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Abstract

In humid areas, biocrusts cover topsoils of inland dunes and influence soil character-

istics, which, in turn, may affect the hydrophobicity of soils. The hydrophobicity of

topsoils typically increases with increasing organic matter content. In addition, the

soil organic matter quality, for example, described by the ratio of its hydrophilic and

hydrophobic functional groups, also influences hydrophobicity. Because biocrust

development goes along with an increase in the organic matter content and a shift in

microbial community composition, the chemical character of soil organic matter likely

changes over time, which, in turn, affects the hydrophobicity of the crusts. We

hypothesize that the hydrophobicity of biocrusts increases during succession

because of increasing amounts and aliphatic character of organic matter. We com-

pared organic matter contents and Fourier-transform infrared spectra of

cyanobacterial biocrusts and moss-dominated biocrusts at two European inland

dunes. The organic carbon content as well as the hydrophobicity increased during

crust development at both sites. Older moss-dominated biocrusts showed the

highest hydrophobicity and the highest organic carbon content. Moreover, at one

study site, the hydrophobicity of the biocrusts did increase with decreasing ratio

between hydrophilic and hydrophobic (i.e., aliphatic) moieties of soil organic matter.

At the second study site, this effect was only visible for the moss-dominated bio-

crust. We conclude that biocrust development and organic matter accumulation go

ahead with changes in the organic matter composition and induce increased hydro-

phobicity with a strong impact on water redistribution in inland dune ecosystems.

This knowledge will help to improve nature protection strategies in rare ecosystems.
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1 | INTRODUCTION

In all ecosystems worldwide, biocrusts, a mixture of mineral soil par-

ticles and organic matter components enclosed in a biofilm matrix,

cover young soil surfaces. Their matrix is build up by microorgan-

isms with the ability to withstand extreme climate conditions

(Belnap, 2006). In humid areas, biocrusts persist locally restricted to

sandy soils, like inland dunes or military training grounds (Fischer,

Veste, Wiehe, & Lange, 2010).

If environmental conditions allow it and depending on ecosystem

type, successional development and local climate regime, biocrusts

include cyanobacteria, algae, fungi, lichens and mosses. In general, ini-

tial biocrust development shows a first colonization of cyanobacteria,

and with time, the community structure becomes more complex

(Chamizo, Cantón, Miralles, & Domingo, 2012). The crust community

composition changes during development including differences in the

amount of photoautotroph and heterotroph bacteria, algae and

lichens with mosses, pervaded with fungal hyphae, building up the

crusts in wetter areas (Drahorad, Felix-Henningsen, Eckhardt, &

Leinweber, 2013; Lan, Wu, Zhang, & Hu, 2013).

During development, biocrusts show changes in their biochemical

composition with a large impact on biocrust characteristics and there-

fore soil properties (Chamizo et al., 2012). Dust trapping and active

nutrient fixation (e.g., carbon and nitrogen) and the excretion of

exopolysaccharides during growth cause these changes (Belnap, 2006;

Garcia-Pichel & Pringault, 2001). Consequently, crust thickness, the

amount of fine particles, water holding capacity, porosity and the

amount of organic matter increase (Lan et al., 2013). However, not

only the amount of organic carbon changes but also its composition.

Studies on successional biocrust development showed an increase in

carbohydrate and protein content (Dümig et al., 2014), as well as

changes in amounts of N-containing compounds, lignin monomers and

fatty acids (Drahorad et al., 2013) depending on biocrust types.

Changes in the chemical composition of soil organic matter during bio-

crust succession may induce shifts in soil wettability and hydrophobic-

ity, as different classes of chemical compounds, with their varying

functional groups and structural building blocks, differ in their hydro-

philic character.

