A scalar curvature flow in low dimensions
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Abstract

Let (M™,go) be a n = 3,4,5 dimensional, closed Riemannian manifold
of positive Yamabe invariant. For a smooth function K > 0 on M we
consider a scalar curvature flow, that tends to prescribe K as the scalar
curvature of a metric g conformal to go. We show global existence and
in case M is not conformally equivalent to the standard sphere smooth
flow convergence and solubility of the prescribed scalar curvature problem
under suitable conditions on K.
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1 Introduction

1.1 Overview and related works

We study the problem of prescribing the scalar curvature of a closed Rieman-
nian manifold within its conformal class, called the prescribed scalar curvature
problem. Many work has been devoted to this topic in the last decades and we
refer to [2], [22] and the references therein for an overview. More precisely we
consider the problem of conformally prescribing a smooth function K > 0 as
the scalar curvature in case the underlying manifold already admits a conformal
metric of positive scalar curvature.

The problem has variational structure and solutions of the prescribed scalar
curvature problem then correspond to critical points of a non negative energy
functional J, which does not satisfy a compactness criterion known as the Palais-
Smale condition. So direct variational methods can not be applied. Indeed
considering a minimizing or more general a Palais-Smale sequence the possible
obstacle of finding a minimizer or a critical point of the associated energy func-
tional is, what we call a critical point at infinity - a blow up phenomenon, whose
profile however is well understood [26].
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Figure 1: Blow up at infinity and topological contribution

The problem of prescribing a constant scalar curvature is known as the
Yamabe problem. In this case the critical energy levels, at which a blow up may
occur, are quantized. Thus to prove existence of a minimizer, it is sufficient
to find a test function, whose energy is below the least critical energy level [3],
[25]. Even, if this is not possible, one can show existence of critical points by
analysing the critical points at infinity and their topological contribution to the
underlying space as indicated in the above figure, cf. [7], [8], [9] and [11] for
some genuine algebraic topological argument.



In addition to these two approaches one may recover solutions by perturba-
tion arguments [1], [16].

Besides pure existence results it is a natural idea to find critical points as
the limit of the gradient flow or more general of a pseudo gradient flow related
to the energy functional. In this context one has to show long time existence
and flow convergence with the crucial task being to ensure, that a flow line does
not escape from the variational space towards a critical point at infinity. In the
Yamabe case the question of flow convergence reduces to proving, that along a
flow line, which becomes highly concentrated, the associated will eventually be
below the critical energy levels, at which blow up may occur, and thus can not
blow up at all [13], [18], [27], [29].

When prescribing the scalar curvature however the critical energy levels are
not necessarily quantized. Nonetheless to show existence of a minimizer one may
construct a test function with energy strictly below the least critical energy like
for the Yamabe problem [5], [19] and one may use as well topological arguments
to show existence of solutions as critical points [4], [10], [12], [23], [24].

The strategy of finding solutions by starting a flow is more complicated. The
first task is to show long time existence. Secondly one has to prove, that the
flow or at least one flow line does not converge to a critical point at infinity
instead of a critical point - the ingredient of quantized energy levels being not
available. To overcome this deficit one may impose assumptions on the function
to be prescribed and therefore on the energy functional to be considered, which
ensure a quantization of the critical energy levels [17].

One may object, that, when using deformations in the context of topological
arguments, some pseudo gradient flow is always used, so there is nothing new.
But the freedom of possibly choosing another more suitable pseudo gradient
flow, in case some lines of a given flow do blow up, as sketched in figure 2, is
lost, once we limit ourselves to considering one fixed pseudo gradient flow. And
a priori there is no equivalence in using different flows.
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Figure 2: Suitable deformation to avoid infinity



However, if we do not limit ourselves to use pseudo gradient flows with just
the purpose of finding solutions of the prescribed scalar curvature problem, it is
of its own interest to describe the asymptotic behaviour of flow lines qualitatively
- those converging to critical points and those diverging to critical points at
infinity. And this is the aim of this work within its restrictive setting.

We would like to point out, that blowing up flow lines are not an unusual
feature of the prescribed scalar curvature problem. On the contrary only under
very restrictive assumptions blowing up flow lines can be excluded.

1.2 Exposition

We wish to give a quick overview on our main arguments.

In subsection 1.3 we provide the setting of this work, introduce the pseudo
gradient flow to be considered, its basic properties and state two theorems, that
provide full flow convergence and solubility of the prescribed scalar curvature
problem under sufficient conditions on the function K to be prescribed.

Section 2 is devoted to prove long time existence and weak convergence of
the first variation 0J along a flow line u in a sense to be made precise. The
arguments, we use, are straight forward adaptations from the Yamabe setting
[13], [27]; cf. [17] for a similar reasoning.

Section 3 describes the flow near infinity. Since a flow line u restricted to any
time sequence tending to infinity is a Palais-Smale sequence, well known blow up
and concentration compactness arguments [26] provide a suitable parametriza-
tion. Namely u can up to a small error term v be written as a linear combination
of a solution w and finitely many bubbles

u:aw—i—aiéahh +v,i=1,...,p,
where locally around a; the bubble 4,4, », has the form

Ai n=2
da;ni (@) = (W) 2
Thus a blow up corresponds to A\; — .

We then refine the representation by choosing more suitable bubbles ¢g; ,
instead of d,, », and take care of a possible degeneracy of the representation in
the spirit of [13]. Degeneracy in this context refers to the degeneracy of 9%.J(w).
Subsequently the representation is made unique by means of a Lyapunow-
Schmidt reduction, that implies some orthogonality properties of the error term
v with respect to the solution w and the bubbles ¢, »,. In particular we obtain
smallness of linear interactions of v with w and ¢, », - a crucial aspect, that
will enable us to identify the principal forces, that move A; for instance or a;.

Finally we show by Lojasiewicz inequality type arguments [15], [21], that, if a
flow line is precompact, it is fully compact, thus convergent and this generically
with exponential speed.



In section 4 we then consider the case, that a flow line u near infinity can
up to a small error term v be thought of as a linear combination of bubbles

U= a'pe; +0,

so no solution w is there. By suitable testing of the pseudo gradient flow equa-
tion in the spirit of [6] we analyse the movement of the bubbles by establishing
explicit evolution equations of those three parameters, that constitute the bub-
bles, namely the scaling parameter «;, height A\; and position a;. At this point
the special choice of the Lyapunow-Schmidt reduction implies, that the evolu-
tion equations of the aforementioned parameters are independent of the time
derivative of the error term v, which is difficult to control.

Using the fact, that the second variation 92.J(u) is positive definite in this
case, when applied to the error term v, we are able to give a suitable a priori
estimate on v - indeed d.J(u) is square integrable in time, since we are dealing
with a pseudo gradient flow and 9.J(a’p,,) is small.

In conclusion we obtain a precise description of the behaviour of the flow
line in terms of \; as the only non compact variable and a;.

Section 5 deals analogously to section 4 with the case, that a flow line u near
infinity can be written as a linear combination of a non trivial solution w > 0
and finitely many bubbles - up to a small error term. We then follow the same
scheme as in the previous section. The main difference is, that there are more
parameters to be considered beyond the scaling factor, height and position of
the bubbles. Namely we have to deal with a scaling factor « for the solution
w plus finitely many parameters 5; to describe the degenerate space of the
solution w and the implicit function theorem yields a suitable parametrization
Uq,3 = auq g for this purpose. So

U= Uq,g + 0/90(1717)\11 + .

We would like to point out, that generically a solution w is non degenerate, in
which case uq 5 reduces to aw. Moreover the second variation §%J(u) is not
necessarily positive definite. But, since we have taken care of the degenerate
space, the second variation is sort of non degenerate, when applied to the space,
that the error term v lives on. Thence we still get a sufficient estimate on v.

In section 6, subsection 6.1 we proceed considering the flow near infinity and,
under a suitable assumption on the energy functional, that the flow behaves as
one would expect, e.g. that a flow line does not only converge to a solution,
once this is true for a time sequence as seen at the end of section 3, but that
the same holds true for a critical point at infinity. This means, that, if for some
time sequence the flow line blows up, this is true for the full flow line as well.
Moreover we show, that the critical set [VK = 0] attracts the concentration
points a; of a flow line near infinity.

The following subsection 6.2 contains the very essence of the proof of the
theorem. Under suitable conditions on K, which already imply, that the flow
behaves in the sense of the foregoing subsection, we explicitly construct some



functions adapted to the dimension and the case, whether w is trivial or not, with
the basic property of becoming arbitrarily negative in case the flow line blows up,
while on the other hand their time derivative is basically non negative. So they
can be thought of as a way to check the compactness of a flow line near infinity.
This idea originates from [6], where it was used in case M = S? to exclude
a multi bubble blow up, and our constructions are somewhat technical, but
natural generalisations to the non spherical situation in dimensions n = 3,4, 5.

For the construction the explicit evolution equations of the parameters \;
and a; of the bubbles g, », obtained in sections 4 and 5 are used. Besides
the necessity of controlling the error term v there are two basic features to be
considered.

The first one concerns self-interaction phenomen, whereby we mean quan-
tities, which are attributed solely to a one bubble situation. In this case, the
question of what moves a bubble is simply answered by saying, a bubble is
moved, by what prevents a bubble from being a solution. E.g. on the standard
sphere a bubble is a solution of the Yamabe problem, but not of the prescribed
scalar curvature problem for K non constant. Thus we expect a bubble to be
moved by the non vanishing derivatives of K, for instance the gradient of K
moves a; as A; is moved by the laplacian

If in addition we are dealing with an arbitrary manifold we expect other
geometric quantities to move the bubbles as well - thereby the positive mass
theorem comes into play.

The second feature is due to interaction quantities arising from the presence
of several bubbles or from bubbles and a solution w. On the standard sphere for
example, while each bubble is a solution of the Yamabe problem, their linear
combination is not. Thus the movement of the bubbles is caused solely by the
interaction phenomena and in the context of proving flow convergence, one has
to ensure, that the interaction terms rather decrease the possibly non compact
variables )\; instead of increasing them.

In subsection 6.3 we put all the previous informations together and show flow
convergence by contradiction based on the functions constructed in foregoing
subsection 6.2. Thus proving theorem 1. In order to prove theorem 2 we basi-
cally prove the existence of a converging flow line - using the same arguments
as for proving theorem 1.

The final subsection 6.4 exposes a non trivial scenario of a blowing up flow
line. In this example the function K to be prescribed as the scalar curvature
satisfies at one of its maximum points a flatness condition, that due to [19] guar-
antees the existence of a minimizer of J in case M is not conformally equivalent
to the standard sphere. On the other hand the flow line constructed blows up
at the same maximum point.

1.3 Preliminaries and statement of the theorems
We consider a smooth, closed Riemannian manifold

M = (Mn7go)7 n= 37475



with volume measure p4, and scalar curvature Iy . The Yamabe invariant

fcn\Vu\go + Rgou?dpug,

-2 )

Y(Mv gO) =inf
4 (f’LL” de,go) "

_gn—=1
where ¢, = 47—

A={ueWrAM)|u>0u#0},
is assumed to be positive, Y (M, go) > 0. The conformal laplacian
Ly, = —cnAyy + Ry,
then forms a positive, self-adjoint operator with Green’s function
Ggo : M x M — Ry

and we may assume for the background metric

Ry, >0 and /Kdugo =1.

Considering a conformal metric g = g, = unz go there holds

2n_
d,u — d:ugu —yn-2 d/igg
for the volume element and for the scalar curvature

n+2

_nt2 -
R=R,, =u "2(—c,Agu+ Rgou) =u 2Ly u.

Let 0 < K € C*°(M) and
_ K
r:ru:/Rd,u,k:ku:/Kdu,K:Ku:?.
Note, that

cllullwre <7y = /Lgouud,ug0 = /cn|Vu|§0 + Ryou?dpg, < C|lullwr.

and

c||u| B 22” <k,= /Ku" 2dpg, < C||u|| 2" .
In particular we may define

Jull = / Lo utdjig,



and use || - || as an equivalent norm on W12, The aim of this paper is a study of
1 _
Opu = —?(R —rK)u, u(-,0) =up >0
as an evolution equation for the conformal factor. Obviously
@k:&/Kﬂ%m%w:O
Thus, if we choose as an initial value
_2n_
u(-,0) =up > 0 satisfying k,, = /Ku(;“2 =1,
then the unit volume k£ =1 is preserved and in case
U — Uso > 0 In I/Vglo’Q(M)7
where 1o is a stationary point, there necessarily holds

2n_
Kuls?dpg, =1 and R, =1, K.

oo

In what follows we will simply call any maximal solution
u: M x[0,T) — R, T € (0,00]
of

2n

1 _
8tu=—?(R—rK), u(-,0) =up >0 with /Kug t=1

a flow line with initial value ug. Let us consider the energy

:fcn|Vu|£2m + Ry udpg,

J(u) o —— for ue A
(fKunizdlu‘go) "
Proposition 1.1 (Derivatives of .J).
We have
(i)
Ty
J(u) = ==
k n
(i)
1 n42
—0J(u)v =——; [/ Lg,uv /Kunf2 v]
kun ku
1 Tu nt2
:ﬁ/(Ru - K)un=v
ko Fu



(iii)

1 1 2
582J(u)vw= — [/Lgovw nt Tu/Ku" 2 pw)

ko n—2k
u
2 n+2
— == Lguv Kuisw + Lguw | Kun=2v]
kun +1
_1 u nrtz
+4n 7:2 Kunzy | Kui2w
n—2kT+2

Moreover J is C’lQO’CO‘ and uniformly Holder continuous on each
U={uecAle<|ul, J(u) <e '} C A

The derivatives stated above are obtained by straight forward calculation. More-
over note, that u € U, implies

e <r,<e? and ce® < k:% = J(u)"tr, <Ce?
Thus uniform Holder continuity on U, follows from the pointwise estimates
[la]? — |b|"| < Cpla —bP incase 0 <p<1
and
l|a|P — |b]P| < Cpmax{|aP~*, |bP~ }a —b| in case p > 1.

So the problem of prescribing the scalar curvature has a variational structure,
since a critical point w > 0 of J satisfies

Tw

RWZE

K, where rw:/Lgowkaw:/Kw%’

whence the scalar curvature R, of g, = wﬁgo equals K up to a coefficient.
Note, that the standard norm of 0J (u)

10 )]} = 19T (w) 1.2 3y

may be estimated by

1 _
o ()l < IR =Kl 2n <
LH

— —2
k=

kanZ ”R_TRHLﬁ
We therefore define by a slight abuse of notation

9 _
|0 (u)| = knj”R - TKHLﬁ

10



as a natural majorant of ||0.J(u)||. Since k = 1 along a flow line, we get

1 _ 2n 1
= =2 =|R—rK]Pun2 < - 2,
8, J (1) =0J (u)dyu / | R PR Pur < - 0 (u)
This justifies the notion of dyu = f%(R — rK)u as a pseudo gradient flow

related to J and, since J is bounded from below, we have a priori integrability
T
/ |67 (u)|2dt < C(K)J(ug)-
0
On the other hand the positivity of the Yamabe invariant implies
Y(Ma gO)

J(u >7n7
() maXMKTz

>c

Thus we may assume, that along a flow line ¢ < J(u) = r, < C due to k = 1.
Recalling proposition 1.1 this shows u € U, for some € > 0 small and fix, whence
J is uniformly Hoélder continuous along and close by every flow line.

Consider the following conditions in cases n = 3,4,5, which are obviously
satisfied, if M is not conformally equivalent to the standard S™ and K = 1.
They are scaling invariant with respect to K as one should expect due to the
scaling invariance of J.

Hypothesis 1.2 (Dimensional conditions).
Conds : M is not conformally equivalent to the standard sphere S3

Condy : M is not conformally equivalent to the standard sphere S* and

[VK =0] C [AYK > —c|] for some c=c(M)>0

Conds : M is not conformally equivalent to the standard sphere S® and
1
(VAK,VK) > g|AK\2

holds on [AK < 0]NU for an open neighbourhood U of [VK = 0].
Moreover let Cond,, denote Cond,, with [VK = 0] replaced by [K = max K].

Theorem 1 below generalizes the convergence of the Yamabe flow in these
dimensions proven in [13], however by a different strategy.

Theorem 1.
Let M = (M",g0), n = 3,4,5 be a smooth, closed Riemannian manifold of
positive Yamabe-invariant. Then for 0 < K € C*°(M) every flow line

1 = 2n_
Opu = —E(R—’I‘K)u, u(+,0) =ug >0 with /Kué“2 =1

11



exists for all times and remains positive.
Moreover we have convergence in the sense, that

U —> Uso >0 in C solving R, =1, K,

provided the dimensional condition Cond,, is satisfied.

So Cond,, implies compactness of the flow, whereas Cond], is at least suffi-
cient to solve the prescribed scalar curvature problem.

Theorem 2.
Let M = (M"™,g0), n = 3,4,5 be a smooth, closed Riemannian manifold of
positive Yamabe-invariant. Then for 0 < K € C*(M) there exists

Uoo >0 in C* solving R, =1, K,

provided the dimensional condition Cond,, is satisfied.

2 Long time existence and weak convergence

In this section adapted from [13] and [27] we derive global existence and weak
convergence in the sense, that |R — K|z — 0 ast — oo.

2.1 Long time existence

Lemma 2.1 (Lower bounding the scalar curvature).
Along a flow line the scalar curvature R is uniformly lower bounded.

Proof of lemma 2.1.
Letting

R=en=lok(irp (2.1)

we have in view of lemma 7.1

h etz fogmar, A B4 p B =
O R =en-—2Jo & [C”A9K+n—2(R TK)KH_n—WcR o)
R 4 _R R '
=, Ayg— + ——R— >c, A —.
o TRl 2
The parabolic maximum principle then shows
R R
in — > min — 2.3
FRE T GE (23)
whence Y
min R > C(K)e 72 do #047 min R, (2.4)
{t}xM {0}y xM
Since 1 =71 > ry > 0 along a flow line, the assertion follows. O

12



Due to Gronwall’s lemma this lower bound implies an upper bound on w.

Lemma 2.2 (Upper bound).
Along a flow line u there exists C > 0 such, that for 0 <t <T we have

supu(t,-) < et
M

Proof of lemma 2.2.
From lemma 2.1 we infer

Ou = —%(R —rK)u <cu. (2.5)

The claim follows from Gronwall’s inequality. O
The Harnack inequality now implies a lower bound on wu.

Lemma 2.3 (Lower bound).
Along a flow line u there exists for © > 0 some C = C(©) > 0 such, that

sup u< 0= inf u>C.
Mx[0,T) Mx[0,T)

Proof of lemma 2.3.
Let us choose ¢ > 0, such that R + ¢ > 0 according to lemma 2.1. Then for

4
P =Ry + cun—2 (2.6)
we have
n+2

—cnAgot + Pu= Lgu— Rgyu + Pu = Ru™"2 + cun—2. (2.7)

Thus the weak Harnack inequality gives

k= [ Kui < sup(Ku%g) /u < Csup(Ku%g) inf u, (2.8)
M M M
where C' = C(||P||z=). The claim follows. O

As a consequence of the positivity of the Yamabe invariant we obtain a
logarithmic type estimate on the first variation of J.

Lemma 2.4 (Logarithmic-type estimate on the first variation).
For p > 5 there exist constants

c=c(p) >0 and C=C(p)>0

such, that along a flow line we have

n—2

at/|R—rf<\Pdu+c(/|R—rK|%du) :

gc</|R— PR |Pdp) 55 +C/|R—rl_(|pdu.

13



Proof of lemma 2.4.
In view of lemma 7.1 we have

O / |R — rKPdu

Zp/8t(R—TR)(R—TX)|R—TK|p_2dM+/|R—T’K|patd/1,

(2.9)
R—-rK _ _
zpcn/Ag R—7rK)|R—rK|P"2du
4p R =p 2n —p B — rK
Integrating by parts we obtain
_ 1 _ _
0 [ 1R~ rKlPdy <~ clp) [ LIV~ rR)EIR - K 2dn
(2.10)
+ C(p)(/ IR —rK[P du + / |R — rK|Pdp).
Using |[V(R — 7K)|, = |V|R — rK]||, this gives
0 [ 1R~ rEPdy < - ) [ VIR~ K|
(2.11)
+ C(p)(/ |R — rK [P du + / |R — rKPdu)
Then Y (M, go) > 0 implies
o [ 1R=r&Pdp < cto)( [ 1R - rR|#2d) "
(2.12)
+CO)( [ 1R rRP it [ 1R rR[Pdp)
Since p > %, we may apply Hélder’s inequality to f = |R—rK|P via
LESE etd (1-x) 2t 2p42-n
17 Ny, =1 s < ||fHLA” 1Flze < Hfllz" Hfllpz”
L p
% o (2.13)
+ c(p, )||f||L2‘“ "
0
where A = 25, © =1, A = m to conclude by absorption
8t/\Rfrf(|pdu
<~ c(p)( [ R - rK |5 dp) " (2.14)
— 2p+2—n —
+CO( [ 1R~ rRPaw s + [ IR rKPdy)
This is the desired result. U

14



The next proposition is a typical parabolic type estimate.

Proposition 2.5 (Main observation for long time existence)
Along a flow line there holds for 1 <p < 3

RP Ry »
at/Kpt1dl‘§_ Cn/|v( I;)Qﬁd

n —4p 1 = 1p+1

Here Ry = min{R,0}.

Proof of proposition 2.5.
In view of lemma 7.1 we have

RP
at/ +

Kp_ldu:p/atRRfldu+/Riatdu

R R 4p — 2n _ R
:pcn/AgK<I;>P i+ L (R R Pd

:—4p /\v Ry )5 [2dp (2.15)
4p 2n Ry, Ty,
+ L2 [ (R = PR ~ (1))
p—2n 1, _
LG Ry = rRydn.
Due to (a? — b?)(a —b) > |a — b|P** and [(R — rK)du = 0 one obtains
RE -1 Ry »
= dus—4p cn/lw =)%3d
Kp—1 g
A 2 (2.16)
p—2n
+ /KP|R+ —rK [P dp.
This is the desired result. O

The following is by now an easy consequence.

Corollary 2.6.
Along a flow line there holds

R T R+ p 2
su cn V(—)z|%dudt
0<t£)T/Kp ! D / /| (&) ok
2n—4p 1
+ / / Tor |Ry — rK|Pdudt

S/ Kptldﬂtt:()

15




This implies via Sobolev embedding higher integrability, which applied to
lemma 2.4 proves the following time dependent bound.

Corollary 2.7 (LP-bound on the first variation).

For1<p< 2(:;7;) and T > 0 there exists C = C(p,T) such, that

sup /|R —rK|Pdu <C along a flow line.
0<t<T

Proof of corollary 2.7.

From corollary 2.6 for p = § we infer
n T RJF n 9
sup [ Ridp+ |V(==)%dudt < C. (2.17)
0<t<T 0 K

Sobolev’s embedding then implies

T R n? n—2
/ </ (=)= dp) = dt < C. (2.18)
O K

Since R is uniformly bounded from below according to lemma 2.1 we get

T ) o,
/ (/ |R|Z0=2 dp) = dt < C, (2.19)
0

whence
T — "7/2 n—22
/ (/ R — K| dp) " dt < C. (2.20)
0

But from lemma 2.4 with p = 2(:7;) > 5 we infer

n—2

_ 71,2 _ 71,2
o ln/ R — r K| 75 dy gC(/ R—rR|Tomdn)™ = 0. (221)

This proves the claim. O

With the above bounds at hand one uses Morrey’s inequality to prove Holder
regularity.

Proposition 2.8 (Time-dependent Holder regularity).
Along a flow line there exists for 0 < a < min{%, 1} and T > 0 a constant

C=C(a,T)
such, that we have
(@1, t1) = u(@e, ta)] < C([ts — ta|? + d(z1,22))

for all z1,29 € M and 0 < t1,to < T with |t; — ta] <1

16



Proof of proposition 2.8.

