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Abstract

Right heart failure is a prevalent mechanism of cardiovascular collapse and dis-

tinctly different from left heart failure. Conventionally, afterload reduction has been

the main focus to treat right ventricular (RV) dysfunction, but it cannot be achieved

in many cases. A new strategy is to directly target RV remodelling. Pulmonary

artery banding (PAB) in mice is used to induce a chronic pressure overload on the

RV, without any changes in the pulmonary vasculature.

This work addressed two questions: a) the time-course of effects of PAB on

right- and left-ventricular (LV) hypertrophy and function, assessed non-invasively

via magnetic resonance imaging (MRI). b) Stimulation of the nitric oxide pathway

was shown to ameliorate maladaptive changes in murine models of chronic LV pres-

sure overload. Therefore, the effects of the sGC stimulator Riociguat and the PDE5

inhibitor Sildenafil on RV function and fibrosis were investigated.

Chronic RV pressure overload was induced by PAB in male C57Bl/6 wild-type

mice. For the time-course study, 1, 3, 7, 14, 28, 56 and 105 days after PAB, the

functional and morphological consequences of sustained pressure overload on the RV

and LV were assessed non-invasively using MRI. Additionally, the time-course of the

effects of PAB on cardiomyocyte size and fibrosis was investigated.

For the pharmacological intervention study, drug treatment was started seven

days after surgery for 2 weeks. Animals received either 30 mg/kg/d Riociguat per

os, Sildenafil 100 mg/kg/d per drinking water, or placebo. The consequences of

the sustained pressure overload on RV fibrosis, cardiomyocyte size and function

were assessed using Picrosirius red staining, WGA-FITC staining and Magnetic

Resonance Imaging.

PAB led to RV dilatation, indicated by an increase in end-diastolic volume. RV

mass, cardiomyocyte size, as well as the collagen content of the RV increased in

banded animals. The ejection fraction and the stroke volume (SV) of the RV de-

creased, as well as the LV SV and the cardiac output (CO). Whilst RV mass increased

continually over the time-course of the study, the RV performance declined initially,

followed by a weak compensatory phase. In the course of the study, the heart con-

tinued to decompensate, which finally resulted in heart failure of the animals.



Treatment with both Riociguat and Sildenafil led to significant improvements

in RV ejection fraction (35.4± 1.7% vs. 43.7± 2.2% vs. 48.2± 3.3% [Placebo

vs. Riociguat vs. Sildenafil]), but only Riociguat significantly reduced the collagen

content of the RV (5.6± 0.3% vs. 3.0± 0.8% vs. 5.4± 0.2%). Neither drug had ef-

fects on RV hypertrophy (62.3± 3.1mg vs. 59.6± 2.5mg vs. 57.1± 2.2mg), on the

RV/(LV+S) ratio (0.84± 0.04mg/mg vs. 0.91± 0.04mg/mg vs. 0.83± 0.03mg/mg),

nor on cardiomyocyte size (20.7± 0.6µm vs. 19.8± 0.3µm vs. 19.7± 0.6µm).

It was shown, that chronic pressure overload in C57Bl/6 mice induced RV di-

latation, hypertrophy and contractile dysfunction. Furthermore, LV performance

was negatively affected by intraventricular interaction, resulting in decreased LV

SV and CO. Riociguat and Sildenafil both led to significant improvements in RV

function, without any changes in RV mass or cardiomyocyte size. One reason for

the functional improvement of the RV under Riociguat treatment is the decrease

in collagen content, making the RV more apt to deal with the pressure overload.

Further experiments will be needed to determine the mechanism of the functional

improvement with Sildenafil treatment, and the reason for the differential effects of

the drugs.



Zusammenfassung

Rechtsherzversagen ist ein vorherrschender Mechanismus des kardiovaskulären Kol-

lapses und unterscheidet sich deutlich vom Linksherzversagen. Die konventionelle

Methode, um rechtsventrikuläre (RV) Dysfunktion zu behandeln, ist eine Redukti-

on der Nachlast. Dies ist jedoch in vielen Fällen nicht möglich. Eine neue Strategie

stellt die Behandlung der RV Hypertrophie dar. Pulmonal-arterielles Banding (PAB)

in Mäusen wird verwendet, um RV Hypertrophie auszulösen, ohne eine Veränderung

des pulmonalen Gefäßsystems zu induzieren.

In dieser Arbeit wurden zwei Fragestellungen behandelt: a) der zeitliche Ver-

lauf der Effekte des PAB auf die rechts- und linksventrikuläre (LV) Hypertrophie

und Funktion mittels Magnetresonanztomographie (MRT) zu untersuchen. b) Es

wurde gezeigt, dass der Stickstoffmonoxid (NO)-Signalweg an der Entwicklung der

LV Hypertrophie entscheidend beteiligt ist. Daher wurden die Effekte des löslichen

Guanylatzyklase-Stimulators (sGC-Stimulator) Riociguat, sowie des Phosphodies-

terase 5-Hemmers Sildenafil, auf die RV Hypertrophie und Funktion untersucht.

Bei C57Bl6-Mäusen wurde eine chronische Druckbelastung für den rechten Ven-

trikel durch eine PAB-Operation erzeugt. Für die Langzeitstudie wurden die Folgen

der anhaltenden Drucküberlastung auf RV und LV Morphologie und Funktion 1, 3, 7,

14, 28, 56 und 105 Tage nach der PAB-Operation nicht-invasiv mit MRT untersucht.

Zusätzlich wurden der zeitliche Verlauf der Effekte des PAB auf die Kardiomozy-

tengröße, sowie den Grad der Fibrosierung untersucht.

In der pharmakologischen Interventionsstudie, wurde die Behandlung mit Rioci-

guat (30 mg/kg/d p.o.), resp. Sildenafil (100 mg/kg/d p.o.), 7 Tage nach der Ope-

ration für eine Dauer von 14 Tagen durchgeführt. Nach 21 Tagen wurden die Aus-

wirkungen einer dauerhaften Druckbelastung auf die RV Morphologie und Funktion

unter Verwendung von Magnetresonanztomographie untersucht. Desweiteren wurde

der Grad der Fibrosierung, sowie die Kardiomyozytengröße durch eine histologische

Untersuchung analysiert.

PAB-operierte Mäuse zeigten etliche Merkmale der RV Dysfunktion. PAB führte

zu RV Dilatation verglichen mit Sham-operierten Tieren, gemessen als eine Zunahme

des end-diastolischen Volumens. Sowohl RV Masse als auch Kardiomyozytengröße



und Fibrosierungsgrad nahmen in PAB-Mäusen zu. Die Ejektionsfraktion (EF) und

das Schlagvolumen (SV) des RV nahmen ab. Das LV-SV und das Herzzeitvolumen

nahmen ab. Während die RV Masse über den Versuchszeitraum zunahm, fiel die RV

Leistung initial stark ab, woraufhin eine zunächst kompensatorische Phase folgte.

Mit Fortschritt der Studie dekompensierte das Herz zusehends, was schlussendlich

im Herzversagen der Tiere mündete.

Sowohl die Behandlung der Tiere mit Riociguat, als auch mit Sildenafil, führ-

te zu signifikanten Verbesserungen der RV EF (35.4± 1.7% vs. 43.7± 2.2% vs.

48.2± 3.3% [Placebo vs. Riociguat vs. Sildenafil]), aber nur Riociguat reduzierte si-

gnifikant den Fibrosierungsgrad des RV (5.6± 0.3% vs. 3.0± 0.8% vs. 5.4± 0.2%).

Weder Riociguat, noch Sildenafil, hatten einen Effekt auf die RV Hypertrophie

(62.3± 3.1mg vs. 59.6± 2.5mg vs. 57.1± 2.2mg), auf den RV/(LV+S) Quotien-

ten (0.84± 0.04mg/mg vs. 0.91± 0.04mg/mg vs. 0.83± 0.03mg/mg), oder auf die

Kardiomyozytengröße (20.7± 0.6µm vs. 19.8± 0.3µm vs. 19.7± 0.6µm).

Es wurde gezeigt, dass die chronische Drucküberlastung in C57Bl/6 Wildtyp-

Mäusen zu RV Dilatation, Hypertrophie und kontraktiler Dysfunktion führt. Zu-

sätzlich wurde die LV Leistung durch interventrikuläre Interaktion, d. h. durch eine

Reduktion des LV Schlagvolumens und des Herzzeitvolumens, beeinträchtigt. Sowohl

Riociguat als auch Sildenafil führten zu signifikanter Verbesserung der RV Funkti-

on, ohne Veränderungen in der RV Masse oder Kardiomyozytengröße ausgelöst zu

haben. Ein Grund für die funktionelle Verbesserung unter Riociguat-Behandlung

könnte die Reduktion der RV Fibrosierung sein. Weitere Studien sollten durchgeführt

werden, um den Mechanismus der funktionellen Verbesserung unter Sildenafil-Gabe,

sowie die unterschiedlichen Effekte der Substanzen zu untersuchen.
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FITC Fluorescein isothiocyanate

FLASH Fast-low-angle-shot

FOV Field of view

i.p. Intraperitoneal

Km The Michaelis constant

LV Left ventricle

LVPsys Left ventricular systolic pressure

MCT Monocrotalin

MRI Magnetic resonance imaging
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Table 1 – continued from previous page

Abbreviation Explanation

MW Molecular weight

N/A Not applicable

NO Nitric oxide

p.o. Per os

PAB Pulmonary Artery Banding

PDE Phosphodiesterase

PFA Paraformaldehyde

RV Right ventricle

RVPsys Right ventricular systolic pressure

s.c. Subcutaneous

SEM Standard error of the mean

sGC Soluble Guanylyl Cyclase

SNAP S-Nitroso-N-acetylpenicillamine

SV Stroke volume

T Tesla

TAC Transverse aortic constriction

Vmax Maximum reaction rate



Chapter 1

Introduction

This dissertation is about the role of the nitric oxide (NO) pathway in right ven-

tricular hypertrophy. The introduction is split into two main sections; one about

the right ventricle, and one about the NO pathway. I will begin the first section

by giving a short outline on why the right ventricle has not been in the centre of

research interest so far, followed by a description of the right ventricles anatomy and

physiology, and why we cannot simply translate research findings made in the left

ventricle to the right ventricle. Hereafter, I will provide a description of the main

form of pathological remodeling of the right ventricle, cor pulmonale, its etiology

and pathophysiology, and the importance of finding new treatments. This section

will be concluded by a brief description of the pulmonary artery banding (PAB)

model, which is a murine model of chronic right ventricular pressure-overload. The

next section will deal with the nitric oxide pathway, describing its main constituents,

as well as the research that has been done on them so far in the context of cardiac

hypertrophy. The introduction will be concluded by a brief description of the history

and mechanism of action of riociguat and sildenafil, and a rationale summarizing

the purpose of this dissertation.

1
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1.1 The Right Ventricle

1.1.1 History of Research

Even though William Harvey already in the 16th century experimentally demon-

strated that blood flows from the right ventricle to the left ventricle via the lungs,1

the right ventricle has in the past been scientifically under-investigated because of

numerous reasons: it is less muscular than the left ventricle, it is pumping blood only

through a single organ and it has been less obviously involved in cardiac diseases of

epidemic proportions like myocardial ischemia and cardiomyopathy.2 Furthermore,

in the 1940s studies were carried out in open-pericardium dog models, which showed

that virtually complete ablation of the right ventricular free wall hardly decreased

cardiac output nor systemic venous pressure and did not result in venous conges-

tion, whilst damage to the left ventricle led to significant changes in pressure and

lethal cardiogenic shock.3–5 It was then suggested that a functional left ventricle is

sufficient for pumping blood, and that it is able to transfer its mechanical energy to

the right ventricle via the interventricular septum.3,4

Additionally, surgical treatments of congenital heart diseases, like tricuspid and

pulmonary atresia, were developed which tried to completely circumvent the right

heart, of which the best known became the Fontan/Kreutzer procedure.6,7 In this

procedure the right ventricle is bypassed and patients were shown to survive without

a functional right ventricle, further questioning the role the right ventricle plays in

circulation.6,8 In 1975 these findings culminated in the proposition of the "dispens-

able right ventricle",9 and scientific interest of the workings of the right ventricle in

health and disease ceased.

This position was challenged in the mid 1980s by "the essential function of the

right ventricle".10 Furey provided evidence that the essential role of the right ventri-

cle is not to pump blood through the pulmonary circulation, but rather to provide

capacitance to the pulmonary circulation to maintain a low pressure, preventing the

development of venous distention and peripheral edema.10

A final change of thinking occurred after it was shown that isolated right ventricu-

lar infarcts negatively affected its hemodynamics,11 that right ventricular contractile
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dysfunction is associated with increased morbidity and mortality in diseases of the

left heart, and that right ventricular parameters can be a better prognostic marker

than left ventricular readouts.12,13 This was further corroborated with evidence that

right ventricular infarction is an independent predictor of morbidity and mortality

in inferior myocardial infarction:14 in patients with right ventricular infarction, ad-

ditional to left ventricular infarction, incident mortality increased from 5% to 31%

and complications increased from 28% to 64%. The prognostic value of the right

ventricle in inferior myocardial infarction was later confirmed in a meta-analysis,

which showed that right ventricular dysfunction led to significant increases in mor-

tality, morbidity and serious complications.15

Eventually in 2006 the National Heart, Lung and Blood Institute (NHLBI, Bethesda,

US) concluded, that right heart failure is distinctly different from left heart failure,

and that it is a prevalent mechanism of cardiovascular collapse.2

1.1.2 Anatomy

The primary role of the right heart is to accept deoxygenated blood from the systemic

circulation via the inferior and superior vena cava, and to pump it through the

pulmonary circulation for gas exchange.16 It consists of the right atrium and the

right ventricle.

The right ventricle has a complex geometry and is comprised of two functionally

and anatomically distinct cavities, which are separated by the crista supraventricu-

laris: the sinus and the conus region (Fig. 1.1, p. 4).16 The sinus region includes

the trabeculated part of the ventricle and accepts the blood from the right atrium

via the tricuspid valve.17 The conus region is free of trabeculations and connects the

right ventricle to the pulmonary circulation via the pulmonary valve.17 The valves

prevent regurgitation of blood back into the atrium (tricuspid valve) and into the

ventricle (pulmonary valve).

The right heart is separated from the left heart by the septum and they are

functionally linked by muscle bundles, allowing the ventricles to hemodynamically

influence each other.18 The left and right heart are surrounded by the pericardium.

In the axial plane, the right ventricle appears crescently-shaped at the base and
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triangularly-shaped at the apex, whilst it looks triangular from the side-view. This

is in stark contrast to the left ventricle, which appears elliptically-shaped in cross-

section, and also accounts for the higher compliance of the right ventricle.18 Under

physiological conditions the left ventricle protrudes into the right ventricle, i.e. the

septum is shaped concave to the left ventricle. In humans, the volume of the right

ventricle is marginally larger than that of the left ventricle (49-101 mL/m2 vs. 44-89

mL/m2). As the stroke volumes of both ventricles are on average the same, the right

ventricular ejection fraction is slightly lower than left ventricular ejection fraction.

Figure 1.1 – Coronal section of the heart. The right atrium receives deoxygenated blood from the systemic

circulation via the superior and inferior vena cava, which i s then delivered through the tricuspid valve into the right

ventricle. The blood is expelled form the right ventricle via the pulmonary artery into the pulmonary circulation

for gas exchange. The oxygenated blood leaves the pulmonary circulation via the pulmonary veins into the left

atrium, which passes the blood on to the left ventricle via the bicuspid valve. Finally, the blood is pumped out from

the left ventricle through the aorta back into the systemic circulation. Copyright c© 2004 Pearson Education, Inc.,

publishing as Benjamin Cummings.

The right ventricle is primarily perfused by the right coronary artery and partially

perfused by the left coronary artery.19 Perfusion takes place during both systole and

diastole under physiological conditions; partial occlusion of the coronary arteries

might occur under conditions of high afterload and increased filling pressures; this
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can result in ischemia.19

1.1.3 Physiology

The right ventricle contracts by generating pressure in the sinus region with a peri-

staltic motion that starts at the apex and moves toward the conus.16 Effectively,

this leads to a decrease in the distance between the right ventricular free wall and

the septum, and a reduction in the right ventricular free wall, propelling the blood

forward.

On the cardiomyocyte level, force is generated by the interaction of actin and

myosin, with the energy obtained from the conversion of adenosine triphosphate

(ATP) to adenosine diphosphate (ADP). Each myosin heavy chain interacts with two

myosin light chains, forming a hexameric structure.16 The predominantly expressed

myosin heavy chain isoform in ventricles is the β isoform, whilst the distinct myosin

light chain isoforms are expressed differently in the left and right heart.16 The

localization of actin isoforms has not been well described yet.16

The right ventricle has only 1/6 of the mass of the left ventricle, and performs

1/4 of the cardiac stroke work of the left ventricle, making the right ventricle highly

compliant.17,20 This is the result of the right ventricular free wall being relatively

thin-walled (1–3mm) compared to the left ventricular free wall (∼10mm), as it has

to work against a much smaller resistance: the pulmonary circulation is a very com-

pliant "low pressure system" (15–30mmHg vs 100–140mmHg [RV systolic pressure

vs. LV systolic pressure]), due to the greater diameter and thinner walls of the

pulmonary vessels.18

The high compliance of the right ventricle allows it to readily adapt to changes

in volume, but not to changes in pressure, as its role is to work under low pressure

conditions.19 Therefore volume overload conditions, as in atrial septal defects or

with tricuspid regurgitation, can be tolerated for a long time before pumping is

impaired. This is in stark contrast to pressure overload conditions, as they often

occur in constrictive pulmonary disorders, which can lead to rapid right ventricular

functional deterioration.21
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1.1.4 Differences Between the Left and the Right Ventricle

The left and right ventricle differ not only in structure and loading conditions (see

above), but also display different cell signaling and calcium handling.22 Theses dif-

ferences have their origins in development, as the right and left ventricle originate

from different progenitor cells which are located in different heart fields (Fig. 1.2,

p. 6).16 Whilst the primary heart field gives rise to the atrial chambers and the

left ventricle, the secondary heart field gives rise to the right ventricle and its out-

flow tract.16 The primary and secondary heart field cells can be discriminated by

their differential expression of transcription factors: whilst the cells of the primary

heart field express the T-box transcription factor Tbx5 and the basic helix-loop-

helix transcription factor Hand1, cells of the secondary heart field express Hand2,

the LIM-homeodomain transcription factor Islet-1 (Isl1) and Fibroblast growth fac-

tor 10 (Fgf10).16 Studies with knock-out mice which lacked either Hand1 or Hand2

led to recognition of this chamber-specific gene expression, as genetic ablation of one

of these transcription factors resulted in impaired right, respectively left, ventricular

development.23

Figure 1.2 – The heart forms from two heart fields. Scanning electron micrographs of representative stages of

murine heart development. Derivatives of the primary and secondary heart field are depicted in color. a indiacates,

atrium; lv, left ventricle; oft, outflow tract; rv, right ventricle. Adapted from Garry et al., 200624

These inherent differences between the right and left ventricle allow for the pos-

sibility that drugs which can successfully treat disorders in one ventricle, do not

necessarily exert the same effects in the other ventricle. A clinical example of this

are patients with a systemic right ventricle, who respond worse to drugs which are
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used to treat left ventricular dysfunction.21 As an experimental example, treatment

of the hypertrophied left ventricle with sildenafil was shown to a decrease hypertro-

phy,25 whilst treatment of the hypertrophied right ventricle with sildenafil actually

led to an increase in hypertrophy.26 Whether these differences actually stem from

inherent differences between the left and the right ventricle, their differing structural

and loading conditions, the distinct animal models employed, or various drug treat-

ment procedures, is so far unresolved.27 Summing up, these differences do exist, and

carefully designed experiments have to be carried out before conclusions about the

efficacy of certain drugs in particular pathological cardiac conditions can be drawn.

1.1.5 Cor Pulmonale

Cor pulmonale stems from the Latin cor ("heart") and the new Latin pulmōnāle

("of the lungs"), and is synonymous with pulmonary heart disease. It was defined

by a World Health Organization expert committee in 1963 as “hypertrophy of the

right ventricle resulting from diseases affecting the function and/or structure of the

lungs, except when these pulmonary alterations are the result of diseases that pri-

marily affect the left side of the heart, as in congenital heart disease”.28 A current

definition of chronic cor pulmonale is: "Right ventricular hypertrophy, dilation, or

both as a result of pulmonary hypertension caused by pulmonary disorders involving

the lung parenchyma, impaired pulmonary bellows function, or altered ventilatory

drive".29 Acute cor pulmonale, as in pulmonary embolism, usually results in dilata-

tion, whereas chronic cor pulmonale, as in pulmonary hypertension, is the result

of prolonged pressure overload, and leads to right ventricular hypertrophy. If left

untreated, both conditions can eventually culminate in right heart failure and death.

1.1.5.1 Etiology

Pulmonary hypertension Pulmonary hypertension (PH) is characterized by a

progressively elevated mean pulmonary arterial pressure, which exceeds 25mmHG at

rest or 30mmHg with exercise.30 It can be further divided into mild (25–35mmHg),

moderate (35–45mmHg) and severe (> 45mmHg) pulmonary hypertension, of which

the severe ones are more likely to be pulmonary arterial hypertension and chronic
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thromboembolic disease.18 Pulmonary hypertension was classified by the WHO into

5 groups in 2003, and reclassified in 2009,31 namely pulmonary arterial hypertension,

pulmonary hypertension secondary to left heart disease, pulmonary disease, chronic

thromboembolic disease, and miscellaneous causes.

Group I: Pulmonary Arterial Hypertension (PAH) Pulmonary arterial hy-

pertension is caused by abnormalities in the pulmonary vasculatures anatomy or

physiology. This usually results in mechanical obstruction to blood flow, which is

resistant to vasodilator therapy. It includes idiopathic PAH (formerly called primary

PH), heritable PAH, and PAH secondary to other conditions including congenital

heart disease, connective tissue disease, portal hypertension, HIV infection, and drug

or toxin exposure.

