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Abstract

Image motion contains potential cues about the material properties of objects. In earlier work, we

proposed motion cues that could predict whether a moving object would be perceived as shiny or

matte. However, whether the visual system uses these cues is still uncertain. Herein, we use the

tracking of eye movements as a tool to understand what visual information observers use when

engaged in material perception. Observers judged either the gloss or the speed of moving

blobby shapes in an eye tracking experiment. Results indicate that during glossiness judgments,

participants tend to look at gloss-diagnostic dynamic features more than during speed judgments.

This suggests a fine tuning of the visual system to properties of moving stimuli: Task relevant

information is actively singled out and processed in a dynamically changing environment.
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Introduction

Saccadic eye movements bring different parts of the visual environment onto central vision,
so that it can be analyzed in further detail. This strategy maximizes information gain, for
example, during visual search (e.g., Najemnik & Geisler, 2005), and minimizes local uncer-
tainty, for example, during shape recognition (e.g., Renninger, Verghese, & Coughlan, 2007).
Eye movements are influenced not only by stimulus saliency (as in these examples) but also
by task demands. In fact, there is a large body of evidence showing that based on the specific
patterns of eye movements, it is possible to identify which task an observer was involved with
(for a review, see Boisvert & Bruce, 2016), and visual sampling strategies seem to be opti-
mized for providing information to guide our actions (e.g., Hayhoe, Shrivastava, Mruczek,
& Pelz, 2003; Land, Mennie, & Rusted, 1999; for a review, see Hayhoe & Ballard, 2005): For
example, when observers move in a virtual reality environment, fixations tend to land on
different regions of identical objects, depending on whether participants were asked to
approach or avoid the object (Rothkopf, Ballard, & Hayhoe, 2007). Similarly, when looking
at pictures, observers fixated different regions of natural objects depending on whether they
were asked to categorize, mimic to open, lift, or use them (e.g., Belardinelli, Barabas,
Himmelbach, & Butz, 2016; Belardinelli, Herbort, & Butz, 2015). Thus, tracking eye move-
ments can provide insights as to what visual information observers might use when engaged
in different perceptual tasks.

In a recent work from our group, we used this approach to show that the maximum
luminance is the most diagnostic value for reflectance difference of an object’s luminance
distribution and that observers use this feature when judging the lightness of surfaces
(Toscani, Valsecchi, & Gegenfurtner, 2013b, 2017). We initially speculated that observers
would base their lightness judgments on the brightest regions of the targets because these
regions provide an optimal estimate for the surfaces’ reflectance (Adelson, 2000; Gilchrist,
2006), and such a strategy could serve as a heuristic to achieve a stable estimate of lightness
independent of knowledge about scene geometry, shape, or illumination. Interestingly, we
found this heuristic to vary with the properties of the stimulus (Toscani, Valsecchi, &
Gegenufurtner, 2013c): For glossy surfaces, observers tended to fixate not the brightest
region (i.e., the highlight) but instead the regions directly adjacent to the specular highlight
(Toscani, Valsecchi, & Gegenfurtner, 2013a). This strategy makes, in fact, perfect sense
because specular reflections are not diagnostic for an object’s surface color and lightness:
The color and intensity of a specular highlight depend, to a large extent, on the illumination
properties rather than on the surface reflectance (albedo or color). Thus, the strategy that we
found the visual system to use for sampling was optimized for the task at hand and the
objects’ properties, focusing on regions of objects which contain the most task-relevant
information. What might be the mechanism behind this kind of optimization? An object
might first be identified in peripheral vision to roughly estimate its properties (e.g., its
overall shape or surface reflectance category). This initial analysis may guide subsequent
fixations to the most informative regions and more fine-grained analysis. Such a sequential
process could be particularly challenging for the visual system when analyzing dynamic
scenes where task relevant information can change (position and quality) over time, yet
most of the visual information we encounter is changing dynamically. In this experiment,
we investigate how observers’ sampling strategies vary with the demands of the perceptual
task in dynamic scenes.