Let a =2— 2 and § <p < min{g(:iig), n}. Lemma 2.1 and 2.6 show

[ 1RPran < c

with C'= C(T), whence by conformal invariance and lemmata 2.2, 2.3

[18ap <c

On the other hand corollary 2.7 shows

8{(14 . .

|—|Pdp < C, in particular |OwulP < C

u
From this it follows via Morrey
[u(, ) — u(y, )] < Cd(w,y)* for all @,y € M,

where 0 < o < min{2,1}, and

u(z, t1) — u(z, t2)]

it — ta] " / (e, 1) — e, £2) | dprgo (9)

B (@)
<|ti —ta| 2 / lu(y, t1) — u(y, t2)|dpg, (y) + Clt1 — 2|2
B\/M*tz\(w)
<Jtr — o sup / Bt ) g, () + Clty — 1%
0<t<T
B =1 ®)

1 —2

<ty —ta| T |t — lt2|%p?'%1 sup (/ |OpulPdp) 7 + Clty — ta|?
0<t<T

for all [t; — ta| < 1. The claim follows from —252 + %p% =g

With Hélder regularity at hand standard regularity arguments show

Corollary 2.9 (Long-time existence).
Each flow line exists for all times.

Proof of corollary 2.9.
This follows from short time existence and proposition 2.8.
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2.2 Integrability and weak convergence

Now, that long time existence has been established, we examine in which sense
the first variation of J vanishes as t — oco.

Lemma 2.10 (Integrability and weak convergence).
For 1 < p < 4 we have along a flow line

o
IR —rK[PTdudt < C and liminf [ |R —rK|P™du = 0.
0 t oo

Proof of lemma 2.10.
Clearly the first inequality above implies the second one. Note, that

/ /\R+ —rK [P dudt < C (2.27)
0
with time independent C' according to corollary 2.6. Moreover we have
min R > C(K)(fﬁ Jo &M in R, (2.28)
{t}xM {0} xM

cf. (2.4). Since along a flow line k = 1 and r \ ro > 0 this gives
R_<Ce " R_=—min{R,0} (2.29)
for suitable constants ¢,C' > 0. From this the assertion follows. O

Interpolating via lemma 2.4 we obtain weak convergence.

Proposition 2.11 (Weak convergence of the first variation).
Along a flow line we have for any 1 < p < oo

. o 7dr _
tl}rrolo/|R rK|Pdu = 0.

In particular we have |§J(u)| — 0 as t — co.

Proof of proposition 2.11 (cf. [27], Lemma 3.3 and equation (43)).
Due to lemma 2.10 for any max{2, 2} < pg < “£2 there holds

/ /|R —rKPodudt < C and litrginf/ |R —rK|Pdu = 0. (2.30)
0 o0
Thus we may choose a sequence 79 7 oo satisfying
/|R—rf(|p°d,uL 0< L and /m/|R—TK\p°dpdt< L (2.31)
T 2k 0 4Ck’ '
where C' = C(p) is the constant appearing in lemma 2.4. Define

- 2
0y =sup{r > 70 |Vl <t <71 : /|R—rK\”°d,u< %} > 7). (2.32)
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Then we infer from lemma 2.4 for T,g <t< 92
_ t — n n—2
R—rK|Pdul; +c R—rK|Pon—2du) = dt
| Podp 1
T
< [ IR rRPduly
t _ 2
+C/ (/|R—rK\P0du)1+2?ndt
7_O
: )
—|—C’/ /|R—rK|p°d,udt
9
<i+20/oo/|R— K|Pd dt< 1
=2k 0 rRITCRet = 0

If ) < oo, then 7 = [ |R — rK|Podpu|g < f, whence ) = oo and

\V]

/|R—7“I_(|p0du < z on [, 00).
We conclude lim; »o [ |R — rK|[P°du = 0 and in particular, cf. (2.33),
/ (/ |R — rK'\pld,u)%dt < oo and litrginf/ IR —rK[P*du =0
0 o0

letting

n

p1 = Do-

n—2

As before we may choose a sequence 7} 7 oo satisfying

_ o 1
([ 1R=rRP a1y < 5

and

e _ n-2 n
R Pdp) T dt < —
[ 1Rk =i < i,

where C' = C(p) is the constant appearing in lemma 2.4. Define

n—2

. 2
0r =sup{r > 7} |Vt <t <71 : (/|Rer|p1du) <E}>T,§.
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Then we infer from lemma 2.4 for T]g <t< 92

_ . —2 [ ([|R=rK|P "= dp)
(/|R*TK‘pldﬂ)T2b+cn / (f| rK| B 2 /i) dt
noJy (JIR-rKpE

<( / IR = rR[Pdu) "= [

//\R—rlﬂpldu) Srwtdt (2.40)

—rK[Prdp) o dt

1
_ Po
= / /|R rE P dpudt <

If 6} < oo, then 2 f\RerP’lduL <

??‘\»—t

+, whence 6} = oo and
2

/|R— rK[Ptdp < 7 on [T, 00). (2.41)

We conclude limy no [ |R — rK|P*dp = 0 and in particular, cf. (2.40),
/000(/ |R — rf{\p"‘du)%zdt < oo and ht%glf/ |R—rK[P?du=0 (2.42)
letting po = p1(;%5). Note, that from this we may start an induction yielding

3 _ K |PE _
tl}r&/m rK[Prdu =10 (2.43)

and
/ (/|Rfrl?|pk+1du)n7772dt<oo and liginf/\Rer|pk+1du:O
0 o0
(2.44)

letting pxy1 = “5pk for & > 1. Thereby the claim is evidently proven. O

3 The flow near infinity

3.1 Blow-up analysis

For a Palais-Smale sequence of decreasing energy, say ux = u(tx) for a flow line
u and t, — 0o, the lack of compactness is described as follows.

Proposition 3.1 (Concentration-Compactness).
2n_
Let (um) C WhA(M,Rso) satisfy ku,, = [ Kup *dpg, =1 and

sup J(um) < oo and ||0J(up)|| — 0.
meN
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Passing to a subsequence we then have
T () =1y, — Joo = T'oo

and there exist 0 < Uy € W,}OQ(M) with either us =0 or us > 0 solving

n+2
n—2
Ly tuoe = rc Kuds

and for some p € Ny sequences (a;,,) C M, (N\;,)) CRso, i =1,...,p with

a;,, —> a; and X, — 00 as m — 00

such, that
p ~
[t — Uoo — Z 5aim,>\im | — 0,
=1

where

? 4”(71 - 1) n—2 )\im n-2

oy = (———5)"7 7, a 2
iy s Nigy ( TooK(a/i) ) n im ( )

1+ )‘sz | exp;}n () go
with a cut-off function 0., = n(] exp{;}n ()g,)s where
n € C™(B2(0),R>0), n =1 on By(0).

More precisely there holds for eachi# j=1,...,p

i .
)\m + )\jm + i Ajdo (ai, aj,) — 00 as m — 0.
J i

m m

This characterization is classical and we refer to [26]. The proposition is
proven by straight forward adaptation. For the last statement cf. [14].

3.2 Bubbles and interaction estimates

We refine the definition of blow up functions Sa’ A given in proposition 3.1, re-
ferred to as bubbles, since they form a spherical geometry around a.

Definition 3.2 (Bubbles).
For a € M let u, introduce normal conformal coordinates around a € M via

4

Ya =g’ go.
Let G, be the Green’s function of the conformal laplacian

n—1

Ly, = —cnlhg, + Ry, cn =14

a

n—2"
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For A >0 let

A n—-2
)

Par =tg(———)" T, Gu = Gy, (a,-), = (4n(n — 1)w,)7 2.
14+ X2y, G

One may expand

1

Ga = dn(n — 1wy,

(T2_n + Ha)v Ta = dga (a’7 ')7 Ha = Hr,a + Hs,a~

a

There holds H, , € Clzo’f and in conformal normal coordinates

0 for n=3
H; =0 r2lnr, for n=4
Ta forn=5

In addition it follows from the positive mass theorem, that
H,(a)=0 for M ~S" and H,(a) >0 for M #S",

so Hy(a) is always non negative with strict positivity unless M is conformally
equivalent to the standard sphere S™ .

For the expansion of the Green’s function stated cf. [22], Theorem 6.5.
Ibidem conformal normal coordinates are introduced in section 5, see also the
improvement due to [20]. Note, that we may and will replace &1, A by @q.) in
proposition 3.1, since

H‘Pa,A*&,AH — 0 as A — oo.

The reason for the above redefinition of bubbles is the simple way to calculate
their conformal laplacian in terms of its Green’s function, see the lemma below,
whose proof we delay to the appendix.

Lemma 3.3 (Emergence of the regular part).
n+2

One has Lg,pax = O(p, ) and on a geodesic ball By (a) for o> 0 small

n+2 n+2

Ly, 0ar =4n(n — 1)305’? —2nc,r™ 2 ((n — 1) Hy + TaOr, Ha ) 3!

2

-2 n+2
u(? Rga nzz n—2 nt2
+ by (pa)\ + O(ra )@a,)\ ’

where T, = dg, (a,-). Note, that Ry, = O(r?) in geodesic normal coordinates.

We would like to point out, that the term Rﬁ“ f is negligible for our
discussion, whereas it plays a crucial role in higher dimensions.
To abbreviate the notation we make the following definitions.
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Definition 3.4 (Relevant quantities).
Fork,1=1,2,3 and A\; >0,a; € M,i=1,...,p define

(i) @i =¢an and (i, da, dz ;) = (1, X0y, 3 Va,)
(it) b1, = @i, P20 = —NiO, i, ¢3,i = %Va,i%‘, 50 Qi = di,ii

We collect some useful estimates, which are well known, so we delay their
proof to the appendix. They are essential for the rest of our discussion and will
be heavily used.

Lemma 3.5 (Interactions).
Let k,l=1,2,3 andi,5 =1,...,p. We have

(i) |kils INOx Pr il |5 Vaibril < Copi

_4
(ii) [ ol bridri = ck - id + O(ﬁ + %)a cp >0

~

n+2

(m) f(p" zqﬁkJ = bpdy i€ig 05(51,] = "+2 f¢k 290 (,Dj7 b >0,i#j

() [ 0! it = O(ﬁ + %) for k #1, fgpi"‘ =0+ O()\n 5) and

n+§ 1
/g@in_ d)k’i = O(W) fO?" k' = 2,3

()  [oiel =0(l) forijanda+f =25 s >a>p8>1
(vi) J stF = O] Inery), i
(vii) (1, A0, 5 Vai )i = Oleig), i # J,
where € = min{)\%, )\%_, €i;} and

)\ i 2 2-n
(>\ + X + A )‘J'VnGgo (a“aj)) z .
)

Eij =
Here we used and will use later on a = o.(b) as short hand for

la| < w(e)|b] with w(e) — 0 as e — 0.

3.3 Degeneracy and pseudo critical points

In order to obtain a precise description of the dynamical behaviour of a flow
line we have to take care of a possible degeneracy of J at a critical point.
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Lemma 3.6 (Spectral theorem and degeneracy).

Let w > 0 solve Lgyw = Kuwiss
Then there exists a set of solutions

Lgyw; = uwinﬁwi, Iy, — 00
such, that
(wi,wj>Lg0 = 6@‘, (wz | 1€ N> = W;D’2<M)

and for any eigenspace E,(w) = (w; | pw, = p) we have dim E,, < oo.
Moreover we have 8J(w) = 0 and isomorphy

82J(w)| Ho(w) o0 = (Ho(w)*"0)*,

HO(W)LLQO ’

where

with

(e;li=1,...,m) :EL%<UJ>7 (€irej)L

n—

= 61]

90

denotes the kernel of 92J at w and Hy(w) =0 is the orthogonal of Hy(w) with

respect (-, ), - The case Enis (w) = 0 is generic.

Please note, that due to scaling invariance of the functional the kernel always
contains w itself. We may thus call w (essentially) non degenerate, if simply
Hy(w) = (w), or equivalently, if F nt2 (w) = 0. The foregoing lemma asserts,
that non degeneracy is generic.

Proof of lemma 3.6.
The statement on the basis {w; | i € N} of eigenfunctions is a direct application
of the spectral theorem for compact operators. Moreover

Tw = /Lgoww = /KW% = kw (31)

for a solution Ly w = Kw=3. Thus proposition 1.1 shows
dJ(w), 0*J (w)w, d*J(w)e; = 0, (3.2)
which is easy to check. Likewise for v L1 w one obtains

”+§w#%wf (3.3)

%82J(w)vf = kf,%‘n /(Lgov -
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This proves the claim with isomorphy of

9%J(w) LHO(W)LLQO : Ho(w) 90 =5 (Ho(w) %90 )*
given by
2-n an+2
w; — 2k,™ (1 — Hoo: — 2)(wi, '>Lgo'

We are left with proving genericity of Ensz (w) = 0.
To that end consider the scalar curvature mapping

R: C2’Q(M7 Ae) — CO’Q(M) W Rw = w_%LUh
where A, = (¢,e 1) for some € > 0, with derivative

n+2 4
0¥ — mewn% v).

OR, v =w w2 (L
Note, that for w € C%%(M, A,) fixed we have isomorphy of
C**(M) — C*(M) : v — w_%Lgov
and compactness of
C2(M) — C%*(M) : v — Rywi-2w.
Thus OR is a Fredholm operator and the Smale-Sard lemma gives
RIOR # 0] = Mz, Ok
with countably many open and dense subsets O C I'm(R). Covering
Rso = UiZ, 41

we obtain the same result for R : C%%(M,R+q) — C%*(M).
Thus, if K € C%*(M) is the scalar curvature of a conformal metric

K =R, =w "2 Lw, we C>*(M,Rs),

then obviously K € Im(R) and generically K € R[OR # 0], so

2
”+2Kwﬁv £0 forall 0+veC2(M),

Lg,v —

whenever K = R,,. Consequently for a solution Lw = Kw =

2 2 n
82J(w) = P(Lgou — n KWTE)

n

is for a generic K invertible, which is equivalent to F nt2 (w) = 0.

Please note, that we may replace C>®,C%% by any Ck+2.> Ok,
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In light of the foregoing lemma the following parametrization is a natural
application of the implicit function theorem.
Lemma 3.7 (Degeneracy and pseudo critical points).
For w > 0 solving Lg,w = Kwi? Jet
nm=1

L
Ho(w) to0

be the projection on Hy(w) s .
Then there exist € > 0, an open neighbourhood U of w

weUCWLA(M)

and a smooth function h : BEWH(O) — Hy(w)* %90 such, that

{we U |IIVJ(w) =0}
={ta,p = (1 4+ a)w + B'e; + h(a, B) | (a, B) € BI(0)}
with
[h(e, B)II = O(laf* + [18]1%),
where VJ is gradient of 0J with respect to the scalar product (-, '>Lyo‘
We call w € U a pseudo critical point related to w, if HH ()0 VJ(w)=0
olw
Thus the construction above parametrizes in a neighbourhood of w the set of
pseudo critical points related to w; and clearly every critical point of J is a

pseudo critical point related to w as well.
For the sake of clarity consider u,,s > 0 close to w solving

iy, V(uas) =0,

H()(U.))
Then
2-n Tug B "*g
6J(ua,5)f = 2k‘u;,5 /(Lgou%ﬁ - rKut;liﬂ )f’
Uo,B
50 VJ(Uq,5) = Uq,p solves
Tua,ﬁ nrs

2—n
Lgyta,p = 2kul 5(Lgyta,p — k “a,bz)-

Uor, 8

Thus ITu,, g = 0 implies

Ty nt2 kul _
e Ku,, [32 = 20675 Lgyta,p
,

Lgouaﬁ -
U,
kn—z kL—Q m
o u;]’,g _ w w u;l,/g _
B <Ua,B,m>LgoLgo [w]l + 2 j71<u“75’eﬂ'>LgoLgoej
o nt2  gp w
=[ [ (Lytto g — —LKu"2)—]L, —
L Rl
- Tua,p o
+ Z[/(Lgouaﬁ — r - Kua’ﬁ )ej]Lgoej
=1 U, B
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Proof of lemma 3.7.
The statement is a mere application of the implicit function theorem to

Wh2(M) = Ho(w) @1, Holw) r90 — Ho(w) 0 :u — TIVJ(u).  (3.15)

90
Indeed TV J(w) = 0, since VJ(w) = 0. Moreover
V([OVJ)(w) = IV J(w). (3.16)
and from (3.4) and (3.5) we have isomorphy

V2J(w)| : Ho(w) 790 =5 Hy(w) "o, (3.17)

HO(W)J_LgO

As II is the identity operator on Hy (w)J‘LQO, we obtain

V oy a0 (IIVJ)(w) = V2J(w) LHO(UJ)LL% (3.18)
and therefore isomorphy of V ()0 (IIVJ)(w) as well.
o\w
Finally the estimate on h follows from (3.2). O

Using Moser iteration one may improve this result to a smooth setting.

Proposition 3.8 (Smoothness of uq g).
For any k € N we have w, e;,Uq g, hasg € C* and

1P, B)llx — 0 as [a| +[|B]] — 0.

Proof of proposition 3.8.
In view of lemma 3.6 let us write

U, = (14 a)w + Ble; + h(a, B). (3.19)

The equation solved by uq, g is IIVJ = 0, which is equivalent to

- ai2 < ndy W “
Lgyta,p — (TK)ua,ﬁud,B :[/(Lgouaﬁ - (TK)ua,ﬁud,B )m]Lgom
m i s (3.20)
D gt = 0B gl e L
=1

In particular Ly ua,g = Puq,g + va,g With ””wﬂ”ng)lvz(M) = O(Ja| + ||8]|) and

r—0

1Pl 3 (g, (agyy — O forall zo € M. (3.21)
Let p > 1 and consider a suitable cut-off function n € C§(Ba,(z¢)). For

Wa,8 = “321772 and wo,5 = up, 41 (3.22)
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one obtains using Young’s inequality and absorption

IVWa.sl2, < e ((Vtta,p, Viwa,) go + u2rs|VilZ,) (3.23)
and thus
/Lgowa,ﬁwa,ﬂ :/Cn|vwa7ﬂ|52]o + Rgowi,ﬁ
<nn [ Loyt stves + 20|V, (3.24)

=Cnp / Pug gwa,g + Va,pWa,g + UZ%|V77|§O.
As W2 5 = Uq pWa,p and Wa,5 = waﬁug’_ﬂln one may absorb via (3.21) to get

[ Eavesvos <Copllvasl IRz, + 10ls). (329

T

Suppose uq,g € L", r > 2" . We then get for p = 5 using Holder’s inequality

[ Barwawoss <Copvasl? s, o sllig? + o ol
Lso (3.26)
Ol s, + ol

90

whence using a suitable covering M = >"1" | B, (x;) we get

lta sl s < Cop(Vasll” o + sy, )- (3.27)

Lntr
90 170

Note, that in case |a| + ||3|| = 0 we have u, g3 = w and vy, g = 0, whence
by iteration of (3.27) one obtains w € Lp for all 1 < p < oo. Due to

n+2

n+2
L,w=Kwr»—=2 and L, e; = ——
go go~j n_2

4
Kwn=2¢;

this gives w,e; € C° by standard regularity arguments.
Recalling (3.20) this implies v, 5 € C* and

[va,sllcx = O(laf +[1511) (3.28)
Thus we obtain by iteration of (3.27)

Vi<g<oo: sup |uaglre < oo.
la+lIBl1<e " (3.29)

and therefore sup|, |y /< |ta,gllox < oo. Since by the very definition of uq g
[h(a, B)| — 0 for |a| + |5 — 0, (3.30)

this convergence generalizes to all C* by compact embedding. O
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Note, that due to scaling invariance
[IVJ(w)=0<= Ya>0 : IVJ(aw) =0.

Thus we may reparametrise the pseudo critical points related to w as
Ua,p = a(w + B'e; + h(B)),h(B) Lr,, Ho(w),

where [[1(8)|| = O(||8]]*) and [|h(8)]cx — 0 as [|B]] — 0.

3.4 Ceritical points at infinity

Definition 3.9 (A neighbourhood of critical points at infinity).

Let w > 0 solve Lg,w = Kw%, p € N and € > 0 sufficiently small.
For u € WE2(M) we define

Au(w,p,e) = {(aaﬂk;aia)‘ivai) € (R+,Rm,Rﬁ,Rﬁ,Mp) |

a4
ro * K(a;)

MU e, 1 —
v (AR 76,37| 47’L(7’l—1)k "

i#£j
e
ron— i
1= ——LlIBl 1w = uap — a'@a x| < e
where

)\‘ )\7, %’L 2—n

eig = (52 + 3=+ AN Go, " (ai,a5) 7
i J

In case p > 0 we call
V(w,pe) = {ue WA (M) | Ay(w,p,e) # 0}

a neighbourhood of a critical point at infinity.

Keep in mind, that £k = 1 and r \ 7« along a flow line. We would like to
make a remark on two special cases.

(i) If w =0, then uy,g = 0. So the conditions on « and Sy are trivial. Thus
the sets A4,(0,p,e) and V(0, p, ) naturally reduce to

Au(pv E) = {(aiv)\ivai) € (R?HR?HMP) |

4

"2 K (a;) ,
VLA g T M ) —alp, | <
AT e = Tt S = et < < )

and V(p,e) = {u € Wy>(M) | Au(p,e) # 0}.

(ii) V(w,0,¢) corresponds to a neighbourhood the critical point line

{aw | a > 0}.
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So proposition 3.1 states, that every sequence u(ty) is precompact with respect
to V(w,p,€) in the sense, that up to a subsequence for any ¢ > 0 we find an
index ko, for which u, € V(w,p,¢) for some p > 0 and all k > k.

The subsequent reduction by minimization, whose prove we postpone to the
appendix, makes the representation in V' (w, p, ) unique.

Proposition 3.10 (Optimal choice).
For every eg > 0 there exists €1 > 0 such, that for u € V(w,p,e) with € < &3

2

. _4 ~3
} inf /Ku"—2|u—u&g—0/§0&.5\,
(&,Bk,6i,a4,Ai) €Ay (w,p,2€0) ’ o

admits an unique minimizer (o, B, i, @i, A;) € Ay(w,p,€0) and we define

. by Y 2 2-n
i = Painin V= U= Uap = Q' i = (S5 4 =+ AN Gyy " (a6, 05)) 7
T J

Moreover («, By, ai, a;, A;) depends smoothly on u.

Thus for a sequence u; € V(w,p, 1), &g — 0 we may assume, that for each v,
there exists an unique representation in A, (w,p, o), say

g
U = Uy, By + O Pa;ng F U (s Br, iy aig, i) € Ay, (W, p, €0)

and we have (a, Bk, @1, @i, Ait) € Ay, (w, p, €) for suitable ¢ — 0.
The error term v = u — uq,g — a'y; is with respect to the scalar product

_4
<.7.>Kuﬁ :/.Kun—? .

orthogonal to

1
7V@i <)02>

(a5, 08, a5 i = AiDx; i -
1

and due to |0J(u)] — 0 almost orthogonal with respect to

3V Ly :/.Lgo.

Definition 3.11 (The orthogonal bundle H (w, p,¢)).
Foru e V(w,p,e) let

Hu(w7pa 8) = <uoz,Ba 8ﬁiua,ﬁa Pi, _)\ia)\igolﬁ 7Va1§07,> Kun=2
m case w > 0 and in case w = 0

_4
Hy(p,€) = (@i, —NiOx, i, — Va,pi) Kum2

1
Ai
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Orthogonality of the error term v implies smallness of linear interactions.

Subsequently we will even show, that essentially v is negligible.

Lemma 3.12 (Linear v-type interactions).
On V(w,p,e) fore >0 small we have

(i) ] Lgo®riv = O(Anﬁ + 3 sj=1€05) + O(I0])

(it) [ Lgotiapv = 0(3, A; )+ O([[vl|* + 6.7 (u)[?)

(iii) [ Kur=2¢p;= [ K(uaps+ap;)"2 i+ O(|[v]?)
. nt2 . n+2
(i)  [KurZuap = [K(tap+ap;)2uas+ O(|v])

and more precisely for u € V(p,e)

IVI

1
[ at=otim+ 3 e+ ol 4

i#£j=1
We use K; as a short hand notation for K (a;), VK; for VK (a;) etc.

