I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

FLiP-PUSHDOWN AUTOMATA:
k +1 PUSHDOWN REVERSALS ARE
BETTER THAN k

Markus Holzer Martin Kutrib

IFIG RESEARCH REPORT 0206

NOVEMBER 2002

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 0206, NOVEMBER. 2002

FLIP-PUSHDOWN AUTOMATA: k + 1 PUSHDOWN
REVERSALS ARE BETTER THAN £k

Markus Holzer!

Institut fur Informatik, Technische Universitat Miinchen

Boltzmannstrafle 3, D-85748 Garching bei Minchen, Germany

Martin Kutrib?

Institute fur Informatik, Universitat Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Flip-pushdown automata are pushdown automata with the additional
power to flip or reverse its pushdown, and were recently introduced by Sarkar. We
solve most of Sarkar’s open problems. In particular, we show that £+ 1 pushdown re-
versals are better than k for both deterministic and nondeterministic flip-pushdown
automata, i.e., there are languages which can be recognized by a deterministic flip-
pushdown automaton with k + 1 pushdown reversals but which cannot be recog-
nized by a k-flip-pushdown (deterministic or nondeterministic). Furthermore, we
investigate closure and non-closure properties as well as computational complexity
problems such as fixed and general membership.

CR Subject Classification (1998): F.1, F.4.3

lE-mail: holzer@in.tum.de
2E-mail: mkQifig.de

Copyright (©) 2002 by the authors

1 Introduction

A pushdown automaton is a one-way finite automaton with a separate push-
down store (PD), that is a last-in first-out (LIFO) storage structure, which is
manipulated by pushing and popping. Probably, such machines are best known
for capturing the family of context-free languages .2 (CFL), which was indepen-
dently established by Chomsky [5] and Evey [7]. The origin of the pushdown
concept is not clear and is attributed by most to Burks et al. [4] and Newell and
Shaw [14]. A little later the term LIFO storage was used explicitly in the litera-
ture, by Samelson and Bauer [16], who proposed it as an aide in the translation
of ALGOL formulas into machine instructions. Pushdown automata have been
extended in various ways. Examples of extensions are variants of stacks [9, 11],
queues or dequeues, while restrictions are for instance counters or one-turn
pushdowns [10]. The results obtained for these classes of machines hold for a
large variety of formal language classes, when appropriately abstracted. This
led to the rich theory of abstract families of automata (AFA), which is the equiv-
alent of abstract families of languages (AFL) theory; for the general treatment
of machines and languages we refer to Ginsburg [8].

In this paper, we consider a recently introduced extension of pushdown au-
tomata, so called flip-pushdown automata [17]. Basically, a flip-pushdown au-
tomaton is an ordinary pushdown automaton with the additional ability to flip
its pushdown during the computation. This allows the machine to push and pop
at both ends of the pushdown. Hence, a flip-pushdown is a form of a dequeue
storage structure, and thus becomes equally powerful to Turing machines, since
a dequeue automaton can simulate two pushdowns. On the other hand, if the
number of pushdown flips or pushdown reversals is zero, obviously the family
of context-free languages is characterized. Thus it remains to investigate the
number of pushdown reversals as a natural computational resource.

By Sarkar [17] it was shown that if the number of pushdown flips is bounded
by a constant, then a nonempty hierarchy of language classes is introduced,
and it was conjectured that the hierarchy is strict. Obviously, since by a single
pushdown reversal one can accept the non-context-free language {ww | w €
{a,b}* }, the base level of that hierarchy is already separated. But what about
the other levels? In fact, in this paper we solve most of the open problems
stated by Sarkar, especially the above mentioned one. More precisely, we show
that £ + 1 pushdown reversals are better than k£ for both deterministic and
nondeterministic flip-pushdown automata. To this end, we develop a technique
to decrease the number of pushdown reversals, which simply speaking shows
that flipping the pushdown is equivalent to reverse part of the remaining input,
hence calling our technique the “flip-pushdown input-reversal” theorem. An
immediate consequence of this theorem is that every flip-pushdown language
accepted by a flip-pushdown with a constant number of pushdown reversals
obeys a semi-linear Parikh mapping.

Moreover, we also investigate closure and non-closure properties for the lan-
guage families under consideration. It turns out, that the family of flip-push-
down languages share similar closure and non-closure properties as the family
of context-free languages like, e.g., closure under intersection with regular sets,
or the non-closure under complementation. Not surprisingly, the family of flip-
pushdown languages is shown to be a full TRIO. Nevertheless, there are some
interesting differences as, e.g., the non-closure under concatenation and Kleene
star. Again, the flip-pushdown input-reversal theorem turns out to be very
helpful in order to obtain the mentioned non-closure results.