Specifically, we track eye movements in order to investigate whether observers use
material-specific motion cues when judging whether an object is glossy or not (Doerschner
et al., 2011). Doerschner et al. (2011) proposed three motion cues (optic flow divergence,
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coverage, and three-dimensional [3D] shape reliability) that could predict whether a moving
object would be perceived as shiny or matte. If these cues are, in fact, used by the visual

system, observers should look at regions where the cues are prevailing or are particular
diagnostic (e.g., regions of high divergence in the optic flow). For visual tasks that involve

other judgments, such as perception of speed, a saccadic sampling strategy should maximize
other visual cues, such as local motion energy, as speed estimates are based on the pooling of

local motion signals (Sekuler, 1992) as sensed by elementary motion detectors (Clifford,
Beardsley, & Vaina, 1999). To test whether observers’ sampling strategies vary with the

demands of the perceptual task in dynamic scenes, we had observers perform gloss and
speed judgments on the same stimuli. The results of our experiment show that in the

gloss—but not the speed—judgments task, observers tend to dynamically direct their
gaze on the regions where motion cues for glossiness are expressed, that is, the presence of

these cues at gaze position in space and time can be used to classify the task. This suggests
that the task-dependent sampling strategy of the visual systems goes beyond simply directing

attention to different parts of objects or scenes, but that it is also fine-tuned to the dynamic
properties of the environment.

Methods

Participants

Ten naive observers from the Justus-Liebig University of Giessen volunteered to take part in

the experiment. They all had normal or corrected-to-normal visual acuity. All gave written
informed consent in accordance with the Code of Ethics of the World Medical Association

(Declaration of Helsinki). The experiments were approved by the local ethics committee
(approval number LEK 2009-0008).

Stimuli

Stimuli were four 3D shapes, generated by perturbing a unit geosphere primitive (Figure 1
(a)) with five sine waves of different orientations and wavelengths. This type of object has

been extensively used in material perception (e.g., Adams, Kerrigan, & Graf, 2016;
Cholewiak & Fleming, 2013; Cholewiak, Kunsberg, Zucker, & Fleming, 2014; Cholewiak,

Vergne, Kunsberg, Zucker, & Fleming, 2015; Doerschner et al., 2011; Fleming, Torralba, &
Adelson, 2004; Muryy, Fleming, & Welchman, 2016; Muryy, Welchman, Blake, & Fleming,

2013; Norman, Todd, & Orban, 2004; Toscani et al., 2017).
All objects were illuminated by the Ueno-Shrine Lightprobe (Debevec, 1998) and ren-

dered using the software Gratin (Vergne & Barla, 2015). For each shape, we generated
rotations around the vertical axis at a speed of 0.067 degrees per frame in the slow condition

and 0.134 degrees per frame in the fast condition (for 270 frames in total).
Shapes were rendered either as a mirror reflecting surface or were diffusely reflecting and

textured. The latter ones were generated by sticking a specular reflection pattern to the

object’s surface, so that for any frame in the motion sequence, the patterns on the surface
would be consistent with specular reflections of the surrounding environment (looking

shiny). However, when viewed in motion, the patterns moved with the surface, as if they
were painted on, eliciting the percept of a matte surface (Doerschner et al., 2011; Yilmaz &

Doerschner, 2014).
In order to prevent a potential ceiling effect in the tasks described here, all images were

contrast reduced (by a factor of 2) and embedded in Brownian noise with 1/f^2 spectrum.
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Apparatus

We used the psychtoolbox-3 software (Kleiner et al., 2007) working on MATLAB (http://

www.mathworks.com) to display the rendered movies on an Eizo CG223W 10 bit LCD

monitor. We linearized the monitor according to standard methods (e.g., Hansen &

Gegenfurtner, 2013).

Procedure and Task

Participants sat in a dark room, with their heads stabilized by a chinrest with 38 cm distance

between forehead and the center of the screen. This specific distance was chosen in order

to produce large retinal projections of the stimuli, which was needed to reveal potential

systematic local differences in gaze allocation (similar to Toscani, Zdravkovi�c, &

Gegenfurtner, 2016). To familiarize participants with the tasks, the experiment begun with

a short demonstration. Two object pairs were presented in a 2� 2 arrangement around the

center of the screen, and observers were asked to indicate which of the two pairs (top or

bottom) contained objects with different rotation speeds (in speed task demonstration) or to

indicate which of the two pairs has objects made of different materials (in the gloss task

demonstration). The stimuli for these demonstrations were the same as those in the exper-

iment, but the images were not degraded by a dynamic noise pattern.
After the demonstration, the eye tracker was calibrated (see section “Eye tracking

procedure”). The experiment was separated into two blocks: one for speed and one for

gloss judgments. Each block consisted of 16 trials (4 objects� 2 rotation speeds� 2 materi-

als). Each trial started with a fixation on the center of the screen where the eye tracker

calibration was checked and if necessary repeated. After a key press from the participant,

the stimulus appeared in one of the four possible locations (four corners of the screen)

selected at chance, so that participants had to actively shift their gaze from the center of

