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Abbreviations 

1.  3ß-HSD: 3beta-Hydroxysteroid dehydrogenase 

2.  AR: Androgen receptor  

3.  ATF-1: Activating transcription factor-1  

4.  CaMKII: Ca2+/calmodulin kinase  

5.  cAMP: Cyclic adenosine monophosphate  

6.  c-Raf: Rapidly accelerated fibro sarcoma  

7.  CRE: cAMP response element  

8.  CREB: cAMP response element-binding protein  

9.  CREM: cAMP response element modulator  

10.  c-Src: Proto-oncogene sarcoma protein  

11.  DAG: Diacylglycerol  

12.  DHEA: Dehydroepiandrosterone 

13.  DHEAS: Dehydroepiandrosterone sulfate 

14.  DHT: Dihydrotestosterone  

15.  DMAPP: Dimethylallyl pyrophosphate  

16.  Erk1/2 (MAPK): Extracellular signal-regulated Kinase 

17.  ERß: Estrogen receptor beta  

18.  ERα: Estrogen receptor alpha  

19.  GC-2: Spermatogenic germ cell line  

20.  Gnα11 (Ga11): G protein, Alpha 11 (Gq Class) 

21.  GPCR: G protein-coupled receptor  

22.  GPER-1: Membrane-bound GPCR for Estrogen  

23.  GPP: Geranyl pyrophosphate  

24.  G-protein: Guanine nucleotide-binding proteins  

25.  Gα: Alpha subunit of G-protein  

26.  Gβ: Beta subunit of G-protein 

27.  Gγ: Gamma subunit of G-protein 

28.  Gα(i): Inhibitory subunit of G-protein 

29.  Gα(s): Stimulatory alpha subunit of G-protein 

 



30.  HMG-CoA: 3-Hydroxy-3-methylglutaryl-Coenzyme A 

31.  IP3: Inositol 1,4,5-trisphosphate  

32.  IPP: Isopentenyl pyrophosphate  

33.  MAPK: Mitogen-activated protein kinase  

34.  NGF: Nerve growth factor  

35.  NMDA: N-methyl-D-aspartate  

36.  NO: Nitric oxide  

37.  P450scc (CYP11A1): Side chain cleavage enzyme 

38.  PC12: Pheochromocytoma cell line  

39.  PIP2: Phosphatidylinositol 4,5-bisphosphate  

40.  PKA: Protein kinase A  

41.  PLC: Phospholipase C  

42.  PSGP: Prostate-specific G protein-coupled Receptor  

43.  RBL-2H3: Mast cell line  

44.  SHRs: Steroid hormone receptors  

45.  Sig-1R: Sigma-1/receptor  

46.  siRNA: Small interfering RNA  

47.  StAR (STARD1): Steroidogenic acute regulatory protein 

48.  STS: Steroid sulfatase  

49.  STX64: Irosustat (C14H15NO5S)  

50.  SULT2A1: Cytosolic sulfotranferase 

51.  ZIP9: Zinc transporter  
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I. 1. General Introduction 

1.1. Steroids 

Steroids are, by definition, a large group of organic molecules including cholesterol, 

cholesterol derivatives, sex hormones, and drugs (Hanson, 2007; McDonnell et al., 

1994). The basic structure of all steroids is the steran backbone. It consists of four 

fused rings, denoted A, B, C and D. Rings A, B and C are 6-membered naphthenes, 

ring D is a 5-membered naphthene (Shimizu, 1994). The contacts between A/B, B/C 

and C/D are in trans-trans-trans configuration. Otherwise, steroids vary significantly 

in their ring structures as well as in the functional groups attached to them. A variety 

of distinct steroids are found in humans, animals and other forms of life. Their 

functions are manifold. In the form of cholesterol they are significant constituents of 

plasma membranes of animal cells, as bile acids they are crucial for the digestion of 

hydrophobic nutrients, and in the form of steroid hormones they function as 

signaling molecules that regulate the development of organs, sex differentiation and 

maturation of animals, and various other physiological processes of organisms  

(Hellstroem and Lindstedt, 1964; McDonnell et al., 1994; Russell, 2003).  

 

In mammalian cells, the biosynthesis process of steroids originates from mevalonate 

via the HMG-CoA reductase pathway. First, two molecules of acetyl-CoA condense to 

produce acetoacetyl-CoA. This reaction is under the control of acetoacetyl-CoA 

transferase or thiolase. Acetoacetyl-CoA is then further processed by various 

additional steps to dimethylallyl pyrophosphate (DMAPP) and isopentenyl 

pyrophosphate (IPP) (Figure 1). DMAPP and IPP react together to form geranyl 

pyrophosphate (GPP). Then the GPP molecule and an additional IPP condense head-

to-tail with simultaneous pyrophosphate release to farnesyl pyrophosphate. Two 

farnesyl pyrophosphates condense head-to-head to form squalene with the 

simultaneous release of two pyrophosphates. Squalene is then further processed via 

cyclisation of the four rings to lanosterol (Figure 1). Lanosterol is then further 

processed to cholesterol which constitutes the starting compound of all other 

steroids, including the steroid hormones (Liang et al., 2007; Svechnikov et al., 2001). 
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Figure 1: Simplified synopsis of the biosynthesis steps leading to the production of lanosterol, the 

source compound for cholesterol. (DMAPP, dimethylallyl pyrophosphate; IPP, isopentenyl 

pyrophosphate; GPP, geranyl pyrophosphate) 

 

1.2. Biosynthesis of Steroid Hormones 

While cholesterol is synthesized in all mammalian cells, steroid hormone production is 

restricted to specific steroidogenic organs such as the gonads, the adrenal cortex, 

placenta and kidney (Vitamin D3, Calcitriol). The capacity, however, of these 

steroidogenic tissues to produce steroid hormones is not a perpetual process; it 

strongly depends on developmental stage, age or ovarian cycle (Arukwe et al., 2008; 

Connor et al., 2009; Maeyama et al., 1969; Valenti et al., 1997; Wiszniewska, 1998). 
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Most steroidogenic tissues are characterised through their ability to express the 

steroidogenic acute regulatory protein, commonly referred to as StAR (STARD1). 

StAR is a transport protein that regulates the rate-limiting step in the production of 

steroid hormones: the transfer of cholesterol into mitochondria (Arukwe et al., 2008; 

Budefeld et al., 2009). Post-translational modifications such as phosphorylation at 

serine 195, as well as mutations in its primary structure affect the activity of StAR. As 

a result, insufficient concentrations of important steroids may be produced and 

released, and adrenal hyperplasia constitutes a possible consequence of the defects 

that can result in death shortly after birth (Camats et al., 2014; Castillo et al., 2014; 

Khoury et al., 2004; Watari et al., 1997).  

 

Cholesterol needs to be transported through the mitochondrial membrane by StAR 

primarily because of its lipophilic properties. Although the mechanism by which StAR 

accomplishes the translocation of cholesterol is not yet fully understood, the transfer 

of the steroid from the outer to the inner mitochondrial membrane is an absolute 

prerequisite for the biosynthesis of steroid hormones. The first decisive step for the 

biosynthesis of steroid hormones occurs at the inner mitochondrial membrane. The 

cytochrome P450scc (CYP11A1; scc= side chain cleavage), localized at the inner 

mitochondrial membrane, cleaves the cholesterol side chain to generate 

pregnenolone, the precursor of all steroid hormones (Arukwe, 2008; Arukwe et al., 

2008; Miller, 1995). The cholesterol-pregnenolone conversion process is controlled 

by anterior pituitary tropic hormones such as ACTH and LH. Pregnenolone undergoes 

several modifications to form progesterone and other steroids, including testosterone 

(Figure 2). Pregnenolone can also be converted through 17α-hydroxylase (CYP17A1) 

to 17α-hydroxypregnenolone and then to dehydroepiandrosterone (DHEA), which 

constitutes the precursor of testosterone. It can also be converted mainly in the 

adrenal glands, the liver, and the small intestine by sulfotranferase (SULT2A1) to 

dehydroepiandrosterone sulphate (DHEAS) (Brand et al., 1998; Miller, 2004; New, 

2003). 
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Figure 2: Conversion of cholesterol to pregnenolone, the precursor of all steroid hormones. The 

figure also displays the steps leading to the biosynthesis of testosterone and dehydroepiandrosterone 

sulfate (DHEAS).  

 

1.3. Actions of Steroid Hormones 

Hormones elicit their effects by interacting with specific receptors. Hydrophilic 

hormones such as peptide hormones are not capable of crossing the plasma 

membrane of cells. Therefore, they interact with receptors that are embedded in the 

plasma membrane. These receptors induce cytosolic signaling cascades associated 

with specific cellular or organ responses to the particular hormone. In contrast 
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hereto, lipophilic steroid hormones easily cross into the cytosol by diffusion through 

the plasma membrane. This hypothesis was confirmed in the 1960s, when the first 

cytosolic receptors for steroid hormones were identified. In the 1980s and 1990s the 

cloning of several of these receptors contributed to manifest the central dogma for 

steroid hormone action: steroid hormones exclusively signal through 

cytosolic/nuclear receptors. Since these pathways elicit changes in gene expression, 

the cellular responses to steroid hormone actions are referred to as genomic effects. 

The corresponding events that lead to the genomic effects are termed the classical 

pathway of steroid hormones (Valverde and Parker, 2002).  

Figure 3: Distinct mechanisms of steroid actions at different cellular levels: Cytosolic membrane, 

cytosol, nuclear membrane, and nucleus (Valverde and Parker, 2002). 

 

Genomic effects of steroid hormones are mediated through steroid hormone 

receptors (SHRs) that are basically ligand-activated transcription factors. In the 

absence of steroid hormone inactive SHRs linked to heat-shock protein remain in the 
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cytosol. After steroid hormones are transported through the plasma membrane by 

passive diffusion or through accelerated transport (Katsu et al., 2010; Kraus et al., 

1995; Norman et al., 1992; Valverde and Parker, 2002), they bind to their specific 

SHRs. As this complex steroid hormone receptor changes its structure, the heat-

shock protein separates, allowing the steroid hormone-receptor to dimerize. The 

steroid hormone receptor dimers penetrate the nuclear membrane, where by binding 

to specific HRE (hormone response element) they activate the target DNA and 

trigger the transcription process of the corresponding genes. Messenger ribonucleic 

acid (mRNA) is transcribed to be released later in the cytosol. The mRNA sequence is 

eventually translated to the corresponding protein (Daufeldt et al., 2006; Llopis et 

al., 2000; Vasudevan et al., 2005). This dogma, however, has not withstood further 

investigations. In an initial investigation Grazzini and co-workers identified a 

transcription-independent signaling pathway of the steroid hormone progesterone 

(Grazzini et al., 1998). Progesterone is essential for maintaining pregnancy in 

mammals, and it has an effect that is opposite to that of oxytocin, a nonapeptide 

that induces uterine contractions and may contribute to the onset of labour and 

parturition. Grazzini and coworkers were able to demonstrate that progesterone 

inhibits oxytocin signaling by binding to the membrane-bound oxytocin receptor. The 

oxytocin receptor belongs to the large class of membrane-bound receptors that relay 

their signals through guanine nucleotide binding (G) proteins to intracellular target 

proteins such as phospholipase C. Grazzini et al. found that progesterone inhibits two 

functional effects of oxytocin signaling: the production of the second messenger 

inositol 1,4,5-trisphosphate and an increase in the concentration of intracellular Ca2+. 

By recording the changes in the Ca2+ concentration, they showed that inhibition 

takes place in less than a minute and is readily reversible. 

It is now generally accepted that several steroid hormones interact not only with 

cytosolic/nuclear SHRs but also with membrane-integrated SHRs (Chen et al., 2005; 

Grazzini et al., 1998; Luconi et al., 2004). This type of receptor is probably present 

within membrane rafts. Interaction of steroid hormones with membrane-bound SHRs 

induces rapid signaling events that cannot be explained via the genomic mechanism 

of steroid action. Thus, erythrocytes which lack a nucleus were shown to respond 

rapidly -within seconds to minutes- to aldosterone, reducing the Na+ exchange 
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between the cells and the medium in vitro (Spach and Streeten, 1964). Similarly, 

estrogen and progesterone induce rapid signaling effects in spermatozoa, although 

their DNA is extremely compacted and not accessible to transcription factors (Baldi et 

al., 1995; Luconi et al., 2004; Rossato et al., 2005; Vicini et al., 2006). All of these 

rapidly induced signaling effects of steroid hormones are referred to as non-genomic 

effects in order to differentiate them from the genomic effects of steroid hormones 

described above. The corresponding signaling events that lead to the non-genomic 

effects comprise the non-classical pathway of steroid hormone action.  

 

2. Aims of this thesis 

Despite the general acceptance that steroid hormones can act through 

cytosolic/nuclear and membrane-bound receptors, a series of questions concerning 

the actions of specific steroid hormones and their metabolites remain unanswered. 

Membrane receptors for each steroid hormone have not yet been identified, even 

less so the signaling cascades that may be triggered through them. This applies for 

the androgen testosterone, which supposedly mediates all known signaling events 

solely through the cytosolic/nuclear androgen receptor (AR) that alters its position 

between cytosol and membrane. For other steroids like dehydroepiandrosterone 

sulfate (DHEAS) it is not clear whether they might be acting as hormones themselves 

or serve as pro-androgen that need to be converted to testosterone or other steroid 

hormones to exert their actions, or even if they simply represent waste products of 

steroid hormone metabolism.  

Since both steroids mentioned are produced in testes, unveiling their mode of action 

might be of significant importance for male fertility and reproduction. For this reason 

the goal of the current investigation was: 

2.1. Concerning DHEAS: 

• To investigate the action of DHEAS on cells of the male reproductive system 

by focussing on a possible effects of its own in the generation of signaling cascades;  

• to identify and describe the signaling cascades triggered;  
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• to identify the type of receptor that might be involved in the transmission of 

the signaling events.  

 

2.2. Concerning testosterone: 

• To analyse whether classical- and non-classical signaling of testosterone is 

mediated solely through the well-known cytosolic/nuclear androgen receptor;  

• and -if not- to identify the type of receptor that might be involved in the non-

classical signaling pathway.  

 

3. Outcome of own investigations 

3.1. Dehydroepiandrosterone sulfate mediates activation of transcription 

factors CREB and ATF-1 via a Gα11-coupled receptor in the spermatogenic 

cell line GC-2; Mazen Shihan, Ulrike Kirch, Georgios Scheiner-Bobis; Biochimica et 

Biophysica Acta 1833 (2013) 3064–3075 (see Attachment 1). 

Dehydroepiandrosterone (DHEA) is mainly produced in the adrenal zona reticularis 

and is almost entirely converted by the enzyme sulfotransferase to 

dehydroepiandrosterone sulfate (DHEAS), which is then secreted into the serum 

(Burger, 2002). DHEAS is the most abundant circulating steroid. Its concentration in 

plasma is between 1.3 and 6.8 µM, which is approximately 200-fold higher than the 

plasma concentrations of DHEA (7 - 31 nM) (Chen et al., 2005). The levels of these 

steroids vary depending on gender and age. Their concentration in the body is the 

highest before the age of 29 years and declines afterwards steadily with increasing 

age (Abebe et al., 2003). Thus, DHEA concentration in the plasma of humans older 

than 80 years is almost 80% less when compared with the concentrations measured 

at ages below 29 (Birkenhager-Gillesse et al., 1994; Mazat et al., 2001; Salvini et al., 

1992). DHEA and DHEAS are also produced in brain (Mensah-Nyagan et al., 1999), 

where their biological activity is considered to be neuroprotection (Maninger et al., 

2009). While sulfated steroids have long been considered to be biologically inactive 

waste products of steroid hormone metabolism, the discovery of a cytosolic steroid 
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sulfatase (STS) prompted the new idea that the sulfates constitute a reservoir that 

upon desulfation can deliver precursors for steroid hormone synthesis (Dalla Valle et 

al., 2006). Thus, DHEAS has been viewed as a pro-androgen that, after being 

transported into cells, is desulfated by STS to DHEA and further converted into 

testosterone or other steroid hormones in order to exert its biological activity 

(Ebeling and Koivisto, 1994). 

Numerous recent investigations demonstrate DHEAS-specific effects that are distinct 

from effects induced by DHEA, indicating that desulfation and conversion of DHEAS 

to other steroid hormones is not a prerequisite for certain actions and suggesting 

that caution should be used in interpreting the actions of either of the steroids. In 

support of this hypothesis, studies on rats show that STS inhibition can enhance 

neuronal functions that are also mediated by stimuli such as neurosteroids. This is 

caused by increased levels of DHEAS rather than of DHEA, which obviously enhance 

brain cholinergic function and lead to memory activation (Rhodes et al., 1997). In 

the same way, DHEAS was suggested to be involved in the development of tolerance 

to ethanol in mice (Barbosa and Morato, 2001; Barbosa and Morato, 2002; Barbosa 

and Morato, 2007). In addition, 1 µM DHEAS was shown to inhibit nerve growth 

factor (NGF)-induced proliferation of pheochromocytoma PC12 cells and to stimulate 

chromogranin A expression and catecholamine release from NGF-treated cells (Krug 

et al., 2009; Ziegler et al., 2011). Similarly, DHEAS was shown to specifically 

stimulate growth factor-induced proliferation of bovine chromaffin cells in an age-

dependent manner (Sicard et al., 2007). In the same investigation DHEA decreased 

the proliferative effect of the growth factors, indicating that the cellular responses to 

DHEA and DHEAS are mediated via different receptors (Sicard et al., 2007). 

Concerning their neuroprotective effects (Maninger et al., 2009), DHEA and DHEAS 

might be acting by triggering different pathways. Thus, DHEA, but not DHEAS, 

prevented neurotoxicity induced by N-methyl-D-aspartate (NMDA) by inhibiting the 

NMDA-induced activation of Ca2+-sensitive nitric oxide (NO) synthase and NO 

production (Kurata et al., 2004). In contrast, the neuroprotective effects of DHEAS 

against NMDA-induced cytotoxicity are most likely mediated through the Sig-1R 

receptor (Kurata et al., 2004).  
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An imbalance between levels of the sulfated steroid and its desulfated form has been 

shown to affect memory and harm the nervous system (Maurice et al., 2000; 

Maurice et al., 1999; Schumacher et al., 1997). This was also the case for low 

DHEAS serum levels in patients suffering from Alzheimer’s disease (Nasman et al., 

1996; Rasmuson et al., 1998). Based on these facts, a medical test has been 

developed to measure DHEA levels in plasma. It was found that DHEA and DHEAS 

levels in plasma are related to a very wide variety of diseases like breast cancer or 

tumours of the adrenal system (Barrett-Connor et al., 1990; Perrini et al., 2005; 

Schulz and Nyce, 1994; Tworoger et al., 2006), congenital adrenal hyperplasia 

(Bongiovanni, 1981; Young et al., 1994), memory loss (Taha et al., 2008; Traish et 

al., 2011), decreased bone and muscle mass, and gonad deformations and infertility 

(Grasso et al., 2015; Yonei, 2013). Thus, DHEA and DHEAS have been touted as a 

health-promoting food supplement which could be used in anti-aging and 

regenerative medicine (Bruckel, 2005; Hahner and Allolio, 2008; Rutkowski et al.; 

Von Bamberger, 2007). The physiological significance of DHEA versus DHEAS, 

however, is not yet sufficiently understood, and a connection has not yet been 

established between distinct effects of DHEA and DHEAS in different cell types and at 

their specific receptors (Widstrom and Dillon, 2004). Taking into consideration that 

DHEA and DHEAS are produced not only in the adrenal or brain but also in the 

gonads it is rather surprising that very little to nothing is known about the 

physiological significance of either steroid on biological processes associated with the 

reproductive system. 

The investigations described in the publication summarized here clearly show that 

DHEAS induces specific effects on the spermatogenic cell line GC-2. 

As demonstrated in Western blots and immunofluorescence experiments, DHEAS 

triggers in a time- and concentration-dependent manner the activation of a signaling 

cascade that includes the elements c-Src and Erk1/2 and results in the activation of 

the transcription factors CREB and ATF-1. The activation of this cascade is specific 

for DHEAS and does not require its conversion to DHEA or a different steroid. This 

conclusion is based on the fact that STS is not detectable in the GC-2 cells and is 

further supported by the fact that the STS-specific inhibitor irosustat (C14H15NO5S), 
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also known as STX64, does not have any effect on the DHEAS-induced signaling 

cascade. 

The DHEAS-induced signaling described in the publication resembles to a great 

extent the non-classical pathway of testosterone action. Thus, in order to rule out 

involvement of the classical pathway in the identified signaling cascade, the DHEAS 

effects were further assessed after silencing the expression of the cytosolic/nuclear 

androgen receptor (AR) at the mRNA and protein level by means of siRNA. The 

results obtained after the successful abrogation of AR expression demonstrate that a 

participation of the classical AR in the DHEAS-induced signaling cascade can be 

excluded. Neither Erk1/2 activation (investigated in western blots or by 

immunofluorescence) nor CREB or ATF-1 activation (demonstrated by 

immunofluorescence) were affected to any degree.  

In contrast, silencing the expression of the G-protein Gα11 (equivalent to Gnα11 or 

Gq11) completely abolished the entire DHEAS-induced signaling cascade. Neither 

Erk1/2 nor CREB or ATF-1 was activated in immunofluorescence experiments nor 

Erk1/2 in western blots; these results suggest that DHEAS exerts its actions through 

its interaction with a membrane-bound G protein-coupled receptor (GPCR). 