Group II: Pulmonary Hypertension Owing to Left Heart Disease The

second group is PH caused by left heart disease. An impairment of the left ventricle

to sufficiently eject blood eventually leads to a backlog of blood into the pulmonary

circulation, with the resultant abnormally elevated pulmonary vein pressures being

retrogradely transmitted to the right ventricle. Group II PH is very common. It

is as yet unknown, to what extent right ventricular failure actually contributes to

mortality and to what extent it simply is a marker of left ventricular dysfunction.

Group III: Pulmonary Hypertension Owing to Lung Diseases and/or Hy-

poxia Alterations in pre-capillary arterioles from the third group of PH, which is

the by far most common form of PH and includes chronic obstructive pulmonary

disorder (COPD). In COPD some areas of the lung are hypoventilated which stimu-

lates the pulmonary vasoconstrictor reflex, effectively increasing pulmonary vascular

resistance.19 These diseases can often be treated with vasodilators, but the severity

of the disease may increase and become permanent, resulting in respiratory and/or

right ventricular failure.32

Group IV: Chronic Thromboembolic Pulmonary Hypertension (CTEPH)

CTEPH is a mechanical obstruction of pulmonary arteries or arterioles secondary
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to pulmonary emboli. Pulmonary embolism is the most common cause of acute

right ventricular pressure overload and acute cor pulmonale.8 The sudden increase

in afterload leads to a dilatation of the right heart as a compensatory mechanism

to maintain stroke volume despite decreased ejection fraction (Frank-Starling mech-

anism).18 Even though acute cor pulmonale is often associated with dilatation,

studies in patients with massive pulmonary embolism have shown that hypertrophy

can occur in the right heart during the acute phase.33

Group V: Pulmonary Hypertension With Unclear Multifactorial Mecha-

nisms The fifth group is a collection of PH disorders with unclear multifactorial

mechanisms.

1.1.5.2 Pathophysiology

The progressive increase in pulmonary vascular resistance seen in pulmonary hy-

pertension leads to right ventricular hypertrophy, dilatation and eventually right

ventricular failure. The progression from right ventricular hypertrophy to right ven-

tricular failure can be divided into three phases, namely compensatory, intermediate,

and decompensated phase.

Compensatory Right Ventricular Hypertrophy In the compensatory phase,

concentric hypertrophy develops and right ventricular function is preserved. There

are no changes in chamber volume nor any clinical signs of heart failure. Elevated

right ventricular pressure leads to an increase in wall stress, and the compensatory

myocardial hypertrophy is believed to reduce wall stress and oxygen consumption

to maintain cardiac output.34 This can be concluded from the Law of Laplace,

which describes wall stress as a ratio of intraluminal pressure times internal chamber

radius to the chambers wall thickness.34 Following from this law, one can see that

an increase in chamber wall thickness leads to a decrease in wall stress:

σ =
P × r

h
(1.1)
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σ = wall stress

P = intraluminal pressure

r = chamber internal radius

h = chamber wall thickness

Intermediate Right Ventricular Hypertrophy Sustained increases in filling

pressures eventually lead to a progressive contractile dysfunction owing to functional

and structural changes, as well as cardiomyocyte apoptosis.35 The right ventricu-

lar wall continues to grow; this process is paralleled by eccentric hypertrophy, that

is an elongation of the myocardial sarcomeres, leading to ventricular dilatation.16

Chamber dilatation is thought to occur to allow a compensatory increase in preload

to maintain stroke volume in face of a progressive contractile dysfunction. In time,

diastolic dysfunction occurs, which is reflected by a reduced compliance of the right

ventricle. The reduced compliance is caused by progressive stiffening of the ventricu-

lar wall because of an increase in interstitial collagen content and a thickening of the

ventricular wall.35 Progressive chamber dilatation leads to tricuspid regurgitation,

as the tricuspid leaflets are unable to close any longer sufficiently due to annular

dilation, and to a displacement of the septum towards, and eventually protruding

into, the left ventricle. This also impairs left ventricular function, as the left ventri-

cle is hindered to distend sufficiently to maintain an adequate end-diastolic filling,

resulting in a decreased cardiac output.

Decompensated Right Ventricular Hypertrophy The decreased cardiac out-

put and the increased right ventricular pressure and wall tension finally lead to the

decompensated phase. The decreased cardiac output leads to systemic hypotension,

which, in combination with the increased right ventricular wall tension, results in

reduced right ventricular tissue perfusion pressure, culminating in a reduced coro-

nary blood flow to the right ventricular myocardium and eventually right ventricular

ischemia.35 This mismatch between increased oxygen demand and decreased oxygen

delivery leads to further contractile weakening of the right ventricle. Recently, it was

also shown that angiogenesis is reduced and cannot keep up with the elevated oxygen
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demand.35 On the cell level, an increased formation of reactive oxygen (ROS) and

nitrogen species (RNS), as well as increased inflammation can be observed. ROS

and RNS have the potential to induce cell damage, which can lead to apoptosis, as

well as to inhibition of enzymes and impaired intracellular signaling, which can lead

to impaired excitation-contraction coupling, hindering the heart from successfully

functioning as a syncytium.35

Eventually the heart becomes incapable to adequately pump blood in response to

systemic demands, leading to deficient end-organ perfusion, premature fatigue, dys-

pnoe, lower extremity edema, congestive hepatomegaly, and possibly cardiovascular

collapse due to arrhythmia and ischemia.2,16,36

1.1.5.3 Molecular Mechanisms of Pathological Right Ventricular Hyper-

trophy

For now, the right heart remains relatively under-investigated and not much is known

about the protein and cellular alterations which underlie maladaptive right ventric-

ular hypertrophy, as research in the past has mostly focused on the hypertrophied

left ventricle.35

It is known that protein synthesis in the right ventricle is induced by stretch-

sensitive integrins and ion channels, via autocrine and paracrine signaling mecha-

nisms, as well as neurohormonal influences.35 One of the hallmarks of maladaptive

cardiac hypertrophy is the α- to β-isotype switch of myosin heavy chain in cardiac

myocytes. The α-myosin heavy chain usually accounts for 23–34% of the myosin

heavy chain content in the right ventricle, and goes down to 5% in pathological right

ventricular hypertrophy.37 As the β-isoform has a decreased ATPase activity, this

results in an impaired systolic function. Moreover, there is a decrease in α-cardiac

actin, and a concomitant increase in α-smooth muscle and α-skeletal muscle actin;

the functional consequences of this are unclear so far.35 Another decrease in systolic

function comes about by the proteolytic degradation, as well as phosphorylation, of

the regulatory protein troponin, which impairs its binding to tropomyosin.35 Lastly,

the right ventricle switches from fatty acid to carbohydrate metabolism, and the

fetal contractile gene expression program is re-induced.38
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1.1.5.4 Epidemiology

Chronic cor pulmonale is responsible for 5–10% of all diseases of the heart and has

the highest prevalence after hypertensive heart diseases and coronary heart diseases

in patients over the age of 50.39 Right ventricular performance is an important prog-

nostic determinant in chronic heart failure,40,41 and it is estimated that 10–30% of all

hospital admissions for heart failure in the US yearly are owing to cor pulmonale.42

A low cardiac index, a high mean right atrial pressure, an increased diastolic

eccentricity index, as well as pericardial effusion have all been associated with in-

creased mortality in pulmonary arterial hypertension.43–45 The mortality rate of

pulmonary arterial hypertension is estimated to be 20–40% 3 years after diagno-

sis,35 and it is estimated that 47% of patients with idiopathic pulmonary arterial

hypertension die of right ventricular failure.43

Pulmonary embolism has a high mortality rate and is strongly related to right

ventricular dysfunction:46 there are more than 600000 cases of pulmonary embolism

in the US each year, and around 50000 deaths in pulmonary embolism are attributed

to right ventricular failure.21 But also in patients with hemodynamically stable pul-

monary embolism, right ventricular dysfunction, as assessed by computed tomogra-

phy, echocardiography, or cardiac biomarkers, is associated with an increased risk

of mortality.47,48

It is difficult to estimate the actual prevalence of cor pulmonale in COPD, as it is

challenging to catheterize the right heart in large scale, and non-invasive techniques

are not investigated enough yet or not widely available. Nonetheless, there are

several indicators, that right ventricular dysfunction plays a major role in COPD.

In the 1966 Veterans Administration trial, patients with COPD and cor pulmonale

had a 4-year mortality rate of 73%.49,50 It is thought that around 80% of cor

pulmonale cases stem from COPD.39 Autopsy studies in patients with chronic lung

disease have shown that in more than 40% of patients examined, there was evidence

of cor pulmonale.51,52 Additionally, 59% of end-stage COPD patients have right

ventricular dysfunction.53 COPD was world-wide ranked as the 6th leading cause

of death in 1990 and is projected to increase to be the 5th leading cause of death in

2020 and the 4th leading cause in 2030, as a result of the rise in smoking rates and
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the demographic changes in many countries.54,55

Additionally, the right ventricle appears to play a crucial role in cardiac diseases,

e.g. myocardial infarction, congenital heart disease, as well as in cardiac transplan-

tation. In this line, right ventricular ejection fraction was shown to predict mortality

after myocardial infarction.56 Furthermore there are about 100000 adults in the US

with congenital heart disease,57 and about the same number in Europe,58 and a

correct right ventricular function was shown to be important for long-term survival

after congenital heart disease correction.59 Lastly, acute right ventricular failure

accounts for 50% of all cardiac complications in cardiac transplant patients, and is

responsible for 19% of early deaths.60

Taking all of this into account, it becomes evident that there is already a large

proportion of people affected by a dysfunctional right ventricle, and the number is

likely to increase in the future. Therefore it is crucial to develop effective treatments

to alleviate the burdens of this disease.

1.1.6 Reverse Remodeling as a Novel Treatment Strategy

Afterload reduction is the mainstay to alleviate the right ventricle of its increased

afterload, but unfortunately this cannot be achieved in many cases.2 Drugs which

have commonly been employed to decrease afterload include loop diuretics and

angiotensin-converting-enzyme (ACE) inhibitors. Loop diuretics are used to get

rid of excess fluid accumulation to reduce blood pressure, whilst ACE inhibitors di-

rectly promote vasodilation and reduce afterload. The problem with loop diuretics

is that they also decrease the preload of the heart, which can result in diminished

cardiac output.16 Moreover, afterload reduction cannot be achieved in many cases.

A new treatment strategy is to directly target the right heart and its pathological

remodeling process.

Recent studies call into question the long held belief that compensatory hyper-

trophy indeed is compensatory and that normalization of wall stress is essential, and

rather propose that hypertrophy might be detrimental from the outset.34 So is an

increase in left ventricular mass associated with decreased survival in virtually all

forms of heart failure.61 Furthermore, studies with ACE inhibitors demonstrated



14

that even though they reduce cardiac hypertrophy, they also increase survival.62,63

Also, in an experimental model of left ventricular hypertrophy, a reduction of my-

ocardial mass was shown to have positive effects on left heart function.25 That the

hypertrophied right heart has the capability to regress, can be witnessed in patients

undergoing treatment of the underlying cause of the their right ventricular dysfunc-

tion: so does lung transplantation or pulmonary endarterectomy in CTEPH lead to

a disappearance of acute cor pulmonale.64

Therefore a reduction of right ventricular hypertrophy forms a potential new

treatment target, which could be employed to enhance right ventricular function

and reduce mortality.

1.1.7 The Pulmonary Artery Banding (PAB) Model

Most animal models of right ventricular hypertrophy and failure involve a direct

modification of the pulmonary (vascular) structure, so as to increase the resistance

the right heart has to work against (e.g. hypoxia mouse model, monocrotaline rat

model).65,66 These models make it difficult to assess whether drug treatment effects

on the right heart are caused by a secondary effect due to right ventricular unload-

ing, or a potential primary effect on the right heart. Here, I employ the pulmonary

artery banding (PAB) model in mice, which results in a constant afterload and re-

sistance the right ventricle has to work against. This allows to elucidate the effects

of treatment on the right heart independently of the pulmonary vasculature. Exper-

imentally the PAB model was first employed in piglets,67 advances in microsurgical

approaches to create a graded constriction allowed the model to be extended to ro-

dents.68 A comprehensive description of this procedure was published by Tarnavski

et al.69 Briefly, a clip with a predefined diameter is placed around the pulmonary

artery which is thereby constricted by a certain amount. The right ventricle has to

work against an increased vascular resistance that leads to chronic pressure over-

load and subsequent pathological right ventricular remodeling. Pharmacological or

genetic manipulation of chosen signaling pathways can then be carried out to assess

the direct effects they have on the right heart.
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1.2 The Nitric Oxide Pathway

This section describes the major players of the nitric oxide (NO) signaling cas-

cade, that is NO, soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate

(cGMP), cGMP-dependent protein kinase (cGK) and phosphodiesterase 5 (PDE5).

Each constituent of the pathway will be briefly described and the role it plays in the

pathway explained. Subsequently, experimental in vitro and in vivo studies will be

presented, which assessed their role in left and right ventricular hypertrophy, as well

as in fibroblast growth. The results of these studies will be summarized in tables.
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Figure 1.3 – Schematic drawing of the nitric oxide (NO) pathway. L-Arginine is converted to NO by nitric oxide

synthase (NOS). NO freely diffuses into its target cell, where it activates soluble guanylyl cyclase (sGC), leading to

the formation of cyclic guanosine monophosphate (cGMP) from guanosine-5’-triphosphate (GTP). cGMP exerts its

various effects via regulating the activity of cGMP-gated ion channels, cyclic guanosine kinase (cGK) and cGMP-

binding proteins. Another pathway, which leads to the generation of cGMP, is the natriuretic peptide pathway:

atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) bind to and

activate particulate guanylyl cyclase (pGC), which in turn leads to the production of cGMP. cGMP is broken down

to 5’GMP by the enzyme phosphodiesterase (PDE). Riociguat is a drug which activates sGC, and sildenafil is a drug

which inhibits PDE.
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1.2.1 Nitric Oxide

Nitric oxide (NO) was first identified as endothelial-derived relaxing factor (EDRF)

by Furchgott in 1980,70 for which he received the Nobel prize in 1998.71 NO is a key

signaling molecule, which is involved in the regulation of a plethora of physiologi-

cal processes in mammals, amongst which are vasodilation,72 inhibition of platelet

aggregation,72 inhibition of smooth muscle proliferation,72 anti-apoptotic73 and anti-

inflammatory effects.73

NO is generated by the conversion of L-Arginine to L-Citrulline by various nitric

oxide synthases (NOS).74 In the vascular system, NO is produced by endothelial

nitric oxide synthase (eNOS) in endothelial cells, after which it diffuses across cell

membranes into target cells, acting as a paracrine and autocrine signaling molecule.74

NO activates sGC, increasing its activity ∼200- to 400-fold, resulting in the accumu-

lation of cyclic guanosine monophosphate (cGMP).75,76 Apart from activating sGC,

NO is able to exert effects independently of cGMP production, e.g. modification of

intracellular proteins by S-nitrosylation of cysteine residues.77

Reduced levels of, or responsiveness to, NO is implied in diseases of the cardio-

vascular, pulmonary, endothelial, renal and hepatic system, as well as in erectile

dysfunction. Decreased levels of NO, either owing to impaired production, excessive

degradation, or chemical interaction with oxidants like superoxide, leads to disrupted

sGC-cGMP-signaling, which has been implicated in heart failure.73,76 Traditionally,

organic nitrates, like glycerol trinitrate, or NO-donors like molsidomine, have been

used to treat diseases with impaired NO-signaling. Glycerol trinitrate and other

organic nitrates have been successfully used for treating coronary artery disease for

more than 100 years. Nonetheless, several problems are inherent in using these drugs:

their effects are of short duration,76 a lack of response can occur,76 development of

tolerance following prolonged administration can arise,78 and NO and its metabo-

lites can have non-specific interactions with several biological molecules.79 This is by

way of NO showing reactivity with iron-containing catalytic sites, thereby affecting

the functioning of various enzymes, which can lead to potentially negative conse-

quences.79 Tolerance can occur, as sGC desensitizes after chronic exposure to NO,

without any changes in sGC expression levels.80 Indeed, it was shown that eNOS-
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/- mice, which have decreased endogenous NO production, have a more sensitive

sGC towards exogenously applied NO, and pharmacological inhibition of NO pro-

duction has been shown to restore sGC sensitivity in formerly desensitized sGC.80

Furthermore, even though symptomatic improvements can be achieved in patients

with cardiovascular disease, evidence for a decrease in mortality is pending.75

The inference from all of this is, that drugs, which are able to activate sGC

directly, like sGC stimulators, could have the beneficial effects of NO, whilst cir-

cumventing the negative side-effects associated with increased NO levels mentioned

above.

In vitro studies carried out in models of cardiomyocyte81,82 and fibroblast81,83,84

hypertrophy have shown that NO donors, like S-Nitroso-N-acetylpenicillamine (SNAP),

have the potential to reduce cell growth. Additionally, in in vivo models of right

ventricular hypertrophy, NO inhalation,85 i.p. application of L-Arginine86,87 , and

Molsidomine delivered in drinking-water88 during chronic hypoxia exposure, were

shown to reduce right ventricular hypertrophy. In contrast, continuous NO inhala-

tion following hypoxia exposure,89 and L-Arginine delivered in drinking water,90 did

not have any effects on right ventricular hypertrophy. The limitation of these stud-

ies regarding the effects on right ventricular hypertrophy is that by using chronic

hypoxia or monocrotaline-injection as a model, the effects on the right ventricle

are afterload-dependent; this prevents the inference of a direct effect on the right

ventricle. A study carried out in spontaneously hypertensive rats treated with L-

Arginine p.o.91 showed a reduction in hypertrophy, and this time independent of the

effects on blood pressure. However, the model used was a model of left ventricular

hypertrophy, and not of right.

In conclusion it can be said that there is good in vitro evidence that NO ap-

plication has the potential to reduce cardiac hypertrophy. The in vivo evidence

is less clear: whether the effects on the right ventricle are a direct one cannot be

judged from the above-mentioned studies, because of the afterload-dependence of

these models. The effects observed in the left ventricle cannot be outrightly trans-

lated to the right ventricle, owing to the inherent differences between the left and

the right ventricle.
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Table 1.1 – In vitro and in vivo studies of NO donors in experimental models of cardiac hypertrophy

Reference Experimental model Intervention Effect on hypertrophy Afterload-

dependency

In vitro studies

Cao & Gardner,831995 Cultured rat cardiac fi-

broblasts, agonist and

stretch-stimulated

Application of nitroprusside ↓ growth

Fujisaki et al.,841995 Cultured rat neonatal fi-

broblasts, agonist stimu-

lated

Application of nitroprusside, ↓ growth

Calderone et al.,811998 Cultured rat ventricu-

lar myocytes and fibrob-

lasts, agonist stimulated

Application of SNAP ↓ growth

Wollert et al.,82 2002 Neonatal rat cardiomy-

ocytes stimulated with

PE

Application of SNAP ↓ hypertrophy

In vivo studies

Roberts et al.,85 1995 Rat hypoxia Continuous inhalation of NO

during exposure

↓ RV hypertrophy dependent

Matsuoka et al.,91 1996 Spontaneously hyper-

tensive rats

L-Arginine p.o. in drinking

water

↓ Heart/BW independent

Mitani et al.,87 1997 Rat hypoxia, rat MCT L-Arginine i.p. during expo-

sure

↓ RV hypertrophy dependent

Fagan et al.,86 1999 Rat hypoxia L-Arginine i.p. during expo-

sure

↓ RV hypertrophy dependent

Jiang et al.,89 2004 Rat hypoxia Continuous NO inhalation

following exposure

No effect dependent

Elmedal et al.,88 2004 Rat hypoxia Molsidomine delivered in

drinking water during expo-

sure

↓ RV hypertrophy dependent

Laursen et al.,90 2008 Rat hypoxia L-Arginine delivered in drink-

ing water during exposure

No effect dependent

SNAP indicates S-Nitroso-N-acetylpenicillamine; PE, phenylephrine; NO, nitric oxide; RV, right ventricular; p.o., per os; BW, body

weight; MCT, monocrotaline; i.p., intraperitoneal

1.2.2 Soluble Guanylyl Cyclase

Soluble guanylyl cyclases (sGCs) are intracellular receptors which convert guanosine

triphosphate (GTP) to cGMP upon binding of NO or carbon monoxide (CO).75 Two

subunits can be found in humans, which both can exist in two different isoforms:

α1 and α2 (molecular weight (MW) 73 kDa), and β1 and β2 (MW 70 kDa).92 α-

subunits cannot form dimers by themselves and are dependent on the presence of a

β-subunit to form a functional enzyme.93 Even though β-homodimers are possible,

sGCs are usually found as heterodimers.94 The best characterized sGC isoforms are

the α2β1 isoform, and the α1β1 isoform; the α1β1 isoform is also the most abundant

one.92 To form an active catalytic centre, the catalytic domains of both subunits
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are needed.95

sGC subunits are made up of three functional domains: an N-terminal, a cen-

tral domain, and a C-terminal domain. The β-subunit contains the evolutionary

conserved N-terminal heme-binding domain, which is ligated to the prosthetic heme

moiety via His105, which in turn binds gaseous ligands.96,97 Important for activation

of sGC is the redox-state of the heme moiety: in its native, i.e. reduced, state, Fe2+

binds NO, forming an Fe2+-nitrosyl-heme complex, activating sGC. If the prosthetic

heme group gets oxidized to Fe3+, NO is unable to activate sGC any longer.76 This

has implications under conditions of increased oxidative stress, as reactive oxygen

and nitrogen species can render sGC insensitive to NO.98

A plethora of studies employing sGC stimulators and activators in in vivo models

of pulmonary hypertension and right ventricular hypertrophy have been carried out

(Table 1.2). Basically all of these studies show that treatment with these drugs

leads to a decrease in pulmonary hypertension, as well as a concomitant reduction

in right ventricular hypertrophy; independent of whether treatment takes place dur-

ing65,66,99,100 or after hypoxia,65 whether the monocrotaline rat model is used,65,66

or whether an sGC stimulator65,66,99,100 or and sGC activator65 is employed. Addi-

tionally, sGC activators and stimulators were shown to reduce hypertension,101–105

left ventricular hypertrophy,102–105 and reduce left ventricular103–105 and renal fi-

brosis101,104 in models of hypertension and left ventricular hypertrophy, that is in

rats with 5/6 nephrectomy,102 rats with angiotensin II-induced hypertension,103 rats

treated with L-NAME (a NOS inhibitor),105 low- and high-renin rat models of hyper-

tension,104 and Dahl salt-sensitive rats maintained on a high salt diet.101 Moreover,

in rats with suprarenal aortic constriction,106 the sGC stimulator BAY 41-2272 was

shown to reduce left ventricular fibrosis independent of blood pressure.

