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1 INTRODUCTION 

Background  

Hypoxia/reoxygenaion (H/R) is one of the most frequent complications leading to 

necrotic or apoptotic cell-death in the heart as well as in other organs. Since H/R is 

normally an unpredictable event, a strategy like preconditioning is of limited clinical 

relevance in protecting the heart against reperfusion-induced injury. Therefore, a 

maneuver like postconditioning, aiming to protect the heart at the onset or during 

reperfusion has gained much greater clinical interest. In this context, the hypoxia-

inducible factor (HIF-1α) has emerged into focus. It is well established that HIF-1α is 

stabilized under hypoxic conditions and involved in transcriptional and non-

transcriptional regulation of key pathways for hypoxic adaptation of cell metabolism and 

cell survival. With the onset of reoxygenation, however, HIF-1α is rapidly degraded and 

its effect on hypoxic adaptation is ebbing. HIF-1α stability is controlled by HIF-1α prolyl 

4-hydroxylase-2 (PHD2), targeting HIF-1α for degradation in presence of oxygen. The 

central hypothesis of the present study is that preservation of HIF-1α beyond the period 

of hypoxia may enhance the protective effect of HIF-1α on endothelial cells against 

ongoing apoptotic cell death during H/R. 

1.1 Ischemia/reperfusion injury  

The cardiovascular system supplies the tissues of the body with blood. Restriction of 

regional blood flow results in ischemia, which causes the cellular oxygen tension to 

decrease and the carbon dioxide tension to rise. Clinically, the treatment for ischemia 

involves reestablishing blood flow to the ischemic tissue. However, reperfusion of 

ischemic tissue paradoxically triggers the morphological appearance of tissue injury, 

presumably by initiating events that contribute to the activation of cell-death pathways. 

The cellular events leading to ischemia/reperfusion (I/R) -induced cellular injury are 

complex, but the key elements include radical production, cellular disturbances of 

calcium homeostasis, and activation of cellular proteases. This has led to the concept of 

I/R injury as a sequence of events that contribute to cell death (Braunwald and Kloner 
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1985). It has been observed that different cell types show widely differing sensitivity to 

I/R. 

1.2 Endothelial cell changes related to ischemia/reperfusion 

Endothelium is the first line of defense between the circulation and the vessel wall. The 

integrity of endothelium is necessary for the function of the whole cardiovascular system. 

Vascular endothelium, when unperturbed, provides a surface to the blood vessel, and 

has the potential to regulate the passage of materials and the transit of blood cells in 

and out of the bloodstream. This characteristic is essential for vascular homeostasis. 

Endothelial cells are important in modulating the pathophysiology of I/R injury. It is 

known to cause changes in endothelial cells, including membrane depolarization, 

increased membrane fluidity, perturbations in the distribution of ions, cell swelling, 

cytoskeletal derangements, and recruitment and activation of inflammatory cells 

(Menger and Vollmar, 2007). Many changes occur during reperfusion. The importance of 

apoptosis in cell death following ischemia and reperfusion has been demonstrated in in 

vivo rodent models. Gottlieb and coworkers (1994) reported that apoptosis occurs in the 

rabbit myocardium after 30 min of ischemia and 4 h of reperfusion, but not in the 

permanent ischemic period. Anversa and coworkers (1998) quantified the level of 

apoptosis and necrosis in the myocardium, and reported much higher levels of apoptosis 

after 2 h of ongoing ischemia. Cell death based on apoptosis was 86% versus 14% on 

necrosis. Until today, there are controversial data over the extent of the apoptosis 

following ischemia and reperfusion. Necrosis and apoptosis appear to be ongoing during 

ischemia, while apoptosis is boosted by the reperfusion event (Eefting et al., 2004). 

Increasing evidence suggests that apoptosis of endothelial cells can be responsible for 

endothelial dysfunction (Werner et al., 2006). In the very early stages of reperfusion, 

apoptosis is first seen in the endothelial cells from small coronary vessels (Lee et al., 

2005; Scarabelli T et al., 2001). The spread of apoptosis to surrounding cardiac 

myocytes suggests that reperfusion induces the release of soluble pro-apoptotic 

mediators from endothelial cells that promote cardiac myocyte apoptosis. The authors 

suggested that the spread of apoptosis to surrounding cardiac myocytes is due to 

reperfusion-induced release of soluble pro-apoptotic mediators from endothelial cells 
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that promote myocyte apoptosis. However, reperfusion also restores energy required for 

the completion of apoptosis and can accelerate the apoptotic process. It is well 

documented that, compared to other cells of the cardiovascular system, endothelial cells 

are metabolically robust and able to maintain a high phosphorylation potential 

(ATP/ADP) even under low oxygen content (Mertens et al., 1990). This metabolic 

robustness, however, makes endothelial cells rather prone to apoptotic stimuli that are 

generated during I/R by all type of myocardial cells (Lelli et al., 1998). In contrast to 

necrosis, which occurs in the absence of ATP, apoptosis is an energy dependent 

process. 

1.3 Cell death during ischemia/reperfusion  

Apoptotic cascade is regulated by a family of proteins called caspases. These apoptosis 

executor proteins are present as proforms in all cells. After cleavage, pro-caspases 

become active and initiate pathways leading to apoptosis. The signalling pathway 

leading to programmed cell death is fine-tuned by positive and negative regulators, and 

a tight balance between these factors decides whether the cell undergoes apoptosis or 

survives. Normally, the tumor suppressor p53 controls cellular homeostasis by affecting 

cell cycle progression and apoptosis. p53 induces apoptosis via transcriptional activation 

of pro-apoptotic genes or repression of anti-apoptotic genes. Alternatively, p53 may 

provoke transcriptional independent alterations in facilitating apoptosis by affecting the 

mitochondrial pathway of cell demise (Schmid et al., 2004; Caelles et al., 1994). p53 

regulates the expression of genes involved in growth arrest  (e.g p21Cip/WAF-1, 14-3-3G) 

and apoptosis (Puma, Bax, APAF-1), (Vousden and Lu 2002). Proteins that can shift the 

balance towards survival are the anti-apoptotic Bcl-2 and Bcl-xL, whereas the pro-

apoptotic proteins Bax, Bad, Bak, and Bid induce programmed cell death. p53 has been 

shown to accumulate under hypoxia and is clearly involved in the pathological response 

within endothelial cells (Stempien-Otero et al., 1999). Mechanisms, which are induced 

by ischemia or triggered by I/R leading to apoptotic cell death are still not fully 

understood. Endothelial cell death may contribute to hypoxia as well as the reperfusion 

components of this injury and different routes of protection need to be considered for the 

pre-ischemic or post-ischemic period.  
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Currently, there is no treatment for the heart tissue that directly aims to preserve the 

heart muscle during the time of blood deprivation and protect against reperfusion injury. 

Protecting the heart from I/R-induced injury represents the greatest challenge of 

cardiology, since myocardial infarction is the major cause of mortality in industrialized 

countries. 

1.4 Protective strategies against ischemia/reperfusion  

1.4.1 Preconditioning 

The known mechanisms of protection include targets in specific intracellular signalling 

pathways, functions of intracellular organelles such as sarcoplasmic reticulum, and 

mitochondria, and control of intracellular ion homeostasis. Other strategies for 

cytoprotection by activation of endogenous mechanisms occur in 2 mechanistically 

distinct phases: before or after the ischemic event occurs (Das et al., 2008). Firstly, 

ischemic preconditioning is the most successful form of pre-treatment to stimulate 

adaptive mechanisms in myocardium before the major ischemic event. The effects of the 

so called ‘first window’ or early preconditioning, lasts 1–2 h, after which the protection 

wanes. The so called ‘second window’ or late preconditioning occurs 24 h following the 

initial preconditioning ischemia and lasts for 48–72 h. A major distinction between the 

two stages is that early preconditioning has been shown to result in the modification of 

existing myocardial proteins, whereas late preconditioning is exerted by newly 

synthesized cytoprotective proteins in the heart (Downey et al., 2007). Following the 

initial discovery of preconditioning, it became clear that pharmacological agents could 

also exhibit cardioprotection when administered prior to the onset of sustained 

myocardial ischemia (Bolli et al., 2001). This is significant, since pharmacological agents 

could be more readily applied to clinical practice as a means of protecting the heart and 

other organs against I/R injury rather than to place ischemia directly. In ischemia, the 

best protection is achieved when these agents are administrated prior to ischemia, as in 

preconditioning (Pasupathy and Homer-Vanniasinkam, 2005). Аn alternative treatment 

opportunity to intervene at reperfusion is primary percutaneous coronary intervention 

and thrombolytic therapy. Apart from cardiac surgery, however, pre-ischemic treatment 
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of the myocardium is clinically of limited relevance, since acute myocardial infarction is 

normally an unforeseen event. Therefore, a maneuver like postconditioning, aiming to 

protect the heart at the onset or during reperfusion has gained much greater clinical 

interest (Vinten-Johansen et al., 2007). In reperfusion, the first seconds to minutes have 

the most significant impact on ‘acute’ reperfusion injury. In view of the acute changes 

during reoxygenation, protective interventions must be applied early on. Identification of 

such endogenous endothelial strategies may open new opportunities to protect 

endothelial cells from cell death. Еndothelial survival mechanisms which may also be 

activated under the same conditions are largely unknown.  

1.4.2 Postconditioning 

The postconditioning, consists of repeated brief episodes of ischemia and reperfusion 

(paralleling the durations used in preconditioning) (Zhao et al., 2003). By several cycles 

of postconditioning repeated at the onset of reperfusion, infarct size is reported to be 

reduced by up to 50% in canines. In addition, postconditioning reduced reperfusion 

arrhythmias (Halkos et al., 2004; Galagudza et al., 2004; Kloner et al., 2006), neutrophil 

adherence to the post-ischemic coronary artery, neutrophil accumulation in the area at 

risk, myocardial and endothelial injury (Zhao et al., 2003). The mechanisms responsible 

for the postconditioning-induced cardioprotection include endogenous stimulation of 

adenosine receptors, activation of the so called reperfusion injury survival kinases 

(RISK) (Hausenloy and Yellon 2007), opening of K ATP channels, attenuation of 

intracellular and mitochondrial calcium accumulation as well as inhibition of 

mitochondrial permeability transition pore opening (Zhao and Vinten-Johansen, 2006). 

One physiological mechanism by which postconditioning exerts its protective effects is 

by delaying the normalization of tissue pH in the heart during early reperfusion (Vinten-

Johansen et al., 2007). Studies have also revealed that postconditioning in vitro reduced  

reactive oxygen species (ROS) generation, which was also associated with reduced cell 

death (Sun et al., 2005). 
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1.4.3 Pharmacological postconditioning   

Studies have identified certain drugs, which reduce reperfusion injury, when given at 

reperfusion or reoxygenation. This approach is termed as ‘pharmacological 

postconditioning’ and has the advantage that they also can be used after myocardial 

infarction as well as in the situations of non-scheduled  infarct. Agents such as 

inhalational anaesthetics (Feng et al., 2005; Weber et al., 2005), bradykinin, the 

chemotherapeutic agents cyclosporine A (Lim et al., 2007), erythropoietin (EPO), nitric 

oxide (NO) (Johnson et al., 1991), hydrogen sulfide, and adenosine (Lefer et al., 2007) 

have demonstrated cardioprotective effects when given at reperfusion in experimental 

studies. Adenosine infusion at the onset of reperfusion has demonstrated 

cardioprotective effects in part by attenuating neutrophil–endothelium interactions. EPO, 

inhalational anaesthetics, bradykinin, and other agents activate RISK pathway. Another 

strategy used by Jiang and coworkers (2007) to enhance the effect of postconditioning is 

concomitantly delivered pharmacological agents. For instance the combination of 

postconditioning and a protease activated receptor-2 agonist (PAR-2), both applied at 

the onset of reperfusion, reduced infarct size to a greater range than either intervention 

alone (Jiang et al., 2007). Therefore, pharmacological agents may not only perform 

postconditioning, but they can also enhance its effects by triggering different pathways, 

extending its effects beyond the early reperfusion phase. 

