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1 Introduction

Beside the formal definition of the accepted or generated language, the introduc-
tion of an accepting or generating device always brings the attention to several
“auxiliary” formal structures related to the device itself. Such structures, which
can be either crucial part of or derived from device definition, are not only in-
teresting per se, but their investigation has often other relevant motivations.
For instance, we can act on these structures to tune device computational ca-
pabilities. Or, they can directly imply certain device properties. Yet, they can
also be used as a theoretical tool to get results in different contexts.

Only to cite some examples, in the realm of Turing machines, the well known
language of valid computations is introduced in [11]. The study of this language
has been widely used to point out undecidability of several problems and non-
recursiveness of certain descriptional trade-offs (see, e.g., [7, 14]). In quantum
automata theory, a basic part of the definition of several variants of quantum
automata is the so-called control language which, very roughly speaking, de-
scribes computational dynamics which are admissible in a given model [19].
By modifying the control language, we obtain several quantum devices with
different computational power. In [3], particular families of so-called selection
languages are considered to tune the generative power of contextual grammars.

In this paper, we focus on pushdown store languages for pushdown automata
(PDA). Given a PDA M , its pushdown store language P (M) consists of all
words occurring on the pushdown store along accepting computations of M . (It
should be remarked that similar sets for stack automata have been investigated
in [6].) It is known from [8] that, surprisingly enough, P (M) is regular for any
PDA. More recently, an alternative proof of this fact has been given in [1].
Here, we tackle the study of pushdown store languages from a descriptional
complexity point of view, and design succinct nondeterministic finite automata
(NFA) for their acceptance. In Section 3, a first general construction of an
NFA for P (M) resulting from [1] is presented. We subsequently improve this
construction and obtain an upper bound to the size (i.e., number of states) of
the NFA, which is quadratic in the number of states and linear in the number
of pushdown symbols of the PDA M . Then, we show that this bound cannot
be improved in general by showing its asymptotical optimality. In Section 4,
we will be dealing with restricted versions of PDA, namely: PDA which cannot
pop, stateless PDA, and counter machines, i.e., PDA whose pushdown store
languages are subsets of Z∗Z0, for a bottom-of-pushdown symbol Z0 and a
different pushdown symbol Z. For any of these restrictions, we present NFA
for pushdown store languages which are strictly smaller than the NFA given
for the general case. Moreover, in all cases, we prove the optimality of our
constructions.

Finally, in Section 5, we apply our results on the descriptional complexity
of pushdown store languages to the analysis of the hardness of some decision
problems related to PDA. We show that the questions of whether P (M) of a
given PDA M is a finite set or is a finite set of words having at most length k,
for a given k ≥ 1, can be answered in deterministic polynomial time. Moreover,
we also prove the P-completeness of these questions. As an application, we
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obtain that it is P-complete to decide whether a given unambiguous PDA is a
constant height PDA or is a PDA of constant height k, for a given k ≥ 1 [2,
5]. As another application, we show the same complexity evaluation for the
question of whether P (M) is a subset of Z∗Z0. This is equivalent to asking
whether a given PDA is essentially a counter machine.

2 Preliminaries and Definitions

We assume that the reader is familiar with basic notions in formal language
theory (see, e.g., [10, 15]). The set of natural numbers, with 0, is denoted by N.
The set of all words (including the empty word λ) over a finite alphabet Σ is
denoted by Σ∗, and we let Σ+ = Σ∗ \ {λ}. The length of a word w ∈ Σ∗ is
denoted by |w|, and by Σ≤k and Σ>k we denote, respectively, the set of all
words of length less than or equal to k and larger than k. Given a language
L ⊆ Σ∗, then suf(L) = {y ∈ Σ∗ | ∃x ∈ Σ∗: xy ∈ L} is the set of all suffixes of
words in L. The reversal of a word w is denoted by wR, and of a language L
by LR.

A pushdown automaton (PDA, see e.g. [10, 15]) is formally defined as a 7-
tuple M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉, where Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite pushdown alphabet, δ is the transition function
mapping Q × (Σ ∪ {λ}) × Γ to finite subsets of Q × Γ ∗, q0 ∈ Q is the initial
state, Z0 ∈ Γ is a particular pushdown symbol, called the bottom-of-pushdown
symbol, which initially appears on the pushdown store, and F ⊆ Q is a set
of accepting (or final) states. Roughly speaking, a nondeterministic finite au-
tomaton (NFA) can be viewed as a PDA where the pushdown store is never
used.

A configuration of a pushdown automaton is a triple (q, w, γ), where q is the
current state, w the unread part of the input, and γ the current content of the
pushdown store, the leftmost symbol of γ being the top symbol. For p, q ∈ Q,
a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ , we write (q, aw, Zγ) ⊢ (p, w, βγ)
whenever (p, β) ∈ δ(q, a, Z). As usual, the reflexive transitive closure of ⊢ is
denoted by ⊢∗. The language accepted by M by accepting states is the set

L(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢
∗ (f, λ, γ), for some f ∈ F and γ ∈ Γ ∗}.

Throughout the paper, unless otherwise stated, we will always be considering
acceptance by accepting states. We measure the size of a PDA M by the prod-
uct of the number of states, the number of pushdown symbols, the number of
input symbols, and the maximum length µ(M) of strings of pushdown symbols
appearing in the transition rules, i.e., |Q| · |Γ | · |Σ| · µ(M). We also refer to [14]
for a the discussion on PDA size measuring.

We consider PDA to be in normal form, i.e., with µ(M) ≤ 2. In this case,
the pushdown height grows at most by 1 at each move. By introducing new
states for every transition of a given PDA, it can be shown similarly to [14]
that every PDA of size n can be converted to an equivalent normal form PDA
of size O(n). For the rest of the paper, we assume that all PDA considered are
in normal form.
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The pushdown store language of a PDA M (see, e.g., [1, 8]) is defined as
the set P (M) of all words occurring on the pushdown store along accepting
computations of M . Formally:

P (M) = {u ∈ Γ ∗ | ∃x, y ∈ Σ∗, q ∈ Q, f ∈ F :

(q0, xy, Z0) ⊢
∗ (q, y, u) ⊢∗ (f, λ, γ), for some γ ∈ Γ ∗}.

