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SUMMARY 
 

The aim of the present study was to carry out a quantitative genetic analysis for traits 

reflecting dairy cow behavior, as well as for traits reflecting animal-technic and human-

animal interactions. Furthermore, on the basis of records from various databases, 

three different scientific studies were carried out (see Chapters 3, 4 and 5). These 

studies are based on the main objective of the thesis, but were developed as separate 

research studies with the purpose of publication in multiple international scientific 

journals. 

Functional traits reflecting animal behavior and temperament, in combination with 

stress indicators, are becoming increasingly important in dairy cattle breeding. Thus, in 

the first research study (Chapter 3), (co)variance components were estimated on the 

basis of already recorded traits from routine performance testing and voluntary cow 

traffic. The focus of the analysis was on average milk flow (AMF), since this trait partly 

reflects the human-animal-relationship in the milking parlor and also stress responses 

at a hormonal level. Measurements were available for AMF in kilograms of milk per 

minute of milking time for 629,161 Holstein cows from the calving years 1990 to 2008. 

For the genetic-statistical analysis, alternative modeling based on two different 

approaches was used. The first approach was based on the threshold method, while 

the second expanded the statistical model with the incorporation of production and 

functional traits such as fertility, health and behavior traits using structural equation 

models (STEM). STEM models have the potential to infer relationships and feedback 

situations among traits by reflecting a more physiological background. The 

heritabilities for the AMF trait were, for all models, in a moderate range (0.29 - 0.38). 

Due to the moderate heritabilities, we propose to systematically integrate the AMF 

trait with a high weighting value into total breeding values for dairy cattle and to 

specific select towards AMF. In general, from an animal breeding perspective, due to 

antagonistic relationships between AMF and milk content (AMF and Fat % rg = (-0.18) - 

(-0.73); AMF and Protein % rg = (-0.21) - (-0.85)), as well as between AMF and udder 

health (AMF and SCS rg = 0.17 - 0.43), no trait maximization, but a trait optimization 

with an intermediate optimum for this trait would be desirable.
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Summary 

Regarding the statistical models, substantially smaller standard deviations of posterior 

estimates for structural equation coefficients compared with regression coefficients 

recommend recursive model applications. 

In a second scientific study (Chapter 4), the impact of the milking technique on the 

individual animal and the reaction of the animal on the technique were investigated. 

With the use of objectively recorded and longitudinal data from automatic milking 

systems (AMS), auxiliary traits that reflect animal behavior in the milking system were 

defined, free from subjective impressions of classifiers. Data was available for a period 

of 30 days and included 70,700 observations (visits to the AMS) from 922 Holstein 

cows kept on three German farms equipped with the DeLaval company’s “FeedFirst” 

AMS System. AMS traits used as behavior indicators include: AMS visits per cow per 

day, defined as two binary traits, with thresholds for i) more than three visits per day 

(VIS3) and ii) more than four visits per day (VIS4). The VIS3 and VIS4 traits were 

defined as binary traits to emphasize the “extra” voluntary component, i.e., the 

additional AMS visit beyond the typical herd average. Further temperament traits were 

the knocking off of the milking device (KO) from at least one udder quarter, also 

defined as a binary trait, milking duration of each visit in the AMS in minutes (DUR), 

the average milk flow (AMF) and the interval (INT), defined as the time span between 

two consecutive AMS visits. Since milk yield is an important factor influencing these 

traits, univariate models with and without milk yield as a covariate were compared. A 

second AMS dataset included measurements for total milk yield per day (MY_total) 

and electrical conductivity (EC) of milk, also available on an udder quarter basis. The 

heritability for AMF (h² = 0.25) was moderate, indicating possibilities for AMS 

milkability improvements via breeding. Heritabilities estimated with univariate models, 

with and without milk yield as a covariate, were comparable, with slightly larger 

heritabilities for some traits in models with milk yield as a covariate (h² = 0.17 for VIS3, 

h² = 0.08 for VIS4 and h² = 0.18 for INT). This suggests a behavior or temperament 

background behind these traits, rather than milk yield being the only motivator for, 

e.g., AMS visits. Heritabilities for EC varied between 0.37 and 0.46, depending on the 

udder quarter; this information at an udder quarter level could be useful for precision 

dairy farming. In terms of genetic relationships, an increase of AMF, a decrease in DUR 

and a decrease of INT may contribute to desired behavior and AMS efficiency, without 
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 Summary 

losing genetic gain for production. Hence, due to unfavorable correlations with health 

indicator traits, these traits should be considered as traits with an intermediate 

optimum. Based on these results, there is an apparent possibility to breed cows for 

AMS systems based on AMS data, though it is imperative to have further validation 

based on larger datasets. 

In a preceding study, four behavioral traits intended to assess dairy cow´s 

responsiveness towards humans were identified as repeatable in terms of inter- and 

intra-observer reliability (Ebinghaus et al., 2016). In Chapter 5, genetic (co)variance 

components were estimated for these traits. Data from 1,761 cows were used to 

analyze the trait tolerance to tactile interaction (TTI), from 1,766 cows for the behavior 

during release from restraint in the feeding gate (RB), and from 1,880 cows for the 

avoidance distances towards an unfamiliar person at the feeding place (AD). 

Furthermore, the Qualitative Behavior Assessment (QBA) was conducted on 565 cows. 

For further analysis, the cows’ individual scores of the first principal component (PC1) 

which explained almost 70 % of the variation (QBA_PC1) characterized by descriptors 

relating to relaxation/attraction/trust on the negative and descriptors relating to 

fear/distress/aversiveness on the positive end were used. Estimated heritabilities and 

their corresponding standard errors for behavior traits reflecting human animal 

interactions were 0.27 ± 0.06 for the AD, 0.04 ± 0.05 for TTI, 0.11 ± 0.06 for RB and 

0.13 ± 0.17 for QBA_PC1. Estimated breeding value (EBV) correlations (rEBV) for the 

most influential sires among the behavioral measures AD, TTI, RB (restriction: sires 

with at least 5 daughters), and QBA_PC1 (no restriction) were moderately positive, 

indicating a relationship to one another and that they are partly influenced by a similar 

genetic component. The positive EBV correlation between AD and SCS reinforced the 

concept that breeding towards less fearful animals would have a positive impact on 

the animals´ health. Moreover, sires with high EBV for longevity traits tend to have 

daughters with lower avoidance distances and less fearful behavior. The EBV 

correlation between the composite functional herd life (RZN) and AD was -0.28. 
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Summary 

Although behavior traits depend, to a large extent, on the environment and 

management factors, the genetic component seems to play an important role. These 

results support the idea of including behavior traits that reflect the human-animal-

relationship into breeding strategies. 

A general discussion about the results and the applied statistical models from the 

previous chapters are given in Chapter 6. Additionally, some concerns and outlooks 

regarding behavior traits and traits reflecting human-animal-interactions and their 

inclusion in animal breeding strategies are discussed.  
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ZUSAMMENFASSUNG 

 

Das Ziel der Arbeit bestand darin, quantitativ-genetische Analysen durchzuführen. 

Diese Analysen bezogen sich auf Merkmale, die das Milchkuhverhalten sowie die Tier-

Technik und Mensch-Tier Interaktionen wiederspiegeln. In der vorliegenden Arbeit 

wurden auf Grundlage von verschiedenen Datenbanken drei verschiedene 

wissenschaftliche Studien durchgeführt (siehe Kapitel 3, 4 und 5). Diese Kapitel 

basieren auf dem Gesamtziel der Arbeit, wurden aber als separate Forschungsstudien 

mit dem Ziel der Veröffentlichung in internationalen wissenschaftlichen 

Fachzeitschriften konzipiert.  

Funktionale Merkmale, die das Tierverhalten und das Temperament in Verbindung mit 

Stressindikatoren wiederspiegeln, werden in der Milchviehzucht immer wichtiger. 

Daher wurden in Kapitel 3 (Ko)varianzkomponenten auf Basis bereits erfasster 

Merkmale der routinemäßigen Leistungsprüfung und des freiwilligen Kuhverkehrs 

geschätzt. Der Fokus der Analysen richtete sich auf das Merkmal durchschnittliches 

Minutengemelk (DMG), da dies z. T. direkt die Mensch-Tier-Beziehung im Melkstand 

und Stressreaktionen auf hormonaler Ebene reflektiert. Zur Verfügung standen 

Messungen von DMG in Kilogramm pro Minute Melkzeit von 629.161 Holstein Kühen 

aus den Kalbejahren 1990 bis 2008. Für die genetisch-statistische Analyse wurden 

alternative Modellierungen verwendet, die auf zwei unterschiedlichen Ansätzen 

basieren. Der erste Ansatz basiert auf der Schwellenwertmethode. Im zweiten Ansatz 

wurde durch eine Erweiterung der statistischen Modellierungen der Einbezug von 

produktions- und funktionalen Merkmalen (Fruchtbarkeits-, Gesundheits-, und 

Verhaltensmerkmale), unter Anwendung der Strukturgleichungsmodelle (STEM) - 

Theorie, betrachtet. STEM Modelle haben das Potenzial Beziehungen und Feedback-

Situationen zwischen den Merkmalen abzuleiten, da diesen ein physiologischer 

Hintergrund zu Grunde liegt. Die Erblichkeiten lagen für alle Modelle im moderaten 

Bereich (0,29 - 0,38). Aufgrund der moderaten Erblichkeiten wird vorgeschlagen, das 

Merkmal DMG in die Gesamtzuchtwerte beim Milchrind systematisch mit hohem 

Gewicht zu integrieren und zielgerichtet auf DMG zu selektieren. Generell ist aus 

tierzüchterischer Sicht, aufgrund antagonistischer Beziehungen zwischen DMG und
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Zusammenfassung 

Gehaltsmerkmalen der Milch (DMG und Fett % rg = (-0,18) - (-0,73); DMG und Eiweiß % 

rg = (-0,21) - (-0,85)) sowie zwischen DMG und Merkmalen der Eutergesundheit (DMG 

und somatischer Zellzahl rg = 0,17 - 0,43), keine Merkmalsmaximierung, sondern eine 

Merkmalsoptimierung im Sinne eines intermediären Optimums anzustreben. In Bezug 

auf die statistischen Modelle empfehlen wesentlich kleinere Standardabweichungen 

der posterior(i) Schätzungen für Strukturgleichungskoeffizienten, im Vergleich zu 

Regressionskoeffizienten, die Anwendung von rekursiven Modellen. 

In einer zweiten wissenschaftlichen Studie (Kapitel 4) wurde die Auswirkung der 

Melktechnik auf das einzelne Tier und die Reaktion der Tiere auf die Technik 

untersucht. Mit Hilfe von objektiv gemessenen longitudinalen Daten aus 

automatischen Melksystemen (AMS) wurden Hilfsmerkmale definiert, die das 

Verhalten der Tiere frei von subjektiven Eindrücken von Klassifikatoren, 

wiederspiegeln. Die Daten waren aus einem dreißigtägigen Zeitraum verfügbar und 

beinhalteten 70.700 Beobachtungen (AMS Besuche) von 922 Holstein Kühen, die in 

deutschen Betrieben gehalten wurden und mit dem AMS-System „FeedFirst“ von 

DeLaval ausgestattet waren. Die Merkmale, die als Verhaltensindikatoren benutzt 

wurden waren: AMS-Besuche pro Kuh und Tag definiert als binäres Merkmal mit den 

Schwellen i) mehr als drei Besuche pro Tag (VIS3) und ii) mehr als vier Besuche pro Tag 

(VIS4). Diese Merkmale wurden als binäre Merkmale definiert, um die „extra“ 

freiwillige Komponente hervorzuheben. Darunter fielen zusätzliche AMS-Besuche, die 

über den typischen Herdendurchschnitt hinausgingen. Weitere 

Temperamentindikatoren waren das Abschlagen des Melkgeschirrs (KO) von 

mindestens einem Euterviertel, auch als binäres Merkmal definiert, die Melkdauer 

jedes AMS Besuchs in Minuten (DUR), das durchschnittliche Minutengemelk (DMG) 

und das Intervall (INT) definiert als die Zeitspanne zwischen zwei aufeinander folgende 

AMS Besuchen. Da die Milchleistung ein wichtiger Faktor ist, die diese Merkmale 

beeinflussen kann, wurden univariate Modelle mit und ohne Milch kg als kovariable 

verglichen. Ein zweiter Datensatz enthielt Messungen für die Gesamtmilchleistung pro 

Tag (MY_total) und die elektrische Leitfähigkeit (EC) (genutzt als 

Gesundheitsindikator), die auch auf Euterviertelbasis verfügbar war. Die Erblichkeit für 

DMG (h² = 0,25) war moderat, was für die Möglichkeit einer Verbesserung der 
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 Zusammenfassung 

Melkbarkeit im AMS durch Zucht spricht. Heritabilitäten, die mit univariaten Modellen 

mit und ohne Milch kg als Kovariable geschätzt wurden, waren mit etwas höheren 

Heritabilitäten für einige Merkmale, die im Modell auf Milch kg korrigiert wurden (h² = 

0,17 für VIS3; h² = 0,08 für VIS4 und h² = 0,18 für INT), vergleichbar. Diese Ergebnisse 

bestätigen die Hypothese, dass nicht nur die Milchleistung als Motivator hinter diesen 

Merkmalen steckt (z.B. AMS-Besuche), sondern auch eine Verhaltenskomponente. 

Erblichkeiten für EC variierten je nach Euterviertel zwischen 0,37 und 0,46 und lagen 

somit im moderaten bis hohen Bereich. Verschiedene EC Erblichkeiten für 

verschiedene Euterviertel ermöglichen euterviertelspezifische Zuchtstrategien und 

könnten z.B. in „precision dairy farming“ genutzt werden. In Bezug auf die genetischen 

Beziehungen könnte eine Zunahme von DMG bei einer gleichzeitigen Abnahme der 

DUR (rg = -0,88) zum gewünschten Verhalten und zur AMS-Effizienz beitragen, ohne 

den genetischen Gewinn für die Produktion zu verlieren (rEBV zwischen DMG und 

MY_total = 0,40; und zwischen DUR und MY_total = 0,25). Auch hier sollte aufgrund 

von ungünstigen Korrelationen mit Gesundheitsindikatoren keine 

Merkmalsmaximierung sondern eine Merkmalsoptimierung angestrebt werden. Die 

Zunahme von automatisch objektiv aufgezeichneten AMS Merkmalen mit einem 

moderaten genetischen Hintergrund rechtfertigt die Abwandlung von Milchvieh-

Zuchtzielen in Richtung einer höheren Gewichtung von Verhaltensmerkmalen, 

insbesondere bei der Entwicklung spezifischer Roboterindizes. Die Selektion in 

Richtung eines verbesserten Verhaltens und Temperaments wird gleichzeitig die 

Milchproduktivität verbessern. Dennoch schlagen wir weitere Untersuchungen mit 

einem größeren Datensatz vor, um die Ergebnisse der vorliegenden Pilotstudie zu 

validieren. 

In einer vorhergehenden Studie wurden vier Verhaltensmerkmale, die Rückschlüsse 

auf die Reaktivität der Tiere gegenüber dem Menschen zulassen, hinsichtlich der Inter- 

und Intra-Observer-Reliabilität als wiederholbar identifiziert (Ebinghaus et al., 2016). 

Daher wurden in Kapitel 5 genetische (Ko)varianzkomponenten für diese Merkmale 

geschätzt. Daten von 1.761 Kühen wurden verwendet, um das Merkmal 

Berührungstoleranz (TTI) zu analysieren. Dabei wurde von 1.766 Kühen für das 

Merkmal Verhalten beim Freilassen aus der Fixierung im Fressgitter (RB) und von 1.880 

Kühen für das Merkmal Ausweichdistanz gegenüber einer unbekannten Person am 
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Fressgitter (AD) berücksichtigt. Darüber hinaus wurde eine qualitative 

Verhaltensbeurteilung (QBA) bei 565 Kühen durchgeführt. Für die weitere Analyse 

wurden die individuellen Faktorenwerte der ersten Komponenten aus einer 

Hauptkomponenten-Analyse (PC1), die fast 70 % der Variation ausmachten (QBA_PC1), 

durch Deskriptoren in Bezug auf Entspannung/ Anziehung/ Vertrauen am negativen 

und Deskriptoren in Bezug auf Angst/ Notlage/ Aversivität am positiven Ende 

verwendet. Geschätzte Heritabilitäten und ihre entsprechenden Standardfehler für 

Verhaltensmerkmale, die Mensch-Tier-Interaktionen widerspiegeln, betrugen 0,27 ± 

0,06 für die AD, 0,04 ± 0,05 für TTI, 0,11 ± 0,06 für RB und 0,13 ± 0,17 für QBA_PC1. Die 

geschätzten Zuchtwertkorrelationen (rEBV) für die einflussreichsten Vererber zwischen 

den Verhaltensmerkmalen AD, TTI, RB (Einschränkung: Vererber mit mindestens 5 

Töchtern) und QBA_PC1 (keine Einschränkung) waren moderat positiv, was auf eine 

Beziehung zwischen diesen Merkmalen schließen lässt. Außerdem werden diese 

Merkmale von einer ähnlichen genetischen Komponente beeinflusst. Die positive EBV-

Korrelation zwischen AD und SCS bestärkt das Konzept, dass die Züchtung in Richtung 

weniger ängstlicher Tiere einen positiven Einfluss auf die Gesundheit der Tiere haben 

kann. Außerdem haben Bullen mit einem hohen EBV für die Nutzungsdauer tendenziell 

Töchter mit einer geringeren Ausweichdistanz und weniger angstvollem Verhalten. Die 

EBV-Korrelation zwischen dem Relativzuchtwert Nutzungsdauer (RZN) und AD betrug -

0,28. Obwohl Verhaltensmerkmale in hohem Maße von den Umwelt- und 

Managementfaktoren abhängen, scheint die genetische Komponente eine wichtige 

Rolle zu spielen. Diese Ergebnisse unterstützen die Idee Verhaltensmerkmale, die die 

Beziehung zwischen Mensch und Tier widerspiegeln, in Zuchtstrategien zu integrieren. 

Eine allgemeine Diskussion über die Ergebnisse und die angewandten statistischen 

Modelle aus den vorangegangenen Kapiteln wird in Kapitel 6 gegeben. Außerdem 

werden einige Bedenken und Ausblicke in Bezug auf Verhaltensmerkmale und 

Merkmale, die Mensch-Tier-Interaktionen widerspiegeln, und deren mögliche 

Einbeziehung in Tierzuchtstrategien, diskutiert. 
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General introduction  

Historically, changes in the demand for livestock products have been driven by human 

population growth, income growth and urbanization. The production response in 

various livestock systems has been associated with science and technology, as well as 

an increase in herd numbers (Thornton, 2010). Dairy cattle breeding in Germany, for 

example, has been influenced in the last years by several of these aspects, 

implementation of new technologies (e.g., automatic milking systems (Breitschuh, 

2010)) and increasing herd sizes (Barkema et al., 2015).  

Domestication and the use of conventional livestock breeding techniques have been 

largely responsible for the increased yield of livestock products that has been observed 

over recent decades (Leakey et al., 2009). Selection towards high production, has been 

heavily criticized for the following reasons: i) the increase in milk yields have been 

accompanied by a negative impact on functional traits, e.g., animals facing increased 

frequency of health problems (Ingvartsen et al., 2003) and diminished reproduction 

abilities (Bell and Roberts, 2007), and ii) reduced breeding capacity, decreased 

longevity and modification of normal behavior (Lopez et al., 2004; Oltenacu and Algers, 

2005). Furthermore, these aspects are indicative of an overall decline in the welfare of 

dairy cows (Oltenacu and Algers, 2005). According to Groen et al. (1997), functional 

traits are those animal traits that increase farming efficiency not by leading to a higher 

production output, but rather by reducing costs. In addition to these economic 

reasons, concerns for animal welfare, as well as consumer demand, advocate for the 

consideration of functional traits in breeding goals (Simianer and König, 2002). This 

includes, for example, traits such as udder health, milking speed or average milk flow 

(AMF), behavior traits and traits reflecting dairy cows’ responsiveness towards 

humans. In order to thoroughly investigate some of these issues and to encourage 

breeding efforts to focus on new functional traits, the LOEWE Project ('Landes-

Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz') regarding 

human-animal-society was founded. It is a project funded by the German state of 

Hessen. The project’s focus is the interdisciplinary investigation of human-animal 

relationships throughout history and in society. This is not just a question of 

adequately accounting for the presence of animals in society and of understanding the 

coexistence of humans and animals. In fact, forms of the “creation” of animals, 

whether through animal breeding, animal husbandry, animal ethology, animal 
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research or presentation are investigated trough Human-Animal-Interactions 

(Speitkamp, 2016). The current thesis is part of a subproject within the LOEWE 

initiative that focuses on the human-animal relationship in dairy farming: Effects of 

humans, husbandry and selection. Of interest for this investigation is the use of new 

traits as indicator behavior traits from an ethological perspective complemented with 

an emphasis on understanding the genetics from an animal breeding point of view. 

The use of new technologies such as automatic milking systems (AMS) to objectively 

record traits that reflect behavior (animal-technic interaction), along with the use of 

reliable and validated traits that reflect dairy cows´ responsiveness towards humans 

will play an important role in the research. 

Therefore, the objective of the current study was to carry out quantitative genetic 

analyses for traits reflecting dairy cow behavior, as well as for traits reflecting animal-

technic and human-animal interactions, along with their relationships to traits from 

conventional performance testing and to evaluate the inclusion of these traits in 

breeding programs. In order to meet this objective, the focus of each chapter was:  

 

In Chapter 3 alternative statistical models to infer genetic (co)variance components of 

AMF were applied. Alternative modeling for the analysis was based on two different 

approaches: First, a threshold methodology was employed by treating AMF as a binary 

trait, in accordance with previous findings where AMF was described by bimodal or 

multimodal curves (distribution of daughter records within sires). In a second step, 

extensions of statistical modeling were then used to consider the inclusion of 

production and functional traits, combined with the application of the STEM theory. In 

this context, (co)variance components and structural equation coefficients were 

compared with results from standard mixed models, as well as with results from 

standard mixed models accounting for the effect of the response trait through the 

incorporation of a linear regression. 
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In Chapter 4 alternative functional traits generated by the AMS reflecting animal 

behavior and health were identified. Afterwards, genetic relationships among those 

novel traits with production traits like milk yield were estimated. Genetic parameters 

for milk yield and electrical conductivity for different udder quarters were also 

estimated. 

 

Heritabilities and relative breeding values were estimated for previously validated 

behavioral measurements that reflect the human-animal interaction in Chapter 5. 