Figure 1. Stimuli. (a) Example shape embedded in noise. (b) Optic flow field for the four classes of stimuli:
matte-textured, glossy, fast, and slow. The direction of the arrows indicates the local direction of the flow,
the length its energy. In the glossy examples, there is more variability in the local directions, indicating higher
divergence than in the matte-textured stimuli. For fast stimuli, the arrows are longer, indicating that these
stimuli had higher motion energy. Sample movies are provided in Supplementary Materials.
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the screen towards the stimulus. Each motion sequence lasted 4.5 seconds (270 frames). Note

that during the first and last 10 frames of the animations, the stimulus faded in and out,

respectively. We found in pilot trials that this fading made the stimulus appearance more

pleasant and caused less strain to the eye. Participants indicated via button press the speed

(fast or slow, speed block) or the glossiness (glossy or matte, material block). They were

instructed to free their gaze during trials after the fixation period.

Eye Tracking Procedure

Gaze position signals were recorded with a head mounted eye tracker (EyeLink II; SR

Research, Ottawa, ON), sampling at 500 Hz. At the beginning of each experiment, the eye

tracking system was calibrated. If the validation procedure revealed a mean error bigger than

0.4� visual angle, the calibration was repeated. At the beginning of each trial, the calibration

was reexamined. If the error was more than 1� visual angle, a new calibration was performed;

otherwise, a drift correction was applied.

Analyses

We defined two predictors that would entail the information necessary to perform the respec-

tive tasks. We first computed optic flow for each frame of our image sequences (Doerschner

et al., 2011; Gautama & Van Hulle, 2002). We chose motion energy, computed as the norm

of the optic flow field vectors, as a candidate predictor for speed judgments. Figure 1(b)

shows the optic flow field for one frame for each of the four classes of stimuli, and here

energy corresponds to the length of the vectors (i.e., red arrows): Fast stimuli have higher

energy. Following our previous work (Doerschner et al., 2011), we choose divergence as a

candidate predictor for gloss judgments. We singled out this measure (Doerschner et al.,

2011; Yilmaz & Doerschner, 2014) because it is intuitive to understand and easy to imple-

ment. Essentially, it provides a measure of how much the direction of vectors in the flow field

locally deviate from one to another. For a matte, rotating (around the vertical axis) shape,

texture patterns move together (more or less homogenously) with the surface to which they

are attached and there is little divergence in the optic flow. Conversely, a specular object

generates much higher divergence in the flow field, as specular flow does not depend primar-

ily on the object motion but on the undulations of the 3D surface (i.e., its curvature; see

Dovencioglu, Ben-Shahar, Barla, & Doerschner, 2017; Koenderink & van Doorn, 1980).

This is also illustrated in Figure 1(b), that is, the direction of the optic flow, as indicated by

the red arrows, is more uniform in the matte than in the glossy stimuli. As we were not

interested in the direction of divergence, but rather its magnitude, we use the latter (i.e., the

absolute value of divergence) in the following analyses.
In a subsequent step, we tested whether these predictors could discriminate between our

stimulus classes. In our previous work, divergence was computed over the entire frame

(Doerschner et al., 2011); here, we were interested in the information surrounding the gaze

position on the image. Thus, we ran a simulation to test whether local information from

randomly chosen small circular portions of our stimuli (�1.5� of visual angle radius) were

enough to tell apart two classes of stimuli (glossy vs. matte & fast vs. slow) based on energy

and divergence. We sampled 100 circular patches for each stimulus class, randomizing the

position in space and time. For each of the patches, we averaged local energy and divergence.

Then, we ran a linear classification analysis to test whether samples from the different stim-

ulus classes could be linearly separated based on the predictors. We trained the classifier with

Toscani et al. 5



a leave-one-out procedure to prevent for overfitting (Milojevic, Ennis, Toscani, &

Gegenfurtner, 2018; Toscani et al., 2017; Wiebel, Toscani, & Gegenfurtner, 2015).
Lastly, we used logistic regression to predict the task (speed or gloss judgments) based on

local information at gaze position. Specifically, we related each gaze sample to its corre-

sponding stimulus frame in time and we extracted local energy and divergence within a circle

surrounding the gaze position on the image (�1.5� of visual angle radius), then we averaged

across the circle, and then, across trials. Thus, for each trial, we had one value for energy and

one for divergence. Additional independent variables were speed (slow vs. fast) and gloss

(matte vs. gloss). The dependent variable was probability of the task involving speed judgments

(vs. gloss judgments). For each stimulus class, we z-transformed energy and divergence so that

results could not be driven by stimulus difference, and regression coefficients would be

expressed in the same unit (beta weights). We compared a full model with all the interaction

terms, and a nested model with no interactions. Logistic regression models were fit individ-

ually for each observer, and the regression coefficients tested against the null hypothesis of

being equal to zero in the population.

