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Abstract 

Hyphenation between high-performance thin-layer chromatography and effect-directed 

analysis (HPTLC–EDA) via immersion/spraying is a simple and fast procedure for bi-

oprofiling to find the responses of known and unknown compounds in situ a complex 

sample matrix. In order to benefit the bioanalytical potential of HPTLC–EDA, several 

obstacles of the automated immersion needed to be avoided such as the (1) required 

high volumes of solutions, (2) tailing, distortion or shifting zones due to long/slow im-

mersion times/speeds, (3) gradual inactivation of the re-used enzyme solution, and (4) 

lack of covering the whole plate surface. Using automated piezoelectric spraying for per-

forming an assay was an alternative but challenging. In this research we reached this 

milestone via optimization of important aspects i.e., plate pre-wetting, spraying nozzle 

type and applied volumes for microorganism suspension or enzyme and substrate-

chromogenic solutions. To overcome above challenges, piezoelectric spraying provided 

(1) using by a factor of 4 to 27 less solutions consumption than by immersion (cheaper 

and environment-friendly workflow), (2) better resolved autogram zones and no zone 

distortion or shift (good for quantification), (3) covering the whole plate surface (both 

sides of plate can be used) and (4) using always a fresh solution (just defrost the needed 

aliquot of enzyme solution, 3 mL instead of 70 mL) would be the best practice with re-

gard to the standardization of HPTLC–EDA procedure. Finally, the newly developed au-

tomated piezoelectric spraying procedures for the application of biological (Aliivibrio 

fischeri) and enzymatic acetyl- and butyrylcholinesterase (AChE/BChE) assays were 

used for bioprofiling of Peganum harmala seed extract. By their in situ high-resolution 

mass spectrometry (HRMS) spectra, the active zones in the P. harmala seed extract were 

assigned to be harmine and harmaline as AChE inhibitors and harmol, vasicine and de-

oxyvasicine as BChE-inhibitors. 

Then the enzyme inhibitory potency of the active compounds was estimated via two dif-

ferent modes of equivalency calculation, referring to a potent inhibitor as a reference. 

These two modes were designed as applied ChE inhibitors on a HPTLC plate (no chro-

matography) and developed ChE inhibitors with the same chromatographic condition 

used for the sample extract, and then performed, validated and compared exemplarily 

on the AChE/BChE inhibition of P. harmala seed extract. Among Physostigmine (PHY), 

rivastigmine and piperine, PHY reveled the most similar properties (brightness against 
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the plate background, hRF value and band shape) to the unidentified inhibitors of sam-

ple, and thus selected as reference. The results showed that the enzyme inhibition 

equivalency calculated via developed reference bands was more reliable and sensitive, if 

compared to applied mode results. In case of using as a compromise the faster proce-

dure of an applied band pattern for routine equivalency calculation, a potential bias 

should be considered (here ca. 30%). Finally, it was the first time; the found inhibitors 

were calculated equivalently to their well-matched reference inhibitor and thus, the au-

tomated piezoelectric spraying was proven to be quantitative.  

In another part of our study, the HPTLC–(bio)assays–HRMS workflow followed by an 

scale-up to preparative layer chromatography combined with nuclear magnetic reso-

nance (PLC-NMR) spectroscopy was used. It included using four different (bio)assays for 

activity screening of both polar and nonpolar extracts of Salvia miltiorrhiza Bunge root 

(Danshen) on the same HPTLC plate after a two-step development. It followed by MS 

recording of active compounds and finally a high concentration nonpolar extract was 

applied as an area for isolation of unidentified active zone for NMR spectroscopy. The 

1H-NMR and 1H-13C Heteronuclear Single Quantum Coherence spectra (1) confirmed the 

existence of two potential candidates among others which (2) revealed a coelution of 

two tanshinones (1,2-dihydrotanshinone I and methylenetanshinquinone) and (3) rela-

tively quantify them in the ratio of 2:1. Compare to former reports about an unknown 

band among tanshinones, it was the first report, a multipotent unidentified active zone 

in the Bacillus subtilis, A. fischeri and AChE fingerprints was identified as a coeluted 

band. 

In order to reach absolute quantitative NMR (qNMR) spectroscopy, the efficiency of pla-

nar chromatography isolation as a sample preparation method for NMR spectroscopy 

needed to be investigated. The HPTLC/PLC isolation needs to provide the enough 

amounts of the active compounds from a planar chromatogram in detectable rang of 

NMR spectroscopy (sensitivity gap). In this research, a straight-forward HPTLC-NMR 

spectroscopy workflow using a fix chromatographic condition from bioprofiling to isola-

tion of the active zones was established. The dried extracts containing different struc-

tural isomers e.g. ursolic (UA), oleanolic (OA), betulinic acids (all C30H48O3) with poten-

tial of coelution, were selected as the extreme case studies. The HPTLC–EDA revealed 

the UA-OA as a coeluted bioactive zone, and then collected via HPTLC isolation (using 
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one plate) for qNMR spectroscopy. In contrast to NP-HPTLC and HRMS, 1H NMR spectra 

indicated UA and OA via a distinct allylic 1H-18 signals (UA 2.20 ppm and OA 2.85 ppm). 