Finally, computational complexity aspects of flip-pushdown languages with a
constant number of pushdown reversals are considered. Again similarities to
context-free languages are found. At first glance, we show that every flip-
pushdown language accepted by a flip-pushdown automata with a constant
number of pushdown reversals is context-sensitive. Moreover, it is proven that
auxiliary flip-pushdown automata with exactly & pushdown reversals, i.e., a flip-
pushdown automaton with a resource-bounded working-tape, capture P when
their space is logarithmically bounded, and catch the important complexity
class LOG(CFL) C P when additionally their time is polynomially bounded.
This nicely resembles the known results on auxiliary pushdown automata given
by Cook [6] and Sudborough [18].

The paper is organized as follows: The next section contains preliminaries, and
we show basics on flip-pushdown automata showing that the flip-pushdown
languages accepted by nondeterministic flip-pushdown automata by final state
are exactly those languages accepted by nondeterministic flip-pushdown au-
tomata by empty store. Then Section 3 is devoted to our main technique, the
flip-pushdown input-reversal theorem and its application in the separation of
the flip-pushdown hierarchy for both deterministic and nondeterministic ma-
chines. The next section deals with closure and non-closure properties and in
the penultimate Section 5 we investigate computational complexity aspects of
flip-pushdown languages. Finally we summarize our results and highlight the
remaining open questions in Section 6.

2 Definitions

We assume the reader to be familiar with the basics of complexity theory as
contained in the book of Balcdzar et al. [2]. In particular we consider the
following well-known chain of inclusions:

NC! C LOG(CFL) C P C NP C PSPACE.

Here NC! is the class of problems accepted by uniform families of logarith-
mic depth, polynomial size circuits with bounded fan-in AND- and OR-gates,
LOG(CFL) is the class of problems logspace many-one reducible to a context-
free language, and P (NP, respectively) is the set of problems accepted by de-
terministic (nondeterministic, respectively) polynomially time bounded Turing

machines. Moreover, PSPACE is J, DSpace(n*). Completeness and hardness
are always meant with respect to deterministic log-space many-one reducibili-
ties.

For details on formal language we refer the reader to the book of Hopcroft and
Ullman [12]. Consider the strict chain of inclusions

Z(REG) ¢ Z(CFL) C £(CS) ¢ Z(RE),

where .Z(REG) denotes the family of regular languages, .Z(CFL) the family
of context-free languages, .Z(CS) the family of context-senstive languages, and
Z(RE) the family of recursively enumerable languages.

In the following we consider pushdown automata with the ability to flip their
pushdowns. These machines were recently introduced by Sarkar [17] and are
defined as follows:

Definition 1 A flip-pushdown automaton is a system
A= (Q7 25 Pa 67 A7 q0, Z07 F)7

where () is a finite set of states, X is the finite input alphabet, I' is a finite
pushdown alphabet, ¢ is a mapping from Q x (3 U {\}) x I to finite subsets of
Q x I'* called the transition function, A is a mapping from Q to 2%, qo € Q is
the initial state, Zy € ' is a particular pushdown symbol, called the bottom-of-
pushdown symbol, which initially appears on the pushdown store, and F C Q)
is the set of final states.

A configuration or instantaneous description of a flip-pushdown automaton is
a triple (g, w,7), where ¢ is a state in @), w a string of input symbols, and ~y
is a string of pushdown symbols. A flip-pushdown automaton A is said to be
in configuration (g, w,~y) if A is in state ¢ with w as remaining input, and =
on the pushdown store, the rightmost symbol of v being the top symbol on
the pushdown. If @ is in ¥ U {A\}, w in ¥*, v and f in I'*, and Z is in T,
then we write (q,aw,vZ) k4 (p,w,vB), if the pair (p,f) is in 6(q,a, Z), for
“ordinary” pushdown transitions and (g, aw, Zoy) Fa (p,aw, Zoy®), if p is in
A(q), for pushdown-flip or pushdown-reversal transitions. Whenever, there is
a choice between an ordinary pushdown transition or a pushdown reversal one,
then the automaton nondeterministically chooses the next move. Observe, that
we do not want the flip-pushdown automaton to move the bottom-of-pushdown
symbol when the pushdown is flipped. As usual, the reflexive transitive closure
of 4 is denoted by F%. The subscript A will be dropped from 4 and %
whenever the meaning remains clear.

Let k be a natural number. For a flip-pushdown automaton A we define T} (A),
the language accepted by final state and exvactly k pushdown reversals®, to be

Tip(A) = {w € | (qo,w, Zo) F (g, A,y) with exactly &k
pushdown reversals, for any v € I'* and g € F' }.

Also, we define Ny (A), the language accepted by empty pushdown and ezxactly k
pushdown reversals, to be

Ni(A) ={w e Z*| (qo,w, Zo) F (g, A, A) with exactly &k
pushdown reversals, for any ¢ € Q }.

If the number of pushdown reversals is not limited, the language accepted by
final state (empty pushdown, respectively) is analogously defined as above and
denoted by T(A) (N(A), respectively). When accepting by empty pushdown,
the set of final states is irrelevant. Thus, in this case, we usually let the set of
final states be the empty set.

In order to clarify our notation we give a small example.