Furthermore, correlations for estimated breeding values (EBV) were calculated among 

the behavior measurements, as well as between these traits and production traits 

from two different points in time (before and after the behavioral measurement). 

Finally, a calculation was made for the correlations between important relative 

breeding values included in the overall breeding value in Germany and these 

behavioral traits.  

 

The importance of the findings regarding behavior and the human-animal relationship 

are discussed extensively in Chapter 6. The implementation of a selection index 

towards behavior and the use of new DNA technologies such as genetic markers are 

also discussed in this section. 
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Behavior traits in dairy cattle breeding 

Dairy cow behavior in the context of breeding schemes is a complex trait category that 

includes temperament, curiosity, aggressiveness and cow-calf-associations. 

Temperament traits such as fearfulness or aggressiveness are important to consider as 

they affect how animals respond to their respective husbandry systems and handling 

conditions on the farm (Haskell et al., 2014). Feeding behavior (Durunna et al., 2011) 

or voluntary visits to automatic systems (König et al., 2006) (Figure 1) are also relevant 

traits in quantitative genetic studies, with mostly moderate heritabilities (ratio of 

additive genetic variation to total phenotypic variation). Typically, estimates of 

heritability are necessary for establishing the degree to which the traits of interest are 

under genetic control, and hence the scope for changing them via selection. Milking 

behavior, which is considered in official breeding evaluation for dairy cows, reflects the 

temperament of cows during milking. It is based on subjective assessment by the 

farmer and, to a large extent, on the milking speed or average milk flow (AMF). The 

AMF is partly reflective of the behavior of dairy cows because cows’ agonistic behavior 

can cause physiological changes (i.e., the oxytocin hormone level and the noradrenalin 

concentrations are affected (Kondo and Hurnik, 1988)), thus reducing milk flow in the 

ongoing lactation. Heritabilities for milking temperament, as well as for several other 

behavioral traits have been estimated in previous research studies (Table 1).  

Less work has focused on the genetic correlations between temperament and other 

traits in dairy cattle. Research suggests that animals demonstrating calm 

temperaments have better yields (Drugociu et al., 1977; Lawstuen et al., 1988; Breuer 

et al., 2000) and faster milking speeds (Lawstuen et al., 1988; Sewalem et al., 2011). 

There is a positive relationship between temperament and survival in the herd, in that 

calmer cows are less likely to be culled (Haile-Mariam et al., 2004; Sewalem et al., 

2010). There is also evidence of positive effects on health, specifically regarding better 

resistance to mastitis, lower udder edema and better general health from animals with 

calmer temperaments (Lawstuen et al., 1988). There are, however, conflicting reports 

on the relationship between temperament and somatic cell count (Fulwider et al., 

2008; Sewalem et al., 2011). 
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Table 1. Heritabilities for behavioral traits in Holstein dairy cows, according to 

literature from 2000 to 2011 

 

References Trait  h² No. of animals 

Schrooten et al., 2000 milking temperament (1-9) 0.15 656 (bulls) 

Pryce et al., 2000 milking temperament (1-9) 0.07 44,672 

Sewalem et al., 2002 milking temperament 0.08 656,839 

Hiendleder et al., 2003 milking temperament (1-9) 0.07 16 (grandsires) 

Rensing and Ruten, 2005 milking speed 0.10 382,500 

König et al., 2006 milking frequency (DIM 1) 0.16 1,216 

  milking frequency (DIM 2) 0.19 1,112 

  milking frequency (DIM 3) 0.22 1,004 

Lassen and Mark, 2008 milking speed: freestalls 0.29 19,347 

  milking speed: tiestalls 0.35 10,843 

Sewalem et al., 2011 milking temperament (1-5) 0.13 1,940,092 

  milking speed 0.14 1,620,175 

 

 

The implementation of breeding programs aimed at improving functional traits, such 

as behavior, remains challenging, despite the evidence that such traits can 

considerably impact production. 
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Figure 1. Components of dairy cattle behavior measured on different levels: herd, 

humans, technology and management 
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Challenge of functional traits, especially of behavior traits 

In the conventional breeding scheme, it is often costly and time consuming to collect 

sufficient numbers of daughter records for a wide range of functional traits in order to 

obtain daughter-based sire predictions with sufficient accuracy. It is also important to 

take into account that many functional traits have a low degree of heritability and are 

therefore difficult and/or expensive to measure. Furthermore, many functional traits 

are only expressed late in life (e.g., stayability (Ducrocq et al., 1988)) making it very 

difficult to include them in the breeding program. Due to the high relevance of 

functional traits and current concerns about animal welfare, it may be appropriate to 

consider integrating new phenotypic traits related to behavior, health, fertility and 

human-animal related traits into modern dairy cattle breeding programs. In order to 

implement these new traits into a routine breeding value estimation, it is important to 

ensure that recording efforts do not disturb the working routine on a dairy farm and 

do not negatively affect the temper of the cows (Kramer et al., 2013). It is also 

necessary to keep in mind that evaluation of behavioral traits, as previously stated by 

Adamczyk et al. (2013), is difficult due to problems with handlers’ varying definitions 

and subjectivity of measurements. 

Two main components play an important role in the observation and characterization 

of behavior: Time and objectivity. These components often contribute to evaluation 

differences among observers. Alternatively, the use of new technologies could be 

employed to more objectively assess animals’ behavior. 

 

Use of new technologies for behavior recording 

The utilization of new technologies, e.g., automatic milking systems, in Germany is 

evolving. The number of farms with so-called “milking robots”, or AMS, has increased 

from 100 farms in 1997 to nearly 4,500 in 2013 (Eckl, 2001; Breitschuh, 2010) (Figure 

2). AMS are equipped with extensive data collection technology that provide 

automatic, repeated measures and objective phenotypic data recording. The technique 

is used for better control of animal health, as well as for the control of estrus. Milk 

temperature, milk content, milk quantity and, in some instances, body weight are 

recorded at each milking. AMS allows the cow to independently select milking times, 



 

23 
 

Literature overview 

number of milking visits, feeding and lying times. The cows have relatively a free 

choice to decide when and how many times they want to visit the AMS, thus allowing 

them to act according to their natural behavior. These data would allow for the 

derivation of behavioral indicator traits. However, information regarding aspects of 

reliability and validity is insufficient with respect to the use of average milk flow and 

new behavior trait indicators delivered by automatic milking systems. In this case, the 

interdisciplinary work between ethology and animal breeding is of extreme 

importance. Ethologist can provide with reliable traits regarding behavior and traits 

reflecting dairy cows´ responsiveness towards humans.  

 

Figure 2. Farms with automatic milking systems in Germany (Eckl, 2001; Breitschuh, 

2010; ADR, 2013; Deutscher Bauernverband, 2016) 

 

The human-animal-relationship  

As part of the domestication process, animals adapt to dealing with human interaction, 

as well as to surviving in a captive environment through genetic changes that occur 

over generations (Price, 1984). In this regard, human-livestock interaction has been of 

substantial interest over the past 30 years. Further, these interactions may result in 

behavioral and physiological changes in the animal, with considerable consequences 

on the animal´s performance and overall welfare (Hemsworth et al., 1993). Such 

consequences could affect not only the animals, but also handlers to the extent that 
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job-related characteristics, such as job satisfaction, motivation and commitment may 

be affected (Hemsworth and Coleman, 2011). Early research on human-livestock 

relationships was initially conducted due to its implications for farm animal 

productivity, since fear responses to humans were shown to reduce productivity as a 

result of stress. However, ever-increasing interest in animal welfare and a better 

appreciation for the role of handlers in determining animal performance and welfare 

has led to a substantial amount of research being conducted on human-livestock 

relationships since the 1990s (e.g., ease of handling of cattle (Boivin et al., 1992); fear 

of humans in sows (Hemsworth et al., 1990); flocking instinct in sheep (Hutson, 1993)). 

The majority of research in this area has been done on a phenotypic level, though 

some has focused on the genotypic level (Hemsworth et al., 1990). Further 

development of research at the genotypic level is still possible, especially for traits 

reflecting human-animal relationships in dairy cattle.  

 

Breeding program - selection index - 

Animal behavior and traits reflecting dairy cows´ responsiveness towards humans are 

an important component of animal welfare. The unfavorable genetic relationship 

between milk production and welfare indicators suggests that the most-effective route 

to mitigating welfare regression, or even to improving welfare, is by developing and 

adopting a selection index in which welfare-related traits are included and weighted 

appropriately (Oltenacu and Broom, 2010). With such an index, the genetic progress 

for any of the considered traits is smaller than when selection is for a single trait, but 

overall economic response is greater (Oltenacu and Algers, 2005). This may justify 

placing selection pressure on behavior itself in order to achieve more significant 

genetic progress in animal welfare. The challenge in building such an index, is the lack 

of complete information regarding heritabilities for behavior traits and traits reflecting 

dairy cows´ responsiveness towards humans. Also genetic and phenotypic correlations 

of these traits with all the parameters that could be used in the selection index must 

be estimated. 



 

25 
 

Literature overview 

References 

Adamczyk, K., J. Pokorska, J. Makulska, B. Earley, and M. Mazurek. 2013. Genetic 

analysis and evaluation of behavioural traits in cattle. Livestock Science, 154(1): 1-

12. 

ADR, 2013. http://www.landwirtschaft-mv.de/serviceassistent/download?id=1578991 

(accessed 06.12.2017). 

Boivin, X., P. Le Neindre, J. M. Chupin, J. P. Garel, and G. Trillat. 1992. Influence of 

breed and early management on ease of handling and open-field behaviour of 

cattle. Applied Animal Behaviour Science, 32(4): 313-323. 

Breitschuh, S. 2010. Wirtschaftlichkeit von automatischen Melksystemen - das Melken 

als zentraler Wirtschaftspunkt-. Masterthesis. Hochschule Neubrandenburg. 

http://digibib.hs-nb.de/file/dbhsnb_derivate_0000000646/Masterthesis-

Breitschuh-2010.pdf (accessed 11.09.2017). 

Breuer, K., P. H. Hemsworth, J. L. Barnett, L. R. Matthews, and G. J. Coleman. 2000. 

Behavioural response to humans and the productivity of commercial dairy cows. 

Appl. Anim. Behav. Sci. 66(4): 273-288. 

Deutscher Bauernverband. 2016/17. Situationsbericht. Moderne Tierhaltung 

http://www.bauernverband.de/23-moderne-tierhaltung (accessed 06.12.2017). 

Drugociu, G., L. Runceanu, R. Nicorici, V. Hritcu, and S. Pascal. 1977. Nervous typology 

of cows as a determining factor of sexual and productive behaviour. Anim. Breed. 

Abstr. 45: 1262. 

Ducrocq, V., R. L. Quaas, E. J. Pollak, and G. Casella. 1988. Length of productive life of 

dairy cows. 2. Variance component estimation and sire evaluation. Journal of Dairy 

Science, 71(11): 3071-3079. 

Durunna, O. N., Z. Wang, J. A. Basarab, E. K. Okine, and S. S. Moore. 2011. Phenotypic 

and genetic relationships among feeding behavior traits, feed intake, and residual 

feed intake in steers. J. Anim. Sci. 89: 3401-3409. 

Eckl, J. 2001. Das Angebot an AMS nimmt weiter zu. Milchpraxis, 39 (1): 39- 43. 

Fulwider, W. K., T. Grandin, B. E. Rollin, T. E. Engle, N. L. Dalsted, and W. D. Lamm. 

2008. Survey of dairy management practices on one hundred thirteen North Central 

and Northeastern United States dairies. Journal of Dairy Science, 91(4): 1686-1692.



 

    26 
 
       

Literature overview 

Haile-Mariam, M., P. J. Bowman, M. E. Goddard. 2004. Genetic parameters of fertility 

traits and their correlation with production, type, workability, live weight, survival 

index, and cell count. Australian Journal of Agricultural Research, 55(1): 77-87.  

Haskell, M. J., G. Simm, and S. P. Turner. 2014. Genetic selection for temperament 

traits in dairy and beef cattle. Frontiers in Genetics, 5. 

Hemsworth, P. H., J. L. Barnett, G. J. Coleman. 1993. The human-animal relationship in 

agriculture and its consequences for the animal. Animal Welfare, 2: 33-51. 

Hemsworth, P. H., J. L. Barnett, D. Treacy, and P. Madgwick. 1990. The heritability of 

the trait fear of humans and the association between this trait and subsequent 

reproductive performance of gilts. Applied Animal Behaviour Science, 25(1-2): 85-

95. 

Hemsworth, P. H., and G. J. Coleman. 2011. Human-Livestock Interactions: the 

Stockperson and the Productivity and Welfare of Intensively-farmed Animals, CABI 

(Centre for Agriuculture and Biosciences International), UK. 

Hiendleder, S., H. Thomsen, N. Reinsch, J. Bennewitz, B. Leyhe-Horn, C. Looft, N. Xu, I. 

Medjugorac, I. Russ, C. Kühn, G. A. Brockmann, J. Blümel, B. Brenig, F. Reinhardt, R. 

Reents, G. Averdunk, M. Schwerin, M. Förster, E. Kalm, and G. Erhardt. 2003. 

Mapping of QTL for body conformation and behavior in cattle. Journal of Heredity, 

94(6): 496-506. 

Hutson, G. D. 1993. Behavioural principles of sheep handling. In: Grindin, T. (ed.) 

Livestock Handling and Transport, 1st edn. CAB International, Wallingford UK, 127-

146. 

Kramer, M., M. Erbe, B. Bapst, A. Bieber, and H. Simianer. 2013. Estimation of genetic 

parameters for novel functional traits in Brown Swiss cattle. J. Dairy Sci. 96: 5954-

5964. 

Kondo, S., Hurnik, J. F., 1988. Behavioral and physiological responses to spatial novelty 

in dairy cows. Can. J. Anim. Sci. 68: 339-343. 

König, S., F. Kohn, K. Kuwan, H. Simianer, and M. Gauly. 2006. Use of repeated 

measures analysis for the evaluation of genetic background of dairy cattle behavior 

in automatic milking systems. J. Dairy Sci. 89: 3636-3644. 



 

27 
 

Literature overview 

Lassen, J., and T. Mark. 2008. Genotype by housing interaction for conformation and 

workability traits in Danish Holsteins. Journal of Dairy Science, 91(11): 4424-4428. 

Lawstuen, D. A., L. B. Hansen, G. R. Steuernagel, and L. P. Johnson. 1988. Management 

Traits Scored Linearly by Dairy Producers. Journal of Dairy Science, 71(3): 788-799.  

Oltenacu, P. A., and B. Algers. 2005. Selection for increased production and the welfare 

of dairy cows: are new breeding goals needed? AMBIO: A Journal of the Human 

Environment, 34(4): 311-315.  

Oltenacu, P. A., and D. M. Broom. 2010. The impact of genetic selection for increased 

milk yield on the welfare of dairy cows. Animal Welfare, 19(1): 39-49. 

Pryce, J. E., M. P. Coffey, and S. Brotherstone. 2000. The genetic relationship between 

calving interval, body condition score and linear type and management traits in 

registered Holsteins. Journal of Dairy Science, 83(11): 2664-2671. 

Price, E. O. 1984. Behavioral aspects of animal domestication. The quarterly review of 

biology, 59(1): 1-32. 

Rensing, S., and W. Ruten. 2005. Genetic evaluation for milking speed in German 

Holstein population using different traits in a multiple trait repeatability model. 

Interbull Bulletin, (33): 163. 

Schrooten, C., H. Bovenhuis, W. Coppieters, and J. A. M. Van Arendonk. 2000. Whole 

genome scan to detect quantitative trait loci for conformation and functional traits 

in dairy cattle. Journal of Dairy Science, 83(4): 795-806. 

Sewalem, A., G. Kistemaker, and B. Van Doormal. 2002. Bayesian inferences for milking 

temperament in Canadian Holsteins. In Proc. 7th World Congr. Genet., Appl. Livest. 

Prod. 01-50. 

Sewalem, A., F. Miglior, and G. J. Kistemaker. 2010. Analysis of the relationship 

between workability traits and functional longevity in Canadian dairy breeds. J. 

Dairy Sci. 93: 4359-4365. 

Sewalem, A., F. Miglior, and G. J. Kistemaker. 2011. Short communication: Genetic 

parameters of milking temperament and milking speed in Canadian Holsteins. J. 

Dairy Sci. 94: 512-516.  



 

 
       



 

 

CHAPTER 3 

 
 
 
 
 

Alternative strategies for genetic analyses of milk flow in dairy 
cattle 

 
 
 
 
 

L. Santos, * K. Brügemann, * H. Simianer, †
 and S. König* 

 
 
 
 
 

* Department of Animal Breeding, University of Kassel Nordbahnhofstraße 1a, 37213 

Witzenhausen, Germany 

†
 Animal Breeding and Genetics Group, University of Göttingen, 37075 Göttingen, 

Germany 

 
 
 
 
 
 
 
 

Published 2015 in Journal of Dairy Science, 98: 8209-8222.



 

 



 

31 
 

Alternative strategies for genetic analyses of milk flow in dairy cattle 

ABSTRACT 

 

Measurement for average milk flow (AMF) in kilograms of milk per minute of milking 

time from 629,161 Holstein cows from calving years 1990 to 2008 were used to 

estimate genetic covariance components using a variety of statistical models. For 

bivariate linear threshold model applications, Gaussian-distributed AMF (linear sire 

model) was categorized into 2 distinct classes (threshold sire model) by setting 

arbitrary thresholds for extremely slow and extremely fast milking cows. In different 

bivariate runs with the 2 traits, Gaussian AMF and binary AMF, within a Bayesian 

framework, thresholds for the binary trait were 1.2, 1.6, 2.6, 2.8 kg/min. Posterior 

heritabilities for AMF from the linear and the threshold models in all runs were in a 

narrow range and close to 0.26, and the posterior genetic correlation between AMF, 

defined as either a Gaussian or binary trait, was 0.99. A data subset was used to infer 

genetic and phenotypic relationships between AMF with test-day traits milk yield, fat 

percentage, protein percentage, somatic cell score (SCS), fat-to-protein ratio, and 

energy-corrected milk using recursive linear sire models, and multiple trait linear sire 

models accounting for the effect of a trait 1 on a trait 2, and of trait 2 on trait 3, via 

linear regressions. The time-lagged 3-trait system focused on the first test-day trait 

after calving (trait 1), on AMF (trait 2), and on the test-day trait (trait 3) after the AMF 

measurement. Posterior means for heritabilities for AMF from linear and recursive 

linear models used for the reduced data set ranged between 0.29 and 0.38, and were 

slightly higher than heritabilities from the threshold models applied to the full data set. 

Genetic correlations from the recursive linear models and the linear model were 

similar for identical trait combinations including AMF and test-day traits 1 and 3. The 

largest difference was found for the genetic correlation between AMF and fat 

percentage from the first test day (i.e., -0.31 from the recursive linear model vs. -0.26 

from the linear model). Genetic correlations from the linear model, including an 

additional regression coefficient between AMF and SCS and between AMF and fat-to-

protein ratio recorded after the AMF measurement data. Structural equation 

coefficients from the recursive linear model and corresponding regression coefficients 

from the linear model with additional regression, both depicting associations on the 

phenotypic scales, were quite similar. From a physiological perspective, all models 
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confirmed the antagonistic relationship between SCS with AMF on genetic and 

phenotypic scales. A pronounced recursive relationship was also noted between 

productivity (milk yield and energy-corrected milk) and AMF, suggesting further 

research using physiological parameters as indicators for cow stress response (e.g., 

level of hormones) should be conducted. 

 

Keywords: milk flow, genetic parameters, recursive model, threshold model 

 

 

INTRODUCTION 

 

Functional traits reflecting dairy cow behavior are of increasing importance (König et 

al., 2007). The importance of behavior addresses an economic component, but also 

animal welfare issues from a consumer´s perspective (Kramer et al., 2013). 

Nevertheless, dairy cattle behavior is a complex trait category that includes 

temperament, curiosity, aggressiveness, or cow-calf associations. Also, feeding 

behavior (Durunna et al., 2011) or voluntary entries into automatic milking systems 

(König et al., 2006) were traits of interest in quantitative-genetic studies, which mostly 

identifies moderate heritabilities. Ethologists are interested in human-dairy cow 

relationships by using different stimuli or specific test procedures (Rousing and 

Waiblinger, 2004). In this context, preliminarily work has been done in beef cattle (e.g., 

by assessing temperament scores or visual flight-speed scores when the animal is 

jumping out of the crush; Hoppe et al., 2010). Handling of dairy cows (i.e., the effect of 

humans) in a positive or negative way can either increase or decrease productivity and 

fertility (Hemsworth et al., 2000; Waiblinger et al., 2002). Jensen and Anderson (2005) 

discussed the importance of behavior with regard to adaptation of animals to their 

social and physical environments. 

However, a substantial lack of official recording schemes exist for behavior or 

temperament traits in dairy cattle. Traits used in official genetic evaluations partly 

included temperament of cows in the parlor during milking based on subjectively 

appraisals of procedures, and to a large extent milking speed usually defined as 
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average milk flow (AMF; Rensing and Ruten, 2005). Also, AMF reflects dairy cattle 

behavior because agonistic behavior of cows caused physiological changes (i.e., 

affecting the oxytocin hormone level and norepinephrine concentrations; Kondo and 

Hurnik, 1988), and in ongoing lactation reduced milk flow. The genetic correlation 

between temperament and AMF (Sewalem et al., 2011) also indicates that a cow 

entering the parlor voluntarily has a calm temperament and a better milk flow, 

whereas a more nervous cow has a longer milking time. Concentrations of cortisol and 

endogenous opioids in plasma were higher, and oxytocin concentrations were lower 

for cows milked in unfamiliar surroundings (Bruckmaier et al., 1993; Bruckmaier et al., 

1997). In such cases where release of oxytocin is impaired, milk ejection is inhibited, 

thus causing a production loss and an increased risk for a mammary infection 

(Bruckmaier, 2005). Milk flow can be recorded on 2 different scales. The first one is a 

subjective scoring, mostly done by farmers on a scale from 1 to 5 or from 1 to 9. 

Subjectively scored milk flow is a trait with low to moderate heritability (Rupp and 

Boichard, 1999; Rensing and Ruten, 2005). The second scale is an objective 

measurement in kilograms per minute (during the complete milking event or only in 

the main milking phase). When objectively measured, AMF is a trait with moderate to 

high heritability (Lassen and Mark, 2008). 

An increase in AMF is associated with a desired decrease in milking and labor time. 