The PUlse Length-based CONcentration determination (PULCON) procedure calibrated 

by maleic acid standard solution was used for UA and OA quantification. The results of 

two orthogonal methods (PULCON and pre- and post-chromatographic derivatization 

HPTLC) revealed a high correlation (R2 = 0.972). The efficiency of HPTLC isolation pro-

cedure was assessed by comparing the amount of UA and OA in the isolated samples and 

the crude extracts solutions via derivatization HPTLC. The HPTLC isolation using the 

same chromatographic condition from bioprofiling to isolation showed 82 % (mean) 

efficiency and provided detectable amount for qNMR spectroscopy. The direct HPTLC-

NMR workflow with low solvent consumption (16 mL) as an environment-friendly pro-

cedure can be a proper alternative for bioactivity-guided fractionation strategy to reach 

the NMR spectra of the active compounds and quantify them considering the isolation 

efficiency.  

In one of our last projects, the metabolizing S9 enzyme mixture, mimicking the biotrans-

formation reactions in the liver, was incorporated into two orthogonal methods 

(HPTLC–AChE and fluorometric microtiter plate AChE assay). The incorporated S9 mix-

ture in fluorometric microtiter plate assay interfered with the final detection product 

and reduced that to a non-fluorescent product (hydroresorufin). In contrast, S9 mixture 

was successfully incorporated into HPTLC–AChE and used as the alternative method to 

assess the toxicity of food contact materials (FCMs) migrants and extract. After on-plate 

metabolization and one or two-step HPTLC development, the recently developed auto-

mated piezoelectric spraying procedure for AChE was used to detect the inhibitors. The 

determined limits of detection (LODs) of six AChE inhibiting chemicals, including PHY, 

chlorpyrifos, quinalphos, parathion, tris(nonylphenyl) phosphite and nonylphenol were 

compared between both methods and with/without S9 metabolic activation. According 

to LODs obtained by the HPTLC–S9–AChE method, the thresholds of toxicological con-

cern (TTCs) of migrates and extract of a white polyurethane coated can was achieved by 

a 200-fold enrichment, simply by solvent evaporation during spray-on area application. 

Hence, two migrates and one extract were directly analyzed without pre-

dilution/concentration with this straightforward HPTLC–S9–AChE method, which was 

standardized, automated in its important steps, and highly efficient. 
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1. Introduction 

1.1. High-performance thin-layer chromatography (HPTLC) 

Planar chromatography was termed HPTLC because of the latest improvements by mov-

ing towards lower size and narrower distribution of stationary phase particles as well as 

more automated TLC instruments making this technique faster, more sensitive and reli-

able than before for qualitative/quantitative analysis.1 

Some exclusive features of HPTLC are1-3: 

 Reduced sample preparation which protects the main structure of a sample and the 

matrix components remain at the start/solvent front of the plate. Whereas in gas 

chromatography (GC) these remain in the liner or in high-performance liquid chro-

matography (HPLC) held on the column 

 Most parts of the sample are on the plate for further study (in HPLC, it goes to the 

waste)  

 Each sample benefits from a new adsorbent and complex matrix do not change the 

stationary phase unlike to the sequential analysis of column-based methods 

 Parallel analysis allowing comparison of several samples on one plate, on one run 

with the same mobile phase and other parameters (not possible in HPLC and GC) 

 Derivatization by selective/specific chemical reagents provides thorough view about 

sample, especially for investigation of unknown compounds 

 HPTLC is compatible with other complementary methods e.g. ultraviolet-visible (UV-

Vis) light, florescence (FL), mass spectrometry (MS), nuclear magnetic resonance 

(NMR) spectroscopy, and effect-directed analysis (EDA). 

 

1.2. Hyphenations of HPTLC with EDA 

In cuvette, petri dish, microtiter plate or dot-blot assays only a sum parameter is achiev-

able for either a complex sample or isolated fractions. In contrast, HPTLC–EDA separates 

complex samples and points to active zones in situ the autogram (Fig. 1). HPTLC–EDA 

allows detecting unknown (bio)active metabolites, side products, process contaminants, 
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degradation products, adulterants, packaging migrants, or residues in the complex sam-

ples. 