Proof of lemma 3.12.
We first calculate the bubble type interactions. Recall

1
Gk, = di,ipi, where (dg)k=1,2,3 = (1,=A;0x,, yvai)

By lemma 3.3 one obtains

/Lgo(bk,i/u:/dk’i‘[’go(piv
7L+2 1
—tn(n=1) [ deaol ot o) + O(elP)
B (ai) AT

i

whence with ¢, > 0

[ Latriv = [ 67 oni0+ ol55) + OGP

K2

Moreover we have

A 1 VK;|?

and thus
[VE;[?

K -2 1
[ atrar = [ 107 oniv+ o) + O + ol

K2 7
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Expanding urE = (adp; + v)ﬁ in case u € V(p,e) we have

0 =/Kuﬁ¢k,w - / K (od )72 g v+ O(J0]]?), (3.36)

(09 9 >0]
whence
[ K@ epTonm = o(ulP) (3:37)
Thus we obtain, since |¢g ;| < Ce;,
N
OlolP) = [ Klee) ™26

p
_4
= [ K+ Y ap)Trow

i#j=1
[aﬁoizzf‘;ﬁj:l ;4] 79

p
+ / K(aipi+ Y 0 p;) T2 g v

= 3.38
[@i¢i<zf¢j:1 a; ;] #i=1 ( )
= / (az%)" 2¢k Z’U+O Z / i 2@1"0'
[O‘i@i>zf¢j 1 aﬂpﬂ] 7=l
/K Olzgoz n- 2¢kzv+0 Z / i 2‘:01|U|
i#£j=1
Using lemma 3.5 we have ||<p 20, L2 = O(e; ;) for ¢ # j. This gives
_4
/K(ai@i)"'_2¢k,iv =o(ei;) +O(|lv]*) (3:39)
Plugging this into (3.35) we conclude
1 |VK;|?
= S Rl S M ey
i#j=1
Expanding umn? = (uq.s + a'e; +v)72 in case u € V(w,p, ) we have
4 . 4
0 :/Kumqbk,iv = /K(Ua”@ + g +v) "2 Py v
(3.41)

:/ K (tta3 + a?;) 72 gg 0 + O(||v]|?)
[ua,pt+adp;>v]
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and thus
O(lvll?) = / K (o p + adp)) 7 g v

. _4
:/ ’ K(ua,p + ;)2 ¢y v
[pi>ua,s+320 21 ©il

. _4
+ / , K(ua,p + o) 72 by iv
[pi<ua,p+327 .21 ¥4l

:/ ’ K (i) 72 g v
[pi>ua,s+320 21 ©4l

+0(/ | ®; uaﬂ+2% 0]
[pizta,p+227 4521 #5]

z;éj 1
+/ ua5+z 1) 72 piv]).
[Wi<uavﬂ+z/?¢j=1 ®;] i£j=1
This gives
_a_
/K(ai%)"—2¢k,z‘v
4 4 P

—o( T T uaalil+ [ o7 Y el

[pi>ua,p] lpiz327. 51 #5] i£j=1

P

_4 _4
+ / (t1o3) 7 0] + / (3 e e gilol),
[i<ta,p] lpi <327 —1 #il

il izj=1

whence by Holder’s inequality, direct integration and lemma 3.5

1
/K% o0 =o(—mp + 3 o)+ Ol

)‘i 2 i#£j=1
Plugging this into (3.35) we conclude

P

/ Ly v —of Z eii) + O(lv]?).
/\

i =

Next we calculate for u € V(w, p, ) as before

:/Kuﬁua,av = /K(ua,g+ai<pi)ﬁua,ﬁv+0(||v||2)
77.+2
/Kua 5 U

s P4
(/ alFeblt [ (@) el +elP)
Ua,B 20" P4 Ug, < Pj

n+2 1
Kuf v+ o3 i) + OllbIP)

s
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(3.42)

(3.43)

(3.44)

(3.45)

3.46)



whence due to (3.46) and IIVJ(uq,g) = 0, cf. the remark on lemma 3.7

n+2

/Lgoua,ﬁv = /(Lgoua,ﬁ - (rk)ua,ﬁu; ﬁz)
1
+o() 5 )+ O([[o]|*)

T T

n+2
— (Lot = R u )5 [ 2
/ go B aﬁ lel goH

m ni2
+ Z /(Lgoua,ﬁ - (TK)UQ 5l /32) /Lgoeiv
i=1

+o(3 —5) + O

T T

This gives

/Lgou(,ﬁv :/(Lgou— (rk)uayﬁu%)w/Lgowv
m ~ o
+3 [(Coyu= 0B, e [ Lo
i=1
1
oY ) + O(ol)

r T

Note, that

/(Lgou — (PRt g Z/Lgoua,ﬁua,ﬁ — (rK)uuy 5
+O(Y —s + o),
T Ar
whence as a rough estimate
(s = (2)a =0(3" = + Il + 10T

This proves

[ oo = o3 AJQ )+ O(l[o]* + 16.7(u) ).
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(3.47)

(3.48)

(3.49)

(3.50)

(3.51)



Moreover for v € V(w,p, )

/ Kuvtig,, = / K (ua s + /) 53 gy

(3.52)
5+ 070) 72 g0+ O(lul]?)
and we simply estimate
0= [ Kur5on0= [ Kuns+alo) P2on0+ O(l). (353)
O

3.5 Convergence versus critical points at infinity

Due to the Lojasiewicz inequality one has along a flow line either convergence
or a time sequence blowing up.

Proposition 3.13 (Unicity of a limiting critical point).
If a sequence u(ty) converges in L2 to a critical point us, of J, then

U — U tn O as t — 00

with at least polynomial, but generically exponential convergence rate in C*.

More precisely genericity arises from the fact, that generically the second
variation is non degenerate, cf. lemma 3.6, and exponential speed of convergence
holds true, whenever the limiting critical point is non degenerate.

In particular the proposition implies, that in order to show flow convergence
we have to exclude the case of blow up, so we may assume the latter case arguing
by contradiction.

Proof of proposition 3.13. ([13], proposition 2.6)
Suppose ||Ju(r;) — w||anf2 — 0as7 /oo, but |lu— wH 2n—> 0ast — oo,
For ¢ > 0 small we then find a decomposition

a1 <by <ag <by <...<bpmo1<am <bpm<ampr <... (3.54)

such, that

D (ambm) = {t > 0] lu—wl 2 < <o} (3.55)

m

and for a subsequence 7; € (am,, b, )-

27711
) — ulm)]| ™2 / (B — ()] 727)’

n _n_ 1 _n_ _n__
<c( / 472 (bn,) — w7 (1) ?)F = cl|u™™2 (bm,) — us2 ()[|z2  (3.56)

bin, . b,
<c / 107 1 < / 6.(u),
Eal a

my
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whence according to proposition 2.11 we may assume
b, — Qm, — 0. (3.57)

Passing to a subsequence we thus may inductively decompose

ma

(@i, O ) = D[Sk tk), 28 <t — s < 25T e € [1,3) (3.58)
k=1
and
mo
[@may by, ) = Z [sk,tr), 28 <ty — s < 281 c € [1,3) (3.59)
k=m+1
and so on.

By analyticity of J we may use the Lojasiewicz inequality
3C>0,7€(0,1]Vu€ B, (w) : |J(u) —J(w)| < CloJw)|*,  (3.60)
cf. [21], Theorem 4.1. Clearly J(w) = Jo = re and along a flow line we have
107 (u)]| < Cl6.J(u). (3.61)
Thus for t € (sg, tx)

OrJ(u) < — cldJ(u)* < —C(J(u) — Joo) 1. (3.62)

y—1

Without loss of generality v < 1, whence 0 (J(u) — Joo) 1 > ¢ and
((u(tr)) = o) T 2((u(si)) = Jo) 57 4 et =) (3:63)

and in particular J(u(ty)) — Joo < c(tr — sk)%i We conclude

([ eI
<= s0) [ 18I@P < et~ ) uls)) ~ Tu(tr) (3.64)
et — 50)(J(u(s1)) — Joc) < elti — 5 (ulti-1)) — Joc)

ety — su)(thot — sp_1)71 < e2MH1(2F1)3 < (2501 )k

having used Jensen’s inequality. Consequently

bmz tr
Z/ WW=Z/MWW<% (3.65)

my k
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whence lim;_, f:ml |0 (u)| = 0. This contradicts (3.56) and we conclude
my

U—w in LT as t — oo. (3.66)

Now let g € M. Then | = o(r) by proposition 2.11, whence

R| =
| HLE (Br(z0))

Lgyu = Ru™ = Pu_ with |[P] 3

2 (Boa0) ofr). (3.67)

Lemma 7.2 then shows supy> [lul|rz, < oo for all p > 1 and due to

—cnAgyu =(R — rk)u% + rRusss — Ry, u (3.68)

and proposition 2.11 it follows, that (—Awu) C LP and applying Calderon-
Zygmund estimates, that (u) C W2P — L is uniformly bounded.

Then lemma 2.3 shows 0 < ¢ < u < C' < co. Due to proposition 2.11 we
have [|R — rK|Pdy — 0 for all p > 1. With this at hand one may
repeat the arguments proving proposition 2.8 to show

u(z1,t1) — u(wa, ta)] < C(a)(|tr — t2| 2 +d(z1,22)%), (3.69)

for all 21,29 € M and 0 < 1,1 < 00, |t] — ta] < 1, where
4

0<a< mln{ﬁ, 1}. (3.70)

By standard regularity arguments then (u) C C*® is uniformly bounded.
As for the speed of convergence note, that as before we have

B (J(u) — Joo) T > c. (3.71)

)

From this we obtain polynomial convergence of J(u), namely

C
0<J(u) —Joo < ———5- (3.72)
(L48)=
Moreover
Opllum2 — w2 || 2 <c|6.J(u)] (3.73)

and applying once more the Lojasiewicz inequality (3.60)

On(J (1) — Joo) T < —c(J(u) — Joo) 7 18T (w)]? (374
< — e(J(u) = Joo) T 0T ()16 (w)] < —cldT (u)],
whence
Al|un™® —wiz || 2 < —CO(J (1) — J(o)) T . (3.75)
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We conclude polynomial convergence u — w in L»=2 via

~

=l " <Cllum2 —wn 2|2 < C(J(u) — J(00)) T3
o (3.76)

<.
(1+t)T>

With uniform boundedness at hand we may use Sobolev space interpolation

1 1
[ollwir < O P[0l n-rm 0l i (3.77)

to conclude polynomial convergence at least in each Sobolev or Holder space.
Note, that in case v = 1 we have

O (J(u) — Joo) < —c|6J(w)]? < =C|J(u) — Joo!, (3.78)
whence J(u) \; Joo with convergence at exponential rate. Moreover
Opljum? — w2 |2 < |6 (u)] (3.79)

and

Nl=

Oh(J(u) = Jo))t < —e(J(u) = L) H5I (W) < —CloT (). (3.80)

By the same arguments as before we conclude u — w at exponential

rate in every Sobolev or Hélder space in case v = 1.
In the generic case I ni2 (w) = 0, cf. lemma 3.6, however the Lojasiewicz in-

equality (3.60) holds with optimal exponent v = 1.
Indeed J(u) = J(w) for u € (w) = Hy(w) by scaling invariance and

|J(u) — J(W)| < |u—w|* and [6J(u)| > c|u — w| (3.81)

for u € (w)yroo = Hy(w) oo = kern(92J(w)). O

4 Case w=0

The starting point in this section is a flow line u € V(p,¢), that we study by
analysing the evolution of the parameters a;, A;, a; in the representation

u=0a"Y;+v=0"Ygx TV

given by proposition 3.10. To that end we test the flow equation
1 _
Opu = —?(R —rK)

with ¢;, A;0x,p; and /\%Va,i @i, cf. definition 3.4.
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Lemma 4.1 (The shadow flow).
Foruw e V(p,e) withe >0 and

_ n+t2
Oki = —/(Lgou —rKun=—2)¢p;, i=1,...,p, k=1,2,3

we have by testing KOyu = —(R — rK)u with unz ki
. n+42
(Z) % af’n

(1 1 (1 Ry,
a; K 71l +0%17:( )+ B,

(ii) i, 5
1

A

(iii) EED
K3

e o3 (1+ O%i(l)) + R3;

Ai;

with constants ¢, > 0 given in lemma 3.5 and

Riei = O &7 o + I0ll + 167 () *)i-

r#s
Proof of lemma 4.1.
Foreachi,j=1,...,p, k=1,2,3 let

L 3,
(&1,5:82,5,83.5) = (6, —a; 7

i Ajj)
and recall

(4.1)

1
Ok = diivi = (@i, —XiOx, @i, Yvai()oi)- (4.2)

Testing KOyu = —(R — rK)u with e ¢r,; we obtain using f Kuw2 ¢riv =0

- / Dk urs gy, = / (i, + v)Kums oy

(4.3)
:fl’j/Kuﬁdﬁl,jﬁﬁk,i _/K“[atu”%%,i +uTE Oy, .
Note, that

/Kuﬁﬁbl,j(bk,i :/K(O‘mQOm)ﬁ(bl,jﬁbk,i+O(HU”)k,i,l,j
4 |VKl| 1 1
=cpo 2Ki6kl(5ij + O( N + /\*3 + 7)\?72)]@’15“

p
+0( > cim+ [0IDkins-

i#m=1

(4.4)
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Indeed
/K(O‘mQOm)ﬁ(lsl,stk,i

= / K(ai%)ﬁéf)z,j%,i

(0307 Pml (4.5)
P % 42
+ > O / P PiPm T+ / Pm " ei),
i#m=1 [SOiZE,-p#,n:l Pm] 2 <Z§)¢m=1 ©m]
whence by means of lemma 3.5 we have
4
/K(amtﬂm) "2 Q1 Pk
. P
= / K(aipi) ™2 $r0m,i +O( Y €im)
[‘PiZZf¢m:1 Om] i#EFm=1
_4_
= [ K(oipi) ™21 j¢r.i
n+2 p
+0( / 0l 0i+ D Eim) L6
[0i <P,y ©m) i#m=1 (4.6)
4 4 p
206;72 /K<P{l72¢l,j¢k7i + O( Z Ei,m)
i#Fm=1
4 4 p
:ain_ 5ij /Kgpin_ ¢l,i¢k,i + O( Z gi,m)
i#Fm=1
s = 11 -
=q; 5ij(skl K(Pi ¢k,i + O(P + F)(S” + O( Z 5i,m)-
? i i#£m=1
From this (4.4) follows. Moreover we may write
/Kuﬁat‘z’k»i” = O(||v[)ik,,5€" (4.7)

using [Da il [NiOx; Or.ils |1 Va: 0k.i| < Cpi and estimate
4 _
|/Kv8tuﬁ<1>k,i| = m|/v(R—TK)uﬁ¢k,i|
SC/ IR — rK|uv g;|v] = C/ |R — rf(|uﬁ|u — vl|v|
(4.8)

gc/|R—r1‘qu%|v|+c/|R—rf(|uﬁ|v|2

ol + HR—TKIIL?II’UIIQ)

<C(|R - rK| _2u
Ly+?
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using |¢.;| < Cp;, whence according to proposition 2.11 we obtain
/Kvatuﬁém = O(I6.(u) 2 + [o]?). (4.9)
Thus plugging (4.4), (4.7) and (4.9) into (4.3) we obtain for

4
—_ =3
Skl =Ck0y Kz‘5kz5ij

VK, 1 P (4.10)
+ O(' © | + N 2)]@)1(5”‘ + O( Z Eim T+ Hvll)k,i,hj
v i#Fm=1
the identity
kit i€ = ok + O(|[v]]* + 167 (w)]*)x,i- (4.11)
For the inverse =~ ! of = we then have
4
. a2—n
:k,al,j :cik A5kl5ij
4.12)
VK; 1 - (
voFila 5+ it O Y o+ ol
Ai i#£m=1
and the claim follows, since by definition o ; = O(]6J(u)]). O

Consequently our task is two folded. We have to carefully evaluate o} ; by
expansion and find suitable estimates on the error term v.

Proposition 4.2 (Analysing oy, ;).

On V(p,e) for e >0 small we have with constants by,...,eq >0
(Z) ro n—2 K 2n
3 _4 : [ o 1 n—2
(= Dol ot 1] [ ¢
4
P ral *K;
2 : 7 J
i#j=1
n+4+2

_4
o, ra? AK; ra] ? K;
+d1ai>\n72 + e ;{: /\2 +b1 L Z Q&4 5 +R12

i#j=1
(ii) ra-”%K‘ r2
,=—4 117’_1 "2 N0, 04
72 n(n—1a [4n(n7 1k ]/901 Ai¥
4
P ra; ?K; H;
7 J
— 4n(n — 1)b2 i;‘;l Oéj[m ])\ 8)\ €i,j + dzal )\n P)

n+2 4
ra ? AK; ra’  K; <&
: )\2’ — by —2 ? : Z aj A0y €i 5 + Ro;
i i#£j=1

+ €2
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(#i) ra-"%zKi nt2 ]
ol Ky |

3, =4n(n — 1)a; P Va0
4
Ld ra’ 2K, 1
4n(n —1)b [—L—L —1]=Vgei;
+4n(n )32 aj[4n(n—1)k ])\ivﬁd
i#j=1
nt2
N ra]? e VK; ‘e VAKi]
TN TR
4
ra’ P K; <~ «;
b s A— Jva- 7,9 R 2
o k i#zj;l Ai G

where Ryi = 0c(55=z + 227 4521 €ig)ki + O(L, €t + 0]k

Proof of proposition 4.2.
By definition and conformal invariance

Ohi = — / (Lggu — rKu™2)pp s = — / (R —rR)u™"2 gy ;. (4.13)
We start evaluating

/Lgowk,z' Z/Lgo(aj%‘ + )bk, = Oéj/LgOSOj%,i +/Lgo¢k7iv' (4.14)

Using lemmata 3.3 and 3.5 we obtain for o > 0 small

p
OéJ/Lgosﬁjéﬁk,i :Oéi/Lgoka,Hr > %‘/Lgo%%,i
i£j=1
n+2

:477,(77, — 1)0[2/ goz"ﬁ ¢k,i
Bq (ai)

n42

— 2ncp04 / (((n—1)H; + rl-@riHi)r?_chi"’z )Pk
Ba(ai)

P ni2 1 P
+ 4n(n — 1) Z Q; / gp;_zqﬁkﬂ‘ + OE(W + Z gi,j) (415)
i#j=1 7 Balaj) i i#j=1
nt2 P
:4n(n — ].)Otz/ goin_Q d’k,i + 471(71 — 1)bk Z Oéjdkﬂ'é‘iyj
Ba(ai) i#j=1

n+2
— 2ncp04 / ((n—1)H; + riamHZ-)r?dcpi"’Z Vbk,i
Ba(ai)

1 P
+06(F+ Z €ij)-
i i#j=1
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Indeed the curvature related term arising from lemma 3.3 is of order

r? i 1
= TES) =\t In ), 1) =
/B(o) )\i(l+)\127’2) 2 2T = X""0(Ni,In ), 1) = O()\n 5)- (4.16)
Thus
aj/Lgo(pj¢k,i
nt2 p
:4n(n_1)[al/§01n72¢k,z+bk Z O‘jdk,igi,j]
i#j=1
1 H, 2(1, ~ A0y, , Ay
—(n—1)(n - 2)cacyi “Xido - )(w) (4.17)
s
—(n—2)c,a; VH; Vorr™™ —-\;0 i n
(n —2)cpa o (1, i )(14—/\27*2)
1 P
+08(F+ Z 5i,j)
i i#j=1

2
using v,V,,Ga, " = 2z + O(r"~1!). By radial symmetry we then get

. n+2 P
o’ /Lgo<ﬂj¢k,z‘ =4dn(n — 1)[oy / 0 bt be Y ajdyci ]
ij=1
H; d H; VH,; )
)\7.1,2 s G2 )\7.172 y U3 )\?,1

—a;i(dy (4.18)

1
+OE(>\" 7+ Z €ij)
i#E =1

with di > 0. Inserting this into (4.14) and applying lemma 3.12 gives

/L90u¢k,i = /Lgo (aj(pj + U)(bk,i
p

,,L+g
:4n(n — 1)[0@/90;7 ¢k,i + bk Z Oéjd]g,i{;‘i)j} (419)

i#j=1

H; H; VH; P
—ai(dlA;L_Q,dQA?_27d3A?_1)+oe )\” =3 Z eij) + O(||v]?).

Next from lemma 3.12 we infer

n+2 . n+2
/K“" *Oni = /K(Oﬂw)"f?qﬁk,i+0(||v|\2)- (4.20)
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Clearly

/ K(o9p;) "3 6y

nt2 n+2
= / K(az@z)” 2¢k1+7 az@z = Z O‘j@]¢kz
i#£j=1

[OtiSDiZZf;ﬁj:l o;;l

u 2 4.21
+ / K( Z Qjp;) "2 O ( )

1#£j=1
lovitpi <3751 o5 79

+0( / s@f%f:@% / Zso ©?)

i#j=1 % 1
[pi>e Zz#] 1 5] #J [E‘Pi<zl¢771 ®;] #i=

whence
j n42

/K(Oé ©j) "2 i
nt2 n+2 I

= | Klaipi) = ¢ + - — (i) 7= D it

itj=1
p (4.22)
n+t2
+ [ECY o

4 p p 4
+0( / 0r Y i+ / > el

1#£j=1 1#j=1
[eiZe 30,1 o5 #J lepi<SP, 1 05 70

Therefore we obtain applying lemma 3.5

- n+2
/K(OH%)"*%J
n+42 n-+2 4 Ld
Z/K(ai%@i)""2¢k,z‘+ m(%%)"‘? Z QP Pr,i (4.23)
i#j=1
Ld 71+2 p
/K Z ;i) =2 dri + 0 Z €iyj)-
£i=1 i£j=1
Moreover note, that for € > 0 sufficiently small
P
M=Ul_[p:>e€ Y o] =UL A, (4.24)
i#j=1
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whence for B; = 4; \ Uf#:lAj we have M = >"" | B;. This gives

p P
n+2 n+4+2
/K( O‘J% "2 Ppi = Z /K O‘J%)"’Z‘bk,iJFO( Z €i5)
ij= i#j=1p, i7i=1
Z /K Oz](pj n= 2¢k1+0 Z /907’ PsPi +0( Z 5i7j)
i£j=1 8752#7’751 i#j=1
(4.25)
and we obtain using Hoélder’s inequality and lemma 3.5
P
/KZajcpJ Z/Kajgo
j=1 i#j=1
» (4.26)
Z fig) + O ers)-
=1 r#s
Therefore
n+42 nt2 p n+t2 nt2
/K 04] )" 2¢kz =a;" 12 /K<Pin_2¢k,i+ Z O‘jn_2 Ksaf_%k,i
i#j=1
n—+2 -4
+ n_Qa; 2 a]/Ksol 2 kipj (4.27)
i#j=1
p
o (Y i) +00 ek
i#j=1 r#s
By a simple expansion we then get
. n42 Li’z 7i+2 Z+2 %
/K(O‘]@j)"_2¢k,i = QKz'/% “Pri+ Z af CKj [ o b
i#j=1
n+2 A
n_2 ’L K Za]/wz gbkl@]
i#j=1 (4.28)
ntz  AK;  AK; VK, VAK;
+ a7 (e N , €2 32 , €3 N +eq e )
1 P
+o(mm+ Y i) HOD eh).
A =
4 i#j=1 r#s
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Indeed using (7.11), (7.12), (7.13) we have in case k = 1,

n+2
/(K — K)o by

K(x ) — K(0) 1
= . O -
/BMQ(O) (T+7%( 1 aL(x))ﬁ)" + ()\}L)
B K(x-) - K(O) 1 . AK,
B /;)\ «(0) (1 + TQ)TL + O()\Zl—l) =€ )\22 + O()\?_Q)7

where e = 35— [ ﬁ In case k = 2 we get

nt2
/(K - K’i)S‘%‘ni2 ki

7n72i/ G- K- e 1
2 )\i By o (0) <1+T2)”+1 )\?—1
—e % + O(L)
=€9 )\12 )\?,2 )
where eq = ("4;2) Jgn (i(:s):i)l and in case k = 3
K- K)ol * “2 (K K) iV,
/( Kl o= "2 (K~ KDLV
-2 VK —2V,, 2n
2 (K - K ?
VAK; 1
_63 )\[L + €4 )\? +o0 ()\?72)
3 n— n— T2
with e3 = 52 [o ey €4 = 57 Jor e
Plugging (4.28) into (4.20) gives
[ KuHa,
nt2 nt2 P nt2 n2
=a K [ o] i+ Z al K “ i
i#j=1
n+2 =
n_2 7, 2K Z a]/wz (rbklw]
i#£j=1
w2 AK, AK; VK  VAK;
+ai (61 A2 ) €2 A? » €3 )\i +eq /\’Lg )
1 - 2 2
+0:(mms + D Eag) + O ers + |vl)
i i#j=1 r#s
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and inserting finally (4.19) and (4.32) into (4.13) we conclude

71+2
Oki :f4n(n—1)[ai/ > Pk + b Z ady i€ 5]
i#j=1
H; H; VH;

+Oli(d1)\n72,d )\n 2’d3)\n 1)
n+2 'L+2 rL+2
/ ;' 2¢kz+ Z CY K / ¢k:z
7= (4.33)
n—|—2 %2
+ n— K Z a]/%pz * b iP5
i#j=1
T AK MK VK VAK,
(e —(e (& (& e
i k 1 )\2 s €2 )\2 ; €3 )\7, 4 )\3
1
ot S e+ (e, + [olP).
i#j=1 r#s
The claim follows. U

As 01, = O(|dJ(u)]) the equations for o3 ;, 03, simplify significantly.
Corollary 4.3 (Simplifying oy ;).

