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Abstract

We analyze linear-quadratic (LQ) stochastic control problems that arise in optimal
trade execution in models of Obizhaeva-Wang type. Extending previous literature,
order book depth and resilience are both allowed to be stochastic processes. Moreover,
the target position can be a random variable, and we can include a risk term with
stochastic target process.

In discrete time, we find via the dynamic programming principle that the optimal
trade sizes and the minimal costs are characterized by a process Y, which is defined
by backward recursion, and by, for general targets, a further process v». We moreover
investigate properties of our model such as savings in the long-time horizon, existence
of profitable round trips, and premature closure of the position.

In continuous time, we go beyond the usual finite-variation strategies, and present
two approaches. In the first one, we set up and solve a relevant control problem where
we consider cadlag semimartingales as execution strategies, while in the second one, we
start from a typical formulation for finite-variation strategies, extend this continuously
to progressively measurable strategies, and solve the extended problem via reduction
to a standard LQ) stochastic control problem and subsequent application of relevant
literature. The counterpart of the process Y from discrete time now is the solution
of a quadratic backward stochastic differential equation (BSDE), and 1 becomes the
solution of a linear BSDE. It turns out that optimal strategies indeed can have infinite
variation.



Zusammenfassung

Wir analysieren linear-quadratische (LQ) stochastische Kontrollprobleme, die in Mod-
ellen vom Obizhaeva-Wang Typ in der optimalen Handelsausfiihrung auftreten. In
Erweiterung zu bisheriger Literatur werden Orderbuchtiefe und Resilienz beide durch
stochastische Prozesse beschrieben. Auferdem darf die Zielposition eine Zufallsvariable
sein, und wir kdnnen einen Risikoterm mit stochastischem Zielprozess einbeziehen.

In diskreter Zeit erhalten wir mittels des Prinzips der dynamischen Porgammierung,
dass die optimalen Handelsvolumina und die minimalen Kosten durch einen Prozess Y,
der iiber Riickwartsrekursion definiert ist, und, im Fall allgemeiner Zielgréfen, durch
einen weiteren Prozess 1 charakterisiert sind. Wir untersuchen aufterdem Eigen-
schaften unseres Modells wie langfristige Einsparungen, Existenz von profitablen Rund-
fahrten und vorzeitiges Schliefen der Position.

In stetiger Zeit gehen wir iiber die iiblichen Strategien endlicher Variation hinaus
und présentieren zwei Vorgehensweisen. Bei der ersten formulieren und losen wir ein
relevantes Kontrollproblem, bei dem wir cadlag Semimartingale als Handelsstrategien
zulassen, wahrend wir bei der zweiten von einer typischen Formulierung fiir Strate-
gien endlicher Variation starten, diese Formulierung stetig zu progressiv messbaren
Strategien erweitern, und das erweiterte Problem per Reduktion zu einem standard
LQ stochastischen Kontrollproblem und anschlieflender Anwendung von geeigneter
Literatur 16sen. Das Gegenstiick zu dem Prozess Y aus diskreter Zeit ist nun die
Losung einer quadratischen riickwérts stochastischen Differentialgleichung (BSDE),
und ) entspricht nun der Losung einer linearen BSDE. Es stellt sich heraus, dass
optimale Strategien tatsdchlich unendliche Variation haben kénnen.
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Introduction

In a stochastic control problem one seeks to steer, by choosing from a set of controls,
a randomly evolving state in such a way that a performance criterion is optimized.
Stochastic control problems arise in various applications, in particular, but not limited
to, in finance (see, e.g., the examples in [Pha09, Chapter 2]). In this thesis, we analyze
some linear-quadratic (L.Q) stochastic control problems coming from optimal trade
execution.

1.1 Optimal trade execution

Institutional investors regularly face the task to sell or buy a large amount of shares.
Typically, it is not advisable to complete the whole task at once, since trading large
volumes can have a substantial adverse impact on the price due to illiquidity in the
market. One often can do better, i.e., reduce execution costs, by splitting up a large
order into several smaller ones that are executed one after another. The issue thus
consists in finding a good timing and appropriate sizes of these orders. When splitting
up a large order, one has to keep in mind that there usually is a fixed time by which
the original task needs to be finished, with a typical time scale ranging from some
hours to a few days. Even if there is no fixed terminal time, taking longer to finish the
task may bear greater uncertainty. Trading too slowly can therefore be problematic,
e.g., by enforcing a costly trade at the terminal time, whereas trading too fast may
accumulate avoidable costs beforehand. The optimization of such trading schedules is
called optimal trade execution or optimal liquidation problem.

To treat optimal trade execution mathematically, the typical procedure is to model
the impact of the large agent on the price, formulate a control problem based on this,
and solve the control problem (analytically or numerically).

Admissible strategies

One needs to decide between a discrete-time and a continuous-time formulation of the
model, and what trading strategies to allow for. Trading strategies X in the literature
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usually have the interpretation that at time s, the value of X indicates the (sometimes
relative to the goal, and possibly negative) position of the agent in this asset. The task
to sell or buy a certain amount of shares over the given trading period then translates
to the requirement that a specific position has to be reached at terminal time, starting
from a given initial position. Optimal trade execution problems are also sometimes
formulated as the problem to close an initial position = € R up to the terminal time,
where a negative value x < 0 means a buy objective and a positive value x > 0 a sell
objective. In this case, the constraint on trading strategies consists in starting in x
and being 0 at terminal time.

Still, one often imposes further (application-motivated and/or technical) conditions
on trading strategies. In some literature (e.g., [OW13|, [BF14], [PSS11]), only pure
buy or pure sell strategies are considered. In mathematical terms, such works only
admit monotone functions. Others (e.g., [FSU14], [GZ15]) choose strategies that are
composed of a pure buy and a pure sell strategy. In [Alm12|, strategies are assumed
to be absolutely continuous and therefore are fully described by their derivative, called
trading rate. Also in, for example, [GH17] and [HX19|, strategies are given via a trading
rate. In contrast, the strategies in [OW13, Section 6] have an absolutely continuous
component and a jump component, where jumps of the trading strategy are called
block trades.

Observe that most assumptions found in the literature restrict strategies to be, in
particular, of finite variation. Rarely, more general strategies are taken into account.
For instance, in |LS13| semimartingales are considered as strategies in a model that
extends [OW13| to an underlying semimartingale price process. An extension of pro-
ceeds of a large investor from continuous finite-variation strategies to more general
classes is investigated in [BBF19|. Moreover, strategies of infinite variation show up
in |[HK21| when an instantaneous price impact factor tends to zero.

Cost criterion

Before searching for optimal strategies among the respective class of admissible strate-
gies, one needs to specify a criterion for optimality. In view of the context, this should
certainly involve the (expected) execution costs, where the expression for the execu-
tion costs is tied to other modeling choices such as the set of admissible strategies and
the impact of trading on the price development. Besides that, the optimality criterion
can also contain further aspects. In addition to the strict requirements on admissible
strategies as discussed above, it is possible at this place to incorporate some preferences
on the strategies.

This in particular allows to model risk-aversion of the agent. For example, [ACO1]
and [Alm12| use a mean-variance criterion. Although the main part of [OW13| deals
with expected overall execution costs, [OW13, Section 8.3] also contains a result for
mean-variance minimization. The works [SST10| and [SS09| show how to perform
expected utility optimization in a model of the type of [ACO1].
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Moreover, there are articles such as [AK15|, [GH17], [HX19], and [HK21] that include
a quadratic risk term into the formulation of the cost criterion. Additionally, a target
process can be followed in, e.g., [BSV17] and [BV18|. A risk term with p-th power,
p > 1, of the position is considered in, e.g., [AJK14| and [GHS18|.

Price impact

To set up an expression for the execution costs, one needs to describe how trading
according to a strategy affects the price. A common assumption to start with is that
the actual price is the sum of an unaffected price one would observe in absence of
the agent and a price component which contains the impact of the agent’s trading on
the price (see, e.g., [OW13|, [ACO1], [Alm12], [LS13]). This second component is then
often called (price) deviation. To avoid the possibility of negative prices, some works
(e.g., |[BLI8, Section 3], [GZ15], [BBF18a]) assume that the price component describing
the impact contributes multiplicatively, instead of additively, to the actual price.

Further, the literature distinguishes permanent, instantaneous (also called tempo-
rary), and transient price impact (see, e.g., [GS13| Sections 22.3 and 22.4]). Permanent
price impact means that each trade induces a lasting and unchanging impact on the
price. Especially, the impact of a trade affects this trade and all future trades equally.
This kind of price impact can be found, for example, in [BL98, Section 2|. In contrast,
if the impact applies only to the trade that provoked it, this is called instantaneous
price impact. Instantaneous price impact is for instance considered in [BLI8, Section
3]. A popular model type that combines a permanent price impact component and an
instantaneous one goes back to Almgren and Chriss (see [ACO1]).

Meanwhile, models of Obizhaeva-Wang type (initiated by |[OW13|) use transient
price impact. As for permanent price impact, the impact of a trade here affects future
trades. However, the transient impact induced by a particular trade develops over
time. In the model of [OW13|, the transient impact of a trade on the price decays
exponentially and thus has a stronger influence on trades closely thereafter than it has
on trades much later in time. This transient impact is modeled by two components
called price impact (coefficient) and resilience (coefficient). Price impact in this sense is
the inverse of the order book depth in an underlying order book model, and resilience
describes the change of the price deviation after a trade, a phenomenon that has
been observed empirically in, e.g., [BHS95|, [BGPWO04|, [Lar07], [LH15|, and [May06,
Chapter 4].

Note that [OW13| provide a motivation of their model via a simplified limit order
book model. In Figure [I.I we depict a limit order book and explain how to derive a
simplification as used in [OW13|. In Figure we illustrate the effect of a trade in
such a stylized order book. More details are provided in the paragraph “A static order
book model & la Obizhaeva-Wang” after next.
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Figure 1.1: From a limit order book (left) to a simplified block-shaped order book
model (right). The bid side of the order book is colored in red, whereas the
ask side is colored in blue. In the limit order book (left), the height of the
bar at each tick represents the amount of shares that is currently available
in the order book on the respective price level. To obtain a simplification
(right) as in [OW13|, we assume that the bars have all the same (posi-
tive, real-valued) height and that the spacing between price levels becomes
infinitesimally small.

Limit order books

Limit order books are used to store the limit orders of all market participants for
a particular asset in an electronic market. There are different types of orders that
a market participant can place, with limit orders and market orders being the most
important ones.

A limit order is an order to buy (or sell) a certain amount of shares at a chosen price
level. Here, the amount and the price level are specified by the agent, but the time
when the order is executed depends on availability in the market. Until a limit order
can be matched with orders of other market participants, it stays in the limit order
book.

Market orders, on the other hand, are executed immediately (on a first come first
serve basis) against the best limit orders available in the order book. This means
that, at the expense of having to accept the current price in the market, the agent
does not need to wait for their order to be executed. The agent in most literature
on optimal trade execution can only use such market orders (exceptions are, e.g.,
|GLFT12,BL14,/CJ15]).

To introduce further terminology, the bid side of the order book contains the stored
buy orders, whereas the ask side comprises the stored sell orders. The best bid price
is the highest price for which one can find a buy order stored in the order book.
Similarly, the best ask price is the lowest price at which one can buy from the order
book. The distance between the best ask and the best bid price is referred to as
bid-ask spread. An order book model is called symmetric if the ask side resembles
a reflection of the bid side. It is said to be block-shaped if the amount of shares
available is the same for all price levels on the respective side (more general shapes
are considered in, e.g., [AFS10,|/AS10,[PSS11,/AA14]). The height of the blocks in a
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symmetric block-shaped order book is called order book depth (or market depth).

A static order book model a la Obizhaeva-Wang

As a specific example and as a preparation for the control problems considered in this
thesis, we now explain a variant of the order book model by Obizhaeva and Wang; this
is not exactly the same formulation as in [OW13], but it illustrates the basics for models
of Obizhaeva-Wang type. To this end, we fix some terminal time 7" > 0, and we let
the order book depth ¢ and the resilience coefficient p be strictly positive deterministic
constants as in [OW13|. In |[OW13], % is split up in a permanent and a transient
price impact coefficient, both assumed to be nonnegative deterministic constants. We
consider only a transient price impact coefficient, which then is given by v = é (see
also Remark or Remark for inclusion of a constant deterministic permanent
price impact coefficient), and we will often call ~y just price impact. Together, the order
book parameters 7 and p will describe the transient price impact of trading.

Let x € R be the initial position with the meaning that |z| is the amount of shares
to be liquidated (if z > 0) or to be acquired (if x < 0) over the trading period [0, 7).
In the following, we consider strategies X = (X).cjo— 1 that are cadlag and of finite
variation, equipped with the initial position Xy = x, and required to meet X, = 0.
The interpretation is that for each time s € [0,7], the quantity |X_| describes the
amount of shares that the agent would have to sell (if X;_ > 0) or buy (if X;_ < 0)
at time s in order to close the position. A jump of the strategy X at time s € [0,7] is
interpreted as a block trade and denoted by AX, = X, — X,_.

As a meta-model for the impact of trading on the price, we assume that the actual
price of a share is the sum of an unaffected price S° that is a cadlag martingale and
a deviation DX, so that SY + D;X is the price immediately prior to trading at time
t € [0,7] and SY + D is the price immediately after trading at time ¢ (a block trade
A X, becomes effective only immediately after a possible jump of S° at time ¢, which
is economically reasonable, see also [LS13, Remark 2.1]). For simplicity, let S be
equivalent to 0 in what follows; this reduction is essentially without loss of generality
(see also, e.g., Remark or Remark [5.1.1).

We want to derive a control problem from trading in the simplified block-shaped
order book model of Figure [I.1] with the constant deterministic order book depth
q > 0. Suppose that the agent performs a block trade AX; > 0, i.e., a buy trade
(the case of a sell trade works analogously), at time ¢ € [0, 7]. This market order is
matched with the best limit sell orders stored in the order book, taking them away. As
visualized in Figure , this leads to an increase in the deviation from D;* immediately
prior to the trade to D;¥ afterwards. To obtain the shift of the deviation, we consider
the volume removed from the order book

Dy
Ath/ qdy = (D — D) )q,

D
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which gives AD;¥ = yAX,. If the agent does not trade between time ¢ and time
s > t, the deviation is assumed to decay exponentially at the constant deterministic
rate p > 0:

DY = Dfe 77",
In the case where trading is only allowed at given times t5 < t; < ... < ty for
some N € N and [ty,ty] C [0,T7, i.e., if the strategy consists only of block trades at
to < t1 <...<ty, then the deviation D* = (D)ejo— 1) can be expressed as

DY = e P + Z e_p(s_tj)fyAth, s € [0—-,T], (1.1)
thS

where d € R is the initial deviation (typically d = 0) with which the agent enters the
trading period [0,7]. For trading according to a cadlag finite-variation strategy X,
this construction naturally leads to the formulation

ADY = —pDXds +9dX,, s€[0.7), DY =d. (12)
q : q : :
A, 5 5
DX —— DX DY DfeDF

Figure 1.2: Visualization of trading in a (stylized) symmetric block-shaped limit order
book model at time ¢ (and then waiting until time s > ¢). The price is
on the horizontal axis. The order book depth is depicted on the vertical
axis. The red block on the left-hand side stands for the limit buy orders, the
blue block on the right-hand side for the limit sell orders stored in the order
book. Left: Observe that the buy trade AX, takes away the left-most part
of the sell-order block and shifts the price from DX to D;X. Right: After
having waited until time s > ¢, some of the ask side has been replenished
by new limit sell orders (and the bid side has closed the remaining gap,
since we assume a model with zero bid-ask spread).

The costs to be paid for the trade AX; correspond to
AD{ 1 N
/ (DX +y)qdy = DXAX, + 2_q(AXt>2 = (Dfi + §AXt> AX,,
0

which is the same as if the agent would buy all AX; shares at the mid-price

D¥ + %AXt



1.1 Optimal trade execution

between DX and D. To obtain the execution costs, we have to consider the costs
accumulated by all trading activities of the agent during the whole trading interval
[0,77]. In the setting where the agent can trade only with block trades at given times
to <t; <...<ty, this leads to the execution costs

N
> (DF_+2ax,)Ax,,. (1.3)

J=0

When the agent more generally can use a cadlag finite-variation strategy X, then the
execution costs amount to

/[O,T] (Df_ + %AXS> dx.,. (1.4)

We can now set up the following continuous-time (deterministic) control problem:
Let the set of functions X = (X;)sco—,r that are cadlag and of finite variation with
Xo_ = x and X7 = 0 form the set of admissible strategies. Consider then minimization
of the execution costs subject to the deviation dynamics over all admissible
strategies.

Note that in stochastic settings where, e.g., 7, p, or admissible strategies are stochas-
tic quantities, one would consider the expected value (or conditional expected value at
initial time) in (L.4), as we do in the body of this thesis.

By restricting the set of admissible strategies to functions X = (X;)scp— 7] that are
cadlag, that satisfy Xo. = x and Xy = 0, and that are constant except for jumps
at the times tg < t; < ... < ty, we get a discrete-time problem that is embedded
in the continuous-time problem. It is worth noting that this in general leads to a
different optimization problem whose solution does not simply follow from the one of
the continuous-time problem.

Control problems from optimal trade execution

To summarize the introduction so far, we usually have the following set-up in control
problems coming from optimal trade execution. The price (or, more common, related
quantities such as the deviation) is taken as the state. Trading strategies (the position
or related quantities such as trading rate or trade sizes) act as the control for the
state. The aim is to minimize a cost functional, which contains execution costs (and
possibly further ingredients such as a risk term), over all admissible trading strategies
(which typically transform a given initial position into a specific terminal position).
Less commonly, the problem is formulated (equivalently) as a maximization problem.

One often uses a dynamic formulation where the initial time, the initial position,
and the initial deviation are regarded as variables. The cost functional then is a
function of the strategy, the initial time, the initial position, the initial deviation, and,
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if one considers conditional expectations, the sample space €2 of the underlying filtered
probability space. In the example above, we would have the cost functional

Ji(z.d. X) :/

[t.T)

(D;X_Jr%AXS) dX,, te[0,T],z,d€R,X € Ayz,d),

where we denote, for ¢ € [0,7] and x,d € R, by A;(z,d) the class of admissible
strategies, i.e., of cadlag finite-variation functions X = (X;)scp—,m with X;— = 2 and
Xr =0, and DX = (D )sepr—r) is given by dDY = —pDXds + vdX,, s € [t,T],
DX = d. For each initial time, initial position, and initial deviation, the (possibly also
dependent on §2) value function provides us with the minimal costs; it is defined as the
(essential) infimum of the cost functional (for these initial values) over all admissible
strategies. In the example above, the value function would be
Vi(x,d) = inf Jy(z,d,X), te€l0,T),z,deR.
XeAi(x,d)
If, given an initial time, initial position, and initial deviation, there exists an admissible
strategy for which the cost functional attains its (essential) infimum (within the set of
all admissible strategies), this strategy is called an optimal strategy. To stay with our
example, given t € [0,7] and x,d € R, an optimal strategy (if existent) would be an
element X* € A;(z,d) such that
Ji(z,d, X*) = inf Ji(z,d, X).
XeAi(z,d)
We remark that a particular difficulty in many control problems from optimal trade ex-
ecution arises from the requirement that a given position has to be reached at terminal
time, which creates a nontrivial restriction on the set of admissible controls.

Some optimal trade execution models, in particular models of Obizhaeva-Wang type
for a block-shaped limit order book, lead to control problems of a linear-quadratic
kind: e.g., observe that the deviation in (1.1)) is linear in the trade sizes, and that
the costs in are quadratic in the pair of deviation and trade sizes. Similar ob-
servations hold for the variant with of this problem. Note that there, the
strategy comes in via its jump process and furthermore as integrator both in the state

dynamics and in the cost functional, and thus its influence is comparable to the one
of the trade sizes in with (L.I). These observations also apply to, e.g., the re-
lated to &, respectively related to &, stochastic control problems of
Section respectively of Section [7.1], in the body of this thesis.

The problem in Section is not a standard stochastic control problem, but we
will show in Chapter |8 how to derive a related standard LQ stochastic control prob-
lem, where now the control — and not the state, as before — is (a scaled version of) the
deviation. We in this thesis use the term “standard stochastic control problem” for con-
trol problems where the state is driven by a controlled stochastic differential equation
(SDE) (with a drift and a diffusion term) and the control is a progressively measurable
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process (not restricted to meet a terminal goal) that acts as one of the arguments in
that SDE and as one of the arguments in the integrand of the target functional. Prob-
lems in this standard form are rather typical for the literature on stochastic optimal
control. For less familiar readers, we suggest, e.g., [YZ99| or [Pha09] (and similar re-
sources) for background on stochastic control theory. In particular, let us mention that
in the linear-quadratic case there is a tight connection between standard L(Q stochastic
control problems and Riccati-type backward stochastic differential equations, dating
back at least to the works [Bis76| and [Bis78| by Bismut.

1.2 From constant via time-varying towards
stochastic order book parameters

Early versions of optimal trade execution models (e.g., [BL9§|, [AC01], [OW13]) assume
the parameters describing the impact of a trade on the price to be deterministic and
constant in time. However, it is established (see also, e.g., [CRSO01], [ABCO01|, [LO09|,
[AIm12]) that liquidity varies over time, exhibits among others intra-day patterns, and
can be stochastic. To reproduce market activity more realistically, an active direction of
research on optimal trade execution thus is to incorporate randomly evolving liquidity
features. In the sequel, we review the development from constant via time-varying
towards stochastic parameters for the model of [OW13] in greater depth. Works on
optimal trade execution in other models with stochastic parameters include, but are not
limited to, [Alm12, AJK14,|AK15,BV18,/CS14,|GHQ15,|GH17,|GHS18, HQZ16,[HX19,
KP16b[PZ19,/Sch13, HK21, BBF18b|.

For the model of [OW13] (note that an earlier version of the work [OW13| appeared
in SSRN already in 2005), an extension of the resilience coeflicient from a strictly pos-
itive constant to a deterministic, time-varying, strictly positive function is analyzed
in [AFS0§|. As in [OW13], Alfonsi, Fruth, and Schied in [AFS08| assume a symmetric
block-shaped limit order book model (with possible bid-ask spread) and consider ad-
ditive price impact with a fraction of the price impact being permanent and the other
part being transient with exponential resilience. The price impact coefficients are taken
to be constants in [AFS08|, just as in [OW13]|. The unaffected price in [AFSO08| is as-
sumed to be a martingale and can have jumps, which is more general than the Bachelier
model in [OW13]|. Both works assume a fixed, finite time horizon. In [AFS08], trading
is allowed at finitely many given time points, which do not need to be equally spaced.
A trading strategy thus is described by the collection of trade sizes for each of these
time points. Without loss of generality, a buy objective is assumed. Trading is allowed
in both directions and with random, adapted sizes (however, optimal strategies turn
out to be deterministic pure buy strategies). Trade sizes need to be bounded from
below and strict liquidation is required of admissible strategies. The aim in [AFS0S§]
is to minimize expected overall trading costs. Alfonsi, Fruth, and Schied show that
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cost minimization in their model reduces to the minimization of a certain quadratic
form, which makes it possible to include additional linear constraints on admissible
strategies. This problem is then treated using the Kuhn-Tucker theorem.

Alfonsi and Schied moreover investigate a similar, in certain aspects more general,
model in [AS10], with a view towards existence of price manipulation. The price
impact coefficient is constant in time and deterministic, and the resilience coefficient
is a deterministic, time-varying, strictly positive function, both as in [AFS08|. The
two main differences are that the order book model in [AS10| is not restricted to be
block-shaped, and that an admissible strategy in [AS10| consists of a sequence of a
fixed number of nondecreasing stopping times within a fixed, finite time horizon, and
corresponding trade sizes (satisfying assumptions as in |[AFS08|). Optimal strategies
(for a buy objective) are found to be deterministic pure buy strategies with trades
at homogeneously (with respect to the averaged resilience rate between consecutive
trades) spaced time points.

Alfonsi and Acevedo in [AA14] extend [AS10] to time-dependent price impact. More
precisely, they assume exponential resilience with a deterministic, time-varying, strictly
positive, continuously differentiable resilience coefficient, and a price impact that is
a deterministic, twice continuously differentiable, strictly positive function of time
(multiplied by a deterministic, constant in time shape function in case of a non-block-
shaped order book model). For discrete-time trading, admissible strategies are the
same as in [AFS0§|. The solution approach to the discrete-time problem is in the
spirit of [AFS08| and [AS10]. Furthermore, Alfonsi and Acevedo consider a continuous-
time version of the problem (in the same article [AA14]). Their admissible strategies
in continuous time also require strict liquidation, and are adapted, left-continuous,
and have finite variation. The result for the continuous-time problem is obtained
from a guess based on the discrete-time solution and subsequent verification. Optimal
strategies in both cases are deterministic, and Alfonsi and Acevedo provide conditions
under which they are monotone. Furthermore, optimal strategies in continuous time
in general have block trades at the beginning and at the end of the trading period, but
not in between (this is as in [OW13)]).

Another work that, too, in an Obizhaeva-Wang type model treats deterministic,
time-varying price impact and resilience coefficients is |[BF14]. In comparison to
[AA14], Bank and Fruth in [BF14| impose stronger assumptions on admissible strate-
gies, but less strict assumptions on resilience and price impact functions to obtain
their results. They study a continuous-time problem which is based on a one-sided
block-shaped order book model with (only) transient price impact and exponential
resilience, where only buy trades are allowed. Thus, admissible strategies need to be
nondecreasing. Furthermore, admissible strategies are assumed to be deterministic,
right-continuous, and such that the associated overall execution costs, which are to
be minimized, are finite. Completion of the buy task in general is only required at
infinity, but a fixed time horizon with a given position at this finite terminal time

10



1.2 From constant via time-varying towards stochastic order book parameters

can be enforced by setting the market depth (which corresponds to the inverse of the
price impact coefficient) to zero from the desired terminal time on. An unaffected
price process is left out of the set-up and only the deviation is introduced, where a
nonzero initial deviation is possible. Bank and Fruth first reduce their problem to a
convex optimization problem and then obtain the minimal costs, a characterization of
existence of optimal strategies, and, in this case, a formula for optimal strategies, by
using methods from convex analysis. It is worth noting that their optimal strategies
can have block trades inside the trading period.

A two-sided symmetric block-shaped order book model with exponential resilience
and with the resilience and the transient price impact coefficients being deterministic
time-varying is investigated in [FSU14|. The resilience coefficient is assumed to be a
deterministic, strictly positive, Lebesgue-integrable function of time, and the transient
price impact coefficient is supposed to be a deterministic, strictly positive, bounded
function of time (with more assumptions needed for most continuous-time results).
There is also a permanent price impact component, but this is described by a deter-
ministic constant, and the pertaining costs are the same for all strategies. To include
a trading-dependent bid-ask spread, Fruth, Schoneborn, and Urusov explicitly model
each of the deviations of the unaffected best ask, respectively bid, price, where nonzero
initial deviation is possible and the unaffected prices are assumed to be cadlag mar-
tingales. The cost criterion is to minimize expected overall execution costs for a fixed,
finite time horizon. Both, a discrete-time and a continuous-time problem, are consid-
ered. In continuous time, an admissible strategy initially is a pair of two nondecreasing,
adapted, bounded, caglad processes starting in zero such that the difference of the buy
and the sell component reaches a prescribed deterministic terminal value. For dis-
crete time, the set of admissible strategies is restricted to strategies that only trade
at a finite number of given times. Fruth, Schéneborn, and Urusov show that mixing
buy and sell trades in their model can not be optimal, which reduces the problem.
Furthermore, it suffices to consider deterministic strategies. A further reduction con-
cerns the dimension of the arguments of the value function due to linearity of optimal
strategies in the initial state. Fruth, Schoneborn, and Urusov provide a characteriza-
tion of the solution via a wait and a trade region and state a formula for the unique
optimal strategy. In discrete time, the proof is based on dynamic programming. The
continuous-time results are derived by an approximation from discrete time and need
stronger assumptions on the price impact coefficient and the resilience coefficient.

An extension of the Obizhaeva-Wang model to stochastic parameters is analyzed
in [Frull] and [FSUL9|, though neither of them yet takes price impact coefficient
and resilience coefficient both to be stochastic within the same model. The model
in [FSU19| exhibits stochastic price impact, but deterministic resilience. Conversely,
in the last chapter of her PhD thesis [Frull, Chapter 4|, Fruth discusses the inclusion of
stochastic resilience in a simplified model with three trading instances when the price
impact coefficient is constant. We also mention [CKW18|, Section 3| which numerically

11
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deals with optimal trade execution in a setting where the order book depth in a block-
shaped order book with deterministic exponential resilience is given by a discrete-time
Markov chain.

Fruth, Schéneborn, and Urusov in [FSU19| extend the model of their previous ar-
ticle [FSU14| to a price impact coefficient given by a strictly positive, possibly time-
inhomogeneous, Markov process with finite first moments. Resilience, as in [FSU14|,
is exponential with a deterministic, time-varying, strictly positive resilience coefficient.
Note that in contrast to [FSU14|, it is assumed in [FSU19| already from the beginning
on that there is no permanent price impact component and that admissible strategies
(except for the ones in [FSUL9, Section 8|) are pure buy strategies. As in |[FSU14],
a discrete-time and a continuous-time variant of the problem are analyzed. In line
with the result in the deterministic case |[FSU14|, the authors find that in a subset-
ting where the price impact coefficient has a special diffusion structure (which also
comprises conditions in relation with the resilience coefficient), the solution is given in
terms of a wait and a trade region. However, contrasting [FSU14|, they provide ex-
amples that for more general, necessarily nondeterministic, specifications of the price
impact coefficient, there can arise situations where this is no longer true; e.g., there
can be multiple wait regions. Moreover, note that optimal strategies in [FSU19| can
be nondeterministic. Several intermediate results in [FSU19| are cognate with the
ones in [FSUL4|, e.g., that the dimension of the value function can be reduced by
one, that the cost functional admits a helpful alternative representation, and that the
continuous-time results can be approximated from discrete time. On the other hand,
the proof techniques in [FSU19| differ from those in [FSU14| due to the stochastic
setting in [FSU19|.

1.3 Overview and contribution of this thesis

Our work continues the above stream of literature on Obizhaeva-Wang models by
taking price impact and resilience both to be stochastic processes (in a symmetric
block-shaped order book model with zero bid-ask spread and fixed, finite terminal
time). We first study a discrete-time model in Chapter and then devote the remainder
of the thesis to the continuous-time case, where we consider semimartingale strategies
in Chapter [5] and Chapter [6] and progressively measurable strategies in Chapter [7] and
Chapter [§ For the continuous-time case, we moreover analyze a certain Riccati-type
backward stochastic differential equation (BSDE) in Chapter

The work presented in this thesis is based on the publications [AKU21b, AKU21a,
AKU22b| and the preprint [AKU22a|, all of which are joint work with Thomas Kruse
and Mikhail Urusov.

12



1.3 Overview and contribution of this thesis

Discrete time with stochastic price impact and resilience

In Chapter 2] we study optimal trade execution in an order book model in the sense of
[OW13] in discrete time where price impact (7x)rez and resilience (Bx)rez are positive,
adapted, sufficiently integrable processes (see Section . For interpretation of the
resilience process [, note that exponential resilience with resilience coefficient p as in
the example of Section corresponds to the special case 8, = e™?, k € Z. The
stochastic control problem we look at is a linear-quadratic one with value function V'
defined in ({2.4):

Vo(z,d) = essinf E,

XeAdisc(z,d)

N N
fyv
> (Dj— + éﬁj) &+ D NG =)
j=n j=n

ne€ZN(—oo, N,z € R,d R,
subject to the deviation evolution defined in (2.1):

D,-=d and Dy = (Dg-1)- + %w-15-1)8 ke{n+1,...,N}

N € N denotes the (fixed) terminal time. The second sum in the value function is a
risk term (with appropriate stochastic processes A and () that we will discuss later in
this introduction and that can be ignored at the moment. Optimization happens over
the set AY(z,d) of real-valued adapted stochastic processes X = (Xk)ketn—1m,...N}
with X € L*7(Fy) for all k € {n,..., N} that are equipped with initial position
X,—1 = z and satisfy Xy = é, where é € L**(Fy) is the terminal position to be
achieved through trading. £, = X; — X;_1, j € {n,..., N}, denote the trade sizes that
correspond to such a strategy X € AY(z, d). Note that trading is allowed in both
directions, but is only possible at a fixed set of finitely many time points.

We are able to solve this optimization problem in that, under appropriate condi-
tions (see Theorem , we obtain existence of a unique optimal strategy and a
characterization of the optimal strategy and the value function in terms of a process
Y = (Ya)nezn(—oo,n] and a process ¥ = (¥n)nezn(—oo,n] that are defined by back-
ward recursion (see , respectively ) with terminal value Yy = %, respectively
—% nyf . The proof of this result is based on dynamic programming and the quadratic
structure of the problem. An ansatz for the value function V,, at time n as a (bivariate)
quadratic function of the pair of initial position and initial deviation (z,d) € R?, and
an application of the dynamic programming principle, lead to recursive descriptions
for the coefficients in the value function, and to a characterization of the optimal trade
size £ (x,d) at time n in the pair of initial position and initial deviation (z,d) € R? as
the minimizer of a (univariate) quadratic function.