However, AMF should be considered as a trait with an intermediate optimum, because 

extremely fast milking cows have higher incidences of clinical mastitis and an increased 

somatic cell count (SCC) (Zwald et al., 2005). Complex trait associations between AMF 

and other traits of dairy cattle breeding goals were inferred in numerous previous 

studies by applying standard linear mixed model theory (e.g., Sewalem et al., 2011; 

Berry et al., 2013). Linear mixed models are suitable for Gaussian-distributed traits, 

and they do not take into account recursive relationships among traits. Structural 

equation models (STEM), on the other hand, as originally developed for biology 

(Haldane and Priestley 1905), have the potential to infer relationships and feedback 

situations among traits by reflecting a more physiological background. Structural 

equation models are models with recursive or with simultaneous effects, and were 

applied in previous studies to health and fertility traits (e.g., Sorensen and Varona, 

2006; López de Maturana et al., 2007). When applying STEM, associations between 
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traits are reflected by solutions for so-called structural equation coefficients. In a time-

lagged 3-trait system, high milk yield (MY) may increase AMF, and AMF could affect 

levels of MY in the ongoing lactation. Karacaören et al. (2006) and Samoré et al. (2010) 

found a positive genetic correlation between MY and AMF, but they did not investigate 

the recursive relationship between the 2 traits. More obvious are causalities between 

udder health and AMF (Luttinen and Juga, 1997): clinical or subclinical mastitis 

(extremely high SCC) extends the milking process but, in turn, antagonistic 

relationships between AMF and SCC were identified. 

The aim of the present study was to apply alternative statistical models to infer genetic 

(co)variance components of AMF. Alternative modeling was based on 2 different 

approaches. First, we used threshold methodology by treating AMF as a binary trait, 

based on previous findings that AMF was described by bimodal or multimodal curves 

(distribution of daughter records within sires). In a second step, extensions of 

statistical modeling considered the inclusion of production and functional traits, 

combined with the application of STEM theory. In this context, (co)variance 

components and structural equation coefficients were compared with results from 

standard mixed models and with results from standard mixed models accounting for 

the effect of the response trait by incorporation a linear regression. 
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MATERIALS AND METHODS 

 

Threshold Models Versus Linear Models 

Data and Trait Definitions. Measurements for AMF (in kg/min) recorded with a 

stopwatch were available for 629,161 first-parity Holstein cows located in the regions 

of the federal states of Hessian and Lower Saxony, Germany. Official measurements 

for AMF were from the early period of lactation and mostly recorded at the second 

official test date of a cow. Calvings spanned the period from January 1990 to 

December 2008 and included cows from 24,459 different herds. Cows were daughters 

of 26,475 sires with, on average, 24 daughters per sire (minimum = 1daughters per 

sire; maximum = 35,632 daughters per sire). The pedigree file traced back to founder 

animals born in 1940 included 2,229,849 animals. 

 

Table 1. Description of the applied statistical models for genetic analyses of average 

milk flow (AMF) 

        

Statistical   No. of   

model Model description observ.   Traits 1 

Model [1] Bivariate linear-threshold sire model 629,161   AMF as Gaussian  

        and as binary trait 

Model [2] Recursive linear sire model 7,924   Trait_1, AMF, Trait_3 

Model [3] Linear multiple trait sire model 7,924   Trait_1, AMF, Trait_3 

Model [4] Linear multiple trait sire model with linear 7,924   Trait_1, AMF, Trait_3 

  regressions     
1
Trait_1 = test-day traits before the measurement date for average milk flow;  

 Trait_3 = test-day traits after the measurement date for average milk flow. 

 

To treat AMF as a binary trait, 4 different binary traits were generated grouping the 

cows according to 4 different thresholds: 1.2, 1.6, 2.6, 2.8 kg/min. Cows with values 

above the threshold received a score of 1, and otherwise 0. For the 4 different 

thresholds, 95.44, 81.29, 21.62, and 14.39 % of the cows, respectively, received a score 

of 1. 
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Statistical Modeling. The variety of applied statistical models is described in Table 1. 

Bivariate linear-threshold sire models were applied to the combinations of all binary 

AMF traits with Gaussian-distributed AMF in 4 consecutive runs for the 4 different 

defined thresholds. The bivariate linear-threshold sire model (equation [1]) for the 

joint analysis of observed values y for Gaussian AMF (index 1) and of the underlying 

liability π when defining AMF as a binary trait (index 2) was 

y1 = Xβ1 + Zss1 + Zhh1 + e1 ; 

 π2 = Xβ2 + Zss2 + Zhh2 + e2 , [1]           

where y and π = vectors of observed AMF and unobserved liabilities for AMF, 

respectively; β = vector of systematic effects; s = vector of sire-additive genetic effects; 

h = vector of herd-test-day effects; e = vector of residual effects; and X, Zs, and Zh = the 

associated incidence matrices. Vector β included the fixed effects of milking frequency, 

age at first calving, and days in milk (DIM). For the random sire additive genetic and 

herd-test-day effects, multivariate normal prior distributions were assumed: 

),,0(~ 0 AG Ns  and 

),0(~ 0 IH Nh , 

where 
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2
 denoting sire variances for both traits, and σs1s2 is the 
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H is the (co)variance matrix between herd-

test day effects, with σh1
2

 and σh2
2

 denoting herd-test day variances for both traits, and 

σh1h2 the covariance for her-test day effects between trait 1 and trait 2, and I is an 

identity matrix. Residuals were also assumed to be correlated, and the following 

distribution was assumed:   
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0R  with σe1

2
 denoting the residual variance for trait 1 and 

σe1e2  the residual covariance between trait 1 and trait 2. Consequently, the residual 

correlation between 1 binary trait and 1 Gaussian trait is σe1e2 σe2⁄ . 

 

Recursive Models Versus Linear Multiple Trait Models 

Data and Trait Definitions. A subset of 7,924 cows was used to explore relationships 

between AMF with test-day production traits and test-day traits reflecting energy 

efficiency. This subset included cows from similar types of herringbone parlor milking 

systems to illustrate identical human-animal interactions before and during the milking 

routine, and excluding data from automatic milking systems (limited contact with 

humans) and tiestall barns (direct contact between cows and humans). Furthermore, 

in the selected herds, we implemented recording schemes for further traits reflecting 

agonistic cow behavior as defined by Waiblinger et al. (2006). Test-day production 

traits included MY, fat percentage (FP), protein percentage (PP), somatic cell score 

(SCS), and energy efficiency indicators on a test-day basis [fat-to-protein ratio (FPR) 

and energy-corrected milk (ECM)]. Energy-corrected milk determines the amount of 

energy in the milk standardized to 3.5 % fat and 3.2 % protein, and was calculated 

using the formula of the GfE (2001): 

ECM = MY × (0.38 × FP + 0.21 × PP + 1.05) 3.28⁄  

According to Neuenschwander et al. (2005), ECM is an indicator for energy needed for 

milk production, and also an indicator for metabolic stress of the cow. Test-day SCC 

was transformed to test-day SCS by applying the formula by Ali and Shook (1980): 

SCS =  log2(SCS 100,000⁄ ) + 3 

Descriptive statistical parameters for all traits are summarized in Table 2. 
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Table 2. Descriptive statistics for the test-day records (MY=milk yield, FP=fat 

percentage, PP=protein percentage, FPR=fat-to-protein ratio before (_1) and after (_3) 

the measurement date for average milk flow (AMF), including number of observations 

(N), means (X), SD, and minimal (Min.) and maximal (Max.) values 

 
Statistical parameter 

Trait                  N                X             SD               Min.             Max. 

AMF1 (kg/min) 629,161 2.14 0.61 0.26 6.00 

AMF2 (kg/min) 7,924 2.18 0.66 0.39 5.82 

MY_1 (kg) 7,924 29.37 5.95 3.20 59.60 

MY_3 (kg) 7,924 28.11 5.98 3.00 50.70 

FP_1 (%) 7,924 3.85 0.65 1.64 8.55 

FP_3 (%) 7,924 3.90 0.68 1.66 7.19 

PP_1 (%) 7,924 3.26 0.29 2.17 4.50 

PP_3 (%) 7,924 3.41 0.28 2.45 4.48 

SCS_1 7,924 2.31 1.56 0.01 9.64 

SCS_3 7,924 2.44 1.59 0.01 9.64 

FPR_1 7,924 1.19 0.20 0.49 3.09 

FPR_3 7,924 1.15 0.18 0.47 2.24 

ECM_1 (kg) 7,924 18.42 3.33 2.04 39.72 

ECM_3 (kg) 7,924 18.02 3.31 2.27 35.00 
1
AMF from the whole data set as used for model [1]. 

2
AMF from the reduced data set as used for models [2], [3], and [4]. 

Statistical Modeling. Structural equation models applications focused on traits 

recorded in the early stage of lactation. Trait definition depicted a biological system 

including AMF and the same 2 test-day traits. Trait 1 (e.g., MY_1) referred to the test-

day record before the measurement date for AMF, and trait 3 (e.g., MY_3) was the 

official test-day record of the respective test-day trait after AMF recording. Hence, 

AMF was trait 2 in the biological system. Such time-lagged recursive systems, where 

trait 1 affects AMF and AMF itself affects trait 3 without considering reciprocal 

causalities, were introduced by König et al. (2008) and Rehbein et al. (2013) for disease 

traits (trait 2). In matrix notation, the recursive linear model (equation [2]) was defined 

as 

(

Λy1

Λy2

…
Λyn

) =  Xβ +  Zhh +  Zss + e , [2]                                         
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where i = 1, 2,....., n, denoting the n cows having records for the 3 traits. Here, yi is a 

vector including observations for the 3 traits. Systematic and random effects, and 

associated incidence matrices, were defined in a similar way to equation [1]. A special 

feature of the recursive model is matrix Λ containing the structural equation 

coefficients λ. Coefficients λij describe alterations of trait i with respect to changes by 

one unit of trait j. Here, λ21 is the alteration in AMF with respect to test-day trait 1. The 

rate of change in test-day trait 3 with respect to the change of 1 kg/min in AMF is 

depicted by λ32. Hence, matrix Λ was: 

𝚲 =  [
1 0 0

− λ12 1 0
0 − λ32 0

]. 

Conditional and prior distributions of the data, parameters, and effects correspond to 

the study by Heringstad et al. (2009). Standard multiple-trait linear sire models 

simultaneously included the 3 traits (e.g., MY_1, AMF, and MY_3). Hence, the general 

form of the multiple trait linear sire model (equation [3]) was: 

      y = Xβ +  Zss +  Zhh +  e ;     [3]                                        

with vectors, matrices, and effects as specified for the Gaussian trait in equation [1].  

The general form of the multiple trait linear sire model (equation [4]; not shown) was 

achieved by including trait 1 as a linear regression coefficient in the model for trait 2 

and including trait 2 as a linear regression coefficient in the model for trait 3. The 

intention of equation [4] was to depict a recursive system by using the framework and 

possibilities of standard mixed models. Hence, we focused on a comparison of 

solutions for regression coefficients (equation [4]) with corresponding structural 

equation coefficients (equation [2]).  

Data analyses were conducted in a Bayesian framework via Markov chain Monte Carlo 

sampling and using the SIR-Bayes package (Wu et al., 2008). For equation [4], the 

software package DMU (Madsen and Jensen 2000) was used because SIR-Bayes 

software does not allow modeling of regressions (only classification variables). Settings 

and algorithms for both software packages were identical; 10,000 iterations were 

defined for the burn-in period, and 100,000 iterations after burn-in were used to infer 

posterior genetic parameters, regression coefficients, and structural equation 

coefficients. The decision for the length of burn-in rounds and for the total number of 
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iterations based on convergence diagnostics [algorithms by Raftery and Lewis (1992) 

as implemented in the BOA R-package] and on visual inspections of trace plots. For the 

recursive models, we inspected the posterior samples of λij, and for all other models 

main evaluation criterion was the covariance for sire effects. Parameter estimates 

from the STEM cannot be directly compared with corresponding parameter estimates 

from standard mixed models. For final comparisons, the transformation of STEM 

parameters followed the procedure as described by Gianola and Sorensen (2004). 

 

RESULTS AND DISCUSSION 

 

Threshold Models Versus Linear Models 

Distributions for Milking Speed. The idea to transform almost Gaussian data into 

binary traits was explained and applied by Pashmi et al. (2009). In their study, a 

threshold for SCC was defined to classify SCC records into binary subclinical mastitis (0 

= healthy, 1 = sick). This approach might be suitable for such traits where a broader 

range of outcomes has an identical biological or physiological value. In the case of SCC, 

veterinarians do not distinguish, for example, between 80,000 and 85,000 somatic cells 

for healthy cows; on the upper SCC scale, they do not distinguish, for example, 

between 350,000 and 355,000 somatic cells for affected cows (Caraviello et al., 2005). 

Similar differentiations apply to AMF; farmers and breeding organizations accept a 

broad range of intermediate milk flow, but they select against extremely slow and 

against extremely fast milkers (Sewalem et al., 2010). Also, statistical concerns favor 

the applications of threshold models for a categorically defined AMF trait. The pattern 

of phenotypic daughter records for AMF relatively often follow a bimodal structure 

instead of an optimal symmetric Gaussian distribution, showing 1 pronounced peak. 

Bagnato et al. (2003) addressed a similar topic by studying variations of parameters 

which describe milk flow curves. In a preliminary study focusing on 4 influential 

Holstein sires, König et al. (2011) identified 1 sire with a bimodal daughter distribution 

for AMF (i.e., one maximum at 2.2 kg/min, and another maximum at 2.6 kg/min). In 

the present study, we also analyzed daughter distributions for AMF within sires or 

within groups of sires by creating subsets of sires according to estimated breeding 
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values of sires or according to their number of daughters. For all sire groups (Figure 1) 

and also for specific influential sires (Figure 2), daughter records for AMF seemed to be 

Gaussian distributed. Only for the subset of sires with lowest breeding values for AMF, 

we found tendencies for bimodal distributions. 

Genetic Parameters. Theoretically, linear model applications require a Gaussian data 

distribution and normally distributed residuals, variance homogeneity, additivity of 

systematic effects, and independency between variance and mean. In spite of obvious 

Gaussian distributed curves (Figure 1 and 2), the data were not normally distributed 

[utilization of the Kolmogorov-Smirnov test and applying the procedure PROC 

univariate in SAS (ver. 9.2; SAS Institute Inc., Cary, NC) for the whole data set including 

629,161 observations], but heritabilities for different data distributions and analyzed 

with different models were very similar. Posterior heritabilities for AMF from the 

bivariate threshold-linear sire equation [1] are depicted in Figure 3 for binary AMF, and 

in Figure 4 for Gaussian AMF. Different subfigures display heritabilities from the same 

bivariate run (e.g., Figure 3a and 3b for the run using the 1.2 kg/min threshold for the 

binary trait). Heritabilities on both scales on the observable scale (Figure 3a) and on 

the underling liability scale (Figure 3b) were 0.26. Identical heritabilities for linear and 

binary AMF were also found for the remaining threshold definitions (Figure 3b vs. 4b, 

Figure 3c vs. 4c, Figure 3d vs. 4d). Ilahi and Kadarmideen (2004) mentioned a loss of 

information with associated decreasing heritabilities when transforming AMF from a 

continuous scale into a few discrete classes. Generally, posterior means for 

heritabilities of AMF were in a narrow range close to 0.26, along with small posterior 

standard deviation. Curves for posterior distributions of heritabilities were symmetric 

with identical shape and within a small range (heritabilities from the different 

iterations ranged between 0.22 and 0.30). Sire variances were slightly smaller from the 

linear model for the Gaussian data, but simultaneously smaller residual variances were 

the reason for almost identical heritabilities from equations [1] and [2].  
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Nevertheless, a simulation study (König, 1999) clearly showed the importance of 

heritabilities when ranking sires in top lists according to their genetic evaluations.        

 

Figure 1. Daughter distributions for average milk flow (AMF) for bulls with the highest 

(group A) and lowest (group B) total breeding value, highest (group C) and lowest 

(group D) relative breeding value for production, and highest (group E) and lowest 

(group F) relative breeding value for AMF 

 
Classically, previous quantitative genetics studies compared heritabilities for binary 

traits from linear model applications with results for binary traits from threshold 

models (e.g., Huang and Shanks, 1995). The advantages of threshold over linear 

models have already been shown with simulated data (Meijering and Gianola, 1985; 

Hoeschele, 1988). However, variable results were reported when using field data. 

Similar performance of threshold and linear models were indicated the studies by 

Weller et al. (1988), Renand et al. (1990), and Matos et al. (1997). 

Theoretically, comparison of heritabilities estimated on both scales with an underlying 

liability and observable for a 0 and 1 trait suggests a heritability transformation 

according to Dempster and Lerner (1950). This transformation equation indicates 

higher heritability estimates on the underlying liability scale. In the present study, we 

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

N
u

m
b

er
 o

f 
d

au
gh

te
rs

 

AMF 

Group A

Group B

Group C

Group D

Group E

Group F



 

43 
 

Alternative strategies for genetic analyses of milk flow in dairy cattle 

applied linear models to AMF defined as a Gaussian trait, and threshold models to 

AMF defined as a binary trait.        

 

 

Figure 2. Daughter distributions for average milk flow (AMF) for daughters of the 5 

bulls with the highest number of daughters (sire A with 5,854 daughters, sire B with 

3,731 daughters, sire C with 4,900 daughters, sire D with 1,816 daughters, and sire E 

with 2,742 daughters) 

 

Nevertheless, we also used the Dempster-Lerner equation to transform heritabilities 

from the threshold model (h2 = 0.26 for all class definitions) into the observed scale. 

Transformed heritabilities were 0.06 for the 1.2 kg/min threshold, 0.12 for the 1.6 

kg/min threshold, 0.13 for the 2.6 kg/min threshold, and 0.11 for the 2.8 kg/min 

threshold. Those results are in agreement with previous studies focusing on genetic 

analysis of binary data with different models (e.g., Weller and Ron, 1992): differences 

in transformed heritabilities increased with increasing deviations of observations 

allocated either to the 0 or to the 1 response. 
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Posterior genetic correlations between AMF defined as a Gaussian trait (linear model) 

and AMF defined as a binary trait (threshold model) were larger than 0.99 (figure 5). 

Minor differences were found for the different threshold definitions: creation of 

extreme categories [thresholds of 1.2 kg/min (Figure 5a) and 2.8 kg/min (Figure 5d)] 

resulted in marginally lower genetic correlations compared with bivariate runs using 

the thresholds of 1.6 (Figure 5b) or 2.6 kg/min (Figure 5c). Posterior density 

distributions for genetic correlations were centered to the mean with a pronounced 

maximum symmetric in shape, and characterized by an extremely small range for 

estimates from different iteration rounds. Such a high genetic correlation indicates an 

identical ranking of sires according to their breeding values irrespective the trait 

definition and the statistical modeling. This might be due to the large amount of data, 

allowing an optimal allocation of records to different subcells. 

 

 

Figure 3. Heritabilities for average milk flow (AMF) defined as a binary trait from 

bivariate models with thresholds of 1.2 (a), 1.6 (b), 2.6 (c), and 2.8 kg/min (d)  

a b 

c d 
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Figure 4. Heritabilities for average milk flow (AMF) as defined as a Gaussian-distributed 

trait from bivariate models with thresholds of 1.2 (a), 1.6 (b), 2.6 (c), and 2.8 kg/min (d) 

 

Recursive Models Versus Linear Multiple Trait Models 

Genetic Parameters. Table 3 provides posterior means of heritabilities for AMF from 

equations [2], [3], and [4]. The lowest variation of heritabilities (0.29 - 0.30) from 

different runs with different AMF test-day trait combinations resulted from the 

recursive equation [2], and highest variations were found for the linear equation [4], 

including an additional linear regression coefficient (0.29 - 0.38). Moderate 

heritabilities for AMF, in the range from 0.29 to 0.38, and the inclusion of AMF into 

overall breeding goals for dairy cattle are a basis to implement efficient selection 

strategies on AMF. Heritabilities for AMF from the reduced data set for AMF were 

slightly higher compared with the estimates from the whole data set (equation [1]). 

Schierenbeck et al. (2011) summarized advantages when basing genetic evaluations on 

a subset of preselected herds: harmonization in data recording in more or less 

standardized environments, resulting in larger additive-genetic variances and 

heritabilities. 

a b 

c d 
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Figure 5. Genetic correlations (rg) between Gaussian-distributed average milk flow 

(AMF) and AMF defined as a binary trait from bivariate models with thresholds of 1.2 

(a), 1.6 (b), 2.6 (c), and 2.8 kg/min (d) 

 

In recent years, breeders associations have discussed different strategies on how to 

include milkability traits in selection criteria (Gray et al., 2011). The overall breeding 

goal for Holsteins in Germany does not explicitly consider AMF; likewise, in the total 

merit index for the Fleckvieh breed, AMF is only included with a relative economic 

weight of 3 % (Dodenhoff and Emmerling, 2009). Data for AMF are either objective 

measurements in kilograms per minute, subjectively assigned scores for slow- and fast-

milking cows reflecting impressions of farmers or a combination of both. The present 

study confirms quite high heritabilities for objective measurements of AMF, suggesting 

continued implementation of a population-wide recording system instead of using 

farmer surveys. Moderate to high heritabilities were also found in previous studies by 

Santus and Bagnato (1998; h2 = 0.33) or by Ilahi and Kadarmideen (2004; h2 = 0.44) in 

Brown Swiss cows. 

a b 

c d 
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Table 3. Posterior heritability estimates for test-day traits (MY= milk yield, FP= fat 

percentage, PP= protein percentage, FPR= fat-to-protein ratio before (_1) and after 

(_3) the measurement date for average milk flow (AMF) from 3 different sire models 

(posterior SD in parentheses) 

        

 
Statistical model 

 
Recursive linear Linear Linear + regression 

Trait Model [2] Model [3] Model [4] 

AMF1 (kg/min) 0.29-0.30 (0.04) 0.34-0.36 (0.04) 0.29-0.38 (0.04) 

MY_1 (kg) 0.28 (0.04) 0.30 (0.04) 0.30 (0.04) 

MY_3 (kg) 0.26 (0.04) 0.28 (0.04) 0.32 (0.04) 

FP_1 (%) 0.31 (0.04) 0.38 (0.05) 0.38 (0.05) 

FP_3 (%) 0.36 (0.04) 0.42 (0.05) 0.43 (0.05) 

PP_1 (%) 0.30 (0.04) 0.44 (0.04) 0.44 (0.05) 

PP_3 (%) 0.38 (0.04) 0.48 (0.05) 0.42 (0.05) 

SCS_1 0.08 (0.02) 0.09 (0.02) 0.09 (0.02) 

SCS_3 0.07 (0.02) 0.07 (0.02) 0.06 (0.02) 

FPR_1 0.30 (0.04) 0.50 (0.05) 0.50 (0.05) 

FPR_3 0.31 (0.04) 0.44 (0.04) 0.39 (0.05) 

ECM_1 (kg) 0.25 (0.03) 0.25 (0.04) 0.25 (0.04) 

ECM_3 (kg) 0.22 (0.03) 0.24 (0.04) 0.25 (0.04) 

1
Range of heritabilities for AMS from all runs for the different trait combinations. 

 

Because of the strong association between AMF of cows and labor time in modern 

dairy cattle farming systems (Devir et al., 1993), AMF has increasing relevance on 

profitability. Given a routine supply of records and an efficient dissemination of 

superior animals, both components (i.e., high heritabilities and economic values) 

would facilitate the implementation of efficient selection strategies for AMF. 