To sum these studies up, activators and stimulators of sGC successfully decrease

hypertension, concomitant hypertrophy, as well as fibrosis. Whether these effects

can also be shown in isolated right ventricular hypertrophy, independent of changes

in afterload, is one of the questions this dissertation addresses.
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Table 1.2 – In vivo studies of sGC stimulators and activators in experimental models of cardiac hypertrophy

Reference Experimental model Intervention Effect on hypertrophy Afterload-

dependency

Deruelle et al.,992006 Rat hypoxia BAY 41-2272 i.m. during

exposure

↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Dumitrascu et al.,652006 Mouse hypoxia BAY 41-2272, BAY 58-

2667 p.o. following expo-

sure

↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Dumitrascu et al.,652006 Rat MCT BAY 41-2272, BAY 58-

2667 p.o.

↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Kalk et al.,1022006 Rat 5/6 nephrectomy BAY 58-2667 p.o. ↓ hypertension,

↓ LV hypertrophy,

↓ LV CM diameter

dependent

Masuyama et al.,1032006 Rat Ang II induced hy-

pertension

BAY 41-2272 p.o. ↓ Hypertension, ↓ HW, ↓ LV

fibrosis

dependent

Zanfolin et al.,1052006 Rat treated w/ L-NAME

(NOS inhibition)

BAY 41-2272 p.o. during

exposure

↓ Hypertension, ↓ LV hyper-

trophy, ↓ LV fibrosis

dependent

Schermuly et al.,662008 Mouse hypoxia BAY 63-2521 (Riociguat)

during exposure

↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Schermuly et al.,662008 Rat MCT BAY 63-2521 (Riociguat) ↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Masuyama et al.,1062009 Rat suprarenal aortic

constriction

BAY 41-2272 p.o. ↓ LV fibrosis independent

Sharkovska et

al.,1042010

Rat low-renin and high-

renin models of hyper-

tension

BAY 63-2521 (Riociguat) ↓ Hypertension, ↓ LV weight,

↓ LV fibrosis, ↓ renal fibrosis

dependent

Thorsen et al.,1002010 Rat hypoxia BAY 41-2272 p.o. ↓ Pulmonary hypertension,

↓ RV hypertrophy

dependent

Geschka et al.,1012011 Dahl salt-sensitive rats

maintained on a high

salt diet

BAY 63-2521 (Riociguat)

p.o.

↓ Hypertension, ↓ fibrosis dependent

i.m. indicates intramuscular; RV, right ventricular; p.o., per os; MCT, monocrotaline; LV, left ventricular; CM, cardiomyocyte; Ang II,

angiotensin II; HW, heart weight; L-NAME, Nω-nitro-L-arginine methyl ester; NOS, nitric oxide synthase

1.2.3 Cyclic Guanosine Monophosphate

Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger, which

is formed from GTP in a reaction catalyzed by sGC and particulate guanylyl cyclase

(pGC).76

cGMP can exert its effects via three distinct pathways:75 it can regulate the

activity of the cGMP-dependent protein kinases I and II (cGKI and cGKII); it

can regulate cyclic nucleotide-gated (CNG) cation channels; and it can regulate

the activity of cGMP-regulated PDEs. By interacting with PDEs which breakdown

cAMP (cGMP stimulates PDE2 and inhibits PDE3), cGMP can effectively establish

crosstalk to the cyclic adenosine monophosphate (cAMP) signaling cascade.75,107

cGMP could also directly activate protein kinase A (PKA), a cAMP-dependent
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enzyme; but whilst for the inhibition of PDE3 a concentration similar to that needed

for the activation of cGK is required, the concentration required for the activation

of PKA might exceed physiological levels.108

The effects of cGMP can be terminated in two ways: either by cGMP becom-

ing degraded by PDEs, or through being transported out of the cell by multidrug

resistance-associated protein 5.75

Studies in agonist-stimulated cultured cardiomyocytes and fibroblasts have shown

that application of 8-bromo-cGMP, a permeable cGMP-analogue that directly ac-

tivates cGK, reduces growth, hypertrophy, and de novo collagen synthesis (Table

1.3). These results lend support to the hypothesis, that activation of the NO-sGC-

pathway could directly affect right ventricular hypertrophy.

Table 1.3 – In vitro studies of cGMP analogues in experimental models of cardiac and fibroblastic hypertrophy

Reference Experimental model Intervention Effect on hypertrophy

Cardiomyocytes

Calderone et al.,811998 Cultured neonatal rat ventricular my-

ocytes, agonist-stimulated

Application of 8-bromo-

cGMP

↓ growth

Horio et al.,1092000 Cultured neonatal rat ventricular my-

ocytes, agonist-stimulated

Application of 8-bromo-

cGMP

↓ growth in basal and

agonist-stimulated con-

dition

Wollert et al.,822002 Cultured neonatal rat cardiomyocytes,

agonist stimulated

Application of 8-bromo-

cGMP

↓ hypertrophy

Tokudome1102004 Cultured neonatal rat ventricular my-

ocytes, agonist-stimulated

Application of 8-bromo

cGMP

↓ growth

Fibroblasts

Cao & Gardner,831995 Cultured neonatal rat cardiac fibrob-

lasts, agonist- and stretch-stimulated

Application of 8-bromo-

cGMP

↓ growth

Fujisaki et al.,841995 Cultured neonatal rat fibroblasts,

agonist-stimulated

Application of 8-bromo-

cGMP

↓ growth

Calderone et al.,811998 Cultured neonatal rat ventricular fi-

broblasts, agonist-stimulated

Application of 8-bromo-

cGMP

↓ growth

Tsuruda et al.,1112002 Cultured adult canine cardiac fibrob-

lasts

Application of 8-bromo-

cGMP

↓ de novo collagen syn-

thesis

8-bromo-cGMP indicates 8-bromo-cyclic guanosine monophosphate

1.2.4 cGMP-dependent Protein Kinase

cGMP-dependent protein kiases (cGKs), also called PKGs (from protein kinase G),

are the principal intracellular mediators of cGMP signals. They are serine/threonine

kinases, which, upon binding of cGMP to the regulatory domain, release their cat-
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alytic core from the inhibition by the N-terminus, leading to their activation and

allowing the phosphorylation of target proteins.76 cGKs are homodimers of two

identical subunits, and two different genes code for them in mammals.112

cGK-I is located in the cytosol, widely expressed in mammalian tissues and acts a

soluble intracellular modulator of Ca2+. The N-terminus of cGKI is encoded by two

alternatively used exons, resulting in two distinct isoforms, cGK-Iα and cGK-Iβ.

The cGK-Iα isoform is found mainly in cardiomyocytes,113 fibroblasts,114 vascular

endothelial cells,115 the lung, cerebellum, kidneys and adrenal glands,116 whilst cGK-

Iβ is only found in the uterus.117

cGK-II is a membrane bound homodimer, which is absent from the cardiovascular

system, but expressed in brain, intestine, lung, kidneys and bone.112 It regulates

fluid homeostasis at the cell membrane.112

cGKs regulate the activity of numerous target proteins via phosphorylation,

e.g. CNG ion channels, which regulate the transmembrane Na+ and Ca2+ con-

ductance, L-type Ca2+ channels, ATP-sensitive potassium channels sarcolemmal

and sarcoplasmic Ca2+-ATPases.76,116 Furthermore, cGKs were also found to phos-

phorylate troponin I and phospholamban, thereby exerting effects on excitation-

contraction coupling, Rho A, IP3 receptor-associated cGMP kinase substrate (IRAG),

which regulates IP3 receptor-dependent Ca2+-signaling, and regulator of G-protein

signaling 2 (RGS2).76,118

Overexpression of cGK-Iβ augmented the antihypertrophic effects of SNAP and

8-bromo-cGMP in agonist-induced hypertrophy in cultured cardiomyocytes.82 This

lends credibility to the hypothesis that one of the main mediators of NO signaling,

cGK, is responsible for the antihypertrophic effects seen in stimulation of the NO

pathway. Also, application of a cGK antagonist prevented the antihypertrophic

effects of increased cGMP signaling caused by knockdown of PDE5, emphasizing

the crucial role cGK is playing in that mechanism.119

Table 1.4 – In vitro studies of stimulated/inhibited cGK in experimental models of cardiac hypertrophy

Reference Experimental model Intervention Effect on hypertrophy

In vitro studies

Continued on next page
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Table 1.4 – continued from previous page

Reference Experimental model Intervention Effect on hypertrophy

Wollert et al.,82 2002 Neonatal rat cardiomyocytes

stimulated with PE

Application of SNAP or 8-bromo-

cGMP during overexpression of cGK-Iβ

Overexpression of cGK-Iβ enhances an-

tihypertrophic effects of SNAP and 8-

bromo-cGMP

Zhang et al.,1192008 Neonatal and adult rat

cardiomyocytes, agonist-

stimulated + PDE5 knock-

down with shRNA

Application of cGK antagonist Antihypertrophic effects of PDE5

knockdown blocked by cGK antagonist

PE indicates phenylephrine; SNAP, S-Nitroso-N-acetylpenicillamine; 8-bromo-cGMP, 8-bromo-cyclic guanosine monophosphate; cGK,

cyclic guanosine kinase; PDE, phosphodiesterase

1.2.5 Phosphodiesterases

Phosphodiesterases (PDEs) hydrolyze cAMP and cGMP to AMP and GMP to ter-

minate their action. PDEs are organized into 11 families, which are encoded by

20 genes, yielding more than 50 different PDE isoforms.120 PDEs 5, 6 and 9 are

specific for cGMP, PDEs 1, 2, 3, 10 and 11 can break down both cAMP and cGMP,

and PDEs 4, 7 and 8 are cAMP-specific.120 PDEs 1, 2, 3, 5 and 9 have been found

to be expressed in the heart.120 As mentioned above, cGMP-signaling can initiate

crosstalk to the cAMP-signaling cascade by regulating the activities of PDEs 2 and

3.75,107

PDE5 is widely distributed throughout the body, and three PDE5 isoforms do

exist.76 PDE5 contains a phosphorylation site and two allosteric cGMP-binding

sites, as well as a portion of the dimerization domain.121 The carboxy-terminal part

of the enzyme locates the catalytic domain which contains two Zn2+-binding motifs,

and a cGMP substrate binding site.121 PDE5 is specifically localized at the Z-bands

of cardiomyocytes, underscoring the role it might play in myocardial contraction.76

PDE5 has been implicated in right ventricular hypertrophy, as it is upregulated

in the right ventricle from patients with pulmonary hypertension, as well as in a rat

model of right ventricular hypertrophy.122 Furthermore, it is also implicated in left

ventricular failure, being upregulated in this condition;36 this is in contrast to its low

expression levels in resting cardiomyocytes of either the left or the right ventricle.119

This has made PDE5 an interesting target for pharmacological manipulation to

probe into its role in right ventricular hypertrophy.
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Studies carried out in cultured cardiomyocytes employing pharmacological inhi-

bition83,109 or genetic knockdown of PDE5,119 demonstrate that decreasing PDE5

activity, and thereby increasing cGMP-signaling, reduces basal and agonist-induced

hypertrophy. Vice versa overexpression of PDE5 augments agonist-induced hyper-

trophy.119

Studies carried out in the left ventricle came to the unambiguous result that

increasing cGMP-signaling by inhibiting PDE5 activity reduces left ventricular hy-

pertrophy and increases left ventricular function,25,123 whilst a reduction in cGMP-

signaling by a cardiomyocyte-specific overexpression of PDE5 increases left ventric-

ular hypertrophy and reduces its function.124,125 The antihypertrophic effects of

sildenafil can be assumed to directly affect the left ventricle, as the transverse aor-

tic constriction (TAC) model was employed, which exposes the left ventricle to a

constantly increased afterload, making the model afterload-independent.

Studies performed in the right heart are rather ambiguous. Two studies, which

where afterload-dependent (rat monocrotaline and rat hypoxia model) show a re-

duction in right ventricular hypertrophy and an increased right ventricular systolic

function,26,100 whilst two studies which employed the PAB model showed an in-

crease in right ventricular hypertrophy, accompanied either by an improvement in

right ventricular function,126 or no change in function.26 Apparently the decrease in

afterload led to a decrease in right ventricular hypertrophy by sildenafil treatment,

but sildenafil appears not to be antihypertrophic in the right ventricle per se. This is

in stark contrast to the left ventricle, where sildenafil treatment has repeatedly been

shown to exert antihypertrophic effects. Whether these differences are a result of in-

herent differences between the left and the right ventricle, due to species differences,

differences in banding strength or something else, still needs to be determined.

To determine whether the differences seen between the left and right ventricle

might be species-dependent, I will assess the effects of sildenafil treatment in pul-

monary artery banded mice in this dissertation.
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Table 1.5 – In vitro and in vivo studies of stimulating/inhibiting PDE in experimental models of cardiac hypertrophy

Reference Experimental model Intervention Effect on hypertrophy Afterload-

dependency

In vitro studies

Cao & Gardner,831995 Cultured neonatal rat

cardiac fibroblasts,

agonist-stimulated

ANP (+/- non-selective

and PDE5-selective PDE

inhibitor)

PDE inhibitors aug-

ment ANP effects

Horio et al.,1092000 Cultured neonatal rat

ventricular myocytes,

agonist-stimulated

Application of cGMP-specific

PDE inhibitor

↓ growth in basal and

agonist-stimulated con-

dition

Zhang et al.,1192008 Neonatal and adult

rat cardiomyocytes,

agonist-stimulated

PDE5 knockdown with

shRNA

↓ agonist-induced hy-

pertrophy

Zhang et al.,1192008 Neonatal and adult

rat cardiomyocytes,

agonist-stimulated

Overexpression of PDE5 ↑ agonist-induced hy-

pertrophy

Miller et al.,1272009 Neonatal and adult

rat cardiomyocytes,

agonist-stimulated

Pharmacological inhibition of

PDE1

↓ agonist-induced hy-

pertrophy

In situ studies

Nagendran et

al.,1222007

Isolated hypertrophied

hearts in Langendorff

preparation and isolated

cardiomyocytes from

MCT rats

Application of sildenafil Acutely ↑ contractility

in RV and isolated car-

diomyocytes

In vivo studies

Left heart

Takimoto et al.,252005 Mouse TAC (moderate) Sildenafil p.o. Prevention + reversal

of LV hypertrophy, ↑ LV

function

independent

Nagayama et

al.,1232009

Mouse TAC (severe) Sildenafil p.o. Stop LV hypertrophy, ↑

LV function

independent

Pokreisz et al.,1242009 Mouse myocardial in-

farction

PDE5 CM-specific overex-

pression

↑ LV hypertrophy, ↑ LV

function

independent

Adamo et al.,1282010 Mdx mouse model of

Duchenne muscular dys-

trophy

Sildenafil p.o. Reversal of age associ-

ated cardiomyopathy

Zhang et al.,1252010 Mouse TAC PDE5 overexpression CM-

specific (Medium and high

overexpression)

Dose-dependently ↑ LV

hypertrophy, ↓ LV func-

tion

independent

Right heart

Andersen et al.,1262008 Rat PAB Sildenafil p.o. ↑ RV hypertrophy, but

↑ RV function

independent

Miller et al.,1272009 Rat, chronic

isoproterenol-induced

hypertrophy

siRNA downregulation of

PDE1

↓ RV hypertrophy

Schäfer et al.,262009 Rat MCT Sildenafil p.o. ↓ RV hypertrophy, ↑

function

dependent

Schäfer et al.,262009 Rat PAB Sildenafil p.o. ↑ RV hypertrophy, ↔

RV function

independent

Thorsen et al.,1002010 Rat Hypoxia Sildenafil p.o. ↓ Pulmonary hyperten-

sion, ↓ RV hypertrophy

dependent

ANP indicates atrial natriuretic peptide; PDE, phosphodiesterase; cGMP, cyclic guanosine monophosphate; shRNA, short hairpin RNA;

MCT, monocrotaline; RV, right ventricular; TAC, transverse aortic constriction; LV, left ventricular; PAB, pulmonary artery banding;

CM, cardiomyocyte; siRNA, short interfering RNA
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1.2.6 Riociguat

1.2.6.1 Discovery

The first sGC stimulator which was discovered was the indazole derivative YC-

1.129,130 YC-1 is able to activate sGC in a NO-independent, but heme-dependent

manner. It moderately (∼10-fold) increases sGCs activity, with an increase in po-

tency from 0.5µM to 60µM; YC-1 increases sGCs maximum reaction rate (Vmax)

by ∼40%, and reduces its affinity for GTP (Km) 3- to 5-fold.131,132 The advantages

of YC-1 were its potent anti-aggregatory activity, owing to its inhibiting effects on

PDE, in addition to its stimulatory effects on sGC, resulting in both anti-thrombotic

as well as vasodilatory effects.133

The desire for increased specificity and potency towards sGC led to the develop-

ment of the two compounds BAY 41-2272 and BAY 41-8543, which both contain

a pyrazolopyridinyl pyrimide core, with YC-1 acting as a lead structure.134 The

two compounds have an around 100-fold increased specificity and potency towards

sGC compared to YC-1, but were both not further developed, as BAY 41-2272 al-

ters the activity of cytochrome P450 isoenzymes, and BAY 41-8543 had unfavorable

pharmacokinetics.135

Riociguat (BAY 63-2521) was developed based on BAY 41-2272 and BAY 41-8543,

lacking their adverse drug metabolism and pharmacokinetic profile. It increases the

activity of sGC in vitro by up to 73-fold, and up to 122-fold in the presence of NO.134

Moreover, riociguat is currently employed in two Phase 3 clinical trials investigating

its vasodilatory effects in PAH and CTEPH.135

1.2.6.2 Mechanism of Action

Riociguat belongs to the class of sGC stimulators, this implies that it depends on

the reduced heme-group of sGC, and looses its activity upon oxidation of the heme

group.135 This is in contrast to sGC activators, which are able to activate sGC

independently of the redox-state of the heme moiety.136 Riociguat stimulates the

native sGC directly and increases its sensitivity to low levels of NO.135

The molecular mechanisms of sGC stimulation by riociguat are still unknown,
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but studies suggest that sGC stimulators might act by binding to the allosteric

nucleotide-binding site in the catalytic domain of sGC.135

1.2.7 Sildenafil

1.2.7.1 Discovery

Sildenafil, a pyrazolopyrimidine, was discovered by Pfizer in an effort to find a

selective inhibitor for PDE5.137 It was shown to have a very good potency (IC50

of 3.5 nM against human platelet-derived PDE5), as well as a high selectivity over

PDEs 1-4 and 7-11.137 The selectivity over PDE6 is only about 10-fold,137 and visual

disturbances can occur at very high doses of sildenafil, owing to the presence of PDE6

in the eye. In 1989, sildenafil (then UK-92,480) was selected as a candidate drug to

enter clinical development for cardiovascular indications, and entered clinical trials

in 1991.138 In 1993 further development for cardiovascular indications was halted,137

due to the drugs short half-life (∼4 hours)139 and its demonstrated interaction with

nitrates. Notably, a common side-effect reported in clinical trials was that of penile

erections.140 In 1993 the first clinical proof-of-concept study was carried out with

sildenafil in erectile dysfunction, which proved to be a success,140 and sildenafil was

approved by the Federal Drug Administration (FDA) and the European Medicine

Evaluation Agency (EMEA) as Viagra R© as the first oral treatment for erectile

dysfunction in 1998 .

Recently (2005), sildenafil has been also approved for the treatment of pulmonary

arterial hypertension.137 PDE5 is upregulated in the lungs of patients with pul-

monary hypertension, and preclinical and clinical studies have shown its effectiveness

in reducing pulmonary vascular resistance.137

1.2.7.2 Mechanism of Action

Sildenafil has a similar structure as cGMP and acts as a competitive inhibitor of

PDE5, effectively increasing the levels of cGMP. The increased levels of cGMP in the

corpus cavernosum in the penis lead to smooth muscle relaxation and vasodilation,

increasing the inflow of blood into the penis, resulting in penile erection.140 Likewise,
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sildenafil reduces pulmonary vascular resistance by causing smooth muscle relaxation

and vasodilation.

1.3 Rationale

Right heart failure is distinctly different from left heart failure and is a prevalent

mechanism of cardiovascular collapse.2 A new treatment strategy is to directly target

the right heart and its pathological remodeling process.36 As the disruption of the

NO-sGC-cGMP pathway has been implicated in the pathogenesis of cardiovascular

diseases,75 this work investigated the effects of pharmacological stimulation of this

pathway on right ventricular hypertrophy and function in the murine PAB model.

The two drugs sildenafil and riociguat were employed. Prior to the treatment study,

a staging study was carried out to assess the time-course of effects taking place in the

right ventricle after banding, so as to determine the most efficient time-points for the

commencement and termination of treatment. Magnetic resonance imaging (MRI)

was employed as the primary means to assess the functional consequences of the

banding procedure and of drug treatment, as it forms the gold standard of cardiac

functional assessment.36 Additionally, histological analysis of the right ventricle was

performed to evaluate the effects of banding and of treatment on right ventricular

fibrosis and cardiomyocyte size.



Chapter 2

Materials and methods

2.1 Materials

2.1.1 Instruments

Table 2.1 – Instruments

Device Product name Manufacturer

Cannula Sterican R© 26G Braun

Clip applier Hemoclip R© Weck

Clippers Contura Wella

Cold plate Leica EG1150 C Leica Microsystems

Data aquisition system Powerlab 8/30 ADInstruments

Flattening table Leica HI1220 Leica Microsystems

Hotplate Thermoplate S Desaga

Image analysis software Leica QWin V3 Leica Microsystems

Ligating Clips Hemoclip R© Weck

Magnetic hotplate stirrer VMS-C7 VWR International GmbH

Micro scales Atilon Acculab

Microscope Leica DM6000 B Leica Microsystems

MRI analysis software MASS R© 4Mice Medis

Object slides Super Frost Ultra Plus R© Thermo Scientific

Continued on next page
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Table 2.1 – continued from previous page

Device Product name Manufacturer

pH meter Lab 850 SCHOTT R© Instruments

Rodent ventilator SAR-830/P Ventilator CWE Inc.