Long-time horizon

Tt furthermore turns out that Y, (in the basic setting of [AKU21b| where £ = 0 and
A = 0) can be interpreted as the (divided by 2) ratio between, in the denominator, the

13
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costs for selling x = 1 unit immediately at initial time n with initial deviation d = 0
and, in the numerator, the minimal costs for the same task; ie., Y, = %\/;75_1/;)) To
determine how much better than immediate execution our optimal strategies perform
in the long run, we then investigate the long-time limit lim,, , ., Y,,. We observe that
this limit does not always exist, see Lemma for such a situation. Fxistence
is guaranteed if the price impact process (Vi)rezn(—oo,n] UP to terminal time N is a
supermartingale, i.e., when the liquidity in the model increases in time on average, see
Proposition [2.4.1]

In the “time-homogeneous expectations™setting of Proposition 2.4.2] Y is determin-
istic, the limit also exists, and we compute the limit explicitly. We find that there are
three different subcases depending on the relation to 1 of the average resilience and
of the average multiplicative increments of the price impact process. In particular,
if the resilience is 1 in expectation throughout the trading period, which means that
the impact of trades on the price is expected to be permanent, then Y, = % for all
n € Z N (—oo,N] (see also Corollary 2.3.2)), and thus selling the unit immediately
is optimal. If the price impact process is nonincreasing on average, which due to a
structural assumption in our model (cf. Theorem entails that the resilience is
smaller than 1 on average, then our minimal execution costs vanish asymptotically in
the sense that lim,,_,_. Y, = 0.

Round trips

We moreover investigate if, in our model, trading can be beneficial although one has
no open position. Formulated differently, this is the question on existence of profitable
round trips, or yet the existence of price manipulation. The notion of price manipu-
lation in optimal trade execution models was coined in [HS04| and further studied in,
e.g., |Gatl0] and |AS10).

We have as a direct consequence of Theorem that our model does not exhibit
price manipulation whenever the initial deviation is 0 (cf. (2.53)). This is in line
with the findings in [AS10, Corollary 2.8 and Remark 3.2|, where it is established
that price manipulation is not possible in a block-shaped Obizhaeva-Wang type model
with zero bid-ask spread, constant price impact, and time-varying (possibly stochastic)
exponential resilience. Our result extends this to stochastic price impact and more
general forms of resilience.

However, if prior to the trading period, the agent has already induced some price de-
viation, then round trips can become profitable under some market conditions (also for
constant price impact and exponential resilience); see Section for details. Similar
conclusions in related models were obtained in [FSU14, Section 8] and [FSU19, Sec-
tion §|.

To decide whether there exist profitable round trips at initial time n for initial devia-
tion d # 0 in our model, it suffices to study the event {Y,, = %}, as we explain at the be-
ginning of Section [2.5 (cf. (2.53))). We thus characterize this event in Proposition [2.5.2)

14



1.3 Overview and contribution of this thesis

and discuss consequences in subsequent results and examples. E.g., in the “processes
with independent multiplicative increments’™-setting where for all k € Z N (—oo, N|,
the resilience (55 and the multiplicative increment of the price impact, Vf -, are inde-

pendent of the sigma-algebra Fj_; (see Section , existence of profitable round trips
for nonzero initial deviation can be decided based on the resilience process alone (see

Corollary [2.5.5)).

Closing the position in one go

We also look at the question under which conditions one should close the position in
one go, i.e., when it is optimal to execute the outstanding order at once. To this end, we
consider the event {£(z,d) = —xVx,d € R}. Again, the process Y plays a prominent
role in the description of this event (see Proposition [2.6.2). Besides, Proposition [2.6.2)
(note also (2.61)) yields a connection between the existence of profitable round trips
for initial deviation d # 0 and optimality of closing the position in one go.

On the event {Y,, = 3}, where round trips for initial deviation d # 0 can not be
profitable, we have that immediate closure is always optimal. However, we show in
Example that it can be optimal to close any position in one go although there
exist profitable round trips for d # 0. In general, optimality of closing the position
in one go does not necessarily mean to stop trading entirely after the closure. For
instance, in the situation of Example [2.6.7] it is optimal to build up a new position at
the next time point.

From Lemma [2.6.1] which is a direct consequence of Theorem we derive in
Proposition that {¢%(x,d) = —x Vx,d € R} is either Q or ) in the “processes with
independent multiplicative increments™setting (but the optimal trade sizes can still be
random). In this setting we also provide equivalent statements to closing in one go.

Continuous time with stochastic price impact and resilience

The base setting for continuous time (see Section [3.1)) includes a price impact pro-
cess (7s)sefo,r) and a resilience process (Rs)scpor (I € (0,00) is the fixed terminal
time). These stochastic processes are assumed to possess a certain structure (cf. .

and (| .

dys = Yo d[M D) + 50, dMY, s €10,T], 7 € (0,00),

and
dRs = psd[M"™|s + n,dME, s€[0,T], Ry=0,

where MM, M7 are continuous local martingales (Brownian motions in Chapter @
Chapter [8) with [—1, 1]-valued correlation 7, and p, o, p,n,T are progressively measur-
able, sufficiently integrable (often bounded) processes. While the price impact pro-
cesses in discrete and in continuous time have the same interpretation, we point out
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that the resilience process R has a slightly different meaning than g from discrete time:
the multiplicative increments of the stochastic exponential of —R are comparable to (.

When the choice of the set of admissible strategies in discrete time was rather
straightforward, this becomes an interesting aspect in continuous time. As in dis-
crete time, we do not want to restrict trading to one direction. Furthermore, we
expect that optimal strategies should respond quickly to fluctuations in the market
conditions. As the price impact process (and also the resilience process) in our model
can have infinite variation, we therefore aim to include strategies that can have infinite
variation. Our decision is backed up by empirical evidence and mathematical motiva-
tion in favor of infinite-variation strategies/inventories in similar situations — we refer
to [CW19|, [CL21| and to |[LS13|, [GP16|, [BBF19|, [HK21|, [FHX22a].

However, a vast part of the literature on optimal trade execution considers strategies
to be, in particular, of finite variation, and it is not obvious how to formulate (and
later, solve) an appropriate control problem for strategies of infinite variation. We take
two approaches.

Cadlag semimartingale strategies

In the first approach, since the conventional, finite-variation formulation (5.7)&({5.8)
(compare also with (L.2)&(1.4)) of the control problem contains the strategy in the
integrator, we assume our strategies to be cadlag semimartingales. Further, we demand
of admissible strategies X = (X;)sep—1 € A (2, d) (where t € [0,7], x,d € R) the
initial position X; = =z, strict liquidation X, = 0, and that certain integrability
conditions are satisfied (see Section [5.1.1)).

We show in Example [5.1.4] and Example that, for strategies with infinite vari-
ation, the conventional, finite-variation formulation & of the control problem
can result in an ill-posed optimization problem. With the modified deviation dynam-

ics (p.1)):
dD = —DYdR, +,dX, +dly,X],, se[t.T], DY =d

and the modified cost functional (5.2):

T
J;em(x,d,X):Et[ Df_dXSJr/ %d[X]S—/ Dfd[X,R]S}

[t,7] (1] 2 :

T
+ E, U %/\Sde[M(l)]s] , te0,T),2z,d e R, X € AF™(z,d),
t
we provide an appropriate formulation of the control problem for cadlag semimartingale
strategies, which is motivated by a heuristic limit from our discrete-time model (see

Section [3.2)). The last term in the cost functional J*™ is a risk term to be discussed
later, with an appropriate stochastic process .
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1.3 Overview and contribution of this thesis

We solve this control problem by purely probabilistic means, see Theorem [5.2.6]
for the main result. Under appropriate assumptions, the value function V™ (z,d) =
essinf xesem(z,q) 7 (2, d, X), t € [0,T], x,d € R, has a representation very similar to
the representation of the value function in the discrete-time problem, with a process
Y = (Yy)sepo,r) that is the first solution component of the quadratic BSDE (in
analogy to the discrete-time process defined by backward recursion in Theorem [2.2.1]
see also Section [3.3)).

To obtain the representation for the value function V™ we first introduce Y into
the cost functional J**™, which in Theorem leads to the representation (|5.23))
Mz, d, X)=—(d z)? &

! o Tt B 2y

+ Ey [/ — <19s(’ysXs - Df) + Df) ((03 + 7]? + QO'ST]SFS)Y; + kg + )‘9) d[M(l)]S 7
t

S

tel0,T],z,d e R, X € A¥"(z,d),

of the cost functional J%™ as the sum of the (later to be identified) minimal costs and
a second, nonnegative term. Therein, k = %(2,0 +p— 0% —n*—20nT) (see (3.6))), and

5 (p+ )Y + (o 4+n97)Z0 + V1 =723 A
B (02 +n%+20nT)Y + K+ A

(see (5.22), compare also with the driver ({.2) of BSDE (4.1))), where (Z(1) Z2)T
is the second solution component of BSDE (4.1). In particular, this representation

for J%™ implies a lower bound for the value function V*™. We subsequently argue
that there is equality by approximating the second term in the representation of the
cost functional J**™. More precisely, we show in Lemma/5.2.9[that the auxiliary process
¥ can be approximated by a sequence of cadlag semimartingales (¥"),cn. Based on
this sequence (9"),en, we further define a sequence of strategies (X™),en in A5™(x, d)
for which we, in Lemma [5.2.10] establish certain helpful properties for the convergence
of the second term in the representation of the cost functional J*™ to zero.

For the characterization of existence of a minimizer and for the formula of optimal
strategies, we make use of the representation of the cost functional J**™ in combination
with the representation of the value function V™. It turns out that (under the overall
assumptions of Theorem there exists an optimal strategy if and only if J is equal
Dym-a.e. to a cadlag semimartingale ). In this case, the (D,;a)-a.e. unique) optimal
strategy is given by (5.36). This is a product of three factors, two of which are of
particular interest when we examine properties of optimal strategies in Section [5.3
Section and Chapter [6]

In particular, we find that in several situations we really obtain optimal strategies
of infinite variation. This does not only concern the setting of Example [5.3.1] where
price impact and/or resilience have infinite variation, but also certain situations with
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smooth price impact and resilience (see, e.g., Example and Example [5.3.4). On
the other hand, it is interesting to observe that in the specific setting of Section [5.4.2]
infinite variation in the price impact and in the resilience can cancel out such that the
optimal strategy has finite variation.

We moreover show how to produce block trades of the optimal strategy inside the
trading interval (see Section [p.4.3] but also the examples in Chapter [6). Recall that
for models similar to [AC01|, jumps of the optimal strategy can not occur at all since
admissible strategies are absolutely continuous, and that for models of Obizhaeva-
Wang type, it is typical to obtain optimal strategies with jumps only at the beginning
and at the end of the trading period.

Furthermore, we observe that for constant deterministic price impact v (i.e., u =
0 = o) and for a constant deterministic resilience coefficient p > 0 (while n = 0), which
is the setting of [OW13], our (in some sense more general) optimization problem results
in the same optimal strategy as in [OW13, Proposition 3| (see the relevant subcase in
Section [5.4.2).

We also provide an example where, although the value function V*™ is finite, an
optimal strategy in A5*™(x, d) does not exist (see Section [5.4.1)) because there is no
cadlag semimartingale ¢ that J is equal to D, -a.e. (cf. Theorem . This exam-
ple motivates to try to go beyond semimartingales in the formulatlon of the control
problem.

Extension to progressively measurable strategies

In the second approach, we begin with the conventional, finite-variation formulation
of the deviation dynamics and costs in Obizhaeva-Wang type models and establish
in Theorem a continuous extension to progressively measurable strategies. The
precise formulation of our stochastic control problem for finite-variation strategies is

stated in Section (compare also with (5.7)&([5.8), and with (1.2)&(1.4)). We here

repeat the definition of the deviation (7.3)):
dD¥ = —DXdR, +v,dX,, sct,T], D¥ =d,

and the definition of the cost functional (7.4)):

T
JY(z,d, X) = E, U (Df_ + %AXS) dXS] tE [/ vode (X — C)2ds|
[th] t
€[0,7),z,d e R, X € A¥(z,d).

Again, the last term in the cost functional is a risk term that will be discussed later, and
A and ¢ are appropriate stochastic processes. The set of admissible strategies AL (z, d)
(for t € [0,T], x,d € R) comprises all cadlag finite-variation processes X = (X)scp— 1
that satisfy suitable integrability conditions and possess initial position X, = z and
terminal position X = 5 for a suitable, fixed, Fr-measurable 5
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1.3 Overview and contribution of this thesis

The extension of this stochastic control problem for finite-variation strategies to
progressively measurable strategies is made possible in the first place by the alterna-
tive representations for the deviation and the costs in Proposition [7.2.1] since these
remove the strategy from the integrator. Now, these alternative expressions are also
well-defined for progressively measurable strategies, which allows us to introduce the
extended problem of Section with the deviation (7.14):

D;X = ’}/SXS -+ V;l (d - VtL — / er(VrfYr)) ) ERS [tu T]7 l)t)i = d7
t

where v! is the stochastic exponential of —R, and with the cost functional (7.16)):

2

1 T T
JP (2, d, X) = E, [§v;1(D¥>2+ / Yo (D) ks ds + / Yo (X5 = )" ds
t t

tel0,T],z,d e R, X € AP (z,d),

_2_%’

where k = £(2p+ pu— 0 —n*> — 2017T) (see (3.6)). The superset A7 (z,d) of Al (x,d)
consists of all progressively measurable processes X = (X;)scp—,7) that are equipped
with an initial position X,_ = z, end in Xy = &, satisfy ftT X2ds < oo a.s., and whose
associated deviation DX meets EU;T v H(DX)2ds] < oo.

We then in define by d(X, X) = (E[ftT(Df — DX)2y71ds])2 a metric d on
the set of progressively measurable strategies AY™(z, d), where the distance between
two progressively measurable strategies X, X e AP (z,d) is measured by some kind
of weighted £2-distance between their associated deviation processes DX, DX. With
respect to this metric d, the cost functional JP™ is continuous in the strategy, the set
of finite-variation strategies A (z,d) is dense in the set of progressively measurable
strategies A" (z,d), and the set of progressively measurable strategies A7 (x,d) is
complete. This result, Theorem [7.5.2] provides a strong justification for our extended
problem, and in particular shows that this problem and the finite-variation problem
are equivalent in the sense that their value functions coincide (see Corollary [7.5.3).

To show that the cost functional JP™ is continuous in the strategy, we use the
convergence of the deviation processes and the convergence in Lemma [7.4.3] of the
“scaled hidden deviation processes”. For the claim that any progressively measurable
strategy X € AP (z,d) can be approximated, in our metric d, by a sequence of finite-
variation strategies (X™),en in AN (z,d), we, in a sense, approximate the deviation
process DX of the progressively measurable strategy X with the help of Lemma
by a sequence that ends up to consist of deviation processes D", n € N, for the
desired finite-variation strategies X", n € N. That the set of progressively measurable
strategies AP (x, d) with respect to d is complete essentially comes from completeness
of the L2-space of square-integrable, progressively measurable processes.

The previously mentioned scaled hidden deviation process is the continuous process

" = 72 DX — 43X that we associate to a strategy X € AP™(z,d) and its devia-
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tion DX (see Section [7.4)). It is not only relevant for the proof of Theorem but
plays also an important role in the next step.

We observe in Proposition [7.4.2| that the scaled hidden deviation process H  sat-
isfies an SDE that is linear in (H~,y~2D%), and that the cost functional JP™ of the
extended problem depends in a quadratic way on (Hx,v’%DX). Thus, we in Sec-

tion reinterpret the process ’y’%DX as a control process u € £ and H as the
associated state process. This leads to a standard L(Q) stochastic control problem which
is equivalent to the extended (and thus also to the finite-variation) problem, see Corol-
lary[8.1.3] Importantly, there is a one-to-one correspondence between square-integrable
controls u € L£? for this standard LQ stochastic control problem and progressively mea-
surable execution strategies X € A" (x,d) for our extended problem. In particular,
it is possible to recover the minimizer of the extended problem from the minimizer of
the LQ problem (see Corollary [8.1.4).

We then apply stochastic control literature to solve the LQ problem. More exactly,
we first transform the LQ problem of Section with cross-terms to one without
cross-terms in Section 8.1.2] and subsequently apply results of Kohlmann and Tang
[KT02] (see Section[8.2)). Under the assumptions of Theorem|[8.2.3] there always exists a
(Dyyy-a.e. unique) optimal control, and the optimal control and its associated costs can
be described by the BSDE of Riccati-type [KT02, (9)], which in our case corresponds
to BSDE ([4.1)), together with the linear BSDE (8.7). We in Corollary trace
everything back and obtain a (Dy,a-a.e. unique) optimal execution strategy in the
class of progressively measurable strategies, given by the formula .

Further features

Our control problems feature some further details that we now want to highlight.

Negative and diffusive resilience

The discrete-time problem as well as the continuous-time problems exhibit more general
types of resilience than the frequently used exponential resilience described by a strictly
positive resilience coefficient.

In discrete time, we multiply the deviation D_1)— + vx—1§k—1 directly after a trade
&x—1 at time k — 1 by [ to get the deviation Dy immediately prior to the next trade
at time k. The case of exponential resilience corresponds to 5, = e~ Ji-1P:95 for some
resilience coefficient p.

Note that we assume 3 only to be strictly positive (aside from some integrability
and from the joint structural assumption with the price impact, see Theorem .
In particular, we can have values greater than 1 for the resilience 3, which reinforces
the price deviation. Also the case 5, = 1 is allowed, which means that there is no
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change of the price deviation between the trade at time £ — 1 and the next trade at
time k.

In the case of (0,1)-valued resilience 3, we find that there exist profitable round
trips for nonzero initial deviation (cf. Corollary [2.5.4{ii)). This is in accordance with
the results in [F'SU14| and [FSU19| who consider only (0, 1)-valued resilience, more
precisely, exponential resilience with strictly positive resilience coefficient. In contrast,
for (0, 00)-valued resilience (3, it can happen that there do not exist profitable round
trips for any initial deviation d € R (see, e.g., Corollary 2.5.5). A necessary (but not
sufficient, cf. Example condition for nonexistence of profitable round trips for
d # 0 is that the agent expects the resilience to be 1 (cf. Corollary [2.5.4(ii)).

Moreover, we observe that, if in the “processes with independent multiplicative
increments”-setting closing in one go is optimal, then the resilience right after this
trade is expected to be greater than or equal to 1 (see Corollary . In particular,
closing in one go can not be optimal in the conventional setting with (0, 1)-valued,
deterministic resilience § and deterministic price impact ; for stochastic g, v the sit-
uation can be different, even with (0, 1)-valued 3, see Example and the preceding
discussion. But also in a deterministic situation with now (0, co)-valued 5 we can
produce closing in one go (see Example [2.6.7).

In continuous time, we describe resilience by the resilience process dRs = psd|[M (R)]s+
nsdMZE s € [0,T], Ry = 0, which enters the deviation process via the stochastic ex-
ponential of —R. If n = 0, we are in the case of exponential resilience with resilience
coefficient p. Otherwise, the resilience still has an exponential structure (see, e.g., Sec-
tion [3.2]and Section [5.1.1]), but our resilience process R contains an additional diffusion
part.

Note that [AKU22a| allows a diffusive resilience, whereas [AKU21a] originally does
not. We in this thesis extend the semimartingale setting of [AKU21a| to also include
a diffusion part in the resilience. This makes it necessary to adjust the cost functional
from [AKU21a| to (5.2)), i.e., to J*™ (see Section and Example 5.1.5). Also,
in comparison to |[AKU21a|, we need to consider a more general BSDE (see Chap-
ter 4| motivated by Section . The respective results and proofs in this thesis are
extensions of those in [AKU21a].

With diffusive resilience, we observe two effects (see also [AKU22a, Section 4]). In
Example [5.3.1] we see that not only infinite variation in the price impact process, but
also diffusive resilience can lead to optimal strategies of infinite variation. In a rather
specific setting (see Section , we find that diffusive resilience can override infinite
variation from the price impact so that the optimal strategy has finite variation.

Furthermore, we point out that R can take negative values — due to the diffusion
part, but also due to the resilience coefficient which we do not restrict to be positive.
When R is negative, this means an enhanced price impact. Therefore, a resilience
process that is negative during some time can be used to model self-excitement effects
where the trading activities of the large investor animate other market participants to
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trade in the same direction. For more details, see the introduction of Chapter [6]

In Chapter [6] (cf. [AKU22b]), we focus on the resilience coefficient, and investigate
the effects of a negative resilience coefficient in a subsetting of the semimartingale
problem. To this end, we first obtain existence and structure of the optimal strat-
egy via Theorem [5.2.6] where existence of a solution to the BSDE is guaranteed by
Section Then, we examine what we call (see Definition “overjumping zero”
and “premature closure” of the optimal strategy, which are defined in terms of the
process ¥ from Theorem [5.2.6] Roughly speaking, we show that a necessary condition
for overjumping zero or premature closure is to have a negative resilience coefficient
at least for some time (see Proposition , while a sufficient condition for that is
to have a negative resilience coefficient for some time close to the time horizon T' (see
Proposition . In a setting with piecewise constant resilience coefficient p and a
simple price impact process, we further discuss properties of optimal strategies with
respect to positive and negative values of p (see Section . In particular, in Propo-
sition the optimal strategy for initial position > 0 and initial deviation d = 0
is strictly increasing (respectively, strictly decreasing) on the regime where p is strictly
negative (respectively, strictly positive). Moreover, we are able to construct a setting —
necessarily with a resilience coefficient that is not everywhere strictly positive — where
it is optimal to close the position prematurely, and, after a while, reopen again (see
Section [6.3)).

For completeness, we mention that without resilience (i.e., p = 0 = n) it is optimal
to close the position immediately and quit trading (see Proposition [5.2.3).

Risk term and stochastic targets

To incorporate the possibility that the target position is not known at the beginning of
trading but only revealed at terminal time, we allow the prescribed terminal position é
to be a random variable (measurable at terminal time, and with suitable integrability).
Situations with random target positions may arise for instance when an airline com-
pany buys kerosene on forward markets, not knowing their precise demand beforehand
because it depends on factors in the future such as ticket sales and weather conditions.
Random variables as terminal targets have also been considered in, e.g., [AK15, Section
3.2], IBSV17|, and [BV18].

As in the models of [BSV17]| and [BV18|, we furthermore include a risk term of
the form En[ZjV:n YA (X; — (;)?], respectively Et[ftT YsAs (X5 — (s)%ds], into the cost
functional; deviations of the position X from the target process ( are penalized via the
risk coefficient process A (the scaling by the price impact process ~ is for convenience).
The risk term can be used to model some kind of risk aversion of the large agent.
We point out that in this thesis the notion “risk aversion” is used for the setting with
nonvanishing A in the cost functional and does not mean risk aversion in the sense of
utility theory.

The target process ( in the risk term allows to, e.g., take client preferences or reg-
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1.3 Overview and contribution of this thesis

ulations into account, or to improve, but closely follow, popular trading strategies.
Moreover, a posrﬂble and natural choice would be ¢}, = Ek[ ), ke {n,..., N}, respec-
tively ¢, = Es[ﬂ, € [t,T], so that the risk term ensures that any optlmal strategy
X* does not deviate too much from the (expected) target position ¢ during the course
of the trading period.

In the discrete-time model of Chapter 2| we generalize [AKU21b| to Fy-measurable
terminal targets £ € L2+(Fy) and adapted risk coefficient, respectively target, pro-
cesses A = (Ap)rezn(—oo,N] a0d ¢ = (C)rezn(—oo,n that satisfy Ay > 0, Ay € L™ (Fp),
and ¢, € L*"(Fy) for all k € Z N (—oo, N|. Note that in [AKU21b| there is no risk
term, i.e., A\ = 0, and positions are required to be closed, i.e., ¢ = 0. It is shown
in [AKU21b, Theorem 2.1] that the value function and the optimal strategy in this
subsetting are characterized by the process Y of . This result now becomes a
corollary (see Corollary of Theorem of the present thesis.

When we include A\, we modify the definition of Y from to (2.7), and A
appears also in the optimal trade sizes . More interestingly, if we have a nonzero
target position f or nonzero A and (, then we need a second process 1 (see (12.8)
or Remark in addition to Y in order to describe the value function and the
optimal strategy. For the proof of Theorem we proceed similarly to the proof
of [AKU21bl Theorem 2.1| with the main difference that we now have to consider a
more general, but still quadratic, structure of the value function, leading to the two
recursively defined processes Y and 1. A further discussion on the influence of A, ( ,é
on Y, 1, the value function, and optimal strategies is contained in Section 2.2.2]

It is natural to treat the question on existence of profitable round trips only in a
risk-neutral setting and for deterministic terminal targets. However, we comment in
Remark [2.5.10] that most results of Section continue to hold for general A. For
closing in one go (Section we consider 5 0 = (¢ and provide a somewhat
counterintuitive Example 2 where it is optimal for a risk-neutral agent, but not for
a risk-averse agent, to close the whole position at time N — 2.

In the semimartingale problem of Chapter |5, we introduce a bounded, progressively
measurable process A = (\;)scpo,17 (typically nonnegative) into the setting of [AKU21aj.
That is, we require to close the position and we incorporate a quadratic risk term
Et[j;T YsAe X 2d[MW],] with zero moving target; in other models, such risk terms
have been considered in, e.g., [AK15|, |[GH17|, [HX19|, and [HK21|. In comparison
to [AKU21a], A now is part of the driver of the BSDE and of the auxiliary process
J of ( (5.22). Moreover, X enters the optimal strategies, but only via ¥, and the value
function, but only via Y. This is shown in the main result Theorem The proof
of the alternative representation of the cost functional J*™ (i.e., Theorem and
the proof of Theorem are generalizations of those in [AKU21a].

In the finite-variation problem and its continuous extension (Chapter lChapter
we allow for all of 5 , A\, (. The terminal target f is an Fpr-measurable random Varlable
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with E[y7€%] < oo, the risk coeficient process A = (As)sefo,) is a bounded, progres-
sively measurable process (typically nonnegative), and the moving target ¢ = ({)sejo,7]

is a progressively measurable process with E[fOT vsC2ds| < oo.

There are no major difficulties due to the terminal target é or due to the risk term
Et[ftT YsAs (X — (5)%ds] with moving target ¢ in establishing the continuous extension
of the cost functional from J® to JP™ and the reduction to a standard LQ stochastic
control problem. A minor inconvenience comes from the possible presence of the risk
term. For nonzero A, the standard LQ problem after the first reduction in Section [8.1.]]
contains cross-terms and we have to perform a second transformation in Section [8.1.2]
to match the formulation of |[KT02|. Since the setting in [KT02] (in contrast to,
e.g., [SXY21]) allows for inhomogeneities in the cost functional and in the state process
such as those produced by nonzero é or ¢, we then obtain the solution via |[KT02]
without further additional work also in the general case.

As a result, we get in Corollary [8.2.4] that the optimal strategies and minimal costs of
the extended problem are characterized by the process Y from BSDE (cf. [KTO2]
(9)]) and the process v from the linear BSDE (cf. [KT02, (85)]). Similar to what
we observe in discrete time, Y includes A, but none of ¢ and ¢, whereas v contains \
and ¢ (and also ¥ of (5.22)) in the driver and has terminal value ¢y = —%\/y_Té If

¢ = 0 and at least one of A, ¢ vanishes, then ¢y = 0, and formulas simplify (see also
the discussion at the end of Section .

The fact that we were able to incorporate an Fp-measurable random variable é
and a progressively measurable process (, satisfying suitable integrability conditions
(see and (7.2))), into our analysis, allows us to consider in Section[8.3|the Obizhaeva-
Wang model with random targets. In particular, in the subsetting with only a random
terminal target f , we find that we have to include updates about this random terminal

target in form of a zero-mean stochastic integral into the deterministic optimal strategy
of [OW13| Proposition 3].
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Optimal trade execution in a
discrete-time model

We first consider an optimal trade execution problem in discrete time. Trading is
allowed at a given finite number of time points and in both directions. This means
that a strategy can comprise both buy and sell trades. A strategy is determined by
the size and direction of a trade at each time point. A trade that equals 0 means no
trading at this time, a negative value of a trade corresponds to selling, and a positive
value of a trade stands for a buy order. Note that we only consider market orders.
Admissible strategies need to reach a prescribed position at terminal time, which may
be stochastic.

In contrast to [AKU21b|, we interpret strategies as the development of the position
in time and not as the progression of trades. Both concepts are equivalent (see also
Remark [2.1.1)). The interpretation in the sense of positions is in line with the notion
of a strategy in the continuous-time models in later chapters (see also [AKU21a| and
[AKU22a)).

We work in a stylized symmetric order book model similar to and extending the one
of [OW13| Section 3|; see also the basic example of Obizhaeva-Wang type models in
Section [I.I] Recall that in that example and in [OW13] the order book parameters,
i.e., price impact and resilience coefficient, are deterministic constantg’ and that the
only source of randomness is the underlying unaffected price. However, price impact
and resilience reflect the trading activity of other market participants and are therefore
described more realistically by stochastic processes. For an overview of the develop-
ment of Obizhaeva-Wang models towards this direction we refer to Section In our
model, we now allow price impact and resilience both to be described by stochastic
processes. Additionally, resilience does not need to be exponential.

Furthermore, we incorporate the possibility to prescribe a stochastic target position.
This extends the typical setting where one wants to get from an initial position x €
R to terminal position 0 (or, more generally, from a deterministic initial position
to a deterministic terminal position). Moreover, we include a risk term in our cost

see also [OW13, Section 8.1] for a comment on extension to time-varying deterministic resilience
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2 Optimal trade execution in a discrete-time model

functional so that the agent can nudge the strategy to follow a target process during
the course of the trading period. Note that such a risk term and a possibly stochastic
target position expand the setting of [AKU21b)|.

In Section 2.1} we provide the mathematical formulation of our control problem and
more detail on its financial interpretation. Section contains also some relevant
remarks on the model. We subsequently solve the control problem in Section [2.2] The
main result is Theorem [2.2.1] We therein characterize the optimal strategy and the
minimal costs by two processes Y and 1) that are defined by backward recursion. The
proof is given in Section In Section we comment on the main theorem.
Among others, we provide another representation of the process 1, and we obtain the
main result from [AKU21b| as a special case of our main theorem. Subsequently, we
in Section consider a subsetting within our general model that also serves as a
framework for some results and examples in further sections. In Section [2.4] we explain
that the process Y (in the setting of [AKU21b|) has an economic interpretation as a
savings factor and investigate its long-time limit. We study in Section [2.5] the existence
of profitable round trips, and in Section optimality of closing the position in one
go.

This chapter is based on and uses material from the publication [AKU21b| (joint
work with Thomas Kruse and Mikhail Urusov).

2.1 The discrete-time model

Let (Q, F, (Fi)kez, P) be a filtered probability space. For all p € (0,00) denote by
LP = LP(Q, F, P) the set of random variables Z on (2, F, P) such that E[|Z|] < occ.
Denote L7 =, cpy o) L (2, F, P) and L** =, L***(Q, F, P).

Observe that L[>~ C L** C L2, and that the following hold (see also [AKU21b)
Appendix Bl): If Z,,Z, € L™, then Z,Z, € L>~. If Z; € L™~ and Z, € L*T, then
717y € L*T.

Furthermore, for k € Z, write L=~ (F},) (resp. L**(Fy)) for the set of Fj-measurable
random variables in L~ (resp. L?*). In the sequel, we will use the convention for
sums and products that Zf:n =0and [[5_ :=1ifn,k € Z with n > k.

j=n
Let 5 = (Bk)rez and v = (7 )rez be strictly positive adapted stochastic processes,
called the resilience (process) and the price impact (process), respectively. Assume
that ﬁk,%,%k € L~ for all k € Z. It turns out to be convenient to denote the

multiplicative increments of v by I'y = WZf -, ke

Let N € N. We introduce a random variable £ € L*f(Fy), an adapted stochas-
tic process ¢ = (Ci)rezn(—oo,N], and a nonnegative adapted stochastic process A\ =
(Ae)kezn(—co,N]- Assume that ¢, € L and A\, € L®~ for all k € Z N (—o0, N]. For
n € ZN (—oo, N] and z,d € R we denote by A%5¢(z, d) the set of real-valued adapted
stochastic processes X = (Xj)refn—1,n,...n} With X} € L** for all k € {n,...,N}
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that are equipped with initial positio X,_1 = x and satisfy Xy = é Elements
of A4¢(x, d) are called ezecution strategies. For such an execution strategy X =
(Xk)ke{nq,n,...,N} we furthermore introduce its associated trade process & = (Sk)ke{an}
defined by & = X, — X1, k€ {n,..., N}

Remark 2.1.1. Note that for n € Z N (—oo, N], z,d € R, and an execution strat-
egy X = (Xi)kefn-tm,..N} € A¥(z,d), its trade process £ is a real-valued adapted
stochastic process with & € L** for all k € {n,...,N} and = + Z;V:n ¢; = €. Observe
that it is equivalently possible to start from a real-valued adapted stochastic process
§ = (&)refn,...ny satisfying x + Zj\f:n & = f and &, € L*T for all k € {n,..., N},
and to define an execution strategy X = (Xp)kefn-1n,..n} € A¥(z,d) via X, = ,
Xy =o+ Zf:n &, k € {n,...,N}. This execution strategy then has { as its trade
process. Thus, (for fixed n € ZN(—oco, N], z € R, and £ € L>F(Fy)) there is a one-to-
one correspondence between execution strategies and real-valued adapted stochastic
processes (trade processes) & = (§k)re{n,....n} satisfying & + Zj\;n & = €and & € L**
forall k € {n,...,N}.