In summary, the investigation presented here calls into question the heretofore 

generally accepted idea of DHEAS being simply a pro-androgen that needs to be 

converted into testosterone or to another steroid hormone to be physiologically 

active. It also demonstrates for the first time that DHEAS acts as an autonomous 

steroid hormone on a spermatogenic cell line and triggers the activation of a 

signaling cascade that reflects the non-classical signaling pathway of steroid 

hormones. This signaling cascade involves a membrane-bound GPCR interacting with 

Gα11. The  continuation of the work with the goal of identifying the membrane-

bound DHEAS receptor and target mRNAs whose expression is controlled by the 

activation of the CRE promoters through the transcription factors CREB and ATF-1 

will help to define new roles of DHEAS in male physiology and possibly also in female 

fertility and reproduction. 
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3.2. Non-classical testosterone signaling is mediated by a G-protein-

coupled receptor interacting with Gnα11; Mazen Shihan, Ahmed Bulldan and 

Georgios Scheiner-Bobis; Biochimica et Biophysica Acta 1843 (2014) 1172-1181 (see 

Attachment 2). 

 

As shown in Figure 2, testosterone is produced by various steroidogenic steps, 

involving mitochondria and endoplasmic reticulum (ER). The main location for 

testosterone biosynthesis is the Leydig cells of the male gonads. Smaller amounts 

are also produced in the adrenal glands of both sexes and to some extent also in 

ovaries. Nevertheless, testosterone produced in ovarian theca cells is almost 

completely converted to estrogens. Serum concentration of testosterone varies with 

age (Soeborg et al., 2014; Zirkin and Tenover, 2012). Its high concentration in males 

is critical for the development of the reproductive system including testis and 

prostate as well as for the manifestation of the secondary male characteristics 

(Bertolo et al.; Braux and Dufaure, 1983; Panchenko and Sergienko, 1983; Stahl et 

al., 1984; Wasson et al., 2000). 

As described above, testosterone is known to act via two different pathways. In the 

classical (genomic) pathway, testosterone directly regulates gene transcription by 

binding to the cytosolic/nuclear androgen receptor (AR). 

In the non-classical pathway, testosterone elicits rapid events that lead to the 

activation of cytosolic signaling cascades normally triggered by growth factors such 

as the Src/PI3K/Akt or the Src/Ras/Raf/Erk1/2 pathway (Kato et al., 2000; Valverde 

and Parker, 2002). These signaling events originate at the surface of plasma 

membranes, where specific steroid receptors localized within rafts mediate the rapid 

activation of intracellular signaling cascades (Freeman et al., 2005). These 

membrane-bound steroid receptors are often G-protein coupled receptors (GPCR) 

and therefore different from the nuclear SR (Filardo and Thomas, 2012; Lappano et 

al., 2013; Prossnitz et al., 2006). Nevertheless, the nature of the receptor involved in 

non-classical pathway of testosterone is a source of controversy. Whereas some 

investigators favour the exclusive participation of the well-characterized 

cytosolic/nuclear AR in both pathways (Walker, 2010), others propose a membrane-
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bound AR, possibly from the family of G-protein-coupled receptors (GPCR), as 

mediator of several testosterone-induced effects (Dambaki et al., 2005; Estrada et 

al., 2003; Fu et al., 2012; Kampa et al., 2005; Kampa et al., 2002). 

Non-classical action of testosterone on cells of the male reproductive system is 

essential for spermatogenesis and the maturation of spermatogonia to spermatozoa 

(Walker, 2010). CREB activation in Sertoli cells, which is required for the survival of 

spermatocytes and the production of mature spermatozoa (Scobey et al., 2001), is 

triggered by testosterone interactions with the AR via the activation of the c-Src/c-

Raf/Erk1/2 signaling cascade, part of the non-classical testosterone signaling 

pathway (Rahman and Christian, 2007; Walker, 2010; Walker, 2011). The processes 

of spermatogenesis and the maturation of spermatogonia to spermatozoa also 

depend on the activation of Erk1/2 and other mitogen-activated protein kinases 

(MAPK) (Almog and Naor, 2008; Li et al., 2009). In addition, Erk1/2 activation is an 

absolute requirement for the production of haploid spermatozoa (Di Agostino et al., 

2004; Sette et al., 1999). The question still to be answered, however, is whether all 

of these effects are solely due to the interaction of testosterone with the classical AR 

or whether testosterone might exert some of its actions on other cells of the 

reproductive system by interacting with a different, thus-far unidentified receptor.  

The participation of a membrane-bound AR in the effects of testosterone would help 

to supplement or even revise some of the knowledge concerning the role of 

testosterone in male fertility and reproduction. It could also contribute to a better 

understanding of the effects of testosterone on cells outside the gonads or on 

prostate or testicular cancer cells.  

For these reasons the current investigations addressed the role of the classical AR in 

testosterone-induced non-classical signaling in the spermatogenic cell line GC-2.  

GC-2 cells respond to testosterone with activation (phosphorylation) of Erk1/2 and 

the transcription factors CREB and ATF-1. This response is consistent with the non-

classical action of testosterone (Walker, 2010) and suggests that, like in Sertoli cells, 

classical AR are also involved in propagation of testosterone-induced signaling in the 

spermatogenic GC-2 cells. This possibility was addressed in a series of experiments 

by restricting AR expression at the mRNA and protein level by means of siRNA. The 
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results summarized in Figs. 3-5 of the attached publication clearly show that silencing 

of the classical AR does not affect the induction of testosterone-induced signaling in 

GC-2 cells.   

These data demonstrate that the classical AR does not participate in the non-classical 

testosterone signaling identified in GC-2 cells; nevertheless, they contrast with earlier 

studies also employing AR-specific siRNA that implicated a role of the classical AR in 

Erk1/2 and CREB activation in Sertoli cells (Fix et al., 2004). In the absence of any 

alternative and satisfactory way to explain the discrepancy between the two 

investigations, one can only speculate at the current stage that the differences arise 

from the different cell types used.  

Although a participation of the classical AR in the signaling events in GC-2 cells could 

be excluded, the nature of the additional AR involved in the signaling cascade 

induced by testosterone still remained obscured. Thus, a first attempt was 

undertaken to identify at least the receptor type to which the non-classical AR might 

belong. The fact that GPCR were suggested to be involved  in the generation of 

testosterone-induced signaling in cell types such as myocytes (Estrada et al., 2003; 

Fu et al., 2012) or even Sertoli cells (Gorczynska and Handelsman, 1995; Loss et al., 

2004), and based on our own results showing that in GC-2 cells DHEAS activation of 

the Src/Ras/Raf/Erk1/2 signaling module, leading to CREB and ATF-1 activation, is 

mediated by GPCR interacting with Gnα11 (Shihan et al., 2013), prompted us to 

investigate a possible involvement of Gnα11 in the actions of testosterone. 

Silencing Gnα11 expression by means of siRNA at the mRNA and protein levels was 

found to have a great impact on the testosterone-induced signaling cascade in the 

GC-2 cells. Activation of Erk1/2, CREB and ATF-1 by testosterone, as demonstrated 

in immunofluorescence experiments and in western blots, was completely abrogated 

when Gnα11 expression was prevented, thus indicating not only the participation of 

this protein in the mediation of the non-classical testosterone pathway of the 

signaling cascade but also the existence of a membrane-bound GPCR as the non-

classical AR. 

Our data and conclusion are in a good agreement with various other studies 

proposing GPCR as mediators of the so-called non-genomic effects of steroid 
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hormones. A series of recent investigations unveiled a membrane-bound GPCR for 

estrogen from the group of orphan receptors, referred to as GPER-1 (Filardo et al., 

2002; Filardo and Thomas, 2012). Until these data were published, the classical 

cytosolic/nuclear estrogen receptors ERα and ERβ were thought to mediate both 

genomic and non-genomic effects of estrogen. Similarly, the new olfactory receptor 

family member PSGP (Prostate-Specific G protein-coupled Receptor) has been 

identified as a receptor for the testosterone metabolite 6-dehydrotestosterone 

(Neuhaus et al., 2009). The identification of steroid hormone-specific GPCRs like 

GPER-1 or PSGP, which is predominantly expressed in prostate cancer cells, however, 

opens new avenues for investigation of the role of estrogens or androgens in 

organism physiology. By analogy, further work focussing on the identification of the 

membrane-bound GPCR for testosterone will help to complete our knowledge 

concerning the action of steroid hormones. It may also help to distinguish between 

long-term genomic effects associated with the classical testosterone pathway 

involved in sexual maturation and effects of the non-classical testosterone pathway 

enabling rapid responses to transient stimuli.  

3.3. Non-classical testosterone signaling in spermatogenic GC-2 cells is 

mediated through ZIP9 interacting with Gnα11;  Mazen Shihan, Kai-Hui Chan, 

Lutz Konrad, Georgios Scheiner-Bobis; Cellular Signalling 27 (2015) 2077–2086 (see 

Attachment 3). 

A few months after the identification of Gnα11 as a mediator of the non-classical 

testosterone signaling (see Attachment 2), ZIP9, a Zn2+ transporter from the family 

of the ZRT, IRT-like transporting proteins (ZRT=zinc-regulated transporter; 

IRT=iron-regulated transporter) was identified by others as a testosterone-binding 

protein of plasma membranes, capable of inducing testosterone signaling. Thus 

binding of testosterone with high affinity (Kd=12.7 nM) to ZIP9 over-expressed in 

prostate or breast cancer cells leads to activation of Erk1/2, and to a testosterone-

mediated Zn2+ accumulation and apoptotic cell death (Berg et al., 2014; Thomas et 

al., 2014). The signaling cascade is mediated through the interactions of ZIP9 with 

stimulatory Gsα proteins, as demonstrated by co-immunoprecipitation, testosterone-

induced stimulation of [35S]GTPγS binding to cell membranes from cells expressing 
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ZIP9, decreased specific [3H]testosterone binding to membranes after treatment with 

excess GTPγS, and through the testostestrone-induced elevation of cellular cAMP 

levels (Berg et al., 2014; Thomas et al., 2014). Taking these and our findings into 

consideration, it was consequent to address whether the previously by us identified 

non-classical testosterone signaling in the spermatogenic cell line GC-2 (see 

Attachment 2) is also mediated by ZIP9 and if yes, whether ZIP9, in order to 

generate the signaling cascade, is interacting with Gnα11.  

In the non-classical action of testosterone, activation of the Src/Ras/Raf/Erk1/2 

signaling cascade leads to the activation of the transcription factor CREB. We 

therefore addressed by immunofluorescence and western-blotting a possible 

testosterone-induced activation of Erk1/2, CREB, and ATF-1 in GC-2 cells in the 

presence or absence of ZIP9, Gnα11 or classical androgen receptor (AR).    

For the immunofluorescence analysis, control cells and cells that had been treated 

with negative-control siRNA (nc-siRNA), ZIP9-specific siRNA (ZIP9-siRNA), Gnα11-

specific siRNA (Gnα11–siRNA), or AR-specific siRNA (AR-siRNA) were incubated with 

either 0 or 1 nM testosterone for 30 min and then subjected to fixation and 

immunostaining procedure. Phosphorylated (activated) forms of Erk1/2, CREB, or 

ATF-1 were detected by using appropriate primary antibodies and subsequent 

incubation with secondary antibody labeled with Fluorescein isothiocyanate (FITC).  

In control cells and in cells treated with nc-siRNA 1 nM testosterone caused a 

significant stimulation of Erk1/2, CREB, or ATF-1. Similarly, a highly significant 

activation of these proteins by testosterone was also obtained when cells were 

treated with AR-siRNA to silence AR expression, indicating that the classical AR 

receptor is not the mediator of these signaling effects.  

When, however, ZIP9 or Gnα11 expression was suppressed by the corresponding 

siRNAs the testosterone-induced activation of Erk1/2, CREB, or ATF-1, was 

completely obliterated, thus indicating the importance of both ZIP9 and Gnα11 for 

the non-classical testosterone signaling pathway.  

Since immunofluorescence photomicrographs can only address cells or proteins that 

are within the optical field of the microscope, western blots were carried out to 

obtain a representative average by measuring the testosterone action on all cells.  
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Testosterone effects on GC-2 cells treated with nc-siRNA were compared with its 

effects on cells treated with ZIP9-siRNA, Gnα11-siRNA, or AR-siRNA. In cells treated 

with nc-siRNA or AR-siRNA, 1 nM testosterone stimulated within 30 min 

phosphorylation of Erk1/2, CREB and ATF-1. Treatment of GC-2 cells with ZIP9-

siRNA, however, completely impaired the ability of testosterone to induce activation 

of Erk1/2, CREB or ATF-1. Expression of total Erk1/2 or total actin was unaffected by 

the treatment, indicating that the loss of p-Erk1/2, p-CREB or p-ATF-1 in ZIP9-siRNA 

treated cells was not due to an overall reduction in protein expression 

Inhibition of Gnα11 expression had effects on testosterone signaling that were 

similar to those produced by inhibition of ZIP9 expression. Whereas treatment of 

cells with nc-siRNA did not impair the significant testosterone-induced stimulation of 

Erk1/2, CREB or ATF-1, exposure of the GC-2 cells to Gnα11-siRNA completely 

blocked the phosphorylation of the kinase and of both transcription factors. Total 

Erk1/2 or total actin was not affected by the treatment.  

All western-blot results were consistent with the results of the immunofluorescence 

experiments and indicate that the non-classical signaling pathway of testosterone is 

not triggered by the interaction of the steroid with the known cytosolic/nuclear AR 

but rather through its interactions with ZIP9 and Gnα11. Do these two proteins, 

however, interact with each other or are they involved in different testosterone-

triggered pathways? This question was addressed by a rather new method termed in 

situ proximity ligation assay (PLA). In order to address possible interactions between 

ZIP9 and Gnα11, the two proteins were targeted with a rabbit IgG and a mouse IgG, 

respectively. When both primary antibodies were present, red fluorescent dots 

indicating neighboring ZIP9 and Gnα11 were seen in each of the cells, suggesting a 

direct interaction of the two proteins. The fact that not a single red dot was observed 

in any of the cells when the ZIP9 or Gnα11 expression was abrogated by means of 

siRNA underlines the specificity of the PLA assay and supports the idea of direct 

interaction of ZIP9 and Gnα11 proteins.  
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4. Discussion 

The investigation presented here deals with the effects of two steroid 

compounds that are both related to male fertility. As defined under “Goals 

of the Investigation”, the first part of the work addresses a possible  

hormone-like action of DHEAS by investigating its capacity to generate signaling 

cascades in cells of the male reproductive system, by identifying and describing 

these signaling cascades, and, finally, by narrowing down the type of receptor with 

which the steroid interacts. The second part of the work investigates whether 

classical- and non-classical signaling pathways of testosterone are mediated through 

the same classical cytosolic/nuclear AR or whether a different type of receptor might 

be the source of the non-classical action of the steroid hormone.  

The results obtained may indicate that DHEAS is indeed an autonomous hormone 

and not merely a pro-androgen that needs to be converted to a different steroid 

hormone to exert its action or even a waste product of steroid metabolism. Even at 

low concentrations it induces in the spermatogenic cell line GC-2 highly specific 

signaling cascades that, by including the elements c-Src, Erk1/2, CREB, and ATF-1, 

significantly overlap with the non-classical signaling pathway of testosterone. 

Nevertheless, prevention of the expression of the classical AR by means of siRNA 

does not affect the DHEAS-induced signaling cascade, indicating that the two 

apparently similar signaling pathways do not share the same receptor. Silencing the 

expression of the G-protein Gnα11 on the other hand results in the complete 

abrogation of all DHEAS-induced signals, consistent with a GPCR being the primary 

binding location for DHEAS. 

The investigation of the testosterone-induced non-classical pathway unveils a similar 

signaling mechanism for this steroid hormone. Silencing the expression of the 

classical AR does not influence any of the signaling events induced by testosterone, 

indicating the presence of an additional testosterone receptor as the mediator of the 

activation of Erk1/2, CREB, or ATF-1. As in the case of DHEAS, however, the 

inhibition of Gnα11 expression by siRNA abrogates the testosterone-induced 

signaling cascade, suggesting that a membrane-bound testosterone receptor from 

the family of G protein-coupled receptors mediates the signaling.  
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G protein-coupled receptors (GPCRs) constitute one of the largest families of protein 

molecules; almost 800 different receptors in humans are known thus far (Maurice et 

al., 2011). They are all built according to the same blueprint: they all are membrane-

embedded proteins with an extracellular N-terminus, an intracellular C-terminus, and 

seven transmembrane helices. Owing to the latter characteristic they are also 

referred to as heptahelical receptors. Despite this basic structural similarity, their 

ligands and actions are very diverse. GPCRs are involved in the recognition of 

messages as diverse as hormones, light, Ca2+, odorants, small molecules including 

amino acid residues, nucleotides and peptides, or proteins. In short, more than 350 

GPCRs are known to respond to different hormones, mating pheromones, and other 

stimuli. In contrast, the physiological significance and function of the bulk of GPCRs 

are still unknown (Herr, 2012).  
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 Figure 4: Classification and diversity of GPCRs. Class/Family: A (or 1) (rhodopsin-like), B (or 2) 

(secretin receptor family), C (or 3) (metabotropic glutamate/pheromone), D (or 4) (fungal mating 

pheromone receptors), E (or 5) (cyclic AMP receptors), F (or 6) (frizzled/smoothened). (A) The three 

main families and their effectors. (B) Family 4 comprises pheromone receptors (VNs). Family 6 

includes the ‘frizzled’ and the ‘smoothened’ (Smo) receptors involved in embryonic development and 

in particular in cell polarity and segmentation. The cAMP receptors (Family 5) have been so far found 

only in the slime mold Dictyostelium discoideum (Bockaert and Pin, 1999). 

 

Based on their sequence similarity as well as on their predicted or known function, 

the great number of GPCRs has been divided into 6 families or classes (A—F or 1-6). 

(cAMP Family/Class 5/E)  

(Family/Class 2/B) 

(Family/Class 1/A) 

(Family/Class 4/D) 

(Family/Class 6/F) 

(Family/Class 3/C) 
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Family A (1), accounting for more than 85% of the identified GPCR genes, 

constitutes the largest family of GPCRs (Bockaert and Pin, 1999) (Fig. 4). 

GPCR interact with G-proteins to induce various signaling cascades that control the 

activity of enzymes, of ion channels, vesicular transport and the overall physiology of 

cells, organs and organisms. There are several subtypes of Gα isoforms of G-proteins 

that together with Gβ and Gγ  subunits form the functional heterotrimeric G-proteins 

(Table 1).  

 

Table 1: Heterotrimeric G-proteins and their function (Berridge, M.J. (2012) Cell Signalling Biology). 

 

GPCRs, once activated by specific stimuli, interact with G-proteins to transmit specific 

signals through the plasma membrane by two different pathways: 

A) The cyclic adenosine monophosphate (cAMP) pathway  

B) The phosphatidylinositol pathway 
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A) In the cAMP pathway the activation of GPCR by a specific ligand results in 

alterations in the conformation of the receptor that is transmitted to a trimeric G 

protein complex. The stimulatory G protein alpha subunit Gα(s) is stimulated through 

the ligand-specific receptor. Once Gα(s) is activated, it exchanges GDP for GTP and 

separates itself from the β and γ subunits of the G protein complex. Adenylate 

cyclase is a plasma membrane-bound enzyme that is activated by the GTP-bound 

form of Gα(s). Activated adenylate cyclase catalyzes the conversion of ATP to cAMP 

which then acts as a second messenger. In mammals, the conversion of ATP to 

cAMP in the cytosol is mediated by members of Class-III AC/ADCY adenylate cyclase 

family. The increased concentrations of cAMP activate other components of cell 

signaling pathways like protein kinase A, which is also known as cAMP-dependent 

protein kinase (PKA). PKA phosphorylates other proteins or transcription factors such 

as CREB in the nucleus to initiate transcription. The effects of GPCRs coupled to 

Gα(s) are counteracted by the actions of a GPCRs coupled to Gα(i), and vice versa. 

Interaction of activated Gα(i) with adenylate cyclase leads to the inhibition of 

cytosolic cAMP formation, resulting in the inactivation of the PKA-mediated signaling 

events (Tomita et al., 2013). 

 

B) In the phosphatidylinositol pathway, the ligand binds to its specific GPCR on 

the extracellular side of the plasma membrane and activates the Gαq isoform of G-

proteins. In its inactive, GDP-bound form Gαq, being part of a trimeric G-protein, is 

associated with β and γ subunits. When activated, Gαq exchanges GDP for GTP, 

dissociates from the β and γ subunits, and activates phospholipase C (PLC). Active 

PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2), which is located on the 

inner side of the plasma membrane, to inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). DAG activates protein kinase C (PKC), which, in turn, 

phosphorylates other proteins, resulting in cellular responses. On the other hand, IP3 

activates the IP3 receptor, a Ca2+ channel localized in the membranes of the smooth 

endoplasmic reticulum. This leads to the opening of the IP3 receptor/Ca2+ channel, 

leading to elevated intracellular Ca2+ concentrations. The increased concentrations of 
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Ca2+ amplify the PKC activation and thus regulate the Ca2+/calmodulin kinase 

(CaMKII) pathway (Tomita et al., 2013). 

