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Abstract

In this thesis we study the prescribed Mean Curvature Problem for Riemannian manifolds
with boundary. Given a compact four-dimensional Riemannian manifold with boundary
(M, g), the prescribed Mean Curvature Problem asks for conditions on K : OM — R,
such that K can be realized as the mean curvature hy of a conformal metric § € [g]
with vanishing scalar curvature Rj in M. The prescribed Mean Curvature Problem
is equivalent to the existence of a solution to the following non-linear boundary value
problem:

—Agu + éRgu =0 inM
oyu + hgu = K (z)u? on OM
u > 0.

These solutions are in one-to-one correspondence to critical points of a functional, defined
on a Sobolev-space. Since this functional does not satisfy the Palais-Smale condition,
standard variational methods can not be applied.

We use the method of critical points at infinity, developed by Abbas Bahri, to study
non-converging flow lines of a suitable pseudo gradient vector field. We understand "limit
sets" of these flow lines and understand the difference of topology in the variational space,
induced by the non-converging flow lines. Comparing this difference of topology to the
topology of the variational space yields existence results for critical points of the given
functional. And therefore conditions on K such that K can be realized as the mean
curvature of a conformal metric.
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1. Introduction

1.1. The prescribed Mean Curvature Problem

A very famous problem, which has been solved during the last decades, is the Yam-
abe Problem. To introduce the Yamabe Problem let (M, g) be a compact Riemannian
manifold of dimension greater than or equal to 3. The Yamabe Problem asks for the
existence of a metric g in the conformal class of g with constant scalar curvature. Com-
bining [35, 34, 6, 31| the authors H. Yamabe, N. Trudinger, T. Aubin and R. Schoen were
able to prove the existence of a conformal metric with constant scalar curvature for any
compact Riemannian manifold of dimension greater than or equal to 3. A very compre-
hensive survey about the Yamabe Problem was written by J. Lee and T. Parker (see [24]).

A variation of the Yamabe Problem to manifolds with boundary is given as follows:
Let (M, g) be a compact Riemannian manifold with boundary 0M of dimension greater
than or equal to 3. Find a metric g conformal to g with zero scalar curvature in M and
constant mean curvature on dM. This problem was first introduced by Escobar in [19].

As a generalization we will now introduce the prescribed Mean Curvature Prob-
lem: Let (M, g) be a Riemannian manifold with boundary of dimension n greater than
or equal to 3 and K : IM — R a smooth function. Does there exist a metric g conformal
to g with zero scalar curvature in M and mean curvature precisely given by K on dM?
This problem was first introduced by Cherrier in [16].

The prescribed Mean Curvature Problem is equivalent to a non-linear boundary value
problem on M. To be more precise let g = uﬁg be a conformal metric to g and u a
positive, smooth function on M. Then (see [16]) the metric g has zero scalar curvature
in M and mean curvature given by K iff u solves the boundary value problem

—Agu+ ﬁRgu =0 in M
(PMCP) < dyu+ "52hgu = "2 K (x)un-2 on OM (1.1)
u > 0.

Here v is the outward normal vector field on OM, R, the scalar curvature in M and hy
the mean curvature on 0M.
Let us first look into the case where K is constant. The boundary value problem then
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has variational structure. To be more precise, let J : YT N U — R, where

u (IVul2 + 5225 Ryu?) dVy + 252 [,y hyudo,

n—2 ?

2(n—1) n—1
<faM|u’ "2 dog

Yti={ue H' (M) : |lullgryy =1, u>0ae} and

1 2(n—1)
U:=3ueH (M) : |u| 7=2 dog > 0.
oM
Here H'(M) is the Sobolev-space of functions on M such that one weak derivative exists.

Due to a regularity result by Cherrier (see [16]) critical points u of J correspond to
smooth, positive solutions of (1.1) with K = —251(u), where

Jur (102 + 5525 Ry ) dVy + 252 [, hgu dag
= 2(n—1)
Jops lul =2 doy
Unfortunately the functional J does not satisfy the Palais-Smale condition. The Sobolev

trace embedding H'(M) — L = (8M ) is critical and hence not compact. This lack
of compactness makes the variational theory complicated and standard methods can not
be applied. Nonetheless in [19, 20] Escobar was able to show that

Q(M,0M,[g]) :==inf{J(v) : ue X" NU}. (1.2)
is achieved provided
—00 < Q(M,0M,|g]) < Q(B"™,0B", [geuci])- (1.3)

Thus the Yamabe Problem on manifolds with boundary is solved if (1.3) holds. Here
B" is the unit ball in R™ and geyq the Euclidean metric. Furthermore Escobar (see [18])
proved that

fRn Vul?
Q(an oB", [geucl}) = inf n_2

2(n—1) \ n—1
faR" |u| n—2

is the sharp constant in the Sobolev trace embedding. Furthermore the minimum is
achieved by a function u iff u belongs to the following family of functions:

uwe G5 (RY) ;5 uprn #0

n—2

T
a|2> ;i A>0, ac Ry, a#0, (x,t)eR"_lxRJr:Rﬁ.
(1.4)

Y
“ ((1 A2+ A2z —
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Using these functions Escobar (see [19]) showed that the inequality
Q(M7 aM? [g]) S Q(an aBnJ [geucl])

holds true for every compact manifold with boundary. Therefore the solution of the
Yamabe Problem on manifolds with boundary was reduced to proving the strict inequality
(1.3). Through the works of Escobar [19, 21|, Marques |28, 27|, Almaraz [2|, Chen [15]
as well as Mayer and Ndiaye [30], the Yamabe Problem on manifolds with boundary is
completely solved and we have the following Theorem due to the previous authors.

Theorem. Let (M,g) be a compact Riemannian manifold with boundary of dimension
greater than or equal to 3. If Q(M,0M,[g]) > —oo, then there exists a conformal metric
with zero scalar curvature in M and constant mean curvature on OM. Moreover the
constant can be chosen to be sign (Q(M,0M, |g])), where sign(0) := 0.

It is worth to mention that the authors in [19, 21, 28, 27, 2, 15] use some appropriate
test functions "close" to (1.4) to prove (1.3), whereas the authors in [30] use an algebraic
topological argument, developed by Bahri and Coron [9].

From now on we turn back to the prescribed Mean Curvature Problem. First we consider

the case —oo < Q(M,0M,[g]) < 0, which is much simpler to handle than the positive

case. Since we have not found any reference for the case Q(M,0M, [g]) < 0, let us briefly

explain how to solve (1.1) in this case, if K(z) < 0 on M. We essentially use the method

of sub- and supersolutions like in [21] or [23]. To write (1.1) in a shorter form we intro-
n—2

duce the conformal Laplacian Lyu := —Agu + ngu and the conformal boundary

4
operator Byu = 0,u + %ﬁhgu, which are conformally covariant. Thus if g = v»—2¢g for
some positive, smooth function, then

n+2

Ly(ww) = vn2Ly(u), Byluww) = vi-2 By(u). (1.5)

Due to the previous Theorem we can find a metric g, conformal to g, with zero scalar
curvature and mean curvature constant —1. With this metric and (1.5), (1.1) is equivalent
to :

L;u = in M
Bgu ="2K(z)um-2 on M (1.6)
> 0.

3 O

N

We call a positive function u € C?(M) subsolution (supersolution) to (1.6) if

n—2

Lyu<(>)0 and Byu< (>) K(z)un-2.
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Since —oo < Q(M,0M, [g]) < O the first eigenvalue A\; of the problem

{Lgu =0 in M wn

Bju = Au on OM

is negative (see [19]). Using that the first eigenfunction ¢; can be chosen to be positive,
we observe that ap; is a subsolution if « is positive but small. Furthermore a large
constant function C' can be chosen to be a supersolution, because K < 0.

Let (ug)ken be the sequence of smooth functions, defined by: uy = apy,

o

Lzuy = n M
{Bguk + Mu,, = "TJK( )u,: f + Mup_1 on OM
for k > 1 and a large positive constant M. Due to the maximum principle
ap) <up—g <up <upp <C

for all k € N. Hence, using methods, similar to those used in [23], it is possible to prove
the existence of a smooth positive solution u of (1.6) by showing that (ug); converges in
an appropriate space (weak convergence in H'(M) is sufficient). This proves the exis-
tence of a conformal metric with zero scalar curvature and mean curvature given by K.

In case Q(M,0M,[g]) = 0 Escobar was able to give a complete answer to the prescribed
Mean Curvature Problem:

Theorem (|21]). Let (M, g) be a compact Riemannian manifold of dimension greater
than or equal to 8 such that Q(M,0M,[g]) = 0 and K : OM — R smooth. Then K is
the mean curvature of a conformal metric with zero scalar curvature if and only if

K changes sign and Kdo, < 0.
oM

This proof also uses the method of sub- and supersolutions.

Lastly, we turn to the case Q(M,0M,[g]) > 0. This case is much more complicated
and the techniques are quite different to the previous ones. Like in the constant mean
curvature case, the problem has variational structure and smooth, positive solutions of
(1.1) are critical points of the functional J : U — R, where

fM <‘V“’2 = 2)R u ) Vg + 5% [orr hguPdog

n—2

=
<faM |U‘ n-2 dUg)

(1.8)
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and

(n—1)
U := {u c HI(M) . K(x)\u|2”—21 dog #0, u>0 a.e.} .

oM
As already mentioned, this functional does not satisfy the Palais-Smale condition which
makes it a priori impossible to apply standard variational techniques. Nevertheless, using
similar methods as in the constant mean curvature case, it is possible to find conditions
on K such that minimizing sequences of J, under the constraint

2(n—1)
K(z)|u| =2 dog =1,
oM
are still relative compact. First, Escobar [21| used this method and obtained first ex-
istence results for general manifolds. To state the Theorem, we need further notations.
Therefore let V be the Levi-Civita connection of (M,g). We denote by h(X,Y) :=
9(Vx1,Y) the second fundamental form on dM. A point a € OM is called umbilic if
the umbilicity tensor

I:=h — hyg (1.9)

vanishes at a. Let us remark that the norm [II(a)|? is conformal invariant if § is a metric,
conformal to g, such that g(a) = g(a).

Theorem. (/21]) Let (M,g) be a compact Riemannian manifold of dimension n > 3
and Q(M,0M,[g]) > 0. If K : OM — R is smooth and positive somewhere, then g is
conformal to o metric with zero scalar curvature and mean curvature given by K if

1. n =3 and M is not conformally equivalent to the ball B3.

2. n =4, M is not conformally equivalent to B*, OM is umbilic and V?K (z) = 0 for
a global maximum point x.

3. n>5, M s locally conformally flat, not conformally equivalent to B™ with umbilic
boundary such that V'K (z) = 0 for some global mazimum x and 1 <1 <n — 2.

4. mn > 6 and K has a global mazimum point x, which is not umbilic, such that

AGK (x) < e(n)|I(x)|?, where c(n) is some dimensional constant.

Here |II(x)| is the norm of the umbilicity tensor at x.

Since the ball is umbilic the previous Theorem excludes the ball. Existence results of
(1.1) for the ball were obtained by Escobar and Garcia [22] , Chang et al. [14] as well as
Ahmedou et al. [1].

As far as we know there are no more works, which prove results for the prescribed Mean
Curvature Problem.

In the next section we will state our results and give some analytical background.
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1.2. Preliminaries and statement of results

From now on let (M, g) be an n-dimensional compact Riemannian manifold with bound-
ary OM and positive Sobolev quotient Q(M,IM, [g]). Furthermore let K : OM — R be
a smooth, positive function. Since Q(M,0M, [g]) > 0, there exists a metric g conformal
to g with positive scalar curvature and zero mean curvature at the boundary (see [19]).
Henceforth we assume the metric g to have the previous properties. On H*(M) we define
the scalar product

n—2
<U,v >:= /M <VU - Vv + LLO’L—DRQUU> d‘/g, (110)
which induces a norm || - ||, equivalent to the standard norm on H'(M). Our aim is to
prove the existence of critical points of
[Jul

J(u) =

n—2

2(n—1) n—1
(faM K(a)ul 5 dag)

on Xt NU, where % := {u € H' (M) : |ju|| =1, u >0 a.e.}, which leads to smooth,
positive solutions of (1.1). Because of technical reasons, which will become clear in
chapter 3, we can not restrict to X N U. For g5 > 0 small we define

n—

n—1
Vo, (B%) = {u cU : |lul|=1, Jw) = Ju|] 20-1 < 50}7
L™ n=2 (8M)

where v~ = max(0, —u) is the negative part. If u € V, (X1) is a critical point of J
then
IR =< uu > =Jwre [ K(@)ululm2u do,
oM
n—1 2(n—1)
= —J(u)n2 K(z)|u™ |72 dog
oM

and hence

n—1 _ 2(n—1)
o 1P oy < Cmax K J(u)=>[lu”|| 5.0,
L™n=2 (OM L™n=2 (OM)

which implies u~ = 0 if g¢ is small. Thus u will be a positive solution of (1.1). From
now on we assume g to be small enough. As already mentioned J does not satisfy the
Palais-Smale condition. Nevertheless the non-compactness is well understood. Therefore
let A > 0 and define

n—2

A 2
Ox(z,t) := <(1 v A2’x2> (1.11)
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as in (1.4). This family of functions solves the boundary value problem:

{AéA =0 in R7, 112)

By = (2 —n)87° on OR™.

Furthermore, for a € OM let U, be an open neighbourhood of ¢ in M and ¢, : U, — B;;O

be Fermi-coordinates around a. A very detailed description of Fermi-coordinates is given

in appendix A. Since OM is compact we can choose pg such that ¢, : U, — B;'po is a

diffeomorphism for all @ € M. Finally let x, : R — [0, 1] be a smooth function such
that

Xo(t) =1 if t < p,
Xp(t) =0 if t > 2p.

For a € OM define the smooth function

Oax i M =R, dax(2) = Xp ([¢a(x)]) Ox (Ya(2)).

For p € N and € > 0 define

1
W(p,e) ::{u €V, (21 ' day, -+ ,ap € OM; Ai, -+, A\ € <€,oo> s.t.

n—2

1 P /n—2\ 2
_ E( Y
" J(u) T (K(ai)> i

< g eij<5Vz'7éj}, (1.13)

(u) 2 o
where
A ="
€ij = (Z i + )\i)\jdg(ai, aj)2> . (1.14)
AjA

Here dg4(-,-) is the distance (on M) with respect to the metric g. Now we are prepared
to understand the non-compactness of J.

Proposition 1. Assume that J does not have any critical point in Vo, (XT). Let
(un)nen C Veo(E1) be a Palais-Smale sequence of J, then there exists p € N and a
sequence €, N\, 0 such that u, € W(p,e,) along a subsequence.

The proof of Proposition 1 is, up to minor modifications, the same as the proof by Al-
maraz [3] in the case where K is constant. Similar results in domains have been obtained
by Struwe [32]. Se also Bahri-Coron [9], Brezis-Coron [13], Bahri 7] and Mayer [29].
For our purpose the functions (bubbles) d, » will not be good enough. In chapter 3 we
will define the sets W (p, e) with new bubbles, which we will call ¢, x. This is possible,
because |04\ — @ax|| = 0 for A — oo.
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From now on let (M, g) be a four-dimensional Riemannian manifold with boundary and
K : OM — (0,00) a Morse-function. Since Q(M,0M, [g]) is positive there exists a unique
positive Green’s function G(-,-) of the operator (Lg, By) such that

uw) = [ GaLaut)aVy+ [ GloyByulda, ¥ ue )
M oM

For a € OM let g, = u2g be a family of metrics such that

Via(@,t) =1+ 0(|(z, 6)|")

in Fermi-coordinates w.r.t. g, at a. The existence was proved in |[27] by Marques. The
normalized Green’s function Gu(a,-) at a with respect to the operator (Lgy,, By,) is ex-
panded in appendix E (see Proposition 32). Here normalized means:

lim dy, (a,2)*Gq(x) = 1.

r—a

It can be written as
Ga(a,a:) = Fa(x) + Ha(x)a

where T, is singular at a and H, is regular (in C>® for some «). Let crit(K) :=
{1, -+ ,zm} be the set of critical points of K. Henceforth we assume

21, AK(x)
9 K(x)

2|53 |H, () + #0 Ve crit(K). (1.15)

Here Si is the upper half sphere in R* and

]2
Iy = — dux.
: / (T + a2 ™

For 1 < p < m define

21, AK (x;)
9 K(x)

F {(xl, ) € erit(K)P | 21 | Hy (2) +

< 0 Vi; xz#l']VZ?éj}

For y = (y1, - ,yp) € Fp we define the matrix M (y) = M;; € RP*P by

Hy,(yi) 2014 AK(y;) G(yi»y5) .
Mii = -2 SS Yi — i] = —21 LA AR f .
Rz 0 K M T TR R, T

Since the Green’s function is symmetric, also M (y) is symmetric. Let p;(y) be the least
eigenvalue of M (y). From now on we assume

pi(x) # 0 for all z € F,. (1.16)

Finally define
Fyr={z € Fp | pi(x) > 0}.
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We assume crit(K) to be an ordered subset. Thus z1 < z2 < -+ < x,,,. Lastly we set

F=qy=wye U Flu<p<-<y
1<q<m

We are now able to state our Theorems:

Theorem 1. Let (M, g) be a four-dimensional compact Riemannian manifold with bound-
ary such that Q(M,0M,[g]) > 0. Let K : M — (0,00) be a Morse-function such that
(1.15) and (1.16) hold. Furthermore assume that all critical points of K are also umbilic
points, then (PMCP) has a solution if

9 K(z)

2|53 |H,(x) + >0

at a point x € OM where K(x) = sup K.

Theorem 2. Let (M, g) be a four-dimensional compact Riemannian manifold with bound-
ary such that Q(M,0M,[g]) > 0. Let K : OM — (0,00) be a Morse-function such that
(1.15) and (1.16) hold. Furthermore assume that all critical points of K are also umbilic
points, then (PMCP) has a solution if

1# Y (—1)Emnde@nOs (1.17)
TEF >
where © = (x1,--- ,xp) and ind(x, K) is the Morse-index of K at x.

From Theorem 1 we can deduce a Corollary. Therefore we need to introduce the ADM-
mass of an asymptotically flat manifold with boundary.

Definition 1. A Riemannian manifold with boundary (N, g) is called asymptotically flat
of order 7 > 0 if there exists a compact set K C M and a diffeomorphism ¢ : M \ K —
R™ \ B1(0) such that

1963 () = 853l + 2l - [Vgij (@)] + |2 - [V2g35(2)| = O(|2] ™) (l2] = o0),

where g;; are the coefficients of the metric in the chart ¢.

Ifr> ”7_2, R, is integrable on N and hy is integrable on ON, then the ADM-mass

. Ty Ty
m(gaN) = Tllglo (/S”jrl (augm/ - al/g,u,u)TdS + /SZ}_Q ginrd5>
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is well defined (see [4, 5]). Here Sﬁ;l is the upper half-sphere in R"™ with radius r and
S"=2 is the sphere of radius r in R"~!. Furthermore the positive mass theorem for man-
ifolds with boundary (see [5]) asserts that m(g, N) > 0if R, > 0,hy > 0, dim(N) < 7
and (NN, g) is not isometric to (R}, gs)-

Let Gq(z,-) be the Green’s function of the metric g, and (M, g) a four-dimensional
Riemannian manifold with boundary. Define (M, §) = (M \ {a}, G4(a,-)2gq) then (M, §)
is a four-dimensional asymptotically flat manifold with boundary of order 7 = 2, if a is
an umbilic point. Furthermore Ry = 0 and hy = 0. If (M, g) is not conformally diffeo-
morphic to (B?, gst) then (M, §) is not isometric to (R, gs). The positive mass theorem

~

implies m(g, M) > 0 in this case. If a is umbilic it is not difficult to show the equality

1 ~

H =—7=m(g§, M) >0 1.18

o(@) = g3 W) (118)

by using the expansion of the Green’s function. Hence, the following Corollary is an
immediate consequence from (1.18) and Theorem 1.

Corollary. Let (M, g) be a four dimensional compact Riemannian manifold with bound-
ary such that Q(M,0M,[g]) > 0. Moreover assume that (M,g) is not conformally dif-
feomorphic to (B%,gst). Let K : OM — (0,00) be a Morse-function such that (1.15) and
(1.16) holds. Furthermore assume that all critical points of K are also umbilic points.
Then there exists € > 0 such that (PMCP) has a solution if

AK(x)
K(x)
at a point x € OM where K(x) = sup K.

1.3. Outline of the thesis

In chapter 2 we define appropriate test functions (bubbles) ¢, » for A > 0 and a € OM.
These are "close" to the test function, defined in the previous section. We prove some first
estimates that are needed in subsequent chapters. Furthermore we justify the definition
of W(p,e), where d, ) is replaced by g x.

Since it will be important for our theory we introduce new variables aq,-- -, a; > 0 such
that every u € W (p,e) can be written as follows:

p
U= g QiPa; N, T,
i=1

where the reminder

0 0

1
v 6 E(a,a,)\) = <90ai7>\i7 8}\‘800’1‘7)\” 6am§0ai,>\i 1 S Z S p7 1 S m S 3> C HI(M)
? 7

10
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This will be proved in chapter 3 by using a minimization argument. Moreover we define
new neighbourhoods V' (p, €) of non-compact Palais-Smale sequences, which are equivalent
to W(p,e) and will be used in the rest of this thesis. Since the functional J is not as
smooth as needed for the theory, we introduce a slightly different functional such that
critical points of the new functional lead to critical points of J. In chapter 4 we expand
the functional for

P
u = Zaig@ai,/\i +ve V(p,é—:),
i=1
which helps to understand the behaviour of J with respect to the variables ay, a;, A; for
1 <i<pandw.
We use this expansion in chapter 5 to show that

P
Ean dv—=J <Z QiPa; \; T+ v>

=1

has a local minimizer v, close to zero. This will become very important for the theory.
In chapter 6 we expand the gradient of J in V(p, ) to prove that the expansion in chapter
4 is valid also in a C''-sense.

Based on the gradient expansions in chapter 5 and 6, we construct a pseudo-gradient
vector field X, which allows us to understand flow lines of &« = —X(u). Under the
assumption that J does not have any critical point, all flow lines do not converge. We
call these flow lines critical flow lines at infinity.

Using this pseudo-gradient in chapter 7 we prove that critical flow lines at infinity
have to remain in some V' (p,e) for ¢ large. More precisely we understand the behaviour
of those flow lines with respect to the variables (o, a, A, v).

In chapter 8 we show that critical flow lines at infinity in V (p, ¢) have to accumulate
around (a, A,v) = (z,00,0), where = (x1,--- ,x,) € F;° is called a critical point at
infinity. Using this knowledge we prove a deformation lemma and a Morse lemma at
infinity to compute the change of topology, induced by this critical points at infinity.
Finally, under the assumption that J does not have any critical point, the topology of the
variational space can be compared to the difference of topology, induced by non-compact
flow lines, which proves Theorem 1 and 2.

11



2. Definition of the test functions and
preliminary expansions

As already mentioned in the introduction the standard bubbles J, x, which appear in the
definition of W(p,¢), are not good enough. Since they are local they do not carry any
information about the global geometry of the manifold. Therefore we glue the standard
test functions d, » with the Green’s function of the conformal operator (Lg, By). This is
motivated by Schoen [31].

For (z,t) € R x Ry = RY and r > 0 let us introduce the sets
Bf = B (0) = {(z.t) € R | (@) < r}, By = B,(0) = {z € R® | Jo| < r}.

From now we assume the reader to be familiar with Fermi-coordinates at points a €
OM (see appendix A). Due to Marques |27] there exists a positive, smooth function
u:0OM x M — R, u(a,x) = uq(z) such that

Vg, (@, t) = 1] < Oz, )" (2.1)

for (z,t) € B;rpo in v, Fermi-coordinates around a with respect to the metric g, = u2g.
Here /g (7,t) is the volume element with respect to the metric g,. Moreover, since M
is compact, pp and the constant in (2.1) can be chosen to be independent of a. Further-

more the function u, can be chosen such that uy(a) =1 for all a € OM.

We now choose a family (14)qscons of Fermi-coordinates with respect to this family of
metrics (gq)aconr- Furthermore let x : R — [0,1] be a smooth function such that

x(t) =1ift < 3 and x(t) =0if t > 2. For p > 0 set x,(t) := x (%) . Finally let G4(a,-)
be the normalized Green’s function at a € M with respect to the operator (L, , By, ).
The normalized Green’s function satisfies

lim dg, (a,2)*Gy(a,2) =1 (v € IM).

T—ra

Here dg, (-, -) is the distance with respect to the metric gq.
For a € OM and A > 0, we define the family of global test functions (bubbles) as follows

far(@) = o (W) (alo) + (1= xo Bale)) ) 52 22

12



2. Definition of the test functions and preliminary expansions

and g ) = UgPq, . Here 6y is the standard bubble on R* | which was defined in (1.11).
Furthermore we set

un(@) = xp (@) (cx wa(x))) (2.3)

and 0g ) = Uq0g, -

Let us remark that M x OM xRy 3 (z,a,A) = @g x(x) is smooth. Furthermore it holds
Ly, Gola,z) =0 and By, Gy(a,z) =0 for all z # a.
From now on we will always identify x € M with 1,(z) = (z,t) € R® x Ry = R%.

Proposition 2. If 2 < A\p, then

] )
Ly, Pa <C L1z
|LgoPa()] ((1+At) ) T a2 ez

1 [(a)
+C<A2p5 T ) Hesl@nl<n)

as well as
R .9 1 1
|Bgabap = 205l < Oxp - 1 + Cwl{ps%(am}’

where |II(a)| is the norm of the umbilicity tensor, defined in (1.9), with respect to the
metric gq.

Here, and in the rest of this work, C' always represents a constant which does not depend
on any variable.

Proof. Using the definition of the conformal Laplacian we get

R . 1 .
LgaSOG/,)\ = _Aga ()0(1,)\ + ERgaSOa,)\

- _AgaXp : (5)\ - QVQaXP ' v90.5)\ - XPAQQ(S)\
Ga(aa ) Ga(a7 )
A

1 1
— _A L . N
9aXp <‘” A(x,t>|2) VauXe Vo ((” A\(m)@)

Gal(a,-) 1
— XA\, - A —
XpPga o\ + gaXP( \ )\(x,t)|2>
Gola,-) 1

1
+ 2v9aXP ’ vga < A - )\|(ZE, t)|2> + gRgaXpé)\- (24)

1
+ AgaX,U + 2vgaXP : vga + éRgaXp(S)\

13



2. Definition of the test functions and preliminary expansions

The expansion of the Green’s function, given in appendix E, yields

V4 (Gulovi o) - ) | < (s + ) £=012

1 1

Furthermore it holds
<Coi—,
A2 [(,t)[3TF

1

k

Sy — —
V(0 5w )| <
Hence from (2.4) — (2.6) we infer:

A 1 (o)
| Lg, Pa(x)] <C </\2p5 + Tpg Lip<(e,t)<2p}

1
+ |XPAga5>\| =+ }6Rgaxp6/\"

(2.7)

In v, Fermi-coordinates the coefficients of the inverse metric are expanded as follows:

gij(x,t) = 0i; + 2h;j(a)t + O(](a:,t)\Q) 1<4,57<3

as well as ¢g(z,t) =0, 1 < i < 3 and g*(z,t) = 1 (see (A.1)). Here h;; are the
coefficients of the second fundamental form with respect to g,. Since hg,(a) = 0,
II;j(a) = hij(a), where II;; are the coefficients of the umbilicity tensor. Therefore a

simple computation yields

hij(a)x;x t
(14 At)2 + X2z[2)°

+0; (9" — 6;5 — 2h4t)0;6)) + 9; log(v/9a) 9" 05 ().

Due to the fact that \/gs(z,t) = 1+ O(|(z,1)|'?),

2T (o) )i
(L+ M)+ Az)® (14 Al(a, )2 ) 0120
Finally adding (2.9) to (2.7) proves the first assertion.

Ay, 0y = —8\°

Ag.a] < c(

In the following we prove the second inequality. First observe that

Bga‘ﬁa)\ = XpBgagba,/\ = Xp< — 0oy + hga (33)5>\>

= 2Xp5§\ + Xphga ()0
and hence
R 1
|B o Pa — 2Xp6§\‘ < CXp : X
Since

1
~2 2
126 = 2xo05 < O3 5 Ho<dys (0.0}

the stated inequality follows.

14
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2. Definition of the test functions and preliminary expansions

Furthermore we need estimates for the derivatives of ¢, » with respect to A and a. First
we estimate the derivative with respect to A.

Proposition 3. If 2 < A\p then

0 A2[TI(a)| A )
ALy GOgr(x)| <C 1oz
‘ o Lo P )‘ ((1+)\t) PNz (1t A, o))?) e
1 |H(a)
+C <)\2p5 - AP Lip<i(@n1<20}
and
o o 1 1
'AmBga%,A(m) 2 Par| S Oxp 1 O Wl{ps% (a,2)}-
Proof. First observe that
o & )\k+1
== < k=0,1,2 2.11
AoV < A e o =
and
. ( ! ) ‘ < Cm) _Len (212)
OA \ (14 At)2 + A2|z)2) 2 (14 At)2 + A2|z[2) 2
In addition it holds
0 1 1 1
— ohh—— || <C5——-—, £=0,1,2. 2.13
o™ (9 e | < O b=01 (213

Therefore the estimates (2.11)-(2.13), combined with the expansions (2.4) and (2.8),
prove the first claim. It remains to prove the estimate on the boundary. But from (2.10)
and (2.11) we derive the estimate

0 0 1
A=<Bg,Par — 2XpA 503 < Cxp -~ 2.14
‘ a)\ gagp ,A Xp 8)\ Al = Xp )\ ( )
Since
9 .9 9 o
‘2)‘8)\90(1,/\ - 2Xp)‘a(5/\ < C)\2p4 1{p§dga (a,z)}
the second claim follows through the previous inequality and (2.14). O

We finally need to estimate the derivative with respect to a € OM.