For n € ZN(—oo,N|, z,d € R, and X € AY(x,d) we define the deviation process
D = (Di—)rein,...n} associated to the execution strategy X recursively by

D, =d and D,_= (D(k—l)— + 'Yk—lgk—l)ﬁka ke {TL +1,... ,N}, (2.1)

where ¢ is the trade process for X. Note that the process D = (Dk,)ke{nm]\;} is
adapted. In addition to the recursive definition of the deviation process, we have the
following explicit representation.

Remark 2.1.2. For n € ZN (-0, N], x,d € R, and X € A%(z,d), the deviation
process D = (Dj_)kefn,..,N} associated to X is given explicitly by

k k k
Di-=d [] B+ Y v [[B. ke{n....N}, (2.2)
=i

l=n+1 1=n—+1

where £ is the trade process for X. This can be established by induction on k£ €
{n,..., N}. Observe furthermore that we see from (2.2)) and the assumptions S, v €
L™~ for all k € Z, & € L*" for all k € {n,...,N}, that D,_ € L?" for all k €
{n,...,N}

For n € Z N (—oo,N], x,d € R, we want to minimize over X € A%¢(x d) the
expected costs

E, + E,

EN: (Dj, + %&') &

j=n

Z’Yj)\j(Xj - Cj)2] ; (2.3)

2d will be the initial value for the state process associated to X, see also (2.1]).
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where d is the starting point of the process D in (2.1)), £ is the trade process associated
to X, and E,[-] is a shorthand notation for E[-|F,].

Remark 2.1.3. Note that the expected costs are finite. To show this, we verify
that for all n € Z N (-0, N], z,d € R, X € AY(x,d) with trade process £, each
summand (D;_ + 2¢&) &, j € {n,.... N}, and A\ (X; — )2, j € {n,...,N}, is
integrable. Since v; € L™~ and §; € L**, the product ;¢ is in L**. By Remark ,
D;_ € L*" as well. Hence, D;_ + %&; € L*". The Cauchy-Schwarz inequality thus
yields the integrability of (D;_ + Z&;) &. For v;A;(X; —(;)?, note that X; —¢; € L**.
Since 7, \; € L7, it follows that v;\;(X; — (;) € L*". Again by the Cauchy-Schwarz
inequality we have that v;\;(X; — (;)? is integrable.

We then define the value function V: Q x (Z N (—oo, N]) x R x R — R,
Vo(z,d) = essinf E,

N N
i > 2
D. 4+ e )¢, E €N X —
X eAdisc(g,d) ;( it ng & +j:n VN (X5 = G) | (2.4)

ne€ZnN(—oo, N,z e R,d e R.

Let us now explain the financial interpretation of the model. The numbers N &
N and n € Z N (—oo, N]| specify the end and the beginning of the trading period,
respectively. The possible trading times are given by the set {n,..., N}. The number
x € R represents the initial position of the agent, while the random variable f €
L**(Fy) prescribes the target position at terminal time. Since é is assumed to be Fy-
measurable, it is possible to model a situation where the value of the target position is
only revealed at terminal time. The condition to close the position corresponds to the
choice € = 0. An execution strategy X € A%¢(z d) tracks the agent’s position with
the given constraints that the initial position is fixed at x and the terminal position
at f For a time point k € {n,..., N — 1}, the value of X} reflects the position after
the trade at time k£ and prior to the trade at time k+ 1. The difference &, = X — X4
corresponds to the number of shares traded by the agent at time k € {n,..., N} and
will therefore sometimes be called trade size. If £ > 0, the agent buys shares, whereas
a negative value ¢, < 0 means selling. With the last trade {y, the target position 5
needs to be reached, i.e., &y —5 Xn_1 —§—x— Zjvnlfj

The process D descrlbes the deviation of the price of a share from the unaffected
price caused by the past trades of the agent. Typically, the initial deviation d € R
immediately prior to the considered trading period {n,..., N} is 0. Given a deviation
of size D(;_1)— directly prior to the trade at time &k — 1 € {n,..., N}, the deviation
directly after a trade of size §_; equals D_1)— +7x—1§k—1. In particular, the change of
the deviation is proportional to the size of the trade, and the proportionality factor is
given by the price impact process . In the language of the literature on optimal trade
execution problems, our model thus includes a linear price impact. This corresponds to
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a block-shaped symmetric limit order book, i.e., limit orders are uniformly distributed
to the left and to the right of the mid-market price. Note that in our idealized model
the bid-ask spread is always assumed to be 0. The height of the order book at time
k € Z is given by W In particular, our model allows the height of the limit order book
to evolve randomly in time and thereby captures stochastic market liquidity. Note that
since + is positive, a purchase & > 0 at time k € {n,..., N} increases the deviation,
whereas a sale & < 0 decreases it.

In the period after the trade at time £ — 1 and before the trade at time k, the
deviation changes from D_1)— + Ye—1&k—1 t0 Dp— = (Dg—1)— + Y—1&—1)Br due to
resilience effects in the market. In the literature on optimal execution the resilience
process [3 is often assumed to take values in (0, 1) and describes the speed with which
the deviation tends back to zero between two trades, where values of 3 close to zero
signify a faster reversion to zero. In this case, i.e., for (0, 1)-valued 3, the price impact is
usually called transient (cf., e.g., [ASS12]|). The case 5 = 1 corresponds to permanent
impact. In our work we assume 3 only to be positive. If Dy_1)— + yx—1&x—1 has the
same sign as the trade 1 at time £ — 1, which typically is the case, then a value
B > 1 describes the effect when the deviation continues to move in the direction of
the trade for some time after the trade. In any case, 5 > 1 reinforces the deviation.
Note that not only v, but also 8 evolves randomly in time.

At each time k € {n,..., N} the illiquidity costs incurred by a trade &, amount
to (Dig— + 56 )& This means that the price per share that the agent has to pay in
addition to the unaffected price equals the mean of the deviation before the trade Dj,_
and the deviation after the trade Dj_ + v&. The overall illiquidity costs during the
trading period {n,..., N} are given by 31 (D + &)

To these illiquidity costs, we add some costs due to risk preferences Zszn Ve ( Xk —
()% These additional costs should be viewed as penalization or steering of strategies
and are not necessarily of a financial nature. The value (; describes the agent’s pre-
ferred position at time k € {n,..., N}. In most cases, one might want to choose (y = ¢
at terminal time since any admissible strategy X needs to satisfy Xy = f anyway. Fur-
thermore, a typical choice for the process ( is (, = Ej [f] for all k € {n,..., N}. This
means that at each time k € {n,..., N} during the trading period, the agent aims for
a position that is not too far from the best current prediction Ey[€] of the target £, The
coefficient v, Ay describes how strict discrepancies of the position X from the target
position (j at time k& € {n,..., N} are penalized. Note that we use the parametriza-
tion ;A\ instead of simply A\ to match the notation in |[AKU22a| and also for more
convenience in Section 2.2l

To sum up, control problem (2.4) corresponds to minimizing the expected costs
(including risk preferences) of transferring an initial position of size 2z € R within the
trading period {n,..., N} to position ¢ at time N given initial deviation d € R, where
the minimization is performed in an extension of symmetric block-shaped limit order
book models to the case of randomly evolving order book depth and resilience.
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We remark that the above model can be extended to explicitly include an unaffected
price as long as the unaffected price is a square-integrable martingale. This is a fairly
standard assumption in the literature on optimal trade execution (see, e.g., [AFS08,
AFS10,|AS10,JOW13, PSS11|, and |GS13, Section 22.2]). For an example where the
dependence of optimal strategies on a possible drift in the underlying unaffected price
process is analyzed (in a continuous-time model of Obizhaeva-Wang type), we mention
[LS13].

Remark 2.1.4. We can also include an unaffected price process in the model. In-
deed, if the unaffected price process is given by a square-integrable martingale S° =
(S,g)kezﬂ(_oovN], then, for all n € Z N (—oo, N|, x,d € R, and X € AY(x,d), we get

N N
D 89 = SNX; - X0)
j=n j=n

N N N
=D 80 (X = Xi) + > (SY =8 )X =) (8) - SY )X
j=n Jj=n Jj=n
N-1
= SRAN = S X1 — D> (8%, = SNX; = (S) = S0 1) X
j=n
A N-1
=S —aSP — Z(SJQH — S?)Xj,
j=n
and thus
N . N-1 A
By |> 8% = Eu S} — aS) = > X;(SY,, — 89| = En€SR] — xSy,
j=n j=n

It follows that for all n € Z N (—oo0, N|, x,d € R, the expected costs generated by
an execution strategy X € A%5¢(z d) with trade process ¢ and deviation process

N N
E. | <5j0 + D+ %&) &+ ) 1N(X - Cj)2]
j=n j=n
. § (2.5)
= E,[€S}] — 2S) + En, Z (Dj— + %fj) &+ Z%)\j(Xj - Cj)2] :

Hence, minimizing En[ZjV:n(S]O + D+ HE&)E + Zjvzn Y\ (X; — ¢;)? is equivalent
to ([2.4).
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2.1 The discrete-time model

As an extension to our model, we could additionally include a constant perma-
nent price impact coefficient without changing the analysis (see also, e.g., [AFS0§]
or [FSU14]).

Remark 2.1.5. To set up a variant of our model with transient and permanent price
impact, let ¢ = (qx)kez be a strictly positive adapted process such that ¢ = i — Y is a
strictly positive constant for all k¥ € Z. The setting usually considered in this chapter
corresponds to the choice ¢, = %7 k € Z. In general, we interpret ¢ as the order book
depth, v as the transient price impact coefficient, and ¢ as the permanent price impact
coefficient. For n € ZN(—oo, N|, z,d € R, and X € A%(z, d) (with trade process &),
we now consider the deviation process D= (ﬁk,)ke{n’_“,]\;} given by

- =d H B+ Z% 18i- 1Hﬁl Zéfiq
l=n+1 i=n+1 i=n+1
:Dk—+(Xk—l_x)C7 kE{TL,...,N},
and the expected costs’|

[0 )

J=n

+ E,

Z Y ] . (2.6)

It holds for all n € Z N (—oo, N, x,d € R, and X € A%(z, d) that

N N
S (DJ_ +5r 6 ) & = Z (Dr-+26)&+e Y (Xj_l —a+t %gj) &,

j=n =n j=n

and for the second term we further obtain that

al 1 N 71 1
jz:; (Xj—l — T+ 5&) § = ; (§Xj—1 —r+ §Xj) (X — Xj-1)

J

N
(X7 -X7 ) —x(Xy —x)

~

— S -2 —aé - a)

| — N~

It follows that the additional costs due to the permanent price impact coefficient do not
depend on the choice of the strategy. This shows that minimizing (2.6) is equivalent

to (24).

3Recall that the scaling of A by v in the risk term is only for convenience.
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2 Optimal trade execution in a discrete-time model

Furthermore, let us mention that the optimization problem for initial position z + b,
where z,b € R, and terminal position b is not different from the problem to close
the initial position z (the assumption that the terminal positions are deterministic is
important). This is the content of the next remark.

Remark 2.1.6. Let n € Z N (—oo, N], and z,b,d € R. We denote by A%(z,d) (resp.
X,_1=x (resp. X,,_1 = x+b) and terminal value X = 0 (resp. 7X7N = b). Suppose first
that X € AY(z,d) with associated trade process £&. Then, the definition X,gb) =X, +0
for all k € {n —1,...,N} yields an execution strategy X® = (X,gb))ke{n,l,m,]v} €
Ab(z +b,d), and the associated trade process £®) = (glib))ke{n,...,N} is given by 5,?) =
X,Eb) — X,gb_)l = Xp — Xp1 = &, k € {n,...,N}. Conversely, starting from X©® ¢
Ab (24D, d), we can recover X € A%(x,d) via X = X,Eb)—b, ke {n—1,...,N}. In fact,
we obtain in this way a one-to-one correspondence between strategies in A% (z, d) and
strategies in A% (z+b,d), and their trade processes coincide. Since the deviation process
and the illiquidity costs only depend on the initial deviation d and the trade process,
but not on the initial or terminal position, it holds that the illiquidity costs associated
to X € A%(z,d) and the illiquidity costs associated to X = (Xj + b)refn-1,..n} €
Ab(z + b,d) are the same. It follows that

essinf FE,
XeA9 (z,d)

> (0 +%5)s]

j=n

N
Vi ) _ :
D, + e e | = f B,
Z( = 25] gj] XVt (45,0

Therefore, in the risk-neutral case, the minimization problems are the same, and if
there exists an optimal strategy of one problem, it is a shifted version of the optimal
strategy of the other problem, and both have the same trade process and the same costs.
We can also use a risk preference term as in provided that both problems use the
same \ and that the target processes ¢, (®) are linked via c,ﬁb) =(+b ke{n,...,N}
Moreover, we can include for both problems the same square-integrable martingale S°
as an unaffected price (see Remark [2.1.4)).

2.2 Optimal strategies and minimal costs

The following main result Theorem [2.2.1] provides a solution to the stochastic control
problem (2.4). It shows that the value function and the optimal strategy in are
characterized by two processes Y and 1. The process Y is defined via the backward
recursion and involves only the resilience (3, the multiplicative increments I' of
the price impact, and A (recall the risk term Zj\[:n YA (X; — ¢)? in (2-4)). In case
of a nonzero target é or nonzero A and (, the process ¢ (defined by ; see also
Remark enters the representation of the value function and the optimal strategy.
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2.2 Optimal strategies and minimal costs

We provide a proof of Theorem in Section [2.2.1] and subsequently discuss
Theorem 2.2.1] in Section 2.2.2]

Theorem 2.2.1. Recall the assumptions that Bn,%,—n A € L, ¢, € L*T, and
Buitn > 0, Ay > 0 for all n € Z N (—oo, N] and that & € L**(Fy). Suppose
moreover that for all n € Z N (—oo, N — 1] it holds that E,| ”i] < 1 a.s. and that

(1-— En[ﬂz“])_1 € L*". Let Y = (Yy)nezn(—oon be the process that is recursively

Tnta

defined by Yy = L and, for n € ZN (—oo0, N — 1],

(En [Yn—H (677,4_1 — Fn—f—l)] )‘n)2
[z Gons ~ T + 4 (1 222) + 1)

YTL = En[rn+1yn+1] + )\n - (27)

Furthermore, let 1 = (Y )nezn(—oo,n) be the process that is recursively defined by ¢ =
_%«/VNE and, forn € ZN (—oo, N — 1],

ﬁ% ::E%L[Van+1¢%+l] x/igAnCﬁ'+'E7 {V n+1¢%&1 (1 -
. En [Yn—l—l (ﬁn—&—l - Fn+1>] )\n
By [B2 (Buss — Do)+ 3 (1- 222) 0]

5) - mxncn}

+1

Tt
(2.8)
(i) It holds for alln € Z N (—oo, N] that 0 <Y, < 3 and ¢, € L*"(F,).
(1) It holds for alln € Z N (—oo, N|, z,d € R, that
Yn 2 d2 ,lvbn
Vilx,d) = — (d — ypz)" — =— — 2 d— Ypx
() = 22 (4= 900)" = 5 =2 =)
. , N-1
IN ¢2 - N\ (2
+ B | D o (€ ) + ;m@] 29
2
— /Bj 1
S, [Tl o)
" 1 5] 1
j=n Lj [11:11 (Bj+1 — J+1)2 +% (1 —E ) A }

(iii) For all x,d € R the (up to P-null sets) unique optimal trade size is given by

* By Yot (Bust — o)) — A ( _i)_i
S B T G e 1) ] )
E. [\/mwnﬂ <1 B ?Z_i)] o (2.10)

VB[22 (Bt~ Tar)+ 3 (1= £252) + 0]
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2 Optimal trade execution in a discrete-time model

for alln € Z.N (—oo, N — 1], and &(z,d) = € — x. It holds that & (x,d) € L**(F,)
for alln € ZN (—oo, N], z,d € R.

(iv) In particular, for alln € ZN(—o0, N|, x,d € R, the process X* = (X,z‘)ke{rh1
recursively defined by X | =z, D} =d,

XI: = Xl;kfl + £Z(X1:717 Dlzf>7 (2 11)
DzkkJrl)f = (Dltf + 7k€Z(X;fl7 sz)) 6k+17 ke {nv R N}7

is a unique optimal strategy in AY(x, d) for [2.4) with associated trade process

2.2.1 Proof of the main theorem

In this subsection, we prove Theorem by using the same techniques as in the
proof of [AKU21b, Theorem 2.1|. In particular, we rely on the dynamic programming
principle and the quadratic nature of the value function.

The main difference is that the value function in [AKU21b, Theorem 2.1| has the
structure V,(z,d) = U nd? + Vo p2® + U3 pad, x,d € R, n € Z N (—o0, N, for some
Fn-measurable coefficients v;,, j € {1,2,3}, n € Z N (—oo, N|, whereas we here
need to consider V,,(x,d) = v1,d* 4+ von2? + v3,2d + v40d + V5,7 + Vo, T,d € R,
n € Z N (—oo, N|, for some F,-measurable coefficients v;,, j € {1,2,3,4,5,6}, n €
Z N (—oo, N|. It turns out that, in contrast to [AKU21b, Theorem 2.1, a single
process Y is in general not sufficient to describe the value function V,,(z,d), x,d € R,
n € Z N (—oo, N|, that has possibly nonvanishing coefficients v4,, of d and vs,, of
and shift vg,,, n € ZN (—oo, N|.

We first show (i)-(iii) of Theorem simultaneously by backward induction, and
subsequently (iv) by forward induction.

Proof of (i)—(iii)

For the base case n = N we have Yy = 3 € (0, 5]. Since vy € L™ (Fy), it holds by
Jensen’s inequality that also \/yny € L (Fy). Together with € € L*"(Fy), we then
have that ¢y = —%\/’Y_Né € L**(Fn). Observe that, for all x,d € R, the admissible
set AJSC(x, d) consists exactly of the process X = (Xjy)re(n—1,n} given by Xy =z
and Xy = f The associated trade process is given by the single trade {y = é— x.

~

This implies for all #,d € R that Vy(z,d) = (d + 2§ — 2))(€ — 2) + v An(€ — (),
and that & (z,d) = € — x € L2+(Fy) is the unique optimal trade size. Since, for all
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2.2 Optimal strategies and minimal costs

x,d € R,
(d+ 5 —0) (€ —2) = € —a)d+ Lra? — 260 +&)
= —zd+ g 4+ E(d — ) + 282
Yn 2 d? 2¢n IN
= vl =wa)? = o = (= ) + Ex [ €]

we conclude that (2.9) holds for n = N.

Consider now the induction step ZN(—oco, N> n+1—n € ZN(—oco, N —1]. For
all z,d € R let

Yn+1
n — nEn Pe—
¢ ! |:Fn+1

1 B
(5n+1_rn+1)2+_ (1_ T +1> +)\n:|>

2 n+1

by(z,d) = E, [d (1 — TQL+1> +2Y,11 (/BWrl — 1) (Bna1d — vnﬂx)}

n+1 Fn+1
/Bn—i-l

I‘n—s—l

En |:2\/ ’Yn—i—lwn-l-l (]- - >:| + Q'Yn/\n(x - gn)a

i) 5, [ ]

ﬂn d_ n € -
Tn+1 ( i Tt ) 2Yn+1

E, {wmwnﬂ (x _ ot d)}

Tn+1
YN £ . 2
 Goha(@ = G+ B | D+ A (€= G ) + D mcf]

Jj=n+1
2
N—-1 . <Ej |:\/Fj+1wj+1 <1 - ?i)] - \/’Tj)\'@)
_ , = 5
j=nt1 | E; [é; (Bj1 = Tja)* + 3 (1 T ) T ]

(2.12)

The random variables a,,, b,(x, d), ¢,(x, d) are well-defined and it holds that a,, € L>~,
ba(z, d) € L**, and cy(x,d) € L' for all #,d € R. This relies on the assumptions that
Bk, 'yk, e € L and ¢, £ € L* forall k € ZN(—o0, N], as well as on the induction

hypothes1s 0<Y;<%andy; e L*(F)forall je{n+1,...,N}. For the last term
in the definition of cn(x,d) r,d € R, we also use the assumptions FEj[g “1] < 1 and
(1-— Ek[%])_l € L™ forall k € ZN(—oo, N — 1]. Let us treat this last term in
more detail.

First, the assumption Ej [B’Zi] < 1 for all k € ZN (—oo, N — 1], the induction
hypothesis Y1 >0, j € {n,...,N —1}, and A\, >0, 7, > 0 for all k € Z N (—o0, N]
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2 Optimal trade execution in a discrete-time model

imply for all j € {n,..., N — 1} that

E. ﬁ(ﬁ _T. )2_,_1 1_£ 4\
J Fj+1 J+1 Jj+1 9 Fj+1 J

1 F
1-E; | D > 0.
2 ( [Fa‘ﬂ

, . : Bliipy— oo
For all j € {n,..., N —1} it then follows from the assumption (1 — EJ[TLD el
that

(2.13)

1
L [Yj.ﬂ (Bror = Tjr)* + 3 <1 - h) + )‘j]

Tt i1

e L. (2.14)

Second, by the induction hypothesis, we have ¢]+1 € L*> forallje{n,...,N—1}.
Furthermore, we have the assumptions that 5k7 Ves 5o € L~ forall k € ZN ( 00, N,

and therefore it holds for all j € {n,...,N — 1} that VI8 (1 — 'B]“) c L.

Fit1
Moreover, we have for all k € Z N (—oco, N] that \/y;, \x € L™~ and ¢, € L**, and
hence /g AeCe € L**. Therefore, it holds for all j € {n,..., N — 1} that

E; [\/ L1t (1 - ?1)} — VNG € LT (2.15)
j+
Next, we combine (2.15) and (2.14) to obtain for all j € {n,..., N — 1} that

E; [\/m%ﬂ (1 - ?i)} — VNS .
E; [YH (Bjr1 — J+1)2 +% (1 - 5J+1> A } |

T

(2.16)

Further, the Cauchy-Schwarz inequality then proves for all j € {n,..., N — 1} that

(5 [V (1- )] - vve)”

L [Yﬂ (Bjs1 —Tj1)* + : (1 _ 53+1> Y }

T

We conclude that the last term in the definition of ¢,(x,d), z,d € R, is well-defined
and in L',
We furthermore remark that 22 > 0 and a, > 0 due to (2.13) and ~, > 0. Also,

and %ﬂ € L> show that I, i € L>.

Besides, note that the assumptions that for all & € Z N (—oo, N| it holds that
Bk Vi Wik, A € L and Ck,f € L?T, and the fact that Y}, is bounded and ¢,,,, € L**,
ensure that all conditional expectations in the sequel are well-defined and that we can
conduct all our calculations.
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2.2 Optimal strategies and minimal costs

The remainder of the induction step is subdivided into the four paragraphs Optimal
trade size & (x,d), Representation of the value function V,(x,d), Bounds for Y,, and
Integrability property for 1,.

Optimal trade size £ (x,d). We now prove existence and formula (2.10) for the
optimal trade size, and that &' (z,d) € L*7(F,). It holds by the dynamic programming
principle and the induction hypothesis on the value function that for all x,d € R

Vn(xa d) = Xee./s\%sigg,d) [(Dn— + %§n> gn + VnAn(Xn - Cn)Q + E, [Vn-i—l(Xm D(nJrl)f)]]

_ . Tn A2
= Sssinf (d + 5 6) §+mAn(r+E—G)
Y, d + v.€)? 32
B 222 (@4 3,8)800s — (o + )" — (T2 o
Yn+1 Q/Yn—&—l
- 2M ((d + 7715)571—}—1 - /Vn—&—l(x + 5)) + Vn—i—l(O» 0):|
vV 7n+1
= essinf E,|df+ EEQ + Y dn (T — G)? 4 29 A (T — )€ + Y AnE?
€L+ (Fn) 2
d . . 2 d2 32
+P)/n+1Yn+1 ( ﬁ = — T+ (ﬁ = _1) 6) _h
Tn+1 | 2Vn41
d/Berl 62+1 2 <dﬁn+l (Bn-i-l ) )
- = S— nEl — 24/ n —z+ —1
L : 211n+17 ¢ TtV Yrt1 Lt :
+ Vn+1(07 0)
1 B 2 2
= inf (B, | =+ N\, £ Tpu Yoog (2L 1) — Lol |2
(st [2 + An 4+ Tng1 Yo (Fnﬂ ) ST §
n d n
+ En |:d + 2’7n)\n(x - Cn) + 27n+1yn+1 (6 aE - 1) (h - l‘)
Fn+1 ’YnJrl
gy n
— = = 2V (5 = 1) }5
Fn-i—l Fn—i—l
dp, 2 Pp
+ En |:'Yn/\n(a7 - Cn)Q + ’Yn-i-lYn-i-l ( ﬁ + - $) — Ll
Tn+1 2Yn+1

Yn+1

— 2/ Mnr1¥n1 (dﬁnﬂ — 1’) + Vs (0, O)H .
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2 Optimal trade execution in a discrete-time model

We thus obtain the representation

Vo (x,d) = f [a,&2 4 b,(z,d Wz, d)], x,deR. 2.17
(#,d) = essinf [an&® + bu(z, d)E + cola,d)],  x,d € (2.17)
For all z,d € R we find & (x,d) = _%x:l) to be the unique minimizer of £ — a,&% +

bo(x,d)E + c,(z,d). Note that, for all z,d € R, the facts that b,(x,d) € L*>T(F,) and
L e [~ (F,) imply that & (z,d) € L**(F,). Observe further that for all z,d € R it
holds that

_ ba(z,d)
2a,,
E, [%% <1 — %) + Yo <%—i7 — Bnﬂ — Bpi1x + Fnﬂx)]
o @n/Vn
Ly, [\/mwnﬂ (1 — ?Z—ﬁ)] + YA (z — )
Qp,
g Bn |3 (1= F2) 4 2 (Bus = Tot)? + A+ Yasa (Bt — Dusn)| =
R n/Vn
BV = Bl + A, B [Vt (12 22 ] -y
An/Vn Qnp
— 2y (;,; _ i) Bu Va1 (Busn = Tua)] = A
Yn Yn an [/ Vn
E, [mwﬂ (1 — ff—i)} — I Ann

n/\/Tn
which yields the representation of £ (x,d) in (2.10)).

Representation of the value function V,(z,d). We next establish representation (2.9)
of the value function V,,(x,d).

By inserting the optimal trade size £ (z,d) = —%“:Ld) into , we obtain for all
x,d € R that

Vol(z,d) = —%ﬁ’dﬁ + cp(, d). (2.18)

Note that by (2.18) and (2.12)) it holds that for almost all w € Q, V,, is a quadratic
function in (z,d) € R% We thus have for all z,d € R that

Vo(z,d) = W(f w ?+ [(92,V2)(0,0)]ad (2.19)

+ [(0aVi)(0,0)]d + [(0:V,)(0,0)]x + V,(0, 0).
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2.2 Optimal strategies and minimal costs

The dynamic programming principle ensures for all x,d, h € R that

Vo(z,d) — <d - %h) h = essinf [(d + %&J En 4+ T (X — Go)? — ( — > h

XeAdise(g,d) 2

+ En [Vn-i-l(x + €n7 (d + 'Vngn)ﬁn-i-l)] :|

= essinf [ <d+ %(f + h)) (€= h) + Mz +E— )

§EL?H(Fn)

-+ En [VnJrl (:IZ' + Ea (d + 7n’£)5n+1)] :|

= essinf [ (d + mh + ﬁé) E+ (@ +h+E—()°
feL2+(Fy) 2

+ E, [Vn+1($ +h+ & (d+ya(h+ E)Wnﬂ)} }
It follows for all z,d € R that

Vi@ 4 h,d +y,h) — Vi (2, d)
- —

(0:Vi) (@, d) + 7 (0aVi) (2, d) < _@+%)_+4

(2.20)
as h — 0. Consequently, we obtain that

(5 V2)(0,0) + 72(9aV)(0,0) = 0,
( )(070) +’7n<ac2lmvn)(070) =0,
( Va)(0,0) + 74(974V2)(0,0) = —1.

This implies that

@mmamz—i@mmaw

n

(02:V2)(0,0) = -3 = (@2,V,)(0,0),

1 1
(934Vn)(0,0) = - (—(93:V2)(0,0) = 1) = —2(32 Va)(0,0) — P
Inserting this into (2.19)) proves for all x,d € R that

Vi (z,d) = w (Wi - x) - 2% +(8,V,,)(0,0) (x . i) +1,(0,0).
(2.21)
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2 Optimal trade execution in a discrete-time model

We obtain w (resp. (0,V,)(0,0)) by identifying the coefficient of 22 (resp. x)
in (2.18)) using (2.12)). We therefore consider for all z € R

Vol(z,0) = —%‘20)2 + cn(,0)
(B (- ) - B (1 ) 1200
b B Mot} + B By rivia] + 30z = G+ B Vs (0,0)
_ (E SR ARPOPE 1AL A WRES ELS )

+ (En [2 V '7n+177bn+1] - 27n)\nCn) €
|:\/’Y’rl_+l¢n+1 < 6n+1> Tn nCni| n [Yn—H ( n+1 = /Bn—l—l) + )\ ]

x
n/Yn
2
9 ( [\/ 7n+1wn+1 ( ?nii) - f)/n)\ngn])
+ fyn)\TLCn -
An
. A , N1
+E 752 +INAN (£ - CN) + Z %’Aj@z]
j=n+1
2
2, [ [V ()] - V)
- n 2
j=n+1 E; [1{/; (Bjt1 — Fg+1)2 + % (1 - ﬁ) + /\j]
) 2 S A , N-1 )
= VYo 2? + 2/ nthnz + E, St YNAN (5 - CN) + Z VA
j=n
2
| (B [V ()] - Vo)
B " j+1 632' 1
j=n E; [% (ﬁjﬂ - Fj+1)2 + % (1 - TL) + )‘J}
It then follows from ([2.21)) for all z,d € R that
d PP d
Valz,d) = 7Yy (__x) — 5 T2y Mn (x__>
. A , N-1
+ L 752 + INAN (f - CN) +> ’Yj)\jQZ]
j=n
2
| @ [V (- 2] - Vi)
" 1 B] 1 ’
j=n j [F]il (6]—1—1 J+1)2 +% (1 — ) T4 ]
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2.2 Optimal strategies and minimal costs

which equals (2.9).

Bounds for Y,. To show that Y, > 0, observe that

n Qn
lYn = En [Fn+1Yn+1 + )\n] - = (En [Yn+1(ﬁn+l - Fn+1)] - )\n)2

an n

N | —

r 2
= En [Fn+1Yn+1 + )\n] En Yn+1 (FTL—H _ 2ﬂn+l + FnJrl) +
L n+1

2
(-r) ]
n+1
- (En [Fn+1Yn+1 + An] - En [ﬁn+1Yn+1])2

[ ne1 ] :
= En [Fn+1Yn+1 + )\n] En Y;1+1——i_1 + < <1 - —+1>:| - (En [ﬁn+1Yn+1])2 :

P 2 |}
(2.22)
Since Y11 > 0 by the induction hypothesis and v > 0 and A > 0, we have that
Ey[Lrns1Yni1 + A = En [Ty Yaia] > 0. (2.23)
Similarly, it holds that
2
E, [YM "H] > 0. (2.24)
Fn+1
By the assumption En[rgi] < 1, we moreover have that

1 1 1 1
E, l=(1-22)| =2 (1-F, |2 > 0. 2.95
{2 ( Fn-&-l)} 2 ( {Fn-lrl}) ( )
It now follows from (2.22))—(2.25]) that

2

Z_nYn > En [Fn+1Yn+1] En |:Yn+1 Fn+1:| - (En [ﬁn+1Yn+1]>2 . (226)
n n+1

The Cauchy-Schwarz inequality implies that

(B Vi) = B | o/ T iy >

2

g En |:n—HYn+11 En [Fn+1yn+1} .
Fn+1

(2.27)

We thus have from (2.26) and (2.27) that 2V, > 0. Since v,,a, > 0, we conclude
that Y,, > 0.
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2 Optimal trade execution in a discrete-time model

For the upper bound, note that

(En [Yn+1(6n+1 - Fn—i—l)] _ /\n>2

Yn = En [Fn+1Yn+1] + )\n -

an/’Yn
En Yn " — Fn _ )\n 2
< E,Thi1 Yo + A — (En [Yoy1(Bni 1)) )
an/’Yn
n E’I’L Yn n . Fn _ )\n 2
4 ( [Yos1(Bnta +1)] N 1>
’)/n an/'}/n
an 2.28
= En L1 Y] + A0 + 2 (Ey [Yos1(Boyr — Dnpr)] — An) + - (2.28)
Yo , 1 72L+1
1—‘n-‘rl 2 Fn—i—l

+ A — 20+ A\

1 2 1
=—+F, =2 (v, —=)]|.
gt (Yo =3

From the induction hypothesis Y, ;1 < % we then obtain that Y, < %

Integrability property for 1,. Clearly, 1, from is F,-measurable. By the inte-
grability assumptions that S, v, Wik, A, € L~ for all k € ZN (—o0, N] and bounded-
ness of Y, 11, we obtain that E,[Y,+1(8ns1 — Dny1)] — A € L. This together with
2o g L*" shows that

En [Yn—i-l (ﬁn—&—l - Fn+1>] - A

n/Vn
It then follows from ([2.15]) that the last term in (2.8)) is in L?**. Moreover, the induction
hypothesis 1,1 € L?>T and the assumptions ~;, % € L~ for all k € Z yield that

En[VThii¥ni1] € L*T. Since v, Ay, € L=~ and ¢, € L**, we also have that /7, \.(, €
L**. Hence, ¢, € L**(F,).
This completes the induction step.

t e L. (2.29)

Proof of (iv)
In the remainder of the proof of Theorem we show for all n € ZN (—oo, N — 1],

-----
.....

and uniqueness is a consequence of part (iii).
To this end, we let n € Z N (—oo, N — 1], z,d € R, define X* = (X,j)ke{n_l Ny by

(2.11)), and show by (forward) induction on k € {n, ..., N} that X} (and £ (X;_,, D;_))
are in L*T(F,) forall k € {n,...,N}.
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2.2 Optimal strategies and minimal costs

For the base case k = n we have (X} |, D% ) = & (x,d), which by part (iii) is
already known to be in L**(F,,). This further implies that X} = z+&%(z,d) € L*T(F,).