Example 2 Let A= ({Qan1}’ {a’7 b}? {Aa BaZO}’(SaA’qu ZOa(D) be a ﬂip—push—

down automaton where

1. 6(q0,a, Zo) = {(q0, ZoA)} 6. 0(qo, b, B) = {(q0, BB)}
2. 0(qo, b, Zo) = {(q0, ZoB)} 7. 0(qr 0, A) = {(q1,N)}
3. 0(qo, a, A) = {(q0, AA4)} 8. 0(q1,b, B) = {(a1,M)}
4. 6(qo,b,4) = {(q0, AB)} 9. 6(q1, A Zo) = {(aq1, M)}
5. 0(qo,a, B) = {(q0, BA)}

and A(qo) = {q1} that accepts by empty pushdown the non-context-free lan-
guage L = {ww | w € {a,b}*}. This is seen as follows.

The transitions (1) through (6) allow A to store the input on the pushdown.
If A decides that the middle of the input string has been reached, then the flip
operation specified by A(gg) = {q1} is selected and A goes to state g1 and tries
to match the remaining input symbols with the reversed pushdown content.
This is done with the transitions (7) and (8). Thus, if the guess of A was
right, and the input is of the form ww, then the inputs will match, and A will
empty its pushdown with transition (9), and therefore accept the input string
(by empty pushdown).

*One may define language acceptance of flip-pushdown automata with at most k pushdown
reversals. Since a flip-pushdown automaton can count the number of reversals performed
during its computation in its finite control, it is an easy exercise to show that these to language
acceptance mechanisms coincide.

The next theorem generalizes the theorem on ordinary pushdown automata,
that languages accepted by nondeterministic flip-pushdown automata by final
state are exactly those languages accepted by nondeterministic flip-pushdown
automata by empty storage. We state the theorem without proof, since it is a
simple adaption of the proof for ordinary pushdown automata.

Theorem 3 Let k be some natural number. Then language L is accepted by
some flip-pushdown automaton Ay with empty pushdown making exactly k
pushdown reversals, i.e., L = Ny(A1), if and only if language L is accepted by
some flip-pushdown automaton As by final state making exactly k pushdown
reversals, i.e., L = Ty(As). The statement remains valid for flip-pushdown
automata with an unbounded number of pushdown reversals. O

The family of languages accepted by flip-pushdown automata with empty push-
down or equivalently by final state making exactly k or equivalently at most k
pushdown reversals is denoted by .Z(FNPDAy). Furthermore, let

Z(FNPDAg,) = | | £(FNPDAy)
k=0

and if the number of pushdown reversals is unbounded, the corresponding lan-
guage family is referred to .Z(FNPDA). We recall the following theorem of
Sarkar [17].

Theorem 4

Z(CFL) = Z(FNPDAy) C Z(FNPDA;) C -+
.. C Z(FNPDAg,) C Z(FNPDA) = Z(RE)

An immediate question that arises from the previous theorem is, whether the
hierarchy on pushdown reversals is a strict hierarchy, and whether the upper
bound can be improved to the family of context-sensitive languages Z(CS).
In the next sections we positively affirm these questions in the sense, that the
hierarchy is strict and that the upper bound can be improved.

3 The Flip-Pushdown Input-Reversal Technique

In this section we prove an essential technique for flip-pushdown automata,
which will be called “flip-pushdown input-reversal” since flipping the pushdown
can be simulated by reversing the (remaining) input. The main theorem of this
section reads as follows:

Theorem 5 Let k be a natural number. Language L is accepted by a flip-
pushdown A; = (Q,%,T,0,A,qo, Zy,D) by empty pushdown with k + 1 push-
down reversals, i.e., L = Ny.1(A1), if and only if language

Lr = {wo®| (g0, w, Zp) F4, (g1, A, Zoy) with k reversals, g2 € A(q1),
and (go,v, Zoy®) F4, (g3, A, A) without any reversal }

is accepted by a flip-pushdown automaton As by empty pushdown with k push-
down reversals, i.e., Lr = Ni(As). The statement remains valid if state accep-
tance is considered.

Before we prove the above given statement, we want to give some insights and
explanations. Consider the following sample computation on a flip-pushdown
automaton:

(qo, abcde fghijklmno, Zy) & (g1, bedef ghijklmno, Zy A)

F (qo, cdef ghijklmno, Zy AB)

F (q3,defghijklmno, Zo ABC')
F (qa,efghijklmno, ZyABCD)
F (g5, efghijklmno, ZoDCBA)
F (g6, fghijklmno, ZyDC BAE)
F (g7, ghijklmno, ZyDCBA)

F (gs, hijklmno, ZyDCBAA)

F (qo,ijklmno, ZyDCBA)

F (g0, jklmno, ZoDCB)

F (q11, klmno, ZoDC')

F (q12,lmno, ZgDCF)

F (qi3, mno, ZoDC)

F (q14,m0, ZoD) F (q15,0, Zo) F (q16, A,)

First, let us take a closer look on the pushdown actions. The behaviour of the
flip-pushdown can be visualized as follows:

