rich repressor region that is located downstream from the H1t TATA box 

(GC-box 2) is reported to be involved in silencing of the H1t gene in some non-germinal cells 

(Clare et al., 1997). Although Sp1 and Sp3 are reported to be able to bind to this element, 

other factors appear to repress H1t expression at this site. The TE2 subelement within the 

H1t/TE element serves as a repressor binding site in some cell lines (Wilkerson et al., 2003).  
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TE1 and TE2 are imperfect inverted repeats, but these two elements appear to have different 

functions depending upon the cell line being examined. Mutagenesis of TE1 leads to 

downregulation of H1t promoter activity in GC-2spd cells, C127 cells and NIH3T3 cells, 

while mutagenesis of TE2 leads to upregulation of promoter activity in GC-2spd cells, C127 

cell and Leydig cells (Wilkerson et al., 2002a, 2003). This finding was surprising because 

both elements bind nuclear proteins from primary spermatocytes and both elements compete 

with each other when binding nuclear proteins in EMSAs (Wilkerson et al., 2002b). A 

sequence element, designated RE, is located in the proximal promoter between 130 and 106 

bp upstream from the transcription start site (Wolfe and Grimes, 2003). The element spans 

approximately 24 base pairs and is centered 15 base pairs upstream from the 5´end of the AC 

box. The 3´end of the bipartite element serves as a binding site for a transcriptional repressor 

in several cell lines, but the 5´end of the element serves as a binding site for a transcriptional 

activator in primary spermatocytes. The repressor binding site functions in several cell lines 

such as NIH3T3 and GC-2spd cells, but the repressor binding proteins are clearly different 

from those that bind to the GC-box 2 element that is located downstream from the TATA box 

(Wilkerson et al., 2002b). 

Deletion of the RE region leads to a 4-fold increase in H1t promoted reporter gene activity in 

NIH3T3 cells (Wolfe and Grimes, 1993). In comparison to the activity of other linker histone 

promoters, the activity of the H1t RE mutant rises to greater than 60 % of the activity of the 

wild type cell cycle-regulated H1d promoter. Although nuclear proteins from NIH3T3 cells 

bind the RE element, nuclear proteins that form the RE complex are not present in rat primary 

spermatocytes where the promoter is active. A factor that represses transcription binds to the 

3´end of the bipartite RE element in cells where the H1t promoter is inactive, but a different 

factor, based in part upon mobility in EMSAs that activates transcription binds to the 5´end of 

the element in primary spermatocytes where the promoter is active (Wolfe and Grimes, 1993).  

A strong DNase I footprint forms over the RE element when nuclear proteins from primary 

spermatocytes are used for binding assays, but a footprint is not present over this region when 

using nuclear extract from rat liver. 

This element is contained in an H1 promoter domain that also contains the H1/AC-box and 

that is involved in the binding of HiNF-A, a nuclear factor also found to bind to similar 

regions in promoter of human H4 and H3 histone genes (van Wijnen et al., 1988b). The 3´end 

of the RE element is conserved in many H1 genes and therefore may play a role in cell cycle 

regulation of the linker histones. Thus, the 3´end of the RE element, the TE2 subelement 

located within the H1t/TE element and the GC-box 2 downstream from the TATA box all 
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serve as binding sites for transcriptional repressors in the proximal promoter region of the 

histone H1t gene (Wilkerson et al., 2002b). 
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1.3 Aims of the study 

 

It is known, that peripubertal stallions around two years of age show low fertility compared to 

older animals (Melo et al., 1998) whichs may be due to incomplete histone-protamine 

exchange during spermiogenesis. This premature subfertility has been associated with a 

prolonged H1 expression (Rizgalla, 2002). To our knowledge, this is the first study on H1t-

gene and cell specific expression during normal and well-known premature subfertility during 

the peripubertal development in stallions’ spermatogenesis. 

The aim of the study was: 

 

1. Clone the equine H1t-mRNA sequence.  

 

2. To evaluate the stage- and cell-specific expression of testicular H1t on the mRNA and 

protein level during equine spermatogenesis.  

 

3. To examine the possible relationship between the level of H1t gene expression and well-

known premature subfertility in the stallion. 

 



– Materials and Methods – 

 27 

2 Materials and Methods 

 

2.1 General histological methods 

 

2.1.1 Tissue collection 

 

Testicular samples for this study were collected from 24 castrated stallions at the Department 

of Equine Surgery, Justus-Liebig-University in Giessen. Equine organs from the Depatment 

of Veterinary Pathology, Justus-Liebig-University Giessen were used for this study. Tissue 

collection and conservation aimed at preserving protein and mRNA in order to study their 

expression patterns. 

 

2.1.2 Paraffin material 

 

A. Fixation 

After castration, the samples were fixed in Bouin´s solution. For (in-vitro) RT-PCR, testicular 

samples were frozen immediately in liquid nitrogen and stored at minus 80◦ C until RNA 

extraction. The samples were fixed with Bouin´s for 24 hours. All testes samples were cut in 

small pieces for a better penetration of Bouin´s solution. After fixation, samples were washed 

daily during 7 days with fresh 70 % ethanol until complet elimination of the yellow colour. 

Subsequently, samples were put in plastic biopsy punnets and drained with the dehydration 

equipment. 

 

Bouin´s solution: 

• Picrin acid solution                                  15 ml 

• Formalin 35%                                          5 ml 

• Glacial acetic acid                                    1 ml 

 

B. Dehydration 

Thereafter, samples were immersed in series of graded ethanol for 24 hours to dehydrate the 

tissue, followed by xylene as a clearing agent and finally hot molten paraffin wax 

(impregnation). 
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Running program: 

• Ethanol 80 % for 2 hours 

• Ethanol 96 % for 2 hours 

• Absolute ethanol for 3 hours 

• Absolute ethanol for 3 hours 

• Absolute ethanol for 3 hours 

• Xylene for 1 hour 

• Xylene for 45 minutes 

• Xylene for 45 minutes 

• Paraffin 59 ºC for 40 minutes 

• Paraffin 59 ºC for 40 minutes 

• Paraffin 59 ºC for 40 minutes 

 

C. Embedding 

In this process, the paraffin wax at 60 ºC will replace the water and allowed to cool and 

harden. 

 

D. Surface coating of the slides  

To obtain sufficient adhesion of the tissue sections, the slides have to be pretreated with 

APTEX: 

• Sort the slides in a cuvette 

• Wash 1 x in distillet water, dry off 

• Wash 1 x in acetone, dry off 

• Put the slides for 5 minutes in 2 % APTEX (4 ml APTEX in 196 ml acetone) 

• Put the slides for 2 minutes in fresh tap water 

• Wash the slides for 2 minutes with flowing tap water 

• Put the slides for 2 minutes in di 

• Slides overnight at 37 ºC into the dryer 

 

E. Sectioning 

After embedding in paraffin wax, the tissue was sectioned into 6 µm sections using a 

microtome. All the slides were put overnight into the dryer at 37 ºC. 
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F. Haematoxylin and eosin staining (H&E) 

To facilitat evaluation of the tissue under a microscope, the slices have to be stained with one 

or more dyes. Haematoxylin and eosin (abbreviated H&E) are the most commonly used stains 

in histology and histopathology. Haematoxylin stains nuclei blue and eosin stains the 

cytoplasm pink. 

H&E protocol: 

• 3 x 10 minutes xylene 

• 2 x 5 minutes absolute ethanol 

• 1 x 5 minutes 96 % ethanol 

• 1 x 5 minutes 80 % ethanol 

• 1 x 5 minutes 70 % ethanol 

• 1 x 5 minutes 50 % ethanol 

• 1 x 5 minutes deionized water 

• 7 minutes haematoxylin (Mayer) 

• 15 minutes in running water 

• 7 minutes in 1 % eosin 

• Wash 1 x shortly in water 

• Wash shortly in 70 % ethanol 

• Wash shortly in 80 % ethanol 

• 1 x 2 minutes 80 % ethanol 

• 1 x 2 minutes 96 % ethanol 

• 3 x 2 minutes absolute ethanol 

• 3 x 10 minutes xylene 

• cover the slides with glycerol gelatine 

 

2.1.3 Histology of the testicular samples 

 

In order to obtain testes with different spermatogenesis development were used: cryptorchid 

testes (spermatogonia arrest), testis from 6 month old animal 

(prespermatogonia/spermatogonia), 1 year old testes (spermatogonia/primary spermatocytes), 

1. 5 years old testes (spermatogenic development until elongated spermatids) and adult testes 

(complete spermatogenesis) (Table 3) (Fig. 8-10). 
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After histological analyses, these testes were selected for RT-PCR, IHC, in situ hybridisation, 

qReal-Time PCR and Western blot analyses. 

 

Table 3: Histological analysis of all the samples (le – left testis, ri – right testis, m – month, 

yr – year). 

 

    Sample Nr.      Age               Testis                               Histology 

1 295.04le  1.5 yrs Inguinal Spermatogonia arrest 
2 01.05 ri 2 yrs Inguinal Spermatogonia arrest 
3  319.04 6 m Scrotal Spermatogonia arrest 
4 33.00 le  - Inguinal Spermatogonia arrest 
5 34.05 ri 2 yrs Abdominal Spermatogonia arrest 
6  72.05 le 2 yrs Abdominal Spermatogonia arrest 
7 72.05 ri 2 yrs Abdominal Spermatogonia arrest 
8 104.05ri 2.5 yrs Inguinal Spermatogonia arrest 
9 29.02 le 1 yr Scrotal Primary spermatocyte arrest 
10 29.02 ri 1 yr Scrotal Primary spermatocyte arrest 
11 294.04ri 1.5 yrs Scrotal Elongated spermatids 
12 295.04ri 1.5 yrs Scrotal Elongated spermatids 
13 14.05 ri 3 yrs Scrotal Complete spermatogenesis 
14 20.05le 3 yrs Scrotal Complete spermatogenesis 
15 20.05ri 3 yrs Scrotal Complete spermatogenesis 
16 40.05 le 2 yrs Scrotal Complete spermatogenesis 
17 41.05 le 2 yrs Scrotal Complete spermatogenesis 
18 41.05 re 2 yrs Scrotal Complete spermatogenesis 
19 45.05 le 8 yrs Scrotal Complete spermatogenesis 
20 45.05 ri 8 yrs Scrotal Complete spermatogenesis 
21 293.04 4 yrs Scrotal Complete spermatogenesis 
22 313.04 11 yrs Scrotal Complete spermatogenesis 
23 317.04le 2 yrs Scrotal Complete spermatogenesis 
24 317.04ri 2 yrs Scrotal Complete spermatogenesis 
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Fig. 8: (1-8) Seminiferous tubules of testes showing arrest of spermatogenesis at the level of 

spermatogonia. Paraffin section with haematoxylin-eosin (H&E) staining. Primary 

magnification x 40. 

 



– Materials and Methods – 

 32 

                

 

Fig. 9: (9-10) Seminiferous tubules of testes showing arrest of spermatogenesis at the level of 

primary spermatocytes, (11-12) Seminiferous tubule showing qualitative intact 

spermatogenesis, (13-16) Seminiferous tubules of testes showing normal stallion 

spermatogenesis. Paraffin section with haematoxylin-eosin (H&E) staining. Primary 

magnification x 40.   
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Fig. 10: (17-24) Seminiferous tubules showing complete spermatogenesis. Paraffin section 

with haematoxylin-eosin (H&E) staining. Primary magnification x 40. 
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2.2 General molecular biology methods 

 

2.2.1 RNA isolation with TRIzol Reagent 

 

TRIZOL Reagent is a ready-to-use reagent for the isolation of total RNA from cells and 

tissues. Preparation of mRNA by means of Trizol reagent, a mono-phasic solution of phenol 

and guanidine isothiocyanate, is a sophisticated modification of the single-step RNA isolation 

method developed by Chomczynski and Sacchi (1987). During sample homogenization or 

lysis, TRIZOL reagent maintains the integrity of the RNA. Addition of chloroform followed 

by centrifugation separates the solution into an aqueous phase and an organic phase. RNA 

remains exclusively in the aqueous phase. After transfer of the aqueous phase, the RNA is 

recovered by precipitation with isopropyl alcohol. 

 

A. DEPC water preparation: 

• 2 l distillet water plus 2 ml dietylpyrocarbonate (DEPC). Shake. 

• Put for 1 hour at 37 °C into the dryer; autoclave overnight. 

 

B. RNA-extraction: 

• 0.2 N HCl: 5.2 ml 25 % HCl plus 200 ml DEPC water 

• Weigh 100 mg of frozen tissue 

• Homogenize the frozen tissue and add 1 ml TRIzol Reagent 

• Leave 5 minutes at room temperature 

• Add 200 µl chloroform, homogenize well 

• Leave 5 minutes at room temperature 

• Centrifuge 15 minutes at 4 °C (18.000g) 

• After the centrifugation, see 3 phases in the tube: colorless (RNA/DNA), the white 

(interphase) and red contains proteine (Fig. 11) 
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                                  phase 1 (colorless) - RNA/DNA 
 
                                  phase 2 (white) - interphase 
 
                                  phase 3 (red) - protein 
 
 
 

Fig.11: Separation of three phases after centrifugation. 

