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1 Introduction

Nowadays, an intense research effort is devoted to the field of materials
science - as a converging point between physics and chemistry - to develop
and understand new sustainable alternatives to raw materials for industrial
applications and environmental preservation. The rapidly growing of
human population leads to a higher energy demand thus requiring new
scientific strategies to replace or at least supplement conventional power
production - such as nuclear power or hydroelectric plants - by alternative
technologies like thermoelectric generators or solar panels.

This is the main objective of the Research Training Group (RTG) 2204
"substitute materials for sustainable energy technologies", affiliated to
the Center for Materials Research (LAMA), at the University of Giessen.
The focus of the RTG2204 is the study of highly specialized and abundant
functional materials aimed at a massive production of renewable energy
technologies. The team is composed by scientists of twelve research
groups belonging to six institutes and studying in the following fields:
Thermoelectric generators, high-efficiency photovoltaics, large-scale
rechargeable batteries, intelligent glazing, and carbon-based technolo-
gies for energy-efficient applications. The collaboration between the
scientists is aimed to provide technologies for production, development,
characterization and recycling of raw materials.

The research facilities at each institute allow the measurement of dif-
ferent materials properties, such as thermoelectric transport, photovoltaic
responses and general optical properties, mechanical properties, and so
forth. The overall research is mostly done by experimental scientists,
but the collaborative work between researchers yields the possibility of
a simultaneous measurement and simulation of the physical situations.
Hence, the participation of researchers in the area of computational and
theoretical sciences is fundamental for a more complete understanding
of all phenomena in materials science.

New discoveries in materials science come from different sources. As
an example, an exhaustive exploration of the periodic table of elements,
and their unbounded possibility of combinations, have yielded ground-
breaking achievements in this field but under practical and heuristic
algorithms: the search of new materials with particular properties, e.g.,
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optimal thermoelectric performance, etc. nano-structuring, as another ex-
ample, or exploiting atomic-like properties, requires big scientific efforts
in order to control the physical parameters at these scales. In this way, it
is possible to observe transport in few-electron systems, confinement and
quantum effects. The limitations arise when a massive and large-scale
production of atomic-like devices is needed. There, simulations play an
important role in the prediction of possible outcomes since they base in
fundamental laws and the satisfactory agreement with experiments.

As a first step in the process of discovery, one has to track back the
state-of-the-art of the most promising materials, if already existing, to
evaluate alternatives for their optimization or substitution, production
costs, and environmental impact. As treated in this thesis, silicon (Si)
is regarded as one of the most abundant materials in the earth crust
and is nearly 100% recyclable. However, its relatively low efficiency in
thermoelectrics limits its technological application as a thermoelectric
device and demands its substitution by, for instance, the iso-electronic
germanium (Ge) that shows a better performance. However, the costs of
production are much higher than that of Si and its not optimally recycled.
There are plenty of examples in materials science in which there is a
competition between a material’s efficiency, in some particular parameter,
and its toxicity or scarcity. One important branch in modern materials
research deals with the optimization of material properties under some
constrictions, for instance, thermoelectric performance vs. production
costs. Another alternative is to explore the theoretical potential energy
landscapes for the formation of binary compounds. However, the possible
combinations are huge and impractical. Therefore, the search is always
bounded, e.g., by physical reasoning.

Many practical problems in the world are being tackled by materials
science, specially those related to energy conversion/storage and alterna-
tives to fuel and energy consumption. Abundant materials like hydrogen
are subject of intense research to mitigate the demand of global energy
consumption since these materials can be activated by the sun light and
therefore are clean sources of energy.

It is therefore mandatory to devote the research to the practical and,
at the same time, fundamental problems involving the preservation of
nature, environment, at individual and industrial scale. My role as a Ph.
D. candidate of the RTG 2204 is to support and provide computational
simulations to material systems to interpret their results and to predict
situations not yet accessible in experiments. The basis of the simulations
goes back to the discovery of quantum mechanics and its application
to solids: theoretical solid state physics, or condensed matter physics.



The main focus on this approach corresponds to ab initio - density
functional theory - methods. Computational sciences have grown in
parallel and nowadays there are plenty, but not infinite, of tools that
allow to concentrate in the solution of particular problems rather than
in the details of the programming language. Also, the diversity in the
formalism offers the possibility of modeling different physical situations
and to explore intrinsic and probably unexplored materials properties.

During the course of this doctoral training, I have attended different
seminars about environmental management, recycling strategies and
physical sciences. Therefore, I regard this experience as an introduction
to the scientific community and as a skilled preparation for the job market.
From the ambitious point of view of theoretical solid state physics, all
experiments covered within the research groups affiliated to LAMA and
RTG2204 are sensible to be simulated and explained from the theory
grounds, but unfortunately time is always a realistic boundary. Therefore,
despite my desire of getting involved in all the projects, I will present
below the results of my participation in only a very few, but substantial,
collection of these projects.

I want to mention that the structure of this thesis corresponds to a logical
order, rather than a historical order, because it has been developed from
intuition, intensive research and detailed discussions with researchers in
different contexts. It was, of course, written after an intensive review of
the theoretical background and the state of the art of the projects.

Firstly, I addressed the topic of electronic properties of thermoelectric
Mg, X systems. Using elemental solid state physics, I tried to cover all
crystalline properties of these materials and intermediate alloys. These
properties are the formation energies to account for stability, the mapping
of electronic band structures for intermediate compounds, energy band
gaps, effective masses, and the issues related to the theoretical limitations.
In order to define this problem, since there are still plenty of open
questions about the functionality of these materials, I concentrated on the
physical observables that can be extracted from the electronic properties
obtained from the DFT methods developed in the AG Heiliger, i.e., the
Green’s functions KKR formalism. I figured out that this is a nowadays
interesting research topic since there are many physical properties not
yet reported and not even understood.

Similarly, as is also in the research scope of the AG Heiliger, I decided
to address the problem of Raman spectroscopy in graphene from first-
principle calculations. As a first approximation, the equilibrium and
zero absolute temperature properties provide a very good description
of this phenomenon since no phase transitions or thermal effects are
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directly involved. Then, using bare conservation rules, I developed a
phenomenological approach that satisfactorily accounted for the observed
Raman shifts induced by the excitation laser energy used and micro-
crystalline effects of the sample. This approach allowed me to understand
and explain many observed properties. However, some others are still not
accessible from the description. It is my intention with this approach to
open a venue to a more complete description of the Raman phenomena
in micro-crystalline samples that can in principle be complemented with
the experience of the research group in this field.



2 Theoretical Foundations

In this section I present an introduction to the theoretical techniques
required to describe the electronic and structural properties of the material
systems. These systems can be either symmetric pristine crystals as well
as materials with defects. The latter comprises different categories, such
as point defects as in-site alloy substitutions, or extended defects such as
boundaries in the materials.

Therefore, I exploit the fact that quantum mechanics predicts with
a very good accuracy the material’s observables at the atomic scale
and, thus, all macroscopic quantities. However, a direct solution of the
complex many-body problem is not always possible and in most practical
cases completely unknown. Fortunately, a detailed analytic solution
to such a problem is not always needed since there are different ways
to approximate this problem. All approximations rely on some basic
assumptions, such as that the single-electron is embedded in an effective
medium that self-consistently reaches its equilibrium in the ground state
of the system.

First, I will review the basics of density functional theory (DFT) from
a practical point of view, without a rigorous mathematical treatment but
rather taking advantage of the vast existing literature and computational
algorithms based on this formalism. As part of the approximate solutions
to the quantum mechanical laws, i.e., the Schrodinger’s equation, I will
review the Green’s functions (GF) formalism as part of the multiple-
scattering theory. Within this theory, the Korringa-Kohn and Rostocker
(KKR) method plays an important role since it provides a set of relatively
simplified formulas to compute the band structure of materials, based on
a spherical expansion of the background potentials.

To treat alloy systems there are several alternatives at present, such
as supercells, virtual crystal approximations, and the coherent potential
approximation (CPA). In the language of the multiple-scattering theory,
the CPA allows to define an effective single-site scattering potential
that solves self-consistently the system’s GF and therefore all physical
quantities of the system can be obtained by means of the Bloch spectral
density function (BSF).

Finally, for the sake of completeness in the study of materials, the



2 Theoretical Foundations

phonon dynamics must be included and their contributions to the total
free energy. By means of a convenient separation of the Schrodinger’s
equation, the Born-Oppenheimer approximation, the electronic and
phonon dynamics are decoupled and then treated using linear response
perturbation theory. These calculations are essential to model many
properties of the materials, especially those dependent on temperature or
the material response to external electromagnetic fields.

2.1 Introduction to Density Functional Theory

DFT represents an alternative to electronic structure calculations in which
the electronic density of states (DOS) n(r), rather than the many-electron
wave function, is the main actorX’ Any problem in the electronic structure
of matter is solved by the Schrodinger equation including the time.* In
general, a material system can be described as a collection of interacting
atoms under the influence of some external fields® This system may be in
either the gas phase, such as molecules, clusters, etc., or in a solid phase,
such as bulk materials, surfaces, etc. At this scale, the materials are
described as a set of electrons and atomic nuclei interacting via Coulomb
electrostatic forces with a modeling Hamiltonian such as

. i 2 =R, e2ii 1
A=-1v2_ v2e s
om ' H2M; T2 i=1 j#i i — 1)l
T T” Vee
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Here, r = {r;,;i = 1,...,N} is a set of N electronic coordinates, and
R ={R;, I =1,.., P} is aset of P nuclear coordinates, and Z; and M,
are the nuclear charge and masses, respectively. In this equation, 7'
represents the (non-local) electronic kinetic operator, T, is the nuclear
kinetic operator, V,, represents the electron-electron interaction operator,
V. is the nuclear-nuclear operator, and Vou represents the electron-nuclear
interaction.

The nature of electrons is fermionic, and therefore the total wave

function must preserve its nature and be antisymmetric under the exchange
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of the coordinates of an indistinguishable electron pair. Different nuclear
species may be distinguishable and they may obey either Fermi statistics,
for half-integer nuclear spin, or Bose-Einstein statistics for integer nuclear
spin. In principle, all the properties can be derived by solving the time-
independent Schrodinger equation:

Fllﬁn(l’, R) = (1, R), (2.2)

where g, are the eigenenergies and i,(r,R) are the corresponding
antisymmetric eigenstates, or wave-functions. This equation, eq. (2.2),
is practically impossible to solve analytically. An exact solution exists
for a few limited cases, such as the hydrogen-like atoms and related
di-molecules. This difficulty arises, most importantly, from the fact
that in this many-body system the nature of the two-body Coulomb
interaction precludes this equation to be separable. An attempt to make it
separable is known as the Born-Oppenheimer approximation or adiabatic
approximation; they proposed a scheme for separating the motion of
the nuclei from that of the electrons. This approximation represents an
alternative solution to solve eq. (2.2) of the form

Un(6R,1) = )~ 0,(R,1)D,(r, R), (2.3)

where 0, (R, 1) are wave functions describing the time-evolution of the
nuclear subsystem in each of the adiabatic electronic eigenstates @, (r, R).
These eigenstates satisfy the time-independent Schrodinger equation

h,®,(r,R) = E,®,(r,R), (2.4)

where the electronic Hamiltonian, in accordance to that presented in

eq. (2.1)), is given by

he=T+H,+Ve=H-T,- V. (2.5)

In this partial differential equation on the r variables, the 3P nuclear
coordinates R enter as parameters. The key issue for studying and
analyzing the structure of matter is, therefore, to solve the electronic
Schrodinger equation A%(r, R) = £(R)¥(r, R) for a system of N interact-
ing electrons in the external Coulomb field generated by a collection of
atomic nuclei. The eigenenergies also depend parametrically on R, and
define the different potential landscapes.

11
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The first approach to the many-electron problem may be considered to
be the one proposed by Hartree in 1928. The basic assumption is that the
many-electron wave function, ¥(r, R), can be written as a simple product
of one-electron orbitals, ¢, (r,R). He introduced the self-consistent field
(SCF) approach in a qualitative way. After that, Slater in 1928 put this
method into a mathematical background, by formulating a total wave
function of the product form

N
or) = | | eilr). (2.6)
i=1

Within this approximation, the total energy is found self-consistently
using an ansatz wave function, eq. (2.6)), and then perform variations
with respect to the one-electron orbitals ¢;. Within this approximation,
one can apply a variational principle under the normalization of the
individual orbital wave functions, ¢;, and using the eigenenergies as
Lagrange multipliers.

The Lagrange equations lead to an effective Schrodinger equation of
the form,

K2 .
——v2 v (r, R)) 0i(r) = &ii(r) 2.7)
2m eff

with

j‘vati |‘10j(r,)|2

dr’. (2.8)
r—r'|

V(6 R) = Ve (r,R) + /

This approach does not contain the Fermi nature of the electrons
and assume them as distinguishable particles. Pauli’s principle can be
introduced using an antisymmetrized many-electron wave function in the
form of a Slater determinant in the single-electronic spin orbital wave
functions. This wave function introduces particle exchange in the Hartree-
Fock approximation. Within this approximation, the Coulomb many-body
correlations between electrons are absent but yields a reasonable good
description of atomic bonding. The eq. and eq. (2.8)) are called the
SCF Hartree equations.