To clarify the notion of pushdown store language, we continue with an example.

Example 1. The language { anbn | n ≥ 1 } is accepted by the following (deter-
ministic) PDA M = 〈{q0, q1, q2}, {a, b}, {Z, Z0}, δ, q0, Z0, {q2}〉 such that

δ(q0, a, Z0) = {(q0, ZZ0)}, δ(q0, a, Z) = {(q0, ZZ)},
δ(q0, b, Z) = {(q1, λ)}, δ(q1, b, Z) = {(q1, λ)}, δ(q1, λ, Z0) = {(q2, Z0)}.

It is easy to see that the pushdown store language is P (M) = Z∗Z0. ⊓⊔

3 Pushdown Store Languages: the General Case

Already in [8], it is proved that the pushdown store language P (M) of a PDA M
is regular. However, here we quickly review the proof given in [1], whose con-
structions enable us to obtain better bounds on the size of NFA accepting P (M).
In what follows, for x ∈ Σ∗, we use the short-hand notation

(p, w) ⊢x (p′, w′) if and only if (p, x, w) ⊢∗ (p′, λ, w′).

Theorem 2 ([1]). The pushdown store language of any PDA is regular.

Proof. The construction given in [1] can be summarized as follows. Let M =
〈Q, Σ, Γ, δ, q0, Z0, F 〉 be a PDA. For every q ∈ Q, the following sets are defined:

Acc(q) = {u ∈ Γ ∗ | ∃x, y ∈ Σ∗ : (q0, xy, Z0) ⊢
∗ (q, y, u)},

Co-Acc(q) = {u ∈ Γ ∗ | ∃y ∈ Σ∗, f ∈ F, u′ ∈ Γ ∗ : (q, y, u) ⊢∗ (f, λ, u′)}.

Then, the pushdown store language is easily seen to be

P (M) =
⋃

q∈Q

Acc(q) ∩ Co-Acc(q).

Now, for every q ∈ Q, we construct a left-linear grammar GAcc(q) for Acc(q)
and a right-linear grammar GCo-Acc(q) for Co-Acc(q), thus showing that P (M) is
regular. Informally speaking, GAcc(q) simulates the behavior of M from an initial
configuration until the state q is entered, while generating u on the pushdown
store. Formally, GAcc(q) has terminal alphabet Γ , nonterminal alphabet Q× Γ ,
start symbol (q0, Z0), and the following rules:

(1) (p, Z) −→ (p′, Z ′), if there exists x ∈ Σ∗ such that (p, Z) ⊢x (p′, Z ′)
(2) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ ∪ {λ} with (p′, Z ′t) ∈ δ(p, a, Z)
(3) (p, Z) −→ λ, if there exists x ∈ Σ∗ such that (p, Z) ⊢x (q, λ)
(4) (q, Z) −→ Z.
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It is shown in [1] that GAcc(q) generates Acc(q). On the other hand, GCo-Acc(q)

simulates the behavior of M from configurations having q as state, u as push-
down content, and reaching an accepting state. Formally, GCo-Acc(q) has termi-
nal alphabet Γ , nonterminal alphabet Q ∪ {s}, start symbol q, and the follow-
ing rules:

(5) p −→ Zp′, if there exists x ∈ Σ∗ such that (p, Z) ⊢x (p′, λ)
(6) p −→ Zs, if there exists x ∈ Σ∗, p′ ∈ F, u′ ∈ Γ+ : (p, Z) ⊢x (p′, u′)
(7) s −→ Zs | λ, for all Z ∈ Γ
(8) p −→ λ, if p ∈ F.

Again in [1], it is shown that GCo-Acc(q) generates Co-Acc(q). Finally, it is im-
portant to stress that grammars GAcc(q) and GCo-Acc(q) can be effectively con-
structed. In particular, for establishing rules (1), (3), (5), and (6), the decid-
ability of the emptiness problem for context-free languages is used (see, e.g.,
[15]). ⊓⊔

To clarify the meaning and construction of grammars GAcc(q) and GCo-Acc(q)

given in the previous theorem, in the following example we provide such gram-
mars for the PDA M in Example 1 accepting the language {anbn | n ≥ 1}.

Example 3. For the sake of brevity, we provide grammars only for Acc(q0) and
Co-Acc(q0). However, the reader may easily verify that P (M) consists of only
Acc(q0) ∩Co-Acc(q0). The grammar GAcc(q0) (resp., GCo-Acc(q0)) has start sym-
bol (q0, Z0) (resp., q0), and the following rules:

GAcc(q0) GCo-Acc(q0)

(q0, Z0) → (q0, Z)Z0 q0 → Zq1

(q0, Z) → (q0, Z)Z |Z q1 → Zq1 |Z0s
s → Zs |Z0s |λ

It is not hard to verify that GAcc(q0) generates Z∗Z0, while GCo-Acc(q0) gives
Z∗Z0{Z, Z0}

∗. The intersection of these languages clearly yields Z∗Z0, which is
P (M) as pointed out in Example 1. ⊓⊔

From the constructive proof of Theorem 2, we are able to provide a first
upper bound on the size of NFA for pushdown store languages. From now on, for
the descriptional costs of well known operations on NFA, the reader is referred
to, e.g., [13, 21].

Proposition 4. Let M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, P (M) can be
accepted by an NFA with |Q|3|Γ | + |Q|2(|Γ | + 1) + |Q| + 1 many states.

Proof. By Theorem 2, we have that P (M) =
⋃

q∈Q Acc(q) ∩ Co-Acc(q). So, we
begin by constructing, for any q ∈ Q, NFA accepting Acc(q) and Co-Acc(q).
For Acc(q), we start from the left-linear grammar GAcc(q) and construct a right-

linear grammar generating the reversal Acc(q)R by simply interchanging every
type (2) rule (p, Z) → (p′, Z ′)t with (p, Z) → t(p′, Z ′). Second, this right-
linear grammar is directly converted to an equivalent NFA of size |Q| · |Γ | plus
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an additional and unique accepting state due to type (3) and (4) rules. This
gives an NFA N of size |Q| · |Γ | + 1. Now, by basically “reverting arrows” and
switching the initial and final state in N , we get an NFA NAcc(q) of the same
size accepting Acc(q). For Co-Acc(q), the right-linear grammar GCo-Acc(q) can
be directly translated into an equivalent NFA NCo-Acc(q) of size |Q| + 1.