Quite similar heritabilities across statistical models and test days were found for MY 

and ECM (Table 3). As expected, highest heritabilities were found for FP and PP. For all 

models, we observed higher heritabilities for FP and PP from test days after the AMF 

measurement. The FP directly after calving was influenced by mobilizations of body fat 

depots. In fact, such a compensation of negative energy balance, via body fat 

mobilization especially, was observed in high-yielding Holstein cows (Collard et al., 

2000) and was more ronounced in herds characterized by suboptimal feeding 

strategies. A high agreement in heritabilities for same traits across models was found 

for SCS_1 (0.08 - 0.09) and for SCS_3 (0.06 - 0.07). Major heritabilities fluctuations 
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showed FPR_1 with 0.30 (recursive equation [2]) versus 0.50 (multiple-trait linear 

equations [3] and [4]), and FP_1 (0.31 from equation [2] and 0.38 from equations [3] 

and [4]). Again, both traits are associated with energy deficiency directly after calving. 

Parameter estimates from a STEM being developed to depict physiological 

mechanisms explicitly differed from standard mixed models. 

Genetic correlations between AMF with all test-day traits are displayed in Table 4. 

Interestingly, genetic correlations from the recursive equation [2] and the linear 

equation [3] were quite similar. The largest difference when comparing both models 

was found for the genetic correlation between AMF with FP_1 (-0.31 vs. -0.26, 

respectively). However, partly substantial differences were found for estimates from 

equation [4], especially for the genetic correlation between AMF with SCS_3 and 

between AMF with FPR_3. Here, application of the linear model plus the modeling of 

an additional regression from trait 1 on trait 2 (AMF), and from trait 2 on trait 3, 

changed the sign of the correlation. However, divergent estimates from equation [4] 

were associated with highest posterior standard deviation. Generally, MY and AMF 

were positively correlated on the genetic scale, indicating that a high production level 

is associated with a better milk flow. Similar results with genetic correlations between 

0.31 and 0.41 were found by Karacaören et al. (2006). König et al. (2006) studied 

milking behavior of cows in automatic milking systems and observed that higher 

frequencies of voluntary entries into the milking system and faster milking processes 

were found for cows in early lactation stage with highest test-day MY.  

Genetic correlations between MY and AMF and between percentage traits (PP and FP) 

and AMF differed in sign. Opposite results for MY and percentage traits reflect the 

natural genetic antagonism between productivity and protein or fat content as proven 

in several previous studies (e.g. Chauhan and Hayes, 1991). Equations [2], [3], and [4] 

confirmed the genetic antagonistic relationship between SCS_1 and AMF, with 

correlations ranging between 0.17 and 0.35. Moore et al. (1983) discussed the 

consequences of selection due to the antagonistic relationships; they suggested 

selection toward faster AMF because of the low heritability for SCS (0.03 in their study) 

and because selection response in SCS is small. Genetic correlations between AMF 

with FPR_1 and FPR_2 were small and close to zero. Hence, we identified no 
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associations on the genetic scale between milk flow and an energy efficiency trait. 

Bergk and Swalve (2011) analyzed relationships between FPR and other functional 

traits and found an intermediate optimum for FPR. Relationships for traits 

characterized by intermediate optima with other traits are difficult to infer via linear 

regressions or correlations. 

 

Table 4. Posterior genetic correlation estimates between test-day traits (MY= milk 

yield, FP= fat percentage, PP= protein percentage, FPR= fat-to-protein ratio before (_1) 

and after (_3) the measurement date for average milk flow (AMF) with AMF from 3 

different sire models (posterior SD in parentheses) 

  

 

  

 
 Statistical model 

 
Recursive linear  Linear Linear + regression 

Trait Model [2]  Model [3] Model [4] 

MY_1 (kg) 0.38 (0.08)  0.41 (0.08) 0.36 (0.11) 

MY_3 (kg) 0.36 (0.08)  0.36 (0.09) 0.73 (0.07) 

FP_1 (%) -0.18 (0.09)  -0.17 (0.09) -0.22 (0.11) 

FP_3 (%) -0.29 (0.08)  -0.30 (0.08) -0.73 (0.06) 

PP_1 (%) -0.31 (0.08)  -0.26 (0.08) -0.21 (0.09) 

PP_3 (%) -0.26 (0.08)  -0.26 (0.08) -0.85 (0.03) 

SCS_1 0.35 (0.14)  0.31 (0.13) 0.17 (0.14) 

SCS_3 0.43 (0.13)  0.42 (0.12) -0.19 (0.26) 

FPR_1 -0.05 (0.09)  -0.04 (0.08) -0.07 (0.10) 

FPR_3 -0.18 (0.08)  -0.17 (0.08) 0.21 (0.27) 

ECM_1 (kg) 0.29 (0.09)  0.32 (0.10) 0.18 (0.14) 

ECM_3 (kg) 0.19 (0.09)  0.18 (0.10) 0.46 (0.17) 

 

Structural Equation and Random Regression Coefficients. Structural equation 

coefficients λ from the recursive equation [2] and corresponding linear regression 

coefficients b from equation [4] for identical trait combinations and pathways are 

displayed in Tables 5 and 6. Effects on the first pathway (λ21 and b21) describe the 

change in AMF with respect to trait_1 (Table 5), and changes of trait_3 with respect to 

the change of 1 kg/min in AMF are depicted via λ32 and b32 in Table 6. On the first 

pathway, structural equation coefficients λ21 and linear regression coefficients b21 were 

quite similar for the effects of MY_1, FP_1, PP_1, SCS_1, and ECM_1 on AMF. 

Moderate differences, that is, λ21 = 0 and b21 = 0.22, were found for FPR_1. A value λ21 

= 0 is the general assumption of a standard linear mixed model. Interestingly, genetic 
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parameters on this specific pathway (heritabilities for FPR_1, AMF, and genetic 

correlations between both traits) were almost identical for equations [2] and [4]. Partly 

moderate differences for same trait combinations were found when comparing λ32 and 

b32 on the second pathway. Effects were always in the same direction, but linear 

regressions depict a stronger effect of AMF on MY_3 and of AMF on ECM_3 than 

corresponding structural equation coefficients from the recursive system. However, 

posterior standard deviations for regressions coefficients for effects of AMF on MY_3 

and ECM_3 were substantially larger than standard deviations for remaining traits. 

Generally, standard deviations were larger for regression coefficients compared with 

structural equation coefficients for same trait combinations and pathways, and 

supporting recursive model applications. 

 

Table 5. Posterior estimates for structural equation coefficients λ21
1 from the recursive 

model [2] and for regression coefficients b21
2 from the multiple trait linear model [4] 

(posterior SD of estimates in parentheses) 

      

  Model parameter 

Trait_13 λ21
1 (model [2]) b21

2 (model [4]) 

MY_1 (kg)  0.01 (0.00)  0.01 (0.01) 

FP_1 (%)  0.01 (0.01)  0.07 (0.09) 

PP_1 (%)  -0.13 (0.03)  -0.14 (0.13) 

SCS_1   0.14 (0.01)  0.16 (0.08) 

FPR_1  0.00 (0.04)  0.22 (0.29) 

ECM_1 (kg)  0.01 (0.00)  0.04 (0.03) 

1
λ21 = rate of change in average milk flow (in kg/min per unit of trait_1) with respect to trait_1. 

2
b21 = rate of change in average milk flow (in kg/min per unit of trait_1) with respect to trait_1. 

3
Trait_1 = test-day traits before the measurement data for average milk flow; MY = milk yield, FP = fat 

percentage, PP = protein percentage, SCS = somatic cell score, FPR = fat-to-protein ratio. 
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Table 6. Posterior estimates for structural equation coefficients λ32
1 from the recursive 

model [2] and for regression coefficients b32
2 from the multiple trait linear model [4] 

(posterior SD of estimates in parentheses) 

      

 
Model parameter 

Trait_33 λ32
1

 (model [2]) b32
2

 (model [4]) 

MY_3 (kg) -0.93 (0.10) -4.69 (3.65) 

FP_3 (%) 0.29 (0.01) 0.89 (0.18) 

PP_3 (%) 0.43 (0.01) 0.72 (0.13) 

SCS_3  0.78 (0.01) 0.79 (0.28) 

FPR_3 -0.03 (0.00) -0.09 (0.14) 

ECM_3 (kg) -0.68 (0.05) -1.09 (1.79) 

1
λ32 = rate of change in trait_3 with respect to the change of 1 kg/min in average milk flow. 

2
b32 = rate of change in trait_3 with respect to the change of 1 kg/min in average milk flow. 

3
Trait_3 = test-day traits after the measurement data for average milk flow; MY = milk yield, FP = fat 

percentage, PP = protein percentage, SCS = somatic cell score, FPR = fat-to-protein ratio. 

 

The present study revealed almost identical genetic and phenotypic associations 

between AMF with test-day traits before and after the AMF measurement for 

recursive applications (equation [2]), and for linear models accounting for time lagged 

relationships via linear regressions (equation [4]). Rehbein et al. (2013) gave an 

overview for recursive model applications in animal breeding and pointed out the 

superiority of STEM over linear models when exploring mutual relationships, especially 

among productivity and functional traits. Application of STEM requires substantial 

extensions of standard mixed model theory by premultiplication of equation systems 

with matrix 𝚲, and availability of specific software packages [e.g., SirBayes programs by 

Wu et al. (2008)]. Simplification of equation systems can be realized in a time-lagged 

multiple-trait approach via the modeling of an additional regression (i.e., defining trait 

1 not only as a trait, but also as an effect on trait 2). Valente et al. (2013) emphasized 

the advantage of STEM to infer mutual relationships among traits, but they also raised 

the concern of whether STEM are proper for the improvement of multiple trait 

selection. In contrast, multiple-trait equations [3] and [4] have a direct focus on overall 

additive-genetic effects and on genetic values of animals. Generally, should a statistical 

model used for genetic evaluations of a specific trait account for the effect of related 

traits? This question is of increasing importance in animal breeding, because animal 
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breeding continuously expands trait recording, which offers possibilities to correct for 

the health status of cows (Sun et al., 2010). Bohmanova et al. (2006) predicted 

breeding values for MY with random regression models by accounting for the fertility 

effects days open and pregnancy state. In another study, Dechow et al. (2001) found 

substantially different genetic parameters for BCS when adjusting for milk yield in the 

statistical model. 

Physiological mutual relationships between AMF and SCS_3 reflected by structural 

equation and regression coefficients confirm the genetic antagonism between both 

traits. Increased AMF is the result of decreased tension of the teat sphincter, and a 

relatively weak sphincter provides less resistance to infection of the udder by specific 

major pathogens causing clinical mastitis (Boettcher et al., 1998). The first pathway 

only shows minor effects of SCS_1 on AMF (λ21 = 0.14, b21 = 0.16). Those statistical 

parameters close to zero reflect the biological or physiological expectation, because, to 

our knowledge, no physiological evidence exists for the effect of SCS early in lactation 

on milk flow. We also found a negative effect of increasing AMF on MY_3: increasing 

AMF contributes to impaired udder health, with detrimental effects on milk production 

in the ongoing lactation (Rehbein et al., 2013). Due to the antagonistic relationship 

between MY and FP and PP, both content traits increased simultaneously (PP: λ32 = 

0.43; FP: λ32 = 0.29). Relationships between MY and AMF and between ECM and AMF 

were of identical magnitude on all scales and for all statistical parameters: genetic 

correlations, structural equation coefficients, and regression coefficients. For MY and 

ECM, negative coefficients λ32 and b32 indicate a substantial milk yield decline and 

associated undesired lactation persistency for fast-milking cows. High productivity with 

a balanced energy status contributed to an increase in AMF, but fast-milking cows 

reacted with impaired lactation persistency. The influence of milking frequency on 

lactation persistency was already shown by Hickson et al. (2006). Understanding those 

relationships between AMF and milking frequency with persistency and peaks of milk 

production requires ongoing studies on physiological or biological scales. Karacaören 

et al. (2006) applied random regression models and found alterations of genetic 

relationships between energy indicator traits such as BW with AMF during lactation. 



 

53 
 

Alternative strategies for genetic analyses of milk flow in dairy cattle 

Solutions for structural equation coefficients λ12 and λ23 on the phenotypic scale 

support the idea of AMF as a trait with an intermediate optimum. Cows with the 

lowest response to stress situations are cows with a quick milk flow that is 

independent of environmental nuisance and robust against abnormal human behavior 

in the milking parlor. When selecting cows with large AMF, physiological background 

suggests impaired udder health. Structural equation models have the potential to infer 

genetic and phenotypic relationships by considering a more physiological background, 

and estimates from the present study confirm physiological and practical expectations. 

However, a more detailed understanding of dairy cow behavior is possible via the 

implementation of testing schemes to record novel behavior or temperament 

phenotypes. Such testing schemes focusing on human-animal interactions (e.g., 

Waiblinger et al., 2006; Breuer et al., 2000) have been partly implemented in 

participating herds. 

 

CONCLUSIONS 

 

Threshold models, recursive linear models, linear multiple-trait models, and linear 

multiple-trait models accounting for the effect of a trait A on trait B via linear 

regressions revealed moderate heritabilities for AMF in a narrow range close to 0.30. 

Almost identical heritabilities from linear models for assumed Gaussian-distributed 

AMF and from threshold models for binary AMF recommend continuation of linear 

model applications in official genetic evaluations. Due to antagonistic genetic 

relationships with udder health, AMF should be considered as a trait with intermediate 

optimum. 

Antagonistic relationships between AMF and SCS were also confirmed on the 

phenotypic scale via structural equation coefficients and via linear regression 

coefficients. The present study revealed almost identical genetic and phenotypic 

associations between AMF with relationships via linear regressions (equation [4]). 

Substantially smaller standard deviations of posterior estimates for structural equation 

coefficients compared with regression coefficients recommend recursive model 

applications. Furthermore, recursive models also inferred time-lagged relationships 
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between productivity and AMF and between energy indicators ECM and FPR with 

AMF. 
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ABSTRACT 

 

Genetic (co)variance components were estimated for alternative functional traits 

generated by automatic milking systems (AMS), and reflecting dairy cow behavior and 

health. Data recording spanned a period of 30 days and included 70,700 observations 

(visits to the AMS) from 922 Holstein cows kept in three German farms. The three 

selected farms used the same type of AMS and specific selection gates allowing 

“natural cow behavior on a voluntary basis”. AMS traits used as behavior indicator 

traits were: AMS visits per cow and day as binary trait, with a threshold for equal or 

greater than three visits (VIS3) and equal or greater than four visits (VIS4), knocking off 

the milking device with a threshold of at least one udder quarter also as a binary trait 

(KO), milking duration of each AMS visit in min (DUR), average milk flow in kg/min 

(AMF) and the interval between two consecutive milkings (INT). Electrical conductivity 

(EC) of milk from each udder quarter and in total was used as a health indicator trait. 

For genetic analyses, in univariate and bivariate models, linear and generalized linear 

mixed models (GLMM) with a logit link function were applied to Gaussian distributed 

and binary traits, respectively. The heritability was 0.08 ± 0.03 for VIS3, 0.05 ± 0.05 for 

VIS4, 0.03 ± 0.03 for KO, 0.19 ± 0.07 for DUR, 0.25 ± 0.07 for AMF and 0.07 ± 0.03 for 

INT. Heritabilities for EC varied between 0.37 ± 0.08 and 0.46 ± 0.09, depending on the 

udder quarter. On the genetic scale, an increased number of AMS visits (VIS3 and VIS4) 

was associated with an increase of KO (rg = 0.24 and rg = 0.55, respectively). From a 

genetic perspective, high milk yielding cows visited the AMS more often (rg = 0.49 for 

VIS3 and rg = 0.80 for VIS4), had a faster AMF (rg = 0.40), and shorter INT (rg = -0.51). 

When considering these traits as behavior indicator traits, selection of cows with 

desired temperament simultaneously increases milk yield. An increase of automatically 

and objectively recorded AMS traits with moderate heritabilities justifies modifications 

of dairy cattle breeding goals towards higher emphasis on behavioral traits, especially 

when developing specific robot indices. Nevertheless, ongoing research in this regard 

with a larger data is suggested, in order to validate the results from the present pilot 

study.  
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Keywords: behavior, automatic milking systems, visit, duration, interval, average milk 

flow. 

 

INTRODUCTION 

 

Over the past century, dairy cattle breeding has strongly focused on the improvement 

of production efficiency to satisfy growing consumer markets that demanded animal 

products at a low cost level (Oltenacu and Algers, 2005). More recently, the 

importance of functional traits such as fertility, longevity, and conformation has 

gradually increased in dairy cattle breeding (Miglior et al., 2005). Today, the economic 

competitiveness of the dairy industry is directly related to public acceptance of 

breeding techniques (Oltenacu and Algers, 2005). Increasing consumer demands 

towards animal welfare are forcing dairy breeders to further integrate trait categories 

that reflect animal health and behavior. Genetic improvements in animal behavior or 

temperament might contribute to correlated response in other functional traits. 

Temperament in response to human handlers (docility) has been used as a criterion for 

genetic selection in beef cattle (Le Neindre et al., 1995). In several countries, 

subjectively scored dairy cattle temperament is included in breeding indices (Pryce et 

al., 2000). However, due to challenges in time-efficient and objective trait recording, 

assumed low heritabilities as well as difficult economic evaluations, only a few studies 

addressed dairy cattle temperament from a quantitative-genetic or breeding goal 

perspective (Gutiérrez-Gil et al., 2008; Jensen et al., 2008; Haskell et al., 2014).  

Accelerated installation of novel automated technical systems (e.g., automated calf 

feeders, cow activity monitors, and automatic milking systems (AMS)) contributes to a 

growing amount of currently unused “big data”, including phenotypes for health and 

behavior traits (Barkema et al., 2015). So far, regarding dairy cows´ behavior, behavior 

traits used in official genetic evaluations include the temperament in the milking parlor 

based on a subjective farmer scoring system (Sewalem et al., 2002). Novel 

technologies, like AMS, allow for automatic, repeated measures and objective 

phenotypic data recording. Behavior phenotypes can be subjectively scored, or can be 

objectively measured with technical devices, e.g., the number of escapes, flight times, 
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or AMS visits (Gutiérrez-Gil et al., 2008; Café et al., 2011; König et al 2006). Milking and 

cow traffic records from AMS might also be suitable indicators for the development of 

novel behavior and milking efficiency traits (i. e., milking duration of each AMS visit in 

min (DUR) and average milk flow (AMF)). Due to their already existing importance in 

general as well as special breeding goals for AMS herds, traits like temperament and 

milking efficiency are turning into the main focus (Vosman et al., 2014). Regarding 

animal health, electrical conductivity on an udder quarter basis might be a valuable 

predictor for clinical mastitis (Fernando et al., 1982). To sum up, moderate to high 

heritabilities of objectively recorded behavior and health traits offer an interesting and 

currently unused potential to improve and enhance already implemented genetic 

evaluations for milkability (i.e., average milk flow), milking efficiency and udder health 

traits. Utilization of traits directly generated from the AMS could help to improve the 

German Holstein AMS breeding index “RZRobot”. Till now, the RZRobot is based only 

on the following indicator traits from official recording schemes: Milking speed, 

somatic cell count, feet and legs, udder component score, rear teat placement and 

teat length (DHV, 2014). 

The aims of the present study were (1) to estimate genetic parameters for dairy cow 

behavior and health indicator traits generated in AMS, (2) to infer genetic relationships 

among those novel traits with production traits such as total milk yield per day, and (3) 

to estimate genetic parameters for milk yield and electrical conductivity from different 

udder quarters. 



 

    68 
 
       

Genetic parameters for behavior and health indicator traits generated in AMS 
 

MATERIALS AND METHODS 

 

Data. Data recording spanned a period of 30 days and included 70,700 AMS 

observations (= individual visits into the AMS) from 922 Holstein cows kept in three 

German farms. The requirement for farm selection was the utilization of the same AMS 

system: “FeedFirst” (DeLaval GmbH, Glinde, Germany) with a selective guided cow 

traffic, and a similar herd size (~ 300 cows). Selective guided cow traffic combines the 

advantages of both, free and guided cow traffic, allowing the cows to show their 

“natural” behavior (Umstätter, 2002; Harms and Wendl, 2004). Hence, for the 

additional AMS visit beyond the typical herd average, it was assumed to be the cow’s 

own decision to enter the milking system. In “FeedFirst” systems, cows have free 

access to the feeding area by one way gates from the lying area. However, in order to 

reach the lying area from the feeding area, the cows have to pass a selection gate that 

directs the cows to the milking station or the lying area depending on the milking 

permission. If the time since last milking is long enough and a milking permission has 

been established, the cow is directed to the waiting area in front of the milking unit. If 

the cow has no milking permission, she is directed back to the lying area. With pre-

selection, daily fetch rates are, on average, 1 to 5 percent of the herd (Harms and 

Wendl, 2004). Pedigree data were traced back to 1940, including 22,714 animals, and a 

total of 297 different bulls with daughter records. The most influential sire had 37 

daughters, and the average no. of daughters per sire was 2.99. 

Two different data sets were merged. The first dataset included traits recorded in close 

intervals, leading to a longitudinal data structure for novel behavior (temperament) 

and health indicator traits (Table 1). The AMS traits used as behavior indicators were: 

AMS visits per cow and day defined as two binary traits, with thresholds for i) more 

than three visits per day (VIS3) and ii) more than four visits per day (VIS4). If a cow had 

values equal or above the threshold, she received the score “1”, otherwise a “0” was 

assigned. Hence, VIS3 and VIS4 were defined as binary traits to emphasize the ”extra” 

voluntary component, i.e., the additional AMS visit beyond the typical herd average. 