On V(p,e) for e >0 small we have with constants by, ...,eq4 >0
(i) d H; ;%3 AK; b Tozi”%zKi - v R
09, = 20&1)\71 3 +62 A )\5 — 02 A i;;:laj iOx;Ei,5 T o2
(i) ra% VK; VAK; roz."%K- P
e R 2 5, Vaisia + Bas,
i#j=1
where
1 P
Rii=0e(mg + D i + O el + ol +107(w) )i
¢ itj=1 r#s
Proof of corollary 4.3.
We have
Cl8J ()| > | /(R R = 0w, (4.34)
whence due to proposition 42 for k=1
n 2K
—t =14+ 0(——=
4 -1k n—2 )\2
n( ) A N (4.35)
+> et 4 ol + 18T (w)).

r#s
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Inserting (4.35) into proposition 4.2 for k = 2,3 proves the claim, since

Va, e 2 1
N 2 QaAiaAi/@i ’ :O(F)- (4.36)

O

We turn to estimate the error term v. To do so we characterize the first two
derivatives of J at a'y; = u — v.

Proposition 4.4 (Derivatives on H(p,¢)).

For e > 0 small let u = o'p; +v € V(p,e) and hi,hy € H = H,(p,€).
We then have

: . VK, |AK, 1
(i) 1070l = 03" VK AK 1
N 2 o
Y et ol 4 5w
r#s
() o T(at e, —kw[/L%hth can(n+2) Z/ T hyho)

+ o ([ ]| 1 2]])

Proof of proposition 4.4.
Let in addition h € H,(p,€) with ||h|| = 1. From proposition 1.1 we then infer

1 i 2=n . _ i n+2
§8J(a pi)h =k,7 . [/ Ly, (a'@;)h — /(rK)ai%( ;)2 h) (4.37)
and
Lo = n+2 TN (i s
56 J(Ol (pz)hlhg k l [/Lgohlhg D) /(TK)azwi (Ol (Pz) 2h1h2] (438)
+ oc([[ha || |22]]),

since, when considering the formula for the second variation, we have

[ ot =5 [ a4 0810 1))
:%/Ku%uhi +0(16.7 (u)[ | hs]) (4-39)
=O(||v]| + [0 (w)])[[ il

n—2
. "?K,
Using "~ =

=4n(n — 1) 4 0.(1) and ¢, = 4=} we obtain

1 B 2-n
582J(Oél<pi)h1h2 :k‘a{:@i [/ quhlhg — cnn n -+ 2 /Z(pl - hlhg

+ oc([[halfl 2]},

(4.40)
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This shows the statement on the second derivative. Moreover by lemma 3.12

Taip,; r VK.
e RO =T DESEL) DE e R

e r#s

We obtain with 7K = 1K = (). K

1 2=n - n+2
s0Ja o =k, | [ Lo(aiooh— [ rR(a'o)

|V (4.42)
+o0 ZAnQ Zars+02 +\| 12),
r#s
where due to lemmata 3.3 and 3.5
n+§
. n+2 o " K;
K(ato)n2p — B B N SRPY
[ mte)in Z4nn_1 [ Baoit
(4.43)

|VK | AR 1
I
T r#s

This gives

_4
n—2

ra; ° K;

1 X 2—n .
—aJ(a'p))h =k 1 o'(1l - ——— Ly, pih

VK| | [AK,| 1
+00) T e T +) ers) + vl
r r T r#s

(4.44)

From this the assertion on the first derivative follows from (4.35). O
The second variation at a‘p; turns out to be positive definite.

Proposition 4.5 (Positivity of the second variation).
There exist v,e9 > 0 such, that for any

u=a'p;+veV(pe)
with 0 < & < g9 we have
?J() g>y, H = Hype).

Proof of proposition 4.5. (Cf. [13], proposition 5.4)
In view of proposition 4.4 there would otherwise exist

€ 0 and (wg) C Hy, (p,€x) (4.45)

such, that

1 —/cn|Vw;€|gO + Ry,wi < cpn(n + 2) hm /Zcpzk w3, (4.46)
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We order % <...< /\1 and choose v, * oo tending to infinity slower than
k Pk

1

T,Eikd‘k — 0 (447)
ik

does tend to zero in the sense, that for all i < j

Ai 1
)‘J'i + X, G777 (aiy, ajy,)

ik

’ oo (4.48)
T Yk

as k — 00. Define inductively
Qjk = B (aj,) \ Uic; B o (ai,). (4.49)
Ik 'k

Then there exists j = 1,...,p such, that

4
. =
klﬂ)rloo e/ wi >0 (4.50)
and
4
Jm [l Vul, + Ryt < cntn+2) tim [l @)
gk

Blowing up on ; ; one obtains @y, —: w locally with @ € W12(R") and

/n |V1D|2§n(n+2)/"( L g, /( L pazso. @)

1+7r2 1+7r2

In particular w # 0. But due to orthogonality wy € Hy, (p,e) one finds

and
/ (L )T ) —o. (4.54)
e 1472 1472
This is a contradiction, cf. [28] Appendix D, pp.49-51. O

Smallness of the first and positivity of the second derivative give a suitable
estimate on the error term v.

Corollary 4.6 (A-priori estimate on v).
On V(p,e) for e >0 small we have

VK,| |AK, 1
loll = 0} | k ] g . — +3 e + 167(u)))-
r T T T r;és
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Proof of corollary 4.6.
Note, that 92 is uniformly Holder continuous on V (p, ) by proposition 1.1 and
the remarks following, whence in view of proposition 4.5 we have

J(u)v =0 (a'p; +v)v = dJ(a'i)v + 0% T (ai)v? + o||lv|*) (4.55)
>0J (' pi)o +7||v]|* + o([[]*). '
Since v € H,(p, ) the claim follows from proposition 4.4 by absorption. O

Thus having analysed oy ; and the error term v the shadow flow reads as

Corollary 4.7 (Simplifying the shadow flow).
For uw € V(p,e) with € > 0 small we have

() N rido Hi  es AK; by s qy
)\i I{I[CQ )\?72 Co KZAE o 7;7;,:1 i )\15 ,J]( +0>%L( ))
+ Ry
() —reaVE [ eaVAK by §~ay Lo
TR Ko | es KZ.)\%)’ c3 vl a; N M x
+R3,ia
where
1 P
Ry, R3 =0.(—— + Z €i,)
Al e
i#j=1

VK, 2 |AK,[]? 1
ZI 2] A4| + Sz 5+ el 18P,
r r#s

Thus the movement of a; and \; is primarily ruled by quantities arising from
self-interaction of ¢; and direct interaction of ¢; with other bubbles ;.

Proof of corollary 4.7.
This follows immediately from corollaries 4.3, 4. 6 applied to lemma 4.1 and
using (4.35) for the H; term; we have replaced 4n(n ) by do O

5 Case >0

Analogously to the case w = 0 we establish the shadow flow.

Lemma 5.1 (The shadow flow).
Foru € V(w,p,e) with e >0 small and

Opi = —/(Lgou— rRun2) i, i=1,....p, k=1,2,3

we have suitable testing of KOyu = —(R —rK)u

ol



(i) PO =
1

(ii) A abe
_>\’L :clK 0'2,,*(1 +O%(1)) + Ry ;
7 24 o
(iii) b=
>\7,az — CZK Ug,l(l + O%(l)) + Rg,l
RE N

with constants ¢, > 0 given in lemma 3.5 and

2,
s =03 o ek ol + BT
r#s
One should not be surprised, that in contrast to lemma 4.1 there appear ﬁ
terms in Ry ;. Indeed, just like €; ; measures the interaction of the bubbles ¢;
and ¢;, the interaction of u, g and ¢; is measured by

A2

7

Proof of lemma 5.1.
Let

by :
s Aay). (5.1)

(51,]752,ja§3,]) (a]a_ajA'
J

Testing as indicated in the statement we get
Oki :/Ku"%?@uqﬁk,i = /Kun%?&g(ua,g + ajcpj + V) ;
:a/Kuﬁaauaﬁgbk,i +Bm/Kuﬁaﬁmuaﬁ¢k,i (5.2)
+ghi /Kuﬁ@,jfﬁm - /Kv[atuﬁﬂsk,i +Uﬁat¢k,i]~
The first two integrals on the right hand side above may be estimated via

/rw _ / (ta,s + a%g) 72 p; + O(|[u]))
n+2
<¢ [+ ot +02/ 700+ O(o)

i#q=1
(5.3)
<C Z o7 il s T Ol + vl
i#q=1 7
—= T Z €i,g 1 [[0]])

Ai i#q=1
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where we made use of lemma 3.5, yielding

a/KuﬁE)aua,ﬁaﬁk,i +Bm/KUﬁaﬁmuaﬂ¢k»i
O(Anﬁ + 0 sg=1 Eig T 01Dk ( & ) (5.4)

Ok + 5y 20+ lelin ) (67
Turning to the third summand on the right hand side of (5.2) note, that
[ Eurtouon = [ Kl +amen) oo+ 00l) (59
and
/K(Ua,B + OO ) T i
:/[amwmwm] K (0™ 00n) ™2 b1, 0k

6=n =25
+O( / (@™ om) "2 uq,gp;pi + / uaﬁZ ©;0:)

5.6
[a™pm >, 5] [ampm <uq,gp] ( )
4
:/K(am‘»@m)”’Z(bl,jQSk,i
m G-n o
+ O( (a™pm) "2 ua,pp;pi + Uy 5 Pipi)-
[@™@m>ua,p] [a™@m <ua,p]
Using
L‘tg n—2
/Sﬁj%‘ < C(/%Jr/@f ¢i) =0\, +eij) (5.7)
and
m 6—n
(@™ om) =2 U, 3PP
[a™om>uq,g]
. _a_
<c / (0™ ) T i
[anlwmzua,ﬁ]m[wi22?¢q:1 ‘Pq] (5 8)
+C / (@™ Pm) Tt 505
[a™@m>ua,g]N]pi <Z§¢q:1 #q]
nt2 P n+t2 n>2 -
<c([ e+ [(3 e)Fho) =0T + 3 cia)
i#q=1 i#q=1

93



we obtain

_4
/K(“a,ﬁ + Q™ om) "2 Gr bk

/Ka om)E b0+ OO T+ Z i) (5.9)
z;éq 1

o7 [ Ko T+ 00 4 Y ),
i#q=1

where we made use of (4.6). Plugging this into (5.5) we obtain

/Kuﬁqﬁl,j(lsk,i
1 -
~o7 [ Ko oupui+ OOT 4 3 ey + vl (5.10)
i#q=1
VK; =
kol Kbty + O, + 0T S e 4o
v i#q=1
Moreover arguing as for (4.7) and (4.9) we have
/K“ﬁaﬁkﬂ‘” = O([[vl)ie,6", (5.11)
and
/Kvatuqﬁm — O(lo]2 + 167 (w)2). (5.12)
Thus plugging (5.4), (5.10), (5.11) and (5.12) into (5.2) we conclude
T
O(—i== + Zf;éq:l €iq + vk, &
A «
i=|O0(—== Y g1 Ei i,m "
o, ()\iTz + 2 izg=1ia + 10Dk, ?M (5.13)
Ekyilyj
O([[v]]* + 167 (u)[*) i
where
VK;
szl]*cka K(Skl51j +O(| s |)k’l§l]
1 P (5.14)
+O0(—== + Y cig+lvlriss-
AP itg=1
Next let
— n+2
o=- /(Lgou —rKun=2)uq g. (5.15)

o4



We then have
o :/Kuﬁatuua,ﬁ = /Kuﬁat(uaﬁ +aly; + V)Uq,3

:g/Kuﬁui’ﬁ—l—Bm/Kuﬁ@Bmua,gua’g (5.16)

+§.l’j/Kuﬁ¢l}jua,5—/Kvatuﬁua,g

and therefore recalling a0y ta,g = Ua,g

4 T
f Kun—z ui7B

[ Kum28, uq,pua,s

g =
O(/\n? + Z§¢q:1 €iq + v £bi
i

(5.17)

+O([[olf* + 187 (w)[?).
Likewise we obtain for o, = — [(Lg,u — rku%)ﬁﬁnumg
On :/Kuﬁ&guaﬁnuaﬁ = /Kuﬁ&g(uaﬁ + alp; + 0)0B,, Ua,3
:d/Kuﬁaaua,ﬁaﬁnua,ﬁ + Bm/KUﬁaﬁmuaﬂaﬁnuaﬁ

—l—éhj/KUﬁ(ﬁl,jaﬁnuaﬁ

_ /K’U[atuﬁaﬁnuaﬁ _A,_uﬁataﬁnuaﬁ] (518)
4

J Kum= 0,508, ua,5 + O(|v])

_4
= fKuj”aﬁmugﬁaﬁnuaﬁ +O([lv[l)
O(/\n? + 2 jti=q Cia T [0

.ng o

l/‘rlf
<&

+O([[0ll* + 167 (w)[*)n-
Summing up we conclude
s o
— 0w | + O + 167 Py (5.19)

On

(A + R)Z:k,j,l,n,m ﬁ'ﬂ
g

where

(U8, Ua,B) (Ua,8, 08, Ua,B)
Aiom = | (Va5 08,Ua,8)  (08,Ua,,08,,Uap)
0 0

(5.20)

[Tho ©

with VK
a4 4
= akKiOéin72 5kl6ij + O(|)\7‘Z|)k,15ij (5.21)

[1]2

%)



and

1
Ri,...,m = O(Z ey + ZET,S + ||U‘|)i,...,m~
A2

T

r#s

Using o, 0,i, 00 = O(|0J(u)|) we obtain

& o
‘1,5 _

Ai,k,j,l,m,n f T = Ok,i +Rk,i,n
g On

with

1
Riin =00 + Y e ol + 16T (W) kin-

n—2
r AT r#s

Note, that we may write A = A; 1 j1n,m as

B C 0 I CD™' 0 B 0
A=|Cc D 0| =(cB! I 0 0 D
0 0 F 0 0 I 0 0
whence we obtain via Neumann series
B! 0 0 o0 0 CD™!
A= 0 D' 0 |Y(-nF|cBt 0
0 0 E~1') k=0 0 0

Last note, that the third row of A= is just E~!, where E = =.

o o

(5.22)

(5.23)

(5.24)

(5.25)

O

As before our task is two folded, namely to analyse o ; and to provide a

suitable estimate on v.

Proposition 5.2 (Analysing oy ;).

On V(w,p,e) fore >0 small we have with constants by,...,ds >0

(i) s
ro " K, it
i =dn(n — Day[————t — 1] [ @i
r1 =an(n = Doyl ot =1 [ ¢

a4
P ra’ *K;

+ 471(77, - ].)bl Z Olj[m — ]-]Ei,j

ij=1

n+2
n—2

- / (Loyttas — rRul )

4

4
n—2 p g 4
T K T S T
1 QGG 5 1 k n—2
2

Lyl A;
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()

(iii)

rai”fzKi nt?
02, =—4n(n — )az[m —1] /% *Xi0, pi

V4 n2K
—4 -1 A i
n(n Z 4nn—1)k: Uhiox e

— /(Lgoua,g — rkuﬁ))\ﬁ)\i@i

4
ral K; <& ol 2K ow;
— by — D ajdios, ew+d27k — + Ry
i#j=1 A
0P K wi2 ]
3, =4 —1 —Va, i
(= Doyl ot 1/% S Va
V4 n ZK 1
dn(n —1)b Ly, .
+an(n Z 4nn—1)k: ])\iv”g’J
_ LJrz
TP,
= O I ol VK,
ra; " K; ™
+bsT Z aj;vaigi,j‘f'dii Y + Rs;,

i#j=1 '

where Ry = os(ﬁ + Xt Gig) T Oz 6hs + 017 + 10T (w)]?).

Here and in what follows w; is short hand for w(a;) analogously to K; = K(a;).

Proof

of proposition 5.2.

We evaluate by means of lemma 3.12

/(Lgou

From (

_ n42
—rKun=2)¢y;

i > i nt2
=/Lgoua,a¢k,i+oﬂ/Lgosojqﬁk,i —/TK(ua,aJraJst)"*”ﬁk»i (5.26)

1 p
tol—=+ Y eij)+O(|vl® + (6T (w)?).
N2 itj=1

4.18) we infer

/Lgoua,5¢k,i+aj/Lgo<Pj¢k,¢
P

%
:47’l(7’l— 1)[0@/4101,”* ¢k7i+b]g Z Oéjdk,iEiJ] (527)

i;éj—l

+ / LyyUa,sbki + 0c(—= + Z €ij)s

A=

o7



where (dy ;,d2;,d3;) = (1, =0y, , + » Va .). On the other hand we may expand

/K(uazﬁ-aJ ')" 2¢k1— / K(Ua,,8+aj<ﬂj)%¢k,¢

; n+t2
K(UQHB + OZJSOJ') n—2 d)k,i
[ua,p<adp;]
n+t2
/ K (ua,p) "2 br,i + / K (o7 9;) 772 (5.28)

[ua,p>ad@;] (e, p<ad ;]

n+2 ) 4
+ 2 / . K(O‘]@j)"’2 Ue, 3Pk, i

n- [ta,p<al@;]

4 . 6—n

+ O( / uy g ol i) + / (ol pj)m=2ul, ;).

[wa,p=al @] [ta,p<ad@j]

This gives
/K(UOC,B +O[]<)O]):7tg¢k,l
:/K(ua,ﬂ)%ﬁbk,i+/K(aj¢j):%§¢k,i
2 [

4. ; 6—n
vol [ wifaee)t [ @) e

[ta,p20ad @] [ta,p<ad @]

Lo (5.29)

Note, that [ ¢?=o0(—L%) and for suitable ¢ > 0 we have
[ta,p>copi] A2

i 6—n
/ (7)™ (ua,p)?0i
[ta,s<ad @;]

112

- / ( 903 (ullﬂ) (Pz) (530)
[ua,B <04j<Pj]ﬁ[% Zzggj:l S@j]

Gf'n

+ / (@791) = (a1

[ua,p <0¢j§01]m[<ﬁi<zf¢j:1 ‘pj]
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whence

i S—n

[ta,s<ad p;]
P n+2
<C +C/ (Z )" "% (5.31)
Bﬁa’ Virj=1B i#j=1
1 e(n 2)
<o(—=z) +[UWym1 B, /5 (O 75 > e
Al i#£j=1
Plugging thus (5.31) into (5.29) we get
i nt2
/K(uaﬁ + i) P
nt2 i n42
:/K(ua,g)"*ztﬁk,i+/K(oﬂs0j)"*2¢>k,i (5.32)
_a_ 1 2
')"72ua,ﬁ¢k,i +O(E + Z 5i,j)~
Al i#j=1

Then (4.28) shows
i nt2
/K(umﬁ + o7 Q;) " P

n+2 nt2 n+t2 n+2
n—22 7L 2 n— 2 n—22 ’IL 2
—oi g, boi + /Ku it 3 oK, bu.i

i#j=1
2 _4_
’l’l+ ™ 2K Z a]/ n—2 (bk,igoj
i#i=1 (5.33)
«, €1 )\% 762 )\% €3 )\@ €4 )\?

n+2 A =)
+n720‘¢ Z/K%' “Ua,pPk,i

p
+Oa(%+ Y e +00 el
Al

i#j=1 r#s
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and we obtain letting

; nt2
/K(ua,ﬁ +al i) 2o

n3 n+2 nt2
=o' K (bkz /KU ¢kz+ Z OZ" Kbkdkléflj

i#j=1
P nt2 VK;
+ Z Z.’” > Kibpdy igi j + o] 7 (0,0, e3 Y “)
i7=1 1
4 ’!L+2 p
ral [ Kol e oo+ 0 ) + 02
’L =1 r#s

Since uq,g(ai) = aw(a;) + 0-(1), we get in cases k = 1,2 with d, > 0

nt2 CMKZ'WZ' 1
de,iﬂpin_2 Uq,p = dy, n_2 + 05( n—2 )7
A A
and in case k = 3 by radial symmetry
1 nt2 1
wavaicpi"’z =0(—==)-
7 )\ 2

We get
1 n42
/K(Uoz,ﬁ +al i) i

nt2 n+2 nt2

:CV{VZKi ¢kz /KU ¢kz+ Z Ckn K bkdkzgzg
i#j=1

4 aK;w; aK;w; a;VK;

+ ai7L 2 (dl ) 7dQ P 7d3 by )

A2 A7

7

p 4

ij=1 N2 ig=1 s

60

1 p
I Z o] P o Kibpdy i€ 5 + 0o (——= Z EiJ)‘f’O(ZEiS).
2

(5.34)

(5.35)

(5.36)

(5.37)



Plugging (5.27) and (5.37) into (5.26) yields
|y

n+2
:477,(77,7]_)[041/ ¢k1+bk Z Oé]dk 1877J] /Lgoua7ﬁ¢k,i

i#j=1
ro; i - “
o [,
n+2
ra; *K; ra] 2@ (5.38)
- bk Z dk i€4.j bk Z dk i€,
i£j=1 i#j=1
4
ra]? oK;w; |, aKw; . o, VK;
- ;4; (dl n—2 vd2 n_2 7d3 s )
Al Al v
1 - 2 2 2
toc(—z + Y, €ig) FOO_ el + [oll* + 167 (w)]?).
NP = rits
From this the assertion follows. O

The equation on o1 ; = O(|dJ(u)|) and the fact, that u, g is almost a solu-
tion, simplify the equations on o2 ; and o3 ; significantly.