From NFA NAcc(q), NCo-Acc(q), and by using well known constructions on
NFA, we get an NFA with (|Q| · |Γ |+ 1)(|Q|+ 1) states for Acc(q)∩Co-Acc(q).
Finally, the union over all q ∈ Q can be implemented by an NFA of at most
|Q|(|Q| · |Γ | + 1)(|Q| + 1) + 1 = |Q|3|Γ | + |Q|2(|Γ | + 1) + |Q| + 1 states. ⊓⊔

We are now going to improve Proposition 4 and obtain a smaller NFA:

Theorem 5. Let M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, P (M) is ac-
cepted by an NFA whose size is bounded by |Q|2(|Γ | + 1) + |Q|(2|Γ | + 3) + 2.

Proof. The key idea is to “get rid” of the union over q ∈ Q in the definition
of P (M), by defining the set Acc(Q) (resp., Co-Acc(Q)) representing all the
pushdown contents reachable from the initial configuration (resp., from which
a final state can be reached). Then, we have to build only the intersection of
these two sets. More precisely, we let [Q] = {[q] | q ∈ Q} and define the following
sets:

Acc(Q) = {[q]u ∈ [Q]Γ ∗ | u ∈ Acc(q)},
Co-Acc(Q) = {[q]u ∈ [Q]Γ ∗ | u ∈ Co-Acc(q)}.

A left-linear grammar for Acc(Q) is built similarly as GAcc(q) in Theorem 2, but
we enlarge the terminal alphabet by the set [Q], and have the following rules:

(1) (p, Z) −→ (p′, Z ′), if there exists x ∈ Σ∗ such that (p, Z) ⊢x (p′, Z ′)
(2) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ∪{λ} such that (p′, Z ′t)∈δ(p, a, z)
(3)′ (p, Z) −→ [q], if there exists x ∈ Σ∗ such that (p, Z) ⊢x (q, λ)
(4)′ (q, Z) −→ [q]Z.

Similarly as in Proposition 4, from this left-linear grammar we can obtain an
NFA for Acc(Q) featuring |Q| · (|Γ | + 1) + 1 many states.

The right-linear grammar for Co-Acc(Q) is also built similarly as GCo-Acc(q)

in Theorem 2. We enlarge again the terminal alphabet by [Q], and we add a new
nonterminal S which will be the start symbol. Then, we have the same rules (5)
to (8) and additional rules S −→ [p]p, for all p ∈ Q. As in Proposition 4, this
right-linear grammar can be converted to an NFA having at most |Q|+2 states.

From the two obtained NFA, an NFA N for Acc(Q) ∩ Co-Acc(Q) can be
constructed, featuring (|Q|·(|Γ |+1)+1)(|Q|+2) = |Q|2(|Γ |+1)+|Q|(2|Γ |+3)+2
many states. Now, notice that P (M) can be obtained by deleting the initial
symbols [q] from every string in L(N). Thus, by simply substituting in N the
initial transitions taking place on [q] with λ-transitions, we get an NFA for
P (M) with |Q|2(|Γ | + 1) + |Q|(2|Γ | + 3) + 2 states. ⊓⊔

Our construction in Theorem 5 is the best possible. In fact, we are able to
show an optimal lower bound of Ω(|Q|2|Γ |). To achieve this, we start by in-
troducing a simple language with the corresponding accepting PDA, and study
the lower limit to the size of NFA for the pushdown store language of the given
PDA. The result is contained in the following lemma:
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Lemma 6. For a fixed m ≥ 2, let the single word language Lm = {am2

b}.
Then, Lm can be accepted by a PDA Mm,1 of size O(m) such that every NFA
accepting P (Mm,1) needs at least m2 + 3 states.

Proof. Consider the PDA Mm,1 = 〈Q, {a, b}, {Z ′
0, Z0, Z1}, δ, q0, Z

′
0, {q2m+1}〉,

where Q = {q0, q1, . . . , q2m+1} and δ is defined by

δ(q0, λ, Z ′
0) = {(q0, Z0Z

′
0)},

δ(q0, a, Z0) = {(q1, Z1Z0)},
δ(qi, a, Z1) = {(qi+1, Z1Z1)}, for 1 ≤ i ≤ m − 2,

δ(qm−1, a, Z1) = {(q0, Z0Z1)},
δ(q0, b, Z0) = {(qm, λ)},
δ(qi, λ, Z1) = {(qi, λ)}, for m ≤ i ≤ 2m − 1,
δ(qi, λ, Z0) = {(qi+1, λ)}, for m ≤ i ≤ 2m − 1,

δ(q2m, λ, Z ′
0) = {(q2m+1, Z

′
0)}.

The PDA accepts by entering the accepting state q2m+1. To determine L(Mm,1),
we observe that every a of the input is encoded and written on the pushdown:
every mth a is encoded as Z0, while the remaining a’s as Z1. A transition
processing b is possible only if in the input there has been a number of a’s which
is a multiple of m. In this case, the automaton switches to state qm. When
entering qm for the first time, the topmost symbol is Z1 and the pushdown
contains, over the bottom-of-pushdown symbol Z ′

0, occurrences of the block
Zm−1

1 Z0. By λ-transitions, the state q2m is only reached after deleting exactly
m blocks Zm−1

1 Z0. At this point, from q2m and by having Z ′
0 on the pushdown,

Mm,1 switches to the accepting state q2m+1. Thus, we obtain that L(Mm,1) =
Lm.

This reasoning gives the structure of the pushdown store language P (Mm,1).
If the input is accepted, the longest content of the pushdown store consists of
the symbol Z0 on top, followed by exactly m blocks Zm−1

1 Z0, plus the initial
pushdown symbol Z ′

0, i.e., Z0(Z
m−1
1 Z0)

mZ ′
0. Since at every step only one symbol

is added on the pushdown or deleted from it, every suffix of this word also
belongs to the pushdown store language. Moreover, in all computations the
pushdown is never empty, so λ does not belong to P (Mm,1). Thus, we conclude
that P (Mm,1) = suf(Z0(Z

m−1
1 Z0)

mZ ′
0) \ {λ}.