In 1927-1928,% Thomas and Fermi proposed the full electronic
density n(r) as the fundamental variable of the many-body problem, that
settles down the basis for the latter development of density functional
theory, or DFT. They proposed an expression for the total electronic
energy, obtained through eq. (2.5)), where the individual components are

12
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taken from the homogeneous electron gas. The construction of these
quantities for an inhomogeneous system follows the integral-functional
formula,

Edlp] = / p(t)ealp(m)]dr, 2.9)

where the subscript a stands for the kinetic, exchange, and correlation
contributions to the total electronic energy. Using this notation, the energy
terms are assumed to be functionals of the charge density calculated
locally at every point in space. This was the first time that the local
density approximation (LDA) was proposed. The density of an electron
gas is known and given, and therefore the kinetic energy as functional of
it. The LDA kinetic energy is

ET=CK/MﬁwML (2.10)

with Cy = 3(372)?/3/10(= 2.871) Hartree is the atomic unit of energy
equivalent to twice the ionization energy of the hydrogen atom (27.21
eV). Exchange can also be introduced by considering Slater’s expression

for the homogeneous electron gas, as it was done by Dirac in 1930 and
Slater in 1951,%”

&@h—@/ﬁ@“w, (2.11)

with Cx[p] = 3(3/7)!/3/4(= 0.739) Hartree, in the so called Thomas-
Fermi-Dirac approximation. Correlation can also be included even for a
local approximation to the homogeneous electron gas, to obtain an energy
functional of the electronic variables exclusively through its density. Any
component of the energy functional E[p], is minimized by the density
p(r) by means of some variational principle, subject to the constraint
that the total integrated charge is equal to the total number of electrons,
ie., / p(r)dr = N. The research effort has shown that the LDA, and
its extension to systems with unpaired spin, gives ionization energies of
atoms, dissociation energies of molecules and cohesive energies with
a fair accuracy of typically 10 — 20%. However the LDA gives bond
lengths and thus the geometries of molecules and solids typically with a
very good accuracy of ~ 1% 1

In 1964,% Hohenberg and Kohn formulated and proved a theorem that
put the former ideas on solid mathematical grounds. They describe the

13
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unique relationship between the total energy of a system of electrons
moving under the influence of an external potential and the charge density.
Their theorems state that the total energy and thus the external potential
are both a unique functional of the electronic density, i.e., E = E[n(r)]
and v.y/[n(r)]. The energy functional can be written in the following
way:

E[n(r)] = / n(OVeun()]dr + Fln()] (2.12)

where F[n(r)] is an unknown potential functional that depends only upon
the density n(r). The second theorem states that the ground state energy
can be obtained variationally: the density that minimizes the total energy
is the exact ground state density. As a collorary, since p(r) univocally
determines v..(r), it also determines the many-body ground state wave
Junction ®, which should be obtained by solving the full many-body
Schrodinger equation.

Then, in 19822 Levy reformulated this theory in order to include
the antisymmetric nature of the density arising from the antisymmetric
wave functions. Kohn and Sham in 1965 presented a practical scheme
for determining the ground state properties and generalizations for the
excited states. 1"

In this approach, one can self-consistently find the energy solutions
of the system using a trial wave function as an initial guess. Note
that the Hartree contribution to the electron-electron interaction energy
can, in principle, be solved exactly by using classical electrodynamics.
The exchange energy can also be solved exactly, and therefore the most
difficult term will be the correlation energy.

The Kohn and Sham approach is based on an energy functional,
expressed in terms of the occupied orbitals, that minimize the non-
interacting electronic kinetic energy under a fixed density constraint.
Besides the great success of this approximation, the physical meaning of
the quantities involved, the Kohn-Sham orbitals and the eigenenergies, is
still under an intense debate® Kohn and Sham provide a self-consistent
scheme to find the DOS of the system from a reference potential. They
also extend this theory to spin-polarized systems.

Therefore, the strategy to attack the many-body electronic problem is
to divide the total energy of an electronic system, given by eq. (2.5), into a
number of different contributions, E[p] =T + vey + Eg + Ex + Ec, each
of which can be addressed separately. The decomposed factors come
from the operator H,, and correspond to the classical electron-electron
interaction or Hartree term (Ey), the exchange energy (Ex), and the

14
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coupling constant averaged correlation term (E ).

The big issue here is the correlation energy. One of the natural starting
point is the homogeneous electron gas. Besides the Dirac approximation,
excellent approximations are also available, e.g., due to von Barth and
Hedin 1 Vosko et al, 1% Perdew and Zunger,’® and Ceperley and Alder
using quantum Monte Carlo simulations#

In the local density approximation (LDA), the main idea is to consider
a general inhomogeneous electronic system as locally homogeneous,
and then to use the exchange-correlation hole corresponding to the
homogeneous electron gas.

More generally, gradient expansions address the problem of inhomo-
geneities in the electronic density using an expansion of the density
in terms of gradient and higher derivatives in space. In general, the
exchange-correlation energy can be written in the following form:

Exclp] = / p(r)exclp(®)]Fxclp(r), Vo(r), V2p(r),...]dr  (2.13)

The second order expansion of this equation corresponds to the
generalized gradient approximation (GGA) which is valid for densities
that vary slowly in space. Among the most common functionals, there
exist the Langreth-Mehl functional =2 Becke-BLYP® Perdew, Burke,
and Ernzerhof (PBE) and revisions,! and finally the meta-generalized
and hybrid functionals.!

The practical usability of ground-state DFT to describe physical
properties depends entirely on whether approximations for the functional
Exc[n(r)] can be done which are simple and sufficiently accurate for the
particular physical system. There are, as well, some hybrid methods, like
ER" = aEXS + (1 - )EGOA

In the Kohn-Sham formulation of DFT, as a generalization of the
Hartree-Fock SCF theory given by eq. and eq. (2.8), deals with the
solution of the eigenvalue equation:

hz 2 p(r,) ’
——V7+ veu(r) + —dr’ + pxclpl; ¢i(r) = gipi(r), (2.14)
2m r — 1’|
where the electron density is given by

N
p(®) = > fileim)l. (2.15)
i=1

15
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In these equations, N represents the number of electrons, and f; are
the occupation numbers corresponding to the one-electron eigenstates; in
the case of spin-unpolarized insulators or closed shell molecules, f; = 2
for the NV /2 lowest eigenstates and f; = 0 otherwise. For spin-polarized
and open shell molecules the exchange-correlation and external (whether
magnetic or not) potentials depend on the spin projection. The same
situation happens when the spin-orbit coupling is considered.

In the electron-nuclear interaction, it is customary to distinguish
between the valence electrons, that contribute to chemical bonding, and
the tightly bound core electrons which do not participate in bonding;
although this is only a way of labeling without general validity.

In that case, it is possible to reduce the electronic degrees of freedom
by replacing the atomic nuclei with a still point-like - effective - nucleus
of charge Zy = Z — Z.ore, With Z,,. the charge associated with the core
electrons.

In solid state physics, the periodicity defines an infinite crystal by
repeating the elemental unit or Wigner-Seitz cell. The unit vectors
reproduce the infinite solid and are in general non-orthogonal. The set of
points in space corresponding to integer combinations of the unit vectors
corresponds to the Bravais lattice, of which there are only 32 in three
dimensions. The combination of the translation symmetry embodied in
the Bravais lattice with the point group symmetry of the basis gives rise
to 230 space groups, which are sufficient to classify all known crystalline
solids

The calculation of the properties of a huge - nearly infinity, number
of electrons is drastically reduced by Bloch’s theorem '3 This theorem
connects the properties of an infinite-crystalline solid material with those
of the electrons in the unit cell. The calculation of the wave function for
all the electrons in the solid is therefore mapped onto the calculation of
the wave function for a finite number of electrons in the unit cell at any
wave vector k, which are in the first Brillouin zone (BZ). Numerically,
one has to define a Brillouin zone sampling.

For solid state applications, the Kohn-Sham equations (eq. (2.14))) must
be solved for each k-point included in the BZ sampling. The connection
emerges through the electronic density, which is now expressed as a BZ
average,

Nk 2
pry = > wny 1| o) (2.16)
keBZ i=1

where N is the number of electronic states occupied at each k-point, and

16
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fl.(k) is the occupation number of band i at wave vector k. The weight
factors wgk depend on the symmetry of the unit cell. If the system is
insulating, then fi(k) = 1 independently of i and k, and Nx = N. If there
is spin degeneracy the sum is carried up to N /2, and then multiplied by
a degeneracy factor jj.(k) = 2.

2.2 Green’s Functions Approach

The Green’s functions (GF) represent an alternative to describe the many-
body system and find the propagating solutions of the Schrodinger’s
equation. These functions, given by G(r,r’; ¢), represent the probability
of having an electron at r at time ¢ given that there was an electron at r’
at time 0.2 When Fourier-transformed into energy space, the GF for the
free lattice is the solution to the following differential equation:

h2
{—Vz +E|G(r,Y,E) = 6(r - ), (2.17)
2m
with the boundary conditions
G(rs,v,E) = ¢*TG(r,v, E), (2.18)
0G(rs, 1, E) _ _eik,TaG(rS, r’,E)‘ (2.19)
on on

In a periodic solid, the boundary conditions correspond to a polyhedral
shape, and therefore r and rg are conjugate points on the boundary of the
polyhedron. In this polyhedral, the integral problem of the wave function
is computed by

w(r,E) = /G(r,r’,E)V(r’)w(r’,E)dT, (2.20)

where 7 is the volume of the atomic polyhedral. This equation represents
a sum of contributions from waves scattered from all other cells. The
structural GF, inside the integral of eq. (2.20), is identical for all unit cells.
This equation in principle must be recovered using variational principles
using a trial wave function. In principle, the variational condition gives
a set of linear equations whose determinant, that vanishes, is a function
of the wave vector k and the energy thus yielding the electronic structure.

In a more general fashion, the GF is the solution of a Schrodinger-like
equation

17



2 Theoretical Foundations

h2
{—%VZ + Vorr(T) — E} G(r,x';E)

+ / X(r,r"; E)G(x”,v'; E)dr” = —=6(r — 1’), (2.21)

where Z(r,r”; E) is the self-energy operator, which in general is a non-
local, non-hermitian, energy-dependent operator.

Once the GF is known, all physical properties can be calculated. In the
energy domain, the GF is the solution of the Schrodinger-like equation

This equation is recovered using variational principles, solved in the
single unit cell, using a trial wave function that consists of a superposition
of spherical harmonics and structural constants. Individual components,
such as the Hartree and exchange-correlation potentials can be separated
from X. If the exact GF Gy(r,1r’; E) for a related reference system is
known, for instance the free-particle case given by eq. (2.17), then the
required GF G(r,1’; E) can be calculated through Dyson’s equation:

G(r,v’; E) = Go(r,r'; E)

+//Go(r,rl;E)AZ(rl,rz;E)G(rz,r’;E)drldrz. (2.22)

Here, the interaction potential is given by AZ(r1,12; E) = X(r, 10, E)—
va(r11,13), with va(ry, rp) the interaction potential of the reference system.

Once we have the GF of the system, we can calculate in principle all
the ground state electronic properties in the framework of the muffin-
tin potential model. For instance, the spin dependent local charge
distributions are calculated from the imaginary part of energy integral of
the site diagonal GF:

Er
p(r) = —% Im/_ dEG(r,1; E). (2.23)

Green’s functions are exactly known for non-interacting electrons and,
in general, for single-particle approximations such as Kohn-Sham and
Hartree-Fock. These assume the form

)= 3 AT o) r) 020

where ¢,(r) are the solutions of the single-particle equation and &, the

18



2.3 Multiple Scattering Methods: the KKR Method

corresponding eigenvalues. The problem, after a suitable definition of
the reference GF, reduces to compute the self-energy term which contains
all the exchange and correlation effects. One way to solve this problem is,
for instance, Hedin’s GW approximation which consists of retaining the
first term in an expansion of the self-energy in terms of the dynamically
screened Coulomb interaction W:2!

Yow(r,r’;t) = iG(r, ;)W (r,r'; 1) (2.25)

The computations of the electronic properties using the GF formalism
and eq. (2.23), as a generic solution of the quantum-mechanical problem,
are dramatically reduced since these functions are represented in the
complex space.

2.3 Multiple Scattering Methods: the KKR
Method

The original work of Korringa, Kohn and Rostocker (KKR),2%23 in-
troduces the approximation of considering the potential as spherically
symmetric inside atom-centered spheres inscribed into the atomic poly-
hedron, and constant in the interstitial region. Within this approximation,
the atomic potential is represented by a superposition of spherically
symmetric muffin-tin (MT) potentials, V = }} V;, where V; is centered at
any atomic position. Within this MT approximation, the Schrodinger’s
equation is solved in a periodic lattice using a variation-iteration method
and yields a set of simplified equations to determine the structural
constants and therefore the electronic structure.

Inside the spheres, in an angular momentum basis, the solutions for
the orbitals are expanded into one-center partial waves

lmux

l
¢LE) = > > CinXy(r E)im(E), (2.26)

1=0 m=—1

where the functions y,(r, E) are regular solutions of the radial Schrodinger
equation for energy E in the presence of the spherical MT potential.
There is a set of coeflicients C lIm for each atom [ in the unit cell. The GF
is expanded in spherical harmonics around r and r’. This is done using
the spherical Bessel and Neumann (and Hankel) functions. This leads to
a non-trivial set of linear equations, which have a solution in the KKR
secular equation.
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2 Theoretical Foundations

In turn, The GF is expanded in spherical harmonics and, outside the
MT potential range, the radial Schrodinger equation is that of a free
particle. In this method, it is supposed that the crystal is composed of an
assembly of non-overlapping MT potentials centered on each lattice site.
The crystal GF G(r,r’; E) can be calculated from the free space solution
g(r,r’; E) using a Dyson equation similar to that given by eq. (2.22).

Expanding this function in spherical harmonics, this equation yields
the contribution due to the multiple scattering giving rise to the band
structure.

In the angular-moment (L = (/,m)) representation, the structural GF
read

Gru(k) = ) oK) [1 - 120}, (2.27)
<

where t is, by definition, the atomic 7-matrix which describes the scattering
of the MT atoms. Standard KKR band structure calculation is performed
by finding the zero of the determinant of the KKR matrix for each k
vector

det|oLr — 1L(E)gLr (K; E)| = 0. (2.28)

The zeros of the KKR matrix give the poles of the GF in a one-to-
one correspondence. This determinant is rather simplified algebraically.
However, the actual formula is very complicated since it involves Clebsch-
Gordan coefficients and spherical Bessel functions. To evaluate the lattice
sums, the Ewald method is used.

In the KKR method we sum over reciprocal lattice vectors, by a Fourier
transformation. This method requires a high-performance computer. The
advantage of this method is that structural and atomic properties can be
separately computed and combined quickly.