E] [A]
DA||A||A||A]|l A
Cl||C||B||B||B||B||B||lB F
B||B||B||lC||lC||C||lC||lC||C||C||C
IAADDDDDDDDD
WZOZOZO Z0||Z0)| 20| 20| 20| | Z0)| 20| Z0)| 20| Z0| | Z0 | [Z0]

Now assume that we write A (A™1, respectively), if we push (pop, respec-
tively) symbol A. Then the push-pop action sequences on the given sample

computation read as
ZoABCD and EE'AA™'AT'B 'FF'C™'D7'Z7,1,

taking the flip-pushdown move into account. Since the push-pop action se-
quences must specify a valid flip-pushdown computation we find that

ZyDCBA-EE 'AA A 'B'FF 'C 'D 'Z,;' reducesto),
if rules of the form X X~! — X are applied.

Now assume that the pushdown reversal move is not done, and the sample
computation is simulated backwards from the last state in the configuration
sequence towards the pushdown reversal move. Then the push-pop action se-
quences are

ZoABCD and ZyDCFF 'BAAAT'EE~'.

Observe, that the latter sequence is the reverse-inverse of the above given se-
quence EE_lAA_lA_lB_lFF_lC_lD_lZO_l, since pushing becomes popping
and vice versa. Moving Zy from the beginning of the latter sequence to its end,
then we find that

ZoABCD - DCFF 'BAAA 'EE 'Z, reducesto ZyABCDDCBAZ,,

if rules of the form XX~ — X are applied. After this first reduction phase,

sequence
Z0ABCDDCBAZy can be reduced to A,

if rules of the form X X — A are applied at the borderline, where the pushdown
reversal of the original computation has appeared. In fact, these two types of
reduction steps can be inter-winded. Later we will use this in the simulation of
a valid (flip-)pushdown protocol. In order to distinguish between the pushdown
symbols stored before the last flip and the symbols used in the ultimate phase,
we use boldface symbols in the latter. In fact, the inter-winded application of
rules from the two different phases can be simulated by the following rules (1)
XX =) (2 XXY =Y, (3) XX1 =)\ and (4) ZyZo — \. The special
form of the rules (2) will become clearer later. Then one finds that

ZyABCD -DCFF 'BAAA'EE!Zy reduces to \

within a single phase. These rules can be made the basis for simulating a
valid computation, when the pushdown is not flipped. Such a computation is
visualized next:

Zy
Zo|[D] [F|
D||D||D|C| C|C
cllcyoeijciicolic|ic| B A E
B||B||B||B||B||B||B||B||B||A||A||A||A]|lA
Al|A||A||A||A||A||A||A||A||A||A||A||A||A]|lA
ZoZozoéézoézozozozozozozo

where the ultimate step pops A, A, and Zj in order to terminate the computa-
tion and to accept the input. Observe, that the major problem in the backward
simulation is to have the appropriate pushdown symbol at the top of the stor-
age available in order to simulate a single step backwards. As the reader may
verify, the visualized computation shown above has this property.

In order to simplify presentation, we introduce the notion of a generalized flip-
pushdown automaton A = (Q, %, T, 4, A, qo, Zo, F'), where Q, X, T', A, qp € Q,
Zy € I', and F' C @ are as in the case of ordinary flip-pushdown automata, and ¢
is a finite domain mapping from Q X (X U {A}) x I'* to the finite subsets of
Q@ xI'*. With standard techniques one can construct an ordinary flip-pushdown
automaton from a given generalized one, without increasing the number of
pushdown-flips. Due to the ability to read words instead of symbols, the nec-
essary checks, whether a push or pop action can be performed in the backward
simulation becomes easier to describe.

Proof. [of Theorem 5] We only prove the direction from left to right. The
converse implication can be shown by similar arguments.

Let A; = (Q,%,T,6,A, qo, Zo, 0) be a flip-pushdown automaton satisfying vy €
{Mu{zZX | X €T} for all (p,v) € 6(q,a,Z), where p,q € Q, a € ZU{A},
and Z € I'. This normal form can be easily achieved.

Then we define a generalized flip-pushdown automaton

Ay =(QUQU{qs}, S, TUTUQ, A g0, Zo, {ar}),

where Q = {q| ¢€ Q}, T ={Z | Z €T}, and ¢ and A’ are specified as
follows:

1. Forallg € Q,a € XU{A}, and Z €T, set §'(q,a, Z) includes all elements
of 6(q,a,Z) and

2. for all ¢ € Q, let A’(q) contain all elements of A(q).

3. For all r € Q, if A(r) # 0, then ¢'(r,a,Z) contains (q, ZZyrZ,), where
q € Q satisfies (p,) € d(q,a, Zy) for some p € Q and a € £ U {\}.