An NFA accepting P (Mm,1) needs exactly m2 +3 states since this language
is finite and its longest word has length m2 + 2. ⊓⊔

This result is then generalized to get the desired lower bound of Ω(|Q|2|Γ |).
More precisely, we consider PDA for the finite languages Lm,k = {(am2

bm2

)k/2c}

for even k, and Lm,k = {(am2

bm2

)(k−1)/2am2

c} for odd k ≥ 3, and prove lower
limits to the size of NFA for their pushdown store languages. Results are con-
tained in the following lemma:

Lemma 7. For m, k ≥ 2, there exist PDA Mm,k = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 ac-
cepting Lm,k such that |Q| = 2m + 2 and |Γ | = 2k + 1. Moreover, any NFA for
P (Mm,k) needs at least k · m2 + 3 ∈ Ω(|Q|2|Γ |) states.
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Proof. For m, k ≥ 2, let the PDA Mm,k = 〈Q, {a, b, c}, Γ, δ, q0, Z
′
0, {q2m+1}〉,

where Q = {q0, q1, . . . , q2m+1}, Γ = {Z ′
0, Z0, Z1, . . . , Z2k−1}, and δ is defined by

δ(q0, λ, Z ′
0) = {(q0, Z0Z

′
0)},

δ(q0, a, Zi) = {(q1, Zi+1Zi)}, for i < 2k − 1, i mod 4 ≡ 0,

δ(q0, b, Zi) = {(q1, Zi+1Zi)}, for i < 2k − 1, i mod 4 ≡ 2,

δ(qj , a, Zi) = {(qj+1, ZiZi)}, for 1 ≤ j ≤ m − 2, i ≤ 2k − 1, i mod 4 ≡ 1,

δ(qj , b, Zi) = {(qj+1, ZiZi)}, for 1 ≤ j ≤ m − 2, i ≤ 2k − 1, i mod 4 ≡ 3,

δ(qm−1, a, Zi) =

{

{(q0, Zi−1Zi), (q0, Zi+1Zi)}, if i < 2k − 1, i mod 4 ≡ 1,

{(q0, Zi−1Zi)}, if i = 2k − 1,

δ(qm−1, b, Zi) =

{

{(q0, Zi−1Zi), (q0, Zi+1Zi)}, if i < 2k − 1, i mod 4 ≡ 3,

{(q0, Zi−1Zi)}, if i = 2k − 1,

δ(q0, c, Z2k−2) = {(qm, λ)},

δ(qj , λ, Z2i+1) = {(qj , λ)}, for 0 ≤ i ≤ k − 1, m ≤ j ≤ 2m − 1,

δ(qj , λ, Z2i) = {(qj+1, λ)}, for 0 ≤ i ≤ k − 1, m ≤ j ≤ 2m − 2,

δ(q2m−1, λ, Z2i) =

{

{(qm, λ)}, if 1 ≤ i ≤ k − 1,

{(q2m, λ)}, if i = 0,

δ(q2m, λ, Z ′
0) = {(q2m+1, Z

′
0)}.

This automaton accepts a word when ending up in the accepting state q2m+1.
To determine L(Mm,k), we can observe that every a and b of the input is encoded
and written on the pushdown: every mth symbol is encoded by a pushdown
symbol with even index and the remaining ones by one with an odd index. A
block of a’s needs to be followed by a block of b’s and vice versa; c follows the
last block. A transition by c is only possible if there have been exactly k blocks
of a’s and b’s in the input, each block with length multiple of m. In this case,
the automaton switches to state qm.

When entering state qm for the first time, the topmost symbol is Z2k−1 and
the pushdown contains occurrences of blocks of the form Zm−1

2i+1 Z2i on top of the
bottom-of-pushdown symbol Z ′

0. By λ-transitions, the state q2m is only reached
after deleting exactly m blocks Zm−1

2i+1 Z2i, for k− 1 ≥ i ≥ 0 in descending order.
At this point, from q2m and by having Z ′

0 on the pushdown, Mm,k switches

to the accepting state q2m+1. So, L(Mm,k) = {(am2

bm2

)k/2c} if k is even, and

L(Mm,k) = {(am2

bm2

)(k−1)/2am2

c} if k is odd.
The considerations above give the structure of the pushdown store language

P (Mm,k). If the input is accepted, the longest content of the pushdown store
consists of the symbol Z2k−2 on top, followed by exactly m blocks of Zm−1

2i+1 Z2i,
for k − 1 ≥ i ≥ 0, plus the initial pushdown symbol Z ′

0, i.e.:

Z2k−2(Z
m−1
2k−1Z2k−2)

m(Zm−1
2k−3Z2k−4)

m· · · (Zm−1
3 Z2)

m(Zm−1
1 Z0)

mZ ′
0.

Again, every suffix of this word, except λ, belongs to P (Mm,k), so

P (Mm,k) = suf(Z2k−2(Z
m−1
2k−1Z2k−2)

m(Zm−1
2k−3Z2k−4)

m· · · (Zm−1
1 Z0)

mZ ′
0) \ {λ}.
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An accepting NFA for P (Mm,k) needs exactly k·m2+3 states, since this language
is finite and its longest word has length k · m2 + 2. ⊓⊔

As a consequence of Theorem 5 and Lemma 7, we obtain that our construc-
tion of NFA for pushdown store languages is the best possible:

Theorem 8. Let M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA for
P (M) exists with O(|Q|2|Γ |) states. On the other hand, there exist infinitely
many PDA MQ,Γ of size O(|Q| · |Γ |) such that every NFA accepting P (MQ,Γ )
needs Ω(|Q|2|Γ |) states.

4 Pushdown Store Languages for Special Cases

Here, we consider restricted models of PDA for which we are able to provide
NFA for their pushdown store languages, whose size is strictly below the general
upper bound given in Theorem 5.

4.1 PDA which can never pop

As a first restriction, we consider PDA which never pop a symbol from the
pushdown. Thus, for such devices, once stored in the pushdown, symbols can
never be modified. It is easy to see that these PDA accept exactly the regular
languages. In what follows, given a PDA M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 of this kind,
we quickly outline the construction of an NFA for P (M) of size |Q| · |Γ | + 1.