We continue with the induction step {n,...,N=2} 3 k—1— ke {n+1,...,N—1}.
By the induction hypothesis, it holds that X; € L**(F;) and £ (X7, D} ) € L**(F;)
for all j € {n,...,k —1}. As in Remark we can therefore obtaln that D} €
L**(F). Now, consider

Ey [Yer1(Brs1 — Tig1)] — i

& (Xp1, Dyo) = Yies 2 1 Bk ) Xeo1———
[pkil (Brs1 = Thy1)” + 35 (1 T ) + )\k} Ve
- Dp E [\/Fkﬂ%ﬂ (1 - ?i—ii)] = VARG
T E [;;H (Brpr — Trpr)® + 3 (1 - ﬁi—iﬁ + )\k]
(2.30)

Clearly, this is Fj-measurable. To prove that & (X7 ,,D;_ ) € L*, note that by
Minkowski’s 1nequahty7 it suffices to show that each summand is in L?>*. To begln

with, it holds that 2= € L** due to Di_ € L** = € L. Since X;_, € L*,

moreover have that X r— Dic ¢ 12+ Tt further follows with (2.29)) that
E Y, - A Dy
- k [ k+1 (/Bk+12 k’+1)] 5 k (X,;k = k—) c L2+. (231)
B |72 (B = Den)® + 4 (1 - 7522) + 0] ™

From Wik € L°°~, which implies \/L% € L*, and (2.16) we have that the last term

in (2.30) is in L** as well. Therefore, &(X; 4, D;_) € L*"(Fk), which together
with X} | € L*T(F_) from the induction hypothesis implies that X; = X; | +
&(X; |, Dy ) € L**(Fy). This finishes the induction step {n,...,N —2} 3k —1—
ke{n+1,...,N—1}

Finally, it also holds true that X% = X% | +&4(X5 1, Dy ) = Xy +E— X5, =
€ € L2 (Fy). As a result, X* € Adisc(z d).

This completes the proof of Theorem [2.2.1]

2.2.2 Comments on the main theorem

We first have the following supplement to Theorem [2.2.1]

Remark 2.2.2. Suppose that the assumptions of Theorem [2.2.1] are satisfied and
that f € L™ and ¢, € L™ for all k € Z N (—oo, N]. Then, by straightforward
modifications of the integrability arguments in the proof of Theorem [2.2.1] we see that
Un, £ (x,d), and X} are in L~ foralln € ZN(—oo,N|, k€ {n—1,...,N}, z,d € R.
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2 Optimal trade execution in a discrete-time model

Next, observe that we have the following representation in Remark below for
the process ¢ from Theorem The recursion for v itself is removed, although not
the recursion entering v indirectly via Y.

Remark 2.2.3. Under the assumptions and with the notations of Theorem [2.2.1] it
holds for all n € Z N (—oo, N| that

| PN Tt

%vé Bi+1 Ei [V (B = Tjp)] = Ay
H b/ [ L (B — D) + 3 (1 - Mﬂ A

N-1
_ Z E VA6 1+ Ej Vi1 (Bjr1 —Tjr)] = A
n B2

j=n vin E; [r]i (B1 = Tjan)” + 3 (1 - ﬁ)} A

. ﬁ n (1 _ 5k+1) By Y1 (Brrr — Dis1)] — M
Fk+1 E. |:Yk+1 (Bk:—&-l _ Fk:+1) + 1 (1 — M)] ‘l‘)\k

This can be shown by backward induction.

In particular, it is evident from Remark that if £ € L2+(F,) is known at initial
time n € Z N (—oo, N|, then ¢ for all k£ € {n,..., N} and almost all w € Q is an
affine-linear function (depending on k) of the target position €. A similar observation
holds for the process ¢ provided that ¢ is known at initial time n € Z N (—oo, N|. In
contrast, the involvement of the process A is more complicated, as it enters ¢ directly
at several places and also indirectly via Y. We can however observe that for A = 0,
the second of the two parts in the representation for ¢) in Remark vanishes. This
is also the case if ( = 0. For é = 0, the first part of the representation for v vanishes.

We can thus summarize that, iféC = (0 and at least one of (, A vanishes, then ) = 0.
Furthermore, in this case, the minimal costs in Theorem [2.2.1]for n € ZN(—o0, N,
x,d € R, simplify to ,

Vil d) = 2 (d ) — o
Tn 2
and the optimal trade size for n € Z N (—oo, N — 1], x,d € R, becomes

By Yo (Brsr = Tng)] = An r— day _d (2.33)
By |72 (B = Do)’ + 3 (1= 222 |+, WS
" | Tri1 n+1 n+1 2 T,

(2.32)

&z, d) =

In Corollary below we state that in the important subsetting where f =0,¢=
0, and A = 0, i.e., when one considers a risk-neutral agent who needs to close a position,
Theorem m reduces to |[AKU21b, Theorem 2.1]. Observe that the assumptions
in [AKU21b, Theorem 2.1] and Theorem aside from the newly introduced &, ¢,
and A are the same.
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2.2 Optimal strategies and minimal costs

Corollary 2.2.4. Suppose thaté =0, =0, and A = 0. Assume that for all
2 2
n € ZN(—oo, N — 1] it holds that En[ﬁ"“] <1 a.s. and that (1 — En[sz—f])_l € L.

| P} 1

Let (Y )nezn(—oo,n) be the process that is recursively defined by Yy = % and

(En [Yos1 (Basr — Dug)])’
B, [ (B — Do)+ 3 (1 22)]

Yn - En[rn+1Yn+1] - ,TL c Z ﬂ (_OO, N - 1]

+1 Fn+1
(2.34)
Then it holds for alln € Z N (—oo, N], z,d € R, that
Y, d? 1
Vn(l’; d) = 7: (d — ’Yn$)2 — 2—% and 0< Yn < 5

Moreover, for all z,d € R the (up to a P-null set) unique optimal trade size is given

by
f;(%,d)iz ELJY%+1(ﬁ%+J _'Fn+lﬂ

En [Yn+1 (Bar1i—Tur1)’ +3 (1_M

| ] Tnta

Tn Tn

>] (x — i) —i,ne ZN(—o0, N—1],

(2.35)
and Ey(x,d) = —x, and we have & (z,d) € L~ for alln € ZN(—oo, N| and z,d € R.

Proof. Since A = 0, the process defined by (2.7) and the process defined by ({2.34)
coincide. The assumptions & = 0, ¢ = 0, and A = 0 imply that v = 0 (cf. the
representation in Remark 2.2.3). The claims thus follow from Theorem [2.2.1] (note

also Remark [2.2.2). O

2
an+1

] <las. foralln € ZN(—oo, N —1] in Theorem 2.2.1)and

[AKU21b, Theorem 2.1] is a structural assumption. It ensures that the minimization
problem (2.4) preserves its structure with increasing number of time steps. More
precisely, under this assumption the coefficients a, in front of &2 in and the
random variables Y,, in stay positive at all times n € ZN(—oo, N —1]. To further

discuss the condition En[ﬁni] < las. foralln € ZnN(—oo, N — 1], we consider a

The requirement F,|

T
two-period version of the problem.

Since Yy = %, we can show for time N — 1 that
an—1 = %;_IENA In +1 =28y +2Ay_1]
and )
Ve o _ En_1[Tn] = (Ex-1[Bn])" +2An 1
N-1= :

22BN 1 [Ty +1 =28y 4+ 2An_1]
We already see that for Yy_; to be well-defined, we need to require ay_; # 0. Fur-
thermore, note that by (2.17) the value function has the structure

Vnoi(z,d) =  essinf  [ay_1&® + by_1(z, d) + cn_1(z, d)] (2.36)

§€L2F(FN-1)
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2 Optimal trade execution in a discrete-time model

for all z,d € R. The quadratic function & — ay_16? + by_1(z,d)é + cn_1(x,d) for
all x,d € R is strictly convex (resp. strictly concave) if and only if ay_; > 0 (resp.
ay_1 < 0). Therefore, in the case ay_; < 0, the minimization problem in is
ill-posed in the sense that one can generate infinite gains (in the limit) by choosing
strategies with |{| — co. We thus demand that ay_; > 0. This guarantees that there
exists a (unique) minimizer in (2.36)).

any—1 >0 is however not sufficient to ensure that also Yy_; > 0: Consider, e.g.,

= %, = 8, A = 0. Then, ay_y = 5z > 0, but Yy_; = —% < 0 and further
aN_o = —%67]\/ 9 < 0. This example furthermore shows that for Yy_; < 0, ay_o can

become negative, which leads to an ill-posed minimization problem at time N — 2.
As a consequence, we need to impose further conditions on By_1, I'y_1, and Ay_j.
More precisely, given ay_; > 0, it holds that Yy_; > 0 if and only if Ey_¢[['x] —
(Ex_1[Bn])* + 2Xn_1 > 0.

Note that the Cauchy-Schwarz inequality implies that

62

(-1l < Ev-y | 2X] Eyalra)

N
and hence it holds that

2ENy[Bn]—1 _ (En-1[BN])? B
En_[I'y] = EN—I[FN] = B [FN}

It thus follows that on the event {Ex_ 1[ ] < 1}, we have Ex 1[Iy +1 —20x] > 0
and Ey_1[C'n] — (En-1[8x])? > 0, which 1mp1y that ay_, and Yy_; are positive. We

ENl—[éN}]) < 1}. However,

remark that the same still holds true on the larger event {

replacing the assumption E, [z "“} < 1 a.s. with the weaker one % < 1 as. for
all n € ZN (—oo, N — 1] does not in general allow to perform the backward induction,
as the structure of the problem can be lost already on the step N —1 — N — 2.
Namely, Yy_; can be strictly less than 1 (in contrast to Yy = 1), while EN,Q[ﬁij]

2 2
. E
can be strictly greater than 1 (even assummg % < 1 a.s.), and we do not

necessarily get positivity of ay_s (see (2.12)).

To see that the assumptions of Theorem [2.2.1] in particular the structural assump-
tion discussed above, are satisfied for a reasonably large class of models, consider the
following Example There will be further examples in subsequent sections.

Example 2.2.5. Let (7,)nezn(—oco,n] a0d (8n)nezn(—oo,n] be deterministic strictly pos-
itive sequences such that

2
Poiln 9 foy alln € ZN (—oo, N — 1],
Tn41

e.g., take B, = B € (0,1) for all n € Z N (—o0,N] and (rn)nezn(—oo,n] & nonde-

creasing sequence in (0,00). Let (74)nezn(—oo,n) be given by the formula v, = 7
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2.2 Optimal strategies and minimal costs

n € 7ZnN ( 00, N], where (Zy,)nezn(—oo,n] is @ strictly positive supermartingale such
that Z,, 5~ € L~ for all n € Z N (—o0, N]. Furthermore, take some ¢ e L*(Fy)
and adapted processes ¢, A with ¢, € L*T, \, € L7, \y >0, k € ZN (—oo, N]. It is

straightforward to see that all assumptions of Theorem [2.2.1] are satisfied.

Finally, we point out that the process Y defined in plays a major role in the
analysis of the trade execution problem as it is a main ingredient to describe the
optimal strategy and the optimal costs, see Theorem Notice that Y involves A,
but neither f nor ¢, which enter the solution of the trade execution problem via the
process 1. In the case é = 0 = (, the solution is solely described by the process Y, as
¢ vanishes (see (2.32)) and (2.33)). On the other hand, if € is general, but A = 0 (which
implies that all terms containing ¢ vanish as well), then definition coincides with
definition from [AKU21b, Theorem 2.1].

In the subsetting where é = 0 and ¢ = 0, the basic observation that, under the
assumptions of Theorem [2.2.1] it holds +,Y,, = V,,(1,0) for all n € Z N (—oco, N] (see
also (2.32), leads to the following improved upper bound for Y.

Remark 2.2.6. Let n € ZN(—o0, N|, € =0, and ¢ = 0, and suppose that the assump-
tions of Theorem [2.2.1] are satisfied. Note that for an initial position of size z =1, a
possible execution strategy is to sell the whole unit at some time k € {n,..., N}. For
k € {n,...,N}, such a strategy X* = (X](k))je{nq,n ,,,,, N} 18 given by XJ@ =1 for
all je{n—1,...,k—1} and X;k) =0 for all j € {k,..., N}, with associated trade
process ¢F) = (éj(k))je{n _____ ~} that satisfies f,ik) = —1and gj“) =0,5€{n,...,N}\{k}.
If there is no initial deviation, i.e., d = 0, it follows for all k € {n,..., N} that D,(Ck_) =0
(cf. (2.2)) and that the expected costs of X® amount to

EN:(D(k %g(’“> Qo Z% ]
_ R [(D““) + 72’“ >) ’“)} + B, Z% (X M) ] (2.37)
_ B, [%} n ki E, [

From Theorem with € = 0 and ¢ = 0, we have that ~,Y;, = V,,(1,0). Since the
expected costs in (2.37) are at least as large as the optimal costs V,,(1,0), this implies
that

Y, <

2.38
2y (2.38)

47



2 Optimal trade execution in a discrete-time model

Note that

29, - 27, 2
Therefore, (2.38) improves the bound Y, < 1 provided by Theorem m

2.3 Processes with independent multiplicative
increments

In this section we introduce a subsetting within our general model where the resilience
and price impact processes and \ satisfy

(PIMI) for all k € Z N (—oo, N] the random variables I'y and f; are independent
of Fi_1, and Ay is deterministic.

It turns out that in this case the process Y from Theorem is deterministic.

Lemma 2.3.1. Assume (PIMI) and that for alln € Zﬂ( o0, NJ it holds E[ ] < L.
Let Y = (Y Jnezn(—oo,N] e the process from Theorem 1| that is recursively deﬁned
by Yn =35 and [2.7). ThenY is deterministic, (0, 2] valued and satisfies the recursion

Y, = E[Fn+1]Yn+1 A, — ( (/8-1-1( F[ﬁ )—‘rl] [ +1]) ; )
Vo B[]t (1 plEa]) 40, (239)

neZn(—oo, N —1].

If furthermore f =0 and at least one of \,C is equivalent to zero, then formula (2.10))
for optimal trade sizes in the state (z,d) € R? takes the form

Yo (B [Bupi] = E [Topa]) = A (:,3 _ i) L]
VoB [Gelanl ] 4 (1 p[Ea]) 40, U

&, d) =

Y

Tn(2.40)

and 57\7(‘%’ d) ==

Proof. Since Yy = 3 is deterministic and we assume (PIMI), recursion (2.39) follows
from (2.7) by a straightforward induction argument. Formula (2.40) is an immediate
consequence of (2.33)), the assumption (PIMI), and the fact that Y is deterministic.

]

We next show that if the resilience moreover at any time has expectation 1, then
the process Y stays at %
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2.3 Processes with independent multiplicative increments

Corollary 2.3.2. Suppose that the assumptions of Lemma hold true, and that
moreover E[3,] = 1 for all n € Z N (—oo, N|. It then holds that Y, = % for all
n € Z N (—oo, NJ.

Proof. Since E[f,] = 1 for all n € Z N (—o0, N], we obtain from (2.39) for all n €
Z N (—oo, N — 1] that

(E[Fn+1]yn+1 + >‘n) (Yn—i-l - %) (E [%} _1> + Yn+1 (Yn+1 (E[Fn+1] - 1) + )‘n)

(Yopr — 1) (E [I‘f—ﬂ —1) 4 Y1 (E[Cnsa] — 1)+ A

+1

Y, =

Y

which in case of Y,,,1 = % equals % Due to Yy = %, it follows inductively that Y,, = %
for all n € Z N (—o0, NJ. O

The situation where (I'y)kezn(—oo,n] a0d (Bk)kezn(—oo,N] are deterministi(ﬁ sequences
and A = 0 constitutes a particular case of (PIMTI). We provide a closed-form expression
for recursion in this case. In fact, in this case, it is more convenient to work
with the quantities

7, = k€ ZN (—o0,N], (2.41)

2V,
in place of Yy, k € ZN (—o0, NJ.

Corollary 2.3.3. Let A = 0. Assume that, for all k € Z N (—oo, N]|, Ty and By are
deterministic and satisfy i < TUy. Let the (deterministic) sequence Z = (Zk)kezn(—oo,N]

be defined by (2.41)), where the sequence Y = (Yi)kezn(—oo,n] 1S Tecursively defined by
Yy =3 and [2.39). Then Z is [1,00)-valued and it holds that

N 1 N J 1 (F] . 6]’)2
e (1;[ E) ! ,Z (H E) T, -5 keZn(—oo, Nl  (2.42)
i=k+1 j=k+1 \i=k+1 j

If furthermore f = 0, formula (2.40) for optimal trade sizes in the stale (x,d) € R?
takes the form

-T d d
(o d) = g~ (o - o) - & kezn(-owoN -1
(Crg1—Brs1) + Zis1 (1 _ ﬁ) Vk Yk

| | P

(2.43)
and £y (x,d) = —x.

Proof. In the current setting, recursion (2.39) simplifies to Yy = 3 and

1

Yir1 (Crt1—Br41)? + % (1 _ %) ’

Trya |

62
5 (1 ) D Yo
Y, =

keZnN(—oo, N —1],

1t is worth noting that (vk)rezn(—oo,n can be random.
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2 Optimal trade execution in a discrete-time model

which, for the sequence Z, yields Zy = 1 and

L1 — Brsr)’ 1
(D1 — Br+1) + Zyi1, k€ZN(—oo,N—1]. (2.44)

=
2 2
Ui = Th1Bin Trna

By backward induction, we obtain (2.42)). The fact that Z is [1, 00)-valued follows
from the fact that Y is (0, 3]-valued and (2.41)). The statement on the optimal trade
sizes follows by a straightforward transformation in ([2.40]). [

The formulas simplify even further when we additionally assume a constant order
book depth.

Corollary 2.3.4. Let A\ = 0. Assume that, for all k € Z N (—oo, N|, % = 7 a.s.
with some strictly positive (,oq Fr-measurable random variable 7 satisfying *?,% €

L*>~. In particular, Ty = 1 a.s. for all k € Z N (—oo, N]. Further, assume that the
sequence (B ) rezn(—oo,N] 15 deterministic and (0, 1)-valued. Then we are in the situation

of Corollary[2.3.3, formula [2.42)) simplifies to

)
Z, =1+ i keZn(—oo N,
' j:zk;—11+6j ( |

and, ifé =0, formula ([2.43)) for optimal trade sizes in the state (x,d) € R? takes the
form

L 1 d_y_d
&e(z,d) = 1= Bra1 + (14 Brr1)Zraa (& x>

1 d d
_ S (——:1:)——, keZn (oo, N -1,
2+ (L4 Brat) Xjis2 58

and Ex(z,d) = —x.

Proof. Since I'y = 1 for all k € Z N (—o0, N|, the result follows from Corollary
via straightforward calculations. O]

2.4 Long-time horizon

Let the assumptions of Corollary be satisfied. In particular, we consider é =0
and ¢ = 0 = \. In this situation, we have the following economic interpretation of Y as
a savings factor. Suppose that at time n € Z N (—oo0, N| the task is to sell z = 1 share
given an initial deviation of d = 0. Then immediate execution of the share, which
corresponds to the execution strategy X = (Xk)ke{n—l,n ,,,,, ny defined by X,,_; = 1,
X =0,k € {n,..., N}, generates the expected costs 2 (see also (2.37)). The optimal
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2.4 Long-time horizon

execution strategy incurs the expected costs V,,(1,0) = 4,Y,, (cf. Corollary 2.2.4)). So,
the random variable 2Y,,: Q — [0, 1] describes to which percentage the costs of selling
the unit immediately can be reduced by executing the position optimally.

This means that if we want to study the improvement in the costs due to optimal
trading, we can have a look at the process Y. A relevant question is how much better
in comparison to the immediate closure we can do in the long run. To analyze this,
there are basically two starting points, both based on the process Y.

One is to adopt the perspective that trading starts at a fixed point in time, e.g.,
at n = 0, and that the terminal date N when the position has to be closed is shifted
further and further into the future. This corresponds to studying the limit of the
sequence of random variables (Y") yen as N — oo, where YV is the process defined as
in pertaining to the terminal time N ] Recall that Y{¥ = V¥ (1,0) /v, where V¥
is the value function belonging to the terminal time N. Since Y is nonnegative and
ViV (1,0) /70 is nonincreasingf| in N, it follows that limy . Yi¥ always exists (under
the assumptions of Corollary [2.2.4).

Another perspective consists in fixing the terminal time N and asking what would
have been if one had started trading earlier. This corresponds to investigating the limit
lim,, , o Y,. In some settings (e.g., in a time-homogeneous deterministic framework or,
more generally, in the setting of Proposition one can see that both perspectives
coincide by simply relabeling time instances appropriately. In contrast to limy .. Y3,
the limit lim,,_, . Y,, does not always exist (cf. Lemma . In Proposition we
study the existence of the long-time limit lim,, ., . Y,,.

We furthermore remark that the question of the long-time limit is different from
considering the continuous-time limit of the control problem, which corresponds to
fixing N € N and n € Z N (—oo, N| and letting the number of available trading times
in [n, N] go to infinity. A continuous-time variant of the control problem and the
relation to the discrete-time results will be discussed in Chapter [3] Chapter [5, and
Chapter [(-Chapter In particular, the counterpart of the discrete-time process Y
turns out to be a quadratic BSDE.

Proposition 2.4.1. Let the assumptions of Corollary[2.2.]) be satisfied, and let
(Yo )nezn(—oo,n be the process that is recursively defined by Yn = % and (2.34). Fiz any
p € [1,00).

(i) The sequence (VnYn)nezn(—oo,N] CONVETges a.s. and in LP as n — —oo to a finite
nonnegative random variable.

() If (Vn)nezn(—oo,n) @5 @ supermartingale, then the sequence (Yy)nezn(—oo,n] CON-
verges a.s. and in LP as n — —oo to a finite nonnegative random variable.

®Note that the filtered probability space (2, F, (Fx)rez, P) and the processes (Vi )rez, (Bk)rez do
not depend on N. Furthermore, we currently consider the subsetting where £ =0 and ( =0 = A.
8For N + 1, a possible strategy is to first trade according to the execution strategy that is optimal

for N, and to not trade at terminal time N + 1.
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2 Optimal trade execution in a discrete-time model

Proof. (i) It follows from (2.34) that for all n € Z N (—oo, N — 1] it holds Y,, <
E.Thi1Yn] = %En[%HYnH]. Thus, (vnYn)nezn(—oo,n] is & submartingale. There-
fore, the backward convergence theorem implies that (7,Y})nezn(—0o,n] cONVerges a.s.
as n — —oo. Moreover, ('ann)nezm(,oo,N] is a positive sequence in L. Hence,
its limit is nonnegative, and, by the submartingale property and Jensen’s inequality,
(M Yn)? < (EuywYn))P < E,[(ynYn)P], n € Z N (—oo, N]. It follows that the se-
quence ((vnYn)?)nezn(-oo,n) is uniformly integrable, which implies the convergence in
L? towards a finite nonnegative random variable.

(ii) If (75)nezn(-oo,n) is @ supermartingale, then it converges a.s. as n — —oo to an
RU{+o0}-valued random variable, denoted by v_,, due to the backward convergence
theorem. As =, is positive for all n € Z N (—oo, N|, the random variable vy_, is, in
fact, [0, +oc]-valued. Furthermore, it hold{|

0=FE [7*001{7—oo=0}] > B ['VNl{'V—oFO}} > 0.

Together with the fact that vy > 0 a.s., this implies v_,, > 0 a.s. Therefore, we
have that (%)nezm(,oo,m converges a.s. as n — —oo to the finite nonnegative random
variable W_#OO It now follows from (i) that (Y},)nezn(—o0,n) cOnVerges a.s. as n — 0o to a
finite nonnegative random variable. As the sequence (Y;,)nczn(-oo,n] is bounded (being

(0, 3]-valued), it also converges in LP. O

The assumption that (7,)nezn(—oo,n) i a supermartingale in Proposition [2.4.1{(ii)
means that the liquidity in the model increases in time (in average). In Lemma
below we have that (V,)nezn(—oo,n] I8 @ submartingale and (Y},)nezn(—co,n) does not
converge. This shows that the claim in Proposition [2.4.1f(ii) does not in general hold
when the liquidity in the model decreases in time.

We are further interested in specific examples for the long-time limit lim,,, ., Y,. In
the next Proposition we compute this limit assuming (PIMI) (see Section
and a sort of time-homogeneity for expectations.

Proposition 2.4.2. Suppose that the assumptions of Lemma hold true, that
A =0, and that B = E[Bp1], 1 = E[lps1], and a = E[%} do not depend on
ne€Zn(—oo,N—1].

(i) If B =1, we have ] > 1, and it holds for all n € Z N (—oc, N| that Y, = 3.

(i) If 7 < 1, we have B < 1, and the sequence Y = (V)
monotonically to 0 as n — —oo.

(iii) If B # 1 and i > 1, the sequence Y = (Y;,)
monotonically to

n€ZN(—o00,N] converges

nEZ(—co,N] @S L —> —00, converges

3(1=a)(1-1) . (071)
(1—a)@—1)+(8-1)

2
"Here we use the convention co - 0 = 0.

(2.45)
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2.4 Long-time horizon

Proof. From (2.39) we have that

Y2, (B —7)
Yo =0Yn41 — - "+£(ﬁ_ 77)1 —, neZNn(—oo,N—1]. (2.46)
Vo (@=28+7)+5(1-a)

Define g: [0, 00) — R,

_ v (B—17)°

g(y)zny—y(d_25+ﬁ)+%(1_d), e [0, 00). (2.47)

Note that @ < 1 by assumption and that & — 23 4+ 7 > G nﬁ) > 0 because 5 < a by
the Cauchy-Schwarz inequality. We first show that g is strictly increasing on [0, 00).
To this end, let y > 0. We compute that

v a2 ((@—28+0)+5(01-a) -y’ (a—23+0)
g =n-(8-1) -2t m) 1)
- (G-n) (a—25+n)+y(1—07)

(y(@—28+1n)+ 1—a))
Hence, ¢'(y) > 0 is equivalent to

ﬁ(y(éz—ZB—i—ﬁ)—i—%(l—d)) > (ﬁ—ﬁ)Q(y2(6z—2B+ﬁ)—l—y(l—d)).

Divide by 7 > 0 and note that <5ﬁ) = %2 — 23 + 7. This yields the equivalent
statement

0<y2(a—25+n)2+y(a—2ﬁ+n)(1—a)+<1_4@) B (ﬁ%ﬁ) W (@ —28+7)
—@y(l )
=y’ (@—28+1) (a——)+y(d—%> (1_@)+(1_4a)

n
o) 152 e (-2

Since @ < 1 and 2 - < @, this always holds true for y > 0. It follows that g is strictly

increasing on [0, 00).
Recall that 0 < Y, < § forall n € ZN (—oo,N — 1] and Yy = 3. In particular,
Yn-1 < Yy. The recursion Y,, = ¢(Y,41), n € ZN (—oo, N — 1] (cf. (2.46) and (2.47))),

23



2 Optimal trade execution in a discrete-time model

and the fact that g is increasing therefore imply by induction that the sequence Y is
nondecreasing, i.e., Y, 1 <Y, for all n € Z N (—o0, N|. Hence, the limit lim,, .Y,
exists and belongs to [0, 3]. Moreover, it is the largest fixed point of g in [0, %] Indeed,
since g is increasing, for the largest fixed point g of ¢ in [0, %}, we have that y > y implies
g(y) > g(y) = y. Hence, g is a lower bound of Y. We obtain that lim,_, ., Y, > ¢ and
is a fixed point of g, which means that lim,, . Y, = #.

(i) Suppose that 3 = 1. The claim that 77 > 1 follows from % < a<1 By
Corollary it holds that Y, = $ for all n € Z N (—oo, N].

(ii) Suppose that 7 < 1. First notice that 52 < fa < 7 < 1 and hence 3 < 1. Now
it follows from (2.47) that for all y > 0 we have g(y) < y. This yields that 0 is the
only fixed point of g on [0, 00) and hence lim,,, Y, = 0.

(iii) Suppose that 3 # 1 and 7 > 1. In this case (2.45) is a fixed point of g and the
only one in (0, 00). Indeed, for y € (0, 00) the condition g(y) = y is equivalent to

(1—a)(m—1).

N —

y((B=n= (-1 (a-25+n)) =
From the fact that
B-7)-@-1)(@a-28+0)=01-a)@-D+(B-1)">1-a)(@G-1)>0
we deduce (2.45). O

To discuss Proposition [2.4.2] recall that in the setting of Corollary [2.2.4} 2Y,, = V%(L—l/QO)
compares the costs % of selling one unit immediately at time n € Z N (—oo, N] given
initial deviation 0 to the corresponding optimal costs V,(1,0). In general, dividing a
large order into many small orders and executing them at consecutive time points can

be profitable compared to the immediate execution because of the following reasons:

e the price impact process 7 penalizes trades at different times in a different way
whenever 7 is nonconstant,

e the resilience process [ changes the deviation process D between the trades
whenever f is not identically 1.

From this viewpoint the claims of Proposition are naturally interpreted as follows.

If the resilience is in expectation 1 (8 = 1), then the price impact process 7 is
increasing in average (as 77 > 1), and neither of the above reasons suggests dividing a
large order into many small orders.

We can asymptotically get rid of the execution costs in the case of nonincreasing
price impact (in the sense 77 < 1). Notice that, in this case, the price impact is allowed
to be constant, but we anyway profit from the resilience, which, in expectation, drives
the deviation back to zero between two trades (3 < 1).

o4



2.4 Long-time horizon

In the remaining case of a nontrivial resilience and a geometrically increasing price
impact (in the sense 3 # 1 and 7 > 1) we can not fully get rid of the execution costs
regardless of how large our time horizon for execution is.

With Lemma we now provide an example within the (PIMI) setting where,
in contrast to Proposition the process Y = (Yn)neZm(—oo,N] does not converge as
n — —oo. The idea behind this construction is to alternate between setting (i) and
(iii) in Proposition and thereby create two subsequences that converge towards
different values.

Lemma 2.4.3. Suppose that the assumptions of Lemmal[2.3.1 hold true and that A = 0.
Let Bi, B2, M1, M2 € (0,00), and &y, as € (0,1), such that for all k € Ny it holds
B = EWQN—%—l] =1, B = fg[ﬁz\/—%] # 1, = Eln_gk—1], 72 = E[l'n_ai] > 1,
G = B[22 and Gy = B[22,

Then, v is a submartingale and Y = (Y, )nezn(—oo,n] does not converge as n — —oo.
In particular, the sequence Y is not monotone.

Proof. Note first that 5 = 1 and &; < 1 imply that 7; > 1 by the Cauchy-Schwarz
inequality. It follows from

1 < 771 = E [FN72]€71} = EN*Qk*Z [FN72]<:71] — EN72]§72 |i,}/N2k'1:|
YN —2k—2
1
= ——En-ar—2 [yn-2k1]
YN —2k—2
and 1
1< =By [1v-2]
YN—-2k—1

for all k£ € Ny that 7 is a submartingale.