Gnα11 by being related to Gαq is a G-protein that normally also acts through the 

phosphatidylinositol pathway (Tab. 1) and leads to the production of DAG and IP3 

and to cytosolic [Ca2+] elevation. In our experiments, however, activation of Gnα11 

by either testosterone or DHEAS did not induce [Ca2+] elevation, indicating the 

involvement of alternative pathways in the signaling events triggered by these 

steroids in the GC-2 cells. Since Gαq-activated PKC can also stimulate the Erk1/2 

Figure 5: Heterotrimeric G-proteins composed of α, β, and γ subunits, and their different pathways 

through interacting with GPCRs induced by various stimuli  (Dorsam and Gutkind, 2007). 

pathway by directly phosphorylating c-Raf (Kolch et al., 1993; Schonwasser et al., 

1998; Ueda et al., 1996), one might assume the involvement of this pathway in the 

signaling events detected here. As an alternative mechanism, the Gβγ subunits that 
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had been associated with the Gαq protein might also be involved in the activation of 

the Erk1/2 cascade, as seen in other investigations (Blaukat et al., 2000; Xie et al., 

2000; Zhong et al., 2003). In any case, phosphorylation (activation) of Erk1/2 is a 

crucial event for the activation of different transcription factors like cAMP Response 

Element-Binding Protein (CREB), cAMP Response Element Modulator (CREM), and 

Activating Transcription Factor-1 (ATF-1), as was seen in the experiments involving 

either of the steroids DHEAS or testosterone. These transcription factors from the 

bZIP family interact with the transcriptional co-activator binding protein, bind to their 

specific DNA sites in the nucleus, and regulate gene transcription (Figure 5).  

The investigations presented here demonstrate for the first time that DHEAS and 

testosterone trigger cellular signaling cascades that are generated through the 

involvement of the G-protein Gnα11. Based on current knowledge one has to assume 

the involvement of membrane-bound GPCRs. The identification of either of the 

receptors might be of physiological significance.  Drugs that act through GPCRs are 

broadly used as therapeutics to treat a great number of human diseases as diverse 

as pain, hypertension, cognitive dysfunction, peptic ulcers, rhinitis, or asthma (Wise 

et al., 2004). Of the approximately 500 clinically marketed drugs, more than 30% act 

as modulators of GPCR function. At the same time they account for approximately 

9% of total pharmaceutical sales. Thus, in terms of drug discovery GPCRs are the 

most important of all protein classes (Drews, 2000; Wise et al., 2004). GPCR-

interacting drugs mediate their activity through approximately 30 well-characterized 

GPCRs. The human genome sequencing project has helped to identify approximately 

720 genes that belong to the GPCR superfamily (Im, 2013; Wise et al., 2004). 

Roughly half of these genes are thought to encode sensory receptors. Of the 

remaining 360 receptors, the natural ligand has been identified for approximately 

210 receptors, leaving 150 so-called orphan GPCRs with unknown ligand or function 

(Wise et al., 2004). The DHEAS and testosterone receptors are probably localized 

within this group of orphan receptors. Their deorphanization and the analysis and 

identification of the signaling cascades that are specifically activated by these 

receptors might help us to understand the role of either of the steroids in 

physiological and pathophysiological events.  
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Whereas our knowledge concerning the actions of DHEAS as a hormone is still 

rudimentary, the identification of the DHEAS receptor might bring enlightenment 

about the physiological roles of the sulfated hormone and aid in developing 

therapeutic concepts for the treatment of dysfunctions associated with male (or even 

female) reproduction and neuroprotection.  

Although effects of testosterone are more widely studied than those of DHEAS, the 

molecular mechanism by which testosterone acts on cells, organs, or even organisms 

are not yet fully understood.  

While the non-classical action of testosterone on cells of the male reproductive 

system is known to be essential for spermatogenesis (Walker, 2009; Walker, 2010) 

and Erk1/2 activation is critical for spermatogenesis (Almog and Naor, 2008; Li et al., 

2009) as well as an absolute requirement for the production of haploid spermatozoa 

(Di Agostino et al., 2004; Sette et al., 1999), the AR receptor(s) involved in these 

signaling events is(are) not entirely identified yet. The same applies concerning the 

activation of cyclic AMP response element binding protein (CREB) in testicular Sertoli 

cells, which is required for the survival of spermatocytes and the production of 

mature spermatozoa (Scobey et al., 2001). While some investigations point towards 

the classical AR receptor as mediator (Rahman and Christian, 2007; Walker, 2010; 

Walker, 2011), our current results (Attachments 2 and 3) and the results of others 

(Berg et al., 2014; Thomas et al., 2014) showing that ZIP9 is involved in these 

signaling events not only contradict this assumption, they will probably also help to 

supplement our knowledge concerning the actions of testosterone on cells of the 

reproductive system and  to provide a clearer picture of the involvement of this 

steroid hormone in the regulation of male fertility and reproduction.  

In addition, the identification of ZIP9 as the mediator of the non-classical signaling 

pathway of testosterone might as well help to better understand many others of the 

manifold effects of this steroid hormone. 

Testosterone-mediated non-genomic regulation of prostate cancer cell proliferation 

has been often associated with the classical cytosolic/nuclear AR (Heinlein and 

Chang, 2004; Liao et al., 2013; Wolff et al., 2012). Based on our current results 

(Attachments 2 and 3) and on the results of others (Berg et al., 2014; Thomas et al., 
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2014) the situation might be more complex. Considering the fact that non-classical 

testosterone signaling in prostate cancer cells stimulates proliferative signals that 

occur within minutes and are mediated through Erk1/2 activation (Falkenstein et al., 

2000; McCubrey et al., 2007; Peterziel et al., 1999; Roberts and Der, 2007), 

confirmation of ZIP9/Gnα11 interactions as an alternative route of androgen-induced 

signaling in prostate cells might help not only to reveal new actions of the steroid but 

also to pinpoint reasons for the resistance of various prostate tumors to anti-

androgens and to develop new treatment methods aimed at the abrogation of all 

androgen-induced signaling, both classical and non-classical. 

In addition, since non-classical testosterone signaling is also critical for 

cardiovascular, immune and musculoskeletal systems (Douglas et al., 2006; Rahman 

and Christian, 2007), the eventual confirmation of ZIP9 as the proposed membrane-

bound AR and the analysis of its properties might help in understanding dysfunctions 

of these systems and possibly help to develop more effective concepts for therapy. 
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5. Summary 

 

In addition to the so-called “classical” action of steroid hormones (SH) via 

intracellularly localized steroid hormone receptors (SHRs), SH can also induce 

signalling by so-called “non-classical” pathways, thought to be mediated through 

receptors on the plasma membrane. Neither the range of the signaling events nor 

the corresponding receptors involved in the fast signalling of the non-classical 

signaling pathways of SH have been characterized or even identified yet.  

In order to complete current knowledge concerning the action of androgenic steroids 

and to further understand their actions and physiological relevance for cells of the 

male reproductive system it is crucial to characterize possible signaling events 

mediated through them and to identify the receptor types they are interacting with. 

Thus the focus of the investigation presented here was placed on the actions of two 

androgens that are abundant in the male gonads, dehydroepiandrosterone sulfate 

(DHEAS) and the testosterone. 

DHEAS is a circulating steroid produced in the adrenal cortex, brain, and gonads. 

Whereas a series of investigations attest to neuroprotective effects of the steroid in 

the brain, surprisingly little close to nothing is known about its effects on cells of the 

reproductive system: neither DHEAS-specific signaling effects, nor their physiological 

significance or the type of receptor involved in the mediation of the signaling events 

have been assessed thus far. The work presented here demonstrates for the first 

time specific DHEAS-induced signaling events in a cell line derived from cells of the 

reproductive system. Thus, DHEAS acting on the spermatogenic cell line GC-2 

induces a time- and concentration-dependent phosphorylation of c-Src and Erk1/2 

and activates the transcription factors ATF-1 and CREB. These actions are consistent 

with the non-classical signaling pathway of steroid hormones such as testosterone. 

Since DHEAS is considered a pro-androgen the question arises whether it has to be 

converted into testosterone in order to exert the effects identified. This assumption is 

clearly contradicted by the fact that steroid sulfatase mRNA was not detected in the 

GC-2 cells and by the clear demonstration that neither the presence of the steroid 

sulfatase inhibitor STX64 nor the abrogation of the androgen receptor expression by 
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siRNA prevented the DHEAS-induced activation of Erk1/2, ATF-1 and CREB. It 

therefore appears unlikely that DHEAS has to be converted in the cytosol into a 

different steroid in order to activate the kinases and transcription factors mentioned. 

Instead, it is likely that the DHEAS-induced signaling is mediated through the 

interaction of the steroid with a membrane-bound G-protein-coupled receptor, since 

silencing of Gnα11 leads to the abolition of the DHEAS-induced stimulation of Erk1/2, 

ATF-1, and CREB. The investigation presented here shows a hormone-like activity of 

DHEAS on a spermatogenic cell line. Since DHEAS is produced in male and female 

reproductive organs, these findings might help to define new roles for DHEAS in the 

physiology of reproduction. 

Like other steroid hormones, testosterone also mediates its effects by classical and 

non-classical pathways. Although the cytosolic/nuclear androgen receptor (AR), 

which serves as a ligand-activated transcription factor, is undoubtedly responsible for 

the classical, genomic actions of testosterone, the nature of the receptor involved in 

the non-classical pathway is a source of controversy. Next to the assumption that the 

membrane and cytosolic AR are identical, there is strong evidence that the AR of the 

membrane is a G-protein coupled receptor (GPCR). To evaluate either of the two 

possibilities we first searched for testosterone-induced signaling cascades in the 

spermatogenic cell line GC-2. We identified a testosterone-induced stimulation of 

Erk1/2, CREB and ATF-1 phosphorylation, equivalent to the already described non-

classical action of testosterone. Silencing of AR expression by means of siRNA did not 

influence at all the androgen-induced activation of Erk1/2, CREB or ATF-1.  

In contrast, suppression of the expression of the G-protein Gnα11 by siRNA 

abolished the testosterone-induced activation of Erk1/2, CREB and ATF-1, suggesting 

that the non-classical testosterone-induced signaling is not due to the interaction of 

the steroid with AR but rather with a plasma membrane receptor interacting with 

Gnα11.  

This receptor is most likely ZIP9, a Zn2+ transporter from the family of the ZRT, IRT-

like transporting proteins (ZRT=zinc-regulated transporter; IRT=iron-regulated 

transporter). Silencing its expression by means of siRNA abrogates all testosterone 

induced signaling such as Erk1/2, CREB or ATF-1 phosphorylation in the 
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spermatogenic cell line GC-2. Based on these findings and on the fact that ZIP9 and 

Gnα11 are most likely interacting proteins, as demonstrated by the close proximity 

assay, one can propose the involvement of ZIP9/Gnα11 in the mediation of the non-

classical pathway of testosterone. 

Taking into consideration the data obtained with both, DHEAS and testosterone, one 

might assume that non-classical signaling pathways of androgens -and maybe also of 

other steroid hormones- are in general mediated through GPCRs or other membrane 

proteins capable of interacting with G-proteins, and that Gnα11 might be a key 

component in the mediation of the androgen-induced signaling. Since non-classical 

androgen signaling is not only relevant for male fertility but also for the progression 

of male-specific cancers, as wells as for cardiovascular, immune and musculoskeletal 

systems confirmation of DHEAS interactions with GPCRs (to still be identified) or 

testosterone interactions with ZIP9/Gnα11 as an alternative route of androgen-

induced signaling in further cell types and tissues might help not only to reveal new 

actions of the steroid but also to pinpoint reasons for the resistance of various 

prostate tumors to current anti-androgens and to develop new treatment methods 

aimed at all androgen-induced signaling, both classical and non-classical. 

 

6. Zusammenfassung 

Zusätzlich zu der so-genannten „klassischen“ Wirkungsweise der Steroidhormone 

(SH) die durch intrazellulär-lokalisierten Steroidhormon-Rezeptoren (SHRs) vermittelt 

werden, induzieren SH auch „nicht-klassische“ Signalkaskaden, die vermutlich über 

Membranrezeptoren vermittelt werden. Jedoch sind bislang weder der gesamte 

Umfang der nicht-klassischen Signalereignisse noch die hierfür zuständigen 

membran-assoziierten Rezeptoren umfassend charakterisiert oder gar identifiziert. 

Um den jetzigen Kenntnisstand zur Wirkung und physiologische Relevanz von 

androgenen Steroiden für die Zellen des männlichen reproduktiven Systems zu 

erweitern ist erforderlich Signalereignisse, die durch diese induziert werden, zu 

charakterisieren und die Rezeptortypen zu identifizieren, die mit diesen interagieren. 

Daher fokussiert die hier präsentierte Arbeit auf die Wirkungsweise von 
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Dehydroepiandrosteron-Sulfat (DHEAS) und Testosteron, zwei androgenen Steroide, 

die in männlichen Gonaden reichlich vorkommen.  

DHEAS ist ein zirkulierendes Steroid welches im Adrenalcortex, im Hirn und in den 

Gonaden produziert wird. Während eine Reihe von Untersuchungen dem Steroid 

neuroprotektive Wirkungen attestieren, ist überraschenderweise sehr wenig, ja fast 

nichts über seine Wirkung auf Zellen des reproduktiven Apparates bekannt: weder 

DHEAS-spezifische Signalkaskaden, noch ihre physiologische Signifikanz oder der 

Rezeptortyp, der die Signale vermittelt wurden bislang adressiert. Die hier 

vorgestellte Arbeit demonstriert zum ersten Mal spezifische, DHEAS-induzierte 

Signalereignisse in Zellen des reproduktiven Systems. So bewirkt DHEAS in der 

spermatogenen Zelllinie GC-2 eine zeit- und konzentrations-abhängige 

Phosphorylierung (Aktivierung) von c-Src und Erk1/2, sowie eine Aktivierung der 

Transcriptionsfaktoren CREB und ATF-1. Diese Signaleffekte entsprechen der „nicht-

klassischen“ Wirkung von Steroidhormonen, wie sie auch für das Testosteron 

beschrieben wurde. Da DHEAS als Proandrogen angesehen wird, ist es berechtigt zu 

fragen, ob es erst in Testosteron umgewandelt werden muss, um die Effekte zu 

triggern, die hier identifiziert wurden. Diese Vermutung muss jedoch verworfen 

werden, da weder die Anwesenheit des Steroidsulfatase-Inhibitors STX64, noch die 

Unterdrückung der Expression des Androgenrezeptors durch siRNA die DHEAS-

induzierte Aktivierung von Erk1/2, CREB oder ATF-1 verhindern können. Es ist daher 

unwahrscheinlich, dass DHEAS zuerst im Zytosol in ein anderes Steroid umgewandelt 

werden muss, um die bereits erwähnten Kinasen und Transcriptionsfaktoren zu 

aktivieren. Es ist stattdessen sehr wahrscheinlich, dass die DHEAS-induzierte 

Signalkaskade durch die Interaktion des Steroids mit einem membran-gebundenen, 

G-Protein-gekoppelten Rezeptor (GPCR) vermittelt wird, da die Unterdrückung der 

Expression des G-Proteins Gnα11 zur Aufhebung der DHEAS-induzierten Stimulierung 

von Erk1/2, CREB oder ATF-1 führt. Die hier präsentierte Untersuchung zeigt zum 

ersten Mal eine hormon-ähnliche Wirkung von DHEAS auf eine spermatogene 

Zelllinie. Da DHEAS in männlichen und auch in weiblichen Reproduktionsorganen 

synthetisiert wird, könnten diese Befunde helfen neue Rollen des DHEAS in der 

Physiologie der Reproduktion zu definieren.  
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Wie andere Steroidhormone, so vermittelt auch Testosteron seine Effekte über 

klassische und nicht-klassische Signalwege. Obwohl der zytosolisch/nukleäre 

Androgenrezeptor (AR), der als ligand-aktivierter Transcriptionsfaktor wirkt, 

zweifelsohne für die klassischen, nicht-genomischen Effekte von Testosteron 

verantwortlich ist, wird über die Natur des Rezeptors, der in dem nicht-klassischen 

Signalweg von Testosteron involviert ist, kontrovers diskutiert. Neben der 

Vermutung, dass der membranständige und der zytosolisch/nukleäre AR identisch 

sind, deuten mehrere experimentelle Hinweise darauf hin, dass der 

membranassoziierte AR ein GPCR ist. Um diese zwei Möglichkeiten zu evaluieren, 

wurde zuerst nach Testosteron-induzierten Signalkaskaden in den spermatogenen 

Zellen GC-2 nachgeforscht. Die identifizierte Testosteron-induzierte Stimulierung von 

Erk1/2, CREB and ATF-1 entspricht der nicht-klassischen Aktion von Testosteron. Die 

Unterdrückung der AR-Expression mittels siRNA beeinflusst jedoch nicht im 

Geringsten die Androgen-induzierte Aktivierung von Erk1/2, CREB oder ATF-1.  

Im Gegensatz hierzu, bewirkt die Unterdrückung der Expression des G-Proteins 

Gnα11 durch geeignete siRNA die vollständige Aufhebung der Testosteron-

induzierten Aktivierung von Erk1/2, CREB und ATF-1, sodass man annehmen muss, 

dass der nicht-klassische Testosteron-induzierter Signalweg nicht durch den AR 

vermittelt wird, sondern durch einen Plasmamembran-gebundenen Rezeptor, der mit 

Gnα11 interagiert.  

Dieser Rezeptor ist höchst wahrscheinlich ZIP9, ein Zn2+ Transporter aus der Familie 

der ZRT, IRT-like transporting proteins (ZRT=zinc-regulated transporter; IRT=iron-

regulated transporter). Unterdrückung seiner Expression durch siRNA führt in der 

spermatogenen Zelllinie GC-2 zur Aufhebung aller untersuchten Testosteroneffekte, 

wie Erk1/2-, CREB- oder ATF-1-Aktivierung. Aufgrund dieser Befunde und der 

Tatsache, dass ZIP9 und Gnα11 untereinander interagieren, wie durch ein proximity 

ligation assay demonstriert wurde, kann man die Einbindung von ZIP9/Gnα11 in der 

Vermittlung der nicht-klassischen Signalweges von Testosteron annehmen.   

Unter Berücksichtigung der Ergebnisse aus den Untersuchungen mit DHEAS und 

Testosteron, kann man vermuten, dass die nicht-klassischen Signalwege von 

Androgenen –und vielleicht auch die von anderen Steroidhormonen– generell durch 
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GPCR vermittelt werden und, dass dabei das Gnα11 eine Schlüsselkomponente der 

Weiterleitung der Androgen-induzierten Signalwege darstellt. Da die nicht-klassischen 

Signalwege der Androgene nicht nur für die männliche Fertilität sondern auch für die 

Progression von männerspezifischen Krebsarten und auch für Kardiovaskular-, das , 

Immun- und das Muskuloskeletalsystem von Relevanz sind, wird die Bestätigung von 

DHEAS-Interaktionen mit GPCR (die noch identifiziert werden müssen) oder von 

Testosteron-Interaktionen mit ZIP9/Gnα11 als Alternativroute des Androgen-

induzierten Signalwegs auch in anderen Zelltypen und Geweben helfen nicht nur 

neue Wirkungsweisen der Steroide aufzudecken, sondern auch Gründe für die 

Resistenz verschiedener Prostata-Tumore gegenüber Antiandrogenen zu erfassen 

und neue Behandlungsmethoden zu entwickeln, die auf alle Androgen-induzierte 

Signale abzielt, klassische und nicht-klassische.   
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Dehydroepiandrosterone sulfate (DHEAS) is a circulating steroid produced in the adrenal cortex, brain, and go-
nads. Whereas a series of investigations attest to neuroprotective effects of the steroid in the brain, surprisingly
little is knownabout the physiological effects of DHEAS on cells of the reproductive system. Herewe demonstrate
that DHEAS acting on the spermatogenic cell line GC-2 induces a time- and concentration-dependent phosphor-
ylation of c-Src and Erk1/2 and activates the transcription factors activating transforming factor-1 (ATF-1) and
cyclic AMP-responsive element binding protein (CREB). These actions are consistent with the non-classical sig-
naling pathway of testosterone and suggest that DHEAS is a pro-androgen that is converted into testosterone
in order to exert its biological activity. The fact, however, that steroid sulfatase mRNA was not detected in the
GC-2 cells and the clear demonstration of DHEAS-induced activation of Erk1/2, ATF-1 and CREB after silencing
the androgen receptor by small interfering RNA (siRNA) clearly contradict this assumption and make it appear
unlikely that DHEAS has to be converted in the cytosol into a different steroid in order to activate the kinases
and transcription factors mentioned. Instead, it is likely that the DHEAS-induced signaling is mediated through
the interaction of the steroid with a membrane-bound G-protein-coupled receptor, since silencing of Guanine
nucleotide-binding protein subunit alpha-11 (Gnα11) leads to the abolition of the DHEAS-induced stimulation
of Erk1/2, ATF-1, and CREB. The investigation presented here shows a hormone-like activity of DHEAS on a sper-
matogenic cell line. Since DHEAS is produced in male and female reproductive organs, these findings could help
to define new roles for DHEAS in the physiology of reproduction.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dehydroepiandrosterone (DHEA) is mainly produced by the adrenal
zona reticularis and is almost entirely converted by the enzyme
sulfotransferase to dehydroepiandrosterone sulfate (DHEAS), which is
then secreted into the serum [1]. DHEAS is the most abundant circulat-
ing steroid. Its concentration in plasma is between 1.3 and 6.8 μM,
which is approximately 200-fold higher than the plasma concentrations
of DHEA (7–31 nM) [2].