It is not hard to see that, in this case, we have

P (M) = {u ∈ Γ ∗ | u ∈ Acc(q) and q ∈ F}.

Moreover, the left-linear grammars for Acc(q), with q ∈ F , given in Theorem
2 now drop type (1) and type (3) rules, and can be summarized in a single
left-linear grammar with terminal alphabet Γ , nonterminal alphabet Q × Γ ,
start symbol (q0, Z0), and the following rules:

(1) (p, Z) −→ (p′, Z ′)t, if there exists a ∈ Σ∪{λ} such that (p′, Z ′t)∈δ(p, a, Z)
(2) (q, Z) −→ Z, if q ∈ F.

From this left-linear grammar, we can easily obtain an NFA for P (M) with
|Q| · |Γ | + 1 states. This upper bound is also tight, as shown in the following
lemma:

Lemma 9. For m, k ≥ 2, there exist PDA Mm,k which can never pop having
m states and k pushdown symbols, for which every NFA for P (Mm,k) needs at
least k · m + 1 states.

Proof. For m, k ≥ 2, let the PDA M = 〈Q, {a, b}, Γ, δ, q0, Z0, {qm−1}〉, where
Q = {q0, q1, . . . , qm−1}, Γ = {Z0, Z1, . . . , Zk−1}, and δ is defined as follows.
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For even k and by letting X = {0, 2, 4, . . . , k − 2}, we set

δ(qj , a, Zi) = {(qj , ZiZi)}, for i ∈ X, 0 ≤ j ≤ m − 1,
δ(qj , b, Zi+1) = {(qj , Zi+1Zi+1)}, for i ∈ X, 0 ≤ j ≤ m − 1,
δ(qj , a, Zi+1) = {(qj , Zi+2Zi+1)}, for i ∈ X \ {k − 2}, 0 ≤ j ≤ m − 1,

δ(qj , b, Zi) = {(qj , Zi+1Zi)}, for i ∈ X, 0 ≤ j ≤ m − 1,
δ(qj , a, Zk−1) = {(qj+1, Z0Zk−1)}, for 0 ≤ j ≤ m − 2.

For odd k and by letting Y = {0, 2, 4, . . . , k − 1}, we define δ as

δ(qj , a, Zi) = {(qj , ZiZi)}, for i ∈ Y, 0 ≤ j ≤ m − 1, j is even,
δ(qj , b, Zi+1) = {(qj , Zi+1Zi+1)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is even,
δ(qj , a, Zi+1) = {(qj , Zi+2Zi+1)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is even,

δ(qj , b, Zi) = {(qj , Zi+1Zi)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is even,
δ(qj , b, Zk−1) = {(qj+1, Z0Zk−1)}, for 0 ≤ j ≤ m − 2, j is even,

δ(qj , b, Zi) = {(qj , ZiZi)}, for i ∈ Y, 0 ≤ j ≤ m − 1, j is odd,
δ(qj , a, Zi+1) = {(qj , Zi+1Zi+1)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is odd,
δ(qj , b, Zi+1) = {(qj , Zi+2Zi+1)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is odd,

δ(qj , a, Zi) = {(qj , Zi+1Zi)}, for i ∈ Y \ {k − 1}, 0 ≤ j ≤ m − 1, j is odd,
δ(qj , a, Zk−1) = {(qj+1, Z0Zk−1)}, for 0 ≤ j ≤ m − 2, j is odd.

Notice that M never pops a symbol from the pushdown, and accepts a word
when ending up in the accepting state qm−1. To give an idea of the dynamics of
M , we quickly describe the behavior on an input w ∈ L(M). Every symbol of w
is encoded and written on the pushdown. So, the pushdown store contains |w|+1
symbols at the end of an accepting computation. For an even k, transitions
guarantee that w consists of a concatenation of arbitrarily long a-blocks and
b-blocks, which starts with a (possibly empty) a-block, and then continues with
an alternation of non-empty b-blocks and non-empty a-blocks. There is only
one exception at the end of the string since, whenever M enters the state qm−1,
the input could be accepted. Moreover, the number of b-blocks is k

2 · (m− 1) or
k
2 ·m, while the number of a-blocks is at least k

2 · (m− 1)− 1 and at most k
2 ·m.

All this reasoning leads us to formally settle L(M). We define the set pre of a
regular expression or language as the set containing all prefixes of words of the
given language. So, we get that L(M) = ((a∗bb∗a)k/2)m−1pre((a∗bb∗a)k/2) for
even k.

We leave to the reader to work out the details for the construction of L(M)
for odd k; here, we give its final form. For odd k and odd m, we have

L(M) = (a∗bb∗a)(k−1)/2a∗((bb∗aa∗)(k−1)/2bb∗(aa∗bb∗)(k−1)/2aa∗)(m−1)/2−1

(bb∗aa∗)(k−1)/2bb∗pre((aa∗bb∗)(k−1)/2aa∗),

while for odd k and even m, we have

L(M) = (a∗bb∗a)(k−1)/2a∗((bb∗aa∗)(k−1)/2bb∗(aa∗bb∗)(k−1)/2aa∗)m/2−1

pre((bb∗aa∗)(k−1)/2bb∗).

The pushdown store language P (M) can be entailed by examining the encoding
in the pushdown store of accepted input words. on The first k blocks are encoded
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by Z0 to Zk−1 if the word begins with an a. Otherwise, there exist only k − 1
blocks that are encoded by Z1 to Zk−1. For the next k blocks the first one starts
with an a. So, this block is encoded by Z0 to Zk−1. This is repeated for the
next k blocks and so on. Since the pushdown is never empty, the empty word
λ does not belong to P (M). We obtain the language

P (M) = suf((Zk−1Z
∗
k−1 · · ·ZiZ

∗
i · · ·Z1Z

∗
1Z∗

0Z0)
m) \ {λ}.

Notice that P (M) contains the word (Zk−1 · · ·Z2Z1Z0)
m whose length is k ·

m, and that all the other words in P (M) may be accepted on an NFA by
“elaborating” on an accepting computation on this word; details may be easily
filled. Then, it is not hard to see that k ·m+1 states are necessary and sufficient
for an NFA to accept P (M). ⊓⊔

Altogether, for PDA which can never pop, we get that |Q| · |Γ |+1 is a tight
bound for the size of NFA accepting their pushdown store languages.