On the other hand, hydrophobicity could result from the attach-

ment of amphiphilic organic substances to mineral surfaces: Amphi-

philic organic substances like, for example, fatty acids, polysaccharides

and phenolic compounds consist of hydrophobic and hydrophilic

groups that attach to soil mineral surfaces resulting in hydrophobic or

hydrophilic characteristics depending on organic matter content

(Ellerbrock, Gerke, Bachmann, & Goebel, 2005). Besides this general

process, most authors state the occurrence of long-chained organic

molecules, like aliphatic carbon chains and amphiphilic substances like

fatty acids and waxes, to be responsible for soil hydrophobic proper-

ties (Horne & McIntosh, 2000). Hydrophobic substances can result

from degradation of residues from higher plants like pines or

Ericaceae (Buczko, Bens, Fischer, & Hüttl, 2002), or they may be of

microbial origin like exudates of algae and fungi found in biocrusts

(Lichner et al., 2013; Rillig, 2005).

A study on biocrust development stages in southern Germany

showed a correlation between an increase in water drop penetra-

tion time (WDPT), organic matter content and the potential wetta-

bility index of the soil organic matter, indicating the high

importance of organic matter for soil hydrophobicity (Lichner

et al., 2018). In addition, studies on sand dunes in eastern Germany

showed a

slight hydrophobicity for biocrusts that was correlated to the

amount of carbohydrates (Fischer et al., 2010; Fischer, Yair, Veste, &

Geppert, 2013), which are mainly exopolysaccharides of bacterial

origin. Pereira et al. (2009) showed that exopolysaccharides could

increase hydrophobicity depending on their chemical composition,

which is determined by microorganism type and environmental

conditions.

We investigated changes of wettability, soil organic matter con-

tent and soil organic matter quality of two successional types of bio-

crusts on two alternating sand dune areas in a humid climate to

explore the following hypotheses:

1. Under humid climate, the organic matter content and hydrophobic-

ity of biocrusts increase with crust succession.

2. Changes in organic matter composition during biocrust formation

induce changes in hydrophobicity.

2 | MATERIALS AND METHODS

2.1 | Sampling sites description and sample
preparation

The study site Holm is located at an artificial forest glade within a

nature protection area 53 km south-eastwards of the Northern Sea in

Northern Germany and characterized by a mean annual precipitation

of 750 mm a−1 and a mean annual temperature of 8.5C� a−1. A

100-year-old plantation of pines (Pinus sylvestris L.) surrounds the

glade. After partial clearing of the former planted pines in 2005, open

sand dunes build up the soil surface on the glade. Biocrusts in differ-

ent development stages cover the soil surface, including thin

cyanobacterial crusts on lately disturbed spots and moss-dominated

biocrusts in more protected areas (Figure 1a,b). In addition, several

stages of recovery with heather (Calluna vulgaris L.) and grasses

are found.

The study site Sekule is located at south-western Slovakia with a

mean annual precipitation of 550 mm a−1 and a mean annual temper-

ature of 9C� a−1. The artificial glade at Sekule resulted out of the min-

ing of sand for building purposes. A 30-year-old plantation of pines

(P. sylvestris L.) surrounds the glade, and biocrusts cover the sandy sur-

face. The Sekule biocrust is a thin, cyanobacterial dominated crust at

freshly disturbed areas and a thick, moss-dominated crust at

undisturbed areas (Figure 1c,d). For a detailed description of the for-

est glade side and the occurring biocrust species, see Lichner

et al. (2013). In both areas, the main parent material is aeolian sand,

deposited as inland dunes. The coarse-textured soils are Arenosol.
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At both study sites, the samples were taken at recently disturbed

spots (cyanobaterial crust) and less disturbed areas (moss-dominated

crust) along a disturbance transect. At each study site, four replicate

samples were taken from the biologically active topcrust (TC;

0–2 mm) and the indurated subcrust (SC; 2–20 mm) for the soil char-

acteristics of the biocrust types. All 16 samples were air dried at 40�C

for 24 h, sieved (<2 mm), and an aliquot was finely ground

(�0.05 mm) for the measurement of total organic carbon (TOC) and

total nitrogen (N).