1.5 Role of HIF-1α in cell survival during ischemia/reperfusion injury 

Over the past decade, HIF-1α has emerged as a key regulator of the molecular hypoxic 

response by mediating a wide range of physiological and cellular mechanisms 

necessary to adapt to oxygen deficiency. It has been reported that an increase in the 

level of HIF-1α is one of the first adaptive responses, at the molecular level, of 

myocardium to ischemia (Lee et al., 2000). Recent research (Eckle et al., 2008) has 

demonstrated that HIF-1α stabilization is central to cardio protection achieved through 

ischemic preconditioning. Moreover, Zhao and coworkers (2009) showed that 

cardioprotection by postconditioning is associated with up-regulation of HIF-1α 

expression. Furthermore, expression of a constitutively active HIF-1α hybrid has been 

shown to protect cardiac myocytes against I/R injury (Date et al., 2005). In this context, 
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increasing evidence suggests that cell survival during I/R can be influenced by the 

expression of genes that promote glycolysis, suppress ROS production, limit 

mitochondrial metabolism, and inhibit pro-apoptotic protein expression (Loor and 

Schumacker, 2008). HIF-1α is a member of transcription factors that regulate the 

expression of nearly 200 genes that can affect the cellular adaptive responses to 

hypoxia (Semenza et al., 2000).  

1.5.1 Regulation of HIF 

Investigation on the molecular mechanisms involved in hypoxia, and the induction of 

hematopoietic growth hormone EPO led to identification of HIF-1 by Semenza and 

Wang in 1992. The HIF system is discovered as a key regulator of a broad range of 

cellular and systemic responses to hypoxia and acts in all mammalian cells. Three 

isoforms of HIF-α exist (HIF-1α, HIF-2α, and HIF-3α). All are encoded by distinct gene 

loci and further diversity is generated by alternative splicing in the promotor region. HIF-

1α and HIF-2α share a similar domain structure and undergo similar proteolytic 

regulation; however, the tissue expression of HIF-2α seems to be more limited 

(Wiesener et al., 2003). HIF-1α-mediated pathways influence the processes of metabolic 

adaptation, erythropoiesis, angiogenesis, vascular tone, cell growth and differentiation, 

survival and apoptosis, and thus are critical factors in development, physiology, and 

disease (Maxwell et al., 2001). HIF-1α is a heterodimeric DNA-binding complex 

composed of two basic helix-loop-helix (HLH) proteins of the PER-ARNT-SIM (PAS) 

family, the constitutive HIF-1β and one of either hypoxia-inducible α-subunits, HIF-1α or 

HIF-2α (Wang et al., 1995). In hypoxia, the α/β heterodimer binds to a core sequence in 

the hypoxia response elements (HRE) of target genes. HIF-β subunit is a non-oxygen-

responsive nuclear protein that also has other roles in transcription, for example, in the 

xenobiotic response. In contrast, the HIF-α subunits are highly inducible by hypoxia. 

Under normoxic conditions, HIF-α subunits have a very short half-lives (Jewell et al., 

2001). Cells continuously synthesize and degrade HIF-1α protein. Oxygen-dependent 

degradation of HIF-1α is regulated by the hydroxylation of specific prolyl residues in a 

region of the peptide referred as the oxygen-dependent degradation (ODD). A family of 

2-oxoglutarate-dependent prolyl 4-hydroxylases is responsible for this event, which 
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requires O2, iron, 2-oxoglutarate, and ascorbate. The hydroxylated proline residues in 

the ODD domain of HIF-1α facilitate recognition by the von Hippel-Lindau (VHL) protein. 

VHL is the recognition component of an E3-ubiquitin ligase complex that targets HIF-1α 

for proteolysis by the ubiquitin–proteasome pathway (Ohh et al., 2000).  

 

 

 
 
Fig. 1 Regulation of HIF-1α under normoxia and hypoxia. Hypoxia or inhibitors that 
prevent HIF-1α degradation promote HIF-1α nuclear translocation and 
heterodimerization with HIF-1β. Oxygen-dependent hydroxylation by prolyl hydroxylases 
regulates the interaction with VHL and proteasomal degradation. 
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can be mimicked by iron chelation, by use of 2-oxoglutarate analogs such as 

dimethyloxalyl glycine (DMOG) or by substitution of Fe(II) by metal ions such as cobalt. 

In contrast to regulation of HIF-1α stability by proline modification in the ODD, 

transcriptional activity is regulated by the hydroxylation of asparagine residues in the C-

terminal region of HIF-1α (Hewitson et al., 2002; Lando et al., 2002). 

1.5.2 Alternative modifications affecting HIF-1α transcription 

In addition to asparagine hydroxylation, various post-translational modifications occur on 

the HIF-1α C-terminal region, which can specifically modulate its activity. For example, 

phosphorylation of HIF-1α at Thr 796 by casein kinase II was first postulated by Gradin 

and coworkers (2002). Enhanced activation of mitogen-activated protein kinase p42/p44 

mediates phosphorylation of serine residues 641 and 643 and increases HIF-1α -

mediated transcriptional activity (Mylonis et al., 2006). Also, SUMOylation of HIF-1α has 

been suggested to increase HIF-1α stability and transcriptional activity (Carbia-

Nagashima et al., 2007). Another option for HIF-1α regulation can be by heat shock 

protein 90 (HSP90), a molecular chaperone that protects its target proteins from 

misfolding and degradation through its ATPase activity (Neckers et al., 2003). HSP90 

binds to the PAS domain of HIF-1α and increases its stability (Isaacs et al., 2004). Other 

stimuli for HIF-1α activation under normoxia include cytokines, growth factors, and 

oncogenes. 

1.5.3 Pharmacological manipulation of HIF-1α 

The central role of HIF-1α in physiology and pathophysiology makes it an attractive 

target for pharmacological manipulations. HIF-1α has an important role in triggering 

cellular protection and expression of genes involved in cell survival, apoptosis, and 

resistance to oxidative stress. For example HIF-dependent expression of glycolytic 

genes enhances ATP generation by anaerobic glycolysis. Similarly, HIF-dependent 

genes such as Heme Oxygenase-1 (HO-1) may regulate cell survival in I/R by affecting 

the response to oxidant stress. Other genes regulated by HIF-1α include inducible nitric 

oxide synthase (iNOS), which has been associated with enhanced resistance to 

ischemia in mice (Guo et al., 1999). Activators of HIF-1α might be useful for the 



19 
 

treatment of ischemic disease; however, inhibitors of HIF-1α could have some potential 

as anticancer therapeutics. Different strategies have been utilized to activate HIF-1α, 

where the best studied so far are inhibitors of the prolyl-hydroxylases (Warnecke et al., 

2003; Kim et al, 2006). Downregulation of PHD by siRNA in murine microvascular 

endothelial caused a time- and dose-dependent HIF-1α protein stabilization, 

corresponding with increase in iNOS mRNA. Treatment of intact murine hearts with 

siRNA directed against PHD2 produced a decrease in infarct size and cardiac 

dysfunction following global I/R. The improved functional recovery was lost in iNOS-/- 

mice (Natarajan et al., 2006). This study provides evidence that activation of HIF-1α 

inducible iNOS contributes to the protective effect against I/R. In vivo studies in a rabbit 

model of myocardial I/R showed that systemic administration of PHD inhibitor DMOG, 

before I/R is associated with a significant reduction in infarct size. The attenuation of 

tissue injury was associated with expression of HO-1, a gene regulated by HIF-1α 

(Ockaili et al., 2005). In both microvascular endothelium in vitro, and in vivo, DMOG 

attenuated interleukin 8 (IL-8) productions and this was associated with robust HO-1 

expression.These data show that HIF-1α activation induces HO-1 expression that is 

associated with attenuated proinflammatory chemokine production (Cai et al., 2008; 

Natarajan et al., 2007). Wild-type mice, or mice heterozygous to HIF-1α (HIF-1+/-) 

subjected to brief periods of ischemia, followed by 30 min of continuous ischemia 

showed improved infarct size and function after I/R in wild-type animals, but not in HIF-

1+/- hearts. This suggests that HIF-1α activation should confer protection against I/R 

injury, although this protection might require HIF-1α activation before the onset of lethal 

ischemia. Moreover, two isoforms of the α subunit with high sequence homology, HIF-1α 

and HIF-2α, have been identified. Research (Hill et al., 2008) with mice heterozygous for 

a defect in either HIF-1α or HIF-2α provide direct evidence that both subunits have 

protective roles in the renal I/R injury. Similarly, a recently reported study showed that a 

HIF hydroxylase inhibitor with non-disclosure name FG-4487 (FibroGen), protected the 

rat from renal I/R injury and also induced accumulation of both HIF-1α and HIF-2α 

subunits (Bernhardt et al., 2006). Taken together, all this finding provide evidence that 

both HIF-1α and HIF-2α isoforms when activated predispose to protection against I/R 

injury. In this context, up-regulation HIF appears to play an important role in the 
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protection against injury. However, the molecular mechanisms responsible for this 

protection are still under intensive investigation.  

1.6 Alternative regulators  

1.6.1 Regulation of p53  

HIF-1α as well as p53 are transcription factors involved in stress responses which 

require an immediate reaction of the affected cell (Schmid et al., 2004). Normally, p53 

controls cellular homeostasis by affecting cell cycle progression and apoptosis. In 

unstressed cells p53 exhibits short half-life and the protein amount is maintained at a 

low level. Under stress such as DNA damage, nutrient deprivation, or hypoxia, p53 

(Levine et al., 2006) is stabilized mainly by posttranslational modification. p53 becomes 

active as a transcription factor and promotes transcription of cell cycle regulating genes 

such as p21WAF1/CIP1, mouse doubles minute 2 (Mdm2) as well as genes involved in 

apoptotic events like Bax, Fas, Bid (Vousden and Lu 2002). Each of these genes when 

silenced or removed induces partial resistance to p53-induced apoptosis. Mechanisms 

responsible for p53 inactivation include the regulation of protein activity, stability and 

subcellular localization. Different enzymes involved in post-translational modification of 

p53 such as ataxia telangiectasia, rad-3-related kinase (ATR) kinase as well as 

transcriptional coactivators can modulate the transcriptional activity of p53 (Boyd et al., 

2000; Shieh et al.,1997; Shirangi et al., 2002). Protein stability of p53 can be regulated 

by  ubiquitin ligases. This is illustrated by Mdm2, one of the key E3-ubiquitin ligases 

responsible for limiting the levels of p53 (Harris and Levine, 2005). Deletion of Mdm2 in 

mice results in an extremely early embryonic lethality that is the direct result of impeding 

p53-mediated apoptosis. Negative regulation of p53 is accomplished by Mdm2, either 

through ubiquitin-dependent p53 degradation in the cytoplasm (Haupt et al., 1997; 

Honda et al., 1997; Kubbutat et al., 1997) or repression of p53 transcriptional activity in 

the nucleus (Thut et al., 1997). Both, Mdm2 and p53 are nuclear proteins that shuttle 

constantly through the nuclear pore complex. Mdm2 and p53 are translocated between 

the cytoplasm and the nucleus by their intrinsic nuclear localization signal (NLS) and 

nuclear export signal (NES) sequences (Chen et al., 1995; Liang and Clarke, 2001; Roth 
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et al.,1998). Blocking their nuclear export by mutations in the NES or by leptomycin B 

leads to their stabilization, indicating that both Mdm2 and p53 are degraded in the 

cytoplasm (Freedman and Levine 1998). A recent study demonstrating that 

phosphorylation at the p53 N-terminal inhibits its nuclear export, emphasizes the 

importance of export in controlling p53 function (Zhang et al., 2001). 

All these signals affecting p53 suggest that each stress response utilizes a different 

pathway to induce a p53 response. For example reduced expression of alternate 

reading frame (ARF), a small protein that inhibits Mdm2  leads to stabilization of p53. 

1.6.2 HIF-1α-p53-interplay 

p53 like HIF-1α, is continuously expressed and immediately marked for degradation by 

specific E3-ubiquitin ligases: Mdm2 and VHL consequently. HIF-1α and p53 are kept at 

low levels during normoxia. HIF-1α is hydroxylated under normoxic conditions, 

subsequently bound by VHL and marked for proteasomal degradation by ubiquitination. 