Usually, in selective guided cow traffic systems, only cows that voluntarily visited the 

AMS one time per day are fetched and forced by the farmer to visit the AMS at least 
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twice a day (Ketelaar-de Lauwere et al., 1998). Since fetching is time-consuming, we 

argue that farmers do not force the cows to visit the AMS more than twice a day, and 

that cows visiting the AMS at least three times a day (VIS3) do that on a voluntary basis 

due to food motivation or udder pressure (Nixon et al., 2009). Cows visiting the AMS 

more than four times a day (VIS4) may have other motivations than the primary 

motivation of being rewarded with food, such as curiosity. Further temperament traits 

were the knock off of the milking device (KO) from at least one udder quarter, also 

defined as a binary trait, milking duration of each visit in the AMS in min (DUR) and 

average milk flow in kg/min (AMF). DUR and AMF primarily reflect the same aspects of 

behavior and are also influenced by udder pressure and udder morphology. The traits 

VIS3 and VIS4 are affected by some common aspects, i.e. food motivation, udder 

pressure, but also temperament. KO due to stepping and kicking potentially reflects 

different important aspects of behavior, i.e., discomfort, nervousness, and fear 

(Rousing et al., 2004). The interval (INT), defined as the time span between two 

consecutive AMS visits, was used as a behavior and social dominance indicator (Table 

1). A second AMS dataset included measurements for total milk yield per day 

(MY_total), and electrical conductivity (EC) of milk. Data for milk yield and EC were 

also available on an udder quarter basis: Milk yield for the front left quarter (MY_fl), 

for the front right quarter (MY_fr), for the rear left quarter (MY_rl) and for the rear 

right quarter (MY_rr). Abbreviations for EC for each quarter were EC_fl, EC_fr, EC_rl 

and EC_rr. Electrical milk conductivity was used as a health trait indicator reflecting the 

udder health status of individual udder quarters. 

 

Statistical analysis 

Impact of environmental and animal related effects on behavior traits. Analyses of 

variance for the behavior indicator traits INT and DUR, and the estimation of least 

squares means within levels of fixed effects were performed using the software 

package PROC MIXED in SAS (Version 9.2; SAS Institute Inc., Cary, NC). The applied 

linear model was: 

y = Xβ + Zu + e ,     [I] 



 

 
       

Table 1. Definition of the traits generated in the automatic milking system and an explanation for their use as behavior and health trait indicators  

                

Trait Distribution Definition Indicator Explanation       

AMF  Normal Average milk flow  Stress, Under stress conditions more cortisol is excreted  

(kg/min)     Temperament hampering oxytocin release, leading to reduced  

        milk flow 

DUR  Normal Milking time during a visit in the AMS Stress, Milk let down from stressed cows is slower, 

(min)     Temperament leading to increased DUR 

VIS3 Binary If more than three visits a day then Temperament Cows with desirable temperament, visit the AMS 

    score = 1, otherwise score = 0 Food motivation? more often 

VIS4 Binary If more than four visits a day then Temperament, Cows with desirable temperament, visit the AMS  

    score = 1, otherwise score = 0 Curiosity more often 

KO Binary If the milking device is knocked off at General discomfort, More nervous cows, more kickings 

    at least one quarter then score = 1, Temperament Bad temperament, more knocked offs 

    otherwise score = 0     

INT (h) Normal Interval between two  Social dominance, Shorter intervals imply more visits to the AMS 

    consecutive visits Temperament (higher dominance), indicating free choices 

      
 

to access the robot and also the feeding and 

        resting area 

EC Normal Electrical conductivity  Health Pathological changes of udder tissue produce a  

(mS/cm)       change in the electrical conductivity 
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where y was the vector of observations, β was the vector of fixed effects including  

lactation numbers from 1 to 5, the day when the cow entered the AMS, days in milk in 

classes according to Huth (1995) (< 14 d = 1, 14 d - 77 d = 2, 77 d - 140 d = 3, 140 d - 

231 d = 4, > 231 d = 5), time of day classes (ToD) when the cow visited the AMS (22 - 4 

= 1, 4 - 10 = 2, 10 - 16 = 3, 16 - 22 = 4), and explicitly for DUR specific INT classes (< 8 h 

= 1, 8 h - 10 h = 2, > 10 h = 3), X was the corresponding incidence matrix for fixed 

effects, u was  the vector of random cow effects for repeated measurements with the 

corresponding incidence matrix Z, and e was  the vector for  random residual effects.   

 

Estimation of genetic parameters. In this regard, model I was extended by including 

the pedigree based on genetic relationship matrix. Variance components and 

heritabilities for behavior, health and production traits were estimated via single trait 

animal models using the AI-REML procedure, as implemented in the DMU software 

package (Madsen and Jensen, 2000).  

For the Gaussian distributed traits MY_total, MY_fl, MY_fr, MY_rl, MY_rr, EC_fl, EC_fr, 

EC_rl, EC_rr AMF, INT and DUR, a linear animal repeatability model was applied:  

y = Xβ + Zu + Wp + e ,    [II] 

where y was the vector of observations, β was the vector of fixed effects with the 

corresponding incidence matrix X, u was the vector of random genetic effects with the 

corresponding incidence matrix Z, p was the vector of random permanent 

environmental effects with the corresponding incidence matrix W, and e was the 

vector of random residual effects. Traits and their corresponding effects as considered 

in model I and II are given in Table 2.  

Repeatabilities for the longitudinal traits were calculated as follows:  

W =  
(σa

2+ σpe
2 )

(σa
2+ σpe

2 +σe
2)

  

where σa
2 was the additive genetic variance, σpe

2  was the permanent environmental 

variance, and σe
2 was the residual variance. 
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Table 2. Significance of fixed effects and of covariates for the different traits  

                

 

Effects² Covariate3 

Traits1 Robot LN Date INTcl DIMcl ToD CA 

MY_rr, _rl, *** n.s. *** *** *** *** ** 

_fr, _fl 

       EC_rr, _rl, *** n.s. *** *** *** *** * 

_fr, _fl 

       AMF *** n.s. *** *** *** *** n.s. 

MY_total *** n.s. *** 

 

*** *** *** 

EC *** *** *** *** *** *** *** 

INT *** * *** 

 

*** *** ** 

DUR *** ** *** *** *** *** ** 

VIS3 *** *** *** 

 

*** 

 

*** 

VIS4 *** n.s. *** 

 

*** 

 

*** 

KO *** ** * * *** *** *** 

* P < 0.05 significant, ** P < 0.01 very significant, *** P < 0.001 highly significant, n.s.: not significant 

1 
MY_fl, _fr, _rl, _rr: milk yield at a quarter basis: front left, front right, rear left and rear right  

  EC_fl, _fr, _rl, _rr: electrical conductivity at a quarter basis: front left, front right, rear left and rear right 

  AMF: average milk flow 

  MY_total: total milk yield per day 

  EC: electrical conductivity from all four quarters 

  INT: interval between two consecutive milkings 

  DUR: milking time during a visit in the milking robot 

  VIS3: at least three visits to the milking robot per day 

  VIS4: at least four visits to the milking robot per day 

  KO: knock off of the milking device from at least one udder quarter 
2 

Robot: the AMS the cow used. Consecutively numbered across herds  

  LN: lactation number 1 - 5 

  Date: day the cow entered the AMS 

  INTcl: interval in classes; < 8 h = 1, 8 h - 10 h = 2, > 10 h = 3 

  DIMcl: DIM in classes; < 14 = 1, 14 - 77 = 2, 77 - 140 = 3, 140 - 231 = 4, > 231 = 5 

  ToD: time of day when the cow visited the AMS in classes; 22 - 4 = 1, 4 - 10 = 2, 10 - 16 = 3, 16 - 22 = 4 

³ CA: calving age in month = (calving date - birth date)/30.4375 

 

For the binary traits VIS3, VIS4 and KO, a generalized linear mixed model (GLMM) with 

a logit link function was applied: 

η = Xβ + Zu + Wp     [III] 
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where η was the vector of logits, β was the vector of fixed effects with the 

corresponding incidence matrix X, u was the vector of random genetic effects with the 

corresponding incidence matrix Z, p was the vector of random permanent 

environmental effects with the corresponding incidence matrix W. The binary traits 

along with their effects are given in Table 2.  

Heritabilities were calculated using the variance of the logit link function. This implies a 

correction of the residual variance by factor π2/3 (Southey et al., 2003).  

The covariance structure of random effects for models II and III was:  

var [
u
p
e

] =  (

G ⊗  AU 0 0
0 R ⊗  IP 0
0 0 R ⊗ IR

) 

where G was the variance-covariance matrix for genetic effects, Au was an additive 

genetic relationship matrix for u animals in the whole pedigree, P was s the variance-

covariance matrix for permanent environmental effects, I was an identity matrix for n 

cows and r observations, R was the residual variance-covariance matrix, and denotes 

the Kronecker product. 

Because milk yield is an important factor influencing AMF, INT, DUR, VIS3, VIS4 and KO, 

univariate models with and without milk yield as a covariate were compared. 

Furthermore, bivariate animal models were applied to all trait combinations, in order 

to estimate genetic correlations. Bivariate GLMM (model III) were applied to binary 

trait combinations (e.g., VIS3 with KO), bivariate GLMM - linear models (model III and 

II) for the combination of one binary with one Gaussian trait (e.g., VIS3 with MY), and 

linear - linear models (model II) for Gaussian - Gaussian trait combinations including 

EC, AMF, MY_total, INT and DUR.  

In some bivariate runs, SE for genetic correlations were quite large. However, SE for 

heritabilities from single trait animal models were in an acceptable range. Hence, in 

addition, estimated breeding values (EBV) from single trait animal models were 

correlated, and EBV correlations were compared with genetic correlations. For this 

purpose, EBV from the most influential sires with at least 5 daughters were considered 

(47 sires). 


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RESULTS AND DISCUSSION 

 

Descriptive statistics. Descriptive statistics for all traits used in this study after data 

editing are given in Table 3. The degree of individual variation in milking frequencies 

reflect the variation in milking intervals from 2 h to 18 h. Some cows entered the AMS 

as soon as the minimum “milk allowing interval” has passed, whereas other cows only 

are milked when they are fetched by the stockperson after 14 h. A large variation in 

the range from 1 to 15 minutes (average of 6.3 minutes) was also observed for DUR. A 

fraction of 52 % of all cows visited the AMS more than 3 times per day (VIS3), but only 

10 % of all cows visited the AMS more than 4 times per day (VIS4).  

The mean of the udder health indicator EC ranged from 4.92 mS/cm to 4.96 mS/cm on 

an udder quarter level. Norberg et al. (2004) used an inter-quarter ratio (IQR) for EC 

and found out that IQR performed better than the absolute conductivity level, in order 

to distinguish between clinically and subclinically infected cows. In contrast, in early 

studies, Linzell and Peaker (1975) and Fernando et al. (1982) stated that absolute 

conductivity and IQR had similar accuracies for the detection of mastitis. In the present 

study, the analysis focused on the absolute EC, as generated by the AMS, instead of 

defining inter-quarter ratios. 

 

Impact of environmental and animal related effects on behavior traits. Table 2 shows 

the significance level of each effect for the traits DUR and INT (results from model I). 

DUR differed significantly (P < 0.05) for all ToD classes (Figure 1a), apart from the 

comparison DUR in ToD 1 and DUR in ToD 3. Cows spent the most time in the milking 

box between 4 and 10 (= ToD 2). Regarding INT, all ToD classes differed significantly (P 

< 0.05) from each other (Figure 1b). The longest interval was found between 10 and 16 

(Figure 1b). This is the time of the day when cows usually eat or lie (Krohn and 

Munksgaard, 1993; DeVries and Keyserlingk, 2005). The shortest milking interval was 

found between 4 and 10. Cows determine their activity rhythm according to 

environmental factors such as light. They are more active during daytime because of 

the circadian rhythm – the light change between day and night – which acts as a 

natural timer (Zeeb und Bammert, 1985). Hopster et al. (2002) demonstrated that low-



 
 

75 
 

 Genetic parameters for behavior and health indicator traits generated in AMS 

ranking cows are forced by social competition to visit the AMS at times that are not 

preferred, particularly during the midnight hours, leading to irregular or long intervals 

between milkings.  

 

Table 3. Descriptive statistics for all traits and effects 

          

 
Statistical parameters 

Traits/Effects1 Mean SD Min. Max. 

MY_total (kg) 31.88 11.07 1.70 88.42 

AMF (kg/min) 2.05 0.64 0.11 4.00 

MY_fl(kg) 2.90 1.09 0.21 6.80 

MY_rl (kg) 3.76 1.41 0.61 8.40 

MY_fr (kg)  3.01 1.17 0.21 7.40 

MY_rr (kg) 3.67 1.44 0.21 8.60 

EC (mS/cm) 4.92 0.37 3.78 6.06 

EC_fl (mS/cm) 4.95 0.42 3.76 6.30 

EC_rl (mS/cm) 4.95 0.40 3.91 6.30 

EC_fr (mS/cm)  4.96 0.41 3.91 6.30 

EC_rr (mS/cm)  4.95 0.41 3.91 6.30 

DUR (min) 6.27 1.84 1.02 15.00 

INT (h) 9.16 2.65 2.05 18.00 

VIS3 0.52 0.50 0 1 

VIS4 0.10 0.29 0 1 

KO 0.08 0.28 0 1 

DIM(days)   164.56 90.04 5.00 364.00 

CA (month) 37.16 10.04 20.47 71.23 
          

1
 MY_total: total milk yield per day 

  AMF: average milk flow 

  MY_fl, _fr, _rl, _rr: milk yield at a quarter basis: front left, front right, rear left and rear right  

  EC: electrical conductivity from all four quarters  

  EC_fl, _fr, _rl, _rr: electrical conductivity at a quarter basis: front left, front right, rear left and rear right 

  DUR: milking time during a visit in the milking robot 

  INT: interval between two consecutive milkings 

  VIS3: at least three visits to the milking robot per day 

  VIS4: at least four visits to the milking robot per day 

  KO: knock off of the milking device from at least one udder quarter 

  DIM: days in milk 

  CA: calving age 
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Figure 1. Least squares means for (A) DUR (milking time during a visit in the AMS) (± 

SE) and (B) INT (interval between two consecutive visits to the AMS) (± SE) in 

dependency of time of the day in classes. Significant differences of least squares 

means (< 0.05) are indicated with different letters above the bars 
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There was no significant impact (P > 0.05) of the effect lactation number (LN) on DUR 

(Figure 2a), meaning that cows with different LN spent on average the same time in 

the AMS. With regard to the LN effect, least squares means for INT significantly 

differed (P < 0.05) (Figure 2b). Longer INT for first lactation cows were probably due to 

fearfulness and lower ranking, i.e., they were not allowed to visit the AMS in close 

intervals due to the social herd structure (Ketelaar-de Lauwere, 1996). The INT 

increase in the fifth lactation (Figure 2b) could be due to reduced mobility of older 

cows (Alban, 1995). Prescott et al. (1998) found that low-yielding cows did not 

significantly increase their level of voluntary AMS visits when changing feeding 

strategies, which indicates further motivations to visit the AMS, for example curiosity. 

Genetic parameters  

Variance components and heritabilities for behavior traits. The heritability was 0.25 

for AMF, 0.19 for DUR, 0.07 for INT, 0.03 for KO, 0.08 for VIS3 and 0.05 for VIS4 (Table 

4). König et al. (2006) estimated a heritability for milking frequency in the range from 

0.16 and 0.27, depending on the statistical modelling. Reported heritabilities for INT 

were in a range from 0.09 to 0.26 (Carlström et al., 2013). The heritability for INT 

found in the present study was slightly lower (0.07). Also the heritability for AMF (0.25) 

was slightly lower compared to estimates based on conventional milking technique 

data (Santos et al., 2015), but still moderate with relatively small standard errors. The 

moderate heritabilities for the behavior trait indicators DUR and AMF indicate the 

possibilities for AMS milkability improvements via breeding. Heritabilities estimated 

with univariate models with and without milk yield as a covariate were comparable, 

with slightly larger heritabilities for some traits in models with milk yield as a covariate 

(0.17 for VIS3, 0.08 for VIS4 and 0.18 for INT). Heritabilities and additive genetic 

variance show that beside environmental components such as food, fetching and 

machine calibration (e.g. restriction of the INT) there is a genetic component behind 

the traits. Research showed that there is a possibility of automatically record behavior 

traits (König et al., 2006; Schwartzkopf-Genswein et al., 2012). The characterization of 

the traits in the context of animal welfare imply further studies including temperament 

and behavior tests as validated in animal ethology (e.g., Ebinghaus et al., 2017). 
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Figure 2. Least squares means for (A) DUR (milking time during a visit in the AMS) (± 

SE) and (B) INT (interval between two consecutive visits to the AMS) (± SE) in 

dependency of lactation numbers. Significant differences of least squares means (< 

0.05) are indicated with different letters above the bars 
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Table 4. Heritabilities (h²) with their corresponding standard errors (SE), additive 

genetic variances (σa²), permanent environmental variances (σpe²), residual variances 

(σe²) and repeatabilities (w²) for all traits 

            

Traits1 σa² σpe² σe² h² ± SE w² 

AMF (kg/min) 0.09 0.13 0.13 0.25 ± 0.07 0.63 

DUR (min) 0.57 1.28 1.23 0.19 ± 0.07 0.60 

INT (hour) 0.42 1.44 4.15 0.07 ± 0.03 0.31 

KO  0.17 1.44 3.29 0.03 ± 0.03 0.33 

VIS3 0.38 1.11 3.29 0.08 ± 0.03 0.31 

VIS4 0.30 2.01 3.29 0.05 ± 0.05 0.41 

MY_total (kg) 1.62 3.49 4.13 0.18 ± 0.06 0.55 

MY_fl (kg) 0.16 0.47 0.23 0.19 ± 0.06 0.73 

MY_fr (kg) 0.04 0.55 0.27 0.05 ± 0.06 0.69 

MY_rl (kg) 0.15 0.70 0.47 0.11 ± 0.06 0.64 

MY_rr (kg) 0.10 0.72 0.49 0.08 ± 0.05 0.63 

EC (mS/cm) 0.07 0.03 0.03 0.53 ± 0.09 0.77 

EC_fl (mS/cm) 0.07 0.04 0.04 0.46 ± 0.09 0.73 

EC_fr (mS/cm) 0.07 0.05 0.04 0.44 ± 0.09 0.75 

EC_rl (mS/cm) 0.05 0.05 0.04 0.37 ± 0.08 0.71 

EC_rr (mS/cm) 0.06 0.05 0.04 0.38 ± 0.09 0.73 

1 
See Table 3 

Variance components and heritabilities for udder quarter specific productivity and 

udder health traits. Heritabilities for EC from different udder quarters varied between 

0.37 and 0.46 (Table 4). For udder health indicators, Juozaitienè et al. (2015) estimated 

a heritability of 0.51 for EC, reflecting heritabilities for corresponding traits from our 

study. The moderate to large heritabilities suggest the inclusion of EC into udder 

health indices. From such a perspective, additional value is generated when treating 

each quarter separately, in order to identify pathological changes (Umstätter, 2002). 

The benefit would be in the use of information for monitoring and managing animal 

health (Kramer et al., 2013). 

The heritability for milk yield per day (MY_total) was 0.18. For the different udder 

quarters, heritabilities ranged from 0.05 for MY_fr to 0.19 for MY_fl (Table 4). Tančin 

et al. (2006) suggested productivity improvements via consideration of specific udder 

quarter information. Also in the present study, identical traits from different udder 

quarters seem to have a different genetic background in terms of genetic (co)variance 
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components, suggesting udder quarter specific selection strategies. Information at an 

udder quarter level can be used in precision dairy farming. Eastwood et al. (2004) 

defined precision dairy farming as “the use of information technologies for assessment 

of fine-scale animal and physical resource variability aimed at improved management 

strategies for optimizing economic, social, and environmental farm performance.” In 

this regard, electrical devices used in precision dairy farming analyzed different milk 

characteristics and produced indicators based on temperature, conductivity, milk 

quantity, production balance across quarters or milk flow (Boichard and Brochard, 

2012). 

 

Correlations among behavior indicator traits. Genetic correlations (rg) as well as EBV 

correlations (rEBV) between AMF and DUR were negative (-0.88 and -0.63, respectively 

(Table 5)), indicating that fast milking cows, i.e. cows with a good temperament, spent 

less time milking in the milking robot. Hence, genetic associations between AMF and 

DUR confirm farmers’ observations at a phenotypic scale. Both temperament 

indicators milking time and milk flow are economically important, because they 

determine AMS capacity and efficiency. Explanations for the strong genetic 

relationship between AMF and DUR with acceptable standard errors can be as follows: 

The combative behavior of cows causes physiological changes (i.e., affecting the 

oxytocin hormone level and norepinephrine concentrations (Kondo and Hurnik 

(1988)), and in ongoing lactation, reduced milk flow. Szentléleki et al. (2015) reported 

a significantly higher milking speed if cows were calm in the pre-milking process 

compared to nervous cows. Another explanation is due to the fact that cows with 

faster AMF need less time to be milked, and therefore spend less time in the milking 

box.  

The genetic correlation between DUR and KO was also negative (rg = -0.25), with less 

knock offs of the milking device being associated with longer milk ejection. A 

hypothesis would be that nervous or fearful cows show more knock offs, leading to a 

shorter milk ejection because of negative impact on oxytocin release. As outlined by 

Rousing et al. (2004), kicking and stepping during milking resulted in knock off of the 

milking device, incomplete milking, and reduced milk yield. Stressed animals require 
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not only more handling during milking (Rushen et al., 1999) but they may kick off the 

milking device during milking. Fearfulness in cows can result in slower milk let down 

and milk retention (Munksgaard et al., 2001). EBV correlations between DUR and KO 

were close to zero. EBV correlations only based on EBV from influential sires, but due 

to EBV accuracies lower than 1, rEBV are “less extreme”, i.e., an underestimation of 

genetic correlations (Calo et al., 1973).  

Low positive correlations were estimated between VIS3 and DUR (rg = 0.28, rEBV = 

0.11), and between VIS4 and DUR (rg = 0.37, rEBV = 0.12), indicating that an increase of 

visiting frequencies was associated with a longer milking duration per visit. Extremely 

long DUR may reflect an inhibited milk flow, being supported on the genetic scale with 

rg = -0.88 between DUR and AMF. The genetic correlation between AMF and INT was 

positive, but close to zero (rg = 0.14, rEBV = 0.02), and estimated with quite large 

standard errors. Accordingly, Hogeveen et al. (2001) found that a longer milking 

interval was associated with an increase in the milk flow rate (on a phenotypic level), 

independent from the milk performance level. An increase in milking speed (e.g., AMF) 

lead to a reduction of total milking time per cow, with positive impact on AMS capacity 

and AMS efficiency (Gäde et al., 2007).  