4. For all p,q € Q, a € Y U{\}, and X,Y € T, let §(q,a,XY) contain
(p,X) if (¢, XY) € é(p, a, X).

5. For all p,q,r € Q, a € ¥ U{A}, and X,Y €T, then
(a) let ¢'(q,a,X) contain (p,XY) if (¢,) € §(p,a,Y) and
(b) let ¢'(q,a, XrX) contain (p,7Y) if (g, \) € §(p,a,Y).

6. For all X € T and p € A(r), for some 7 € Q, let §'(p, A\, ZoXrX) contain

Simulation

forward ‘ ‘ backward
(pla ZZOQZO) € 6I(qa a, Z)

ﬂlp p 6 A(q) lf (pll7 /\) E 5(pl,a’ ZO) pUSh
push | (p, XY) € d(q,0,X) | (q,X) € §'(p,a,XY) pop
(0, XY) € §'(p,a,X) push (a)

pop | () €0(g,0.Y) SN 0 XrX) | push (b)

accept | (p, A) € 6(q,a, Zy) __

(af,) € 0'(p, A, Zo X ¢X)
if pe A(q)

accept

Table 1: Transitions of Ay for the backward simulation of A;.

We summarize the transitions for the backward simulation of A, in Table 1.

Transitions from (1) and (2) cause As to simulate A; step-by-step until the
(k +1)st pushdown reversal done by A; appears. All elements described in (3),
(4), (5), and (6) allow Ay to start a backward simulation of A; on the reverse
remaining input. To be more precise, the transitions in (3) start the backward
simulation of A, by undoing the very last step of A1, i.e., by pushing ZyrZg
onto the pushdown, reading symbol a, and continuing with state q, whenever A,
has used transition (p,) € d(q,a, Zy), for some p € Q, in its last computation
step. Then in (4) push moves of A; are simulated as pop moves by As, always
assuming to have a boldface symbol on top of the pushdown. Moreover, tran-
sitions specified in (5) simulate pop moves of A; by push moves of As. Here
we have to consider two cases, namely starting a sub-computation which (a)
comes back to the same pushdown height or (b) comes not back to the same
pushdown height. In the latter case As has to pop a compatible non-boldface
symbol together with a boldface symbol in order to decrease the pushdown
height. Finally, in (6) the termination of the computation is done, by checking
that the pushdown contains a string of the form ZyXrX for some X € I" and
r € @, and has reached some state in A(r).

Now assume that w € Ni41(A1) such that w = uva with

(g0, wva, Zo) F, (q1,va, ZoX7) Fa, (g2,va, Zoy*X)
"fql (Q37 a, ZO) I_A1 ((I4, /\7 >‘)7

where u,v € ¥*, 0 € TU{A}, X e TU{A}, v € I, X = X implies v =)},
and the last pushdown reversal appears at (g1, va, ZoX7) F4, (g2,va, Zoy2X).
Thus, by our previous considerations we find the simulation

(g0, uav™, Zo) 4, (q1.av™, ZoXy) Fa, (a3, 0", ZoXvZoq1 Zo)
l_:kélz (an)\a ZOXQIX) l_AQ (qfa Aa)‘)’

10

and therefore uav® = u(va)® belongs to Ty (Asz), since the number of reversals
was decreased by one. By similar reasoning, if u(va)® € Ty (Asz), then uva €
Ni11(A1). Since state acceptance and acceptance by empty pushdown coincides
for flip-pushdown automata, the claim follows. O

An immediate consequence of Theorem 5 is that unary languages, i.e., languages
over a singleton letter alphabet, accepted by flip-pushdown automata with a
constant number of pushdown reversals are regular, since L equals Lr and
unary context-free languages are regular. More formally the statement reads as
follows:

Corollary 6 IfL is a unary language accepted by some flip-pushdown automa-
ton with exactly k flips, for some k > 0, then L is a regular language. O

Another consequence of the flip-pushdown-input reversal theorem is, that we
can separate the hierarchy of pushdown reversal language families for both de-
terministic and nondeterministic flip-pushdown automata. Another essential
ingredients of the proof of the following theorem is a generalization of Og-
den’s lemma, which is due to Bader and Moura [1] and reads as follows: For
any context-free language L, there exists a natural number n, such that for
all words z in L, if d positions in z are “distinguished” and e positions are
“excluded,” with d > n®t!, then there are words u, v, w, x, and y such that
z = uwvwzy and (1) vz contains at least one distinguished position and no ex-
cluded positions, (2) if r is the number of distinguished positions and s is the
number of excluded positions in vwz, then r < n*+t1 and (3) word uviwzly
is in L for all ¢« > 0. Now we are ready to prove the flip-pushdown hierarchy
theorem.

Theorem 7
Z(FDPDAy) C Z(FDPDA,1) and Z(FNPDA) C Z(FNPDA,,),

for all k > 0, where .2 (FDPDA}) denotes the family of languages accepted by
deterministic flip-pushdown automata with exactly k pushdown reversals.

Proof. Tt suffices to prove that Z(FDPDA.1) \ Z(FNPDA) # 0. To this
end, we define, for k¥ > 1, the language

Ly = { #u1Sun #woSwa# . . . #FwiSwi# | w; € {a,b}* for 1 <i<k}.