Rodent ventilator MiniVent Type 845 Hugo Sachs Elektronik

Rotary microtome Leica RM2255 Leica Microsystems

Scales EMB 1200-1 Kern

Small animal MRI PharmaScan Bruker BioSpin

Stereoscopic microscope Leica M50 Leica Microsystems

Surgical instruments Fine Science Tools GmbH

Suture Vicryl R© Plus 5-0 Ethicon

Syringe Omnifix R© -F Braun

Tissue embedding station Leica EG1160 Leica Microsystems

Tissue processor Leica ASP200 S Leica Microsystems

Vaporizer Vapor R© 2000 Dräger

Water bath Leica HI1210 Leica Microsystems

2.1.2 Chemicals and reagents

Table 2.2 – Chemicals and reagents

Name Manufacturer

Bepanthen Augen- und Nasensalbe Bayer AG

BSA Carl Roth GmbH + Co. KG

Citric Acid Sigma-Aldrich Chemie GmbH

Cutasept R© F Bode Chemie Hamburg

Dako Fluorescent Mounting Medium Dako

DAPI Invitrogen/Life Technologies

Disodium phosphate (Na2HPO4 · 2 H2O) Carl Roth GmbH + Co. KG

Entellan R© Merck KgA

Continued on next page
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Table 2.2 – continued from previous page

Name Manufacturer

Ethanol Carl Roth GmbH + Co. KG

Glucosteril 5% Fresenius Kabi

Isoflurane Baxter Deutschland GmbH

Saline Fresenius Kabi

Lectin FITC Sigma-Aldrich Chemie GmbH

Monopotassium phosphate (KH2PO4) Carl Roth GmbH + Co. KG

Rimadyl (Carprofen) Pfizer

Riociguat Bayer AG

Roti-Histol Roth

Sildenafil Pfizer Deutschland GmbH

Sodium chloride (NaCl) Carl Roth GmbH + Co. KG

Trition X 100 Carl Roth GmbH + Co. KG

Vetergesic (Buprenorphine hydrochlorid) Braun

Xylol Carl Roth GmbH + Co. KG

2.1.3 Mice

Adult male C57Bl/6J mice (21–24 g body weight) were obtained from Harlan Lab-

oratories, Inc., Netherlands. The mice were housed under controlled temperature

(21–23 ◦C), humidity (70%) and lighting (7AM-7PM light, 7PM-7AM dark) condi-

tions. Free access to food and water was provided. The experiments were approved

by the Regierungspräsidium Darmstadt (B2/219, B2/244).

2.2 Methods

2.2.1 Study plans

In both studies employing MRI, the PAB operation was performed after, and on the

same day as the first MRI scan, which served to record the baseline characteristics
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of the mice prior to operation.

2.2.1.1 Staging study - MRI
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Figure 2.1 – Staging study - Study plan MRI

2.2.1.2 Staging study - Histology & Catheterization
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Figure 2.2 – Staging study - Study plan histology & catheterization; Cat. indicates catheterization; Histo., histology

2.2.1.3 Treatment study

Figure 2.3 – Treatment study - Study plan
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(a) Size comparison (b) Applied clip

Figure 2.4 – The titanium hemoclip used for banding of the pulmonary artery. a) Size comparison to a 1 cent coin.

b) The hemoclip applied to a mouse pulmonary artery.

2.2.2 Pulmonary artery banding

Chronic pressure overload was induced by surgical banding of the main pulmonary

artery. Mice were anesthetised using isoflurane (1.5–2.5% v/v). Buprenorphine hy-

drochlorid (0.05mg/kg bw, Vetergesic, Braun) was administered s.c. as an analgesic

prior to operation. The animals were placed on a heating pad to maintain body tem-

perature and were artifically ventilated with a rodent ventilator (MiniVent Type 845,

Hugo Sachs Elektronik KG, March, Germany) using a mixture of 0.5L/min oxygen

and 1.0L/min medical air. The rodent ventilator was set to a stroke volume of

250µL and 200 strokes/min. A lateral thoracotomy was performed to gain access to

the pulmonary artery. The skin was shaved, and an incision made half-way between

the sternum and the axilla. The pectoralis major and pectoralis minor muscles were

bluntly dissected and moved to the sides to gain access to the third intercostal space,

which was opened. The pericard was opened and the pulmonary artery bluntly dis-

sected from the ascending aorta. The pulmonary artery was constricted to 350µm

using titanium clips (Hemoclip R©, Weck, Germany) and a modified, adjustable clip

applier (Hemoclip R©, Weck, Germany). After banding, the intercostal space was

closed by attaching the ribs using a vicryl suture (Vicryl R© Plus 5-0, Ethicon, Ger-

many). The pectoralis major and pectoralis minor were returned into their original
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Figure 2.5 – Sildenafil - Chemical structure

position and the skin was sewn with a vicryl suture (Vicryl R© Plus 5-0, Ethicon,

Germany). 0.5mL Glucosteril 5% (Fresenius Kabi, Germany) was injected s.c. to

compensate for potential fluid loss. Isoflurane administration was terminated and

the animals were extubated once they started regaining consciousness. The whole

operation lasted for approximately 20 minutes. Carprofen (8mg/kg/d, Rimadyl R©,

Pfizer) was administered via drinking water for 3 days post-operation. The sham

group underwent the same procedure except that no titanium clip was applied.

2.2.3 Drug treatment

2.2.3.1 Sildenafil

Sildenafil was prepared by dissolving 0.6 g citric acid and 250mg sildenafil in 300ml

H
2
O, constantly mixing the solution with a magnetic stirrer (VMS-C7, VWR In-

ternational GmbH, Darmstadt, Germany), until the citric acid and sildenafil were

dissolved. The drug was administered via drinking water. With mice expected

to drink 3ml/d, the treatment provided a dosage of 100mg/kg/d. This dose was

shown to yield a mean free plasma concentration of (10.4± 2.3) nM.25 The IC50, the

amount of drug which inhibits 50% of PDE5A activity in the presence of substrate,

of sildenafil is 5 to 10 nM. This is comparable to levels obtained in humans at doses

of 1mg/kg/d and reflects the nearly 100-fold higher rate of metabolism of sildenafil

in mice.139
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Figure 2.6 – Riociguat - Chemical structure

2.2.3.2 Riociguat

Riociguat was prepared by dissolving 0.75mg riociguat in 0.25ml 1% methylcellu-

lose. 1% methylcellulose was prepared by dissolving 1 g methylcellulose in 100ml

H
2
O. 0.25ml of the riociguat/methylcellulose solution was given to mice via oral

gavage daily to provide a dose of 30mg/kg/d.

2.2.4 Magnetic Resonance Imaging

Depending on the type of study, cardiac MRI was either performed on days 0 (pre-

OP), 1, 3, 7, 14, 21, 35, 56 and 105 post-OP (staging study), or on days 0 (pre-OP),

7 (start of treatment) and day 21. Cardiac MRI measurements were performed on

a 7.0T Bruker PharmaScan, equipped with a 300mT/m gradient system, using a

custom-built circularly polarized birdcage resonator and the IntraGateTM self-gating

tool (Bruker, Ettlingen, Germany). Mice were measured under volatile isoflurane

(2.0% v/v) anesthesia delivered in an oxygen/medical air (0.5/0.5L/min) mixture.

Body temperature was maintained at 37
◦C throughout the experiment. The mea-

surement is based on the gradient echo method (repetition time = 6.2ms; echo time

= 1.6ms; field of view = 2.20x2.20 cm; slice thickness = 1.0mm; matrix = 128x128;

repetitions = 100; resolution 0.0172 cm/pixel). The imaging plane was localized

using scout images showing the sagittal and coronal view of the heart, followed by
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acquisition in axial view, orthogonally to the septum of both scout scans. Multi-

ple (9–10) contiguous axial slices were acquired for complete coverage of the left

and right ventricle. MRI data was analyzed using MASS R© 4Mice digital imaging

software (Medis, Leiden, Netherlands).

(a) Bruker Pharmascan (b) Scout image in coronal plane

(c) End-systole (d) End-diastole

Figure 2.7 – Bruker Pharmascan (a) and MRI images of a mouse heart before operation (b, c, d). b) Mouse heart

in coronal view with a grid (yellow), depicting the axial sli ces which will be measured. c, d) Example of an axial

slice on the mid-papillary level at end-systole and end-dia stole. RA indicates right atrium; RV, right ventricle; LV,

left ventricle; S, septum; PA, pulmonary artery; Ao, aorta

2.2.5 Analysis of MRI images

To determine the volumes of the ventricles, the MASS R© 4Mice program employs

the Simpson method. Simpson’s rule is based on the summation of partial volumes
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(SN) to determine the total volume (Vt):

Vt = S1 + S2 + S3 + · · ·+ SN−1 + SN (2.1)

This method is considered to be the most accurate, as it does not depend on

making geometrical assumptions.141 It is possible to employ the Simpson method

as the whole heart is imaged, without any interslice gaps, and by using a small

slice thickness. The small slice thickness, along with the omission of interslice gaps

has the further benefit of the reduction of partial volume effects. To calculate the

volume, for every slice the end-systolic and end-diastolic frames had to be deter-

mined first. The slice with the largest ventricular volume was determined to be the

end-diastolic frame, whilst the slice with the smallest volume was determined to

be the end-systolic frame. The boundaries of the diastolic and systolic endo- and

epicardial borders were then manually outlined (Fig. 2.7, p. 36). This allowed the

software to calculate the end-diastolic (EDV) and end-systolic volumes (ESV) for

each slice, as it was known that the slice thickness was 1mm. The area inside the

endocardial borders determined the ventricular volume, whilst the area inside the

epicardial border minus the endocardial area determined the myocardial volume.

To calculate the total diastolic and systolic ventricular volume, the software then

summed up the calculated single slice volumes. To calculate the myocardial mass,

the myocardial volume was multiplied by the specific density of myocardial tissue,

which is 1.05 g/ml.

2.2.5.1 Calculation of derived parameters

From knowing the EDV, ESV and heart rate (HR), it is possible to derive the

following standard clinical parameters:

Stroke volume The stroke volume (SV) is calculated by subtracting the ESV

from the EDV. It is the amount of blood which is pumped out from the heart with

every heartbeat, and is a parameter for the contractility and performance of the
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heart.

SV = EDV − ESV (2.2)

Ejection fraction The ejection fraction (EF) is calculated by dividing the SV by

the EDV. The value reflects the relative amount of blood which is pumped out of the

heart with every heartbeat. The EF, like the SV is a parameter for the contractility

and performance of the heart. Right ventricular EF is the most widely accepted

and used measure of right ventricular function.17 Healthy patients have an EF of

60–75%, whilst an EF of 40-60% is defined as a mild contractile dysfunction, 30-40%

as a modest dysfunction, and ≤ 30% as severe.

EF =
SV

EDV
(2.3)

Cardiac output The cardiac output (CO) is the volume of blood being pumped

by the heart in the time interval of one minute. It is calculated by multiplying SV

with HR.

CO = SV ×HR (2.4)

Left ventricular eccentricity index The left ventricular eccentricity index (LVEI)

reflects the degree of septal flattening, which results in an abnormal LV shape. The

value is calculated for both end-diastole and end-systole, in the axial plane on the

mid-papillary level. It is calculated as the ratio of the length of the major axis of

the LV (L1), which runs parallel to the septum, to the length of the minor axis of

the LV (L2), which runs perpendicular to the septum (Fig. 2.8, p. 39). In healthy

human hearts this value should approximate 1.0.

LV EI =
L1

L2

(2.5)
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Figure 2.8 – Measuring the length of the axes (L1, L2) for calculating the left ventricular eccentricity index

2.2.6 In vivo hemodynamics

21 days after PAB, mice were anesthetized using isoflurane (1.5% v/v) and placed

on a heating pad throughout the measurement to maintain physiological body tem-

perature. Heart rate and systemic blood pressure were measured by catheterizing

the carotid artery. The right jugular vein was used for catheterization of the right

ventricle to measure right ventricular pressure. Hemodynamic measurements were

performed using a Millar microtip catheter (SPR-671, FMI, Foehr Medial Instru-

ments GmbH, Seeheim/Ober-Beerbach, Germany) and a PowerLab 8/30 System

with the Chart 7.0 Software (ADInstruments GmbH, Spechbach, Germany).

2.2.7 Tissue processing

After pressure measurement the animals were exsanguinated and the heart was

isolated. The right ventricle was dissected from the left ventricle and septum

(LV+S) and weighed to obtain the right ventricle to left ventricle plus septum

ratio (RV/LV+S). For histological analysis, the right ventricle was fixed in 4%



40

paraformaldehyde (PFA).

2.2.8 Histology

The right ventricles were embedded in paraffin blocks and sections of 3µm were cut.

The degree of interstitial fibrosis was assessed by picrosirius red staining. Using

polarized light, at a 40x magnification, the amount of collagen was measured in

20–40 randomly chosen areas uniformly distributed across the histological section.

The observer was blinded to treatment in each animal. The percentage of collagen

was measured as the ratio of the area occupied by collagen to the total area of the

section. For the assessment of cardiomyocyte diameter, transversally cut paraffin

slides were stained with WGA-FITC and DAPI, which were visualized under flu-

orescent light (Leica DM6000 B [Leica Microsystems GmbH, Wetzlar, Germany];

DAPI: Filterblock A, excitation wavelength: 340– 380 nm; WGA FITC: Filterblock

I3, excitation wavelength: 450-490 nm). Per slide, 5–6 randomly chosen fields of

view, uniformly distributed across the histological section, were analyzed. Only car-

diomyocytes which contained a nucleus were measured. The short-axis diameter of

cardiomyocytes was measured.

2.2.8.1 Picrosirius red staining

0.1% picrosirius red was prepared by dissolving 200mg sirius red (Siriusrot F3B, C.I.

35780, Niepötter Labortechnik, Germany) in 200ml saturated picric acid (Picric acid

solution 1.2% BioChemica, Lot: 1O004669, AppliChem GmbH, Germany). The pH

was fixed at 2. 1% glacial acetic acid was prepared by dissolving 10ml of glacial

acetic acid (Essigsäure, Rotipuran R© 100%, p.a., Carl Roth GmbH + Co. KG,

Germany) in dH
2
O. The following protocol was used to stain paraffin sections with

picrosirius red:
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Table 2.3 – Picrosirius red staining protocol

Step Solution/incubation Remarks Time

1 Incubation at 58 ◦C Melting of paraffin 60

2 Xylol Deparaffinization 10

3 Xylol Deparaffinization 10

4 Xylol Deparaffinization 10

5 99.6% Ethanol Rehydration 5

6 99.6% Ethanol Rehydration 5

7 96% Ethanol Rehydration 5

8 70% Ethanol Rehydration 5

9 dH
2
O Washing 3

10 0.1% Picrosirius Red Staining 60

11 1% Glacial acetic acid Washing 0.5

12 1% Glacial acetic acid Washing 0.5

13 1% Glacial acetic acid Washing 0.5

14 dH
2
O Washing 1

15 70% Ethanol Dehydration 5

16 96% Ethanol Dehydration 5

17 99.6% Ethanol Dehydration 5

18 Xylol Clearing 10

19 Xylol Clearing 10

20 Mounting and coverslip

21 Dry at room temperature Overnight

2.2.8.2 WGA-FITC staining

PBS was prepared by dissolving 1 part 10x PBS in 9 parts dH
2
O. 10x PBS was

made up of 1.44 g/l KH
2
PO

4
(MW 136.09), 7.95 g/l Na

2
HPO

4
(MW 141.96) and

90 g/l NaCl (MW 58.44), and fixed to pH 7.4. Blocking solution (3% BSA) was

prepared by dissolving 3 g BSA and 200µl Triton X100 in 100ml 1x PBS. WGA-
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FITC stock solution was prepared by dissolving 0.5mg WGA-FITC (Sigma-Aldrich

Chemie GmbH, Taufkirchen, Germany) in 0.5ml 1x PBS. WGA-FITC working so-

lution (10µg/ml) was prepared by diluting 1 part WGA-FITC stock solution in 99

parts 1x PBS. DAPI stock solution (5mg/ml) was prepared by dissolving 10mg

DAPI dihydrochloride (MW = 350.3) (Invitrogen/Life Technologies GmbH, Lot:

633921, Darmstadt, Germany) in 2ml dH
2
O. DAPI working solution (500 ng/ml

was prepared by diluting one part DAPI stock solution in 9999 parts PBS. The

following protocol was used to stain paraffin sections with WGA-FITC:

Table 2.4 – WGA-FITC staining

Step Solution/incubation Remarks Time

1 Incubation at 58 ◦C Melting of paraffin 60

2 Xylol Deparaffinization 10

3 Xylol Deparaffinization 10

4 Xylol Deparaffinization 10

5 99.6% Ethanol Rehydration 5

6 99.6% Ethanol Rehydration 5

7 96% Ethanol Rehydration 5

8 70% Ethanol Rehydration 5

9 dH
2
O Washing 3

10 PBS Washing 5

11 Blocking solution Blocking 60

12 PBS Washing 5

13 PBS Washing 5

14 PBS Washing 5

15 PBS Washing 5

16 WGA-FITC Staining 60

17 PBS Washing 5

18 PBS Washing 5

19 PBS Washing 5

20 DAPI Staining 10

Continued on next page
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Table 2.4 – continued from previous page

Step Solution/incubation Remarks Time

21 PBS Washing 5

22 PBS Washing 5

23 PBS Washing 5

24 Mounting and coverslip

2.2.9 Statistics

Data were analyzed with GraphPad Prism (version 5.0c, GraphPad Software Inc.).

All values are given as mean ± SEM. Differences between groups were assessed

using one-way ANOVA and repeated measures ANOVA with Bonferroni post-hoc-

test for multiple comparisons. A p value of <0.05 was regarded as significant.

Linear regression was used to calculate missing values in the staging study to allow

for repeated measures ANOVA to be carried out.



Chapter 3

Results

3.1 Staging Study

The purpose of the staging study was to characterize the time course of effects which

banding is having on the murine heart. To achieve this goal, C57Bl/6 mice were

randomly assigned to either sham or banding group. Then an MRI analysis of the

heart was performed as described in the methods section, before surgery. The only

difference in the operation procedure between the two groups was the omission of

the titanium clip in sham mice. MRI analyses were subsequently performed 1, 3, 7,

14, 21, 35, 56 and 105 days after operation.

Furthermore, additional mice were operated to assess the time course of fibrosis

and cardiomyocyte growth, and of right ventricular and systemic arterial pressure.

For this, animals were sacrificed 3, 7, 14, 21, 28 and 35 days after operation.

3.1.1 Time Course of Function and Morphology of the Banded

Heart

PAB led to severe dilatation, hypertrophy, and functional impairment of the right

ventricle. As a result, the left ventricle was compressed to its side and was function-

ally impaired as well due to interventricular interaction, reflected in severely reduced

end-systolic and end-diastolic diameters, and a significantly reduced stroke volume

(example of the effects of 5 weeks of banding shown in fig. 3.1, p. 45, and fig. 3.2,

44
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p. 46). Whilst the right ventricular mass, cardiomyocyte size and fibrosis showed a

progressive increase over the course of the study, the functional effects of banding

could be distinguished into three phases: a rapid, initial functional impairment at

day 1 after operation; a compensatory response between days 1 to 7; and a gradual

decompensation following day 7. Approximately 50 days after operation, animals in

the PAB group started to die, and had a median survival of 124 days. None of the

sham-operated animals died during the study.

End-diastole End-systole

Before PAB After PAB Before PAB After PAB

C
o

ro
n

a
l v

ie
w

A
xi

a
l v

ie
w

Figure 3.1 – MRI images of a mouse heart in coronal and axial view at end-d iastole and end-systole before and 5

weeks after PAB.

3.1.2 Right Ventricular Pressure

After banding of the pulmonary artery, the right ventricular systolic pressure in-

creased significantly over sham-operated animals, eventually plateauing after 21

days (fig. 3.3, p. 47). The first significant difference between the banding and the

sham group was apparent at day 7 (RVPsys: 28.5± 0.9mmHg vs. 46.9± 3.5mmHg

[Sham vs. PAB]; p<0.01). The pressure continues to increase until day 21, where

it reaches a plateau level at about 65mmHg. The right ventricular systolic pressure

of sham-operated animals stays at a physiological level of about 28mmHg through-

out the study, making the difference between the sham and banding group highly
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End-diastole End-systole

Before PAB After PAB Before PAB After PAB

Figure 3.2 – Three-dimensional reconstructions of the mouse heart shown in figure 3.1, before and after banding

of the pulmonary artery at end-diastole and end-systole in d ifferent views. The left ventricular lumen is colored in

red, the right ventricular lumen in yellow, and the left ventricular myocard is depicted as a green grid structure.
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significant (p<0.001).
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Figure 3.3 – Effects of banding on the right ventricular systolic pressure (RVPsys, mmHg); PAB (–), sham

(–); d, day. ***p<0.001, **p<0.01

3.1.3 Right Ventricular Dilatation and Impaired Function

The end-systolic and the end-diastolic ventricular volume was significantly increased

in PAB mice, as compared to sham-operated mice, reflecting right ventricular dilata-

tion and impaired contractile function (fig. 3.4, p. 48). This is reflected in decreased

stroke volume and ejection fraction in PAB animals (fig. 3.5, p. 49). The effects of

banding follow a triphasic response: Both right ventricular end-diastolic and end-

systolic volume initially (1 day after the banding procedure) increase significantly,

i.e. the right ventricle strongly dilates and its contractile capacity is impaired (RV

EDV: 45.6± 1.4µl vs. 63.0± 3.8µl [Sham vs. PAB], p<0.05; RV ESV: 11.9± 0.2µl

vs. 38.4± 5.5µl [Sham vs. PAB]; p<0.001). From days 3 to 7, dilatation as well as

the right ventricular end-systolic volume recede back near sham values (RV EDV:

43.4± 2.6µl vs. 45.6± 4.4µl [Sham vs. PAB], p>0.05; RV ESV: 11.1± 1.5µl vs.