While sulfated steroids have long been considered to be biologically
inactive waste products of steroid hormone metabolism, the discovery
of cytosolic steroid sulfatase prompted the new idea that the sulfates
constitute a reservoir that upon desulfation can deliver precursors for
steroid hormone synthesis. Thus, DHEAS has been viewed as a pro-
androgen that, after being transported into cells, becomes desulfated
by steroid sulfatase to DHEA and further converted into testosterone
gie und -Biochemie, Fachbereich
urter Str. 100, D-35392 Giessen,

giessen.de (G. Scheiner-Bobis).

ights reserved.
or other steroid hormones in order to exert its biological activity [3].
DHEA andDHEAS are also produced in the brain [4], where their biolog-
ical activity is considered to be neuroprotection [5].

Numerous recent investigations demonstrate DHEAS-specific effects
that are distinct from effects induced byDHEA, indicating that desulfation
and conversion of DHEAS to other steroid hormones are not prerequisites
for its actions and suggesting that caution should be used in interpreting
the actions of either of the steroids. Thus, 1 μMDHEASwas shown to in-
hibit nerve growth factor (NGF)-induced proliferation of pheochromo-
cytoma PC12 cells and to stimulate chromogranin A expression and
catecholamine release from NGF-treated cells [6,7]. Similarly, DHEAS
was shown to specifically stimulate growth factor-induced proliferation
of bovine chromaffin cells in an age-dependentmanner [8]. In the same
investigation DHEA decreased the proliferative effect of the growth fac-
tors, indicating that the cellular responses to DHEA and DHEAS are me-
diated via different receptors [8]. Concerning their neuroprotective
effects [5], DHEA andDHEASmight act by triggering different pathways.
Thus, DHEA, but not DHEAS, prevented neurotoxicity induced by N-
methyl-D-aspartate (NMDA) by inhibiting the NMDA-induced activa-
tion of Ca2+-sensitive nitric oxide (NO) synthase and NO production
[9]. In contrast, the neuroprotective effects of DHEAS against NMDA-
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Table 1
Antisera used and their providers (IF = immunofluorescence; WB = western blot).

Antibody Catalog no. Provider Address

Anti-AR (H-280)
(for IF)

sc-13062 Santa Cruz
Biotechnology, Inc

Heidelberg, Germany

Anti-phospho-CREB and
anti-phospho-ATF-1
(for WB)

4276 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-phospho-CREB
(for IF)

9198 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-phosho-Erk1/2
(for WB and IF)

4370 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-phospho-c-Src
(for WB)

4276 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-total Erk1/2
(for WB)

9102 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-pan-Actin
(for WB)

4968 Cell Signaling
Technology

Frankfurt amMain,
Germany

Anti-phospho-ATF-1
(for IF)

2456-1 Epitomics Burlingame, USA
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induced cytotoxicity are most likely mediated through the Sig-1R re-
ceptor [9].

All of the above information indicates a role for DHEAS that is differ-
ent from that of DHEA. Taking into consideration that DHEA and DHEAS
are produced not only in the adrenal cortex and brain but also in the go-
nads [10–12], it is rather surprising that very little is known about the
effects of DHEAS on the cells of the male or female reproductive sys-
tems. Thus, in order to investigate a possible biological significance of
DHEAS in cells of the reproductive system we analyzed its effects on
the spermatogenic cell line GC-2 spd (ts). The results obtained here re-
veal new aspects of DHEAS action and will possibly provide new in-
sights into DHEAS-mediated physiological mechanisms associated
with fertility and reproduction.

2. Materials and methods

2.1. Cell culture

The spermatogenic cell line GC-2 spd (ts) [13] (hereafter referred
to as GC-2) was cultured as recommended in DMEM (TS) high glucose
(PAA Laboratories GmbH, Pasching, Austria) supplemented with
10% fetal calf serum (FCS), 1% penicillin/streptomycin combination
(100 U/ml of each) and 1% L-glutamine. Cells were incubated in a hu-
midified incubator at 31 °C under 5% CO2. The medium was renewed
every two days. Experiments were carried out after the 20th day of
culture (the third passage).

2.2. Cell lysates

GC-2 cellswere seeded at a density of 105 cells in 5-cmculture dishes
and grown as described above until they reached 70–80% confluence.
Cells were then incubated for 24 h with 1% FCS. Various concentrations
of DHEAS dissolved in ethanol were added to the cells and incubation
was continued for various times (seefigure legends for details). The con-
centration of ethanol was identical in all samples. Themediumwas then
removed by aspiration and cells were washed twice with ice-cold
phosphate-buffered saline (PBS; without Ca2+ or Mg2+; PAA Laborato-
ries GmbH) and lysed in 400 μl of a commercially available cell lysis
buffer (Cell Signaling Technology, Frankfurt, Germany) according to
the protocol of the provider. Immediately before use, 1 μM PMSF, 1×
protease inhibitor cocktail (Roche, Mannheim, Germany) and 2 μg/ml
pepstatin were added to the lysis buffer. All lysis steps were carried
out on ice. After 10 min of incubation cells were harvestedwith a scrap-
er, transferred into vials, and sonicated 5 times for 5 s, with intervals of
2 s. The reaction vials were then centrifuged at 13,000 ×g for 20 min at
4 °C. Theprotein content of the supernatantswas determined at 540 nm
using the bicinchoninic acid (BCA) protein assay reagent kit (Pierce,
Rockford, IL, USA) and a Labsystems (Helsinki, Finland) plate reader.
The lysis buffer was included in the bovine serum albumin protein stan-
dard. Aliquots of the supernatant taken for further analysis were stored
at −20 °C.

2.3. SDS-PAGE and western blotting

A total of 10 μg protein from cell lysateswas separated by SDS-PAGE
on slab gels containing 10% acrylamide and 0.3% N,N′-methylene-bis-
acrylamide. Biotinylated molecular weight markers (Cell Signaling
Technology) were used to determine the relative molecular mass of
the separated proteins. After electrophoresis proteins were blotted
onto nitrocellulose membranes (Schleicher & Schuell, Dassel, Germany)
for 30 min at 200 mA. Desired protein bands were visualized by incu-
bating the membranes according to the protocol of the providers of
the primary antibody (Table 1) and the appropriate secondary antibody
of the enhanced chemiluminescence kit (ECL; GE HealthCare, Munich,
Germany). For the simultaneous detection of phospho-CREB and
phospho-ATF-1, western blots were probed with an antibody that
cross-reacts with the two phosphorylated proteins (Cell Signaling
Technology). Horseradish peroxidase-conjugated anti-biotin IgG (Cell
Signaling Technology) at a dilution of 1:2000 was included in the
mixture containing the secondary antibody in order to detect the
biotinylated molecular weight marker.

The chemiluminescence obtained was visualized by exposure to
film. Films were analyzed by the TotalLab gel image analysis software
(Biostep, Jahnsdorf, Germany).

2.4. Detection of specific mRNA/cDNA for steroid sulfatase, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), androgen receptor (AR), and guanine
nucleotide binding protein, alpha 11 (Gnα11) by RT-PCR

Total mRNA was isolated from GC-2 cells by following the proto-
col of the commercially available RNeasy Mini Kit (Qiagen, Hilden,
Germany). Reverse transcription and PCR amplification of steroid
sulfatase-specific mRNA/cDNA were carried out by the Reverse Tran-
scription System(Promega,Mannheim, Germany) according to the pro-
tocol of the provider. For PCR amplification a total of 10 ng/μl of cDNA
was incubated with 20 pmol/ml of each primer, 10 mM Tris HCl,
50 mM KCl, 1–2.5 mMMgCl2, 1 mM dNTPs and 2 units Taq DNA poly-
merase. The final volume of the solutions was 25 μl. PCR was carried
out in a MasterCycler Gradient (Eppendorf, Hamburg, Germany). Sam-
ples were incubated at 95 °C for 5 min, followed by 40 cycles of dena-
turation at 95 °C for 30 s, annealing at temperatures ranging between
60 and 62 °C for 1 min, and cDNA extension at 72 °C for 1 min. After
amplification, a final extension at 72 °C was performed for 10 min.
The forward primer was the oligonucleotide 5′ACTGCTTCCTCATG
GACGACCTC3′ and the reverse primer was 5′AGGCGTTGCAGTAGTG
GAACAGG3′. These amplify a region between bases 1001 and 1624 of
mouse steroid sulfatase-specific mRNA and yield an amplificate of
624 bp.

GAPDH-specific mRNA/cDNA was detected using a similar protocol
with the exceptions that the annealing temperature was kept constant
at 54 °C, the extension time was 45 s, and the MgCl2 concentration was
2.5 mM. The forward primer was the oligonucleotide 5′GGAGATTGTTGC
CATCAACG3′ and the reverse primer 5′CACAATGCCAAAGTTGTCA3′.
These amplify a fragment of 430 bp between bases 128 and 557 of
mouse GAPDH-specific mRNA.

AR-specific mRNA/cDNA was amplified under the same conditions
used for the amplification of GAPDH. Forward and reverse primers
were the oligonucleotides 5′AGCGCAATGCCGCTATGGGG3′ and 5′GTG
GGGCTGCCAGCATTGGA3′, respectively. These amplify a 708-bp frag-
ment of mouse AR-specific mRNA localized between bases 1220 and
1927.

Gnα11-specific mRNA/cDNA was amplified under the same condi-
tions asGAPDH. Forward and reverse primerswere the oligonucleotides
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Fig. 1. Activation of Erk1/2 by DHEAS. Lysates of DHEAS-treated GC-2 cells were run on
SDS-PAGE and subsequently probed in western blots. (A–C) Time-dependent activation
of Erk1/2: While incubation with 1 nM DHEAS had no effect on the amount of total
Erk1/2 (A), it stimulated its phosphorylation (B). Phosphorylation of Erk1/2 (corrected
for the amount of total Erk1/2 as shown in panel A) was significant after 30 min of incu-
bation with DHEAS (C) (n = 4; means ± SEM; * = p ≤ 0.05; ** = p ≤ 0.01). (D–E):
Treatment of cells for 30 min with the indicated concentrations of DHEAS had no effect
on total Erk1/2 (D) but led to an increase in phosphorylated Erk1/2 (E). Within this time
frame activation of Erk1/2 (corrected for the amount of total Erk1/2 as shown in panel
D) was significant at DHEAS concentrations ≥0.1 nM (C) (n = 5–7; means ± SEM;
* = p ≤ 0.05; ** = p ≤ 0.01).
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5′GAACCGGGAAGAGGTAGGG3′ and 5′GACCAAGTGTGAGTGCAGGA3′,
respectively. These amplify a 917-bp fragment of mouse Gq11-specific
mRNA localized between bases 70 and 986.
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2.5. Inhibition of steroid sulfatase by STX64

Cells were incubated as described above with or without 10 nM
DHEAS in the presence or absence of 10 nM STX64 (Sigma-Aldrich,
Taufkirchen, Germany). This concentration of STX64 has been consid-
ered sufficient for complete inactivation of steroid sulfatases [14]. All
samples contained 2 μl DMSO, whichwas the solvent for stock prepara-
tions of STX64. After 30 min of incubation, cell lysates were prepared
as described above. Activated Erk1/2 and total Erk1/2 were detected
after SDS-PAGE and western blotting as stated under “Materials and
methods”, Section 2.3.

2.6. Silencing of the androgen receptor via siRNA

Silencing of the androgen receptor was carried out by using
commercially available siRNA and by following the protocol of the
GC-2 cells; sulfatase detection
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Fig. 4.Assessment of the involvement of steroid sulfatase in theDHEAS-induced signaling.
(A) RT-PCR for the detection of steroid sulfatase-specific mRNA/cDNA. Steroid sulfatase-
specific mRNA/cDNA was not detectable in GC-2 cell extracts at any annealing tempera-
ture and MgCl2 concentration tested. The expected sulfatase-specific amplificate of
624 bpwas clearly detected, however, in extracts frommouse adrenals, indicating the cor-
rect choice of primers. A GAPDH-specific amplificate was detected in the GC-2 prepara-
tions, indicating that the reason for not detecting sulfatase-specific amplificates in the
GC-2 preparations was not due to the poor quality of the mRNA/cDNA employed. (B)
Western blot demonstrating that the steroid sulfatase-specific inhibitor STX64 does not
prevent or reduce DHEAS-induced stimulation of Erk1/2. (C) Western blot showing total
Erk1/2 in the same cell lysates used in panel B. (D) DHEAS-induced activation of Erk1/2
in the presence STX64 was highly significant (n = 3; means ± SEM; ** = p ≤ 0.01).
provider (Stealth™ RNAi; Invitrogen, Karlsruhe, Germany). The oli-
gonucleotides used were: primer pair 1: 5′ACUCGAUCGCAUCAU
UGCAUGCAAA3′ and 5′UUUGCAUGCAAUGAUGCGAUCGAGU3′; primer
pair 2: 5′CCCAGAAGAUGACUGUALJCACACAU3′ and 5′AUGUGUGAUA
CAGUCAUCUUCUGGG3′; and primer pair 3: 5′CCAGAUUCCUUUGCUGC
CUUGUUAU3′ and AUAACAAGGCAGCAAAGGAAUCUGG3′. Control cells
were treated with Opti-MEM plus Lipofectamine 2000 plus Stealth™
RNAi negative control. Transfection efficiency was estimated by the
Block-iT™ Transfection Kit (Invitrogen, Karlsruhe, Germany) according
the protocol of the provider. After 72 h of incubation cells were used to
isolate mRNA for RT-PCR (see previous paragraph). A second set of cells
was stimulated with 1 nMDHEAS and used for the detection of activated
Erk1/2, CREB, and ATF-1 by immunofluorescence, as described further
below. Finally, a third set of cells was stimulated with 1 nM DHEAS and
used for the isolation of cell lysates to be investigated in western blots.

2.7. Silencing of the Gnα11 protein via siRNA

Silencing of the Gnα11 protein was carried out by using commer-
cially available siRNA and by following the protocol of the provider
(Silencer® Select siRNA; Invitrogen). The oligonucleotides used were:
primer pair 1: 5′CCAAGUUGGUGUACCAGAAtt3′ and 5′UUCUGGUA
CACCAACUUGGtg′; and primer pair 2: 5′CAAGAUCCUCUACAAGUAUtt3′
and 5′AUACUUGUAGAGGAUCUUGag3′. Control cells were treated with
Opti-MEM plus Lipofectamine 2000 plus the siRNA negative control as
supplied by the provider. All other steps were the same as described
in the previous paragraph.

2.8. Immunofluorescence

GC-2 cells that had been treated with siRNA to silence either AR or
Gα11 were incubated with vehicle alone or vehicle + 1 nM DHEAS for
30 min. The medium was then aspirated and the cells were fixed using
200 μl of ice-cold methanol containing a total of 20 ng of DAPI (4′,6-
diamidino-2-phenylindole). After 15 minof incubation at RT, theDAPI so-
lution was aspirated and slides were allowed to dry for 15 min before
washing 3 times with 500 μl PBS. The cells were then blocked with 10%
FCS and 0.3% Triton-X100 in PBS for 1 h at RT. The first antibody
(Table 1), diluted as recommended by the provider, was then added
and incubationwas continued for 2 days at 4 °C in a humidified chamber.
The antibody against phospho-Erk1/2 was from Cell Signaling Technolo-
gy. The antibody against phospho-ATF-1 was from Epitomics (Burlin-
game, CA, USA). This antibody is phospho-ATF-1 specific and does not
interact with phospho-CREB. For the specific detection of phospho-
CREB, an antibody from Cell Signaling Technology was used with
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Fig. 5. Silencing expression of AR by means of siRNA. GC-2 cells were treated with three
different nucleotide pairs of siRNA against AR according to the manufacturer's protocol.
Control cells were treated with either Opti-MEM alone, Opti-MEM plus Lipofectamine,
or both of the above plus negative control siRNA, provided in the kit of the manufacturer.
Total RNA was then isolated and subjected to RT-PCR to amplify AR-specific mRNA/cDNA
fragments of 708 bp. Treatment of the cells with siRNA oligo pair 3 abolished the expres-
sion of AR-specific mRNA/cDNA. This oligo pair was used for the subsequent experiments
depicted in Fig. 6 and 7.
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negligible interaction with phospho-ATF-1. The antibody against the
androgen receptor was from Santa Cruz Biotechnology (Heidelberg,
Germany).

The slideswere thenwashed 3 times for 5 min eachwith 500 μl PBS.
Staining was achieved by incubating for 20 min at room temperature
with an Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen,
Karlsruhe, Germany; diluted at 1:500 in 2% FCS, 0.1 Triton-X100 in
PBS). Images were obtained by an inverse Olympus IX81 microscope
equipped with the corresponding fluorescence system (Olympus,
Hamburg, Germany). Fluorescence within cells was measured by
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Fig. 6. Detection of phospho-Erk1/2, phospho-ATF-1 and phospho-CREB by immunofluorescen
silence AR expression. Nuclei were stainedwith DAPI andwith specific primary antibodies again
ondary antibody as detailed in “Materials andmethods”. Treatment of the GC-2 cells with 1 nM
rescence signals indicating activated Erk1/2, CREB, or ATF-1 were significantly higher (G) after
steroid (A, C, E) (n = 19–28; means ± SEM; ** = p ≤ 0.01; scale bar = 50 μm).
using the software program ImageJ (freely available at http://rsbweb.
nih.gov/ij/). All cells in the optical field were considered. Data points
were transferred to and analyzed by the software program GraphPad
Prism4 (GraphPad Software, Inc., La Jolla, CA, USA).

2.9. Statistical analysis

Loading differences in the various western blots were corrected by
taking into consideration the optical density of unphosphorylated Erk1/
2 bands or total actin bands, detected in western blots that were run
                        B)
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ce after silencing AR expression by siRNA. All cells shownwere treated with oligo pair 3 to
st phospho-Erk1/2, phospho-ATF-1 or phospho-CREB and an Alexa Fluor 488-labeled sec-
DHEAS for 30 min triggered the activation of Erk1/2 (B), ATF-1 (D) and CREB (F). The fluo-
30 min of incubation with 1 nM DHEAS than the signals measured in the absence of the
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Fig. 7. Western blot analysis of phospho-Erk1/2 after silencing AR expression by siRNA.
Cells were treated with control siRNA or with siRNA to silence AR expression. After
30 min of incubation in the presence or absence of 1 nM DHEAS, cell lysates were pre-
pared and probed in a western blot as described under “Materials and methods”. Incuba-
tionwith 1 nMDHEAS, which had no effect on total Erk1/2 (A), triggered the formation of
phospho-Erk1/2 independent of whether the AR had been silenced or not (B, C). The data
shown in (C) were corrected for the amount of total Erk1/2 as shown in (A) (n = 3;
means ± SEM; * = p ≤ 0.05).
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in parallel. Data were analyzed by GraphPad Prism4 Software and by ap-
plying one-way ANOVAwith repeated measures and Dunnett's compari-
son of all data to the control. Significance was accepted at p b 0.05.

3. Results

3.1. DHEAS induces activation of Erk1/2

Steroid hormones exert their non-classical actions by activating en-
zymes of signaling cascades that are usually triggered by growth factors
[15,16]. One of these is the Src/Ras/Raf/Erk1/2 signaling cascade, and
thus our first aim was to examine whether DHEAS might induce Erk1/2
activation in GC-2 cells.

As shown in Fig. 1B, 1 nM DHEAS induced a clear activation (phos-
phorylation) of Erk1/2 that was significant after 30 min of incubation
(Fig. 1C). When Erk1/2 activation was determined by incubating the
cells for 30 min with various concentrations of DHEAS (Fig. 1E), signifi-
cant activation of Erk1/2 was obtained at DHEAS concentrations of
0.1 nM and above (Fig. 1F). Incubation with DHEAS did not affect ex-
pression of total Erk1/2 (Fig. 1A and D).

In parallel experiments we addressed the effect of DHEA on Erk1/2
activation under conditions identical to those used for the investigation
of the DHEAS effect. DHEA-induced activation was never observed in
these experiments; in fact, if anything there was a small but significant
reduction in active Erk1/2 seen with 10 nM DHEA (see Supplementary
material). After obtaining this result, we confined our further investiga-
tions to DHEAS-induced signaling.

3.2. c-Src activation by DHEAS

Steroid hormone-induced Erk1/2 activation has been shown in sev-
eral cases to be mediated by activation of c-Src [17–20] via phosphory-
lation at Tyr419. A similar mechanism is apparently involved in the
DHEAS-stimulated induction of signaling cascades in GC-2 cells: we
found that DHEAS stimulates phosphorylation of c-Src at Tyr419,
which was visualized by western blotting using a monoclonal antibody
specifically recognizing the phosphorylated form of this amino acid
(Fig. 2A). After 30 min of incubation with various concentrations of
DHEAS, significant activation of c-Src was obtained at concentrations
of 1 nM or greater (Fig. 2B).

3.3. DHEAS-induced activation of transcription factors CREB and ATF-1

Activation of Erk1/2 leads to its translocation to the nucleus and
to subsequent activation of transcription factors. Stimulation of the
c-Src/Ras/c-Raf/Erk1/2 pathway is known to activate the transcription
factors CREB (cyclic AMP-responsive element bindingprotein) andATF-
1 (activating transforming factor-1) [16,18,21]. Since the results shown
in Fig. 1 and 2 clearly demonstrate activation of this signaling cascade,
we investigated a possible DHEAS-induced activation of ATF-1 and
CREB in the GC-2 cells. In western blots with an antibody that cross-
reacts with phospho-CREB and phospho-ATF-1,we observed significant
activation of both transcription factors following 30 min of incubation
with 0.1 nM DHEAS (Fig. 3A–C). This response was similar to that
observed for the DHEAS-induced activation of Erk1/2 (Fig. 1F).