15



2. Definition of the test functions and preliminary expansions

Proposition 4. If 2 < \p then

( N2|M(a)| n A
(T+ M)+ AMz|)? (14 M(z,t)))

1 [(a)]
+C<v&+ b ) Hesl@ni<ae)

1 .
' XvaLga Pa,\ (.%') < C

2>1HLM<M

and

1 . 1o .
‘)\vaBgaSDa,A(x) - QXva(pZ,)\

1 1
< CXP . X + C)\szll{pgdga(a@)}'

Proof. We choose 1,, Fermi-coordinates and want to estimate %(,M%Lga Pa,x at ag € OM
in this coordinates. Here we identify o™ = 7 (a) for m = 1,2,3. If x ¢ By,(ag) then
Ly, $ax =0 for a close to ag. Otherwise we identify x = 14, (z,t) and observe

. . 1 .
LgaSOa,A(:C) = _AgaSOa )\(x) + 7Rga90a ,\(.7})

1 .
= (x/ga x, t “” a: t l,(,pa)\) + 6Rga90a,)\(l')'

ga(a? t)

Moreover

(\/ ga x, t VSDzz A)
= au log( V ga(x, t))gff’y V@a,)\ + 8# (95’”(90, t)au(ﬁa,)\) .

vV ga(

Since gq(x,t) = ;‘ngao (z,t) and ug(a) =1 for all a € OM we get
a0

o On108(Vga(,0)gh" = O(|z,t°)

da™|ag

and

ga" (x, 1) = O(|(x, 1)])-

da™|ay

Furthermore

24k
C 1
VkAa ;1 ) < = | , k=1,2
[ (V*an) (0@ >>|_A<§+|W|>

provided 2 < Ap and therefore

1 0 1 0 A
S AgPar = A dag.n)-
by aam|a0 gaPa\ Gag ()\ da m| ('0‘1 >\> + O( ao,)x)

16



2. Definition of the test functions and preliminary expansions

Using Lemma 10 in appendix A we derive

1 0 1 9
)\ aam|a (pa )\(wao( )) )\8b7"|0 ((5)\( b,t))

n AL+ A)O(|(x, 1)) + AO(|(z,1)]*)
(1 + Xt)2 4 A2|z]2)?

(2.15)

for |(x,t)| < p and hence

1_0 1 9
()\ B [ag PN Vo (@ t>)> = 330t M@ b + 0.

Finally (2.8) yields
10
20, (5 g o) ) | <

A2[I1(a) )
C<a+Aw+Amf <1+M@wﬂﬁ>

if |(x,t)] < p. In the case p < |(x,t)| < 2p we easily derive the estimate

1 0 C
v (3 s P00 ) | < 55

Therefore the first assertion is proved. It remains to prove the second inequality. From
(2.10) and Lemma 10 in appendix A we derive
1
<O 1) Lei<opy-

1 1
< ()\2 At 5 p5> Hp<dga (@)}

Adding the previous two estimates proves the second assertion. O

L 9 g o, ol 0 o
A da™|ag ga PaA Aaam\aOX” @A

Lastly we easily estimate

1 0 1 0 o
/\(9am|a()@“A A@am\aoxp @A

As already mentioned in the introduction we want to define the sets W (p,e) with the
functions ¢, » instead of

ban(@) = Xp ([t (@) )Or([10, (),

where d;a are Fermi-coordinates with respect to the metric g. Remember that we used
Fermi-coordinates 1), with respect to the metric g, in the definition of ¢, \. Therefore
we need to prove that ||¢q, 1, — da, |1 (ary — 0 3f A — 00, which will be justified by
the following Lemma.

17



2. Definition of the test functions and preliminary expansions

%{1 < CM uniformly in a € OM.

Lemma 1. (a) ||@gx — Uaban

(b) If (an)n C OM and N, — oo, then |04, x, — Uayday r, || 1 — 0.

Proof. (a) Using the conformal covariance of (Ly, By) (see (1.5)) we compute

HSOCL,A - ua(sa)\”%ﬂ = /M Lga (@a,)\ - 5@,)\) (Saa,)\ - 5a,)\)dv;7a

+ / By, ((/sa,)\ - (5(17)\) (@a)\ — 5a7)\)daga
oM

3
1 1
< </M ‘Lga (SZ’CL»/\ - 5a,/\) ‘ s dVga> H%,/\ - Ua5a,,\ !Hl

2
3 3
+ </ ‘Bga (@a)\ - 5a,>\) ‘ 2 daga> |[0ax — waba || pr- (2.16)
oM

The computation of those integrals can be done easily by using the definition of the
bubbles, which proves (a).
(b) First observe that ||d4, ,||> = 2Io + o(1) = ||uq,,0a, 1, ||?, Where

1
L= —d
0 Aga+mm3x

and o(1) — 0 for n — oco. Hence
HganvAn - uandany)\n ‘ |?—Il = 410 - 2 < ga'rh)\n’ uan5a7n>\n > +0(1)

:4h—4AMmM%@m&A%A@V%ﬁ%m¢w+dU

=ty [ O () (i ()l 0D, (217
By(an
In appendix A (see page 112) we prove the smoothness of the function

aMxMa@mem%@mQ+Vme)
A Taylor expansion in Fermi-coordinates at a yields:
1+ N2 (02 1(2)) |2 = 14+ N[22+ O(N2)2P) V |2] < 2p << po, (2.18)

where we use Lemma 10 and g,(a) = g(a). Furthermore @Z;nl*dag(az) =1+ O(]z|?) and
Uq, (V7 () = 14+ O(|z|?), where the O-terms do not depend on a. These observations,

an

18



2. Definition of the test functions and preliminary expansions

combined with and (2.17), yield

’ ‘50«77.7)\71, - uan 5an,)\n ‘ |%Il

1 2 1
= 4] —4/ < > - dz + o(1
I A Sy <1+Amn(¢as<;>>|2> M
1 2 1
:410—4/ < > dx + o(1)
oy I \ 1o 0 (B2)

$3
An
1 3
=4]y — 4 _— d 1) = o(1).
: /Rg(mx\?) 2+ o(1) = o1)

O

So far we have defined the bubbles and proved some technical estimates which will become
important in the expansion of the functional and its gradient. For p € N and ¢ > 0 we
now set

1
W (p,e) :—{ue Voo (271) ‘ Jday, - ,ap € OM; Ai,--- Ay € <€,oo> s.t.

I <K<2>> e

J(u)? = :

< g Eij<6Vi7éj}. (2.19)

Here €;; was defined in (1.14). Due to Lemma 1, Proposition 1 holds true with W (p, ¢)
defined in (2.19). In the next chapter we will prove a convenient parametrization for
functions u € W(p,e) and define new neighbourhoods V (p, ¢) of non-converging Palais-
Smale sequences.
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3. An appropriate representation in
W(p,e) and the modified functional

3.1. Minimization in W (p,¢)

For u € W(p,e) we write u = J(u)_% b (K(Qa/_)) ©Ya; ) + v with |[v]| < e. Since
uE X
p

1= ||u|l? = HJ(u)_s 3 (K(Zm)> Paihi

=1

2
+ O(e),

N

where |O(g)| < Ce for some universal constant, which does not depend on u. Remark 4
in appendix B implies | < g4, x;, Pa;z; > | < Ceyj < Ce from which we deduce

p 2
1= 0003 (e ) Nwnl 00

Furthermore, the identity ||¢q, x,|[* = 2o + O(e) yields

B 1 P 9 2\
I Jﬁ(z(W)) < Ce

J]=

=

as well as

T(u)”2 (Kfai)) - \/;To <’p1 (%)j < Ce (3.1)

NI

J

uniformly in W (p,¢).

=

o -
Since K is a positive, smooth function on M the quantity \/%TO ( b (gé;’%) >
J

may be bounded from below by 0 < % and from above by 7. With this notations we
define

1 11
B = {(a,a,)\) eRE x (OM)P xRE | A > g < 5,55 <a; <2y vm}.

20



3. An appropriate representation in W (p,e) and the modified functional
L< J(u)_% (K( )) < 2~ for all w € W(p, e).

From now on we choose ¢ small such that 3
In this chapter we prove the following Proposition:

Proposition 5. There exists eg > 0 such that the minimization problem
P 2
U= aipa
i=1

has, up to permutation of (o, a, ), a unique solution, provided uw € W (p,eo). Moreover

inf
(a,a,\)€BE. -

for the minimizer (Oz, a, )\) there holds
1
-3

p K(CLZ) 2
( > — 0 iniformly in W(p,e) ife — 0.

1
VAL Z K (ay)

We prove this Proposition in several steps. Essentially we follow the proof in [9]. First

we need the following Lemma:

X (OM)P x R two sequences such that

Lemma 2. Let (o™, a" \"), (&",a" \") € RE
z—:-j—>07é§ai, af < C and

p
n ~n 5
i Pap A — § :O‘z‘ Pan An
1;7

n n
AN = 00; €7
— 0

for n — oo, then (up to permutation):
~ )\n
lal — &' = 0, APA'dy(al,al)? — 0, =1 fori=1,---,p. (3.2)

Proof. From now on we omit the index n and we write o(1) whenever a term tends to zero
for n — 0o. Since < g, A;; Pa; 0, >= O(cij) (see Remark 4 in appendix B), it follows

p 2
A Z&iwai;\i
—Za%mH?—zzam%, "o >+Za2ugp

1,j=1

P +o(1). (3:3)

For all i exists at most one j such that w;; + Aidjdg(ai,@;)? is bounded.
Because if there were j and k such that

Y . Ai A
+ )\i)\jdg(ai, le)Q and — + l + A\ )\kd (CLZ', &k)z
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3. An appropriate representation in W (p,e) and the modified functional

would be bounded, then also i—k + i—f + \iAjdy (g, @j)? would be bounded, which is a
J k

contradiction to &, = o(1).

Set

M:={ie{l,---,p} | 3j s.t. w; is bounded}.

We permute such that w;; is bounded for all ¢ € M. Using (3.3) we derive

o(1) = Y llaipa;p, — Gig 5,17+ Y adllpandl? + D &lleg, 5,17 (3.4)

ieM ieMe ieMe
along a subsequence. Since «; and &; are bounded from below and ||¢,||? = 21 + o(1)
we have proved M = {1,--- ,p} and
P
o(1) = llevipa; 2, — &ipg 5,117 (3.5)
i=1
Equation (3.5) implies
2
o(1) = [[aipa,r, — @5, 5,12 = (@illpanll = dillos, 5,11)
hence a; — &; = o(1), because
. 2 . 2
Jim @, 17 = lim {lgg, 5 (17 = 2o,
Due to Lemma 1, @q » = 041 + 0(1) in H'(M). Therefore (3.5) implies
o(1) = 00,z — 0, 5,II*- (3.6)

Since /\is\idg(ai, a;)* is bounded from above, dy(a;, @;) tends to zero. To continue the proof
we need an expansion of dg(a;, 1;;1(50))2 for n large, where 1),, are Fermi-coordinates at
a; w.r.t. g.

Claim: For z € B,(0) it holds

dy(di, U3 (@) = | = a, (@) 2+ O (|2 = o, @)1 (3.7)

Proof of the claim. In appendix A (see page 113) we prove that the function
OM x M 3 (a,y) = w(a,y) = x2p(|$a(y) )| Pa(y)

is smooth. If n is large then d4(a;, a;) = \zﬁai(az‘ﬂ < p and hence |3, (y)| < 2p for
y € By(a;). Therefore a Taylor-expansion at & = 1,,(a;) yields

dy (@i, (2))? = [Pa, (b (2)?
3
=) < axi@%(%l(w)), W@Eai(@;(m)) > (28 = P, (@) (@ — P, (@)

k=1

+0 (Jo = da(@)l*).
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3. An appropriate representation in W (p,e) and the modified functional

where the O-term does not depend on n. Since Fermi-coordinates are Riemannian normal
coordinates at the boundary:

< 8(33191[}&" (77;;1(1‘))7 aaxliz)&i (1/3;1(93)) >= g\ai <(d’l,z);21)‘_,g(€k), (d@‘[;;l)‘j(el)) .

Let (v1,v2,v3) be an orthonormal basis of T,,0M such that

3
d];il (x) = expy, <Z JJZ'UZ'>
i=1
where exp,,. is the geodesic exponential map. Then
g, (A0 aen), A aler))

= gl ((dexXPa,)]enp, (55, 2100) 08 (XD g (55, 5,00 [01])
= Gla, (Vk; V1) = Okt

where we used the Gauss’s Lemma (see [17]) for the last step. Finally we have proved
dy(ai, U3, (@) = |o = (@) + O (|2 = b, @)

which proves the claim. ]

To use (3.6) we need to expand the interaction < 5% Ais Sai 5 > Therefore we compute:

< gai»Ai’Sth\i >:/ LQSah)\iSdi,S\idV‘J +/ ngai7>\i5ai75\id0g
) M oM

=2 [ 62,0, 5.dog+o(l)
6M ’ 197\

Ai 2 A
- 2/ ( ! ) - - dzr + o(1
B,0) \1+ A7 |z|? <1 + A2dg(ay, wil(ﬂf))2> .

5\1’ 1 2 1
2 <A> /me) <1 + !:v|2> (1 + X?dg(ai,%l(;)p) dz+o(l)  (38)

3

Since % and AiXid(ai, a;)? = AiXi|1/)ai(di)|2 are bounded form above we can assume

T — >0 and Ay, (a;) — be R

along a subsequence. Hence expansion (3.7) implies:

= Tr) —
1+ |z L+ N2dy (a;, o (£))2 ) P

7

1 2 1
1+ |z[? 1+ p?|z — b
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3. An appropriate representation in W (p,e) and the modified functional

pointwise in R3. Since

1 2 1
|<1+:rl2> <1+/\ 2dg (a5, va, (& ))2> 15,0 (%)

7

1 2
§<1+’$|2> c LY(R3), (3.9)

we can use Lebesgue’s theorem and (3.8) to conclude

g g H
B ns 0. s :2 d 1). 1
<iunin =2 [, (i) (vt vo o

From (3.6) and (3.10) we derive 0 = ||uj o — u“’bHQDLQ(R4 ) where
+

A
(1+ Xt)? 4+ A2z — b|?

u,\,b(:n,t):( >, A >0, beR?

are the unique solutions (see [25]) to

Au=0 in RY
dyu = —2u? on 8Ri
u > 0.

Hence =1 and b = 0, which implies

~ A
)\i/\idg(ai,&i)2 — 0 and )\7 —1

along a subsequence. Finally a sub-subsequence argument proves the Lemma. O

Remark 1.

(a) From Lemma 2 we deduce the following statement: For all § > 0 exists € > 0 such
that

’ﬁ — 1’ + |Oéi — di| + )\Z'Xidg(ai,fli) <o Vi

if (a,a, M), (@, a,\) € and

257

< 2e.

p
AL T Z di@fliy;\i
=1

(b) The following statement is a conclusion from (a) and (3.1). For all § > 0 exists
e > 0 such that

p

(o, a,\) € BZaw“ € Wi(p,e) s.t. ||u— Zaigoai,AiH < 2e
=1
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3. An appropriate representation in W (p,e) and the modified functional

implies

o (L)) |

j=1
Now we are prepared to prove the Proposition.

Proof of Proposition 5.

(i) Existence of a minimizer:

We choose ¢ small such that Remark 1 (a) is true for 6 < 1/2. Since u € W (p,¢) there
exits ai, -+ ,ap, € OM and Ay,- -+, A\, >~ 1 such that

P
u— E :O‘i‘:@ai,&
i=1

Let (a",a”, A\") € By, be a minimizing sequence, then

7 90(1 )\n - Z O[igpai’)\i
=1

Hence, from Lemma 2 we deduce that the A} are bounded from above and below. Thus

2
< g, where a; = J(u)_% < : ) .

< 2¢ for n large.

(@™, a™, \") — (a,a,\) € Bigs along a subsequence. Using Remark 1 (b) we can choose
¢ smaller, if necessary, to obtain 1/ 2% <@y < 27.

Claim: (a,a,\) € BE, for £ small.

If the claim was wrong we could find u, € W(p,e,) with &, — 0, (&",a", \") € B%7 \
BE, such that

M\w

P p
H Z < > Pap N} — Edgl@ﬁ;ﬂj\? < 2ep,.
=1

i=1

But then Lemma 2 would imply

A\
5\7; =1+ 0(1)7 AnAnd ( ?7 a; )2 = 0(1)’

which contradicts (@”,a”, \") € BY__ \ BY., for n large. This proves the claim.

257

So far we have proved the existence of a minimizer in BS_ _ for ¢ small. It remains

to prove uniqueness.

2e,y

(ii) Uniqueness of the minimizer:
The proof of the uniqueness follows essentially from the fact that the function
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3. An appropriate representation in W (p,e) and the modified functional

By, 3 (a,a,A) = ||u— 30 aia, ? is locally a convex function, hence the gradi-
ent is a strictly monotone operator, which guaranties uniqueness. These arguments are
hidden in the following proof, which works by contradiction.

From now on assume that the statement of the Proposition is wrong. Since we already
have proved the existence of a minimizer we can find a sequence w, € W(p,e,) with
en — 0 and two minimizing sequences (auy,, G, An), (Gn, Gn, 5\n) € Bgem,y. From now on
we omit the index n in our notation and we will use o(1) for sequences that tend to zero

o P S NP s
for n — oo. Furthermore we define v:=u— >, | aipg, \,, Vi=u— > e, 3, and

p
U= E :ai(pamM
=1

Taking the derivative w.r.t. a; at the minimizers yields

2
fla,a,\) =

0=< U, Pa;\; > —< ﬁ?@&hii >=<v— 67@(11'7/\1' >+ < ﬁ’SOai,)\i —Pi x>

i, A
p
= Z < &j¢5j7ﬂj — QjPaj N;s Pag i > T < 77790(11.,5\2. — Paj; > - (3'11)
j=1
Since €, — 0 Lemma 2 implies

- s
H@H + )\i)\idg(ai,di)z + ‘Oéi — 6(7,| = 0(1) as well as =% =1+ 0(1), (312)
i
hence dg(a;,a;) = o(1). We choose n large such that a; is in the domain of definition of
Fermi-coordinates around a;.
Next we apply Lemma 13 and 14 in appendix D to obtain

1- 22

Ad ) (3.13)

1

B0 5 — @, > | < Co(1) | Ny (ai, @
a; ;i 197\ —
| < 0,055, — Pain > | < Co(1) ()\ng(az,a,) +

>

as well as

< P55, T QPay g Pani > = (@ — ) (21065 + o(1))

P 12
+O0 | Y Nidg(ag,d)* + |1 - " (3.14)
=1 J
We combine (3.11), (3.13) and (3.14) to infer that
P
e laj —aj|
j=1
p 3 p ) 5\ 2
~ J - j
< o(1) Z)\jdg(aj’aj)+ 1_)? +0 Z)‘jdg(aj,aj) + _)\7]'
j=1 7=1
(3.15)
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3. An appropriate representation in W (p,e) and the modified functional

Now we take the derivative of f w.r.t. a; at the minimizers to get

0:<v184pa>\> <’D~7a<p~~
"N Qalr T " \; Qa7 aiAi
1 0 1 0 1 0
=<v—v, N 8(1;”%1’ N> < Uajw@@z NN ;nsoam,

(3.16)
From Lemma 13 and 14 in appendix D and (3.16) we derive the following inequality

CZ)\d aj,d;) <o(1 Z)\d aj,a;)

7=1

/\; +|aj — &l

~ |12
1-— + oy —ay? | - (3.17)

+0 Z)\z a],a] )\—]
j

In a last step, we take the derivative of f w.r.t. A; to compute

0
0=<uv,X\ )\gpaM >— <0\

9 Ton Fanh

. 0 . 0
= Z < ajgoaj;\j - O[jsoaj,)\ja Aiﬁi)\i(pai’)\i > =< va)\iﬁsoauj\i - )\iai)\igpah,\i > .
j=1

(3.18)
Again from (3.18) and Lemma 13 and 14 in appendix D we get the inequality
A i ~
cz 1—)\—]' <o(1) Z)\Jdg(aj,a])—k 1—)\—]' + |aj — &
j=1 ! j=1 !
2
0] Nd,y( 1-2 —aj? . 3.19
+ ; (aj,a;)” + Y + lay — & ( )
Finally from (3.14), (3.17) and (3.19) we obtain
p 2 .
Z glaj,a;) + |1 = 2|+ |oy — @
st Aj
u \j
> Ajdgla, dz) + = | ey =yl
j=1 7
» <2
+ O[> Ndy(ay,a5)* + -3 + o — &) ],
j=1 !
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3. An appropriate representation in W (p,e) and the modified functional

which contradicts (3.12) for n large. Hence the minimizer must be unique for & small.
Thus we have proved the minimization part of the Proposition. The stated estimate is
an immediate consequence of Remark 1. ]

Due to Proposition 5 and Remark 1 every u € W(p, ¢) has a unique presentation

p
U= E al’gpai,)\i + v,
=1

where (o, a, \) € ngﬁ is unique up to permutation and

0 1 0

1L
(S E(a,a7/\) = <(pai,)\ia)‘iaAi90ai,)\¢7 xaaimgoai,)\i 1 S 1 S D, 1 S m S 3> - Hl(M)
1

Furthermore

o (5 (7)) |0

N|=

uniformly if € — 0.
We define new neighbourhoods of non-converging Palais-Smale sequences, which we will
use from now on. For p € N and € > 0 set

p
1
u = Zai(pah)\i 4+ v st A > z Vi, €55 <eVi # 7,
=1

V(p,e) == {u ex

vEE ol < e, |os— —— i(K(“”)Q <eVis. (3.20)
(o) v (& K Y

D=

Clearly V(p,e1) C W(p,e2) C V(p,e3) for 1 << g9 << 3. Therefore we can work in
V(p,¢e) instead of W (p,e).

3.2. The modified functional

The negative gradient flow of J induces a "shadow" flow with respect to the variables
(a,a,\,v) for u = > F | a;pa, n, +v € V(p,e). We would like to construct a pseudo-
gradient, which represents the major terms of this shadow flow and which simplifies the
movement of (a,a, A, v).
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3. An appropriate representation in W (p,e) and the modified functional

Unfortunately, for our argument the functional .J is not smooth enough. Nevertheless it
is possible to remedy this issue by introducing the new functional:

[Jull?

I(u) :==
(Jonr K (@)udog)

9

Wl

defined on the set
U:=%n {u € H'(M) ’ K(z)u*do, > o} .
oM
This replacement is justified by the following Lemma:
Lemma 3. (a) Critical points of I are critical points of J.
(b) Palais-Smale sequences of I in U are Palais-Smale sequences of J in Vo (X7T).
Proof. First we prove (a). Let u € U be a critical point of I, then

1
faM K(x)ugd‘fg OM

0=<u,h>-— K(x)u?hdo,

for all h € HY(M), especially for h = u~ = max{0, —u}, which implies
1

Jors K(@)uddoy Jon

and therefore w > 0 a.e. in M. Hence u is also a critical point of J.

(b) Let (uy), be a Palais-Smale sequence of I. Since I is bounded form below

[lu”[? + K(z)(u”)*dog =0

sup |< Up,u > —I(un)% K(x)u2hdo,| = o(1).
lIplI<1 oM
[|uy, || <1, which implies ||u,, || — 0 if n — co. Hence we derive
K (z)|up|*dog = / K () ((uf)? + (up)*) dog = | K(2) ((u)* = (uy)*) dog
oM oM oM

o [ K)(u)do, = / K (@)uddo, + o(1),
oM oM

which yields J(uy,) = I(uy,) + o(1). Therefore

w

V]

DJ(up)[h] = (21(un) + o(1)) << Un, > — (I(un) + 0(1)) K(x)un]un]h)

oM

= 21 (uy) << Up, h > —I(un)% /E)M K(x)un|un|h) + o(1)||h||

Njw

= 21 (uy,) << Un, b > —1(uy) K(x)uih) + o(1)]]h]|

oM
= DI(un)[h] + o(1)][[A]].
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3. An appropriate representation in W (p,e) and the modified functional

Thus (up), is a Palais-Smale sequence of J. Furthermore (u,), C Vi, (Z) if n is
large. O

From now on and in the rest of our proof we assume that I does not have any critical
point in U. This assumption yields the following Proposition.

Proposition 6. Let (uy), C U be a Palais-Smale sequence of I. Then there exist p € N
and a sequence £, — 0 such that u, € V(p,e,) along a subsequence.

Proof. The result follows through Proposition 1, Lemma 3 and the definition of V(p,¢).
O

From now on we again write J(u) instead of I(u), hence
[Jull?
o
(fops K (x)uddoy)?

Since we assume that J does not have critical points, flow lines of the negative gradient
flow will enter V (p,e) for some p > 1. Therefore we need to understand the behaviour
of J in V(p,e). A first step is the expansion of J in V(p,e) which gives us a first
understanding of the behaviour in V(p, €) with respect to the variables («, a, A\, v). This
expangsion will be done in the next chapter.

J(u) =
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4. Expansion of the functional

In this chapter we expand the functional in V' (p,€) which will give us a rough idea how
the functional behaves with respect to the variables (a,a, A,v). Again let G(-,-) be the
Green’s function of the operator (Lg, By). Moreover let H,(x) be the regular part, which
appears in the expansion of the Green’s function G, (a,-) with respect to the operator
(Lg,, Bg,)- See appendix E for more details.

For (A, a;), (Aj,a5) € Ry x OM we define the interaction

1
I(gij) :=uq,(a; a; (@i
(gi5) :=ua; (as)xp(|%a, (ai)]) % N %J Ay, (@007
G iy g
+ (1 — Xp(|¢aj (az)‘)) ()\ai)\j])- (4.1)

in case \; > \; and I(gj;) := I(ej;) in case Aj > \;.

Let |II(a)| be the norm of the umbilicity tensor (see (1.9)) at a € OM with respect
to gq, then the functional can be expanded as follows:
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4. Expansion of the functional

Proposition 7. Let u = Y""_| aia, n, +v € V(p,e) and 2 < \;p? Vi, then

_ Q(BY9BY YV, I (a;)|* log(Xip)
) = ( ))3 { IOGZ p 15“ ‘

( T ol K (a A7
P 2 S Ha 3 [ 1
fz o |53 Ha, (as) o INE
1a Iy dh_ K (aj)lo 9 A
Qi K(a;)a?a; 2
+21 < 2 J )[ Eij) — *(v
1; L2l Y 1041K(al)fo (<) . 1a§'K(aj)Iof (v)
2 10‘2 2
—4 J / Pa, N,V do
22 " Z Zp 104?K a) Jour TN g
p )| =1
+ 0 ZP%’ +o0 ZEU +0 Z—Q )\ +o ZP
i#] 1#] i=1 Z i i=1 "V
p
log(Aip) | 1 2 5
+0 (Z g | I+ OdlP).

Here f*(v) is a linear map on E(q 4 5 given by

» 2
) = - K(x) (;aigpai’/\) vdog

such that
L]
P 2 ,
VK (a;)| | log(\;)3 1 |(a)|log(Nip)t  p L
<C ; Ai + A2 + A2)2 + N + x + ;alj log(e;;7)3

Moreover J, Iy, I are positive constants.

Proof. First we expand the nominator. Since v € E(q q,3)

llul|* = ZQQ\I@mAI!QJrZ%% R o | il
i#]

We compute the norm of ¢, », therefore we essentially follow the computations in [15, 28|.
Since

o) = 500 (Tog(det(ga())) = O(J ")
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4. Expansion of the functional

in ¢, Fermi-coordinates with respect to the metric g,, we conclude hgy, (a) = Vhg, (a) = 0.
This identities will become very useful in the sequel. Furthermore we often will apply
the following formula:

2
r
== A 4.
/s:%-Q 5= ddn—3) sp2 15 43

for a homogeneous polynomial ¢ of degree d.

Now we expand the norm:

R 1. )
2= /M (IV@arlg, + 5 Rouan) dVeo + /(9 y hg, P2 \dog, . (4.4)

| |90a,)\

In the following we identify B,}L - Ri with its image under 1, 1. We begin with a local
expansion of the gradient.