Language Ly is accepted by a (deterministic) flip-pushdown automaton mak-
ing exactly k + 1 pushdown reversals. Hence Ly, ; € .Z(FDPDAj.).

Next we prove that Ly, 1 ¢ Z(FNPDAy). Assume to the contrary, that lan-
guage L1 is accepted by some flip-pushdown automaton A with exactly &
pushdown reversals. Then applying the flip-pushdown input-reversal Theo-
rem 5 exactly k times, results in a context-free language L. Now the idea is

11

to pump an appropriate word from the context-free language and to undo the
flip-pushdown input-reversals, in order to obtain a word that must be in Ly1.
If the pumping is done such that no input reversal boundaries in the word are
pumped, then the flip-pushdown input-reversals can be undone. Therefore, we
need the generalization of Ogden’s lemma.

Let n be the constant in the generalization of Ogden’s lemma for L and z =
(9v!;Ea"2k+1I)"%Jrl$a”2k+1bn2k+1)14 be in Ly, 1. Consider the word z when trans-
formed into an instance 2’ of the context-free language L. When applying
Theorem 5 to a word wv it becomes wv®, then we mark the last position
of w and the first position of v® as excluded. Hence, after k applications
of Theorem 5 word 2z’ in L contains at most 2k excluded positions e. More-
over, since only k flip-pushdown input-reversals are allowed, and k& + 1 blocks
2k+1, ,,2k+1 2k+1,) 2k+1

#a™ D" $a™ ™ # exist, due to the pigeon-hole principle there must
be at least one block, which was not cut and (its remaining input) reversed. We
pick one of these intact blocks in 2z’ and mark all its positions as distinguished.
Thus, there are d = 4 - n?**1 + 2 distinguished positions in 2/, with d > n¢*l.

Now assume that words u, v, w, x, and y satisfy the properties of the general-
ization of Ogden’s lemma. First, we can easily see that if either v or £ contains
symbols $ or #, then we obtain a contradiction by considering word uv?wa2y,
since every word in L (L1, respectively) contains exactly k£ + 1 symbols $ and
exactly k£ 4+ 2 symbols #. Second, we know that because vz contains at least
one distinguished position, word v or z lies completely within our chosen intact
block #am " prH T gan F pn® 4 (excluding the symbols $§ and #). Then we
distinguish three cases:

1. Both words v and z are within the block under consideration. Then the
number of excluded positions in vwz equals zero, and hence [vwz| < n.
Then we obtain, that the block under consideration looses its “copy” form
in the word 7' = uv?wx?y, i.e., the block we are looking at is not of the
form #w$w#, for some w, anymore.

2. Word v is within the block under consideration, but x is not. Then the
number of excluded positions in vwz is at most 2k, and hence |v| <
n?k*+1 Again, the block under consideration looses its form in the word
7 = wlwr?y.

3. Word v is not within the block under consideration, but z is. Then a
similar reasoning as in the case above applies.

Since we know little about the context-free language L, we now transform our
pumped string z’ back towards language Ly 1, according to Theorem 5. Now
the advantage of the excluded positions comes into play. Since we have never
pumped on excluded positions, the pushdown reversal move is still valid. Hence,
word Z' leads us to a word Z, where the original intact block considered so
far is now not of the form #w$w+#, for some w anymore. Observe, that the

12

application of Theorem 5 is done exactly in the reverse order as above. This
means, that an input reversal appears only at excluded positions (or in-between
two excluded ones). In particular, the block considered so far remains untouched
during this process. Therefore, word Z is not a member of language L. This
contradicts our assumption, and thus Ly, ¢ Z(FNPDAy). O

4 Closure Properties of Flip-Pushdown Languages

In this section we consider closure properties of the family of flip-pushdown lan-
guages with a finite number of pushdown reversals. As expected, flip-pushdown
languages share many closure properties with the family of context-free lan-
guages but there are also some significant differences. For the below given
theorem, we need the notion of a rational a-transducer, where we refer to Bers-
tel [3]. Since the proof is an adaption from the context-free case, we omit the
proof.

Theorem 8 The language families & (FNPDA}), for k > 0, and .Z(FNPDAg,)
are closed under rational a-transduction. Hence, the families under consider-
ation are full TRIO’s, i.e., closed under intersection with regular languages,
arbitrary homomorphism, and inverse homomorphism. O

Next we consider the boolean operations union, intersection, and complement
as well as concatenation and Kleene star

Theorem 9 The language families Z(FNPDAy), fork > 0, and Z(FNPDAz,,)
are both closed under union, but both families are not closed under intersection
and complementation. Moreover, .Z(FNPDA},) is not closed under concatena-
tion, while Z(FNPDAg,) is closed, and both language families are not closed
under Kleene star.