The offline/open format HPTLC has some uniqueness for hyphenation with EDA such 

as1: 

 The matrix-robust HPTLC allows avoiding a long sample preparation, leading to a 

comprehensive overview on the sample 

 Cost-effective in comparison with other types of online methods 

 Solvents-free chromatograms fit better to living organisms and enzymes 

 A multi-fold HPTLC run provides comprehensive information of different bioassays 

and helps choosing the zone of interest for further analysis. 

Figure 1. Overview on HPTLC–EDA compare to other methods and bioautography classification.4 
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EDA comprises all detection procedures indicating an effect that can affect biological 

systems/inhibit enzymes/scavenge free radicals. (HP)TLC–EDA was already established 

for three different groups including biological, biochemical and microchemical assays 

(Fig. 1). Hyphenation of (HP)TLC with bioassays termed as bioautography. Direct bioau-

tography (DB) is a straightforward and efficient workflow for bioprofiling considering 

handling, detectability, resolution and analysis time compare to contact and agar-

overlay bioautography.4-6 The DB procedure can be used for biochemical assays as well 

via immersion7-9, manual spraying10 or a combination of both11.  

Application: HPTLC–EDA allows a fast biochemical and biological profiling i.e. finding 

enzyme inhibitors8,12-15, antibacterial6,16, antifungal17,18 and antioxidant compounds19 in 

complex samples. HPTLC–EDA–(HR)MS combined with NMR spectroscopy was demon-

strated as a straightforward strategy to reach bioactive compounds structure (Fig. 2).9,20 

In current research: Recently an automated piezoelectric spraying of biological and 

biochemical reagents were set up for Aliivibrio fischeri and acetyl- and butyrylcholines-

terase (bio)assays.21  

Figure 2. HPTLC-EDA-HRMS followed by preparative layer chromatography (PLC) isolation and NMR 
spectroscopy.9 

 

1.2.1. HPTLC–A. fischeri bioassay  

A. fischeri is a non-pathogenic Gram-negative marine bacterium with a bioluminescence 

emitting a blue-green (480 nm) lights in a critical density. Bioluminescence is directly 

linked to the bacteria’s metabolism; a decrease in light intensity shows a disturbance of 

the metabolism. Luciferase, the bioluminescence catalyst, is expressed and catalyzes an 

oxidation reaction that releases excess energy in the form of light.22 

After immersion, the plate surface is coated with a film of the bioluminescent bacteria 

(after removing the excess liquid) which produce dark zones on a luminescent back-

ground. Dark zones indicated the luminescence inhibition of the bacteria with tox-
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ic/bioactive compounds.23 The change in the luminescent bioautogram was immediately 

monitored and documented with the BioLuminizer (CAMAG) using an exposure time 

and trigger intervals. 

Application: This method is suitable for the detection of bioactive compounds in plant 

extracts7, beverages24, Bacillus lipopeptides extracts25, parabens in cosmetics26 or water 

quality control27. 

In current research: HPTLC–A. fischeri either via immersion or automated piezoelectric 

spraying (for the first time) procedure was used for bioprofiling of Salvia miltiorrhiza 

Bunge root (Danshen)9 and P. harmala seed21 extracts.  

 

1.2.2. HPTLC–Bacillus subtilis bioassay  

B. subtilis is a non-pathogenic Gram-positive aerobic bacterium found in soil28 and the 

gastrointestinal tract29 of ruminants and humans. HPTLC–B. subtilis bioassay offers a 

fast bioprofiling to find the anti-bacterial compounds in a complex matrix of natural 

samples. HPTLC–B. subtilis bioassay was modified as a streamlined and reliable method 

to discover antimicrobials in herbal extracts. Among others, incubation time of the seed-

ed plate and the neutralization procedure to remove residual acid traces from the planar 

chromatogram can influence the results of HPTLC–B. subtilis.6 

For HPTLC–B. subtilis, the chromatogram was immersed into a suspension of bacteria, 

followed by incubation. For visualization, a live/dead cell staining assay, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), was used. The dehydro-

genases of viable cells reduced MTT into a colored formazan (Fig. 3). Pale yellow zones 

on a purple background visualized the position of antimicrobial compounds.30 

Figure 3. Reduction on MTT during the live/dead cell staining assay. 
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Application: (HP)TLC–B. subtilis was already used for finding antibacterial in Cow’s 

milk31,32, beverages24, lipopeptides25 and plant extracts6,33,34. 

In current research: HPTLC–B. subtilis was applied for bioprofiling of Danshen9, Lami-

aceae and apple peel extracts35.  

 

1.2.3. HPTLC–tyrosinase assay 

Tyrosinase (EC 1.14.18.1) is an oxidase enzyme containing two copper ions connected to 

six histidine residues in catalytic site36 (Fig. 4), distributed in plants, fungi and animals. 