There are plenty of details about this formalism, specially those
coming from the theory. A vast literature about this topic can be
found,>* since it represents the basis of the multiple-scattering theory
that can be applied to a large number of physical phenomena, e.g.,
transport. The main experience of the group, AG Heiliger, lies in
this DFT-based GF that nowadays is implemented for a large variety
of situations. For instance, the bare band structure computations that
require the computation of a reference single-electronic GF. The actual
GF of the system requires the inclusion of exchange and correlation
effects extracted from the functionals introduced in section 2.1l The
muffin-tin potential is also generalized to a full-potential approximation
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2.4 Coherent Potential Approximation

that accounts for the angular-momentum expansion in the interstitial
regions. Moreover, full-relativistic effects have also been implemented in
this formalism that accounts for the spin-orbit effects on the bands, and
other relevant terms that shift the single-electronic energies.?> There are
several further functionalities and possibilities inside this formalism that
have been worked out during the last years, even decades, that nowadays
provide a very powerful tool to determine the electronic and transport
properties of materials and alloys.

2.4 Coherent Potential Approximation

There are different alternatives in DFT to describe the physical properties
of systems with chemical disorder such as alloys. For instance, site
atomic substitutions between different atoms, or impurities, create a
local distortion of the crystal lattice and a breakdown of its translational
symmetry. The electronic properties of such an impurity are suitably
accounted for when the impurity is considered to be embedded in a
larger supercell, and the computations comprehend all possible ensem-
ble configurations. Though this approximation is consistent with any
electronic band structure theory, the computational cost is very high with
unavoidable effects on the band structures, such as zone folding 2

The virtual crystal approximation, on the other hand, describes the
alloys using an effective medium representing a simple average of
the alloy components, but disorder effects are neglected 2”28 Disorder
effects are accounted for when a statistical average over all possible
on-site occupancies of the alloy are considered and thereby all possible
configurations. This indicates that the theory must be sensitive to average
quantities rather than detailed microscopic configurations of the alloy.

A soluble and thermodynamically stable substitutional alloy between
the atoms A and B of the form A;_,B,, with concentrations c4 and c,
respectively, is considered here. In this alloy, an underlying crystal sym-
metry exists, with short-range order distortions, defined by sharp Bragg
peaks in the diffraction pattern. The coherent potential approximation
(CPA) consists of a formal replacement of the 7-matrix at each alloy site
by an effective 7 that represents the perturbing potential of the atom A
or B away from a reference unknown potential. This unknown potential
must de defined to find the exact alloy GF using the multiple-scattering
theory.

The CPA condition states, that to find the reference potential of the
alloy system, and therefore the alloy GF, a self-consistent system of
equations must be solved. This system demands that on the average there
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2 Theoretical Foundations

is no further scattering, i.e., caf 4 + cpt g = 0, and therefore it is possible to
approximate the ensemble average of the alloy GF to the actual alloy GF
with the self-consistent potential. With this approximation, the resulting
GF will simulate the electronic properties of the actual alloy.??

This method has been implemented in the KKR *" within the single-
site approximation (SSA) that decouples the averaged multiple-scattering
expansion.*! Therefore, the SSA implies that the occupation probabilities
at each site are independent from each other. One consequence of the
SSA is that this approximation does not account for short-order effects
like clustering.

In a general scheme, the modified propagator consist of a formal
replacement of (E — k?)™! — [E — k2 —ve(k, E)]™!, where ve(k, E), the
coherent potential, which is a complex quantity describing the average
effects of the medium. It is a complex, energy-dependent quantity,
and has been introduced as a model as an attempt to create an scheme
whereby the charge density and the position of the energy bands could
be determined. Consequently, v¢(k, E) is not a real physical potential.

Since now the electronic band structure is complex, and the electronic
wave number Kk is not uniquely defined, the physical quantities must be
obtained from a Bloch spectral-density (BSF) function A(E,p), given by

1 ’ ’ ’
A(E.p) = ———1m / / e P T )GER Y (2.29)

Here, N represents the number of unit cells in the crystal. The BSF
allows to map a band structure since it is, by definition, a (k, E)-resolved
charge density.

2.5 Phonons

In DFT, the ground state electronic density and wave functions of a crystal
are found by solving self-consistently a set of one-electron equations, as
presented in section [2.1] The calculation of reliable phonon properties
of materials is well within the reign of DFT.2% It is now possible to
obtain accurate phonon dispersion on a grid of wave vectors covering
the entire BZ, which compare directly with neutron-diffraction data,
and from which several physical properties of the system, such as heat
capacities and thermal expansion coefficients, can be calculated. The
key assumption is the validity of the Born-Oppenheimer approximation,
which views a lattice vibration as a static perturbation on the electrons,
and the knowledge of the linear response of the system to a small
displacement. It is well known that the harmonic force constants of
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2.5 Phonons

crystals are determined by their static linear electronic response. Within
the Born-Oppenheimer approximation, the lattice distortion associated
with a phonon can be seen as a static perturbation acting on the electrons.

Once the unperturbed ground state is determined, phonon frequencies
can be obtained from the interatomic force constants, i.e., the second
derivatives at equilibrium of the total crystal energy versus displacements
of the ions,

O°E :
ion (R_R/)+Celec (R—Rl),

i (R)Dug;(R) oy~ aifi

Coipi(R-R') =
(2.30)

where R(R") corresponds to a Bravais lattice vector, i(j) indicates the ith
(jth) atom of the unit cell, and a(8) represents the Cartesian component.
Céy”l.’[’gj are the second derivatives of Ewald sums corresponding to the

ion-ion repulsion potential, while the electronic contributions nyieﬁcj are
the second derivatives of the electron-electron and electron-ion terms in
the ground state energy.>> From the Hellmann-Feynman theorem,>*>>
one obtains the phonon frequencies at any q on the solutions of the

eigenvalue problem

W (@uai(@) = ) 145;(@)Daipi(Q). (2.31)
Bj
The Hellmann-Feynman theorem states that the force associated with
the variation of the external parameters, such as ion displacements, is
given by the ground state expectation value of the derivative of the
external potential acting on the electrons v, ;.
Linear response theory allows us to calculate the response to any
periodic perturbation; i.e., it allows direct access to the dynamical matrix
related to the interatomic force constant via a Fourier transform,

Daipi(q) = Coipj(R)e @R (2.32)

1
T, 2

with M;(M;) the mass of the atom i(j). Phonon frequencies at any q
are the solutions of the eigenvalue problem eq. (2.31)). In practice, one
calculates the dynamical matrix in the BZ, and obtains the corresponding
interatomic force constants by inverse Fourier transform. Finally, the
dynamical matrix (and phonon frequencies) at any q point can be obtained
by Fourier interpolation of the real-space interatomic force constants.
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2 Theoretical Foundations

There exists also the density-functional perturbation theory (DFPT),%°
in which the linear density response of the system to an external perturba-
tion is calculated self-consistently via the solution of a set of equations,
which involve as known terms only quantities related to the unperturbed
crystal.

To compute the thermodynamic properties of the system, when there is
no external pressure, the equilibrium structure at any temperature 7' can
be found by minimizing the Helmholtz free energy F({a;},T)=U - TS
with respect to all its geometrical degrees of freedom {g;} 2>

2.6 Total Energy Calculations

The equilibrium lattice structure at 7 = 0 is determined by minimizing
the crystal total energy &(V) as a function of the structural volume. For
this purpose, the values of the total energy calculated for different lattice

constants have been fitted to the Murnaghan-Birch equation of state,>”>
WBo | 1 (w\B v

g(V)= 22| — 20 + | + const, (2.33)
B, |B,—-1\V Vo

where B is the derivative of the bulk modulus with respect to the
pressure.

A great variety of physical quantities of solids depends on their lattice-
dynamical behavior, to mention a few of them, infrared, Raman, and
neutron-diffraction spectra. As well, phenomena related to electron-
phonon interaction such as the resistivity of metals, superconductivity,
and the temperature dependence of optical spectra are just a few of
them >
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3 Results and Discussion

In this chapter I present the main results obtained using the theoretical
machinery described in the last section, applied to the specific problems
proposed by the RTG2204 group. The parts that I present below have
been either already published or are yet in preparation for publication. In
a short way I will present them without exhaustive technical details, such
as computational tools, convergence tests, optimization of computational
times, and specially all kind of errors that can be found during the
progress of the research. I have compacted the information in a practical
way not necessarily using an strict chronological order of discovery but
rather a logical order.

The first application presented here corresponds to a collaborative
research with Prof. Dr. Eckhard Miiller and his research team in the field
of thermoelectric properties of magnesium silicide alloys. This field
remains as an active field after several decades since there are still many
fundamental scientific questions about the functionality and possible
applications of these alloys. The approach that I adopt here allows to
obtain new information about the electronic and structural components.
These results account very well for the scarce experimental trends and
predict those properties that are still out of the experimental scope.

The second application made during my doctoral training relates
to Raman spectroscopy and finds a direct application to the case of
graphene samples. This project is driven by a direct collaboration with
Prof. Dr. Peter J. Klar and his research group at the University of
Giessen, that thereby enabled me to have access to the experimental data.
The main goal was to demonstrate that the Raman selection rules can
be obtained from the equilibrium electronic and phonon properties of
graphene, and elemental conservation rules. Under this assumption, the
micro-crystalline effects on the Raman signals are accounted for using a
line-shape modeling that involves the relaxation of the conservation rules
through a phonon-confinement model. This model is system independent
and allowed me to model the micro-crystalline effects on further systems,
not presented here, like CeO, and diamond. As is expected in research,
the scope of this work potentially embraces other experiments currently
performed in the RTG2204 group.
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3 Results and Discussion

3.1 Electronic properties of Thermoelectric
M92X

In this section I present the main results of my research about electronic
and structural properties of the green-thermoelectric semiconductors
Mg, X, for X=Si, Ge, Sn, and their intermediate quasi-binary alloys. The
main motivation of this project is the need for sustainable and environ-
mentally friendly materials that substitute conventional raw elements in
industry.

From the practical point of view, silicon-based materials are desirable
for technological applications since silicon is one of the most abundant
elements in the earth crust. However, its low thermoelectric efficiency
still precludes this material for a large-scale production of thermoelectric
devices. It has been found that the iso-electronic Ge and Sn elements,
both less abundant and more expensive than Si, are the best substitutions
for Si in the quasi-binary Mg,Si;_, Y, compounds, with Y =Ge, Sn.

Another limitation found in these materials is the structural-miscibility
gap found in Mg;Si; _,Sn, and Mg,Ge; _,Sny, not presentin Mg, Si; _,Ge,,
that consist of a thermodynamic unstable state that tends to separate the
alloy into individual Mg, X-compounds.

For this study, I performed DFT-based calculations that account
for the structural stability and the electronic properties. Within the
framework of the Green’s function based Korringa-Kohn- and Rostoker
(KKR) method in full relativistic description, I compute the electronic
properties of the Mg, X semiconducting compounds. I describe the
influence of chemical disorder on the bands using the coherent potential
approximation (CPA) implemented in the KKR code. Within this
formalism I extract the electronic structure parameters relevant for
transport, such as total formation energies, optimal unit cell volumes at
intermediate compositions, forbidden band gap energies, and effective
masses of the conduction and valence bands in the vicinity of the Fermi
level.

3.1.1 Introduction

In the last years there has been an increasing interest in the transport proper-
ties of Mgr X _,Y, green-thermoelectric materials, for X, Y =Si, Ge, Sn.
They are indirect band gap semiconductors, crystallize in the anti-fluorite
structure*”, and have attracted much attention as candidates for thermo-
electric applications in the mid temperature range 500 to 800 K2
Among the Mg, X raw materials, Mg is one of the most abundant metals
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3.1 Electronic properties of Thermoelectric Mg, X

in the earth crust, but hazardous in its pure state. group IV materials are
non-toxic and environmentally sustainable,***** but pure Ge can exceed
the price of Si by a factor of ~ 800, or in the case of Sn by a factor of
~ 70. Further, its abundance is substantially lower, even though it is one
of the best substitutes of Si.*>#0

Early experiments, using the Hall effect,*/
and the electro-reflectance techniques,54‘56
the nearly pure Mg,Si,*$2/%% Mg, Ge,**>’ and Mg>Sn compounds.
These materials support p-type of transport under doping by a metallic
element, like Ag or Cu, as required for the manufacturing of thermo-
electric devices.©*®2 However, p-type samples have not shown excellent
performance

electrical resistivity,so‘53 ,

evidence the n-type nature of
51160

Contemporaneously, different semi-empirical computational tech-
niques were used to interpret and corroborate the measurements on
Mg, X with a good agreement.®4"’? More recently, modern density func-
tional theory (DFT) techniques have also been employed to compare
the accuracy of the exchange-correlation potential and its effects on
electronic properties and transport 1772

It was furthermore well known that relativistic effects had an important
impact on the electronic bands,”" such as degeneracy lifting of valence
bands, and shifts in the charge’s velocities and effective masses.Z% A brief
summary of some physical quantities from early studies on crystalline
Mg»X is gathered in table[3.1]

Even though the studies have been mainly focused on nearly pure
Mg, X samples, early experiments on inter-metallic compounds have
manifested their enhanced thermoelectric properties*” that have been
crucial for technological applications.Z"7? A detailed study demonstrated
the complete solubility of the Mg,Si; _,Ge, system for all intermediate
compositions, and confirmed their n-type nature and similarity of their
band structure.**8%83 The band gap in these alloys remains nearly
constant, at a value of 0.75 + 0.05 eV, and the structural parameters obey
the empirical Vegard’s law.5*

In the Mg, Si; _,Sn, and Mg,Ge; _,Sn, systems, no complete solubility
has been found*? Solubility is still under debate, since it has been
demonstrated that solid solutions of any composition can be produced
under mechanical alloying 2%8%88 In these systems, the degeneracy and
inversion of conduction bands lead to high-performance thermoelectric
properties®? at a composition close to x = 0.65,*9%29% P2 not observed in
Mngil_xGex,W’93 as confirmed theoretically.94 It has also been seen
in that system, that the band-gap decreases non-linearly with larger
substitution of a heavier Y element.” In such a way, the effective mass
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3 Results and Discussion