 

C. Determination of the RNA concentration 

For the determination of the RNA concentration the UVette cuvette was be used. Place 69 

µl of the buffer (0,1M Tris-HCL-buffer) and blank the cuvette. Then add 1 µl of the sample 

and mix well (but gently without making bubbles!) pipetting up and down. 

 

D. DNase treatment 

For the removal of contaminating DNA from RNA samples especially prior to RT-PCR 

experiments. 

For 20 µl estimated: 

• x µl RNA (circa 15 µg) 

• 3 µl DNase I  

• 2 µl 10x DNase I buffer 

• x µl DEPC water 

• Incubate 30 minutes in water bath at 37 °C 

• Inactivate 10 minutes in water bath at 72 °C 
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2.2.2. Reverse transcriptase-polymerase chain reaction (RT-PCR) 

 

In molecular biology, reverse transcription polymerase chain reaction (RT-PCR) is a 

laboratory technique for amplifying a defined piece of a DNA molecule. The RNA strand is 

first reverse transcribed into its DNA complement or complementary DNA, followed by 

amplification of the resulting DNA using polymerase chain reaction. Polymerase chain 

reaction itself is the process used to amplify specific parts of a DNA molecule, via the 

enzyme DNA polymerase. In the first step of RT-PCR, called the "first strand reaction," 

complementary DNA is made from a messenger RNA template using dNTPs and a RNA-

dependent DNA polymerase, reverse transcriptase, through the process of reverse 

transcription. 

The above components are combined with a DNA primer in a reverse transcriptase buffer for 

one hour at 37 °C. After the reverse transcriptase reaction is complete and complementary, 

DNA has been generated from the original single-stranded mRNA, standard polymerase chain 

reaction, termed the "second strand reaction," is initiated (Bartlett and Stirling, 2003). 

• A thermostable DNA polymerase and the upstream and downstream DNA primers are 

added 

• The reaction is heated to temperatures above 37 °C to facilitate sequence specific 

binding of DNA primers to the cDNA 

• Further heating allows the thermostable DNA polymerase (transcriptase) to make 

double-stranded DNA from the primer bound cDNA 

• The reaction is heated to approximately 95 °C to separate the two DNA strands 

• The reaction is cooled down for the annealing of the primers. The cycle will be 

repeated for several times. 

After approximately 30 cycles, millions of copies of the sequence of interest are generated. 

 

A. First strand cDNA synthesis 

For first strand cDNA synthesis Superscript II RT polymerase (Qiagen, Hilden) was used.  

Master Mix (Superscript II RT polymerase) for 20 µl estimated: 

• x µl DEPC water 

• 1 µl oligo dT-15 primer 
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• x µl RNA (circa 8 µg) 

• 10 minutes 70 °C and 3 minutes cold water 

• 4 µl 5x first strand buffer 

• 2 µl 0,1 M DTT 

• 1 µl 10 mM dNTPs mix 

• 1 minute 37 

• 1 µl Superscript II reverse transcriptase 

• 1 h 37 °C 

 

B. RT-PCR 

RT-PCR master mix for 50 µl estimated: 

• 36.5 µl DEPC water 

• 5 µl 10x PCR puffer 

• 4 µl 25 mM MgCL2 

• 1 µl 10mM dNTPs mix 

• 1 µl 5´primer (10 pmol) 

• 1 µl 3´primer (10 pmol) 

• 1 µl cDNA 

• 0.5 µl Taq DNA polymerase 

 

Subsequently, PCR was performed using the equine specific H1t oligonucleotide primers 

(Table 4) with the following cycling conditions: 

• 1x 95 °C for 2 minutes 

• 10x [45 °C for 1 minute, 65 °C for 1 minute, 72 °C for 2 minute] 

• 20x [95 °C for 45 seconds, 60 °C for 30 seconds, 72 °C for 45 seconds] 

• 72 °C for 8 minutes 

 

ß-actin was used as positive control for the same cDNA preparations according to Buff et al., 

(2002). 
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Table 4: Oligonucleotide primers used for PCR. 

Name Orientation Sequence (5’→3’) Fragment 

H1t_cloning Forward GCG CGC CCT ACC CTA TAT AAG 334 bp 

 Reverse GGC TGT TAT TCT TCT CTA CGT CG  

H1t_stallion Forward GCC AGC AGC CCC AGC CGA AC 201 bp 

 Reverse CTG CCA GCG CCT TCT TGA GAG  

H1t_pPCR Forward AAG CCT CCA GCC AAG AAG CG 98 bp 

 Reverse CAA CTT GGA CAC AGA CGA ACC  

β-actin Forward ACA GGT CCT TAC GGA TGT GG  255 bp 

 Reverse TGG GTG ACA TCA AGG AGA AG   
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2.2.3 Analysis of PCR products using agarose gel electrophoresis 

 

Agarose gel electrophoresis is a method used in biochemistry and molecular biology to 

separate DNA strands by size and to estimate the size of the separated strands by comparison 

to known fragments (DNA ladder). This is achieved by pulling negatively charged DNA 

molecules through an agarose matrix with an electric field. Shorter molecules move faster 

than longer ones (Sambrook and Russel, 2001). 

 

A. Making a 2 % agarose gel 

• 1 g agarose powder 

• 50 mL 1 x TAE buffer 

• Heat 1 - 2 minutes 

 

Allow to cool before putting 10 µl EtBr into the gel. Caution when working with the EtBr, the 

EtBr is a dangerous carcinogen. After pouring the liquid into the gel plates you have to be 

sure that the gel plates have been taped strongly. 

 

B. Loading the gel 

• Load a total of 15 µl of gel mixed with DNA sample 

• 2 µl loading dye 

• 10 µl DNA sample 

• 3 µl RNA free water 

• Let the gels run for 30 minutes from negative to positive. 

 

C. Examining the gels 

Place the gel on the UV transilluminator and look for orange and pink bands of DNA. There 

should be no bands visible in the negative control lane. 
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2.2.4 Measurement of nucleic acid samples  

 

The NanoDrop® ND-1000 Spectrophotometer allows an accurately and reproducible measure 

of nucleic acid samples without dilution. To do this, the instrument automatically detects the 

high concentration to calculate the absorbance. A sample measurement output is shown below 

(Fig. 12). All the cDNA samples were calculated in 90 ng/µl. 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Measurement of the cDNA samples for quantitative Real-time RT-PCR. 

 

 

 

 

 

 

 Sample 

  cDNA 
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2.2.5 Quantitative Real-Time RT-PCR 

 

The use of the real-time polymerase chain reaction (PCR) to amplify cDNA products reverse 

transcribed from mRNA is on the way to becoming a routine tool in molecular biology to 

study low abundance gene expression and provide the necessary accuracy and produces 

reliable as well as rapid quantification results. Real-time RT-PCR is highly sensitive and 

allows quantification of rate transcripts and small changes in gene expression (Pfaffl, 2001). 

Real-time RT-PCR amplification was performed with the equine specific oligonucleotide 

primers H1t_pPCR_F/R using the qPCR Master Mix for SYBR Green I detection according 

to the manufacturer’s protocol (EUROGENTEC, Seraing). All Real-Time reactions were run 

in the ICyclerIQ (Biorad) with the following thermal profile: a step 2 minutes 50° C, 

HotGoldstar activation /UNG inactivation 6 minutes 95 °C, followed by 40 amplification 

cycles each consisting of denaturation for 1 minutes at 95 °C, annealing for 30 seconds at 55 

°C, and elongation for 30 seconds at 72 °C. As negative control we used kidney tissue and 

water as template. In this experiment we didn’t use endogenous control because was very 

difficult to find a housekeeping-gene with a stabile expression in stallion testes. The relative 

H1t expression was calculated in the statistical analysis by the signal threshold cycle (Ct). 

 

• Each 25 µl reaction contained: 

• 12.5 µl of 2 x reaction buffer 

• 0.75 µl diluted- SYBR Green I 

• 2.5 µl of each H1t_ qPCR primers 

• 4.25 µl of RNAse free water 

• 5 µl of template cDNA 
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2.2.6 Statistical analysis 

 

The statistical analysis was done with the statistical program package BMDP (Dixon, 1993). 

The repeated measurements of the quantitative real-time RT-PCR were summarized to 

arithmetic mean within a case. These data were analysed by two different ways of definition 

of the grouping. 

In the First case, the data were grouped by the stage of cell development in the 

spermatogenesis: prespermatogonia/spermatogonia; primary spermatocytes; complete 

spermatogenesis. Secondly, the grouping was done by age: ≤ 2.5 years; ≥ 3 years. 

In the first case, the groups were compared by a one-way analysis of variance (program 

BMDP70). In the case of global differences between the groups, a pair wise group 

comparison with the Tukey-test was done (BMDP7D).  

In the second case, a non-linear regression analysis was performed to describe the relationship 

between mean Ct-value and age of the stallion (program BMDP3R). The non-linear 

regression model was: Y = P1 exp (P2.X) + P3 with the following meanings: Y = measured 

mean Ct-value = dependent variable; X = age in years = independent variable; P1, P2 and P3 

= model coefficients with P1 = total decrease of Ct-value; P2 = exponential decrease and P3 = 

final Ct-value for high age. 
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2.3 Partial cloning of the equine H1t-mRNA 

 

In biology, it collectively refers to processes used to create copies of DNA fragments 

(Molecular Cloning), cells (Genetic Cloning), or organisms (Sambrook and Russel, 2001). 

BLAST search of the GenBank/EBI/DDBJ database with the human H1t sequence (GenBank 

Accession No.60094) revealed that no nucleotide sequence existed for the equine H1t gene. In 

order to get this sequence, we derived several oligonucleotid primers from the human H1t 

sequence and used it for RT-PCR amplification from 100 mg stallion testes RNA. A PCR 

fragment of 334 bp was obtained with the H1t_ cloning_ F/R primers (see Table 4) using the 

following thermocycling conditions: 

 

• 1 cycle of 94 °C x 2 minutes 

• 12 cycles of 94 °C x 15 seconds, 66°C minus 0.5 °C each cycle x 30 seconds 

• 72 °C x 30 seconds 

• 25 cycles of 94 °C x 15 seconds 

• 60 °C x 30 seconds 

• 72 ° C x 30 s plus 10 seconds each cycle 

 

The amplicon was gel purified with Qiaex II (Quiagen, Hilden, Germany) and controlled by 

electrophoresis. Subsequently, the aplicons were cloned into the pT-Adv vector (Fig. 13).  

Three different clones were sequenced on both strands using ABI 373 DNA sequencer. 

Consensus sequences of these clones were used to design oligonucleotid primers specific for 

equine H1t for further RT-PCR analyses. These primers are referred to as H1t_ stallion_ F/R 

(see Table 4). 
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Fig. 13: Restriction Map and Multiple Cloning Site (MCS) of pT-Adv (Promega). Unique 

restriction sites are in bold. Restriction sites with asterisks (*) are present only in the MCS 

and can be used to excise the inserted PCR product. 
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2.4 In situ hybridization of H1t in equine testis sections 

 

In-situ hybridization, also referred to in hybridization histochemistry, was introduced in 1969 

(Buongiorno-Nardelli and Amaldi, 1969; John et al., 1969). The basic technique utilizes the 

fact that DNA and RNA will undergo hydrogen bonding to complimentary sequences of DNA 

or RNA. By labeling sequences of DNA or RNA of sufficient length (approximately 50-300 

base pairs), selective probes can be made to detect particular sequences of DNA or RNA. The 

application of these probes to tissue sections allows DNA or RNA to be localized within 

tissue regions and cell types. In-situ hybridization is a powerful technique and unique in the 

way that it allows studying the distribution and cellular localization of DNA and RNA 

sequences in a heterogeneous cell population. 

 

2.4.1 Production of Digoxigenin (DIG)-labeled cRNA probes  

 

DIG-labeled cRNA-probes were generated as described previously (Steger et al., 1998). 

Briefly, the 201 bp RT-PCR-product, which was generated with the H1t_stallion_F/R 

oligonucleotide primers from RNA of equine testis was subcloned into the pGEM-T vector 

(Promega, Mannheim) (Fig. 14). Plasmids were transformed in the XL1-Blue E. coli strain 

(Stratagene, Heidelberg) and extracted by column purification, according to the 

manufacturers’ instructions (Qiagen, Hilden).  
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Fig. 14: Restriction Map and Multiple Cloning Site (MCS) of pGEM-T vector (pGEM-T 

(Promega) 3,0 kb Gesamtlänge, lac-Operon, Amp
r
, T7-Promotor, SP6-Promotor, MCS (ApaI, 

AatII, AphI, NcoI, SacII, SpeI, NotI, PstI, SalI, NdeI, SacI, BstXI, NsiI).  