For the characterization of chemical hydrophobicity of the

organic matter of biocrusts, we choose one sample from the start

point of a disturbance transect (cyanobacterial crust) and one sample

from the end point (moss-dominated crust) at each study site. These

samples were prepared as described below. For each sample, 16 spec-

tra were measured and averaged.

2.2 | Physical and chemical analysis of biocrusts

Particle sizes were determined using wet sieving, separating particle

sizes from 2,000 to 63 μm. The pH value was measured in a water

extract (1:5; weight:volume), the measurement of TOC and N by dry

combustion (Vario EL analyser, Elementar, Hanau, Germany).

All samples were tested on their hydrophobicity using the WDPT

test with four repetitions (Letey, 1969). According to Doerr (1998),

the WDPT reflects not the exact intensity of hydrophobicity but

rather its persistence. Therefore, we differentiated the following

repellency classes after Doerr (1998): very hydrophilic (WDPT <5 s),

hydrophilic (5 s < WDPT <60 s), slightly hydrophobic (60 s < WDPT

<180 s), moderately hydrophobic (180 s < WDPT <600 s), strongly

hydrophobic (600 s < WDPT <3,600 s), very strongly hydrophobic

(WDPT >3,600 s). As WDPT measurements were stopped after

3,600 s, we use the WDPT classes provided by Doerr (1998) to avoid

arbitrary cut-off points in the comparison of WDPT and TOC.

The abundance of hydrophilic and hydrophobic moieties in soil

organic matter was characterized using Fourier-transform infrared

spectroscopy (FTIR). For recording FTIR spectra, we used 1 mg of

ground, desiccated soil (<0.5 mm) mixed with 80 mg of potassium

bromide and dried over night over silicagel in an exsiccator. The

mixture was than pressed into a pellet by applying a pressure of

6.8 t cm−2. Infrared absorbance spectra of organic matter were

collected in the wave number range of 4,000–400 cm−1 with 16 scans

per spectrum. The spectra were smoothed (boxcar moving average

algorithm, factor 45) and corrected for baseline shifts using WIN-IR

Pro 3.4 software (Digilab, Massachusetts, USA). The spectra were

smoothed using a boxcar moving average algorithm (factor 45) and

corrected for baseline shifts using WIN-IR Pro 3.4 software (Digilab,

Massachusetts, USA).

The absorption bands that indicate the hydrophobic (CH groups)

and the hydrophilic (C O groups) functional groups are in the focus

of the FTIR spectra analysis in this work. For hydrophobic methyl and

methylene groups, the maxima of the CH bands occur at 2,920 cm−1

(asymmetric stretch) and at 2,860 cm−1 (symmetric stretch) (Capriel,

Beck, Borchert, Gronholz, & Zachmann, 1995). Based on the work of

Ellerbrock et al. (2005), the CH bands at the region between

wavenumber (WN) 3,020 and 2,800 cm−1 were combined to a single

one and marked as Band A. Here, we used the area between absorp-

tion band and local baseline for the region between WN 3,007 and

2,817 cm−1 as a measure for the amount of CH groups (Capriel

et al., 1995). The hydrophilic C O-groups occur at WN

1,640–1,615 cm−1 and 1,740–1,720 cm−1 (Celi, Schnitzer, &

Nègre, 1997) and denoted both as absorption Band B (Ellerbrock

et al., 2005). Here, we used the area at the maxima for a WN width of

1 cm−1 to exclude a possible overlap with C C and amid bands as far

as possible. The OH bands were not considered because they could

possibly reflect differences in water contents. The areas at absorption

Bands A relative to those of Bands B (A/B ratio) in the FTIR spectra

were computed using BioRad WIN-IR Pro 3.4 software (Digilab,

F IGURE 1 View of biocrusts
dominated by cyanobacteria and mosses
at the study sites Holm (Northern
Germany, a,b) and Sekule (Slovakia, c,d)
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Massachusetts, USA) to characterize the potential hydrophobicity of

soil organic matter, with the hydrophobic character of SOM increasing

with increasing A/B ratio (Ellerbrock et al., 2005).