Results

Figure 2(a) shows energy and divergence values for each of the 100 samples for each stimulus

class. Fast (squares) exhibit higher local energy than slow (circles) stimuli. Divergence tends

to be higher for glossy (light gray circles and squares) than for matte-textured stimuli (dark

gray). Classification analysis revealed that by means of both divergence and energy, it is

possible to discriminate between slow and fast stimuli with 92% accuracy and between

matte and glossy stimuli with 76% accuracy. Speed classification (slow vs. fast) seemed

dominated by energy whereas gloss (matte vs glossy) classification by divergence. Energy

alone could classify speed with 91% accuracy; divergence alone could classify gloss with

71% accuracy.
We used the Akaike Information Criterion to compare the full model (with the all the

interaction terms) and the nested model with no interactions, the latter of which we selected

for further analyses. The model, fitted separately for each observer, could predict the task,

based on energy and divergence better than chance (Figure 2(b)). The empirical chance level

was computed using a bootstrapping procedure as follows: The regression model was fit to

the data after randomizing the correspondence between information at gaze position and

task, and then the fitted model was used to predict the task based on energy and divergence at

gaze position. This procedure was repeated 500 times, and the performance was averaged

across iterations. Empirical chance level (Figure 2(b), dashed black line) was found to be

around 50% for all observers. A one-sample t-test revealed a significant difference between

the performance of the model and the empirical chance level, t(9)¼6.391, p< .001, two-

tailed. As the model could predict the data better than chance, we were able to interpret

its coefficients (Figure 2(c)). The negative coefficient associated with divergence indicates that

in the speed judgment task, observers tended to look less at local divergence than in the gloss

judgment task. A one-sample t-test (two-tailed) confirms that the beta weight associated with

divergence is on average lower than zero, t(9)¼ –3, p< .05). In fact, divergence at gaze

position was higher in the gloss discrimination task than in the speed discrimination task

(Figure 2(d)). We did not find a significance effect of energy, speed, or gloss on gaze position.
However, for all tasks and stimuli, people tended to fixate on regions of higher energy,

that is, 0.39 SDs compared to stimulus average, t(9)¼ 20.04, p< .0001.
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Summary and Discussion

We investigated whether observers would look more at gloss-diagnostic dynamic features
when they judge the glossiness of rotating, 3D objects, than when engaged in other percep-
tual tasks. Indeed, we found that participants tended to look at regions of high divergence in
the optic flow more during gloss judgments, than when judging the speed of the same set of
stimuli. Such a strategy would be consistent with the idea that the visual system is not
systematically sampling all the perceptually relevant stimulus properties to represent them
as a whole in memory, but that instead, it is postponing the gathering of task-relevant
information until just before it is required (just-in-time strategy), presumably to reduce the
memory load (Ballard, Heyhoe, & Pelz, 1995). This sampling strategy appears to be hold for
both action planning and perceptual tasks (as in our experiment).
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Figure 2. Results. (a) Simulation. Motion energy on the x-axis and divergence on the y-axis. Squares indicate
samples from fast stimuli and circles from slow stimuli. Light gray denotes glossy stimuli, and dark gray
denotes matte stimuli. The boundary for speed classification is indicated by the continuous black line; the
boundary for gloss classification is indicated by the dashed line. (b) Model performance for each participant.
(c) Beta weights for the four predictors of the logistic regression model averaged across observers. Error
bars are one standard error of the mean. (d) Energy (left panel) and divergence (right panel) at gaze position
in gloss and speed tasks.
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Interestingly, our results also suggest that—regardless of the task—in dynamic scenes,

participants tend to always look at regions of higher motion energy. Taken together, these

findings might suggest that eye-movement patterns in our experiment reflect the involvement

of two cortical mechanisms: a low-level mechanism driven primarily by motion energy of the

stimulus (present in all tasks), and a high-level mechanism driven by specific task demands

(e.g., judgments of material qualities) and higher order stimulus properties (like optic flow

divergence).
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