 

A. Production of the H1t-sense-cRNA and H1t-anti-sense-cRNA 

After sequencing, positive clones were digested with NcoI and NotI (New England Biolabs, 

Frankfurt) (Table 5) for the production of the H1t-sense-cRNA and H1t-antisense-cRNA, 

respectively (Fig. 15). 

 

Table 5: Summarized formula for the single digestion protocol 

Not NCO 

Plasmid 5 µl Plasmid 5 µl 

Enzyme 1 µl Enzyme 1 µl 

Buffer 3 2 µl Buffer 4 2 µl 

BSA 1 µl -- 

DEPC water 11 µl DEPC water 12 µl 

Total 20 µl Total 20 µl 
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• 1 hour at 37 °C 

• 20 minutes at 65 °C 

• DNA agarose gel for control 

• Stocking at minus 20 °C 

 

 

                               

    

 

Fig. 15: H1t pGEM-T plasmid was digested for the production of cRNA sense and cRNA 

antisense :(1) K3 Not, (2) K3 NCO, (3) K4 Not, (4) K4 NCO, (6) K6 Not, (7) K6 NCO, (8) 

K7 Not, (9) K7 NCO. 

 

B. In vitro transcription 

Subsequently, in-vitro transcription was performed using the 10x RNA-DIG Labeling-Mix 

(Boehringer Mannheim, Mannheim) and T7 and SP6 RNA polymerases (Promega, 

Mannheim). The in vitro transcription was prepared according to the protocol of the 

Veterinary Anatomy Institute (Table 6). 

 

 

 

 

 

 

 

 

 

3201 bp 
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0.5 kb 
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Table 6: Summarized formula for the in vitro transcription protocol 

DEPC water                                            8 µl 

5 x transcription buffer                           4 µl 

10 x Dig RNA labeling mix                   2 µl 

100 x DTT                                              2 µl 

Plasmid (single digestion)                      2 µl 

RNA polymerase SP6 / T7                     2 µl 

 

• 1 hour at 37 °C 

• 0. 5 µl 0. 5 M EDTA solution (Sigma) to prevent degradation of RNA 

• 1. 2 µl 8 M LiCL solution (Sigma) to precipitate the RNA 

• 70. 7 µl 96 % ethanol minus 20 C to precipitate the RNA 

• 1 hour at minus 80 °C 

• Centrifugate for 20 minutes at 4 °C (13 000 UpM ) 

• Supernatant suck off 

• 200 µl 75 % ethanol minus 20 °C 

• Centrifugate for 15 minutes at 4 °C (13 000 UpM) 

• Supernatant suck off 

• Dry the pellet and resuspend the pellet with 50 µl DEPC water at 70 °C 

• Stocking at minus 20 °C 
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2.4.2 In-situ hybridization  

 

In-situ hybridization, as the name suggests, is a method to localize, either mRNA within the 

cytoplasm or DNA within chromosomes, by hybridizing the sequence of interest to a 

complimentary strand of a nucleotide probe. All fixations, washing and handling methods are 

run under sterile conditions to prevent RNase contamination. 

 

A. Solution preparation 

• 0. 2 N HCl: 5.2 ml 25 % HCl plus 200 ml dietylpyrocarbonate (DEPC) water 

• 20 x SSC – permanent solution: in 1 l distilled water 88.23 g Natrium citrate 

(C6H5O7Na3 x 2H2O) plus 175.29 g NaCl, pH 7.0. Add 1 ml dietylpyrocarbonate 

(DEPC), shake; incubate overnight at 37 °C; autoclave 

• 1 M MgCl2- solution: 81.4 g MgCl2 plus 400 ml dietylpyrocarbonate (DEPC) water 

• PBSM-buffer: 200 ml dietylpyrocarbonate (DEPC) water plus 1 PBS-Tablet plus 1 ml 

1 M MgCl2-solution 

• 0.2 % glycine-solution: 100 ml PBSM-Buffer plus 200 mg glycine 

• 4 % paraformaldehyde solution: dissolve 25 g paraformaldehyde in 500 ml 1 x PBSM-

buffer (under the flue with magnetic stirrer at 70°C). Add 4 N NaOH until the solution 

gets clear, maybe adjust the concentrated parameters with HCl to pH 7.0, aliquote and 

store at minus 20 °C 

• 50 % dextran sulfate: in 10 ml dietylpyrocarbonate (DEPC) water plus 5 g dextran 

sulfate. For dissolving, leave a few days in the fridge, then aliquote and store at minus 

20 °C 

• Denhardt-reagent (BFP): in 10 ml dietylpyrocarbonate (DEPC) water solve 200 mg 

BSA plus 200 mg Ficoll 400 and 200 mg polyvinylpyrolidon, aliquote and store at 

minus 20 °C 

• 10 x TNMT buffer: in 1 l distilled water 121.1 g Tris-HCl plus 58.4 g NaCl plus 4.17 

g MgCl2 

• 5 x NTB buffer: 60.5 g Tris-HCl plus 29.2 g NaCl in 1 l distilled water dissolve, pH 

9.6 adjust. Add 1 ml dietylpyrocarbonate (DEPC). Shake well and leave in the 

incubator overnight at 37 °C, autoclave 
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• 1 M levamisole: 10 ml 1 x NTB buffer plus 2.4 g levamisole, aliquote, store at minus 

20 °C 

• TBS buffer: 121.1 g Tris-HCl plus 58.4 g NaCl in 1 l distilled water, adjust to pH 7.4 

 

B. Prearrangement at the previous day 

Store slides and xylene cuvette at 60 °C into the incubator, overnight 

 

C Preparation of the tissue sections 

• Deparaffinize and rehydrate tissue sections with alcohol series 

• Wash 5 minutes in xylene 60 °C 

• Wash 2 x 5 minutes in xylene at room temperature 

• Wash 2 x 5 minutes in 100 % ethanol 

• Wash 1 x 5 minutes in 96 % ethanol 

• Wash 1 x 5 minutes in 70 % ethanol 

• Subsequently, take a steril cuvette  

• Wash the tissue section with 1 x in dietylpyrocarbonate (DEPC) water 

• Incubate 20 minutes in 0.2 N HCl 

• Incubate 15 minutes at 70 °C in 2 x SSC 

• Finally wash shortly in PBSM-buffer 

 

D. Digestion with proteinase K 

To promote an access of the labelled probes into the cells, the tissues were permeabilized with 

RNase-free proteinase K. 

• Incubate the slides in a humid chamber with proteinase K (20 µg/ml) for 25 minutes in 

the incubator at 37 °C 

• Stop the reaction incubate 1 x 5 minutes 0.2 % glycine 

 

E. Blocking of endogenous phosphatase 

• Wash the slides 15 seconds with 20 % acetic acid in dietylpyrocarbonate (DEPC) 

water 

• Wash shortly in PBSM-buffer 
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F. Post fixation 

In order to better fix the mRNAs onto slides, post fixation was carried out. 

• Incubate the slides 10 minutes in 4 % paraformaldehyde solution 

• Wash shortly in PBSM-buffer 

• Incubate the slides one hour in 20 % glycerol in dietylpyrocarbonate (DEPC) water 

(prehybridization step) 

 

G. Preparing the H1t cRNA probe mix 

cRNA mix: the dilution of the H1t cRNA was 1:50 

• 4 µl dietylpyrocarbonate (DEPC) water 

• 4 µl Salmon-sperm-DNA (1 mg/ml) 

• 8 µl Yeast-t-RNA (1 mg/ml) 

• 4 µl DIG-cRNA 

 

H. Preparing the hybridization buffer 

• 52 µl dietylpyrocarbonate (DEPC) water 

• 40 µl 20 x SSC 

• 80 µl 50 % dextrane sulfate  

• 8 µl Denhardt reagent 

• 200 µl formamide 

 

The labeled probes and hybridization buffer were mixed and put on slices (50 µl per slides). 

Place the slides on the heating surface for 10 minutes at 70 °C (denaturation). 

Afterwards put the slides directly onto the ice surface to cool down (stabilisation) and 

incubate into the incubator at 37 °C, overnight in a humid chamber with dietylpyrocarbonate 

(DEPC) water. 
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I. Post hybridization step 

This step is funded by stringent washing, in order to eliminate non-specific cRNA binding. 

The non-specific background will be reduced by this procedure 

• Wash 3 x 10 minutes in 4 x SSC at room temperature 

• Wash 4 x 5 minutes in 4 x SSC at 42 °C 

• Wash 1 x 15 minutes in 2 x SSC at 60 °C 

• Wash 1 x 15 minutes in 0.2 x SSC at 42 °C 

• Wash 1 x 5 minutes in 0.1 x SSC at room temperature 

• Wash 1 x 5 minutes in 2 x SSC at room temperature 

 

J. Immunohistochemistry 

Buffer preparation: 

1 x TNMT: 100 ml 10 x TNMT plus 900 ml distilled water 

• Wash the slides 10 minutes in 1 x TNMT-buffer at room temperature 

• Incubate one hour at room temperature in 3 % BSA plus 1 x TNMT buffer 

• Preparing anti-DIG-antibody (Anti-Digoxigenin-AP Fab-fragment): Diluition 1:500 in 

TNMT-buffer 

• Incubated with anti-DIG-antibody in humid chamber overnight at 4 °C 

 

L. Detection 

Buffer preparation: 

1 x NTB: 20 ml 5 x NTB plus 5 ml 1 M MgCl2 plus 75 ml distilled water 

1 x TNMT: 100 ml 10 x TNMT plus 900 ml distilled water 

• Wash the slides 2 x 10 minutes in 1 x TNMT buffer 

• Wash 5 minutes in 1 x NTB buffer 

• Wash 5 minutes in 50 ml 1 x NTB plus 250 µl 1M levamisole 

• Develop with NBT-BCIP in a dark humid chamber (30 minutes or 1 hour) 

• Stop with 1 x NBT 

• Cover the slides with DAKO Glycergel® Mounting Medium 
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2.5 Antibody generation and verification of specificity 

 

The cloned equine H1t cDNA fragment was in silico translated into protein (GenBank 

Accession No. CAI26255) and used for antibody production. Briefly, the synthetic peptide 

KPPAKKRGKKPVGL (Fig. 15) was coupled via the MAP residue to keyhole limpet 

hemocyanin and used to immunize two rabbits (Invitrogen, London). Antigenity of the rabbit 

serum was confirmed by Elisa analysis using the synthetic peptide as antigen and the 

polyclonal antiserum was affinity-purified (Invitrogen, London). An overview of the multiple 

sequence alignment and eH1t peptide are shown in the figure 16. 

 

 

 H1t 6 PAASASAGVAAMEKLPTKKRGRKPAGLISASRKVPNLSVSKLITEALSVSQERVGMSLVALKKALA 

 eH1t 6 PAAPAEPVLSSMEKPPAKKRGKKPVGLTGGSRKVPGSSVSKLITEALSVSQERAGMSLAALKKALA 

 cH1t 6 PAVAAGTALASMENPSAKKRGRKPGGIPEAAPKAPGLSVSKLIMEALSVSQERAGMSLAALKKALA 

 rH1t 6 PAASSTLVPAPVEKPATKRRGKKPG--MATARKPRGFSVSKLIPEALSMSQERAGMSLAALKKALA 

 mH1t 6 PAASSTLVPAPVEKPSSKRRGKKPG--LAPARKPRGFSVSKLIPEALSTSQERAGMSLAALKKALA 

 

 eH1t peptide        KPPAKKRGKKPVGL 

 eH1t finger print   LITEALSVSQER 

 

 

Fig. 16: Multiple alignment of human (H1T), rat (rH1t), mouse (mH1t), canine (cH1t) and 

equine (eH1t) H1t protein sequences. Deduced amino acid sequences were aligned using EBI 

ClustalW algorithm and alignment was visualized by BOXSHADE 3.21. Amino acid identity 

is displayed with black shading, while amino acid similarities are highlighted in grey. Amino 

acid sequences were deduced from the following GenBank Accession Nos.: rH1t 

(NM_012579), mH1t (NM_010377), H1T (NM_005323), and eH1t (AJ865320). Amino acid 

sequence of cH1t was derived from Ensembl (http://www.ensembl.org) orthologue prediction. 
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The H1t protein was separated in a preparative SDS 12 % gel. The appropriate band was 

excised from the gel and sequenced. In order to indentify the H1t protein, a peptide mass 

fingerprint analysis MS/MS was performed. In this method, the unknown protein of interest is 

first cleaved into smaller peptides, whose absolute masses can be accurately measured with a 

mass spectrometer such as MALDI-TOF or ESI-TOF. Thus, the Peptide Mass Fingerprint-

Analysis MS/MS (TopLab, Martinsried) showed positive reaction for H1t (LITEALSVSQER) 

(Fig. 17). 

 

 

                                                       

 

Fig. 17: SDS 12 % gel. The band number 4 was identified and sequenced. The H1t protein 

has a molecular weight of 29 kDa. 