Under hypoxic conditions, HIF-1α accumulates, binds to the transcriptional cofactor 

cAMP-response element-binding protein (CBP/p300) and induces expression of HIF-1α  

target genes. A similar process takes place during normoxia, where p53 is bound and 

targeted for degradation by Mdm2. During hypoxia, the interaction between Mdm2 and 

p53 can be impaired by phosphorylation of p53 by ATR kinase or through Mdm2 

downregulation, which prevents binding of Mdm2 and allows accumulation of p53. Then 

p53 binds CBP/p300 and becomes transcriptionally active. The illustrated regulation via 

constant synthesis of protein becomes understandable when the function of both 

proteins is taken into account. Competition between p53 and HIF-1α for limiting amounts 

of the shared transcriptional coactivator CBP/p300 (Freedman et al., 2002) can explain 

how transcriptional activity of both p53 and HIF-1α might be affected, depending on the 

relative amount of either factor. An and coworkers (1998) demonstrated that p53 

stabilization under hypoxia is dependent on HIF-1α, either directly (Hansson et al., 2002) 

or via Mdm2 (Chen et al., 2003). Such interactions resulted in p53 stabilization and 

activation, and concomitantly, HIF-1α degradation. This illustrates that p53 also seems 

to play a pivotal role in HIF-1α regulation. In line with these observations are reports 

showing that p53 inhibits HIF-1α activity by targeting HIF-1α for Mdm2-mediated 
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ubiquitination and proteasomal degradation (Ravi et al., 2000). In turn, the loss of p53 

has been shown to enhance hypoxia-induced HIF-1α levels. Besides directly affecting 

HIF-1α protein level, p53 represses HIF-1α-stimulated transcription (Ravi et al., 2000). 

Interestingly, p53 levels required to affect HIF-1α were higher than those needed for 

p53-activated gene transcription (Blagosklonny et al., 1998). In endothelial cells p53 

activation by hypoxia is partly independent of HIF-1α. This could explain particularly high 

levels of inactive p53 by the fact that regulation in endothelial cells is different 

(Sabapathy et al., 1997). The above observation supports the concept that similar and in 

many cases common regulatory mechanisms exist that regulates the transcriptional 

activity and protein stability of both HIF-1α and p53. Therefore, the present study aims to 

further elucidate the impact of HIF-1α on p53, specifically focusing on cell survival and 

H/R injury. 

1.7 Mdm2 

1.7.1 Regulation of Mdm2  

Mdm2 gene encodes a protein with a predicted molecular weight of 56 kDa. This protein 

contains several conserved structural domains including the N-terminal p53 interaction 

domain. Mdm2 also contains  C-terminal RING domain, which confers E3-ubiquitin 

ligase activity. There are several known mechanisms for Mdm2 regulation (Meek et al., 

2003). One of these mechanisms is phosphorylation of the Mdm2 protein. Mdm2 is 

phosphorylated at multiple sites by Protein kinase B, Death-associated protein kinase, 

cyclin dependent kinase and ATR kinase. Following DNA damage, phosphorylation of 

Mdm2 leads to changes in protein function and stabilization of p53. Additionally, 

phosphorylation at certain residues of Mdm2 may stimulate its ability to target p53 for 

degradation. The induction of ARF product of the p14arf protein is also a negative 

regulator of p53-Mdm2 interaction. It interacts directly with Mdm2 leading to up-

regulation of p53 transcriptional response. ARF captures Mdm2 in the nucleus, resulting 

in inhibition of nuclear export and activation of p53, since nuclear export is essential for 

proper p53 degradation. The Mdm2 gene is in turn transcriptionally activated by p53, 

constituting a feedback regulatory loop (Christophorou et al., 2006). 
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1.8 HIF-1α and Mdm2 interplay  

Recent reports confirmed an association between endogenous Mdm2 and HIF-1α under 

conditions of oxygen deprivation that results in increased physiologically-regulated levels 

of HIF-1α (Nieminen et al., 2005). Furthemore, under hypoxia, HIF-1α directly binds to 

Mdm2 both in vitro and in vivo, thereby stabilising p53 (Chen et al., 2003). Thus, Mdm2 

expression significantly induces the indirect interaction between p53 and HIF-1α in cells, 

indicating that Mdm2 may act as a bridge, mediating the p53-HIF-1α interaction.  
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1.9 Working hypothesis 

Hypoxia, H/R, and chronic hypoxia are all capable of engaging cellular death pathways 

leading to tissue injury and organ dysfunction. In the present study we focus on ongoing 

apoptosis during H/R in endothelial cells. It is well established that HIF-1α may play a 

role in H/R-induced injury of endothelial cells. HIF-1α is the principal regulator of cellular 

transcriptional responses to hypoxia. However, HIF-1α is degraded during 

reoxygenation, which may limit its effect on cell survival during the hypoxic period only. 

 

 

Fig. 2 These schematic diagrams illustrate the progression of apoptosis (upper panel) in 
relation to HIF-1α expression (lower panel) during hypoxia and reoxygenation. 
It was hypothesized that a maneuver that stabilizes HIF-1α beyond the period of hypoxia 

may protect endothelial cell against ongoing apoptotic cell death during H/R. To further 

elucidate the function of HIF-1α, DMOG, 2-oxoglutarate analog, an inhibitor of PHD, was 

given at the onset of reoxygenation, an approach termed ‘pharmacological 

postconditioning’ (Hausenloy et al., 2005).  
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Fig. 3 Effect of the hypothesized pharmacological postconditioning mediated through 
prolyl-hydroxylase inhibition applied at the onset of reoxygenation leading to HIF-1α 
stabilization (dotted line lower panel). As a result endothelial cell apoptosis during 
reoxygenation is inhibited (dotted line upper panel). 
 

PHD  

HIF-1α 

DMOG

Time

Hypoxia  Reoxygenation 

H
iIF




?

en
d

o
th

lia
l c

el
l 

A
p

o
p

to
si

s
 



26 
 

1.10 Aims of the study 

The present study was conducted to elucidate the molecular mechanism by which 

inhibition of PHD pathway leads to protection of endothelial cells against ongoing 

apoptotic cell death during H/R. Since previous studies using preservation of HIF-1α 

suggest its beneficial therapeutic potential in the treatment or prevention of ischemic 

injury, the present study was focused to analyse the molecular mechanism by which 

stabilization of HIF-1α exerts anti-apoptotic effects during H/R. The study was performed 

using an established model of cultured monolayers of human umbilical vein endothelial 

cells (HUVEC). The following questions were addressed: 

 

Does inhibition of PHD protect endothelial cells against ongoing apoptotic cell death 

during H/R? 

 

Does inhibition of PHD cause pro-apoptotic p53 protein degradation? 

 

Is this p53 downregulation dependent on HIF-1α stabilization? 

 

Does stabilization of HIF-1α regulate Mdm2, a specific E3-ubiquitin ligase? 

 

Is this ligase responsible for p53 destabilization? 

 

Does HIF-1α induce p53 degradation mediated by Mdm2? 

 

 

As a pro-apoptotic challenge endothelial cells were cultured in serum free medium for 12 

h and subjected to hypoxia for 1 h followed by reoxygenation. Under this condition, the 

effect of HIF-1α was analysed. 

 



27 
 

2 MATERIALS 
 
2.1 Chemicals and consumables 
 

Acrylamide solution (40%; wt/vol)  Amersham Pharmacia, Bucks 

Acrylamide    Carl Roth, Karlsruhe 

Ammonium persulfate             SERVA, Heidelberg 

Annexin V FITC-Apoptosis   BD-Pharmingen, Heidelberg 

Benzonase    Merck, Darmstadt 

bFGF                    PromoCell, Heidelberg  

Bisacrylamide solution (2%; wt/vol)    Amersham Biosciences, Buckinghamshire, UK 

Bisacrylamide             Carl Roth, Karlsruhe 

Bovine serum albumin (BSA)     Sigma-Aldrich, Steinheim 

Bromophenol blue          Sigma-Aldrich, Steinheim 

Calcium chloride            Merck, Darmstadt 

Collagenase II               PAA, Pasching  

Complete® protease inhibitor cocktail  Roche, Mannheim  

Culture dishes    BD-Pharmingen, Heidelberg 

Dimethyloxallyl Glycine (DMOG)       Cayman, Michigan, USA 

Dimethyl sulfoxide (DMSO)        Sigma-Aldrich, Steinheim  

Di-sodium hydrogen phosphate      Carl Roth, Karlsruhe  

Dithiothreitol (DTT)  Amersham Biosciences, Buckinghamshire, UK 

Chemiluminescent Substrate      Pierce Biotechnology, Rockford, USA 

EDTA                  Carl Roth, Karlsruhe  

EGTA                Boehringer, Mannheim 

Endothelial cell basal medium®     PromoCell, Heidelberg  

Endothelial cell growth supplement    PromoCell, Heidelberg  

Eppendorf tubes (0.5, 1.5, 2 ml) Eppendorf, Hamburg 

FACS tubes           BD-Pharmingen, Heidelberg 

FACS Flow                 BD-Pharmingen, Heidelberg 

Falcon tubes (50 ml, 12 ml)      BD, Heidelberg 

Fetal Calf Serum (FCS) PAA, Pasching 
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Filter papers      Biotech-Fischer, Reiskirchen 

FuGENE® 6               Roche, Mannheim  

Glass coverslips             Menzel, Braunschweig  

Glycerol (100%)             Sigma-Aldrich, Steinheim  

Glycine   Carl Roth, Karlsruhe 

HBSS                PAA, Pasching 

hEGF                  PromoCell, Heidelberg 

HEPES                  Sigma-Aldrich, Steinheim 

Hydrocortisone              PromoCell, Heidelberg 

Magnesium chloride          Fluka, Buchs, Switzerland 

Magnesium sulfate    Merck, Darmstadt 

ß-mercaptoethanol           Merck, Darmstadt 

Methanol               Merck, Darmstadt 

Millipore water    Millipore, Eschborn 

MG-132 Biomol, Plymouth Meeting, USA 

Molecular weight marker          Sigma-Aldrich, Steinheim 

Nitrocellulose membrane          Schleicher & Schuell, Dassel 

Nitrogen (100%)        Liquid, Krefeld 

Non-fat milk powder   Applichem, Darmstadt 

Nonidet P-40     Sigma-Aldrich, Steinheim 

Paraformaldehyde         Sigma-Aldrich, Steinheim 

Parafilm®                Pechiney Plastic Pack, Menasha, USA 

Penicillin/streptomycin         Gibco BRL, Eggenstein 

Phosphate buffered saline (PBS)   Gibco BRL, Eggenstein 

Pifithrin-α (PFT-α)    Sigma-Aldrich, Steinheim 

Pipette tips    Eppendorf, Hamburg 

Pipettes      Eppendorf, Hamburg 

PMSF      Sigma-Aldrich, Steinheim 

Ponceau S solution        SERVA, Heidelberg 

Potassium chloride    Merck, Darmstadt 

Potassium dihydrogen phosphate    Merck, Darmstadt 
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Protein G-coated magnetic beads  Dynal,  Oslo, Norway 

Primary cell culture dishes    BD Falcon, Heidelberg 

Rubber policeman             BD, Heidelberg 

Scalpel (disposble)              Feather, Japan 

See Blue® (pre-stained marker)   Invitrogen GmbH, Karlsruhe 

Sodium azide                  Merck, Darmstadt 

Sodium chloride                                 Carl Roth, Karlsruhe  

Sodium orthovanadate       Sigma-Aldrich, Steinheim 

Sodium di-hydrogen phosphate   Carl Roth, Karlsruhe 

Sodium dodecyl sulfate (SDS)     SERVA, Heidelberg 

Sodium fluoride              Sigma-Aldrich, Steinheim 

Sodium hydroxide             Carl Roth, Karlsruhe 

Sodium orthovanadate         Sigma-Aldrich, Steinheim 

Sterile filters (0.22 μm)         Sartorius, Goettingen 

Sterile pipettes                 BD, Heidelberg 

Super signal-west®         Pierce biotech, Bonn 

Syringes (20 ml, 2 ml)          BD, Heidelberg 

TEMED                Sigma-Aldrich, Steinheim 

TOPRO-3             Invitrogen GmbH, Karlsruhe 

Trypsin-EDTA           Gibco-BRL, Eggenstein 

Tris base              Carl Roth, Karlsruhe 

Tritone X-100            Gibco-BRL, Eggenstein 

Tween 20                  Amersham Biosciences, Buckinghamshire, UK 

Whatman® 3 MM filter paper  Millipore, Eschborn 
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2.2. siRNAs  
 
1. Control siRNA duplex negative Eurogentec, Seraing, Belgium 

 