Corollary 5.3 (Simplifying oy ;).
On V(w,p,e) fore >0 small we have

(i) rozl”%2 ow; ra-"%K- &
02,; =dy ;ﬂ LZ —by— A : Z a;AiOx €5 + Ra s,
Ai® i#j=1
(ii) Z*é VK, L 1
i i
—d3 k Y + b3 3 i;,;l ij):_valfi,j + Ra 4,

where R = 0c( =iz + Yo ig) + O, s ens + 017 + 10T () ).
A2

Proof of corollary 5.3.
Note, that

_ n+2 T’U,a nt
/(Lgoua,ﬁ —rKul g )k = /(Lgoua,,ﬁ’ 3 —f KU " 5 )Pk.i
e (5.39)

r 7L+2
F (s~ /Ku bn

61



Due to IIVJ(uq,g) = 0, cf. lemma 3.7 and the remarks following, we have

B n+t2 nt2 o,

Lgouaﬁ - (TK)ua.ﬁu;,_; :[/(Lgou(%ﬁ - (TK)ua,Bu;,_BQ)

m

[l

n+2

i=1

and there holds

B ni2
/(Lgouaﬁ - (TK)ua,ﬁu;jﬁz )W

— [ Caytas = rR) il o+ Oy = (i)

n+2

— [ (u=a'e) — (R)u(u - a'p)

+ 00wy = (Tl + 0]

Clearly

and we have
/K(u —a's;) ="
n+2

/ K(u—aiéi)%W—f— / K(u—a's;) 2w
]

[u>ats;

[u<ats;]

. "% A

_ / KuiBo o3 B2
i A2

K2

[u>atd;]

n—2
n In"» \;
PV

K2

‘We obtain
B nt2
n—2
[ @t = Ryl

- / (Lot — (rE)uui S

n—z

—2
In"» \;
=+ llvl)
. 2

1

FO((Duas = Gl + 2

n—2

In )\7.

:O(I(E)ua,gf(g)ulJrZ = + vl + 16 (w)])-

g %
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+ Z[/(Lgoua,/a — (rK)u, sul 5 JeilLg,ei

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)



and the same estimate holds for w replaced by e;. Plugging this into (5.40) we

obtain for (5.39) the estimate

_ nt2
[ @t~ 0RO o

=OUIuns ~ (Pl + ™5 )
whence using (3.50) we conclude z
[ @t~ 0RO o
=o<A322>+0<Z = + Il + 67 )P)

Consequently equation (i) of proposition 5.2 shows

4

ro  K; 1 L
T =1 O + ) e+ Y en, +ol* + (6T ().
4n(n — ].)k )\1 B} it s

Thus the claim follows from proposition 5.2.

(5.45)

(5.46)

(5.47)

O

We turn to estimate the error term term v. To do so we first characterize

the first two derivatives of J at uq 5+ a'p; = u — v.

Proposition 5.4 (Derivatives on H(w,p,¢)).

For e > 0 small let u = uppg+ ', +v € V(p,e) and hy,ha € H = H,(w,p,¢).

We then have
(i) 10T (tar,p + @) L 1|

=o:(||oll) + O}

VK, 1
A T r#s

(ZZ) 582J(ua75 +a190i)h1h2

:kE+aiw[/Lgoh1h2 —cnn(n+2)/ _|_Z<pl
+ o< ([[h || |22]])-

Proof of proposition 5.4.

= Y ens 187 (w)])

Yh1hs]

Let in addition h € Hy(w,p,€) with ||h]| = 1. From proposition 1.1 we infer

1 ,
§8J(ua,5 + a'p;)h

2—n

:ku:,ﬁ+aiw [/ Ly (ta,p + O‘iwi)h

K i nt2
B /(TK)“a,BJra"% (Ua,g + i) "2 h]
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and

1 .
582J(Uo¢7g + Ollﬁpi)hlhz

2—n
:ku:,ngaitpi [/ Lgoh1h2

(5.49)
n + 2 I i _4
- n—2 /(TK)ua,ﬁ-‘raitpi (ua,ﬂ +a @i)"’72 hth]
+ oc([[Pa [l [ 2],
since, when considering the formula for the second variation, we have
T nt2
Loguhs =7 | KuFh +0(0.(w)l ]
:%/Kuﬁvhi + 0187 (w)[IRs]]) (5.50)
=O(||v]| 4 [0 (w)])[[ i .
By (3.50) there holds
r r
(E)“ = (E)ua,g +0e(1) (5.51)
wia
and % K 4dn(n — 1) 4+ 0-(1) by (5.47). Consequently
Lo i
53 J(ua,p +a'wi)hihy
2-n
:kuj,ﬁ-&-aiw [/ Lgyhaha
(5.52)

—Cnn(n+2)(/ %hlfm —Z/%ﬁ%)hlh?)]
+ oc([[h || h2]))-

This shows the statement on the second derivative. Moreover by lemma 3.12

T r 1
(G vaptaies = 3+ o> = +3 ers) +O(l|* + 167 (w)]?). (5.53)
T r r#s
We obtain
1 )
§8J(ua,5 + a'pi)h

2—n

= i 7% iyt
=k sraip: [/ Lgy(ta,p + ' pi)h — /TK(uaﬁ +alpi)"2h] (5.59)

0 s + e + Ol + 5T (w)]?),

r )\r r#s
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whence by estimates familiar by now
1 i
§6J(Ua,,6 +a'pi)h
2-n _ n+2
=k, ot [/(Lgoua’g —rKuj g )h
4 n+2

+ 30 [ (Logpi = rRal 7ol )

1
+O00 === + D s+ [0I” + 8T (w) ).

T )\7' 2 r#s

Using (5.47) we get
1 .
§8J(ua,g +a'p)h
2—n n+4+2

7 sl [ Lanttas = rRU 0
n+2

+ Zai /(Lgocpi —4n(n — l)cpi”j)h]

3
A 5

VK, 1
roy, VAL S+ Y ol 187
r r r r#s

and we deduce using lemma 3.3

1 ‘
§8J(ua,5 +a'p;i)h

2-n _ nt2
:ku:,fﬁa?‘w /(Lgoua’ﬂ B TKuS’E)h
VK, 1
O T b b S IR 1870
T r r r#s

We proceed estimating

n

_ L% ]{,‘7;:2 r ”
/(Lgoua,g — TKu;Tﬂ Yh = 2ﬂ (0J (ua,p), h) + O(|(%)ua,5 — ED’

to whose end we will improve (3.50). Due to lemma 3.12 we have

/ (Lot — (rR)ut " Yt 5
i 7% i yot2
- / (Lo (tte s + 0 01) — (K )u(tia s + a0i) 523 Yo 5

Fo(Y = + Y ) + Ol + 107) ).

T >\7‘ r#s
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whence in particular
n+2

/ (Lot — (rR )3 Yt
_ LJrg
= / (Lgo“a,ﬂ — (rK)uuy g Jta,s (5.60)

+O(Z = + 3 e+ ol + 187 (w))
r#s

T ’r’

and therefore
1
Y ers + ol + 18T (w). (5.61)

7 )u =0 e +
k) (2 )\7’72 r#S

) into (5.58) gives recalling lemma 3.7

Plugging (5.61) with ¢ = (%

n+2

/(Lgoua’g — rl_{uﬁ)h

<6J(Ua,ﬁ)»h>+0(z = + 3 e+ ol + 167 (w))
r#s

_FKuas

2
s
B n+2
:/(Lgouaﬁ — (rK)u, U B w /L wh
m _ n+2
+Z/(Lgoua76 - (TK)ua,ﬁu;:ﬁz )ei/Lgoeih
=1

+0(Z == + 3 e+ ol 16T ().
r#s

’I“

(5.62)

Applying (5.61) we then get
n+2

/(Lgoua,ﬁ - TKU(Z"_; Vh
_ nt2
:/(Lgoua’g = (rK)uu 5 )w/Lgowh
ni2 (5.63)
i/LgOeih

1 9] (AR CER
oY+ =z T2 Ens + 0P + 18T ()),

r#s

r T
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whence

. nt2
[

i % i\ 2t

- / (Lo (ttas + ) — (P ) (0 + ') 55 ) / Lyotoh

m _ _ e (5.64)

3 [ (oo + ') = (Rl + ') e [ Ly
=1
1
#O(Y i + 3 s+ bl + 7).
r r2 r#s

Since [ Lg,wh, [ Lg,eih = 0.(1) as h € Hy(w,p,€) and |h| = 1, we conclude

_ n42
/(nguawg - rKu;‘fﬁQ)h

1 (5.65)
=o-([[o]) + O ==+ > ers + 16T (w))).
r A2 r#s
Plugging this into (5.57) proves the statement on the first derivative. O

In contrast to the case w = 0 the second variation at u, g + a'y; is not
necessarily positive definite. It is however sufficient to have non degeneracy.

Proposition 5.5 (Decomposition of the second variation on H,(w,p,¢)).
There exist v,e9 > 0 such, that for any

U= Upp+ ol +vEV(w,p,e) (5.66)
with 0 < € < g9 we may decompose
Hy(w,p,e)=H=Hy ®r, H- with dimH_ < o0
and for any hy € Hy,h_ € H_ there holds
(i) 02J(uap+ ') m, >
(it) 0% J(uap + a'@i) < —v
(ii1) 020 (a5 + alpi)h i = ool b ).

Proof of proposition 5.5.
Let H = H,(w,p, ) and note, that H is a closed subspace of W, since

H= <Ua Uy, Uk,i>LLg0 (567)
according to definition 3.11 for v, vy 4, v; € ngo’Q(M) solving

n+2

_4
mKU"72 35juaﬁ (568)

4
Lyv=Kur—2uq,g, Lgv; =
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and

4
Lgyvi: = Kun=2¢y;

cf. definitions 3.4 and 3.11. In view of proposition 5.4 we consider

T:HxH-—R:(a,b) — T(a,b)
with

T(hy,hs) :/Lgohth

4
Kuwnz _a_
—cpn(n+2) / [zm(n—l) + Z 0 ab] hihs.

Due to the spectral theorem for compact operators there exist
(hi)ien C H and (pp,) CR with pp, — 0 as i — o0

such, that (h;);en forms an orthonormal basis of H
H={(hi|ieN) and (hi, hj)r,, = /Lgohihj = 0ij,

and we have Kwﬁhi = pn; Lg, h; weakly, so

/Kwﬁhih — m/LgOhm for all h € H.
Likewise there exists an orthonormal basis of W = W12(M)

W =(wg|qeN) and (wp,wg)r,, = /Lgowpwq = Opq
satisfying for a sequence (fy,) C R with i, — 0 as ¢ — o0
Kwﬁwq = oy, Lgowyg-

Below we will prove, that for any ¢,l € N there holds

(b, — I’th)<wQahl>L§0 — 0 as ¢ — 0.

Moreover recall, that according to proposition 4.5 we have

_a_
/Lgohh—cnn(n+2)2/%p72h2 Zc/Lgohh

for some positive constant ¢ > 0. Thus for any

n+2 c

E€H1:<hi|n_2
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(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)



we have T'(h,h) > &||h||?>. Let e > 0 such, that

(4
2

n+ 2 .
{wq|1—26§mqu<1+26}:{ej|]:1,...,m},

where E%(w):<ej|j:1,...,m>7cf. lemma 3.6, and define
c n+2
Hy=(h; | = o <1-
2=(hi| 5 < ——ZHn <1l-e
and
c n+2
W2:<wq‘§<m/.twq<1—€>.

Then for 0 # h € Hy we have due (5.77)

12[* = ITw, AlJ* + [Ty Bl 1Tkl = o ([1A]),

whence for h + h € H; @ Ho we obtain
T(h+ h,h+ h) =T(h,h) + 2T (h, h) + T(h, h)

C,+ n+2 N ~
S A D Sl

n—2
+T((Tw, 1), (T, k) + o=(|[Al|* + [|A]%).

Since W5 is fix and finite dimensional, we get

/ 577 R, h) = o-(IR2 + A])?)

and

T((w,h), (L, h))
:/Lgo (szil)(ﬂwzil) -
>el| (T, 2)|1* = e(|[R]* — [Ty Al|*)

n+2

n —

Thus T is positive on H1 @ Hy. Let

n—+ 2
o Hhs <l+¢)

H3:<hi|].*€§
n —

and

n+2 .
W3:<wq|1—5§mqu§1+g>:(ej|]:1,...,m).

Then for 0 # h € Hs we have due to (5.77) and (5.80)

Il® = (1T 2* + Ty AP, (T2 All = oc([[A]).
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(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)



Since Iy, h = doia(ess IA"L>L90 e; and

(vj, ML, =0 (5.90)
we obtain . R
[Ty bl = oc([IA1)), (5.91)
once we know |lv; — ¢;]| = 0-(1) and we will show this below, cf (5.103).

Thus Hs = {0} is trivial for € > 0 sufficiently small.
Finally let

n+2

Hy = (hi| ——< . 2 14 €) = (H1 & Hy)*Pao (5.92)
and
+2
Wi = (w, | %qu >1+¢). (5.93)

Wy is fixed and finite dimensional. Arguing as for Hy one obtains, that T is
strictly negative on Hy. We conclude for H = H; & Hs, where

H, =H, & H, and H, = Hy, dim H, < o0, (5.94)
that TLFh > v and TLH2< —~ for some v > 0 small, whence
0% (tap + aigoi)[g1> 7 and 9*J(uap + aicpi)Lg2< —5 (5.95)
for some 4 > 0 by proposition 5.4. Moreover for hy € Hy, hy € H,
/Lgoﬁlhz = /Kwﬁﬁlﬁg ~0, (5.96)
whence

T(h1,ha) = — con(n+2) / o] hahs. (5.97)

Thus arguing as for (5.85) we get

% J (U g + ') hihy = o-(||h ||| h2]). (5.98)

We are left with proving (5.77) and (5.103). First observe, that by definition

n 2 n
Lgw = Kwis, Lg,e; = %Kw e (5.99)
and '
Ua,p = a(w + Ble;) + O(||B]1?). (5.100)
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Consequently (5.68) implies

|1Lgy (v — an=20))|

nt2
[ ”Lgo (Uj —an2 ej)”L% = 0:(1).

Likewise one obtains recalling definition 3.4 and lemma 3.5

a4
| Lgo(Vk,i — ce ? K;dp i)l 2n = o0c(1).

L nt2

Therefore we obtain with o.(1) — 0in W2 as e — 0

4

v=oaw+0:(1),v; = ae; + 0.(1) and vi; = cre * K;dr,; + 0-(1).

Let us write now
wy = (wg, hi>Lg0 hi + aqu + a’;’ivk@ + odv;.
Then on the one hand
_a_
/Kw m2wghy =i, (We, bi) L,
while on the other one
/Kwﬁwth =(wg, hi>LgO /Kwﬁhihl + aq/Kwﬁvhl
j _4 k. _4
+ay [ Kwn2vihy+ oy’ | Kwr—2vg iy

=pin, (Wq, i) L, + 0e(|ag| + Z lod] + Z ol
J ki

)i

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

The last equality above follows easily from (5.103) and the orthogonal properties

of Hy(w,p,e). Combining (5.105) and (5.106) we get

(v, = 1) (g P,y =0< (gl + D Jad| + D ok

)

j ki
Moreover
(wy, ’U>Lgo =y (v, ’U>Lgo + aé(vj, vy + afl’p<vl7p, Ul7p>LgO
~ag +0:() e+ lakr)),
J Lp
likewise

(wq, V5) L,y =0q(V, V) Ly, + Al (Up, v5) + AP (V1p, V) Ly,

20&55,9,3' + 0:(|ag| + Z |a§| + Z |a51’p|)
j L,p
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and

(W, Vk i) Ly, =0q(V, Vi) Ly, + 0 (0j, V) + AP (Vlp, Uk i) Ly,

b ] : 11
3%”51»’“51“'+0€(|0‘q|+Z|aé|+2|aépl)k,i. (5.110)
J lL,p

Summing up we obtain by Parseval’s identity

ol + >~ ol + D llogll?
ki J

} } (5.111)
=(1+ 0 _lag* + D lag P+ > logl?]
q q:kyi 4.3
and the left hand side is uniformly bounded. Thus (5.107) gives
(bw, = iy ) (wg, ha) 1, =0(1). (5.112)
The proof is thereby complete. U

As before smallness of the first and definiteness of the second variation pro-
vide an appropriate estimate on the error term v.

Corollary 5.6 (A-priori estimate on v).
On V(w,p,e) for e >0 small we have

VK, 1
o) =0 5 i+ P+ 7))
r r r? r#s

Proof of corollary 5.6.

Note, that 92.J is uniformly Holder continuous on V (w, p, €) according to propo-
sition 1.1 and the remarks following. Decomposing v = vy +v_ € Hy @ H_
according to proposition 5.5 we readily have

®) 9J(u)vy 20 (ua,s + a'i)vy + o |® +oc(lvlllo-])  (5.113)
()OI <0J(uap +alp)o. — o |2 +oc(los o). (5.114)
This gives [|v]|? = O(|6J (w)|* 4|6 (ta,5+ 'p;) | 1|?) and the claim follows from
proposition 5.4 O

Next we combine lemma 5.1 and corollaries 5.3, 4.6.

Corollary 5.7 (The simplified shadow flow).
Foru € V(w,p, &) with e > 0 we have
(i) /\z T do oaw; B bfg
Ni ke, gaT e

iGN i#j=1

Y0 eig)(1+ 01 (1) + Ray
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(“) . T dg VKZ b3 L o 1
)\Z—ai :7[7 —
k C3 Kz/\l

where

1 |VK’I“|2 1 2 2
Rkﬁos&n ;+ Z eig) TOQ 7 + e + DS H0I@)P).
i i#j=1 T r r#s

Proof of proposition 5.7.
This follows from lemma 5.1 and corollaries 5.3, 5.6. O

6 The flow on V(w, p, €)

6.1 Principal behaviour

For u € V(w,p,¢€) corollaries 4.3 and 5.3 give a hint on the principal terms of
0J(u). The following definition assumes these quantities to give a lower bound
on the first variation of J.

Definition 6.1 (Principal lower bound of the first variation).
We call 0J principally lower bounded,
if for every p > 1 there exist c,e > 0 such, that

VK, AK, 1
6 (u)] > ¢( Z| | |K)\2|+/\” 2—|—Z€,n5 for all we V(p,e).
ror r#s

and

K 1
[0J(u Z |V | = +Z€” for all w e V(w,p,e).
7‘ r#s

Under this mild assumption we have uniformity in V(w, p,e) as follows.

Proposition 6.2 (Uniformity in V(w,p,¢)).
Assume 0J to be principally lower bounded.
. 2n
Foru=wuqp+a'e; +v e V(w,p,e) with k, = [ Kum—2 =1 we then have

K el - 0K
. Eids - |, ||V
L 4dn(n —1)

.. T _4

(“) |(E>u1,5 —Too¥™2 |a |6J(u1,5)‘ —0

uniformly as |6J(u)] — 0 and J(u) =1 — Joo = reo-
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In view of (i) above and definition 3.9 we would expect to have as well
4
1= recam=2] |8 — 0 (6.1)

as [0J(u)] — 0 and J(u) =r — Joo = I'oo-
But, since critical points of J are not necessarily isolated, some uq g with 0 #
I18]] < e could be a critical point of J itself.

Proof of proposition 6.2 .
Of course A%, €i,j — 0 as |6J(u)] — 0 by assumption and the same holds true
for ||lv|| due to corollaries 4.6, 5.6. Then due to (4.35) and (5.47)

4
n—2
ro " K;

1= dn(n —1)

—0 as |0J(u)] — 0 (6.2)

as well and (f)u, 5 — (£)u — 0 as |[6J(u)| — 0 due to (5.61). From (5.40)
and (5.44) we infer |0J(uq )| — 0 as |6J(u)] — 0 and we have 0J(uq g) =
aJ(uy g), since uq g = auq g and scaling invariance of J. Thereby

r T _ 4
(Fuas = (Durpa” ™2, (6.3)
whence due to (§)u = 7y — Too We have (f)u, 5 — P2 — 0. O

As indicated above ||8|| — 0 is not necessary. On the other hand we may
assume due to proposition 3.1, that along a flow line

U= Uy + oz’lpi +v € V(w,p,e)

we have || B, || — 0 for a time sequence t;, — co.

We then have to show |1 — FooQ7 2 [, 18] — 0 along the full flow line.
For p = 0 this is true due to the unicity of a limiting critical point, cf. proposition
3.13. The following proposition yields the same result for p > 1.

Proposition 6.3 (Unicity of a limiting critical point at infinity).
Assume 0J to be principally lower bounded.

If a sequence u(ty) converges to a critical point at infinity of J
in the sense, that

Elp > 17616 \l 0: u(tk) € V(vaagk)v

then u converges as well
in the sense, that

Ip>1Ve>03T>0Vt>T : u(t) € V(w,p,e).
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Proof of proposition 6.3.
Since
k=1,J(u)=r\(re and 0J(u) — 0 (6.4)

along a flow line we have on V(w, p, €) according to proposition 6.2

J(u) :/Lgo““ = /Lgo“aﬁua,ﬁ + Za? /Lgo%% +o(1)
i

9 9 9 2-n 2-n (6'5)
=a®(co + [|BI* + o([IBI*) + corsd Y K ® +o(1),
where ¢, = [ Lgyww. On the other hand
(ﬁ) _ngoul,ﬁul,ﬂ
e s
fKuLﬁ
— fL!JO"‘)W + quﬁz ﬁje] + O(H/BHQ) (66)
J K 4 32 b Kuwwz fegfie; + ol [|]12)
cw + 18I 2 ”+2Hﬁll2
::4444444444444'+-0 =
Cw‘+ 5?5”5”2 (HBH ) _»2 C (”BH )
whence still according to proposition 6.2
o + 28]
ot (1 - P2 IO oa12)) = re + 0(1). (6.7
In particular « is fixed in terms of ||3||* by
n+2 2
— 2211812 + 0
P RN .
CwToo
Plugging this into (6.5) we obtain, since J(u) = ro + 0(1)
n=2 n n-+2
c? ré =(co — —IIBI” )*7 (cw + 1812
+aes ZK 4 o(1) +o(I1817) 69
n n — 2 2%2 2;”
=k = el A+ o)A + o™ IR+ o(1),

2—n
Thus, if ||3]|? increases significantly, then > K, ? has to increase significantly
as well. But
2-n___=n VK,

2—n .
K.z = K, N\
8t i 9 ] )\’L )\,a

VK2 1
<V FO(Y gy + 2o+ 0T)P)
g % 7 r#s

(6.10)

(6]



due to corollaries 4.7, 5.7, whence
0K, < 0(8(w)?) (6.11)
due to definition 6.1. If the proposition were false, there would exist
Sp < 8 <81 <8< < Sy < sy <.
such, that UL[sk,s’k]e V(w,p,e0) and
u(sk) € V(w,p,ex),ex — 0, u(s),) € OV (w, p,&o)- (6.12)

However due to proposition 6.2 we may assume

4
PV 76471?7;7*1)’ [v]| <ex during (s, s,). (6.13)

Thus by the very definition 3.9 of V(w, p,€) the only possibility for u to escape
from V(w,p,eo) during (s, s},) is, that |1 — rooaﬁ\ or ||B|| has to increase

during (s, s},) for at least a quantity ey — €. This possibility has already been
ruled out for ||3]] and is thus as well for |1 — rooaﬁ| by (6.8). O

The only lack in the discussion so far is a missing compactness result on
the blow up points. A straight forward use of the evolution equations given by
corollaries 4.7 and 5.7 provides at least a weak form of convergence.

Lemma 6.4 (Critical points of K as attractors).
Suppose 0J to be principally lower bounded.
We then have

K(a;) — K;_ and |[VK(a;)| — 0 forall i=1,...,p

for every flow line u € V(w,p,€) converging to a critical point at infinity.