 

2.5.1 Histone isolation 

 

For the isolation of histones from the nuclei, sulphurous acid must be used. This acid 

extraction removes histones from DNA and separates the core histone and linker histone from 

each other inside the nucleosome. 

Buffer preparation: 

Lysis Buffer: 

• Tris - HCl                                                 0.605 g 

• NaHSO3                                                    2.6 g 

• Triton X-100                                            5 ml 

 

 

 

H1t 

198 KDa 

38 KDa 

6 KDa 
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• MgCl2                                                       1.02 g 

• Saccharose                                               43 g 

• With distilled water in 500 ml fill and dissolving (pH 6.5 adjust) 

 

Tris-EDTA Buffer: 

• Tris                                                           0.242 g 

• EDTA                                                       0.967 g 

• Fill with 70 ml distilled water. Adjust the pH to 7.4 

• 100 - 120 mg testicular tissue was homogenized and dissolved in 1 ml ice-cold lysis 

buffer 

• Collect nuclei by centrifugation (18.000 g) for 10 minutes at 4 ºC 

• Wash 3 x with lysis buffer 

• Suspend nuclei with 100 µl Tris-EDTA buffer 

• Add 1.1 µl conc. H2SO4 to the pellet and vortex. Incubate at 4 ºC for more than one 

hour to extract the histones from the nuclear pellet 

• Take supernatant after high-speed centrifugation (18.000 g) for 10 minutes at 4 ºC 

• Add 1 ml acetone to the supernatant 

• After overnight incubation at 20 ºC, centrifugate (8.000 g) for 10 minutes at 4 C and 

wash 1x with acetone 

• Air-dry at 37 ºC to give white powder of histone mixture containing H1, H1t, H2A, 

H2B und H4 

Histones were then resuspended in 1 % sodium dodecyl sulphate (SDS) 

 

2.5.2 Western blot analysis 

 

Western blot is a method in molecular biology/biochemistry/immunogenetics to detect protein 

in tissue homogenate or extract. It uses gel electrophoresis to separate denatured proteins by 

mass. The proteins are then transferred out of the gel and onto a membrane (typically 

nitrocellulose), where they are "probed" using antibodies specific to the protein. As a result, 

researchers can examine the amount of protein in a given sample and compare levels between 

several groups (Towbin et al., 1979). 
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A. Prepare samples 

The protein samples containing histone are boiled 5 to 10 minutes in a buffer solution ( 

Laemmli's buffer - known as "sample buffer"), containing a buffer substance, normally tris 

base, dye, a sulfhydryl compound (typically beta-mercaptoethanol or Dithiothreitol (DTT - 

for reducing disulfide bonds), an anionic lipophilic detergent (sodium dodecyl sulfate - SDS) 

and glycerol to increase its buoyant density. The boiling denatures the proteins, unfolding 

them completely. SDS then surrounds the protein with a negative charge and the beta-

mercaptoethanol prevents the reformation of disulfide bonds. The glycerol increases the 

density of the samples vs. the upper buffer in the gel tank and thus faciliates loading the 

samples as they will sink to the bottom of the gel pockets (Renart et al., 1979; Towbin et al., 

1979; Burnette, 1981). The electrophoresis was prepared according to the instructions of the 

kit supplier by Invitrogen (Table 7). 

 

Table 7: Summarized formula for the eletrophoresis protocol 

Reagent Reduced Sample Non-Reduced Sample 

Sample X µl X µl 

NuPAGE LDS sample buffer 

(4 x) 

2.5 µl 2.5 µl 

NuPAGE Reducing Agent 

(10) 

1 µl -- 

Deionized water To 6.5 µl To 7.5 µl 

Total volume 10 µl 10 µl 

 

 

• Heat samples at 70 °C for 10 minutes 

• Prepare 1 x SDS running buffer by adding 50 ml 20 x NuPAGE MOPS SDS running 

buffer to 950 ml of deionized water 

• Load the appropriate concentration of your protein sample onto the gel 

• Fill the upper buffer chamber with 200 ml 1 x NuPAGE SDS running buffer 

• For reduced samples use 200 ml 1 x NuPAGE SDS running buffer containing 500 µl 

NuPAGE Antioxidant. Fill the lower buffer chamber with 600 ml 1 x NuPAGE SDS 

running buffer 
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Run conditions: Voltage: 200 V, run time: 50 minutes, Expected Current: 100-125 mA/gel 

(start); 60-80 mA /gel (end) 

 

 B. Electrophoresis of NuPAGE Gels (Procedure using Xcell SureLock Mini-Cell) 

The proteins of the sample are separated according to molecular weight using gel 

electrophoresis. Gels have various formulations depending on the lab, molecular weight of the 

proteins of interest, and buffers available. Polyacrylamide gels are most common. Since the 

proteins travel only in one dimension along the gel, samples are loaded side-by-side into 

"wells" formed in the gel. Proteins are separated by mass into "bands" within each "lane" 

formed under the wells. One lane is reserved for a "marker" or "ladder," a commercially 

available mixture of proteins having defined molecular weights (Renart et al., 1979; Towbin 

et al., 1979; Burnette, 1981). 

• Remove the NuPAGE gel from the pouch 

• Rinse the gel cassette (12 % Bis-Tris gel) with deionized water. Peel off the tape from 

the bottom of the cassette 

• In one smooth motion, gently pull the comb out of the cassette 

• Rinse the sample wells with 1 x NuPAGE SDS running buffer 

• Invert the gel and shake to remove the buffer. Repeat two more times 

• Orient the two gels in the Mini-Cell such that the notched “well” side of the cassette 

faces inwards toward the buffer core 

• Seat the gels on the bottom of the Mini-Cell and lock into place with the gel tension 

wedge 

• Fill the upper chamber with a small amount of the running buffer to check for 

tightness of the seal 

• Fill the upper buffer chamber (inner) with the appropriate 1 x running buffer 

• The buffer level must exceed the level of the wells 

• Load an appropriate volume of sample at the desired protein concentration onto the 

gel 

• Load appropriate protein molecular weight markers 

• Fill the lower (outer) chamber with 600 ml of the 1 x MOPS running buffer 

• After electrophoresis is complete, shut off the power, disconnect electrodes, and 

remove gel from the Xcell SureLock Mini-Cell 
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• Separate each of the three bonded sides of the cassette by inserting the knife into the 

gap between the cassette two plates. The notched (“Well”) side of the cassette should 

face up 

• Push down gently on the knife handle to separate the plates. Repeat on each side of the 

cassette until the plates are completely separated 

• Carefully remove and discard the top plate, allowing the gel to remain on the bottom 

(slotted) plate 

 

C. Blotting (Using 20 x NuPAGE Tranfer buffer for one gel) 

In order to make the proteins accessible to antibody detection, they are moved from within the 

gel onto a membrane made of nitrocellulose or PVDF. The membrane is placed face-to-face 

with the gel, and current is applied to large plates on either side. The charged proteins move 

from within the gel onto the membrane while maintaining the organization they had within 

the gel. As a result of this "blotting" process, the proteins are exposed on a thin surface layer 

for detection. Both varieties of membrane are chosen for their non-specific protein binding 

properties (i.e. binds all proteins equally well). Protein binding is based upon hydrophobic 

interactions, as well as charged interactions between the membrane and protein. 

Nitrocellulose membranes are cheaper than PVDF, but are far more fragile and do not stand 

up well to repeat probings (Renart et al., 1979; Towbin et al., 1979; Burnette, 1981). The 

blotting was prepared according to the instructions of the kit supplier by Invitrogen (Table 8). 

 

Table 8: Summarized formula for the blotting protocol 

 Reduced Samples Non-reduced Samples 

NuPAGE Tranfer buffer 50 ml 50 ml 

NuPAGE Antioxidant 1 ml -- 

Methanol 100 ml 100 ml 

Deionized Water 849 ml 850 ml 

Total Volume 1000 ml 1000 ml 

 

• Use about 700 ml of 1 x NuPAGE transfer buffer to soak the pads until saturated 

• Remove the air bubbles by squeezing the pads while they are submerged in buffer 

• Removing the air bubbles is essential as they can block the transfer of biomolecules if 

they are not removed  
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• Take a nitrocellulose membrane and place the membrane directly into a shallow dish 

containing 50 ml of 1 x NuPAGE transfer buffer for several minutes 

• After opening the gel cassette, remove wells with the knife 

• Place a piece of pre-soaked filter paper on top of the gel, and lay just above the slot in 

the bottom of the cassette, leaving the “foot” of the gel uncovered 

• Keep the filter paper saturated with the transfer buffer and remove all trapped air 

bubbles by gently rolling over the surface using a glass pipette as a roller 

• Turn the plate over so the gel and filter paper are facing downwards over a gloved 

hand or clean flat surface 

• Use the knife to push the foot out of the slot in the plate and the gel will fall off. 

• When the gel is on a surface, cut the foot off the gel with the knife 

• Wet the surface of the gel with transfer buffer and position the pre-soaked transfer 

membrane on the gel, ensuring all air bubbles have been removed 

• Place another pre-soaked anode filter paper on top of the membrane. Remove any 

trapped air bubbles (Fig. 18) 

• Place two soaked blotting pads into the cathode (-) core of the blot module. The 

cathode core is the deeper of the two cores and the corresponding electrode plate is a 

darker shade of gray. Carefully pick up the gel membrane assembly and place on 

blotting pad in the same sequence, such that the gel is closed to the cathode core 

• Add enough pre-soaked blotting pads to rise to 0.5 cm over rim of cathode core. Place 

the anode (+) core on the top of the pads. The gel membrane assembly should be held 

securely between the two halves of the blot module ensuring complete contact of all 

components 

• Position the gel/membrane assembly and blotting pads in the cathode core of the Xcell 

II Blot Module to fit horizontally across the bottom of the unit. There should be a gap 

of approximately 1 cm at the top of the electrodes when the pads and assembly are in 

place 

• Hold the blot module together firmly and slide it into the guide rails on the lower 

buffer chamber. The blot module will only fit into the unit one way, so the (+) sign 

can be seen in the upper left hand corner of the blot module. Properly placed, the 

inverted glod post on the right hand side of the blot module will fit into the hole next 

to the upright gold post on the right side of the lower buffer chamber 
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• Place the gel tension wedge so that its vertical face is against the blot module. Lock 

the gel tension wedge by pulling the lever forward 

• Fill the blot module with 1 x NuPAGE transfer buffer until the gel / membrane 

assembly is covered in this buffer. Do not fill all the way to the top as this only 

generate extra conductivity and heat 

• Fill the outer buffer chamber with deionized water by pouring approximately 650 ml 

in the gap between the front of the blot module and the front of the lower buffer 

chamber. The water level should reach approximately 2 cm from the top of the lower 

buffer chamber 

• Place the lid on top of the unit 

 

 

 

 

Fig. 18: Scheme of membrane blotting. According to Invitrogen protocol. 

 

D. Transfer conditions for NuPAGE gels using the Xcell II Blot Module 

Gel Transfer Buffer Membrane Power Conditions 

NuPAGE Novex Bis-

Tris Gel 

1 x NuPAGE transfer 

buffer with 10 % 

methanol 

Nitrocellulose  30 Volts constant for 

1 h 

Expected current: 

Start: 170 mA 

End: 110 mA 

 

 

 

 

Blotting Pad 

Blotting Pad 

Filter Paper 

Transfer 

Membrane 
Filter Paper 

Gel 
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E. Coomassie Staining 

Coomassie (also known as Brilliant Blue, Brilliant Blue G, Acid Blue 90, C.I. 42655, or 

Brilliant Blue G 250) is a blue dye commonly used in sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE). The gel is soaked in the dye for thirty minutes. Afterwards 

put the gel thirty minutes or more into a solution for decolourisation. This treatment allows 

the visualization of bands onto the gel. The visualization on the gel usually contains a set of 

molecular weight marker so that protein can be determined in a known position. 

Staining solution: 

• 2.5 g coomassie brilliant blue 

• 455 ml methanol 

• 455 ml deionized/distilled water 

• 90 ml glacial acetic acid 

Destaining solution: 

• 455 ml methanol 

• 455 ml deionized/distilled water 

• 90 ml glacial acetic acid (but it can also be destained using only distilled water and 

heating) 

• After blotting incubate the gel in this staining solution overnight at room temperature 

by gentle shaking 

• Decant staining solution and add the decolourisation solution. Incubate the gel 

overnight at room temperature by shaking gently. The gel will have a clear 

background. 

 

F. Immunodetection of proteins 

Since the membrane has been chosen for its ability to bind protein and both antibodies and the 

target are proteins, steps must be taken to prevent interactions between the membrane and the 

antibody used for detection of the target protein. Blocking of non-specific binding is achieved 

by placing the membrane in a dilute solution of protein - typically bovine serum albumin 

(BSA) or non-fat dry milk, with a minute percentage of detergent such as tween 20. The 

protein in the dilute solution attaches to non-specific binding sites on the membrane. This 

reduces "noise" in the final product of the Western blot, leading to clearer results and 

eliminates false positive results. 
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 During the detection process the membrane is "probed" for the protein of interest with 

antibodies, and links them to a reporter enzym, which drives a colorimetric or photometric 

signal. For a variety of reasons, this traditionally takes place in a two-step process, although 

there are now one-step detection methods available for certain applications (Renart et al., 

1979; Towbin et al., 1979; Burnette, 1981). The immunodetection of the proteins was 

prepared according to the instructions of the kit supplier by Invitrogen (Table 9). 