24.3± 4.1µl [Sham vs. PAB]; p>0.05). Following day 7 until the end of the study,

the right ventricle gradually dilates further, albeit the difference to the sham group



48

remains non-significant, and the right ventricular end-systolic volume continues to

increase.

Figure 3.4 – Effects of banding on right ventricular volumes. (a) Right ventricular end-diastolic volume (RV

ED Volume, µl) (b) Right ventricular end-systolic volume (RV ES Volume, µl); PAB (–), sham (–); d, day.

***p<0.001, **p<0.01, *p<0.05

This triphasic response is also expressed in the right ventricular ejection frac-

tion, which is derived from the right ventricular end-diastolic and end-systolic vol-

umes: after an early drop of the ejection fraction at day 1 after operation (RV

EF: 73.8± 0.8µl vs. 40.4± 5.4µl [Sham vs. PAB], p<0.001), the ejection fraction

slightly recovers until day 7 to 14 (RV EF: 74.7± 2.3µl vs. 48.4± 4.2µl at day 7

[Sham vs. PAB], p<0.001), after which it continues to decline. The phasic response

for the right ventricular stroke volume is less apparent: after an initial decline until

day 7, it recovers slightly until days 14 to 21, after which its slope resembles that of

the control group. It is interesting to note, that the right ventricular stroke volume

of the sham-operated animals also declines in the first week following operation,

after which it recovers back to baseline values. Apparently this is an effect caused

by the operation per se.

3.1.4 Right Ventricular Hypertrophy

PAB significantly increased the mass of the right ventricle, whereas there was no

change in sham-operated animals (fig. 3.6, p. 49). Right ventricular weight rose

rapidly after operation, becoming significantly higher three days after operation (RV

Mass / Bodyweight: 2.1± 0.1mg/g vs. 3.0± 0.1mg/g [Sham vs. PAB], p<0.01; RV



49

Figure 3.5 – Effects on banding on right ventricular functional parameters. (a) Right ventricular stroke volume

(RV Stroke Volume, µl) (b) Right ventricular ejection fraction (RV Ejection Fraction, %); PAB (–), sham (–); d,

day. ***p<0.001, **p<0.01, *p<0.05

Mass / LV Mass: 0.6± 0.0mg/mg vs. 0.8± 0.0mg/mg [Sham vs. PAB], p<0.01).

Bodyweight did not significantly differ between both groups (tables A.1 and A.2, pp.

95 and 97). In the course of the study, the right ventricular mass to bodyweight ratio

eventually reached a value of 3.5± 0.3mg/g (p<0.001 vs. Sham) at day 105, and the

right ventricular weight to left ventricular weight ratio increased to 1.1± 0.1mg/g

(p<0.001 vs. Sham).

Figure 3.6 – Effects of banding on right ventricular hypertrophy. (a) Right ventricular mass to bodyweight ratio

(RV Mass / Bodyweight, mg/g), RV mass data derived from MRI measurements (b) as before, but RV mass data

derived from harvest organ weight; PAB (–), sham (–); d, day. ***p<0.001, **p<0.01, *p<0.05

There were no major difference between the left ventricular weight of the PAB

and sham group (fig. 3.8, p. 50). What is apparent though, is the non-significant

decrease of left ventricular weight of the banded animals: A likely explanation for

this is the decreased stroke volume the left ventricle has to deal with: due to the
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Figure 3.7 – Effects of banding on right ventricular hypertrophy. (a) Right ventricular mass to left ventricular

mass ratio (RV/LV Mass, mg/mg), ventricular weight data derived from MRI measurements (b) as before, but

ventricular weight data derived from harvest organ weights; PAB (–), sham (–); d, day. ***p<0.001, **p<0.01,

*p<0.05

decreased need for force production, the left ventricle adapts to the new situation

by a decrease in weight.

Figure 3.8 – Effects of banding on left ventricular mass(a) Left ventricular mass data derived from MRI mea-

surements (LV Mass, mg) (b) as before, but LV mass data derived from harvest organ weights; PAB (–), sham

(–); d, day. ***p<0.001

The harvest data, shown in graph (b) in figures 3.6, 3.8 and 3.7, show the excellent

agreement with the MRI data. The only apparent difference is the over-estimation of

the right ventricular mass by the MRI analysis software, which is about two-fold. As

this is the same for both the banding and the sham group, this does not jeopardize

detecting differences between the groups, as can be seen from the figures.
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3.1.5 Functional Impairment of the Left Ventricle

Due to interventricular interaction, PAB reduced the left-ventricular end-diastolic

and end-systolic volumes, as the left heart was displaced by the dilated and hyper-

trophied right ventricle (fig. 3.9, p. 51). The left ventricular end-diastolic volume

became significantly different from the sham group on day 7 post operation (LV

EDV: 52.1± 2.7µl vs. 33.2± 4.1µl [Sham vs. PAB], p<0.01). Whilst the left ven-

tricular end-diastolic volume of the sham group tended to increase over time, from

55.5± 2.2µl at day 0, to 65.8± 3.8µl at day 105), the left ventricular volume of the

banding group stayed constantly low throughout the study. This is explained by the

slow but steady increase in right ventricular end-diastolic volume and mass (figs.

3.4 and 3.6, pp. 48 and 49), leaving the left ventricle no room to further extend.

Although statistically not significant until day 105 (LV ESV: 25.8± 4.5µl vs.

11.5± 2.1µl [Sham vs. PAB], p<0.05), the left ventricular end-systolic volume of

the PAB group stayed below the sham group throughout the study.

Figure 3.9 – Effects of banding on left ventricular volumes. (a) Left ventricular end-diastolic volume (LV ED

Volume, µl) (b) Left ventricular end-systolic volume (RV ES Volume, µl); PAB (–), sham (–); d, day. ***p<0.001,

**p<0.01, *p<0.05

The impaired ability of the left ventricle to properly dilate and fill resulted in a

reduced left ventricular stroke volume, whilst the left ventricular ejection fraction

basically remained unchanged (fig. 3.10, p. 52). Already one day after surgery, the

left ventricular stroke volume in banded animals fell to a level significantly below

that of the sham group (35.2± 1.2µl vs. 22.6± 2.8µl [Sham vs. PAB], p<0.01)

and, apart from day 7, stayed significantly low until the end of the study. As can be
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seen from figure 3.10 (p. 52), the left ventricular stroke volume of the sham group

tended to increased over time, keeping up with the increase in bodyweight (tables

A.1 and A.2, pp. 95 and 97). As the bodyweight of banded animals continued to

increase as well, a constant stroke volume implies decreased end-organ perfusion.

Figure 3.10 – Effects on banding on left ventricular functional parameters. (a) Left ventricular stroke volume

(LV Stroke Volume, µl) (b) Left ventricular ejection fraction (LV Ejection Fraction, %); PAB (–), sham (–); d,

day. ***p<0.001, **p<0.01, *p<0.05

The growth of the right ventricle leads to a compression of the left ventricle. The

left ventricular eccentricity index (LVEI) is a parameter, which is a direct reflection

of the amount of compression exerted on the left ventricle. In right ventricular pres-

sure and volume overload states it was shown to increase, reflecting an abnormal

bulging of the interventricular septum towards the left ventricle.142 It is calcu-

lated by dividing the length of the left ventricular long axis, which runs parallel

to the septum, by the length of the left ventricular short axis, which runs perpen-

dicular to the long axis. As can be seen in figure 3.11 (p. 53), banding of the

pulmonary artery leads to a rapid increase of the LVEI in systole and diastole one

day after banding (LVEI ED: 1.2± 0.0mm/mm vs. 1.7± 0.1mm/mm [Sham vs.

PAB], p>0.05; LVEI ES: 1.3± 0.0mm/mm vs. 1.7± 0.1mm/mm [Sham vs. PAB],

p>0.05), which continues to increase and becomes statistically significant until day

105 (LVEI ED: 1.2± 0.0mm/mm vs. 2.5± 0.4mm/mm [Sham vs. PAB], p<0.001;

LVEI ES: 1.2± 0.0mm/mm vs. 3.1± 0.4mm/mm [Sham vs. PAB], p<0.001), re-

flecting the continued growth of the right ventricle, and pressure exerted on the left

ventricle.
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Figure 3.11 – Effects of banding on pressure of the right ventricle exerted on the left ventricle. (a) Left

ventricular eccentricity index at end-diastole (LV ED Eccent ricity Index, mm/mm) (b) Left ventricular eccentricity

index at end-systole (LV ES Eccentricity Index, mm/mm); PAB (–), sham (–); d, day. ***p<0.001, **p<0.01,

*p<0.05

3.1.6 Systemic Arterial Pressure

PAB led to a decrease of the systemic arterial pressure (fig. 3.12, p. 54), which is a

reflection of the decreased cardiac output (fig. 3.14, p. 55). This is especially nice

to see on day 7, where the drop in left ventricular cardiac output goes hand in hand

with the drop in systemic arterial pressure.

3.1.7 Heart Rate and Cardiac Output

Even though the heart rate non-significantly increased in banded animals (fig. 3.13,

p. 54), the increase was not sufficient to compensate for the decrease in stroke

volume, as the cardiac output remained decreased in banded animals throughout

the study (fig. 3.14, p. 55). Nonetheless, it decreased the gap between the two

curves, compared to the stroke volume curves.

After an initial drop in left ventricular cardiac output on day one post operation

(LV CO: 17.4± 0.9ml/min vs. 11.3± 1.6ml/min [Sham vs. PAB], p>0.05), the out-

put slightly recovers on days 3 to 7, after which its stays constantly low, become sta-

tistically significant on day 21 (LV CO: 19.0± 1.8ml/min vs. 11.03± 0.14ml/min

[Sham vs. PAB], p<0.05) until the end of the study on day 105 (LV CO: 18.6± 2.1ml/min

vs. 11.1± 1.5ml/min [Sham vs. PAB], p<0.05).

The right ventricular cardiac output follows a similar curve as the left ventricular
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Figure 3.12 – Effects of banding on the systemic arterial pressure (SPsys, mmHg); PAB (–), sham (–); d,

day. *p<0.05
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Figure 3.13 – Effects of banding on the heart rate (beats/minute). PAB (–), sham (–); d, day.
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one. The major difference is, that the distance between the sham and the PAB group

is smaller. This is due to the right ventricular stroke volume being higher, due to

tricuspid regurgitation. In this case, right ventricular cardiac output means the

total volume of blood per minute expelled out of the right ventricle, independent

of whether the blood is going into the forward (to the pulmonary circulation via

the pulmonary artery) or backward (to the right atrium via the tricuspid valve)

direction. Therefore, the left ventricular cardiac output is the true reflection of the

amount of blood the body receives.

Figure 3.14 – Effects of banding on cardiac output. (a) Left ventricular cardiac output (LV Cardiac Out-

put, ml/min) (b) Right ventricular cardiac output (RV Cardiac Output, ml/min); PAB (–), sham (–); d, day.

***p<0.001, **p<0.01, *p<0.05

3.1.8 Survival

Animals in the banded group started dying 5o days after operation, and had a

median survival of 104.5 days, whilst all animals of the sham group survived the

study period (fig. 3.15, p. 56).

3.1.9 Timecourse of Fibrosis in the Banded Heart

Whilst the collagen content of the right ventricles of the sham and PAB groups was

equal 3 days after operation, at seven days there was a non-significant increase in the

PAB group, which became highly significant 14 days after operation (Collagen area:

18.6± 2.1ml/min vs. 11.1± 1.5ml/min [Sham vs. PAB], p<0.05), and continued

to increase until 21 days, when it plateaued (Collagen area: 18.6± 2.1ml/min vs.
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Figure 3.15 – Effects of banding on survival (%). PAB (–), sham (–); d, day.

11.1± 1.5ml/min [Sham vs. PAB], p<0.05) (fig. 3.16, p. 57). The collagen amount

in the right ventricles of sham-operated was not affected by the operating procedure.

Picrosirius red specifically stains collagen red when viewed under a light micro-

scope. When viewed under a microscope with circular polarized light, only collagen

is visible, as it becomes birefringent when it has been stained with picrosirius red.

A comparison of picrosirius red-stained right ventricular slices of sham and PAB

animals as seen under polarized light can be found on page 58 (fig. 3.17). As can be

quickly deduced from the pictures, the sham operation has no effects on right ven-

tricular collagen content, whilst banding of the pulmonary artery leads to a gradual

increase in collagen content.

3.1.10 Timecourse of Cardiomyocyte Size in the Banded Heart

Cardiomyocyte size, measured as the average of the diameter of individual car-

diomyocytes cut transversally, was already increased in banded animals, albeit non-

significantly, on day 3 after operation (CM size: 16.1± 0.3µm vs. 18.3± 0.2µm

[Sham vs. PAB], p>0.05) (fig. 3.18, p. 60). The difference became significant on

day 7 post-op (CM size: 14.8± 0.3µm vs. 18.7± 0.4µm [Sham vs. PAB], p<0.001)
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Figure 3.16 – Effects of banding on the collagen content of the right ventricle (%). PAB (–), sham (–); d,

day. ***p<0.001

and continued to increase until the end of the study.

Histological pictures comparing sham and PAB cardiomyocytes can be found

in figure 3.19 (p. 61). The pictures show transversal slices of right ventricular

cardiomyocytes stained with WGA-FITC (green), which specifically stains the cell

membrane, and DAPI (blue), which stains the nucleus. As can be seen on the

pictures, the individual cardiomyocytes of the banding group are already larger in

diameter on day 3, and continue to grow until the end of the study. Furthermore,

if one looks closely, but especially apparent at 4 weeks in the PAB group, one can

make out streaks of collagen, which also have been stained green.
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Figure 3.17 – Effects of banding on the collagen content of the right ventricle. Sample images showing typical

stainings as they are visualized under polarized light in sp ecimen of sectioned right ventricular hearts of banded and

sham-operated mice. The time-dependent increase of the picrosirius red-stained area in PAB mice can be clearly

seen.
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Figure 3.17 – continued
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Figure 3.18 – Effects of banding on cardiomyocyte size (µm). PAB (–), sham (–); d, day. ***p<0.001,

**p<0.01, *p<0.05

3.2 Riociguat and Sildenafil Study

This interventional study was designed to test and compare the effects of sildenafil,

a PDE5A inhibitor, and riociguat, an sGC stimulator, on right ventricular morphol-

ogy and function in the pulmonary artery banding model. The hypothesis was, that

intervention with these drugs ameliorates pathological right ventricular remodeling

and increases right ventricular function. As could be concluded from the staging

study, a major impairment of right ventricular function occurred right after oper-

ation, which was followed by a brief compensatory response lasting approximately

one week. After day 7, a progressive decompensation of the right ventricle began,

eventually resulting in heart failure. The study plan can be found in the materials

and methods section (fig. 2.3, p. 32). Briefly, mice were operated, left to develop

right ventricular dysfunction for 7 days, after which treatment started for another

14 days. 21 days after operation, mice were finally assessed and sacrificed.
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Figure 3.19 – Effects of banding on the size of right ventricular cardiomyocytes. Sample images showing typical

stainings as they are visualized under fluorescent light in s pecimen of sectioned right ventricular hearts of banded

and sham-operated mice. Cell membranes are stained with WGA-FITC (•), nuclei are stained with DAPI (•).
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Figure 3.19 – continued
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3.2.1 Right Ventricular Pressure

As expected, banding increased the right ventricular systolic pressure by the same

amount in the placebo-, sildenafil- and riociguat-treated group (RVPsys: 25.0± 0.9mmHg

vs. 60.5± 1.9mmHg vs. 59.2± 2.1mmHg vs. 59.9± 4.3mmHg [Sham vs. placebo

vs. sildenafil vs. riociguat], p<0.001 for Sham vs. Placebo). This reflects the relia-

bility of the method to reproducibly constrict the pulmonary artery to a predefined

extent (fig. 3.20, p. 63).

S
ha

m

PA
B
 P

la
ce

bo

PA
B
 S

ild
en

af
il

PA
B
 R

io
ci
gu

at
0

20

40

60

80

***

R
V

P
s
y
s
 [

m
m

H
g

]

Figure 3.20 – Effects of sildenafil and riociguat on right ventricular systolic pressure (RVPsys, mmHg) in

banded mice. Banding increased RVPsys (p<0.001), and drug treatment did not have any effects on RVPsys.

***p<0.001

3.2.2 Effects on Right Ventricular Volumes and Function

PAB increased the right ventricular end-diastolic volume to the same extent in the

placebo and riociguat groups at day 7 after banding (RV EDV: Placebo: 73.3± 5.2µl;

Riociguat: 71.2± 3.5µl), and to a lesser extent in the sildenafil group (RV EDV:

Sildenafil - 59.9± 3.3µl, p<0.05 for placebo vs. sildenafil) (fig. 3.21, p. 64). 21
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days after operation, riociguat and sildenafil led to non-significant decreases in right

ventricular dilatation (∆RV EDV: −0.7± 1.9µl vs. −5.5± 2.1µl vs. −7.8± 5.2µl

[Placebo vs. sildenafil vs. riociguat], p>0.05). Yet, comparing the 21 day values, the

sildenafil group had a significantly lower right ventricular end-diastolic volume than

the placebo group (RV EDV: 72.6± 4.3µl vs. 54.5± 2.7µl [Placebo vs. sildenafil],

p<0.001).
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Figure 3.21 – Effects of sildenafil and riociguat on right ventricular end-diastolic volume (RV End-Diastolic

Volume, µl). (a) Time course of right ventricular end-diastolic volume from start of the study (day 0, pre-OP)

until the end of the study (day 21, post-OP, post-treatment) (b) Change in right ventricular end-diastolic volume

from day 7 (start of treatment) to day 21 (end of treatment). PAB (–), sham (–), sildenafil (–), riociguat (–);

d, day. ***p<0.001

A similar development could be observed for the right ventricular end-systolic

volume (fig. 3.22, p. 65): Banding led to an elevated right ventricular end-systolic

volume in banded mice, with the sildenafil group experiencing a smaller degree

of increase (RV ESV: 49.6± 4.1µl vs. 37.0± 3.5µl vs. 46.8± 3.3µl [Placebo vs.

sildenafil vs. riociguat], p<0.01 for placebo vs. sildenafil). Sildenafil and riociguat

treatment both managed to reduce these values at day 21 (RV ESV: 47.4± 3.6µl

vs. 28.8± 2.9µl vs. 36.0± 3.4µl [Placebo vs. sildenafil vs. riociguat]; p<0.001

for placebo vs. sildenafil, p<0.05 for placebo vs. riociguat). The decrease in

right ventricular end-systolic volume from day 7 to day 21 was also significant in

riociguat-treated mice compared to placebo-treated mice (RV ESV: −2.2± 1.9µl

vs. −10.9± 3.9µl [Placebo vs. riociguat], p<0.05).
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Figure 3.22 – Effects of sildenafil and riociguat on right ventricular end-systolic volume (RV End-Systolic

Volume, µl). (a) Time course of right ventricular end-systolic volume from start of the study (day 0, pre-OP) until

the end of the study (day 21, post-OP, post-treatment) (b) Change in right ventricular end-systolic volume from

day 7 (start of treatment) to day 21 (end of treatment). PAB (–), sham (–), sildenafil (–), riociguat (–); d,

day. ***p<0.001, **p<0.01, *p<0.05

The decrease in right ventricular dilatation and the reduced right ventricular end-

systolic volume translated into an improved performance of the right ventricle (fig.

3.23, p. 66). Whilst the right ventricular stroke volume only marginally increased

over placebo values (∆RV SV: 1.5± 0.7µl vs. 2.7± 0.9µl vs. 3.1± 1.8µl [Placebo

vs. sildenafil vs. riociguat]; p>0.05), the right ventricular ejection fraction showed a

robust increase for sildenafil and riociguat both when measured at day 21 (RV EF:

35.4± 1.7% vs. 48.2± 3.3% vs. 43.7± 2.2% [Placebo vs. sildenafil vs. riociguat];

p<0.001 for placebo vs. sildenafil, p <0.05 for placebo vs. riociguat), and when

taking into account the change from start of treatment to the end of the study

(∆RV EF: 2.5± 1.3% vs. 9.1± 2.2% [Placebo vs. sildenafil], p<0.05)(fig. 3.24, p.

66).

The operation increased the heart rate of the animals in each group to approx-

imately the same value at day 7 (HR: 501.5± 19.6 bpm vs. 515.8± 12.8 bpm vs.

507.5± 14.5 bpm [Placebo vs. sildenafil vs. riociguat], p>0.05)(fig. 3.25, p. 67). As

the sham group started out with a slightly higher baseline, the increase in heart rate

in the banded groups was larger. Furthermore, whilst the heart rate of the sham

group returned back to baseline at day 21, the heart rate of the banded groups
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Figure 3.23 – Effects of sildenafil and riociguat on right ventricular stroke volume (RV Stroke Volume, µl).

(a) Time course of right ventricular stroke volume from start of the study (day 0, pre-OP) until the end of the study

(day 21, post-OP, post-treatment) (b) Change in right ventricular stroke volume from day 7 (start of treatment) to

day 21 (end of treatment). PAB (–), sham (–), sildenafil (–), riociguat (–); d, day.
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Figure 3.24 – Effects of sildenafil and riociguat on right ventricular ejection fraction (RV Ejection Fraction,

%. (a) Time course of right ventricular ejection fraction from start of the study (day 0, pre-OP) until the end of

the study (day 21, post-OP, post-treatment) (b) Change in right ventricular ejection fraction from day 7 (start of

treatment) to day 21 (end of treatment). PAB (–), sham (–), sildenafil (–), riociguat (–); d, day. ***p<0.001,

*p<0.05
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tended to increase slightly further. This response is expected, as the heart tries to

compensate for its decrease in stroke volume with an increase in beating frequency

to bring the cardiac output back to normal. As can be seen from figure 3.26 (p.

68), this leads to a slight, albeit non-significant, increase in right ventricular cardiac

output from day 7 to day 21 (∆RV CO: 1.2± 0.5ml/min vs. 2.0± 0.4ml/min vs.

2.0± 1.0ml/min [Placebo vs. sildenafil vs. riociguat]; p>0.05).
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Figure 3.25 – Effects of sildenafil and riociguat on heart rate (beats/min) in banded mice. PAB (–), sham

(–), sildenafil (–), riociguat (–)

One might wonder, why the right ventricular cardiac output is larger than the

left ventricular cardiac output. This is due to an inherent limitation of the method

of measurement: the cardiac output is calculated as the product of stroke volume

and heart rate (2.4, p. 38). As the stroke volume is calculated by subtracting the

end-systolic volume from the end-diastolic volume (2.2, p. 38), the value gives no

account of whether the blood is flowing into the forward or the backward direction.