Significant differences between the measured soil parameters are

shown on a level of significance of 5% under use of a t test. A Mann–

Whitney U-test shows the difference between hydrophobicity classes

on a level of significance of 5%.

For the test of a linear relationship of WDPT and TOC, the mea-

sured data were unsuitable. Per definition, measurements stop if the

penetration time exceeds 3,600 s for the highest WDPT class. This

results in nominal scaled values with a cut-off point at 3,600 s. To

avoid a statistical bias, we used a comparison of TOC and repellency

classes. An analysis of variance (ANOVA) was used to detect signifi-

cant differences between the TOC values for different repellency

classes.

3 | RESULTS

3.1 | Soil characteristics and hydrophobicity patterns
of biocrusts

As a general pattern, all examined biocrust types and depths (TC and

SC) samples were acidic (pH < 5) and had very high percentage of

sand (>95%) (Table 1).

For all biocrust samples, the N content was smaller than 0.5%,

and the content of TOC was lower than 1% for cyanobacterial crust

and the respective SCs. Only moss-dominated biocrusts showed TOC

concentrations of up to 3%. Comparing the sampling depths at the

separate study sites, theTOC and N contents were significantly higher

for the TCs compared with SCs (p < .001) for moss-dominated crusts

at both study sites. For the cyanobacterial crusts, the TOC and N con-

tents were only significantly different for the cyanobacterial crust of

the Sekule site. Comparing the samples between the two study sites,

theTOC and N contents were lower for the top- and subsoil biocrusts

from Sekule (p < .001 and p < .01, respectively) as compared with

those from Holm site. The TOC in the TC was lower at the Sekule as

compared with the Holm site on a 10% probability level (p = .06 in

both cases). At both study sites, the moss-dominated TCs showed, as

expected, a significant higher TOC and N contents as compared with

the cyanobacterial TCs (Holm p < .05, Sekule p < .001). The N content

showed no significant difference for the cyanobacterial SC for both

study sites. Remarkably, at the Sekule site, the moss-dominated SC

had a significantly higher N content (p < .05) compared with the

moss-dominated SC at the Holm site.

Comparing the overall trend between TOC and the detected

repellency classes of all examined biocrusts in the two study sites, a

significant increase in biocrust repellency with increasingTOC content

is visible (Figure 2). Interestingly, with increasing resistance of repel-

lency, the variability inTOC content increases as well.

A more detailed view on biocrust types and sampling depths

showed a very wide range of hydrophobicity persistence for all sam-

pled biocrusts (Table 1). The WDPT ranged from very hydrophilic to

very strongly hydrophobic for the TC and SC samples at the Sekule

area. At Holm, the range of WDPT values was smaller, and the bio-

crusts were slightly hydrophobic up to very strongly hydrophobic.

Nevertheless, comparing the median values of the occurring hydro-

phobicity classes, all crusts are slightly up to very strongly hydropho-

bic. Based on the median values, cyanobacterial TCs show a

significantly lower hydrophobicity persistence than moss-dominated

TABLE 1 Biocrust pH, total carbon and nitrogen (TOC, N), texture characteristics, persistence of hydrophobicity (WDPT), median of occurring
hydrophobicity classes and the ratio of hydrophobic to hydrophilic groups (ratio A/B) of the examined biocrusts (CC, cyanobacterial crust; MC,
moss-dominated crust) in different depths (TC, topcrust; TC, subcrust) at the two study sites Holm and Sekule

Sample pH value TOC N total Sand Coarse silt Particles < 63 μm WDPT Repellency class Ratio A/B

g kg−1 % s Mode (C–H/C O)