/B+ ‘V@a’)\@ad%a = /B+ (|v¢a,)\’2 + (gij - 5ij)ai@a,)\aj@a,)\) (1 + O(|(l‘, t)|10))dﬂfdt
P

p

.. .. 2
- /BJr (‘V%,A!Q + (g” — (52])8i(,27a7)\8j(ﬁa7)\)d$dt +0 <§\2> . (4.5)

P

First observe

1
V$, 2:/ Vi, |2 = 21, +/ 8V56d5+0< > 4.6
[, Woustt= [ =2 [ oo o) 40

Next we expand

/ (99 = 6)0iparOjPar = / (9”7 — 6"7)0:620;0. (4.7)
B By

Let R;jx; and ij,aﬁ be the coefficients of the curvature tensors of OM and M respec-
tively and h;; be the coefficients of the second fundamental form of the metric g, in
Fermi-coordinates, then (see (A.1)):

L 1 _
g” =0 + thjt + gRikjll’kxl + 28khijtl’k + (Rmn] + 3hikhkj)t2 + O(’(l’, t)|3). (48)

We use (4.3), (4.8) as well as R, = —|II(a)|? to compute

.. .. 8 |H(a)\2 t2\x]2 )
IO =y / +0(+3)- (4.9)
/Bj( ) J 3 A2 B}, ((1 +1)2 + |m’2)4 <)\2>
Furthermore
1 . 1 A ,
6/13;r RguSDa,AdVa =5 /Bj Rga(Pa,Adl’dt—FO <ﬁ>
! \H(a)Q/ 1 )
e +0(33); (4.10)
6 A2 B, (1+1¢)2+ |$|2)2 <)\2)
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4. Expansion of the functional

where we used that Ry, (z,t) = —|II(a)|?>+O(|(x,t)|) in Fermi-coordinates. Finally, since
hg, (z) = O(]z|°) in Fermi coordinates,

R p
hy@? \dog, = O (= ). 4.11
/B g A g <A2> ( )

P

From (4.4), (4.6) and (4.9)-(4.11) we derive the expansion

. 1 . .
/;_'_ (’v80a7>\|3a + 6R9a9037)\)d%a +/ hgagp?l,)\do-ga = 2‘[0 + /33 81/5>\5>\ds
P+

P By
+8|H(a)|2/ t*]a]? _1!H(a)l2/ 1
3N st (L+02+]e2)t 6 N St (1462 + [f?)?
p 1
0 (—) O—~—). 412
o)t ((Ap)3> (12
It remains to compute
. 1 . .
[ (90u + gV + [ by oy,
M\BJ} OM\B,
N N Ga a, - ~ Ga a, - Ga a,-) .
[ tapar(fan - EEN vk [ (060050 - 0,505, Yaa,
M\BJ} S5 . A A
~ ~ Ga a, - N ~
+/ By, Pax (%,,\ - ()\ )>dgga + / Oy ParPardog,. (4.13)
OM\B, Sp+

We use the expansion of the Green’s function (see appendix E) as well as the definition
of the bubble to get the estimate

. Ga(a,-) Gala, ) [(a)] 1 1

aN — = o\ — <C —+ — 4.14
Par = — Xe|oA= =1 =0\, Tt aes (4.14)

provided Ap > 2 and dgy, (a,x) > p. Furthermore, under the previous conditions, Propo-
sition 2 yields

5 1 [l(a)]
[Lg,Pan| < C <A2p5 + ) (4.15)
From (4.14) and (4.15) we derive the estimate
s (5 Gala) M(a)?  p* 1
LgoPa %,A—dVQSC( + 5 tas - 4.16
| oo v, ot tE)

In the following we expand the last integral in (4.13).

A g .
/ al/‘roa)\@a,)\do'ga = / ig”@ﬁ,\xjé,\ds
SSv* SS,+ P

).

_ (@)  p* 1
- 8V5A6AdS+O< v twtwg) Wi

1 ij PQ
;g ai(s)\l‘j(S)\dS—l-O ﬁ

3
Pt
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4. Expansion of the functional

Furthermore we find the estimate

/ By, an (%,A -
OM\B,

Finally we need to expand

N Ga a,-)
/53 (al/(pa A (A ) - 81/ (A )§0a7)\> dO'ga
G

- /g (8”“0“ o) _p, Cule )m) a5

+ =) < = a’ —0; Ga&a’ ')cﬁm> %dS+ ) <§Z>

:[qg,+ (8 5/\G()\ _ajGa()fL )s >dS+O<|H§;)|2+§Z>

_ ;2/% (aymaa(a,.> _a”G“(“")Kx,lt)\?>d5+O <|H;c;)| +;+A31p3>
:_2|Si‘H§(;L)+O<wW+;+A;3> (4.19)

By adding (4.12),(4.13) and (4.16) - (4.19) we have proved the following expansion if
Ap>2:

lpanl? = 21 — 257 @)

)\2
+8!H(a)l2/ t?|z[? 3 1|H(a)l2/ 1
3\ (L4802 +z2)" 6 N Jpr (1+0)2+|z2)°
1 1
+O<)\2+/\3 3>+0<)\2) (4.20)
Furthermore, due to (]28]),
2 2
/ tla] = log(A\p) \52|/ dr—l—O( )
B, (1+ )2+ [22)"

, -2
/ij((l—&—t) +|x]) log/\p|5|/ 71+ )dr—i-O()

[e'e) 7‘4 1 %) 7“2
A u+ﬂ%“‘8ﬁ TETIE

(a) 1 [II(a)|? log(Ap)
lall? = 21p — 2|53 +3 v J

+O(| §\2)|2+;2+)\313>+0<)\12>, (4.21)

Since
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4. Expansion of the functional

SZ o] T‘2
J = ——d
| /0 (14 1r2)2 "

In Proposition 25, appendix B, we expand the interaction of two different bubbles, which
is given by:

where

(Painis Pa; ;) = 201 (€if) + O (peig) + 0 (ei5) (€55 = 0),
provided 2 < \;p?, \jp?. Hence (4.21) implies
p

H II(a;)[21
|u|]2_2IOZa — 2|53 Z poy (a) Z 2] az’ Og( if) (4.22)

+ 2[1 Z OéiOéj é‘ij)

i#j
p 2
[TI(a;)| p
+O<Z 2 )\24—)\3 + 0 ZPSU +o0 st
i=1 i i#j i#]
+ [|v||2. (4.23)

Now we turn to the expansion of the denominator:

P 3 p 3
x) <Z QiPa; T+ U> dog = K(z) <Z aigpahki) dog
i=1 oM i=1
P 2 P
+3 K(x) (Zaicp%)\i> vdog + 3 K(x) (Z aicpami> v3doy + O(||v]]?).
oM i=1 oM i=1

(4.24)

First we compute

p 3 p
) (z as@) iry =Yl [ K@)
i=1 =1 JOM
+3Za ozj/ K(x SOQZ,A $a;z;dog + O Z/ cpa“ A ay . (4.25)

i#] i#]

/ K('r)gp?lz,)\ldo-g = K(al) / ¢2¢,Aid09ai =+ / (K(ZC) - K(al))(ﬁz“)\zd(jga
oM oM

oM

~3 _ ~3 ~3
/ Spai s dagai - / Soai,)\i dagai + / Soai s do’gai
oM B OM\B,

P

TI(a;)[? 1 ) / .3
= I +O< + + @\ dog,
0 N (Aip)3 OM\B, oA S

_ [T (a;)|? 1
=ht0 ( ot (Aip)3> '

and
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4. Expansion of the functional

Moreover
[ K@) K@) don, = [ (K ) = K ne +0 (5055
_ /B (K (x) — K(a;))8%. dz + O <(/\m)3>
() )
where
Hence
[ K(@)et, g oy = K)o + %Migal) 10 ( : Ailp) ) I < ;2> (4.26)

Next we expand the second integral in (4.25). Proposition 2 implies

1 1 p
2
S\ Pasndog = = Bypa, x,Pa; 1, d (0] 0] . (4.27
/aM%“AZSO“AJ 70 2/8M 90 rPay ;0% ¥ <)\?/\jp4>+ (/\Mg) 420

Thus

N =

1
/ ng,kﬁ"a]’,%dag = §<90a¢,>\iv ‘paj«\j) - / ngai,ki‘paj)\jdvg
oM M
1 1
10 4
+ (AA)+O<A?+A?>

Since u, is smooth, there exist constants C, ¢, pg > 0 such that

cdg, (a,7)? < [ (z)|* < Cdy, (a,x)? Ya € OM,NYz € M :dgy,(a,z) < 2po (4.28)

and
cdg, (a,z)? < dy(a,z)?* < Cd,, (a,z)* Ya € OM, Yz € M. (4.29)
Therefore, from Proposition 2, (4.28), (4.29) and the estimate
Yar < C ( A 2) for A\p > 2, (4.30)
(1 + Mdy(a,z))

we derive

22 s
LYo . Pa. 2. AV, = O L J dv,
J Fresnay </B<><< raeor) (T vaaar) )

i ;O </Bz*p(ai> <(1 + A d/\i(az, ))2> <( 1+ dAj(ag, ))2> dVg) |

37




4. Expansion of the functional

If \; > \j and :\\—; > Nidjdg(ag, aj)2 the previous integral can be easily estimated by

< Opé‘ij.

'/ Lg(Paw\iSOaj,)\j dVg
M

In all other cases we integrate both integrals over B;p(ai) N A and B;;(ai) N A°, where

1
A= {x €M | 2d4(aj,z) < ~ + dg(ai,aj)} (4.31)

< Cpgij-

to obtain
'/ ngpaw\i%paj,)\jdvg
M

Hence, in any case

K(x)@2, 5, %a;0,d0g = K(a;) 111 (i5) +/
oM oM
p 1 1
Olpesj) + O R b
+ O(peij) + <)\i)\j>+o<)\?+)\?>

Lastly
/ (K(.I‘ - K(ai))@zi,AiWaj7Aj dO'g - /
oM Bp(ai)

(K(SL‘) — K(ai))wgi,)\i SOaj)‘j dO'g

(K(.f) — K(ai>)90§i,)\ig0ajr)‘jdo’g

V(o) !
=0 /Bp K (z) — K(ai)|°03, (/aM Saai,xi‘Paj,Aj) +0 (A%)‘j/ﬂ)

Here we used the estimate
(4.32)

3
2

3 3
/M cpa2i7Ai<p3j’Ajdag < C’&tij log(ai_jl),
which can be proved by integrating over A N OM and A° N IM (see also Estimate 2 in

[7]). Summing up, we have shown
K(2)92, 5, %a;0,d0g = K(a;)111(255) + O(pez) + o(ei;)

oM
p 1 1

+O</\‘)\j>+o<)\2+/\2). (4.33)
1 i j
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4. Expansion of the functional

We add (4.25), (4.26), (4.32) and (4.33) to get the expansion

P P 314 AK
x) Zaicp%)\i dag Za K(a;)Iy +Z ‘
=1 z

—I—SZa a; K (a;)11(gi5) + O Zpaw +o0 st

i#j i#] i#j
2 p 1
@) — |- 4.34
- Z 32 i +o z; % (4.34)
The next step is to estimate the integral
P
o (Soewmnn ) vioy = [ K150
i=1

+ Z (2)itjpa, \; Pa;, 2, vdog.
i#]

The second integral is bounded from above by

3 3 3 2
[ K@aiaspunpnavio] <C( [ of ok i) bl < Coitonteg ) ol

hence it remains to estimate the first integral.

K@)k p 0oy = K(a) [ @2 svdoy+ [ (K@) = K@)k, 5 vde,
oM oM

1
= K(ai)/ gozh)\ivdcrg +0 (/ (K(m) — K(ai))apzw\ivd09> + O ()\2 2) [|v]|
oM B, (a;) p

oM

1

2
3
—K(@) [ 5 vdoy+ O ( [ i@ - K(anr%idx) ol
oM By (ai)

1

+0 (523 )l
VK(a;)| log(\)i 1

<a>/8Msoai,Aivog+0( e L

Since v € E(q,q,2)

0 =<v,¢a; >:/ Lgpa; 2 vdVy +/ By@a; xvdog
M oM
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4. Expansion of the functional

and therefore

2/ ‘P?M,Ai”dag :/ Bg%"ai,kivd‘fg"‘/ (29021-,/\1- - Bg%i,xi)vdag
oM oM oM

= _/ Lg@ai,&vdvg +/ (29021,& - ngpai»/\i)vdo-g
M oM

3 2
. 4 1 . . 3 3
=0 ((/ Lgai@ai,ki‘g’dvgai) + </ ’(Q@EMZ- - BgaiQ"ai,)\i)‘Qdagai) ) [[v]].
M oM

Thus Proposition 2 implies

' / 9021 A vdoy
oM

3
1I(a;)|log(Xip)s  p | 1
<
< C( N, + X + 32 [|v]]

and therefore

2
P
x) (Zaigoah&) vdog| <
=1

]

- IVEG@)] | los()3 | 1 () log(h)

P —1\2
o twpt o Tt sl ]l
i#£]
(4.35)
Finally we expand the last integral in (4.24):
p
K(x) i, | vido
P
log(Aip) | 1
= ZK(ai)ai/a Pa\ v dog + O (Z ED VR W lo]*. (4.36)
i=1 M =1
We add (4.34), (4.35) and the last expansion to (4.24) to get
p P
I AK
x) (Zaﬁp%,\i +v> dog = Za K(a; I0+Z 3 4
i=1 i
—|—32a a; K (a;)I11(ei5) + 3f* (v —|—3ZK a;)o Z/ ‘Pai,AiUZdUg
i#] oM
p 2 p
P II(a; 1
2O [Spe | 4o e | o3 L+ M) Sy
— — )\ A A
i#£] i#£] i=1 "7 =1 "1
~log(Aip) | 1 2 3
+0 ZT*E [[0]1> + O(][0]?). (4.37)
i=1 ¢ !
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4. Expansion of the functional

Lastly we use the Taylor-expansion (1 + t)_% =1—2t+ O(t?) to expand

» 3 =
) (Z QiPa; \; T U) dog
i=1
and multiply the expansion with (4.22), which proves the Proposition. O

Using Proposition 7 we can know have a first look into the behaviour of the functional in
V(p, ). Since the expansion in Proposition 7 holds in the C''-sense, which will be proved
precisely in chapter 5 and 6, we can try to understand the behaviour of J in V(p,¢)
through the variables (a, a, A, v), where

U= Qipa,x +v.
=1

We have to be careful because v is not independent of (a,a,\). But for a rough un-
derstanding let us assume v to be independent. Due to the definition of V(p,e) (see
(3.20)):
a; K (a;) = a;K(aj) + o(e) in V(p, e) uniformly for ¢ — 0.

Moreover, the assumptions of our Theorems yield |[II(a)] < C|VK(a)| on OM. Let
us first try to understand the behaviour with respect to (o, a,\). The v-term will be
investigated precisely in the next chapter. Therefore, by neglecting all lower order terms
in Proposition 7, we get the rough expansion:

p
J (Z Oéz‘%i,,\i>
i=1

_Q(B*,9BY) 5 o? (8% Ha(a) | Iy AK(a)) 1
- ( plOé?’K(al)) { Z p 1(1 < 1o +9—TO K(a )>)\

Il Q; 0l
— TOZ 1’042[(6”)}

i#j =11

We set
Q(B*,9B%) >0, of

( P e K(az))2

Hence, first we could move («, a) along the flow of V f(«, a), which is a pseudo gradient
of J as long as

f(a,a) =

|Vf(0[,a)|220 Z 2+Z<€l]

i=1 i#]
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4. Expansion of the functional

If
"1
IV f(a,a)> <O Zﬁ +) e
i=1 "t g
we have to add a vector field, which moves the A-variables. Due to the interaction &;;

we have to distiguish many cases, which makes a rough understanding complicated. For
simplicity, let us assume p = 1. Then

I D)

J(agpa)\) ~

K(a)s

Since a is close to a critical point in this case, a natural pseudo gradient has so increase
A, if

9y K(x)

H
58 Hal) (4.38)
Iy

and decrease A, if

_.I_

‘Hx(x) 1y AK(z)
IO 9[0 K(.Q?)

153 <0 (4.39)
Therefore, flow lines of a negative pseudo gradient vector field, which remain in V(1,(t))
for e(t) — 0 will accumulate at critical points of f. Furthermore they have to accumu-
late at critical points of K such that (4.39) holds. For p > 2 it is more complicated to
understand flow lines, which remain in V' (p,e). A rigorous proof will be given in chapters
7 and 8 (see Proposition 19).

Next chapter we expand the gradient of J with respect to the v-part to get a precise
understanding for the movement of the v-variable for

P
Zai@ai,& +v e V(p,e).
i=1
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5. Minimization of the v-part

Let us first introduce some notation which will be used frequently in the rest of this
thesis. For p € N and € > 0 we set:

1
)\i>EVi’ €ij<€Vi7éj,

BY = {(a,a,/\) e RE x OMP x RE

1 " K(a)\? ,
o = jZ<K(aj)> <5Vz}. (5.1)

[N

1

In this chapter we prove the following Proposition:

Proposition 8. There exist eg > 0 and &9 > 0 such that for all (o,a,\) € BE the
minimization problem

p
min {J (Z Qi Pa; N T v)
i=1

has a unique solution v = v(a, a, \). Moreover it exits C > 0 such that

v E E(a,a,)\) N Bs, (0)}

o]l < CII]]

S

p 2
IVK(a;)| log(A\)5 1 |H(ay)|log(Nip)i = p L
<C ; i + A2 + 222 + N + x + ;Ezj log(e;; )3

Crucial for the proof of this statement is the following Proposition which has been proved
in [4] by using ideas of [7] and [12].

Proposition 9. For all p € N there exists e(p) > 0 and c¢(p) > 0 such that
p
0l =43 [ untiday = )l for all v € By
i=17OM

: P
provided (o, a, \) € Ba(p).
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5. Minimization of the v-part

We set »
aw) = ]2 -4 / s v2doy,
i=1 /oM

which is a quadratic form on E(, 4 ) due to Proposition 9.
We need a rough expansion of

p
p(a,a, \)VJ (Z QiPa; N T v) ,
=1

where p(a,a, )\) is the orthogonal projection (in H'(M)) onto Eaan- For h € Eg 4
and u = > Y| @ipg, ;, + v we obtain

1
< VJ(u),h >= 5 <2 <wv,h > —2I(u) K(g;)u%dag) .
(forr K (z)ubdog)? oM
Here I HQ
u
I(u) = :
(u) S K (z)uddoy

For f € L*(OM) let B '(f) € H'(M) be the unique weak solution of the boundary
value problem:

Lyu =10 in M
Byu = K(z)f on OM.
Then
1
p(o,a, \)VJ(u) = 5 (20 = 2l(u)p(ev, a, \) B, " (u?)) .
(Jonr K (z)udog)® ’
Hence

pla,a, VI (u) = 0 < v — l(u)p(a,a, \) B, (u?) = 0.
Set u = u(v) = 37| ®ipa;n, +v and F: Egq) = Ean),

F) :=v—1l(u)p(a,a, )\)Bg_1 (uQ)

as well as
r(u =1I(u 2)u’hdo, — f*(h) — T p Qi Pg . | hodog | .
(w)[h] := I( )( 8MK( Ju"hdog — f*(h) — 2 BMK( )(; z%ml)h d g)

We easily derive the estimate

[r(w)[R]] < ClIR] - [v][*. (5.2)
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5. Minimization of the v-part

Moreover the same expansion as in (4.36) yields
p
I(u) K(x) Zai@ai,ki hvdog = 1(u) ZK(%)%’/ Pa; 2, Vhdog
oM P oM
p
log(\;) 1
= Ak
+0 (Z ), M)> ol - 112l

=1
=23 [ unehdny + o)l 1]

because

Hence, the identity

< F(v),h >=<wv,h >
—(u(v)) <f*(h) + 2/8M K(x) (; aigoai,&) hvdag> —r(u)[h],
(5.2) and (5.3) implie
fWU)=-JOUG*-%VQQO+*KQHM|+0OWH%

where a € E(, 4,5) such that < a,h >= f*(h) for all h € E(, 4 ). Let
B: E(a,a)\) X E(oc,a,)\) — R,

P
B(h,w) =< h,w > —42/ Pa; N hwdog
i=1 /oM

(5.3)

(5.4)

the bilinear form such that ¢(v) = B(v,v). Proposition 9 yields that B is coercive, hence

there exists a linear, selfadjoint operator A : E, g x) = E(q,q,x) such that

B(h,w) =< Ah,w >. Since ¢|[v|]*> < q(v) < Olv||? for all (a,a,\) € B, we get
cld < A < CId. Thus A is an isomorphism and ||A7!|| < 1. Therefore F is equal to

F(v) = l(u(v))a + Av + o(e)||v]] + o([[v]])-
We also need to expand the derivative of F'.

d
dtlt =0

< DF(v)[h],w > = < F(v+th),w >

=< h,w > —Dl(u(v))[h] it K(x)u(v)*wda,

—2l(u(v)) - K(z)u(v)hwdo,.
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5. Minimization of the v-part

As in (5.3) an expansion yields

< h,w > —2l(u(v)) K(z)u(v)hwdoy =< Ah,w > + < r1(v)[h],w >,
oM

where

[Ir1 ()]l < C (o(e) + o({[v]])) -

It remains to estimate the second term

Di(u(v))[h] K(x)u(v)?wdo, = Dl(u(v))[h] < Bg_l(u(v)Q),w >,

oM
where
_ 2 _3 3
Di(u(v))[h] = o K@), << v,h > 2l(u) . K(x)u hdag>
p 3
= e (31 () -+ Gl ) 1)
= (o(e) + O(llv[) [In]
for h € E(4 4,5)- Therefore, the previous expansions yield
DF(v)=A+ri(v)+ Bg_l(u(v)) - Dl(u(v)), (5.6)

where

[l71.(v) + By (u(v)) - Dl(u(v))|| < C (o(e) + O(|[v]])) -
Set F(v) = —A~! (I(u(v))a + o(||v]]) + o(||v]|)) = v — A~ F(v). Due to Proposition 7,

[|l(u(v))al|| = o(e). Hence it exist €, > 0 such that F' maps Bs(0) into itself, if ¢ is
small. Moreover, form (5.6) we derive for vy, vy € Bs(0) :

1
||F'(v2) — F(v1)]| < / |DF (v1 + t(vz — v1))[|dt - |Juz = v1]| = (o(e) + O(3)) [[vz — vi]|-
0
Therefore, it exists g, dg > 0 such that
F : B50 (0) N E(a,a,)\) — B(So (0) N E(a,a,)\)

is a contraction for all («,a, \) € BE,. The contraction mapping principle yields a unique
fixpoint for F' and hence a unique solution of F(v) = 0. Summing up, we have proved
the following statement:

Proposition 10. There exists eg > 0 such that the equation

p
p(Oé, a, )‘)VJ (Z AiPa; \; + U) =0

i=1

has ezactly one solution v = v(, a,\) € Ey 4 1) N Bs,(0) provided (o, a,\) € BE,.
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5. Minimization of the v-part

In the last part of this section we show that v minimizes
P
Eaax) NBs,(0) > v J (Z Qi Pa; N\, + v)
i=1
for all (o, a,\) € BE, and gy small. Due to Proposition 10 it remains to show:
P
D2J (Z QiPa; n; T v) [h,h] > co|[h|]? Vh € E(q 4, and v € E(y 40 N Bs,(0). (5.7)
i=1
For u =" | a4, ) + v we compute:
D2J(u)[h, h) =< DV.J(u)[h],h >
B 1 [ 2 [y K (@)u*hdo,
(Sors K(x)u?’dag)% (Jors K (@)ubdor)

+ < DF(v)[h],h > ]

< F(v),h >

1
= (2 < Ah,h > +o(e)|IR][* + O(l[v]])I[A][*)

(faM K(x)“?’d%)
> col|h|[?

wl

for € and ||v|| small. Therefore v form Proposition 10 is a minimizer. From the equation
0= F(v) (see (5.4)) we derive the estimate

[oll < Cllall = CIf7]]-
Hence the stated estimate in Proposition 8 follows from (4.2). Therefore the proof of

Proposition 8 is completed.

Remark 2. Returning to the question of understanding the behaviour of J in V(p,e),
we can now understand the behaviour with respect to v. Since

p
v J <Z QiPa; N, T v)
i=1

s a conver functional with a local minimizer, a natural negative pseudo gradient of J has
to move v such that v comes closer to v.
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6. Expansion of the gradient

In the previous chapter we analysed the behaviour of J with respect to the v-part. This
chapter is crucial for the construction of a pseudo gradient vector field which moves the
variables (a,a, \).

For any h € H'(M) and u € U it holds

[Jull?

faM K(l“)u?’dag OM

In the following u = Y2 | @ipa, n, + v € V(p,e) and h is either one of this bubbles
or a derivative of this bubbles with respect to A; or a;. We did the expansion of the
functional in the general case. Since we assume that all critical points are umbilic points
there exits a constant such that |[II(a)| < C|VK(a)| for all a € 9M. This estimate is true
because K is a Morse-function. From now on we use this inequality in the expansion of
the gradient.

< VJ(u),h >=2J(u) (< u,h > — K(z)thdag> . (6.1)

6.1. Expansion of the gradient applied to a bubble

Proposition 11. For u= Y2 | g, n, +v € V(p,e) it holds:

02K (a;) Y0 a?
VI(u), payny > = 4o (u) | aj — Syt =L
< VJ(u), @a;n; > 0 (u) (aj 1 K (a;)

p 2 2
1 [I(ai)]” log(Xip)
+0 Zﬁ+ v +) e | + ol
i=1"" i i#j
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6. Expansion of the gradient

Proof. Since u € V(p,e) and v € Eq q.3)

< Zaigpai,)\i +, Paj\; = = O‘jH(paj,)\jHQ +0 Z €ij

i=1 ihitj
II(a;)|?log(\;
:2_[[]a]+0<’ (j)|)\2g( ]p) >+O Zgzj 5
i i
(6.2)
where we used (4.21). Furthermore we expand
2 2
(Z QiPa; N "’“) Pa;z,dog = / K(z (2 QiPa;,\ ) Pa; 2,0y
8M ]
+2 | K2 <Z aiwah)\i) @a; 2,0+ O(|[v][%). (6.3)
oM i=1

The first term on the right hand side can be computed as follows

p
-%') (Z Oéi(Pai,)\i) Paj,Aj dUg = Z (pa“)\ Paj,Aj dUg

+ QZ%OZZ/ K(2)Pa; 7 Pas,n Paj n; d0g-
i#£l

In addition

p
Zazz/ K(x)(p?li,/\isoaj)\jdgg
i=1 YoM
— a2K(a;)Io + O (v) +0 Z/ PasniPagidog

i#£]

and

s 2 s
2 e ndoy < C Z : day.
/8M PaihiPag A 000 = 1+ )\ d (aza )2 1+ A?dg(aj’xy 7

In case \; > \; and ﬁ > X\ididg(a;, a;)? we obtain
X il J

/ (HAdAi(az, )2>2<1+A;j(aj, ))d"g
([ ) ) w0 (3)

Aj
<C’)\ < Ceyj.
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6. Expansion of the gradient
In all other cases we integrate over
1
A:=qx€dM : 2d4(aj,x) < x +dg(ai, aj)

and A¢ to get the estimate

/ ( A )2 Aj do, < C 1 < Ce
Og > - ~ i
oar \ 1+ Mdg(ai,2)?) \ 1+ Ndy(az,x)2 | ¢ N Ahdy(as, az)? !

Hence, in any case we obtain

/ %031.’)\1.80%,)\]- dag < C‘Sij (6.4)
oM
and therefore
Z )5, 2 Pa;, dog
1
= aj K(%)foJrO()\Q)JrO > e (6.5)
i#]

Finally

QZO@O@/ K(2)Pa; \iPayn Pagndog| < CZ/ 0o Pandog < CY ep,

il k£l k£l
hence
P 2 1
x) (; aiapah,\i) Pa;ndog = Ioa K(aj)+ O (}\2> +0 kzﬂgkl . (6.6)

Therefore the first term of the right hand side of (6.3) is expanded. Now we estimate
the linear term

p
) (Z Oéi(Pai,/\i> Paj U
i=1

2 Y
= K(x)ajcpaj)\jvdag +0 Z </8M (péh/\igojj’)\jdag) [|v]]

oM i#j

oM

VK (ay)| | log(X)) [(ay)| log(Ajp)  p 2
Aj + )\? + )\] >\+§;E7']10g ij )3 HvHv

=0
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6. Expansion of the gradient

where we used the same estimates as in the expansion of the functional. Hence we have
derived the following expansion:

2
1
; (Za,g@a“)\ —H)) Pajndog = Ioa K(a;)+ O ()\2) +0 Zskl
M

i=1 k£l
VK(a; log(\; a;)|log(\;p) 2
+0 | )\( J)| + )fgj) + | ( J)|)\ J +Z€ZJ log Zj 3 ||UH
J J J Aj i#]
O([[v]?). (6.7)
Finally, using the expansion of the functional, we obtain
HUII2
Jorr K(@)u dUg
p p
1 [I(a;)[* log(Aip)
= 255 3K 70 Dotz ot m | okl (68
=1 o al i=1 z ) i#j
From (6.2), (6.7) and (6.8) we derive
< Uy Pa; n: > — HUH2 K(x)u2g0a.>\.da
" Jonr K(@)uddog Jon o
2K Qs p a2
ZQIOOéj—QIO j p( J)Ez 1
=19 K(az)
L II(a; ] log 2
+0 (> 2+ + i | + O,
i=1 A i#]
which proves the Proposition. O

6.2. Expansion of the gradient applied to a derivative w.r.t.
A

In this section we prove a precise expansion of < V.J (u),)\ja%jcpaj, A; >- This expres-
sion will tell us how the non-compact variables A; will move along a suitable pseudo
gradient.
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6. Expansion of the gradient

Proposition 12. If u =YY aipa,\, +v € V(p,e) and 2 < \;p? for all i, then

0 Ha,(aj) 4 042 Iy AK(G)
J Ai—— g, 2J( 2|53 J 2 =1 222 J
< V), Tn; P - >< S5l A2 * b 1043K(Clz>a] 9 A
o pf 2 ) o
+ Z;] (132[1)\J a)\ (EU) 2W Zij Il K(G/z) + Oéq,OégK( )))\38)\]]—(6”)>

+O</\2 o >+O ZP% + 0 ZE”

i#] i#]
[VE(ap)* 1
( N ) okl

Proof. First we compute

0
< ua)\jﬁgoaj,)\j >

0 0
—O[] < (paj7 YR ]8)\ ()00«]7)\ > +Zal < ()Oam)\z’)\ﬂaA 90[1])‘ >

7]
H,, (ag) log(pAj)[(ay)*  p 1
;2|53 | =Y +0 J J LN
A3 A (\p)?
0
+Ya (211 oy T(E) + (o) +ofei)) (69)
i#]

Here we used Proposition 26 and 27 in appendix C. Furthermore we need to expand the

expression
P S
ﬂf) (Z AiPa; N\, + /U> AjT)\j(paj)\j dag’
=1

which will be done in the following.