It is well known that right ventricular dilatation leads to tricuspid regurgitation,35

i.e. blood is flowing back from the right ventricle into the right atrium when the

ventricle contracts, as the tricuspid valve is not able to close sufficiently any longer.
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Having used echocardiography, our group has shown this to be the case for this

model as well (data not shown).

Figure 3.26 – Effects of sildenafil and riociguat on cardiac output (a) Time course of right ventricular cardiac

output (RV Cardiac Output, ml/min) from start of the study (day 0, pre-OP) until the end of the study (day 21,

post-OP, post-treatment) (b) Time course of left ventricular cardiac output (LV Cardiac Output, ml/min) from

start of the study (day 0, pre-OP) until the end of the study (day 21, post-OP, post-treatment) . PAB (–), sham

(–), sildenafil (–), riociguat (–); d, day. ***p<0.001

3.2.3 Effects on Right Ventricular Hypertrophy

All banded groups showed a similar level of increase in right ventricular mass at

day 7 (RV Mass: 61.1± 2.4mg vs. 55.4± 1.9mg vs. 60.5± 1.3mg [Placebo vs.

sildenafil vs. riociguat]; p>0.05), which was not affected by drug treatment (∆RV

mass: 1.3± 1.5mg vs. 1.7± 1.7mg vs. −0.9± 2.3mg [Placebo vs. sildenafil vs.

riociguat]; p>0.05)(fig. 3.27, p. 69).

3.2.4 Effects on the Left Heart

Banding highly significantly reduced the left ventricular stroke volume (fig. 3.28, p.

69). As seen in the staging study, this is due to a decreased left ventricular end-

diastolic volume, as the left ventricle is compressed to its side by the hypertrophied

right ventricle (see also figs. 3.1 and 3.9, pp. 45 and 51). Neither treatment

with riociguat, nor with sildenafil led to any significant changes in left ventricular

stroke volume (∆LV SV: 2.2± 0.8ml/min vs. 1.8± 1.2ml/min vs. 1.0± 0.6ml/min

[Placebo vs. sildenafil vs. riociguat]; p>0.05).
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Figure 3.27 – Effects of sildenafil and riociguat on right ventricular mass (RV Mass, mg). (a) Time course

of right ventricular mass from start of the study (day 0, pre-OP) until the end of the study (day 21, post-OP,

post-treatment) (b) Change in right ventricular mass from day 7 (start of treatment) to day 21 (end of treatment).

PAB (–), sham (–), sildenafil (–), riociguat (–); d, day. ***p<0.001

Figure 3.28 – Effects of sildenafil and riociguat on left ventricular stroke volume (LV Stroke Volume, µl). (a)

Time course of left ventricular stroke volume from start of the study (day 0, pre-OP) until the end of the study

(day 21, post-OP, post-treatment) (b) Change in left ventricular stroke volume from day 7 (start of treatment) to

day 21 (end of treatment). PAB (–), sham (–), sildenafil (–), riociguat (–); d, day. ***p<0.001
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After an initial decrease in left ventricular mass after banding, which was already

apparent in the staging study and is most likely caused by adaptive changes to the

decreased left ventricular cardiac output, left ventricular mass tended to increase

in sham and placebo animals, whilst it did not change in riociguat- and sildenafil-

treated animals. Nonetheless, the differences were not statistically significant (∆LV

mass: 5.8± 2.1mg vs. 2.0± 2.6mg vs. −0.6± 1.9mg [Placebo vs. sildenafil vs.

riociguat]; p>0.05)(fig. 3.29, p. 70).
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Figure 3.29 – Effects of sildenafil and riociguat on left ventricular mass (LV Mass, mg). (a) Time course of left

ventricular mass from start of the study (day 0, pre-OP) until the end of the study (day 21, post-OP, post-treatment)

(b) Change in left ventricular mass from day 7 (start of treatment) to day 21 (end of treatment). PAB (–), sham

(–), sildenafil (–), riociguat (–); d, day. ***p<0.001

3.2.5 Effects on the Systemic Arterial Pressure

Drug treatment had no effect on systemic arterial pressure (SBPsys: 77.3± 3.8mmHg

vs. 77.3± 3.7mmHg vs. 79.0± 5.5mmHg [Placebo vs. sildenafil vs. riociguat];

p>0.05)(fig. 3.30, p. 71). This is coherent with the finding that the left ventricular

cardiac output did not change significantly.
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Figure 3.30 – Effects of sildenafil and riociguat on systemic arterial pressure (SBPsys, mmHg) in banded

mice. Banding decreased SBPsys (p<0.01), and drug treatment did not have any effects on SBPsys. **p<0.01



72

3.2.6 Effects on Right Ventricular Fibrosis

As already noted in the staging study, banding leads to right ventricular fibrosis. The

procedure increased the collagen content in placebo-treated animals to 5.6± 0.3%

(cf. sham: 0.7± 0.2%, p<0.001, sham vs. placebo). Riociguat treatment signifi-

cantly reduced the amount of collagen to approximately half of the placebo group

(Collagen area: 3.1± 0.8%; p<0.01, placebo vs. riociguat)(fig. 3.31, p. 72). Silde-

nafil did not have any measurable effect on the collagen content of the right ventricle

(Collagen area: 5.4± 0.3%). Sample pictures showing typical collagen stainings are

shown in figure 3.32 (p. 73). The beneficial effects of riociguat treatment on the

collagen content of the right ventricle can be clearly seen in figure 3.32(d).

Figure 3.31 – Effects of sildenafil and riociguat on the right ventricular collagen content (%) of banded mice.

Banding increased the collagen content of the right ventric le (p<0.001). Riociguat led to a significant reduction of

the collagen content (p<0.01), whilst sildenafil did not show any effects. ***p<0.001, **p<0.01
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(a) Sham (b) PAB + Placebo

(c) PAB + Sildenafil (d) PAB + Riociguat

Figure 3.32 – Effects of sildenafil and riociguat on the collagen content of the right ventricle. Sample images

showing typical stainings as they are visualized under pola rized light in specimen of sectioned right ventricular hearts

of (a) sham, (b) placebo-treated, (c) sildenafil-treated, and (d) riociguat-treated mice. Riociguat treatment leads

to a clear reduction in the collagen content of the right ventricle.
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3.2.7 Effects on Cardiomyocyte Size

The banding procedure increased the cardiomyocyte size in all groups, and drug

treatment had no effects on cardiomyocyte hypertrophy (CM size: 77.3± 3.8mmHg

vs. 77.3± 3.8mmHg vs. 77.3± 3.8mmHg [Placebo vs. sildenafil vs. riociguat];

p>0.05) (figs. 3.33 and 3.34, pp. 74 and 75).
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Figure 3.33 – Effects of sildenafil and riociguat on the right ventricular cardiomyocyte diameter (µm) of

banded mice. Banding increased the right ventricular cardiomyocyte diameter, whilst drug treatment had no

effects. ***p<0.001
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(a) Sham (b) PAB + Placebo

(c) PAB + Sildenafil (d) PAB + Riociguat

Figure 3.34 – Effects of sildenafil and riociguat on the cardiomyocyte size of the right ventricle. Sample images

showing typical stainings as they are visualized under fluor escent light in specimen of sectioned right ventricular

hearts of (a) sham, (b) placebo-treated, (c) sildenafil-treated, and (d) riociguat-treated mice. Banding increased

the cardiomyocyte diameter, and drug treatment did not have any effects on this. Cell membranes are stained with

WGA-FITC (•), nuclei are stained with DAPI (•).



Chapter 4

Discussion

This dissertation shows for the first time the temporal progress of the effects of pul-

monary artery banding on several parameters of right and left ventricular function

which can be derived by magnetic resonance imaging. This allows one to make a

justified selection of the time points for the beginning of treatment and its termi-

nation in this model of right ventricular hypertrophy. Furthermore, for the first

time the antifibrotic effects of riociguat in the right heart have been unequivocally

demonstrated.

4.1 Staging Study

The tabular results of the staging study can be found in tables A.1 and A.2 on pages

95 and 97. The effects of banding on the right heart can be broadly classified into

structural and functional changes. The structural changes, that is the growth of the

right ventricle (Fig. 3.6, p. 49), the growth of its individual cardiomyocytes (Fig.

3.18, p. 60) and the increase in collagen content (Fig. 3.16, p. 57), progressively

increase in the first weeks after the banding operation. After three to four weeks,

the collagen content of the right ventricle appears to have plateaued, whilst the the

right ventricular mass and cardiomyocyte size only very slowly continue to increase

until the end of the study.

In contrast, the systolic function, represented by the right ventricular ejection

fraction, resembles a triphasic response (Fig. 3.5, p. 49): after a first rapid decline

76
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in ejection fraction one day after the banding operation, the ejection fraction recovers

until days 7 to 14, after which it steadily declines. Likewise, the right ventricular end-

diastolic and end-systolic volumes increase one day after operation, recover slightly

until day 7, after which they continue to deteriorate, i.e. the right ventricle continues

to dilate and its residual blood at systole increases (Fig. 3.4, p. 48).

The increase in right ventricular mass is unexpectedly rapid. The right heart has

adapted in as little as one week to the increased resistance it has to work against,

with little increase thereafter. This is also reflected functionally: the ejection fraction

reached its highest values 7 to 14 days after operation. Nonetheless, individual

cardiomyocytes continued to grow past week one. I assume that this is no further

reaction to adapt to the banding procedure, but rather a physiological increase in

cardiomyocyte size. The reason I believe this is that the cardiomyocyte size in sham-

operated animals continues to grow to a similar extent (Fig. 3.18, p. 60), apparently

reflecting a physiological adaptation to the continuing growth of the animals, as the

animals were approximately 8 weeks of age at operation, i.e. not full-grown.

So why does the ejection fraction decline again after two weeks? If one looks at

the development of the collagen content of the right heart (Fig. 3.16, p. 57), one

sees that it is increasing up to 3 weeks after operation, after which it plateaus. Ac-

tually, the collagen content in banded animals is increasing by 310% from day 3 to

7, by 222% from day 7 to 14, and by a further 154% from day 14 to day 21, which

is rather dramatic. The functional consequences of increased fibrosis have been

well established clinically and experimentally: increased fibrosis is associated with a

decreased right ventricular ejection fraction in patients with a systemic right ventri-

cle,143 with diastolic heart failure in animal models of hypertensive heart disease,144

and a predictor of diastolic and systolic dysfunction during exercise in hypertrophic

cardiomyopathic patients who successfully underwent operation.145 Experimentally

it was shown, that decreasing fibrosis leads to an improved diastolic dysfunction in

dogs with tachycardia induced heart failure146 and in pressure-overloaded rats.147

Collagen is the major determinant of the hearts extracellular matrix, which main-

tains the myocardial geometry so as to allow the individual cardiomyocytes to work

in a coordinated fashion as a syncytium.35,148 The major collagen isoform present in
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the murine heart is collagen type I, which is also the stiffest, being around 30-times

stiffer than a cardiomyocyte.148

A pathological increase in collagen leads to myocardial stiffness,149,150 effectively

reducing the compliance of the heart. Furthermore, fibrosis disrupts coordinated

excitation-contraction coupling, which prevents the heart from working as a syn-

cytium.144 Also, exercise-induced hypertrophy is typically not accompanied by an

accumulation of collagen in the myocardium.151 Therefore in our staging study it

appears that a certain amount of collagen increase is necessary to supply a struc-

ture for cardiomyocytes in which they can function efficiently. The increase over

that certain amount on the contrary decreases the functioning of the right ventricle

again, for the aforementioned reasons.

Regarding its function, the left ventricle is seriously affected by the changes occur-

ring in the right ventricle. This is less applicable with regard to the left ventricular

mass, which only diminishes relatively little in comparison to sham operated an-

imals, and likely is a reflection of the decreased preload the left ventricle has to

deal with (Fig. 3.8, p. 50). The most serious consequence is the inability of the

left ventricle to expand to its original volume (Fig. 3.9, p. 51), causing a major

impairment of the left ventricular stroke volume, without any change in its ejection

fraction (Fig. 3.10, p. 52). The increased pressure the right ventricle exerts onto

the left ventricle is well reflected in the left ventricular eccentricity index, a readout

of the "compression" of the left ventricle, which increases throughout the study in

banded mice, but stays constant in sham-operated animals (Fig. 3.11, p. 53).

The non-existent change in left ventricular ejection fraction is a sign that the

impaired function of the left ventricle indeed is due to an interference by the right

ventricle, and not an inherent impairment. The only change in left ventricular

ejection fraction in banded mice occurs right after operation, most likely a reflection

of the increased stress put on the heart by the banding procedure. As can be

observed from figure 3.10, whilst the left ventricular stroke volume, as well as its

end-diastolic volume, of the sham-operated animals increases over time, which is

presumably owing to the hearts adaptation to the growth of the animals, the stroke

volume of the banded animals does not increase with time, and rather tends to
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further diminish. As the banded animals continue to grow as well, the probable

consequence of this is a further decrease in end-organ perfusion. This poses an

interesting question, which could be elucidated in future studies: is the eventual

death of the animals due to heart failure, or due to organ failure? As a readout for

a reduction in end-organ perfusion, the analysis of blood gas could be employed.

Even though there is a compensatory increase of heart rate in banded mice (Fig.

3.13, p. 54), this is not enough to offset the negative effects of decreased stroke

volume onto the cardiac output (Fig. 3.14, p. 55). The further small increase in

right ventricular stroke volume and cardiac output, which is not reflected by an

increase of these parameters in the left ventricle, is a sign of increased tricuspid

regurgitation, being a result of increased right ventricular dilatation and consequent

extension of the tricuspid valve, allowing more blood to flow backward.

In clinical studies, several of the parameters just discussed were associated with

decreased survival. Thus is the left ventricular diastolic eccentricity index associ-

ated with survival in IPAH, with patients with the highest values also having the

highest event rates.152 Magnetic resonance imaging studies have further shown that

a large right ventricular end-diastolic volume, a low stroke volume and a reduced

left ventricular end-diastolic volume are all strong predictors of mortality; a further

dilatation of the right ventricle, an additional decrease of left ventricular volume,

as well as a decline of left ventricular stroke volume and right ventricular ejection

fraction at follow-up predict poor long-term outcome.153 All of these effects were

present in our study, underscoring the clinical relevance of this model.

Unequivocal evidence that this mouse model of chronic right ventricular pressure

overload is in effect a model of pathological, and not compensatory hypertrophy, is

the eventual death of the animals, beginning ∼50 days after operation, the median

survival being 104.5 days.

4.2 Treatment Study

The results of the staging study had been used to determine the study plan for the

treatment study. As the peak of the compensatory response was reached ∼7 days
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after operation, and functional deterioration started to begin after this point, this

day was chosen for the commencement of treatment. Two weeks were chosen to be

the duration of treatment, drawing a consensus between the cost of drug treatment

and the assumption when functional, resp. histological, treatment changes would

become apparent.

The treatment was tolerated well by all animals, as none of them died during the

treatment period. The banding procedure increased the right ventricular pressure

in all banded groups to the same value, allowing for comparison of the groups. The

results of the treatment study can be found in table A.3 on page 97.

To our surprise both drugs had no effect on right ventricular mass (Fig. 3.27, p.

69), yet both increased the systolic function of the right ventricle, reflected by an

increased right ventricular ejection fraction (Fig. 3.24, p. 66). Even though right

ventricular stroke volume increased as well, this increase did not reach statistical

significance (Fig. 3.23, p. 66). Additionally, riociguat and sildenafil improved right

ventricular diastolic dysfunction by reducing the ventricle’s dilatation, albeit there

was only a trend for the effects of riociguat (Fig. 3.21, p. 64). The increase in

ejection fraction could be brought about by the decrease in dilatation: according to

the Frank-Starling law, cardiomyocytes produce more force when stretched, so as to

accommodate an increased end-diastolic volume with an increased stroke volume.154

Yet, cardiomyocytes can overstretch, resulting in a decrease in force production.

With the degree of dilatation seen in this model of pressure-overload, it is not unlikely

that an over-stretching might have occurred. The decrease in dilatation might thus

have removed these negative effects, returning the cardiomyocytes back to a level

of increased force production. Also, without any change in mass, a reduction of

dilatation might have shifted the heart from a state of eccentric hypertrophy towards

a state of concentric hypertrophy.

One important implication from these observations can already be drawn: a

reduction in pathological right ventricular hypertrophy appears not to be necessary

to achieve a functional improvement of the right heart. Actually, in clinical studies

it was shown that right ventricular hypertrophy was not as strongly associated with

mortality as was dilatation,153 underscoring the potential clinical importance of this
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finding of increased function despite an unchanged right ventricular mass.

The search for a potential mechanism of the drugs beneficial effects and the knowl-

edge of the antifibrotic potential of stimulating the NO-sGC-cGMP pathway from

the literature (e.g. in the liver,155 kidney104) led me to assess the drugs effects on the

right ventricular collagen content. Indeed, riociguat reduced the right ventricular

collagen content by nearly 50% (p<0.01), whereas sildenafil did not have any effect.

Thus, this study has shown for the first time a direct antifibrotic effect of riociguat

in the right heart, together with a concomitant functional improvement. It was al-

ready shown in the past that a reduction in collagen content, either via an inhibition

of collagen crosslinking156 or by collagen degradation,157 decreases myocardial and

chamber stiffness. Drug intervention studies carried out in humans came to similar

conclusions.158,159

A further assessment of the individual cardiomyocyte sizes showed, that banding

increased cardiomyocyte size to a similar level as has been already observed in

the staging study, and neither drug had any effect on this. One explanation for

this finding could be the different sensitivity of cardiomyocytes and fibroblasts with

regard to stimulation of the cGMP-pathway. In fact, Masuyama et al. have noted in

in vitro experiments that cardiac fibroblasts show higher increases in cGMP content

upon sGC stimulation than cardiac myocytes.106

The differing sensitivities of cardiac myocytes and fibroblasts can turn out to

be of advantage, as an increase in cardiomyocyte size is needed to overcome the

increased resistance the right heart has to work against. Hypothetically, with regard

to the right ventricle, an optimal treatment would preserve its functional capacity,

in part defined by the number and size of its cardiomyocytes, and ameliorate the

negative consequences of pathological hypertrophy, of which one is fibrosis. Taking

this into account, and the fact that exercise-induced hypertrophy occurs without any

changes in myocardial collagen content, one might speculate that riociguat shifts the

pathological state of the right ventricle to a more physiological one.
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4.2.1 Riociguat

How does riociguat decrease the right hearts collagen content? Crucial for deter-

mining the mechanism would be a knowledge of the location of sGC in the right

heart. Experimental problems with the immunohistochemical staining of sGC pre-

vents me from drawing firm conclusions, forcing me to resort to knowledge of what

is known from the literature. sGC has been found in rat vascular endothelial cells,

rat cardiac myocytes, and human platelets.160 Furthermore it was found in hepatic

stellate cells, which are found in the liver and are crucially responsible for fibrotic

remodeling of liver tissue,155 and in rat cardiac fibroblasts.106

Regarding a potential mechanism which draws on the effects of sGC stimulation

in cardiac fibroblasts, I would like to mention the results found out by Masuyama

et al.103,106 They employed a model of angiotensin II-induced hypertension in rats,

which leads to left ventricular hypertrophy, and treated the rats with BAY41-2272,

an sGC activator which exerts its effects independent of the redox state of the heme

moiety of sGC. Using a dose that does not affect blood pressure and cardiac hyper-

trophy, BAY 41-2272 nonetheless reduced perivascular and interstitial deposition of

collagen as well as transcription of type 1 collagen.103 Additionally, BAY41-2272

resulted in reduced thymidine incorporation in cultured cardiac fibroblasts,103 i.e.

reduced fibroblast growth. In search of a potential mechanism, the same group

proposed that the inhibition of fibroblast to myofibroblast transformation and the

inhibition of angiotensin-converting-enzyme (ACE) are crucial factors involved in

the drug’s potential to reduce fibrosis.106 They could show that BAY 41-2272 led to

reductions of TGF-β1 and collagen type I expression. TGF-β1 is known to be an im-

portant trigger to induce the phenotypic change of fibroblasts to myofibroblasts, and

myofibroblasts are known to exaggerate the production of collagen type I. Indeed,

in their model a reduced transition to myofibroblasts was observed. Furthermore,

BAY 41-2272 significantly reduced the activity of ACE in vivo as well as in cultured

cardiac fibroblasts. As ACE also has been implicated in the transition of fibroblasts

to myofibroblasts,161 this mechanism might likewise be responsible for the effects

observed. It has to be noted though that for the cell culture experiments, isolated

cells from neonatal rats had been used. Therefore, these potential mechanisms can
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only be conferred to the animal studies, if adult cells and/or cells which have been

subjected to pressure-overload, behave in the same way. A similar result was found

in dermal fibrosis: Beyer et al. could show that BAY 41-2272 dose-dependently

inhibited collagen release in dermal fibroblasts, isolated from patients with systemic

sclerosis. Furthermore, in bleomycin-induced dermal fibrosis and skin fibrosis in

Tsk-1 mice, BAY 41-2272 administration reduced the number of myofibroblasts.162

Thus, the anti-fibrotic effects of sGC stimulation in the heart might be due to

reduced fibroblast proliferation, together with a decreased secretion of collagen type

I, as well as reduced phenotype transition to myofibroblasts.

Another mechanism of action might be owing to the effects sGC-stimulation on

endothelial cells, on a process called endothelial-mesenchymal transition (EndMT).

EndMT is a transformation of endothelial cells into fibroblasts. In a mouse model

of pressure overload, Zeisberg et al. could show, using immunofluorescence double-

labeling experiments, that banding induced EndMT. Also, the application of TGF-

β1 to adult human coronary endothelial cells led to EndMT, which was blocked by

bone morphogenic protein 7 (BMP-7). In addition, the administration of BMP7 to

banded mice reduced cardiac fibrosis and the accumulation of fibroblasts.163 As BAY

41-2272 was shown to reduce TGF-β1 levels in a mouse model of left ventricular

pressure-overload,106 the reduction of EndMT could also serve as a mechanism of

action of the antifibrotic effects of riociguat.