 

Table 9: Summarized formula for the buffer preparation 

 

PBS buffer 

 

PBS wash buffer 

+ tween 

 

PBS wash buffer 

- tween 

 

Tris wash buffer 

 

NTB buffer 

1 dragée PBS 100 ml PBS 200 ml PBS 50 ml Tris  40 ml 5 x NTB 

200 ml deionized 

water  

1 g BSA 2 g BSA 4.25 g NaCl 160 ml deionized 

water 

- 1 ml Tween - 0.5 ml Triton X-

100 

- 

- - - 500 ml deionized 

water 

- 

 

• After the blotting, the membrane was blocked with 5 % non-fat dried milk dissolved 

in 0.1 M phosphate-buffered saline (PBS; pH 7.4) containing 0.1 % tween for 30 

minutes by gentle agitation 

• Wash the membrane 1 x short and 3 x 5 minutes in PBS wash buffer without tween 

• Incubate the membrane with the primary polyclonal anti-H1t antibody overnight 

(1:100; Invitrogen, Karlsruhe) 

• Wash the membrane 1 x shortly and 3 x 5 minutes at room temperature in PBS wash 

buffer with tween by gentle agitation 

• Incubate the membrane with the secondary antibody (mouse - anti-rabbit/1:500; 

DAKO, Hamburg) at room temperature during 45 minutes 

• Wash the membrane 1 x shortly and 2 x 5 minutes in PBS wash buffer with tween 
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• Incubate the membrane with the secondary rabbit anti-mouse dissolved 1:250 in 1 % 

PBS /1 % BSA / 1 % tween at room temperature during 45 minutes 

• Wash the membrane 1 x shortly and 3 x 5 minutes in Tris wash buffer with tween 

• Finally, incubate the membrane with APPAP 1:500 at room temperature during 45 

minutes 

• Wash the membrane 1 x shortly and 3 x 5 minutes in NTB wash buffer 

• Incubate the membrane with NBT / BCIP for 20 minutes at room temperature 

• Wash the membrane 2 x 5 minutes with deionized water 

• Air dry the membrane at 37 °C 

 

2.5.3 Immunohistochemistry 

 

Immunohistochemistry refers to the process of localizing proteins in cells of a tissue section 

exploiting the principle of antibodies binding specifically to antigens in biological tissues. 

Visualising an antibody-antigen interaction can be accomplished in a number of ways. In the 

most common instance, an antibody is conjugated to an enzyme, such as peroxidase, that can 

catalyse a colour-producing reaction. Alternatively, the antibody can also be tagged to a 

fluorophore, such as FITC, rhodamine, or Texas Red. The latter method is of great use in 

confocal laser scanning microscopy, which is highly sensitive and can also be used to 

visualise the interactions between multiple proteins. In 1981 a new generation of 

immunohistochemical methods emerged with the advent of the avidin-biotin methods, which 

remains widely used today (Hsu et al., 1981). 

All avidin-biotin methods rely on the strong affinity of avidin or streptavidin for the vitamin 

biotin. Streptavidin (from Streptomyces avidinii) and avidin (from chicken egg) both possess 

four binding sites for biotin. The biotin molecules may be conjugated easily to antibodies and 

enzymes. In the avidin-biotin complex (ABC) method secondary antibodies are conjugated to 

biotin and function as links between tissue-bound primary antibodies and an avidin-biotin-

peroxidase complex (Heras et al., 1995) (Fig. 19). 
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Fig. 19: Avidin-biotin complex (DAKO). 

 

Table 10: Summarized formula for the buffer preparation 

 

10 x Tris HCl 

buffer 

 

1 x Tris-HCl 

wash buffer  

 

Block buffer  

 

Proteinase K 

stock solution  

 

20 % acetic acid 

121.1 g Tris HCL 100 ml 10x Tris-

HCl 

10 g BSA  10 mg proteinase 

K 

160 ml DEPC 

water 

58.4 g NaCL 1 ml Triton X.100 200 ml 1 x Tris-

HCl 

1 ml 1 x PBSM 

buffer 

40 ml glacial 

acetic acid  

1 l distilled water 900 ml distilled 

water 

- 20 µl aliquots  - 

pH 7.4 pH 7.6 - - - 

 

A. Prearrangement at previous day 

Leave the slices into the incubator at 37 °C overnight in order to obtain sufficient adhesion of 

the tissue sections. 
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B. Preparation of the tissue sections 

Deparaffinize and rehydrate tissue sections with alcohol series: 

• Wash 10 minutes in xylene (2x) 

• Wash 2 x 5 minutes in 100 % ethanol 

• Wash 1 x 5 minutes in 96 % ethanol 

• Wash 1 x 5 minutes in 70 % ethanol 

• Subsequently, take a sterile cuvette 

• Wash the tissue section with 1 x distilled water 

• Finally wash 10 minutes with 1 x Tris-HCl-buffer 

 

C. Incubation with proteinase K 

• Incubate the slides in a humid chamber with proteinase K (1.5 µl in 1000 µl) for 20 

minutes in the incubator at 37 °C. 

• Wash 3 x 5 minutes with 1 x Tris-HCl-buffer 

 

D. ABC method 

• Incubate the slides with 3 % of H2O2 in methanol for 30 minutes 

• Finally wash 3 x 5 minutes with 1x Tris-HCl-buffer 

 

E. Block 

• Incubate the slides with 5 % BSA buffer during 30 - 60 minutes 

 

F. Incubation of the primary antibody 

• By polyclonal antibody: Incubate overnight at 4 °C (1:800) 

 

G. Incubation of the secondary antibody 

• Wash 3x 5 minutes with 1x Tris-HCl-buffer 

• Incubate with goat-anti-rabbit BIOT (1:250) for 60 minutes 

• Wash 3 x 5 minutes with 1x Tris-HCl-buffer 
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H. ABC complex 

• Incubate with ABC complex during 60 minutes 

• Wash 3 x 5 minutes with 1x Tris-HCl-buffer 

 

I. Detection 

• Develop with 3,3´- diaminobenzidinetrahydrochloride (DAB) or 3-amino-9-

ethylcarbazole (AEC) in a dark humid chamber (2-10 minutes) 

• Stop with distilled water 

• Cover with DAKO Glycergel® Mounting Medium 
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2.7 General chemicals and reagents 

(3-Aminopropyl) triethoxysilane 3-Aminopropyl-ethoxysilane (APEX); Sigma-Aldrich 

Chemie GmbH, Munich 

Bovine Serum Albumin (BSA); Fluka Chemie AG Buchs, Switzerland 

100x BSA solution; New England Biolabs, Frankfurt 

Chloroform; Roth, Karlsruhe 

4',6-diamidino-2-phenylindole (DAB); Research Genetics, Karlsruhe 

Dextrane sulfate; Sigma-Aldrich Chemie GmbH, Munich 

Dietylpyrocarbonate (DEPC); Sigma-Aldrich Chemie GmbH, Munich 

Dimethyl formamide; Sigma-Aldrich GmbH, Taufkirchen 

DNA-Purification systems QIAEX II, Qiagen, Hilden 

DNA-Ligase; Promega, Mannheim 

DTT (Dithiothreitol); Sigma-Aldrich GmbH, Taufkirchen 

EDTA (ethylenediaminetetraacetic acid); Sigma-Aldrich, Steinheim 

Acetic acid; Merck, Darmstadt 

Ethyl alcohol; Schmitt, Dillenburg 

First strand buffer; Gibco BRL, Eggenstein 

Formamid; Sigma-Aldrich GmbH, Taufkirchen 

Formalin 35%; Sigma-Aldrich GmbH, Taufkirchen 

Glycine; Sigma-Aldrich GmbH, Taufkirchen 

HCl; Merck,  Darmstadt 

Isopropanol; Roth, Karlsruhe 

Laemmli-Sample Buffer; Sigma-Aldrich GmbH, Taufkirchen 

LB-Medium; Quantum Appligene, Heidelberg 

LB-Agar-Medium; Quantum Appligene 

Levamisole; Sigma-Aldrich GmbH, Taufkirchen 

Ligase-Buffer; Promega, Mannheim 

Lithium Chloride-Solution (LiCl); Sigma-Aldrich GmbH, Taufkirchen 

Magnesium Chloride (MgCl2); Serva, Heidelberg 
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Methanol; Merck, Darmstadt 

Milk powder; Milchhof, Marburg 

MgCl2; Promega, Mannheim 

Sodium Citrate (C6H5O7Na3 x 2H2O); Sigma-Aldrich GmbH, Taufkirchen 

Sodium Chloride (NaCl); Merck, Haar 

NBT/BCIP (Nitro-Blue-Tetrazolium / Bromo-Chloro-Indolyl-Phosphat) (Phosphatase 

Substrat); KPL, Wedel 

Paraformaldehyde; Merck, Haar 

Phosphate buffered saline (PBS); Sigma-Aldrich GmbH, Taufkirchen 

PCR-Puffer; Gibco BRL, Eggenstein 

Picric acid; Riedel-deHaen, Seelze 

Polyvinyl pyrrolidone; Sigma-Aldrich GmbH, Taufkirchen 

Prestained Precision Protein Standard; Bio-Rad, Munich 

Salmon-sperm-DNA; Sigma-Aldrich GmbH, Taufkirchen 

Tetracyclin (1.5 mg); Stratagene, Heidelberg 

Tris-HCl; Sigma-Aldrich GmbH, Taufkirchen 

Triton X-100; Merck, Darmstadt 

TRIzol; Invitrogen, Karlsruhe 

Tween 20-R, Roth, Karlsruhe 

5-bromo-4-chloro-3-indolyl-beta-D-galactosidase (X-Gal); Invitrogen, Karlsruhe 

Xylene; Roth, Karlsruhe 

Yeast-t-RNA; Sigma-Aldrich GmbH, Taufkirchen 

Goat serum; Vector, Burlingame, USA 

 

2.7.1 Antibodies 

Anti testis-specific histone (horse); Invitrogen, Karlsuhe 

Anti-Digoxigenin-AP Fab-Fragment; Roche, Mannheim 

Goat-Anti-Rabbit secondary antibody; DAKO, Hamburg 
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2.7.2 Equipment 

Blotting apparatus (Trans-Blot SD-Dry Transfer Cell); Bio-Rad, Munich 

Embedding machine (Leica EG 1160); Leica, Bensheim 

Dewatering apparatus (Leica TP 1050); Leica, Bensheim 

Vacuumtissue infiltation automat; Leica, Bensheim 

Gel electrophoresis apparatus Agagel Mini; Biometra, Göttingen 

Hot plate; MAGV, Rabenau-Londorf 

Light microscope (Leica DM LB); Leica Wetzlar 

3-CCD Color Video Camera KY-F55B; JVC Friedberg 

Mini-Protean 3 Electrophoresis Cell-Systems; Bio-Rad, Munich 

Scanner AV630; Avision Inc, Taiwan 

Microtome, Leica SM 2000 R; Leica, Bensheim 

Sterilisator; Heraeus, Rabenau 

PowerPac 200 Power Supply; Bio-Rad, Munich 

T3-Thermocycler; Biometra, Göttingen 

Dryer; Memmert, Schwabach 

Ultra-Turrax-homogenisator T8; IKA Labortechnik, Staufen 

Water bath; Memmert, Schwabach 

Centrifuge MIKRO 22R; Hettich, Tuttlingen 

 

2.7.3 Others materials 

Single cuvette (Eppendorf UVetten); Eppendorf, Hamburg 

Digoxigenin RNA-Labelling-Mix; Boehringer, Mannheim 

DNase I; Roche, Mannheim 

DNA-Ladder („100 bp“); New England Biolabs, Frankfurt 

dNTP; Promega, Mannheim 

Primer Oligo dT-15; Promega, Mannheim 

PVDF-Membran (Westran Schleicher & Schuell); Schleicher & Schuell GmbH, Dassel 

Filter paper; Whatman 3MM; Whatman GmbH, Rothenburg 

pGEM-T Vector; Promega, Mannheim 
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Escherichia coli, Eco XL-1 Blue; Stratagene, Heidelberg 

Restriction enzyme (Not-I, Nco-I); New England Biolabs, Frankfurt 

Superscript II Reverse Transcriptase; Gibco BRL, Eggenstein 

RNA-Polymerasen (T7 and SP-6); Promega, Mannheim 

Taq DNA-Polymerase; Gibco BRL, Eggenstein 

Transcription buffer; Boehringer Mannheim, Mannheim 

 

2.7.4 Kits 

qReal Time PCR; EUROGENTEC, Seraing, Belgium 

QIAEX II Kit; Qiagen, Hilden 

QIAprep Spin Plasmid Kit; Qiagen, Hilden 
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2.8 Abbreviations 

 

%   Per cent 

° C   centrigade 

ABC   Avidin biotin complex 

bp   Base pair 

BSA   bovine serum albumin 

cDNA   Complementary DNA 

cRNA   Complementary RNA 

DEPC   Diethylpyrocarbonate 

DNA   Desoxyribonucleic acid 

dNPTs  Deoxyribonucleoside triphosphate 

E. coli   Escherichia coli 

EDTA   Ethylenediaminetetraacetic 

Fig.   Figure 

g   gram 

h   hour 

kb   kilo base 

kDa   kilo Dalton 

l   liter 

M   molar 

MCS  multiple cloning site 

MDR   multidrug-resistance 

Min  minute 

MOPS  3-N(Morpholino) Propane Sulfonic Acid 

mRNA  messenger RNA 

PBS  Phosphate buffered saline 

PCR   Polymerase chain reaction 

RNA   Ribonucleic acid 

rpm   rotations per minute 

RT   Room temperature 

RT-PCR  reverse transciptase PCR 

 



– Materials and Methods – 

 72 

 

s   second 

SDS   Sodium docecyl sulphate 

SSC   Sodium choride – Sodium citrat solution 

TAE   Tris-acetate- EDTA buffer 

Tm   melting temperature of a primer 

Tris   trishydroxymethylaminomethane 

Triton x-100  octyl phenol ethoxylate 

U   Unit 

UV   Ultraviolet 
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3 Results 

 

3.1 The testis specific histone (H1t) and its expression in the testis 

 

3.1.1 H1t sequence and Genbank entreis 

� LOCUS  aJ865320 198 bp mRNA linear MAM 24-NOV-2004 

DEFINITION  Equus caballus partial mRNA for testis-specific histone H1t (h1t gene). 