Holm CC

TC

4.9 ± 0.2 8.5 ± 5.5 0.6 ± 0.2 98.7 ± 0.6 0.3 ± 0.4 1.0 ± 0.2 58–210 3 0.111

Holm CC

SC

5.0 ± 0.3 7.8 ± 4.9 0.5 ± 0.2 99.0 ± 0.3 0.3 ± 0.3 0.8 ± 0.1 27–1,444 3 0.033

Holm MC

TC

4.6 ± 0.1 20.3 ± 6.8 1.0 ± 0.1 98.8 ± 0.4 0.4 ± 0.1 0.8 ± 0.3 992–2,322 5 0.091

Holm MC

SC

4.8 ± 0.1 9.0 ± 0.7 0.6 ± 0.0 98.6 ± 0.2 0.5 ± 0.0 0.9 ± 0.2 254–840 4 0.036

Sekule

CC TC

4.8 ± 0.1 5.0 ± 2.0 0.4 ± 0.1 97.0 ± 0.3 0.9 ± 0.3 3.1 ± 1.1 0–1,260 3 0.023

Sekule

CC SC

4.9 ± 0.1 2.2 ± 1.0 0.2 ± 0.1 96.9 ± 0.9 1.0 ± 0.4 3.0 ± 1.2 0–3,600 3 0.024

Sekule

MC TC

4.5 ± 0.1 14.2 ± 5.1 0.9 ± 0.2 95.5 ± 1.2 1.2 ± 0.4 4.6 ± 0.7 2,190 to

>3,600

6 0.041

Sekule

MC SC

4.5 ± 0.1 2.6 ± 0.7 0.3 ± 0.0 96.0 ± 0.3 1.4 ± 0.2 3.9 ± 1.6 3 to >3,600 5 0.037

Note: .n = 4; ratio A/B n = 1; standard deviations in parentheses.
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TCs for both study sites. This effect was not visible for the SC sam-

ples. Comparing the sampling depths, moss-dominated TCs tended to

show higher hydrophobicity persistence than the underlain SCs.

However, this trend was only significant for the moss-dominated crust

at Sekule.

3.2 | Chemical hydrophobicity of the organic matter
of biocrusts

The FTIR spectra of biocrust samples show relative similar transmis-

sions even though the samples included different crust types,

depths and distinct locations. The C O band intensities

(WN 1,720–1,600 cm−1) were generally much higher than the C–H

band intensities (WN 2,944–2,849 cm−1). The intensities of the

C–H bands differed between the two sampling depths (TC vs. SC) at

the Holm site, whereas at the Sekule site, only the TC of the moss-

dominated biocrust shows a slightly higher band intensity for the

C–H band. At Sekule site, the relative intensities of absorption Band

B in FTIR spectra were lowest for moss-dominated SCs and highest

for moss-dominated TCs. The cyanobacterial TC and SC lay interme-

diate and show the same relative intensity (Figure 3b). The FTIR

spectra of biocrusts at Holm show the lowest relative intensities of

absorption Band B for the moss-dominated TC. All other samples of

this study site show the same relative intensities of absorption Band

B (Figure 3a). All samples show a very intense, comparable absorption

band around 1,080 cm−1, and in addition, the TC samples of the

moss-dominated biocrusts show higher intensities at the absorption

band 3,400 cm−1.

The ratio of hydrophobic to hydrophilic groups (A/B ratio) are in

the same range (0.02 for cyanobacterial crust, 0.04 for moss-

dominated crusts) for both sampling depths at the different crust

types for Sekule samples. This indicates no changes in the chemical

hydrophobicity of the organic matter for the TC and SC of

cyanobacterial crust and moss-dominated crusts. Contradictory to

this, at the Holm site, the A/B ratios are in the same range for the

same sampling depths (0.1 for TC, 0.035 for SC) of the biocrusts,

regardless of the crust type. Data show a connection between WDPT,

TOC content and the changes in organic matter quality for the moss-

dominated crusts but not for the cyanobacterial crust.