2. HIF-1α sc-44225 Santa Cruz Biotechnology, Heidelberg, Germany 

target sequence (target sequence: CGAGGAAGAACUAUGAACA) 

target sequence (GAAUCAGAAGAUACAAGUA) 

target sequence (CGAUGGAAGCACUAGACAA) 

 

3. PHD2 (EGLN 1) ON-Target plus SMARTpool, Fischer Scientific, Germany 

target sequence (GCGAUAAGAUCACCUGGAU) 

target sequence (GACCUGAUACGCCACUGUA) 

target sequence (GCUCAUCGCUGUUCCAGGA) 

target sequence (GAACAAGCACGGCAUCUGU) 

 
4. Mdm2  sc-29394 Santa Cruz Biotechnology, Heidelberg, Germany 

target sequence (GCUUCGGAACAAGAGACCC) 
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2.3 Antibodies 
 
 
Primary antibodies: Manufacture Dilution 
 
HIF-1α (Mouse)    BD Bioscience, Heidelberg   1:250 

Mdm2 (N-20) (Rabbit)  Santa Cruz Biotechnology, USA  1:1000 

p53 (DO-1) (Mouse)      Santa Cruz Biotechnology, USA  1:1000 

PHD2 (Rabbit)    Novus Biologicals, Hiddenhausen   1:1000 

Vinculin (hVIN-1) (Mouse)   Sigma, Steinheim    1:2000 

 

 

Secondary antibodies: 
 
Mouse IgG-HRP  BD Bioscience, Heidelberg     1:2000 

Rabbit IgG-HRP    Upstate, Charlottesville, USA    1:2000 

Mouse IgG (H+L) Alexa Fluor 488   Invitrogen, Karlsruhe      1:400 
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2.4 Laboratory equipment 
 
Beckman Allegra 64R centrifuge Beckman Coulter, Fullerton 

Beckman TL 100 ultracentrifuge   Beckman Coulter, Fullerton 

Blotting chambers     Biotech-Fischer, Reiskirchen 

Confocal Microscope LSM 510    Carl Zeiss AG, Oberkochen 

counter                Packard Instrument Company CT, USA 

Electrophoresis apparatus         Biometra, Goettingen 

FACS Calibur®              BD Bioscience, Heidelberg 

Gel documentation system      Quantity One series Bio-Rad, Munich 

Glass ware              Schott, Mainz 

Hamilton syringe    Hamilton, Bonaduz 

Heatblock    Techne, Burkhardtsdorf 

Hypoxia-Chambers           workshop Institute of Physiology  of JLU 

Incubators                          Heraeus, Hanau 

Laminar flow hood      Heraeus, Hanau 

Magnet stirrer   Jahnke und Kunkel, Staufen 

Magnetic rack    DYNAL, Oslo, Norway 

Neubauer chamber           Superior, Marienfeld 

Phase contrast microscope      Olympus, Japan 

pH-Meter              WTW-Weinheim 

Photometer              Carl Zeiss, Jena 

Power supply            Biometra, Goettingen 

Rocker     Biometra, Goettingen 

Table top (centrifuge)    Eppendorf, Hamburg 

Vortexer     Heidolph, Kelheim 

Water bath   Julabo, Seelbach 
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3 METHODS 
 
3.1 Isolation and cultivation of human umbilical vein endothelial cells 
 
HUVEC were isolated from freshly collected umbilical cords (from Gynecology 

Department, University Hospital Giessen). To isolate HUVEC the vein in the umbilical 

cord was canulated and rinsed with warm HBSS supplemented with 1.3 mM CaCl2 and 

1.2 mM MgCl2. To detach the endothelial cells from the vessel wall, the umbilical cord 

vein was incubated with collagenase II A solution in a humidified incubator for 20 min. 

The primary endothelial cells were then washed out of the vessel with HBSS containing 

3% (vol/vol) FCS, added to inactivate collagenase activity. Following collection of the 

cells, they were pelleted by centrifugation at 250 x g for 5 min at RT. The supernatant 

was discarded and cells were resuspended in endothelial cell culture medium and 

seeded into 3-4 primary cell culture dishes. After incubation for 2 h at 37 °C and 5% 

CO2, cells were extensively washed with HBSS to remove unattached non–endothelial 

cells and cell debris. Adherent cells were incubated in 15-20 ml of cell culture medium at 

37 °C and 5% CO2 in a humidified incubator. After 24 h the medium was replaced with 

fresh cell culture medium. The cells were passaged and maintained in HUVEC growth 

medium with 20% (vol/vol) FCS at 37 °C with 5% CO2 in a humidified incubator.  

 

 

Endothelial cell culture medium 

 

Endothelial cell basal medium (PromoCell®) supplemented with FCS (vol/vol) 10% 

Endothelial cell growth supplement/Heparin (wt/vol)           0.4% 

Hydrocortisone (wt/vol)                      0.1% 

bFGF                           1 ng/ml 

hEGF                           0.1 ng/ml 

Penicillin/streptomycin (vol/vol)    2% 
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Collagenase solution 

 

HBSS                             x ml 

Collagenase II, 293 IU/mg (wt/vol)                  0.025% 

MgCl2     0.5 mM 

CaCl2      1.5 mM 

 
 
3.2 Subcultivation of endothelial cells 
 
Confluent monolayer of primary endothelial cells were trypsinized 5-7 days after 

seeding. Cells were washed once with warm HBSS followed by incubation with trypsin-

EDTA (Composition in mM: 137 NaCl, 2.7 KCl, 1.5 KH2PO4, 8.0 Na2HPO4; pH 7.4, 

0.05% (wt/vol) trypsin and 0.02% (wt/vol) EDTA) for approximately 2 min to allow the 

majority of the cells to detach from the cell culture dish. Trypsinized cells were collected 

into cell culture medium and seeded at a density of 5.5 x 104 cells/cm2 on 35 mm dishes, 

(according to the experiment being performed). For immunostaining and confocal 

microscopy cells were seeded onto 25 mm glass coverslips. Experiments were 

performed with confluent endothelial monolayers of passage 1, 3-4 days after seeding. 

 

 

3.3 Experimental protocol for hypoxia/reoxygenation  
 
Confluent monolayers of HUVEC were cultivated in serum free culture medium 12 h 

before onset of experiments. After an initial 

equilibration period of 15 min in HBSS 

supplemented with 1.3 mM CaCl2, 1.2 mM 

MgCl2, and 0.05% (wt/vol) bovine serum 

albumin (BSA), cells were subjected to 1 h of 

hypoxia (Po2 < 10 mmHg) in an air tight 

chamber flushed with 100% humidified N2, 

followed by 24 h of reoxygenation. Normoxic controls were exposed to humidified air 

(Po2 = 140 mmHg). 
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To investigate the effect on cell signaling and ongoing apoptotic cell death, 

pharmacological inhibitors were added with the onset of reoxygenation. Stock solutions 

of inhibitors were prepared immediately in DMSO. Appropriate volumes of these 

solutions were added to the cells yielding in a final concentration < 0.1% (vol/vol). In a 

set of pilot experiments concentration-response relationships were determined to find 

the optimum effective concentration of the inhibitors used in this study. They were 

applied in their optimum effective concentrations. 

 

 

 

 

Starvation media 
 
Endothelial cell basal medium (PromoCell®)  

supplemented with Penicillin/streptomycin (vol/vol) 2% 

 

Basal media for hypoxia/normoxia (H/N) 
 
HBSS supplemented with 1.3 mM CaCl2, 1.2 mM MgCl2, and 0.05% (wt/vol) BSA 
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List of pharmacological inhibitors 

 

Inhibitor Inhibiting protein concentration  

used 

Solvent 

DMOG 1 mM DMSO 

MG-132 10 µM DMSO 

PFT-α 100 µM DMSO 

 

 

3.4 siRNA interference  
 
Knockdown of endogenous HIF-α, PHD2, and Mdm2 was achieved by transfection of 

specific siRNA and transfection agent Fugene 6 according to manufacture’s instructions.  

Protocol: 24 h prior to experiments 70-80% confluent cell monolayers were transfected 

with 2 µl of Fugene 6 to 97 µl of OPTI-MEM using 1-2 µg of siRNA. After 6 h 10% 

(vol/vol) FCS was added. Control samples were treated with identical concentration of 

non-specific siRNA following the same protocol. 

 

 

3.5 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 
Sample preparation: Endothelial cells  were washed with HBSS and subsequently 

lysed in 150 μl 1 x SDS sample buffer and 10 mM DTT added freshly before use. 

Subsequently, 50 IU/ml Benzonase® and 2 mM MgCl2 was added and the lysate was 

collected in a 1.5 ml Eppendorf tube. Samples were denatured for 3 min at 95 °C and 

used immediately or stored at –20 °C. 

Procedure: Discontinuous SDS polyacrylamide gel electrophoresis (Laemmli 1970) was 

performed to analyse protein content in cell lysates. The resolving gel solution, 

composition is given below, was poured into the assembled gel mold between two glass 

plates separated by 1 mm thick spacers leaving about 1 cm space for the stacking gel 

solution and layered with water. After polymerization the water was removed, the 
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stacking gel solution was poured on top and the comb was inserted. After polymerization 

of the stacking gel, the comb was removed and the gel mounted in the electrophoresis 

chamber. Electrode reservoirs were filled with 1 x SDS running buffer, the wells were 

cleaned and samples loaded. Electrophoresis was run overnight at 45 V.  

 

1x-SDS sample buffer 
 
Tris/HCl (pH 6.8)   2.5 mM  

Glycerol               5% (vol/vol) 

SDS        2% (wt/vol) 

DTT               1 mM  

ß-mercaptoethanol        0.9% (vol/vol) 

Bromophenol Blue     0.002% (wt/vol) 

 

 

Resolving gel buffer: Tris/HCl; pH 8.8     1.5 M 

Stacking gel buffer: Tris/HCl; pH 6.8     0.5 M 

 

 

10x Gel running buffer 
 
Tris                   250 mM 

Glycine                2.0 M 

SDS (wt/vol)               10% 
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3.6 Western blot  
 
Proteins were separated by 7,5-15% SDS-PAGE and electro-transferred onto a 

nitrocellulose membrane at 0.8-0.9 mA/cm2 for 120 min using a semi-dry blot system. 

For this, the nitrocellulose membranes together with filter papers (Whatman® 3 MM 

filter) were soaked in transfer buffer (25 mM Tris, 150 mM Glycin, 10% Methanol, pH 

8.3). The membrane and filters were stacked as a “sandwich” in the following order: filter 

paper, membrane, gel, and filter paper. To check for equal amounts of protein and 

successful blotting, the membrane was incubated with Ponceau S, a reversible protein 

staining solution. The membrane was washed in millipore water to the desired contrast 

and photographed. To remove the stain completely the membrane was washed with 1 x 

TBST. To prevent unspecific binding of the antibodies the membrane was blocked with a 

blocking buffer depending on the antibody to be used for 1 h at RT. After blocking, the 

membrane was incubated with the primary antibodies diluted in their respective blocking 

buffer BSA or Milk for 1 h at RT or at 4 °C overnight. Unbound antibody was removed by 

washing 3 x 5 min with TBST. The membrane was then incubated for 1 h at RT with a 

secondary antibody conjugated with horseradish peroxidase. After washing 3 times as 

described above, the enzyme activity was detected by use of enhanced 

Resolving gels Stacking gel Gel 

Solutions     7.5 %  10 %   12.5 %  15 %     6 % 

Acryl. 40% (wt/vol) 7.7 ml  10.2 ml  12.7 ml  15.3 ml    3.8 ml 
 Bisacryl.2%(wt/vol) 4.2 ml  5.6 ml  7.0 ml   8.4 ml     2.0 ml 
 
Millipore water   17.7 ml  13.8 ml  9.8 ml   5.8 ml     17.5 ml 
  Resolving gel buff. 9.5 ml  9.5 ml   9.5 ml   9.5 ml     ------ 

Stacking gel buff.   ------  ------   ------   ------     6.0 ml 
 
SDS 10%(wt/vol)  0.4 ml  0.4 ml  0.4 ml  0.4 ml     0.25 ml 
 
TEMED     30 μl   30 μl   30 μl   30 μl      20 μl 

APS 10% (wt/vol)  0.4 ml   0.4 ml  0.4 ml  0.4 ml     0.25 ml 
 



39 
 

chemiluminescence (ECL) according to the supplier’s protocol with a bioluminescence 

detection system and recorded with Bio-Rad Quantity One gel documentation system. 