It is responsible for enzymatic browning of fruits37 or controls the melanin production 

and human skin color38. Browning changes the fruit/vegetables appearance and nutri-

tional quality which encouraged researchers to find new potent tyrosinase inhibitors for 

food industry. Melanin is the most important chromophore of human skin. Melanogene-

sis is induced by the upregulation of tyrosinase after UV exposure in order to self-

protect of the skin; however, abnormal accumulation of melanin causes undesirable aes-

thetic problems.39 Hyperpigmentation enhanced by UV exposure such as freckles, me-

lasma and lentigines which can be treated by using whitening agents, such as hydroqui-

none.40 Nevertheless, hyperpigmentation can cause invasive forms of skin cancer.41 

Some of the tyrosinase inhibitors are hydroquinone, arbutin, aloesin, kojic acid and Lico-

rice extract. Kojic acid inhibits tyrosinase by binding to copper while hydroquinone does 

it by binding histidines at the active site. Hydroquinone is banned in Europe due to tox-

icity and carcinogenicity issues which brought the seeking for safe and effective tyrosi-

nase inhibitor into focus.  

Figure 4. Crystal structure of mushroom tyrosinase.42,43 
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Tyrosinase catalyzes the hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine 

(L-DOPA). Then secondly involves oxidation of L-DOPA to L-DOPAquinine which is pre-

cursor for other steps to result melanin (Fig. 5).44 

 

Figure 5. Mechanism of melanin production from tyrosine amino acid. 

 

HPTLC–tyrosinase assay is a fast method to discover tyrosinase inhibitors using the 

CAMAG suggested procedure which was recently improved in our laboratory.14,40 The 

planar chromatogram was placed in the Derivatizer (CAMAG), sprayed with substrate 

solution (L-DOPA), and subsequently dried using a cold stream of hair dryer. Then, it 

was sprayed with enzyme solution and incubated at room temperature in a humid box 

followed by drying. The tyrosinase inhibitors appeared as white/light yellow zones in a 

gray background. 

Application: HPTLC–tyrosinase was already used for finding tyrosinase inhibitors or 

anti-melanogenic drug screening in natural samples38,45-47 and Bacillus lipopeptide ex-

tracts14. 

In current research: HPTLC–tyrosinase was applied for tyrosinase inhibitory screening 

of Lamiaceae and apple peel extracts.35 

 

1.2.4. HPTLC–cholinesterase assay  

Acetylcholinesterase (AChE, EC. 3.1.1.7) and butyrylcholinesterase (BChE, EC. 3.1.1.8) 

are hydrolase enzymes. AChE known as true ChE is found in synaptic clefts of the central 

and peripheral nervous system. Its active sides consists the esteratic site (serine) bing-

ing to acetyl part of acetylcholine (ACh) and the anionic site binding to quaternary am-

monium of ACh (Fig. 6A).48-50 BChE known as pseudo-ChE or nonspecific ChE is mainly 

found in plasma, liver and muscle tissue, yet its function is not completely clear but it 
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hydrolyses ACh at a slower rate. AChE as the main catalytic enzyme is essential for re-

turning the neuron to its resting phase by cleaving ACh. The acyl group of ACh is initially 

transferred to an active-site serine, then a water nucleophile attacks this ester, resulting 

acetate and completing the hydrolysis (Fig. 6B).48,51,52 

Figure 6. Interaction between ACh with two site of AChE (A)50 ACh hydrolysis via AChE (B)52. 

 

The neurotransmitter ACh is an ester of acetic acid and choline, contradictory to the 

most amino acids based neurotransmitters. The choline acetyltransferase synthesizes 

ACh from acetyl-CoA and choline in the presynaptic axon. Encapsulated ACh is released 

into the synaptic cleft, and then bonded to cholinergic receptors enable the signal 

transmission. (Fig. 7).48,53 

Figure 7. The cycle of ACh synthesis and hydrolysis via choline acetyltransferase and AChE, respectively 
during a neural transmission.53 

 

ChE inhibition deactivates the enzymatic hydrolysis of ACh and consequently increases 

the ACh levels in the synaptic cleft and prolongs nerve stimulation. The ChE inhibitors 

can be divided into irreversible and reversible groups according to their pharmacologi-

cal or toxicological functions. The reversible inhibitors (competitive or noncompetitive) 

A                                                 B 
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are used for treatment of Alzheimer’s and Parkinson’s diseases, myasthenia gravis, Lewy 

bodies by slowing down the ACh hydrolysis rate.48 

While some of reversible (carbamate) and irreversible (organophosphates, OPs) inhibi-

tors exhibit toxic function and used as insecticides by disrupting neurotransmission. 