INT and KO were negatively correlated (rg = -0.19, rEBV = -0.13), meaning that shorter 

intervals were genetically associated with more knock offs. This might be associated 

with udder deformations, resulting in improper attachment of the milking device. Also, 

the correlation between DUR and INT was slightly negative (rg = -0.15, rEBV = -0.09), 

indicating that shorter intervals were associated with a longer milking duration. 

Milking duration depends not only on the amount of milk, but also on the 

temperament of the cow. Kaihilahti et al. (2006) stated that 19 % of the cows kicked 

off the teat cups during milking, with impact on milk duration and milking time 

independent from the milk yield level. In most cases, EBV correlations were in 

agreement with genetic correlations. 
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Table 5. Genetic correlations among behavior indicator traits (above the diagonal with 

standard errors in brackets) and corresponding correlations among breeding values 

from bulls with at least 5 daughters (below the diagonal) 
              

Trait1 
AMF 

(kg/min) DUR (min) INT(hour) KO VIS3 VIS4 

AMF (kg/min)   -0.88 (0.08) 0.14 (0.23) 0.17 (0.40) -0.24 (0.23) -0.20 (0.34) 

DUR (min)  -0.63   -0.15 (0.28) -0.25 (0.47) 0.28 (0.27) 0.37 (0.38) 

INT (hour)   0.02 -0.09   -0.19 (0.47) -0.62 (0.19) -0.88 (0.22) 

KO -0.02  0.06 -0.13   0.24 (0.47) 0.55 (0.79) 

VIS3 -0.00   0.11 -0.96 0.13   0.89 (0.14) 

VIS4 -0.00   0.12 -0.86 0.21 0.84   

              

1
 See Table 1 

 

Correlations between behavior and production traits. As indicated in Table 6, 

MY_total was positively correlated with DUR (rg = 0.97; rEBV = 0.25), with VIS3 (rg = 

0.49; rEBV = 0.52) and with VIS4 (rg = 0.80; rEBV = 0.47). These findings suggest that sires 

with high EBV for milk yield, tend to have daughters with longer milking duration, but 

also daughters that come easily or voluntary into the milking box. These findings were 

also reported by König et al. (2006) when defining milking frequencies as a behavior 

indicator trait. In their models, milk yield was used as covariate in statistical models, 

showing that milk yield was not the only force determining voluntary visits. Kazlauckas 

et al. (2005) compared two groups of mice (with high and low exploration of an object) 

and concluded that although both groups were driven by food motivation, high 

exploratory mice showed increased locomotion. Results from such research, as 

conducted in other species, support the hypothesis that there are additional 

motivations to visit the AMS apart from the offered food. In accordance with Nixon et 

al. (2009), selection for increased milk production implies an increase of milking 

frequencies. Associations between calm temperament and high milk production were 

shown by Lawstuen et al., (1988) and Breuer et al. (2000). Also across species, 

temperament and behavior was favorably correlated with productivity. For example in 

pigs, selection for calm temperament simultaneously improved carcass and meat 

quality traits (Reverter et al., 2003). Nevertheless, the definition of temperament 

differed, complicating the comparison of correlation coefficients from different 
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studies. Accordingly, Hoppe et al. (2010) found that selection towards improved 

temperament in beef cattle simultaneously improved production traits. In the present 

study, milk yield was positively correlated with AMF (rg = 0.40; rEBV = 0.47), indicating 

that higher productivity was associated with a faster milk flow, supporting previous 

results from conventional milking systems (Santos et al., 2015). Selection towards 

desired temperament had a positive effect on the number of visits, and on the 

duration in the milking box, as well as on milk production and milk efficiency (i. e., 

AMF).  

 

Table 6. Genetic correlations (rg) and breeding value correlations (rEBV) considering 

bulls with at least 5 daughters between milk yield and behavior indicator traits 

      

 

   MY_total (kg) 

Traits1 rg rEBV 

AMF (kg/min) 0.40 (0.19) 0.47 

DUR (min) 0.87 (0.35) 0.25 

INT (hour) -0.51 (0.23) -0.52 

KO 0.21 (0.42) 0.05 

VIS3 0.49 (0.23) 0.52 

VIS4 0.80 (0.30) 0.47 

1
 See Table 1 

   MY_total: total milk yield per day from AMS  

 

The correlation between MY_total and KO (rg = 0.21; rEBV = 0.05) was moderate 

positive, indicating antagonistic genetic relationships from a breeding perspective. 

Knocking off the milking device has different reasons, e.g., udder morphology, mastitis 

or the temperament of the cow. More aggressive cows produce more knock offs of the 

milking device due to the agitation in the milking box. The behavior indicator INT was 

negatively correlated with MY_total (rg = -0.51; rEBV = -0.52). Shorter milking intervals, 

indicating a good individual behavior or temperament, were also associated with 

higher milk production per cow and hour (Hogeveen et al., 2001). Extended milking 

intervals cause practical problems in AMS, and so far, direct selection tools are missing. 
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Nevertheless, some genetic correlation standard errors were quite large, encouraging 

further analyses in this regard. 

 

Correlations between behavior and health traits. Genetic correlations among all 

behavioral traits and EC were positive, but also close to zero (Table 7). The strongest 

positive genetic correlation was found between INT and EC (0.19), indicating that 

longer milking intervals had a negative impact on animal health, or that animals having 

health problems have longer milking intervals. The number of AMS visits (VIS3) was 

positively correlated with EC (rg = 0.15). The risk of bacterial invasion into the 

mammary gland increased with the number of milkings per day (Hogeveen et al., 

2001). The genetic correlation between AMF and EC was low, but again positive (rg = 

0.11), confirming the unfavorable relationships between temperament and health 

traits (Santos et al., 2015).  

Table 7. Genetic correlations (rg) with posterior standard deviations (in brackets) and 

breeding value correlations (rEBV) considering bulls with at least 5 daughters between 

behavior indicator traits and electrical conductivity of the udder (EC) 

  1
 See Table

      

     EC (mS/cm) 

Traits1 rg rEBV 

AMF (kg/min) 0.11 (0.23) 0.05 

DUR (min) 0.18 (0.22) -0.06 

INT (hour) 0.19 (0.37) -0.03 

KO 0.16 (0.24) 0.04 

VIS3 0.15 (0.21) -0.01 

VIS4 0.08 (0.23) 0.11 
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Increased AMF is also due to decreased tension of the teat sphincter. A weak sphincter 

decreased resistance to infection of the udder by specific major pathogens, causing 

clinical mastitis (Boettcher et al., 1998). Hence, from an animal breeding perspective, 

AMF should be treated as a trait with an intermediate optimum, as already suggested 

by Santos et al. (2015). Generally weak genetic correlations suggest that breeding on 

behavior indicator traits does not impair health indicator traits. Regarding the 

correlations between AMS behavior indicator traits with EC, all EBV correlations were 

close to zero, and partly differed in sign from genetic correlations. The genetic 

correlations between AMS behavior traits with other functional traits were estimated 

with quite large standard errors, suggesting ongoing studies with additional data. 

 

 

CONCLUSIONS 

 

This was a first pilot study to estimate genetic parameters for alternative functional 

traits based on data automatically generated by the AMS, free from subjective 

evaluations of classifiers. Furthermore, the applicability of AMS traits as indicators for 

dairy cow behavior and health was verified. In such perspective, with the inclusion of 

milk yield as a covariate in the statistical model, genetic variances of AMS traits even 

increased. The genetic variance and heritability increase suggests a behavior 

background, instead of milk yield being the only force behind these traits, e.g., AMS 

visits. Behavior traits delivered from data from the AMS like AMF and DUR had a 

moderate heritability. Heritabilities for the other AMS behavior indicator traits (INT, 

KO, VIS3 and VIS4) were quite small. Regarding genetic relationships, an increase of 

AMF, a decrease in DUR and a decrease of INT might contribute to desired behavior 

without losing genetic gain for production. Different EC heritabilities for different 

udder quarters allow udder quarter specific breeding strategies. Hence, based on the 

genetic (co)variance components from the present study, results are encouraging to 

breed cows for AMS systems based on AMS data, but it is imperative to have a precise 

validation based on larger datasets. 
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ABSTRACT 
 

To assess dairy cows’ responsiveness towards humans, four behavior traits were 

recorded on 33 farms located in central and northern Germany and genetic 

(co)variance components were estimated. Data was available from 1,761 cows for the 

trait tolerance to tactile interaction (TTI), 1,766 cows for the behavior during release 

from restraint in the feeding gate (RB) and 1,880 cows for the avoidance distances 

towards an unfamiliar person at the feeding place (AD). The Qualitative Behavior 

Assessment (QBA) was conducted on 565 cows. Further analysis utilized the cows’ 

individual scores from the first principal component (PC1), which explained nearly 70 % 

of the variation (QBA_PC1) characterized by descriptors relating to 

relaxation/attraction/trust on the negative and descriptors relating to 

fear/distress/aversiveness on the positive end. Estimated heritabilities and their 

corresponding standard errors for behavior traits reflecting human animal interactions 

were 0.27 ± 0.06 for the AD, 0.04 ± 0.05 for TTI, 0.11 ± 0.06 for RB and 0.13 ± 0.17 for 

QBA_PC1. Estimated breeding value (EBV) correlations (rEBV) for the most influential 

sires among the behavior traits AD, TTI, RB (restriction: sires with at least 5 daughters), 

and QBA_PC1 (no restriction) were moderately positive. This indicates that while the 

various methodologies for behavior assessment may measure slightly different aspects 

of animal behavior, they are indeed related and are partly influenced by a similar 

genetic component. Additional calculations were made for EBV correlations from sires 

with at least 5 daughters between the behavior traits and test day traits based on two 

test-days closest to the recording date (before and after) of behavior traits. The AD 

and somatic cell score from the test day close to the date after the measurement of 

the behavior trait (SCS_a) were significantly positively correlated (rEBV = 0.31). Hence, 

selection towards low AD, and therefore less fearful animals, would positively impact 

animals’ health. Significant correlations were also calculated between the breeding 

index functional herd life (RZN) and AD (rEBV = -0.28) and between RZN and RB (rEBV = -

0.35). Sires with a high EBV for longevity traits tend to have daughters with lower 

avoidance distances and less fearful behavior. Although behavior traits depend to a 

large extent on the environment and management factors, the genetic component 
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seems to play an important role. These results support the idea of including behavior 

traits that reflect the human-animal relationship in breeding strategies.  

 

Key words: dairy cattle, human-animal relationship, behavior traits, heritabilities, 

genetic correlations 

 

 

INTRODUCTION 

 

The human-animal relationship (HAR) is a common trait of modern intensive farming 

systems and research in a number of livestock industries has shown that the 

interactions between handlers and their animals can limit the productivity and welfare 

of livestock (Hemsworth and Coleman, 2010). Currently there are few, if any, 

incentives for cattle holders to improve the temperament of their cattle solely to 

improve animal welfare. However animal welfare considerations are becoming 

increasingly important. One way to improve animal welfare on farm animals is by 

modifying management practices in order to reduce stress. Another option may be to 

improve the temperament of farm animals to reduce the quantity of stress 

experienced during routine handling procedures. This may be achieved genetically (e.g. 

through selection of breeding stock for good temperament) or non-genetically (e.g. by 

modification of animal behavior through training programmes) (Burrow, 1997). 

The behavioral response of cattle to human handling can be chosen as an indicator for 

the temperament of an animal (Grandin, 1993; Burrow, 1997). It can vary from docility 

to aggression, with docility being preferred for farming conditions. Temperament can 

be quantified by scoring behavior in a standardized test situation (Tulloh, 1961; Burrow 

et al., 1988; Le Neindre et al., 1995; Hoppe et al., 2008). Morris et al. (1994) stated that 

selection pressure can be exerted in a breeding programme to alter or improve 

temperament. For breeding purposes the assessment of dairy cow´s temperament in 

Germany, a trait subjectively evaluated by handlers using a five-point scale from ‘very 

nervous’ to ‘very quiet’ is used. This trait reflects the cow’s behavior during milking. 

For knowledge on cattle behavior and human-animal-interactions to be used in 
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breeding, it is necessary to assess individual behavioral traits using objective measures 

(Adamczyk et al., 2013). 

Behavior traits which capture aspects of the HAR for breeding purposes, have primarily 

been evaluated in beef cattle. Hoppe et al. (2010), suggested that the categorical 

assessment (on a five-point scale) of beef calves’ behavior in the chute and flight speed 

tests after release from restraint are suitable for improving temperament traits. In 

dairy cows, the avoidance distance (AD) towards an unfamiliar person at the feeding 

place is a common measure for assessing the quality of the HAR. Thus, aspects of 

reliability and validity criterion in individual animals, as well as at the herd level have 

repeatedly been investigated (e.g., Rousing and Waiblinger, 2004; Windschnurer et al., 

2008; Ebinghaus et al., 2016). The qualitative behavior assessment (QBA) as developed 

by Wemelsfelder et al. (2000, 2001) has been adopted in recent years to assess 

animals’ behavioral reactions and body language in various handling situations (dairy 

cows: Ebinghaus et al., 2016; calves: Ellingsen et al., 2014; beef cattle: Stockman et al., 

2011, 2012; Sant’Anna and da Costa, 2013). These measurements, however, have not 

yet been investigated from a quantitative genetic perspective.  

In a preceding study, the following four behavior traits for assessing dairy cows’ 

responsiveness towards humans were identified as repeatable in terms of inter- and 

intra-observer reliability (Ebinghaus et al., 2016). The AD, the tolerance to tactile 

interaction (TTI), the behavior during and after release from restraint (RB), and the 

QBA in a standardized human-animal interaction, simulating linear assessment. The TTI 

and RB tests were developed according to beef cattle temperament tests during and 

after confinement in the chute (e.g., Grandin, 1993; Hoppe et al., 2010) and adapted 

for routine on-farm application in dairy cows. The objectives of the present study were 

1) to estimate heritabilities and breeding values (EBV) for the behavior traits AD, TTI, 

RB, and QBA 2) to calculate and compare EBV correlations among behavior traits, as 

well as between behavior and production traits from two different points in time 

(before and after the behavior measurement) and 3) to calculate correlations between 

behavior traits and important breeding indices included in the total merit index in 

Germany. 
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MATERIALS AND METHODS 

 

Dataset for behavior traits. Data recording was performed by seven trained observers 

during the winter period 2014/2015 and 2015/2016 on 33 dairy farms (25 organic and 

eight conventional farms) with loose housing, located in central and northern Germany 

for the traits AD, TTI, RB, and QBA. Nine farms used automatic milking systems (AMS), 

while the remaining farms milked in herringbone or tandem milking parlors. Herd sizes 

ranged from 29 to 530 cows (mean = 102, sd ± 105). Data was available from 1,761 

Holstein cows for the TTI, 1,766 cows for the trait RB and 1,880 cows for trait AD. The 

QBA was conducted on 565 cows. 

The assessments began after morning feedings when most cows were restrained in the 

feeding gates. For the TTI and RB tests, the cows remained restrained in the feeding 

gate. For the TTI, the observer viewed the cow from behind, as well as the left and 

right-hand sides for roughly 30 seconds before subsequently approaching the cow 

from one side and stroking it three times along the back and down the flank. The cows’ 

behavioral reaction was rated on a 5-point scale (1 = cow stays calm; 2 = cow steps 

maximum twice; 3 = cow steps maximum five times; 4 = cow steps more than five 

times or kicks at least once; 5 = cow reacts violently). The RB was assessed directly 

afterwards, during and after the feeding gate was opened by the observer; this was 

also rated on a 5-point scale (1 = cow stays calm; 2 = cow leaves the feeding place 

walking at an intermediate speed; 3 = cow leaves the feeding place walking fast; 4 = 

cow leaves the feeding place running or jumping; 5 = cow reacts violently, is panicking) 

(Table 1). The QBA was conducted in connection with the human-animal interaction of 

the TTI and RB tests. The observer watched the cows’ body language during the entire 

test situation and subsequently applied the QBA. Further analysis utilized the cows’ 

individual scores from the first principal component (PC1) which explained nearly 70 % 

of the variation (QBA_PC1). This trait was characterized by descriptors relating to 

relaxation/attraction/trust on the negative and descriptors relating to 

fear/distress/aversiveness on the positive end (Ebinghaus et al., 2017). 
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Pedigree, Test-day traits and important breeding indices. The pedigree file included 

36,948 animals from the last 5 generations. Official test-day records of the assessed 

cows from two different dates (the closest test-days before and after the recording 

date for behavior traits) were used in the analysis. Test-day traits include milk yield 

(MY), fat percentage (FP), protein percentage (PP), fat to protein ratio (FPR) and 

somatic cell score (SCS). Relative breeding values from important breeding indices 

(included in the total merit index (RZG) in Germany), from the most influential sires 

(sires with at least 5 daughters), were used for the calculations. The breeding indices 

include index milk production (protein kg, fat kg, protein percent) (RZM), index udder 

health (somatic cell count) (RZS), index conformation (feet and legs, udder (linear 

assessment, classification) (RZE), functional herd life (RZN) and index female fertility 

(conception traits, calving to first insemination) (RZR).  

 

Statistical analysis 

Estimation of genetic parameters. Variance components and heritabilities for 

behavior, production and health traits were estimated from univariate animal models 

using the AI-REML procedure, as implemented in the DMU software package (Madsen 

and Jensen, 2000). 

For the behavior traits, the following linear animal model was applied:  

yijkl =  FGi +  LNj +  YSk +  Huthcll +  eijkl , [I]              

where  

yijkl = AD, TTI, RB, QBA_PC1 

FGi = farm effect combined with performance class in the herd (lactating, high-lactating 

and low-lactating cows) 

LNj = lactation number at the time of the behavior observations (1 - 3 and >4) 

YSk = year (2014, 2015, 2016) and season at the time of the behavior observation (1: 

January - March, 2: April - June, 3: July - September, 4: October - December) 

Huthcll = days in milk in classes according to Huth (1995) (< 14 days = 1, 14 - 77 days = 

2, 78- 140 days = 3, 141 - 231 days = 4, > 231 days = 5) 

eijkl = random residual effect 
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For official test-day traits before the behavior measurement: milk yield (MY_b), 

protein percentage (PP_b), fat percentage (FP_b), fat-to-protein ratio (FPR_b) and 

somatic cell score (SCS_b), and for test-day traits after the behavior measurement: 

milk yield (MY_a), protein percentage (PP_a), fat percentage (FP_a), fat-to-protein 

ratio (FPR_a) and somatic cell score (SCS_a), the following linear animal model was 

applied: 

yijkl =  FGi +  LNj +  YSk +  Huthcll +  eijkl ,      [II]              

where  

yijkl = MY_b, PP_b, FP_b, FPR_b, SCS_b, MY_a, PP_a, FP_a, FPR_a, SCS_a 

FGi = farm effect combined with performance class in the herd (lactating, high-lactating 

and low-lactating cows) 

LNj = lactation number at the time of the test-day (1 - 3 and > 4) 

YSk = year and season of the test-day (1: January - March, 2: April - June, 3: July - 

September, 4: October - December) 

Huthcll = days in milk in classes according to Huth (1995) (< 14 days = 1, 14 - 77 days = 

2, 78 - 140 days = 3, 141 - 231 days = 4, > 231 days = 5) 

eijkl = random residual effect  

 

All original breeding values (obv) (results from univariate models), were standardized 

with a mean of 100 and a genetic standard deviation of 12 points to obtain the relative 

breeding values (rbv). For traits where a low obv is preferable (avoidance distance, 

tolerance to tactile interaction, release from restraint and qualitative behavior 

assessment), the following formula was applied: 

rbv_trait = 100 - ((obv_trait - mean_trait)/st_trait) x 12 

After applying this formula for all traits, bulls with the higher rbv are those which are 

better for selection. This formula is applied e.g., for the test-day trait SCS.



 
 

101 
 

 Estimation of genetic parameters for behavior traits 

EBV correlations (rEBV) (1) among estimated breeding values for behavior traits, (2) 

between estimated breeding values for official test-day records and behavior traits, 

and (3) between estimated breeding values for behavior traits and important breeding 

indices were calculated based on estimates from univariate runs. For this purpose, the 

EBVs from the most influential sires, those with at least 5 daughters, were considered: 

In total, 88 sires were observed for the trait AD, 82 sires for the trait TTI and 82 sires 

for the trait RB. For the behavior trait QBA_PC1 (260 sires), no daughter restriction was 

used due to the limited sample size (available records). 
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RESULTS 

 

Descriptive statistics. Descriptive statistics for the measured behavior traits are shown 

in Table 1 and 2. Descriptive statistics for test-day traits are depicted in Table 3 and 

those for relative breeding values of behavior traits and important breeding indices are 

shown in Table 4. 

The observed avoidance distance of cows was on average 0.36 m. Nearly 70 % of the 

evaluated cows received scores of 1 or 2 for the traits TTI and RB, indicating that the 

majority of cows were more or less calm, stepped maximum twice and left the feeding 

place walking at an intermediate speed. However, the remaining 30 % of the cows 

were nervous and/or agitated. The QBA_PC1 values ranged from -1.8 to 2.39; negative 

values describe fear/distress/aversiveness and positive values describe 

relaxation/attraction/trust. 

 

Table 1. Description and frequency of cows for the traits tolerance to tactile 

interaction (TTI) (N = 1,766) and release from restraint (RB) (N = 1,761) modified 

according to Ebinghaus et al. (2016) 

        

Trait Score Description Frequency (%) 

TTI 1 cow stays calm, no stepping* or kicking** 37 

  2 cow lowers the hindquarters at least at the first and 31 

    second stroke or steps maximum twice, no kicking   

  3 cow steps max. five times, no kicking 20 

  4 cow steps more than five times or kicks at least once 9 

  5 cow is reacting violently, is panicking 3 

RB 1 cow stays calm, leaves the feeding place slowly or only 29 

    after some time   

  2 cow leaves the feeding place walking in intermediate speed 42 

  3 cow leaves the feeding place walking fast 23 

  4 cow leaves the feeding place running or jumping 4 

  5 cow reacts violently, is panicking 1 

*lifting the foot maximum 15 cm, **lifting the foot more than 15 cm 
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Table 2. Descriptive statistics for behavior traits 

              

Trait N Mean SD Min. Max. Median 

AD (m) 1,880 0.36 0.43 0 2 0.20 

QBA_PC1 565 -0.01 1.01 -1.80 2.39 -0.02 

1
AD: avoidance distance 

 QBA_PC1: qualitative behavior assessment, principal component 1 

 

 

Table 3. Descriptive statistics for test day records (MY = milk yield, PP = protein 

percentage, FP = fat percentage, FPR = fat-to-protein ratio and SCS = somatic cell 

score) before (_b) and after (_a) the date of measurement of the behavior traits 
            

Trait N Mean SD Min. Max. 