 

10x Tris-buffered saline  (TBS) 
 
Tris/HCl (pH 7.4)    100 mM 

NaCl          1.6 M 

 

TBS Tween (TBST) 
 
1 x TBS 

0.1% (vol/vol)      Tween 20 

 

Blocking-buffer and antibody-dilution buffer 
 
3% (wt/vol) BSA in 1 x TBST or 

5% (wt/vol) nonfat dry milk powder in 1 x TBST (Milk) 

 

 

3.6.1 Stripping membranes  
 
For removing primary and secondary antibodies from the membrane, blots were 

incubated in stripping buffer shaking for 2 min at 60 °C. After six washing steps (5 min in 

TBST at RT), the membrane was blocked for 1 h with 5% nonfat dry milk (in TBST) 

before detection with another primary antibody. 

 

Stripping buffer 
 
Tris/HCl (pH 6.8)          62.5 mM 

SDS            2% (wt/vol) 

β-mercaptoethanol     0.8% (vol/vol) 
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3.7 Immunoprecipitation 
 
Preparation of beads: Protein G-coated magnetic beads (6 μl beads suspension for 

approximately 1 mg of total cell lysate) were washed 3-4 times with 0.1 M 1 x PBS 

(Composition in mM: 137 NaCl, 2.7 KCl, 1.5 KH2PO4, 8.0 Na2HPO4; pH 7.4) and 

incubated with the respective antibody (4-5 μg for 1 mg total cell lysate) overnight at 4 

°C with end-over-end rotation. Afterwards the beads were washed 3-4 times with 0.1 M 

sodium phosphate buffer containing 0.1 % (vol/vol) Tween 20 and stored in 50 μl of 1 x 

PBS. 

 

Protocol: Confluent endothelial monolayers cultured on 10 cm dishes, subjected to 1 h 

hypoxia and reoxygenated in absence or presence of different inhibitors as indicated in 

the text, were incubated in 500 µl lysis buffer for 10 min on ice and subsequently 

harvested by scraping with a rubber policeman. Cells were further lysed by using a 27 G 

needle and 1 ml syringe, 4-6 times. The lysate was centrifuged at 1000 x g for 5 min at 4 

° C. The supernatant was transferred to another tube and incubated with the respective 

antibodies pre-immobilized on protein G-coated magnetic beads for 1.5 h at 4 °C on a 

permanent rotator. After incubation, beads were washed 3 times with 1 x PBS containing 

0.1 % (vol/vol) Tween 20. Finally, the precipitates were detached from the G-coated 

magnetic beads by application of hot SDS-sample buffer and heated for 5 min at 90 °C. 

Proteins were detected and analysed by SDS-PAGE and Western blot. 

 

 

10x PBS 
 
Na2HPO4            0.1 M 

KH2PO4             17 mM 

NaCl               1.37 M 

KCl    27 mM 
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Lysis buffer Immunoprecipitation 
 
Tris/HCl (pH 7.4)    50 mM 

NaCl              150 mM 

Triton X-100            1% (vol/vol) 

Nonidet P 40       0.5% (vol/vol)  

EDTA      1 mM 

EGTA            1 mM 

NaF            20 mM 

Na-orthovanadate       1.5 mM 

DTT        10 mM 

PMSF   0.5 mM 

Complete ®         10 ml 

 

 

3.8 Nuclear and cytoplasmic protein extraction 
 
Endothelial cell monolayers (2-4 106 cells per 10 cm dish) were washed with 1 x PBS 

and then resuspended in 500 μl hypotonic buffer A (containing 10 mM HEPES pH 7.9, 

10 mM KCl, 0.1 mM DTT, 0.1 mM EDTA, 0.5 mM PMSF, and 1 tablet of proteinase 

inhibitor) and incubated for 10 min on ice before adding NP-40 to a final concentration of 

0.6% (vol/vol) vortexed, and centrifugated at 13.000 x g for 15 min. The supernatant 

contained the cytoplasmic fraction. The pellet was washed with buffer A and 

resuspended in 150 μl high salt buffer B (containing 20 mM HEPES pH 7.9, 400 mM 

NaCl, 0.1 mM DTT, 1 mM EDTA, 10% glycerol (vol/vol), 0.5 mM PMSF, and 1 tablet of 

proteinase inhibitor). The pellet was incubated at 4 °C on a full speed shaker for 2 h. 

After incubation, the suspension was centrifugated at 13.000 x g at 4 °C for 5 min. The 

supernatant contained the nuclear fraction. Protein concentration of the nuclear and 

cytoplasmic extracts was determined by Bradford. 
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3.9 Determination of protein concentration by Bradford  
 
The Bradford assay was used to determine the concentration of proteins in a solution. 

The assay reagent was prepared by diluting 1 volume of the dye stock with 4 volumes of 

distilled H2O. BSA was used a standard. Both, the standard and the samples were 

prepared in PBS and 1 ml assay reagent was mixed with 20 μl sample or standard. After 

5 min incubation time they were measured at 595 nm absorbance in an ELISA reader 

(spectrophotometer).  

 

3.10 FACS analysis 
 
The effect of hypoxia, reoxygenation, and different pharmacological treatments on 

endothelial cell apoptosis was determined by Fluorescence-activated cell sorting (FACS) 

by analysing of Annexin V-FITC and propidium (PI) staining according to manufacture’s 

instructions. Annexin V and PI were added to trypsinized and suspended cells. Samples 

of 10.000 cells were analysed by flow cytometry on FACS-Calibur using CELLQuest Pro 

software. Cells that were Annexin V-FITC positive were identified as apoptotic, while 

cells that were PI positive and Annexin V negative were identified as necrotic. 

Nonstained cells were identified as vital. 

 

3.11 Immunoflorescence 
 

After stimulation on of endothelial monolayers on glass coverslips, cells were washed 3 

times with 1 x PBS. Thereafter, cells were fixed in 4% (wt/vol) paraformaldehyde (PFA) 

for 20 min at 37 °C and washed 3 times with 1 x PBS. Cells were then permeabilized 

with 0.1% (vol/vol) Triton X-100 for 7 min and additionally washed another 3 times with 1 

x PBS. Subsequently, fixed and permeabilized HUVEC were blocked with blocking 

solution 5% (wt/vol) GFCFS, 5% (wt/vol) BSA, 1 x PBS for 60 min at RT. Samples were 

incubated for 3 h at 37 °C or 4 °C overnight with primary antibody (in blocking solution 

containing 0.1% (vol/vol) Tween 20, dilution 1:200). Afterwards, samples were washed 4 

times with 1 x PBS and incubated for 60 min at RT with 1:400 Alexa-Fluor 488 tagged 

secondary antibody in blocking solution and kept in dark. 
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Nuclear staining was performed by incubating cells with TOPRO-3 (1:200) dilution in 1 x 

PBS for 15 min. Following final washing for 3 times with 1 x PBS in dark, coverslips were 

taken from dishes and were fixed with mounting medium (1 x PBS/100% glycerol 

(vol/vol) 1:1) on a microscopic slide. After storing overnight, the cells were analysed with 

a Zeiss LSM 510 confocal laser scanning microscope. 

 

3.12 Statistical analysis  
 
All statistical analysis were performed using Sigma Stat version 8.0. For comparison of 

two normally distributed groups of data, the Student’s t-test was used. For multiple 

comparisons of normal distributed data the one-way analysis of variance (one-way 

ANOVA) was used. For descriptive purposes all data are presented as means ± the 

standard error of means. Results were considered significant at an error probability level 

of P < 0.05. 
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4 RESULTS 

4.1 Effect of DMOG on endothelial apoptosis during reoxygenation 

There is evidence that infarct size and cardiac dysfunction following global I/R is 

decreased after inhibition of PHD either by treatment with the inhibitor DMOG (Ockaili et 

al., 2005) or silencing with siRNA (Natarajan et al., 2006). In adition, it has been shown 

that HIF-1α is a key factor in ischemic preconditioning-induced cardioprotection (Cai et 

al., 2008).  

First it was proven whether inhibition of PHD with DMOG during reoxygenation protects 

endothelial cells against apoptosis induced by serum starvation. HUVEC were cultured 

in serum-free medium for 12 h and exposed to 1 h of hypoxia. Endothelial cells were 

analysed for apoptotic cell death by FACS analysis after 24 h of reoxygenation in 

absence of serum. 

As shown in Fig. 1 serum deprivation induced apoptotic cell death in 60% of the total cell 

population that was not significantly reduced in those cells exposed to 1 h of hypoxia. 

However in presence of DMOG during reoxygenation reduced apoptosis by 50%. 

Correspondingly, cell number of vital cells was increased by inhibition of PHD. These 

data indicate that DMOG reduces serum starvation-induced apoptotic cell death when 

added at the onset of reoxygenation. 
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Fig. 1 Effect of DMOG during reoxygenation on serum starvation-induced apoptosis. 
HUVEC were serum deprived for 12 h. Afterwards, cells were exposed to 1 h of hypoxia 
followed by 24 h of reoxygenation (H/R) in serum-free medium. Control cells were 
simultaneously incubated under normoxic conditions (N). DMOG (1 mM) was applied at 
the onset of reoxygenation (H/R + DMOG). The distribution of vital and apoptotic cells 
was analysed after 24 h by FACS analysis. Data are means ± SD of n=3 separate 
experiments of independent cell preparations. *P< 0.05 vs normoxia (N). 
 

4.2 Effect of DMOG on HIF-1α content during reoxygenation in  

       endothelial cells 

To analyse the effect of hypoxia/reoxygenation, and DMOG during reoxygenation on 

HIF-1α, endothelial cells were incubated under the same experimental conditions as 

described above and HIF-1α protein content was analysed by Western blot analysis.  

Consistent with literature, exposure of endothelial cells to hypoxia induced an increase 

of HIF-1α protein content over time (Fig. 2 A). After 1 h of hypoxia HIF-1α content almost 

reached protein concentrations obtained with 2 h of exposure. Because of these finding 

cells were exposed to 1 h of hypoxia in all further experiments.  
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Next the effect of reoxygenation of HIF-1α content in absence and presence of DMOG 

was analysed. As depicted in Fig. 2 B hypoxia-induced increase of HIF-1α vanished with 

onset of reoxygenation and stayed low for the following 24 h of reoxygenation. However, 

addition of DMOG at the onset of reoxygenation not only maintained HIF-1α content at 

the end-hypoxic level but rather induced a further increase during the reoxygenation 

period, indicating that decrease in HIF-1α is mediated in a PHD dependent manner. A 

similar increase was observed when endothelial cells were exposed to 1 mM of DMOG 

under normoxic conditions. A concentration dependent stabilization of HIF-1α by DMOG 

is depicted in Fig. 2 C showing that 1 mM of the PHD inhibitor led to a maximum 

increase in HIF-1α protein content. Therefore, this concentration was applied in all 

further experiments. 
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Fig. 2 Effect of hypoxia/reoxygenation on HIF-1α protein content in presence and 
absence of DMOG. A) HUVEC were exposed to 0.5, 1, and 2 h of hypoxia while control 
cells were exposed to 2 h of normoxia. Representative Western blot analysis shows HIF-
1α protein content relative to vinculin, taken as internal loading control. B) Cells were 
exposed to 1 h of hypoxia (H, ■) followed by 24 h of reoxygenation (H/R, Δ). 
Dimethyloxalyl glycine (DMOG; 1 mM), a pan-specific inhibitor of prolyl 4-hydroxylases 
(PHD), added at the onset of reoxygenation (H/R+DMOG, ▲) or applied to normoxic 
control cells (N + DMOG, ●). Cells exposed to 1 h normoxia in presence of vehicle, was 
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taken as a control (N, ○). Representative Western blot (upper panel) depicts HIF-1α and 
vinculin, taken as internal loading control. Densitometric analysis of HIF-1α relative to 
vinculin is depicted below. The mean of HIF-1α/vinculin ratio of HUVEC exposed to 1 h 
hypoxia was set to 1. Data are means ± SD of 3 separate experiments with independent 
cell preparations. *P< 0.05 vs H. C) HUVEC were exposed to 1 h of hypoxia followed by 
24 h of reoxygenation. Different concentrations of DMOG 0, 0.1, 0.5, and 1 mM were 
applied at the onset of reoxygenation. Representative Western blot depicts HIF-1α 
protein content relative to vinculin, taken as internal loading control.  
 