TABLE 3.1: Experimental and theoretical data of crystalline samples of Mg, X
from literature, corresponding to the lattice constant (a), indirect (Ej), direct
(Ep), and low-lying conduction (Ex) band gaps, spin-orbit (Esp) energy splitting,
and hole/electron effective masses m,,,. Theoretical n-type effective masses (m|
and m ) correspond to electronic bands at the bottom of the conduction bands.
Empty spaces correspond to unavailable data. Table taken from reference

Mg, Si Mg,Ge Mg>Sn
Exp Theo Exp Theo Exp Theo
a (A) 6.34047  6.160% 6.385* 631010  6.7657 6.7301
E;(eV) 0.780% 0.530°7  0.6004220 0.92007  0.330°1  0.640°!
Ep (eV) 2.170°%  2.060°7  1.7002%22 1.6307¢ 1.200°% 1.060°7
Eso (eV) 0.030°2 0.036%  0.200222% 0.208%>  0.800>> 0.525%
Ex (meV) 0.400% 0.670% 0.580* 0.780% 0.160** 0.276%3

my (mg)  0.46 #4828 _ 0.18 # - 1.17 & -
my| (my) - 0.69 © - 0.63 © — -
m, (mg) - 0.25 © - 0.25 © - -
m, (mp)  0.87 4858 _ 0.31 # - 1.28 b1 -

remains nearly constant,” and the lattice constant varies linearly with
composition.n96

In order to improve the thermoelectric properties of these alloys and to
suppress bipolar contribution to transport, a great theoretical and experi-
mental research effort has been devoted®” ™ to study the most efficient
dopants and the intrinsic/extrinsic defects in n- and p-type regimes!“0-105
near the band crossing 1% Different ab initio techniques have been
employed to study structural stability and to extract relevant transport para-
meters in these compounds. Supercell methods have shown zone-folding
effects on bands, and have confirmed the crossing of conduction bands
in MgQSil_xSnx““’115 and Mngel_xSnx.116 Chemical disorder has also
been addressed using DFT- special quasi-random structures 1+ L7L8
as well as the coherent potential approximation in the framework of the
Green’s functions formalismH°

Since some intermediate transport parameters are still unknown, or
the quantitative trends are not clear enough, I investigate the possibility
of modeling the electronic properties of Mg>X;_,Y, alloy systems
using an effective single parabolic band (SPB) approximation 02120
Even though experiments have evidenced clustering, or pure Mg, X-rich
regions, at some compositions,'?!' I rely on the homogeneity of the
alloys and extend the rigid-band structure approach to map the bands of
the intermediate alloy systems using a Bloch spectral density function
(BSF) defined within the coherent potential approximation (CPA), 230

28
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implemented in the Korringa-Kohn-Rostoker (KKR) formalism in the full-
relativistic case.22422 I compare my results with those already obtained
by experiments and calculations, and give an interpretation based on the
limitations of the formalism. The agreement between the existing data
and the present calculations is very good and indicate that the calculated
quantities can be used as a basis for interpreting further experimental
results.

3.1.2 Theoretical Details

Mg, X crystalline materials, for X=Si, Ge, Sn elements in group IV A of
the periodic table, are narrow indirect band-gap semiconductors and all
crystallize with anti-fluorite (CaF,) structure. The constituent X-atoms
occupy FCC sites at (0,0,0)a, while remaining Mg atoms are located at

%, %, }l)a and (%, %, %)a, where a is the cubic lattice constant; experimental
and theoretical physical properties of these materials are collected in
table The resulting structure has space group symmetry 02 (Fm3m)
(group number 225), closely related to diamond structure®®. For a syste-
matic analysis of substitutional alloying between the crystalline materials,
I use the CPAZ%2" implementation in the KKR framework?>!22 that is in
accord with supercell or special quasi-random structure methods!#11©
and provides a very efficient and computational time saving method for
the description of the alloys, but does not consider local effects like
clustering. The local density approximation (LDA) is used for treating
the exchange-correlation energy functional'2* I use a full-relativistic
description, and a k-space mesh of 48 x 48 x 48 for BZ integration. It is
well known that the LDA yields quite reliable ground-state properties,
but underestimates the band gap and lattice constants for most usual
semiconductors, compared to the general gradient approximation (GGA)
or GW methods /27323

3.1.3 Band Structure Details

Since the Brillouin zones of Mg, X are identical,*” the band structures

are similar and can be described around I" and X (face [001]) points,
close to the Fermi level, as illustrated in fig. [3.1} detailed electronic band
structures have been already presented and studied elsewhere, and the
Fermi level is set at the top of the valence bands.”®®> My computed
quantities are summarized in table [3.2] for crystalline materials and
intermediate solid solutions.

Qualitatively speaking, at the I" point one finds the bottom of the

29



3 Results and Discussion
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FIGURE 3.1: Schematic band structure of crystalline Mg, X in the vicinity of
the center of the BZ and the X-point. Figure taken from reference [ET]}

conduction band Cr, with symmetry I'; 2277 and the top of the valence

bands at I'5, that define the direct band-gap (Ep) as the transition
I'ys — I'y. The top of the valence bands consists of two degenerate bands
at the I'-point, labeled as heavy-hole (HH) and light-hole (LH) bands,
and a lower split-off (SO) band separated by an energy gap (Esp) ranging
from 0.03 to 0.8 eV for different compounds (see table[3.2).

The valence bands of Mg, X are mainly composed by p-X states, but
also small contributions of s- and p-Mg states. s-X states contribute
weakly to HH, LH, and SO bands, but strongly form the density of states
(DOS) at deep energies (~ —8 eV) A% The X point is composed by
two low-lying conduction bands labeled as C; and C;, with symmetries
X1 and X3 respectively, separated by a distance E, that define the indirect
band-gap (E;) as the transition I'j5 — Xj 3. The lowest conduction band
in Mg, Si (Mg,Ge) is a hybridized s-Mg-p-Si (s-Mg-p-Ge), followed by
a mostly s-Mg band at an energy Ey above. This unoccupied, mainly
3s-Mg band, is pushed down in Mg,>Sn and is lower in energy than the
hybridized s-Mg-p-Sn; therefore these bands, C| and C;, are inverted
in the compounds Mg;Si (or Mg,Ge) and Mg,Sn. DOS calculations
show that the effective mass of p-type carriers must be larger than that of
n-type, since the slope of the total charge density below the Fermi level
exceeds the slope above the Fermi level 1
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3.1 Electronic properties of Thermoelectric Mg, X

3.1.4 Total Energy Calculations

I obtain optimal structural properties of pure and intermediate alloys
by minimizing the total energy of the system with respect to the lattice
constant of the unit cell. Minimization of the total energy with respect to
small variations of the unit cell volume allows one to find the optimal
structural properties. Total energy calculations are also powerful to obtain
structural properties such as the bulk modulus and its derivative, using a
Murnaghan-Birch equation of state,1? as it was introduced in section
However, these quantities are better described using multipole moment
and full-potential corrections, and I limit my calculations here to the
atomic sphere approximation (ASA) that seems to show good agreement
with available experimental data. Here I consider the on-site substitution
between the X-elements, since it has been demonstrated that this kind of
defect (Xy) are thermodynamically more likely to occur than the Mg-Y
substitutions (Mgy ) 104121126

Using the KKR-DFT total energy E, I computed the formation energy
of the Mg, X elements, obtained in the reaction 2Mg + X — MgyX,
using Eform = E(MgoX) — 2E(Mg) — E(X). However, in order to study
the thermodynamic stability, the atomic chemical potentials (u) should
be considered to vary under specific constraints of the material in the bulk
and dilute phases.'22128 Therefore, I generalize the formation energy
formula of the Mg, X;_,Y, alloys, obtained in the reaction

2Mg + (1-)X + xY — MeX;_, Yy, 3.1)

and I use

Eporm = EMg2X) — 2u(Mg) — (1 — x)u(X) = xu(Y). (3.2)

Since the substitution is between Xy-elements, I have to consider the
bulk phase of Mg, and therefore, together with eq. (3.2)), the restrictions
to the chemical potentials in the Mg-rich region are given by

uMg) = E(Mg)
u(X) = EMgyX) - 2E(Mg) (3.3)
u(Y) = E(MgyY) — 2E(Mg)

so that the formation energy of the binary crystals, x = 0 and x = 1,
vanishes. Note that the formation energy, given by eq. (3.2), under the
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3 Results and Discussion

restrictions given by the thermodynamical chemical potential given by
eq. (3.3), is equivalent to

Erorm = EMgX 1Y) = (1 = x)E(Mg>X) — xE(Mg2Y), (3.4)

as I computed for all compounds, as presented in fig. In contrast to

the reported trend, ) E%%Z;i < ‘ El\’igrznfn < ‘ ENig&Ge 28 my calculations
predict that )El\i“ifn < )Eh/f)“ffl < E%grfe . Both results agree very well

with the experiments in the sense that the formation energies of Mg, Si
and Mg, Sn are very similar/®?
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FIGURE 3.2: Formation energy of the intermediate Mg, X;_,Y, alloy compo-
sitions. The solid lines represent the cubic polynomial fit. Figure taken from
[E2]

As presented in fig. [3.2] I measure the relative formation energy, from
total energy calculations, and the result shows the complete solubility of
the Mg, Si; _,Ge, compounds. In contrast, intermediate compounds of the
families Mg, X _,Sn, show larger formation energies thus indicating that,
energetically speaking, it is more likely to find those compounds lying at
lower formation energies, close to 0, in order to avoid a decomposition
into pure Mg, X-materials 2080122031 Thege results look qualitatively
similar to the present formation energy calculations, but, as similarly
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3.1 Electronic properties of Thermoelectric Mg, X

defined in literature,!%* T allow the chemical potentials to vary in the
Mg, X-rich phases, and adapt this definition for the general Mg> X _, Y
case.

Of course, a stability diagram analysis must include temperature effects
in the free energy. Therefore, one has to evaluate relevant contributions
coming from the phonon entropy. This is in principle possible to predict
the solid-state phase of these intermediate compounds. However, this
survey would require a complete and detailed study of the free energy
landscapes using the tools from thermodynamics and kinetics.132

Total energy calculations have also been presented using supercell
DFT calculations, in the general gradient approximation (GGA), showing
a linear increase with composition for Mg;Si;_,Ge,, indicating the
complete solubility of these intermediate alloys.*#%Y[ fitted all formation
energy calculations of fig. [3.2] using a third-order polynomial similar
to eq. and the results show a maximum close to x ~ 0.43 for
Mg, X _,Sny, for X=Si,Ge. This maximum is also predicted to be
located at x ~ 0.3 for MgZSiI_XSnx,'O4 and, in general terms, these
results also show a very good agreement with formation energy obtained
using DFT-GGA calculations.!** Even though, using the KKR-CPA
formalism, I am allowed to compute total free energy of the system and
account for important state parameters, such as the optimal unit cell
volumes, some other quantities are still away from the scope of this
study. This is the case, for instance, of the bulk modulus or its derivative,
that require detailed contributions of the lattice energy that, so far, have
been ignored. Therefore, I limit myself here to the predictions that show
very good agreement and that explain with good accuracy the electronic
component of the systems.

3.1.5 Disorder Effects on Bands and Lattice Constant
Minimization

With the total energy calculations presented in the last section, I obtained
the minimized unit cell volume and from it the optimized lattice constant
of a set of intermediate compounds in the Mg, X;_,Y, family. As
presented in table[3.2] for the pure cases, I obtain a lattice parameter 2.1%
below the experimental value for the Mg;Si case, while 1.37% and 0.14%
for the Mg>Ge and Mg, Sn cases, respectively. I found underestimations
of lattice constants and energy gaps in the usual range of LDA, and
dependent on the composition x, due to strong hybridization of p-X and s-

and p-Mg states /2802234 Thege underestimations are partly corrected
or even overestimated by the GGA2OMMOTIHIIRZHIINN0 - apq the
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3 Results and Discussion

values of band gaps are even more accurate in the GW computational
method.” In spite of this underestimation problem, I retain the LDA
since the shape of the bands is not substantially changed at the I'- or
X-points°
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3 Results and Discussion

While direct band gaps are underestimated as 7.88% in Mg, Si, 48.5%
in Mg,>Ge, and 24.7% in Mg, Sn, I observe that the direct band gap shrinks
by nearly 18.6% and 30% for X =Si, Ge, respectively, while their indirect
band gap is slightly enhanced by 8.15% and 8.90%. The differences
in the bands of Mg;Sn are not so prominent since the optimized and
empirical lattice constants are similar, and the corresponding electronic
band structures are similar as well.

Within the CPA approximation, as it was introduced earlier in sec-
tion [2.4] it is possible to account for alloy effects on the bands thus
implying that the wave vector k is not a good quantum number any
more 13/ The broadening of bands is physical, and if it is small enough,
one can fit the electronic parameters to an effective value, as I do in
the following. If this were not possible, then a description with a SPB
model would no longer be valid and thus a mapping impossible. Since
in all compounds the shape and location of the LH and HH valence
bands are similar, I expect alloying effects to be negligible compared
to the parabolic energy window. 1 regard the parabolic shape to hold
up to k = 0.03(27/a), within an energy window of ~ 100 meV, under
the criteria that non-parabolic effects are rather small.1*® The parabolic
shape of the bands and their effects on transport has already been tested
in Mg, X, using models of single and multiple valleys and parabolic
bands for transport S28HLAIAI20390143 Non_parabolic effects have also
been studied and reported to be relevant in the low-lying conduction
bands $4138

The broadening of the HH and LH bands is nearly homogeneous
and on the order of 1% in the range of parabolicity. In contrast, SO
energy bands move down with composition x, and at intermediate values
they are strongly k-dependent with a smearing up to nearly 100% far
from Lorentzian, as I present in fig. [3.3] This relative measurements
of the alloying effects allows to determine whether it is reasonable or
not, to map a band structure to a SPB model. In general, I have found
well-defined bands in the Mg,Si; _,Ge, system, with smearing close or
below 1%, since the change of the lattice constant with composition is
not as large as in the remaining Mg, X _,Sn, (X=Si, Ge) cases; in these
cases, alloying effects are stronger specially in the SO and conduction
bands at I" hence the mapping of the bands is a numerical challenge. For
small broadening in the bands, I perform a Lorentzian fit over all the
intermediate k-points along different paths to map a band structure. The
corresponding effective mass values will be presented below.