For j € {1,2}, denote by g; the function defined by with 3 = B;, 1 = 7,
and @ = &;. Recall that g;, g» are strictly increasing, and note that for k£ € Ny, we
have Yy _or2 = g1(Yn_2k—1) and Y _ok_1 = g2(Yny_2x). Furthermore, the equations
g;(y) =y, j € {1,2}, are quadratic ones, and neither g; nor g, is the identity function.
Hence, each of the functions g; and g, has at most two fixed points. Clearly, 0 is a
fixed point. In view of the proof of Proposition [2.4.2] we conclude that the only fixed
points of ¢g; are 0 and %, and the only fixed points of go are given by 0 and g € (0, %)
from (2.45). We also notice that ¢;(y) > y for y € (0,3). Indeed, since 3; = 1 and
1 > 1, we compute for all y € (0,3) that

(m — DA —a)y (5 —y)

2 > 0.
y(an — 261 +T1) 4+ 3(1 — @)

n(y) —y=
We now prove by induction that Yy_,, > y for all m € Ny. The case m = 0 is

clear. For the induction step Ng > m — m + 1 € N, if m is even, we have Yy_,,_1 =
g2 (Yn_m) > g2 (J) = 7. If mis odd, it holds Yy _n1 =91 Yv_m) > 91 () > U

%)



2 Optimal trade execution in a discrete-time model

We next show inductively that Yy_,, > Yy_,,_o for all m € Ny. For m = 0, this
follows from Yy_o < % = Y. Consider then the induction step Ny >m - m+1 € N.
If m is even, we have Yy _-3 = go(Ynv-m—2) < ¢2(Yn_m) = Yn_mm_1. If m is odd, we
have Yn_m—3 = g1 (Yn-m—2) < g1(Yv-m) = YN-m-1-

Therefore, the subsequences (Yn_ax)ren, and (Yy_ok—1)ken, of Y are nonincreas-
ing in £ € Ny and bounded from below by 7, which implies that the limits Y(®) =
limy_ oo Yv_or > y and Y = limy_oo Yy_op_1 > gj exist. Taking limits on both sides
of Yy_ok—1 = g2(Yn—2x), we obtain Y(© = go(Y(®)) by continuity of g,. Similarly,
it holds that Y9 = ¢,(Y©)). Now, if Y(© and Y were equal, then Y = Y
would be a common fixed point of ¢g; and g, and hence 0, which is a contradiction to
Y > 4 > 0. We thus conclude that Y does not converge. O]

We next present examples that fall outside the (PIMI) framework.

Example 2.4.4. A simple observation is that under the assumptions of Corollary
we have lim,,_, ., Y, = 0 a.s. whenever (7, )nezn(—oo,n] satisfies lim,,_, o, 7, = 400 a.s.
This follows from statement (i) of Proposition [2.4.1]

Example 2.4.5. Suppose, in addition to the assumptions of Corollary that
I, =p, forallneZn(—oo,N]|. (2.48)

It is worth noting that, in this setting, the optimal strategy given initial deviation
d = 0 is to wait until the terminal time N and to close the position at time N. In
contrast, if d # 0, the optimal strategy in general consists of nontrivial trades at all
time points. For the sake of discussing the long-time limit lim,,, . Y, in this setting

Eve observe that the requirement £, ] ”E] < 1 a.s. from Corollary [2.2.4| under ([2.48))
ecomes

E,lpi1] <1 as. foralln e ZN(—oo, N —1J. (2.49)

Hence, (Vn)nezn(—oo,n] is @ supermartingale. By statement (ii) of Proposition [2.4.1]
lim, , .Y, always exists in this setting. Moreover, we have Y,, = E,[I",,11Y,,+1] for all
n € Z N (—oo, N — 1], and hence by induction

H r]:% nl] (2.50)

P Tn

for all n € ZN(—o0, N|. In general, we still can have different values for the long-time
limit. Therefore, we now discuss several more specific examples.

(i) Assume there exists ¢ € (0,1) such that E,[T,+1] < ¢ as. (cf. (2.49)) for all
n € ZnN (—oo,N — 1]. By intermediate conditioning, it follows from (2.50) that

<
Y, < %c " a.s. for all n € ZN (—oo, N], hence lim,,, Y, =0 a.s.



2.4 Long-time horizon

(ii) On the other hand, it is clear from that, even with suitable deterministic
sequences (I',) ez, we can achieve for the long-time limit lim,,_, ., Y,, any deterministic
value in (0, 3).

(iii) In order to present an explicit and, possibly, nondeterministic long-time limit, we
finally consider the following construction. Let (ry)neczn(—oo,n] be a strictly decreasing
sequence of nonnegative real numbers. Let Z,, n € Z N (—oo, N], and K be random

variables such that (Zn)nezm(,oo,N] is an i.i.d. sequence independent of K, and such that
Zn,K >0and Zy,K € L*~ (and thus Z, > 0, Z, € L>~ for all n € ZN(—o0, NJ).

We also require at least one of the conditions (a) ry > 0 or (b) -t T + € L™=, We now
define
N
Un=Y 7, Fo=0(K,Ujj€Ln(—00,n]), neZLnN(—oo,NJ
j=n
and set .
= —U,K Z N (—oo, NJ|.
Yn T"+N—n+1Un ., neZn(—oo,N]|
Note that v, > 0 for all n € ZN(—o0, N], and define 5, =T, (—o0, NJ.

Thus, we are in setting (2.48), and we now verify that the assumptlons of Corollary[2.2.4]
are satisfied.

Since 1, is deterministic and Z,, K € L*~ for all n € Z N (—oo, N|, it holds that
Yo € L~ foralln € ZN(—o0, N] To see that also i € L™ foralln € ZN(—o0, N|,
note that v, > ry and v, > 5= +1 — 7K for all n 6 Z N (—oo, N], and use condition
(a) or (b). Clearly, we then also have that g, € L™~ for alln € Zﬂ( oo, N|. Further,
for n € ZN(—oo, N] and j € {n,..., N}, it holds that E,[Z;] = 5=—U,. Hence, for
all n € ZN (—o0, NJ,

al 1
Y E.Z)K =1y + ———UK

E Vg1 =11 +
] = 7o N—n_ N—-n+1
j=n+1

1
<rpn+—"——U,K =, as.,
T +N—n+1 Yrn &.S

i.e., requirement (2.49) holds true (which is E,[ "“] < 1 a.s.). Furthermore, we have

that
-1 _
(1 —E |: 72L+1:|) _ (771 - En [7n+1]> ' _ Tn e [
" Fn—&—l Tn 'n — Tn+1

foralln € ZN (—oo, N —1].
By the strong law of large numbers it holds that —— +1 ~——U, = E[Zy] a.s.,asn — —o0.
Setting r_oo = lim,, o7, (€ (0,00]), we obtain lim, , «Vn = oo —|— E[ZN]K as.
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2 Optimal trade execution in a discrete-time model

Furthermore, lim,, , ., E,[yn]| = ry + E[Zy]|K a.s., and hence

. . . En[’VN] . 1 TN+E[ZN]K
lim Y, = - lim = —
n——00 2no—c0 7, 27r_o -+ E[ZN]K

a.s.,

which is, in general, nondeterministic.

2.5 Round trips

We now turn to the question if an agent who has no initial position in the asset and also
requires position 0 at terminal time nevertheless can expect to benefit from tradingﬂ

To this end, let x = 0, é =0, and A = 0 = (¢ throughout this section (except for
Remark [2.5.10). In particular, if we assume in addition that for all k € ZN(—oo0, N —1]

it holds that Ek[%} < 1 a.s. and that (1 — Ek[%])_l € L7, we are in the setting
of Corollary 2.2.4]

Definition 2.5.1. Let é = 0and A =0 = (. For any d € R, we call an execution
strategy X € A%¢(0,d) a round trip at time n € Z N (—oo, N — 1]. A round trip
X € A%e(0, d) at time n € ZN(—oo, N —1] is said to be profitable for initial deviation
d € R if for the associated costs it holds

P (En i <Dj— + %5;‘) fj_ = O) =1 and

Lj=n

P (En i (Dj_ + %gj) gj- < 0) >0,

Lj=n

(2.51)

where £ is the associated trade process and D is the associated deviation process with
D, =d.

We formalize our previous question and ask whether there exist profitable round
trips (at time n € Z N (—oo, N — 1], for given initial deviation d € R). The existence
of profitable round trips is sometimes also referred to as price manipulation (see, e.g.,
[AS10], [Gat10], or [HS04]).

Note that, for n € Z N (—oco, N — 1], d € R, and under the assumptions of Corol-
lary there exist profitable round trips at time n for initial deviationf] d if and
only if

P(V,(0,d) < 0) > 0. (2.52)

8We could pose a similar question for initial position x and terminal position z, given = € R.
However, this is equivalent to the problem treated here, see Remark and .

9Note that for existence of profitable round trips we in fact only have to distinguish between d = 0
and d # 0, see the subsequent discussion.
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2.5 Round trips

In this case, the optimal strategy from Corollary is such a profitable round trip.

To see that this indeed holds true, fix, for this paragraph, n € Z N (—oco, N — 1],
d € R, and let the assumptions of Corollary be in force. Observe that from
Corollary we have the existence of an optimal strategy X* € A%¢(0,d) and that

V. (0,d) = j—z (Yn - %) (2.53)

with (0, %}—Valued Y,. Suppose first that there exists a profitable round trip X €
Adise((, d). Tt then follows that a.s.

E, > b, = V,(0,d).

(P +58)

(P +35)8

J=n

J=n
The fact that X is profitable implies that

ﬁ: (D + %gj) gj] < o> > 0.

=n

P (V,(0,d) <0) > P (En

Suppose now that P(V,,(0,d) < 0) > 0. Since 7, is positive and Y, is (0, 3]-valued, it

follows from that furthermore P(V,(0,d) < 0) = 1. The optimal strategy X*
thus satisfies (2.51), i.e., X* is a profitable round trip.

Observe that implies in particular that V,,(0,0) = 0 for all n € ZN(—o00, N—1].
Thus, by (2.52)), there are no profitable round trips whenever d = 0. This means
that without initial deviation of the price process the agent can not make profits in
expectation. Moreover, this shows that, if there is no initial deviation of the price
process, our model does not admit price manipulation.

Note also that and imply that if, for given n € ZN(—o00, N —1], dy € R,
there exists a profitable round trip at time n for initial deviation dy, then there exist
profitable round trips at time n for any initial deviation d # 0.

In the sequel, we study existence of profitable round trips when the price of a share
deviates from the unaffected price, i.e., when it holds d # 0. For n € ZN (—oo, N — 1]

and d # 0, (2.52) and (2.53) imply the following classification:

o If P(Y, < %) > 0, there exist profitable round trips,
o if P(Y, = %) =1, there are no profitable round trips.
Thus, the question reduces to finding a tractable description of the event {Y,, = %},

n € ZN(—oo, N — 1]. We characterize this event in the next proposition and then
discuss several consequences of this characterization.
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2 Optimal trade execution in a discrete-time model

Proposition 2.5.2. Let the assumptions of Corollary be satisfied. Then we have

{Yn _ 1} _ {En Y] = %En Boia] = 1}, neZn (oo, N —1],

where here and below we understand equalities or inclusions for events up to P-null
sets.

Proof. Throughout the proof we fix n € Z N (—oo, N — 1]. With the notation
1 (1
Vnt1 = 5~ (5 - n+1> Tt

Yn+1
n — nEn Fa—
¢ 7 |:Fn+1

from (2.12)), we obtain from (2.34) that

(En [Yn+1ﬁn+1])2 _ZEn [Yn-i-lﬁn-i-l] En [Yn-I-an-I-l] +(En [Yn+1rn+1])2
Ep Wny1 — 218041 + Yoy Doy
o En [Fn+1Yn+l] En [Vn-H] — (En [Yn+1ﬁn+1])2
B By [Vni1 — 2Yn11 8041 + Yo Doy
E, [VnJrl} E, [VnJrl —2Y 11 Bnp1 + Yn+1rn+1] - (En [VnJrl - Yn+15n+1]>2
By [Vni1 = 2Yn 11 8n11 + Yoy Dnga]

1 1 2 Y (1 1 2 ?
:__En __Yn ntl) __En __Yn ntl _EnYn n .
5~ B (5= Yor) 22| = 22 (5= B (5~ Vo) 1222 |- B

Since i1, Yn, @ > 0 and Y, 11 < £ ass., it now follows that

v,— b= de [ty i1 =0,E, [V, ]—1 (2.54)
n—2 - n 2 n+1 Fn+1 — U, Lp n+1Mn+1 —2 . .
C,=1E L Y, i1 =0
e G e o

B, - {En[ynﬂ] - %} |

We show that C,, = B,,. For the inclusion C,, O B, note first that, due to {E,[Y,11] =
1} € F,, it holds

1
/ Y,y dP = / B, [Yau] dP = / Lap, (2.55)
{En[Yn+1]:%} {En[Yn-Q—l]:%} {EW[YW‘FI]:%} 2

and with

2
(Bt = Tna)” + 3 <1 - n_ﬂ>]

2 Fn-i—l

Yn = En[rn+lyn+1] -

Let

and
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2.5 Round trips

which yields that Y, = % on B,. This together with the fact that B,, € F,, implies

1 ) 1 o1
g E, || =Y, = =FE, |l [ =-Y, ” = 0.
b {<2 +1> FnJrl} { b (2 +1) Fn+11
To prove C,, C B,,, observe that C,, € F,,, and that

c.cl(2 RSN QY AV
n = 9 n+1 Fn+1_ — n+1—2

(by an argument similar to (2.55))) since 3,11, Tn41 > 0 and Y, 11 < £ a.s. It thus holds
that

1C’nEn [Yn—H] = En [1CnYn+1] = 1C’
From C,, = B, together with ({2.54)) we obtain

{Yn = %} = {En[Yn+1] = %7En [Yn—i—lﬁn—i-l] = %} .

Furthermore, we have

DN | —

n

1
1BnEn [Yn—i-lﬁn—l-l] - En [1BnYn+15n+1] - ]-Bn§En [ﬁn—l—l} s

{ro=3}={Bmn =gl =1},

and hence

]
Corollary 2.5.3. Under the assumptions of Corollary[2.2.4 it holds that
1
{YN—I = 5} ={Enx_1[Bn] =1},
Proof. The result is immediate from Proposition because Yy = % O]

Corollary 2.5.4. Under the assumptions of Corollary we have the following
inclusions for n € Z N (—oo, N —1].

(1) It holds that
1 1
Pemspe e -3

(equivalently, {Yo1 < 5} C{Y, < 3}).
(11) It holds that

{Yn _ %} C {Ey [Burs] = 1} € {Bo [Buss] 2 1} € (B o] > 1)

(equivalently, {E,[Tpi1] <1} C{E[Bun] < 1} C{EL[Ban] # 1} C{Ys < 5}).
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2 Optimal trade execution in a discrete-time model

Proof. We fix n € ZN (—oo, N —1].

(i) The claim follows from

{Yn _ %} c {E Y] = %} c {YW - %}

where the first inclusion is immediate from Proposition [2.5.2] and the second one
follows from the facts that Y, < % a.s. and ([2.55)).

(ii) Due to Proposition only the inclusion {E,[f,+1] > 1} C{E,[Tpia] > 1}
2

needs to be proved. By the Cauchy-Schwarz inequality and the assumption En[ﬁ"i] <
1 a.s. we get

2
(En [ﬁn—&—l])z S En |: n+1:| En [Fn+1] < En [Fn+1] a.s.,

Fn—H
which implies the claim. O

In case of a (0,1)-valued resilience process 3, Corollary 2.5.4(ii) and the discussion
preceding Proposition imply that for all n € Z N (—oco, N — 1] and d # 0 we
have profitable round trips. We also mention the discussions on existence of profitable
round trips for nonzero initial deviation in similar models with (0, 1)-valued resilience
in [FSU14, Remark 8.2] and in [FSU19| (after Model 8.3). In particular, they observe
that for a conventional symmetric block-shaped order book model with zero bid-ask
spread, constant price impact, and nonzero initial deviation, the knowledge that the
deviation will be driven towards zero due to the ((0,1)-valued) resilience allows to
construct profitable round trips. E.g., even without using Corollary we can
directly compute in a settinQT_U] where for the trading period {n,..., N} for fixed n €
ZN (=00, N — 1], vn = Ynt1, Bns1 is (0,1)-valued, and the initial deviation d € R is

nonzero, that the strategy X € AY°(0,d) with trades &, = —ﬁ = —&,41 and §; =0,

jEe{n+2,...,N}, leads to a.s. negative expected costs —%(1 — E,[Bny1]) and thus
is a profitable round trip (cf. [FSUL4, Remark 8.2]).

The assumption of (0,1)-valued resilience is typical in the literature on optimal
trade execution. We more generally assume that the resilience takes values in (0, 00).
It follows from Corollary [2.5.4(ii) and the discussion preceding Proposition that
also if P(E,[B,+1] # 1) > 0 there are profitable round trips for n € Z N (—oo, N — 1],
d # 0. That means, to have existence of profitable round trips, it is enough to expect
the resilience to go in some direction.

A new qualitative effect in our setting is that the situation of nonexistence of prof-
itable round trips is possible not only for d = 0, but also for d # 0 (see also Corol-

lary [2.5.5)). The previous discussion and Corollary [2.5.4{(ii) explain that P(E,[8,11] =

100f course, we also assume that (vx)rez, (Bk)rez are adapted, positive, and satisfy g, %, Br € L=~

for all k € Z. Furthermore, recall that in this section we have set A =0 = { and é =0.
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2.5 Round trips

1) = 1is necessary for the nonexistence of profitable round trips for n € ZN(—oo, N—1],
d # 0.

A somewhat unexpected effect is that the inclusion {Y,, = 3} C {E,[Bn41] = 1} can
be strict, and hence there might exist profitable round trips even though P(E,[3,+1] =
1) =1forn € ZN(—o0,N —1], d # 0 (see Example [2.5.6). In particular, for
n € ZN(—oo, N — 2], we can not distinguish ¥,, = % from Y, < 1 on the basis of
E,[Bn11] alone, and, indeed, the exact characterization of the event {Y, = 1} also
includes E,[Y, 1] (see Proposition [2.5.2)).

A special case where we obtain an explicit criterion to distinguish between Y, = %
and Y, < % for all n € ZN (=00, N — 1] only in terms of the process 3 is the case of
processes with independent multiplicative increments (PIMI) as in Section [2.3] We
treat this in the next Corollary

Furthermore, we mention that if P(Ey_1[6y] # 1) > 0, then also in the general
setting, by Corollary it holds that P(Yy_1 < %) > 0, and it further follows
from Corollary (1) that P(Yy_o < 2) > P(Yy_1 < 1) > 0. Inductively, we
obtain from Corollary [2.5.4i) that in this case there exist profitable round trips at
any time n € Z N (—oo, N — 1] for d # 0. More generally, i.e., without assuming
P(En-1]Bn] # 1) > 0, Corollary 2.5.4](i) implies that if there exist profitable round
trips at some time j € ZN(—o0, N — 1] for d # 0, then there also exist profitable round
trips at all earlier times for nonzero initial deviation. An intuitive explanation is the
following. Suppose that for a fixed time j € ZN(—o0, N—1] there exist profitable round
trips at time j for all nonzero deviations. Then, if our trading period is {n,..., N}
for some n € Z N (—o0,j — 1] with initial deviation d # 0, we can wait until time j
and then make a profitable round trip (since D;_ = dHf:nJrl b1 # 0). Hence, we have
constructed a profitable round trip at time n < j.

Similar to the last paragraph, we obtain from Corollary [2.5.4](i) that nonexistence of
profitable round trips at some time j € ZN(—oo0, N — 1] for d # 0 implies nonexistence
at all later times k € {j +1,...,N —1}.

The next corollary contains the announced result on round trips in the setting of
(PIMI).

Corollary 2.5.5. Let the assumptions of Lemmal[2.3.1) and Corollary be in force.
Suppose that E[B;] # 1 for some j € Z N (—oco, N] and defind"]

ng=NANinf{n € ZN (—oo, N — 1] : E[f;| =1 for all k € ZN[n+ 1, N]}.

Then, for the (deterministic) process Y, we have Y, < 1 for n € Z N (—o0,ng) and

Y, =1 forn € ZN[ny, N].

Proof. The result follows from Proposition and the fact that, by Lemma [2.3.1
the process Y is deterministic. O

'We use the convention that inf () = oco.
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2 Optimal trade execution in a discrete-time model

In addition, note that if E[f,] = 1 for all n € Z N (—oo,N]| in the setting of
Lemma [2.3.1} it holds that ¥, = § for all n € Z N (—oo, N] (cf. Corollary 2.3.2).

We now discuss the inclusion {Y,, = 1} C {E,[8,4+1] = 1} (see Corollary m(u))
in more detail. First, we present a simple example where for n = N — 2 this inclusion
is strict.

Example 2.5.6. We take any deterministic sequences [ and v with Sy # 1 and
By_1 = 1 that satisfy the assumptions of Corollary Then the process Y is
deterministic. Corollary implies that Yy_; < 3. Hence, by Corollary m(l), it
holds that Yy_o < % We thus have

{YM . %} —0C Q= (Exoalfy] = 1).

In other words, we have profitable round trips at time N — 2 for d # 0 despite
En_s[Bn-1] = 1.

This is not surprising in this example: First, we see that profitable round trips are
already present when we start at time N — 1 due to Yy 1 < %, which is caused by
By # 1. Second, since By_1 = 1, the deviation will not change from time N — 2 to
N — 1 if we do not trade at time N — 2.

One might, therefore, intuitively expect that here all profitable round trips do not
contain a trade at time N — 2, but this is not the case. If d # 0, then we have for the
(here, deterministic) optimal trade size {x_,(0,d) of that £y _5(0,d) # 0.

To see this, observe that for d # 0 and due to the facts that 5, I', Y are deterministic,
(2.35) implies that £ _,(0,d) # 0 is equivalent to

1 — Yvoi(Tvo1 — 1)
(1-Tn_1)2 . 1 1\
e e (1 - rN_1>

This in turn holds true if and only if

1 1
(o) gt

2
which in this example is not satisfied because Yy_; < % and FNl—l = % < 1 (recall
the assumptions of Corollary [2.2.4)).

To summarize, in Example [2.5.6) we have existence of profitable round trips at
time N — 2 for d # 0 in a (deterministic) setting where P(Ex_1[8y] = 1) = 0 and
P(En_o[fn-1] = 1) > 0. We next study if profitable round trips at time n € Z N
(=00, N — 2] for initial deviation d # 0 can also occur if P((o_ {Ex[Brs1] = 1}) > 0.
Corollary implies that this is impossible in the framework of (PIMI) (let alone
with deterministic § and ). But, in general, such a phenomenon is possible, and we
present a specific example after the following lemma.
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2.5 Round trips

Lemma 2.5.7. Let the assumptions of Corollary be in force.
(1) It holds for alln € Z N (—oo, N — 1] that

{Yn _ g} c ]ﬁ{wm — 1} (2.56)

(ii) Let n € ZN(—oo, N —1]. The inclusion in (2.56)) is strict (in the sense that the
set difference has positive P-probability) if and only if

ﬁ {E[Br1] = 1} & Fo, (2.57)

where F,, = o(F, UN) with N' = {A € F: P(A) =0}.

Proof. (i) We proceed by backward induction. Corollary shows that the claim
holds true for n = N —1. Consider then the induction step ZN(—oo, N —1] 3 n+1 —
n € ZN(—oo, N —2]. It follows from Corollary [2.5.4(i) and the induction hypothesis

that {V, = 3} C {V11 =3} C ﬂ,ivgn1+1{Ek[,6k+1] = 1}. Furthermore, we have from

Corollary mm) that {Y, = 3} € {E,[B,+1] = 1}. This yields (2.56).

(ii) Let n € ZN (—oo, N — 1]. Under it holds that the inclusion in ([2.56) is
strict (note that {V;, = %} € F,). It remains to prove that, if there is A, € F,, which
is (up to a P-null set) equal to (oo { Ex[Brs1] = 1}, then Y, = s as. on A,

To show this, we first establish by backward induction that E;[Y;;] = 1 a.s. on A,

for all j € {n,..., N —1}. For the base case j = N — 1, we have that E]\2[_1[YN] =1
due to Yy = % If n = N — 1, we are done; otherwise, consider the induction step
{n+1,....N—=1}3j41—j € {n,..., N—2}. By the induction hypothesis, it holds
that E;,1[Yj2] = L a.s. on A,. Since E;1[Bj42] = 1 a.s. on A, Proposition EI thus
implies that Y, = % a.son A,. As A, € F,, C F;, we then obtain that EJY}H] = %
a.s. on A,,. This completes the induction.

In particular, we now have that E,[Y, 1] = % a.s. on A,. Again, the argument that

E,[Bn+1] =1 as. on A, and Proposition then imply that Y,, = % a.s.on A,. O

We next present a specific example where for n = N — 2 the inclusion in (2.56])
is strict, or, in other words, P(Yy_ o < %,EN_Q[ﬁN_l] = Ex4[By] =1) > 0. In
particular, in this example there exist profitable round trips at time N — 2 for all
d # 0, and, at the same time, the event {En_3[Ov_1] = 1} N {En_1[6n] = 1} has
positive probability.

Example 2.5.8. Take arbitrary a,p € (0,1). Let F,, = {0, Q} for n € ZN(—o0, N —2],
Fn_1=Fn =o0(Bn_1) with By_1 being distributed according to P(fy_1=1)=1—p
and P(By_1 =1+a) =p/2. We set By = Sy_1 and choose any process v (and [y, for
the remaining k € Z\ {N — 1, N}) satisfying the assumptions of Corollary (e.g.,
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2 Optimal trade execution in a discrete-time model

one can easily take deterministic 7). It then holds that Ex_o[fn_1] = E[Bn_1] = 1,
and hence {Ey »[fy-1] = 1} N {Ey1[Bn] = 1} = {Ex[Bn] = 1} = {8 = 1},
which is an event of probability 1 —p € (0,1). We thus obtain forn =N —2.
By Lemma [2.5.7 the inclusion in for n = N — 2 is strict. As a result, we get
P(Yy_o < 3, Ex_s[Bn_1] = Ex_1[Bn] =1) > 0.

Our discussion of existence of profitable round trips has mainly focused on the
resilience § (and Y). In Lemma we provide a different sufficient condition for
existence of profitable round trips based on the price impact v (and Y).

Lemma 2.5.9. Under the assumptions of Corollary it holds for all n € Z N

(—o0, N — 1] that
1
Y,=57C i E, = Tn
{ 2} N {ke{nlﬁi?.,fv} =7 }

(equivalently, {minke{n—i-l,...,N} Enh/k] < ’771} g {Yn < %})

Proof. While the result can be again inferred from the characterization of the event

{Y, = 4} in Proposition [2.5.2} it is shorter to observe that Y, < 3 on the event

{mingegni1,. 81 En[vk] < 7} due to Remark and A\ = 0. O

In this section, we consider a risk-neutral setting only. One might wonder about
existence of profitable round trips from the view point of a risk-averse agent. Or one
might ask if the results for the set {Y,, = 3}, n € ZN (—oo, N — 1], still hold in the
general setting. We comment on this in the next remark.

Remark 2.5.10. When we consider a risk-averse agent and want to discuss round
trips, we first have to think about what we want to understand by a profitable round
trip in this case.

One possibility is to use exactly the same definition as in the risk-neutral case, with
the rationale that the risk term often just implements a penalization and does not
represent actual financial costs. Furthermore, in the context of price manipulation,
one can argue that whether price manipulation is possible or not should be a property
of the model irrespective of the risk-preferences of the particular agent (see also [GS13|
Section 22.2|).

Another option is to replace the term En[Zj.V:n(Dj, + 2¢;)&] in Definition [2.5.1

by (2.3). The interpretation of a profitable round trip then is to make sure that
the agent has nonpositive financial costs and does not deviate too much from their
preferred strategy.

We now examine this definition and the mathematical results for general A,  further.
To this end, let the assumptions of Theorem be satisfied.

Observe that the risk-neutral costs associated to a strategy are always smaller than
or equal to the risk-averse costs associated to this strategy. Therefore, if there exists
a profitable round trip for the risk-averse agent, this is also a profitable round trip for
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2.5 Round trips

the risk-neutral agent. In particular, this implies that also in the risk-averse case, for
any n € ZN(—oo, N — 1], there do not exist profitable round trips at time n for d = 0.

Suppose for this paragraph that ¢ = 0. Since moreover é = 0, we then have
and that, for n € ZN (—oo, N — 1], d € R, there exist profitable round trips at time n
for initial deviation d if and only if is satisfied. We again obtain the classification
of existence of profitable round trips at time n € Z N (—oo, N — 1] for d # 0 via the
set {V, = 1}.

The results in Proposition [2.5.2] Corollary and Corollary continue to
hold for general A (and even general é, ¢, since the focus is on Y'). The crucial point
is to observe that for n € Z N (—oo, N — 1] we have that

1 1 2 Y (1 1 2 2
Yn:__En __Yn nil) __En __Yn il _EnYn n

with a,, from (2.12)). The only difference to the proof of Proposition is that now, a,
contains A, which is however not relevant for the further arguments in Proposition[2.5.2]
Corollary [2.5.3] and Corollary [2.5.4]

We next show tha if there exists n € Z N (—oo, N — 1] such that {Y,, = 1} = Q,
then also {V? = 1} = Q, where we denote by Y the process defined by (2.34). To
this end, let n € Z N (—oo, N — 1] such that {Y,, = 5} = Q. It then follows from
Corollary R.5.4(i) that {Y; = 1} = Q for all k € {n,..., N — 1}. Corollary [2.5.4](ii)
then implies that {Ex[fkr1] = 1} = Q for all &k € {n,...,N — 1}. From this and
Proposition 2.5.2 we obtain that {Y;? = 1} = {Ey[Y}},,] = §} forallk € {n,...,N—1}.
Using this equality, we can show by backward induction that {Y? = %} = Q.

If ( = 0, this means that nonexistence of profitable round trips at time n € Z N
(—o0, N —1] for d # 0 for the risk-averse agent implies nonexistence of profitable round
trips at time n for d # 0 for the risk-neutral agent.

To conclude, if ( = 0, then existence of profitable round trips for a risk-averse agent
does not differ from existence of profitable round trips for a risk-neutral agent. This
completes the current remark.

N[

We finally remark that we could also have defined profitable round trips at time
n € ZN(—oo, N—1] for initial deviation d € R to be execution strategies X € A¢(0, d)
such that En[ZjV:n (Dj— + &) &) < 0 as. (instead of (2.51))), for which existence
translates to V;,(0,d) < 0 a.s. (instead of (2.52)). Note that the class of, in this sense,
profitable round trips is a subset of our class used in this section, and they coincide in
a deterministic setting. Furthermore, since our mathematical analysis is based on the
description of the event {Y;, = 1} (or, equivalently, {Y;, < 3}), the results and proofs
are the same for both notions of profitable round trips, and only the discussions would
need some slight modifications.

12Recall that we understand equalities of events only up to P-null sets.

67



2 Optimal trade execution in a discrete-time model

2.6 Closing the position in one go

A main motivation to consider optimal trade execution problems is the observation
that splitting up a large order into several smaller orders can be advantageous over the
naive strategy to immediately complete the whole task. There are, however, situations
when it is in fact optimal to execute the order at once (for instance in Example [2.6.6]
below). To examine under what conditions it is optimal to close any position in one
gd™]is the topic of this section.

Let the assumptions of Theorem be in force. Assume that ¢ = 0 and that at
least one of A, ( is equivalent to zero. Let n € Z N (—oo, N — 1]. We are interested in
the situation where £ (z,d) = —x for all ,d € R. Recall that, for each z,d € R, a
version of the optimal trade size £’ (x,d) (which is defined up to a P-null set) is given
by the right-hand side of (2.33)). We choose the versions in such a way that the random
field (z,d) — &:(x,d) is continuous (the most natural choice in view of (2.33))). Then
we have that

{Gi(2,d) = —x Va,d € R} = {&(x,d) = —z Va,d € Q} = ) {&(w.d) = —a};

z,deQ

hence, {{(z,d) = —x Vz,d € R} is an F,-measurable event (as a countable intersec-
tion of such events). We have the following description of this event.

Lemma 2.6.1. Let the assumptions of Theorem be in force. Assume that é =0
and that at least one of X\, ( is equivalent to zero. Let n € Z N (—oo, N — 1]. It then
holds that

1\ B2 1
{f:;(:(},d) =T V$, d € R} = {En |:<Yn+1 - 5) T o Yn+15n+1 + 51 - 0} )
n+1
(2.58)

where here and below we understand equalities or inclusions for events up to P-null
sets.

Proof. We compute from (2.33)) for all z,d € R that

2
En | (Yo — 3) 722

* il Yn-l—lﬁn—f—l + %} d
En(w,d) + = Y1 2 1 52 <JJ — —> , (2.59)

En [FZL (Bnr = Tosr)” + 3 (1 - F"—L) + /\n} Tn
from which we obtain ([2.58|). -

13We remark that in our analysis we do not exclude the possibility that afterwards the position
reopens again and one appends a round trip (see also Example . Moreover, we mention that
in view of Remark and for a risk-neutral setting, closing the position z € R in one go is
equivalent to executing the order x at once for deterministic terminal position b € R and current
position z + b.
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The next result presents a relation between the previously (see Section [2.5)) studied
question of nonexistence of profitable round trips at time n for initial deviation d # 0
and the currently studied question of closing the position in one go.