 

4.3 Effect of DMOG on p53 protein content during reoxygenation  

Cell cycle arrest and apoptotic cell death are regulated by the tumor suppressor p53 

(Vousden and Lu 2002). Under hypoxia p53 is stabilized and there is evidence that p53 

and HIF-1α interact with each other and influence one another concerning stabilization, 

activation, and proteasomal degradation. In order to analyse whether p53 is involved in 

endothelial cell death and can be influenced by stabilization of HIF-1α, p53 protein 

content was determined by Western blot analysis during reoxygenation in absence and 

presence of 1 mM DMOG. 

As shown in Fig. 3, the protein level of p53 increased in HUVEC exposed to 1 h of 

hypoxia. During reoxygenation, unlike HIF-1α, p53 protein levels maintain throughout 24 

h of reoxygenation. However, in presence of DMOG p53 protein levels declined over 

time.  
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Fig. 3 Effect of DMOG on p53 protein content in HUVEC during reoxygenation in 

comparison to normoxic control cells. Cells were exposed to 1 h of hypoxia (H, □) 
followed by 24 h of reoxygenation (H/R, Δ). DMOG (1 mM) was added at the onset of 
reoxygenation (H/R+DMOG, ▲). Cells exposed to 1 h normoxia in presence of vehicle, 

was taken as a control (N, ○). Representative Western blot (upper panel) depicts p53 
and vinculin, taken as internal loading control. Densitometric analysis of p53 relative to 
vinculin is depicted below. The mean of p53/vinculin ratio of HUVEC exposed to 1 h 
hypoxia was set to 1. Data are means ± SD of 3 separate experiments with independent 
cell preparations. *P< 0.05 vs H. 
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4.4 Effect of PHD2 silencing on HIF-1α and p53 protein content in  

      serum starvation-induced apoptosis during reoxygenation 

To analyse whether the effect of DMOG during reoxygenation on HIF-1α and p53 

content as well as cell survival is due to inhibition of PHD2 by DMOG, a key PHD 

regulating HIF-1α (Berra et al., 2003), PHD2 was silenced by siRNA. Therefore, HUVEC 

were transfected 24 h prior to experiments with siRNA specific for PHD2, while control 

cells were transfected with non-specific siRNA. Afterwards cells were serum starved for 

12 h and exposed to hypoxia and reoxygenation as described above.  

As depicted in Fig. 4 A, PHD2 protein content was significantly reduced in a 

concentration dependent manner by specific siRNA. Here PHD2 silencing also induced 

an increase of HIF-1α and a reduction in p53 protein content as observed before in 

presence of the pharmacologic PHD inhibitor DMOG. Under the same conditions (Fig. 4 

B) apoptotic cells were reduced by 67% in PHD2 silenced cells compared to the 

corresponding cells transfect with non-specific siRNA.  

These data suggest that HIF-1α stabilization and reduction of p53 plays a fundamental 

role for the observed anti-apoptotic effect of PHD inhibition during reoxygenation. 
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Fig. 4 Effect of PHD2 silencing on HIF-1α and p53 protein content and serum starvation-
induced apoptosis during reoxygenation. Cells were transfected with 20 or 50 nM PHD2 
siRNA (PHD2) or 50 nM non-specific control siRNA (NS) 24 h prior to 1 h hypoxia 
followed by 24 h of reoxygenation. A) Representative Western blot depicts PHD2, HIF-
1α, and p53 content relative to vinculin, taken as internal loading control. B) The 
percentage distribution of vital and apoptotic cells determined by FACS analysis are 
given. Data are means ± SD of n=3 separate experiments with independent cell 
preparations. *P< 0.05 vs NS. 
 
 

4.5 Effect of HIF-1α silencing on p53 protein levels and serum  

       starvation-induced apoptosis during reoxygenation 

Pharmacological inhibition as well as silencing of endogenous PHD2 by siRNA led to 

stabilization of HIF-1α and reduction of apoptosis. So the question was raised whether 

HIF-1α is directly involved in endothelial cell survival. To prove its functional role, 

HUVEC were transfected with siRNA specific for HIF-1α, serum starved, and exposed to 

H/R in presence of DMOG as described before. As shown in Fig. 5 A, HIF-1α content 

was significantly reduced in a concentration dependent manner, compared to non-

specific control siRNA transfected cells. Downregulation of HIF-1α was accompanied by 

an increase of p53 content to a similar extend as observed 24 h after hypoxia and 
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reoxygenation (H/R). Analysis of apoptotic cell death (Fig. 5 B) revealed that under this 

condition apoptosis was increased from 40% to 60%.  

 

 

 

 

Fig. 5 Effect of HIF-1α silencing on p53 protein content and serum starvation-induced 
apoptosis during reoxygenation in presence of DMOG. Cells were transfected with 25 or 
50 nM HIF-1α siRNA (HIF-1α) or 50 nM non-specific control siRNA (NS) 24 h prior to 1 h 
hypoxia followed by 24 h of reoxygenation in presence of DMOG (1 mM).  
A) Representative Western blot depicts HIF-1α and p53 relative to vinculin, taken as 
internal loading control. B) The percentage distribution of vital and apoptotic cells 
determined by FACS analysis are given. Data are means ± SD of  n=3 separate 
experiments with independent cell preparations. *P< 0.05 vs NS. 
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4.6 Effect of pharmacological inhibition of p53 on serum starvation- 

      induced apoptosis during reoxygenation 

To analyse whether p53 is responsible for the observed apoptotic cell death, 100 µM 

Pifitrin-α (PFT-α), a specific inhibitor of p53, was applied with onset of reoxygenation 

and apoptotic cell death as well as cell survival was analysed 24 h later. PFT-α caused a 

decrease in apoptosis from 58% to 43% versus cells treated with vehicle only (Fig. 6). 

This indicates that p53 is involved in the observed apoptotic cell death of HUVEC. 

 

 

               
 
Fig. 6 Effect of pharmacological inhibition of p53 during reoxygenation in HUVEC. 
Serum starved cells were exposed to 1 h of hypoxia followed by 24 h of reoxygenation. 
PFT-α (100 µM), a specific inhibitor of p53, was applied at the onset of reoxygenation 
(+). Control cells were treated alike in presence of vehicle (-). The percentage 
distribution of vital and apoptotic cells determined by FACS analysis are given. Data are 
means ± SD of n=3 separate experiments with independent cell preparations. *P< 0.05 
vs control (-). 
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4.7 Effect of DMOG on HIF-1α and p53 localization 

Immunofluorescence staining was performed to determine the abundance and 

subcellular localization of HIF-1α and p53. Apoptosis in endothelial cells caused by 

serum deprivation is characterized by presence of p53 primarily found in the nuclei 

under normoxic conditions (Fig. 7). Exposure to hypoxia induced an increase of p53 

accumulation in cell nuclei accompanied by a concurrent increase of HIF-1α in nuclei. 

During reoxygenation p53 levels were preserved in the nuclei while HIF-1α disappeared. 

In contrast, addition of DMOG at the onset of reoxygenation preserved HIF-1α protein 

levels in the nuclei while p53 vanished below normoxic levels.  

 

 
 
 
Fig. 7 Localization of HIF-1α and p53 in nuclei of HUVEC. Cells were grown on 
coverslips, serum starved for 12 h and exposed to 1 h of hypoxia followed by 24 h of 
reoxygenation (H/R). DMOG (1 mM) was applied at the onset of reoxygenation (H/R + 
DMOG). Control cells were exposed to normoxia only. Endogenous p53 (top row) and 
HIF-1α (bottom row) were both detected with alexa 488-labeled secondary antibody 
(green). Cell nuclei were co-stained with TOPRO-3 (blue). 
 
 
 
 
 

Normoxia Hypoxia H/R H/R + DMOG

HIF-1αHIF-1αHIF-1αHIF-1α 

p53 p53 p53 p53
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4.8 Interaction between HIF-1α and p53 

Earlier reports have shown that HIF-1α can bind to p53. To examine whether HIF-1α 

directly binds to p53 under the experimental conditions described here, co-

immunoprecipitation was performed with anti-p53 antibody. Subsequently, precipitated 

proteins were analysed by Western blot analysis. As shown in Fig. 8, HIF-1α was co-

immunoprecipitated with p53 in apoptotic cells exposed to 1 h of hypoxia (Fig. 8), 

indicating complex formation between both proteins. As expected, after normoxia as well 

as 24 h after H/R no interaction could be detected, since HIF-1α is subjected to rapid 

degradation in presence of O2. On the other hand, no interaction between HIF-1α and 

p53 was observed in presence of DMOG added with onset of reoxygenation. Under this 

condition HIF-1α was preserved while p53 was significantly reduced. Beside p53 the 

heavy light chain of the immunoprecitation antibody (IgG) was detected too. These co-

immunoprecipitation data indicate that during hypoxia HIF-1α/p53 complexes are formed 

while no direct interaction can be observed in presence of DMOG during reoxygenation 

suggesting another mechanism of p53 degradation.  

 

 

            
 
 
Fig. 8 Detection of protein interaction and complex formation between HIF-1α and p53. 
Serum starved HUVEC were either exposed to 1 h of hypoxia (H) or normoxia (N) alone 
or to 1 h hypoxia followed by 24 h of reoxygenation (H/R) in absence or presence of 
DMOG (1 mM) added at the onset of reoxygenation (H/R + DMOG). Equal amounts of 
whole cell lysates were prepared (input) and p53 was immunoprecipitated (IP) with anti-
p53 antibody coupled to protein G-coated magnetic beads. Co-immunoprecipitation of 
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HIF-1α with p53 was analysed by Western blot analysis. The antibody used for 
immunoprecipitation of p53 (IgG) was detected too. 
 

4.9 Effect of PHD inhibition by DMOG on Mdm2 and p53  

The results so far suggest that not the direct interaction between HIF-1α and p53 but 

rather another mechanism might be responsible for DMOG-induced p53 degradation 

during reoxygenation. There is evidence that the ubiquitin ligase Mdm2 is a key 

regulator of p53, capable to inhibit p53 transcriptional activity and to target it for protein 

degradation. 

To elucidate the molecular mechanism by which HIF-1α destabilizes p53, the effect of 

HIF-1α stabilization, p53 and Mdm2 protein content was analysed. As shown in Fig. 9, 

addition of DMOG at the onset of reoxygenation caused a reduction of p53 content, as 

shown before. In contrast, the Mdm2 content increased in a time-dependent manner 

under the same conditions.  

 

 

                            

 
Fig. 9 Effect of DMOG on Mdm2 and p53 protein content. Serum starved HUVEC were 
exposed to 1 h of hypoxia followed by 24 h of reoxygenation in presence of DMOG (1 
mM), applied at the onset of reoxygenation (H/R + DMOG). Samples were analysed 
after 3, 6, 12, and 24 h. Control cells were exposed to 1 h of hypoxia and 24 h of 
reoxygenation only (H/R). Representative Western blot depicts Mdm2 and p53 protein 
content relative to vinculin, taken as an internal loading control.  
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4.10 Interaction between HIF-1α and Mdm2 

To analyse whether DMOG-induced HIF-1α stabilization is responsible for the observed 

Mdm2 accumulation, endogenous HIF-1α was downregulated by siRNA. In comparison 

to cells transfected with non-specific siRNA, HIF-1α silencing abrogated the DMOG-

induced increase in Mdm2 protein content during reoxygenation (Fig. 10 A). In contrast, 

silencing of Mdm2 had no effect on HIF-1α content (Fig. 10 B), suggesting that HIF-1α is 

upstream of Mdm2 expression.  

 

 

 

 
 
Fig. 10 Effect of HIF-1α and Mdm2 silencing on each other. Serum starved HUVEC 
were transfected with 50 nM HIF-1α siRNA (HIF-1α), 50 nM Mdm2 siRNA (Mdm2) or 50 
nM non-specific control siRNA (NS) for 24 h. Afterwards cells were exposed to 1 h 
hypoxia followed by 24 h of reoxygenation in presence of DMOG (1 mM) applied at the 
onset of reoxygenation (H/R + DMOG). As a control, cells were exposed to 1 h of 
hypoxia followed by 24 h of reoxygenation (H/R). Representative Western blots depict 
HIF-1α and Mdm2 content relative to vinculin, taken as a loading control.  
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4.11 Effect of Mdm2 silencing on p53 and analysis of Mdm2 and p53  

        interaction for subsequent p53 degradation 

To prove whether DMOG-induced increase of the ubiquitin ligase Mdm2 during 

reoxygenation is responsible for the observed p53 degradation, Mdm2 was 

downregulated by specific siRNA. Silencing of Mdm2 abrogated DMOG-induced 

reduction of p53 (Fig. 11). In a next step it was analysed whether Mdm2 and p53 interact 

with each other and whether Mdm2 directs p53 to proteasomal degradation. Therefore, 

cytosolic and nuclear protein extracts were prepared and Mdm2 was 

immunoprecipitated. Afterwards immunoprecipitated proteins were analysed by Western 

blot analysis. As seen in Fig. 11 B, Mdm2 was found in both the cytosolic and nuclear 

fraction, whereas p53 was predominantly found in the cytosolic fraction when 

proteasomal degradation was inhibited by the selective and reversible inhibitor MG-132. 