4.2 Stateless PDA

Next, we consider PDA which have one state only, whose acceptance policy is
clearly by empty pushdown (i.e., they accept by completely sweeping the input
and emptying the pushdown store [10, 15]). Such devices are also called stateless
PDA. It is known (see, e.g., [10]) that their deterministic version characterizes
the class of simple languages. Clearly, for stateless PDA the upper bound of
Theorem 5 reduces to 3 · |Γ |+6. However, we are now going to provide a better
upper bound.

Let us apply the constructions in the proof of Theorem 2 to a stateless PDA
M = 〈{q0}, Σ, Γ, δ, q0, Z0, ∅〉. For Acc(q0), we can take 〈Γ 〉 = {〈Z〉 | Z ∈ Γ} as
set of nonterminal symbols, and consider rules of the following form:

(1) 〈Z〉 −→ 〈Z ′〉, if there exists x ∈ Σ∗ such that (q0, Z) ⊢x (q0, Z
′)

(2) 〈Z〉 −→ 〈Z ′〉t, if there exists a ∈ Σ ∪ {λ} such that (q0, Z
′t) ∈ δ(q0, a, Z)

(3) 〈Z〉 −→ λ, if there exists x ∈ Σ∗ such that (q0, Z) ⊢x (q0, λ)
(4) 〈Z〉 −→ Z.

This leads to an NFA of size at most |Γ | + 1. For the set Co-Acc(q0), we only
have to consider rules of the form

(5) q0 −→ Zq0, if there exists x ∈ Σ∗ such that (q0, Z) ⊢x (q0, λ)
(6) q0 −→ λ.

An equivalent NFA can be trivially constructed, with exactly one state. Thus,
an NFA for P (M) = Acc(q0) ∩ Co-Acc(q0) needs at most |Γ | + 1 states. The
optimality of this bound is shown as follows:

For k ≥ 0, we consider the following family of stateless (deterministic) PDA
Mk = 〈{q0}, {a, b}, {Z0, A1, A2, . . . , Ak}, δ, q0, Z0, ∅〉 with

δ(q0, a, Z0) = {(q0, A1Z0)}
δ(q0, a, Ai) = {(q0, Ai+1Ai)}, for 1 ≤ i < k
δ(q0, b, Z0) = {(q0, λ)}
δ(q0, b, Ai) = {(q0, λ)}, for 1 ≤ i ≤ k.
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We observe that L(Mk) = {aibi+1 | i ≤ k}. Hence, it is not difficult to see that

P (Mk) = {λ, Z0, A1Z0, A2A1Z0, . . . , Ak · · ·A2A1Z0}.

Clearly, for any k ≥ 0, we have that any NFA accepting P (Mk) needs exactly
k + 2 states, whereas the size of the pushdown alphabet is k + 1.

Altogether, we get the following

Theorem 10. Let M = 〈{q0}, Σ, Γ, δ, q0, Z0, ∅〉 be a stateless PDA. Then, ev-
ery NFA for P (M) needs at most |Γ |+1 states. Moreover, for any k ≥ 0, there
exists a stateless PDA Mk having |Γk| = k + 1 pushdown symbols, for which
every NFA for P (Mk) needs at least k + 2 = |Γk| + 1 states.

4.3 Counter machines

A counter machine (see, e.g., [9, 15]) is defined as a traditional PDA with the
restriction that the pushdown alphabet contains only two symbols, namely,
the usual bottom-of-pushdown symbol Z0, which can never be pushed, and a
distinguished symbol Z. For the sake of simplicity, we also assume that Z0

can never be popped. This assumption does not affect our results at all, but
avoids a lot of tedious technicalities. So, the pushdown store language of a
counter machine is a subset of Z∗Z0 (see also [12]). As an example, the PDA
in Example 1 is actually a counter machine.

We are going to show that the size of NFA accepting the pushdown store
language of counter machines is linear in |Q| and not quadratic as proved in
Theorem 5 for general PDA. Moreover, we will show the optimality of such a
size bound. Let us begin by observing the following easy fact:

Lemma 11. Given a counter machine M , then P (M) is either Z∗Z0 or Z≤hZ0

for a fixed h ≥ 0.

For a counter machine having pushdown store language of the form Z≤hZ0,
we are able to bound h by the number of finite control states:

Theorem 12. Given the counter machine M = 〈Q, Σ, {Z0, Z}, δ, q0, Z0, F 〉, let
P (M) = Z≤hZ0 for a fixed h ≥ 0. Then, h ≤ |Q|.

Proof. Let us assume that h > |Q|. We are going to prove that P (M) = Z∗Z0,
thus contradicting the supposed finiteness of P (M). Consider an accepting com-
putation Π of M on an input string x ∈ L(M), along which the pushdown
content ZhZ0 appears.

To deal with the “hardest” situation, we assume that ZhZ0 appears during
a branch of Π at the end of which the pushdown store is emptied. So, more
formally, Π has a branch of computation with the following features:

(1) it starts from a configuration with pushdown content ZZ0,
(2) it reaches a configuration where the pushdown content ZhZ0 shows up,
(3) it starts from such a configuration and ends in a configuration with push-

down content ZZ0,
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(4) it never finds itself in a configuration where the pushdown contains Z0 only.

At the end of this proof, we will fix the case in which (3) does not hold within Π.
We call ascending (resp., descending) the sub-branch between breakpoints (1)
and (2) (resp., (2) and (3)). During the ascending sub-branch, M being in
normal form, there must exist a sequence of configurations having the form
{(q(i), x(i), ZiZ0)}

h
i=1. Since h > |Q|, there exist 1 ≤ r < s ≤ h such that

q(r) = q(s) = q and x(r) = wx(s), for some w ∈ Σ∗. It is easy to see that, upon
consuming the substring w, M increases the pushdown content by the factor
Zt with 0 < t = s − r.

For the descending sub-branch, again due to the normal form, we get the
existence of a sequence of configurations of the form {(p(i), y(i), Zh−iZ0)}

h−1
i=0 .