MY_b 1824 25.45 9.17 6.00 53.60 

MY_a 1779 25.26 9.23 6.00 55.90 

PP_b 1821 3.39 0.37 2.50 4.79 

PP_a 1780 3.37 0.37 2.40 4.75 

FP_b 1807 4.31 0.67 2.73 6.87 

FP_a 1768 4.22 0.63 2.81 6.28 

FPR_b 1807 1.27 0.18 0.80 2.28 

FPR_a 1768 1.25 0.16 0.80 2.20 

SCS_b 1790 3.07 1.70 0.00 8.40 

SCS_a 1718 3.13 1.60 0.26 8.15 
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Table 4. Descriptive statistics for relative breeding values (rbv) for the behavior traits 

and for important breeding indices for sires with at least 5 daughters (N) (for QBA_PC1 

no restriction was made) 

 

Trait1 N Mean SD Min. Max. 

rbv_AD 88 100.00 12.00 72 134 

rbv_TTI 82 100.66 13.02 71 135 

rbv_RB 82 99.54 12.16 76 130 

rbv_QBA_PC1 260 99.46 12.70 52 159 

RZM 298 103.34 11.58 66 133 

RZS 298 102.94 10.53 68 135 

RZE 290 103.22 12.54 65 140 

RZN 295 106.40 10.03 69 136 

RZR 295 102.79 11.07 69 134 

1
rbv_AD: relative breeding value for the avoidance distance 

 rbv_TTI: relative breeding value for tolerance to tactile interaction 

 rbv_RB: relative breeding value for release from restraint 

 rbv_QBA_PC1: relative breeding value for the principal component 1 for qualitative behavior 

assessment  

 RZM: index milk production (protein kg, fat kg, protein percent) 

 RZS: index udder health (somatic cell count) 

 RZE: index conformation (feet and legs, udder (linear assessment, classification)) 

 RZN: functional herd life 

 RZR: index female fertility (conception traits, calving to first insemination) 
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Genetic parameters 

Variance components and heritabilities for behavior traits. Table 5 shows the 

variance components and heritabilities for the four behavior traits that reflect the 

human-animal relationship. The highest heritability was estimated for AD, with a 

moderate range and a low standard deviation (0.27 ± 0.06). Heritabilities for RB and 

QBA_PC1 were lower than the heritability estimated for the AD (0.11 ± 0.06 and 0.13 ± 

0.17, respectively). The lowest heritability was estimated for the behavior trait TTI 

(0.04 ± 0.05).  

 

Table 5. Variance components and heritabilities for behavior traits 

        

Traits1 σa² σp² h² ± SE 

AD 405.13 1104.94 0.27 ± 0.06 

TTI 0.04 1.05 0.04 ± 0.05 

RB 0.08 0.65 0.11 ± 0.06 

QBA_PC1 0.11 0.73 0.13 ± 0.17 

 1
AD: avoidance distance 

 TTI: tolerance to tactile interaction 

 RB: release behavior from restraint 

 QBA_PC1: qualitative behavior assessment, principal component 1 

 

Correlations among behavior traits. Phenotypic and EBV correlations from univariate 

runs among behavior traits are depicted in Table 6. Phenotypic and EBV correlations 

were generally in accordance with one another. The EBV correlations between the 

behavior traits were positive and in a moderate range, with the strongest EBV 

correlation being calculated between AD and RB (rEBV = 0.58). The strongest phenotypic 

correlation was found between QBA_PC1 and RB (r = 0.74), as previously published by 

Ebinghaus et al. (2017). 
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Table 6. EBV correlations (rEBV) among behavior traits above the diagonal with number 

of sires (sires with at least 5 daughters, except for QBA_PC1) and phenotypic 

correlations (rs)
1 with number of daughter records (N) below the diagonal 

 

          

 Traits2   AD TTI RB QBA_PC1 

AD rs
1/rebv   0.16* 0.58*** 0.35** 

  N 1880/88 81 81 67 

TTI rs
1/rebv 0.29**   0.38*** 0.44*** 

  N 1759 1766/82 82 65 

RB rs
1/rebv 0.48** 0.51**   0.45*** 

  N 1754 1759 1761/82 65 

QBA_PC1 rs
1/rebv 0.55** 0.69** 0.75**   

  N 563 560 559 565/260 

*P < 0.1; ** P < 0.01; *** P < 0.001 

1
based on the study Ebinghaus et al., 2017 

2
see Table 4 

 

Correlations between behavior traits and production and health traits from test-day 

records. Table 7 shows the EBV correlations between behavior and test-day traits close 

to the behavior measurement. Correlations between the behavior traits and test-day 

traits measured before the behavior measurement were close to zero and not 

significant. The AD and SCS_a were significantly positively correlated (rEBV = 0.31). The 

EBV correlation between TTI and FPR_a was also significant positive (rEBV = 0.34). 
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Table 7. EBV correlations (rEBV) between behavior traits and test-day records from two 

different points in time (before and after the behavior trait measurement) from sires 

with at least 5 daughters (N) 

            

 Traits1 
  

AD TTI RB QBA_PC1 

MY_b rebv 0.03 -0.01 0.02 0.02 

  N 78 74 74 62 

MY_a rebv -0.07 -0.09 -0.04 0.04 

  N 78 74 74 62 

FPR_b rebv -0.03 0.10 0.02 -0.07 

  N 78 74 74 62 

FPR_a rebv -0.10 0.34** -0.10 0.02 

  N 78 74 74 62 

FP_b rebv 0.05 0.10 0.02 -0.01 

  N 78 74 74 62 

FP_a rebv 0.03 0.21 0.05 0.03 

  N 78 74 74 62 

PP_b rebv 0.10 0.003 -0.03 0.01 

  N 77 73 73 61 

PP_a rebv 0.15 -0.01 0.17 0.06 

  N 77 73 73 61 

SCS_b rebv 0.06 -0.09 -0.07 -0.11 

  N 73 69 69 60 

SCS_a rebv 0.31** -0.21 -0.004 -0.09 

  N 73 69 69 60 

*P < 0.05; ** P < 0.01; *** P < 0.001 

1
AD: avoidance distance 

 TTI: tolerance to tactile interaction 

 RB: release behavior from restraint 

 QBA_PC1: qualitative behavior assessment, principal component 1 

 MY_: milk yield from official test day before (_b) and after (_a) the behavior trait measurement 

 FPR_: fat-to-protein ratio from official test day before (_b) and after (_a) the behavior trait 

measurement 

 FP_: fat percentage from official test day before (_b) and after (_a) the behavior trait measurement 

 PP_: protein percentage from official test day before (_b) and after (_a) the behavior trait measurement 

 SCS_: somatic cell score from official test day before (_b) and after (_a) the behavior trait measurement 
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Correlations between important breeding complexes and behavior traits. All of the 

correlations between important breeding indices and behavior traits that reflect the 

human-animal relationship were in a low to moderate range; these correlations are 

depicted in Table 8. The EBV correlation between RB and the breeding index functional 

herd life (RZN) was significant and negative (rEBV = -0.35). The trait QBA_PC1 was 

significantly positive correlated (rEBV = 0.14) with the breeding index conformation 

(RZE).  

 

 

Table 8. EBV correlations (rEBV) between important breeding indices and behavior traits 

that reflect the human animal relationship for sires (N) with at least 5 daughters; 

except for QBA_PC1 no daughter restriction. 

 

          

 Traits1 
  

AD TTI RB QBA_PC1 

RZM rebv -0.09 -0.13 -0.05 -0.04 

  N 59 55 55 211 

RZS rebv -0.08 0.18 0.02 0.11 

  N 59 55 55 211 

RZE rebv 0.21 0.21 0.17 0.14* 

  N 57 53 53 204 

RZN rebv -0.28* -0.17 -0.35** -0.05 

  N 59 55 55 208 

RZR rebv -0.07 0.05 -0.16 0.11 

  N 59 55 55 208 

*P < 0.05; ** P < 0.01; *** P < 0.001 

1
See Table 2 
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DISCUSSION 

 

Descriptive statistics. The traits TTI and RB were developed based on beef cattle 

temperament traits, e.g., chute score. Beef cattle that respond by struggling violently 

and trying to escape from confinement in a chute, weigh crush or handling race are at 

a higher risk of injury to itself, human handlers and other animals than an animal that 

responds calmly (Voisinet et al., 1997). Therefore, low values for TTI and RB are 

desirable. For dairy cattle, a calm response to handling during e.g., artificial 

insemination and veterinary treatment is important to avoid injuries to animals and 

humans. A high percentage of cows evaluated in this study received scores of 1 or 2 for 

TTI and RB. Thus, they were relatively calm, stepped maximum twice and left the 

feeding place walking at an intermediate speed. Variability is present, indicating that a 

percentage of the cows were fearful and agitated during handling. 

The observed mean for the AD was 0.36 m, indicating that a high percentage of the 

cows maintained a distance and did not accept being touched by the unfamiliar 

experimenter. Waiblinger et al., 2003 found that 50 % of the evaluated farms had an 

avoidance distance per herd within a small range of 0.15 to 0.35 m, while 

Windschnurer et al. (2008) reported a mean AD of 0.24 m. Cattle husbandry involves 

close contact between handlers and their animals. Docility in dairy cattle during 

milking and handling is a trait that has been under selection for generations; thus, 

extreme responses are rare (Haskell, et al., 2014); however, variability in the avoidance 

distance was found. 

The QBA_PC1 values ranged from -1.8 to 2.39. The number of cows evaluated via QBA 

was relatively low (N = 565) compared to the sample size for the other traits, due to 

the high level of concentration required from the observer for evaluation of this 

measurement. 

 

Genetic parameters 

Variance components and heritabilities for behavior traits. The heritability estimated 

for the AD was moderate, indicating the potential to improve animal behavior and the 

human-animal relationship simultaneously via breeding.  



 

    110 
 
       

Estimation of genetic parameters for behavior traits 

Heritabilities for RB and QBA_PC were low, but higher than for most functional traits. 

Heritability for RB (h² = 0.11) was lower than those estimated for flight speed scores in 

beef cattle. Hoppe et al. (2010) reported h² = 0.11 for Limousin cattle and h² = 0.36 for 

Hereford cattle, respectively. These differences could be due to breed-specific aspects 

or varying management factors. The TTI trait was adapted from the chute score trait 

measuring the behavioral reaction on a scale from ‘quiet’ to ‘extremely excited’, as 

applied to beef cattle while the animal is restrained in a head gate (Hoppe et al., 2010). 

The lowest heritability estimated in this study was for the TTI (h² = 0.04), which was 

distinctively lower than heritabilities estimated by Hoppe et al. (2010) for the chute 

score in Limousin (h² = 0.11) and Hereford (0.33) cattle. Here, environmental factors 

including handlers’ behavior and attitude, as well as handling and management 

practises may have played a much bigger role than genetics.  

 

Correlations among behavior traits. Phenotypic correlations are discussed in detail by 

Ebinghaus et al. (2017). Estimated breeding value (EBV) correlations (rEBV) among the 

behavior traits AD, TTI, RB and QBA_PC1 were moderately positive, indicating that 

while the various methodologies for behavior assessment may measure slightly 

different aspects of animal behavior, they are related and are partly influenced by a 

similar genetic component. All of these measures registered the responses of 

restrained cows at the feeding place towards an approaching human. There are, 

however, some differences between the measures and what they represent. AD 

focuses on approach, whereas the other measures are centred on forced handling; for 

TTI, this occurs through physical contact (Ebinghaus et al., 2017). During the TTI test, 

the cow was restrained, while for RB, the cow was released and could control the 

situation, i.e., decide to stay or to move away. Differences between TTI, RB and 

QBA_PC1 may result from methodology differences. While TTI and RB used 

observations of defined behaviors, QBA_PC1 used observations from body language in 

general (Ebinghaus et al., 2017).  

The highest EBV correlation was between AD and RB (rEBV = 0.58); for both evaluations, 

the animal had the choice to avoid close contact with the human. Although RB 

involved force handling, a common genetic component is likely accountable for the 
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behavior response. A moderate correlation between RB and TTI (rEBV = 0.38) was found 

despite both traits being measured at the same location and involving forced human-

animal interaction; this correlation was probably due to the animal’s level of control in 

the situation, an aspect that is likely important for the animal (Boivin et al., 2003; 

Waiblinger et al., 2004). Although the cow was restrained during the TTI recording, it 

was released and allowed the freedom to decide its distance from the human during 

the RB recording. QBA was moderately correlated with RB (rEBV = 0.45), with AD (rEBV = 

0.35) and with TTI (rEBV = 0.44), suggesting that QBA is a good measure for describing 

behavior. 

 

Correlations between behavior traits and production and health traits from test-day 

records. How animals perceive the presence of humans is especially important for 

dairy cattle because of the regular interaction with humans. Sutherland and Dowling 

(2014) found, for example, a positive (phenotypic) correlation between AD and milk 

yield. In this study, EBV correlations between the behavior traits and test-day trait 

measures prior to the behavior measurement were close to zero and not significant. 

Purcell et al. (1988) and Uetake et al. (2002) also reported low phenotypic correlations 

between milk production and various behaviors towards handlers (e.g., approach 

distance and flight distance). Significant correlations were found between behavior 

traits and test-day trait measures after the measurement of the behavior. AD and 

SCS_a were significantly positively correlated (rEBV = 0.31). Cows with a higher AD, e.g., 

cows fearful of humans, can experience physiological stress reactions (Breuer et al., 

2003); stress can lead to a higher SCS. Ivemeyer at al. (2011) also stated that the 

human-animal relationship on the farm is associated with udder health in dairy cows. 

Gibbons et al. (2011) indicated that animals that are highly responsive or fearful during 

routine management may experience increased stress as a result of their inability to 

cope, which has been shown to negatively affect health (Fell et al., 1999). The EBV 

correlation between TTI and FPR_a was also significantly positive (rEBV = 0.34), 

indicating that more fearful, nervous and aggressive cows are at greater risk of 

potentially having sub-clinical ketosis, i.e., metabolic stress; ketosis is a trait related to 

energy deficiency (Rehbein et al., 2013). In this analysis, FPR was used to depict the 

cow’s energy balance. Curley et al. (2007) stated that higher basal serum cortisol 
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concentrations may suggest that easily excitable cattle are chronically stressed, 

possibly resulting in a compromised immune system, illness, and decreased fat and 

protein deposition (Bates et al., 2014).  

 

Correlations between important breeding complexes and behavior traits. Correlations 

between important breeding indices and behavior traits were generally insignificant. 

The breeding index RZE and the behavior trait QBA_PC1 were significantly positively 

correlated (rEBV = 0.14). Sires with a high EBV for conformation traits tend to have 

daughters with a positive QBA_PC1, meaning that daughters were characterized with 

descriptors relating to fear/distress/aversiveness. However, this correlation is 

moderate to low, implying that a set assumption cannot be made and the trait should 

be further investigated. Significant correlations were also calculated between RZN and 

AD (rEBV = -0.28), and between RZN and RB (rEBV = -0.35), indicating that sires with a 

high EBV for longevity traits tend to have daughters with good behavior, e.g., low ADs 

and calm demeanors. Haile-Mariam et al. (2004) and Sewalem et al. (2010) also 

reported positive phenotypic and genetic relationships between temperament and 

herd survival, in that calmer cows are less likely to be culled. 
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CONCLUSIONS 

 

A moderate heritability was estimated for the AD (h² = 0.27) making this trait suitable 

for selection. RB and QBA_PC1 had low heritabilities, yet they are higher than for some 

functional traits. Estimated breeding value (EBV) correlations (rEBV) among the 

behavioral measures AD, TTI, RB and QBA_PC1 were moderately positive, indicating 

that while these behavior traits tend to measure different aspects of behavior, they 

are linked by a similar genetic component. The AD was significantly correlated with 

SCS_a (rEBV = 0.31). Cows with fear of humans are likely to experience stress reactions, 

and stress can lead to a higher SCS. This supports the concept of including behavior 

traits that reflect the human-animal relationship into breeding strategies. With respect 

to estimated (co)variance components from all four behavior measurements, the AD 

would be the most suitable for inclusion in breeding programs.   
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Introduction 

Animal welfare and sustainable breeding depend to a large extent on behavior. 

Behavior is an important trait-complex that has thus far received little attention in 

breeding programs. Moreover, behavior is the primary means of an animal’s 

adaptation to a specific environment. If selection affects the behavioral repertoire 

available for such adaptation, this may have profound importance for the welfare of 

the animal and for its ability to cope with different environmental challenges (Jensen 

and Andersson, 2005). Interdisciplinary work between animal breeding and ethology 

may offer a means of understanding the relation between behavior, animal-technic 

and human-animal interactions, along with other important aspects such as 

production, health and fertility. Additionally, it may assist to predict possible side 

effects of breeding programs, which in turn may help in designing more sustainable 

breeding in the future. 

In the previous chapters (3, 4 and 5) the obtained results were analyzed and discussed 

in relation to results published in other studies. This chapter aims to discuss certain 

behavior trait definitions and some of the used statistical models more critically. 

Furthermore, new calculations will also be discussed not only as individual findings, 

but also with regard to the identification of the genetic background for behavior traits 

and traits reflecting the human-animal relationship. Finally, recommendations related 

to a possible behavior selection index will be provided and future breeding techniques 

will be discussed.  

 

Behavior indicator traits  

Due to the different definitions of behavior (Mathiak 2002, Urban 2007) and the fact 

that the assessment of animal behavior is often characterized by subjective 

impressions, it is difficult to make an objective assessment of this complex and 

multifactorial trait (Andersson and Georges 2004). In order to take behavior traits into 

account in breeding programs, behavior tests, or behavior indicator traits, which are 

suitable for farm-based standardized recording, have to be identified. 
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Average milk flow  

In this respect, the concept of using the trait average milk flow (AMF), an objectively 

recorded trait, as a behavioral indicator trait has emerged. The milk ejection reflex, 

essential for maximum milk collection, is inhibited by stress via the release of 

catecholamines such as adrenaline and noradrenaline (Silankove et al., 2000; Barowicz, 

1979). These hormones prevent the milk ejection reflex through either a central 

inhibition of oxytocin release from the pituitary gland (Sibaja and Schmidt, 1975), and 

a drastic reduction in mammary blood flow (Gorewit and Aromando, 1985), or by 

blocking the effect of oxytocin on the myoepithelial cells of the mammary gland by 

binding to common receptor sites (Akers and Lefcourt, 1984). Previous studies have 

identified significant relationships between temperament during milking and milk 

ejection (Dimitrov-Ivanov and Djorbineva, 2002), yet it is not known whether 

temperament assessed before milking can relate with milk production and the 

behavior of the cow once introduced to the milking parlor. 

Breeding associations routinely record the milking temperament (MT), which is related 

to the cows’ behavior during milking routine, to genetically improve dairy cows’ 

manageability. The MT is subjectively assessed by the animal owner using a multi-

stage scale from 1: very nervous to 5: very quiet (Adamczyk et al., 2013). Along with 

MT, breeding associations in Germany and other countries also record the cows’ 

milkability (MA) by means of subjective classification of milking speed (MS), 1: very 

slow to 5: very fast. Alternatively, milking speed is measured as average milk flow per 

minute (AMF) (e.g. Interbull, 2009; VIT, 2016), showing a moderate genetic 

background (Santos et al., 2015). In Germany, there are regional differences regarding 

which traits are commonly recorded. If recorded in combination, AMF and MS are 

summarized with a weighting of 50 : 50 (VIT, 2016).  

On a phenotypic level, AMF is influenced by anatomical and physiological factors, as 

well as by aspects of milking management, such as pre-milking operations (e.g. 

Bruckmaier and Blum, 1996; Sandrucci et al., 2007). It can further be argued that AMS 

also has a behavioral component. In order to include this trait as behavior indicator 

trait in breeding programs, however, further research has to be done in combination 

with valid, reliable measurements such as avoidance distance (AD), tolerance to tactile 
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interaction (TTI), release from restraint (RB) and qualitative behavior assessment from 

the first principal component analysis (QBA_PC1). Furthermore, correlations with 

cortisol values, hormone levels and heart rate measurements will bring additional 

benefits.  

 

Genetic correlations among traits 

In Chapter 4 heritabilities and estimated breeding values (EBV) for the behavior 

measures AD, TTI, RB, and QBA were estimated. EBV from the most influential sires, 

those with at least 5 daughters, were considered for the analysis: In total, 88 animals 

for the trait AD, 82 animals for the trait TTI, and 82 animals for the trait RB. For the 

behavior trait QBA_PC1 (260 animals), no daughter restriction was used due to the 

limited amount of records available. Data for milking temperament and average milk 

flow was also available, but also for a relatively few number cows. For MT, 152 cows 

were available, while there were only 52 for AMF.  

EBV correlations between traits routinely recorded by breeding associations (MT and 

AMF), along with behavior measures reflecting dairy cows’ responsiveness towards 

humans are depicted in Table 1.  

Table 1. EBV correlations (rebv) between behavior traits for the number of bulls (N) 

with a restriction of at least five daughters for the traits AD, TTI and RB 

 
          

 Traits1   AD TTI RB QBA_PC1 

MT rebv -0.07 0.16 -0.05 -0.08 

  N 33 31 31 84 

AMF rebv -0.75* -0.39 -0.33 -0.37 

  N 10 9 9 24 

1
AD: avoidance distance 

 TTI: tolerance to tactile interaction 

 RB: behavior during release from restrain 

 QBA_PC1: cows individual scores from the 1
st 

principal component analysis 

 MT: milking temperament 

 AMF: average milk flow 
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All correlations except the correlation between MT and TTI (rEBV = 0.16) are negative in 

sign, indicating a positive breeding response between the existing behavior traits 

recorded by breeding associations and behavior measures that reflect dairy cows’ 

responsiveness towards humans. The strongest negative correlation was calculated 

between AMF and AD (rEBV = -0.75), reinforcing the hypothesis of using the trait AMF 

as a behavior indicator trait. Normally, EBV correlations are an underestimation of 

genetic correlations (Calo et al., 1973), implying that the genetic correlation between 

these two traits could be even higher. Hence, given the few number of records used 

for the evaluation and due to the likelihood of the low accuracy of the EBV for the 

traits, further research in this regard is necessary. 