Proof of lemma 6.4.
In case 0J is principally lower bounded lemmata 4.7 and 5.7 show

0y K= 3 L5 = 018 (w)P) (6.14)

As a consequence
K;,=K(a;) — K;_ forall i=1,...,p. (6.15)
Then still according to lemmata 4.7 and 5.7 we observe

V2K, (VK At
oV P = 2 EVE A 6 155) ),
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whence |VK;| — ¢;,. Letting

P={l...phQ={icPle #0} and ¢=#Q}  (6.16)
we may assume without loss of generality, that

={1,..., and min  d(a;,a;) > € >0 6.17
Q={1...a) and _min d(ai.a;) > co (6.17)

We then reorder, if necessary, the elements of g by

1 1 1
—In—>...>—1In

1
T2 _Kq N (6.18)

In case u € V(p,e) we consider ¢ = > 7_, K /\11 Then corollary 4.7 gives

q ¥
Z%ln i VK, /\zai*ﬁ]

Ag
o ijg |VKi|21n)\,» Lo Hi AK;
= — K 71 KZQ )\2 V2 )\n 2 73 )\2
(6.19)
— V4 Z *A 1O, €45 %(1))
i#£j=1 Qi
q q P
+ o + Z eig) + 0|0 (u)])?,

where we made use of the principal lower boundedness of 9J. We obtain

W > —c(l+0.(1)) fi)‘ iDxeig+0(d_ciz) +0(0 (u)?) (6.20)
i#] i#£j
ich i€EQ

by definition of gq. Note, that for i € @ and j € P\ Q we may assume
_2
n—2 %_,\ +/\/\37nGgo (a;, a;) n—2

*)\ia)\i{:‘i’j = B) - 2 1 €ijs (621)
( + +)‘)‘J’Yano (ai,a;))=

since in that case d(a;, Clj) > o9 > 0, and we obtain

Y= —cl+oy Z ——)\ iOneij + 00 i ) +0(6](u)?). (6.22)

i#£] i#£]
i€Q i€Q

Moreover for sufficiently small € > 0 and C > 1 large we have

Ci Olj
- Z Ko, iz ¢ Z , Sl (6.23)
i#£j >
i,jEQ i,jEQ

(s



To prove (6.23) note, that by definition we have

1 In L
M5 o) iN (6.24)

K, K;

(€' =)

for any ¢ > j with 4,5 € @ or equivalently
ci—-¢i. 1 oI -Ct 1
——In—+ ——In— <0. 6.25
[ OR VL PRV (6:25)

‘We then have

A Ai
D= o(ZE 4 AN G T (4, ay)). (6.26)
A Aj
Otherwise we may assume for some ¢ > 0
A A
)\—? > c()\ + N )\nynG " (@i, aj)). (6.27)

This implies :\\—’ >1> i—; and d(a;,a;) = O(Ai) Consequently

Ct—CJ9 X\ In \;
— 1 27 <0 i 2

yielding a contradiction. Thus (6.26) for ¢ > j is established. Write

-y JA&,\QJ:—ZC” ])\(%\EH—I—ZC“ J/\&\e”

i#£] > Qi i<J

i,JEQ i,jEQ ,jEQ
7 7 J
—ZC Aam] > o YCE (6.20)
1<j 1<j
L,IERQ HjEQ
:_Z(ﬂ )\8,\51,] Z(ﬂ )\8>\€”—|—)\ O, €ij)-
> i<j
,J€EQ L,JEQ
We have
—)\ia,\ism — )\ja,\jem = (TL — 2)6?)\1')\]"}/”6:%((11',@3‘) >0 (630)
and for ¢ > j due to (6.26)
n—2 2 N A 2 n—2
—)\ia,\if:‘i,j :Tgi’j 2 (rj — Tz + )\i)\j’ynGu*" (ai, aj)) > Tgi’j- (631)

This shows (6.23).
Thus plugging (6.23) into (6.22) shows ¢’ > O(|6J(u)|?) for C > 1 sufficiently
large, whereas 1» — —oo by definition as a continuous, piecewise differentiable
function in time; a contradiction.

The case u € V(w,p, ) is proven analogously. O
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The following lemma assures d.J to be principally lower bounded in the case
the dimensional conditions C'ond,,, on which theorem 1 relies, hold true.

Proposition 6.5 (Principal lower bound of the first variation under Cond,,).
0J is principally lower bounded, if Cond,, as in definition 1.2 is satisfied.

Proof of proposition 6.5.
In case w = 0 corollaries 4.3, 4.6 and (4.35) show, that

(i) _H; AK; 4
02,8 =V10——5 o +720ézK )\2 — Y5bo Z ajA\iOxcij+ Rai  (6.32)
i#£j=1
(i) _ VK; VAK,
03,i :’YSQ’LK /\ + Y4, ——3~ )\3 +’76 Z 7’ valgz] + RS K2 (633)
i#j=1
where
Rk,i )\n n—2 + Z El,j
\éi@ IAK,|? 1 (6.34)
+00> A; + X[ +>\2(" ) +Y 2 16T (u)?).
r T a T#S

Letting 0 < £ < k; <K < oo for [VK;| # 0 and k; =0 for |[VK;| = 0 we get
VK;

o)

VK|

AK; VK| (VAK;, VK;)
>Za1 )\n — +72K ¥ + Y3k +74Hi7Ki|VKi|)\? ]

Ki)\i
. ; o
— Y5 Z C OéinaAiEi,j + OE(Z Er,s) + O(Z 7|vﬂi€i,j|)
i) r#s i#j "

AK,|?
AL )

ZCi 02,; + Ki{o3,i,

(6.35)

+0(

Note, that we do not try to construct a continuous pseudo gradient, so there is
no need to choose k; continuously. As before we order

1 1
— > > —. .
" 5 (6.36)

We then have for sufficiently small € > 0 and C > 1 large

Z Cla N, €i > CZ Clei; (6.37)

i#j i>j
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and

Z IValsm | =0(>_ Ceiy) (6.38)
i#j i>j
To prove (6.37) and (6.38) note, that

> ¢ JAaAguz—Z(ﬂ JAaAEU—FZC” JA 05, i
i#£] i>7 1<j

- ZCZ P01 — Zcz EXi05, 81 (6.39)
1<j 1<j
— Z Ol ;]A,@Aiam — ZC“CTJ AiOx €15 + /\ja)\j&,j}

i<j ¢

i>7

One has

*)\ia)\ié‘iJ — )xjﬁ,\Jsm- = (n — 2)5&%)\1'%7“(?%(%,%) >0 (640)
and for i > j

n— n i A n—2
—Nilxgig =5l (- /\* + AN G (a1,05) > ——ei 5. (6.41)
J

Thus (6.37) is proven. We are left with estimating

Z \; ‘Vaﬁw|

%<A N2 Va, GT7 (4, a5)
i#]

\
i<y :\\4—#)\/\]7“6?2 = (a;, a;)

(6.42)
+ o0 Z 6737]' ,

i#]

Em|

>/‘>« V\g

whence we immediately obtain (6.38)

Plugging (6.38) and (6.38) into (6.35) we obtain for C' > 1 sufficiently large
; VK;
ZCZ (02,i + Ki{o3,i )

VK]
AK; |V K| (VAK;,VK;)
>Za1 )\n 2+’72 /\2+73R2K)\ + VaK;

K[ VE 233 I (643)

, AK,
s ey + O v E 4 P,

>3]

In case AK; > 0 or |VK;| > € for € > 0 small we immediately obtain
H, AK;

" o + ot VK| (VAK;,VK;)
2 TR T PR, UK VE A3 -
> ;| 1AK] lw{i'] o
A2 K2 K\
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for some ¢ > 0 and all A; > 0 sufficiently large choosing x; such, that

H | (VAK,VK) _ H,
Vaki KAVKA)\? - )\?72

; 6.45

g )\’;7,72 ( )

Moreover (6.44) holds true as well for n = 3 and by Condy for n = 4. For
n=>5, AK; <0 and |VK;| <e (6.46)

we may according to Conds assume, that (VAK;, VK;) > |AK;|?. Thus

AK;  3|VE)| 3(VAK; VK

- : 4
KiA2 2 KN 2 K |VKA (6:47)

Choosing therefore k; such, that %72 < Y3k, %’}/2 < 74k, then (6.44) holds true
as well and thus in any case. We conclude

VEi)

Zci((fz,i + Ki(03,4, VK|

’ 6.48)
H, |AK| |VEK]| , (
202[)\2%2 i oW c;% +O(|0T (u)[?).
Since o, = O(]6.J(u)|) by definition, the claim follows.
In case w > 0 we have due to corollaries 5.3, 5.6 and (5.47)
(i) ~ Wi -
02, =N« a2 )3 Z ajAiOy€ij + R (6.49)
KA ? i#j=1
(i) . VK, S
03, = 'YZCVim + 4 Z Olj)\*ivai&',j + R3; (6.50)
i#j=1
where

Rii = 0(3. —ar + 3 ) + O(8.1w)) (6.51)

r )\r 2 r#s

and the same arguments apply in a simpler way. O

6.2 Leaving V(w, p, €)
In this subsection we consider a flow line
U=Uyp+alp;+vEV(wp,e)
and we wish to define piecewise differentiable continuous function in time
¥z (@i Ni)i=1,...p — V(@i Ni)i=1,....p)

with the fundamental properties
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(i) Y — —o0 as \; —> 00 forsome i=1,...,p
(ii) ¢’ € L'(R,) is integrable in time.

The existence of such a function implies, that a flow line cannot at once remain
in V(w,p,e) for all times and concentrate in the sense, that \; — oo.
The subsequent propositions are devoted to prove their existence under the
dimensional conditions Cond,,, cf. definition 1.2.

Proposition 6.6 (Case n =3, w =0).
Let n =3 and Conds hold true. Ordering

1 1
—_— > ... > —
AT T A
the piecewise differentiable continuous function ¢ =, C*In /\% satisfies

Y >Z—+Zeu+o (16T (w)[?),
i>]
provided C' > 1 1is sufficiently large

In view of corollary 4.7 the positive sign of the mass related terms Ij is

rather obvious and the orderlng - > .2 )\i and choice of C' > 1 ensure,
that the interaction related terms are of pOblthe sign as well.

Proof of proposition 6.6.
As M is not conformally equivalent to the standard sphere S, the positive mass
theorem holds. Thus H; > 0 in the statement of corollary 4.7

}\1 T Hl b

i &y
i#j=1 (652)
+ O¢ Zr"";grs +O |6‘]( )l )

for suitable vg,y1 > 0. Then for ¢y = >, C?In )\%, C > 1 there holds

'YOZC“*_'YIZCZ )‘6>\ 51,1}( +0%(1))
i (6.53)
+0:(D ers) + 010 (u)]).

r#s

We complete the definition of ¢ by ordering

1 1
In—>...>In—
n)\1 > 2 n)\p (6.54)
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and claim, that there exists ¢ > 0 such, that for any C' > 1 sufficiently large

-7 Z C 7)\ a)\ €, > CZ C €ig- (655)

i#] i>7

Readily the statement of the proposition follows from this fact.
To prove (6.55) note, that

—ZCZ JAé?Ast: Y ol uaAngchn ])\ Ox, i

i#£] i>] 1<j
—ZCZ uam] Zcz ])\ 05, €1, (6.56)
1<j i<j
=-> 0@ )\ iOn,Eij — Zcz NiOx,€i.5 + Ao €i,5)-
> i<j
One has
—)\i('),\ism» — )\j@,\].&‘@j = (n — 2)5&%)\i)\j7nG2%"(ai,aj) >0 (657)

and for % <1, so for ¢ > j, and € > 0 sufficiently small

—2 Ao A —2
i 6” 2(7 - =4\ /\17nG2 n(alvaj)) > nTgi»j' (658)

,)\ia)\i{:‘i,j :T ij )\j )\

Thus (6.55) follows. O
Proposition 6.7 (Case n =4, w = 0).
Let n =4 and Condy hold true. Ordering
1 1 1 1

e >..>In—
e VI bW

the piecewise differentiable continuous function ¢ =3, % In )\L satisfies

Hi VKZ 2111)\1‘
Y’ ZZ 2 + % + Z&i,j + O(|5J(u)|2),

i>j
provided C > 1 is sufficiently large.

The interaction terms are of correct sign again. Differentiating % in time

[VK;|?In )\,
K2X\?

close to [VK = 0]. Cond, then ensures the 25 terms to be controlled by the

leads to the quantity , which enforces a blow up point a; to come

positive mass related terms %

i

Proof of proposition 6.7.
As M is not conformally equivalent to the standard sphere S*, the positive mass
theorem holds. Thus H; > 0 in the statement of corollary 4.7
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(1) >\z T .Z;IZ AKZ P (7]
W :E[%ﬁ +Wlﬁ — 73 Z ina}\iEi»j](l + 0%(1))
#i=1 IV (6.59)
+ o ZAﬁZem +OZ + 167 (w)?)
r#s
(ii) . 1T |VK|?
K= (L4 04 (1) .
6.60
VK
Z)\z"_zgm—'_‘d‘] )
r#s

for suitable g, 71, 72,73 > 0. Then for ¢ = Z ln +, C > 1 there holds

T i - AKZ ~ |VK1|2
Z/J'ZEZW(VOHHF% i + 92 K2 lnki)(lJrO%i(l))

— % Z % o )\ iOx,2i3(1+ 0 (1)) (6.61)

+o. Z )+ 08 (w)?).

r#s

We complete the definition of ¢ by ordering

and claim, that there exists ¢ > 0 such, that for any C' > 1 sufficiently large

_277“}”2]20205” (6.62)

i#] K i>]

To prove (6.62) note, that by definition for any pair ¢ > j we have

) Ind ) Int
(CT =02 < (O = &) X (6.63)
i J

or equivalently

In — In — <0 6.64
K, N K, N (6.64)
‘We then have
A i
L =o(F+ )\i)\janﬁ" (ai,aj)), (6.65)
N0
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from which the claim follows as when proving (6.55). Otherwise we have

Aj

)\i 2
>c(—+ Aidjn Gz (as, aj)) (6.66)
by Aj

for some ¢ > 0. This implies i—J >1> i—] and d((a;,a;)) = O()\i) Thus

Cl-C N oA

), (6.67)

yielding a contradiction.
We conclude

’ T @ - AKZ - |VK1|2
(0 ZEZW(%Hﬂr% i + %2 K2 lnki)(lJrO%i(l))

, (6.68)
+33 ) Cleyj + O(16.] (w)]?).

i>j
Thereby the assertion follows immediately due to Condy.

Proposition 6.8 (Case n =5, w =0).
Let n =5 and Conds hold true. For € > 0 small let n. € C§°(R, [0, 1]) with

N(r)=0 for r<e n(r)=1 for r>2 and Ognégg
and
0; = ne(—NAK;) In %AKZ > 0.
Ordering for some k > 0
ln’fl—/wl > > hli” — kO,

the piecewise differentiable continuous function

Y = Z(lnl—wl )

satisfies for C > 1 and a suitable choice of k

H; |VKZ-|2
WY 5 ey A Y e +0(8(w)?),
7 1 1 1 Z;éj

provided d(a;, [VK = 0]) < 1 is sufficiently small for alli=1,...,p.
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Note, that closeness of the blow up points to the critical set [VK = 0] is not
a serious restriction, cf. lemma 6.4 and proposition 6.5.

The interaction terms however are of correct sign again and one is left with
comparing I/é, to Agi . Conds then ensures by differentiating in time, that
MAK; can be absorbed.

Proof of proposition 6.8.
As M is not conformally equivalent to the standard sphere S°, the positive mass
theorem holds. Thus H; > 0 in the statement of corollary 4.7

(i) N v H; AK; ~ q
Y :%[’Ylﬁ + Wzm — Y4 ,Zl OzAiaz\iEi,j](l + 0%(1))
# (6.69)
+ 0. ng +) ers) +O(I0(w)]?)
r#S
(i) - r |VE;|?
K= k K)\Q (1 +0%’(1))
| ‘ (6.70)
+0O( ZAS +) ers 167 (u)?)
r#s
(iii) , r. (VAK; VK;) IVAK;|?
AK;) =—
( z) k[’73 K)\Q V5 K)\4
a; VAK; Vg€
+ Z - 731(1 +or (1) (6.71)
i#£j=1 @i
+o(5- E:v+§}m +O—muﬂ>
r#s
with suitable constants v1,...,7 > 0. Here we have used

IVKI LAK] L1
Z SO +§a,é < Cl0.J (u)

according to lemma 6.5. In view of (6.69) we wish to compare AK; to I; in a
neighbourhood of a critical point with non positive laplacian and this is done
as follows. For 1) as in statement of the proposition consider

—MAK;
0; = ne(-AiAK;) In ——— > 0. (6.72)

Letting s; = —\;AK; we calculate
07 =ni(s)s1n =% 4 ne(s)(In =)’
=@umimf+m@mmﬁy=wrm4%
- € € - € N

where readily
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(i) Pei=0 for 2 <1

o |

(i) 0<We;<4l2+1 for 1<% <2
> 2.

(i) W, =1 for =
From (6.69) and (6.71) we infer

IAK;|2 K\2

r Hz
0; = Veil-nz + (=2
(3

p
o
+u Y OTJ.AiaAiEi,j

7

i#j=1
|IVAK;|? a; VAK;
1 1
T AR T Z L AR Vectld o (1)
+ o, Z/\S ZETS )+ O(]6J (u)]?).
T r#s

Note, that we have —A\;AK; > ¢ for ¥, ; # 0, whence

[VAK;|? " VAK; 1
ﬁezigo dﬂez a;€i =O0(+— a;ci,5)-
SHARN - e ;1 Ak Vascio = O3 Vaisi)
This gives
r H; VAK;, VK;) AK;
0; S%ﬂgi[—’h/\*g + (=2 s \AKZP Z>)KZ-)\%

p p
o 1
+ V4 E 704]' )\ia,\ifiﬂ' + O( E 7)\_Vai€i;j)](1 + O%(l))

? 2

i#j=1 i#j=1
+ 0. ZAB +) era) +O([0T(w) ).
T r#s

Consider for some x > 0 to be defined later on
choo1 ;

By (6.69) and (6.70) we have

(ln%,i), [ Hp  AK |VE;|?In )
K RK,DITN T RRAZ T RN
p
%\ O e .
— V4 Z afi/\zakiaz,J](1+OTi(1))
i#j=1
1
+o:() SCia > ers) + 06T (u)?),
r T r#s
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whence in conjunction with (6.76) there holds

T i ~ Hi AKI ~ |VK1|2
Y’ Z%ZW(%TZ_ T e A1 +0. (1))
i v v

T go 1
_ 74% ;C OTZ[E + ;-919571]/\¢8Ai5i,j(1 + 0/\%(1))
i£]

(6.79)
r i 13(VAK;, VK;), AK;
_%Zijczﬁg,i(—vﬁ AP )Ki)\%(l-l—o%i(l))
i
+O(Y T IVaiis )+ 0-(3 er) + 00 (W) ).
1#] ¢ r#s
We complete the definition of ¢ by ordering

R 22— 6.80
i Kb > ... > K, K0, ( )

and claim, that there exists ¢ > 0 such, that for any C' > 1 sufficiently large

0y 1 i
- Z c oTJZ-[E + e, AiOx €15 2 620 €ij (6.81)
1] >
and
Ct j
> 3 Vaigisl =0()_ ey ). (6.82)
i#j i>j
To prove (6.81), (6.82) note, that by definition for any ¢ > j we have
In -+ n -
i X0 < (CF N p. 6.83
(C7 — CI)( e k0;) < (C" — C7)( e K6;) (6.83)

or equivalently

C’i—C’j1 1 +C’j—Ci1 1

D P T A Pl

K; Ai K; Aj (6.84)
+ n(C’j — Ci)Gi + /i(Ci — Cj)é’j <0.

We then have

A 2
— = 0(7 + )\i)\j’yntn(ai,aj)). (685)
N O

Otherwise we may assume for some ¢ > 0

s by 2
> (S NN G (a4, a4)). (6.86)
by Aj
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This implies ’;—J >1> i—; and d(a;,a;j) = O(Ai) Consequently

ct— I Aj ; ; In )\
1 J 0, N <
K, n ¥ L 4 k(CT —CY —|—/<(C’ C7)0; < O( N

by, (6.87)

whence due to the definition of 6;, see (6.72), there necessarily holds

AK;
In “NAK >1, so —NAK; > 1 (6.88)
€
and we get
(e ] . ) . 2\ )
¢-c lnﬁ—i-n(C]—C”)lnM
By Ai £ (6.89)
. , GAKS In \s
(O — (N AK ) N2 < o)
On the other hand d(a;,a;) = O(/\%) and therefore
Ai
1< ~NAK; = —NAK; +0(1) = = TEAK; +0(1). (6.90)
J
This shows at once 1 < —\AK; < —A\;AK; and we conclude
Ci - Cj )\j ; j —)\jAKj In )\z
2 v _ < 91
e ln)\i—H{(C C)ln—/\iAKi*O( Y ) (6.91)

yielding a contradiction. Thus (6.85) is established, whence (6.81) follows
as when proving (6.55). We are left with estimating

TJ %()‘ Aj ) ’YnValGQ " (a‘laa_])
Z A ‘Vatg'h]' E'LJ| /\1 ‘
P i< AR MG (s a) (6.92)
+o wa‘ :
i#]

whence we immediately obtain (6.82).

We conclude for C' > 1 sufficiently large

AK; | |VEK;|?
_kZK)\Q +’72 e +’Y3| K.2| 1n>\i)(1+0)\%(1))

ﬁkzcﬁéﬂ( ')/2+ |AK1‘2 )KA2(

+9 Y Cleij+ 016 (w)]?).

i>7

L+os(1)  (6.93)
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This gives

ST it 2 13(VAK;, VK;) . AK;
e - - (— 1 (1
P _kZL:C [Kz Kﬁg,z( Y2 + |AK1|2 )]Kz>\12( +OT@( ))
H; VK;|?
+C(ZF+7|K.2)\|2 111)\7:+Z€¢,j)+0(|5<](u)\2).
7 (3 K (3 Z>]

We now decompose P = {1,...,p} = P + P, + P5 with
i) P={ie{l,....p}|-AK; <}

(i) P={ie{l,....p}| x < -AK; <23}

(i) Py={ie{l,...,p}|-AK;>2s}.

(6.94)

Note, that for i € P, U P; we have AK; < 0, whence according to Conds

1
(VAK;, VK;) > §|AK1|2,

in particular VK; # 0 for i € P, U Ps.
For ¢ € P; there holds 9. ; = 0, thus

Y2 L 2
(&, ~eie o g Ve 2 TR
Fori e Py
ﬂ _ s ’73<VAK“VK1> AKZ _ Eé
(Ki Wei(=2 + |AK;|? ))KM? N 2Ki2 AP

since indeed Conds imposed on K can be rewritten as

—Yo |AK|2 >c¢o >0 for a; € U(N) N [AKl < 0},

as 7—2 = 3 by precise calculation, see below.
Choosing therefore
€ < cmin H(a) with ¢ = ¢(K)

we get

(6.95)

(6.96)

(6.97)

(6.98)

(6.99)

(6.100)

since ¥, ; = 1 on ¢ € P3. Letting x = m we get as AK; <0 fori e P

H; VK;|?
1/)/ ZC(Z v + |K2)\L In\; + Ze’:‘i,j) + O(|§J(u)|2)

i>7
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We are left with checking 1—2 = 3. 72 and 3 arise from differentiating

/.\i r AK; nd N — zVKi
a. 1az_73kKi>\i

=Y ——s+... 6.102
N PR T T (6.102)

where 72 = 22, 3 = &2, cf. corollary 4.7. According to (7.18) and (7.20)

cr = (”_2)2/ it L (”_2)2/ - (6.103)
R R

4 » (L r2)nez 7 n w (14 r2)nt2’

whereas according to (4.30) and (4.31)

~(n—2) r2(r? —1) and e n—2 r?
€y = /n ( d 3 = /Rn ( (6104)

4in 1+ r2)ntl n 1+ r2)ntl

One obtains oo
2% g (6.105)

2 C3€2

The proof is thereby complete. O

The strategy in case w > 0 is independent of the dimension the same as
when proving proposition 6.6. Note, that in comparison to propositions 6.6, 6.7
and 6.8 the contribution of the positive mass related term % is replaced by

the positive terms —=24-.
A, 2

i

Proposition 6.9 (Case w > 0).
Let n =3,4,5. Ordering

1 1
— ... > —
AT TN
the function 1 =, C*In - satisfies
w;
VY Y ey + 06T (w)]?),
PN i>j
provided C' > 1 1is sufficiently large.
Proof of proposition 6.9.
This follows analogously to the proof of proposition 6.6. O

6.3 Proving the theorems
6.3.1 Proof of theorem 1

Let us consider a flow line, which is a solution of the evolution equation

1 = _2n_
Opu = —E(R —rK)u, up = u(-,0) >0 with /Ku(;“2 =1. (6.106)
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The flow line exists for all times according to corollary 2.9 and we know
Jw)=r\y Joo =To and |6J(u)] — 0 as t — oo. (6.107)

due to proposition 2.11.