3.4. Lack of steroid sulfatase expression in GC-2 cells

DHEAS is often considered a pro-androgen that needs to be
desulfated to DHEA and thereafter converted to testosterone in order
to exert its androgenic properties [3]. Therefore, we examined whether
the GC-2 cells might express steroid sulfatase-specific mRNA. Sulfatase-
specific mRNA/cDNA was not detectable at all annealing temperatures
and MgCl2 concentrations used (Fig. 4A). In the same preparations
GAPDH was detectable (Fig. 4A), indicating that mRNA isolation and
its reverse transcription to cDNA had been carried out correctly and a
faulty RT-PCR could not be the reason for the lack of sulfatase-specific
amplificates in extracts of GC-2 cells. The expected sulfatase-specific
amplificate of 624 bp was clearly present, however, in extracts from
mouse adrenals at an annealing temperature of 60 °C in the presence
of 2 mM MgCl2, indicating that the lack of signals in extracts of GC-2
cells was not due to flawed primers (Fig. 4A).

To further confirm that steroid sulfatase is not involved in the gener-
ation of DHEAS-induced signaling, we used the steroid sulfatase-specific
inhibitor STX64 and investigated the effects of DHEAS on activation of
Erk1/2 in the presence of this compound. As Fig. 4B shows, 10 nm
STX64 did not inhibit DHEAS-induced phosphorylation of Erk1/2. Total
Erk1/2 was not influenced under these conditions (Fig. 4C). The stimu-
lation of Erk1/2 phosphorylation under these conditionswas highly sig-
nificant (Fig. 4D).

The implication of the experiments summarized in Fig. 4 is that
DHEAS does not exert its effects via conversion to DHEA but rather di-
rectly, by binding to a receptor in a hormone-like fashion.
3.5. Does the androgen receptor mediate the DHEAS effects?

The results described in the previous paragraphs clearly showa strong
overlap betweenDHEAS-induced signaling and the non-classical action of
testosterone [16]. Thus, one can speculate on a possible involvement of
the androgen receptor in DHEAS-induced signaling. This possibility was
addressed by re-investigating DHEAS effects on Erk1/2, CREB and ATF-1
activation after silencing the AR expression by means of siRNA.

Fig. 5 shows the RT-PCR results obtained after attempting to silence
the expression of AR-specificmRNAby using 3 different oligonucleotide
pairs. It is apparent that the best result was obtained by using the third
combination of oligonucleotide primers (oligo pair 3), whose sequence
was listed under “Materials and methods”. The expression of AR-
specific mRNA was not affected by either Lipofectamine or control
siRNA (Fig. 5). Thus, for the following experiments cells were treated
with oligo pair 3.
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Cells were incubated with either 0 or 1 nM DHEAS for 30 min and
then subjected to a fixation/immunostaining procedure as described
under “Materials andmethods” to detect thephosphorylated formsof ei-
ther Erk1/2, ATF-1, or CREB. Fig. 6 shows that treatment of the GC-2 cells
with AR-specific siRNA does not affect the DHEAS-induced activation
(phosphorylation) of Erk1/2, ATF-1 or CREB. Erk1/2 activation is seen
in the form of green fluorescence that is spread over the entire volume
of DHEAS-treated cells despite the absence of AR (Fig. 6B). Activated
transcription factors ATF-1 (Fig. 6D) and CREB (Fig. 6F) are visible as
green fluorescent signals within the nucleus after the exposure of the
cells to DHEAS. In the absence of DHEAS, a relatively low, basal amount
A)

C)

B)

50 µm

Fig. 8. Silencing ARprotein expression by siRNA. Cellswerefixed inmethanol and incubat-
ed with a primary antibody against the AR and a fluorescent secondary antibody (rabbit
anti-goat IgG-FITC green), as described under “Materials andmethods”. Nuclei are stained
by DAPI, as described under “Materials and methods”. (A) All control cells show green
fluorescence, indicating the presence of the AR. (B)When the primary antibodywas omit-
ted, only DAPI-stained nuclei were visible, indicating that the green fluorescence seen in
(A) was not due to non-specific binding of the secondary antibody. (C) When cells were
treated with siRNA to silence AR expression, AR-specific protein was not detectable by
the combination of the antibodies used in (A), indicating the successful silencing of the
AR protein. Only DAPI-stained nuclei can be seen in (B) and (C).
of activated Erk1/2 (Fig. 6A), ATF-1 (Fig. 6C), or CREB (Fig. 6E) was re-
stricted to a few cells only. Total cell-associated fluorescence corre-
sponding to active Erk1/2, ATF-1, or CREB was significantly higher after
30 min of incubationwith 1 nMDHEAS than the fluorescencemeasured
in the absence of the steroid (Fig. 6G; see also upper “control” panels of
Fig. 10A–C for the respective control responses to DHEAS in the absence
of any siRNA, whichwere similar to the responses shown in Fig. 6). Since
immunofluorescence considers only cells residing within the optical
field of themicroscope, we carried out an additional western blot exper-
iment in order to obtain an average for all cells in the incubationmixture.
As can be seen in Fig. 7, treatment of GC-2 cells with siRNA to silence the
expression of AR does not impair the ability of DHEAS to induce Erk1/2
activation, which is consistent with the results shown in Fig. 6A and B.

The information shown in Figs. 5, 6, and 7 indicates that the AR is not
involved in the generation of DHEAS-induced signaling. Nevertheless,
since silencing of mRNA might not necessarily lead to a rapid decrease
in the expression of the targeted protein, we investigated by immunoflu-
orescence whether the AR protein is still present in the cells despite the
reduction of AR-specific mRNA/cDNA by siRNA. The results of the inves-
tigation are summarized in Fig. 8. While green fluorescence, indicating
the expression of the AR protein, is visible in every GC-2 cell in the
image shown in Fig. 8A, it is entirely missing when the first antibody
against AR was omitted (Fig. 8B) or after cells were treated with siRNA
(primer pair 3) to prevent expression of AR-specific mRNA (Fig. 8C).
3.6. Involvement of Gnα11 in DHEAS-induced signaling

Many hormones, among them steroid hormones, elicit their actions
through G-protein-coupled receptors (GPCRs) [22–25]. In the mast cell
line RBH-2H3 the Gq/11 protein was shown to interact with DHEAS
[26]. Although there appear to be no reports concerning the expression
of Gq/11 in the various cell types of mouse testes, Gnα11 (equivalent to
Gq/11) expression was detected in all cell types of human testes [27].
Since we determined that the AR does not participate in DHEAS-
induced signaling in GC-2 cells, and because GC-2 cells express Gnα11
mRNA (Fig. 9), we investigated a possible involvement of GPCRs in the
signaling cascade by silencing Gnα11 expression in these cells.

The RT-PCR results shown in Fig. 9 demonstrate that after
transforming GC-2 cells with the siRNA oligo pair 2 (see Materials and
methods), the expression of Gnα11-specific mRNA/cDNA is reduced
to a minimum. The expression of Gnα11-specific mRNAwas not affect-
ed by either Lipofectamine + Opti-MEMor control siRNA (Fig. 9). Oligo
pair 1 caused only a slight reduction in the expression of Gnα11-specific
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Fig. 9. Silencing expression of Gnα11-specific mRNA/cDNA by means of siRNA. Cells
were incubated with 2 different oligonucleotide pairs (oligo pair 1 or 2) to silence Gnα11-
specific mRNA expression. Isolation of mRNA and RT-PCR were carried out as described
under “Materials and methods”. Oligonucleotide pair 2 was the most efficient and was
used in all subsequent experiments to silence the expression of Gnα11 (Fig. 10 and 11).
Treatment of the cells with Opti-MEM plus Lipofectamine or Opti-MEM plus Lipofectamine
plus the control siRNA (control siRNA) did not influence Gnα11 mRNA expression.

image of Fig.�8
image of Fig.�9


3071M. Shihan et al. / Biochimica et Biophysica Acta 1833 (2013) 3064–3075
mRNA/cDNA. Thus, for the following experiments cells were treated
with oligo pair 2.

GC-2 cells treated with either control siRNA or with siRNA against
Gnα11 were incubated with 0 or 1 nM DHEAS for 30 min. Detection
of phospho-Erk1/2, phospho-ATF-1, or phospho-CREB by immunofluo-
rescence was carried out as described under “Materials and methods”.

Treatment of GC-2 cells with control siRNA did not affect activation
of Erk1/2, ATF-1, or CREB by 1 nM DHEAS (Fig. 10). Total cell-
associated fluorescence corresponding to active Erk1/2, ATF-1, or CREB
was significantly higher after 30 min of incubation with 1 nM DHEAS
in cells treated with control siRNA than the fluorescence measured in
the absence of the steroid. In parallel, treatment with siRNA against
Gnα11 expression leads to the complete abolition of the effects of
DHEAS, clearly demonstrating the involvement of this protein in medi-
ating DHEAS-induced signaling. Fluorescence corresponding to active
Erk1/2, ATF-1, or CREB after 30 min of incubation with 1 nM DHEAS
A) phospho-Erk1/2

DHEAS       0 nM

control

control siRNA

Gnα11 siRNA

Fig. 10.Detection of phospho-Erk1/2, phospho-ATF-1 and phospho-CREB by immunofluorescen
vehicle only (no DHEAS). Right columns: cells received 1 nMDHEAS. Upper rows: controls (un
control siRNA. Bottom rows: cells treatedwith Lipofectamine, Opti-MEM, and siRNA to silence G
few or none of the cells showed green fluorescence, indicating active Erk1/2. Control cells and
almost all cells at various intensities. DHEAS did not induce Erk1/2 activation in cells that had be
When cells were treatedwith siRNA against Gnα11, DHEAS did not induce ATF-1 activation (gr
DHEAS induced ATF-1 activation in all nuclei. (C) Detection of activated CREB. DHEAS-induced
silence Gnα11 expression. Control cells and cells treatedwith negative control siRNAdisplayed
in panels A–C. The green fluorescence of all cells in the optical field was considered (n = 70–1
was at the same level as the fluorescence measured in the absence of
the steroid in these Gnα11-specific siRNA-treated cells.

Thewestern blot shown in Fig. 11 confirms the immunofluorescence
experiments. Silencing Gnα11 expression by transforming the GC-2
cellswith oligo pair 2 leads to abolition of theDHEAS-induced activation
of Erk1/2 (Fig. 11). Treatment of the cells with the negative control
siRNA had no effect on Erk1/2 activation (Fig. 11), which at 1 nM
DHEAS occurred to the same extent as in untreated cells (Fig. 1F).

4. Discussion

Steroid hormones are known to mediate their effects by two differ-
ent mechanisms: In the so-called “classical” action of steroid hormones,
they bind to intracellular steroid hormone receptors, which function es-
sentially as ligand-activated transcription factors. Once activated, these
receptors bind toDNA and activate the expression of target genes. In the
                  1 nM

200 µm

ce after silencingGnα11 expression by siRNA. (A–C) Left columns: cells were treatedwith
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so-called “non-classical” pathway, steroid hormones bind to receptors
associated with the plasma membrane [15]. These latter receptors are
possibly localized within membrane rafts and mediate rapid activation
of intracellular signaling cascades [28],which in some cases are identical
to cascades normally activated by growth factors, such as the Src/PI3K/
Akt or the Src/Ras/Raf/Erk1/2 pathways [15,29]. While DHEA has
been shown to induce similar cascades in neuronal cells [30,31], little
is known about the action of DHEAS, especially on cells of the reproduc-
tive system, although it has been shown to be produced in rodent
gonads [32,33].

The process of spermatogenesis and the maturation of spermatogo-
nia to spermatozoa depend on the activation of Erk1/2 and other
mitogen-activated protein kinases (MAPK) [34,35], and Erk1/2 activa-
tion is an absolute requirement for the production of haploid spermato-
zoa [36,37]. Therefore, we first investigated whether DHEAS might
induce Erk1/2 activation in a spermatogenic cell line. As shown in
Fig. 1, DHEAS induces a significant activation (phosphorylation) of
Erk1/2 in a time- and concentration-dependent manner in GC-2 cells.
This is the first demonstration of Erk1/2 activation by DHEAS in a cell
line derived from the reproductive system.

In accordancewith the non-classical pathway of steroid hormone re-
ceptor action, Erk1/2 activation by DHEAS is accompanied by c-Src acti-
vation via phosphorylation at Tyr419 (Fig. 2). This result showing a link
between c-Src and Erk1/2 activation is in good agreement with other
studies demonstrating similar effects of steroid hormones [20,38] and
suggests that DHEAS, consistent with it being a steroid hormone, trig-
gers the c-Src/Ras/c-Raf/Erk1/2 signaling cascade. In Sertoli cells, the
induction of this signaling pathway leads to the activation of the tran-
scription factor CREB [16,18] and of the CREB-related factor ATF-1
[21]. Both CREB and ATF-1 aremembers of the bZIP superfamily of tran-
scription factors and stimulate transcription when phosphorylated
either at Ser133 (CREB) or at Ser63 (ATF-1), residues localized within
a conserved region of the two proteins termed the phosphorylation
box [39]. Transcription factors like CREB or ATF-1 that bind to cAMP-
responsive element (CRE) promoters induce the transcription of a
great variety of genes.

CREB and phospho-CREB are present not only in Sertoli cells but also
in various other cells of the gonads, including spermatogonia, round
spermatids, and, as shown recently, also in elongated spermatids
[40–42]. CREB/CRE-inducible transcription is essential for the survival
of spermatocytes and the production of mature spermatozoa [43]. The
amount of phospho-CREB varies during the spermatogenic cycle [42],
which would be consistent with it being directly involved in the differ-
entiation process of germ cells.

The results summarized in Fig. 3 clearly show the DHEAS-induced
activation of both CREB and ATF-1 in the spermatogenic cell line GC-2.
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A significant activation of ATF-1 (Fig. 3B) or CREB (Fig. 3C)was obtained
at DHEAS concentrations of 0.1 nM or greater, as was seen for the acti-
vation of Erk1/2 (Fig. 1F).

Although steroid sulfatase was not involved in the DHEAS-induced
activation of Erk1/2 (Fig. 4), suggesting that DHEAS is not being
converted to DHEA or testosterone to exert its effects, the fact that
DHEAS induces a signaling cascade similar to the non-classical signaling
pathway of testosterone [44] made it appear possible that the AR is in-
volved in the propagation of the DHEAS-induced signaling. Therefore,
we addressed a possible involvement of the AR in the generation of
the DHEAS-induced signaling cascade in a series of experiments by
restricting its expression at the mRNA and protein level by means of
siRNA (Fig. 5 and 8). The results summarized in Fig. 6 and 7 clearly
show that the abolition of AR does not affect the induction of the
DHEAS-induced signaling cascade that leads to activation of Erk1/2,
ATF-1, and CREB. This, together with the experiment showing the ab-
sence of steroid sulfatase, indicates that DHEAS must exert its effects
by a different pathway which does not require desulfation or AR.

We next considered what other membrane-associated hormone
receptors might mediate the observed effects of DHEAS. Owing to the
fact that GPCRs have been shown to trigger activation of Erk1/2 in var-
ious signaling cascades [45–47] and because steroid hormones often
mediate their actions through GPCRs [22–25], we investigated a possi-
ble involvement of a receptor coupled to a G-protein in DHEAS signaling
by silencing the expression of Gnα11.

Gnα11 is a member of the Gqα family of heterotrimeric G proteins
[47]. It is ubiquitously expressed across tissues and is present also in
GC-2 cells, as shown in Fig. 9. Silencing Gnα11 expression in GC-2
cells abolished all DHEAS-induced signaling observed thus far: stimula-
tion of Erk1/2, ATF-1, and CREB was no longer detected after treatment
of the cells with Gnα11-specific siRNA, while the treatment of the cells
with the control siRNA did not influence the DHEAS-induced activation
of these enzymes and factors (Fig. 10 and 11).

The results presented here clearly indicate the involvement of a
GPCR in the action of DHEAS and support earlier findings showing the
involvement of Gq/11 in the actions of DHEAS on the mast cell-line
RBL-2H3 [26]. Nevertheless, although GPCRs have been identified or
proposed for various steroid hormones, the actual DHEAS-specific
GPCR has yet to be identified.

In summary, our investigation calls into question theheretofore gen-
erally accepted idea of DHEASbeing simply a pro-androgen and demon-
strates for the first time that DHEAS acts as a steroid hormone on a
spermatogenic cell line and triggers the activation of a signaling cascade
that reflects the non-classical signaling pathway of steroid hormones
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involvingmembrane-bound GPCRs. The identification of the DHEAS re-
ceptor and of target mRNAs whose expression is controlled by the acti-
vation of the CRE promoters through the transcription factors CREB and
ATF-1will help to define a role of DHEAS in the physiology of cells of the
male and possibly also of the female reproduction system.
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Testosterone is known to mediate its effects by two different mechanisms of action. In the so-called “classical”
pathway testosterone binds to cytosolic androgen receptors (AR), which essentially function as ligand-
activated transcription factors. Once activated, these receptors bind to DNA and activate the expression of target
genes. In the “non-classical” pathway, the steroid hormone binds to receptors associated with the plasma
membrane and induces signaling cascades mediated through activation of Erk1/2. The precise nature of the
membrane-associated AR, however, remains controversial. Although some assume that the membrane and
cytosolic AR are identical, others propose that the AR of the membrane is a G-protein-coupled receptor
(GPCR). To evaluate these two possibilities we first searched for testosterone-induced signaling cascades in the
spermatogenic cell line GC-2. Testosterone was found to cause phosphorylation (activation) of Erk1/2, CREB,
and ATF-1, consistent with its non-classical mechanism of action. Silencing of AR expression by means of
siRNA did not influence testosterone-induced activation of Erk1/2, CREB, or ATF-1, indicating that this pathway
is not activated by the classical cytosolic/nuclear AR. In contrast, when the expression of the G-protein Gnα11
is suppressed, the activation of these signalingmolecules is abolished, suggesting that these responses are elicited
through a membrane-bound GPCR. The results presented here and the identification of the testosterone-specific
GPCR in future investigations will help to reveal and characterize new testosterone-mediated mechanisms asso-
ciated not only with fertility and reproduction but perhaps also with other physiological processes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Steroid hormones influence the physiology of cells, organs and or-
ganisms inmultipleways. The classical view of their action proposes ge-
nomic effects as a result of their interactions with cytosolic steroid
receptors (SR), which upon binding of the steroid dimerize, translocate
into the nucleus, and modulate the expression of specific genes by act-
ing as ligand-activated transcription factors [1,2]. A second, non-
classical mode of steroid hormone action is characterized by rapid
events that lead to the activation of cytosolic signaling cascades normal-
ly triggered by growth factors such as the Src/PI3K/Akt or the Src/Ras/
Raf/Erk1/2 pathway [3,4]. These signaling events originate at the surface
of plasmamembranes, where specific steroid receptors localized within
rafts mediate the rapid activation of intracellular signaling cascades [5].
These membrane-bound steroid receptors are often G-protein coupled
receptors (GPCR) and therefore different from the nuclear SR [6–8].

Testosterone undoubtedly triggers both classical and non-classical
pathways of action, but the nature of the receptor involved in these
hysiologie und -Biochemie,
ität Giessen, Frankfurter Str.
72; fax: +49 641 9938179.
giessen.de (G. Scheiner-Bobis).
actions is a source of controversy. While some investigators favor the ex-
clusive participation of thewell-characterized cytosolic/nuclear androgen
receptor (AR) in both pathways [9], others propose a membrane-bound
AR, possibly from the family of G-protein-coupled receptors (GPCR), as
mediator of several testosterone-induced effects [10–14].

Testosterone action on cells of the male reproductive system is es-
sential for spermatogenesis and the maturation of spermatogonia to
spermatozoa. CREB activation in Sertoli cells, which is required for the
survival of spermatocytes and the production of mature spermatozoa
[15], is triggered by testosterone interactionswith the AR via the activa-
tion of the c-Src/c-Raf/Erk1/2 signaling cascade, part of the non-classical
testosterone signaling pathway [9,16,17]. The processes of spermato-
genesis and the maturation of spermatogonia to spermatozoa also de-
pend on the activation of Erk1/2 and other mitogen-activated protein
kinases (MAPK) [18,19]. In addition, Erk1/2 activation is an absolute re-
quirement for the production of haploid spermatozoa [20,21].

Thequestion still to be answered, however, iswhether all of these ef-
fects are due solely to the interaction of testosterone with the classical
AR localized in Sertoli cells or whether testosterone might exert some
of its actions on other cells of the reproductive system by interacting
with a different, thus-far unidentified receptor. Should the latter possi-
bility be the case, onewould have to supplement or even revise some of
the knowledge concerning the importance of testosterone for male
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mailto:Georgios.Scheiner-Bobis@vetmed.uni-giessen.de
http://dx.doi.org/10.1016/j.bbamcr.2014.03.002
http://www.sciencedirect.com/science/journal/01674889


1173M. Shihan et al. / Biochimica et Biophysica Acta 1843 (2014) 1172–1181
reproduction. Having this in mindwe addressed the role of the classical
AR in testosterone-induced signaling in the spermatogenic cell line GC-
2. The results show that in addition to the cytosolic/nuclear AR, there is
also a GPCR that mediates the non-classical testosterone pathway in the
GC-2 cells. The findings indicate that testosterone may initiate some of
its actions by detouring the classical AR of Sertoli cells and interacting
more directly with GPCR of the other cells of the male reproductive
system.