 

Traits from Automatic Milking Systems (AMS) 

Utilization of traits directly generated from the AMS allows for improvements to be 

made to the German Holstein AMS breeding index “RZRobot”. Thus far, the RZRobot is 

based only on the following indicator traits from official recording schemes: milking 

speed, somatic cell count, feet and legs, udder component score, rear teat placement 

and teat length (DHV, 2014). The current breeding index strongly emphasizes udder-

related traits. The udder of the cow and animal’s health, is indeed a strong factor 

influencing the use of the AMS. Hence, behavior-related traits also likely play an 

important role here. Through the utilization of certain behavior indicator traits 

generated in such systems, the RZRobot could be extended. The trait knock off of the 

milking device (KO), for example, could be used as an indicator not only for udder 

morphology, but also for temperament. Fewer knock offs could indicate good udder 

morphology and a good animal behavior (Chapter 4). Unfortunately, the heritability for 

this trait is very low, making a selection for this trait more difficult. Furthermore, the 

trait interval between two consecutive milking (INT), which is also related to 

temperament, could play a role in the analysis of new traits for the index. A short INT 

implies more visits to the AMS, indicating that cows can exercise freewill when 

deciding when to access the Robot. The additional benefit of using the trait visits (VIS) 

was already discussed by König, et al., 2008. Furthermore, it may be possible to 

improve the preexisting RZRobot index by traits actually recorded by the AMS, as well 



 

125 
 

 General discussion 

as by including traits that have some capacity to reflect the temperament of the cows 

in the AMS. The heritability estimates for some behavior indicator traits are sufficiently 

high to allow further selection on these traits. However, before behavior indicator 

traits can be used as a potential parameter in the genetic selection, a better 

knowledge of the relationship between behavior traits and for example fertility is 

required for effectively designing new breeding indices. 

 

Correlation between behavior indicator traits from AMS and fertility traits 

Behavior may also play a critical role in the declining reproductive performance of 

genetically high-producing cows. In a study of 17 commercial herds that used an 

electronic oestrus-monitoring system, Dransfield et al (1998) determined that a higher 

proportion of cows with production above herd average exhibited only low intensity 

and short duration oestrus when compared to lower-producing cows (24 vs. 16 %). 

Lopez et al (2004) also reported an unfavorable association between milk production 

and oestrus behavior, with shorter oestrus periods (5.5 vs. 11.1 h) in high (>  40 kg per 

day) relative to low (< 30 kg per day) producing cows. Emanuelson and Oltenacu (1998) 

found an extended interval to first breeding and to conception in herds with poorer 

oestrus detection. The decline in fertility also has economic consequences and several 

studies reported increasing reproduction costs for dairy cattle (Lindhe & Philipsson 

1999; Royal et al 2000; Lucy 2001).  

With data from automatic milking systems (Chapter 4), it was possible to determine 

genetic and EBV correlations between the fertility trait non-return rate after 90 days 

(NR90) and behavior indicator traits; the results of this analysis are shown in Table 2. 

The trait NR90 was defined as a binary trait with cows that did not have to be 

inseminated again after 90 days, receiving the score “1” (pregnant), or “0” (not 

pregnant). 

NR90 was slightly negatively correlated with AMF (rg = -0.13) and DUR (rg = -0.16), 

indicating that fast milking cows and cows that spend more time in the milking box 

(according to our definition, cows with a good temperament), would likely have 

fertility problems. Positive correlations between INT and NR90 (rg = 0.25) demonstrate 

that longer intervals between milking were associated with good female fertility. 

According to Cooke et al. (2012), cattle with excitable temperaments showed an 
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increase in the synthesis and circulating concentrations of cortisol as a stress response. 

Moreover, they determined that cortisol directly impaired physiological mechanisms 

required for fertility in beef cows. Due to variations in sign of the genetic correlations 

and the EBV correlations, as well as the large standard errors of the genetic 

correlations, it is difficult to make an appropriate conclusion. Still, it is important to 

look at the genetic correlations between behavior indicator traits and fertility traits; it 

is therefore crucial to conduct more research on this subject.  

Table 2. Genetic correlations (rg) and breeding value correlations (rEBV) between 

behavior indicator traits and the fertility trait non-return rate after 90 days (NR90) for 

bulls with at least 5 daughters 
      

Trait1 NR90 

  rg rEBV 

AMF (kg/min) -0.13 (0.17) -0.09 

DUR (min) -0.16 (0.27) 0.16 

INT (hour) 0.25 (0.24) 0.01 

KO 0.10 (0.32) -0.31 

VIS3 0.12 (0.29) -0.02 

VIS4 0.20 (0.35) -0.10 

1
AMF: average milk flow 

 DUR: milking time during a visit in the milking robot 

 INT: interval between two consecutive milkings 

 KO: knock off of the milking device from at least one udder quarter 

 VIS3: at least three visits to the milking robot per day 

 VIS4: at least four visits to the milking robot per day 

   

In Chapter 3, a similar antagonistic genetic relationship between AMF and udder 

health was discussed. In that instance, it was proposed that the trait AMF could be 

considered as a trait with an intermediate optimum; a similar approach could be 

applied for the trait INT. 
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Statistical Models 

Recursive models 

The application of recursive models in the field of dairy cattle breeding is relatively 

new; for the current investigation, recursive models were applied in the analysis 

introduced in Chapter 3. Due to the ever increasing importance of functional traits in 

dairy cattle programs, the implementation of recursive or simultaneous models as 

theoretically described by Gianola and Sorensen (2004) will be continue to be applied 

in the future. In the past, mixed models have been used to infer genetic and 

environmental correlations between production (mainly milk yield) and functional 

traits (fertility or somatic cell score). These models, however, ignore the existence of 

direct relationships between two phenotypes. High milk yield may increase liability to 

any specific disease and, in turn, the disease may affect milk yield adversely. The 

possible complexity of such structural equation models is clearly described by de los 

Campos et al. (2006). In the case of average milk flow and e.g. milk production (MY) in 

dairy cows (Chapter 3) a two-way biological causal path was postulated (Figure 1).  

 
 

 

Figure 1. Biological system between AMF and two test day traits (here MY = milk 

production) 

Where Trait 1 (e.g., MY_1) referred to the test-day record before the measurement 

date for AMF, AMF was Trait 2 in the biological system and Trait 3 (e.g., MY_3) was the 

official test-day record of the respective test-day trait after AMF recording. Here, 21 is 

the alteration in AMF with respect to test-day trait 1. The rate of change in test-day 

trait 3 with respect to the change of 1 kg/min in AMF is depicted by 32 . 

Based on the results provided in Chapter 3, along with those from other studies (e.g., 

Lopez de Maturana et al., 2007; Wu et al., 2007), the use of recursive models can allow 

for a much more accurate representation of the real complexion among phenotypes in 

dairy cattle breeding. Moreover, König (2007) further supported this conclusion about 

recursive models. 
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Use of covariates  

There are two reasons for choosing to include a covariate in an analytic model: Power 

and adjustment. Power is supplied when the covariate is highly related to the 

dependent variable, but unrelated to the independent variable of interest. The 

inclusion of the covariate in the analytic model ultimately leads to a reduction in the 

variance of the residuals, increasing the power of the test of the independent 

variables. The adjustment function emerges when the covariate is related to the 

independent variables. The inclusion of the covariate in the analytic model accordingly 

results in “adjustments” in the effect estimates associated with the independent 

variables (Yzerbyt et al., 2004). 

A covariate and an independent variable may be correlated as a result of the three 

possible causal processes: The independent variable causes the covariate, the 

covariate causes the independent variable, and they are spuriously related because 

some third variable or variables causes both of them (Yzerbyt et al., 2004). A covariate 

is included in the model in order to examine whether the adjusted effect of the 

independent variable is reduced once the mediator is controlled (Judd and Kenny, 

1981; Baron and Kenny, 1986).  

In Chapter 4, auxiliary traits that reflect animal behavior in the milking system were 

defined, with the use of objectively recorded longitudinal data from automatic milking 

systems (AMS). The AMS traits used as behavior indicators were: AMS visits per cow 

and day as a binary trait, with a threshold for greater or equal to three visits (VIS3) and 

greater or equal to four visits (VIS4), also as a binary trait was knocking off the milking 

device with a threshold of at least one udder quarter (KO), milking duration of each 

AMS visit in min (DUR), average milk flow in kg/min (AMF) and the interval between 

two consecutive milkings (INT). The main question raised here is related to the role of 

milk yield when analyzing these traits. Could milk yield be the main driving force 

behind AMS visits? Does a high milk yielding cow have a longer duration in the milking 

box? In consideration of these questions, milk yield was included as a covariate in the 

statistical model. Heritabilities for behavior indicator traits resulting from models with 

and without milk yield as a covariate are depicted in Table 3. 
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Models with and without milk yield as a covariate were comparable, with slightly 

higher heritabilities being found for some traits in models with milk yield as a covariate 

(0.17 for VIS3, 0.08 for VIS4 and 0.18 for INT). These results support the conclusion 

that milk yield is not the only driving force behind these traits.  

Selection of the most appropriate model (with or without a covariate) was based on 

Akaike’s information criterion (Akaike, 1973). Akaike (1973) proposed a simple and 

useful criterion (AIC) for selecting the best-fit model among alternative models: 

AIC = -2(log likelihood) + 2(number of variance parameters) 

Here, the model with the lowest value for AIC is preferable and ideal for application. 

For all traits, AIC values were lower for the models with milk yield as a covariate, 

implying that these models are more suitable. 

Table 3. Heritabilities (h²) for behavior traits resulting from models with and without 

milk yield as a covariate 

 
    

  h² 

Traits1 with MY as covariate without MY as covariate 

AMF 0.22 0.25 

INT 0.18 0.07 

DUR 0.19 0.19 

KO 0.03 0.03 

VIS3 0.17 0.08 

VIS4 0.08 0.05 

1
AMF: average milk flow 

 INT: interval between two consecutive milkings 

 DUR: milking time during a visit in the milking robot 

 KO: knock off of the milking device from at least one udder quarter 

 VIS3: at least three visits to the milking robot per day 

 VIS4: at least four visits to the milking robot per day   
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Breeding program 

Selection Index for behavior 

Selection index theory (Hazel, 1943) provides the framework for a concrete definition 

of the breeding goal in terms of an aggregate genotype selected for through a 

correlated information index. The aggregate genotype is used to represent the genetic 

merit of an animal, i.e., the weighted sum of its genotypic values for several traits. To 

optimize relative improvement levels of aggregated genotype traits, traits are 

weighted by their predicted contribution to the improvement of the breeding goal. 

In dairy cattle, traits influencing production efficiency are roughly characterized as 

production traits (milk) and functional traits. The term functional traits is used to 

summarize those characteristics of an animal which increase efficiency not though 

higher output of products, but though reduced costs of input. Major groups of 

breeding goal traits belonging to this category are related to health, fertility and 

milkability and could be complemented by behavior traits. Many authors proposed 

using traits related to fitness and suggested, for example, a selection index in dairy 

cattle based on traits such as lameness, mastitis, calving interval and lifespan as 

measures of health and fertility (see Lawrence et al., 2004; Oltenacu and Algers, 2005). 

Traits of this kind have already been recorded in practice and quantitative evaluations 

using real data show that, due to antagonistic relationships between production and 

fitness traits, a trade-off may exist between the costs of lower milk yield and the 

benefits of a higher health status of cows (Lawrence et al., 2004). Therefore, 

depending on the rate of genetic change and the weights applied to each trait, 

breeding for improved welfare of dairy cows may be generally profitable (Lawrence et 

al., 2004). Other approaches have also suggested the use of behavioral or 

temperament traits for breeding purposes, including, for example, fearfulness, 

sociality or aggression (Faure and Mills, 1998; Jones and Hocking, 1999; Kanis et al., 

2004; Boissy et al., 2005; Star et al., 2008). Using temperament traits in dairy cattle 

breeding may be a potentially important way of implementing the results of the 

present thesis in practice. In contrast to more “classical” fitness traits, however, the 

application of temperament traits in farm animal breeding is still largely a matter of 

theory, which is open for discussion. 
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One valid reason to include underlying temperament traits in a breeding program, 

however, would be that these traits are capable of influencing a wide range of 

biological responses to a broad assortment of challenges. Conventional German dairy 

cattle breeding programs do not include selection for improved behavior. As shown in 

Chapters 3, 4 and 5, the genetic parameters of various behavior indicator traits enable 

the possibility for selection strategies on these traits.  

The aim of this section is to compare the selection response of direct selection 

strategies on behavior traits (e.g., AD) with indirect approaches via indicator traits (e.g. 

AMF, INT) and the accuracy of the index. The first step in developing a selection index 

is to clearly define the goal of the genetic improvement. The general breeding goal is 

to improve the cow’s temperament. Hence, applying selection index theory the trait in 

the breeding goal was AD and according to the different scenarios, the traits in the 

index, as well as the number of daughters used for each trait in the index, varied (Table 

4).  

 

Table 4. Investigated Scenarios  
          

Scenario Index-traits1 No. of daughters Breeding Goal-traits1 rg 
2 

A1 AD 5 AD   

A2 AD 50 AD   

B1 AMF 50 AD  -0.30 

B2 AMF 50 AD  -0.50 

B3 AMF 50 AD  -0.75 

C1 AD 5 AD  -0.75 

  AMF 50 AMF   

D1 AMF 50 AD  -0.75 

  INT 50    0.15 

1
AD: avoidance distance 

 AMF: average milk flow 

 INT: interval between two consecutive visits 

2
rg: genetic correlation between index traits and traits in the breeding goal 

Results from the investigated scenarios were used to recommend a suitable breeding 

strategy for behavior traits for cows milked in herringbone or tandem milking parlours, 

as well as for cows milked in AMS. The relative economic weight for the trait in the 

breeding
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goal (AD) was always -1, to ensure that cow’s with a lower avoidance distance would 

be selected. Scenarios A1 and A2 differed in the number of daughters, while Scenarios 

B1, B2 and B3 differed in the genetic correlation between AD and AMF. The problem 

with Scenario D1 was that the phenotypic and genetic correlation between INT and AD 

are nonexistent; therefore, these figures are purely speculative. 

The genetic and phenotypic parameters used in this section are shown in Table 5. Most 

of the parameters were estimated in previous chapters (Chapters 3, 4 and 5). 

Table 5. Heritabilities (diagonal), EBV correlations (above diagonal) and phenotypic 

correlations (below diagonal) for index traits. 
         

Traits2 AD AMF  INT 

AD  0.27  -0.75   0.151 

AMF  0.10  0.30 
 

 0.14 

INT    0.451  0.20 
 

 0.07 

 1
assumed correlations  

 
2
see Table 4 

The negative correlation (in sign) but positive with respect to the breeding progress 

between AD and AMF was discussed in the previous section: behavior indicator traits. 

Normally, EBV correlations are an underestimation of genetic correlations (Calo et al., 

1973), meaning that the genetic correlation between these two traits could be even 

higher. Hence, given the limited number of records used for the evaluation, and due to 

the likelihood of a low degree of accuracy of the EBV for these traits, especially for the 

trait AD, further research in this regard should be conducted. Taking this into account, 

three scenarios were developed with different correlations between AD and AMF. 

Utilizing the parameters from the previous table, the selection response per 

generation (ΔG), the index weight (b) and the accuracy of the index (r_Ti) were 

calculated for different scenarios using the R Program -developed by Pimentel and 

König (2012); these parameters are summarized in Table 6. The selection response per 

generation (ΔG) is given in the traits specific unit. 
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Table 6. Selection response per generation (ΔG), index weights (b) and the accuracy of 

the index (r_Ti) for different Scenarios 

              

 Scenarios/ r_Ti ΔG b 

 Traits1   AMF (kg/min) AD (cm) AMF AD INT 

Scenario A1 0.52   -8.90   -0.03   

Scenario A2 0.88   -15.29   -0.09   

Scenario B1 0.27   -4.64   2.44   

Scenario B2 0.45   -7.73   4.06   

Scenario B3 0.67   -11.60   6.09   

Scenario C1 0.91 0.16 -15.85 3.92 -0.15   

Scenario D1 0.70   -12.80 6.38   -0.90 

1
see Table 4 

When comparing these scenarios, Scenario C1 has the highest accuracy, even higher 

than scenario A2. The best breeding strategy, in order to select cows with lower 

avoidance distances, is to combine the traits AD and AMF in the breeding goal. For 

Scenarios B1, B2 and B3, where AMF was the only trait in the index, breeding success is 

achieved for the avoidance distance, meaning that a selection towards a faster milking 

speed will be accompanied with a selection response towards a shorter AD. 

Scenario D1 could be seen as an example for a selection index working towards better 

behavior for cows in AMS. Although, due to the assumed correlations between INT and 

AD, intensive research is necessary to confirm this.  

Interestingly, when comparing Scenario A2 and Scenario B3, the selection response in 

the AD per generation is similar. If the genetic correlation calculated between these 

two traits is accurate, it would reinforce the hypothesis that supports the use of the 

trait average milk flow as a behavior trait indicator. 

For the B Scenarios, the accuracy of the index with 5, 50 and 100 daughters was also 

calculated; these results are presented in Figure 2. 

Assuming a lower genetic correlation between AD and AMF, e.g., Scenario B1, an 

accuracy of 0.30 would be reached with a large number of daughter records (Figure 2). 

Thus, the best, and most realistically applicable index for selection towards cattle 

behavior would be an index that combines both traits, AD and AMF, as in Scenario C1. 
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Figure 2. Accuracy of the index depending on the number of observations (n) 

“daughter-recordS” and on the Scenarios B1 (rg between AMF and AD = -0.30), 

Scenario B2 (rg between AMF and AD = -0.50) and Scenario B3 (rg between AMF and 

AD = -0.75) 

 

The results of this section highlight the additional benefit of the interdisciplinary work 

between animal ethology and animal breeding. The future of planning efforts for 

breeding programs could be revolutionized through the use of reliable and valid 

behavior traits and traits that reflect human-animal-interactions (as recorded by 

Ethologist), complemented by an emphasis on understanding the genetics from an 

animal breeding point of view. 
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Future perspectives 

Marker-assisted selection 

Additional gain or efficiency in dairy cattle breeding programs due to marker assisted 

selection was proposed mainly for traits with low heritabilities (e.g., functional and 

health traits), or for traits which can only be recorded late in life such as survival 

(Lande & Thompson, 1990). However, from the statistical point of view, the probability 

to find quantitative trait loci (QTL) is lower for these low heritable traits (König, 2007). 

Kathkar et al. (2004) gave an extensive review for QTL mapping in dairy cattle. Most of 

the reviewed publications (45 of 55) reported significant QTL for production traits, but 

relatively few studies have been reported for functional traits such as mastitis, fertility 

and health (e.g. Kühn et al., 2003; Ashwell et al., 2004). Also few studies reported QTL 

for behavior or temperament traits. Gutierrez-Gil et al. (2008), for example, searched 

for genomic regions (i.e., quantitative trait loci or QTLs) in a Holstein x Charolais cross 

cattle population, influencing temperament-related traits derived from two behavioral 

tests. The flight from feeder test measured the distance at which the animal moved 

away from an approaching human observer, while the social separation test 

categorized different activities which the animal engaged in when removed from its 

penmates. A total of 29 QTL distributed across 17 chromosomes were identified at the 

5 % chromosome-wide level, with 5 of them showing effects on the flight from feeder 

test and the rest controlling the scoring variation of social separation variables. 

Notably, QTLs associated with traits assessed in different tests did not overlap, 

suggesting that different behavioral responses to different situations are controlled by 

different underlying genetic factors. These results suggest that a fearful response in 

different contexts has different underlying genetic causes.  

Hiendleder et al., 2003 also detected a QTL for temperament that exceeded the 

experiment-wise significance threshold (5 % level) on chromosome 29. 

Although some QTL for temperament were found, research in this area is still 

insufficient.
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Genes underlying temperament traits 

Identifying genes for complex traits would greatly enhance the understanding of these 

traits. Although the majority of research focused on gene identification has been 

centered on domestic animals, it is likely that the results of such research could also 

provide a practical benefit to agriculture. Traditionally, the genetics of complex traits in 

dairy cattle have been studied without identification of the involved genes. Selection 

has thus far been based on estimated breeding values calculated from phenotypic 

records and pedigrees, as well as on existing knowledge of the heritability of each trait. 

This approach has been somewhat successful, but the process is slow if the trait can 

only be measured in one sex (e.g., milk yield) or late in life (e.g., longevity, behavior). 

Therefore, to further improve on these traits, it would be advantageous to identify 

genes for each of them and select animals carrying the desirable alleles (Goddard and 

Heyes, 2009).  

Following a bioinformatics approach, Gutierrez-Gil et al. (2008) searched for the 

possibility of coincidence related to the bovine genome between the flanking intervals 

of the QTL identified in their study and the location of genes that are commonly 

associated with stress responses and temperament traits in a variety of mammals, 

including cattle, or with the anxiety disorders and related personality traits in humans 

or mouse models.  

The most namable candidate gene found in a QTL region is the DRD4 (type 4 dopamine 

receptor) gene. According to physical mapping studies, this gene is located at the distal 

end of bovine chromosome 29 (Amarante et al., 2000; Hayes et al., 2003; Everts-van 

der Wind et al., 2005); within the confidence interval for the genome-wide QTL, 

Gutierrez-Gil et al. (2008) detected the cattle trait fearfulness to human approach (FL 

trait). In mice, the absence of dopamine D4 receptors results in enhanced reactivity to 

unconditioned fear-evoking stimuli (Falzone et al., 2002), which may suggest a 

relationship with the trait measured by the FL test. Moreover, Glenske et al. (2011) 

found an association between the candidate gene DRD4 and performance in the 

docility test. 

The proximal end of chromosome 16, where Gutierrez-Gil et al. (2008) deteced a QTL 

for WER2, includes the gene RGS2 which regulates G-protein signaling; interestingly, 
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RGS2 has been associated with anxiety in mice and humans (Yalcin et al. 2004; Smoller 

et al. 2008). Additionally, PLXNA2, a candidate gene for schizophrenia in humans (Mah 

et al. 2006) maps to the flanking interval of the QTL for SA1, located at the distal end of 

chromosome 16. During development, PLXNA2 is essential in the formation of complex 

circuits required for neural function due to its functionality as a guidance molecule 

with the capability of directing the growth of axons along specific paths (Dickson 

2002). The flanking interval of the QTL for FL1 on chromosome 20 contains the gene 

that is responsible for programming the prolactin precursor receptor (PRL-R). 

Furthermore, this gene is connected to maternal and social behavior in rodents 

(Leckman and Herman 2002) and has also been linked to autism in humans (Yrigollen 

et al. 2008). Ultimately, identifying the genes accountable for such variation will 

improve the general understanding of both animal and human behavior. The 

confirmation of strong marker-trait associations in the future could lead to these 

markers being used in marker-assisted selection, which has an advantage over 

traditional breeding schemes, especially for traits that are difficult to measure and 

have low heritabilities (Lande and Thompson 1990), as is the case for temperament-

related traits. 
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