Proposition 2.6.2. Let the assumptions of Theorem be in force. Assume that
¢ = 0 and that at least one of \,( is equivalent to zero. Let n € Z N (—oo, N — 1]. It
then holds that

1

{Yn _ %} — (€ (2, d) = —x ¥z, d € R} N {En[YnH] _ 5} |

Proof. We first establish the inclusion “C”. Recall that by Proposition [2.5.2/and Corol-
lary (see also Remark [2.5.10)) we have that

{Yn = %} = {En Vo] = %,En [Bnia] = 1} - {Yn-H = %}

In particular, on the event {Y,, = %} € F, it holds that Y, ; = % and E,[Bn11] = 1,
which implies that on the event {Y, = 3} € F,, we have that

1\ 32 1
E, (Y —= )2 — v, .8, ~| =0.
(o 5) Yot + 3

Lemma [2.6.1| now yields that

{Yn = %} C{&(v,d) = —x Vo, d € R}.

Since also E, [Y,41] = % on {Y, = %} € F,, it follows that

{Yn _ %} C (¢ (2,d) = —z Va,d € R} N {En[YnH] - %} |

To prove the reverse inclusion “2” we first note that

(e =3 e {rn -1 (2.60)

because Y, < 3 a.s. It follows from (2.58) and (2.60)) that on the F,-measurable set

1

A, = {€&(z,d) = -z Vr,d e R} N {En[Yn+1] = §}

it holds that %En[ﬁnﬂ] = E,[Yoi1Bni1] = %, i.e., E,[Bns1] = 1. Hence,

An C {En [Yn-i-l] = %7En [/Bn-i-l] = 1} = {Yn = %} y

where the set equality is again Proposition [2.5.2] (see also Remark [2.5.10)). O
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2 Optimal trade execution in a discrete-time model

In particular, we have that
1
{Yn = 5} C{&(v,d) = —a Vo, d € R}. (2.61)

It is worth noting that the inclusion in can be strict in the sense that the set
difference can be nonnegligible. In Example further below (we also use Proposi-
tion for Example we show that, indeed, there can be profitable round trips
(cf. Section at time n for initial deviation d # 0 and still it can be optimal to close
the whole position at time n.

However, at time N — 1, we always have equality in (2.61)).
Corollary 2.6.3. Let the assumptions of Theorem be in force. Assume that

~

& =0 and that at least one of A\, is equivalent to zero. It then holds that

{YN1 = %} ={&_i(z,d) = -z Vz,d € R} .

Proof. This follows from Proposition and the fact that Yy = % O]

We next provide more details on closing the position in one go for the case of pro-
cesses with independent multiplicative increments (PIMI) of Section We recall
that in this case the process Y is deterministic. Notice, however, that the optimal
trade sizes £ (z,d), x,d € R, in general are still random because of the randomness

in 7, see (2.40).

Proposition 2.6.4. Let the assumptions of Lemma be satisfied. Assume that
fz 0 and that at least one of X, ( is equivalent to zero. Let n € Z N (—oo, N —1]. It
then holds that {&(x,d) = —x Va,d € R} is either Q or 0. Furthermore, the following
statements are equivalent:

(i) {&5(x,d) = —x Vo, d € R} = Q.

(ii) There ezist x,d € R with P(y,x # d) > 0 such that {{(x,d) = —z} = Q.

(#ii) It holds that

Bai 1_
EBu] =1+ (- [ii)l (= ¥en) (2.62)

Proof. Since Y is deterministic and I',, ;1 and (,,,1 are independent of F,,, Lemma,
yields

2
(o) = s vod e R} = { (Yo = 1) B |22 - VBl + 5 =0}

2 Fn+1
(2.63)
which can be either Q or (.
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The equivalence between (i) and (ii) follows from (2.59) and the fact that the factor in

front of (z— ,Yin) on the right-hand side of (2.59)) is deterministic under our assumptions.
For the equivalence between (i) and (iii), note that (2.63)) shows that (i) is equivalent

to . ,
YorrBBopa] = Vo + (Yo —5 ) (B |55 - 1),
2 1171—"-1
which clearly is equivalent to (2.62)). O

Corollary 2.6.5. Let the assumptions of Lemma be satisfied. Assume that§C =0
and that at least one of A\, is equivalent to zero. Letn € ZN(—oo, N —1], and assume
that {&;(x,d) = —x Va,d € R} # 0. It then holds that E[B,41] > 1, and, if Y41 < 3,
even that E[B,41] > 1.

Proof. By Proposition we have from {&:(z,d) = —x Va,d € R} # () that (i) in

2
Proposition [2.6.4 holds, and thus also (iii). Since Y;4; is (0, 3]-valued and E[?"—i} <1,
the claim follows from (2.62]).

The meaning of Corollary is that in the case of (PIMI) (special case: de-
terministic processes 8 and ), closing the position in one go is never optimal in the
conventional framework, where the resilience process ( is assumed to be (0, 1)-valued
(and XA = 0).

This raises the question whether closing the position in one go can be optimal in
general (that is, beyond (PIMI)) with the resilience process  taking values in (0, 1)
and A = 0. In our setting the answer is affirmative (see the next Example [2.6.6)). It
is worth noting that in the related setting where trading is constrained only in one
direction and the process 3 is (0, 1)-valued (and A = 0), the answer is negative, i.e.,
closing the position in one go is never optimal in that setting (see [FSU19, Proposition
A.3] and [FSU14, Proposition 5.6]).

Example 2.6.6. In this example we consider a version of our model with three time
points for trading N — 2, N — 1, and N where the resilience process 3 is (0, 1)-valued
and A = 0 and still it is optimal at time N — 2 to close the position in one go. To
this end, assume that A\ = 0, that Fy_o = {0, Q}, and that we can specify the positive
random variables yy_1, vy, and the (0, 1)-valued random variable Sy in such a way

that EN_l[%] <1, (1- EN_l[%])’l € L and that Yy and ——— are strictly

negatively correlated, i.e.,

E Hzﬂ —E[Yy4]E LNZ} <0. (2.64)

At the end of this example we present a specific choice such that these assumptions
are satisfied.
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2 Optimal trade execution in a discrete-time model

To continue, by (2.64) we can choose a deterministic

s
Bn_1 € e —1 (2.65)
E [YN_l] B |:'YN71:|
and then define [1 }
E |5 —Yy_18rv—1
YN—-2 = f 612\7_1 . (266)
E |:(§ - YN*l) ’7N71:|
Note that, indeed, Sy_1 € (0, 1) and yy_o > 0. Next, we verify that E[BN 1] <1

(recall Fy_o = {0,Q}). By (2.65) it holds that
1

TN-1

> F

EwNﬂ@ﬂE{

YN—1:|
YN-1]
This implies that

ol () 2]
IN-1 2 TN-1

Due to E[% — Bn-1Yn_1] > 0, it follows that

1 B3
EV%1<Em—Hmhgj_l
IN-1 El5—BnaYna1] w2
Since vy _s is deterministic and I'y_; = 1N L we get E[ﬁN 1] <1

Having set up the model, we now examine closmg the position in one go. From ([2.66])

we obtain that 52
1
E [(YN 11— —> Nl Yy 1B+ 5} =0.

2) I'nv—
Therefore, it follows from Lemma and Fy_o = {0, Q} that for all z,d € R it holds
that £y _,(z,d) = —z, i.e., it is optimal to close the whole position at time N — 2.

It remains to specify positive vy_1, vy, and (0, 1)-valued Sy, such that Ey_ 1[ﬂN] <

1, (1— EN,l[g—x]) L'e L°°~, and ( are satisfied. To this end, let yy_; be {3,1}-
valued with P(yy_1 =1) =p € (0, 1) and P(yy_1 = 1) = 1 —p. Define vy =73,
and [y = 2.

Note that Sy is (0,1)-valued, that yy_1,7n > 0, and that I'y = yy_1. It further
holds that Ex_[2¥] = 2= < 1 < 1, and then (1 — Ey_1[28])! € L~

For (2.64), we first compute from and Yy = § that

1 L (En-1[By] — Ex-1[Tn])° 1 Ex_1[Tw] — (Ex_1[Bn])°
Yv_o1 = §EN—1 [Cn] - En_1[1 =28y +Ty] © 21-2Ey, [Bn] + En-a[Tn]
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2.6 Closing the position in one go

Using En_1[I'n] = En_1[ynv-1] = yv-1 and En_1[fn] = Ex_1[P52] = 252, we thus
have that )
1 TN-1
Yy_o1=— q - )
N-1 9 (7N 1 1 )
Since
1 , 1
Elyw-1]l=p+=(1-p), E[Pi]=p+-(1-p), and E =p+2(1-p),
2 4 YN-1
we obtain (2.64)):
Yn_ 1
o[ sme
TN-1 TN-1
1 1 1 1 1
=—(1—=Ew_il) == Elw_1] — -E [+? E
2 ( 4 & 1]> 2 ( -] 4 hN_l]) [’YNJ
15
= - p(p-1)<0.
5 1619(1) ) <0

For completeness, we mention that for £ € {N — 2, N — 1, N} the assumptions
By Vs ka € L°°~ are trivially satisfied.

We next provide the announced example on inclusion (2.61)).

Example 2.6.7. Let A = 0. Consider a resilience process  and a price impact process
7 that satisfy the assumptions of Lemma[2.3.1] (in particular, (PIMI)) and, moreover,

E[Bn] # 1 and
1B [IJN——]) Ly
Elfy] =1+ ( o)) 67 . (2.67)
Yno1

Below we present a specific choice of the parameters such that is satisfied.

We now argue that, with these assumptions, the inclusion in forn=N—2is
strict. On the one hand, notice that by Proposition [2.6.4] condition is equivalent
to

{¢vo(w,d) = —zVz,d e R} = Q. (2.68)

On the other hand, E[fn]| # 1 and Corollary imply that for the deterministic
process Y it holds that V), < % for all k € ZN (—oo, N — 1], hence

{YM: %} _0.

This does not only show that in our example the inclusion in (2.61) is strict, but
also that there exist profitable round trips at time N —2 and at time N — 1 for nonzero
initial deviation. Concurrently, it is optimal at time N — 2 to close the position in one

go.
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2 Optimal trade execution in a discrete-time model

Moreover, we can compute from (2.40) and Yy = 5 that for all d € R

E[fy] -1 d
1+ E[l'N] = 2E[BN] yN-1

Therefore, the optimal strategy in this example for the trading period {N — 2, N —
1, N}, any initial position = € R, and any initial deviation d € R is to close the
position at time N —2 (cf. (2.68)), to build up a new position at time N —1 (at least if
Dn—1)- = (d — yn—22)Bn_1 # 0, cf. and E[By] # 1), and to close this position
at time N.

It remains to explain how we can satisfy . A possible example where the
requirements on 3 and +y listed above are satisfied can be constructed with deterministic
sequences 3 and ~ as follows. Choose arbitrary deterministic yy,vy-1 > 0 and Sy €

(0,v/I'n) \ {1}. Then we clearly have % < 1. Furthermore, these inputs yield a

deterministic Yy_; € (0,1) (see Corollary [2.5.3). Take a sufficiently small @ > 0 such
that |

En-1(0,d) = (2.69)

aYn_1
i
53— Yy

Finally, set Sy_1 = 1 + a and choose yy_o > 0 to satisfy

€ (0,1).

a¥n-1 (1+a)
% — YN Iy

T ) . B
(recall that I'y_; = 2%=1). This choice gives us (2.67)) together with —Fz_i < 1.

YN -2

We briefly discuss the difference between a risk-neutral agent and a risk-averse agent
with respect to closing the position in one go (for ( =0 = f) Observe that the strategy
to close the position immediately and then stop trading yields the same costs for both
agents (cf. ) Moreover, for any strategy, the associated costs in the risk-neutral
setting are smaller than or equal to those in the risk-averse setting. Therefore, if
the optimal strategy for the risk-neutral agent consists only of a single trade at the
beginning, then the same holds true for the risk-averse agent. However, optimality of
closing in one go for the risk-neutral agent does not imply that closing in one go is
necessarily optimal for the risk-averse agent. Consider the following example where
the risk-neutral agent closes in one go, but the risk-averse agent does not.

Example 2.6.8. Let the resilience process § and the price impact process v be chosen
as in Example Denote by Y = (Y,,)nezn(—o0,n] again the (deterministic) process
from Example2.6.7, and by £ (x,d), n € ZN(—o0, N|, z,d € R, the optimal trade sizes
from Example To compare the risk-neutral agent from Example to a risk-
averse agent in the same setting, we now include some deterministic A = (An)nezm(,oqm
satisfying Ay_1 > 0. Note that we are still in the setting of Lemma [2.3.1, Denote by
Y = (Y3)nezn(—oo,n] the (deterministic) process given by Yy = 3 and for this ),
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2.6 Closing the position in one go

and denote by g;kl(x, d), n € ZN (—oo, N], z,d € R, the optimal trade sizes (2.40) for
this \.
Observe that

Av-1 (1 — E[By])?

37]\771 — YN = (1-2E[By]+ E[Tn] + 2 \nv_1) (1 = 2E [By] + E[T'x])

>0

due to Ay_1 > 0 and E[fx] # 1. In particular, we have that N # Yy_1. This implies
that does not hold with Yy_; replaced by Yy_1. It follows from Proposition m
that {&y_o(z,d) = —z Va,d € R} = 0, and, using (2.59), that it holds for all z,d € R
with P(yy_ox # d) = 1 that

{E;‘V_Q(g;,d) - —x} — {(?N_l - %) E W“} — VN1 E [By_a] + % = 0} )

Iyt

To sum up, if x,d € R with yy_sx # d, then the risk-averse agent does not close
their position z at time N — 2, whereas the risk-neutral agent closes the position at
time N — 2 to append a (nontrivial) round trip at time N — 1 (cf. Example [2.6.7)).

If z,d € R such that yy_ox = d, then both agents close their position at time N — 2.
Moreover, the risk-neutral agent in this case does not open a new position at time N —1
(cf. (2.69)). Since only the denominator in (2.69) changes for Ay_; > 0, the risk-averse
agent does not open a new position either. I.e., we have the situation described prior
to this example, where it is optimal for both agents to close the position immediately
and quit trading.

We further mention that in the case x = 0 and d # 0, both agents perform a
nontrivial round trip: the risk-averse agent starts their round trip at time N — 2, since
closing in one go at time N — 2 is not optimal for them, while the risk-neutral agent
waits until time N — 1 and then starts trading at time N — 1 due to (2.69)).
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From discrete to continuous time:
base setting and heuristics

For the remainder of the thesis, we are interested in optimal trade execution in a
continuous-time version of the model from Chapter 2] That is, we want to consider
a model of Obizhaeva-Wang type with stochastic resilience and stochastic order book
depth where we allow trading during the whole time interval [0, 7] (for given terminal
time 7' > 0) instead of only at the time points {0,1,..., N} (for given terminal time
N e N).

Observe that for our continuous-time model, in contrast to Chapter [2 we assume a
certain structure of the processes that describe the resilience and the order book depth.
This set-up is introduced in Section 3.1} Within this set-up, we in Chapter 5] formulate
and solve a continuous-time control problem where we consider cadlag semimartingales
as execution strategies. In Chapter [7] we, also within the set-up of Section [3.1], start
from a typical formulation for finite-variation strategies, extend this to progressively
measurable strategies, and solve the extended problem in Chapter [§| via reduction to a
standard LQ stochastic control problem. We refer to, e.g., Chapter [I| Section [5.3] and
Section for reasons why we want to allow for more general than finite-variation
strategies.

Section and Section are purely heuristic treatments and serve to motivate,
in the risk-neutral setting, in particular the semimartingale control problem and its
solution by the discrete-time problem and results from Chapter We first, in Sec-
tion [3.2] derive appropriate definitions of the deviation dynamics and of the costs in
the continuous-time model for semimartingale strategies via a limiting procedure from
the discrete-time setting. It is worth noting that for semimartingale strategies, there in
general appear certain covariation terms (see also Section for further discussion).
Subsequently, in Section we heuristically show that the process defined by back-
ward recursion in that characterizes the solution of the discrete-time problem
(see Corollary gives rise to a quadratic BSDE. This BSDE in fact describes the
solution of the continuous-time problems (see Theorem , and compare also with
Chapter [8). We further analyze this BSDE in Chapter

Section and Section are extensions (to the setting of possibly diffusive re-
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3 From discrete to continuous time: base setting and heuristics

silience) of [AKU21a, Appendix A] and [AKU21a, Appendix B|, respectively.

3.1 Base setting and notations for continuous time

The following mathematical set-up and notations provide a basis for the remaining
chapters of the thesis, where we often specify subsettings of this framework. We here
also introduce some assumptions that are frequently used at several places in the thesis.

Let T' € (0,00) be the terminal time, and let (2, F, (Fs)sejo,r, P) be a filtered prob-
ability space satisfying the usual conditions and F = Fr. Furthermore, we suppose
that for some m € N, m > 2, the filtered probability space supports m indepen-
dent continuous local martingale MW = (JWS(J))SE[QT]7 j €{1,...,m}, such that the
quadratic variation processes [MU)], j € {1,...,m}, are pairwise indistinguishable. In
particular, [MM] = [M®] and [MM, M?)] = 0.

We now introduce some notation. For a (possibly multidimensional) Brownian mo-
tion W = (Wy)scp,1), the augmented natural filtration of W is denoted by (]:Zv)se[o,:r]-
For t € [0, T}, the Borel sigma-algebra on [t,T] is written as B([t,7]). The Lebesgue
measure on ([0,77],B([0,77])) is called Leb. We denote by D, the Doléans measure
associated to MM on (2 x [0,T], F®B([0,T])), i.e., Dy (C) = E[fOT lo(-, s)d[MW],]
for C € F® B([0,T]). For t € [0,T] we use the notation Dy, |y for the re-
striction of the Doléans measure Dy, to (2 x [t,T], F ® B([t,T])). For t € [0,T]
conditional expectations with respect to F; are denoted by E[-|. For t € [0,T]
and a cadlag process X = (X,)scp—7), @ jump at time s € [t,T] is denoted by
AX; = X, — X, . We follow the convention that, for ¢t € [0,T], r € [t,T], and a
cadlag semimartingale L = (L,)sc— 11, jumps of the cadlag integrator L at time ¢
contribute to integrals of the form f[t’r] ...dL,. In contrast, we write f(t,r] ...dL, when
we do not include jumps of L at time t into the integral. The notation ftr c..dLg
is sometimes used for continuous integrators L. For a continuous semimartingale
Q = (Qs)scp,r) we denote by £(Q) = (S(Q)s>se[0,T} its stochastic exponential, i.e.,
E(Q)s =exp (Qs — Qo — 3[Qls), s € [0,T). For t < sin [0,7] we also use the notation
E(Q)s = f:((g;z = exp (Qs — Qr — 3 ([Q]s — [Q]+)). A superscript | of a matrix denotes
transpose. A superscript ¢ of a set means its complement. For n € N and y € R" let
lyll. = 27, yjz)% For every t € [0,T] we mean by L'(Q, F;, P) the space of all
real-valued Fi-measurable random variables K such that || K|/ = E[|K]|] < co. For
t € [0,T], let L7 = L*(Q x [t,T],Prog( x [t,T]), Dy |ier) denote the space of all

!We remark that in the dynamics for the resilience and price impact process, we only make use
of the local martingales M) and M®). The reason why we do not just let m = 2 is that
in Proposition and Section to apply the results from the literature on LQ stochastic
control, we assume that the filtration (Fs)secjo,r] is generated by an m-dimensional Brownian
motion (W(l), ce W(m))—r. The components W®) ... W) will therefore serve as further sources
of randomness on which the model inputs may depend.
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3.1 Base setting and notations for continuous time

(equivalence classes of) real- valued progressively measurable processes u = (Us)sc[,1)

such that [Jul|z = fT u2d[MM1,])z < co.
Our model requires six progresswely measurable processes p = (ts)scjor]; 0 =
(Us)se[O,T}a p = (ps)se[O,T}a n = (ns)se[O,Tb ro= (TS)SE[OT and A\ = (AS)SG[O,T} such

that fOT(|p8| + |ps| + 02 + n?)d[M']s < oo a.s., and such that X is D, -a.e. bounded
and 7 is [—1, 1]-valued. We define the continuous local martingale M*® = (MH)c07
by

AME =7, dMD + /1 =72dMP), s€[0,T], M =0,
and refer to 7 as the correlation (process). Observe that

d[MB, = P2dMY), + (1 = 7)d[MP)], = d[MWY],, s [0,T],

due to [M (V] = [M®] and independence of M) M), The process p, called resilience
coefficient, and the process 1 together define the resilience (process)ﬂ R = (Rs)sepo,m
which is a continuous semimartingale, via

dR, = pd[ M), +ndME, sc[0,T], Ry=0. (3.1)

Based on the inputs 4 and o, the price impact (process) v = (7s)sejor], a strictly
positive continuous semimartingale, is modeled by

dys = ’ysusd[M(l)}s + ’ysades(l), s€[0,T], = € (0,00). (3.2)

The price impact process has the representation

s 2 s
Vs = Yo €Xp (/ (ur - %) d[MW), +/ ardM§1>) . s€0,T).
0 0

For future reference, note that by an application of 1t6’s formula it holds for all s €
[0, 7] that

vt = (= (s — 02) dAM W], — 0, dMD) (3.3)
1 1 /1 1 112
dy2 =2 <§“s - go?) dMW], + 30 o dM, (3.4)
_1 _1 1 3 1 _t
dys 2 =7s (_§’u8 + éO’?) d[M(l)]s - 575 Qades(l). (3:5)

2Note that although we call R resilience process, it does not play the same role as the resilience
process 3 in Chapter [2l Instead, the multiplicative increments of the stochastic exponential of —R
are comparable to 8 from Chapter [2] (cf., e.g., Section . Further, R does not have the same
meaning as the resilience coefficient (also called resilience rate) in, e.g., [OW13] and [FSU19|. If
7 vanishes in our model, then the resilience is described by p only, and p is what most articles
call resilience (coefficient /rate); see also [AKU21a] for this subsetting (however, p in [AKU214] is
called resilience process to emphasize that it can be stochastic).
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3 From discrete to continuous time: base setting and heuristics

We moreover introduce, for convenience, the process £ = (k)scpp,r) defined by

1
fis = 3 (2ps + ps — 02 — 17 — 204n,7), s € (0,7 (3.6)

We now formulate some assumptions that we invoke at several places in the thesis.
For most of our results, we assume that:

Assumption (Csg). K+ A > 0 Dy,0)-ae.

This is a structural condition on the input processes which, roughly speaking, ensures
that the minimization problems that we consider are convex. To see this, we refer to the
representation in Theorem Notice also the similar condition in [FSU19, Proposi-
tion 6.2]. Observe furthermore that condition (Cs¢) ensures that the denominator in
the driver of the quadratic BSDE in Chapter 4] stays strictly positive. We sometimes
(e.g., in Chapter 4] and Chapter @ strengthen condition (Csg) to boundedness away
from zero, i.e.:

Assumption (Cx.). There exists € € (0,00) such that K + XA > ¢ Dy;0)-a.e.

This condition appears also when we consider the “regular case” in [K'T02|. For the
“singular case” in [KT02|, we introduce the following assumption (note that it always
holds that o2 + n? + 2007 > 0 D),;0)-a.e.).

Assumption (C;). There exists € € (0, 00) such that 0 +n* + 20T > & Dy,0)-a.e.

Further, we sometimes (e.g., in Section and most of the time in Chapter (4]
require that A\ and s on their own are nonnegative:

Assumption (Chonneg)- £ > 0 Dym-ae. and A > 0 Dy )-ae.

Note that if A = 0, then £ > 0 is already implied by (Csg) (which, in turn, is an
implication of (Cx.)). In Chapter [ Chapter [} and Chapter 8] as well as for almost
all of the results in Chapter [7] and some of the results in Chapter 5] we assume that
the input processes are bounded:

Assumption (Cpgq). There exist c,,c,, ¢,, ¢, € (0,00) such that [p| < ¢, || < ¢y,
lo| < ¢o, ] < ¢y Dproy-ace.

In particular, we rely on this when we prove existence of the BSDE in Chapter [4
Further, (Cpqa) allows to apply results from the LQ literature in Section [8.2] since
the coefficient processes in the control problems of such works are typically assumed
to be bounded. To obtain a standard L(Q) problem in Chapter [8| and for our examples
(including Chapter@), we consider MY (and hence by Lévy’s characterization all M),
j €{1,...,m}) to be a Brownian motion. When dealing with general continuous local
martingales, we often require the following condition, which, in particular, is satisfied
in case of an (F;)sejo,r)-Brownian motion M) = Ww®);

Assumption (Cpysay)- For all ¢ € (0,00): E [exp(c [MW]r)] < occ.
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3.2 Motivation for the deviation dynamics and the costs

3.2 Motivation for the deviation dynamics and the
costs

We fix an initial position £ € R and an initial deviation d € R, and consider a semi-
martingale execution strategy X for the trading interval [0,7]. By this, we mean a
cadlag semimartingale X = (X;)scjo—,m) with Xo_ = 2, X1 = 0, and suitable integrabil-
ity conditions. For any (large) N € N, we set h = % and consider discrete-time trading
at points of the grid {kh: kK =0,..., N}. More precisely, the continuous-time strategy
X = (X§)sep-) is approximated by the discrete-time strategy (Xpn)re(-1,.,n} With
initial value X_; = x and terminal value Xy, = 0. The discrete-time strategy thus
consists of trades &, k € {0,..., N}, at the grid points, where &, = Xin — Xp—1)n,
k €{0,..., N}. Notice that &y, is Fry-measurable, k € {0,..., N}.

Furthermore, we take as discrete-time price impact procesﬂ (Vkh)keqo,...n}, and as
discrete-time resilience process (Bgn)keq1,...,ny defined by

Ben = e~ PR =5 (Bn—lFluen) = £(=R) gy, k€ {1,..., N} (3.7)

We remark that the arguments in the present section do not rely on the specific dy-
namics of R or . More generally, we could take R to be a continuous semimartingale
with Ry = 0 and 7 a continuous positive semimartingale.

-----

and has the alternative representation (cf. (2-2) ]

k k k
D?kh)f = dH Bin + Z%‘—nhﬁ(i_nh H Bin, ke€{0,...,N},
=1 i=1 =i

where Z?:1 =0, H?zl := 1. Substituting the definition of (Bin)ref1,...,N}, We obtain
that, for all k € {1,..., N},

k
Dflkh)— _ e*Rkh*%[R]khd + Z fy(iil)hg(iil)he*(Rkh*R(ifl)h)f%([R]kh*[R}(i—l)h)
=1

: (3.8)
= E(—R)wn (d + Z'V(i—l)hg(_R)Gil)hf(i—l)h> = E(=R)en L1y,
=1

3To be more precise, the price impact and resilience process in Chapter [2| are defined for all times
in Z. We here only rely on these processes on the time points of the grid and could define them
outside this set of time points in any way that is in accordance with Chapter [2] which obviously
is possible.

4The minus in the subscript of bekh)_ is purely notational (this is a discrete-time process), the

meaning of D?kh _ is that this is the deviation at time kh directly prior to the trade & at time
kh, see Section
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3 From discrete to continuous time: base setting and heuristics

where, for k € {0,..., N}, we set

k
Ly, =d+ Z ’thg(_R>;h1£jh

=0
k
= d+70(Xo — ) + Y 1nE(=R); (Xjn — X(1p)
j=1
k
=d+ ’Y(](XQ — l‘) —+ Z 7(j—1)h5(_R)(j£1)h (th — X(j—l)h)
j=1
k
+) (7jh5<_R);h1 - W(j—l)hg(—R)(jl_l)h> (Xjn = X(j-1n) -
j=1

77777

as N — oo (and h = % — 0), is the process (L)seco—1] given by Lo = d,

L,= d+/ 7E(—R) T dX, +/ dyE(-R)™', X],, s€]0,T],
[0,s] [0,s]

(apply [JS03l Proposition 1.4.44 and Theorem 1.4.47|). Further, note that

d(7:E(—R);") = E(=R); dvs +7:E(—R); d(Rs + [R]s) +d[y, £(=R) '], s €[0,T],

S

and thus

dh/g(_R)_lv X]s = 8(_R)s_1d[’77 X]s + ’738(_R)s_1d[R’ X]Sv s € [07 T]

.....

the process (Ds)scpo—,r) given by Do_ = d,

D, = E(~R),L, = ¢ e 3l (d + / el 3R 4, 4 / firtilflrdly, X,
[0,s] [0,5] (39)

+/ ’yTeRT+§[R]Td[R,X}T), s € [0,7).
[0,5]

Observe that by, e.g., [Pro05, Theorem V.7 and Theorem V.52| this is the unique
solution of the equation

dDy = —DydRg + v,d X5 + d[% X]S? s € [07 T]? Dy =d. (3‘10)

The above discussion suggests to define the deviation process in the continuous-time

model by (3.10]) (or, equivalently, by (3.9)).
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We now turn to the cost functional. In the discrete-time setting the costs over the
whole trading period for a risk-neutral agent are (cf. Section [2.1))

N
Z( (ih)— %hfgh> Ejn-

7=0
It holds that
N 7 N ’y
ih 2
Z (D?jh) > €3h> Sin = Z D(Jh)— — X-un) + Z — X(j—1n)
j=0 Jj=0 j=0

N
1
+ > 5 (i = -0m) (X = Xg-om)”-

J

I
o

(3.11)
For the first term on the right-hand side of (3.11]), we have that
N N
> Dy (Xjn— Xgoum) = D E(=R) Ly (Xjn — X(-1yn)
=0 =0
N
=Y E(=R) G- Ll (Xn — X-1n)
=0
N
+ ) Ly (E(=R)jn — E(=R)—1yn) (Xjn — X(-n)n)
7=0
which has the continuous-time limit
/ £(~R),L,_dX, + / Lo_d[E( D, dX,— | D,dR,X].,
0,7] [0,7] (0,7 [0,7]
as £(—R) is a continuous process with d€(—R)s = —E(—R)dR;, s € [0,T]. Further,

the second term on the right-hand side of (3.11)) tends to Joy % d[X]s and the third

term to 3[v,[X]]r = 0 because v is continuous. As the continuous-time limit of the
discrete-time costs we thus obtain

D, dxX,— [ D, d[R X], + / % g1x],. (3.12)
[0,7] [0,T] 0,7] 2

3.3 Motivation for the BSDE

Now that we have suggested an appropriate problem formulation for semimartingale
strategies based on the discrete-time model, we want to draw inspiration from the
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3 From discrete to continuous time: base setting and heuristics

discrete-time results also for its solution. Recall that in discrete time, the minimal
costs and optimal strategies for zero terminal position in the risk-neutral setting are
characterized by a process defined via backward recursion (see Corollary . We
therefore guess that a continuous-time counterpart of this process might also play a
crucial role for the solution in continuous time.

Let us consider a discrete-time version of the stochastic control problem to minimize
the expected costs in (3.12)) over the set of semimartingale execution strategies (cadlag
semimartingales with given initial position, terminal position 0, and some integrability
properties) with deviation (3.10). For i > 0 such that h = L for some N € N, ¢ €
[0,7], and x,d € R, let V;*(x,d) denote the value function of the problem to minimize
only over the subset of all semimartingale execution strategies X = (X;)sep—1) of
the form X, = Z: Xryvelipn,er1yny (), s € [t,T], (and Xy~ = x). Then it follows
from Corollary that for each h > 0 with h = % for some N € N there exists

a process Y" = (Y/")icqon...7y such that V*(z,d) = 1;—’{L(al — yz)? — Qd—jt, z,d € R,
t € {0,h,...,T}. The discrete-time process Y" = (Y")icqon...7y is given by the

backward recursion Y} = % and, for t € {0, h,..., T — h},

2
-] (s (2]

Tt
2 -1

g Vt+h
| B Y (8(—R>t,t+h - ) +5 (1 -t 6<—R>it+h> .

Ve 2 Vet+h

(3.13)
It seems plausible to expect that also the value function of the continuous-time problem
will turn out to have the form %(d—’ytxf—;—i, z,d € R, t € [0,T], for some continuous-
time variant Y of Y. The aim is thus to derive heuristically the limit of Y* when the
distance h between the time points for trading tends to 0. We hence make the ansatz

that there is a continuous-time limit Y = (Y;)sep0.r) of Y as h — 0, and that Y can
be decomposed as

aY; = a d] MV, + zPdMM + zPaM® + av, t e (0,7, (3.14)

where (a¢)iejo,1), (Zt(j))te[o,ﬂ, Jj € {1,2}, are progressively measurable processes (the
process (a;)iejo.r] is to be determined) and M+ = (M;")icjo7) is a local martingale
orthogonal to M) and M®.

From (3.14) we deduce that (a;)cjo,r) should be identified as the limit

0 — lim EyYin] =Y
Lm0 B [[MO)y] — [MO],

t€0,7].