For the computed lattice constants shown in fig. [3.4] I find deviations
from the linear Vegard’s law a(x) = a;(1 — x) + a»x3* The data fits a
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FIGURE 3.4: Computed lattice constant of the Mg, X;_,Y, systems. Ex-
perimental values of the Mg,Si;_,Ge, case are represented by solid black
squares,HHA3ATESSTO2NAY ywhile theoretical values are represented by empty
black squares 0HCOPUIVZLIHTIDIA The experimental data corresponding to the
Mg;Si|_,Sn, case are represented by solid blue circles A 7887920911 121144
while theoretical data by empty blue circles Z3S7P0U0ZLSIIEN And | in the
Mg,Ge;_,Sn, case, the experimental data is represented by solid red
triangles 2*121149 while theoretical by empty red triangles ©#7HO021 Fioyre

taken from reference

third order polynomial equation of the kind

p(x) = a1(1 — x) + arx + ax(1 — x)* + Bx*(1 - x), (3.5)
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3 Results and Discussion

within an uncertainty of the order of 0.01% with respect to pure materials’
data: a; = p(x = 0) corresponds to Mg, X and a; = p(x = 1) corresponds
to Mg, Y. In that case, I only need to find two parameters to completely
determine the trend: @ and 8. In fig. [3.4]I also compare my computations
with other theoretical and experimental data, in all cases. Due to LDA I
observe a typical underestimation of the lattice constant in comparison to
experimental data as well as calculations using GGA 12 The intermediate
available theoretical data of the Mg, Ge | _,Sn system is rather scarce, most
of the data in this case exist in the pure material’s limit. I also observe
that, besides the deviations due to the LDA, the present calculations
reproduce very well the experimental data.

Using the fitting parameters of the third order polynomial, I obtain
the quadratic (8 — 2a) and cubic (« — ) contributions to the trends. In
the particular case of the Mg;Si| _,Ge, system, I see, from the values
reported in the table that the quadratic (0.03 A) and cubic (0.012
A) terms are small and thus can be roughly approximated by Vegard’s
law. This can be understood from the fact that Mg;Si and Mg, Ge have
similar binding energies, similar nature of the band gap, and therefore
for small variations of the lattice constant I expect for the Vegard’s law
to hold. In the remaining systems, from Mg, X (X=Si, Ge) to Mg,Sn,
the inversion of the bands reduce dramatically the band gap and binding
energies, thus increasing the difference in lattice constants and leading to
larger non-linear contributions.

I take these structural outcomes as the input values for computing all
BSFs for the intermediate systems. I observe also non-linear trends in
the direct band gap (Ep), as presented in the top row of fig.[3.5] except
in the Mg,Si;_,Ge, case that can be linearly fitted. My calculations
are compared to theoretical and experimental data as well 200220 7694724147
In the non-linear cases, I use a similar cubic polynomial of the form
of eq. (3.5) to fit the data, where a; corresponds to the energy gap
for the x = 0 composition, while a, corresponds to the gap of the
x = 1 composition. Therefore, the numerical fitting gives the @ and
parameters in energy (eV) units. In all cases, the SO splitting energy
increases linearly with the substitution of a heavier Y element. A
collection of calculations of pure material’s and intermediate alloys’ data
is given in table [3.2]

The dramatically underestimated indirect band gap values E; have
been shifted by ~ 0.8 eV to fit the experimental data, as presented in
bottom row of fig.[3.5] I observe a nearly constant trend for E; in the
case of Mg,Si|_,Sn,, supported by experiments,*>*! and also LDA and
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FIGURE 3.5: Top row: Calculations of direct band gap (Ep) and spin-
orbit splitting (Esp) energies at the I' (k = 0)-point. The Ep experimental
data is represented by solid red squares?2°% while theoretical values by
empty red squares 0I07ONTZORIZEIYT The SO experimental data is shown using
solid green circles,2*’” and theoretical data using empty green circles./%/38>
Bottom row: Shifted indirect I' — X band gap (E;) and energy distance be-
tween the lowest-lying conduction bands (EY), as function of the composi-
tion for all quasi-binary alloys. Experimental data of E; are represented by
solid red circles *04243 793535608981 while theoretical data by empty red
circles 0HOOTIOINT2ATIE0B2029I9 0211451148 The experimental values of Ey are
shown in solid black squares,**8%23114% while theoretical data in empty black
squares 02 C7BO0RANELS Fjoyre taken from reference

corrected GGA theoretical values 8%°? In the Mg, Si|_,Sn, case, I observe
a constant non-linear reduction of Ex, that crosses Ex = 0 at x = 0.6,
consistently with experiments**1% and other calculations 2% 1411 The
inversion of the bands is observed in the discontinuity of the slope in
the E; line, that decreases faster as x > 0.6.02/792148 1, the last case,
Mg,Ge;_,Sny, no comparative data is available for Ey at intermediate
points, I only observe a slight overestimation in Mg,Sn compared
to experiments,”’3 and a crossing of Ex = 0 at x = 0.65. This
crossover is also evidenced in the E; plot, and also agrees very well with
experiments 4447 146

3.1.6 Parabolic Band Effective Mass Approximation
3.1.6.1 Valence Bands

In the ideal case of quasi-free electronic states, the band structure can be
locally modeled by a parabola and represented by a dispersion relation

39



3 Results and Discussion

os MgoSii . Ge, MgoSiy . Sn, MgoGey_,Sn,
-O.S‘W -

Conduction band
-1.0 LH band
SO band
-1.5F HH band

-1.0}
-1.5
2.0k
-2.5

m*(mo) along TX m*(mo) along T'L

0 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1

Composition (x)

FIGURE 3.6: Effective mass calculations in the SPB approximation for the
conduction and valence bands at the I' point in the BZ of the quasi-binary
Mg, X _,Y, alloys systems, along different paths. Figure taken from reference
[ET]

as E(k) = E(0) + #*k?/2m*, where E , i , k and m* are the energy of
electron states, the reduced Planck constant, the crystal momentum and
the band effective mass, respectively.®” However, I consider the SPB
model more general by allowing different effective masses along different
crystallographic directions. As shown in the schematic band structure
of fig.[3.1] the HH and LH bands are locally degenerate at the I" point,
and then they become more dispersive and non-degenerate. As indicated
above, the parabolicity range is valid up to k ~ 0.03(27/a) as long
as non-parabolic contributions are negligible 1% Using dense meshes
along a particular k-path, and using a Lorentzian profile to fit the BSF
maximum, I can find the effective mass parameters with the inverse of
the parabolic curvature,

m* = 2 (azE(k)/akz)_l .

The resulting mass is given in units of the free electron’s mass my. I
have computed the corresponding band- and direction-dependent effective
masses in the nearly pure crystalline limit of the Mg, X materials, along
the I' — L and I — X directions in reciprocal space, for the conduction,
LH, SO and HH bands, and the results are shown in fig. [3.6] and the
fitting parameters are listed in the table [3.2] It should be noted that
experimental values of effective masses given in table 3.1/ correspond to
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3.1 Electronic properties of Thermoelectric Mg, X

spatial- and band-averaged values, so that, direction dependent effects on
the effective masses must be observed in the limit of perfectly oriented
crystalline samples. As well, n-type effective masses correspond to
low-lying conduction bands, located at the X-point, but I provide here
only the effective masses corresponding to the conduction and valence
bands at the I'-point, relevant for weakly doped p-type samples.

As pointed out before, HH and LH bands present low alloying effects
and the calculated values can be satisfactorily fitted; all fitting parameters
can be found in table[3.2l In the case of the SO and conduction bands
the effective masses show numerical noise due to the strong broadening
of the bands. The effect is pronounced in the cases of Mg, X;_,Sn,
(X=Si, Ge). Nevertheless, I computed a trend that matches the x = 0
and x = 1 points. The conduction band effective masses are, in general,
linearly decreasing except for Mg,Ge;_,Sn, along I' — X, where a cubic
formula fits better.

I obtain a general non-linear decrease in the valence bands effective
mass as the composition of the heavier Y atom increases. I note that
the LH band effective mass slightly decreases in all cases, specially in
the case of Mg,Si;_,Sny, as it was already reported.73 The HH effective
masses show a strong direction dependence and, away from the principal
axes, the effective mass is increased by a factor of 2.9. I observe
nearly constant HH bands masses in the case of Mg;Si;_,Ge,, while
monotonically decreasing in the remaining alloy systems. The LH band
shows also a systematic non-linear decrease as the composition of the
heavier Y increases but remaining nearly constant in the Mg,Ge; _,Sn,
case. So I can say that the HH and LH bands, which are the most relevant
bands in p-type transport, can satisfactorily be mapped on a SPB model.
Thus my results provide valuable information about the band structure
changes between pure Mg, X materials.

3.1.6.2 Low-lying Conduction Bands

As I 'have already observed in the direction-dependent effective masses of
valence and conduction bands at the I'-point, [ similarly assume a direction
dependent effective mass model for the bottom of the conduction bands. 1
perform similar parabolicity tests on these bands and, as shown in fig. I
assume this parabolicity to hold up to nearly £k = 0.05(27/a), or AE ~ 0.1
eV 12V 1n fig. I present the conduction bands of Mg,Ge; _,Sn, that
show similar features near the crossing point of bands (x = 0.7) as
the Mg,Si;_,Sn, alloys near the crossing at x = 0.65. These bands
are labeled as light- and heavy-conduction bands according to their

41



3 Results and Discussion

0.20
<015 -
()
—0.10 [
L
w 0.05

0.00

Light-Cond.

Heavy—Cond.ﬁ [

I i . L
10 11..08 09 10 11 1.2
<T X L->

1 1 1 1
0.8 09 10 1.1..08 0.9

FIGURE 3.7: Low-lying light- and heavy-conduction bands of Mg>Ge|_,Sn,
at compositions near the crossing, x = 0.65 (left), x = 0.7 (center), and x = 0.75
(right), in the vicinity of the X-point [100] along X — " and X — L, with k in
units of 27/a (dark gray corresponds to high BSF in a.u.). Figure taken from

reference

Mg2Siy - » Gey Mg2Sii - . Sn, MgoGe; . Sn,
T T T T T T T T T T T T T T T T T T T T T T T T T T
Heavy-Cond. ——

Light-Cond. ——

%
%
A

11l
T T 11
'
\
|
.
1

T 7 T 1
L1 1

1
|
||f|||

0.555

Il
Il
I

I
1]

N

0535/

0o 02 04 06 08 1

e g -

m*(mo)Along X-L m*(mo)Along X-T'
o N W kA OH N W kA
uuo O o O uo o o O

-

| | | | | | | | | | | | | | | | | | | | | | | | | | |
0 02 04 06 08 10 0.2 04 06 08 10 0.2 04 06 08 1
Composition (x)

FIGURE 3.8: Parabolic band effective mass calculations corresponding to
Mg, Si; _,Ge, (top), Mg,>Si;_,Sn, (center), and Mg,Ge; _,Sn, (bottom), along
the X — " and X — L directions, as function of the composition x. Figure taken
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local curvature, but this curvature is direction dependent as I will show
below. I also observe that the degeneracy of the bands is larger along the
X — T direction, up to nearly ~ 0.05(27/a), than along X — L, where the
degeneracy is only up to nearly ~ 0.01(27/a).

From the local band structure of the low-lying conduction bands of
intermediate Mg, X alloys, presented in fig. I want to point out
some interesting features. The light- and heavy-conduction bands cross
at a k value below the X-point for compositions x smaller than that
of the crossing point, i.e., x = 0.65 for Mg,Si;_,Sn, and x = 0.7
for Mg,Ge_,Sn,. This crossing increases with the unit cell volume,
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3.1 Electronic properties of Thermoelectric Mg, X

controlled by the substitution of Sn,'* and reaches its maximum when
both electron pockets degenerate. In the I' — X — L path, I do not observe
the crossing any more for compositions above the crossing point. This
means that the crossing of the bands is direction dependent, and that the
bands preserve their order in energy along the X — L direction.

The characteristics of the low-lying conduction bands can be seen in
the calculations of the effective masses, which I present in fig. [3.8] In the
left column of this figure I show the Mg,Si;_,Ge, system, in which the
heavy- and light-conduction bands are nearly constant and also manifest
strong anisotropies. The bands effective masses along the X — L direction
are also nearly constant at m ~ 0.5my, but the zoom-in (inset) shows that
light- and heavy-labels are indeed direction dependent, and also some
noise is present in the light-conduction band due to alloying effects.