 

ACCESSION    AJ865320 

VERSION         AJ865320.1 GI: 56237696 

KEYWORDS  h1t gene; testis-specific histone. 

SOURCE         Equus caballus (horse) 

ORGANISM     Equus caballus  

 

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; 

Perissodactyla; Equidae; Equus. 

 

Translation="PAAPAEPVLSSMEKPPAKKRGKKPVGLTGGSRKVPGSSVSKLIT 

                     EALSVSQERAGMSLAALKKALA" 

ORIGIN       

        1 ccagcagccc cagccgaacc tgttttatct tctatggaga agcctccagc caagaagcga 

       61 gggaagaagc cggttggctt gacgggtgga agtcgcaaag ttcctggttc gtctgtgtcc 

      121 aagttgatca ctgaggctct ctcagtgtcc caggagcgag cgggcatgtc gctggccgct 

      181 ctcaagaagg cgctggca 
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In order to classify the new Equus caballus H1t protein sequence BLAST analyses were 

performed of the NCBI/EBI/DDBJ databases with the H1ST-domain sequence of subfamily-

H1T as query. We obtained a list of human sequences, exhibiting a certain homology with 

equine H1t protein. Multiple amino acid sequence alignment was performed with ClustW 

algorithm (http://www.ebi.ac.uk/ckustalw/) and the phylogenetic tree was visualized using 

TreeFiew (Fig. 20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Unrooted protein tree of selected members of the HIST-family and assignment of the 

Equus caballus H1t protein (ecH1t) sequence to HIST-subfamily 1H1T. The scale bar 

indicates the distance as calculated from the multiple alignments. 
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Using oligonucleotide primers derived from the human H1t sequence (GenBank Accession 

No. M97755), a RT-PCR product of the expected size was obtained from stallion testis RNA 

(Fig.21). This fragment was cloned and the sequence was deposited in the GenBank database 

with Accession No. AJ865320. According to this sequence, equine H1t-specific 

oligonucleotide primers were designed and used to investigate the stage-specific and 

quantitative expression of the H1t gene during normal spermatogenesis. 

 

 

 

 

 

 

       Marker      Human      Monkey     Stallion     Human     Stallion 

     201bp H1t 

  

 

 

Fig. 21: RT-PCR analysis of H1t transcripts from stallion testes, monkey testis, and human 

testes as indicated using the specific primers. The bands were checked by sequencing. 
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3.1.2 Specific expression of the equine H1t mRNA  

Using RT-PCR, we demonstrated the presence of H1t mRNA in testes containing complete 

spermatogenesis as well as in testes containing spermatogenesis development up to primary 

spermatocytes and in testes containing spermatogenesis development up to spermatogonia 

(Fig. 22). 

 

                                  
 

Fig. 22: Analysis of RT-PCR products of H1t in a 2 % electrophoretic agarose gel. (A) testes 

containing complete spermatogenesis, (B) testes containing spermatogenesis development up 

to primary spermatocytes, (C) testes containing spermatogenesis development up to 

spermatogonia. ß-actin was used as a loading control. 

 201pb H1t  

  

 

      

 
 

 (A) 

(B) 

 

201 bp H1t         255bp ß-Actin 

201 bp H1t         255bp ß-Actin 

(C) 
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3.1.3 Quantitative H1t mRNA expression and statistical analysis 

Quantitative analysis revealed in testes with histologically complete spermatogenesis as well 

as prepubertal testes containing spermatogenic development up to primary spermatocytes 

(leptotene, zygotene primary spermatocytes) and cryptorchid testes containing spermatogenic 

development up to spermatogonia, positive bands for H1t. The melting curve (not shown) 

indicated that the amplification products were H1t specific as single melting peaks 

characteristic of the amplicon and band sizes of approximately 98 bp were obtained for all the 

isolates tested. 

The analysis of variance revealed that the values of H1t mRNA transcripts were significant 

different between these groups (p = 0.0043). Tukey test showed no significant differences can 

be shown between complete spermatogenesis (abundant pachytene spermatocytes) and 

primary spermatocytes (leptotene, zygotene). 

However, a statistically significant difference existed between complete spermatogenesis 

(abundant pachytene spermatocytes) and prespermatogonia/spermatogonia with p < 0.01.  

The difference between primary spermatocytes and prespermatogonia/spermatogonia were 

significant with p < 0.05 (Fig. 23). 

 

 

 

 

 

 

 

  

       

Fig. 23: Quantitative evaluation and statistical analysis of Real Time RT-PCR. The asterisk 

indicates * p < 0. 05,  ** p < 0.01. 
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3.1.4 Cell-localization of H1t cRNA in testes sections 

In order to investigate the cell distribution pattern of the equine H1t mRNA in testis tissue, in-

situ hybridization was performed using a specific digoxigenin-labeled H1t sense and antisense 

RNA probes. It was found by in situ hybridization that the H1t mRNA was expressed in 

spermatogonia and primary spermatocytes, but not in prespermatogonia (Fig. 24A-F). 

                        

 

Fig. 24: (A) Haematoxylin-eosin staining of 6 month old stallion testis showing 

prespermatogonia (arrowhead). (B) In situ hybridization with a digoxigenin-labeled 

complementary RNA probe against H1t showing no reaction in prespermatogonia 

(arrowhead). (C) Haematoxylin-eosin (H&E) staining of 1 year old stallion testis showing 

spermatogonia (arrows). 
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(D) In situ hybridization showing positive spermatogonia (arrows). (E) Haematoxylin-eosin 

staining of 1.5 year old stallion testis showing qualitatively intact spermatogenesis. 

Spermatogonia (black arrows) and pachytene spermatocytes (white arrows). (F) In situ 

hybridization showing positive reaction in spermatogonia (black arrow) and in primary 

spermatocytes (white arrows). Bar = 25 µm. 

 

Testes of four years old animals exhibit fully developed spermatogenesis and all stages of 

spermatogenesis can be identified (Fig. 25 A). H1t mRNA was found to be expressed by in-

situ hybridization in spermatogonia and in primary spermatocytes from preleptotene at stage 

VIII up to midpachytene spermatocytes at stages VIII and I (Fig. 25 B).  

 

 

 

                      

 

 

 

Fig. 25: (A) 4 year old animal: seminiferous epithelium at stage VIII and stage I. 

Haematoxylin-eosin (H&E) staining. (B) In situ hybridization of the seminiferous epithelium 

at stages VIII and I showing positive spermatogonia (arrowhead) and positive primary 

spermatocytes up to mid-pachytene at stage VIII (black arrows), and negative late pachytene 

spermatocytes at stage I (white arrow). Bar = 25 µm. Data are summarized in Table 11. 

 

 

 

A B 
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Positive 

Negative 

Sometimes positive 

 

Table 11: H1t mRNA expression in the course of the spermatogenic cycle. (A) 

spermatogonium type A, (B) spermatogonium type B, (pL) preleptotene spermatocyte, (L) 

leptotene spermatocyte, (Z) zygotene spermatocyte, (P) pachytene spermatocyte, (SII) second 

spermatocyte, (Sa) round spermatid, (Sb1, Sb2, Sc, Sd1, Sd2) spermatids, (Rb) residual body. 

Stages according to Johnson et al., 1990. 
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3.1.5 H1t Protein expression and cell-protein-localization 

In order to analyze the specificity of the H1t antiserum, western blot analyses was performed 

with protein extracts from various equine tissues.The results showed a specific band in the 

testis tissue. This band was detected at 29 kDa. Additionally was identified a weak signal in 

equine ovar and liver tissue. This may be explained by the fact that the member H1 family has 

multiple isoforms which was recently reported in the literatur, indicating cross reaction of the 

H1t antibody with the other H1 subtypes (Fig. 26). 

 

 

 

 

 

 

 

Fig. 26: Expression profile: Protein samples (20 µg/lane) prepared from various adult equine 

tissues were examined with antiserum against H1t. Western blot analysis of the extracts from 

various equine tissue showed that the H1t is expressed only in the testis. 
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The H1t protein was first detected in prepubertal testes in 1 year old animals together with the 

beginning of occurrence of primary spermatocytes (Fig. 27a), while cryptorchid testes 

containing only prespermatogonia/spermatogonia were negative (Fig. 27b). Testes containing 

complete spermatogenesis development were used as positive control.  

 

 

 

a

 

b 

 

 

 

Fig. 27: a. Western blot analysis with antibody against H1t in prepubertal stallion testes (1, 2, 

3, 4), and stallion testes showing complete spermatogenesis (5, 6, 7, 8, 9). b. Western blot 

analysis with antibody against H1t in inguinal cryptorchid testes (1, 2, 3, 4, 5, 6, 7, 8, 9) and 

stallion testis with complete spermatogenesis as positive control (10). Horse kidney tissue 

(11) und pig testis (12) were used as negative control. 
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In order to identified the H1t distribuition pattern during the equine spermatogenesis, cell-

protein-localization studies were performed for equine H1t. Applying a polyclonal antibody 

against the equine H1t, immunohistochemistry analyses resulted in a strong signal in the 

nuclei of primary spermatocytes up to Sd1 elongated spermatids (Fig. 28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28: Immunohistochemistry using rabbit anti-horse H1t antibody in a seminiferous 

epithelium of adult equine testis at stage II showing positive signals in primary spermatocytes 

up to Sd1 elongated spermatids. Note: The elongating spermatids (Sb2) are negative. Primary 

magnification x 40 µm. Data are summarized in Table 12. 
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Positive            Negative 

 

Table 12: H1t protein expression during adult stallion spermatogenesis. (A) spermatogonium 

type A, (B) spermatogonium type B, (pL) preleptotene spermatocyte, (L) leptotene 

spermatocyte, (Z) zygotene spermatocyte, (P) pachytene spermatocyte, (SII) second 

spermatocyte, (Sa) round spermatid, (Sb1, Sb2, Sc, Sd1, Sd2) spermatids, (Rb) residual body. 

Stages according to Johnson et al., 1990. 
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3.2 Age-dependent expression of the testis-specific histone (H1t) 

3.2.1 Age-dependent H1t mRNA expression by RT-PCR 

Expression analysis of equine H1t mRNA was performed with RT-PCR. The RT-PCR 

showed presence of H1t mRNA transcripts in ≤ 2.5 years testes as well as ≥ 3 years testes. 

Using the equine specific primers we obtained a PCR product of 201 pb. We used the β-actin 

as positive control of the cDNAs (Fig. 29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: RT-PCR of H1t mRNA showed a band at the level of 201 bp in stallion testes with 

different ages (6 month; 1 year old; 1. 5 years old; 2 years old; 3 years old; 4 years old; 8 

years old; 11 years old; Li – liver as negative control). 

0.5    1     1.5       2         3           4          8           11         Li      
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3.2.2 Quantitative H1t mRNA expression and statistical analysis 

Quantitative expression analysis of H1t mRNAs transcripts was performed with Real-Time 

RT-PCR. Using qPCR, equine H1t expression was highest in animals with more than 3 years 

old and containing a complete spermatogenic development. A moderate H1t mRNA 

expression was observed in animals at the age up to 2.5 years old. 