Some OPs pesticides like chlorpyrifos and parathion require cytochrome P450-mediated 

metabolism to produce their respective oxon forms and increase their ChE inhibitory 

potency. However some of OPs showed therapeutic effects in the treatment of chronic 

glaucoma.49 Some of ChE inhibitors used in disease treatments are donepezil, rivastig-

mine, galantamine and physostigmine (PHY, Fig. 8).48,52 

Figure 8. Inhibition mechanism of ChE enzymes modified from ref54 and ChE inhibitors. 

 

The HPTLC–ChE assays were carried out either according to our latest piezoelectric 

spaying procedure21 (Derivatizer, CAMAG) or immersion procedure using the modified 

Marston’s method8,55,56. Briefly, piezoelectric spaying procedure21: the planar chromato-

gram was wetted via spraying Tris-HCl buffer. Then, the enzyme solution was sprayed 

and the plate was incubated in a humid plastic box, followed by spraying of substrate-

chromogenic solution and drying. While in immersion procedure planar chromatogram 

was directly immersed into enzyme and after incubation step followed by immersed into 

the substrate-chromogenic solution and drying. The ChE inhibitors were documented as 

white bands on a purple plate background at white light illumination. AChE hydrolyses 

the 1-naphthyl (substrate) to 1-naphthol reacting with Fast Blue B salt (chromogenic 

agent) to produce a purple plate background.56 
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Application: The HPTLC–AChE was not only used for finding AChE inhibitors as anti-

Alzheimer’s disease agents in medicinal plants21,57,58, but also for detection of organo-

phosphate and carbamate insecticides59-62 and chemical warfare agents63.  

In current research: HPTLC–ChE was used for ChE inhibitory screening of Danshen9 

and P. harmala seed21, Lamiaceae and apple peel35 extracts, and food contact materials 

(FCMs) migrants and extract64 as well as equivalency inhibitory calculation of active 

compounds of P. harmala seed extract refereed to applied and developed PHY65. 

 

1.3. HPTLC–(HR)MS  

The first step of structural elucidation is recording the mass spectra of the unidentified 

bioactive compounds in situ the planar chromatogram. Thus, using the TLC-MS interface 

allowed the usage of HRMS besides the full potential of HPTLC separation and accelerat-

ed the workflow to gain structural information directly from favorite zone.9,14,21,25 Gen-

erally, transferring methods are divided into two branches: elution-based and desorp-

tion-based techniques. The elution-based techniques uses a tight elution head and a sol-

vent follow to transfer the zone of interest in situ planar chromatogram to MS spectra.1 

Application in current research: TLC-MS interface coupled with the heated elec-

trospray ionization (HESI) source connected to a hybrid quadrupole-orbitrap mass spec-

trometer was used for MS measurements of all favorite active compounds such as 

tanshinones and phenolics in Danshen9, alkaloids in P. harmala seed21 and hydroxy pen-

tacyclic triterpen acids in Lamiaceae and apple peel35 extracts. 

 

1.4. Direct workflow from HPTLC to quantitative NMR spectroscopy  

Structural confirmation and quantification of bioactive compounds are the ultimate tar-

gets after (HP)TLC–EDA. NMR spectra of bioactive compounds provide the structural 

information to confirm the chemical structure and quantify the analyte by quantitative 

NMR (qNMR) spectroscopy.9,20,66 The sensitivity gap was the main obstacle to achieve a 

direct workflow to provide the active compounds in situ planar chromatogram in de-

tectable range of NMR spectroscopy.9,35 Using column based separation17,57,67 or TLC 

elution head-based interface20,66,68 for NMR spectroscopy sample preparation were inef-
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ficient procedures because of time-consuming steps including fractionation/stamping, 

evaporation and high consumption of solvent and HPTLC plates.17,20,57,66-68  

NMR spectroscopy is an orthogonal technique for simultaneous identification and quan-

tification of several compounds. In comparison to chromatographic methods, qNMR 

spectroscopy analysis is based on the identification of resolved signals of the analyets in 

the mixture rather than achieving resolution of individual components.69 In addition, 

qNMR spectroscopy quantifies all the analytes of several spectra, just with a single ref-

erence compound.70 In NMR spectroscopy the peak intensity is directly proportional to 

the number of nuclei, in the NMR active volume, generating such a signal which is linear-

ly related to the analyte amount in solution (absolute concentration).70-73 qNMR spec-

troscopy can be fulfilled by relative and absolute quantitation methods. Relative mode 

provides molar ratio between two compounds9 while the absolute quantitation 

measures the actual amount of an analyte70,72. Absolute mode requires an internal or 

external reference compound to calibrate the NMR signal. In the internal standard 

method, a weighed amount of a reference standard (or a measured volume of a known 

concentration solution) is added into a fix volume of sample and the intensity of its sig-

nal is used for quantification of all the other species in the same spectrum. The main 

drawback of internal standard is the sample contamination with the added standard, on 

the contrary, the external methods utilize a reference compound in a separate solution 

and its NMR signal intensity is used to quantify several compounds in different 

spectra.72 Among external methods one of the most innovative is the PUlse Length-based 