Since h > |Q|, there exist 0 ≤ r′ < s′ ≤ h − 1 such that p(r′) = p(s′) = p
and y(r′) = w′y(s′), for some w′ ∈ Σ∗. Now, upon consuming w′, M deletes the
factor Zt′ from the pushdown store, with 0 < t′ = s′ − r′.

All this reasoning enables us to factorize the input string as x = uwzw′v,
on which the accepting computation Π presents the following breakpoints:

(q0, uwzw
′

v, Z0)⊢
∗(q, wzw

′

v, Z
r
Z0)⊢

∗(q, zw
′

v, Z
r+t

Z0)⊢
∗

⊢
∗(p, w

′

v, Z
h−r

′

Z0)⊢
∗(p, v, Z

h−r
′
−t

′

Z0)⊢
∗(f, λ, γ), with f ∈ F, γ ∈ Γ

∗

.

Fig. 1. Breakpoints in the accepting computation on x.

For reader’s ease of mind, we assume that both w and w′ are not the empty
string; however, situations in which this does not hold can be easily dealt with.
Now, the idea is to construct from x a family of strings in L(M) by suit-
ably pumping factors w and w′, whose accepting computations, “originating”
from Π, will display all the strings Z∗Z0 as pushdown contents. By starting
from the original accepting computation Π of M on x, we obtain accepting
computations for strings uwα+1zw′β+1v, with α = t′γ, β = tγ, and any γ > 0,
as follows (the reader may follow the birth of these accepting computations by
scanning Fig. 1):

– processing uwα+1: After reading u, M is in the state q and has ZrZ0

as pushdown content. Processing the first occurrence of w leaves M in q
again with pushdown content Zr+tZ0. Notice that, along this processing, Z
is always seen on top of the pushdown due to feature (4). Clearly, we can
repeat such processing α times upon consuming the subsequent factor wα,
and finally reach the state q with pushdown content Zs+αtZ0.

– processing z: This branch of computation takes place exactly as in Π, but
starting with the pushdown store at a higher level. Precisely, we start from
the state q with pushdown content Zs+αtZ0, and end in p with pushdown
content Zh−r′+αtZ0.

– processing w′β+1: After reading the first occurrence of w′, M is again
in the state p with pushdown content Zh−r′+αt−t′Z0. We can repeat this
branch of computation on the subsequent factor w′β provided that we always
have Z on top of the pushdown, which is always the case. Indeed, upon
consuming w′β , we delete a number of Z symbols which is βt′ = tγt′ = αt,
thus reducing the pushdown content to Zh−r′−t′Z0 = Zh−s′Z0. Notice that,
at this point, M is again in the state p.
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– processing v: This branch of computation takes place exactly as in Π,
starting from the configuration (p, v, Zh−s′Z0) and ending in a final state.

The reader may easily verify that along the above constructed computation, the
highest pushdown content is Zh+tγt′Z0, reached at the end of the ascending sub-
branch. Since this reasoning holds for any γ > 0, we get that there cannot exist
any given constant bounding the pushdown height of M along every accepting
computation. This clearly implies that P (M) = Z∗Z0.

As a final fixing, we discuss the case in which feature (3) does not hold
within Π. In this case, there exists a branch of computation in Π which: (i)
starts from a configuration with ZZ0 as pushdown content, (ii) reaches a con-
figuration with ZhZ0 as pushdown content, but then (iii) never empties the
pushdown. The sub-branch from (i) to (ii) again guarantees the existence of a
factor w in x upon which M starts and end in the same state q, adding on the
pushdown a factor Zt, for t > 0. So, we can “pump the computation” of M on
this factor and obtain accepting computations on strings uwγv with pushdown
height h + γt. Indeed, after reading the last occurrence of w, M is in the state
q and, while processing v, the symbol Z is always seen as top of the pushdown.
So, M will end up in a final state, as in the original computation Π for x. ⊓⊔

As a consequence of Theorem 12, we are able to provide the exact size cost
of accepting pushdown store languages of counter machines by NFA:

Theorem 13. Let M be a counter machine with state set Q. Then, P (M) is
accepted by some NFA with size bounded by |Q| + 2. Moreover, this size bound
is optimal.

Proof. By Lemma 11 and Theorem 12, we learn that either P (M) = Z∗Z0 or
P (M) = Z≤hZ0 with h ≤ |Q|. In the former case, a 2-state NFA exists and
the upper bound is clearly satisfied. In the latter, P (M) is accepted by an NFA
with (|Q| + 2) states.

Concerning the optimality, we consider the two words language L = {λ, am},
for a fixed m > 0. It is not hard to design a (deterministic) counter machine M
which accepts L with m states. Basically, M has states q0, q1, . . . , qm−1, where q0

is both the initial and unique final state, and transition function

δ(q0, a, Z0) = {(q1, ZZ0)}

δ(qi, a, Z) = {(qi+1, ZZ)}, for 1 ≤ i ≤ m − 2

δ(qm−1, a, Z) = {(q0, ZZ)}.

The reader may easily verify that: on strings of length less than m, M rejects by
ending in a non-accepting state, on strings of length greater than m, M rejects
by being blocked in q0 after consuming m symbols. would be to have Z0) On
the other hand, processing am exactly leaves M in q0 after completely sweeping
the input, so we accept.

At this point, we only need to observe that m + 2 states are necessary and
sufficient to accept P (M) = Z≤mZ0 by a NFA. ⊓⊔
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5 Computational Complexity of Decidability Questions

In this section, we study the complexity of deciding some properties of P (M)
for a given PDA M , namely, finiteness and being subset of Z∗Z0. These two
questions can be answered by constructing the NFA N for P (M) and then
deciding, respectively, finiteness or inclusion in Z∗Z0 for L(N). We show that
the construction of N as well as the decision of both questions can be done
in deterministic polynomial time with respect to the size of M . On the other
hand, we also prove the P-completeness of these two decision problems. As a
consequence, we get the P-completeness of deciding whether a PDA is of a
certain “nature.” For a background on complexity theory, we refer to, e.g., [4,
15].

Lemma 14. Let M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 be a PDA. Then, an NFA for
P (M) can be constructed in deterministic polynomial time.