4 | DISCUSSION

4.1 | Accumulation of TOC and N

At both study sites, the biocrusts show an accumulation of TOC and

N compared with the bare sand. This is typical for initial biocrust

development and ongoing growth in extreme ecosystem (Chamizo

F IGURE 3 (a,b) FTIR spectra of biocrusts at Holm (Figure 3a) of
cyanobacterial (CC) and moss-dominated (MC) biocrusts in two
sampling depths (topcrust = TC; subcrust = SC) (black = CC_TC;
blue = CC_SC; red = MC_TC; green = MC_SC). Band A and Band B
intervals associate with the absorbance of aliphatic CH groups and
hydrophilic components (C O groups), respectively. FTIR spectra of
biocrusts at Sekule (Figure 3b) of cyanobacterial (CC) and moss-
dominated (MC) biocrusts in two sampling depths (topcrust = TC;
subcrust = SC) (black = CC_TC; red = CC_SC; blue = MC_TC;
green = MC_SC). Band A and Band B intervals associate with the
absorbance of aliphatic CH groups and hydrophilic components (C O
groups), respectively

F IGURE 2 General relation betweenTOC content and
hydrophobicity classes of biocrusts in the examined study sites
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et al., 2012). The stronger accumulation of TOC and N in TCs and

moss crusts are related to higher biomass build-up (Lan et al., 2013).

Comparing the Sekule site and the Holm site, all biocrusts show higher

TOC concentrations at Holm than at Sekule. Although Holm shows

the higher annual precipitation, at Sekule, the continental climate

includes a long dry season in the summer month. This dry season

reduces the buildup and turnover of organic matter in the Sekule bio-

crusts, whereas in Holm, a higher biomass build up occurs due to more

available moisture (Fischer et al., 2010).

The FTIR spectra show absorption bands that correspond to the

typical organic and inorganic soil components. The composition of the

organic matter is nearly identical for the examined biocrust types and

study sites, as the FTIR spectra show the same progression. This

relates to the microbial composition of the biocrusts with a high

amount of bacteria. Filip and Hermann (2001) found almost identical

spectra with only minimum differences in the intensity of the individ-

ual absorption bands for different soil bacteria. A strong peak around

3,400 cm−1 occurs for moss-dominated TCs at both sites; this peak

relates to the plant material of mosses in organic matter (Heller,

Ellerbrock, Roßkopf, Klingenfuß, & Zeitz, 2015). The intense absorp-

tion band around 1,080 cm−1 generally fits with the Si–O–Si groups in

quartz and C–O–C groups of polysaccharides. The parent material

and the typically high amount of exopolysaccharides in biocrusts

explain this peak (Fischer et al., 2013)

4.2 | Persistence of hydrophobicity

The overall persistence of hydrophobicity showed a wide range of

values for the examined biocrust types and study sites. In Holm, the

biocrusts were hydrophilic to slightly hydrophobic, whereas in Sekule,

the biocrusts were slightly hydrophobic to very strongly hydrophobic.

These values are much higher compared with earlier studies on sand

dunes in Germany (Fischer et al., 2010). This study showed no to very

low water repellency for biocrusts.

As hypothesized, the persistence in hydrophobicity increased

with an increase in TOC and therefore organic matter. The increase

in hydrophobicity with ongoing crust development towards moss-

dominated crusts was already proofed for the Sekule site (Lichner

et al., 2013). In contrast to this, for moss-dominated crusts Fischer

et al. (2013) found a decrease in hydrophobicity for a site in north-

eastern Germany. They concluded that the occurrence of mosses

changes the surface polarity. Our results support the idea that the

succession to mosses can generally increase hydrophobicity. The

succession to mosses is linked to a reduction in cyanobacteria bio-

mass, an increase in biomass of heterotrophic bacteria and a shift of

the organic matter composition towards more bioavailable com-

pounds like carbohydrates and peptides (Drahorad et al., 2013).