Finally, the sGC activator BAY41-2272 was shown to have anti-inflammatory

effects, as it reduced increased leukocyte rolling and was associated with downregu-

lation of the adhesion molecule P-selectin in endothelial cells.164 Inflammation has

been associated with cardiac fibrosis,165 and it was shown in rats that pressure-

overload induced perivascular macrophage accumulation and fibroblast proliferation

in the left heart, and blocking of macrophage invasion also inhibited fibroblast pro-

liferation.166 Therefore this might form another option on how riociguat exerts in

antifibrotic effects.

To block conjectures that the functional improvement seen with riociguat is sim-

ply due to an inotropic effect, I want to mention that a study performed in a canine

model of heart failure, in which no positive inotropic effects of BAY 41-2272 and
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BAY 41-8543, another sGC activator, were found.167

4.2.2 Sildenafil

Turning to the results of the sildenafil treatment, the question arises why it increases

the diastolic and systolic function of the heart (Fig. 3.24, p. 66, and fig. 3.21, p. 64).

Collagen measurements yielded the result, that sildenafil treatment had no effect on

this parameter, therefore another mechanism has to be responsible for the effects

seen. Also, there were no changes seen in the cardiomyocyte size or the weight of

the right ventricle.

Studies probing the antihypertrophic effects of sildenafil in banding models have

so far been either carried out in the mouse left ventricle or, when an isolated, direct

effect on the right ventricle was investigated, in the rat. In contrast to studies

carried out in the left ventricle, studies in the right ventricle have actually shown an

increase of right ventricular hypertrophy,26,126 with either no functional changes,26

or a functional improvement.126 The assumption that species differences between

mouse and rat might be responsible for the discrepancies seen, now becomes much

less probable, as sildenafil also did not show any antihypertrophic effects in our

pulmonary artery-banded mouse model.

Thus, other important differences between the right and the left ventricle must

be responsible for the treatment differences seen. Amongst them are: different mor-

phology, different loading conditions, different gene expression profiles and a different

origin. Therefore, it is well possible that right ventricular cardiomyocytes respond

with other signaling mechanisms to induced hypertrophy than the left ventricle. It

needs to be mentioned that the field of cardiac hypertrophy has a vast range, in-

volving several distinct signaling cascades, which are deemed to be responsible for

the hypertrophy of the heart.168 Thus, different signaling cascades in the right and

left ventricle might be the major players in regulating hypertrophy. Therefore, the

targets of increased cGMP-signaling in the right ventricle might be less involved in

hypertrophic signaling than in the left ventricle. Furthermore, sildenafil can only

efficiently increase cGMP levels, if sufficient levels have been produced before. So,

even if the antihypertrophic signaling targets of cGMP would be the same in the
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right and in the left ventricle, only if sufficient cGMP is present for their activation,

a noticeable effect could be observed. A prerequisite for this would be an adequate

production by cGMP producing enzymes, i.e. sGC and pGC.

Why does sildenafil then improve the function of the right ventricle? It was shown

that in experimental and clinical right ventricular hypertrophy, PDE5 mRNA and

protein is upregulated in cardiomyocytes, compared to healthy right ventricular my-

ocardium.122,169 Additionally, acute PDE5 inhibition by sildenafil leads to increased

contractility in right ventricular trabeculae from human failing hearts, and no change

in right ventricular trabeculae from nonfailing hearts.169 Acute PDE5 inhibition also

increases contractility in perfused Langendorff preparations and isolated cardiomy-

ocytes in right ventricular hypertrophy, but not in the normal right ventricle.122

Nagendran et al. offered an explanation for this finding: the increase in cGMP

content in the hypertrophied right ventricle leads to inhibition of cGMP-sensitive

PDE3, effectively increasing the content of cAMP. The positive inotropic effects of

cAMP, mediated mainly by protein kinase A (PKA), are well known.170 Indeed, in-

hibition of PKA completely inhibited the PDE5-induced inotropy.122 Therefore, the

functional improvement seen in banded, sildenafil-treated mice in our study might

also be due to the direct positive inotropic effects of PDE5 inhibition.

Another potential mechanism which comes to mind are the vasodilatory effects of

sildenafil. It is known, that right ventricular hypertrophy and increased filling pres-

sure can impair the perfusion of the ventricle by partial occlusion of the coronary

arteries. If sildenafil would exert a vasodilating effect on the coronary arteries, per-

fusion might be improved. This in turn might improve the function of the ventricle,

owing to increased oxygen and nutrient supply.

A very recent paper, published in 2012, also probed into the improvement of right

ventricular systolic function seen with sildenafil treatment. They employed the rat

monocrotaline model, in which they observed a severe T-tubule loss and disorganiza-

tion, as well as a blunted and dys-synchronous sarcoplasmic reticulum Ca2+ release.

Sildenafil improved right ventricular systolic function, and concomitantly amelio-

rated the impairment of myocyte T-tubule integrity and Ca2+ handling protein and

sarcoplasmic reticulum Ca2+ release function.171 Maybe this effect underlies the
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improvement seen in the PAB model as well.

4.3 Benefits and Limitations of the Methods

4.3.1 Magnetic Resonance Imaging

Magnetic resonance imaging was established in the 1970s for noninvasive measure-

ments in humans. Due to its high cost, operational effort and little availability it

is a relatively new field in rodent imaging. In the 1990s the foundation for rodent

cardiac imaging was laid. The first noticeable study to be mentioned was by Rose

et al. in 1994, who established a proper cardiorespiratory gating method, so as to

allow the imaging of a beating rodent heart.172 Owing to the rodents inherently

high heart rate, which roughly ranges between 400 to 600 beats per minute, an effi-

cient gating method is essential for obtaining images with a resolution high enough

to allow for analysis. In 1997, the first study was published which assessed left

ventricular mass, wall thickness and internal dimensions in a serial manner using

geometric assumptions, allowing for an estimation of these parameters.173 These

so derived parameters proved to correlate better with autopsy data than echocar-

diographic data did.173 Eventually Simpson’s rule was applied to the measurement

of the murine left ventricle in 1998, which determines the total mass and volume

of the ventricle by summing up their respective partial volumes, and is deemed to

be the most accurate method for measuring these parameters.174 Finally, in 2002,

Wiesmann et al. successfully established the feasibility of this method in the murine

right ventricle.175

The advantages of magnetic resonance imaging of the heart are its high preci-

sion and reproducibility, the nonexistent need for geometrical assumptions and its

non-invasiveness.17 The high tissue contrast and temporal resolution enable the clear

distinction between the lumen and the myocard, as well as the precise determination

of the systolic and diastolic phase. The high reproducibility and non-invasiveness

allow the number of animals needed for a study to be reduced, and to assess the

time-course of effects, in our case the time-course of banding and that of drug treat-

ment. Lastly, and most importantly, is the possibility to acquire images of the whole
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heart, which eliminates the need for geometrical assumptions. 2D equipment, like

echocardiography, rely on geometrical assumptions of the left and right ventricle.

Whilst the geometrical assumptions for the left ventricle are well established, due

to its spherical/elliptical form, the analysis of the right ventricle is complicated by

its complex geometry and anatomically different regions, and its unpredictable mor-

phological changes in pathologies.48 Another problem with echocardiography is that

the right ventricle lies posterior to the sternum, making it difficult to image. This

problem is also circumvented with the use of magnetic resonance imaging. Thus it

can be said, that magnetic resonance imaging is a very precise and sophisticated

technique, and for these reasons it is also deemed the "gold-standard" for the deter-

mination of cardiac functional parameters.17 Amongst these, the right ventricular

ejection fraction is the most widely accepted and most commonly used parameter

to assess right ventricular function.17

Two limitations of magnetic resonance imaging became apparent during the

course of the experiments. The first is that the right ventricular stroke volume mea-

sured by magnetic resonance imaging is nearly always higher than the left ventricular

stroke volume in banded animals. This owes to the fact of tricuspid regurgitation:

the difference between the end-diastolic volume and the end-systolic volume depicts

not the effective forward stroke volume, but both the blood that flows backwards

(tricuspid regurgitation) as well as forwards (via the pulmonary artery). Nonethe-

less, the left ventricular stroke volume, which can be calculated unequivocally, can

be used as a determination of the right one, as the blood which leaves the left ventri-

cle, has to have reached it first. As there is no shunt in the connection from the right

to the left ventricle, the left ventricular stroke volume can be assumed to be right

ventricular effective forward stroke volume. Still, an increase in right ventricular

stroke volume is not necessarily reflected by an increase in left ventricular stroke

volume in banded animals. This is due to the fact that the left ventricle is severely

limited in its capacity to dilate, as its is restricted by the size of the hypertrophied

right ventricle. Thus even though the systolic function of the right ventricle might

increase (e.g. under drug treatment), the increase in right ventricular stroke volume

expresses itself as an increased backward-flow through the tricuspid valve, and not
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as an increased cardiac output. Thus there are two possibilities of judging whether

the systolic function of the right ventricle increased: one either simply takes into

account the absolute increase of the right ventricular stroke volume, not minding the

direction the blood goes to; or one looks at the right ventricular ejection fraction or

right ventricular end-diastolic volume, as these values are alternative depictions of

systolic function, independent of potential tricuspid regurgitation. Other methods

to correctly judge the right ventricular cardiac output are the use of catheteriza-

tion,18 although this might pose to be difficult due to the small size of the murine

heart; or to use Doppler-echocardiography.18

The second limitation which became apparent is that of the overestimation of the

right ventricular weight by magnetic resonance imaging by a factor of ∼1.5- to 2-fold.

After it became apparent that the right ventricular weight was overestimated about

2-fold in the staging study, adjustments in the analysis of the MRI images were

performed, i.e. changes in contrast/brightness, which resulted in an overestimation

of about 1.5-fold in the treatment study. Yet, this does not pose a problem for the

validity of the experiments, as the overestimation was the same across all groups,

which becomes apparent by comparing the MRI-derived data with the data derived

from organ harvesting, making the relative differences amongst the experimental

groups essentially the same (Figs. 3.6 and 3.27, pp. 49 and 69).

4.3.2 Pulmonary Artery Banding

The first time pulmonary artery banding had been applied to mice was in 1994 by

Rockman et al.,68 but the scarcity of information about performing the operation

hindered the replication of results by other laboratories. For the assessment of the

effects of banding they employed x-ray contrast microangiography, a technique which

was not investigated further, probably due to the high technical demands required

and the lack of serial evaluations of mice.

The first comprehensive paper to be published which explained in detail the

banding procedure was by Tarnavski et al.69 They positioned a 26-gauge needle next

to the pulmonary artery, after which a thread was used to tie a knot around needle

and artery for constriction. The needle was removed immediately afterwards; this
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resulted in a constriction of the pulmonary artery to the diameter of the 26-gauge

needle. Our group resorted to the use of a modified hemoclip applier, which comes

with several advantages over the use of a needle and a thread: it can be applied

quickly, without having to resort to a parallel alignment of needle and pulmonary

artery beforehand; as there is no needle involved, no complete constriction of the

pulmonary artery takes place, which a) might lead to a rapid decompensation of the

right heart, and b) lead to pathological changes different to the ones intended; it is

highly reproducible due to the stability of the clip, compared to the thread, which

might loosen.

The diameter of the clip was adjusted, so as to obtain right ventricular parameters

similar to that of what was published by Tarnavski et al.. Whilst their mice had

a right ventricular systolic pressure of ∼45mmHg (they did not state whether this

was 1 or 2 weeks after operation), our mice had a right ventricular systolic pressure

of ∼45mmHg 1 week after operation, ∼55mmHg after 2 weeks, and ∼65mmHg

three weeks after operation; the pressure eventually stabilized at this level. Also,

their right ventricular mass to bodyweight ratio was ∼1.6, and ours was ∼1.5.

The benefits of pulmonary artery banding are its very high post-surgical survival

rate, its high reproducibility, and the similarity to severe pulmonary hypertension (in

banded mice, the right ventricular systolic pressure increased to more than 45mmHg

and the right ventricular ejection fraction dropped to about 45%). In a clinical study

evaluating the right ventricular characteristics of subjects with primary pulmonary

hypertension or idiopathic dilated cardiomyopathy, Quaife et al. drew the differ-

ence between a compensated and a failing heart at equal or more than 40% right

ventricular ejection fraction, and less than 40% respectively.176 This right ventric-

ular ejection fraction is less than I have determined in my studies and could be

due to different reasons: either owing to the fact that the observer is a different

one; or because of differences between the murine and the human heart. Whilst the

right ventricular ejection fraction in healthy patients measured by Quaife et al. was

∼60%, it was ∼75% in sham animals in my experiments. Taking this difference into

account, the right ventricular ejection fraction, which was deemed normal (60%),

has to experience a relative decrease of more than one third to become less than
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40%. This was also the case in our model, as a reduction from 75% to 45% equals

a relative reduction of 40%, being well in the range of a reduction by more than one

third. Also, banded animals were shown to die in the course of the staging study;

as they were banded, this makes it likely that they died from right heart failure, the

alternative being end-organ failure. Therefore, I assume that the characteristics of

the right ventricle seen in my studies are similar to those seen clinically in severe

pulmonary hypertension, resulting in a failing heart.

Frydrychowicz et al. evaluated the effects of PAB on mice using MRI.177 They

measured an initial right ventricular ejection fraction of 57%, and a drop to 31%

8 weeks after banding. The values for end-diastolic and end-systolic volumes they

measured were remarkably higher than the values I measured, both for experimental

and control values. The effects on right ventricular mass were not stated. Further-

more, no effects of the operation on the left ventricle could be found. The mice

they used had an average weight of 31.7± 2.8 g, being much heavier than the ones I

used, which would explain the very high volume values. This difference might also

account for the discrepancy between the studies, with regard to right ventricular

ejection fraction and interventricular effects.

In 2003, Bär et al. performed PAB in rats to determine the time-course of specific

genetic changes.178 They also reported the development of the right ventricular mass

over 2, 5, 10, 20 and 40 days. Interestingly, right ventricular mass in these animals

increased slowly and steadily over the period of the study. This is in contrast to my

study, in which the highest increase in right ventricular mass occurred rapidly after

operation, followed by a slow, progressive increase. The group did not publish the

banding strength they had used in the study. Nonetheless, the maximum right ven-

tricular weight, which was reached, is in good agreement with what I have obtained

(Bär et al.: 0.21 g vs. 0.39 g; Sham vs. PAB; 40 days after operation. Cf. staging

study: 21mg vs. 44mg; Sham vs. PAB; 35 days after operation). A thorough liter-

ature search revealed a paper published in 1968 by Olivetti et al., which employed

aortic constriction in rats.179 In line with the results I have obtained, they too saw

a rapid increase in heart weight after banding, which began to level in the course of

one week after operation.
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Other groups, which have performed PAB in rats report similar weight incre-

ments in the right ventricular mass to bodyweight ratio, that is a doubling, as we

have.22,180,181

What are the potential drawbacks of pulmonary artery banding? The main cul-

prit probably is the rapidity, with which the increased resistance is induced. This

process is more reflective of a sudden increase in resistance like that experienced in

pulmonary embolism, and less so in progressive diseases like COPD, in which the

resistance builds up gradually over a longer period of time. For this reason, one may

not assume that the changes occurring in the right heart in pulmonary artery band-

ing are reflective of both diseases, i.e. pulmonary embolism and COPD, to the same

extent, but might have different underlying genetic changes, signaling mechanisms

as well as different phenotypic changes (e.g. concentric vs. eccentric hypertrophy).

Nonetheless, pulmonary artery banding is the gold standard to elucidate changes and

treatment effects directly in the right ventricle, without any concomitant changes in

the pulmonary vasculature.69

The lack of changes in the pulmonary vasculature might form a potential draw-

back, as changes in the pulmonary vasculature are underlying most pathological

changes in the right ventricle seen clinically. This adds additional variables which

could influence gene expression patterns in the affected right heart. Yet, other ro-

dent models of right ventricular hypertrophy that induce changes in the pulmonary

vasculature, like the hypoxia or the MCT model, could also exert independent effects

on the right ventricular myocardium. As one can easily conclude, all animal mod-

els have their individual advantages and disadvantages. A thoughtful combination

of different models should form the most complete picture of potential treatment

effects. Schermuly et al. has established the partial reversal of pulmonary hyper-

tension and right ventricular hypertrophy in the mouse hypoxia and the rat MCT

model;66 together with the knowledge of the antihypertrophic effects of sildenafil

seen in a model of chronic left ventricular pressure overload,25 this led to the logical

conclusion to probe whether these effects are also possible in the right heart, which

led to the work implemented in this dissertation.
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4.4 Clinical Relevance

Riociguat has already successfully passed Phase I and Phase II clinical trials, and

is currently undergoing two Phase III trials to probe its vasodilatory effects in pa-

tients with symptomatic pulmonary arterial hypertension (PATENT-1 and -2) and

chronic thromboembolic pulmonary hypertension (CHEST-1 and -2).135 The knowl-

edge of riociguat’s antifibrotic effects in the right heart, together with its functional

improvements, independent of changes in the pulmonary vasculature, could lead to

an extension of indications the drug could be used for. As clinical safety testing

has already been completed successfully and several long-term trials are ongoing,

riociguat could readily be tried in proof-of-concept studies.

4.5 Further Experiments

A survival study employing riociguat and sildenafil could be carried, to evaluate

whether the functional improvements carry over into an increased survival of the

animals.

Higher doses of riociguat and sildenafil could be probed, to analyze whether they

result in antihypertrophic effects, as Masuyama et al. observed in in vitro studies

that cardiac fibroblasts appear to be more feasible to exert cGMP elevation than

cardiac myocytes;106 and if so, whether this still is associated with a functional

improvement, as the resistance the right heart has to work against does not change.

Measuring cGMP levels after drug administration might shed light on whether

riociguat and sildenafil treatment increase cGMP levels by the same amount, as

treatment differences might owe to this. Furthermore, molecular analyses might be

carried out, to look for differences between riociguat and sildenafil treatment.

Immunostaining for sGC and PDE5 in the right heart might help uncover their

mechanisms of action.

In contrast to the total collagen content, the collagen type I to collagen type III

ration could be analyzed in sildenafil-treated mice. As collagen type III is more

elastic than type I, this might explain the functional improvement of the ventricle,

despite any change in the total amount of collagen.
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Also, effects of the drugs on the heart’s perfusion could be evaluated. Increased

perfusion of the right heart should translate into ameliorated function, due to the

better supply with oxygen and nutrients.

Lastly, one could check on the effects of drug treatment on apoptosis. Braun et

al.181 and Ikeda et al.182 reported an increase in apoptosis markers in PAB rats; a

reduction in apoptosis might improve the right heart’s function as well.

4.6 Conclusion

This work showed for the first time the functional and morphological consequences

of right ventricular pressure-overload, induced by pulmonary artery banding in the

mouse, using magnetic resonance imaging. Additionally, the functional improve-

ments in the right heart by riociguat and sildenafil treatment were demonstrated,

independent of changes in the pulmonary vasculature. Finally, for the first time a

direct anti-fibrotic effect of riociguat in the right heart was demonstrated.