CONcentration determination (PULCON) method, that correlates the NMR signal intensi-

ty of a reference standard to those ones of analytes in different spectra, after the 90° 

pulse correction on each sample tube, according to the principle of reciprocity.74,75  

The former studies in the field of planar chromatography and qNMR spectroscopy most-

ly focused on comparison of two methods, and qNMR spectroscopy measurements were 

performed on crude dried extract.69,76-79 In some cases, TLC was used after/between 

several column chromatography steps to select or purify the best fraction containing 

favorite compounds for qNMR spectroscopy via internal standard80 or calibration 

curve81. In order to record 1D and 2D NMR spectra of two pure bioactive isomers, a flash 

chromatographic fraction was purified five times by semipreparative HPLC-DAD.82 Isola-

tion of bioactive compounds in situ planar chromatogram (high number of plates) via 
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TLC-MS interface coupled with a HPLC pump was used for NMR spectroscopy sample 

preparation to confirm the structure20,66 or qNMR (PULCON)68,83.  

Application: Using the high field magnets and cryoprobes improved the sensitivity of 

NMR spectrometers, lowering down the limit of detection (LOD) to the µM range to 

measure low amount analytes even in complex biological matrices.84 The 1H-qNMR was 

used in quantification of several metabolites of drugs and plants.2,70,85-88 

In current research: The direct PLC/HPTLC-qNMR workflows were established in this 

research and used for quantification of challenging bioactive structural isomers.9,35 Two 

structural isomers of tanshinones,1,2-dihydrotanshinone I (1,2-DHTI) and meth-

ylenetanshinquinone (MTQ)9 and another two hydroxy pentacyclic triterpen acids (ur-

solic and oleanolic acids)35 were isolated via a one-step PLC/HPTLC development and 

resulting fraction, dissolved in deuterated methanol, was measured via relative qNMR9 

or PULCON35 (Fig. 9).  

Figure 9. PLC isolation of an unidentified active zone in situ the planar chromatogram of Danshen extract 
for NMR spectroscopy. 

 

1.5. Quantitative planar chromatographic–effect-directed analysis  

First step to perform a quantitative analysis after a biological/biochemical assays is 

measuring and quantifying a resulting autogram via scanning densitometer (scanner). It 

is equipped with the continuous light sources a deuterium lamp (190 to 450 nm) and a 

tungsten lamp (370 to 800 nm) as well as a discrete light source a mercury vapor lamp 

(several individual wavelengths). Densitometry can be performed in absorbance or fluo-

rescence modes. In absorbance measurement, the reflected light from the plate repre-

sents the baseline signal, which is lowered when the light beam hits an absorbing zone 

of the track, and then electronically inverted signal is presented as a positive peak in the 

densitogram. The resulting densitogram can be integrated and quantitatively evaluated.  
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Fluorescence measurement is performed when a substance can be excited to fluoresce 

by UV light. It needs a bandpass or cutoff filter between the plate and the detector to 

efficiently eliminate the UV light used for excitation. The reflected light from plate back-

ground is blocked by filter (zero signal, baseline) and emission light from fluorescing 

zone with a longer wavelength can pass the filter and reaches the photomultiplier detec-

tor (no need of inversion).  

The relation between the measured signal and the amount of substance in a zone is ei-

ther linear like fluorescence mode or nonlinear for absorption mode (Kubelka-Munk 

equation). In absorption measurement, signal increases with increasing substance 

amount and in most cases, data are best fitted to polynomial functions.  

Two major categories were evident to indicate the active zones in resulting chromato-

gram after performing a bioassay (bioautogram). First, the bioactive substances are de-

tected as fluorescent zones and densitometric measurement was performed at UV range, 

e.g. pYES.89,90 Second, bioactive substances were indicated as white zones in a stained 

background such as B. subtilis6, AChE/BChE21, α-, β-glucosidase13, tyrosinase14 and α-

amylase15 (bio)assays.  