In contrast, p53 was barely detectable in absence of MG-132 or in the nuclear protein 

fraction. These data demonstrate that either silencing of Mdm2 or inhibition of 

proteasomal degradation by MG-132 led to a stabilization of p53, allowing the 

visualization of Mdm2/p53 complex formation and translocation from nucleus to cytosol. 

This indicates that the interaction of both proteins is prerequisite for Mdm2-induced 

translocation and degradation of p53. Taken together, these results show that 

stabilization of HIF-1α by DMOG-induced PHD inhibition elicits Mdm2-mediated 

proteasomal degradation of p53.   
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Fig. 11 A Effect of Mdm2 silencing on p53 during reoxygenation in presence of DMOG. 
HUVEC were transfected with 50 nM Mdm2 siRNA (Mdm2), or 50 nM non-specific 
control siRNA (NS) for 24 h. Afterwards cells were exposed to 1 h hypoxia followed by 
24 h of reoxygenation. DMOG (1 mM) was applied at the onset of reoxygenation (H/R + 
DMOG). As a control, cells were exposed to 1 h of hypoxia followed by 24 h of 
reoxygenation (H/R). Representative Western blot analysis shows Mdm2 and p53 
protein content relative to vinculin, taken as a loading control.  
 
 

                             
 

Fig. 11 B Effect of MG-132, a selective inhibitor of proteasomal degradation, on Mdm2 
and p53, co-immunoprecipitated from cytosolic and nuclear protein fractions. Cells were 
exposed to 1 h of hypoxia followed by 24 h of reoxygenation in presence of DMOG (1 
mM), applied at the onset of reoxygenation (H/R + DMOG). MG-132 (20 µM) was added 
during the last 6 h of reoxygenation (+). Cytosolic and nuclear fractions were prepared 
from equal amounts of cell homogenates and Mdm2 was immunoprecipitated with anti-
Mdm2 antibody coupled to protein A-coated magnetic beads. A representative Western 
blot depicts immunoprecipitated Mdm2 and p53. 
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4.12 Effect of Mdm2 silencing on DMOG-induced cell survival 

To investigate the potential effect of HIF-1α dependent Mdm2 protein accumulation on 

DMOG-induced cell survival, Mdm2 was silenced by siRNA. As described before 

HUVEC were transfected with Mdm2 specific or non-specific siRNA as a control, and 

were serum starved 12 h before experiments. Afterwards cells were exposed to 1 h 

hypoxia followed by 24 h of reoxygenation in presence of DMOG. Control cells were 

treated alike under normoxic conditions. Apoptotic cell death and vital cells were 

determined 24 h after experiments by FACS analysis. As shown in Fig. 12, Mdm2 

silencing abolished the DMOG-mediated reduction of apoptosis. Accordingly, the 

number of vital cells was significantly reduced. This indicates that Mdm2 is required for 

the protection of endothelial cells against apoptotic cell death induced by PHD inhibition. 

 

 
 
Fig. 12 Effect of Mdm2 silencing on DMOG-induced cell survival during reoxygenation. 
Cells were transfected with 50 nM Mdm2 siRNA (Mdm2), 50 nM non-specific control 
siRNA (NS), or were non-treated as a control (C), 24 h prior to 1 h hypoxia and 24 h of 
reoxygenation. DMOG (1 mM) was applied at the onset of reoxygenation (H/R + 
DMOG). As a control, non-treated cells were exposed to 1 h of hypoxia followed by 24 h 
of reoxygenation (H/R). The percentage distribution of vital and apoptotic cells 
determined by FACS analysis are given. Data are means ± SD of n=2 separate 
experiments *P< 0.05 vs NS. 
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5. DISCUSSION 

5.1 Мain findings 

The present study was conducted to elucidate the molecular mechanism by which 

inhibition of PHD leads to protection of endothelial cells against ongoing apoptotic cell 

death during H/R. As a pro-apoptotic challenge endothelial cells were cultured in serum 

free medium for 12 h and subjected to hypoxia for 1 h followed by reoxygenation.  

 

The major findings of the present study are: (1) HIF-1α is up-regulated during hypoxia. 

Its degration during reoxygenation can be prevented by application of PHD inhibitor 

DMOG, targeting HIF prolyl 4-hydroxylases. The same effect is achieved by 

downregulation of the specific PHD2 with siRNA. (2) The increased level of p53 protein 

under hypoxia did not alter during reoxygenation, while addition of DMOG significantly 

reduced p53. (3) DMOG, applied at the onset of reoxygenation, caused a reduction of 

apoptosis. (4) Downregulation of HIF-1α under these conditions aggravated ongoing 

apoptosis. (5) Pharmacological inhibition of p53 reduced apoptosis. (6) Stabilization of 

HIF-1α was accompanied by enhanced Mdm2 expression. (7) The detailed analysis by 

gene silencing displayed that Mdm2 is downstream of HIF-1α. (8) HIF-1α stabilization 

enhanced the binding between p53 and Mdm2 and subsequent degradation of p53. (9) 

Downregulation of Mdm2 by siRNA abolished DMOG-mediated reduction of apoptosis. 

The present study shows that inhibition of PHD at the onset of reperfusion, a maneuver 

called pharmacological postconditioning, reduces ongoing apoptosis in endothelial cells 

during H/R. This anti-apoptotic effect is mediated via HIF-1α and involves Mdm2-

induced degradation of the proapoptotic molecule p53. 

5.2 Inhibition of PHD protects endothelial cells from ongoing  

        apoptosis 

H/R-induced apoptosis of endothelial cells may contribute to tissue injury, organ failure 

and rejection. However, little is known about survival mechanisms capable of 

counteracting endothelial apoptosis. Different strategies aiming at protection of the heart 
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at the onset or during reperfusion have gained much greater interest. Postconditioning, 

introduced by Zhao and coworkers (2003), has now been demonstrated as a novel 

strategy to protect against myocardial ischemia/reperfusion injury. Recently, studies 

proved that the HIF prolyl 4-hydroxylases inhibitor, DMOG significantly increases 

nuclear HIF levels and HIF-1α transcription activity in normoxic microvascular 

endothelium in vitro. Hearts preconditioned by prior DMOG administration exhibited 

significantly reduced infarct size following H/R in rabbits (Ockaili et al., 2005). Another 

study from Natarajan and coworkers (2006) showed that the PHD2 siRNA treatment 

produced significant cardioprotection against H/R stress showed a reduction in infarct 

size by 69% in mouse heart. In this context, HIF-1α has emerged to focus. 

Previous data from our laboratory (Haertel et al., 2010) has shown that transient hypoxia 

protects endothelial cells against apoptosis. Consistent with these previous reports, 

present study confirmes that incubation with DMOG given at the onset of reoxygenation 

resulted in 50% reduction of apoptosis. Therefore, the question whether DMOG 

mediates its effect on apoptosis via stabilization of HIF-1α was analysed. For that 

reason as a pro-apoptotic challenge, endothelial cells were cultured in serum-free 

medium for 12 h and subjected to hypoxia for 1 h followed by reoxygenation. Under 

these conditions, the effect of HIF-1α was examined. Under normoxic conditions, HIF-1α 

protein is rapidly degraded by HIF prolyl 4-hydroxylases. Under hypoxic conditions, 

however, the enzyme fails to hydroxylate HIF-1α due to the low oxygen content. It was 

also found that hypoxia caused a significant increase in HIF-1α content, which was 

undetectable in normoxic control. Inhibition of PDH by DMOG with onset of 

reoxygenation maintains HIF-1α at high level. Downregulation of PHD2 by siRNA 

revealed that HIF-1α can be preserved during reoxygenation. The results indicate that 

HIF-1α stabilization induced by inhibition of PHD leads to reduction of the ongoing 

apoptosis during H/R. However, the question remains, which approach is effective in 

providing protection against apoptosis in endothelial. 

5.3 Inhibition of PHD affects pro-apoptotic p53  

This led to the question about the possible downstream targets participating in induction 

of apoptosis. In previous studies it has been shown that hypoxia is a critical factor for 
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cell death or survival, but the combined effects of hypoxia and reperfusion caused 

pathological consequences that induced endothelial cell apoptosis. An increasing 

number of studies suggest that p53 plays a critical role in hypoxia-induced apoptosis. 

Graeber and coworkers (1996) found that tumor cells containing wild-type p53 were 

more sensitive to hypoxia-induced apoptosis when compared with tumor cells lacking 

functional p53. Long and coworkers (1997) showed the role of p53 in cardiac myocyte 

apoptosis in response to hypoxia. In 1999 Stempien-Otero and coworkers found that 

endogenous p53 protein levels correlated with the initiation of cell death in hypoxic 

HUVEC and showed the elevation of endogenous p53 protein levels via inhibition of the 

proteasome potentiated apoptosis in hypoxic HUVEC. p53 is a transcriptional factor that 

activates a variety of genes involved in DNA repair, cell cycle arrest, and apoptosis. All 

these reports suggest that enhanced stabilization of p53 ultimately leads to apoptosis. 

This raise the question whether p53 is involved in endothelial cell apoptosis. Under short 

hypoxia followed by reoxygenation, an increase in p53 protein levels concomitant with 

endothelial cell death was found. By applying of DMOG at the onset of reoxygenation, 

the level of p53 protein gradually decreased with time and was almost undetectable after 

24 h of reoxygenation. To analyse whether p53 is responsible for the observed 

apoptosis, PFT-α, a p53 specific inhibitor, was applied at the onset of reoxygenation, 

and the amount of surviving cells was analysed 24 h later. Apoptosis was decreased 

from 58% in absence of PFT-α to 43% in presence of PFT-α. This indicates that p53 is 

involved in the ongoing apoptosis. These first findings lead to the assumption that 

stabilizatioin of HIF-1α induces p53 downregulation and the reduction of apoptosis. 

Controversial results have been reported regarding HIF-1α mediated regulation of p53. It 

has been demonstrated in cultured cortical neurons that HIF-1α promotes p53-

dependent apoptosis (Halterman et al., 1999). HIF-1α binds to p53, and the complex 

formation likely plays an important role in the hypoxia-induced stabilization of p53. The 

concept is supported by results from Suzuki and coworkers (2001) showing an 

increased dephosphorylation of HIF-1α, which plays a pivotal role in the stabilization of 

p53 and subsequent activation of the p53-dependent apoptotic pathway during hypoxia. 

An and coworkers (1998), demonstrated that the induction of p53 under severe hypoxia 

is HIF-1α dependent and that it may be achieved by p53 stabilization along with its 
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association with HIF-1α. Results of Ravi and coworkers (2000) indicate that inactivation 

of p53 in tumor cells contributes to activation of the angiogenic switch via amplification of 

normal HIF-1α-dependent responses to hypoxia. To this point, the results left the 

question open whether the effect of p53 is HIF-1α dependent? 