2. Materials and methods

2.1. Cell culture

The spermatogenic cell line GC-2 spd (ts) [22] (hereafter referred
to as GC-2) was cultured in DMEM (1×) high glucose containing 1%
L-glutamine (Gibco, Darmstadt, Germany) supplemented with 10%
fetal calf serum (FCS), 1% penicillin/streptomycin combination (100
U/ml of each). Cells were incubated in a humidified incubator at
31 °C under 5% CO2. The medium was renewed every two days.
Experiments were carried out after the 20th day of culture (third
passage).

2.2. Cell lysates

GC-2 cells were seeded at a density of 105 cells in 5-cm culture
dishes and grown as described above until they reached 70–80% conflu-
ence. Cellswere then incubated for 24 hwith 1% FCS before testosterone
dissolved in ethanol was added to the medium to reach a final concen-
tration of 1 nM (see Supplementary data regarding choice of concentra-
tion). Controls received the equivalent amount of ethanol. After 30 min
of incubation (see Supplementary data regarding choice of incubation
time) the medium was removed by aspiration and cells were washed
twice with ice-cold phosphate-buffered saline (PBS; without Ca2+ or
Mg2+; Gibco) and lysed in 400 μl of a commercially available cell lysis
buffer (Cell Signaling Technology, Frankfurt, Germany) according to
the protocol of the provider. Immediately before use, 1 μM PMSF, 1×
protease inhibitor cocktail (Roche, Mannheim, Germany), and 2 μg/ml
pepstatin were added to the lysis buffer. All lysis steps were carried
out on ice. After 10min of incubation cells were harvested with a scrap-
er, transferred into vials, and sonicated 5 times for 5 s with intervals of
2 s. The reaction vials were then centrifuged at 13,000 ×g for 10 min
at 4 °C. The protein content of the supernatants was determined at
540 nm using the bicinchoninic acid (BCA) protein assay reagent kit
(Pierce, Southfield, MI, USA) and a Labsystems (Helsinki, Finland)
plate reader. The lysis buffer was included in the bovine serum albumin
protein standard. Aliquots of the supernatant taken for further analysis
were stored at −20 °C.

2.3. SDS-PAGE and western blotting

A total of 8 μg protein from cell lysates was separated by SDS-PAGE
on slab gels containing 10% acrylamide and 0.3% N,N′-methylene-bis-
acrylamide. Biotinylated proteins (Cell Signaling Technology, Frankfurt,
Germany) served as molecular weight markers. After electrophoresis
proteins were blotted onto PVDF membranes (Millipore, Bedford, MA,
Table 1
Antisera used and their providers (IF = immunofluorescence; WB = western blot).

Antibody Catalog no.

Anti-AR (H-280) (for IF) sc-13062
Anti-phospho-CREB and anti-phospho-ATF-1 (for WB) 4276
Anti-phospho-CREB (for IF) 9198
Anti-phospho-ATF-1 (for IF) 2456-1
Anti-phosho-Erk1/2 (for WB and IF) 4370
Anti-total Erk1/2 (for WB) 9102
Anti-pan-Actin (for WB) 4968
USA) for 30min at 200mA. Specific protein bandswere visualized by in-
cubating themembranes with primary antibodies according to the pro-
tocol of the providers (Table 1) and the appropriate secondary antibody
of the enhanced chemiluminescence kit (ECL; Pierce). For the simulta-
neous detection of p-CREB and p-ATF-1, western blots were probed
with an antibody that cross-reacts specifically with the two phosphory-
lated proteins (Cell Signaling Technology). Horseradish peroxidase-
conjugated anti-biotin IgG (Cell Signaling Technology) at a dilution of
1:2000 was included in the mixture containing the secondary antibody
in order to detect the biotinylated molecular weight marker. The
resulting chemiluminescence was recorded by exposure to film, which
was analyzed by the TotalLab gel image analysis software (biostep,
Jahnsdorf, Germany).

2.4. RT-PCR for the detection of mRNA/cDNA for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), androgen receptor (AR), and guanine
nucleotide binding protein, alpha 11 (Gnα11)

TotalmRNAwas isolated fromGC-2 cells by following the protocol of
the provider of the SVTotal RNA Isolation System (Promega,Mannheim,
Germany). Reverse transcription and PCR amplification of mRNA/cDNA
of interest were carried out by following the protocol of the Reverse
Transcription System provider (Promega). For PCR amplification a
total of 10 ng/μl of cDNAwas incubated with 20 pmol/ml of each prim-
er, 10mMTris HCl, 50mMKCl, 2.5mMMgCl2, 1mMdNTPs, and 2 units
Taq DNA polymerase. The final volume of the solutions was 25 μl. PCR
was carried out in a MasterCycler Gradient (Eppendorf, Hamburg,
Germany). Samples were incubated at 95 °C for 5 min, followed by
40 cycles of denaturation at 95 °C for 30 s, annealing at a temperature
of 54 °C for 1min, and cDNA extension at 72 °C for 45 s. After amplifica-
tion, a final extension at 72 °C was performed for 10 min.

GAPDH-specific mRNA/cDNA was detected using the oligonucleotide
5′GGAGATTGTTGCCATCAACG3′ as forward primer and 5′CACAATGCCA
AAGTTGTCA3′ as reverse primer. These primers amplify a fragment of
430 bp between bases 128 and 557 of mouse GAPDH-specific mRNA.

AR-specific mRNA/cDNA was amplified under the same conditions
used for the amplification of GAPDH. Forward and reverse primers
were the oligonucleotides 5′AGCGCAATGCCGCTATGGGG3′ and 5′GTGG
GGCTGCCAGCATTGGA3′, respectively. These amplify a 708-bp fragment
of mouse AR-specific mRNA localized between bases 1220 and 1927.

Gnα11-specific mRNA/cDNA was amplified under the same condi-
tions asGAPDH. Forward and reverse primerswere the oligonucleotides
5′GAACCGGGAAGAGGTAGGG3′ and 5′GACCAAGTGTGAGTGCAGGA3′,
respectively. These amplify a 917-bp fragment of mouse Gnα11-
specific mRNA localized between bases 70 and 986.

2.5. Silencing androgen receptor expression via siRNA

Expression of the androgen receptorwas silenced by using commer-
cially available siRNA and by following the protocol of the provider
(StealthTM RNAi; Invitrogen, Karlsruhe, Germany). The oligonucleotide
pair used was: 5′CCAGAUUCCUUUGCUGCCUUGUUAU3′ and AUAACA
AGGCAGCAAAGGAAUCUGG3′ (AR-siRNA). Control cells were treated
with StealthTM RNAi Negative Control, provided in the kit. Transfection
efficiency was estimated by the Block-iTTM Transfection Kit (Invitrogen,
Provider Address

Santa Cruz Biotechnology, Inc. Heidelberg, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Epitomics Burlingame, USA
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
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Fig. 1. Silencing expression of AR-specificmRNAusing siRNA. GC-2 cells were treatedwith
either AR-siRNA or negative-control siRNA (nc-siRNA). Total RNA was then isolated and
subjected to RT-PCR to amplify AR-specific mRNA/cDNA fragments of 708 bp. Treatment
of the cells with AR-siRNA abolished the expression of AR-specific mRNA/cDNA. The
amount of GAPDHmRNAwas not affected by either nc-siRNA or AR-siRNA, indicating spe-
cific silencing of AR mRNA expression by AR-siRNA.

A

B

Fig. 2. Silencing AR protein expression by siRNA. Cells treated as described in Fig. 1 were
fixed inmethanol and incubatedwith a primary antibody against the AR and a fluorescent
secondary antibody (rabbit anti-goat IgG-FITC green). Nuclei were stained with DAPI. (A)
All cells treatedwith nc-siRNA show green fluorescence, indicating the presence of the AR.
(B)When cells were treated with AR-siRNA, no AR protein was detected by the combina-
tion of the antibodies used in A.
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Karlsruhe, Germany) according the protocol of the provider. After incu-
bation of the GC-2 cells for 72 h with the various siRNA primer pairs or
the negative control siRNA, mRNA for RT-PCR was isolated as described
above (previous paragraph). A second set of cells was stimulated with
1 nM testosterone and used for the detection of activated Erk1/2,
CREB, and ATF-1 by immunofluorescence, as described further below.
Finally, a third set of cells was stimulated with 1 nM testosterone and
used for the isolation of cell lysates to be investigated in western blots.

2.6. Silencing the expression of Gnα11 via siRNA

Control GC-2 cells were treated with the siRNA Negative Control as
supplied by the provider (Silencer® Select siRNA; Invitrogen). For si-
lencing Gnα11 expression, cells were treated like control cells with
the exception that commercially available siRNA directed against the
expression of Gnα11 (Silencer® Select siRNA; Invitrogen) was used.
The oligonucleotide pair used was 5′CAAGAUCCUCUACAAGUAUTT3′
and 5′AUACUUGUAGAGGAUCUUGAG3′ (Gnα11-siRNA). All other
steps were the same as described in the previous paragraph.

2.7. Immunofluorescence

GC-2 cells that had been treated with siRNA to silence either AR or
Gnα11 were incubated with vehicle alone or vehicle plus 1 nM testos-
terone for 30 min. The medium was then aspirated and the cells were
fixed using 200 μl of ice-cold methanol containing a total of 20 ng of
DAPI (4′,6-diamidino-2-phenylindole). After 15 min of incubation at
RT, the DAPI solution was aspirated and slides were allowed to dry for
15 min before washing 3 times with 500 μl PBS. The cells were then
blocked with 10% FCS and 0.3% Triton-X100 in PBS for 1 h at RT. The
first antibody (Table 1), diluted as recommended by the provider, was
then added and incubation was continued for 1 day at 4 °C in a humid-
ified chamber. The antibody against p-Erk1/2 was from Cell Signaling
Technology. The antibody against p-ATF-1 was from Epitomics (Burlin-
game, CA, USA). This antibody is p-ATF-1 specific and does not interact
with p-CREB. For the specific detection of p-CREB, an antibody from Cell
Signaling Technology was used with negligible interaction with p-ATF-
1. The antibody against the androgen receptor was from Santa Cruz Bio-
technology (Heidelberg, Germany).

The slides were then washed 3 times for 5 min each with 500 μl PBS.
Staining was achieved by incubating for 20 min at room temperature
with an Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen, Karlsru-
he, Germany) diluted at 1:500 in 2% FCS, 0.1 Triton X100 in PBS. Images
were obtained by an inverse Olympus IX81 microscope equipped with
the corresponding fluorescence system (Olympus, Hamburg, Germany).
Fluorescence within cells was measured by using the software program
ImageJ (freely available at http://rsbweb.nih.gov/ij/). A total of 30 cells
within or closest to the diagonals of the square optical field were consid-
ered. Data points were transferred to and analyzed by the software pro-
gram GraphPad Prism4 (GraphPad Software, Inc., La Jolla, CA, USA).

2.8. Statistical analysis

Loading differences in the various western blots were corrected by
taking into consideration the optical density of unphosphorylated
Erk1/2 bands or total actin, detected in western blots that were run in
parallel. Data were analyzed by GraphPad Prism4 software and by ap-
plying one-wayANOVAwith repeatedmeasures andDunnett's compar-
ison of all data to the control. Significance was accepted at p b 0.05.

3. Results

3.1. Silencing the androgen receptor by siRNA

After 72 h of incubation of cells with the siRNA oligonucleotides
against the AR, mRNA was isolated for RT-PCR. Fig. 1 shows an agarose
gel with the RT-PCR products obtained before and after treatment of the
GC-2 cells with siRNA to silence AR expression. While having no effect
on the expression of GAPDH-specific mRNA/cDNA, AR-siRNA reduced
the biosynthesis of AR-specific mRNA/cDNA to a great extent (Fig. 1).
The expression of GAPDH- or AR-specific mRNA was not affected by
negative control siRNA (nc-siRNA; Fig. 1). Nevertheless, since a small
amount of AR-specific mRNA/cDNA was also detected after treatment
of the cells with AR-siRNA, and because silencing of mRNA might not
necessarily lead to a rapid decrease in the expression of the targeted
protein, we addressed by immunofluorescence whether the AR protein

http://rsbweb.nih.gov/ij/
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was still present in the cells despite the reduction of AR-specific mRNA/
cDNA by siRNA. Although green fluorescence, indicating the expression
of the AR protein, was visible in every GC-2 cell in the image shown in
p-Erk1/2 p-Erk1/2

p-ATF-1 p-ATF-1

p-CREB p-CREB

Control + 
Test. (nM) 0 1

A
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nc-siRNA + 
Test. (nM) 0 1

p-Erk1/2 p-Erk1/2

p-ATF-1 p-ATF-1

p-CREB p-CREB

C

Fig. 3. Testosterone-induced activation of Erk1/2, ATF-1, and CREB in the presence or absence o
were incubated with testosterone and then fixed in methanol; nuclei were stained with DAPI. p
and anAlexa Fluor 488-labeled secondary antibody. Treatment of cells with 1 nMtestosterone fo
(right panels). (B) Analysis of data like that shown in A; n = 30; means ± SEM; **= p≤ 0.01.
affect the testosterone-induced activation of Erk1/2, ATF-1, or CREB. (D) Activation by testoste
treated with AR-siRNA to silence AR expression. Fluorescence signals indicating activation of
AR expression. (F) Activation by testosterone was significant, as in A–D; n = 30; means ± SEM
Fig. 2A, it was entirely missing after treatment of the cells with
AR-siRNA to prevent expression of AR-specific mRNA (Fig. 2B). It is
therefore likely that the weak AR-specific signal seen after treatment
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f AR detected by immunofluorescence. (A) GC2 cells that had not been treated with siRNA
-Erk1/2, p-ATF-1, or p-CREB was identified by using specific primary antibodies (Table 1)
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with AR-siRNA (Fig. 1) is the result of the strong amplification effects of
the RT-PCR.

3.2. Testosterone-induced activation of Erk1/2, CREB, and ATF-1 in GC-2
cells in the presence or absence of AR

In the non-classical action of testosterone, the steroid hormone trig-
gers the Src/Ras/Raf/Erk1/2 signaling cascade that results in the activa-
tion of the transcription factor CREB. Thus, our first aim was to
examine whether testosterone activates elements of this signaling cas-
cade in the spermatogenic GC-2 cells. In this respect we addressed a
possible testosterone-induced activation of Erk1/2, CREB, and ATF-1.
Both ATF-1 and CREB are members of the bZIP superfamily of transcrip-
tion factors and stimulate transcriptionwhen activated by phosphoryla-
tion at either Ser63 (ATF-1) or Ser133 (CREB). Simultaneous activation
of the two related transcription factors has been shown previously [23],
and we investigated whether testosterone might act on GC-2 cells in a
similar way.

Cells were incubated with either 0 or 1 nM testosterone for 30 min
and then subjected to a fixation/immunostaining procedure as de-
scribed under “Materials and methods”. Phosphorylated forms of
Erk1/2, ATF-1, or CREB were detected by using appropriate antibodies
(Table 1). Fig. 3A demonstrates that testosterone triggered activation
of the kinase and of both transcription factors in a highly significant
way (Fig. 3B). Erk1/2 activation was seen in the form of green fluores-
cence spread over the entire area of the testosterone-treated cells,
while the transcription factors ATF-1 and CREB (Fig. 3A) were visible
as green fluorescent signals within the nucleus. To our knowledge this
is the first report demonstrating ATF-1 activation by testosterone.

Remarkably, comparable results were obtained with cells that were
treated with AR-siRNA to silence AR expression. Testosterone induced a
clear activation of Erk1/2, ATF-1 and CREB that was not affected by the
absence of AR (Fig. 3E, F). Treatment with negative-control siRNA (nc-
siRNA) did not affect the testosterone-induced stimulation of Erk1/2,
ATF-1, or CREB (Fig. 3C, D).
3.3. Detection of p-Erk1/2, p-ATF-1, and p-CREB inwestern blots in the pres-
ence or absence of AR

Since immunofluorescence only reliably stains cells or proteins re-
sidingwithin the optical field of themicroscope, we carried outwestern
blot experiments to obtain a representative average by measuring the
testosterone action on all cells of the incubation mixture. Testosterone
effects on GC-2 cells treated with nc-siRNAwere compared to its effects
on cells treated with siRNA to silence AR expression (AR-siRNA). As can
be seen in Fig. 5B, treatment of GC-2 cells with AR-siRNA did not impair
the ability of testosterone to induce activation of Erk1/2 (Fig. 4C), which
is consistentwith the results shown in Fig. 3. The total amount of Erk1/2
was not affected by the steroid hormone (Fig. 4A).

Similarly, in the absence of AR testosterone still caused activation of
ATF-1 and CREB. In western blots with an antibody that cross-reacts
with p-CREB and p-ATF-1 (Fig. 5A), we observed significant activation
of both transcription factors following 30 min of incubation with 1 nM
testosterone (Fig. 5B and C). These results, which are consistent with
those shown in Fig. 3, indicate that the non-classical signaling pathway
of testosterone is not triggered by the interaction of the steroid with the
known cytosolic/nuclear AR.

3.4. Testosterone-induced activation of Erk1/2, CREB, and ATF-1 in GC-2
cells in the presence or absence of Gnα11

Many hormones, among them steroid hormones, elicit their actions
through G-protein-coupled receptors (GPCRs) [24–27]. In a previous in-
vestigation we found that dehydroepiandrosterone sulfate (DHEAS) in-
duces signaling cascades in GC-2 cells that overlap with the non-
classical pathway of testosterone; this signaling cascade is mediated
through a GPCR that interacts with Gnα11 [28]. For that reason, we in-
vestigated a possible involvement of GPCRs in the testosterone-induced
signaling cascade by silencing Gnα11 expression in these cells.

The results from RT-PCR shown in Fig. 6 demonstrate that after
treating GC-2 cells with the Gnα11-siRNA, the expression of Gnα11-
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specific mRNA/cDNA was considerably reduced. Untreated GC-2 cells
and cells treated with either nc-siRNA or with siRNA against Gnα11
(Gnα11-siRNA) were incubated with 0 or 1 nM testosterone for
30 min. The images in the right-hand panels of Fig. 7A show the stimu-
lation (phosphorylation) of Erk1/2, ATF-1, and CREB by 1 nM testoster-
one in GC-2 cells that had not been treated with any kind of siRNA.
These data are consistent with the results shown in Fig. 3A, and here,
too, the total cell-associated fluorescence corresponding to active
Erk1/2, ATF-1, or CREB was significantly higher in cells exposed to tes-
tosterone than the fluorescence measured in the absence of the steroid
(Fig. 7B). Similar resultswere obtainedwhen cellswere treatedwith nc-
siRNA (Fig. 7C and D). When cells were treated with Gnα11-siRNA, ex-
posure to testosterone had no effect (Fig. 7E, right-hand panels), clearly
demonstrating the involvement of Gnα11 in mediating the
testosterone-induced signaling that leads to Erk1/2, ATF-1, or CREB ac-
tivation. Fluorescence corresponding to active Erk1/2, ATF-1, or CREB
after 30min of incubationwith 1 nM testosteronewas negligible, corre-
sponding roughly to the fluorescence measured in the absence of the
steroid (Fig. 7F).

3.5. Detection of p-Erk1/2, p-ATF-1, and p-CREB inwestern blots in the pres-
ence or absence of Gnα11

The western blot shown in Fig. 8 confirms the immunofluorescence
experiments shown in Fig. 7. Silencing Gnα11 expression by
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transforming GC-2 cell Gnα11-siRNA (Fig. 8B) led to abolition of the
testosterone-induced activation of Erk1/2 (Fig. 8B: p-Erk1/2). At the
same time, cells treated with nc-siRNA still responded to testosterone
with Erk1/2 activation (Fig. 8B and C). The expression of total Erk1/2
was not influenced by treatment with either nc-siRNA or Gnα11-
siRNA (Fig. 8A).
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Fig. 7.Detection of testosterone-activated Erk1/2, ATF-1, and CREB by immunofluorescence afte
panels) almost every single cell in the optical field was fluorescent, indicating activation of Erk
significantly higher than in the untreated controls. (C)When cells were treated with negative c
with any kind of siRNA, as shown in (A). (D) Here, too, testosterone induces a highly significa
siRNA testosterone fails to stimulate Erk1/2 and either of the transcription factors ATF-1 and
ATF-1 and p-CREB in cells that were exposed to testosterone and untreated cells (for all statist
Treatment of GC-2 cells with Gnα11-siRNA also prevented
testosterone-induced activation of ATF-1 and CREB (Fig. 9A), while
treatment with nc-siRNA did not impair significant activation of the
two transcription factors (Fig. 9A, C, and D). The detection of total
actin in the lysates served as loading control. Neither of the two siRNAs
nor testosterone influenced its expression (Fig. 9B).
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4. Discussion

Testosterone affects the physiology of various tissues by triggering
multiple signaling pathways. In the classical view of its action the ste-
roid diffuses into the cell, binds to a cytosolic AR that is associated
with Hsp90 and Hsp70 and inactive, and induces the release of both
Hsp; the AR then undergoes dimerization and translocates as a dimer
into the nucleus. By acting as a transcription factor, the AR/steroid com-
plex induces genomic responses that lead to the expression of specific
genes [1,2].