Assume that replacing Y" with Y of (3.13) introduces an error only of the magnitude
o (E; [[MW]4] — [MM],). Then we can get the expression for a; by evaluating the
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3.3 Motivation for the BSDE

limit

1
ar = lim

Y+h
=0 By [[MW]yp] — [MM], B [Yern] - B [ Yt—&-h}

Vi

(1 i (s~ 22)])

E, {YtJrh - <5(—R)t,t+h — %j;h)Q + % (1 - L‘S(_R)it—i—h)}

Yt+h Yt+h

+ ,t€0,7].

(3.15)

For the remainder of this section we fix ¢ € [0,7] and assume that all stochastic
integrals with respect to dM™, dM® | and dM* that appear are true martingales.
We define the process I' = (I'y)sce,r) by T's = 1—t for s € [t,T).

Since

d(IsY;) = TsdYs + Yidls + d[T, Y]
= Ta,d[MY), + T, Z0dM® + T, 2@ dMP + T dM;
+ Y Dud MWD, + Y Tyo,dMY + Ty, ZWd[ MM,
= (Dyas + Yilspts + Do s ZM)d[MW), + (0,209 + V[ y0,)d MY
+T,Z2dM® + Ty dM>, selt, T,

it holds for all h € (0,7 —t) that

s

t+h
Ey[CounYin) =Y + E, { / (Tsas + Yilpus + Tyo, Z0) d[ MY, | (3.16)
t
Together with
t+h
E Y] =Y+ E, [/ asd[M(l)]s} . he(0,T—t),
t

we obtain heuristically that

t+h (1)
BulYius) ~ BFusnYos) _ B[ (001 =T = Vil = T 22) b0,
B[] — [V B [ o]

t
s Yo, — Z(l)
tht — Otdy .
h—0

(3.17)
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3 From discrete to continuous time: base setting and heuristics

Furthermore, it holds that

A(YiE(=R)s) = —Y.E(—R),4dR, + 5(—R)t sad[MW], + E(=R), , ZWaM WM
+ E(—R); ZPAM®P 4 E(—R), [dM} — E(—R),.d[Y, R,
I—JQX—RthMﬂ s = Y,E(=R)y,snsTsd MY

—Y.E(—R) sy /1 — 72dMP + E(—R), a,d[ MM,

+ E(=R)1.ZWdMWY + E(=R) . ZPdMP + E(—R), AM

— E(—R) s ZI T d[MW), — E(=R); s ZPne /1 — F2d[M P,
=E(—R),, (—Ysps +as — ZWnr, — ZPne /1 — Fg) d[MW],

+E(=R)s (2 — Yinirs) dMY + E(—R), (M
+ E(—R)1s (Z§2> — Yy /1 — 73) AM® . se|t,T].
We then have for all h € (0,7 — t) that

B, [YenE (= R)yesn]

t+h
=Y, + E, { E(—R)s <—Ysps +a, — ZWnF, — ZPna/1 - Fg) d[M(l)]s] .
t
(3.18)
From (3.16) and (3.18)) we derive heuristically that
By [Yin (E(=R)ieen — Tian))
B [[MM]pip] — [MO]
t+h
- Et [/ (g(_R>t,s (_Y;IOS +as — Zgl)nst - Z§2)778 1 - 73)
t (3.19)

-1

=0 o Yo 020 YatnrL ([ [ o]

— ~Yip = 2T = 21 =7 = Yo — 0 2.

Recall that T';! = v’l’ s € [t,T], and therefore

dril —= —Fil (/,LS —_— 0'2) d[M(l)]s - F;IUdeLgl); S e [t7T]

S

86



3.3 Motivation for the BSDE

We compute that
A (YiTT) = <Y (e = 02) dMO), = VT o,d ML 4T and M),
+ 071 ZWaM® 11 Z2PdMP -1 dMt — 20T o d[ MW,
= (=Y. I (s — o) + T ay — Z(I)F_las) d[M(l)]s
+ (7120 v tey) dM® + T Z2PdM® + T M, s e [t,T).

(3.20)
Moreover, we have that
d(E(=R)ps = T)* = =28(=R)1s(E(=R)1s — T)dRs — 2(E(—R)y,s — T)dl

+d[E(=R). ], —2d [T, E(- )]+d[]

= —26(=R)1s(E(=R)1s — To)psd[ MW,
—28(=R),s(E(—R)1s — Tg)nsTed MW
— 28(—R)1s(E(=R)1.s — Ds)nsy /1 — T2d M)
— s (E(—R)es — Ts)d[MW), — 2040, (E(—=R)ys — T)dM Y
+E(—R); (d[R]s + 2E(—R)1.d[T, R, + io2d[ MY,

= (= 2(E(=R)us = T)(E(=R)usps + Tspts) + Io? + E(=R) 12
+2E(—R),nsTso L) d[M Y]
— 2(E(=R)ts — Iy) (E(—R)y,nsTs + Tyo) dM Y
O(E(~ Ry~ TE(~R)any/1 - 2dMP), s € [1.T]
(3.21)
It follows from and that it holds for all h € (0,7 — t) that

Ey [Yignly), (5 (—R)t+n — Tin)’]
t+h
=) [ V0 (E02 = 2 Ry~ TE(Rlap, + L) + £
t
+ 28(~ R}y Too it

S

— 2E(~R),, — D)0 ((5( R)eansTs + Dy )(Z0 — Yio,)
+ E(—R) 21— 72)
+ (E(—=R)ps — T’ TH(=Yi(s — 02) + as — ZM0y) d[M(l)]s] '

Therefore, we obtain heuristically that

E, [n+hrt+h (5(_R)t,t+h - Ft—i—h)Z]
By [[MW]y ) = [MWD], h—0

s Yi(o? +n? + 20mT). (3.22)
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3 From discrete to continuous time: base setting and heuristics

Since

—28(— tsns\/ 2dMP, s e[t T,

d(rs_lg(_R)?,s) = Fs_lg(—R)f,s(ﬁf —2ps — pis + UE + QUSUS?S)CZ[M(I)]S
— Fs_lé’(—R)fs(%st + O'S)dM(l)

— T 'E(—R); s\ /1 —T2dMP), s € [t,T),

and we further derive heuristically that
£y [l ( Ft+h5( R)tt+h)]
E, [[M( )]t+h] [M(l)]t
Ey [ftHh S (T7YE(=R), (205 + ps — 02 — 2 — 20,1,T)) d[Mﬂ)]S}

we have that

_ : (3.23)
Et[ t+h d[M(l)]s]
1! (2p: + —n; — 200Ty)
o Pt T Mt — U tThTt) -
We conclude from (3.15), (3.17)), (3.19), (3.22)), and (3.23)) that
2
(1) (_Yt(ﬂt + ) = Zi (o + i) — 20/ T — F?)
ay = —Yt,ut — JtZt + (324)

Yi(o} + nf + 200m,7:) + %(2pt + pe — 0F —nf — 20mTy)

88



A Riccati-type BSDE

In the previous chapter we have motivated the importance of a certain quadratic
BSDE for the continuous-time (semimartingale) problem. Now, we study existence
and uniqueness for this BSDE (we additionally incorporate a risk coeflicient process A
into the driver ((3.24])).

To this end, assume the framework of Section We introduce the BSDE

1 T T T
Yi=3 +/ f(s,Ys, Z)d[MW], —/ ZWMam —/ ZPdMP — (M7 — M),
t t t
t €10,7],

(4.1)

with terminal condition Y7 = 3 and driver f: Q x [0,7] x R x R? — R defined by, in
the case when (Csg) is satisfied,

2
((ps + 1)y + (05 +n5Ts) 2 + gy /1 — 7223 4 As)

f(87 Y, Z) == (0‘3 -+ 7]5 —+ 20’57]575)(y V 0) + Kg + )\s (42)
+ ey + 02V A,

for s € [0,7], 5,21, 2 € R, z = (2M, 2@) T, In differential notation, (&.1)) reads

1
0V, = —f(5. Yo Z)AMO, + Z0AMD + Z0aM® + dME, s € 0.7], Vi = .

We are interested in solutions of BSDE ({4.1)) in the following sensel]

Definition 4.0.1. A solution of BSDE ([4.1)) is a triple (Y, Z, M*) of processes where

!Note that this notion of a solution of BSDE summarizes the definition of a solution of the
corresponding BSDE in [AKU21a] and the properties required in condition (Cpspg) of [AKU21a|,
except for the fact that we in this thesis only assume boundedness of Y and not the specific bound

L. Nevertheless, the upper bound i comes out as part of our results in this section (or as a

2 2
consequence of Theorem [5.2.6) and is natural in view of Section [3.3|and Theorem m
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4 A Riccati-type BSDE

e M*t is a cadlag local martingale with Mg = 0, [M+, MU)] = 0 for j € {1,2},
and E[[M*]r] < oo,

o 7 =(ZW 72T where Z1 ) e L2 ie., ZU, Z2) are progressively measur-
able processes such that E[f (Z(] )Qd[M ] ] < oo forje{1,2},

e Y is an adapted, cadlag, nonnegative, and bounded process,
such that f0T|f(s,§Q, Z)| d[MW], < 0o a.s. and ([4.1)) is satisfied a.s.

Remark 4.0.2. (i) We assume (Csg) and write y V0 (instead of simply y) in only
to make sure that the denominator in the definition of the driver is strictly positive
(at least Dy;m-a.e.). At some places (e.g., in Proposition and Section we
also want to consider BSDE without assuming (Csg). In this case, we implicitly

understand under f0T|f(S,Y5,ZS)|d[M(1)]8 < 0o a.s. and (4.1) being satisfied a.s. by
(Y, Z, M*) that moreover the fraction

2
((p + )Y + (0 +97)Z0 4+ nv/1 - 7223 + /\>
(2 4+n2+20nT)Y + K+ A

in the driver is well-defined D,;n1)-a.e.

(ii) Notice that Y from a solution (Y, Z, M*) of BSDE is necessarily a special
semimartingale (see [JS03, Section I.4c|).

(iii) In a setting where (MM ... MU)T = (WO WEHT = W is an m-
dimensional Brownian motion and F, = FV for all s € [0,7], is equivalent
to the formulation

1 T moor ,
Y;, = 5 + / f(57 Y;u (Zs(1)7 Z§2))T>d5 - Z/ Zéj)dWs(J)u te [07 TL (43)

(with f as in (4.2))). The reason is as follows.

If (Y,(ZW, ..., Z™)T)is a solution of (in the sense similar to Definition m,
but with Z) € £2 for all j € {1,...,m}), then (Y, (ZW, Z®)T M*') with M+ =
s fo ZPaw¥ clearly is a solution of BSDE [1.1).

Suppose now that (Y, (ZW, Z®)T ML) is a solution of BSDE (4.1). By the mar-

tingale representation theorem, and since M* is an (}"!V )SG[O’T]—local martingale with

Mg =0 and E[[M*]7] < oo, there exist unique L) € £2, j € {1,...,m}, such that
M= o LAWY For j € {1,2}, we have [;(LY)%ds = f’LJ)d MY WO, =
0, and thus L") = 0 = L® Dy, )-a.e. It follows that M+ = P LYaw D which
shows that (Y, (ZM,Z® LG . L)T)is a solution of .

In particular, if m = 2, then BSDE (4.1) reduces to

17 ! !
Vit [ fevizods— [ z0aw® - [T zBaw®, e o)
t t t
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4.1 Preparations

We in this chapter discuss existence and uniqueness for BSDE in three subset-
tings. Typically, we suppose that (C>c), (Cbda), and (Cponneg) (see Section are
satisfied.

In the first setting (see Section we do not impose restrictions on the filtration
but assume o = 0 = 7 in order to meet a Lipschitz condition in some place. We further
assume (C[M(l)]). For existence and uniqueness in this first setting, we apply results
from |[PPS18|.

Subsequently (in Section , we consider a setting with general o and 7, where we
assume [M|p < ¢; for some deterministic ¢; € (0, 00) and that (F)scjo,7] is a continuous
filtration in the sense that any (FS)SE[O,T]—martingale is Continuouﬂ. We derive an
existence result using [Mor09]. When (MM ... M)YT = (WO . W) = W
is an m-dimensional Brownian motion and (Fy)sejor) = (FY )sefo,r); We provide an
existence and uniqueness result based on an application of [SXY21| and [KT02].

Finally, we study the BSDE in a setting where the continuous local martingales
MDD M® are Brownian motions W1, W@ and the input processes are independent
of the filtration generated by these Brownian motions (see Section for the precise
assumptions). To show existence in this framework, we employ [KR21|.

The approach common to all three subsettings (except for Proposition is that
we first consider a variant of BSDE with a truncated driver. For the BSDE with
truncated driver and under appropriate additional assumptions, we then verify that
the conditions in relevant literature on existence of BSDEs are satisfied. This provides
us with existence of a solution to the BSDE with truncated driver. Subsequently,
we use comparison arguments to show that such a solution is actually a solution of
BSDE ([4.1).

This chapter is based on and uses material from the publication [AKU21b| (joint
work with Thomas Kruse and Mikhail Urusov). Furthermore, Proposition is
related to the preprint [AKU22a|, and Section comes from Section 3.1 of the pub-
lication [AKU22b| (both joint work with Thomas Kruse and Mikhail Urusov).

4.1 Preparations

Before we consider the aforementioned subsettings, we establish some helpful results.

The following technical lemma is used, e.g., in the proofs of Lemma [4.1.2] and
Lemma It provides conditions which ensure that the conditional expectation
of the supremum of a process with a certain exponential structure is a.s. finite.

Lemma 4.1.1. Suppose that (Cppry) is satisfied. Let 70) = (ng))se[o’T}, j € {1,2},
and v = (Vs)seor) be progressively measurable processes such that |70 < ¢; Dyy-
a.e., j € {1,2}, and v < ¢3 Dy0)-a.e. for some constants ¢; € (0,00), j € {1,2,3}.

2This condition is for example satisfied for a Brownian filtration.
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4 A Riccati-type BSDE

Let t € [0,T], and define N = (Ny)sce) by

Ny = exp (/ W dpL +/ TAdM>? +/ V,,d[M(l)]r) , seltT).
t t t
It then holds that

sup NS] < % <Et [6286%([M(1)]T_[M(1)]t)1|)513 <Et [62803([M(1)}T_[M(1)h)])

0ol

1
. (Et [e(2cs+c%+c%)([M“)]T%M“Ht)}) < o0 a.s.

Proof. We introduce the continuous local martingales U = (Us(j))se[t,ﬂ, Jj € 41,2},
defined by

) s ) 1 [° ) )
UY) = exp (/ DM — —/ (Ty))?d[M(ﬁ]r) . sET], je{1,2).
t t

We then have that

s 1
N, = Uél)Us(Q) exp (/ (Vr + = (<T7£1))2 + (7-52))2)) d[M(l)]T) . SE|t,T],
t
and thus, by applying the Cauchy-Schwarz inequality twice,

2
< (= Lamen]) (= Lamee])
L (44)
'<Et Sup exp (/t (2 + (R + (719)?) d[M(”]r)D

s€(t,T)
Since 2v + (1M)2 + (73)2 is bounded from above by 2c3 + ¢ + ¢, it holds that

sup exp ([ 2+ (0 + () a0,

s€[t, T t

sup (U{)*

s€L,T)

E, sup (U{Y)*

s€(t,T]

sup N
s€t,T]

E, < E, [€(2c3+cf+c§)([M(l)]T_[Mu)h)} .

(4.5)
Next, observe that for j € {1,2}

E {exp (% /OT(TT(j))Qd[M(j)]T)} < 00 a.s.

because (717))? is bounded, [M®] = [MW], and (Cppsq)y) is assumed to hold. There-
fore, we obtain by Novikov’s criterion that UU), j € {1, 2}, are true martingales. Thus,
it follows from Doob’s maximal inequality that

(Et

sup (UY)*
s€[t,T)

)4 < % <Et [(U}j))‘*])‘l‘ . je{12). (4.6)

92



4.1 Preparations

For j € {1,2}, we define U = (ﬁs(j))se[t;p] by

~ 5 , , 1 /[° ; j
0 —exp ([ sea ~ 3 [ (50 1)) s et
t t

and observe that by the Cauchy-Schwarz inequality it holds that

5 [(U¥)>4] _ g [(@j))éexp </tT 14(Tr(j))2d[M(j)]r)]

< (5 7)) (5 o (e

For j € {1,2}, as a nonnegative local martingale, UY) is a supermartingale, hence
E[UY) < UY = 1. Recall moreover that [M®] = [M®)], that ()2 is bounded by
2, and that (7?)? is bounded by c2. We thus obtain from (4.7)) that, for j € {1,2},

E [(U}j))ﬂ < (Et [6280?([M(1)]T[J\/[(l)]t)}>%‘ (48)

It finally follows from (4.4), (4.5)), (4.6), and (4.8)) that

s 1
By | sup Ng| < 16 (Et [3280%([M(1)]T—[M(1>]t)i|) 5 <Et [e%cg([M(m]T_[M(l)]t)}> 1
s€t,T) -9
TN
This is a.s. finite due to (C[M(l)])- O

We next provide a representation for the first component of solutions of some lin-
ear BSDEﬂ Representations of this kind are classical (as is our proof) and play
an important role for comparison principles. We use Lemma in the proofs of
Proposition and Proposition

Lemma 4.1.2. Suppose that (Cjppa)) is satisfied. Assume that g Qx[0,T] =R,
i €{0,1,2,3}, are progressively measurable, that g is D,;0)-a.e. bounded from above,
that gV and g'» are Dy;0)-a.e. bounded, and that fOT|g£;3)|d[M(l)]S < 00 a.s. Define
g: O x[0,T] x RxR* =R by

g(s, Y, (Z(l)> Z(Z))T) = g(O)y + ggl)z(l) + 9(2)2(2) + 9(3)7 S € [O, T}, Y, Z(l), 2(2) € R.

S S S

Let A = (As)sepor) be an adapted cadlag process of finite variation. Let Mt be a
cadlag local martingale with Mg = 0, [M*+, MU)] =0 for j € {1,2}, and E[[M*]7] <

3We also include an additional finite-variation process A in the BSDE in Lemma because such
a situation appears in the proof of Proposition m
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4 A Riccati-type BSDE

oo. Let ZW, 72 ¢ L£3. Let € be an Fr-measurable random variable. Suppose that
Y = (YS)SE[OT] is an adapted, cadlag process with g¥Y € L% for i € {1,2} and

fo OY,|d[MD], < 0o a.s. that satisfies a.s.
dY, = —g(s, Yy, (Z0, 2NN d[ MW, + ZWamV + ZPDadM® 4 aMmt — dA,,
s €[0,7],
Yr =¢.

Let ' = (I't)icpo,r) be defined by

t t t
T, = exp ( / g Od[MW], + / gVdM® + / gPdm®
0 0 0

It then holds that Y admits the representation

T
Y, =T,'E, {FTYT + / Iog®PdMY], + /

FSdAS} , tel0,T]. (4.9)
t (th]

Proof. Note that

dly = TogVd[MW), + TogMdM® + T, gPdMBP . se0,T], T,

Il
=

We have by integration by parts that

d(I,Y,) =T, (ggo)y g(s, Y, (ZS( ) Z( )) )+ g(l)Z(l) + 9(2)2(2)) d[M(l)]s
+ 05 (g + ZM) dM P + T, (¢PY, + Z22)) dM )

+ T dM; —T,dA,, se[0,T].

We thus obtain for all ¢ € [0,77] that
T T
.Y, + / Iy (g, + 20) dm D + / Ty (¢PYs + Z2P) am® + / I, dM*:
t t (t,T)

T
=DrYr + / Ig®aMW), + / I dA,.
t

(t,7]
If the local martingales N = [T, Ty (g9Y,+29YaMmY | j e {1,2}, and U= Joog s dM*

are true martingales, then it follows that

T
LY, =E [FTYT+ / Iog®dmW], + /
t

(.7

FsdAs} . telo,T],
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4.1 Preparations

which yields (£.9). To show that for each j € {1,2}, N is a martingale, observe that
it holds by the Cauchy-Schwarz inequality for j € {1,2} that

T 1
(f rttames 2yt anuon,)
0
1

1
2 T 2
<E (sup rf) (/ (géj)m+2§j>)2d[M<”]s> (4.10)
0

t€[0,T]
: v N :
<(p (£] [ v+ 20y anmy])
0

Recall the assumptions Z), WY € £2, j € {1,2}. Therefore, the second factor in the
last line of is finite. For the first factor, observe that, since g™, ¢® are D,,;)-a.e.
bounded and 2¢© — (¢M)2 — (¢*)? is D,s0)-a.e. bounded from above, Lemma [4.1.1]
implies that E[sup,cr 7] < oo. Finiteness in and the Burkholder-Davis-

Gundy inequality show for j € {1,2} that E[supte[O,T]]Nt(j)H < 00, and thus that NU),
j € {1,2}, are martingales. Similarly, we can show, using E[[M~]r] < oo, that U is a
martingale as well, which completes the proof. O

E[N0)] = B

sup I
te[0,7

In the next Proposition we by standard techniques derive a comparison result
that is used in Section [4.2] and Section In this proposition, we are interested in a
BSDE of the form

dY, = —g(s,Yo)d[MW),+ZMdMD + Z2BaMP +dME, s € [0,T], Yr=E¢, (4.11)

with a progressively measurable driver g: Qx [0, T] xR — R and an Fr-measurable ter-
minal value &, and we denote such a BSDE by BSDE(g, £). By a solution of BSDE(g, &)
we in Proposition understand a triple (Y,Z, M+) where M* is a cadlag lo-
cal martingale with Mg = 0, [M*+ MW] = 0 for j € {1,2}, and E[[M*]7] < oo,
7 =(ZW, ZONT with ZW, Z? € £2 and Y is an adapted, cadlag process, such that
f0T|g(s,YS)| d[MW], < oo a.s. and holds a.s. We do not consider dependence
of g on Z in since in the proofs of Proposition and Proposition the

driver does not depend on Z.

Proposition 4.1.3. Assume (C[M(l)]). Let g,g: Q x [0,T] x R — R be progressively

measurable, and let §,§~’ be .E;C-measumble. Suppose that (X', Z,M*Y) is a solution of
BSDE(g,€) and that (Y,Z, M*) is a solution of BSDE(q,€). Assume that b defined
by

bS - 1{Y9?£}7g} ~ , S € I:O, T],
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4 A Riccati-type BSDE

is Dyray-a.e. bounded from abov and that fOT|(YS - }Z)bs| dMW], < 0o a.s. Further,
introduce the process I' = (I't)ycjo.r) given by I'y = exp(f{; b d[MW],), t € [0,T).
Then, Y — Y admits the representation

V- T e e -0+ [ 1 (06,50 - 36, T) v re o

t (4.12)
In particular:
(i) If £ > ga.s. and g(s,?;) > ﬁ(s,i) Dy-a.e., then Yy > Y, a.s. for allt € ]0,T).
(i7) If € < ga.s. and g(s,i) < fqv(s,}z) Dyw-a.e., thenY; < Y, a.s. forallt € [0,T].

Proof. Denote 6Y, =Y, —Y,, dg, = g(t,Y,) — §(t.Y)), 571 = Zt(j) - Zt(j), j € {1,2},
and M- = M7 — M for all t € [0, T)]. Tt then holds for all ¢ € [0, T] that

T " T T
8Y, = 6Yp + / (g(s, Y,) — §(s, Y;)) d[MWY], — / 6ZMaM® — / 6ZPdM®
t t t

— (6My — 6M;").

Since

9(s,Y2) — 3(s,Ya) = g(s5,Y) — g(s,Ya) + g(s,Ya) — §(s5,Ys) = by 6Ys + g, s €[0,T),

it follows that
d8Yy = — (by 6Ys + 6gs) d]MW), + 620 dMY + 52PdMP + dsME, s € [0,T).

We can now apply Lemma m to obtain representation (4.12)) of Y =Y — Y. The
claims (i) and (ii) then are straightforward consequences of (4.12)). O

Comparison principles often use some kind of assumptions on the dependence of the
driver on Z (e.g., Lipschitz-continuity in |[KP16a], or condition (Hz) in [Mor09]) which
do not fit well with the structure of our driver (4.2)) (or truncated in Y variants of this
driver) when o or n are present. This is why, for the proof of Proposition we
now compute the bounds in our specific situation by hand. The upper bound is also
used in the proof of Proposition [£.3.2]

Observe that the upper bound holds in a general setting, whereas for the lower bound
we assume a continuous filtration. This ensures that Y is continuous, so that when we
apply Itd’s formula to A(Y") in the proof of the lower bound, we avoid additional jump
terms. In Proposition we have to assume a continuous filtration anyways as this
is part of the setting in [Mor09).

4A sufficient condition for b to be D,;a)-a.e. bounded from above is existence of some ¢ € (0,00)

such that for all y,y’ € R with y # %/ it holds %@g}“’/) < ¢ Dy;y-a.e. This is for example
satisfied whenever g is Lipschitz continuous in y unif%rmly in s.
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4.1 Preparations

Proposition 4.1.4. Assume (Cpaa) and (Cppyy). Let ¢ € [1/2,00) and
L:R—[0,¢, L(y) =(yV0)Ac, yeR.

Let M* be a cadlag local martingale with Mg = 0, [M*+, MW] =0 for j € {1,2}, and

E[[M*Y)7] < co. Let ZM, 23 € L2, and denote Z = (ZMV, Z)T. Suppose that Y is

an adapted, cadlag, bounded process such thaﬂ

3¢ € (0,00): (> + 0+ 20F)L(Y)+ £+ A>C Dyw-ae. (4.13)

and that satisfies a.s.

7 1
4, = ~F(s, Vo, Z)AMO], + Z0aMD 4 ZOdMS + My, s €0.T], Y=,
where
2
_ (0 + 1)LV + (0 4 ) 280 4 e/ T 7222 40,
f(s,Ys, Zs) = — + ps L(Yy)

(02 + 12 4 20T ) L(Ys) + ks + A
+ USZS) + As.

(i) It then holds that Y < 3.

(ii) Assume in addition (Cxc), (Cronneg), and that the filtration (Fy)scpo,r s con-
tinuous in the sense that any (Fs)sco,r)-martingale is continuous. Then, Y > 0.

Proof. (i) For the upper bound, let

~ 1 ~ . ) —
Y=2-Y, 79 =79 je{1,2}, and M*=-M".

Then it holds that

dY, = f(s,Ys, Z)d[MV), + ZOdMO + ZOdM® + dM-, se[0,T), Yr=0.
(4.14)
We want to express Y using a driver that is linear in Y, Z(), and Z® with bounded
coefficients and nonnegative offset. Note that

1 ~L(Y,) -1
é—L(YS) :YL, s € 10,7,

®Condition (4.13) is in particular satisfied whenever (C>.) holds true.
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4 A Riccati-type BSDE

where here and below we use the convention that 0/0 := 0. Observe that |L(y) — 1| <
ly — 3| for all y € R, hence ( ) 2 is bounded. For the driver in (4.14)), we have that

2

2
((ps + B L) + A + (0 + m7) 287 + 1, /T=7228)
(02 4+ 02 4 204n5Ts) L(Ys) + ks + As
2 ((ps + /’L«S)L<YS) + /\s) <(Us + nsFS>Z§1) + 7]3 V 1 - F§Z§2)> (415)
(02 + 02+ 2040sTs)L(Ys) + ks + As

1 > L(Y)

Y2

_7(57 }/;’ ZS) =

1
2

+o, 20— A, sel0,T].

Further, we compute for all s € [0, 7] that

(s LV 42~ (5

= piL(Ys)Q + NS(QPS + NS)L(YS)2 + 2)\3(03 + :UJS)L(YS) + )‘g

1 1
- (200 - 5) (3 + 0 ) (02 42+ 20mm)

Hs + /\s> ((O’? + 7732, + 203775F3)L<)/;> + Ks + )\s>

1 1
_ <§/~Ls + )\S) (5(05 + 02 4 20Fs) + K + )\S)
1 1
- psL(Y) - (Z - L(}/S)2) :us(2ps + MS) + Z,us(2ps + MS) + /\s(ps + MS)
1
+ (_ - L(}/;)) ((5#5 + As) (0-3 + 773 + 20_8778?8) - 2)\s(ps + MS)) + )‘g
1 1

- L)’ —G—” 5 a2t )
Y.

4 (% — L 8)) < )\S> 0% 1 4 20505Ts) — 2Xs(ps + us)>
_ G — L(Y,) (( st As) (02 417 + 20405Ts) — 2X(ps + us)> + e L(Y5)?
_@_L(Y)(L —i—%)uSZpS—I—MS

(4.16)
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4.1 Preparations

Define ¢@: Q x [0,7] — R, i € {0,1,2,3}, by

g0 = L(Y) = 5 ha b (Aps + X)) (02 + 02 + 20,n5Ts) — 2Xs(ps + 1s)
’ Y, — ’ (02 4+ 02 + 2040Ts) L(Yz) + ks + A

N[ = I

(L(Y3) + 1) s (205 + 115)
(024024 20msTs) L(Ys) 4 ks + As |

0 = g, — 20 16T) ((ps + 1) L(Ys) + As)
ST (02424207 ) LYL) + R+ A
@ 20/ 1 =75 ((ps + ) L(Y:) + As)

9 T o2+ 02 + 207 ) L(Y) + s+ A

2
o ((05 + 070 28 + 0 /T—72 2% + /\S> + P2L(Y,)?
= , € 10,T.
% (02 12 1 200 ) L(Y2) + a0 s€[0.7]

It then follows from (4.14)), (4.15)), and (4.16]) that

dY, = —f(s.Yo. Z)dM W]+ Z0aMD + Z0aMP + dM, s €[0,T), Yr =0,

where f: Q x [0,7] x R x R? — R is defined by

F(s,5,2) = gy + gM20 + gP2@ 1 g 5 € 0,7, y,20, 22 e R.

S S

Observe that, due to (£.13), (Cpaa), boundedness of A, [—1,1]-valued 7, and definition
of L, the coefficients ¢, ¢, and ¢ are Dy, -a.e. bounded. Moreover, Y is bounded,
and we have f0T|g§3)| d[MWM], < oo a.s. Therefore, Lemma [4.1.2 applies. Since ¢g©® >0
Dysoy-a.e. and EA/T = 0, we deduce from representation of Y that Y > 0, ie.,
Y <L

(ii) Now, we show that, under the additional assumptions, Y is nonnegative. To this
end we first choose 0 € (0,00) such that

2(0% +n? + 20nT)
K+ A

4]
5 Z DM(l)‘a.e.,

which is possible due to (C>.) and (Cpaa). Let
h:R—=R h(y)=1—e% yecR,
and let Y = (i}s)se[o,T] be the process

Y, = h(Y,), selo,T].
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4 A Riccati-type BSDE

Observe that h is, in particular, twice continuously differentiable and that M=+, [M*],
and Y are continuous. Then it holds by 1t6’s formula for all s € [0, 7] that

~ 1
4V, = dh(Y) = (Y)Y, + SH/(V)dY],

:_<ﬂanzmﬂnwﬁz%2”ﬁ%3%n0ﬂMmL

1
+ ZOW (V) AMD + ZPH (Y)dMP + W (V)M + S (Yo)d[M ..
(4.17)

Let Z9) = (Z¥)seory, 5 € {1,2}, M+ = (M )scior, and A = (Ay)scpoq) be the
processes

Z9D = n'(Y)ZY, je{1,2},

s

o S 1 S
M}* :/ R (Y,)dM*, and A, = —5/ K'(Y,)d[M™],, se€][0,T].
0 0

S

Observe that it holds for all y € R that

W(y) = 8¢ = 6(1 = h(y)),
h'(y) = =8 = —3h'(y).

In particular, the process A is nondecreasing due to h” < 0. We compute that

. 20 + (207
F(s, Yo, ZH(Ve) = L) T ET) iy
2
K ((ps + ps) L(Y2) + A
02+ 02+ 20T L(Y:) + ks + A
sy 200+ 1Y) 30 (0 + 07 287 1, T=T221Y)
2 R R A Ay
2
(0 + n7) 2 ./ T=7227)
— K Y,
O e ¥ 9o ) LV + o ¥
)
(

4801 = V) L(Y:) + 0,200 + W (V) + SH(V) ((Z0)2 + (22))

= GOV, + G20 + G2 + 30, selo,T),

S S S S S

100



4.1 Preparations

where we defined g : Q x [0,7] — R, i € {0,1,2,3}, by

”QV(O) — L(}/S)(;(l — ?s) [s — (ps + Ms)zL(YS) + 2(,03 + /~Ls)>‘5
’ Y, (02 + 72 + 207 ) L(Y,) + ks + A )
~(1) _ o 2(03 + 775F5) ((ps + NS)L(Ys) + As)
’ ’ (0-2 + 773 + 208778F5)L(Y:9) + Ks + )\57

5(2) _ 2778 V 1 - Fg ((Ios + /’LS)L(YS) + >‘s)

5 (02402 +20mTs)L(Ys) + ks + As

2
<(05 + 057 28 4 /1 — ?§Z§2))
(02 4+ 02 + 200,Ts) L(Y;) + ks + A

), s €[0,T7.

) = DHV) () + (Z2) ~ K(Y)

+ W (YA (1 —

s
(02 + 02+ 20,nsTs)L(Ys) + ks + As

This, (.17), and the definitions of A, Z@, j € {1,2}, and M* imply that

dY, = —f(s,Ys, Z)d[MD], + ZOdMD + ZPdM® + dM}F — dA,, s €[0,T),

where f: Q x [0,T] x R x R? — R is defined by

F(s,5,2) = 30 + 3020 + 5220 150, s € [0,T], y,20,2? € R.