In the Mgy X _Sn, systems, I observe also that the effective masses are
nearly constant except in the vicinity of the crossing point. As mentioned,
I do not distinguish the bands along X — I', so their effective masses
coincide at x = 0.65 for Mg,Si;_,Sn, and 0.7 for Mg,Ge; _,Sn,, while
along X — L the light-conduction effective mass is sharply increased by
nearly 5 times and the heavy-conduction band effective mass slightly
decreases. From fig. I can see that for higher energies, or k-values,
these crossing effects should disappear and the trends of their effective
masses should be monotonic. Experiments have revealed an enhancement
of the thermoelectric performance in these materials, and this fact has also
been corroborated by density of state (DOS) effective masses 2010120

3.1.7 Conclusions

Here, I describe the structural and electronic properties of the inter-
mediate compositions of Mg, X;_,Y,, for X=Si, Ge, Sn in the entire
compositional range 0 < x < 1. Within the KKR-CPA formalism in
full-relativistic approach, I was able to obtain total energies and therefore
the formation enthalpy to fit an equation of state and extract relevant
structural parameters, such as the minimal formation energy and the
equilibrium lattice constant. I regard these results as an approximation
since the KKR-CPA ignores the ion-ion interaction and therefore the
lattice dynamics. Consequently a complete relaxation of the system
is still not possible. Nonetheless, this formalism is particularly power-
ful for the prediction of electronic properties such as band structures
(or density of states), energy gaps - besides the shifts induced by the
exchange-correlation potentials, and parabolic bands effective masses.
The complete solubility of Mg, Si| _,Ge is explained from the relative
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formation energy diagram, that shows no extra absorption or emission of
energy compared to the end Mg, X compounds. In contrast, the relative
formation energy curve of the remaining Mg, X;_,Sn, lies above the
energy of the binary compounds. This indicates that these intermediate
compounds require more energy which might eventually released to
decompose into the end compounds. These intermediate compounds
have shown to be thermodynamically unstable 5"

For intermediate compositions in all cases I compute the separation
between the bands, or forbidden band gaps, in very good accordance with
the experimental data, and accompanied with the systematic underesti-
mations from DFT. In these systems, I have verified that the conduction
bands strongly depend on the unit cell volume, controlled by the Sn
content, and converge for x = 0.65 in Mg,Si;_,Sn, and x = 0.7 in
Mg,Ge;_,Sn,. This fact leads to a substantial increase in the effective
masses as seen in section 3.1.6.2l Whilst the valence bands effective
masses show a regular and monotonic behavior, the conduction bands
effective masses show a peak in the composition of the crossing, except
in the Mg, Si;_,Ge, system. I also noted that some of the bands are more
affected by alloying effects than others. Thus, they are not well defined
along k, and therefore the computation of these bands are not easy to
interpret.
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3.2 Raman Scattering in Graphene

3.2 Raman Scattering in Graphene

In this section I present an introduction to inelastic scattering of light - or
Raman scattering (RS) - in material systems, with focus on graphene. I
describe a theoretical approach to radiation-matter interaction in quantum
systems. With this basis, I develop a quasi-phenomenological model for
the Raman peaks using Lorentzian functions. These peaks resonate at
the phonon frequencies allowed by conservation rules. The peak shape
modeling allows me to study the phonon confinement effects that explain
the frequency shift of the Raman peaks measured in micro-crystalline
samples.

For the determination of the Raman frequency shift in graphene I
compute the allowed phonons at different excitation energies using 1D-
DFT bands. For varying sample sizes, I compute the Raman peaks
and study the additional shifts induced by the breakdown of the crystal
symmetries and therefore the conservation laws. The results that I present
reproduce the experimental data obtained within the research group of
Prof. Dr. Klar very well.

In this study I do not present a 2D solution from the DFT calculations,
due to the large and expensive requirements. I rather introduce an
approximate tight-binding approach to the electronic and phonon bands
that can be easily integrated in the full BZ of graphene, and allows me to
interpret the results obtained using DFT calculations.

3.2.1 Introduction

RS has become a robust method for exploring the quantum properties
of materials via the radiation-matter interaction. After nearly a century
after its prediction and observation,°%>ll RS comprises an intense
research field driven by improvements of the experimental equipment
and theoretical models. Ordinary RS, or Raman spectroscopy, is a non-
destructive technique used to obtain information about electronic and
vibrational properties of materials such as crystals, molecules, liquids,
etc.1°2 This information is contained in the frequency shift, the k-vector
(K) or the wave-length (1) and the polarization (e) of the scattered light.
Therefore, the basic approach is to observe the inelastic scattering of
incoming laser light by molecular vibrations via outgoing light, and
its spectral distribution. The latter reveals the Raman modes and their
corresponding line shape properties.

A Raman process involves a change between initial and final states of
a material system and the exchange of energy with the radiation field.
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This radiation field may in general either transfer energy into the system,
in the so-called Stokes process, or receive energy from it in the anti-Stoke
process. This last case can occur only when the system is excited.

Within a macroscopic description, an incoming photon of frequency
w; (k;A;), and polarization e;, which will be scattered into an outgoing
photon of frequency ws (kgdg), with polarization eg, leaving behind
the material system in an excited state of energy, is called Stokes RS.
The scattered intensity Is must therefore depend on e;, eg, and the
atomic displacements and their effect on the variation of the electric
susceptibility. Thus, the intensity /s must contain all the information
of the allowed and forbidden Raman processes, or the Raman selection
rules, computed using a relation of the kind Ig « |e; - R - eg|?, with R as
the Raman tensor1>? A complete solution to the problem, using classical
electromagnetism, demands an integration over the incoming/outgoing
directions in order to find the possible resonances.

Using modern theoretical techniques, RS processes can also be ob-
tained diagrammatically, or perturbatively, using Feynman diagram
formalism 122153 Diagramatic methods allow one to obtain the possible
contributions to the total Raman signal that involve high-order interac-
tions, such as the electron-phonon interaction, multi-phonon interactions,
radiation-phonon interactions, and so on. This method allows one to
study inherent interference effects between different processes that can
simultaneously cancel each other, and the selection rules are inherent to
the formalism.

A quantum mechanical description of the Raman scattering process
requires the Hamiltonian representation of the material system, the radia-
tion field, and some interaction terms. The Hamiltonian of the material
is, certainly, dependent on the material, with an energy spectrum of E,,
excited states, the material is usually assumed to be in the ground-state
Ep = 0. The interaction term must describe the coupling between the
material and photons with some quantum numbers: wave-vector, po-
larization mode, polarization vector, and angular frequency. Moreover,
some extra terms must be included in the model Hamiltonian for com-
pleteness, e.g., electron-electron interactions, nuclear motion, spin to
describe magnetic properties, etc.

In this description, the Raman cross section can be approximated by a
golden rule-like equation of the form,1>>

M ~ Z (i [:Ie—em |so) - .. {Sn-1l I:Ie—ph |51 (Snl Fle—em |1
P (El' —E0+2i7)(Ei—E1 +2i’)/)...(El' —En+2i’y)’
(3.6)

5055150+ +s
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where i and f denote the initial and final state of the system, and the &
terms correspond to the electron-radiation field (e — em) and electron-
phonon (e — ph) interaction Hamiltonians. The sum is performed over
all possible processes, in which an incoming photon with energy E; must
match the electron/hole energy difference at k;, and then the interaction
with the phonon q, with energy w(q,). The resonances are found
for those possible pairs (q, w(q,)) that minimize the denominator of
eq. (3.6); in this equation, y represents the life time of the intermediate
states. Therefore, the Raman intensity yields its resonance at the Raman
allowed active modes q,. The states of the system, represented by
the bra-kets in eq. (3.6), are in principle separable even in the case of
electrons and phonons due to the Born-Oppenheimer approximation. In
that case, the electron-phonon coupling is treated as a perturbation and
the states of the system, without the radiation field, can be regarded as
static; therefore, it is in principle a good approximation to treat these
states using the eigen-values of the system obtained by ab initio methods.
The radiation field can then excite, independently, either an electronic or
phonon quantum state of the system or a coupled electron-phonon state
in a more complicated process.

Note that the imaginary part of eq. (3.6) can indeed be approximated
by a real-valued Lorentz function, or a product of such a functions for
the Raman active modes, and that the complete Raman peak shall vanish
for all energies except those at resonance.

In the lowest order of scattering, the fundamental Raman selection
rule reads go = 0, and comes from the fact that the photon wave vector
is nearly negligible and all unit cells must vibrate with the same phase.
This scattering mode measures the phonons in the vicinity of the I" point
(w(0)). Higher-order multiple-phonon (gy = g1, g2, ...) interactions are
also Raman active as overtones under the condition that }’ g =~ 0.

There is a particular interest in the resonant Raman processes in which
the excitation of the incident phonon involves real electronic states. Single
incoming and outgoing resonances in Raman spectroscopy occur if the
energy of the incoming or the scattered photon matches the transition of
allowed electronic states leading to a large enhancement of the Raman
cross section.!>% Double-resonant Raman scattering involves two real
electronic transitions and can also occur in parabolic semiconductors, or
in semi-metals like graphene. If the sample contains symmetry breaking
elements, they relax the quasi-momentum conservation and its dispersion
is used to probe the phonon or electronic structure at vectors away from
the T point. 124
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3.2.2 Raman Peaks Modeling: Confinement of
Phonons in micro-Crystalline Samples

The Raman active phonon modes, w(qy), that resonate in the Raman
intensity eq. (3.6)), must satisty the physical conservation laws for energy
and momentum that correspond to the symmetries of the system. However,
for symmetry breaking elements, such as defects and boundaries in the
material system, these selection rules do not hold anymore and ¢y, is not
a good quantum number any more. The Lorentzian line-shapes, centered
at qg, are then broadened indicating that the transition probability is
non-vanishing for neighboring phonon modes, apart from q.

To describe quantum confinement of phonons, a phenomenological
model has been proposed that describes the line-shape changes of the
Raman intensity as a function of the size of the sample and the excitation
energy of the radiation field. This means that the observed Raman
shifts due to the micro-crystalline effects are well described, except the
amplitude decay observed in bulk materials. As the size of the crystals
reduce, different phonons around ¢, must contribute to the scattering
processes weighted by a confinement function 122+120

The starting point is to define a phonon wave-function for the active
Raman mode w(qy), in the crystal limit, expressed as

¢(qo. 1) = u(gg,r)e ", (3.7)

where u(qq,r) has the periodicity of the lattice. The phonon confined to
a micro-crystal of diameter L must be of the form

¥ (qo.r) = W(r, L)p(qo, 1) = ¢’ (qo, 1)u(qq, 1), (3.8)

where W(r, L) is a generic confining weight-function, such that, in the
limit L — oo, one recovers the crystal-limit wave function eq. (3.7).
Note that this weight-function must be system dependent and must also
account for its symmetries. Here I will retain a Gaussian representation
of this function, written as

2
W(r,L) = Aexp {—g/(%) }, (3.9)

since I assume that the boundaries of the sample, suspended over an
elastic substrate, are allowed to move. Note that eq. (3.9) is an isotropic
function and its functional form does not depend on the dimension.
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3.2 Raman Scattering in Graphene

Another choice of the weight-function, such as a step-like function or

the lowest Bessel function with rigid boundaries, will induce spurious

contributions to the Fourier transform not observed experimentally.
The Fourier transform of ¢’ is given by

¥’ (qo.1) = / d>qC(qp,q)e"™", (3.10)

with Fourier coeflicients given by

1 .
C(qp.q) = ) / &’ryy’ (o, r)e . (3.11)

Inserting eq. (3.8) and eq. (3.9) in eq. (3.11)), I find

2
C(qp.q) = (;ﬁ exp {—% (%) (a- ‘Io)z}- (3.12)

This generic description is made for a 3D system and the integration
constants are strongly dependent on the dimension. I carefully employ
this model in the case of 2D graphene and also for 1D DFT bands with a
corresponding change of the proportionality constant.

The wave-function ¢ is no longer an eigenfunction of the phonon
wave-vector (| but rather a superposition of q-values around g, weighted
by the decaying Gaussian function eq. (3.12)), in a range of the order
of |q — qg| < 1/2L. This implies that the transition matrix elements
from q, to q, mediated by the photon-phonon interaction operator,
are non-vanishing for q # q, and therefore momentum is no longer
conserved.

Now, as I have presented in the introduction, the Raman peak profile
given by eq. (3.6) can be approximated by a Lorentzian function, and
this function is the usual approach for fitting peaks in Raman analysis.
For any confined phonon at (), the Raman intensity peak is written as

H@z/W@%%a@mmm, (3.13)

where w(q) is the phonon frequencies and the integration is performed
in the first (or reduced) BZ. In eq. (3.13), the Lorentzian function L is
given by

I'/n

LD = R+ /2R

(3.14)
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with I' as the full-width at half-maximum (FWHM) that I will conve-
niently assume as constant > In the crystalline limit, I have C(qo, ¢; L —
o) — (g — qo), with 6(x) as the Dirac delta distribution, and for two
dimensions I use the property 6(r —rg) = 0(rx — rox)o(ry — roy).

3.2.3 RS in Graphene

RS has shown to be a very powerful and non-destructive technique to
characterize carbon-based materials, such as graphite, since it is sensitive
to its atomic properties, such as the number of layers, doping, disorder,
crystalline size, electron-phonon coupling, and its mechanical properties.
Graphite consists of a collection of 2-dimensional (2D) hexagonal arrays
of sp*-carbon atoms, or graphene sheets, separated by an inter-layer
distance ~ 3.4—3.7 A. The inter-layer distance is larger than the covalent
bond distance of the intra-layer carbon atoms, ~ 1.42 A, as illustrated in
fig. 158 The lattice sites of graphite correspond to the space group
P63 /mmc(= Dgh), while those of graphene correspond to Dg;,. The
building-block of graphite, graphene, contains two atoms in its unit cell,
A and B, that can vibrate in- and out of-plane in the direction shown in
the unit cell illustrated in the right part of fig.[3.9] Correspondingly, the
first BZ is composed by two inequivalent K-valleys, as shown in fig.[3.10

s
‘ﬁv )
SO

Graphite Graphene

FIGURE 3.9: (left) Graphite, multiple stacked hexagonal layers of sp” carbon
atoms - graphene - (center), with two atoms in the unit cell (right). Both atoms

can vibrate either in-plane (T or L), or out-of-plane along Z. Figure adapted
from http://phelafel.technion.ac.il/~tzipora/

Early measurements of the Raman spectra in graphite revealed a strong
peak at ~ 1580 cm™!, nowadays known as the G peak, as shown in
fig. 159*160 This frequency has been assigned to the in-plane Raman
active and degenerate E>, phonon modes present in graphene, though
the inter-layer interaction slightly splits this degeneracy in graphite. This
peak corresponds to a robust reference peak to measure and compare
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FIGURE 3.10: Computed Hexagonal Brillouin zone of graphene and a contour
plot of the conduction band using the TB electronic bands 58 The high-symmetry
points I', K and M are indicated.
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FIGURE 3.11: Raman spectrum of sp?-based carbon polyparaphenylene (PPP)
at 2400 °C. Figure taken from literature 152

other peaks present in the Raman spectra of graphite. Moreover, this
peak has been extensively studied and has been seen to evolve from
a single-peak in graphene to a wider peak in graphite, composed of
multiple contributions at different phonon frequencies.