In the non-classical pathway the steroid hormone binds to
membrane-associated receptors and induces activation of various ki-
nases, leading to a great spectrum of cellular responses [9,29,30]. The
AR mediating these types of signaling cascades has not yet been identi-
fied. Inmuscle cells testosterone effects leading to Erk1/2 activation, cy-
tosolic [Ca2+] elevation, and protein kinase C activation seem to be
mediated by its interactionswith GPCR [13,14]. Similar effects of testos-
terone on [Ca2+] are seen in Sertoli cells, where the phospholipase C in-
hibitor U73122 or pertussis toxin prevent these testosterone actions,
thus indicating the involvement of GPCR [31]. A second non-classical
signaling pathway of testosterone in Sertoli cells leads to the activation
of the Ras/Raf/Erk1/2/CREB cascade [9,32]. Experiments utilizing siRNA
to silence expression of the cytosolic/nuclear AR have provided evi-
dence for its involvement in themediation of the signaling cascade lead-
ing to CREB activation [33]. It is thought that some of the AR temporarily
associate with the plasma membrane of Sertoli cells, and by interacting
with testosterone, they induce stimulation of c-Src followed by the acti-
vation of epidermal growth factor receptor and the other members of
the signaling cascade [9,32]. It is not known whether dimerization of
AR is required for this cascade or what happens to Hsp70 and Hsp90.

The actions of testosterone on Sertoli cells are essential for the mat-
uration of male germ cells into spermatozoa [17,34]. Nevertheless, AR
are not localized solely in Sertoli cells; they are also found in Leydig
cells and peritubular myocytes [35–39]. The presence of classical AR in
germ cells is controversial: whereas several publications challenge its
expression in germ cells in toto [38,40], others identify AR in human
sperm [41], in sperm of the Bonnet monkey [42], or the midpiece of
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flagella of mature human sperm [43]. In contrast to these contradicting
reports, the presence of AR in spermatogonia seems to be generally ac-
cepted [37,39,44,45], suggesting a direct role of testosterone in the early
stages of spermatogenesis. For this reason, and because testosterone
might act on other cells of the gonad through GPCR and influence
their physiology, we investigated non-classical testosterone-induced
signaling in the spermatogenic cell line GC-2 thatwas shown previously
to express AR [28].

GC-2 cells respond to testosterone with activation (phosphoryla-
tion) of Erk1/2 and the transcription factors CREB and ATF-1
(Figs. 3–5). This overlap with the non-classical action of testosterone
[9] suggested that, like in Sertoli cells, classical AR are also involved in
propagation of testosterone-induced signaling in the spermatogenic
GC-2 cells. This possibility was addressed in a series of experiments
after restricting AR expression at the mRNA (Fig. 1) and protein level
(Fig. 2) by means of siRNA. The results summarized in Figs. 3–5 clearly
show that silencing of classical AR does not affect the induction of
testosterone-induced signaling in GC-2 cells.

These data demonstrate that AR do not participate in the non-
classical testosterone signaling identified in GC-2 cells; nevertheless,
they contrast with earlier studies also employing AR-specific siRNA
that implicated a role of classical AR in Erk1/2 and CREB activation in
Sertoli cells [33]. In the absence of any alternative and satisfactory way
to explain the discrepancy between the two investigations, one can
speculate at the current stage that the differences arise from the differ-
ent cell types used.

Several investigations involving various cell types such as myocytes
[13,14] or even Sertoli cells [31,46] suggest the involvement of GPCR in
the generation of testosterone-induced signaling. In GC-2 cells DHEAS
activation of the Src/Ras/Raf/Erk1/2 signaling module, leading to CREB
and ATF-1 activation, is mediated by GPCR interacting with Gnα11
[28]. The similarities between DHEAS- and testosterone-induced signal-
ing prompted us to investigate a possible involvement of Gnα11 in the
actions of testosterone. The results obtained clearly demonstrate the
participation of this protein in the generation of the non-classical
testosterone pathway. Silencing of the expression of Gnα11 leads to
the complete abolition of testosterone-induced stimulation of Erk1/2,
ATF-1, or CREB demonstrated in immunofluorescence experiments
(Fig. 7) and in western blots (Figs. 8 and 9). We therefore have to as-
sume the existence of a membrane-bound GPCR for testosterone as
themediator of the non-classical testosterone signaling. Our conclusion
is in a good agreement with various other studies proposing GPCR as
mediators of the so-called non-genomic effects of steroid hormones. A
series of recent investigations unveiled a membrane-bound GPCR for
estrogen from the group of orphan receptors, referred to as GPER-1 [7,
47]. Until these data were published, the classical cytosolic/nuclear es-
trogen receptors ERα and ERβ were thought to mediate both genomic
and non-genomic effects of estrogen. Similarly, the newolfactory recep-
tor familymember PSGP (prostate-specific G-protein-coupled receptor)
has been identified as a receptor for the testosterone metabolite 6-
dehydrotestosterone [48]. The identification of steroid hormone-
specific GPCRs such as GPER-1 or PSGP, which is predominantly
expressed in prostate cancer cells, however, opens new avenues for in-
vestigation of the role of estrogens or androgens in organism physiolo-
gy. By analogy, we think that the study presented here, which clearly
shows the involvement of Gnα11 in the testosterone-induced non-
classical signaling pathway, and further work focussing on the identifi-
cation of the membrane-bound GPCR for testosterone will help to com-
plete our knowledge concerning the action of steroid hormones. It may
also help to distinguish between long-term genomic effects associated
with the classical testosterone pathway that lead to sexual maturation
and effects of the non-classical testosterone pathway that lead to
rapid and perhaps transient responses to extracellular stimuli.
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Although classical and non-classical signaling of testosterone has been documented in several investigations, the
nature of the receptor involved in the non-classical pathway remains a source of controversy. While some inves-
tigators favor the exclusive participation of the cytosolic/nuclear androgen receptor (AR) in both pathways,
others propose amembrane-bound receptor as themediator of the non-classical testosterone signaling. Evidence
is provided here that in the spermatogenic cell line GC-2 the non-classical signaling pathway of testosterone,
characterized through the activation of Erk1/2 and transcription factors like CREB or ATF-1, is not mediated
through the classical nuclear androgen receptor (AR) but rather by a membrane-associated receptor. This recep-
tor is ZIP9, a Zn2+ transporter from the family of the ZRT, IRT-like proteins (ZRT = zinc-regulated transporter;
IRT= iron-regulated transporter),which directly interactswith theG-proteinGnα11. siRNA-induced abrogation
of the expression of either of these two proteins, whose close contacts are demonstrated by an in situ proximity
assay, completely prevents all non-classical signaling effects of testosterone addressed. In contrast, silencing
of AR expression does not influence the same signaling events. The identification of ZIP9/Gnα11 interactions
as the mediators of the non-classical testosterone signaling cascade in spermatogenic GC-2 cells might help to
supplement our knowledge concerning the role of testosterone in male fertility and reproduction.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Steroid hormones interact not only with cytosolic/nuclear steroid
hormone receptors (SHRs) to induce a series of well-characterized
genomic effects [1–3] but also with membrane-bound SHRs [4–8] to
induce rapid events that lead to the activation of cytosolic signaling cas-
cades, such as the Src/PI3K/Akt or the Src/Ras/Raf/Erk1/2 cascade that
are normally triggered by growth factors [9,10]. Thus interaction of a
membrane-associated subpopulation of the nuclear estrogen receptor
ERα with the G-protein Gαi triggers the activation of the Src/PI3K/
Akt-cascade leading to activation of endothelial nitric oxide synthase
(eNOS) [11,12]. Other membrane-bound SHRs mediating these so-
called non-genomic or non-classical effects of steroid hormones are,
however, often G-protein-coupled receptors (GPCR) and therefore dif-
ferent from the nuclear SHRs [13–16].

Testosterone acts through this mechanism and induces classical and
non-classical signaling [17–19]. Although the cytosolic/nuclear androgen
and long-time friend Wilhelm
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receptor (AR), which serves as a ligand-activated transcription factor
[19], is undoubtedly responsible for the classical, genomic actions of
testosterone, the nature of the receptor involved in the non-classical
pathway is a source of controversy. While some investigators favor
the exclusive participation of the well-characterized cytosolic/nuclear
AR in both classical and non-classical pathways [20], others propose a
membrane-bound receptor, possibly from the family of GPCR, as media-
tor of several testosterone-induced effects [21–26].

In a recent publication we were able to demonstrate that the non-
classical signaling pathway of testosterone in the spermatogenic cell
line GC-2 is mediated through the G-protein Gnα11 [27]. In a parallel
investigation published subsequently by others it was shown that ZIP9,
a Zn2+ transporter from the family of the ZRT, IRT-like transporting
proteins (ZRT= zinc-regulated transporter; IRT= iron-regulated trans-
porter), binds testosterone with high affinity (Kd= 12.7 nM), activates
Erk1/2, and induces testosterone-mediated Zn2+ accumulation and
apoptotic cell death when expressed in prostate or breast cancer
cells [28,29]. The signaling cascade is mediated through the interac-
tions of ZIP9 with stimulatory Gsα proteins, as demonstrated by co-
immunoprecipitation, testosterone-induced stimulation of [35S]GTPγS
binding to cell membranes from cells expressing ZIP9, decreased specific
[3H]testosterone binding to membranes after treatment with excess
GTPγS, and through the testosterone-induced elevation of cellular
cAMP levels [28,29]. Taking thesefindings into consideration,we address
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in the present study whether testosterone-induced non-classical sig-
naling in spermatogenic GC-2 cells is also mediated through ZIP9 and
whether these signaling cascades are the result of ZIP9 interactions
with Gnα11.

2. Materials and methods

2.1. Cell culture

The murine spermatogenic cell line GC-2 spd (ts) [30] (hereafter
referred to as GC-2) was cultured in DMEM (1×) high glucose con-
taining 1% L-glutamine (Gibco, Darmstadt, Germany) supplemented
with 10% fetal calf serum (FCS), 1% penicillin/streptomycin combination
(100 U/ml of each). Cells were incubated in a humidified incubator at
31 °C under 5% CO2. The medium was renewed every two days. Exper-
iments were carried out after the 20th day of culture (third passage).

2.2. Cell lysates

GC-2 cells were seeded at a density of 105 cells in 5-cm culture
dishes and grown as described above until they reached 70–80% conflu-
ence. Cellswere then incubated for 24 hwith 1% FCS before testosterone
dissolved in ethanol was added to the medium to reach a final concen-
tration of 1 nM (see Fig. 1-suppl. regarding choice of concentration).
Controls received the equivalent amount of ethanol. After 30 min of
incubation (see Fig. 1-suppl. regarding choice of incubation time)
the medium was removed by aspiration and cells were washed twice
with ice-cold phosphate-buffered saline (PBS; without Ca2+ or Mg2+;
Gibco) and lysed in 400 μl of a commercially available cell lysis buffer
(Cell Signaling Technology, Frankfurt, Germany) according to the proto-
col of the provider. Immediately before use, 1 μM PMSF, 1× protease
inhibitor cocktail (Roche, Mannheim, Germany), and 2 μg/ml pepstatin
were added to the lysis buffer. All lysis steps were carried out on ice.
After 10 min of incubation cells were harvested with a scraper, trans-
ferred into vials, and sonicated 5 times for 5 s with intervals of 2 s. The
reaction vials were then centrifuged at 13,000 ×g for 10 min at 4 °C.
The protein content of the supernatants was determined at 540 nm
using the bicinchoninic acid (BCA) protein assay reagent kit (Pierce,
Southfield, MI, USA) and a Labsystems (Helsinki, Finland) plate reader.
The lysis bufferwas included in the bovine serum albumin protein stan-
dard. Aliquots of the supernatant taken for further analysis were stored
at−20 °C.

2.3. SDS-PAGE and western blotting

A total of 8 μg protein from cell lysates was separated by SDS-PAGE
on slab gels containing 10% acrylamide and 0.3% N,N′-methylene-bis-
acrylamide. Biotinylated proteins (Cell Signaling Technology, Frankfurt,
Germany) served asmolecular weightmarkers. After electrophoresis
proteins were blotted onto PVDF membranes (Merck Chemicals
GmbH, Schwalbach, Germany) for 30 min at 0.5 V/cm2. Desired pro-
tein bands were visualized by incubating the membranes with the
primary antibody according to the protocol of the providers (Table 1,
suppl.), and subsequently the appropriate secondary antibody of an
enhanced chemiluminescence solution (made by mixing the buffer
with p-coumaric acid, luminol, and H2O2[31]). For the simultaneous
detection of p-CREB and p-ATF-1, western blots were probed with
an antibody that cross-reacts specifically with the two phosphorylat-
ed proteins (Cell Signaling Technology). Horseradish peroxidase-
conjugated anti-biotin IgG (Cell Signaling Technology) at a dilution of
1:2000 was included in the mixture containing the secondary antibody
in order to detect the biotinylated molecular weight marker. The
resulting chemiluminescence was recorded by exposure to film. Films
were analyzed by the TotalLab gel image analysis software (Biostep,
Jahnsdorf, Germany).
2.4. RT-PCR

TotalmRNAwas isolated fromGC-2 cells by following the protocol of
the provider of the SVTotal RNA Isolation System (Promega,Mannheim,
Germany). The reverse transcription of the isolated mRNA was carried
out by the Reverse Transcription System (Promega) according to the
protocol of the provider. For PCR amplification a total of 10 ng/μl of
cDNA was incubated with 20 pmol/ml of each primer, 10 mM Tris HCl,
50 mM KCl, 2.5 mM MgCl2, 1 mM dNTPs, and 2 units Taq DNA
polymerase. The final volume of the solutionswas 25 μl. PCRwas carried
out in a MasterCycler Gradient (Eppendorf, Hamburg, Germany). Sam-
pleswere incubated at 95 °C for 5min, followed by 40 cycles of denatur-
ation at 95 °C for 30 s, annealing at a temperature of 54 °C for 1min, and
cDNA extension at 72 °C for 45 s. After amplification, a final extension at
72 °C was performed for 10 min.

GAPDH-specific mRNA/cDNA was detected using the oligonucleo-
tide 5′GGAGATTGTTGCCATCAACG3′ as forward primer and 5′CACAAT
GCCAAAGTTGTCA3′ as reverse primer. These primers amplify a frag-
ment of 430 bp between bases 128 and 557 of mouse GAPDH-specific
mRNA.

AR-specific mRNA/cDNA was identified by using as forward and re-
verse primers the oligonucleotides 5′AGCGCAATGCCGCTATGGGG3′ and
5′GTGGGGCTGCCAGCATTGGA3′, respectively. These amplify a 708-bp
fragment of mouse AR-specific mRNA localized between bases 1220
and 1927.

Gnα11-specific mRNA/cDNAwas amplified using as forward primer
the oligonucleotide 5′GAACCGGGAAGAGGTAGGG3′ and as a reverse
primer the oligonucleotide 5′GACCAAGTGTGAGTGCAGGA3′. These
amplify a 917-bp fragment of mouse Gnα11-specific mRNA localized
between bases 70 and 986.

ZIP9-specific mRNA/cDNA was amplified using as forward and re-
verse primers the oligonucleotides 5′GCAAGGCTGAAAGAAGTGGG3′
and 5′ATTCGATTCCGCTCCAGACC3′, respectively. These amplify a 750-
bp fragment of mouse ZIP9-specific mRNA localized between bases
540 and 1289.

2.5. Silencing expression of classical AR, Gnα11 or ZIP9 via siRNA

Expression of AR was silenced by using commercially available
siRNA and by following the protocol of the provider (Stealth™ RNAi;
Invitrogen, Karlsruhe, Germany). The oligonucleotides used were:
oligo pair 1: 5′ACUCGAUCGCAUCAUUGCAUGCAAA3′ and 5′UUUGCA
UGCAAUGAUGCGAUCGAGU3′; oligo pair 2: 5′CCCAGAAGAUGACUGU
ALJCACACAU3′ and 5′AUGUGUGAUACAGUCAUCUUCUGGG3′; oligo
pair 3: 5′CCAGAUUCCUUUGCUGCCUUGUUAU3′ and AUAACAAGGCAG
CAAAGGAAUCUGG3′. Control cells were treated with Stealth™ RNAi
Negative Control, provided in the kit. Transfection efficiencywas estimat-
ed by the Block-iT™ Transfection Kit (Invitrogen, Karlsruhe, Germany)
according the protocol of the provider.

For silencing Gnα11 expression, cells were treated with commer-
cially available siRNA directed against the expression of Gnα11
(Silencer® Select siRNA; Invitrogen). Control GC-2 cells were treated
with the siRNA Negative Control as suggested by the provider
(Silencer® Select siRNA; Invitrogen). The oligonucleotide pair used
for silencing Gnα11 expression was 5′CAAGAUCCUCUACAAGUAUTT3′
and 5′AUACUUGUAGAGGAUCUUGAG3′ (Gnα11–siRNA).

For silencing ZIP9 expression, GC-2 cells were treatedwith commer-
cially available siRNA directed against the expression of ZIP9 by follow-
ing the protocol of the provider (Silencer® Select siRNA; Invitrogen).
The oligonucleotide pair used was 5′GGGAAGAUGGAAUUUAGUUTT3′
and 5′AACUAAAUUCCAUCUUCCCTG3′ (ZIP9–siRNA). All other steps
were the same as described in the previous paragraph. Control GC-2
cells were treated with the siRNA Negative Control as supplied by the
provider (Silencer® Select siRNA; Invitrogen).

After incubation of the GC-2 cells for 72 h with the various siRNA
oligo pairs or the negative control siRNA, preparation of samples for
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PCR, western blots, immunofluorescence or proximity ligation assay ex-
periments was carried out as described in the previous or subsequent
paragraphs.

2.6. Detection of ZIP9/Gnα11-interactions by Duolink™ in situ proximity
ligation assay (PLA)

A total of 2 × 104 GC-2 of control cells or cells that had been treated
with siRNA against either ZIP9 or Gnα11were incubated overnightwith
0.3 ml medium containing 10% FCS in 8-well chamber slides as de-
scribed above. The medium was then replaced with 0.1 ml medium
containing 1% FCS and incubation was continued for another 24 h. The
medium was then aspirated and wells were washed with PBS. After
removing the chamber part of the 8-well chamber slide, cells were cir-
cled with a hydrophobic barrier pen and then fixed by incubation in
50 μl of 10% neutral buffered formalin for 20 min at room temperature.
Cellswere then permeabilized by incubation of the slides in 0.25% Triton
X-100 for 10 min.

In the following description of the PLA procedure, whenever men-
tioned, the washing step refers to washing twice for 5 min each in PBS
with agitation at room temperature in a Coplin jar, each time followed
by the aspiration of the washing solution. After the permeabilized cells
were washed, one drop of Duolink II blocking solution was added to
each well and incubation continued for 1 h at 37 °C. Thereafter, 20 μl
of the antibody against Gnα11 and 20 μl of the antibody against ZIP9,
each diluted as recommended by the provider (see Table 1, suppl.),
were added to each slide. The wells were then incubated overnight at
4 °C and subsequently washed in PBS as stated above. A total of 40 μl
of mixed and diluted minus and plus PLA probes of the Duolink™ PLA
Kit (Sigma-Aldrich, Hamburg, Germany) were then added to each well
and incubation proceeded for 1 h at 37 °C. After a further wash, 40 μl
of ligation-ligase solution (Duolink™ PLA-Kit) were added to each
well and incubation continued for 30min at 37 °C. Following the wash-
ing procedure, 40 μl of amplification-polymerase solution (Duolink™
PLA-Kit) was added to each well and incubation continued for 100 min
at 37 °C in the dark. Then the slides were washed and subsequently
dipped in PBS for 1 min in a Coplin jar protected from light. A total of
40 μl of mounting medium with DAPI were then added on a cover slip
and gently placed over the slide. Images were obtained by an inverse
Olympus IX81 microscope equipped with the corresponding fluores-
cence system (Olympus, Hamburg, Germany).

2.7. Immunofluorescence

After treatment of GC-2with siRNA to silence either the classical AR,
Gnα11 or ZIP9 or (see previous paragraph) the medium was aspirated
and the cells were fixed using 200 μl of ice-cold methanol containing a
total of 20 ng of DAPI (4′,6-diamidino-2-phenylindole). After 15 min
of incubation at room temperature, the DAPI solution was aspirated
and slides were allowed to dry for 15 min before being washed 3
times with 500 μl PBS. The cells were then blocked with 10% FCS and
0.3% Triton-X100 in PBS for 1 h at room temperature. The first antibody
against either the classical AR, Gnα11, or ZIP9 (Table 1, suppl.), diluted
as recommended by the provider, was then added and incubation was
continued for 1 day at 4 °C in a humidified chamber. Staining was
achieved by incubating for 20 min at room temperature with the sec-
ondary antibody [an Alexa Fluor 488-labeled goat anti-rabbit IgG
(Invitrogen, Karlsruhe, Germany)] diluted at 1:500 in 2% FCS, 0.1 Triton
X100 in PBS. Images were obtained by an inverse Olympus IX81 micro-
scope equippedwith the corresponding fluorescence system (Olympus,
Hamburg, Germany).