Thus a flow line is of Palais-Smale type and due to the concentration-
compactness principle, cf. proposition 3.1, the flow line is precompact in some
V(w,p,€), cf. definition 3.9 and the remarks following.

Taking the unicity result on a limiting critical point into account, cf. propo-
sition 3.13, we obtain convergence of the flow line to a critical point of J, once
the flow line is precompact in V(w, 0,¢). In other words the flow line converges
strongly, if and only if it converges along a sequence in time, and in this case
we are done.

Thus we wish to lead to a contradiction the scenario, that for some p > 1
the flow line is precompact in some V(w, p, €).

By assumption of theorem 1 the dimensional condition Cond,, hold true, so
0J is principally lower bounded, cf. proposition 6.5. Taking the unicity result
on a limiting critical point at infinity into account, cf. proposition 6.3, we may
assume, that the flow line remains for all times in V(w,p,e) and goes deeper
and deeper in the sense, that

VO0<e<edT>0Vt>T : ut) € V(iw,p,e). (6.108)

In particular the unique representation u = u, g + '@, A, + v given by propo-
sition 3.10 is well defined for all times and we have \; — oo as t — oo.
Moreover the blow up points a; converge to [VK = 0], cf. lemma 6.4. Recalling
the explanatory introduction of the previous subsection the functions given by
propositions 6.6,6.7,6.8 and 6.9 then yield the desired contradiction.

6.3.2 Proving theorem 2
First of all note, that on V(p,e) we have according to definition 3.9

> O‘? f Lgypipi > 0‘12

J(u) = — +o:(1)=co i —— +o.(1) (6.109)

- _2n_ _2n_ _2n_
(a2 [ Kol )5 (0 K=

4
with > = W + 0:(1). Therefore

Jw) = oy Kigg 13 1 0.(1). (6.110)

?

From this it is clear, that the least critical energy level at infinity is
Co

— 6.111
(max K"+ ( )

Joo7min =

Thus, if we start a flow line v with (0, -) = ug, where

Up = QPayx, € V(1,€), d(ap, [ =max K]) <¢
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and ¢ > 0 is sufficiently small, we may assume, that u remains in V(1,¢) for all

times and d(a, [K = max K]) = o-(1).
Indeed according to definition 3.11 and the remarks following u is precompact
with respect to V(w,p, ). Since we want to prove the existence of a non
trivial solution w > 0, we may argue by contradiction and assume, that no
non trivial solution exists, that is w = 0. So u is precompact with respect to
V(p,e). Moreover, if for some time sequence t;, — oo we had u;, € V(p,ex)
with e, \(0 and p > 2, then (6.110) would imply

3o

1 2 P
J(ug, ) =c — )" + 0. (1) > co———= + 0., (1), 6.112
(1) = () 0 () 2 By Hoa (1), (6112

3

whence without loss of generality J(uy, ) > J(ug); contradicting 9;J(u) < 0.

Therefore u is precompact with respect to V(1,¢). Likewise we obtain

d(a,[K = max K]) = o.(1), since otherwise J(u¢,) > J(ug).
Repeating now the arguments for proposition 6.5 it is obvious, that dJ is prin-
cipally lower bounded along the flow line u, since due to Cond], the dimen-
sional conditions Cond,,, cf. definition 1.2 are satisfied at the critical level
[ = max K], to which a is close. Therefore the results on the principal be-
haviour proven in subsection 6.1 hold true for the flow line w, in particular
d(a,[VK = 0]) — 0. On the other hand we have

max K — K| [vk=0)\[K=max K]> 0 (6.113)
for some 6 > 0 and d(a, [K = max K]) = 0.(1). Thus we may assume
a — [K = max K. (6.114)

Finally note, that the statement of propositions 6.6,6.7 and 6.8 remain valid
for the functions constructed there, since as before Cond,, implies, that Cond,,
is satisfied at the critical level [K = max K], to which a is close. Thus we
arrive at the same contradiction as before, whence u has to be precompact in
some V(w,p,e) with w > 0 being a non trivial solution. The proof is thereby
complete.

6.4 A diverging scenario

We give a non trivial example of a non compact flow line.

Lemma 6.10 (Non-compact flow line with flatness).
Let n =5 and up = qoPay,n, With ag close to 0 € M, where

K(@)=1- ) |zl

i=1,...,5

in local normal conformal coordinates.
Then for € > 0 small there exists 0 < €9 < € such, that the flow line u with
initial data ug remains in V(1,¢€) for all times, provided
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(i) a0Pag.re €V (1,e0) and ky, = fKué%Q =1
(i) |laol| < €0 and Mollao||? > &5
(iii) (ai)o = (aj)o >0 for alli,j=1,...,5.
Moreover u converges to a critical point at infinity in the sense, that
A— 00 and |ja|| — 0 as t — .

Note, that K does not satisfy condition C'onds, cf. definition 1.2, since
7
(VAK,VK) = §|AK\2 on B.(0),
but K satisfies the flatness condition of Theorem 0.1 in [23], cf. [24], [19].

Proof. In order to prove, that u remains in V(1,¢) for all times let us define

T=sup{T>0| VO<t<7 :ueV(le), |a| <e Aa|* >e™*
) 6.115
ab_<l\1/§f0rall ij=1,...,n}. ( )

We then have to show T' = co.
Note, that we may assume J(ugp) < C independent of 0 < g9 < 1, whence

| 1100 < etr) (6.116)
0

independent of the smallness of 0 < ¢ < 1.
According to corollary 4.7 the relevant evolution equations are

3 S e 050

a 2
+olyp) + oV EWE

(6.117)
+10J(u)?)

and

T ey )1+ 03 (1)

+olg) + oL

where 7 = 4n(n — 1) + o(1) = 80(1 + 0.(1)) according to (4.35). Moreover

(6.118)
+16J(u)[?),

VK (a) = —4|a|*a, AK(a) = —12||al|* and VAK(a) = —24a.  (6.119)
We obtain during (0,7") the simplified evolution equations

A AK (a)
x0T

(1+0-(1)) + O(|6.J (w)]?) (6.120)
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and

xi = 8055 5 (1o, (1)) 4 08I (0) 2. (6.121)
First note, that during (0,7
Ol =3 (a, A}
ZCWQ +o.(1)) + 0(7”6“”5;](“”2) (6.122)
<0( ||aH|5AJ(U)I2)’
whence
i In |lal? < 0(|5;7|TZ|)||2).

1

But Ala] = Az(Aa]?)2 > ce~! during (0,7) by definition. Therefore |al|
remains uniformly small, e.g.||a]| < Ceg. Let us calculate

(\AK (a)) :émma) + (VAK (a), \a)

=~ 505 2K o, ) 6123
+ 8075 <VAK(G;’ VE@) (1 4o 1))
+O((]NAK (a)| + [VAK (a)])[6. () ).
Since |AAK (a)| = 12A|al|? > ce~! during (0,T), we obtain
5 5
e =12l 420 D) o
+O(NAK (a)[[8 (u) ) (6.124)
<(—12% - 5% ypamy, +4-5- 2473 afnax)l%’g(l)
+O(NAK (a)||67 (w)[?),
where we used a; > 0 during (0,7") and let
Gmin = min{a; |i=1,...,n} and amax = max{a; |i=1,...,n}. (6.125)
Due to 22 =3, cf. (6.105), and ag,ax < 307, during (0,7) we get
(AAK (a)) <O(INAK (a)|[6J] (u)[?). (6.126)
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Therefore
o In(=AAK (a)) > O(|6J (w)]?) (6.127)
and we conclude using (6.116), that
12)[|a]|2 = —AAK (a) > —XAK (ag)e=CJo™ 197(II° — 190 |lao||>  (6.128)

remains during (0, 7T) uniformly large, say Al|a||? > c5'. Moreover

X s “;(“) (1+ 0:(1)) + O(I8.](w)|?)
__ c”i—!g + O8I (w)|?) (6.129)
< S + 08I (W),

whence
N+ NO([6T(w)?) > Ce7t. (6.130)
Letting ¥ = A3 this becomes
D+ 90(]6.J (u)|?) > Ce™L. (6.131)
Thus for () = 9(t)els OUS7(WF) there holds
#(t) =( + 9016 (w)[2)) (t)els OUSTWI*) > ce=1els OUST@P)  (6.132)
and therefore
F(t) > ce?, (6.133)

whence

9(0) = 7(0) < 7(t) = 9(t)elo O < cw(1), (6.134)

so ¥ and thereby A remain uniformly large, say A > cey ! Finally note, that

(Gy ZAG 4Ny
aj _)\aj aj )\aj
lail?a;  a; |aj]?a; 6] (u)]?
=- — 2 1+ 0.(1 .
aq, ~a, azg, 10 +0(=17) (6.135)
a; 1 o 2 |6.] (u)|?
:—Cafjﬁﬂai\ — |aj| )(1+Os(1))+O(T),
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whence without loss of generality we may assume

(amax) < |5J( )|2 in case Gmax > 4 §
Amin )\amln Amin 4

But during (0,T") we have

2
)\amin Z </;)\amax 2 C/\HCI,H

and A|lal| = A2 (A|a]|?)2 > &', whence

Oy 1n(amax) < CeldJ(u)?* in case Gmax o §

min Qmin 4

Consequently we may assume

a; 45 .
D2 q 0,7).
py \/g uring (0,7)

So far we have seen, that during (0,7') we may assume

al| < Ceg, M|al|? > cegty A > esg? and&< §
|| H 05 0 > 0

a; 3
In order to show T' = oo it remains to prove

u€ V(l,g) during (0,7).

(6.136)

(6.137)

(6.138)

(6.139)

(6.140)

By definition 3.9 and the remarks thereafter this is equivalent to showing

- ran- 2K( )
dn(n — 1)k
To that end let us expand using k =1

J(u) =r = /Lgouu = /Lgo(ocha,,\ +v) (e +v)

€
| llw = agaxll = lloll < 3

:QQ/LgogoaAgpaA+2a/Lg0¢a,Av+/Lgovv.

Due to lemmata 3.3 and 3.5 we have with n =5
/Lgogpm,\(pa,)\ =4dn(n —1)co + o%(l).

Moreover from lemma 3.3 we get

Lgoapt _ [ 253
mn:/%’f““;() Kegxlvtox(1)

—a 2 /K(u —v)ﬁgoa)\v—f—ol(l)

4
__ Q" m- 2/Ku" 230(1,\11 +0(||U|| )+

*1/K@;A2v2+o<nvn2>+o (1).

S
DY
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We conclude

32n(n — 1 4
J(u) =4n(n — 1)coa® + /Lgovv — %/S":}\Q 02

-2 (6.145)
+01(1) +o[Jvll*)
On the other hand we have
1=k = /Ku% :/K(asoa,)\—i—v)%
2n 2n_ 2 n nt2
—ait Ko, 37 + - fQOzntg Kp;3tv (6.146)
n n+2 _a =
o ars [ Ko+ olulP)
Considering the second summand above we obtain using (6.144)
_ 4
| —aey 4 wa / 20+ or (1) + ol [[0]?), (6.147)
whence
_n=2 6—n _nt2 A
oma Tt g ™ [l o ol (6149
and therefore
_2 06— 4
coa® =co " + - _Z /ga;;\(" v? + o%(l) + o(|[v]|?). (6.149)
We conclude
2
J(u) =4dn(n — D)eg
n+2 e
+ /Lgovv —4n(n — 1)m /90;‘7;\2 v+ o1(1)+ o(||v]|*)
2 (6.150)
>dn(n — 1)c§
4
ren [ (190, ~ (0 +2) [ o257 ) o3 0+ ollol?)
and thus by means of proposition 4.5,
2
J(u) = 4dn(n — L)cg +o1(1) + c|jv|)?. (6.151)
But J(u) < J(ug) = 4n(n — 1)00% + O(%O) and therefore
ol = 0y, 2 (1) (6.152)

0
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remains uniformly small during (0,7). Finally we infer from (6.148), that «
n—2

2n

remains uniformly close to ¢, , in particular

TozﬁK(a) _aﬁ‘](u)
4n(n — 1)k 4n(n—1) +O(llal)

a2 (6.153)
=am2cg + O(|lall + [[v]]) + 01 (1)
=1+ O(lall + [lv]l) + 01 (1),
whence .
ra 2 K(a)
_ .154
| dn(n — 1)k| (6.154)

remains uniformly small. This completes the proof of T' = oo, which is to say,
that v remains in V(1,¢). Turning back to (6.133) we then get 7 > t as t — o0,
whence according to (6.134)

9=\ >ct. (6.155)
Finally (6.119) and (6.122) show
! 8. (u)|? ]l 16 (u)[?
Since Al|al|? and therefore A||a|| as well remain large we obtain
2 alf? 2
Oln|la|* < —c 2 + O(|6J (uw)|*), (6.157)
whence due to (6.119) and (6.120)
A
d¢In lal?* < —cT + O(|6J(w)]?) = —cd In A + O(|6.T (u)|?). (6.158)
Therefore A — oo implies ||a| — 0. O

7 Appendix

Lemma 7.1. .\
Let (M™, go) be a Riemannian manifold, g(t) = u»=2(t)go, w > 0. There holds

()

2n_
dpg = un=2djpg,

(i)

Tk

k
QF 1,7

2
ij = ali;+ —3u (Oudf + 0jusy — gy ;)
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(iii)

Dl _nl
B jw =1,

gkt 3 2U_1[V?,W5§ — Vi ug"?g;
— Vikudé + V?,pugl'pgi7k]

— (nz_inz)zuﬂ[viuvku% — Viuvpugl’pgjyk
— Vjuvkuéf- + Vjuvpugl’pgi7k
+ 219yl — 2 [Vulg148)]

(iv)

Rip =Ry +

— 2u_l[(n — 2)V§’ku — Aug; 1]

u 2 [nVuViu — |VU\29i,k}
n—2

(v) R=R, = wRE —ep Au + Rgu] = 1F%Lgou7 i.e.

n+2

u R Ly (uv) = Ly(v)
(vi) and for Oyu = —3(R — rK)u we have

R 4 _ R
5‘,5R = CnAg? + m(R — TK)?
Lemma 7.2. [Local bound and higher integrability, cf. [27], Theorem A.1.]
Let P € C>(M), p> 2% and r > 0 small.
There exists C = C(p,r) such, that for uw > 0 solving Lg,u = Pu with

2n Y(Mag())
U2 5 oon <3 5
go (P2r(To n — P
we have

||U||L§0(B,.(wo)) < Ol
Proof of lemma 3.3.

A straight forward calculation shows

2n

L% (Bar(wo))

A n-2 n Pa,\ | nt2 2553
By ()T =5 w5 7)) VGalg, Ga’
14+ A2, GE" a (7.1)
+ A (E2)TE G A, G,
Uq

100



which is due to

2% %ﬂ —6 +R aG
VG|, Ga> " = (n—2)*|VGi |2 and Ay G, = %
where §, denotes the Dirac measure at a, equivalent to
A n-2 Pa,\ 71 12
Ago ()77 =n2-n)m(" kd\verads
14+ X2y, G a
R n a,
+ ga Y )\(90 )\) 2G2 n
Cn Ugq
Since Ly, = —cpyAg, + Ry, with ¢, = 42=L we obtain
Ly, 222 —gn(n — 1)(@)71 [ VGT T2,
+Rga(pa7)\( G2 n(‘paA)2 ")
a
Pa,\ \ nt2 n R o 1 Pa)y o
=dn(n —1)(= == ) SverT |2 T + ()
Uq
By conformal invariance, cf. lemma 7.1, we conclude
nt2
Lgogoa,)\ :u;—z Lga @a,)\
Uq
=
n+2 (;(1* R . n%
_4TL( )(pa)\ ,YW|VG2 n‘2 Y . Soa,)\z’

nt2
in particular Ly . = O(p.*). Expanding

1

Ga = dn(n — 1wy,

(rg_n + Ha)’ Ta = dya (a, )
we derive

_1
Yl VGET [, =V (ra(141572H,)=7)|3

|ga

1
:|V7”a( nrg_QHa+O(|TZL—2Ha|2))

2 —
1
+7o(—r) P VraHy + —r{ﬂVHa
2—n

+O(|ri ™ Ho| |V (ra = Ha) )13,

whence

1
7n|Vth_"

Ga
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Thus we conclude

n+2 n+2

Lgypa =4n(n — 1)90;,;\2 —2ncy((n —1)H, + Taa7'aHa)T272<p;,;\2
2

+o(ry T Pes ) + =

o __
n—2

A <pa,)\ .
For Ry, = O(r2) and ARy, = —¢|W(a)|? cf. [22].
Proof of lemma 3.5.

These kind of expansions are well known, cf. [6]. Using but just slightly modified

bubbles we nonetheless repeat their proves.

(i) We have
1
(¢k,i)k:1,2,3 =(<,0i, _AiaAiQPi, ;Vai@i)v
o)
i n—
1,4 =g, (—— )T
14+ Xy.Ga "
and
2
p 4:n—2/\§fynG§i‘"‘ -1
2,1 2 9 ﬁ 2%
AvGa, " +1
and
2
n—2 Aivn Ve, GE " Va;Ua;
@3, = — 5 las ——©; VAR
1_’_)\12,%16713:71 Uq,; Ai

Note, that in z ~ exp, x coordinates

WmGa; " (x) =17+ 0(r™),
cf. definition 3.2 and
Y (Va, G3 7 ) (@) = =20+ O(r™ ).

Moreover u,, = 1 + O(r?). The assertion readily follows.

(i) (@) Case k=1
We have ¢, ; = ; for k =1 and thus for ¢ > 0 small

2 Ai n 1
Yi = ( ——) dpg,, +O()\7)-
Be(ai) 14 A2y, Ga; " i
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By definition 3.2 one has passing to x ~ exp, =z coordinates

[o = [ (a0l ) o)

1+ A2r2 1+ A2r2 2
Be(©) X X X (7.17)
- 0 =1+ O0(——)-
/ L+ (A?‘Q) “at ()\?_2)
Bex,; (0)

B) Case k=2

The proof runs analogously to the one of case k = 1 above yielding

n —2)2 r2 — 12
e =L " ) /(1+r2)T|L+2 (7.18)

() Case k=3
We have

2

2 —n MV, Ga " Va,Ua;

qbk,’i = 2 i - 2 Vi + - -
1+ A2, Ga "

i 7.19
Nitla, Pis ( )

whence using v, (V,,Ga; " )(z) = =22 + O(r"~1) and u,, = O(r?)

2wt (n—2)? r’ 1 1
/|¢k,z| 2 - n / (1 +7‘2)"+2 + O(/\TL—Q + /\22)
. . i (7.20)

(iii) () Case k=1

Due to lemma 3.3 and case (v) we have for ¢ > 0 small

n+2 L <P<P
n—=2 . _ gortiy .
/goz ()0] / 4n(n _ 1) + 0(617])

Be(as) (7.21)
_ [ Lgopip; N
_/ 4dn(n —1) toleis),

whence by [ Ly, i0; = [ ¢iLg,; and backward calculation

nt2 nt2
n—2 n—2
/‘Pi ©j :/%% + o(ei,5)- (7.22)
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Thus we may assume )\i < 5o We get

J

/% P = / (—————=)¢
1+ X2y,Ga, "

Be(a:)
Ug )\ n—2
H(——) T dpg,,  (7.23)
Uai 1 4 /\Jz.%G(i;”
1 1
+O0( gz )
AT
142 n—2
Clearly A; > A, ? =o(e;;) and in 2 ~ exp, (z) coordinates
2
Ug, () =1+ 0(r?) and ~,Ga " (z) = r* +0O(r"), (7.24)

whence using case (v)

stz Ua, (44)
Y Pj= (1 n 7”2) niz

Bex, (0)
1 n=2
N = )7 +o(eig)
A AN CE T (exp,, £)
(7.25)
1 1
Due to X < N, we have
_2 2 2 )\i
ey’ ~ A mGao " (ai,a;) or efyT ~ (7.26)
J

and may expand on

T 2 T 1
= — < 2v7n ; —| < e— . .
A [M' < e\ mGE (a)| U h < e/\j] C Bon,(0)  (7.27)

for € > 0 sufficiently small

Ai = T\ 2=n
()\7; + AiXj1nGa; " (exp,, )\7)) 2

/\i 2 2—n
=(— + N nGé.‘" i 2
2 — VG, " (ai) Az + O(3E|z]?)

2 "
2 (A ANGE T (a)

)

Thus by (7.25)

n42 4

/901‘7{72 Yj = Z I+ o(ei 5) (7.29)

k=1
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with

I uu’.} a’l /
o 7.30
( +)‘)‘j7nG§JH al 2 1+ ( )
and
2
Lﬂ“a-(%’)%ﬂu VGF(M))\ i
L=- \i : ; Py n / 1 - n-2¢-2 (731)
(3 + AN WG (@) 8 4 (1472
and
(ay O(ﬁ|x|2)
I3 = Ya; (a,) i
- Ai 25 n 2\ 22 (732)
(T; + AN Ga " (a;)2 YA (1+72)"
and

ua'(ai) 1 =

N :/ - ni2 ( 2 ) o (7 33)

2)"57 " o 3 |
Ae (I1+r2)= % + Aidj G, (engﬂrz‘ AT)

Note, that since A; > A;, A tends to cover R" as €; ; — 0. Thus

I =b;

uaj(ai)
RV vt LR ()
(Aj +)‘1)‘J'YnGaj (a;)) ™=

whereas I, = 0 by radial symmetry and I3 = o(e; ;). Moreover

I4 = O(Eiﬂ') (735)
_2
in case ;" G~ % Otherwise we decompose
A° cBi U BQ, (736)

where for a sufficiently large constant £ > 0

2 x 2
By =[eVmGE 7 (@) < 5| < BV 1GE ™ ()] (7.37)

and

By =[E\/ vGa; " (ai) < |

IN
o,

(7.38)

s
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We then may estimate

uaj(ai) 1 n—2
Ii :/( nTJrz( P ) 2

L) 2 e - AN GE T (expy, )

o)
< —
5 n+2

(L + NG, " (@)=

1

1 n-2
/ ( o )
1+ A,Ga; " (expy, %)

2
I |SEY mGE T (a:)]

Changing coordinates via d; j = exp;1 exp,, we get
g a;

Il < . / (s

5 n+2 2
(R + AN GE ™ (a:) ™ Lor

(15 1<Bd(ai.a,)]

(7.39)

(7.40)

and thus I} = o(e; ;), since we may assume \; < ;. Moreover

U, (a;) 1 n—2
Iy :/ : S ( /\ 5 )7
(1+72)"2 LA AN Gy " (expy, X0)

< C

- 2 n—2

(3 + A GE ™ (00) 5
/ :
(141r2) =n

2
[l >\ A9 G2, (a)]

2

=o(ei ),
2
since A\?y,Gq, " (a;) > 1 in this case. Therefore
Iy < Ij + IF = o(ei j).