The statistical analysis showed a statistical significant differences between the groups ≤ 2.5 

years and ≥ 3 years (p = 0.0055). The values (arithmetic mean ± S.D) for the ≤ 2.5 years 

group were 30.67 ± 2.79. The ≥ 3 years group had a lower mean Ct-value (26.45 ± 1.78). The 

decrease of the Ct-value with increasing age is also presented in form of a scattergram and 

non-linear regression line (Fig. 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Quantitative Real Time RT-PCR and statistical results were represented in form of 

regressions analysis of mean Real-Time PCR Ct-value in dependency of the age (scattergram 

with non-linear regression function). 
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3.2.3 Age-dependent H1t cRNA expression in testes sections 

In order to observe the stage specific expression of H1t mRNA in the cycle of the 

seminiferous epithelium by in-situ hybridization and the possible difference between 

peripubertal stallion and adult stallion, it was investigated the H1t mRNA expression in testes 

with 2 years old as well as in testes with four years old (Fig. 31A-H). We did not observe any 

differences between the stage cell-specific expressions of H1t mRNA in testes in age of 2 

years compared to 4 years old stallion. 

 

 

Fig. 31: (A) Histology of the seminiferous epithelium applying haematoxylin-eosin staining: 

Seminiferous epithelium at stage I from 2 years old testis showing a qualitative intact 

spermatogenesis. (B) In-situ hybridization of the seminiferous epithelium at stage I showing 

positive reaction in spermatogonia up to primary spermatocyte (arrowhead). (C) Histology of 

the seminiferous epithelium at stage VIII from 2 years old testis showing complete 

spermatogenesis. (D) In-situ hybridization of the seminiferous epithelium at stage VIII 

showing positive reaction in spermatogonia up to pachytene spermatocytes (arrowhead). (E) 

Histology of the seminiferous epithelium at stage I from 4 years old testis showing complete 

spermatogenesis. (F) In-situ hybridization of the seminiferous epithelium at stage I showing 

positive reaction in spermatogonia up to primary spermatocytes (arrowhead).  
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(G) Histology of the seminiferous epithelium at stage VIII from 4 years old testis showing 

complete spermatogenesis development. (H) In-situ hybridization of the seminiferous 

epithelium at stage VIII showing positive reaction in spermatogonia up to primary 

spermatocytes (arrowhead). Primary magnification x 40 µm. 

 

3.2.4 Age-dependent H1t protein expression 

H1t protein levels were detectable from 1 year up to 11 years old testes. This could be 

explained though the fact that in these testes the presence of early, mid- and late pachytene 

spermatocytes are abundant (Fig. 32). 

 

 

 

 

 

       

 
 

 

 

 

Fig. 32: H1t protein expression in testes at different ages. (1) 6 months old testis, (2) 1 years 

old testis, (3) 1 years old testis, (4) 1.5 years old testis, (5) 2 years old testis, (6) 3 years old 

testis, (7) 4 years old testis, (8) 8 years old testis, (9) 8 years old testis, (10) 11 years old testis. 
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In order to investigate the H1t cell-protein-localization in peripubertal testes, 

immunohistochemistry analyses were performed applying a polyclonal antibody against the 

equine H1t. A strong immunoreactivity against the equine H1t protein was observed in 

primary spermatocytes up to elongated spermatids. This result indicated a prolonged H1t 

protein expression in peripubertal animals compared with adult stallions (Fig. 33). Data 

summarized in Table 13. 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33: Immunohistochemistry using rabbit anti-horse H1t antibody. In peripubertal equine 

testes, a prolongation of the H1t protein expression up to elongating spermatids (Sb2) was 

obseved in stage II. Primary magnification x 40 µm. Data are summarized in Table 13. 
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Positive            Negative 

 

 

Table 13: H1t protein expression during peripubertal stallion spermatogenesis. (A) 

spermatogonium type A, (B) spermatogonium type B, (pL) preleptotene spermatocyte, (L) 

leptotene spermatocyte, (Z) zygotene spermatocyte, (P) pachytene spermatocyte, (SII) second 

spermatocyte, (Sa) round spermatid, (Sb1, Sb2, Sc, Sd1, Sd2) spermatids, (Rb) residual body. 

Stages according to Johnson et al., 1990. 
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4 Discussion 

 

4.1 H1t gene expression 

 

This is the first study identifying, cloning and sequencing a fragment of the histone H1t 

mRNA in the equine testis. As the expression of H1t gene in testis has been found in several 

different species, such as human (Steger et al., 1998), rat (Meistrich et al., 1985; Seyedin and 

Kistler, 1980), mouse (Drabent et al., 1996) and monkey (Koppel et al., 1994), expression is 

also likely to be present in stallions.  

A fragment of the equine histone H1t was amplified using reverse transcriptase polymerase 

chain reaction and was cloned. Whereas the H1t gene was found in several different species 

as was expected also in horses with normal spermatogenesis and with premature infertility. 

In this study, specific amplification of the equine H1t gene using cDNA samples via RT-PCR 

have been shown that the equine H1t gene is expressed also in spermatogonia and in primary 

spermatocytes especially in pachytene spermatocytes. These findings are in part similar to the 

study of Seyedin and Kistler (1980) and Seyedin et al. (1981), who suggested that the H1t 

gene is expressed only in mid to late pachytene spermatocytes in the rat. Meistrich et al. 

(1985) measured the levels and synthesis of histone variants directly in spermatogonia 

(histones H1d, H1de, H1a, H1c) and in various stages of primary spermatocytes (histone H1t) 

purified from the rat testis. 

Quantitative measurements of equine H1t mRNA analyses showed lower amount of the H1t 

mRNA in testes containing spermatogenic development up to spermatogonia which indicated 

that the equine H1t mRNA expression begin at mRNA level in spermatogonia. This is in line 

with a study showing low levels of H1t mRNA in prepubertal mouse tests, also demonstrating 

H1t mRNA expression by electron microscopy in situ hybridization (Drabent et al., 1998). 

Therefore, this indicates that the H1t gene is expressed at premeiotic stages, albeit at a low 

level. Our results concerning the H1t mRNA expression in spermatogonia do not agree with 

human (Steger et al., 1998). 

In-situ hybridization with the H1t cRNA of the equine testis-specific histone variant was done 

in testes of stallions at four different developmental stages (testes showing spermatogenic 

development up to spermatogonia, testis showing spermatogenic development up to primary 

spermatocytes, testes showing spermatogenic development until elongated spermatids and 
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 testes showing complete spermatogenesis) in order to investigate in which cells start the 

expression of the H1t mRNA. Higher levels of hybridization reactions were observed in 

spermatogonia, leptotene, zygotene and pachytene spermatocytes at stage I-VIII of the 

seminiferous epithelium cycle and were absent in round spermatids, elongated spermatids and 

sperm. These results were similar to Kremer and Kistler (1991), whereas it is suggested that 

the rat H1t mRNA was identified by in-situ hybridization in the mid and late pachytene 

spermatocytes at stages VII to XIII of the seminiferous epithelial cycle. 

In 1996, Drabent et al. proposed a maximal expression of the mouse H1t mRNA in the late 

and mid-pachytene spermatocytes at stage VII of the seminiferous epithelium cycle. Later, 

Drabent et al. (1998) have extended their analysis to more sensitive approaches and 

demonstrated by RNase protection and electrone-microscopic in-situ hybridization, that 

mouse H1t mRNA is detectable even in spermatogonia. 

Our findings indicate a variable difference between the mammalian species concerning the 

stage specific expressions of H1t mRNA. This could be explained by the fact that the cycle of 

the seminiferous tubules is not identical from one species to another, or even among animals 

of different strains of the same species. 

Concerning again to the stage specific expression of equine H1t mRNA, it was detectable in 

spermatogonia and primary spermatocytes from preleptotene spermatocytes at stage VIII up 

to midpachytene spermatocytes of stage VIII and I. 

Additionally, a highly specific polyclonal antibody was obtained to indentify 

electrophoretically pure histone. Western blot analysis demonstrated that the rabbit anti-

equine H1t polyclonal antisera that produced only recognized a 29 kDa protein band from the 

stallion testis in accordance with (Ramesh et al., 2006), which in their study detected also a 

specific band for H1t at the level of 29 kDa. In testis homogenate from pig and other tissues 

(used as negative control), the H1t protein was undetectable indicating the high specificity of 

the antibody. 

The histone H1t seems to be truly a male germ cell-specific described by Lennox and Cohen 

(1983). In our expression profile experiment with different horse tissues was observed a 

specific band in the testis tissue. The H1t is the only tissue-specific member of the 

mammalian H1 histone family cited by Bartell et al. (1996), in contrast to the other H1 

subtype genes found in male germ cells which are also expressed in somatic cells (Franke et 

al., 1998). 
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Consequently, by western blot analysis, the H1t protein was first detected in prepubertal testes 

of one year old animals together with the initiation of spermatogenesis and the occurrence of 

primary spermatocytes, while testes containing only prespermatogonia/spermatogonia were 

negative. These findings suggest that the H1t protein expression is high in these cells 

(Drabent et al. 1996). 

In the present study, there was a strong immunohistochemical signal for the testis specific 

histone protein (H1t) in the equine primary spermatocytes at stages I-VIII of the seminiferous 

epithelium cycle as well as in the nuclei of equine round spermatids at stage VIII of the 

seminiferous epithelium cycle. However, immunohistochemically, the equine H1t protein was 

not detected in prespermatogonia/spermatogonia. These data were similar to the data obtained 

in mouse (Drabent et al., 1996, 1998) and human (Steger et al., 1998). 

Considering the mRNA expression pattern, the protein expression results indicated that the 

H1t gene may be transcribed during a short period in spermatogonia and the mRNA may be 

preserved until later stages as pachytene spermatocytes but the synthesis of the protein must 

occur during the early pachytene spermatocytes stage and persists until the stages of round 

spermatids. These data represent a strong temporal correlation between the onset of H1t gene 

transcription and synthesis of the H1t protein (Steger et al. 1998). 

 

4.2 Age-dependent expression of the H1t gene during the different 

pubertal development 

 

Reproductive efficiency in horses varies with the season (Sutovsky et al., 2003). For most 

equine breeds, selection of breeding stallions is based primarily on pedigree, athletic 

performance, or conformation with little consideration given to reproductive potential. After 

these stallions are chosen for a breeding career, many are found to be subfertile. Some 

stallions pass a routine breeding examination, yet are unable to impregnate mares, or do so 

very inefficiently (Dickson et al., 2001). This problem could be involved with the observation 

of recent studies that have already been described in horses about the influence of age on 

testicular size, hormone concentration, puberty, sexual behaviour, and daily sperm production 

(Melo et al., 1998). Douglas et al. (2001) cited that the histone-protamine replacement is a 

late-spermiogenesis event, along with acrosome formation, membrane remodeling, and other 

significant morphological and biochemical events that are necessary for normal sperm 

function. 
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Rizgalla (2002) described for the first time that scrotal testes of normal stallions at the age of 

2 years showed by histological analysis normal spermatogenesis but at this age these animals 

have a prolonged H1 expression. Furthermore, in our study, the appearance of H1t gradually 

followed by the replacement of histone-protamin exchange was of particular interest.  

Using RT-PCR, equine H1t cDNA expression was found in scrotal testes at different 

spermatogenesis development depending on age. H1t expression has been found in stallions 

between 6 months of age and 11 years of age. 

Up to 2 years, it is possible to identify the cycle of the seminiferous epithelium in stallions 

spermatogenesis according to Rizgalla (2002) and in this period these animals already have a 

complete development of seminiferous tubules as in adults animals, but these animals still 

have sub fertility compared with adult stallions as was previously described by Melo et al. 

(1998). 

In order to observe the stage specific expression of H1t in the cycle of the seminiferous 

epithelium by in-situ hybridization and the possible difference between peripubertal stallion 

and adult stallion, H1t mRNA expression was investigated in testes of 2 years old and in 

testes of four years old stallions. We did not observed any differences between the stage and 

cell-specific expressions of H1t mRNA in testes in age of 2 years compared to 4 years old 

stallions. 

However, the quantitative Real-Time RT-PCR of the equine H1t mRNA from animals aged ≤ 

2.5 years were significantly reduced in these animals compared with animals ≥ 3 years. In 

some of them it was possible to identify complete spermatogenesis, but at this age, the stage 

development of the seminiferous epithelium was variable and the efficiency of sperm 

production still low comparing to adult animals (Melo et al., 1998). 

The H1t protein was first detected by western blot in prepubertal testes of one year old 

animals with initiation of spermatogenesis and the occurrence of primary spermatocytes, 

while testes (6 months) containing only prespermatogonia/spermatogonia were negative. 