Proof. The closures are immediate. The non-closure results are seen as
follows: In case of intersection it suffices to show that the language

L={d"v""|n>1},

which is the intersection of two context-free languages is not a flip-pushdown
language. Assume to the contrary, that language L belongs to .Z(FNPDAy)
for some k. Then we k times apply the flip-pushdown input-reversal Theorem 5
to L obtaining a context-free language. Since we do the input reversal from
right-to-left, the block of ¢’s remains intact in all words. Hence a word w in the
context-free language reads as w = uc™v, where |uv|, = |uv|y = n. Then it is an
easy exercise to show that this language cannot be context-free using Ogden’s
lemma. This contradicts our assumption, and thus, language L doesn’t belong
to Z(FNPDAy), for any k& > 0. This shows the non-closure under intersection
and complementation due to DeMorgan’s law.

13

Language family

Z(FNPDAy)
Operation Z(CFL) with & > 1 Z(FNPDAg,) | Z(FNPDA)
Union Yes Yes Yes Yes
Intersection No No No Yes
Complementation No No No No
Homomorphism Yes Yes Yes Yes
Inverse hom. Yes Yes Yes Yes
Intersection
with regular sets Yes Yes Yes Yes
Concatenation Yes No Yes Yes
Kleene star Yes No No Yes
Quotient
with regular sets Yes Yes Yes Yes

Table 2: Closure properties of flip-pushdown languages.

For concatention and Kleene star we argue as follows: Let & > 1. Obviously,
language L1, defined in the proof of Theorem 7, satisfies

Ly = Ly - {wSw# | w € {a,b}" },

where both languages on the right-hand side of the equation belong to the
family Z(FNPDA). Since by Theorem 7 language Lyy1 € £ (FNPDAy 1) \
Z(FNPDA}), the non-closure of the language family .Z(FNPDAy), for k > 1,
immediately follows. Moreover, since Ly 1 = # - { wSw# | w € {a,b}* }r+1,
the language Loo = Jpo o Lk, equals # - { wSw# | w € {a,b}* }*. Thus, if Ly
would belong to some family .Z(FNPDA), for some k£ > 1, then language
Lit1 = Loo N#({a,b}*${a,b}*#)**! is a member of Z(FNPDA}), which con-
tradicts the proof of Theorem 7 due to the closure of this language family under
intersection with regular sets and concatenation with a regular set to the left—
the latter closure property follows from the closure under TRIO operations.
Hence, .Z(FNPDAy), for k > 1, and .Z(FNPDAg,) are both not closed under
Kleene star. O

Finally, in Table 2 we summarize our results on closure and non-closure proper-
ties for flip-pushdown language families. Note, that Z(CFL) = Z(FNPDA,)
is the lowest level in the flip-pushdown hierarchy, while unbounded pushdown
reversals are the other end, i.e., Z(RE) = Z(FNPDA).

14

5 Computational Complexity of
Flip-Pushdown Languages

We consider some computational complexity problems of flip-pushdown lan-
guages in more detail. Firstly, we improve the upper bound on the .Z(FNPDA},)
language families given in Theorem 4.

Theorem 10 Z(CFL) C Z(FNPDA;) C Z(CS) for k > 1.

Proof. The first inclusion is straight forward and its strictness follows from Ex-
ample 2. The containment of Z(FNPDAy) in .Z(CS) is seen as follows: Let A
be a flip-pushdown automaton making exactly k pushdown reversals. Accord-
ing to Theorem 5 we construct a context-free language L. In order to check
membership in T} (A) a linear bounded automaton guesses a length k sequence
of flip-pushdown input-reversals and applies it to the input w to transform it
into an instance of the context-free language L. Since context-free membership
can be decided by a linear bounded Turing machine, the second inclusion fol-
lows. Strictness is seen by Corollary 6, because, e.g., language { o | p is prim }
is a context-sensitive language, which is not regular. O

Now the question arises, how complicated is it to decide membership for flip-
pushdown languages.

Theorem 11 The following problems are complete w.r.t. deterministic logspace
many-one reductions: (1) The fixed membership problem for k-flip-pushdown
languages is LOG(CFL)-complete and (2) the general membership problem for
k-flip-pushdown automata languages is P-complete.

Proof. In both cases, the hardness results immediately follow from the inclu-
sion .Z(CFL) C Z(FNPDAy,) for any k£ > 0, and the LOG(CFL)-completeness
of fixed membership for context-free languages [18] and the P-completeness for
general membership [13]. For the upper bounds we argue as in the proof of
Theorem 10. The main difference in the proof is, that we can not guess a
length k sequence of flip-pushdown input-reversals. Nevertheless, a determinis-
tic logspace machine can enumerate all possible outcomes of length k£ sequences
of flip-pushdown input-reversals separated by $ symbols. This suffices to prove
the upper bounds—the details are left to the reader. O

The above given theorem can be restated in terms of auxiliary flip-pushdown au-
tomata. Here an auxiliary flip-pushdown automaton is a two-way flip-pushdown
automaton equipped with a space bounded work-tape. Then Theorem 11 shows
that auxiliary flip-pushdown automata with exactly & pushdown reversal and
a logarithmically space bounded work-tape capture P, and when additionally
their time is polynomially bounded the class LOG(CFL) C P.