Proof. We will show that the construction given in Theorem 5 can be done
in polynomial time with respect to the size of M . Let us first take a close
look at the construction of the set Acc(Q). We have to consider every pair
(p, Z) ∈ Q × Γ and, in particular, to test the existence of x ∈ Σ∗ such that
(p, Z) ⊢x (p′, Z ′) for some other pair (p′, Z ′) ∈ Q× (Γ ∪{λ}). As recalled in the
proof of Theorem 2, this test is in essence an instance of the emptiness problem
for context-free languages, which is known to be decidable in polynomial time.
Since there are at most |Q|2(|Γ | + 1)2 such pairs, which is polynomial in the
size of M , we obtain that the NFA for Acc(Q) can be constructed in polynomial
time. A similar reasoning holds for the NFA for Co-Acc(Q). At this point, the
NFA for Acc(Q) ∩ Co-Acc(Q) plus deleting the first symbol of every word in
this intersection can be done in polynomial time as well. ⊓⊔

This is the first step to prove the P-completeness of the above mention
decision problems on pushdown store languages:

Theorem 15. Given a PDA M , it is P-complete to decide whether: (i) P (M)
is a finite set. (ii) P (M) is a finite set of words having at most length k, for a
given k ≥ 1.

Proof. Let us first show (i). The problem belongs to P: by Lemma 14, an NFA
N for P (M) can be built in polynomial time. Then, the infiniteness of L(N)
can be decided in NLOGSPACE [17]. Since NLOGSPACE is closed under com-
plementation [16, 20], we get that the finiteness of L(N) can be decided in
NLOGSPACE ⊆ P as well.

To show the completeness of the problem, we log-space reduce to it the
emptiness problem for context-free grammars, which is known to be P-complete
due to [18]. Given a context-free grammar G = 〈N, T, S, R〉, let $ /∈ T be a new
terminal symbol, and S′, S′′ /∈N be new nonterminals. We define the context-free
grammar

G′ = 〈N ∪ {S′, S′′}, T ∪ {$}, S′, R ∪ {S′ → SS′′, S′′ → S′′$ | $}〉.
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Observe that L(G′) = L(G)$+. From G′, we construct an equivalent PDA
M ′ using the standard construction [15], where a stateless PDA is built which
mimics a left derivation of G′. More precisely, let M ′ = 〈{q}, T ∪ {$}, N ∪
T ∪ {S′, S′′, $}, δ, q, S′, ∅〉. Observe that G′ is not in Greibach normal form, but
this is not essential for the construction in [15] since we can define δ to have
the following transitions: (q, γ) ∈ δ(q, λ, A), if A → γ belongs to G′ for all
A ∈ N ∪ {S′, S′′} and γ ∈ (N ∪ T ∪ {S′, S′′, $})∗, and (q, λ) ∈ δ(q, a, a) for all
a ∈ T ∪ {$}. Moreover, M ′ can be converted to an equivalent PDA which is in
normal form and accepts by accepting states. This conversion increases the size
of M ′ at most linearly. Due to the left-recursive rule S′′ → S′′$, we obtain that
P (M ′) is finite if and only if L(G) is empty.

To conclude the proof of (i), we have to make sure that our reduction can be
done in deterministic logarithmic space. We quickly notice that the only possibly
costly operation is the construction from [15] for the PDA M ′. However, this
construction gives that M ′ has one state, |N |+ |T |+ 3 pushdown symbols, and
|R| + 3 + |T | + 1 transitions. Thus, the size of M ′ is the order of the size of G.
Altogether, the reduction can be done in deterministic logarithmic space.

The proof of (ii) is similar. First, the problem belongs again to P: We con-
struct an NFA N for P (M) and then have to test whether P (M) ⊆ Γ≤k. This
question is equivalent to test whether P (M) ∩ Γ>k is empty. For the set Γ>k

we can construct a DFA with k + 2 states. Thus, an NFA N ′ accepting the
intersection is of size O(k|Q|2|Γ |2). Finally, we test the emptiness of N ′ which
is known to be decidable in NLOGSPACE [17]. Altogether, the problem can be
decided in polynomial time.

The P-completeness of the problem can be shown analogously as in (i). For
a given context-free grammar G we construct again a PDA M ′ and observe that
P (M ′) is a finite set of words having at most length k if and only if L(G) is
empty. ⊓⊔

A PDA M is of constant height whenever there exists a constant k ≥ 1 such
that, for any word in L(M), there exists an accepting computation along which
the pushdown store never contains more than k symbols [2, 5]. As a consequence
of Theorem 15, we get the P-completeness of testing constant height property
for unambiguous PDA, i.e., presenting at most one accepting computation on
any input:

Corollary 16. Given an unambiguous PDA M , it is P-complete to decide
whether: (i) M is a constant height PDA. (ii) M is a PDA of constant height
k, for a given k ≥ 1.

The next P-completeness result can be shown similarly as Theorem 15.

Theorem 17. Given a PDA M , it is P-complete to decide whether P (M) is a
subset of Z∗Z0.

Proof. To show that the problem belongs to P, we construct again an NFA for
P (M). Then we have to test whether there is exactly one Z ∈ Γ such that
P (M) ⊆ Z∗Z0. For every Z ∈ Γ such a test can be performed in NLOGSPACE
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[17]. Altogether, we have to perform at most |Γ | such tests. Thus, we obtain
that deterministic polynomial time is sufficient to decide the problem.

To show the P-completeness, we use a similar approach as in Theorem 15.
Let G = 〈N, T, S, R〉 be a context-free grammar. Let $, & /∈ T be new symbols
and S′, S′′ /∈ N be new nonterminals. Then, we define another context-free
grammar

G′ = 〈N ∪ {S′, S′′}, T ∪ {$, &}, S′, R ∪ {S′ → SS′′, S′′ → S′′$ | S′′& | $}〉,

and observe that L(G′) = L(G)${$, &}∗. From G′ we construct again an equiva-
lent PDA M ′ using the standard construction and, similar to the above consid-
erations, we obtain that M ′ is a counter machine if and only if L(G) is empty.
Furthermore, the reduction can be done in deterministic logarithmic space. ⊓⊔

As a consequence, we get the P-completeness of deciding whether a PDA
is essentially a counter machine, i.e., in all of its accepting computations the
pushdown storage is used as a counter:

Corollary 18. Given a PDA M , it is P-complete to decide whether M is es-
sentially a counter machine.
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