After applying a polyclonal antibody against equine H1t, immunohistochemical analysis in 

the testes of normal adult stallions resulted in a strong signal in the nuclei of primary 

spermatocytes in stages I-VIII up to round spermatids (Sa) in stage VIII, while in testes of 

peripubertal stallions, the H1t protein expression was detectable until elongated spermatids 

(Sb2) in stage II. 
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Therefore, the prolonged H1t-proteins expression during the peripubertal development could 

induce the following theory: these animals may have an incomplete chromatin condensation 

because the testis-specific histone (H1t) has a weak interaction with chromatin. In addition: if 

these animals have a deficit in H1t expression this means that the presence of H1a is more 

than H1t, as described by Khadake and Satyanarayana Rao (1995) that histones H1a and H1t 

are two major linker histone variants present at the pachytene interval of mammalian 

spermatogenesis. This theory could be consequently involved with a prolonged H1 protein 

expression as showed by Rizgalla (2002). In the human, Bedford et al. (1973) proposed that 

such structural or biochemical defects are thought to be associated with chromatin packaging 

in the sperm nucleus. Poor chromatin packaging and possible DNA damage may contribute to 

a failure of sperm decondensation and subsequently, fertilization failure or habitual abortion 

following fertilization (Zamboni, 1992; Haidl and Schill, 1994). Hofman and Hilscher (1991) 

investigated the presence of histone in the head of the spermatozoon with the aniline blue 

staining, because the degree of chromatin condensation can be assessed with acidic aniline 

blue staining, which discriminates lysine-rich histones from arginine-rich and cysteine-rich 

protamines. Histone-rich nuclei of immature spermatozoa are rich in lysine and consequently, 

take up the blue stain. Conversely, protamine-rich nuclei of mature spermatozoa are rich in 

arginine and cysteine and contain relatively lower amounts of lysine (Calvin, 1976; Gusse et 

al., 1986); thus, they do not stain with aniline blue. Dadoune et al. (1988) proved in sperm 

that by infertile males the probability to retain histone in the spermatozoon head is very high 

when compared to fertile males. This fact demonstrates that the incomplete histone protamine 

replacement could induce fertility impairment. In the context of our investigation, stallions in 

the peri- and postpubertal period do not have an adequate H1t expression during 

spermatogenesis. This fact may presume that the appearance of H1t-protein takes place later 

as normal compared with adults animals and this could be a reason for the prolonged H1 

expression during spermatogenesis and consequently, incomplete histone protamine 

replacement. Dadoune et al. (1988) proved in humans for example that the retention of sperm 

head results in malformation of the sperm head (Fig. 34). Casey et al. (1997) and Gravance et 

al. (1997) observed in stallion with infertility problems, that their sperm show malformation 

of the head.  
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Fig. 34: The sperm. The sperm head contains the nucleus (DNA and proteins) and the 

acrosome (a vesicle rich in hydrolytic enzymes involved in egg penetration). Within the 

sperm nucleus, there is a histone-rich region that is localized peripherally and a protamine-

rich region localized centrally. The sperm midpiece represents the proximal part of the sperm 

tail and it is rich in mitochondria. (A) Normal sperm head and (B) Sperm head with retention 

of histone protein. 

 

 

However, the incomplete histone-protamine replacement in stallion spermatogenesis could be 

a factor for malformations of the sperm head and consequently the reason for subfertility or 

infertility. Another cause to cause sub fertility or infertility in stallion spermatogenesis is the 

chromatin denaturation in the sperm head. The chromatin denaturation occurs by the DNA 

and core protein denaturation. The DNA denaturation starts with the disaggregation of the 

double DNA-strand in the single-stranded DNA, it can be measured by SCSA (sperm 

chromatin structure assay) (Ballachey et al., 1988). For a spermatozoon to be fertile, it must 

be capable of undergoing decondensation at an appropriate time in the fertilization process 

(Amann, 1993). Infertile men manifest various nuclear alterations, including an abnormal 

chromatin structure, chromosomes with microdeletions, aneuploidies and DNA strand breaks 

(Hofman and Hilscher, 1991). 

Studies by Love and Kenney (1998) in stallion spermatogenesis using SCSA showed that 

fertile stallions have a lower amount of chromatin denaturation, whereas stallions with 

subfertility have an explicit by higher number. 
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The H1t had by far the least condensing activity of any of the histone variants (Khadake and 

Satyanarayana Rao, 1995) and consequently the chromatin has a relax structure. Then the 

prolongation of the H1 expression and consequently the insufficient expression of H1t could 

induce chromatin denaturation. 

Recapitulating the facts, the data presented in this study are similar to the situation in other 

mammals. The equine H1t gene is expressed at a high level in pachytene spermatocytes. 

Therefore, the statistically improvement in regression linear and T-test results confirm 

descriptively that the H1t gene expression in testes between 3-4 years old is not readily as in 

testes with more than 8 years old. These animals do not have a sufficient H1t mRNA 

expression comparing to adult animals. This observation could be one of different ways to 

explain the well-known premature subfertility during spermatogenesis of the stallion. 

 

 

4.3 Conclusion 

The present date described for the first time the H1t gene expression in the stallion testis. The 

equine H1t sequence was identified and published in the Genbank. 

The stage- and cell-specific expression of testicular H1t mRNA during equine 

spermatogenesis was found by in-situ hybridization in spermatogonia and primary 

spermatocytes up to mid pachytene spermatocytes at stage I and VIII of the seminiferous 

epithelium cycle. The protein was first detected by western blot in testes with initiation of 

spermatogenesis and the occurrence of primary spermatocytes. Testes containing only 

prespermatogonia/spermatogonia were negative. 

In testes of adult stallions, immunohistochemistry showed a strong signal in nuclei of primary 

spermatocytes up to round spermatids at stage I and VIII of the seminiferous epithelium 

cycle.  

In younger stallions, real time RT-PCR revealed an increase of H1t mRNA expression with a 

range of individual variety between 3-4 years old animals indicating a stable expression in 

animals not before 4 years old. By in situ hybridization no differences between peripubertal 

and adult testes could be found. Immunohistochemistry revealed a strong signal in nuclei of 

primary spermatocytes at stage I and VIII up to elongating spermatids at stage II of the 

seminiferous epithelium cycle. 
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These data suggest the involvement of H1t gene expression in the well-known premature 

infertility the stallion. 
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5 Summary 

 

The H1t gene is already known in several species such as mice, rat, monkey and human. In 

stallion, this gene was unknown so far. By means of bioinformatic analysis, were found an 

oligonucleotide from the same gene domain in this species. From equine testis homogenate a 

RT-PCR has been carried out. The product was sequenced and a fragment of equine H1t 

mRNA was cloned. This sequence was published in the GenBank (Accession no. AJ865320). 

The reverse transcriptase PCR together with in situ hybridization showed mRNA expression 

of H1t in all examined testes. H1t mRNA expression has been found in normal 

spermatogenesis in spermatogonia and primary spermatocytes up to mid pachytene. Ct value 

of Real-time RT-PCR showed that H1t mRNA is detected in testes containing spermatogenic 

development up to spermatogonia and in testes containing spermatogenic development up to 

mid pachytene spermatocytes. From protein-protein sequence homology (ClustalW 

http://www.ebi.ac.uk/clustalw/) between mice, rat, monkey and human, it was possible to 

generate a polyclonal antibody. The H1t protein was detected by Western Blot at 29 kDa 

using a polyclonal antibody specifically detecting the peptide LITEALSVSQER. The protein 

was identified and sequenced by fingerprint analysis with MALDI-MS/MS. By means of 

expression profile analysis with different equine organs, it could be demonstrated, that the 

detected H1t is testis specific. The H1t protein was first detected in prepubertal testes of one 

year old animals with initiation of spermatogenesis and the occurrence of primary 

spermatocytes, while testes containing only prespermatogonia/spermatogonia were negative. 

In testes of adult stallions, immunohistochemistry showed a strong signal in nuclei of primary 

spermatocytes up to round spermatids. Concerning the sub fertility of younger stallions, H1t 

mRNA expression was detected in all animals with different ages and spermatogenic 

development. Analyses of testes at different ages (≤ 2 years and ≥ 3 years) by Real-Time RT-

PCR revealed an increase of H1t mRNA expression with a wide range of individual variety 

between 3 - 4 years old animals indicating a stable expression in animals not before 4 years 

old. By in situ hybridization, no differences between pubertal and adult testes could be found. 

The H1t protein was only detected in testes showing primary spermatocytes. In addition, in 

peripubertal animals immunohistochemistry showed a prolonged expression of H1t protein 

that persists until elongated spermatids suggesting an impaired in nuclear protein exchange 

that could lead to an abnormal chromatin condensation. These data suggest the involvement 

of H1t gene expression in the well-known premature subfertility the stallion. 
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6 Zusammenfassung 

 

Die Sequenz des H1t Gens der Spezies Maus, Ratte, Affe und Mensch ist bereits bekannt. 

Beim Pferd war die H1t Sequenz bisher unbekannt. Durch Bioinformatikanalysen wurden 

Primer aus dem mit Maus, Ratte, Affe und Mensch größten homologen Bereich des H1t 

ausgewählt. Aus equinem Hodenhomogenat wurde eine Nested PCR durchgeführt, das 

Produkt sequenziert und anschließend kloniert. Die partielle H1t Sequenz des Pferdes ist in 

der Genbank eingetragen (Accession AJ865320). Die mRNA Expression konnte durch 

Reverse Transkriptase PCR (RT- PCR) in Hodenhomogenaten sowie durch eine Digoxigenin-

markierte H1t-mRNA Sonde mittels In-situ Hybridisierung an Paraffinschnitten 

nachgewiesen werden. Es hat sich gezeigt, dass in der normalen Spermatogenese H1t mRNA 

in spermatogonien and in frühen bis mittleren pachytänen Spermatozyten exprimiert wird. 

Aus einer Protein-Protein-Sequenz Homologie (ClustalW http://www.ebi.ac.uk/clustalw/) 
zwischen Maus, Ratte, Affe und Mensch wurde aus dem nicht konservierten Bereich eine 

Sequenz ausgesucht, um einen polyklonalen Antikörper herstellen zu lassen. Das H1t Protein 

ist durch Western Blot in der normalen Spermatogenese am Hodenhomogenat mit Hilfe eines 

polyklonalen Antikörpers gegen H1t Peptid LITEALSVSQER identifiziert und sequenziert 

worden (Peptidmassen – Fingerprint – Analyse mit MALDI – MS/MS). Das Protein hat ein 

Molekulargewicht von 29 kDa. In einem Expressionsprofil mit verschiedenen equinen 

Organen wurde festgestellt, dass H1t hodenspezifisch ist. 

Im kryptorchiden Hoden zeigt das Keimepithel verschiedene Entwicklungsstadien der 

Keimzellen, die mit dem einen fetalen Hoden vergleichbar sind. Es handelt sich hier um 

Tubuli, in denen nur fetale Präspermatogonien und Spermatogonien vom Typ A vorhanden 

sind. Im präpubertären Hoden kann man Tubuli mit Keimzellen bis zur Stufe der frühen 

pachytänen Spermatozyten beobachten. Zum Nachweis des H1t Proteins wurde ein Western 

Blot durchgeführt. Die Ergebnisse zeigen, dass die Proteinexpression im Hodenhomogenat 

mit normaler Spermatogenese sehr stark ist. Dagegen gibt es kein Signal im Hodenhomogenat 

mit einem Arrest der Spermatogenese auf der Stufe von Spermatogonien in kryptorchiden 

Hoden. Im präpubertären Hoden konnte die Expression des H1t Proteins in frühen 

Spermatozyten nachgewiesen werden. Die Immunhistochemie zeigt in adulten Tieren ein 

starkes Signal im Zellkern von Primärspermatozyten bis hin zu runden Spermatiden. Um 

diese Ergebnisse auf mRNA Ebene quantitativ nachzuweisen, wurde eine Real-Time PCR 

durchgeführt. Die H1t mRNA wird in frühen Spermatozyten hochreguliert. Die bisherigen 

Daten zeigen, dass ebenso wie bei der Maus, das equine H1t auf RNA Ebene in geringen 
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Mengen bereits in Präspermatogonien exprimiert und mit dem Beginn der Meiose 

hochreguliert wird. Bezüglich der Subfertilität des Hengstes wurde die Untersuchung mittels 

RT-PCR und Real Time PCR altersabhängig (≤ 2 Jahre und ≥ 3 Jahre) untersucht. Die Real-

time RT-PCR zeigte eine Zunahme der H1t mRNA Expression in einem großen Bereich 

individueller Variabilität zwischen drei und vier Jahre alten Tiere und eine stabile Expression 

bei Tieren, die älter als vier Jahre sind. Das H1t Protein wurde in Hoden mit der Initiierung 

der Spermatogenese und dem Erscheinen von primären Spermatozyten durch Western Blot 

detektiert. Die Zell-Proteinexpression mittels Immunhistochemie hat eine Verlängerung der 

H1t Proteinexpression in präpubertären Hoden von zwei Jahre alten Tieren ergeben. Diese 

Studien deuten darauf hin, dass zwischen der H1t Geneexpression und der „Subfertilität“ 

während der Spermatogenese des Hengstes ein Zusammenhang besteht. 
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