P 2
0
z) (Z QiPa; .\ + U) )‘jﬁ%lw\j dog
i=1 J
P 2 P
.1') <Z aigpai,)\i> Ajﬁ@aj,/\jdo—g
i=1 J

p
d
2 K Eia,.X—a..d 0] 2). 6.10
+ oM (a;> (i:1a 14 z»)\z> ]8A]¢ ])‘]U Ug+ (HUH ) ( )
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6. Expansion of the gradient

Moreover

P 2 9 P , ) 9
K iCa i | Ai=——g. \.dog, = - K Ni——Qg. 2. d
/(’)M (Qj) (; aZ(pau)\z) ]a)\] (paj7Aj Ug ;al /(‘)M (x)()pai,)\z Ja)\] SOCLJ,AJ Ug
0
+) oy K(2)Pa; 5 Parni gy Pa; 040 (6.11)

i;ﬁl oM ¥l

and

0
5 Q; K(x)@ai)\i Par,\ )‘j O\ Paj,\; dO'g
i#l oM )

0
=2 Z Q5 / K(w)‘Pai,/\i Paj,\; /\jﬁ‘:@aj,/\j dog
i#] oM j

+0 Z / Soah)\l(pak»)\k(pam)\mdag
ItkAm Y OM

0 _
=9 Z ;0 /8M K($)gpai7Aigoaj,Aj )\ja—)\jgo%)\jdag + 0 Z E%Z log(gkll)

i#] kAl
which we have already seen in the expansion of the functional.
2 K(x)wai,/\i%j,AjAj%%j,,\jdffg —/ K(x)<ﬁai,Ai/\j%<ﬂgj,Ajd0g
oM J oM J

0
= K(a])/ Spaiv)‘i)\j O\ ‘pzj,)\jdag + 0 </ ’K(.’L’) - K(G/j)’g@ai,)\igpgj7/\jdo—g>
oM J oM

d
= K(a; wxuNi—@> \ d
(a])/aMSD za>\z ]8)\j(¢0a3,)\] Ug

1
3 3 3
o <</@M |K($) B K((lj)’?)gpgj’/\j dO'g) </(9M w;iv\igpéj,)\j dO’g) )

0
= K(a; axAi—2 o\ d
(a])/aMSO i Ni ]8)\j90a],)\J Ug

e (( IRLCE K(am%zj,kjdag)

Furthermore
[ K@) - K@), do,
B /B (a) K (2) = K (a;)[*¢3, 5,40, +/ K () — K (a;)* 3, 1, dog,
po (@

OM\ By (a;) !
<0 (yvmwbgw) . 1) |

3 3
Aj Aj

Wi

2
€ij log(SZjl)?’) :
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6. Expansion of the gradient
hence

1
3 s VK(a;)]? 1
0<</ K@) - K)o, o, 0, aﬂog(eijl)s):o( L) Ww),
oM J J

where we used Young’s inequality. Therefore

0
2 | K(T)Pa;nPa;n Ny Pas,n, Ao
aM a aj,Aj JaAj aj,A; g

by A2

0 VK(aj)|? 1
= K(aj)/ SDam)\i)‘jW@gj,)\deg +o <|(])| + 3+ 5ij> . (6.12)
oM J J

It is left to expand the first integral on the right hand side in the previous equation.
9 o
2/8M gpaiy)\i)\jaiAjgoaj,)\jdo-g

0
:/a Pai,\; B A] a)\ Paj,\; dag

0 0
asi | 2N m e\ — Bhjm—@ain, | d
+/BMS0 A < Ja)\jspa])\] g ]a)\jgo j7)\]> Ug
0 0
=< 80(17;,)\2‘7 >\j 87)\]'%0(”’)\]. > = M@(li,)\iLg Ajai)\jgpaj,)\j dvg

9 d
ain | 2N 92 . — Bgj o d
+/6MSO 7,7)\1 < Ja)\j(p(l], ]a)\ (‘0 j7 ) Ug

0
== 2-[1)\_7 8)\ (€Z]) + O(P5zj) + 0(€ij)7
where we used Proposition 3, Proposition 27 and the same estimates as in the expansion
of the functional. Hence the previous expansion and (6.12) yield

0
Zazal/ K Qoal,)\ Pay,\; >\j 8)\ Paj,\; do'g

i#£l
—Zaza (aj)IoA; 9 I(g;) + O Z/J&z‘ +o0 Zekl
RN )I0A Gy 2 Peid
i#j i#j k#l
[VE(aj)? 1
—+ . 6.13
+0 < y + X2 (6.13)
In (6.11) it is left to expand the first term on the right hand side:
0
ZOC (paz, i Ja)\ SOUL],)\ do—g
=1
=ao? | K 0 dog+> o} [ K() 0 do
g Y Soaj, j Ja)\ Pa;j,\;40g (‘Oau Ai Ja)\ $a;,\;40g-

1#£] oM
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6. Expansion of the gradient

A simple computation shows

15)
>\j 87)\]'%”’

1
1+V%J%,P>
on OM. A computation as in the expansion of the functional (see (4.26)) yields
, I AK (a;) 1 1
K(2)gd . dog = K(a;)lp+ — O =

In addition

—Pa;\; T 2ua] Xp‘sa77 <

1
K ()95, a,2Ua;Xp0a;.7, <1+A2dg (aj, >2>dag

1
= K 2X p0a; X dog,.
/Bp(aj) ( )Spaz)\ Xp ey (1+)\2d (aj,:v)Z) O'ga]
1
—l—/ K(x @3_ 2Xp0a; A dog,
OM\B,(a;) (#)80.7,2Xp00,, 1+>\?dgaj(aj»fb‘)2 943
/ K ()2 2x,0 ! d +0< ! >
= a X Cl7 O-a~ 7\ \3
By(as) P Do, L+ X2dy, (a5, 2)2 ) 7% ()P
5 : 0
:2K(a<)/ S E— dm+/ DK (a))[z,2] | —2— | da
7, \ (14 A20z2)* B, ’ (1+ AZaf2)"
1
()
(Ap)?
1 AK(a; )/ || < 1 )
= Kl(a;)Ig+ = dz + O

e >K< Do)

oM

and therefore

0 I, AK(a;j 1
a? o0 K(x)(pgj«\j)\jatpaj,)\jdag = -l ) +o <) . (6.14)
; :

Finally, the same computations as for (6.13) give the expansion

0 )
2. Deaad gy ax; TN dog =) oK (a)h\j - oA I(eij)
i#j oy
[VE(a;)* | 1
G| k#l J
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6. Expansion of the gradient

Hence from the previous expansions we derive
14 AK(a;)

P 2
0
= J

51] E PEij

8
+ ;Il (a?K(al) + aiajK(aj)))\j 8)\ Z-

Z €kl | +o < 5
oy Aj )\j
For a precise expansion of (6.10) it is left to estimate the linear term.

2 8MK(:I: (Zaz@al )\38)\ Pa; N vdog = 20@/ K(2)pa; AJ@)\ Pa;x,vdog

2

3 3 3
oS ( [ ehonsinien) | ol
it oM
0 2
=20; [ K(2)@a,0,\igPa,n,vdog + O | D eijlog(e;')s | 1ol
oM 6)\ 1#]

< Cpg; a; i 2 < pAj. This inequality also implies

.9
because ’)\j ax; PajAj

0
2 K(x)SOaj)\j /\jﬁwajv)\jvdag
J

oM
9 VE(a))  log(y) | 1
=2K a-/ Pa; N Nj 5 Pa; N\ vdog + O I 4 + v||.
(]) M YRty ]8)\] Y RtaY g >\] )\? (Ajp)Q H H
Furthermore

0 0 5
4/8M Spajakj)\jai)\jgoajv)\jvdag = 2/8M )\jai/\jspaj,)\jvdo'g

0 0 0
= 2N — 2\ — Ni—— a1 d B, o d
/aM< TN, T g( ]3AJ¢”A’>>U Ug+/<9M < Ton; T )v 70

0 0 0
= 2Ni— 2\ — Ni—— a1 dog— | Lo Ni— e . | vdV,,
/aM < Ton T T ( TN T M’)) o /M I < Ton Y MJ) o
where we used that v € E(, 4 ). Finally, we use Proposition 3 to derive the estimate

9 (ay)|log(N\p)T | p 1
N — 0 \.vdog| < C J J .
‘/BMSO %Y Ja)\jgp jv/\Jv Og| = < )\] + )\] + ()\]p)g ||’U||
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6. Expansion of the gradient

Therefore the linear term can be estimated by:

p
0
2 K(x QiPa; i | Nj o Pa;nvdo

3
‘H(aj)| log()‘jp)Z p ‘ VK ((L]) log
=0 4+ — 4+ —|—E Ezlt)g
)\j )\j )\j itj ! U

W\l\"

[l

(6.17)

Hence, adding (6.10), (6.16) and (6.17) yields the expansion

» 2
0 oIy AK (aj)
x) <; QiPa; N + U) )\ja—)\jtp%)\jdcfg —ajg X2

0
+ Z I (OZZQK(CLZ) + aiajK(aj)))\jWI(eij) + O Z peij | +o Zé‘kl

i#j ! i#j kA
o (2L MaPlosue? | (IVK@)E | 1Y oo 6o
)\2 Y X z2 '
Finally, multiplying (6.8) with (6.18) and adding (6.9) proves the Proposition. O

6.3. Expansion of the gradient applied to a derivative w.r.t.
a

Proposition 13. If u =" aipa, r, +v € V(p,e) and 2 < \ip? for all i, then

1 P a? K(a;)]?
——Va,Pa; 2, VK (a;) >= 2J (u) (2 L i=1 o2 I % (a,])\ )

Aj
VK (a;)| [VK(aj)]* | 1
+O< (/\jp)g” >+O< Ajj +A2>

+0 (Z 6z’j) VK (a;)] + O(][v]?).

< VJ(u),

i#j
Proof. Due to Proposition 26 and 27 in appendix C

VK (a;)|
%J+§aw\vz{ aj)| | . (6.19)

1
—Vajcpaj% . VK(aj) >=0

<u,
)Y
J
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6. Expansion of the gradient

J
the proof of the previous Proposition to obtain

Since ‘/\%Va].gp%,\. -VK(aj)‘ < C|VK(aj)|¢a;,n; we can use the same estimates as in

» 2
1
K(x) ( E Qi Pa; N\, + v) Yvaj%j,%. - VK (aj)do,
oM — j

1
=aj - K ()63, 5,3 Va,a; 5, - VE(a5)dog + O | [VE(a5)] ) ey
J i#j

1 Z182
+ 20[3 /aM K(l’)cpaj’/\j Yvaj @aj)\j : VK(a])UdUg + O Z €ij log(eijl) 3 HUH
! i#j
+O(||v]|?). (6.20)

Furthermore, due to Proposition 4, we can estimate the second integral on the right hand
side in the previous equation as follows

1
205 K(a:)cpaj,,\jyvajgoaj,% - VK (a;)vdo,
oM j
3
[I(aj)|log(Ajp)s  p | [VK(aj)|  log(}))
:0( J . J ++ A'J + AQJ VK (aj)] - ||v]]-
Y Y j j

(6.21)

It is left to expand the integral

1
- K(a:)gpgj,/\j )\—jvajgoaj,)\j - VK (aj)doyg.
Since
1 1 . R 1
)ijaj Paj\; - VK(GJ) = Uq; ija]‘ Paj\; - VK(GJ) + Paj,\; ijajuaj ’ K(CL]’)

and Vg, g, (a;) =0, due to us(a) =1 for all a € OM, we can first estimate

1
o K(x)spzj,kj ijdj Soaj,)\j ) VK(CLj)dO'g

R 1_ VK (ay)]
= K(x)p2 . ~Va.@a,r, - VE(aj)d Ul e 2
/;p(aj) (x)goaj,/\j )\]v JQO ]1>\J v (a]) Ugaj +O ( ()\]p)g

3
= 3 0uk(ay) | K(2)5, <2ijm - O(Aj|x‘3)> o <|VK(%)|>
m=1 B,

- 14 A3|zf? (Ajp)°
2 2 .
_ 2|VEK(q))] / |z 4dg[j,+0<|VK(aé)|>
3N s (14 |z]?) (Ajp)

2 |VK(q)? VK (a )|
=35 Aj +O( (Ajp)? >
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6. Expansion of the gradient

2
I5 _/ 7|x’ 4d.’IJ
R (1+ [z]?)

We combine the previous estimates to derive the expansion

where

p
x) (Z QiPa;, N T U) )\ va] Paj.\; VK(CLJ)dO'g

_ 22 VK@) (1K (ay) +0<w<<aj>2+1>
N < ) Aj A2

73 Aj (Ajp)?
+0 Z%) VK (a;)] + O(]|v]?). (6.22)
i#£]
Finally, multiplying (6.8) with (6.22) and adding (6.19) proves the Proposition. O
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7. Construction of a pseudo gradient

In this chapter we construct a pseudo gradient Z on V(p,e) such that, along the flow of
= Z(u) in V(p,¢e), the following inequality holds true:

"1 GKVEK () o 19
< VJ(u), Z(u) > > c ZF+Zf+Zeij+|a—|ala\ + v —5|].
i=1 "% =1 ’ i#]
(7.1)

Here u = Y P | &g, »;, + v, 0 is the minimizer from Proposition 8 and @ = a(a) is the
unique critical point of
2
|
P o3 3
(o7 @K (as))

such that a; > 0 for all i. The vector field will be constructed in such a way that the
movement of (a,a, \,v — 0) will be properly understood.

SPl s o

7.1. Finite dimensional reduction

Let S, be the symmetric group on p letters. The symmetric group on p letters S, acts
on BY via

(Oé, a, )‘)ﬂ = (aﬂ'(l)J s Or(p)s Ar(1)s "7 5 Qr(p)s )‘71'(1)7 T 7)‘71'(]))) :

and on T(a’a)\)Bg through the same definition. We call a vector field W = (W, W,, W)
Sp-equivariant if

Wal(a,a, N =Wa(a,a, )™, Wa((a, a, N7 = Wl a, )™,
Wia((a,a, \)™)" = Wy(a, a, A)™@

for all m € S),.

In this section we assume the existence of a S,-equivariant vector field
W = (Wa, W,, Wy) on BE such that, along the flow of this vector field, the following
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7. Construction of a pseudo gradient

inequality holds:

P
%J (; O Pa; N +T}> > ¢ Z Z |VK ai) Zew + la —|alal* | . (7.2)

i= 1 1#]

Furthermore, we assume
WL INWEL N TWE <OV 1<i<p.

The existence will be proved in section 7.4.

First remember that any u € V(p,e) can be written as

p

U= E :ai(pai)\i +v,
i=1

where (a,a,\) € BY and v € E(q,a,n)- This representation is unique up to permutation
of (v, a, A). Define

E:= |J A{(a,N}xEgay CBY x H'(M).
(a,a,\)€B?

We would like to show that E is a smooth submanifold in BY x H'(M) of codimension
N :=dim (E(J;l “ /\)) . Thus let f: BY x H'(M) — RY the smooth map defined by

<, Pai N >
8
flaya,\v) = | <w, 3)\ Pag A >
< v, aam (,Da“)\ >

and observe E = f~1(0). We need to show that D f(a,a, \,v) is onto for (o, a, \,v) € E.
Observe that
<y Pa;n; >
Df(a,a, A\, 0)[0,0,0,h] = | < h 55 @ain, >
< h, gom Pa x>

For b € RN we would like to solve the equation

b1
Df(a,a, A, v)[0,0,0,h] = | b2 (7.3)
b3
with the ansatz
h = ij()paj,)\ +Zyj ]({')A (Pa],)\ +ZZ aJ(PaJ,
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7. Construction of a pseudo gradient

and
(@, Z1,++ , Zpyys h) € RP x Ty, OM 5 -+ x T, OM x RP.
Set ) )
0 1 0
21 .= 1i — 213 := 1i —
2 AE&HA&‘PW 8 ALIEOHAaamSO“ ’
then (7.3) is equivalent to
xr b1
(dmg(zfov'"21'0,2[2,"'21272137"' 7213)—1‘0(5)) y | = | Ab2 |,
z 3 bs

where o(¢) — 0 uniformly if ¢ — 0. Here, we used the estimates from Lemma 11 in
appendix C. Hence (7.3) has, for € small, a unique solution with the previous ansatz.
Therefore D f is onto and hence E a smooth submanifold of finite codimension. The
tangent space is (4 450 F = kerDf(a, a, \,v). We now define a parametrization, given
by ¢ : E— HY M) :

Y(aya, A\, v) : Z%S%l)\ + v.

Since 9 is smooth on BE x H'(M) it is also smooth from F to H*(M). The main goal is
to show that 1 : =1 (V(p,€)) — V(p,¢) is a local diffeomorphism. Therefore it is useful
to show that the derivative D1 is an isomorphism form the tangent space to H*(M).
Let ug = Y 0| ia; x; +v € V(p,e), then (o, a, A\, v) € =1V (p,€)). Remember that

kerDf(a,a, A\, v) = {(x,Z,y,h) € RP x T,0MP x RP x H' (M) :

< ha (Paj,/\ >
< h: N, Paj,\j >+ <0,y; a)\ﬂo%)\ + Zm 1 ] Ba'"c’))\ Paj\; > = 0}. (7.4)
< h, damsoll])\ >+ <vw Zl 1 9al amSOaJ,A Z +y]damd)\ Paj A >
Let (x,Z,y,h) € kerDf and assume
Dy(a,a, A\, v)[z, Z,y,h] = 0.

We need to show that x =y = Z = h = 0. More precisely:

D A, z, iPa ) a AiZi+ +Va,$a h.
Y(a,a,\0)[x, Z,y, h Zo’merZA aA%HZ VaiPas +
Diy(a,a, A\, v)[x, Z,y, h] = 0 implies:
0
< Dy(a,a, N\, v)[x, Z,y, h], 0a; 5, >= 0 =< Dp(a,a, \,v)[z, Z,y,h],)\jﬁcp%)\j >
Y

1

0
0 =< DY(a,a, \,v)[x, Z,y, h, X 5 Paih > V1<j<p 1<m<3. (7.5)
J =7
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7. Construction of a pseudo gradient

Using (7.4) and the interaction estimates in appendix B, C as well as ||v|| < € in V (p, ¢),
(7.5) is equivalent to

x
<diag(2107"'2IOa2127"'21272I37"' 7213)+0(5)> A;ly =0,
VA

which implies z =y = Z = 0 if € is small. But then A must be zero as well. Hence, we
have proved that Dy(«, a, A\, v) is into. It remains to show that D is onto.
Let u € H'(M) and write

u= ZUWW *Z )\l 8)\ EIV *ZA Zi- 3, VaiPain

+u— (Z%%MA +Z iy 8)\ A Pai,Ag +Z)\ Zi - +Va,Pa;\ ) .

We need to find z,y, Z such that

u — (sz(pa“)\ +Z )\l a)\ ay Pai ) +Z)‘ Zi azwaz 1)

in an element of the tangent space. Due to (7.4), this is equivalent to

T < u, %a“)\ >
<diag(2[0,---2[0,2.72,---212,2I3,~-- ,2[3)+0(€)> A;ly = | <u, )‘Jc’))\ Pajzj =
XiZ < U 3 g Py >

Provided ¢ is small, the previous equation has a unique solution (z,y,Z) for all u €
H'(M). Moreover, this solution depends smooth on (o, a, \,v,u). Hence we have proved
that D1 is onto as well. Therefore Di(a, a, A,v) is an isomorphism provided

S Qipa;n + v € V(pe).

Now we will construct a vector field Z on E. We assume that the vector field W =
(Wea, Wa, W) on BE exists. We make the following ansatz for the vector field

Z(o,a, M\ 0) = (Wy + ta, Wa, Wy, C(v — )+ < VT, (Wa, Wa, Wy) > —t0 — R),
where

R= leSOaL,A + Z )\z )\ v Pai\; +Z>\ Zi - \; Valgoa“

for some unknown z,y,Z and t € R, C > 0.The correction term to is needed to make
the flow preserve the norm. We first choose R, depended on t € R, and later t. We need
to find R such that Z is tangential to E. Later we will prove (see Lemma 5) that

| < Do[W],u>| < Cm)l[o]| Yu € Ejg gy, Ilull < m.
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7. Construction of a pseudo gradient
Using this inequality and (7.4), Z is tangential iff

X
(diag(?[o, woe2I0,215, -+ 213,213, -, 213) + 0(5)> Ay

AiZ
<< VQ_j, (Waa WCL7 W/\) >7 Spaj,)\])
= << VT}J (WOH Wa7 W)\) >7 Aj%‘ﬂaj,/\ﬂ
<< Vﬂ, (WOM W(l7 W)\) >7 )\Ljﬁ@aﬁ)\])

The previous equation has a unique solution (z,y,Z7), which does not depend on ¢,

such that [z[, [{£], [[AiZs]| = O (||v]|) . We now define Zy(a, a, A, v) as the unique vector
field tangent to E, depending on t, constructed above. Finally we would like to choose

t =t(a, a, A\,v) such that
P
Z QiPa; N TV
i=1

is preserved under the flow of d%(a,a, A\ v) = Zt(a,a, A, v). Hence the equation, which
needs to be satisfied is:

2

1d p 2
0 == 5% Zaigpai,/\i + v
i=1
p 2
=t Zaicpai)\i +it<v,v>
=1

p p p p
+ < Z WaSDai,Ai + Z aiW)\ai)\icpai,)\i + Z a’iWai : Vai‘;oai,)\ia Z O‘j‘;@a_,-,)\j >
=1 =1 =1 7j=1

+ < Cv—10)+ < Vo, (Wa, Wy, Wy) > —R,v > . (7.6)

Since
2

+ < 9,0 >= 2Ip|a* + o(e) > 0

p
§ : QiPa; N,
=1

for € small, there exists exactly one t(«,a,A,v) € R such that (7.6) is satisfied. Due
to the implicit function theorem t = (o, a, A, v) is C?. Furthermore t is bounded. Set
Z(a,a,\,v) = Zy(a,ax0)(; a, A, v), which defines a vector field on E such that the norms

are preserved. Finally, in V(p,e) we define Z(u) = DY (a,a, A\, v)[Z(a, a, A, v)], where
(v, a, A, v) € E is such that

P
U= Qipax tv.
i=1
Since 1 is a local diffeomorphism Z is C2. Since the vector field W is Sp-equivarinat
the definition of Z(u) does not depend on the preimage of v under . Hence Z is a well
defined C?-vector field in V(p, ). Our main goal is to show that Z is a pseudo gradient,
provided (7.2) holds and C' is large. Due to the construction of Z we have an obvious,
but important Lemma, which we will need later.
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7. Construction of a pseudo gradient

Lemma 4. Ifu € V(p,e) moves along Su = Z(u) and u(t) = >F_, i(t)@a; )0 (1) 0 (1),
then (o, a, \,v) moves along %(a,a,)\,v) = Z(a,a,\,v).

Proof. Let u move along %u = Z(u), then locally around u = Y"F | aipq, », + v, ¢ is a
diffeomorphism and hence

d d _ B . -
%(a,a, A\ v) = %w Lu(t)) = DY (w)[Dy(a, a,\,v)[Z(a, a, N\, v)] = Z(a, a, A, v).

O

Due to Lemma 4 (a, A) moves along the flow of (W,, W,) and

d d
aHv—Tsz =2< ﬁ(v—ﬁ),v—@ >=2C||v — 9.

Using the previous observations, we are prepared to prove that Z is a pseudo gradient.

Proposition 14. In V(p,¢e) there holds
P

L - [ VE(@)P 2 12
<VI@W), Z(u) >>co | D5 +d —— ) i+ la—lalal® +[lv 1]
i=1 "t =1 ¢ i#j

Proof. Let u move along @ = Z(u), then

p p
d
< V), Z(u) >=< V.J (Z QiPan, + v) VT (Z QiPa; z + v) >
=1

i=1

1 P p
d
2 _ _ _
+ /0 D°J < E Qi pa,n, +0+ s(v— v)) [v— 7, pn (ZEI Qi Pa; N, + v)]ds.

=1
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7. Construction of a pseudo gradient

The first term can be estimated by:

<VJ (Zazﬁpa“)\ +U> (;Zt <ZO‘Z§0(11,>\ +U>

=1
d d _
=< VJ Zaz@az)\ +v dt Zaﬁoal,)\ +v Jra(va) >
=1
p
VK (a;)
o (Y5 z' ISyt Jalal
i=1 A Ai i)
p p
1 &IV (@) iy
_0(6) ZF+ZTZ+Z€Z]+|OZ—’O£‘OZ|
=1 "1 =1 i#£]
p p
1 |VK(CL‘)’2 ~12
> ¢ ' ﬁ—l—zi)\iz +Zsij+|a—\a\a|
=1 " =1 1#£]

for € small. Since

p p
Qﬁj(}jmw%M+ﬁ+s@—UO—JﬁJ(EZ%w%M+ﬁ>>mmq
i=1 =1

< v —oll - Il - 171l

we deduce

1 P P
d
2 _ _ _
/0 D=J (;1 Qi pa;n, +0+ s(v— v)) [v— 7, 7 ( E QiPa;n; + v>]d5
P

=1
p
2J (Z OéiSOai,Ai + 6) [U - <Z az@az)\ + U>] - C||U - U||2
L 1
p
2J (Z QiPa; ), + v) V-7, (Z AiPa; 2 + v)
=1

P
d
=—-<VJ <Zaigpai7,\i +17> ,%(U - 7) >

d
Qi Pa; \; T 17) + dt(v —0)] —¢||lv— T)H2.

T Mn

In addition

i=1

VK(a
Z Z' +Zszg+loz—lozloz|2

7,:1 J 1#£j
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7. Construction of a pseudo gradient
Lastly

p
d
D% (Z Qe +v> o= 5, 20 =) 2 Cllo — o> — cljo — 7]

i=1
P p 2
1 VK (@) o
+o ZF+ZT+Z€Z‘]‘+‘&—|Q’&’
=1 "1 =1 i#£]
Hence, if we choose C' in the definition of Z large enough, the previous estimates yield

< VJ(u), Z(u) >

p p 2
1 VK (a;)| ~ 12 —112
> (3 g+ D T+ e+ = fajal + v -1
=1 "7 i=1 1#]
provided ¢ is small. Therefore the Proposition is proved. ]

Before we can construct the vector field W on BY we need to prove some technical
Lemmas. This will be done in the following two sections.

7.2. C? dependence of 7.

Let us recall Proposition 8. There exists g, 09 > 0 such that the minimization problem

p
min J Z QiPa; \; TV
vEB&() (O)HE(a,a,)\)

i=1

has a unique solution v = 9(«, a, \) for all (a,a,\) € BE,.

We are now going to prove that the (a,a, \) dependence of ¥ is at least C2. Therefore
define

. 9 9
V(a,a,/\) =\ Pai, A WQOM,M’ ?)\iwau)\i

1=1,---,p, m:1,2,3>.

For e small this vector space has dimension d = 5p. Since these vectors depend smoothly
on (a, \) we can construct an orthonormal basis (v1, -+ ,vg) of V(4 4,1) by using the Gram-
Schmidt procedure, which depends smoothly on (a, A). Furthermore E, 4 ) = V(é,a,A)'
Fix (0407 agp, )\0) € Bé’

Claim: For («,a, ) close to (ag, ag, Ag), the orthogonal projection
d

b E(a,a,/\) - E(ao,ao,)\o) ,p(u) =u-—= Z < u,vi(ao, )‘0) > Ui(ao, )‘0)
=1
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7. Construction of a pseudo gradient

is an isomorphism.

Proof. Define the matrix A = (a;;) by a;j(a,\) =< vi(a, N),v;(ag, \g) >. Since A de-
pends smooth on (a, A) and A(ag, \g) = Id, A is invertible for («, a, \) in a neighbourhood
U of (010, agp, )\0)
(a) injectivity: If p(u) = 0, then u = Zgzl < u,vi(ag, Ao) > vi(ap, Ao). But w is also in
E(q,4,5), hence
d
0= Z < u,vi(ag, \o) >< v;i(ap, Ao),vj(a,A) > for j=1,---,d.

i=1
This implies < u, v;(ag, Ag) >= 0 for all i, because A is invertible. Therefore u = 0.
(b) p is surjective: For w € E(q,q4,),) We need to find numbers i, - - -, 84 such that

w ~+ Zle Bivi(ao, Ao) € E(q,q,)- This is equivalent to

d
< w,vj(a,A) > Z,BZ<U1 ag, Xo),vj(a,\) > for j=1,---,d,
=1
which has a unique solution (31, - -, 84) because A is invertible. O

Using this observation we know prove the main result in this section.

Proposition 15. The map (o, a, ) — 0(a,a, \) is C2.

Proof. Let p(a,a,X) : HY (M) — E(, 4 ) the (smooth) orthogonal projection.
We set p = p(ag, ag, Ag) and define F': U x Eap,a000) = Elao,a0,00) PY

P
F(a,a,\,w) = p<p(a, a, \)\VJ (Z e, + (s a, A)w) >

i=1
Here U is a neighbourhood of (ay, ap, Ag) such that p(a,a, ) is an isomorphism on U.
We have F'(«g, ag, Ao, 9(ag, ag, Ag)) = 0. Moreover

Dy F(ag, ag, Ao, 0) = (po DV J) <Z Qi Pa; )\, -H))

is invertible on E(q, q9,70), Which was proved in chapter 5 (see (5.7)). The implicit function
theorem implies w = w(a, a, \) is a C? map locally around (v, ag, Ag). Therefore also
w(a,a, ) == pla,a, \Nw(a,a, ) is C?. The claim implies that F(«,a, A, w(a, o, \)) =0
is locally equivalent to

P
p(a,a,\)VJ (Z QiPa; N, + (s a, A)) =0

i=1

Since o(a, a, \) is the only solution, @ = v and hence v is C2. d
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7. Construction of a pseudo gradient

7.3. Technical Lemmas

We set

10 9 X
F(oza)\) <Aam¢a“”A'a)\i(’0ai’)\i 2—1’-..7p7m—l’-..73>CH(M).