The detection of active (phosphorylated) Erk1/2, CREB or ATF-1 was
carried out by following the samefixation-immunostainingprotocol de-
scribed in the previous paragraph, with the difference that the primary
antibodies used were specific against either phospho-Erk1/2, phospho-
CREB, or phospho-ATF-1 (Table 1, suppl.). The antibody used against
phospho-ATF-1 (Epitomics, Burlingame, CA, USA) does not cross-react
with p-CREB. For the specific detection of phospho-CREB, an antibody
from Cell Signaling Technology (Table 1, suppl.) was used with negligi-
ble cross-reaction with p-ATF-1.

Fluorescence within cells was measured by using the software pro-
gram ImageJ (freely available at http://rsbweb.nih.gov/ij/). Only green
fluorescence indicating activated Erk1/2, CREB, or ATF-1 was consid-
ered. Cells from 3 independent experiments within or closest to the
diagonals of the square optical field were considered. Data points
were transferred to and analyzed by the software program GraphPad
Prism4 (GraphPad Software, Inc., La Jolla, CA, USA).

2.8. Statistical analysis

Loading differences in the various western blots were corrected
by taking into consideration the optical density of unphosphorylated
Erk1/2 bands or total actin, detected in western blots that were run in
parallel. In Figs. 2–4 all statistical data relate to the untreated controls
at 0 nM testosterone. Data were analyzed by GraphPad Prism4 soft-
ware and by applying one-way ANOVA with repeated measures and
Dunnett's comparison of all data to the control. Significancewas accept-
ed at p b 0.05.

3. Results

3.1. Silencing ZIP9, Gnα11, or AR expression by siRNA

After 72 h of incubation of cells with the siRNA oligonucleotides
against ZIP9 (ZIP9-siRNA), Gnα11 (Gnα11–siRNA), or AR (AR–siRNA),
mRNA was isolated for RT-PCR. RT-PCR revealed that while having no
effect on the expression of GAPDH-specific mRNA/cDNA, ZIP9–siRNA
reduced the biosynthesis of ZIP9-specific mRNA/cDNA below the detec-
tion level (Fig. 1A). At the same time, expression of GAPDH- or ZIP9-
specific mRNA was not affected by negative control siRNA (nc-siRNA;
Fig. 1A). The RT-PCR result was confirmed by immunofluorescence.
Green fluorescence demonstrating the presence of ZIP9 protein in
every cell that had been treated with nc-siRNA (Fig. 1B) is absent in
cells treated with ZIP9–siRNA (Fig. 1C), demonstrating the successful
suppression of ZIP9 expression by the siRNA oligonucleotides used.

Similarly, treatment of GC-2 cellswithGnα11-specific siRNA reduced
the expression of itsmRNA/cDNA (Fig. 1D) and protein (Fig. 1F), but they
were unaffected by nc-siRNA (Fig. 1D and E), indicating the specificity of
the silencing reaction. This is also underlined by the fact that GAPDH-
specific mRNA/cDNA was comparable in cells that had been treated
with either nc-siRNA or Gnα11–siRNA (Fig. 1D).

The suppression of AR-specific mRNA/cDNA expression was most
successful when oligo pair 3 (op3) was applied (Fig. 1G). Although a
faint amplification product representing AR-specific mRNA/cDNA was
still seen in the presence of op3, immunofluorescence experiments
showed complete suppression of the AR protein expression: whereas
green fluorescence indicating the expression of the AR protein was vis-
ible in every GC-2 cell that had been treated with nc-siRNA (Fig. 1H), it
was entirely absent after treatment of the cells with AR-siRNA (Fig. 1I).
It is therefore likely that the weak AR-specific signal seen after treat-
ment with AR-siRNA op3 (Fig. 1G) is the result of the strong amplifica-
tion effects of the RT-PCR.

3.2. Non-classical testosterone signaling in GC-2 cells in the presence or
absence of ZIP9, Gnα11, or AR

In the non-classical action of testosterone, activation of the Src/Ras/
Raf/Erk1/2 signaling cascade leads to the activation of the transcription
factor CREB. We therefore addressed a possible testosterone-induced
activation of Erk1/2, CREB, and ATF-1 in GC-2 cells. Like CREB, ATF-1 is
amember of the bZIP superfamily of transcription factors that stimulate
transcriptionwhen activated by phosphorylation at either Ser63 (ATF-1)

http://rsbweb.nih.gov/ij/


Fig. 1. Silencing expression of ZIP9, Gna11 or classical AR by siRNA. In the following photomicrographs, blue coloring refers to DAPI-stained nuclei and green indicates the secondary Alexa
Fluor 488-labeled goat anti-rabbit IgG bound to ZIP9-, Gnα11- or AR-specific primary antibodies. Treatment of cellswith negative-control siRNA (nc-siRNA) did not affect the expression of
either ZIP9- (A) Gnα11- (D) or AR-specific (G)mRNA/cDNA or the expression of ZIP9 (B) Gnα11 (E) or AR (H) proteins. Application of specific siRNAs against ZIP9 (ZIP9–siRNA), Gnα11
(Gnα11–siRNA), or AR (AR-siRNA; op3) considerably reduced the RT-PCR signals for ZIP9- (A), Gnα11- (D), or AR-specific (G)mRNA/cDNA fragments (750, 917, or 708 bp, respectively)
and abrogated the expression of the corresponding proteins (C: ZIP9; F: Gnα11; I; AR).
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or Ser133 (CREB). Simultaneous activation of the two related tran-
scription factors has been shown previously [32], and we investigated
whether testosterone might act on GC-2 cells in a similar way.

Control cells and cells that had been treated with nc-siRNA, ZIP9–
siRNA, Gnα11–siRNA, or AR-siRNA were incubated with either 0 or
1 nM testosterone for 30 min and then subjected to fixation and immu-
nostaining. Phosphorylated forms of Erk1/2 (Fig. 2), CREB (Fig. 3), or
ATF-1 (Fig. 4) were detected by using appropriate antibodies (Table 1,
suppl.). In control cells and in cells treated with nc-siRNA 1 nM testos-
terone causes a significant stimulation (=phosphorylation) of Erk1/2
(Fig. 2), CREB (Fig. 3), or ATF-1 (Fig. 4). Similar results were obtained
with cells that were treated with AR-siRNA to silence AR expression.
Testosterone induced a clear and significant activation of Erk1/2 (Fig. 2),
CREB (Fig. 3) or ATF-1 (Fig. 4) that was not affected by the abrogation
of AR expression.

In contrast, suppression of either ZIP9 or Gnα11 expression by
the corresponding siRNAs resulted in complete obliteration of the
testosterone-induced activation of Erk1/2 (Fig. 2), CREB (Fig. 3), or
ATF-1 (Fig. 4), indicating the importance of both ZIP9 and Gnα11 for
the non-classical testosterone signaling pathway.

3.3. Detection of p-Erk1/2, p-ATF-1, and p-CREB in western blots in the
presence or absence of ZIP9, Gnα11, or AR

Since immunofluorescence photomicrographs can only show cells
or proteins that are within the optical field of the microscope, western
blots were carried out to obtain a representative average by measuring
the testosterone action on all cells. Testosterone effects on GC-2 cells
treated with nc-siRNA were compared with its effects on cells treated
with ZIP9–siRNA, Gnα11–siRNA, or AR-siRNA. Treatment of GC-2 cells
with ZIP9–siRNA completely impaired the ability of testosterone to
induce activation of Erk1/2 (Fig. 5A–C), which is consistent with the
results shown in Fig. 2. The total amount of Erk1/2 was not affected by
the steroid hormone or the ZIP9–siRNA (Fig. 5A).

Similarly, in the absence of ZIP9 testosterone failed to cause acti-
vation of either CREB or ATF-1. In western blots with an antibody
that cross-reacts with p-CREB and p-ATF-1, we observed significant
activation of both transcription factors following 30 min of incubation
with 1 nM testosterone only when cells were treated with nc-siRNA
(Fig. 5E–G). Treatment of cells with ZIP9–siRNA abrogated CREB and
ATF-1 stimulation (Figs. 5E–G), consistent with the results shown in
Figs. 3 and 4. Total actin was not affected by the nc-siRNA or ZIP9–
siRNA (Fig. 5D), indicating that the loss of p-CREB or p-ATF-1 in ZIP9–
siRNA treated cells was not due to an overall reduction in protein
expression.

Inhibition of Gnα11 expression had effects on signaling that
were similar to those produced by inhibition of ZIP9 expression.Where-
as treatment of cells with nc-siRNA did not impair the significant
testosterone-induced stimulation of Erk1/2 (Fig. 6B and C), exposure
of the GC-2 cells to Gnα11–siRNA completely blocked the stimulation
of the kinase (Fig. 6B and C). Total Erk1/2 was not affected by nc-siRNA
or Gnα11–siRNA (Fig. 6A), indicating that the loss of Erk1/2 activation
in Fig. 6B is not the result of reduced Erk1/2 expression. All of these
results are consistent with the observations presented in Fig. 2.

Activation of CREB or ATF-1 was also strongly affected when Gnα11
expressionwas suppressed byGnα11–siRNA. Consistentwith the results
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Fig. 2. Activation of Erk1/2 by testosterone. All cells shown were incubated with a primary antibody against the phospho-Erk1/2 and a fluorescent secondary antibody (Alexa Fluor 488).
Thus, phospho-Erk1/2 appears green andDAPI-stainednuclei appear blue. The left column shows phospho-Erk1/2 in the absence of testosterone, themiddle column the sameprotein after
stimulationwith 1 nM testosterone, and the left column the statistical analysis of the green fluorescence (n=3; 19–28 cells counted from each experiment;means± SEM; **=p ≤ 0.01).
Activation (phosphorylation) of Erk1/2 was only seen after testosterone stimulation of control cells (control), cells treated with negative control siRNA (nc-siRNA), and AR specific siRNA
(AR-siRNA). Treatment of cells with siRNA against either ZIP9 (ZIP9–siRNA) or Gnα11 (Gnα11–siRNA) entirely abrogated the testosterone-induced stimulation of Erk1/2.
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summarized in Figs. 3 and 4, testosterone failed to activate either of
the two transcription factors in Gnα11–siRNA-treated cells (Fig. 6E, F
and G). nc-siRNA did not prevent the testosterone-induced stimulation
of CREB or ATF-1 (Fig. 6E–G), underlining the importance of this G-
protein for the non-classical signaling pathway of testosterone. Total
actin was not affected by either of the two siRNAs (Fig. 6D).

In contrast with the results obtained after silencing ZIP9 or
Gnα11 expression, silencing AR expression had no significant effect

Image of Fig. 2
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Fig. 3.Activation of CREB by testosterone. The arrangement of the figure is the same as in Fig. 2. Activated (phosphorylated) CREB is indicated by green fluorescence and nuclei are stained
blue. Testosterone-induced activation of CREB (phospho-CREB) was observed in control cells (control), in cells treated with nc-siRNA and in cells treated with AR-specific siRNA
(AR-siRNA). Treatment of cells with siRNA against either ZIP9 (ZIP9–siRNA) or Gnα11 (Gnα11–siRNA) completely inhibited the testosterone-induced stimulation of CREB. For statistical
analysis of the green fluorescence data from three independent experiments were considered (n = 3; 22–33 cells counted from each experiment; means ± SEM; ** = p ≤ 0.01).
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on testosterone signaling. Treatment of GC-2 cells with AR-siRNA did
not impair the ability of testosterone to induce significant activation
of Erk1/2 (Fig. 7B, C). The total amount of Erk1/2 was not affected by
the steroid hormone (Fig. 7A). Similarly, in the absence of AR testos-
terone activation of ATF-1 and CREB was unchanged (Fig. 7E–G).
3.4. Demonstration of direct interactions between ZIP9 and Gnα11

All the results obtained thus far indicate that the non-classical sig-
naling pathway of testosterone is not triggered by the interaction of
the steroid with the known cytosolic/nuclear AR but rather through its

Image of Fig. 3
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Fig. 4. Activation of ATF-1 by testosterone. The arrangement of the figure is the same as in Fig. 2. Activated (phosphorylated) ATF-1 appears green and nuclei are stained blue. ATF-1
stimulation (phospho-ATF-1) by testosterone was observed in control cells (control), in cells treated with nc-siRNA and in cells treated with AR-siRNA. Treatment of cells with siRNA
against either ZIP9 (ZIP9–siRNA) or Gnα11 (Gnα11–siRNA) completely inhibited the testosterone-induced stimulation of CREB. For statistical analysis of the green fluorescence data
from three independent experiments were considered (n = 3; 17–35 cells counted from each experiment; means ± SEM; ** = p ≤ 0.01).
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interactions with ZIP9 and Gnα11. Do these two proteins, however,
interact with each other or are they involved in different testosterone-
triggered pathways? This question was addressed by a rather new
method termed in situ proximity ligation assay (PLA). In order to ad-
dress possible interactions between ZIP9 and Gnα11, the two proteins
were targeted with a rabbit IgG and a mouse IgG, respectively. When
both primary antibodies were present, red fluorescent dots indicating
neighboring ZIP9 and Gnα11 were seen in each of the cells, suggesting
a direct interaction of the two proteins (Fig. 8A). The fact that not a sin-
gle red dot was observed in any of the cells when the ZIP9 or Gnα11

Image of Fig. 4
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Fig. 5.Western blot analysis of p-Erk1/2, p-CREB, and p-ATF-1 after silencing ZIP9 expression by siRNA. (A) The amount of total Erk1/2was not affected during the course of the incubation
and served as a gel-loading control. (B) Testosterone stimulated Erk1/2 activation in GC-2 cells treated with nc-siRNA but had no effect in cells that had been treated with ZIP9–siRNA.
(C) For statistical analysis, data were corrected for the amount of total Erk1/2 as shown in panel (A) (n= 3; means ± SEM; **= p ≤ 0.01). (D) Expression of total actin was not affected
by the treatment of the cells with either type of siRNA or testosterone. (E) Testosterone stimulated p-CREB and p-ATF-1 formation in cells treated with nc-siRNA but not in cells that had
received ZIP9–siRNA. (F and G) For statistical analysis data were corrected for the amount of total actin as shown in B (n = 3; means ± SEM; ** = p ≤ 0.01).
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expressionwas abrogated bymeans of siRNA (Fig. 8, B and C) underlines
the specificity of the PLA assay and supports the idea of direct interaction
of ZIP9 and Gnα11 proteins.

4. Discussion

The non-classical signaling pathway of testosterone in Sertoli cells
that leads to the activation of the Ras/Raf/Erk1/2/CREB cascade [20,33]
Fig. 6.Western blot analysis of p-Erk1/2, p-CREB and p-ATF-1 after silencing Gnα11 expression
testosterone. (B) Testosterone stimulated Erk1/2 activation in GC-2 cells treated with nc-siRN
(C) For statistical analysis, data were corrected for the amount of total Erk1/2 as shown in pan
by the treatment of the cells with either type of siRNA or testosterone. (E) Testosterone stimulat
Gnα11-siRNA. (F and G) For statistical analysis data were corrected for the amount of total act
is thought to be mediated through the classical cytosolic/nuclear AR,
since abrogation of its expression by siRNA impairs the testosterone-
induced signaling cascade [34]. In the spermatogenic cell line GC-2,
however, this signaling cascade is not affected by silencing AR expres-
sion but rather by silencing the expression of the G-protein Gnα11
[27], pointing towards the involvement of a membrane-bound GPCR
as the origin of the non-classical testosterone-induced cell signaling.
Although this discrepancy might be due to the different cell types used
by siRNA. (A) The amount of total Erk1/2 was not affected by incubation with siRNA or by
A but had no effect in cells treated with Gnα1-siRNA to silence the expression of Gnα11.
el (A) (n = 3; means ± SEM; * = p ≤ 0.05). (D) Expression of total actin was not affected
ed p-CREB and p-ATF-1 formation in cells treatedwith nc-siRNA but not in cells exposed to
in as shown in (D) (n = 3; means ± SEM; ** = p ≤ 0.01).

Image of Fig. 5
Image of Fig. 6


Fig. 7. Western blot analysis of p-Erk1/2, p-CREB and p-ATF-1 after silencing AR expression by siRNA. Cells were treated with either nc-siRNA or with AR-siRNA as described under
“Materials and methods”. After 30 min of incubation in the presence or absence of 1 nM testosterone, cell lysates were prepared and probed in western blots. (A) Incubation with
1 nM testosterone had no effect on total Erk1/2. (B) Testosterone stimulated the formation of p-Erk1/2 independent of whether cells were treated with nc-siRNA or AR-siRNA. (C) The
data in the bar graph were corrected for the amount of total Erk1/2 as shown in A (n = 3; means ± SEM; * = p ≤ 0.05). (D) Incubation with 1 nM testosterone had no effect on total
actin. (E) Testosterone stimulated p-CREB and p-ATF-1 formation in cells treated with nc-siRNA or AR-siRNA to the same extent. (G) Analysis of pooled data like those shown in B
(n = 3; means ± SEM; ** = p ≤ 0.01). The data in the bar graph were corrected for the amount of total actin as shown in (A), which was used as a gel loading control.
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in the two investigations, the identification of a GPCR or some other
membrane-bound receptor interacting with Gnα11 as the mediator
of the non-classical testosterone signaling pathway would help to sup-
plement current knowledge about the action of this steroid in spermato-
genic cells of the male reproductive system.

An opportunity to address this question arose after the identification
of ZIP9 as a membrane-bound receptor for testosterone that, when
expressed in granulosa/theca cells and also in prostate andbreast cancer
cells, mediates testosterone-induced non-classical signaling and in-
creases intracellular Zn2+ that induces apoptosis [28,29]. Zinc has mul-
tiple effects on prostate physiology.Whereas healthy prostate epithelial
cells are characterized by the accumulation of high levels of zinc, a
decline in cellular zinc concentration is associated with malignant
transformation and constitutes a hallmark of prostate cancer [35]. This
metabolic transformation is associated with down-regulation of zinc
transporters like hZIP1 [36]. Once neoplastic, prostate cancer cells be-
come sensitive to Zn2+-induced apoptosis mediated through increased
expression of pro-apoptotic Bax [37]. ZIP9, by being a Zn2+ transporter,
could very well be involved in testosterone-induced non-classical
signaling that increases intracellular Zn2+ and induces apoptosis in
neoplastic cells or in granulosa/theca cells. Is ZIP9, however, the same
receptor that is involved in the non-classical signaling cascade of testos-
terone in spermatogenic GC-2 cells? And, if yes, does it interact with
Gnα11?

We addressed these questions by investigating testosterone-
induced signaling in GC-2 cells after silencing the expression of ZIP9,
Gnα11, or AR by siRNA. Testosterone-induced Erk1/2, CREB, or ATF-1
activation is highly significant in all control cells and in AR-siRNA-
treated cells. In cells treated with siRNA to silence the expression of
either ZIP9 or Gnα11, however, testosterone fails to induce activation
of any of the above components, indicating the requirement for both
of these proteins in the non-classical signaling pathway.

Whereas the results clearly show that ZIP9 and Gnα11 are both
mediators of testosterone-induced signaling, the question remained
whether the two proteins directly interact with each other to mediate
the signals. As clearly shown this seems to be the case. Application
of the proximity ligation assay, a method often used to identify
cooperating and interacting proteins [38,39], demonstrated the close
contact between ZIP9 and stimulatory Gnα11 (Fig. 8), consistent with
the idea that these two proteins interact to mediate testosterone-
induced non-classical signaling and supporting earlier investigations
demonstrating interactions of ZIP9 with the stimulatory Gαs by co-
immunoprecipitation [28].

The confirmation of ZIP9 as the mediator of the non-classical signal-
ing pathway of testosterone in spermatogenic GC-2 cells should help us
to better understand themanifold effects of this steroid hormone. Non-
classical action of testosterone on cells of the male reproductive system
is essential for spermatogenesis and the differentiation of spermatogo-
nia to spermatozoa [20]. Activation of cyclic AMP response element
binding protein (CREB) in testicular Sertoli cells, which is required for
the survival of spermatocytes and the production of mature spermato-
zoa [40], is triggered by testosterone interactions with the AR via the
activation of the c-Src/c-Raf/Erk1/2 signaling cascade of the non-
classical testosterone signaling pathway [20,26,41]. Spermatogenesis
also depends on the activation of Erk1/2 and other mitogen-activated
protein kinases [42,43]. In particular, Erk1/2 activation is an absolute
requirement for the production of haploid spermatozoa [44,45]. The
finding that ZIP9 is involved in these signaling events helps to supple-
ment our knowledge concerning the actions of testosterone and pro-
vides a clearer picture of the involvement of this steroid hormone in
the regulation of male fertility and reproduction.

Confirmation of ZIP9/Gnα11 interactions as an alternative route of
androgen-induced signaling in further cell types and tissues might
help not only to supplement our knowledge concerning actions of tes-
tosterone but also to reveal new signaling pathways triggered by the
steroid.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.cellsig.2015.07.013.
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Fig. 8. Demonstration of ZIP9/Gnα11 interactions by the proximity ligation assay. Cells
plated on 8-well chambers slides were fixed as stated under “Materials and methods” to
preserve the reaction status and transient interactions. The primary antibodies of the
ZIP9 and Gnα11 were added followed by Duolink secondary PLA probes. The results
were then visualized using a fluorescence microscope. (A) The red points in control cells
indicate that the distance between ZIP9 and Gnα11 is less than 40 nm. (B) When
Gnα11 or (C) ZIP9 expression was suppressed by siRNA, no red dots were identified in
any of the cells, thus underlining the specificity of the reaction in (A) demonstrating the
close contacts between ZIP9 and Gnα11.
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