Collecting terms we get

n+2

/%"_2%‘ =l +o(gi ;)

Due to conformal invariance there holds

Ga,(aj,ai) = ug ! (ai)ug ' (a;)G o (as, a7)

aj

and we conclude

s by
/% i = 3 +o(ei)-

o n—2

(8 + XX G, " (i, a5)) "=

The claim follows.
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8) Case k=2
First we deal with the case /\% < % For ¢ > 0 small we get

nt2
—Aj / P 0N P

n — 2 / )‘Z n+2 U/aj
=7 - =)
2 2—n a;
B.(a;) 1+ )\i fynGai
2 7.46
by n2 MnGa, " — 1 (746)
——) 7 3 dpg,,
L+ Ny Ga " NynGay " +1
1 1
+ O( n+2 n—2 )
AN

_nt2 _n-2
Clearly A, * A, * =o(e;;), whence as before

n+2
_Aj /@in—2 a)\jgoj

2
AjinGa; " (expy, 37) — 1

n—2 / Uq, (a;)
2 2)252 = x
Bex, (0) (L4727 A?'Ynng (engai )7) +1 (7.47)

—2

3

N‘

L )

% + XX Ga, " (expgai )

+ O(E@j).
Due to /\% < % we have
2 2 = A
Ei,j ~ AiAj7nG27" (ai, a]‘) or €i7j ~ r (748)
J

and may expand on
A [| ‘ <— € V ) Ga7 n(ai)} ~ [| | <— € } (‘ E)

for € > 0 sufficiently small
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1

n—2

_2
(% + )\Z)\]'ynGéj" (engai )\%)) )

2
MmGa; " (expy, ) — 1

>z

2
A3ynGa; " (expy, ) +1
2
i 2 —n A2 HG;_" a;)—1
= (T + )\z)\j’y'nG;;” (a/b))2T er ]i( )
j NynGa; " (ai) +1

—n  WmVGE " (a)\jz AjmGa; " (a;) — 1

2 n 2
2 (3 AN MGE T (01)F MG, () + 1

+

9 Y VGa, " (a)\jx
(3 + N\ 1nGE " (a0)F 1+ N2ywGZ, " (ar)
A
O(,\ﬁ|93|2)

_2 " :
(ij + AiNjvnGa; " (i)

+

1

n—2
nt2
(1+7r2) 2

By radial symmetry we then get with by = 2= [

nt2
n—2
—Aj/% o

2
byug, (i) Ny, GET (a;) — 1
= n 3
(% + )\z)\]P)/nngn (ai))TZ )\3771(;5;” (al) + 1

(7.51)
+ 0(61'7]')

and thus by conformal invariance

2

\ n2 (NG, " (aiyag) — )
A [ @O0 = =z - 9
(3 + AN WGE " (ai,a))E  (752)

+ 0(61'73').

We turn to the case /\% > % By the same reasoning as for (7.23)

n+2 n+2
= /%’“23&% ==X [ @iOx ;" +oleiy) (7.53)
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For ¢ > 0 small we get

n42
—Aj /Lpia’\j‘%‘w2
= 7 / (ﬁ) 2
B.(a;) 1+ )\i ’YnGai
2 7.54
Ua, Aj ng2 AJynGa, " — 1 e
” ( =) ? 2 d'ugaj
a; 14+ A?’}/TLG;;n A?’YnGg;n + 1
1 1
+ O( nt2 n—2 )a
/\j 2 /\z 2
whence
s
= / v, 0]~
= 5 5
2 BA.(O)T +1'1+r (7.55)
Uq,; ((L)
A ﬁj x|\ 22 +0(€i’j)'
()\71 + )\ZAJIYnGal (expgaj )\7])) 2
We may expand on
T En X 1
A=l3- < eVmGa " (a)] U “E' < fyi]

J

for € > 0 sufficiently small

)\‘ % xr 2—n
(52 + AiAj1nGa, ™ (expy, 1)) 2
2-n
2
(7.56)

A 2
:(/\4 + AiXNjvnGa; " (aj))

7 (@) + OC%[f2)

2 —nmVGa
2 3+ MAGE T (a)F
This gives with indeed by = 22 :ZH (H% = n-2 f(H_%)nTH
_)‘j/%‘z%gaxj@j =by uai(ai
(3 + A\ Ga, ()= (7.57)

+o(ei ;)
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and we conclude by conformal invariance

n4+2 b2

n—2

( + A /\JVnGgo (auaj)) E (758)

+ O(Ei,j).
(7.52) and (7.58) then prove the claim.
() Case k=3

< L. For ¢ > 0 small we get

First we consider the case )\i v
i J

n+2
n— 2
N / vaj QD]

2—n i nt2 Ug,
= / (———) @T
1+/\12’YnG02,1_n a;

Bc(ai)
. (7.59)
)\j )nTﬂ /\j’anaj G;]é dugat
14 /\QWTLG(fJ B 14 /\27,LG§J B
nt2 Vajuaj 1 1
+o( [ WA+ g )
Uq,; Aj )‘z 2 )\j 2

Bc(ai)

Due to case (v) we obtain passing to x =~ exp, (z) coordinates

_ 2v ey

2—n / Uq, (ai) AjnVa, ng ' (eng ’\%)
_ 7.60
2 (L+72)%5" 1 4 A%nGif” (expg,, 57) o

Bex, (0
1 n—
)T +oles).

_2
7—|—)\ iNj1mGa, " (expg /\%)

Since

2 2
el ~ NN GER "(al,a]) or g ;" ~ —

we may expand on

2 1
A=l S VnGTT @)UlIf] el (T62)
i J
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for € > 0 sufficiently small as before to obtain

n+2
7\/ L 2va]<pj

ta, (1) Aﬂnva,Gﬂ( i) (7.63)

— by
(3 + A Aﬂntj "(a)) T 1+ >\2%G§J " (ai)
+ O(Ei j)
with by = 252 f T This gives

2
1 n+t2 Ua; ai))\mnVaJ.sz” CLZ‘)
)\*/‘P; zvaj@j:_bg )\.( ;J (
! Svisy AidjmnGa; ™ (a;))

(7.64)

B

+ O(EZ'J),
whence by conformal invariance
2
—b )\2 nV G;ﬂ a;, a;
3 7 90 ( J) + O(Ei,j)- (765)

n+2
7/ n— 2vaj@j — -
( + A /\J%LGQO (ai,a;))=

We turn to the case )‘i > % As before

n+2
)\ / Va,0; —/\ /@N@p

and for ¢ > 0 small we obtain by arguments familiar by now

n+2

+ o(eiz) (7.66)

n+2

7/@zvaj(p
. n+2 ( 1 )"772
=T N s N
B(;)\j (a;) b + )\ZAj’ynGai (expgaj )\j) (767)
2
Ua; (@)A1 Va; Ga; ™ (expy, 35)
(147 )n;4
+ 0(€i,j)7
whence
n+2
7/g0lvaj n 2
Ug, (@)
vy [ e
(1+7r2)>=
Bex, (aj) (7.68)
1 n—2
(5 = )
AN G (expy, 3
—+ O(Ei,j).
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Expanding on
T 2= T 1
=l eVrmGa™ ()] U] < e (7.69)
y]

for € > 0 sufficiently small we derive

2
Uq,; \Q i nva'G;;ﬁ a;
7/9074 aJ —b 1( .7) v ,7i ( ]n) +0(€i’j) (770)
(3 + X1 GE " (a:)#
with indeed by = (U2 [t = 252 ()" Thus
N ANV, Ga” (i, ay)
i Va; P = 5 -
. J (32 + AN GE ™ (ag, a5)) 3 (7.71)
+0(€i,j)

by conformal invariance. From (7.65), (7.71) the claim follows.
(iv) Due to (7.11), (7.12), (7.13) and
2 2
YGa " =12+ O(™), v Ve, Ga " = =2z + O(r" ), (7.72)
cf. definition 3.2 we have on B,(a;) for ¢ > 0 small

(@)

Y n—2 n_2 by n_g2
b1, —Uaz(l npyR 5) 2 +0(r (W) ) (7.73)
(B)
n—2 )\2r2 -1 i n—2
¢2,i = Ua; 1o 2 ( z2 Q)T
2 Agr —/i\— 11+ Xr (7.74)
n—2 J ”—;2
+O0r (1 + /\?TQ) )
()
n—2 )\Zl‘ /\z n—2
$3i =~ 9 i —|—)\?r2(1 +)\fr2)
A\ ., A\ (7.75)
n—2 i 7;;2 r i %
00 () T O () )
(¢)
= _ =1 Ai 2 n—2 Ai 2
P =l () O T ) (170)



Consequently
% % 1
/¢1,i%n_ ®2,i :/ 10, P2+ O(F)
Bc(ai) 7
-1, 1 ., 1
- [ )+ Ol

BL(O)T2+1 1472 Al
Xi

K2

:/:< L oty —ol),

r2+1°14 72 A2 A2

since the integral above vanishes. Alike using radial symmetry

1
/Qﬁlz(ﬂz ¢317/¢2z§01 ¢3z: ()\n 2+)\)

(2
Moreover we have readily have

nt2 1 2n 1 n—2
[ o= -xou 1 va) [ =our0i5 ).

7

(v) Let o/ = 252q, B/ = 2523, s0 o/ 4+ 8/ = n. We distinguish

_2 =2 _2
(Oé) 52;" ~ % \ 82;" ~ AiAijnG27n (ai’aj)

We estimate for ¢ > 0 small

/ o2 of

Aj ,
e g )’
1+ /\ 14 )\2’ynG§] " (exp,, T)

B. (o
Ao L
N / (1+)\2r2) STV
B (0) j
1 ’
o[ '
) (¢ 25 o
Bex, (0) +r ? + XX jmGa; " (expg, 3)
11 Ly
+ CAg/ AP / () Hole)
J Bea; (0)
Thus by fB o 1+r2)ﬂ < C’/\iﬁlf,n we get
/ o]
== / 1+ 7"2 li :
Bex, (0) i, F A1 Ga; " (expg, 37)
+ 0(5i,j)'
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(7.78)

(7.79)

(7.80)

(7.81)



This shows the claim in cases

NN A G (e a) ~ -
+ AN Gay " (as, aj) ~ or d(a;,aj)>3c. (7.82)
SRR by
Else we may assume d(a;,a;) < 3c and
ﬁ ﬁ Ao\ Gﬁ s M\d2(a: - a
)\_ )\ + 1 j’Yn go (C{,“a_])’\‘ 171 (az’a])' (783)
i Y
We then get with B = [$d(a;,a;) < 1| < 2d(ai, aj)]
/w?‘ﬁ
1 / 1 /

< [ (5 )"+ 0

) 1472 i—] + Aidjd?(aj, expy, (5)) 7

1 ’ ]_ !
<(—=)“ ___ = \B
- (1 + |)\id(ai,aj)\2) / (L 4 ﬁr2) (7.84)
[ &1<dd(asa)] 0 N
+0(};)
()7 1 g

<C 1 7+ 0.
<Cormmre | T o)

[r<4X;d(aisa;)]

Note, that in case A\jd(a;,a;) remains bounded, we are done. Else

28 = () d(a;, a;))" 27
(1+ [Nid(ai, aj)[?)e 7 (7.85)
1 o/f%lJrﬁ’ ﬁ B’ B
1+|)\1d(al,a])|2) (AJ) +O(617])>

<o(

whence due to o > 5 the claim follows.
=N
(B8) €~
We estimate for ¢ > 0 small

/w?wf

1 o1
<[ (5 = )
Bex; 0 32+ AidjymGa; " (expg, (35))

1 A 11
+C—,/ — ) 4 O~ =),
N Bc<o>(1+A?7"2) (/\? Af)

) <02 zCﬁ gives

7
n—o
)\1, i

which by fBC(O) ( l+§\%’r‘2
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+ 0(5? ).

2

1 / 1

) (

) 2 2
Brje(® &L+ AA 7 G (expq, (35)) L

)7

(7.87)

By assumption d(a;,a;) < )%_, whence we may replace as before

2
TnGa, " (expy, (

Thus for v > 3

L)) ~ d(ai, exp,, (—
)‘j J

Aj

1 o1

)) on By, c(0).

. A .
since for x| > y§? we may assume using d(a;, a;) < Ai
K3 T

Therefore

[oeet <oy [ e = o6
A" Jlle2y 3 ’

9

z r
d(ai,expaj(y)) > o
j J

i

(vi) By symmetry we may assume - < % and thus

3

2

2—n

.7

i
Aj

2 2

Vel ~ AN Ge, " (aiaj)

115

(7.88)

(7.89)

(7.90)

(7.91)

(7.92)



We estimate for ¢ > 0 small
/ o el

SC/ ( 2.2)° 2
B.0) LEATE T 42y, GT (exp,, )

Ai n )\]

|

1 VI 11
+C—n/ NN L O 7.93
AZ BC(O)(1+)‘?T2) (A? A?) (7.98)

1 1 n
:C/ (1 T2 N 2
Bex,; (0) SE A AN Ga; " (expg, (5))

NE

+O(ln\ef 7).
Thus in cases
Aj A = Ai
= + AN 1 Gay " (aisaj) ~ = or d(a;,a;) > 3c (7.94)
N Y
we obtain

3

/w%%# <Clndel;? + Clndel” < Cln(AA)el;?,  (7.95)

thus [ ¢, = O(sfjj Ineg; ;). Else we may assume d(a;,a;) < 3¢ and
DYDY 2
TZ- + )\7 + AiAjWnGZE” (ai, aj) ~ )\i)\jdz(ai,aj). (796)
J

We then get with B = [$d(a;,a;) <

/cpimwfj
1

]_ n
<C 2
< l(l —|—7“2) (:\\7; + )\Z-Ajd2<aj,eXpai(%>)

i

1 n
/ (£+ﬁ7~2)2

n

+O0(g)';* Ing; )
1
1 + |)\id(ai,aj)|2

w3

<C(

)

[ <dd(asa)] * T N (7.97)
+O(€&%1H5i,j)
]. n )\ n ]. n
<c 5y Ly
- (1+|/\id(ai,aj)|2)2( j)2 / (1+T2)2

[r<4X;d(a;,a;)]
—+ O(é';:]f2 11151‘7]‘)
SCE# In(A;d(a;, aj)) + O(Ez"jj Ineg; ;).

The claim follows, as A\; < A; by assumption.
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(vil) €;; = O(e; ;) is trivial and \;0x,¢;,; = O(e; ;) follows readily due to

2
o e ng vl le + AiAjWnG;J” (ai7aj) (7 98)
iUN & = ,J 2 : :
2 )\*; + % + )\i)\j'YnG;o_n (ai,aj)

Last 1-Vg,£;,; = O(e;;) follows from

2
1 2—n A1V, Goo " (@i, a5
rvaﬁi,j = €i,j i iv — (2% - ) (7.99)
i S+ 3L+ AN Ga " (aisay)

immediately in case d(a;,a;) > ¢ > 0. In the contrary case we estimate

2 A 2
)‘j'7n|vaiG3c;n (ai»aj)| < Ai + Ai)‘jfyn‘vaiGgo (ai, CLj)|2 (7.100)
2 = ] 2 :
R EFANWEE () 3+ 5 AN Ga (a,a))

with the right hand side being bounded for d(a;, a;) small.

O
Proof of proposition 3.10(Cf. [9], Appendiz A).
Let us denote by w(e) any quantity, for which |w(g)] =290 and consider for
u € V(w,p,e) with ¢ — 0 (7.101)

a representation

U = ud,B =+ OA[ZQO X + ,[)7 (&alék)ééia d’i: XZ) € Au(wap7 6)7 ||@|| <e. (7102)

Since Ay (w,p,e) C Ay(w,p,2e9) we have

2

inf /Kun%?\u — U5 5~ digodi 5,00 = w(e), (7.103)
(w,p,2¢€0) ’ ’

(@,B1,@s,84,0:) E Ay
whence we may consider (&, Bre, &5, i, 5\1) € Ay (w,p,2¢0) such, that
/Kuﬁm —Us 5 — di‘Pai,Z\JZ = w(e). (7.104)
Expanding this gives in a first step
/K(ézw + @i%,&)ﬁ lug 5 = Ug 5+ &0, 5, — @pa, > =wle) (7.105)

and using lemma 3.5 and proposition 3.8 we derive

(7.106)



Consequently for at least one j = j; the quantity

DY TP VI 2
S AjiAitnGao " (a5, i) (7.107)
Ai Aji

i = (24 2L 4 ANy GE 7 (d5,45)) 7 <e. (7.108)
Thus for any j = ¢,...,p there exists exactly one j; € {1,...,p} such, that

Ai . .
j /\l’YnG;o_n (a’ji ’ ai) (7109)

remains bounded and we may assume j; = 4. From this we deduce

2

_a_ 25 . ~
w(e) :/Kwn72|u&7ﬁ _ud,/3>|2+Z/K¢ai,§i|ai¢&m;\¢ — Qi 5,17 (7.110)

Note, that
/Kwﬁmaﬁ —u&3|2 :|d—d|2/Kwn2%2 +Z|O?Bi—dﬁ~i|2/Kwﬁe?
i

+ / Kw™2|6h(B) — ah(B)|?,

(7.111)
whence due to ||k = O(||3]|2) we obtain
[ KwT g s g 208 - aP 4 15— A (7112
Moreover in g, normal coordinates with
V(1) = (@, @i, Ni) + (1= 7) (@, @3, As) (7.113)
we have for some 7 € (0,1)
Qi %, ~ 4P, A,
Oa a—a
= Va | (@pa ) (@ar=y) | @ — @
BN A—A (7.114)

2 0.V Oudh
+ | Va0x vi Va0 (a@a,)\)L(a,a,)\):'y(T)
0y V. &

S O
> Q> O
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whence due to lemma 3.5 (i) and ¢ < 3¢ < C' we obtain

i

Pa ki Qi = &
~ ~ 1 N ~
”ai@&us\i — XiPa A T Zvdi@d“j‘i )\Z(Elz ;\ i) H
Xid5, Pa, 5 = (7.115)

3 Ai — A
=0(|a; — ail* + AZ|a; — @il + |75\

7

%)
So lemma 3.5 (ii) and (iv) yield

4
w3 A ~ 2
/K‘Pai,xi @i, 5, ~ 0%, 5|

~ (7.116)
A ~ 12 1 324 ~ 12 Ai 2
>C(|G; — 65| + Afla; — aq|* + |)\— — 1) + w(e).
Collecting terms we arrive at
|6 —al” + |6 - BII°
. ~ co \i 7.117
B R A N G
i i
Consequently, if we consider a minimizing sequence
(&, Brets G0, @it i)t € Aulw, p, 2€0) (7.118)
for the functional
/Ku"%ﬂu—u&’ﬁ—di(p&h;\i 2 (7.119)

with u € V(w, p, ) fixed, e.g.
w=ug 5+ 6, 5 0, (G B Gy, Ai) € Au(w,p,e), [|0] <, (7.120)
then there necessarily holds
(&, Bty @ity @i, Xig)i € Au(w, p,e + wie)). (7.121)
T looo

for all [ sufficiently large. Moreover, since A;; — oo is not possible due to

\% — 11 = w(e) (7.122)

the infimum of the functional is attained for some

(a0, Br, iy ai, Ai) € Ay(w,pe +w(e)) C Au(w,p,eo), (7.123)
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provided € < gq is sufficiently small.

To show uniqueness we argue by contradiction and assume, that for some

U = u@»f} + &280 5\1 + ’07 (daéka&lﬁ&i)xi) S Au(wapa 6)7 ||’U|| < g,

Qi

(7.124)

in other words for some u € V(w, p, ) with suitable representation there exist

(aa/Bkvaia A, )\’L)a (da Bk7&i7ai7 5\1) S Au(va7 60)

such, that
: 4 =i 2
cinf [ Kun=2 u —ug 5 — @'pg, 3,
a,B,&i,ai,Aq ’ o

4 . 4
:/Ku%f2 U — Ug.p — Q' 0a; 0, | P Kun—2

:/Kuﬁm —Us 5 — &igoai?;\iFKuﬁ.
By what was shown before the quantities
A=|a—al, By =B — Bil,
A =|a; — oy, Li = |% — 1, D = \\id? (@, a;)
are well defined and we will prove the proposition by showing
A, By, A, D;, L; = w(e)

and

m P m p
A+Y Bi+Y Ai+Di+Li=0(A+) Bi+y Ai+Di+ L.

k=1 i=1 k=1 i=1

The first statement if rather obvious. Indeed (7.117) shows
o = dl, | = &] = w(e),

so A = w(e) and the same argument applies to By, A;, D;, L; as well.
We are left with proving (7.129). Note, that

>\J n—2 )\j )%

Paj.A; — Pa, 5 :ua]‘(ﬁ)T ~ i, 32 =
L+ X7 Ga, " 1+)\j’YnGaj "

- 2
U, (ﬁ 1+ A?*ynsz;" )nT—z)
A

-~ 2
Ua; Ajq +)\§,-ynG§;n

:()Oaj,)\j (1 -
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(7.125)

(7.126)

(7.127)

(7.128)

(7.129)

(7.130)

(7.131)



and therefore

|s0aj))‘j - SDEL]',S\]'| S C(D] + L]>(‘0aJv)‘ (7'132)

First we make use of

éL/Kmﬁﬂu—%w—a%mwﬁzo. (7.133)

Differentiating we obtain
0 :/Kuﬁ (u — Ua,3 — O‘i@au/\i)aauaﬁ
_4 ~3 1 _4
:/Kun—2 (u&ﬁ — Uq,8)0qlUa,p + (& —at) /Ku"—2 cp&h;\i(‘?auayg
(7.134)
; _a_

+ OLZ/K’U,"*2 (wah:\i — (pah)\i)aaua,g
+ /Kuﬁﬁ(ﬁaua,g — Oaug 5),

whence A =o0(A+ > B+ >0 1 Ai+D; + L;).
Similarly we make use of

aﬁk /KUﬁ |u — Ua, — O‘i(pai)\i |2 =0 (7135)

yielding By = o(A+ Y0 B + >0 1 Ai + D;i + L;).
We proceed using

o

2=0. (7.136)
This gives

0= / Kuﬁ (U - Ua, — Oéigoaz"Ai)soajy)\j
_4 ~ i _4
:/Ku"ﬁ Pa; 2\, (Ug 5 — Ua,p) + (0" —a )/K“ "2 Pay g Pai
(7.137)
~q _4_
+ (0% /Kun72 (paj,)\j (@ELMS\Z - (JDGL,/\L)
_a

+ KU"*QU(()Oaj,)\j - Soajj\j)v

whence due to (7.132) and lemma 3.5
~ _4_ 9 ~ %2 "’tQ

0=(a — o) /KU"”@%,M +a;Kjof /Wl

m P (7.138)
+o(A+Y Bi+ > Ai+Di+ L)
k=1 =1
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Arguing as for (7.115) we obtain passing to g,, normal coordinates

2 = :
/goaj,ij (gpd]‘,j\j - (‘OaJ')‘J') :/Soaj,ijAij]' L‘Oajx>‘j )\J (a] - a])
= A
+ @aj,)\j/\jakj@aj,kj ()\7 - 1)
J

+ O(Dj + Lj),

whence according to lemma 3.5 (iv) we obtain

We conclude
m P
Aj=0(A+> Bi+ Y Ai+Dj+ L)
k=1 i=1
Analogously one obtains

m p
LjDj=0(A+> Bi+ Y Ai+D;+L;)
k=1 =1

by exploiting

O, /Kuﬁm —Ugp— i =0

and
Kumsz |y — Cateol? =
Vaj umn |U uOﬁﬁ 6] (pz| = O
using
_4_
/ngjf\j)\jah(p%»%(@%»kj - ‘P&j,ij)
% 2 ;\j
== <paj,/\j /\ja)\ﬂOaj,)\ﬂ ()\7 - 1) + O(D]' + Lj)
J
and

1
/sﬁaj,ij ijflj Paj,\; (‘Paj)\j - Qpaj,j\j)
_4 1 B
= [0 3 G Varpu ) M@ — ) + oD + L)
J

Finally we show smooth dependence. To that end consider

_ _ 4 s
F(“’? (avﬁka@iaaia AZ)) = /vl(un_2 |u —Ug3 — Oﬂ(p(h,XﬁF'
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(7.139)

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

(7.145)

(7.146)

(7.147)



If (e, Bk, @, @, A;) denotes the minimizer constructed for u € V(w, p, ), then
D(a,,@k,ai,ai,ki)F(uv (Oé, 51@7 Qi Qg )‘1)) = 0. (7148)
Moreover in view of lemma 3.5 we easily find, that

2
D(Oéﬁk-,aman

) F(w, (o, B, @iy ais Ai)) > 0 (7.149)

is positive, provided € > 0 is sufficiently small. Thus the implicit function
theorem provides a smooth parametrization of

[D(a,ﬁk,ai,ai,ki)F(uv (aa 5k> Qj, gy Al)) = 0] (7150)

This proves the statement. O
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