If (o,a,\) € BY with € small, then there exist constants ¢, C, independend of («,a, \),
such that

(Z > ftiml* + Z W) <|l¢lP<C (Z > ftiml® + Z W)

i=1 m=1 i=1 m=1

for all

p 3 p o
P = Z Z tzm)\ da m(’paz,)\ + Zri)\iag)ai)\i‘
i=1 ‘

i=1 m=1

Lemma 5. If W = (0, Wy, - , Wy, Wy, ,Wy,) € RP x Ty OM x - - - x Ty, ,OM x RP
15 a tangential vector, then

| < Do(a,a, )W), ¢ > | < Clfol| - [W] - [|¢]]

for (a,a,\) € BE. Here

~ 1 1
W = (0, \\Wg,,--- s ApWay, — Wiy, o ,—W)\p).
A1 Ap
Proof. Since v € E(q 4,1 We have
<9 8 1 0 Y 1 o 0 .
a A da mgpal,/\ i a 18 m()oa“)\
< — 8‘1 0 >= 5--<ﬂii—a >
X N darr Y U N ONy dapr e
as well as
< —U, A > 05 < U )\‘i
Oag- 5 za)\l()oa,,/\l i 5 Z@a§ a)\l(;@a“)\l 5
0 0
v )\z a 5@ 7)\2'7 a
S on, Mo, Pk 7T 00 S ARy, P
For
p 3 1 9 P
= tzmii a 1)\1 a
¢ ;mz::l /\iaagnsol,wr;r T, Paish
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7. Construction of a pseudo gradient

these identities yield

o i . -
(o e)| = cnliall- ol and |(g5m0)| < Ol ol

For (a1,---,ap) we choose Riemannian normal coordinates at these points. Then the
vectors Waj have the expansion Waj = Wéj 0; and

p n—1 p
_ o _ d
Do(o,a, )W =D :@vng +) :WUW,\]..
; J

j=11=1 j=1

Hence

p
_ 1 _ R
| < Dulea, )W) é > | <C | DA Wayl + Wl | lloll - [lol] < Clloll - W] - [
j=1 !

O]

Lemma 6. If all critical points of K are wmbilic points, then there exists a constant
C > 0, independent of (o,a,\) € BE, such that

p
‘<W<Zai¢ai,xi+@>,¢>‘gc Z Z'VK —&-Zaw—i-HvHQ |||

1=1 1=1 i#j
for all ¢ € Foa -
Proof. The proof is a direct application of Proposition 12 and 13 in chapter 6. O
For a tangential vector Z = (Zay, s Zay, Zays " Lay» Zays -+ 5 2y,) at (a,a, \) we de-

fine the vector
ZO = (07 Za17'” 7Zap7Z)\17' o 7Z)\p)'

Lemma 7. With the notation from above we have

p
< V(S awun +0).0il2)> | < Z Z’VKC“ £ ) 1.

i=1 i=1 1#]

for (a,a,\) € BE and € small.
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7. Construction of a pseudo gradient

Proof. Since
P
VJ<ZQZ(IOO«17)\'L + U) e E(J&zaaA),
i=1

we conclude

p p
VJ<ZOQ'QO@Z-7,\1- + 5) = Zﬁjwaj,)\j +¢ with ¢ € F(a,a)\)'

i=1 j=1

Furthermore 0 =< %5,4paj,)\j >= 0 =< (%im@,tp%)\j >= 0 =< a%ﬂ_’?‘paj»/\j > and
therefore
p ~
< V(S s, +0).Dal2] > | = | < 0, Delz] > | < ol [l 1o
=1

The result follows by Proposition 8 in chapter 5 and Lemma, 6. ]

7.4. Construction of a vector field on BZ.

This section is crucial for our argument because we construct a vector field W, which
will help us to understand the behaviour of («, a, A) if u € V(p,e). This construction is
motivated by a construction of a pseudo gradient in [11]|, which goes back to [8].

In the following we have to introduce some notation which we need in the proof of the
main Proposition. We define the function

Q(B*,0BY) Y Y o?

[:RE xOMP - R, f(a,a):= f 3
( 1 afK(ai))i”

For a € 9MP fixed, the function
RY s am f(a,a)

has exactly one critical point & = a@(a) with |a] = 1 and &; > 0 for all i. To be more

precise:
1

p  K(a)?
J=1 K(a;)?

o =
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7. Construction of a pseudo gradient

Proposition 16. There exists an Sp-equivariant vector field W = (Wq, Wy, Wy) on BP
such that ' | |
(W2 INWE IATITWE | <OV 1<i<p,

P
%J (; QiPa;n; + 5) > ¢ Z Z NK + ZEU + |a — |ajal?

zli i#]

ifp>2 and

L+ 7K@

d
J(a@ak+v)>00<)\2 2

dt

if p=1, as soon as (a, a, \) moves along %(a,a, A) = W(a,a, ).

Moreover max{Ay,---,\,} is decreasing along the flow, if (o, a, \) ¢ Va, where

K(a)|?
Vo = {(a,a, ) € B w ﬁ Vi;  dg(ai, i) < po for some x € F.°;
p P 2
1 VK(a;
]a—\a|a|2<R Z)\Q—FZ‘ ( ) +Z€z] }
=1 "7 i=1 t 1#]

Here R,y > 0 are some constants.

Before we proof this Proposition, we recall the gradient expansions, which we have proved
in the previous chapter. Since we assume that all critical points of K are umbilic points,
the estimate |II(a)] < C|VK(a)| hold true on OM. Using these estimate we can state a
refined expansion of the gradient:

For u =" | a;pa, », + 0 € V(p,¢) it holds (see Proposition 11-13)

0 VK(a;)]? 1
< VI (1), Qa; 0, >= 2l(u)£f(oz, a)+ 0 |A( +izt > e (7.7)
J J J

i#]

where

Furthermore if

p .
la—|ajal* <R ZVK)\(%)Q Z —i—ZaU :

=1 J =1 J i#j
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7. Construction of a pseudo gradient

then
9 5 oI AK(aj)\ 1
< v‘](u)’)‘jai)\j@aw\j >= QZ(U){O‘J' (25+Ha (aj) + o K(a) )\—3
0 VK (a;
-2 Z azll)\] 8)\ (813) t+o ()\2 + A ) +o0 Z&j
i i#]
2
+0 >\2 +0 ZP% (7.8)
i#]
and

1
< —VJ(’U,), TVK(CL]) . Vajgoaj,)\j >
J

VK (aj)]? VK (aj)]* | 1 = p’
REY] =1 "1
(7.9)

Proof of Proposition 16. First we construct a vector field W in Bl. Let
crit(K) = {x1, -+ ,xm} be the set of critical points of K on 0M. We define the following

sets: | ( )‘2
VK (a 1
- 1.
Vb = {(a,a,)\) S Bg : f > )\2}
as well as
VK 1
Vi —{(aa)\)eBl : | )\(a)| 2?’ d(a,xi)<pg} for 1 <i<m,

where pg is chosen small such that V; N V; = 0 for ¢ # j. Wlo.g. we assume that
z1,- -, are those critical points with 2|S% |Hy, (z;) + 254 A;i(x;) >0and 241, ,Tm
are those critical points such that 2|S% |Hy, (z;) + 24 AK((x;) < 0. If necessary, we choose

po smaller such that the previous inequalities hold true in V.
We define the vector field

VK(a)
A

Wo(a, a,\) = (0, — ,0) € R x T,0M x R,
which yields
1
— < VJ(apgn + ), aXVK(a)-Vang\ >

VK (a)|? VK (a)|log(A
>CO(| @F _ VK@l g())

:CO<|VK>\(a)I2+O(|VK)\(a)2> +0<;2>> (7.10)
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7. Construction of a pseudo gradient
For (a,a,\) € Vp, (7.10) implies the estimate:
A A2
for € small. Hence W) is a pseudo gradient in V. For («, a, ) € V; we define

Wilay,a,A) = (0,0,A) if 1 <i¢<!l and W;(a,a,A) =(0,0,—)\) otherwise.

1 VK(a 1
— < VJ(agap+0).a5 VE(0) Vapar >> 7 (|<> N >

In any case we obtain on V;:

_ 9, 1 VK (a)]> 1
< VJ(a@ar +0), Wigrpar >2 coyg 2 a1 <A +33 (7.11)

for e small. Finally choose a smooth partition of unity 7;, subordinate to the cover (V;)i*,
and set

W=Wo+ > mWi,
i=1
which is a pseudo-gradient due to (7.10) and (7.11).

It is left to comstruct a vector field W in BY for p > 2. For our argument later (see
Proposition 19) it is crucial that the a; move in any case. Hence we define a first vector
field on B? by

VK(a1) VK(ap)
N T T

We subdivide the proof in many cases and we add different vector fields to Wy to prove
the stated inequality. For R > 0 large, which will be chosen fixed later, we define:

Uy =< (a,a,\) € B? : |a—|ala]* <R Z Z|VK ai) Z&U

Wo(a,a,A) := (0,— ,0). (7.12)

=1 =1 1#£]
and
VK(
US:={ (,a,\) € B? : |a—|alal® > 2R Z Z' (i) +Z€,]
i=1 1#]

We begin to construct a vector field on U§ and set
W(a,a,\) = (Vaf(a,a),0,0) + Wo(a, a, N).
Clearly W is Sp-equivariant. Along the flow of W we obtain:

< VJ <Z AiPa; ;s —|—U> dt Za]@a],)\ >

=1

> ol Vaf(@,a)? - Co Zf+Z'VK Gl

1=1 i#£j
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7. Construction of a pseudo gradient

It remains to show |V, f(a,a)| > ci1la — |aja|. First we work on the sphere of radius
ro= \/%To and set & = \/;TO‘ Due to Remark 1, |a — &| = o(e). Hence, the difference
can be chosen arbitrary small. A computation yields

D2 f(a,a)lh, ] = —27 “;;ﬁ) B2 < Bl

for h € T, de’*l and some constant 8 > 0, which does not depend on a. Furthermore,
form the mean value theorem we derive the estimate

|D?f(a, a)[h, h] — D* f (&, a)[h, h]| < Cla —&||h?
for arbitrary h , if « is close to &. We choose p small such that Cla — &| < % for all

a € By(a)N 5P~ For « in this neighbourhood we choose a geodesic v : [0,1] — SP~*
such that 7(0) = & and (1) = a and compute

<Vaf(oa) / D2 F(4(8), a)[3(2), 4 (1))t
1
- / D2 (@, a)[5(t), 4(D)dt + /0 (D2F(+(t),a) — D2 (& a)) [5(8), 4()]dt

/D2 a)[y(t), % dt—i—ﬁ/h (t)|%dt.

Denote by p the orthogonal projection onto T4S? ', Since < & >= kern(D2f(&,a)), we
conclude

/D2 $(8),4(8))dt = /D2 (& )P (8), pi(8)]dt < B/ O

20 [ o

for p small, which implies

1
< Vaflon@, =) 2 § [ 0P = F1)P

and finally
-1, . B B .
> > — _ > —|a— .
’V(Xf(a7a)| — <v06f(a7a’)7 ’7(1)‘> = 2d5‘}3 1(0[,0[) =9 ‘Oé Oé| (7 13)
If |a| # 7, then a scaling argument yields
Vaf(a,a)| = aa—lalal (7.14)

75



7. Construction of a pseudo gradient

for some uniform constant ¢;. Therefore the stated inequality is proved. Hence we get
the estimate

<VJ <Zazapa“>\ +v> dtZajgan,A >

=1

> colar — Jalal® — Co Z Z'VK Y

i=1 i#£j

for some uniform constants cg, Cy. We choose R big enough such that cgR > 5Cj to get
the stated inequality:

< VJ (Z AiPLa; \; —|—1}) dt ZOKJSO@],)\ >

=1

>c ]a—|a|a!2+z Z [VE +ZEW
=1

7]

in U§. From now on R is fixed. Observe that A is not moving in U§ along the flow of W.
It remains to construct a vector field in U,,.

For v >> 1, which will be chosen later, we define the following sets

VK (ai)|”

U := A U, :
{wane N

1 )

L.
Uy = {(a,a, A) eU :d(aj,a;) > 4%%1d(xl7xk)}.

If (a,a,\) € Uy, then ay, - - -, a, are close to critical points of K. Furthermore the second
condition says that different a; are close to different critical points, hence it exist a well
defined map U; > (o, a, A) LN crit(K)P which maps (a,a,A) to (z1,---xp) iff a; is close
to x;. Since we assume the non-degeneracy condition

9 K(x)

2|S% | Hy () + # 0 for all x € crit(K),

the following sets are well defined ((z1,--- ,zp) = B(a,a,N)):

W:Z{(aja,x)em P i e {l e p) st 20SYHe (a )+2;4Aff(( ))>0}7

Voim {(aa ) € U 5 282 )+ 5 0 <0 vi (e e ) > 0}
Vi = {(a,a, N €U 2[S3|Hy,(x:) + ?A‘;f(g;) <0V, pr(Bla,a, X)) < O} :
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7. Construction of a pseudo gradient

Here p; is the least eigenvalue of the matrix M(z), defined in (1.16).
We start with constructing a vector field on V. Therefore we define the equivariant

vector field
Wa(e,a, X)) == (0,0, —Aq,---,—Ap) € RP x OMP x RP

and observe along the flow

d [ _ 0
%J <Zai%i’)‘i +U> =-<VJ <Z Qi Pa; £ —i—v) Zaj Ja/\ Pa;n; + DU[Wa] >

=1

P
21y AK i
=4Iyl (u) —Za (2\5 |Hq, (aj) + 1 (a; > 2[1204@04] (ai a]

= 9 K(aj)
p p p2
o[ L) o]+ (S5 ]) <o (S
J= 1 7] =17 i#]
Moreover, from the expansion
1 "1
l(u) = ; (1+0 Z—Z +O (D ey
P 3K( )I )5 =1 .
(X1 o K (@) o Aj i#j

we derive

d p
=1

_ Al 2<_Za <2|s |Ha, (a )+2§1A;§éj))>;2

(Zp—l a?K(al)IO)3 j=1
_22110[105) al,aj))
i#]
P p P
+o0 ZF +o0 Zcfij +0 ZP + O Zpaij
j=1"17 i#£] Jj=1"7J i#j
Al = o (a;) 20 AK 1
= - 2<—Za§f(( i)? <2|s§| (J()]Q)—i_94K (a; )>2
(X @K (ar)lo)? j=1 a; (a;)3 j

A
G(aj,aj) 1 P 1
— 20 a; K (a;)a; K(a;) J +o0 — €ij
e JK@.)KWM) =)\

Since

p
o — |ajal* < C Z

p
Z +Z% ;

i#]

s[\j"_l
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7. Construction of a pseudo gradient

aiK (a;) = a;K (aj) for all 4, j and dgy(a;, B(a, a, N);) < C——, we get

f?
d p
7 (S o)
i=1

4Iha* K 1
— 00t K (1) 2<<A M(z)A > +o ZP +o| ) ey
( f 1O‘ZK(xl)IU)3 J i#£]

J=1

p
Z% +0 Zp&'j >,
j=1 .7

i#]

t
where = sttt .y ] an x) 18 the matrix defined in (1.16). bince the least
here A A d M(z) is th ix defined in (1.16). Since the 1

1
eigenvalue p(z) is positive, we have shown:

p
(Zaﬂpaz,/\ +U> =z

=1
Py P P o2
alXzrelXe Do | +O (D5 +0| X rey
i=1 " J=1"1 i#j J=1"1 i#j
Furthermore,

-1 1 1
gij < C (Ai)\jd(ai,aj)Q) <C <)\2 + )\2>
in V5, which implies

p
%J (;ai@ai,/\i —I—ﬁ) > o Z 2 + Z&J

Al i#j
in V5 for € and p small. Finally in V5 we define the vector field
W(a,a,\) == M - Wi(a,a,\) + Wy(a,a, N)

and observe for M large, but fixed,

(Z Qi Pa; N + v> > ¢ Z . Z |VK + 28” +]a— |a|a|2

i#]
along the flow of W.

We continue with constructing a vector field W in V3. For z = (x1,--- ,xp) € Krit(K)P
such that x; # x; for i # j and pi(x) < 0, we define the open sets

Ve ={(a,a,\) € V3 : B(a,a,\) =z},
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7. Construction of a pseudo gradient

which cover V3 and are disjoint for different z. Since pi(x) < 0, M;; > 0V i and M;; <
0 Vi # j, the matrix M (x) has a unique normalized eigenvector ej(x) with strictly
positive components.

For (o, a,\) € V§¥ we define
W5 (a,a,0) = [A](0,0, A er(), -, Apef (@),
which defines an equivariant vector field on V3 because M (27);; = M (7)4(;)s(j) and hence

: t
e’l(x”):el()()foraHUES Here A = ( ,--~,i>.

Along the flow of W', the same computations as in the previous case yield:

<VJ (Zaz@a“)\ —|—’U> dt Za.](pa]7)‘ >

=1

J Cas) .
— 41yl (u yAyZ <2|S+]Aaj ;. 2 AK ))> e () —i-QZaiajMe{(xﬂM

K A A
) (a J i#j
L
+o0 ZP “+ o0 ZSZ‘]’
i=1" i#]
4Iy2K L
= 001 K(a1) > | —|A] < A, M(x)eq Zf +o Zsi-
P 3 3 2 J
( = 1azK(al)IO) j=1 J i#]
Observe that
A
—|A] < A, M(z)er(z) > = —pr(z)|A] < A, ex(z) >= |p1(2)||A]* < m,el(w) >
> colpr ()] A%, (7.15)

where
co = min{< z,e1(z) > | z € Sf__l} > 0.

Hence, using the same arguments as for V5, (7.15) implies

<VJ (Z OiPay N, ‘H}) " dt ZO‘JS%] A 2 Z Z |VK @)l +st

=1 i=1 i#j

on V5'. Therefore, as in the previous case, the vector field
W(a,a,\) =M - W5 (a,a, ) + Wo(a,a, A)

is a pseudo gradient vector field on V5" for M large enough. Since the sets V5' cover V3
we have constructed a vector field on V3. Moreover all A\; are decreasing along the flow
of =W in V3.
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7. Construction of a pseudo gradient

Next, we construct a vector field Wy in Vi. For o = (z1,--- ,xp) € Krit(K)? such that
x; # x; for all i # j and 2|3 |H,, (z;) + 254 A;{((xj)) >0 for at least on x; we define the
sets

ViI = {(aucL?)‘) € ‘/1 : 5(017(1,)\) :33}

Since the sets V|* are open and cover V; it suffices to construct a vector field Wi’ on V.

et 20, AK (z;)
214 AK (z;
9 K(zy) >O}

B(z) := {1 <j<p: 2|Si|ij(xj) +

and .
Wi, a,A) = (0,0, M lgep@)y > AplipeB@)) »

which defines an equivariant vector field, because o(B(z7?)) = B(x) for all o € S,,.

Along this flow we get

p
_ 0
<91 (Lowmunt1). T gt >
J

i=1 jEB(z)

21, AK(a;)\ 1 .
= 41pl(u) Z oz? <2|S§_|Haj(aj)+ 94 K(( > +2 Z Zazajjl (a; CLJ)

JjE€B(x) JjE€B(z) i#]
p 1 P p
+o0 ZF +0 ZEij + 0 2—2 PEij
j=1"J i#] =1 l i#]
p
> ¢ Z 2+ Z Z&] +o0 Z% ZEU
jEB(x) j JEB(z) i#£j j=1 J i#j
P
o> '% +) " pei
=1 A i#j

To get the asserted estimate we need to add another vector field. Therefore let A(x) =
{1,---,p} \ B(z) and define for A C A(x):

VE(A) = {(a,a,\) € Vi + N < %Xmin VieA N> éXmm Vie A}
Here Amin = min{}\; : j € B(z)} and A= {1,--- ,p} \ (B(z) U A). Furthermore we set
VEB) = {(a,a,\) € VI = A > %Xmm Vie A(x)).
If (a,a,\) € Vi*(B) then

1 1 11 11 1 LS|
> ¥ i vt %3322, AR T RO

i€eB(z) i€B(z) *
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7. Construction of a pseudo gradient

which implies

p
0
<91 (St 9). T ot >
J

i=1 jEB(x)
p p 2
1 [VE(ai)|
Zeo | Qe t 2
i=1

i=1 "% = i#j

in VZ(B) if € and p are small. Hence W is pseudo-gradient on Vi#(B). It is left to
construct a second vector field on V*(A). If the least eigenvalue p; ((z;)ica) > 0, we set

Wit(a,a, ) = (0,0, —Milpeay, - —Aplipeay)
and if p; ((zi)iea) <0, we set
Wit(a,a,X) = (0,0, Ws (e, ai, Mi)ica)) ,
where W3 is the vector field constructed above for V3 C Be, ¢ = |A|. If (o, a, \) € ViF(A),

then (a,a,\)? € V& (671(A)) and hence VNVlail(A) = (W{‘)U

In both cases we get along the flow of V~V1A:

p
0
- <VJ ( E Qi Pa; N —i—@) , E )‘jia)\.‘paj,kj >
J

i=1 jeA
1
IO ) R ) ot
JEATT  itjeA JEAiZA
where we did the same computations as for V5 and V3. We set
Wg = Z nAW1A7
ACB(x)

where (14)4 is a smooth partition of unity, subordinate to the cover (Vi*(A))a of V¥
with the following property:

Noe-1(4)((a;a,A)7) = na(a,a,\) Vo €Sp.
For r > 0 small, we finally define

Wy =Wy +rWy.
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7. Construction of a pseudo gradient

Along the flow of this vector field we obtain

<VJ (Zaz(pa“/\ +U> dt Zaﬂgpa])‘ >

=1

> | Y, 2+ > D e | +reo Z*JFZE”
]

j€B(x) JEB(x) i#j jea i itjea

—CTZZ&Z‘j—i—O Z +o0 Z&‘j +O<ZP2>+O Zp&ij
JEAIZA = J i#] -1 i#]

> co Z 2—1— Z Zew + reg Z 2—1—2% —CTZ%
]EAC | jeB(z) i#j jEA J i#£jEA icAe M

P P
+o Z% +o Zaw +O< §22>+O ZP%‘

j=1"1 i i=1 7 i

VKZ
ca (Y z' L3y ).

i=1 i#]

if we choose 7 small.
Finally set W(a,a,\) := MWi(«,a, ) + Wo(a,a, ) on Vi and find the estimate

(Za,%,,A +v> > ¢ Z Z ’VK B S e+l lajap
Z

7]

for M large. Moreover, due to the construction, A; < 0 along the flow of =W in V;
whenever \; = max{\; : 1 <j <p}.

Hence we have constructed an equivariant vector field in V4. Since Uj splits into V7, Vs
and V3, we have constructed a vector field in U;. Observe that max{\;,---,A,} is de-
creasing along the flow of —W in V; U V3.

We continue with the construction of a vector field on U \ U;. Let K = {x1,--- ,x;} C
crit(K) be a subset such that |K| =1 <p—1 and define

Abb(p, K) := {r: {1,--- ,p} — K onto}.
For r € Abb(p, K) we set
Vi(K) = {(a,a,\) €U :dgy(aj,(i)) < po} C U open.
Thus

v=uul) U W),

K reAbb(p,K)
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7. Construction of a pseudo gradient

where this union is disjoint. Hence it suffices to construct a vector field on each V,.(K).
Therefore let K = {1, ,x;} be a subset as above, r € Abb(p, K) and B; = r~'({x;}).
Furthermore we choose a smooth, non-negative, monotone increasing functlon x:R—R
such that x(t) = 0if t < I and x(t) = 1if t > 1. For | € B; we set

W= 3 (j}i)

if | B;| > 2. Otherwise we set x(\;) := 0. We now define a first equivariant vector field as
follows

W (a,a,0) = (0,0, (A1), -+, ApX(Ap))-

Along the flow we obtain

<VJ (Zaz@a,/\ +U> dtz ]Qoaj,)\ >

=1
21 AK(a)\ 1
= 41yl (u 22|53 |H, = —
o <Z 5= 0 (of (2 o) + %5 S0 2
|B;]>2 x(A)#0
-2 Z Ilalaz)\l 5zl)>>
1%l

i

+
S
N
o
+
Q
—
-
EdR
~——
Jr
Q
(]
8

i£j i=1 i#]
Furthermore
0 G I
72-[10[[0[1)% 8@[) Z Ilalal)\lil(&‘zl) + Z IlalaZM
, O\ : N\
i#£l l#ieB; zGB]C.
Since 5 5
c
—X AN =—1(g;1) — x(N)Ni=——1(eg;y) > —=¢;
X(A1) 18/\l (i) — x(As) O (ea) 261
in any case, if is € small and /,7 € B;, we obtain
<VJ (Za,apa“)\ —l—v) dtz%gpaw,\ >
=1
ol ¥ Y Ya) ey ¥
|Bj1>2 X(\)#0 i#l |Bj|>2 x(\)#0 "
P p 2
+o0 ZP +o st + 0 (Z)@) +0 Zpaw
Jj=1"13 i#] i=1 " 7]
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7. Construction of a pseudo gradient

X(A1) # 0, it exists ¢ € B; such that ’\’ > 1, hence

11 1 AN
—-—= = d(ai,a;)* = o(1).
Men +/\3+)\ (ai, )" = o(1)

This implies = = o(g;;) and therefore

<VJ (Zacha“)\ —i—v) dtZa]goa],,\ >> ¢ Z Z 112 ZE”

|B;j|>2 x(M\i)#0 i#l

p 2
+o 27 +o 267,] +O<Zp2> Z,Oa?ij

= A i#] i i#]

We need to add a further vector field to guarantee the stated estimate. Therefore we
need to subdivide V,.(K). W.l.o.g. assume |Bj|,---,|Bx| > 2 for k <[ and define

M= {A1U~--UAk . A; C B, ‘AZ| = ‘BJ—lV].S’LSk}
For A € M we set
VAK) = {(a,a,A) € Vo(K) : x(})) >0 for je A}
and A = min{)\; : j € A}. Furthermore, for B C {1,---,p} \ A we define the sets
1 1 _
VAB(K) = {(,a,\) e VAK) = N < JAVIE B N> SAVi€ B)

and
VACHK) = { (00 ) € VAGR) = &> AV e (Lo pb\ 4]

Here B = {1, ,p}\ (AU B). We remark that
(@,a,\) € VAB(K) & (a,a,0)7 € Vi, N P (),

Now we are prepared to construct a second vector field. Observe that

<VJ (Zazgoa“,\ —i—v) dtZajwaw)\ >

=1

>c YY) +Zezl +to|> ey +O<Z >+O > pei

|B;|>2 x(A\1)#0 A i#l i#j i#j

2o Y+ L 5

i=1 i#£j
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7. Construction of a pseudo gradient

for ¢ small along the flow of WX in VTA’C(K). Hence it is not needed to construct a
second vector field in the previous situation.

If (a,a,\) € V;“’B(K)7 then d(a;,a;) > po for all 4,j € B because they are located at
different critical points. Therefore the point (ay,a;, \i)iep € Uy C BE, where ¢ = |B|.
Hence we choose as second vector field

WAE (o, a, ) := (0,0, Wi, (i, ai, \i)ieB)),

where VVU1 is the Vector field on Uy, which we have already constructed. Along the flow
of WP we get in Vit B(K):

< VJ <Zazg0a“>\ —i—v) dtzajwaJ’A >> ¢p Z——F Z gij | —C Z

1€B 1#jEDB 1€B,jeB*

Therefore, if (a,a, \) moves along the flow of WX + ,qul B and 1 is small, we obtain

<VJ <Zazg0a“,\ +v> S Z%S%J,A >> Z Z \VK +Zew

i=1 i7#]

in VTA’B(K ). Finally we choose a smooth partition of unity n4 g, subordinate to the cover
< TAB)AB (K) of V;.(K) with the property

na—l(A),U*I(B)((C% a, )‘)U) = nA,B(‘L a, )‘) Voe Sp (716)
and define

WE o WE 4 1Y na W
A,B

which defines an equivariant vector field on V,.(K) . Finally we set
W, a,)\) := MWE (a,a,\) + Wo(a, a, ),

which defines a vector field on V,.(K) with the property

p
%J (Z QiPa;n; + 17> > ¢ Z Z |VK + Zg” + |a — |ajal?

i=1 i#]

for § small and M large. Moreover if \; = max{Ay,---, Ay}, then N <O0if (a, a, A) moves
along the flow of —W in V,.(K). Hence we have constructed a vector field on U \ U;.

It is left to construct a vector field on U€. For § # A C {1,--- ,p} we define

)| 1 )2 1
OA::{(a,a,)\)GUa : WK)\(‘am>'y)\2fori€A; W<27/\2f0r Z'GAC}.

)
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7. Construction of a pseudo gradient

Due to (7.9) we obtain along the flow of W:

p
1
< =VJ (Z Qi Pa; —i—v) ’ZYVK(QJ') “Va;Pa;n; >

J

i=1 j=1
p NP p

IO (z zz IR
j=1 j=1"17 JEA i#£j JEAC i#£j

JEAC JEA i#£j

2
> ¢o (ZV[()\(‘LJ)+ ;)\12 £y IVK |[VK (a;) 3% e
j J

if € is small.

We subdivide B? into the sets
O, = {(a,a, )\) S Bg : /\a(l) < 2)\0(2) << 217)\0(]))}
for o € S,. Furthermore we set A = min{)\; : i € A} and for B C A%

1- 1-
0% ::{(a,a,)\)EOA : )\i<1)\fori€Ac\B; )\i>2)\fori€B}.