Application in current research: Densitometric measurement of the autogram was 

performed at the selected wavelength using an inverse scan. At the mercy of no inver-

sion of fluorescence measurement and adjustment of no cutoff filter, the reflected light 

from white zone was recorded as positive densitogram for equivalency calculation of 

ChE inhibitors in P. harmala seed extract.21,65 In order to estimate the efficiency of 

HPTLC isolation, amount of ursolic and oleanolic acids was densitometicaly measured in 

the isolated samples and the crude extracts at absorption mode after a pre- and post-

chromatographic derivatization HPTLC.35  

 

1.6. Equivalency calculation  

Quantitative measurement is relative, meaning that a response generated by unknown 

amount of a substance needs to be compared with those of known amount of that (cali-

bration curve). In case of unknown or unidentified enzyme inhibitors discovered in a 

complex sample, an external standard calibration cannot be performed and their inhibi-

tion potency needs to be estimated by alternative means as equivalency calculation refer 
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to a well-known active compound known as positive control. According to the classical 

procedure, the reference compound and sample containing unknown or unidentified 

enzyme inhibitors have to be chromatographed on the same plate. However, the integra-

tion of a reference compound relevant to an enzymatic assay causes a challenging meth-

od development for new samples due to the different chromatographic interactions with 

mobile/stationary phases. Then, application of different amount of positive control (as a 

pattern after development) is a fast alternative to perform equivalency calculation.  

Application: The equivalency calculation has been reported in reference to a well-

known active compounds such as ciprofloxacin or marbofloxacin34 as reference antibiot-

ics in B. subtilis bioassays, alkaloids like (±)-huperzine-A91 and galantamine57, or carba-

mates like PHY58 in AChE/BChE assays, kojic acid14,47 in tyrosinase assays and 

ascorbic92,93/gallic acid92 in 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays.  

In current research: Two different modes of equivalency calculation, referring to a po-

tent inhibitor that was either applied or also developed were investigated, validated and 

compared, exemplarily on the AChE/BChE inhibition of P. harmala seed extract. Three 

potent inhibitors, PHY, rivastigmine and piperine, were evaluated with regard to their 

hRF value, band shape and inhibition brightness against the plate background and the 

well-matched one (PHY) considered for equivalency calculation. Finally the potency of 

AChE and BChE inhibitory of each active band of P. harmala  seed extract was reported 

as ng of PHY.65 

 

1.7. Medicinal plant extracts  

1.7.1. Salvia miltiorrhiza Bunge root  

Salvia miltiorrhiza Bunge root (Danshen) as one of the most commonly used traditional 

medicines. It possesses several curative properties that have been applied to treat dif-

ferent diseases such as Alzheimer’s, cerebrovascular, coronary heart disease and skin 

lesions.94 A variety of Danshen preparations and formulations are on the market, i.e. 

dripping pills, tablets, injections, capsules, syrups and sprays.95 
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Figure 10. Salvia miltiorrhiza (A), dried root (B), root powder (C) and Danshen capsules (D). 

 

Danshen’s well-known bioactive components include two major groups, hydrosoluble 

phenolics (phenolic acids) and lipophilic diterpenoid quinones (tanshinones). So far, 37 

phenolics and 55 tanshinones have been reported for Danshen.96 In order to obtain the 

chemical profiles of the main phenolics and tanshinones, several separation methods 

like HPLC-MS97-99, HPLC-UV99-101, countercurrent chromatography102, non-aqueous ca-

pillary electrophoresis103 and (HP)TLC5,34,100,104,105 were employed.  

 

Figure 11. Structures of two tanshinones identified and relatively quantified via qNMR. 

 

In current research: This study aimed at developing a streamlined, yet comprehensive 

bioanalytical method from screening to structures. Therefore, HPTLC-(bio)assay-HRMS 

of the polar and the nonpolar Danshen extracts was followed by a fast scale-up to PLC 

A                                                B 

 

 

                                                   C 

 

 

                                                   D 
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isolation for 1H-NMR spectroscopy to identify and relatively quantify the two coeluted 

tanshinones (MTQ and 1,2-DHTI) in a multipotent unidentified zone.9  

1.7.2. Peganum harmala seed 

P. harmala (Zygophyllaceae) is known as Espand or Syrian Rue, with pharmacological 

effects including anticancer, gastrointestinal and antimicrobial activities.106 The P. har-

mala seed extract contains vasicine and vasicinone (quinazoline alkaloids) as well as 

harmine, harmaline, harman and harmalol (β-carbolines)106, showed inhibition via TLC-

AChE57,58. (Fig. 12 and 13) 

In current research: The main ChE inhibition zones of P. harmala seed extract, detected 

without any tailing and diffusion, were equivalently calculated to PHY as a well-known 

ChE-inhibitor, to demonstrate the quantitative capability and performance of the newly 

developed automated piezoelectric spraying AChE/BChE workflow.  

Figure 12. P. harmala (A) as well as its fruit (B) and seeds (C). 

 

 

Figure 13. Main ChE inhibitors of P. harmala seed extract, found via HPTLC–AChE/BChE 

A                                      B 

 

 

 

 

                                           C 
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1.7.3. Lamiaceae leaves, Malus domestica fruit peels 

Salvia officinalis, Thymus vulgaris and Origanum vulgare leaves (Lamiaceae), red and 

green apple peel (Malus domestica) extracts contain several structural isomers like ur-

solic, oleanolic, betulinic acids (all C30H48O3), corosolic, maslinic acids (both C30H48O4), as 

well as thymol and carvacrol (both C10H14O). 