With ongoing development, moss-dominated crusts with a higher

amount in chlorophyll, proteins and carbohydrates and a much

higher isolate density of microfungal communities occur (Grishkan &

Kidron, 2013). Filamentous fungi are a large fraction of soil

microbial biomass, and they produce hydrophobins that are able to

build hydrophobic coatings (Rillig, 2005).

Our second hypothesis was that hydrophobicity changes in rela-

tion to organic matter composition. As the FTIR spectra show a similar

pattern for all crust types, depths and study sites, the influence of the

surrounding vegetation is very low. Nevertheless, the input of organic

layer material of the nearby pine forests may influence the biocrusts

at both study sites to an unknown extend, as this material can induce

very strong, long-lasting hydrophobicity (Butzen et al., 2015). Using

the C–H/C O ratio as an indicator of the wettability of organic mat-

ter in biocrusts, the Holm biocrusts show ratios in the typical range of

soils, comparable with ratios of lichen-dominated biocrusts in Ger-

many (Lichner et al., 2018). At the Sekule study site, the A/B ratios

are rather narrow and only for the cyanobacterial crust comparable

with an earlier study at this site (Lichner et al., 2018). Comparing the

A/B ratios, WDPT and TOC values, all SCs and theTCs at Sekule show

an increase in the WDPT, TOC and A/B ratio with crust development

as expected. Interestingly, the cyanocrust at Holm does not follow this

pattern. Here, the A/B ratio is rather high, but the WDPT is moderate.

Further studies are need to check, if this effect is related to the struc-

ture and orientation of hydrophobic and hydrophilic groups

(Ellerbrock et al., 2005).

Based on the results in each study area, a first rough estimate of

the temporal dynamics of the changes in hydrophobicity shows that

the development of biocrusts from a first initial stage (cyanobacterial

biocrusts) to older, more developed biocrusts with mosses results in

an accumulation of organic matter and an increase in hydrophobicity

(Figure 2). With crust development, the A/B ratio rises together with

the WDPT. This proofs a connection between the increase in TOC

content, changes in organic matter quality and an increase in hydro-

phobicity. In general, initial soil development goes ahead with changes

in the properties of the side and changes in biocrust communities

inducing higher hydrophobicity and changes in organic matter compo-

sition (Drahorad et al., 2013; Lichner et al., 2018). The destruction of

more hydrophobic biocrusts, for example, by grazing, can be an effec-

tive way to keep hydrophobicity and the related hydrological implica-

tions on a reasonable level.

The hydrological implications of the obtained results are of high

interest for areas with permanent biocrust cover in humid and in semi-

arid and arid areas. The results proof an increased hydrophobicity of

biocrust-covered soils that can reduce or prevent infiltration and

induce surface run-off. The resulting redistribution of water at the

surface towards cracks or local depressions can reduce plant growth

or induce local structures like vegetation islands (Belnap, 2006).

Within the soil, preferential flow can induce zones of higher organic

matter and aggregate stability protected against degradation by dry-

ness as hydrophobicity is an important organic matter stabilization

mechanism (reviewed by Goebel, Bachmann, Reichstein, Janssens, &

Guggenberger, 2011). Comprehensive studies with large sample sizes

including the relation between organic matter composition and stabil-

ity, hydrophobicity and water redistribution for soils with biocrust

cover are still missing.
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We conclude that biocrust development induces an accumulation

of organic matter, a change in organic matter quality and an increase

in hydrophobicity in humid inland dune ecosystems. Compared with

other biocrust studies, the very high hydrophobicity of the moss-

dominated crusts sites is remarkable and should be examined more in

detail in relation to land use and vegetation history. Furthermore, the

correlations between organic matter quality, organic matter and

aggregate stability and hydrophobicity need to be evaluated systemat-

ically to understand the mechanisms behind biocrust hydrophobicity

and the influence on landscape scale.
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