On O,unN Of we define the vector field

Wi o= (0,0,2M111€auBys 5 2P Aplgpeauny)

and observe along the flow

p p
d
<VJ (E :aigpai,)\i + U) n § Cij(Paj,)\j >

=1
=< VJ Zompa“)\ +v Z 2% i 9 o, >
O\j
i=1 JjEAUB
> - ) QJZO‘ZO‘JII)‘J(;,\ I(eg)—c ) *_Clp D D Eto| D e
JEAUB  i#j jEAUB J JEAUB i#j i#£]
0 Y Yo Y oY
JEAUB i#j jeAUB J 1#£]

if p and € are small. On O, N OF we define the vector field

W;‘(Oé, a, >\) = (07 0, 2W71(1))\11{16AUB}3 Tt 27r71(p))\p1{p6AUB})
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7. Construction of a pseudo gradient

and observe along the flow in O, N Of :

<VJ (Z QiPa; N +U> dt Zaﬂgp%:)‘ >

=1

> Co Z st—c Z “+ o0 Zeij

JEAUB i#j JjEAUB ] i#£j

For M > 0 we define on O, N OE
W =Wy + MW

and get along the flow

p p
\ d
<VJ (Z XiPa;n + U) " dt Z AjPajr; =

i=1 j=1
I R M I KD DR o ) o
JEA Ai jeau P jeAe JEA i#j
p
+ 0 Z % +o Z Zé‘ij
jeae i JEA® i)
+c1M Z Zel]—cM Z 7_,_0 ZSU
JEAUB i#j jeEAUB ] i#]

First we choose M large such that c;M > 2¢o and then « large such that v > 2pcM,
then

<VJ (Zaz@a“)\ +U> dtz QAjPaj,\; >

=1

LV (a)? oy
Z " + Z -t Z Z gij | +0O Z —2 +o Z €ij
j=1 v jEAUB J JEAUB i#j jEAC i#]

Since this is still not the estimate we need, we have to add a third vector field on OE.

Let Wy be the vector field, previously constructed in U C B, q = |A¢\ B|. Set

Wit(a,a,A) = (0,0, Wy (v, ai, A\i)icac\B)-
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7. Construction of a pseudo gradient

Along the flow of W4 we get

d p
<VJ (Zaz%w\ +U> deaj%jv,\j >

=1

a Yy ZEZJJFO(Z >+O > peij

1€A‘\B jEBC =1

i=1 ‘ 1#]

for §, p and € small.

We choose a partition of unity (w,) subordinate to the cover (O,) such that
wr((a, a,N)?) = weor(a, a, \) and a partition of unity n4 p with the invariance property

as in (7.16) and define
W= wmapWi?,
c€Sn, A,B

which defines an equivariant vector field on |J, O4. Finally we glue the vector fields in
U404 and U along an Sp-invariant partition of unity to obtain an equivariant vector
field on U,. As an important fact of this construction max{A,---,A,} is decreasing as
long as (a,a,\) ¢ Va. Thus we have constructed an equivariant vector field W on B
such that

<VJ (Zaﬁ@m)\ +U> dt Z%Soa]/\ >

=1

/4

> ¢o Z Z‘VK Gz +Z€z3+\04—|0é|0¢|2

i=1 Z Ai i#]

in any case. Due to Lemma 7 we also get the asserted estimate

P
%J (Z QiPa;n; + v) > ¢ Z Z WK + ZEZ] + |a — |alal?

1=1 i#£]

for € small. Hence the proof is finished. O
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7. Construction of a pseudo gradient

7.5. The global pseudo gradient

In the previous sections we constructed a pseudo gradient vector field Z = Z, in V(p, &)
for €, small. For p € N we choose local Lipschitz functions 7, : H*(M) — [0, 1] such that
np(u) = 1 for u € V(p,e,/2) and np(u) = 0 in H' (M) \ V(p,ep). We define our global
pseudo gradient X in U as follows:

X(u) =Y np(w)Zp(w) + | 1= np(u) | VJ(w). (7.17)
p=1 p=1

Since V(p,e) NV (q,e) = 0 for p # q and e small, X (u) = Z,(u) in V(p,ep/2). Since we
assume that J does not have critical points in U, Proposition 7.1 implies V.J (u)- X (u) > 0
in U. Therefore X is a global pseudo gradient.

In the next chapter we prove some general facts about this pseudo gradient which will
allow us to proof Theorem 1 and 2.
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8. The topological argument and proof
of the Theorems

8.1. General facts about the flow

As in chapter 3 defined, let

U:= {ueE : K(x)u3>0}.

oM

Proposition 17. Let A C R x U and ® : A — U be the flow of 4 = — X (u), where X
is defined in (7.17). Then all mazimal solutions exist on [0, 00).

Proof. Let up € U and w: [0,77) — U be the maximal solution of:

= —X(u)
u(0) = up.
Then wu is well defined, because X is locally Lipschitz continuous. We need to show that

T" = oo which will follow if we show that || X|| is bounded along the flow. First observe

that p
— K(x)u*do, > 0,

dt Joum

because J decreases along the flow and ||u(¢)|| remains constant along the flow. Hence

Jons K (z)uddoy is bounded from above and below along u. Since

VJ(u) = 2 (u —(u)B; ! (u2)) ,

(faM K(z)uddog)’ ’

we conclude ||VJ(u)|| < C(ug) along the flow. If u € V(p,e) the expansion of J implies

win

J() = QELIBIY of () ooy,
( f:lK(ai)ag)S

i
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8. The topological argument and proof of the Theorems

Furthermore |a — |a|a@| = o(e), which yields

Iy = QB8 ?:1 0‘2 (14 0(e)).
(>oi=1 K (ai)a;3)3

Let @y, = min{aj, - ,ap}, then
sy > QBN E) 4 4 o)) > LELOBD 4 14 0(e)) o0 (9 o0)
(K (am )i max(K)

Therefore u(t) intersects only finitely many V' (p, ) along the flow. Hence the proof will
be completed once we will have shown that || X (u)|| < C(p) for all u € V(p,¢e). Since
X(u) =np(u)Zy(u)+ (1 —n,)VJ(u) in V(p, ) it suffices to show that Z = Z, is bounded
in V(p,e). Z(u) = DY(a,a, )\,v)[Z(a,a,)\,v)], therefore

Z(u) =

M-

p p
. 9 4
(W(i + t(aa a, A, v)ai)gpaw\i + E W)Z\ O\ Paz A\ T E :Wé : Vaigpai,&'
i=1 i=1 v i=1

+C(v—2)+ Do[W] +t(e,a, A\, v)0 — R.

Due to Proposition 16 Wg, A7 "W, \;W; are bounded. Moreover ||7]| is bounded, hence

a’ g
Lemma 5 implies that Do[W] is bounded as well. Furthermore R,¢ and v are also
bounded. Hence Z is bounded in V(p, ) which proves the Proposition. O

Proposition 18. Assume J does not have any critical point in U. Let ug € U and
u:[0,00) = U be the solution of

{u = —X(u)

u(0) = wo,

then there exists p € N such that for all e > 0: u(t) € V(p,e), provided t > t(g) for some
t(e) > 0.

In other words, it exists p € N and e(t) \, 0 (t — o0) such that u(t) € V(p,e(t)), if t is
large.

Proof. As we have seen in the proof of Proposition 17 there exists pg such that u(t) ¢
V(p,ep) for all p > pg, provided ¢, is small. From now on we assume that

e <min{g, : 1 <p<pp}.

Claim 1: There exists ¢, — oo such that

ulta) € J Vip. ).

P<po
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8. The topological argument and proof of the Theorems

Proof of the claim. Assume the claim is wrong. Then there exists ¢; > 0 such that
u(t) & Up<p, V(p, 5) for all ¢t > ty. Since we assume that J does not have any critical
point

inf { |V.J(u)|?

we U\ |J Vi, g); J(u) < J(ug) b = e > 0.
peN

Furthermore

inf ¢ < VJ(u),X(u)> |ue U (V(p,g) \ V(p, g)) =c; >0,

p<po

which implies < VJ(u(t)), X (u(t)) >> min{cg, c1 } for all ¢ > ¢;. Hence

t

J(u(t)) — J(u(tr)) = —/ < VJ(u(s)), X (u(s)) > ds < —min{co,c1 }(t — t1) = —o0
t1

for t — oo which contradicts the fact that J is bounded from below. Hence claim 1 is

true. O]

Due to claim 1 there exists a sequence t, — oo and p € {1,--- ,po} such that u(t,) €
V(p, ) for all n € N. Assume there exists a sequence s, — oo such that u(s,) ¢ V(p, §)
for all n € N. After passing to sub-sequences we can assume that ...t, < s, < ty41... for
all n € N. Set .

tn =inf{t > t, :u([t,sn]) C V(p, g)C}.
Then u([tn,sn]) C V(p,$)°. Since u is continuous, we can assume that u([ty, s,]) C
V(p, §). From the estimate above we derive

J(u(sn)) = J(ul(tn)) < —cilsn — ta.

Furthermore

_ €.\c € . n .
0 < do i=dist (V(p, )% V(p, 2)) < [fuls) = uld)]| < / 11X (s)||ds < Clsn — fal,

in

which yields
J(u(sp)) — J(u(ty)) < —cidy,

and hence J(u(s,)) — —oo, thus a contradiction. Therefore the assumption is wrong
and such a sequence (sy,), does not exist. Thus u(t) € V(p,e) for ¢ large. O
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8. The topological argument and proof of the Theorems

8.2. Critical points at infinity

Let u : [0,00) — U be a flow line of —X. From the previous section we know that
u(t) € V(p,e) for some p € N and ¢ large. Therefore, for ¢ large we can write

p
u(t) =Y i) eamam + olt)
i=1

where (a, a,\,v) € E move along —Z (see Lemma 4).

We call a tupel (a(z),z) € SP~1 x 9MP critical point at infinity if z = (21, , 7))
is contained in the following set

Fpo = {(yl, oL yp) Ecrit(K)P

y; # y; for i # j,

2[4AK(yZ) .
2’5 ’H ( )+ 9 K( ) <0V27P1(y17 '7yp)>0 .

Here p; is the least eigenvalue, defined in (1.16). We are now able state the main
Proposition in this section.

Proposition 19. Let )
u(t) =Y ai(t)pa, @ + v(b)
i=1
be a solution of i = —X (u), which remains in V(p,e) for all t > 0, then
a(t) = (ar(t), - ,ap(t)) — (z1,- -+ ,2p) € F°; i = 00 Vi; ei5 — 0 Vi # j;

la — |alal = 0; |a] = (2Io)72; |[v— o] = 0

for (t — o0).

Proof. From Proposition 18 we immediately infer
Ai = 00,645 = 0,|a— |a|@| = 0 and |jv — || = 0

and therefore also ||v(t)|| — 0.

Since
1= [[u(t)|]* = Zaz ean O+ 0 [ D eiy) | + o)l
i#]
L |
2
_zza, zo+o<;Ai(t >+o >t | + I
— i#j
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8. The topological argument and proof of the Theorems

we derive 2Ip|a(t)[* — 1. Tt remains to prove the statement for a(t). Since (o, a, A, v)

moves along —Z, a; moves along —W}. Hence
. VK((IZ)
i =—
Let 3; : [0,T%) — [0,00) be the solution of Bz(s) = Xi(Bi(s)), 5:(0) = 0, then
b; : [0, TF) — OM, bi(s) := a;(Bi(s)) solves b;(s) = VK (b;(t)); b;(0) = a;(0). If T+ < 00
then a;(t) — b;(T") =: ax for t — co. Since as is not a critical point in this case,
VK (ai(t))
2
N TN
for t large. Due to the construction of W, max{Ai(t), -, A\p(t)} is decreasing for ¢ large

and therefore \; is bounded, which is a contradiction. Hence T = oo and a is a critical
point of K. Therefore

(a1(t), - ,ap(t)) = (z1, -+ ,2p) € crit(K)P (t — 00).
If (z1, -+ ,mp) & F5°, then (o, a, \)(t) ¢ Va for t large. Thus, due to to the construction

of W, max{Ai(t),---,\p(t)} is decreasing for ¢ large, which is a contradiction, because J
is bounded from below. Therefore (ai(t),--- ,a,(t)) = (1, ,zp) € F;° which finishes
the proof. O

Remark 3. If p > [crit(K)| then F;° = 0. Therefore flow lines of 4 = —X(u) are

contained in
U Ve
p<|erit(K)

for t large.

For z € Up<|crir(i) Fp- define

P 3
o(@) == Q(B*,0BY) (Z K(i)2> |
i=1 ¢

Let w : [0,00) — U be any flow line of & = —X (u). Since J does not have any critical
point, Proposition 7 and Proposition 19 yield J(u(t)) — c¢(x) (t — oo) for some x €

Up§|cm’t( K)| Fpo. Especially

inf{J(u) |ue U} = min{c(a:) lze | f;’"},

p<|erit(K)|

hence

NIN)
—
oo
—_
~—

inf{J(u) | u e U} > Q(B* 8B*)(max K)

We are now able to prove Theorem 1.
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8. The topological argument and proof of the Theorems

Proof of Theorem 1. Let x € OM such that K(z) = max K and

2|Si|Hm($) + %AI?(S) > 0. The expansion of the functional (see Proposition 7) yields

J (pzn) < Q(B4,8B4)(maxK)_%

for Alarge. This contradicts (8.1). Therefore J must have a critical point in this case. [

8.3. A Morse lemma at infinity
Let 7 = \/%To and z = (v1,- -+ ,xp) € F,°. Furthermore let
@ : By (0) X By (0)P — 8P~ 5 oMP
be a Morse-chart around the critical point (Fa(x),z) of the function
Q(B*,0B%)|a/?
(S af K a)*

flasa) =
defined on Sf_l x OMP. Hence, for (a,a) = @(h,y) it holds

floya) =c(@) — (B + > (=ly; P+ ly 1) -
=1

Here (y;,y;) € R3 are the coordinates of unstable and stable manifold of —V% at
x;. Under the identification (o, a,\) = (¢(h,y),\) Proposition 7 yields the following
expansion:

p p
J (Z Qian; + ) = c(@) = WP+ D (=l P+ 1 P) + ¢ (2) < M(2)A, A >
=1

=1
+ O (|bl +y) AP+ O (p|AP) + O (ly~I* + |y ") + O (IAP) .

if (o, a) are close to (fa(x),z), where

(& 1\
(z) = c(m)2—10 <§ e (m))
t
and A = (%, cee %p) . Furthermore we choose r << rg and define the function
. mp—1 3
g:RPTIX(R?)P x RE — R,

p
g(h,y, N) = e(a) = |hP+ Y (=lyi P+ |yt P) + () < M(2)A, A >
i=1
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8. The topological argument and proof of the Theorems

and the vector field V(h,y,\) = (Do~ W, Wa], Wy). Let
®(h,y, A, t) be the flow of this vector field. We would like to show

d

i g(®(h,y, A1) > co | o — |alal® + ZW+|A|2+Z€@J (8.2)

i=1 1#]

for all (h,y,\) € B,(0) x B,(0)? x RE where
RP:={yecR |y >ecVi}.

Since

(a(t), a(t), A1) = (e(h(t),y(1), A1) € USUVe | Oa
0AAC{1, p}

along the flow of V', we have to check the inequality in each set separately (see page 74,76
and 85 for the definition of the previous sets). In Uf it holds

Loy A1) = ¢ ( (@) A2+ D (I P+ W)) = % faa)

i=1

p
= |v04f(aa a)|2 + Zvaif(a, a) ’ Wai
i=1

‘ (la ol + 3 'VKA(.%P)

i=1 v

VKa
> ¢ la—lolaP + Z‘ (’ AR+ ey
i=1 1#]

Next we check the inequality in V5.

& g(®(hy.1.1)) = i(( RS (o P )) (@) < M)A, A >

=1

_ %f(a, a) + 20* () < M(z)A, A >
p
VK (a;)[?
>c <ZZ; SV + |A2>

p 2
VK (a;
> ¢ |a—]a\&\2+27‘ A(f‘)| HIAP+) e

i=1 ‘ i#j

Finally we prove the inequality in some O 4. O4 is subdivided in the sets OE N Oy. Fore
the precise definitions see page 86. In OE N O, we have

Ni=M2" D) ie{AUBY}, A\ =-6)\ i€ A°\B,
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8. The topological argument and proof of the Theorems

thus

CZ (®(h,y, M\ 1)) = i( () \h\2+z —ly; P + Iy | )) ¢*(w) < M(z)A, A >

=1
p
VK
=1

VK(a
>ela MW+Z‘ H'HW+Z%
i=1 i#£j

Therefore, the stated inequality is profed. Finally define

V(h,y,\)

V(h,y,\) = AT
oo — a2 + b, MR LA 457 ey

We choose r, e small such that

p
C(I‘) —co < J (Z QiPa; N + Q_J) 7g<h'7 Y, /\) < C(x) + o,

i=1

if (h,y) € Br(0) x B,(0)P and A; > 1 Vi. If necessary, we choose r smaller such that the
flow ®(h,y, A, t) of V, defined on € B, (0) x B, (0)? x RE , exists at least for ¢t € [-2,2],
if (h,y,)) € B-(0) x B,(0)? x RE.

Due to (8.2), t — g(®(h,y, A\, t)) is strictly increasing with
9(2(h,y,A,2)) = g(®(h,y,A,0)) + 2¢0 > c(x) + o

and
g(q)(hvya)" _2)) S g(q)(h,y,)\,O)) - 200 < C(LE) — Cp.

Due to the mean value theorem, there exists exactly one ¢t = t(h,y,\) € (—2,2) such
that

P
J (Z iPa; n; + v) = g(®(h,y, A\ t(h,y, ).
i=1

By the implicit function theorem ¢ depends smooth on (h,y, A). We define the (smooth)

map

w(h,y, A) := ®(h,y, \, t(a, a, ).

Since

d [ _
&J (Zz; Qi Pa; N\, + U) > 07
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8. The topological argument and proof of the Theorems

if (h,y,\) move along the flow of V, w is into. We would like to show that w is a
diffeomorphism. Therefore we construct an inverse map. Since

d [~ i}
%J (Zaﬂpai’;i +v> > c1,

=1

>/1
N

if (h, 7, \) = (¢~ Y&, a), \) move along the flow of V, there exists exactly one t = £(h, §
such that

where (o, a,\) = (¢(h,y), A) ans (h,y, A) = ®(h, 7, X, t(h, §, N))).

We set w(h, g, A) = @(E,gj, :\,f), which defines a smooth map as well.

For 7, small, the map wow is well defined on B,(0) x B,.(0)? x RE. Furthermore observe
w(w(h,y,\)) = ®(t, ®(t, h,y,\)) = ®(t + 1, h,y, \) as well as

g(h,y, ) = g(2(t +1,h,y, A)).
Thus, (8.2) implies t +¢ = 0 and therefore w o @ = id. The same arguments show

w o w = id. Hence w is a diffeomorphism.

Summing up, we have proved the following Morse lemma at infinity:

Proposition 20. Let x = (x1,---,3p) € F°u = Y0 g, n, + 0 € V(p,e), where

dg(as,z;) <, |of =7, |a—a(x)f| < r and e,7 are small, then it exists a change of
variables RP~ 1 x (R?)” x RP O B, x Bl x RE 5 (h,y,\') «— (a,a, \) such that

p p p
) (z N @) ) S SR ) < M)A A >
=1 =1

i=1

Moreover the map can be chosen such that %)\; <N <2\ V.
Furthermore (y; ,y) € V. @ V.t =R3, where dim(V,”) = ind(+, z;) = 3 — ind(K, z;).

8.4. The topological argument

First observe that the set

C = {c(m)

re f;,”} (8.3)

p<lerit(K)|
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8. The topological argument and proof of the Theorems

is finite. We set 4y := ming pec |a — | and for x € F°, €,0 small we define

p
Uss = {u =Y @un +UEVD D) ] dylai,@i) <6, | —a(@)| <6,

i=1 ||

100 €
— A > — -).
o=l < 2, A > }cv<p,4>

For u € U, 5 there exist a unique map ¢ : U. s — B | q(u) = (a(u), a(u), A(u)) such that
dg(ai(u),z;) < 6 and u = 1h(q(u), v) for some v € Ey,), where ¢ : E — H' (M) :

(o, a,\v) = Zazgoal)\ + v.

Since v is a local diffeomorphism, ¢ is smooth.

Choose an open neighbourhood U C Sfffl x OMP around (7a(x), z) and a diffeomorphism
¢:U xR =V x R? as in Proposition 20 such that

UC {(a,a) € Sf_l x OMP | |a — ra(x)| < g,d(ai,xi) < g}

Here V = By, (0) X By, (0)? C RP~! x (R3)P. Then in V x R? holds:

p p
J (Z Qipan, + ) — o) — 2+ 3~y P+ lyf P+ ¢ (@) < M(m)A, A >
=1

=1

where we use the same notations as in the previous section.

Clearly (a,a,\) = ¢~ (h,y, \).
Furthermore we define 75 € C°°(R) such that

ns(t) =1, <6, ns(t) =0, t>25, —261 <njs<0.

For u = Zle i Pq; \; +0 € Uz s and pp > 0 we define the map
g(u) = p-ns (| + 1> + [N + [[o — 0[]%)

where (h,y,\) = ¢ (ﬁﬁa, A). Outside of U, 5 we set g(u) = 0. Then g is smooth in
HY(M).
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8. The topological argument and proof of the Theorems

Moreover if g(u) > 0, then

J(u)=J (Z Qi Pa; N T ﬂ)

+ ;/0 D2J (Z QiPazn T U+ t(v — 17)) [(v—"2),(v—"2)]

=1
p p
— B2 =Dl P4 P+ (@) < M(z)A A > +CJv - 0|
<c(z)+ Co < e(x) + o

if 4 is small.

We set F(u) = J(u) — g(u).

Lemma 8. It holds
VF(u)-X(u) >0,

if u,0 are small.

Proof. If g(u) = 0 the statement follows from(7.1). Therefore let g(u) > 0. If u moves

along the flow of X, then (Alo“ ,a, \) move along the flow of W. Hence

d  « e d VK (a;) 9 9
—r—| < « T y 3,00 = ’ S A .
'dtr|a| -“7 Foape)] o= A
Moreover p
Do 512 = Co — ol
Since (h,y, \') move along the flow of V:
d vl | d
2 |9 2| < i A2 < "2
Cln?, || < o8 | G < ola
Thus:
Vg(u) - X(u)] = |- g(u)
Cpd 2 2 "2 2
gt A _
< 5m(mr+ww+\r+wv olP)
< Cu lyi|?
5(mﬁ+2) +m%+w)vw)
=1 Z
C VK (a;)|? B
5Qa—mmF S L LN}
i=1 v
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If & is small (7.1) implies

p 2
K(a; _
VF(u)-X(u)>c <|a — |ajal® + E w + AP+ v — vH2> > 0.
i=1 ¢

Therefore the Lemma is proved. O

For every x € F°° we can construct a function g, as above. Then Lemma 8 still holds
for

Flw) =T~ Y galu), (8.4)

TEF®

Remember that F°° was defined in the introduction. Using F' we now prove the defor-
mation Lemma

Lemma 9. Choose F from (8.4), then

©

JC(VC)'HLO — FC(QC)'HLO ~ FC(I)—f_

Proof. The first identity is clear, we only need to proof the homotopy equivalence. There-
fore let
® : [0,00) x Fe@tmo . pel@)tro

be the flow of & = —X (u). Due to Proposition 19 we know that J(u(t)) — ¢(z) for some

z € F>. Either ¢(z) < ¢(x) — § or ¢(z) = ¢(x). In the second case g(u(t)) — —p and

hence F(u(t)) < c¢(z) — § in any case for ¢ large. Since VF(u) - X (u) > 0 there exists
exactly one ¢ = ¢(u), which depends C! on w, such that F(®(t(u),u)) = c(z) — &. We set
H :[0,1] x Fe@Fro _ pe@+no - F(s ) = (s - t(u),u),

which is the stated homotopy equivalence. O

The main goal in this section is to compute the relative homology
H.(JEEHH, JUO=5Fy) = H, (J9 e, (05,

where Fs is the field with two elements. For simplicity we assume that there are no other
critical tupels y € F> at the level ¢(z). Set A := F@~%\ J@) =5 then Je@)thno =~
J° % U A and hence

H (Je@ o Je)=5) = H (J 75 U A, Je0)7%),
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8. The topological argument and proof of the Theorems

From the construction of g we derive

P
4c {Zo‘i%m +veUss | W+ 1yl + [N + v —2]]* < 25}.
i=1
Furthermore we define a bigger open set
D
B:= { D ian +v € Uss | |+ [y + [N + [Jo - 0|]* < 25’}.
i=1

where ¢’ is slightly bigger than §.
Claim 1:

H (JW=5 U A, J®-5) = H,(J®-2nBUA,J® 2nB).

Proof of claim 1. We would like to apply the excision axiom for homology. Therefore we
need to cut out Jé*) 3 \BC J@)=% which can be done if

J@D=5\ B C int (JC@)*%) :
where we need to take the closure and interior w.r.t. J<®)~% U A.
Since J¢®) =2\ B € J“®)~% U A is closed it remains to show

JE@=EN\ B ¢ int (JC@)—%) .
If ue J®~5\ B, then u ¢ B. Hence there exists r > 0 such that B,(u) N A = 0 and

thus
Br(u) N (Jc(m)_% UA) — Br(u) N Jc(m)—% - JC(I)—% UA

is open. Therefore u € int (JC(“%%), which proves the claim. O
For all u € B exists exactly one t = t(u) > 0 such that |a(u)t(u)| = 7. We define the
homeomorphlsm VB — E Y(B),1(u) = t(u)u, which maps J®)~2 N BU A to
J@=5 NBUA and J°®~5 N B to J®) =% N B. Here A = )(A).

Hence
H,(J*®)~"2NBUA,J@ 20B)=H,(J™ 2nBUA,J® 5 NB).
Moreover for u = > "2 | ;g x, +v € J@=5 "B U A we define
up = Z QiPa; \ +0+ (1 —t)(v—0).
i=1

Claim 2: v, € J" 2 NBUA for all ¢ € [0, 1].
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8. The topological argument and proof of the Theorems

Proof of Claim 2. We show it € J «*)-% N BU A, which proves the claim. Therefore

[[ee]]
ut

we need to show T € B and F(HZ—fH) < ¢*(x) — & for all t. Since J is homogeneous of

degree zero and ¥ is a minimizer:

J <|IZZ|I> =J (iai%m +@+(1—t)(v_@)>

=1

is decreasing. Moreover

1-)<a G,A)_v(aaw

[Jug]|” (e

and t — n;s(t) is decreasing. Therefore it remains to show that

lo —ol”
(1—1)°
e 2

is monotone decreasing. But

d(1-1t)*  2(1-1) 2(1—t)2

el _ - < o< — 21 _p) < .
dt ||u||? ||| T g |* < (1 —¢) < 4y,

In addition
P
el P = 11D cipan,|? + 1[0]]° +2(1 — ) < 0,0 = 0 > +(1 — t)?||v — 0|
i=1
and
< g, up >=—(1=t)||[o —v||>— < 0,0 -7 >,
thus

A=t o 3 PP < (-t <ov—5>
< — aipa; || = I|0]]7 < (1= v,0— T > .
dt 2 £ ive

The last inequality is true if [|v — 3||? < || Y°0_; iga, A, |[?, which is satisfied for § and e
small. Therefore the claim is true. O

Define

Cq = {ue J "2 NBUA

p
u = Zai%pam& + v}

=1

U{ue JTENBUA | J(u) < ¢t — %}

and
Cy=J""5NBUA\C.
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8. The topological argument and proof of the Theorems

For u € Cy we set
7(u) = sup {t € [0,1] ’ J(ug) > " — ’u}.

Claim 3: 7: Cy — (0, 1] is continuous.

Proof of claim 8. If t(u) < 1, the claim follows by the implicit function theorem, because
O J (up) =< VJ(u), v — v >7# 0 in this case. It remains to prove the claim if 7(u) = 1.
Let u™ € Cy converge to u, then J(ui) > c¢(z) — § and

p
J(ui) =J (Z i par ap + 0" 4+ (1 =) (0" — 27”))

i=1

P
=J (Z ;' Par An + TJ")

=1

1 P
+(1— t)z/ D?J <Z i par an + 0"+ s(1 =) (0" — v")) " — 0", v — 0"]ds
0 i=1
> J(up) +o(1)
1 P
+(1- t)2/ D2J <Z i’ @an an + 0" + (1 —1)(v" — v")) [0 — " 0" — 0" ]ds
0

=1

> e(a) = & +o(1) + o1 = D |o" = 0"|[2 = ¢ = £+ 0(1) + co(1 — )20 — ]|

Furthermore
e(x) = & +o(1) + eo(1 = 1)l — 3> > e(a) = &
if and only if
(1—1t)* > —o(1),
which is true if |1 —¢| > o(1). Hence J(uy) > c(x) — § if [1 —t| > o(1) which implies
that 7(u™) — 1. Thus the claim is proved. O

Claim 4: Let (up), C Co then 7(u™) — 0 if ™ — u € Cy such that

J(u) =J (Z QiPa; N T v) < c(x) — 5

=1

=

and v # 0.
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8. The topological argument and proof of the Theorems

Proof of claim 4. Clearly J(u) = c(x) — 5, J (301 aipa, », +9) < c(x) — & and

J(uy) = J(ug) + o(1).

Since 0y J(us) < 0fort € [0,1), J(u¢) < c(x)—% for all t > € and therefore J(u}') < c(x)—
& for n large and t > ¢, which implies 7(uy,) < € for n large and hence 7(u,) — 0. O

With the previous two claims we are prepared to define a homotopy which retracts the
v-part. Set

o o C
H:[0,1] x SO 5 ABUA = J@5nBUA Ht,u) =4 " “
Utr(u) U € Cs.