In current research: the mentioned extracts were selected as case studies to find a coe-

luted bioactive zone contains two or more compounds. After bioprofiling, the ursolic and 

oleanolic acids, as a coeluted active zone, were chosen to be isolated via HPTLC followed 

by an already set up qNMR spectroscopy (PULCON). Finally, the results of PULCON were 

compared with those obtained from pre- and post-chromatographic derivatization 

HPTLC.  

Figure 14. Structures of ursolic and oleanolic acid that were quantified according to their significant 1H-
18 signals in 1H-NMR spectra. 

 

1.8. Food contact materials, articles and chemicals 

Food contact materials (FCMs) are all materials and articles come into contact with food 

and beverages during its production, processing, storage, transporting, preparation and 

serving such as packaging materials, containers, kitchenware, cutlery and dishes as well 

as water bottles.107,108 FCMs can be made from different materials including metal, plas-

tics, rubber, and paper.109 Chemicals in form of nanoparticles so-called food contact 

chemicals (FCCs) can migrate from food contact articles into foodstuffs, and thus be in-

gested. FCCs categorized as intentionally added substances (IAS) such as monomers, 
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additives, and catalysts110 or non-intentionally added substances (NIAS) such as impuri-

ties in the starting materials, and newly formed substances such as degradation prod-

ucts, reaction by-products, or various contaminants from the recycling process111,112. 

These substances should not change the composition of the food in an unacceptable way 

or interfere with the organoleptic and sensory aspects of the food, and more important 

should not hazard the safety of the packed food.107,108,113 The risk assessment strategy 

for IAS is clear and their safety is currently ensured as rarely problematic. However, risk 

assessment of NIAS as a significant part of the overall migrate is much more difficult to 

ascertain because many NIAS remain completely unknown and their chemical identifica-

tion and toxicological testing is highly time and resource-consuming and thus the toxico-

logical evaluation of these single substances cannot be performed.114 The Threshold of 

Toxicological Concern (TTC) concept has been developed as a pragmatic and convenient 

tool for risk assessment of NIAS and other chemicals with limited toxicological data.115-

119 The TTC concept assesses if intake is below an accepted threshold of no concern, de-

fined by assigning a Cramer class based on the chemical structure.120  

 

Figure 15. Two chemical packaging which were tested via HPTLC–S9–AChE. 

Figure 16. Procedures of FCM migrates and extract preparation. 
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In current research: The new HPTLC–S9–AChE workflow, after on-plate metaboliza-

tion and separation, the AChE/substrate-chromogenic reagent solutions were sprayed 

piezoelectrically, resulting a homogeneous plate background. The LODs of six chemicals, 

including physostigmine, chlorpyrifos, quinalphos and parathion as well as 

tris(nonylphenyl) phosphite and nonylphenol were compared between a fluorometric 

microtiter plate assay and our new HPTLC–S9–AChE workflow. The direct toxicity as-

sessment of FCMs via their respective TTCs was achieved by a 200-fold enrichment of 

the two migrates and one extract of a white polyurethane coated can, by solvent evapo-

ration during spray-on area application.  
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1.9. Aim of research 

The current research mainly focused on quantification of bioactive compounds in situ 

autogram via equivalency calculation refer to an applied/developed well-known active 

compound or ex situ planar chromatogram via relative/absolute qNMR spectroscopy.  

Quantification of unidentified or unknown bioactive compounds is challenging. All in-

formation about polarity, functional groups and sum formula of bioactive compounds 

can be obtained via hRF value, derivatization, HRMS, respectively, but for quantification 

as a relative procedure the expensive external standards, sometimes not provided, are 

needed. In this research, two alternative procedures, independent of bioactive com-

pounds reference standards, were designed, developed, validated and applied on quanti-

fication of bioactive compounds found in plant extracts. 

In addition, an automated piezoelectric spraying was set up to be more close to the 

standardization of HPTLC–EDA procedure to provide more reproducible results. 

Another alternative for quantification of bioactive compounds is relative or absolute 

qNMR spectroscopy using an external standard maleic acid. The relative qNMR spec-

troscopy can be done as a molar ratio after confirmation of the structure among two co-

eluted compounds which appear at the same hRF value as one band in planar chromato-

gram. For performing of an absolute qNMR spectroscopy of bioactive compounds found 

via HPTLC–EDA, a traceable sample preparation was needed, thus a direct workflow 

from bioprofiling to NMR spectroscopy was developed and the efficiency of planar isola-

tion via HPTLC was needed to be determined.  
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