5.4 p53 downregulation is dependent of HIF-1α stabilization 

The data of the present study show that p53 is up-regulated after hypoxia and 

contributes to H/R-induced injury by promoting apoptosis. Because stabilization of HIF-

1α protects endothelial cell from ongoing apoptosis during H/R, it was analysed whether 

endogenous HIF-1α is required for endothelial survival. From these results, it was 

hypothesized that HIF-1α accumulation under pharmacological postconditioning may 

induce downregulation of elevated p53 levels observed during H/R. To show this 

functional role of HIF-1α, gene expression was silenced by using a specific siRNA HIF-

1α following administration of DMOG. Downregulation of HIF-1α increased apoptosis 

from 40% to 60%. This was accompanied by an increase in p53 levels, similar to that 

observed under H/R without silencing of HIF-1α. This assumption is supported by 

reports from Sutton and coworkers (2008) showing that an acute inhibition of p53 

significantly increases HIF-1α expression after H/R renal injury. Additionally, PFT-α 

prevents I/R injury and I/R decrease in HIF-1α expression and has opposing effect to 

those promoted by p53 (Sutton et al., 2008). The balance between the HIF-1α and p53 

responses can determine the outcome of H/R injury. Consequently, when both pathways 

are simultaneously activated under appropriate stress conditions they can counteract 

through complex interactions at various levels. In this context it is of particular relevance- 

that p53 has been shown to directly repress the transcriptional activity of HIF-1α 

(Schmid et al., 2004) by competing with the common coactivator p300. Importantly, 

results from the present study indicate that p53 is a direct target for degradation, what 

suggests that p300 could not be the limiting factor. Further studies on the subject of the 

complex interaction between these two pathways can ultimately determine the degree of 

injury in I/R.  
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5.5 Stabilization of HIF-1α regulates Mdm2, a specific E3-ubiquitin 

       ligase responsible for limiting the levels of p53 

While analysing the mechanism by which HIF-1α modulates p53 response, it was 

observed that addition of DMOG caused degradation of p53 along with HIF-1α 

stabilization, which obviously makes impossible to detect HIF-1α/p53 complex formation. 

The results so far indicate that PHD inhibition virtually exclude a direct interaction 

between HIF-1α/p53. The known roles of Mdm2 in regulating p53 function suggest that 

the effects of hypoxia on Mdm2 and p53 may be interrelated (Lohrum and Vousden, 

1999). Binding to Mdm2 promotes the proteasomal degradation of p53 through Mdm2’s 

action as E3-ubiquitin ligase (Honda et al., 1997). Reduction of Mdm2 expression by 

H/R observed in the experiments could account for corresponding increase in p53 levels 

in endothelium. This is supported by the finding in which the interaction between p53 

and Mdm2 in presence of DMOG, was examined. Immunoprecipitation of both cytosolic 

and nuclear Mdm2 was performed using anti-Mdm2 antibody. Mdm2 was found in both 

cytosol and nucleus, where p53 was almost undetectable. The reduction of p53 content 

was restored when the proteasome inhibitor MG-132 was added. Mdm2/p53 complex 

formation was established in presence of MG-132. Experiments using siRNA directed 

against Mdm2 illustrated a functional role of Mdm2 on p53 accumulation. Silencing of 

Mdm2 abrogated DMOG-induced reduction of p53. These data demonstrate that either 

silencing of Mdm2 or proteasomal inhibition by MG-132 could stabilize p53 by 

abrogating Mdm2-mediated degradation. This indicates that the interaction of both 

proteins is the prerequisite for p53 degradation and is Mdm2 dependent. Taken 

together, these results show that stabilization of HIF-1α by PHD inhibition causes 

Mdm2-mediated proteasomal degradation of p53. This is in line with the evidence 

suggesting that Mdm2 may be involved in the nucleo-cytoplasmic shuttling of p53 that 

translocates from its site of action, as a transcription factor, to its site of proteolysis 

breakdown (Tao and Levine, 1999). Different stress signals produce distinct effects on 

Mdm2 expression. For example, the observed reduction in Mdm2 levels after H/R in 

comparison with hypoxia (data not shown) is consistent with the level during apoptosis. 

In this respect, reduced levels of Mdm2 during H/R are predicted to permit the enhanced 
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nuclear accumulation of p53 that was observed by us in H/R cells. In contrast, the 

application of DMOG leads to accumulation of Mdm2 protein. Therefore, Mdm2 like p53 

appears to be capable of promoting either apoptosis or protection depending on the 

stimulus.  

5.6 HIF-1α induced p53 degradation is mediated via Mdm2  

The results of the present study, together with several other studies (An et al., 1998; 

Koumenis et al., 2001; Ravi et al., 2000), strongly support the role of HIF-1α in the 

regulation of the p53-Mdm2 pathway. Recent studies also indicate that Mdm2 is involved 

in modulating HIF-1α stability under hypoxic conditions (Ravi et al., 2000) further 

supporting the notion that HIF-1α directly interacts with Mdm2 but not with p53. 

Therefore, in context of the study, the question of effect of HIF-1α stabilization on Mdm2 

protein expression and its stability was analysed. Present data show that stabilization of 

HIF-1α led to increased expression levels of Mdm2. To prove whether HIF-1α 

stabilization is responsible for Mdm2 accumulation, the effect of HIF-1α downregulation 

on Mdm2 was determined. Downregulation of HIF-1α abrogated the increase in Mdm2 

level, similarly to that induced by H/R, indicating that HIF-1α stabilization is necessary 

for Mdm2 accumulation. To prove that Mdm2 has no impact on HIF-1α content, Mdm2 

was downregulated by siRNA. Downregulation of Mdm2 did not affect DMOG-induced 

HIF-1α accumulation. These data indicate that Mdm2 is downstream of HIF-1α. Finally, 

the potential effect of Mdm2 accumulation on apoptosis was tested. Downregulation of 

Mdm2 by siRNA showed that DMOG-mediated reduction of apoptosis was abolished. 

The results indicate that Mdm2 is required for the protection against cell death. 

 

In conclusion, results of the present study define a novel mechanism that modulates 

p53 to protect endothelial cells against ongoing apoptotic cell death during H/R. This 

indicates that pharmacological inhibition of PHD by DMOG negatively regulates H/R-

induced expression of p53 by facilitating its degradation most probably via ubiquitination. 

This mechanism is distinct from the proposal that p53 inhibits HIF-1α-mediated 

transactivation by competing for the p300 coactivator (Blagosklonny et al., 1998). Based 

on all these finding, an important role of HIF-1α stabilization in modulating p53-Mdm2 



67 
 

system under H/R is illustrated here for the first time. The results demonstrate that 

application of PHD inhibitor given at the onset of reoxygenation, stabilizes HIF-1α, and 

that HIF-1α might act as a novel regulator of p53 by controlling the stability and 

localization of p53 and its regulatory protein Mdm2. The detailed regulatory mechanisms 

of this system need further investigation. Finally, this work indicates that strategies 

targeting PHD activity may provide a useful molecular approach to prevent endothelial 

cells from apoptotic cell death and identifies PHD2 as a new molecular target for 

therapeutic intervention. The approach termed pharmacological postconditioning is a 

more practical solution and could form the basis of much needed and important 

reperfusion strategies. 
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Based on these observations I proposed the model shown in the figure below. 

 
   

 
 
 
Fig. 13 Protective mechanism against ongoing apoptotic cell death during H/R 
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6 SUMMARY  

In the present study a new approach against the ongoing apoptotic cell death during 

hypoxia/reoxygenation (H/R) in endothelial cells was established. Particularly, the 

activation of hypoxia-inducible factor (HIF-1α), plays an essential role in triggering 

cellular protection during hypoxia, but it’s rapidly degradation during reoxygenation, may 

limit its effect on cell survival to the hypoxic period alone. Regulation of HIF-1α 

expression is controlled by repression of oxygen-dependent prolyl 4-hydroxylases (PHD) 

during hypoxia. The present study was conducted to elucidate the molecular mechanism 

by which inhibition of PHD pathway leads to protection of endothelial cells against 

ongoing apoptotic cell death during H/R. The study was performed using an established 

model of cultured monolayers of human umbilical vein endothelial cells to test the 

hypothesis that stabilization of HIF-1α beyond hypoxia exerts anti-apoptotic effects 

during H/R by preventing p53-mediated apoptosis. 

Cells were serum starved for 12 h, then exposed to 1 h of hypoxia (Po2 < 5mmHg) 

followed by 24 h of reoxygenation (Po2=140mmHg). Exposure to hypoxia caused an 

increase in HIF-1α and p53 content. During reoxygenation HIF-1α declined towards 

basal level, while p53 remained unaltered. Under the same conditions, endothelial 

apoptosis was increased to 58% (annexin V staining). Silencing of PHD2, led to an 

increase of the HIF-1α content during hypoxia and maintained it at that level during 

reoxygenation. HIF-1α stabilization was associated by an increase in the Mdm2 content, 

whereas expression of p53 was reduced. PHD2 silencing reduced apoptosis to half. 

Additon of DMOG (1mM, dimethyloxalyl glycine), a PHD inhibitor, at the onset of 

reoxygenation had the same effect. Reduction of p53 content was restored when the 

proteosome inhibitor MG-132 was added. Interaction of Mdm2 and p53 (co-

immunoprecipitation) was increased compared to reoxygenation. Downregulation of HIF-

1α by siRNA increased apoptosis to 60% and abrogated Mdm2-p53 complex formation. 

Downregulation of Mdm2 by siRNA had no effect on HIF-1α but increased p53 level. 

Stabilization of HIF-1α due to PHD inhibition beyond the period of hypoxia defines a 

novel mechanism that exerts anti-apoptotic effects during H/R injury by preventing p53-
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mediated apoptosis and identifies PHD2 as a new molecular target for therapeutic 

intervention. 
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7 ZUSAMMENFASSUNG  

In der vorliegenden Studie wurde eine neue Methode gegen die anhaltende Apoptose 

während der Hypoxie/Reoxygenierung (H/R) in Endothelzellen (EC) etabliert. Die 

Aktivierung des Hypoxie-induzierten Faktors (HIF-1α) spielt eine besondere Rolle in der 

Auslösung zellulärer Schutzmechanismen bei Hypoxie, welcher bei Reoxygenierung 

jedoch schnell zersetzt wird, so dass diese Rolle vermutlich auf die hypoxische Phase 

beschränkt ist. Die HIF-1α-Expression wird durch die Hemmung der 

sauerstoffabhängigen Prolyl 4-Hydroxylasen (PHD) während der Hypoxie reguliert. 

Diese Studie wurde durchgeführt, um den molekularen Mechanismus zu finden, der 

durch die Hemmung des PHD-Weges zum Schutz der EC vor Apoptose nach H/R führt. 

Diese Studie nutzte ein etabliertes Modell in humanen Endothelzellen der 

Nabelschnurvene, um die Hypothese zu testen, ob die Stabilisierung von HIF-1α nach 

der Hypoxiephase anti-apoptotische Effekte während der H/R Schädigung aufzeigt, 

indem die p53-vermittelte Apoptose gehemmt wird.  

Hierfür wurde den Zellen zunächst für 12 Stunden das Serum im Kulturmedium 

entzogen. Anschließend wurden die EC für eine Stunde einer Hypoxie gefolgt von 24 

Stunden Reoxygenierung ausgesetzt. Die Hypoxie verursachte einen Anstieg von HIF-

1α und p53. Während der Reoxygenierung fiel HIF-1α auf niedrige Konzentrationen ab, 

doch die p53 Konzentration blieb unverändert. Unter den gleichen Bedingungen stieg 

die Apoptoserate der EC auf 58% (Annexin V Färbung). Das Ausschalten des PHD2-

Gens führte zu einem Anstieg an HIF-1α während der Hypoxie und gleich hohem HIF-

1α-Gehalt bei der Reoxygenierung. Die Stabilisierung des HIF-1α war assoziiert mit 

einem Anstieg an Mdm2 und einer verringerten Exprimierung von p53. Das Ausschalten 

des PHD2-Gens führte zu einer Halbierung der Apoptoserate. Der Zusatz von DMOG 

(1mM, Dimethyloxalyl glycin), einem PHD Inhibitor, zu Beginn der Reoxygenierung 

zeigte den gleichen Effekt. Die Reduktion des p53 wurde durch den Proteosomen 

inhibitor MG-132 aufgehoben. Die Interaktion zwischen Mdm2 and p53 (Co-

immunopräzipation) war im Vergleich mit der Reoxygenierung erhöht. Downregulation 

von HIF-1α siRNA erhöhte die Apoptoserate auf 60% und hob die Mdm2-p53-

Komplexbildung auf. Downregulation von Mdm2 durch siRNA zeigte keinen Effekt auf 

HIF-1α, erhöhte jedoch die Konzentration an p53. Die Stabilisierung von HIF-1α über die 
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Hypoxiephase hinaus zeigt einen neuen Schutzmechanismus vor einer endothelialen 

H/R-Schädigung auf. Dieser Protektionsmechanismus beruht auf einer Inhibition der 

p53-vermittelten Apoptose und identifiziert PHD2 als ein neues molekulares Ziel für die 

therapeutische Intervention.  
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