15

6 Conclusions

£(C8S) PSPACE

Z(FNPDA,) Z(ETOL)

|
o
L(FNPDAg11)
| 1
L(FNPDA,)
| i
: NP
| (S B
£ (FNPDA;) £(EOL)

£(CFL) = £(FNPDAo) LOG(CFL)

,,,,,,,,,,,,,,,,,,,,,,,,, %

#(REG) NC!

Figure 1: Inclusion structure.

We have investigated flip-pushdown automata with a constant number of push-
down reversals, which were recently introduced by Sarkar [17]. The major
contribution of this paper is a positive answer to Sarkar’s conjecture on the
strictness of the flip-pushdown hierarchy w.r.t. the number of pushdown re-
versals for both deterministic and nondeterministic flip-pushdown automata.
Moreover, we also considered closure and non-closure properties, as well as
some computational complexity problems of these language families. In most
cases, flip-pushdown languages share similar properties than context-free lan-
guages. In Figure 1 the inclusion relations among the classes considered and
their computational complexities (completeness) are depicted.

The results presented imply that flip-pushdown languages accepted by flip-
pushdown automata with a constant number of pushdown reversals are almost
mildly context-sensitive, i.e., each language is semi-linear, each language has
a deterministic polynomial time solvable membership problem, and the lan-
guage family contains the following three non-context-free languages: Multiple
agreements Ly = {a"b"c" | n > 0}, crossed agreements

Ly = {a"d™c"d™ | n,m >0},

and duplication Ly = {ww | w € {a,b}* }. Except the non-containment of L;
all properties of mildly context-sensitive languages are fulfilled.

16

Nevertheless, several questions for flip-pushdown languages remain unanswered.
We mention two of these questions: (1) How does the deterministic and nonde-
terministic flip-pushdown language hierarchies w.r.t. the number of pushdown
reversals relate to each other? (2) What is the relationship between these lan-
guage families and other well known formal language classes? Especially, the
latter question is of some interest, because we were not even able to clear the
relationship between the family of flip-pushdown languages and some Linden-
mayer families like, e.g. EOL or ETOL languages. For more on Lindenmayer
languages we refer to Rozenberg and Salomaa [15]. We conjecture incompara-
bility, but have no proof yet. Obviously, { a”b"c"” | n > 0} is an EOL language
which is not a member of Z(FNPDA z,,), but for the other way around we need
a language with a semi-linear Parikh mapping which is not an ETOL language.

References

[1] Ch. Bader and A. Moura. A generalization of Ogden’s lemma. Journal of
the ACM, 29(2):404-407, 1982.

[2] J. L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complezity I, volume 11
of EATCS Monographs on Theoretical Computer Science. Springer, 1988.

[3] J. Berstel. Transductions and Context-Free Languages, volume 38 of
Leitfaden der angewandten Mathematik und Mechanik LAMM. Teubner,
1979.

[4] A. W. Burks, D. W. Warren, and J. B. Wright. An analysis of a logical
machine using parenthesis-free notation. Mathematical Tables and Other
Aids to Computation, 8(46):53-57, April 1954.

[6] N. Chomsky. Handbook of Mathematic Psychology, volume 2, chapter For-
mal Properties of Grammars, pages 323-418. Wiley & Sons, New York,
1962.

[6] S. A. Cook. Characterizations of pushdown machines in terms of time-
bounded computers. Journal of the ACM, 18(1):4-18, January 1971.

[7] R. J. Evey. The Theory and Applications of Pushdown Store Machines.
Ph.D thesis, Harvard University, Massachusetts, May 1963.

[8] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Lan-
guages. North-Holland, Amsterdam, 1975.

[9] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata.
Journal of the ACM, 14(2):389-418, April 1967.

[10] S. Ginsburg and E. H. Spanier. Finite-turn pushdown automata. SIAM
Journal on Computing, 4(3):429-453, 1966.

17

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. A. Greibach. An infinite hierarchy of context-free languages. Journal of
the ACM, 16(1):91-106, January 1969.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

N. D. Jones and W. T. Laaser. Complete problems for deterministic poly-
nomial time. Theoretical Computer Science, 3:105-117, 1977.

A. Newell and J. C. Shaw. Programming the logic theory machine. In
Proceedings of the 1957 Western Joint Computer Conference, pages 230—
240, Institute of Radio Engineers, New York, February 1957.

G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems,
volume 90 of Pure and Applied Mathematics. Academic Press, 1980.

K. Samelson and F. L. Bauer. Sequential formula translation. Communi-
cations of the ACM, 3(2):76-83, February 1960.

P. Sarkar. Pushdown automaton with the ability to flip its stack. Report
TR01-081, Electronic Colloquium on Computational Complexity (ECCC),
November 2001.

I. H. Sudborough. On the tape complexity of deterministic context-free
languages. Journal of the ACM, 25(3):405-414, July 1978.

18