As riociguat and sildenafil have already undergone extensive studies demonstrat-

ing their safety in pre-clinical studies, clinical studies, and from post-marketing

surveillance in the case of sildenafil, the results from the experiments carried out in

this work might pave the way for new indications these drugs could be employed in.
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Table A.1 – Staging Study - Results (MRI)

Timepoint (day)

Parameter Group 0 1 3 7 14 21 35 56 105

Bodyweight (g)

Sham 23.18 ± 0.23 22.38 ± 0.35 22.25 ± 0.21 22.83 ± 0.14 23.70 ± 0.23 24.23 ± 0.31 25.65 ± 0.46 26.90 ± 0.45 28.45 ± 0.88

PAB 23.40 ± 0.24 21.07 ± 0.26 21.60 ± 0.50 23.43 ± 0.77 23.60 ± 0.71 24.68 ± 0.74 25.67 ± 0.58 26.00 ± 0.59 27.83 ± 0.56

Heart Rate (beats/min)

Sham 429.89 ±65.30 495.19 ±29.81 506.92 ±40.10 522.92 ±32.60 505.83 ±15.61 535.92 ±36.40 491.61 ±67.29 533.94 ±40.53 464.10 ±46.22

PAB 449.16 ±30.25 498.52 ±23.16 533.72 ±28.11 556.69 ±23.75 566.51 ±16.31 563.31 ±17.42 562.70 ±21.52 551.19 ±16.98 555.57 ±19.42

Left Ventricular End Diastolic Volume (µl)

Sham 55.48 ± 2.19 54.69 ± 1.92 48.75 ± 2.08 52.11 ± 2.74 49.63 ± 0.87 51.16 ± 1.39 58.45 ± 4.19 55.31 ± 3.83 65.78 ± 3.82

PAB 55.43 ± 3.20 40.48 ± 3.03 36.87 ± 4.39 33.23 ± 4.11∗∗ 32.12 ± 3.93∗∗∗ 30.37 ± 3.86∗∗ 31.80 ± 3.72∗∗∗ 27.74 ± 3.27∗∗∗ 31.10 ± 4.51∗∗∗

Left Ventricular End Systolic Volume (µl)

Sham 18.18 ± 2.90 19.46 ± 1.24 17.99 ± 2.53 18.17 ± 2.44 15.27 ± 1.51 15.78 ± 2.43 19.90 ± 4.63 17.00 ± 3.21 25.77 ± 4.54

PAB 19.79 ± 2.27 17.90 ± 2.80 13.97 ± 1.72 11.20 ± 1.50 11.51 ± 1.35 10.64 ± 1.56 10.92 ± 1.44 8.73 ± 0.78 11.53 ± 2.05∗

Left Ventricular Stroke Volume (µl)

Sham 37.29 ± 1.39 35.22 ± 1.21 30.76 ± 0.76 33.95 ± 0.88 34.37 ± 1.23 35.38 ± 2.14 38.56 ± 1.25 38.32 ± 1.82 40.01 ± 0.91

PAB 35.63 ± 1.13 22.59 ± 2.81∗∗ 22.90 ± 3.41 22.03 ± 3.25∗ 20.61 ± 3.22∗∗ 19.73 ± 2.68∗∗∗ 20.87 ± 2.50∗∗∗ 19.00 ± 2.88∗∗∗ 19.57 ± 2.66∗∗∗

Left Ventricular Ejection Fraction (%)

Sham 67.60 ± 3.91 64.48 ± 1.48 63.45 ± 3.53 65.57 ± 3.06 69.30 ± 2.77 69.30 ± 4.52 67.08 ± 5.68 69.82 ± 3.69 61.60 ± 4.43

PAB 64.88 ± 2.24 55.88 ± 5.65 61.30 ± 3.83 65.65 ± 3.17 63.23 ± 3.54 64.82 ± 2.93 65.79 ± 2.37 66.99 ± 3.47 62.61 ± 1.86

Left Ventricular Cardiac Output (ml/min)

Sham 15.81 ± 2.11 17.39 ± 0.90 15.62 ± 1.35 17.73 ± 1.05 17.34 ± 0.35 18.97 ± 1.78 19.07 ± 2.95 20.42 ± 1.72 18.64 ± 2.10

PAB 15.89 ± 0.80 11.30 ± 1.55 12.30 ± 1.94 12.21 ± 1.88 11.67 ± 1.87 11.03 ± 1.36∗ 11.60 ± 1.16∗∗∗ 10.58 ± 1.69∗∗∗ 11.10 ± 1.50∗

Left Ventricular Mass (mg)

Sham 80.37 ± 1.10 77.48 ± 2.74 79.02 ± 2.75 77.47 ± 2.15 76.77 ± 1.74 83.34 ± 2.49 87.20 ± 1.40 90.45 ± 4.91 88.19 ± 3.52

PAB 81.25 ± 2.32 82.29 ± 2.71 81.96 ± 1.70 75.94 ± 3.24 74.23 ± 2.51 78.19 ± 2.53 81.03 ± 2.70 82.88 ± 2.54 85.75 ± 2.63

Right Ventricular End Diastolic Volume (µl)

Sham 47.15 ± 1.93 45.57 ± 1.37 40.71 ± 1.00 43.35 ± 2.62 42.08 ± 0.66 44.67 ± 0.82 44.97 ± 3.24 46.78 ± 1.66 55.19 ± 3.83

PAB 43.16 ± 2.09 63.03 ± 3.77∗ 52.58 ± 4.12 45.60 ± 4.42 51.69 ± 4.23 53.36 ± 4.93 53.46 ± 2.68 56.48 ± 3.63 61.48 ± 5.29

Right Ventricular End Systolic Volume (µl)

Sham 11.98 ± 1.49 11.92 ± 0.22 10.71 ± 1.13 11.10 ± 1.49 9.51 ± 1.00 9.77 ± 1.66 10.52 ± 1.97 9.35 ± 1.36 15.50 ± 2.74

PAB 11.97 ± 0.91 38.43 ± 5.51∗∗∗ 29.29 ± 4.31∗∗ 24.26 ± 4.06 27.06 ± 3.59∗∗ 29.06 ± 4.07∗∗ 30.67 ± 3.04∗∗ 30.82 ± 3.78∗∗∗ 35.41 ± 4.07∗∗

Right Ventricular Stroke Volume (µl)

Sham 35.16 ± 1.18 33.65 ± 1.30 30.01 ± 0.92 32.24 ± 1.53 32.57 ± 1.28 34.90 ± 1.15 34.45 ± 2.08 37.43 ± 1.38 38.44 ± 0.11

PAB 31.19 ± 1.31 24.61 ± 2.40∗∗ 23.28 ± 1.75 21.34 ± 1.24∗∗∗ 24.59 ± 2.46∗ 24.29 ± 2.65∗∗∗ 22.79 ± 1.73∗∗∗ 24.86 ± 1.14∗∗∗ 25.85 ± 1.49∗∗∗

Continued on next page
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Table A.1 – continued from previous page

Timepoint (day)

Parameter Group 0 1 3 7 14 21 35 56 105

Right Ventricular Ejection Fraction (%)

Sham 74.78 ± 2.45 73.79 ± 0.75 73.78 ± 2.35 74.65 ± 2.25 77.36 ± 2.41 78.27 ± 3.35 76.99 ± 3.16 80.10 ± 2.49 71.79 ± 3.52

PAB 72.42 ± 1.07 40.41 ± 5.38
∗∗∗

45.51 ± 4.67
∗∗∗

48.42 ± 4.24
∗∗∗

48.24 ± 4.21
∗∗∗

46.04 ± 4.11
∗∗∗

43.02 ± 3.51
∗∗∗

45.93 ± 3.56
∗∗∗

42.61 ± 2.10
∗∗∗

Right Ventricular Cardiac Output (ml/min)

Sham 14.95 ± 2.08 16.64 ± 1.03 15.23 ± 1.33 16.81 ± 1.07 16.43 ± 0.46 18.67 ± 1.26 16.76 ± 2.21 19.93 ± 1.51 17.85 ± 1.82

PAB 13.87 ± 0.66 12.31 ± 1.35 12.38 ± 1.02 11.79 ± 0.61
∗

13.75 ± 0.98 13.53 ± 1.25
∗

12.77 ± 0.90 13.51 ± 0.71
∗∗

15.75 ± 0.28

Right Ventricular Mass (mg)

Sham 46.89 ± 2.82 48.24 ± 2.61 46.67 ± 1.76 44.39 ± 2.57 41.89 ± 0.96 40.60 ± 1.91 41.32 ± 1.31 43.17 ± 0.52 41.24 ± 2.59

PAB 42.74 ± 1.67 57.98 ± 2.52 65.13 ± 2.32
∗∗

67.71 ± 3.07
∗∗∗

67.74 ± 3.28
∗∗∗

68.97 ± 3.53
∗∗∗

74.28 ± 3.54
∗∗∗

78.56 ± 4.75
∗∗∗

95.11 ± 7.18
∗∗∗

Right Ventricular Mass / Bodyweight (mg/g)

Sham 2.02 ± 0.13 2.16 ± 0.14 2.10 ± 0.09 1.95 ± 0.12 1.77 ± 0.04 1.67 ± 0.06 1.61 ± 0.07 1.61 ± 0.04 1.45 ± 0.10

PAB 1.83 ± 0.07 2.76 ± 0.14 3.02 ± 0.10
∗∗

2.90 ± 0.14
∗∗

2.89 ± 0.17
∗∗∗

2.82 ± 0.19
∗∗∗

2.91 ± 0.17
∗∗∗

3.03 ± 0.18
∗∗∗

3.49 ± 0.32
∗∗∗

Right Ventricular Mass / Left Ventricular Mass (mg/mg)

Sham 0.58 ± 0.04 0.62 ± 0.03 0.60 ± 0.04 0.57 ± 0.02 0.55 ± 0.01 0.49 ± 0.02 0.47 ± 0.02 0.48 ± 0.03 0.47 ± 0.01

PAB 0.53 ± 0.03 0.70 ± 0.02 0.80 ± 0.03
∗∗

0.90 ± 0.05
∗∗∗

0.91 ± 0.03
∗∗∗

0.88 ± 0.03
∗∗∗

0.92 ± 0.04
∗∗∗

0.95 ± 0.05
∗∗∗

1.10 ± 0.05
∗∗∗

Left Ventricular End-Diastolic Eccentricity Index (mm/mm)

Sham 1.17 ± 0.03 1.22 ± 0.01 1.20 ± 0.03 1.23 ± 0.03 1.22 ± 0.05 1.24 ± 0.03 1.26 ± 0.04 1.24 ± 0.04 1.19 ± 0.00

PAB 1.24 ± 0.04 1.69 ± 0.12 1.62 ± 0.17 1.78 ± 0.20 2.02 ± 0.22
∗

1.98 ± 0.20 2.20 ± 0.27
∗

2.44 ± 0.26
∗∗∗

2.45 ± 0.36
∗∗∗

Left Ventricular End-Systolic Eccentricity Index (mm/mm)

Sham 1.28 ± 0.09 1.33 ± 0.02 1.34 ± 0.02 1.33 ± 0.02 1.28 ± 0.02 1.23 ± 0.04 1.22 ± 0.04 1.18 ± 0.06 1.17 ± 0.04

PAB 1.26 ± 0.08 1.67 ± 0.06 1.61 ± 0.12 2.13 ± 0.25 2.31 ± 0.29 2.30 ± 0.30 3.20 ± 0.49
∗∗∗

3.27 ± 0.44
∗∗∗

3.08 ± 0.39
∗∗∗

∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001; Sham vs. PAB
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Table A.2 – Staging Study - Results (Harvest

Timepoint (day)

Parameter Group 3 7 14 21 28 35

Bodyweight (g)

Sham 23.60 ± 0.00 24.19 ± 0.70 25.83 ± 0.53 26.62 ± 0.34 25.20 ± 0.51 27.23 ± 0.33

PAB 21.83 ± 0.93 23.80 ± 0.66 26.47 ± 0.28 26.75 ± 0.24 26.04 ± 0.46 26.94 ± 0.26

Systolic Blood Pressure (mmHg)

Sham 87.33 ± 4.77 87.57 ± 3.42 92.03 ± 1.47 97.28 ± 2.30 85.76 ± 4.65 89.57 ± 5.44

PAB 74.08 ± 4.84 68.45 ± 4.83∗ 80.18 ± 2.33 79.89 ± 6.53∗ 77.92 ± 4.11 80.96 ± 3.59

Right Ventricular Systolic Blood Pressure (mmHg)

Sham 27.55 ± 1.74 28.50 ± 0.86 26.60 ± 0.34 28.49 ± 0.64 27.39 ± 1.24 29.40 ± 0.88

PAB 40.20 ± 0.68 46.89 ± 3.51∗∗ 55.51 ± 3.51∗∗∗ 67.76 ± 4.42∗∗∗ 57.77 ± 7.05∗∗∗ 67.79 ± 4.81∗∗∗

Left Ventricular Mass (mg)

Sham 77.45 ± 2.25 86.75 ± 2.27 86.83 ± 3.90 92.46 ± 3.27 86.50 ± 1.91 93.26 ± 1.34

PAB 68.18 ± 3.91 73.06 ± 2.24∗∗∗ 76.58 ± 1.13 84.63 ± 1.85 80.48 ± 2.56 87.94 ± 2.93

Right Ventricular Mass (mg)

Sham 19.85 ± 0.25 19.71 ± 0.69 19.95 ± 0.39 20.18 ± 1.11 19.91 ± 0.98 20.88 ± 0.63

PAB 31.23 ± 1.75 34.68 ± 1.94∗∗∗ 35.78 ± 2.78∗∗∗ 42.05 ± 2.33∗∗∗ 37.38 ± 2.40∗∗∗ 44.10 ± 2.73∗∗∗

Right Ventricular Mass / Bodyweight (mg/g)

Sham 0.84 ± 0.01 0.82 ± 0.03 0.77 ± 0.01 0.76 ± 0.04 0.80 ± 0.04 0.77 ± 0.02

PAB 1.45 ± 0.15∗ 1.47 ± 0.09∗∗∗ 1.45 ± 0.06∗∗∗ 1.57 ± 0.10∗∗∗ 1.45 ± 0.11∗∗∗ 1.64 ± 0.10∗∗∗

Right Ventricular Mass / Left Ventricular Mass (mg/mg)

Sham 0.26 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 0.23 ± 0.01

PAB 0.47 ± 0.06∗ 0.48 ± 0.04∗∗∗ 0.47 ± 0.04∗∗∗ 0.50 ± 0.03∗∗∗ 0.47 ± 0.04∗∗∗ 0.50 ± 0.03∗∗∗

Right Ventricular Mass / Tibia Length (mg/mm)

Sham 1.29 ± 0.02 1.25 ± 0.05 1.26 ± 0.01 1.26 ± 0.07 1.27 ± 0.07 1.26 ± 0.04

PAB 2.02 ± 0.13 2.23 ± 0.13∗∗∗ 2.38 ± 0.09∗∗∗ 2.62 ± 0.15∗∗∗ 2.30 ± 0.15∗∗∗ 2.65 ± 0.16∗∗∗

Right Ventricular Cardiomyocyte Diameter (µm)

Sham 16.11 ± 0.28 14.77 ± 0.27 15.93 ± 0.19 16.84 ± 0.39 16.54 ± 0.56 17.70 ± 0.59

PAB 18.33 ± 0.21 18.65 ± 0.40∗∗∗ 19.42 ± 0.69∗∗ 20.22 ± 0.66∗∗ 20.78 ± 0.87∗∗∗ 19.99 ± 0.67∗

Right Ventricular Collagen Content (%)

Sham 0.47 ± 0.03 0.54 ± 0.05 0.61 ± 0.11 0.44 ± 0.02 0.48 ± 0.07 0.56 ± 0.05

PAB 0.50 ± 0.05 1.58 ± 0.32 3.51 ± 0.50∗∗∗ 5.41 ± 0.20∗∗∗ 4.73 ± 0.52∗∗∗ 4.37 ± 1.53∗∗∗

∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001; Sham vs. PAB

Table A.3 – Treatment Study - Results

Experimental Group

Parameter Sham PAB Sildenafil Riociguat

Bodyweight (g)

0 24.79± 0.42 23.55± 0.48 23.53± 0.27 23.78± 0.31

7 25.23± 0.34 22.93± 0.61
†

22.47± 0.66 22.34± 0.52

21 26.34± 0.34 24.52± 0.40 22.58± 1.12
∗

23.26± 0.39

21-7 1.11± 0.32 1.59± 0.45 0.11± 0.89 0.93± 0.35

Continued on next page
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Table A.3 – continued from previous page

Experimental Group

Parameter Sham PAB Sildenafil Riociguat

Heart Rate (beats/min)

0 471.77±23.00 445.69±11.43 419.28±16.49 432.26±15.28

7 506.47±28.52 501.49±19.60 515.78±12.84 507.50±14.47

21 464.80±24.04 514.06±15.12 539.31±17.31 524.52± 8.76

21-7 −41.67±25.92 12.57±18.11 23.53±11.32 17.02±13.78

Systolic Blood Pressure (mmHg)

21 95.06± 1.84 77.26± 3.80
††

77.33± 3.72 79.04± 5.47

Right Ventricular Systolic Blood Pressure (mmHg)

21 24.98± 0.94 60.53± 1.87
†††

59.19± 2.10 59.90± 4.28

Left Ventricular End Diastolic Volume (µl)

0 60.09± 2.28 59.37± 1.77 61.88± 1.82 60.14± 2.37

7 59.90± 1.80 25.89± 2.76
†††

27.25± 1.28 23.83± 1.89

21 64.18± 1.92 27.87± 1.98
†††

27.57± 1.94 25.57± 2.45

21-7 4.28± 0.51 1.98± 2.08 0.31± 1.49 1.75± 1.56

Left Ventricular End Systolic Volume (µl)

0 22.79± 2.00 22.86± 1.22 24.79± 1.75 22.61± 2.22

7 23.15± 1.86 10.56± 1.86
†††

12.65± 2.55 8.66± 0.87

21 24.50± 2.09 10.30± 0.82
†††

8.86± 0.62 9.40± 1.52

21-7 1.35± 0.71 −0.26± 1.89 −3.79± 2.07 0.74± 1.34

Left Ventricular Stroke Volume (µl)

0 37.31± 0.45 36.51± 1.43 37.08± 0.93 37.54± 0.50

7 36.75± 0.75 15.33± 1.18
†††

16.92± 0.81 15.16± 1.10

21 39.69± 1.08 17.57± 1.42
†††

18.70± 1.38 16.17± 1.27

21-7 2.94± 0.49 2.24± 0.75 1.78± 1.19 1.01± 0.62

Continued on next page
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Table A.3 – continued from previous page

Experimental Group

Parameter Sham PAB Sildenafil Riociguat

Left Ventricular Ejection Fraction (%)

0 62.49± 1.88 61.49± 1.65 60.24± 2.00 62.98± 2.17

7 61.67± 2.08 61.19± 2.89 62.27± 1.81 63.97± 1.35

21 62.14± 2.32 62.87± 1.67 67.78± 0.81 64.13± 2.53

21-7 0.47± 0.90 1.68± 3.58 5.51± 2.23 0.17± 2.46

Left Ventricular Cardiac Output (ml/min)

0 17.63± 1.01 16.26± 0.69 15.52± 0.65 16.18± 0.42

7 18.60± 1.08 7.75± 0.74
†††

8.69± 0.39 7.73± 0.65

21 18.51± 1.28 9.04± 0.77
†††

10.08± 0.74 8.45± 0.60

21-7 −0.09± 0.92 1.29± 0.43 1.39± 0.59 0.73± 0.26

Left Ventricular Mass (mg)

0 85.46± 1.67 80.05± 2.91 81.39± 1.19 84.99± 2.06

7 89.21± 1.75 68.44± 1.97
†††

67.66± 2.79 66.63± 2.50

21 95.49± 3.08 74.29± 1.40
†††

69.68± 3.13 65.99± 2.91
∗

21-7 6.28± 2.41 5.84± 2.14 2.02± 2.57 −0.64± 1.86

Right Ventricular End Diastolic Volume (µl)

0 50.07± 2.87 49.83± 1.62 51.71± 1.57 50.45± 1.88

7 47.77± 2.29 73.32± 5.16
†††

59.92± 3.25
∗

71.16± 3.54

21 51.76± 1.92 72.62± 4.34
†††

54.46± 2.72
∗∗∗

63.41± 4.77

21-7 3.99± 1.37 −0.70± 1.88 −5.46± 2.12 −7.75± 5.21

Right Ventricular End Systolic Volume (µl)

0 14.17± 2.00 14.78± 1.05 15.98± 1.34 14.41± 1.71

7 12.99± 1.14 49.57± 4.06
†††

36.99± 3.45
∗∗

46.80± 3.30

21 13.94± 1.48 47.40± 3.64
†††

28.82± 2.85
∗∗∗

35.96± 3.44
∗

21-7 0.95± 1.39 −2.18± 1.93 −8.17± 2.18 −10.85± 3.88
∗

Continued on next page
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Table A.3 – continued from previous page

Experimental Group

Parameter Sham PAB Sildenafil Riociguat

Right Ventricular Stroke Volume (µl)

0 35.90± 1.13 35.05± 1.54 35.73± 1.09 36.04± 0.64

7 34.77± 1.28 23.75± 1.39
†††

22.93± 1.54 24.35± 0.88

21 37.81± 1.33 25.22± 1.03
†††

25.64± 0.97 27.46± 1.99

21-7 3.04± 0.63 1.47± 0.70 2.71± 0.91 3.10± 1.82

Right Ventricular Ejection Fraction (%)

0 72.42± 2.41 70.27± 1.98 69.34± 2.09 71.98± 2.41

7 73.11± 1.37 32.85± 1.39
†††

39.09± 3.05 34.70± 1.82

21 73.30± 2.18 35.37± 1.69
†††

48.18± 3.27
∗∗∗

43.65± 2.15
∗

21-7 0.19± 2.04 2.52± 1.33 9.09± 2.22
∗

8.98± 2.05

Right Ventricular Cardiac Output (ml/min)

0 16.99± 1.16 15.61± 0.74 14.98± 0.71 15.56± 0.58

7 17.56± 1.07 11.77± 0.60
†††

11.87± 0.94 12.41± 0.74

21 17.67± 1.36 12.96± 0.65
†††

13.87± 0.77 14.44± 1.17

21-7 0.11± 0.80 1.19± 0.49 2.00± 0.44 2.03± 0.96

Right Ventricular Mass (mg)

0 30.37± 0.94 29.43± 0.77 30.02± 0.89 29.67± 0.56

7 32.35± 0.71 61.06± 2.41
†††

55.44± 1.93 60.46± 1.31

21 32.82± 0.99 62.31± 3.09
†††

57.09± 2.23 59.57± 2.50

21-7 0.47± 0.83 1.25± 1.50 1.65± 1.66 −0.88± 2.27

Right Ventricular Mass / Bodyweight (mg/g)

0 1.23± 0.04 1.25± 0.03 1.28± 0.04 1.25± 0.03

7 1.28± 0.03 2.67± 0.11
†††

2.48± 0.11 2.72± 0.10

21 1.25± 0.04 2.55± 0.14
†††

2.56± 0.10 2.56± 0.11

21-7 −0.04± 0.04 −0.12± 0.09 0.07± 0.15 −0.16± 0.10

Continued on next page
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Table A.3 – continued from previous page

Experimental Group

Parameter Sham PAB Sildenafil Riociguat

Right Ventricular Mass / Left Ventricular Mass (mg/mg)

0 0.36± 0.01 0.37± 0.01 0.37± 0.01 0.35± 0.01

7 0.36± 0.01 0.90± 0.04
†††

0.83± 0.04 0.91± 0.03

21 0.34± 0.01 0.84± 0.04
†††

0.83± 0.03 0.91± 0.04

21-7 −0.02± 0.01 −0.06± 0.02 0.00± 0.03 0.00± 0.04

Left Ventricular End-Diastolic Eccentricity Index (mm/mm)

0 1.14± 0.02 1.13± 0.01 1.14± 0.01 1.16± 0.02

7 1.12± 0.01 2.40± 0.16
†††

2.32± 0.04 2.52± 0.13

21 1.14± 0.02 2.58± 0.13
†††

2.31± 0.12 2.65± 0.20

21-7 0.01± 0.02 0.18± 0.13 −0.01± 0.13 0.13± 0.10

Left Ventricular End-Systolic Eccentricity Index (mm/mm)

0 1.18± 0.03 1.15± 0.03 1.18± 0.02 1.18± 0.03

7 1.15± 0.03 2.64± 0.26
†††

2.54± 0.13 2.74± 0.12

21 1.19± 0.02 3.16± 0.16
†††

2.63± 0.14
∗

3.16± 0.37

21-7 0.04± 0.03 0.52± 0.34 0.09± 0.11 0.42± 0.34

Right Ventricular Collagen Area (%)

21 0.74± 0.16 5.61± 0.28
†††

5.37± 0.25 3.05± 0.76
∗∗

Right Ventricular Cardiomyocyte Diameter (µm)

21 14.15± 0.03 20.70± 0.60
†††

19.70± 0.62 19.76± 0.31

∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001; PAB vs. Sildenafil / Riociguat

†p<0.05, ††p<0.01, †††p<0.001; PAB vs. Sham
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