Below this frequency, between 1300 — 1400 cm™!, another Raman
line has appeared in the spectrum for defect or micro-crystalline samples,
with an intensity that inversely depends on the crystalline size, and is
not present in nearly pure crystals. This, so-called defect-induced D
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mode, was not completely understood in the beginning; it was actually
attributed to a diamond-like formation in the sp? rings and chains. 1%V This
D Raman peak has shown to be strongly dispersive with the excitation
laser energy, but this behavior is essentially the same irrespective to the
carbon (sp?) sample!®¥ The integrated frequency of this band shifts
down by ~ 30 cm~! when the laser wavelength increases from 488 to
647 nm,1%* i e_, the frequency varies approx. 40 — 50 cm~!/eV, while
the intensity decreases with increasing the laser energy. 1190 For small
samples, a shift of 15 cm™! has been observed in the G peak toward
higher wave-numbers due to a breaking of the symmetry of the system
and therefore a broadening of the possible phonons involved around the
I point.

Since no I'-point phonons exist at all in the frequency range of the D
peak, the behavior of this band obey some special k-selection rules. Only
phonons near the K-point, the BZ boundary, not present in the usual
first-order Raman process, could explain the Raman spectra. However,
in a first-order Raman process, such a violation of the k-conservation
is possible in disordered materials only. It was proposed, that this peak
comes from a double-resonant process that involves the interaction of
two real electronic transitions and one phonon. This idea was proposed
nearly 20 years after the first experimental evidence of this peak.'°” This
model assumes that the phonons involved in such an interaction must
lie in the neighborhood of the inequivalent K-points of the graphene
BZ, shown in fig.[3.10] Therefore, this defect-induced peak allows the
measurement of phonon modes in a wider region of the BZ, away from
the T point12#161 The origin of the D-mode in graphite and C-nanotubes
is similarly well established as being defect-induced double resonant
scattering 168

A complete solution to the double-resonant problem in graphene
consist of a 2D integration, in the reciprocal space, of the Raman
scattering cross section given by eq. (3.6) considering a reasonable
expansion of the possible interactions.'®® My approach will be rather
different. Instead of a complete diagramatic solution to the problem, I
will adopt a quasi-intuitive approach that considers the possible inter- and
intra-band (7* — 7 or 1 — m) dispersion in the inter-valley (K — K’)
case, to explain the experimental results of the D mode in graphene.
For this purpose, I will rely on the details of the electronic and phonon
structures using DFT techniques in 1D along the symmetry points of its
BZ. The DFT electronic and phonon bands, as presented in fig.[3.12] have
been obtained using the Quantum ESPRESSO software package, /%471
I relaxed the structure and the obtained lattice parameters lie ~ 0.01%
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3.2 Raman Scattering in Graphene

below the experimental value. I set the out-of-plane (vacuum) distance
to be ¢/a ~ 1.2, where a is the in-plane lattice constant.

I computed the electronic structure using a non-relativistic and ultrasoft
pseudo-potential, and within the Perdew-Burke- and Ernzerhof (PBE)
parametrization of the GGA for the exchange-correlation functional 17
In the resulting electronic structure, as can be seen in fig. [3.12] I have
found an underestimation of about 16% of the band gap at the M-point,
where van-Hove singularities occur. Consequently, I have to re-scale the
electronic bands in order to correctly describe the experimental data 7>
The valence () and conduction (%) bands of graphene cross each other
at the K point, where they are nearly linear and symmetric. These bands
have been extensively studied using tight-binding (7'B) techniques up to
high orders of approximation in the hopping parameters that allow to have
analytical expressions of these bands2%L72 T will use below these TB
representations of the bands to analyze 2D effects on the Raman active
modes. It is found, that around K these bands are homogeneous and
symmetric, and effectively described by a massless fermion Weyl-Dirac
equation, thereby the K points are also known as the Dirac points. This
linearity holds for energies above the Fermi level to ~ 1 eV. Then
these symmetric bands transform into trigonal bands in 2D, as has been
sketched in the right part of fig. 174
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FIGURE 3.12: (left) Electronic E(k) and (right) phonon w(q) spectra of
graphene, obtained using ab initio techniques. The calculations are represented
by the solid lines while the experimental data of phonons, from literature, is
shown using open circles! 217 The electronic structure is re-scaled to fit the
experimental band gap 172

For the phonon structure I use the same input parameters as in the case
of the electronic structure, as well as the same pseudo- and exchange-
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correlation potential. The obtained phonon structure is presented in
the right part of fig. [3.12] and is compared to available experimental
data 172179 Using these parameters, I obtained a phonon dispersion with
longitudinal-(LO) and transverse-optic (7'0O) bands slightly underesti-
mated by ~ 16 cm™!, but a perpendicular-optical (ZO) band slightly
overestimated, and not relevant for this work. Some other calculations
show a general over-estimated phonon structure, as the results depend on
the choice of the exchange-correlation potential 17/

Since each unit cell in the graphene lattice contains 2 atoms and
therefore 4 in-plane degrees of freedom, at the I" point two acoustic and
two optical modes are found and they are degenerate. Graphene has the
following normal modes at I': Ay, By, E1,, and E>,. The Ay, and Ey,
representations correspond to the translations of the plane; the By, mode
is an optical phonon where the carbon atoms move perpendicular to the
graphene planes. E, is the doubly degenerate in-plane optical vibration
and is the only Raman active mode. At the I" point, the in-plane polarized
longitudinal- (LO) and transverse-optic (T'O) modes are degenerate, but,
as it has been already studied and demonstrated, only the TO band is
Raman active. I also note that this band is approximately parabolic in the
vicinity of the K point. The Raman fundamental rule to measure the G
band involves a electron/hole pair creation by the incoming laser radiation
that must be dispersed by a g = 0 phonon, followed by a recombination
of the electron and hole. This situation is sketched in fig. [3.13] where it
can be seen that this electronic transition is not necessarily resonant but
the intermediate electronic state could be virtual; however, the peak is
strongly enhanced as the transition reaches the resonant condition and
this can be reached using, e.g., doping of graphene.

Besides these G and D peaks in the Raman spectrum of graphene, the
so-called D’ peak has also been found at 1620 cm™', and this transition is
explained using a defect-induced inter-band and intra-valley dispersion,
as shown in fig. [3.13] This last dispersion, in contrast to the D band,
is always present since the electron/phonon recombination process can
be also phonon-assisted. The strong peak at ~ 2700 cm™!, the G’ peak,
corresponds to the emission of two phonons with opposite wave vectors
near the K ad K’ points. Sometimes this peak is also denoted by 2D or
by D* to stress that it is the second overtone of the D peak.
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3.2 Raman Scattering in Graphene

FIGURE 3.13: (left) Electron/hole pair creation for the ¢ ~ 0 Raman funda-
mental rule of the G mode. (Right) A defect-induced intra-band and intra-valley
double-resonant dispersion with phonons near I".Figure taken and modified
from literature /8

3.2.4 Dispersion of the Defect D Mode in 1D: an ab
initio Approach

To state the problem, let me consider the linear part of the electronic
spectrum in the 2-dimensional space, i.e., for excitation energies below
2 eV, and not higher as is usually assumed in literature.'”* A resonant
electron/hole excitation will require that the laser energy matches the
energy difference between the valence and conduction bands with initial
and final states, at P and P; in fig. [3.14] with nearly the same k-vector.
In this linear regime, for a given excitation energy E; = E(k;), there are
two possible initial k;-vectors that will be dispersed to k; + go = k¢ by a
phonon ¢gq. For the inter-valley process, there are in total four gg-vectors
that satisfy the double-resonance condition. These vectors are given by
go = 2K + (k; £ kr), where qo is found using the conservation of the
energy w(qo) = +(E; — Ey) in a Stokes (+) or anti-Stokes (—) process.
After this, the electronic state must be elastically back-scattered, e.g. by
a defect, to a virtual state at k; and then recombined with a hole to emit
the outgoing photon.

This process can be in general more complicated, e.g., the phonon- and
impurity-processes can occur at any order to contribute in the intensity
given by eq. (3.6): the hole can be scattered as well, etc. But in either
way, in order to annihilate radiatively in the recombination process, the
electron and the hole must have opposite momenta and there are, in
principle, infinite ways to fulfill the recombination condition. However, I
will confine my discussion to the possible processes presented in fig.[3.14]

For the process presented in the top-left part of fig. qr =
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FIGURE 3.14: Double resonant scattering process leading to the D mode in
graphene.

2K + (ki + ky) and w(q1) = E; — Ey, and g; belongs to the KT path.
Note that, for the anti-Stokes process, the expression for the g1, value is
identical, but the energy conservation requires that w(qia) = Ey — E;. In
the process of the top-right part of this figure, g» = 2K —(k; + k), and lies
in the KM path. For the process of the bottom-left, g3 = 2K + (k; — kp),
and for that of the bottom-right part, g4 = 2K — (k; — k). The equation
for the conservation of energy in these processes is the same and depends
whether it is a Stokes or anti-Stokes process.

To illustrate this case, let us assume that the conduction and valence
bands are symmetric and they meet at the Fermi level,>® with a dispersion
relation like E(k) = hivp|k|. Then the laser energy should be Ej . =
2E(k) = 2hvpk, for k > 0. Similarly, in the neighborhood of the K-point,
the phonon dispersion can be approximated as a parabola of the sort
w(q) = wy + ag?, with positive activation energy wg and curvature . In
the Stokes or anti-Stokes process, the conservation of energy yields the
same quadratic equation for the allowed qq, ivrFgo = wo + aqg, but [ am
only interested in the lowest solution. This means that, irrespective to
the laser energy and the kind of process, there will be only one phonon
combination (qo,w(qp)) that contributes to the Raman signal in this
strictly symmetric case. In practice, these values are go = 0.0049(27/a),
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FIGURE 3.15: Computed frequencies of the D band as function of the
excitation energy, compared to experimental data 132:16311651167

away from K0, with energy w(qo) = 1269.26 cm™! (~ 0.157 &V).

To extend this study to the real non-linear and non-symmetric 1D
case of graphene, I use the DFT bands presented in fig. [3.12] For each
excitation energy there are still in general two available initial k-vectors,
k;, and for each of these, four gop-vectors that matches the resonance
conditions in either intra- or inter-band transitions, as illustrated in
fig. Note that the general expression for qq is go = 2K + (k; + kr),
where the first + stands for the path in the BZ, and the second relates
to the inter- or intra-band process. The conservation of energy is given
by w(qo) = +(E; — E¢), where + stands for the Stokes and anti-Stokes
process, and Ey is the energy of the final ky state. For all possible
g-values I compute the Raman shift as presented in fig. [3.15] I observe
that the inter-band Stokes g; and g, wave vectors reproduce very well
the experimental data, and that the anti-Stokes curve lies above that of
the Stokes process but only at low energies. All g-values converge at
low energies, in the linear regime, as indicated above, and E = 0 is only
possible in the anti-Stokes process.

Moreover, I observe that g3, and g4,, and the corresponding anti-
Stokes g-values, are of magnitude close to K so that the resulting shift is
negligible; the bands are nearly flat. These processes have been attributed
to destructively interfere 1>* Stokes and anti-Stokes processes have also
been measured in graphite!” and CNs™>Z, It has been generally argued
that the anti-Stokes shift lies below that of the Stokes by an amount of
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nearly 7 — 9 cm~! 18 but T only observe this behavior in a part of the
excitation energy range. I noticed that the g3 and g4 are not observed in
experiments, and the reason requires an extra term in the conservation
rules, the conservation of the Fermi velocity. As I present below in the
2D TB analysis, if I consider solely the conservation of momentum and
energy, several q vectors with moduli ~ K participate in the Raman
scattering process, but filtering those processes that preserve the Fermi
velocity component yield the correct experimental Raman spectrum.

3.2.5 Micro-Crystaline Raman Shift of the G Band

As discussed, for the zone-center vector (q, = 0), at I', the G-band is
non-dispersive and has a value of ~ 1580 cm™!. I compute a set of line
shapes for different micro-crystalline sizes, using the Raman line shape
functional profile given by eq. (3.13). Thus, I can show how these peaks
deform as the size decreases, as can be seen in the left part of fig. [3.16]
For small lengths, the neighboring phonons around ¢gg contribute to
the Raman peaks and shifts its mean - or weighted - frequency center
to higher values reaching a maximum at ~ 4 nm. In the I' point of
the BZ of graphene there are two E;, degenerate bands, as shown in
fig.[3.12] Only the 70 band, locally convex, is observed to contribute to
the experimentally observed Raman shift of this band, as shown by the
experimental values presented as well in fig.[3.16]
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FIGURE 3.16: (Left) Raman line shapes of the G mode in graphene, obtained
using eq. (3.13)), for different crystalline sizes (L). (Right) Raman shift of this
mode as function of the micro crystalline size.

In the right side of fig. [3.16] I present the integrated Raman shift
frequency of the G-band of graphene, compared to experimental data
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obtained in the group of Prof. Klar, and the Raman active mode Ej, of
crystalline graphene. I observe a very good agreement of the model
compared to the experimental data in literature. They report an absolute
shift ~ 15 — 20 cm™! of the G mode .1 However, I expect this model to
fail at very low lengths as it predicts a negative shift due to the values of
the TO band away from the I point.

3.2.6 Micro-Crystaline Raman Shift of the D Band

The case of the D band is similar to that of the G-mode, since the TO
band is nearly parabolic and convex in the vicinity of the K or K’ points
as well. But instead of the zone-center vector, the D-mode takes place
at qo ~ K. This band is strongly dependent on the local details of the
electronic and phononic spectra and is accordingly strongly dispersed
as has been shown in fig. [3.15] Therefore, in the 1D case, for a given
energy, the Raman line shapes must deform around the corresponding
values of gg (g1 and ¢7), but the deformation must be apparently similar
to that of a generic locally parabolic band. As an example, I consider
the Raman shape profiles of gy ~ 1320 cm™!, with an excitation laser

energy of E = 1.57 eV, presented in the left part of fig. for different
micro-crystalline sizes.
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FIGURE 3.17: (left) Raman peaks of the D mode for different crystalline sizes,
at £ = 1.57 eV. (Right) Raman shifts for different energies and lengths.