H is well defined. It remains to show that H is continuous. Let (t",u") — (f,u). First
let uw € Cq. If u™ € Cy the convergence is clear. Let us assume u" € Cs. If u is as in
claim 4, then 7(u") — 0 and therefore U g (yny = U= H(t,u). Ifu=>3" ajpg + 7,
then

p p
H(tn7 un) = Z O‘?@azﬂ)\? + l_in + (1 - T(un)tn)(vn - @n) — Z O‘isoai,)\i +v= H(t7 u)?
i=1 i=1

because ||[v™ — 0"|| — 0.
If uw € Cy then u™ € Oy for n large and hence H (", u") = U (yn) — Upr(u) = H(t, ).
We used that 7 is continuous. Therefore H is continuous.

Set

=1

A::{uefl

P
u= Zaz‘%i,,\i + U} ;
then H retracts J 2 NBUA onto J* 2 NBUA by deformation, which implies

H,(J®=2nBUA,J®2nB)=H,(J® 5 nBUA,J®"5nB).

Set

p
B:= {Zaigpai)\i +o | AP+ Y2+ AP < 25’} Cc B.
=1

Then the homotopy h : [0,1] x J* "2 NBUA — J =2 NBU A, h(t,u) = u, retracts
J“"2NBUAonto JS 2 NBUA by deformation, which yields

NS

H,(J  2NBUA,J @ 2nB)=H,(J  2NBUA,J @2 nB).
Let (h,y,\') = ¢(a,a, ). Define

U = {(hy, N) | 112 + ol + A < 20"}
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> 0ipa 0. In U the following

m 1 : U= B,ap(h,y,N) =

and the homeomorphis

expansion holds true:
) P
T ($(h,y, X)) = clw) = [B> + > —=ly; [P+ 1y 1 + ¢ (x) < M(x)A, A >
i=1
We set A 1= 1(A) as well as A := {(h,y,0,X) € A | J (¥(h,y,N)) > ¢* — £}, where
we split y = (y~,y™T). Since ¥ is a homeomorphlsm
704, (7 09)1E N D)

H.(JW™ 2 NBUA,JW 2 nB) = H((J o)™ 2 nT U

Furthermore a retraction yields
)=5NT U ./Zl (Joz/;)
= H.((J o W(’”

The retraction can be defined similarly to H, defined on page 105, to retract the v-part

nu)

_K
2
S NUUA (Jo)@2 D).

H.((J o)™
Moreover
A ) 5N0

where )
={(h,y,0,X) [ |h] + |y~ |> + |A']* < 20"}

Here we used the homotopy h(t,h,y~,yT,N) = (h,y~, (1 — )y, X)

Next we set ,

3 B . 1

A= {(h,y 0N eA| Y 5 _u}

=1
Claim 5:
H. ((Jo)@=2nTUA, (Jog)® 2n0)
= Ho((J o) @=5 nT U A, (Jo)@=5NT).
Proof of claim 5. Define
- _K
> c(z) 2}

A= {(hy™ 0,X) € AL NP > g, T(0(h,y™,0, )

and 7 : A; — (1,00), where
1ol .
(o X) =sup {12 15 NP > e Tl 0.0 > (o) = ).
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8. The topological argument and proof of the Theorems

0,Xt)) < 0and £>7 | Js7 < 0. We define the

UA%(Jow)C(”_*ﬁé' A

. . d -
T is continuous because aJ(i/J(

homotopy H : [0,1] x (J 0 )@

l\i’h: @

N
Hit (hyy, 7tN) (h,y,N) € Ay
YA (h,y,\') else.

Since 7 — 1 if (h,y, \) = (ho, Y0, No) € .A H is continuous. O

Claim 6:

p
1
Ay = {(h, y,0N) Py P < E et () < M)A A >, ZW < ,,,}.

=1 "1

=

Proof of claim 6. Clearly, if (h,y,)\) € .,Zlﬂ, then J(¢(h,y,N)) > c(z) — &, which is
equivalent to

B+l < 5k et (@) < M@)A A >

Therefore the first inclusion is proved. To prove the second inclusion it is left to show
that F(¢(h,y,\')) < ¢(x) — §. But the conditions yield

|n)? + |y~ | + A2 < 5 +Cp < 6.

Hence g(¢(h,y,N')) = p and J(¥(h,y, X)) < c(x) + &, which proves the claim. O

Next we set U, := {(h,y~,0,X) € U : |A'|? < u}, then homotopy arguments, familiar
by now, show

H((Jod) W72 NT U A, (J o)™
H.((Jo ) -

Furthermore, due to claim 6, the pair ((J o 9)*®~2 N NM U ftu, (J o gp)@)=5n U#) is
homotopy equivalent to

(X, 4) = ({(h y L N) R+ < %—!—c*(m) < M(z)N, N >, [N < M},
{(y™ 2 | 1P+ Iy = 5 + (@) < M@, A >, [N < u}>'
Define k = k(z) =p—1+3p—>" ind(z;, K) =4p— > ¢ ind(x;, K) — 1,

Y = {(z,)\/) e DF xRY | N2 < M}, B = {(Z,X) eSHIXRE | NP < M}
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and the homeomorphism

z

Vh+ @) < M)A, A >

¢:(Y,B) = (X, A), ¥(z,\) = N

Here DF is the unit ball in R* and S*—1 = 9D*. Therefore

H.(X,A) = H.Y,B) = H,(D" x RY, S*1 x R
]F2 * = O,k

= H. (D", 8"\ Fs) =
{0} else.

For z € F;° we set k(x) = 4p— Y 7_, ind(x;, K) — 1. The previous homotopy arguments
have shown:

Proposition 21. Let x € F*° then

H, (Je@)tno ge@)=5) o H,(D"W) gkv)-1y,
yeF>® : c(y)=c(x)

Using Proposition 21,we can now prove Theorem 2:

Proof of Theorem 2. Let C' = {c1,...,cm}, where ¢1 < ¢cg < -+ < ¢, and C is defined
in (8.3). Furthermore let Yy := @) and Y = J%7¢ where € is chosen very small, such
that Proposition 21 holds true:

H*(Jck+€, JekE) = Z H*(Dk(y), Sk(y)—l)'
yeF>= c(y)=ck
Since we assume that J does not have any critical point in U, J(u(t)) 2% b e C for

flow lines of & = —X (u). Thus Y,, is a strong deformation retract of U.
Let Fy be the field with two elements, (X, A) a pair of topological spaces and

P(X,A;t) = Z dim(H, (X, A;Fa))t",
n=0

be the Poincaré polinomial, then (see [10]):

P(Y, Yo, 1) = > P(Yi, Vi1, —1) = Y (—1)Zim @l (8.5)
k=1 TeF >

Since U is contractible

108



8. The topological argument and proof of the Theorems

where y is the Euler-characteristic. Therefore, we have shown:

1= Z (_1)Zf:1md(:pi,K)+1.

reF >

Thus, if 1 # erfm(_l)zlemd(xi,K)H’ then J must have a critical point in U. Hence,
(1.1) must have a solution in this case, which proves Theorem 2.
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A.l1. Definition and Existence

Let (M, g) be a n-dimensional manifold with boundary. First we need to define Fermi-
coordinates around a point ¢ € IM with respect to g. Therefore we choose an or-
thonormal basis (e1,- -+ ,e,_1) of T,0M and define for (x,t) € R"~! x R, close to (0,0)
Yy (x,t) := v.(t), where ~,(t) is the unique geodesic such that

n—1 n—1
V2(0) = exp, (Z xe) and 7,(0) = —v (eXpa <Z xez>> :
i=1 =1

where v is the unit outer normal vector field on OM and exp, is the exponential map of
OM at a. The map v, : U — R" 1 x R, = R, defined on a neighbourhood of a € M,
is called a chart in Fermi-coordinates around a and ;! is its parametrization.

For the previous definition we chose an orthonormal basis of T,0M, hence
Fermi-coordinates at a point a € M are unique up to O(n— 1) — transformations. More

precisely, two different Fermi-coordinate parametrisations ;! and @;1 are related by
Y (@, t) = P, (Ax,t), where A € O(n —1).

The existence of Fermi coordinates will be proved in Proposition 22 below. First we
would like to present the following useful expansion in Fermi-coordinates (see [28]):

Let v, be Fermi-coordinates around a € M and g% (z,t) the coefficients of the inverse
metric in this coordinates then ¢""(z,t) = 1, ¢*(x,t) = 0 and

g 1 _ ,
g” (x, t) = 5ij + thjt + gRikjll'kwl + 2hij,ktxk + (Rm'nj + 3hikhkj)t2 + O (‘(1‘, t)’s)
(A1)

forall 1 <1i,j < n—1.Here h;j, Rikji, Rninj are the coefficients of the second fundamental
form and the Riemannian curvature tensors of 0M and M at the point a.

Let u : OM x M — (0,00) be a smooth function. Then g, (z) := u(a, :U)ﬁg(x) is smooth

family of conformal metrics on M. We call ¥, : U — R"} a conformal Fermi-coordinate
chart at a € OM if v, is a Fermi-coordinate chart at a € OM with respect to the metric
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A. Conformal Fermi-Coordinates

Ja- In the following we prove the existence of conformal Fermi-coordinates as well as some
properties. Therefore we need to introduce some more notations. For p > 0, define

Bf = {(z,t) R} : |(z,t)| < p}, B,:=B,(0):={ze R™ x| < pl

4

Proposition 22. Let u: OM x M — (0,00) be a smooth function and g, = ug g be a
smooth family of metrics on M then:

(a) Conformal Fermi-coordinates exist.

(b) There exists po > 0, independent of a € OM, such that all parametrisations in
. . -1 + .
conformal Fermi-coordinates v, " are defined on B . Furthermore they are diffeo-
morphisms onto its image in M.

Moreover let g;; : B;B — R be the coefficients of the metric g in arbitrary conformal
Fermi-coordinates around a, then for N € N exists C = C(N) > 0, independent of a,

such that |0%g;j(x,t)| < C foralll1 <i,5 <n, |af <N and (z,t) € B:/z

Proof. (a) Let ¢ : U — B} be a chart of M around a € M with p(a) = 0. For
y,x € By, let I‘fj(y,a:) denote the Christoffel symbols on OM with respect to g, -1,
at the point ¢~!(z,0) € M. They depend smoothly on y and x. Locally around 0 let
(e1(y), - ,en—1(y)) be a smooth family of vector fields which are an orthonormal frame
at o 1(y,0) w.r.t. Jpo-1(y,0)- For y € By and v € R"! we define the geodesic initial
value problem on By,:

{Ww + T8 (5, 7 (8)7 (£)3 (1) = 0
Y0) =y, §(0) = X7 videlei(y)]-

We denote by v(y, v, t) the maximal solution of the previous initial value problem. Since
the coefficients are smooth it exists tg > 0 such that y(y,v,-) is defined on [—to, o] for
all y € Bs, and v € By. Since (y,v,t) = v(y, tv, 1),

v B3r><Bto—>B4Ta ( Y, ) (y,v 1)

is well defined and smooth. For (y,v) € Bs, x By, the map c(t) = ¢~ (y(y,v,t),0) is
a geodesic on M w.r.t. g,-1(,0) and initial conditions c(0) = ¢~ (y, 0) and ¢(0) =

2?2_11 ei(y)v;. Hence for y € Bs, the maps

B, 3 v ¢~ (3(y,v),0)

are normal coordinates on M around ¢~ '(y,0) w.r.t. gpo-1(y,0) if they are diffeomor-
phisms. This will be justified in the following. Therefore set

D B3T‘ X Bto — B4r X Rn_l? <I>(y,v) = (v(y,v, 1)7;)/(yava 1))
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Since
id id
® is a local diffeomorphism around (0,0) which proves that the map
By, 30 ¢~ (7(y,0),0) € OM

is a diffeomorphism for all y € B,, as long as rg is small enough.

Now define ffj(y,x,t) to be the Christoffel symbols of g, -1(,0) on M at the point
o Y(x,t). For (y,v) € By, X By, we define the geodesic initial value problem on B

. —k N
&M (t) + Ty, c(t) (D) () = 0
c(0) =7(y,v), €(0) = —dp (v (7(y,v))),
where v(z) is the outer normal vector at ¢~ !(x,0). Let c(y, v, t) be the maximal solution.
The theory of ordinary differential equations implies that ¢ : B, x By, x [0,€) — B} is

well defined and smooth for € and r1 < rg small . A similar argument as above shows
that we can find ro > 0 small, such that the map

B} 3 (v,t) = c(y,v,t) € By,
is a diffeomorphism onto its image for all y € B,,. Now, for b € M close to a, we set

vy H(v,t) =7 (e, v, 1)) where (y,0) = @(b).

Then 1, L are conformal Fermi-coordinates by construction, which proves the existence.

(b) follows immediately from the proof of (a) since we have already constructed con-
formal Fermi-coordinates, which are defined on B;f for all b € M close to a € IM.

Since OM is compact it suffices to find bounds locally around a point a € OM. But
this is guaranteed for the special construction in (a). Finally, different Fermi-coordinates
around a special point differ by an action of the compact group O(n — 1) which proves
global bounds for all conformal Fermi-coordinates at OM w.r.t. gq. O

We state a very important result which is due to [27]. A familiar result for Riemannian
normal coordinates was proved by [24].

Proposition 23. For 3 < N € N there exists a smooth positive function u: OM x M —

R and a conformal family of metrics g, = u(a, -)ﬁg such that in conformal Fermi-
coordinates
(a!) dVg,(z,0) = (1+ 0 (|(z,0)|Y)) dadt, (A2)
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where dVy, is the volume form on M w.r.t. g, and dxdt is the standard volume form on
R?.
Furthermore it holds

h(a) = Vh(a) = Ric(a) =0, Ry, (a) = —|TI(a)[*.

Here h s the mean curvature, Ric the Ricci-curvature of OM, Ry, the scalar curvature
and 11;; = h;; — hg;; the umbilicity tensor with respect to gq.

From now on we use this function u, = u(a, -) stated in Proposition 23 for N large. We
choose pg as in Proposition 22 such that all conformal Fermi-coordinates are defined at
least on B;po' Furthermore let x € C*°(R) such that x = 1if ¢ < 3pg and x = 0 if
t> 4p0. Set

g:0Mx M =R, g(a,z) = x (|a(2)]) [a(@),

where 1, are conformal Fermi-coordinates around a. First observe that g does not depend
on the choice of Fermi-coordinates. We would like to prove that g is smooth. Therefore
let (ap,xo) € OM x M. The only not trivial case is |t (z0)| < 4po, which we assume
from now on. Then |9, (z0)| < 5po for a close to ag. Let c¢(y,x,t) be the solution of
the initial value problem from Proposition 22 in 1)4,-coordinates. Hence the chart ¢ is
replaced by 1,,. Set ®(y, z,t) = 1&‘;01 (c(y,z,t)), then ®(0,x,t) = 1/1;01(33, t). Furthermore
define

F: B, x Bgp, x Bgp, = R", F(y,x,t,2) = c(y,x,t) — 2. (A.3)

Let (o, to, 2z0) be given such that F(0,xo,tg,20) = 0. Since (z,t) — ®(0,x,t) is a dif-
feomorphism, also (z,t) — ¢(0,z,t) is a diffeomorphism and hence D2 F (0, zo, to, 20) an
isomorphism. Locally around (0, xg, to, 29) the implicit function theorem yields smooth
functions z(y, z), t(y, z) such that F(y,z(y,z),t(y,2),z) = 0. For a chart 1, we set

to(x) = Y7 (x) and Y, (7) = (YL(z),--- , 92 (z)). Then t4(z) and [, (x)|? are indepen-
dent of the choice of Fermi-coordinates w.r.t. g,. With the notations from above, we
see

th(y,O) (Qba_ol(z)) = t(y,Z), ’@@(y,O) (wgol(z)) 2= ‘x(ya Z)‘Q

which are smooth functions locally around (0,q,(z0)). This finally proves that g is
smooth.

A.2. General properties

As above we set 1 (x) = (i (), ta(x)) where §,(z) = (Eh(a), -, v~ ().

Lemma 10. For ag € OM choose conformal Fermi-coordinates around ag. In these
coordinates we obtain
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A. Conformal Fermi-Coordinates
(0) 5.2 Pa(@)|* = =200 (2)! + O(dy, (w, 0)?),
(b) aa]aal\ao\% 2)[* = =26, + O(dy, (x, a)?),
(¢) sad—ta(w) = Oldy, (x,a)?),

(@) oo tal) = Ody, (2, ).

Proof. To prove this Lemma we need the Function F' in (A.3) and some of its derivatives.
F(y,x,t,z) = c(y,x,t) — z, where c(y, x,t) is the solution of the initial value problem in
the proof of Proposition 22. First we compute the first derivatives at zero.

Claim:

1. D1F(0,0,0,0)[h] = (h,0) for h € R*~1,
2. D2F(0,0,0,0)[h] = (h,0) for h € R~

d
3. dt[t=0

F(0,0,t,0) = ey,

4. D4F(0,0,0,0)[h] = —h for h € R™.

Proof of the claim. F(y,0,0,0) = (y,0) which proves 1. Furthermore F(0,th,0,0) =
(7(0,th,1),0) = (v(0,h,t),0) which proves 2. The equations in 3. and 4. are obvious
from the definition of F. O

We also need the second derivatives of F. Since F(y,0,0,0) = y, it follows that
D?F(0,0,0,0) = 0. Observe that F(0, se; + re;j,0,0) is (s, 7, 1), where (s, r,-) is the
solution of

{&k(s,r, t) + F%(’y(s,r, )Y (s, 1) (s,7,t) =0

v(s,r,0) =y, “(s,r,0)=se; + re;

Set B(t) = d ds 7(0,0,%), then S solves the initial value problem

B(t)=0; B(0) =0, B(0) =

since 7(0,0,t) = 0 and F%(O) = 0 in Fermi-coordinates. Hence § = 0 which proves
2F(0,0,0,0) = 0.

Now we compute the second derivative w.r.t. t. We have F(0,0,¢,0) = ¢(0,0,¢). From

the initial value problem, which is solved by ¢, we infer &*(0) = —fﬁn(O) = 0. This

implies dtQ‘t 2= F(0,0,,0) = 0.
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A. Conformal Fermi-Coordinates

In the following we show that also the mixed second derivatives are zero. We begin with
D1DyF(0,0,0,0).

n—1

d
Dy F(ty,0,0,0)[z] = =0 > eilty)as,
i=1

where (e1(y), - ,en—1(y)) is a local g-orthonormal frame. Since Fermi coordinates are
normal coordinates at the boundary, the metric vanishes up to second order and therefore
D1DyF(0,0,0,0) = 0. Now F(y,0,t,0) = c(y,0,t), where ¢(y,0,-) solves the ODE

&(y, 0, ) + Ty, ey, 0, )¢ (3,0, )9y, 0, £) = 0
c(y,0,0) =y, ¢(y,0,0) = ey

Thus D1 D3F(0,0,0,0) = 0. With the same arguments as above we get

DsF(0,2,0,0) = e,. Hence D3D3F(0,0,0,0) = 0. Altogether we have proved that the

second derivative of F' vanishes at (0,0,0,0).
Taking the derivative of 0 = F(y, z(y, 2),t(y,t), z) at (0,0,0,0) yields

Dyx(0,0)[e;] = —ei, Dyt(0,0) =0, D.xz(0,0)[e;] = e;, D,t(0,0)[e;] =0if i <n;
D.x(0,0)[en] =0, D,t(0,0)[e,] = 1. (A4)

Furthermore, taking the second derivatives at (0,0,0,0) gives

D2x(0,0) = 0, D2x(0,0) = 0, D;t(0,0) = 0, D2¢(0,0) = 0,
D,D,x(0,0) = 0, D,D.t(0,0). (A.5)

We use (A.4), (A.5) and Taylor expansion to derive

0

w@wwwwfzajmw@wmmﬁwnf— l2(y, 2) P2,

90 0
~ Oyilo

8ai |CLO
= ~2z+ 0(=[*)

as well as

82
8aj aai |a0

ta(Ya, (2)) = O(|2])-

Therefore the Lemma is proved. O
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B. Interaction Estimates

In this chapter we expand the scalar product of two different bubbles under the assump-
tion
1
)\i Aj
)Tj + le + )‘i>\jdg(ai7 aj)2

(A) €ij = — 0 and )\i, )\j — OQ.

Proposition 24. Under (A) it holds

X Ol&ij
Aj Ai)\jdgaj (ai’ a’j)2

A 2 ~
/ (tab0.0.) uajaaj,xjdagzhmwaxaj)l)uaj(ai)(
oM

1 2
I :/ B S RFR
gs \ 1+ |z|?

Proof. From now on we assume \; > \;. We would like to expand the integral

provided \; > \;. Here

A 2 A Ug,; ~ A
2
/ <uai 5ai7)‘i) Ua, 5ajv>‘j dO’g - / Jéai’)‘i 5aj’)‘j dO'gai ’ (Bl)
oM M Ua;

Therefore, we need an expansion of 5% A; In conformal Fermi-coordinates at a;. Since
(a,7) = |1ha(x)|? is smooth for d(a, x) < 8pg, we get the following expansion if |z| < 4pq :

3
0
[, (Vg () = dy,, (aj,0:)* + > ml% (Vo' ()2 + O(|2]?), (B.2)
i=1

in which

V4, (e, (O = |V, 9o, (@) ?] < Cdy, (aj, ai).

Under the assumption |z| < 6/)\‘—;{ or |x| < ey/AiNjda;(as,a;) the following expansion is
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B. Interaction Estimates

due to (B.2):

1. x

P ) = <'¢‘”( W”) (;H Niltha, (] .))!2>
. — 2.33
=xp<dgaj<aj,ai>>< ! )( U AC Q)] )

2 AN idg, (a5, a;)? ; + AjAidg,, (aj, ai)?

)\.
2 0(|z[?)

Ad 2 z
(g + AjAidy, (aj, a;) )

(B.3)

We now expand (B.1) under the assumption €;; — 0. Since A; > A; either

)\i)\jd(ai,aj)2 < )\7 — OO Or /\7 < )\i)\jd(ai,aj)2 — OQ.
J J

We first assume M\ \jd(a;, a;)? < )\— In this case a first expansion yields

Qo526 d
aixi%a;,2;40ga;
Be (a;) Ya;
Aj

N /x|<€ X (1 +1|x!2)2 <uaf(al) +O(|)i|)> )T‘S% (7/’;1(%))( +0(‘§|120))dx

7

1
= lug, (ai)xp(dg,, (a;, ai)) (ﬁj o, (aj,ai)2> +o(eij). (B.4)

Since /)\‘—;Jr)\i)\jdguj (z,aj)? > 1 (i—; + Aidjdg,, (ai, aj)Q) in this case, we have the following
estimate:

2
uaj 2 1
0. Aida; A, dog,, <C€i'/ ( ) dx = o(g;:). B.5
/sz(az)\B (as) Ua, N ’ jalze 3t L+ [z (&) (BS)

J

Hence form (B.4) and (B.5) we derive the expansion

. 2 . 1
/8M <uai5ai’Ai> oy Sas 1,479 = Lt (43)Xp (e, (43, 0) <§ + AjAidy, (aj, ai)2>
J J

+ o(gij).
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B. Interaction Estimates

From now on we assume /\—1 < \Ajd(a;,a5)* — oo. We first expand

/ “"152 Su r.d
i a‘j7)\ Uga
Bs\/rjd(a- a ')(al)
VAo
/ (15 )2(u<a>+00“{)16 Wi (Z))dz + ofesy)
= — 3 a; (@i ) ) 700, (Y, (1 ij
e <e/Aingd(aia;) \ 1+ [7]? ! Ait) N T Ai !
1
= lug,. (a; dg, (a;,a; + o(gij), B.6
1 ]( )Xp( gj( J D(,i\;‘f')\'/\'dga (aj7ai)2> ( J) ( )

where we used (B.3) again. Set B := B (a;). Then it holds d(z,a;) > $5d(a;,a;) on B,
10
which implies

2
’U,aj S92 < )\] 1
Y0352 Gy s dog,, <C ) < ST
B Uq; i \i 2 05,A5 Ya; 1 + )\ d az;a]) )\z |z\§)\id(ai,aj) 1 + %z|x‘2
<C—0 = o(ey)).
= 7 Nid(ai, ) o(&i5)

Finally on C' = (BU B Nexy (a;))¢ we have the estimate

aj 22
o uaz a;, ) ;%aj,\; do—.‘]a
1 1)’
<C| 5 / <2> dx = o(g4j)-
S+ Njidy, (a5,0:)? ) Jial>e Aixd(ai.a;) \1+ [
Hence the proof is completed. O

With the help of Proposition 24 we now proof an expansion of the interaction between
two different bubbles.

Proposition 25. If 2 < A\jp, \jp and A\j < \;, then

1
< Pai > Paj ;= = Ilu‘lj (ai)Xp(‘waj (al)D ﬁ n ﬁ W .(a',ai)2 + O(Eij)
N Toa T ANl (G

10— (0)) 55 ) 0 (3575 ) + Ol
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B. Interaction Estimates

Proof.

< Spai,A”(Paj,)\j > = / ngpaiv\igoa]’,)\j + /(’)M ngoah)\igpaj,/\jdo-g
M

/ Bgpa; iPa;n;d0g 2/ fBgal%l,,\ Pa;2;d0g,,
oM M Ua,

U a Ga: (a B )
= / <2Xp5al x T Pga, Xp‘saz 1> (Xp‘saj«\j +(1 - XP)J)\,]>dUQa¢' (B.7)
oM Ua; J

Due to Proposition 24 we have

. R A Ga-(a'v )
/ JXP(SZ@ Ai <X/’5ajv>‘j +(1- Xp)j)\'j> .
oM Ua; ’
Iua, (ai)xp(|ta; (ai)]) 1 o)
= Duq;(ai)Xp(|%Va; (@i N o
j ! /)\\TZ + 5+ AJ}‘idgﬂj (aj, 0:)*

1 G(aj, -
+/ Xpéau (1 =xp) ()\] ))dagai'
oM U j

Furthermore a Taylor expansion yields

a;, vz
Lt en (- Hepe )

Uqa,; )\j

_ <<1 - xp<|waj<ai>|>>6“‘§;”> TNro <P||)\> |

where IN is a linear term (in z). The O-term does neither depend on p nor on aj;.
Therefore

1 A G(a;, -
/ 7Xp(52i,,\i(( — Xp) ()\] ))dagai
; J

-/ <1+1||> —waton(a —xp>W)dw+0 (o)

~n(a- xp<|waj<ai>r>>c’&‘j;j")> +0 (Azl) . (B.3)

Hence
Ua, - Ga, (aj,")
/ JXP(S(%Z: <Xp5a] Aj + (1 - XP)J/\,J> dagai
0 i J

1
= lua, (i) Xp(|%a; (ai)]) : + o(ei)
i N J
’ ’ S 3+ AjAidg, (0, a:)?

0=l @ 255 ) +0 (353 )
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B. Interaction Estimates

Moreover observe that

)\.
D\ <C ’
[Pa; s (2)] < (1 + Aidy, (aj’ﬂf)2>

Cdga (QJ, y) S dg($, y) S Cdga (33, y)

if 2 < pA;. Since

for a € OM,z,y € M and two universal constants ¢, C' we have

>\.
by, ()] < C ’ '
[% 32N (z) < (1 + /\?dgai (aj’$)2>

This estimate implies

a]
‘/ U h’gaIXP Qi A; (paJ7A daga
oM Ya;

Ai Aj
<C ! J d <C Ei7,
B Bap(a;) (1 + /\szgai (ajvx)2> (1 + A?dgai (ajvx)2> 790 = P50

provided 2 < p);. Here we integrated over the sets Ba, N A and By, N A, where

1

A= {56 € 0M | 2dai(aj,x) < )\71 + dgai (ai,aj)} .

Finally we have to estimate the integral in M. From Proposition 2 we derive the estimate

2 .
‘Lg Pan| <O A + 1 A Lq (a;,x)<2p-
R (1+ Nidg,, (a5, 2))* ~ p \ 1+ Ndg, (@i, z)? pei T

Set )
A= {x €M | 2dy,(aj,z) < x + dg,, (ai,aj)} )

As above, integration over Bz, N A and By, N A€ yields

< Cpi?ij.

'/ Lg@ai,kisoaj,)\jdvtq
M

We add the previous expansions and estimates which proves the Proposition. O

Remark 4. Since cdg(a,x) < dg,(a,z) < Cdgy(a,x) uniformly for a,x € OM, we easily
derive the estimate
’ < Pai s Paj,Aj > ’ < Cgij

from the previous Proposition.
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C. Interaction with the derivatives

C.1. Selfinteractions

In this section we expand the scalar product of a bubble with its derivatives w.r.t. A and

a.