A direct computation of the integrated frequency yields the Raman
shift of the peak as function of the sample diameter for different laser
energies, as shown in the right part of fig. where I also present
the experimental data from Prof. Klar’s group. In this plot, each color
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represents a different laser excitation energy, in either the model or the
experimental data, for the same energy values as those of the excitation
energy of the D-band presented in fig. [3.15] It is worth to note, that
the non-linear shift of the Raman bands reaches a plateau near 20 nm,
where the shift value roughly corresponds to that of the crystal limit.
This is not the case in the G-band that seems to be more sensitive to
micro-crystalline effects at larger L. As in the last case, I do not trust
completely the model as L — 0, but away from that, the experimental
trends are very well reproduced by the model.

3.2.7 The Intensity Ratio

The peak modeling given by eq. (3.13)) reproduce very well the integrated
frequency shift of the D and G bands in microcrystalline graphene, but
does not considers the decay of the probability of scattering as L — co.
Therefore, I predict a constant Raman peak ratio for crystalline samples
due to a constant density of defects. Additionally, the amplitude constant
is somewhat arbitrary and therefore an intensity ratio between the D and
the G peaks will tend to 1 for large sample sizes, as shown in fig.
The only differences that I observe are contained in a small window of
the crystalline size as shown in the inset of fig. [3.18]
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FIGURE 3.18: Intensity ratio between the D-mode and the G-mode peaks,
Ip/1g, as function of the crystalline size for different excitation energies.
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In real samples the defects are mainly at the boundaries. Thus, the
density of defects decreases with increasing the sample size leading
to a decay of the ratio between the D and G modes. Consequently, in
experiments the Ip /I ratio has been observed to have a maximum at
~ 2 nm and then decays as 1/L1% This phenomenological decay has
also been modeled to fit the so-called Tuinstra-Koenig formula of the sort
Ip/lg = C(@)/L, where C(Q) is a proportional constant that depends on
the excitation laser energy 1814182

3.2.8 Tight-Binding Description of the D Band in 2D
Graphene

Since the complete integration of the 2D problem in graphene requires
a huge computational effort to obtain and interpolate detailed surface
information, from the DFT point of view, I will try to illustrate the
possible results using the TB approximation of the bands. The main
problem consists of the construction of an algebraic representation of the
electronic (and hole) and phonon (TO) bands that captures the important
experimental physical parameters. A TB representation of the electronic
bands has been exhaustively studied in literature in many orders of
approximation 28173 Here, I will retain only the lowest order considering
interactions only with the first nearest neighbors. For the phonon TO
band I construct a surface function based on the electronic surface with
the symmetries of graphene. This function must be locally parabolic at
I' and M, and nearly flat at K, and must cover the band-width given by
the DFT data in fig. [3.12]

The comparison between the DFT and the resulting TB bands is
presented in fig. along the high-symmetry points. In the electronic
part, I observe that both bands differ in the energy scale, though they
have been prepared to coincide in the band-gap value at the M-point.
Similarly, the TO phonon TB band present serious deviations from the
DFT band but the overall shape is readily reproduced. Therefore, as
an approximation for the energy range of our interest, I will present a
complete 2D integration of the Raman D mode that depends on the
excitation energy and the sample size, using these surface functions of
the bands.

As in the 1D case, the general 2D problem consists of finding out
the Raman active vectors q, = (qox, goy) that disperse the iso-energetic
k = (ky, ky) vectors, defined by E(K), into a resonant Ky lying at the
iso-energetic curve E(Ky), as illustrated in fig.

In the linear part of the spectrum, where the conduction bands are
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FIGURE 3.19: Comparison between the DFT (black) and TB (red) electronic
(left) and phonon (right) bands of graphene.

FIGURE 3.20: Inter-valley dispersion of the D mode: allowed q-vector
between the K-points, for a Stokes process, from an iso-energetic E(k;) to
E(ky).

approximated by E(k) ~ fivp |K|, and w(q) ~ wo + a |q|, due to the
circular symmetry of q and Kk, the solutions for g should be identical in
either 1D or 2D. However, the Raman line shape must differ in its width
in 2D due to the surface integration.m

As the initial energy exceeds the linear regime, g is no longer a
single value. In 1D, g splits into four possible values, for inter/intra-
valley and -band dispersions, as sketched in fig. [3.14] with Raman active
modes plotted in fig. 3.15] These modes have been shown to be strongly
dependent on the local electronic and phonon properties. Above the
linear region, the circular iso-electronic contours around K or K~ turn
into triangles, the so-called trigonal warping eﬁ"ect, as shown
in the left part of fig.[3.21] In this plot I have computed the iso-energetic
k-values for different excitation energies (2E(k)) around K, and the
circular profiles for low energies (E ~ 2 eV or below) and the trigonal
warping of these bands for higher energies.

The excitation energy of the laser defines the set of k; at E; = 2E 450/,
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FIGURE 3.21: Iso-energetic profiles for (left) k- and (right) q-vectors, for
excitation energies of £ = 0.5,1.0,2.0,3.0 and 4.0 eV. The iso-energetic energy
values are presented in each respective color bar.

around the K-point, that are resonantly dispersed to k; at E; around
K’ by the allowed pairs (qg,w). I consider the Stokes contributions
given by E; > E;. A set if iso-energetic k; vectors for energies between
Eraser = 0.5 €V and 4.0 eV is shown in the left part of fig. and they
manifest the local properties of the BZ around the K point.

Now, if I compute the (qg,w) using solely the conservation of mo-
mentum and energy, then I find that all q vectors in the phonon surface,
below some maximal phonon energy, will match this condition including
those vectors lying exactly at K; all kind of intermediate processes are
allowed, e.g., all horizontal q dispersions. By additionally imposing the
conservation of the direction of the Fermi velocity, i.e., that the initial
and final angle differs by x in q-space, the only remaining available q
modes will lie in the profiles presented in the right part of fig.[3.21] In
this plot I present the q profiles corresponding to the excitation energies
shown in the left part of this figure. I observe, that for low energy values
the allowed q vectors lie in a circumference, and as the excitation energy
increases, this shape is dramatically shifted. Indeed, I observe that there
is a minimum and maximum of phonon frequencies for each profile, and
that the minimum slightly decreases with increasing the energy. Note
also that, as the excitation energy increases, the phonon-frequency range
also increases thus showing the Raman dispersion of the D-mode as
similarly obtained by the DFT data in fig.[3.15] Therefore, this results
indicate that the q-surface obtained from conservation rules without
restrictions on the normal component are upper-bounded by the q line -
with varying phonon frequency - obtained by the conservation rules plus
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the conservation of the direction of Fermi velocity vector.

Now, I am able to compute the complete Raman profile as function of
the excitation energy and the size of the sample, using a modification of
eq. (3.6) of the form :

1<w)z;f / IC(a 40)f L(w. 0(@)da. (3.15)
qo

that also considers the contribution, either summation or integration, of
the allowed q vectors shown in fig.[3.21| This analysis allows me, in
principle, to find differences in 1 and 2D and to directly compare to
experiments. However, the mismatch of the phonon and electronic bands,
presented in fig. [3.21] precludes this model to have a direct comparison
to experiments.

The phonon band structure, as it stands, only considers the Raman
shift frequencies in an interval of size ~ 1.8 cm™! for an excitation
energy of ~ 4.0 eV. This strong underestimation, since the DFT data
indicates a range in the order of 64 cm™!, is caused by the strong
mismatch of the phonon bands close to the K-point since DFT data
increases more rapidly than the TB bands. However, the non-linear shift
of the D-band and the trigonal effects are captured within this simplified
approximation without further fits. The q-profiles presented in the right
part of fig. allow to numerically integrate the complete Raman
profile using eq. (3.15). The resulting peak has the equally-weighted
contributions of the phonon frequencies corresponding to the allowed
range thus defining an extra widening. I trust that, without a numerical-
exhaustive integration of fig. the TB approach is good enough
to observe the energy-dependent position (dispersion) and widening of
the peaks. The micro-crystalline behavior is identical as that already
observed in fig. [3.16] since the model is in principle system independent,
except for integration constants.

3.2.9 Conclusions

In this section I have presented a brief survey of RS phenomena and
an introduction to their theoretical treatment. I applied this analysis
to the case of graphene to explain the non-dispersive nature of the G-
mode and the strongly dispersive D-mode present in the Raman spectra.
Using conservation arguments, I found the Raman active gp-modes and
computed the dispersion of the D band that is strongly dependent on
the electronic and phonon properties of graphene. The effects of the
linear dispersion in graphene, together with an approximate parabolic
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phonon TO band at the K-points explains the low-energy (below ~ 2 eV)
part of the Raman shift. For larger energies, this unique go-value splits
either in two points in 1D, or into a continuous curve in the BZ of 2D
graphene. The DFT-based numerical trends for the Raman shift of the
D-mode show a very good agreement with experimental data, using a
1D model. The presence of intermediate data in the peaks is explained
by an extension to 2D using TB electronic and phonon model bands.

For the model of the Raman peaks, and the effect of finite sizes, I
adopted a Lorentzian-like profile with a weight function that depends
on the length and allows the transition elements for different gg-vectors.
Within this model, I explain the positive shift observed in the zone-center
G mode of about 15 cm™!, as well as the excitation energy-dependent shift
of the D-bands. Interestingly, we have found, without a complete physical
curiosity, that the experimentally observed allowed q vectors must obey,
besides the momentum and energy conservation rules, conservation of
the Fermi velocity component and therefore the electronic dispersion
must lie in the same energy band.

This approximation has not yet been presented in literature, and
its importance lies on the fact that I do not have to approximate the
bands as linear or constant, but I can consider non-linear effects and
fit the experimental data and the TB extension. However, since Raman
spectroscopy in carbon is so sensitive to the atomic properties of carbon
atoms, purely phenomenological approach will only give some overall
properties of the measurements. A complete theoretical model have
to account for quantization effects on the electronic bands, the strong
dependency on the edges,!3* and a complete solution of the transition
probability.
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4 Summary and Outline

It is rather difficult to summarize the whole Ph. D. experience in a few
words, since it comprehends different aspects of my daily life. My main
motivation for such a decision comes from my necessity of increasing my
scientific skills, besides getting a different cultural experience. Indeed,
this cultural experience is quite away from the scope of the current work,
but I may recognize that in fact my work has been strongly influenced by
environmental factors. Fortunately, I may regard this experience as an
enrichment process from variable and unpredictable sources.

An important part of my scientific work is reported in my master thesis
and now I can complement my scientific career with the present thesis. I
started this research strongly enthusiastic with a panoramic review of the
most relevant literature about solid state physics and the approximation
methods following the historical development. Of course, I met myself
in a big trouble when the list of papers pending for reading exceeded
those already read. Then I adopted a more practical review scheme:
concentrate in the most (top) relevant literature that will support my
forthcoming work.

I received a valuable and considerably intense introduction to the
DFT techniques, besides many computational hints, from the already
experienced researchers affiliated to the group AG Heiliger. These
guidelines allowed me to start my own calculations, from scratch, and to
gain a vast experience in the physical properties of materials. It was then
just a matter of time to start with the research projects proposed by the
researchers in the RTG2204 group.

The project about the electronic properties of thermoelectric Mg, X
materials involved several formal and informal discussions about the
scientific interests and the questions that should be addresses. Then I
started with the corresponding calculations that accounted very well with
the properties already known. However, since I was interested in the
electronic properties of alloy systems, I decided to board this problem
using the theoretical tools developed in the AG group (KKR-CPA),
instead of those conventional in literature (e.g., supercell methods). As
it is to be expected, many numerical and physical problems arose that I
could circumvent. The solution to these problems now represent a series
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of tools in my box to tackle a large variety of computational and physical
problems, and most of these are implicitly used in this work but not
reported in detail.

This work also received indirect contributions from different discus-
sions held at international conferences, e.g., in Italy or Russia. There,
many interested and strongly experienced researchers inquired me about
the methods, the results, the interpretation, and many other questions that
in any way are out of the scope of my research. This interaction with other
researchers allowed me to extend this work to different domains, most of
them already reported here, but also many that remain still unexplored or
just subject to the judgment of the intuition. It is my hope that many of
these questions will be cleared in my future. Nonetheless, in my opinion,
the results reported here, provide an important and new source for under-
standing the electronic and structural features of these intermediate alloys.
I can see the projection of this research in future applications, for instance
those related to electronic transport, optimization of the thermoelectric
performance, evaluation of the thermoelectric efficiency in terms of
the atomic features, optimal design of thermoelectric devices, and so
further. Hence, I regard this contribution to the scientific community as
a fundamental problem, rich of physics, and also nowadays active field
in the thermoelectric community.

After not less than one year of starting my Ph. D. training, I drew my
attention on a project about Raman spectroscopy in graphene. I already
had experience with graphene but with focus on quantum transport in
nano-structured materials. The main problem consisted of providing
an explanation to the Raman defect-mode existing in nano-structured
materials, and its dispersion with the excitation laser energy. 1 found
a plausible description of this phenomena using equilibrium structural
and electronic properties, from DFT calculations, and using basic con-
servation rules from fundamental physics. With this approach, some
measurements were readily explained and the theory met the experiments
with very good accuracy. Further, conservation rules explained very well
a few and important physical quantities that hold in the macroscopic
crystalline limit. My attention was then shifted to defect materials, or
materials with nano-metric boundaries, in which the rigid Raman signal
is deformed. This demanded a Raman peak modeling, and considering a
theoretical scheme that accounted for transition probabilities that allow
to relax the conservation rules. The phenomenological approach, rather
than purely theoretical, resulted very useful and intuitive and allowed me
to model not only the graphene systems, but also to extend its application
to different systems, e.g., Ce;O and diamond. Even though this approach
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shed a meaningful light about the experimental observations, I still see
the possibility of a more complete solution of the problem that not only
accounted for the observed shifts but also the intensity decays and the
realistic selection rules. This is the case of a physical analysis of the
Raman spectroscopy phenomena and the AG Heiliger has an important
and deep experience in this kind of calculations.

I think that, after this study of the physical properties of material
systems from first-principles methods, I have provided myself with a rich
world of new physical concepts and phenomena. This part is relevant
for my formation as a researcher since I have developed different several
methods. Besides these skills, most of my work has been carried on in
a computer and therefore I have learned indispensable numerical and
computational tools that allow me to solve problems not only in physics.
With this, I mean that I regard this experience, professional and cultural,
as an appetizer for a large and promising career as a researcher.
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