Proposition 26. It holds

(a)

P H,(a) [I(a)log(Ap) | p 1
v — 2|93 — w2t
< Pa,; )\8)\900,,)\ > |S+| A2 +0 < A2 + A2 * ()\p)B ’

(b)

1 0 1
< g\ Xaaimsf?a)\ >| < Cﬁ'

Proof. We first prove (a):
Since

0 (14 \t)
A = A=—Qq Dax = 0q C.1
Wa 7= AgyPar+ Pax = 2Xp ’A<(1+/\t)2+)\2x|2> (C1)

the scalar product is given by
0 9 N 1 N
< Par AayPar > = —|[@anll” + [ V@ax  Vwaa + =Ry, ParwardVy,
o\ M 6

+ / hg, Paxwa rdog, . (C.2)
oM

121



C. Interaction with the derivatives

Moreover

1
/ V@ax - Vwg\dVy, = / Vg, - Vwg zdzdt + O ()
BY B
- . 1
+(g” — 5ij)8ig0a,)\ajw)\d:€dt + 0 ()

)\3
:/ V(;)\'Vw)\dl'dt-F/ 3
Bf B; A

2
_ [ 95, Vundedt + 0 [ THOF | 1os(Ao)
. 22 23

M(a))2 1
:2/ 5§\w,\dx+/ ayawAds+o<’ @, Og(?”)
B, 3, A A

:4/3 ()‘34dm+0(|ﬂ(a)l2+10g(/\p)+ 1 >

1+ Az[?) A2 23 )3
[(a)]*  log(Ap) 1
= 21
°+O( SR CENOVSE

and

: (@R | los()

G/B;r Ry, 0 wxdVy, +/Bp hg, 0 wxdoyg, _O< 12 + 3 )
Hence

. 1 . .
/ Vgpa»\ . Vwa»\ + - / Rga goaj)\w,\dvga + / hgagoa,AwAdaga
B} 6/}

P

a 2 (0]
— 215+ 0 <|H(A2)| - gA(?p) + ()\1))3>' (C.3)

Furthermore, partial integration yields
R 1 R R
Vgar - Vwgy+ = [ Rg,GapwrdVy, + hg, Parwrdoy,
M\B} 6 Bf OM\B,

= / Ly, parwadVy, + / By, pawrdog, — / Oy ParWadSg,
M\BJ} OM\B, Sps

0 () (C.4)

due to Proposition 2. Therefore (a) is proved by adding (C.2), (C.3), (C.4) and the
expansion of ||Pa. |2

Proof of (b): We take the derivative at a with respect to v, Fermi-coordinates. In
Lemma 10 we proved the expansions
0
da™

0

dam

[Pa(@)]? = —2¢a(2)™ + O(dy, (a,2)*), ta(z) = O(dg,(a, 2)?).
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C. Interaction with the derivatives

In general
1 0 1 9 1 0 G(a,-)
N\ a N a 6a a 5(1 1-— 5 C5
N Ggm PN = ggm taXe A+U)\8m<,k+( Xp) S ) (C.5)
form which we derive the inequality
1 0
‘)\aam%’)‘ < Cpan
provided 2 < Ap. Furthermore, the previous expansions yield on B;r
10
1 0 AN22™ 4+ A20(|z, t°) + O (14 At)|(z, t)[2N)
A UaXpOa ) + Ug 5 .
" Xda (14 Xt)2 + A2[z]2)

We compute

1 0 1 0 1 0
< @a,A, XW‘P(I,A > = /M Lg‘Pa )\)\6 m Pa, /\dv + /M Bg@a,AXW@a,Ang

11 0 11 0
= L a@a/\ (Pa)\dva +/ B a(Pa/\ Spa)\da -
/M 0 L0 X am FoX o o A am P

First observe

11 0 11 0
L a@a)\ (Pa)\dva +/ B a@a)\ (Pa)\do- @
/M\B;r 7 o A Oa™ 7 OM\B, 7 o A da™ 7

_ A (Ha)]  p 1
_O< A2p +A2+(Ap)3>'

Moreover

11 9 11 0
L a@QA Spa/\dva +/ B aSOaA Soa)\d
/Bp 90200 0y X Darm P 900N 00 X Dam

1 0 1 0
= L a, a, dV B a, Aa d
/B ga90 )\)\8 mgp A Jda +/ aSD )\)\a mSO A Uga

I(a)]> log(A
)

o),

which finally proves the Proposition. O
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C. Interaction with the derivatives

C.2. Interaction with the derivatives

For the expansion of the gradient we also need the interaction between a bubble and the
derivative of a different bubble.

Proposition 27. It holds
(a)

0 0
< Pagnir Aj o, Pk > 211/\3'67\],](5:7) + O(peij) + o(eij)

(b)

1
Vb, VK ) >| < OV K @)l

'< Pai\i» \
J

Proof. Proof of (a). We first assume that A; < A; in which case we compute
0 B 0 J 0
< Pa; N )‘jai)\jyjaj,)\j > = " ngpdw\i)‘jai)\jspajﬂj Vo + . Bg('lpah)\i)\jai)\jso‘lﬁ)\j dag

0
- Bgpa; 2Ny Pajnd O ij)
/8]\/[ QSO i\ ]8A]SO ]7)‘3 Jg + (108])

where we estimate the first integral like in Proposition 25 using the estimate

< Cq, 5, - Furthermore, the derivative on M is given by:

A —)\2 a; (T 2 a;, -
: (1 21, ()] ><1XP>G< i)

.0
‘)‘J ax; Paj.X;

Ai——0a () = Ug, X000 A
i, P ) = e Xeb s \ T, ) y
Integration as in proof of Proposition 24 and 25 yields
/ B )\‘i do, =21 )\AiI(a-)—i-O( cij) + o(€ij)
o g‘pai,/\i ]8/\]- Spaj,)\j g — 1 ]a)\j i 1Y 17 ij)-

Therefore (a) is proved under the assumption A; < A;. From now on we assume \; < ;.
In this case

0
< (Pai,)m )\jawa]’,)\j >
J

0 0
— | Lo (2i-Z0u v ) 0u rdV By (N u x| 0u r.d
/M g( Ja)\j‘/? ijJ> Pai X g+/8M g < Ja)\jSO ],/\J> Pa; 1 00g

0 )
— )\ L @i Ns a; dV )\ B a s o d
\/]\4 J 8)\] 9 (SD J’)\]) ¥ isXi 9 + ~/8M ]8>\j g (QD ]:)‘]) ¥ Y 09
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C. Interaction with the derivatives

Due to Proposition 2 and 3, /\ja%ng (goa].,Aj) satisfies the same estimate as Lg@q; »;-
Hence the following inequality holds true:

< C,()Ez‘j.

0
‘/M Aj @Lg (Ya;5) PainidVy
Furthermore,

8 2 a 2 a
87)\.7"89 (Sollj,)\j) = uanp <28Aj5aj’>\j + hga]’a)\jéaj’/\j) )

which implies

0 ) o
\/‘aM )\jai)\]Bg (Spaj,)\j) ‘Pai,/\idag = AM uanP <2>\J a)\jéaj,)\]'> ‘pai,/\idag + O (pglj)

Y (€i5) + Opeij) + oleiz)-

0
T
TON;

Here we integrated like in Proposition 24 and 25. Therefore part (a) is proved.
Proof of (b): Since

1
ija]‘ Spa]-,)\j : vK(a])

< CIVK(aj)|¢a;n;
we deduce
1
< Soai)\i’ rjvaj Soaj,)\]' : VK(CL]) >

SOWK@MQ/MW%M%MM%+/ Bw%a%ﬁﬂ%)
M oM

. Aj
< CIVK(a, / 02, . 4060, + Cpeij
| uﬂ(&man@+g%¢%%P SR

< C|VK(aj)leis,

where we integrate over the set AN Ba,(a;) and A°N Bay(a;) to estimate the last integral.
Here

1
A= {:c € OM | 2dgy, (aj,z) < X + dg,, (ai,aj)} .

Therefore the proof is completed. O

C.3. Further estimates

We need more expansions and estimates which we mainly use in chapter 7.
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C. Interaction with the derivatives
Lemma 11. [t holds
(a) < )\%%,,\, )\a%@a,,\ >=1L+0(3),
(b) < AZpan, %a%i%,,\ >= 0 (%) ,
(c) < %%%,A, %a%l.%,,\ >=I36;; + O (%),
(d) ‘< X 5o Pas A 3 aF Paih >‘ + )< X 5o Pa A g, Pacn > | = O(eig),

(e) ‘< )‘jai)\jgoajakw)‘iai)\i@aiw >‘ = O(gy5)

where 5 b2
1 1— |z
I, =4 d
? /Rs<1+\x|2> (1+|x\2> )
and
16 ||
_[3:7 725
3 Jea (15 1o)
Proof. (a)
0 0
)\7 a 7>\7 a
< AgaFar AgyFar =

0 0 0 0
- L, ¢ a LB, Gur ) ALy rdoy .
/M <)\8ALga,80a,,\> Aa/\%,Aqua + /8M (Aﬁ)\ 9o P ,A) I Pard9g

Due to Proposition 3

0

0 1
ALy Oor | A== dV, .
'/M < 8A ga(p ,)\) a)\gp A Ja

<C=
C)\

Furthermore

o ) 1— 2222\ ? 1
— 3 — 3 — g ——2 ™ ) g —
/aM(AaABg“*”“’A>AaA¢“’Ad"9“ 4/B,A(1+A2|x|2) ”O<A3>

1

Hence (a) is proved.
(b) In this case we expand as follows

a>\<loa7>\’ )\ aai SDQ,A

0 10 0 10
= [ ALy fars ——Gand AL By Gurs — pardog,.
/]\4 Aa)\ ga@“)‘)\ 60%80 7>\ ‘/ga + /;M aA gasa 1>\)\ 6041(,0 ,)\ Jga
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C. Interaction with the derivatives

C
Like in the previous case the interior integral is bounded by Y On the boundary we get

0 10
AL B, Gure -2, 5d
/8M 8)\ gaSD 7>\)\8az()0 ,)\ Uga

5 (1= X2|z2\ (2 z; + O(\z]?) log(\)
3 %
8/BP5A(1+A2|9:12>< ) o (5
_ o (los()
-o (")
which proves (b).

(c) Due to Proposition 4 the same estimates as in (a) yield

1
<C-<.
=05

10 10
~5 L a,\\ o Fa d
’/1\4)\80,]‘ 9% ”\Aﬁai@ A %

We are left to expand the boundary integral

10 10
iy - Y
/8M A aaj g¥a.A A Oa; (Pa)\dUg
19 10 log(\)
=2 N 9. 202 3 aVq
/BP X, (uaéa)\) N o, (g0, ,)\)dag—i-O( 3 )
_2/18 , 10 log(\)
~ " JB, A da; “*\da; A
P

Az + O\ x?)\ [ Az + O(\z|?) log(A)
— 3 J
_16/BP5A< T 2] T 2 dz + O 5

= Igéij + 0 (log)f/\)) .

(5a7)\d$ + 0 (

Hence (c) is proved.
(d)+(e) follow easily by using the same arguments as in the proof of Proposition 27

(b). O
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D. More Estimates

Lemma 12. There exists a constant C > 0, independent of a, such that
A
(@) |2als 1A Panl 15 Vavar| < C (W) ;

(b) IN225 00

1 2
) |)\72va80a,/\

o] A
7|ﬁva¢a,)\‘ <C (W) .

Proof. If dg(a,x) < 26 and k € N a computation yields

IMES

e (1 Ma@)? + X2 () 2)

_g (14 Ma(2))? + AQm(x)F)‘%‘l (2(1 T )\ta(x)))\a(zita(:n) + A2 ai Iwa(x)F) :

(D.1)
hence Lemma 10 implies

e (1 M) 4 X))

SIS

< OA((L+ Ma(@))? + N[ty (2)]%)

(D.2)
Furthermore, with the use of (D.1) and Lemma 10 we estimate
0? _ k B B
Foa (14 Ma(@))? + Wi (2)) 72| < ON((1 4 Ma(@))* + N[ie(@)) 2 (D.3)
i0a;
as well as
0 9 2 \2(7 2\~ 5 9 91— o\ —k
o g (14 Ma(@)? + X0, (0) ) 72| < C((1+ Ma(@)? + X0, 0)) 72 (D)

In addition, there holds

1 ) 1
<(C—— <(C——.
VaGla,a)| £ Cgss ViG] < Cqs;

Since (14 Ma(2))? + A2, (@) 2 > (14 X2[a(2)]2) = ¢ (1 + A2dy(a,2)2), if dyla,2) < 2p,
the Lemma, follows from the previous estimates.

O]
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D. More Estimates
Lemma 13. Let a,b € M such that dg,(a,b) < po and v € H'(M). If
(@) | < 0,05 = ar > | < Cllv]| (Adg(a,b) + 1 = §[) |
(1) | < Gaps g — par > | < C (Xdy(a, 0 + [1 - 4),

(c) | < v,,u(%gob# — )\%cpa)\ > | < Ol (Adg(a,b) + |1 - &

)

(d) | < @b — QO(L)\,)\%QO@,)\ > | <C ()\ng(a, b)2 + ‘1 — %‘2) ,

(¢) | <0, g — kfean > | < Cllel| (Myfa,b) + 1 — %

)

(1) 1 < o — Panr doar > | < C (Mdg(a, b2 + 1 - £]).

Proof. Since Lgpg ) = unga@l,)\ and Bypg\ = uZBgagba)\, the following estimates are
an immediate consequence of Lemma 10 and the proof of Lemma 12.

1 1
H)\vaLg@a,/\ + ' Fngg@a,)\ 4 < C7 (D5)
L3 (M) L3 (M)
1 1
H)\vaBg‘Pa,)\ 3 + ' ﬁvngSDa,/\ 3 S C7 (D6)
L2 (OM) L2 (OM)
0 0?
A=< LgPar +' N LyPar <C, D.7
H N’ L3 (M) ox2e L3 (M) (B-1)
0 0?2
A=< Bypar +' AN == Bypa. <C, D.8
H or? L% (om) e L3 (om) (B2)
Hvaalﬂt]@a,k 4 + ‘ vangtpa,)\ 3 < C. (Dg)
oA L3 (M) oA L2 (M)

With the help of these estimates we can now proof the assertions.

(a)
<V, Py — Par >= / Ly (b — Par) vdVy + / By (¢b, — Pan) vdoyg.
M oM

In conformal Fermi coordinates at a let x = v, 1(y). We compute

10 S0
Ly (¢, — @a) (z) = /0 <MLg¢y(t),A(t) (z)Ya(b)" + ﬁLgSOy(t),A(t) (z)(p — )\)> dt,
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D. More Estimates

where (y(t), A(t)) = (t¥a(b), A+ (1 — X)). We use Hoelder inequality for p = 3 to obtain

1
|Lg (Spb,,u - ‘Pa,)\) ($)|p Scp/o |VyL9‘Py(t),A(t)(:c)|pdt Wa(b)z\p
1o
+ Cp/ |aLg¢y(t)7)\(t)($)|pdt 1 — AP,
0

Hence integration over the manifold and switching the integration, combined with (D.5)
and (D.7), yields

W W
Lo (2o = an) 13 ) < € (Aal®] +15 = 11) < € (Mg, b) + 15 11} -

(M)

If we use the same arguments as above we can also prove that

"
1By (91 = Pa) | g gy < € (Mdala0) + 15 ~11)

Claim (a) follows from the last two estimates.
(b) We again choose conformal Fermi-coordinates around a. In this coordinates b =
¥ 1(2). By Taylor expansion we obtain

B ) Z.
©o,u(T) = ar(T) = 5%,%33)(# —A)+ asﬂa,x(fﬂ)z +
1 82 5 82 ; 2 i
/U (1-1) P A®) (=) + Tnda, PalA® (w—=A)z"+ dada, Payap)Z 2 ) dt

where
(a(t), A(t)) = (tz, A+ t(n— A))

in coordinates. We expand

< Par, P — Par >= / Lypax (0o — Pan) dVy + / Bypa (0o — an) dog.
M oM

As an example we estimate:

1 82
[ L [ Q=002 ity
1 5 82
/0 (1_t)/MLgSOa,>\>\(t) W@a(t),k(t)dvgdt’

1 62
< L )2 dt <
< C/O 1LgPanll g \p A" Gz Pawrollsandt < C
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D. More Estimates

due to Lemma 12. The same estimate also holds for the other integrals in (D.10). Hence

0 7
< Par Pop — Par >=< Par Aasoa,x > (X — 1)+ < @an,

2
+0 (\’; - 1‘ +)\22\2>

)\aai%”\ §

9 7
= a7>\ a ~—1
< Par a)\SO,)\>()\

+0 ("; - 1‘2 + A2, (a, b)2>

~0 </\12> (‘% = 1‘ + My (a, b)) +0 (“; - 1‘2 +Ady(a, 5)2)

where we used Proposition 26. Therefore (b) is proved.
(c) We write

10 -
< - > N2t
)+ Pa,\s \ aai Pa,\ z

0 0
< Uu”aﬂ@b,,u - Aa)\saa)\ >
0 0 0 0
— [ L. (=0, — \— B _
/]\4 g <N8M‘Pb,u )\a)\@a,)\> vdVy + /8M g <M8M§0b,u Aa/\@a,/\> vdoy
0 0 0 0
= | L. u—cp, — n— B _
/J\/I g (MaMSOb,u :ua)\@a,)\> vdVy + /dM g </L8MS0b,u Ma)\ Spa,)\> vdoy
7 0 7 0
T 1 L ——1 —B
0 0 0 0
= L a — U=T d B — — U — d
o (g = gyons i+ [y (sioons = gons ) v
1
+o(|5-1/irll).

With the notations of above we expand

o o 1 82 2 )
#@@b,u - Ma%@m = M/O W@a(t))\(t)()‘ — ) + m@a(t),)\(t)z dt.

Hence the same method as in (a) implies
0 d 0 0
Ly [ 1Ty — ppur ) vdV, By ( ey — pepa | vd
w
=0(|§ — 1|+ Mdy(@b) el

which proves (c).
(d) From the same Taylor expansion of ¢, — ¢4 as in (b) we derive the following
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estimate

0
< @b, — Pa,\s Aaﬂoa,)\ >
B B " 19 B
=< Agt¢ a 7>\7 a ~—1 a,\» a Az
<Agygandgygen > (§ 1)+ < Ny P A gy Par > A
2
+0<\’;—1‘ +/\2d9(a,b)2)

_12(A1)+0<1°g;”> (‘——1‘+)\d ab))+o<( 1‘ + A2d,(a, b)>.

The last expansion follows by Lemma 11.
(e) Similar to (c) we get

- 10 10 S
v, —— - -

1 0 1) 1 0 0
= —( —L ——L,p, d B — —B,p, d
/M,Lt(aai g%Pb.u da g¥ ,A)U Vg+/aM,u<(")a g¥Pbu da; g¥ ,/\>U Og
A 1 0 A 1 0
21 ~——pawdVy+ [ £ -1 axvd
+<u >/Mwai“” Al 9+<u )/aMAaaﬁo A6
I
=0 (|5 = 1|+ rdy(a,v)) o]l

which proves (e).
(f) The same ideas as in (b) and (d) yield

10
< @b, — Pa,\s Xai(pa A >

9 10 M

0 10

1

_ J
1)+</\8 SO(M’A@ Par > Az
+o<‘A—1‘ +)\2dg(a,b)2>

= \a(b) + O <1°gm> (\ﬁ - 1‘ + My (a, b)) o ("; - 1\2 + A2, (a, b)2> ,

A A

which proves (f). O

Lemma 14. If \idid,(j,a;) = 0,2 — 1 then

1)
1)

(a) <@g, 5, = Pairi Pajr; >= O(gi5) (Az‘dg(dj,az‘) +

(b) < Pa, x — Paihio /\j%()&aj,& >= O(gij) (Aidg(dj’al)

132



D. More Estimates
A
x-1))

Proof. (a) Since dg4(aj,a;) — 0, we choose 1), Fermi coordinates and write 1, (@;) = 2.
Furthermore we set

(C) < Pa;x; — Paihio )\Lj%@a%,\j >= O(Eij) ()\idg(dj, ai) +

(2(), X)) = (t2, M+t (0 = X); as(t) = 1 (2)

and obtain

5@ 0 ®) = [ o uoro® (3 ) + oo @
Qi,\i iy Aq 0 8)\1 a; (t),Ai () 8@;’1 a;(t),Ai(t)

197\
Hence

< SD&“S\ZV - gpai,)\p QOaj,/\j >

- /M LyGa, a, (gpaiji - gp%&) dVy + /aM By, », (soai,;i - Soai,)\i) do,

1 9 5\1- — )\Z-)
:/0 < <Paj,>\j,Ai(t)af)\iwa,-(t),xi(t) > Wdt
+/1 < Qa: X Ligp () > Ai(t)2Mdt

; @A N (f) Dai PasON®) >

! _ A _ A

_ /0 O(ei; (1)) dt <)\idg(aj,ai)+ by —1> < C=y <)\idg(aj,ai)—|— -1 )
which proves the assertion. (b)-(c) follow similarly. O
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E. Expansion of the Green's function

Let 14 be conformal Fermi-coordinates around a € M. In what follows (M, g) is a four-
dimensional compact Riemannian manifold with boundary and positive Sobolev-quotient
Q(M,0M,[g]). In this chapter we prove an appropriate expansion of the Green’s function
Gy (+) at a with respect to the conformal operator (L, , By,). We will use that

det go(z,t) = 14 O(|(z, t)|'") (E.1)
in these coordinates, which implies
hga () = O(|z[*). (E.2)
We would like to expand G, as follows
Ga(x) =L (tha(x)) + Ha(z),

where

D, 1) = W(l + (. 1))

with some appropriate function ¢ € C*°(R*\ {0}) and H, € C*%(M). In the following
we always write g instead of g,. Locally around 0 € Ri we define the operators

Ku:= 81-((917 - 5ij)8ju), Lu = —|(z,t)?Au+ 4 < Vu, (z,t) > .

Then, due to (E.1)

@01 L0 = L0 = |05 (1 ) = 101K () + gl oR o+ v)
+0 (|(z, )| D)) . (E.3)
Here and in the following g(y) = O(f(y)) means
VEg(y)l < C(R)VEF(y)l, k=0,1,2.

Furthermore

o
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E. Expansion of the Green’s function

We need to find 1 such that L,I" € C% and 9y = 0. Then B,I' € Ch* which is
crucial for our argument. We will successively remove the singularities in (E.3) by using
homogeneous function of increasing degree.

Let Hj be the space of (smooth) homogeneous functions on RY and C! the space of
functions uw € C®(R4 \ {0}) such that u(z,t) = O (|(z,t)'). Now we state a first
Lemma.

Lemma 15. If ¢y € Hy, k < 2, then

(a) 0% € Hy,_o) for all multiindizes o

()~ K (k) + S Rol(e P (14 ) € Sy Hi+ CF.

Since we work with homogeneous functions on Ri, boundary value problems on Ri can
be reduced to boundary value problems on the upper half sphere Si. Therefore we need
the following Propositions.

Proposition 28. Let f € COO(S:L_A) and 1 € COO(Sifl) be a solution of the boundary
value problem

_ ) 9 _ 1\ — f gn-l
{Asiw‘Fk(n 2-k)p=f St (E5)

A, =0 oSt 1,

then (z,t) := |(z,t)|* <|§i3\

boundary value problem

) 18 a homogeneous function of degree k, which solves the

{Lw = f R\ {0} (£.6)

O =0 OR?\ {0}.

Here f(a,t) == |(z,0)[*f (\E?&) and Lyu = —|(z,8)2Au + 2(n — 2) < Vu, (z,) > .

Proof. With n-dimensional polar-coordinates the Laplacian is given by

1 d n—li

S L G

1
u)) + ﬁAsi—lu.
If we write (z,t) = rw with w € 77!, then

AY(x,t) = k(k +n — 2)r* 2 (w) + r’f*QASi_lJ;(w).
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E. Expansion of the Green’s function

Furthermore, since ¢ is homogeneous of degree k we have the equality < V), (z,t) >=
k1. The previous identities yield

Loh(x,t) = —r Asn 1h(w) — k(k 4+ n — 2)rFP(w) + 2(n — 2)krFy(w)
=" f(w) = f(x,1).

The boundary equation follows easily. Therefore the proof is completed. O

If we want to solve (E.5) we need to have knowledge about the sectrum a(—Aqu) of

the Laplacian on SE‘:l with respect to Neumann boundary conditions.
Proposition 29. For f € COO(Si_l) the boundary value problem

_ E.7
oy =0 a8t (ED)

{—Aszu/z —Mp=f St
has a solution iff f € ker( — Asi—l — )\)L. Moreover
U(_Asﬁ‘l) ={ll+n—-2) : 1 €Ng}.
Furthermore if X ¢ o(—A s 1), then

9]l cz.e < C|f]|coe-

Proof. The statement follows from standard elliptic theory (see [26, 33|) and the identity
U(_Asifl) - U(_ASnfl)

O

Now we are prepared to begin the expansion of the Green’s function. For ¢ = 0, (E.3)
yields

—|(m,t)\4K (W) + —Ry|(z,1)| ng+05

where gj are homogeneous function of degree k on R% \ {0}. More precisely

thijxixj

g1(z,t) = —16 ,
|(,1)?
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E. Expansion of the Green’s function

where h;; are the coefficients of the umibilicity tensor II at a € OM in v, Fermi-
coordinates. We set g1 = g1 58 and observe that the boundary value problem

~Agv+P=-g S}
O, =0 053,

has a unique solution 1. Proposition 28 implies that the function

(o) = Gl (2

solves Ly = —g1 and 01 = 0. Furthermore Proposition 29 implies

[VFipy| < C|T(a)||(x, t)]'*

for Kk =0, 1,2. In addition
1dS =0,

3
S+

because hy(a) = 0.

We set I'y(z,t) = W(l + 1 (2,t)) and observe by (E.3) and Lemma 15 that
4
|(,1)|* Lyl = > b} +C?,
1=2

where b} € H;. Now we want to remove the function b. This can be done with the

ansatz
1

|(, )2

if the unknown function s solves the equation Lig = —b3 and dytpe(z,0) = 0. This is
equivalent to

FQ(SUat) = (1—|—¢1(:C,t)—|—1/}2($,t))

—A_syﬁ = -0 5%
o =0  0S%,

/ b2dS =0,
S

3
+

which is not solvable unless

Since this identity is wrong in general we need a further Proposition to continue the
expansion.
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E. Expansion of the Green’s function

Proposition 30. Ifk € {2,3,4}, m € Ny and p € Hy, then there exist po, -+ ,pm+1 € Hy,
such that Oip; = 0 on 8]1%_ and

m+1
L (Z P 1og<<x,t>|>i) = plog(|(z, )™
=0

Proof. We prove this statement by induction on m. Therefore we frequently use the
formula

L(qlog(r)™) = Lqlog(r)™ + m(2 — 2k)qlog(r)™ 1t — m(m — 1)qlog(r)™ > (E.8)

for m >0, g € H, and r = |(x,t)|.
m=0:Let <eéy,--,e >=kern( — Asi + k(2 — k)id). Furthermore we write

1 !
p= (pejrase+ | D= D (Perasnes | =0 +0".
j=1 j=1

Then there exists ¢’ such that

{—Asiqll FR2 R = S

27" =0 083.

Let p,p',p",q" € Hy be the homogeneous extensions of the previous functions then

p=p+p", L()=0, L(")=p"
and (E.8) implies

L <q” + 1%1) log(r )) =p"+p =p

Hence the case m = 0 is proved.

m — 1 — m. As above we write plog(r)™ = p’log(r)™ + p” log(r)™, where L(p') = 0,
L(q") = p” for some ¢" € Hi. Again (E.8) yields

/

" p m / m 1 m
L (q log(r) + CESCEET) log(r) “) — p'log(r)™ — p" log(r)
=m(4 — 2k)q" log(r)m*1 —m(m+1)p log(r)m*1 —m(m —1)q" log(r)m*Q.

By induction we can solve the last equation, which proves the Proposition. O

Now we return to the expansion of the Green’s function. Since k:er(—Asi) = R,

L(|(z,t)|*) = 0. The proof of the previous Proposition in case m = 0 implies the
existence of p € Hs and ¢ € R such that

L (p + c|(z, )2 log(r)) = —bi.
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E. Expansion of the Green’s function

Moreover 1

— b2dS.
2153 Jos

/ pdS =0 and ¢= —
5t

Furthermore, due to (A.1),
b2dS B|1L(a

for some constant 3 > 0. We set 19 := p + c|(z,t)|? log(r) and observe
(z, )| LyTa(z, t) Zb2 + 1| (z, t)[*log(r) + C°(1 + log(r)), c1 €R
=3

with b12 € H;. Finally, due to Proposition 30 we find p;,p2 € Hs and q1, g2, g3 € H4 such
that
(2, 1) *LyTa(, ) = C°(1 +log(r)?),

if we set A
1
Tylz,t) = — i(x,

and
Y3 = p1 + palog(r), ¥4 =q + galog(r) + g3log(r)?.

Furthermore, due to our construction 9;I'y(x,0) = 0. Finally on M, we define I'(x) =
Xp(|Ya(2))T4(he(x)) which is in C*°(M \ {a}). More precisely, our construction and
assumption (1.2) yield

{Lgr e %2 (M), E£9)

B,T' € C2(OM)

as well as T, |VI'| € L'(M). Using the Green formulas, we easily deduce the following
Proposition.

Proposition 31. For o € C?(M) the following identity holds true:

2|5% | (a)
/ I'(x)LgpdVy, —|—/ I’Bgnpdog—/ LgfcpdVg—/ ByI'pdoy.
M oM M oM

Since Q(M,0M, [g]) > 0, the operator

(Lg, By) : C**(M) — (C**(M),CH*(0M)), u s (Lgu, Byu)
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E. Expansion of the Green’s function

is an isomorphism. Due to (E.9), there exits exactly one function H, € C’Q’%(M) such
that
LoH, = —L,T, ByH, = —B,T.

We set

Go(z) :=T(z) + Hy(x)

and observe
215% |ip(a) = / Gule)LypdV, + / Gu(w)Bypdo, Vo € C2(M),
M oM
hence G, is the normalized Green function at a.

Summing up we have proved the following expansion of the normalized Green’s function
G, in conformal Fermi-coordinates.

Proposition 32. Let (M, g) be a four-dimensional compact Riemannian manifold with
boundary and positive Sobolev-quotient. If g is a metric such that (E.1) holds, then
Ga(x) = F(%(ﬂf)) + Ha(x)7

where I' is singular at 0 and H, € CQ’%(M). More precisely:

Gl (2,1)) = W (141 (2, 8) + (. £)) + e|TL(a) 2 log(r) + Ha(a) + O(r log(r),

where Y; are homogeneous functions of degree i such that

PdS =0

3
SJr

and I(a) is the umbilicity tensor at a.
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