Note that the process

LY)S(1 =Y,  SL(Y,)e s
ML= S sen

is bounded. This is clear in the case Y; < 0 because of L(Y;) = 0 (recall also the current
convention 0/0 = 0). For 0 < Y; < 3, it follows from L(Y;) = YV, and 0 < 1—¢”** < 4Y,.
We then use boundedness of w together with (C>c), (Cpaa), boundedness of A,
[—1, 1]-valued 7, and 0 < L < ¢ to see that g, g, and §® are D,;q)-a.e. bounded.
Furthermore, (C>.), nonnegativity of L and h’, and Jensen’s inequality imply that
Dysoy-ae.

g9 =Wz (g - 2(0—%@2) + 1 (Y)(2®) (g - %)

+R(Y)A (1 _A ) |

K+ A

Observe moreover that (o +n7)%+n?(1—7%) = o2+n*+20n7. Using nonnegativity of \,
x, and b/ together with our choice of &, we thus obtain that g® > 0 D,,q)-a.e. Besides,
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4 A Riccati-type BSDE

fOT@gg)\ dM™M], < 0o a.s. due to ZW, Z?) ¢ £2, boundedness of A and Y, (Cpaq),
and (4.13). We further remark that by boundedness of Y, we obtain for j € {1,2}
from ZU) € £2 that ZU) € £2, and from E[[M*]7] < oo that

N T
E [[ML]T} —F [ / (B(Y,))2d[M4), | < oc.
0
It moreover holds for all t € [0,T], j € {1,2}, that
o~ . t .
(ML, M), :/ W(Y,)d[M*, MY, =0.
0

Since g is nonnegative D,,;u)-a.e., A is nondecreasing, and Y has nonnegative ter-

minal value 1 — e~ 2, the representation (£.9) of Y in Lemma shows that ¥ > 0,
and hence Y > 0. O

When we have a solution (Y, Z, M+) of BSDE (4.1)), we can say about Y that it does
not jump at terminal time, see the next lemma. This is exploited later in the proof of
Theorem and in the proof of Proposition [6.1.6]

Lemma 4.1.5. Let (Y, Z, M) be a solution of BSDE (4.1). Then Yr_ = % a.s., i.e.,
Y does not jump at terminal time.

Proof. We have, with f defined in (4.2)), that

1 r 1
Y=g+ [/ f(5,Ye, Z)AMD]| = 5+ EJAr] = Ay, t€[0,T],  (418)
t

where A, = [} f(s, Yy, Z)d[MW],, t € [0,T]. As A = (At)sepor] i a continuous process,
it holds that limup Ay = AT, hence Ar is Fr_-measurable. Therefore,

lim Et[AT] =F [AT|JT"T_] = AT a.S.
T

The result now follows from (4.18)). O

To close this section, we show that uniqueness of a solution in the first component
already implies uniqueness of the solution triple. This is referenced in the proof of
Corollary[5.2.8) We remark that Lemmal[d.1.6]in fact does not only hold for BSDE (4.1]),
but also for a BSDE of the same structure with possibly different driver and terminal
value.

Lemma 4.1.6. Assume (Cso). Suppose that (Y, Z, M) and (Y, Z, ML) are solutions
of BSDE (| - ) such that'Y and Y are indistinguishable. It then holds thal Z U) = Z0)
Dy -a.e. for j € {1,2}, and that M+ and M* are indistinguishable.

102



4.1 Preparations

Proof. Compare the following canonical decompositions (see [JS03, Section L.4c]) of
the special semimartingale Y =Y

t t t
ytzyo_/ f<s,}g,zs)d[M<1>]s+/ Z§1>dMS<U+/ ZPdMP + M-
0

0 0
t t t

=Yy — / f(s,Ys, Z)d[MW), + / ZMdMP + / ZPdM®P + M-, t€[0,7).
0 0 0

For the local martingale parts we have that
/ | ZWam + / | Z®aM® + Mt = / | ZWdM W 4 / | ZBdM® + Mt (4.19)
0 0 0 0
This implies that
[M* — MY, = {ML — M+, / '<zi§1> — ZWydMW + / '(Zs(?) — ZDYydM®
0 0 t

t
= / (zW — ZzWyd[Mm+ — Mt MW,
0

Thus, M+ — M*' is a local martingale starting in 0 with [M+ — M*] = 0. Tt follows
from the Burkholder-Davis-Gundy inequality that A+ and M~ are indistinguishable.
Then, (4.19) implies further that

[ = zha s [[@ -z <o
0 0
Using [MM] = [M®)], we obtain that
= | [ @ - zan s [z - 2
0

0

= [0 - Zpanty + [ (2@ - 20 papre),
0 0

= [(@0 - 20+ (22 - 2P ),
0

It follows that Z() = Z() D, 0)-ae. and that Z® = Z®) D, -ace. O
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4 A Riccati-type BSDE

4.2 General filtration and 0 =0=1n

Proposition 4.2.1. Assume that 0 = 0 = 1. Let (Cs¢), (Cbaa), (Cronneg), and
(Cparw)) hold true. Then, there exists a unique solution (Y, Z, M*) of BSDE ([4.1)).
Furthermore, it holds that Y < %

Proof. We define the truncation function L: R — [0,1/2] by L(y) = (yVO) A3, y € R,

and consider BSDE with the truncated driver f: Q x [0,7] x R — R,
2
7(8, y) — _ ((ps + /’LS)L(y) + )‘S)

Ks + As
instead of f defined in (4.2)); i.e., with the notation of Proposition we consider
BSDE(f,1). Our aim is to first obtain a unique solution (Y, Z, M*) (in the sense of
Proposition of BSDE(f,1) via [PPS18, Theorem 3.5 and then show that Y is
[0, 1/2]-valued.

To this end, we first check that conditions (F1)—(F5) in [PPS18| Section 3.1] are
satisfied in our situation. (F1) follows from the Burkholder-Davis-Gundy inequality

and (Cpr)). Due to (Cxe), (Cpaa), boundedness of A, and the definition of L, it
holds for all y,7’ € R that

|f(87y> - f(Svy,)|
(ps + 11s)*(L(y')? — L(y)?) + 2(ps + ps) (L(y') — L(y))A

nL(y) + e s€0,T], yeR,

>+ ps(L(y) — L(y'))

Iis‘f’/\s
ps + 1) (L) + L(y)) + 2(ps + 1) s
:\< JUW) &+ L)) + 2000 +iadds 11y — Ly
/fg"‘/\s
2(c5 +c) +2(c, +cu)e
S((p el M)A+Cu) ly—y'| Dyo-ae.,
£

(4.20)

where ¢, denotes the D,;a)-a.e. bound for A. Therefore, assumption (F3) in [PPS18| is
satisfied. Since M is continuous, (F4) holds for all ® > 0. From (Ciary); and since

our terminal value of the BSDE is deterministic, we obtain (F2) for all § > 0. Observe
that, due to (C>c), (Cpaa), boundedness of A, and the definition of L, it holds that
there exists a constant ¢ € (0, 00) such that

2 .2 2
e, 20 1

sup|f (s, y)| < 56t ST Dyor-ae. (4.21)

yeR

By the Cauchy-Schwarz inequality, this implies for all B > 0 that

T
Bl [T 0P L] <@ [ ar

0
<@ (pemn])’ (p[xr])
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4.3 Continuous filtration and general o and 7

(F'5) now follows from (Cpsy;)-

Thus, by [PPS18, Theorem 3.5] (see also Corollary 3.6 therein) there exists a unique
solution (Y, Z, M) of BSDE(f,1). In particular, the norm in [PPS18, Theorem 3.5]
being finite implies that E[[M']7] < oo and E| fo N2d[MW),) < o0, j € {1,2}.

In order to show that Y is [0, 1/2]-valued, we apply the comparison result Proposi-
tion [4.1.3] (recall also ( and ({4.21))).

Observe that (Y, Z ML) = (3,0,0) is a solutlon of BSDE(/, 3) for f =0, which
clearly satisfies E[[ML] | < o0 and E| fo d[ M],] < 00, § € {1,2}. Moreover,
it holds by (Cx>c) that

_ o~ _ 1 — 2 - o~
F(s,Y0) = F(s.5) = 4(—@) <0=f(s.Y.) Dyu-ae.

and Y = % = ?T. Therefore, case (ii) of Proposition yields that Y < Y = %

For the other bound, note that (Y, Z, ML) = (0,0,0) is a solution of BSDE(f,0)
for f =0 with E[[M*]7] < oo and E[fOT(Zgj))Qd[M(l)]s] < o0, j € {1,2}. Further, we
have by nonnegativity of A and x that

N MK N

f(sjy‘s) = f(570) =
Since moreover Yy = 1 > 0 = Yr, it follows from case (i) of Proposition that
Y >Y =0.

We have thus shown that (Y, Z, M) is a solution of - Finally, to see unique-
ness, suppose that there is another solution (Y, Z’, (M=)’) of (4.1). Then, by Propo-
sition we have that Y/ < L. It follows that (Y’, AR (ML) ) is also a solution of
BSDE(f, 5), which (by uniqueness of the solution in [PPS18, Theorem 3.5]) implies
that (Y',Z', (M) = (Y, Z, M), O

We further mention that in the setting of Proposition , for any solution (Y,Z,M%)
of BSDE ({4.1)), the appurtenant process ¥ defined in is bounded, and we could
thus obtain uniqueness also via Corollary of the main theorem on the solution of
the semimartingale control problem.

4.3 Continuous filtration and general ¢ and 7

Proposition 4.3.1. Assume that the filtration (.Fg)se[oj] 18 continuous in the sense
that any (Fs)scjo,r)-martingale is continuous. Let (MW < ¢ a.s. for some deter-
ministic ¢; € (0,00). Suppose (C>e), (Cpaa); and (Cronneg)- Then, there exists a
solution of BSDE . Furthermore, any solution (Y, Z, M+) of BSDE satisfies
YV < 3.
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4 A Riccati-type BSDE

Proof. We first consider BSDE (4.1) with its driver replaced by the truncated driver
f:Ox[0,T] xR x R? - R,

2
_ (9 + 1) L) + (0 + 1)z + o/ T =722 4 )
5,Y,2) = — —
fow? T o W T
+o2M 4N, s€[0,T),y,2M, 22 e R,z = (2, 2®)T,

+ 11 L(y)

where L: R — [0,1/2], L(y) = (yV0) A 5, y € R. Note that f is continuous in (y, 2).

For this BSDE, we now show that condition (H}) in [Mor09) is satisfied. We denote
the Dy;m)-a.e. bound for A by ¢y. Observe that (C>c), L > 0, and o2 4+ n? + 2007 > 0
imply that |(o? + 1?4+ 20n7)L(y) + k + A| > € Dywm-a.e. for all y € R. We further use
(Cpaa), -1 <7<1,and 0 < L < 1 0 obtain that there exist deterministic constants
¢, c3 € (0,00) such that for all y, 21V, 22 € R it holds that

2
_ 2ps+ 1V L(y)* +2 (00 + 170)20 + 10/ T= T2 + 0,

[f(s,y,2)] <
S
1
+out co|2W] + e
Gt +16((c+a)V)P+qEP)?) +45 1
S - + 20H+C>\

+ o (1+ (z(l))Q)

<o+ % ((z(l))2 + (2(2))2) Dyoy-ae.

Furthermore, it holds that fOT cod[MW], < cico. Hence, assumption (H}) in [Mor09]
is satisfied.

Step 3 and 4 in the proof of [Mor09, Theorem 2.5| show that there exists a solution
(Y, Z, M*) (in the sense of Definition but without the nonnegativity condition
on Y) of BSDE with driver f.

We conclude from Proposition that Y is [0, 1/2]-valued and that (Y, Z, M*) is
also a solution of BSDE with the original driver f (as defined in (4.2)).

Moreover, since any solution (Y, Z, M*) of BSDE (@), by Definition , is
bounded, we in the current setting can apply Proposition M(l) to obtain that
Y <1 O

In the setting of Proposition we only provide an existence result and do not
claim uniqueness. This is due to the fact that [Mor09, Theorem 2.6] (uniqueness)
requires stronger assumptions than [Mor09, Theorem 2.5| (existence). More precisely,
the issue is the monotonicity assumption in y uniformly in z on the driver in condition
(Hy) in [Mor09|. However, we can obtain uniqueness (and also existence) via [SXY21|
or [KT02] in a Brownian setting, as we state next. Proposition is in particular
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4.3 Continuous filtration and general o and 7

relevant in Section [8.2] when we solve our continuous-time trade execution problem for
progressively measurable strategies.

Proposition 4.3.2. Let M) = W jc {1,...,m}, for an m-dimensional Brown-
ian motion W = (WW_ ... W) and assume that the filtration (Fy)scor) for the
filtered probability space (Q, F, (Fs)sejor): P) is the augmented natural filtration of W.
Suppose (Crpaq). Furthermore, assume that at least one of the following conditions
holds:

(a) There exists 6 € (0,00) such that, for all u € L2 and the associated process H"
defined in (8.1) with HY = 0, the uniform convezity assumption

1 T T
E [é(H%f + / (ks + Ns) U2 + A\(H")? — 2\, H u, ds} >0F { / uids} (4.22)
0 0

is satisfied, or
(b) (Cnonneg) and (ng), or
(C) (Cnonneg) and (Cs),
Then, there exists a unique solution (Y, Z, M*) of BSDE (4.1)). Furthermore, there

exists ¢ € (0,00) such that (0? +n*+20nT)Y + £+ X > € Dy -a.e., and it holds that
Y <1
=3

Proof. 1. Assume first that (a) holds true, i.e., the uniform convexity assumption (4.22))
is satisfied. Observe that BSDE (4.1)), in the form of (4.3)), corresponds to [SXY21]
SRE (92)] for the underlying standard LQ stochastic control problem with state pro-
cess and cost functional if we set £ = 0 and ¢ = 0 in these definitions. Since
p, 1, 0,1, T, A are assumed to be bounded and progressively measurable, (A1)” and (A2)
of [SXY21] are satisfied. Moreover, condition (4.22)) is just the uniform convexity condi-
tion in [SXY21] in our situation (see, e.g., their assumption in Theorem 9.1). Further-
more, the filtration by assumption in the current proposition is generated by the Brow-
nian motion (WM ... W) T Therefore, we can indeed apply the results of [SXY21|
in our setting. By |[SXY21, Theorem 9.1] (see also [SXY21, Theorem 6.3]), there exist
unique processes Y, ZU) j € {1,...,m}, such that Y is an adapted, continuous, non-
negatiwﬂ, bounded process, Z9) € L2 forall j € {1,...,m}, and is satisfied P-a.s.
Moreover, there exists ¢ € (0, 00) such that (62 +n%+20nT)Y + £+ X > ¢ Dyy)-a.e. It
follows from Remark [4.0.2] that (Y, (Z0, Z®)T, M) with M+ = S0 [ 2P aw? is
the unique solution of BSDE (4.1). Due to (02 + n* 4+ 20n7)Y + k + A > € Dy)-a.e.
and boundedness of Y, we can use Proposition M(l) to get Y < 1.

6Although [SXY21| does not seem to state it explicitly, the first solution component of the BSDE
in [SXY21] is always nonnegative. This comes from the uniform convexity assumption on the
cost functional together with the equivalence [SXY21, Theorem 4.2] of their problems (SLQ) and

(S{L\Q) and the representation of the value function in terms of the first solution component of the
BSDE in [SXY21] Corollary 5.7].

107



4 A Riccati-type BSDE

2. Assume now that (Cponneg) is satisfied. In view of the standard L(Q) stochastic
control problem with state process and cost functional (8.5]), we can show by
some computations that [KT02, BSRDE (9)] for appropriately defined coefficients (see
Table is the same as BSDE in the form of . These coefficients, due to
(Cbaa) and (Chonneg), are bounded, and we have that % >0, \+x>0,and /\Aﬁ >0
Dyyay-a.e. (see also Remark , and for >\_—>|i/-:’ note the convention of Section .
Thus, they satisfy the conditions in [KT02]. Moreover, our filtration is generated by
the Brownian motion (WM, ... W) T as demanded in [KT02|.

If (C>¢) holds in addition to (Cponneg) (i-€., if (b) is satisfied), then we are in the
“regular case” and can apply |[KT02, Theorem 2.1]. Tt follows that there exist unique
processes Y, Z) j € {1,...,m}, such that Y is an adapted, continuous, nonnegative,
bounded process, Z9) € L2 for all j € {1,...,m}, and is satisfied P-a.s. Observe
that (C>c) and nonnegativity of Y imply that (62 +n?+20n7)Y + K+ > € Dyya)-a.e.
From Remark [1.0.2] we have that (Y, (20, Z®)T, M+) with ML = 7 [0 20 qw )
is the unique solution of BSDE ([{.1]), and Proposition [{.1.4(i) provides the specific
bound Y < %

Let now (Cs) be satisfied in addition to (Chonneg) (i-€., (¢) holds). This corresponds
to the “singular case” that is treated in [KT02, Theorem 2.2]. This theorem implies
that there exist unique processes Y, ZW_ j e {1,...,m}, such that Y is an adapted,
continuous, nonnegative, bounded process, Z\) € £2 for all j € {1,...,m}, and
is satisfied P-a.s. Moreover, Y is uniformly positive (in the sense of [KT02, Lemma
4.4]). The fact that Y is uniformly positive together with (Cs) and (Chonneg) yields
that there exists ¢ € (0,00) such that (02 + n? + 20n7)Y + Kk + A > € Dy m-a.c.
Again, Remark and Proposition M(l) show that (Y,(ZW, Z)T ML) with
M+ = 2213 fo Zs(j)dWS(j) is the unique solution of BSDE and that Y < % O

Note that to prove the second and third case in Proposition we could also have
used [SXY21], where in both cases [SXY21, Proposition 7.1] shows that the uniform
convexity condition on the cost functional (with € = 0 and ¢ = 0) is met so
that [SXY21, Theorem 9.1] applies.

4.4 Brownian motion with independent input
processes

We now consider yet another subsetting where we can guarantee existence of a solution
of BSDE ([4.1)), and which will (for n = 0 and A = 0) be the setting of Chapter [f]

We assume that MM = W® and M® = W® are independent Brownian mo-
tions on (Q, Fr, (Fs)sep1, P). Let (F2)sepo,r) be the filtration generated by the two-

s

dimensional Brownian motion W = (W), W®)T. We suppose that (F;)sepo,r] has the
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4.4 Brownian motion with independent input processes

structure
Fo=(FL.vFL), sel0.T), Fr=FVFr,
e>0
where (F; )sejor) is a right-continuous complete filtration such that F}¥ and Fg

are independent. Furthermore, we assume that p,u,o,n,7, and A are (]'—sl)se[o,T]-
progressively measurable.

To obtain a solution of BSDE ({.1), we first consider, under (Cs¢) and with f
defined as in (4.2), the BSDE

1
dY, = —f(s,Y,,0)ds +dM>, s€0,T], Y= 3 (4.23)

on the filtered probability space (2, F7, (F; )sepor], Plzs). Note that P|zi denotes

S
the probability measure P restricted to the sigma algebra F7, and that the expressions
“P-a.s.” and “P];TL—a.s.” have the same meaning.

We establish the following result on BSDE (4.23) and BSDE (4.1) in the setting of

the current section.

Proposition 4.4.1. Let (C>.), (Cpad): (Cronneg), and the assumptions of this section
be in force.

(i) There exists a unique pair (Y, M*) such that Y is a cadlag, (F;-)seo,r)-adapted,

nonnegative, bounded process, M+ is a cadlag (fj)se[o,ﬂ—martmgale with My = 0 and

E[[M*)7] < oo, f0T|f(s,Y;,0)| ds < 0o a.s., and BSDE (4.23)) is satisfied a.s.
(it) (Y,0, M*) with (Y, M*) from (i) is a solution of BSDE ({.1) with Y < 5.

Proof. Let L: R — [0,1/2] be the truncation function defined by L(y) = (y V 0) A 1,
yeR. Let f: Qx[0,7] x R — R be the function defined by

o ((ps + 1) L(y) + As)*
T8 Y) = = o 0+ 20 Ly) + 7n T

+usL(y) +As, s€0,T],y €R.

BSDE ([4.23) with its driver replaced by f. In the calculations below we assume with-
out loss of generality that p, p, o, 1, 7, and X satisfy (Cs¢), (Cbaa), |A| < ¢y (for a
constant ¢y € (0,00)), and (Cnonneg) not only Dyy-a.e., but for all (w, s) € 2 x [0, 77,

as we can otherwise replace them in f with (}"j)SG[O,T]—progressively measurable pro-

We begin by studying, on the filtered probability space (Q,Fz, (F; )seor): Plr);

(w,s) € Q x [0,T] and such that p = p Dyyw-a.e., i = p Dyw-a.e., & = o Dya-a.e.,
7 = n Dyw-ae., T =T Dyw-ae., and A = X\ Dy-a.e. To apply [KR21, Propo-
sition 5.1], we justify that conditions (H1)-(H5) in |[KR21, Section 2| are satisfied.
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4 A Riccati-type BSDE

Observe that there exists a constant ¢ € (0, 00) such that

2 ((ps + ps)*5 + A2)

— C
suplf (s, y)| < + Lt
yER 9 2
2 2 2
+c2 42 4.24
< c, CZ cy N % Lo ( )

<e¢ se€[0,7T).

In particular, we have for all s € [0, 7] that |f(s,0)| < ¢. Since moreover Y7 = 3, this
shows that (H1) holds true. Furthermore, sup,cg|f(s,y)— f(s,0)| < 2¢for all s € [0, 7]
implies that, in particular, (H5) holds. (H3) is trivially satisfied. Observe that for all
s € [0, 7] the function R > y +— f(s,y) is continuous, i.e., (H4) is satisfied. Moreover,
it holds for all s € [0,7] that this function is constant on (—oo,0] and constant on
[1/2,00). Furthermore, for all s € [0,7], (0,1/2) > y + f(s,y) is twice differentiable
with, for y € (0,1/2),

2 _
81/7(3’ y) _ ((ps‘i‘ﬂs)y + Agl((;)%"i‘ 77? + 20’577573) . 2 ((ps—i_MS)ZZé;\S) <p8+ﬂs) ¥,

2
= 9 (ps s ((ps + ps)y + As) (03 + 03 + 20577575))

82, (s,y) = a)?

where we abbreviated a(y) = (02 + 12+ 20,,Ts)y + ks + As. Since 02, f(s,y) < 0 for all
y € (0,1/2), s € [0, T], we have for all s € [0, 7] that (0,1/2) > y — f(s,y) is concave.
We therefore obtain for all s € [0,7] and y,y" € R with ¢’ # y that

T(S,Q) —
Y —

il

(5,9

/

< max { ’8;7(3, 0)

0y Fs,1/2)]}

<

Due to (C>¢), (Cbaa), and boundedness of ), there exists a constant ¢ € (0, c0) such
that it holds for all s € [0,7] and y,y’ € R with 3/ # y that

f(s:9) = f(s:9) _

cC. 4.25
s (125)

It follows for all s € [0,7] and y,y" € R that (7(5, y) — f(s, y’)) (y—vy) <ely—v)%
hence, also (H2) is satisfied. We can thus apply [KR21, Proposition 5.1], which yields
that there exists a unique pair (Y, M) such that BSDE with its driver replaced
by f is satisfied a.s., Y is a cadlag (Fi)sep,r-adapted process with Elsupepor YY) <
o0, and M~ is a cadlag (F;)ser-martingale with My~ = 0 and E[[M~]7] < occ.

We next show that (Y,0, M=) is a solution of BSDE(f, 1/2) (on the filtered probabil-

ity space (€2, Fr, (Fs)seo,r]; P)), where the notation and the notion of a solution are as
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4.4 Brownian motion with independent input processes

in Proposition Since F}' and Fz are independent and Fy = (.o o(Foy. V Fii.)
for all s € [0,7'), we have that M~ is not only an (F;")sep,rj-martingale, but also an
(Fs)sepo,r-martingale. Furthermore, we can show for j € {1,2} that MW is an
(Fs)sep,r-martingale. Tt follows that (ML, WW) =0, j € {1,2}. For j € {1,2}, we
have from continuity of W that [M~*, W] is continuous, and hence [M*, W] =
(M+,WU)) = 0. Therefore, (Y,0, M") is a solution of BSDE( f,1/2).

[t remains to justify that Y is [0, 1/2]-valued. Due to and (4.25)), we can apply
Proposition [4.1.3] For the lower bound, note that (0,0 O) is a solution of BSDE(0, 0),
and that f(s,0) = ’\—“/\ >0, s € [0,7], due to (Cponneg). We thus obtain from
Proposition [4.1.3{i) that Y > 0. For the upper bound, we consider BSDE(0, 1/2) with

solution (1/2,0,0), and the fact that

_ 1 pQ
S, =) =— 5 <0, sel0,T].
8 3 = a0 3 102 1 + 2our) 0.7

The upper bound ¥ < 1 5 then follows from Proposition M(n) This completes the
proof of (i) and (ii). O
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Cadlag semimartingale strategies
for optimal trade execution in a
continuous-time model

In this chapter we examine optimal trade execution in continuous time using semi-
martingale strategies. We restrict our problem to the case of terminal positions 0.
That means, we consider an agent who holds an initial position z € R in the asset, and
at terminal time 7" needs to possess exactly |x| shares less (if z > 0) or more (if z < 0)
than at the beginning. Starting at time ¢ € [0, T, the agent has the time interval [¢, T
at disposal for trading. The agent may penalize large (in square) positions over the
course of the trading period, which is new compared to [AKU21a| (as is the possible
diffusion part in the resilience).

The underlying market conditions are described by the price impact process v and
the resilience process R of Section We still need to specify how trading according to
a semimartingale strategy affects the price, and what costs this incurs. As in Chapter 2]
we suppose that the actual prize is the sum of an unaffected price, which we assume
to be a martingale, and a price deviation, and we only focus on the price deviation
(see also Remark [5.1.1)). The definitions and that we give in Section [5.1.]]
for the deviation and for the cost functional are motivated by Section [3.2] We further
discuss these definitions in Section [5.1.2] where we compare with relevant literature
and show by counterexamples that the conventional definitions and can
lead to arbitrarily large negative costs when optimizing over our class A (z,d) of
cadlag semimartingales. In Remark [5.1.3] we explain that (in the risk-neutral case)
our definitions of the deviation and of the expected costs associated to a strategy X
coincide with and whenever X has finite variation. Furthermore, observe
that we integrate with respect to the strategy X in both formulations. This is still
possible in the present setting due to our choice of the set of admissible strategies:
strategies can have infinite variation, but are still cadlag semimartingales.

We solve the semimartingale stochastic control problem of Section in Sec-
tion [5.2] Our approach is based on a solution of the BSDE that we analyzed in Chap-
ter[d] We first rewrite the cost functional with the help of a solution of BSDE (see
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5 Cadlag semimartingale strategies

Section in particular Theorem [5.2.1]), before we come to a representation for the
value function, a characterization of the existence of an optimal strategy, and, in this
case, an explicit formula for the optimal strategy in the main theorem (Theorem
in Section

We find several interesting effects, which we discuss in examples in Section and
Section [5.4f] These include optimal strategies that indeed have infinite variation as
well as optimal strategies that do not only have jumps at the beginning and at the end
of the trading period, but also in between.

Throughout the chapter, we assume the set-up of Section [3.1}

This chapter is based on and uses material from the publication [AKU21a| (joint
work with Thomas Kruse and Mikhail Urusov). The examples in Section and
Section also incorporate parts of Section 4 of the preprint [AKU22a| (joint work
with Thomas Kruse and Mikhail Urusov).

5.1 The semimartingale stochastic control problem

We formulate our continuous-time stochastic control problem for semimartingale strate-
gies (within the set-up of Section in Section and discuss the definitions of
the deviation and of the cost functional in Section B.1.21

5.1.1 Problem formulation

Given an initial time ¢ € [0,7] and d € R, we associate to a cadlag semimartingale
X = (Xy)sepe—,1) a cadlag semimartingale D = (DX)ep— 77 defined by

dDY = —DYdR, +v,dX, +d[y,X],, s€[t,T], DX =d. (5.1)

By, e.g., [Pro05, Theorem V.7, there indeed exists a unique solution of (5.1]), and by,
e.g., [Pro05, Theorem V.52|, it admits the representation

DY = (C”/[ R X, / eFr =R 3[R~/ gLy, X],
t,s

[t,s]

+/ eR,,-—Rt-l-%([R]rr-—[R}t),yrd[R’ X]r) e—(Rs—Rt)—%([R]s—[Rh)’ s € [t,T),
[t,s]
D =d.

If we have a sequence of cadlag semimartingales X" = (X7)sc— 11, n € N, we usually
write D™ instead of DX" for n € N.

For t € [0,7], d € R, and a cadlag semimartingale (X;)sc— ) with associated
(D) seft—m) defined by (5.1), we formulate the conditions

S

!We also provide further examples in Section and Section where we focus on the effect of a
negative resilience coefficient.
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5.1 The semimartingale stochastic control problem

(A1) E; | sup (73 (X, — 7§1D§)4>] < 00 a.s.,
s€[t,T]

_ . 1
(A2) E, (/ /73 (Xs - 75_1D§)40'3d[M(1)]5) ] < 00 a.s.,
t

- T ) A %
(A3)  E ( / (7; 5D§> agd[M@)]s) ]<ooa.s.,
t

o ;
(A4)  E (/ 7 (Xs—7;1D§)4n§d[M(l)]s) ] < oo as.,
t

(A5)  E </tT <7§5D§)4n§d[M(”]s> 7 < 00 as.

Note that if Et[ftT o2d[MM],] < oo a.s., then, by the Cauchy-Schwarz inequality,

(A2) follows from (A1). Similarly, if E[[ n2d[MM],] < oo as., then (A4) follows
from (A1).

For z,d € R and t € [0, 7], let A¥™(z,d) be the set of all cadlag semimartingales
X = (Xy)sep—,m with X, = 2, X7 = 0, and satisfying conditions (A1)—(A5). Any
element X € A¥*™(z,d) is called a semimartingale execution strategy, and x is the
initial position. The process D¥ defined via is called its associated deviation
process, and d is the initial deviation.

We consider the cost functional J*™ defined by

T
JEm (2, d, X) :Et[ DX dx, + / % grx], / DXd[X, R]s}
t

[t,T] [t,T]

. (5.2)
+ E, { /t fys/\std[M(l)]S]

for t € [0,T], z,d € R, X € A*™(z,d) and associated D*. Conditions under which
the cost functional is well-defined for all z,d € R, ¢t € [0,T], and X € A*™(x,d) are
provided in Theorem [5.2.1] The last summand in the cost functional represents a
risk term. The choice A = 0 corresponds to a risk-neutral investor who only experiences
the expected (at time t) execution costs (over the trading period [t,7]) given by the
first line in . The value function of our control problem is given by

Ve (x, d) = XeeigeLIfoC Y Sz, d, X), x,deR,tel0,T]. (5.3)
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5 Cadlag semimartingale strategies

Remark 5.1.1. In the problem setting introduced above we focused on the price
deviation only. However, the considerations above also allow to explicitly include
an unaffected price into the picture, provided that the unaffected price is a (local)
martingale.

To this end, assume that the unaffected price is modeled by a cadlag local martingale
SO = (SY),ep—7- Fix an initial time ¢ € [0,T], initial position z € R, and initial
deviation d € R. Consider a cadlag semimartingale X = (X,),cp— 1 satisfying X, =
z, Xpr = 0, and (A1)-(A5), ie, X € A" (z,d). When we take the unaffected
price S° into account, the execution costs (including the risk term) generated by X
over [t,T] are given by the formula

/ SO dXx, +/ ds*. X, + | DX dXT+/ T q1x],
t,7] 6,7 6,7 1) 2
/ DX d[X, R], / YA X2 dMW),..

The first and the second cost terms in (5.4) are due to the unaffected price process
SY. It was first observed in [LS13| via a limiting argument from discrete time that, in
continuous time and for semimartingale strategies, the expression for the cost terms
due to the unaffected price is

/ SS_dXH—/ d[S°, X1, (5.5)
[t,T] [t,T]

(see [LS13| Lemma 2.5]) P| Using integration by parts for the semimartingales X and S°
together with X;_ = z and Xp = 0 we obtain that

(5.4)

/ SO dX, + / d[S°, X], = XpS% — X,_ S — X,_dS?
[t, 1) [t,7]

[t.7]

=X, S0 — / X,_dS? — X,_AS?
t, T

- / X, ds®.
t,T

It follows from the Burkholder-Davis-Gundy inequality that FE| f(t 7
whenever the condition

( X2 d[SO]T> ] < 00 a.s.
(t,71

2We notice that in the literature preceding |LS13| the execution strategies X were always assumed
to be of finite variation (often just monotone), while the part of execution costs coming from
the unaffected price was given by the expression f (6.7 S2dX,. This is consistent with (5.5),
as [, g Sp-dXe + [, 1 d[S® X]; = [, 1) S)dX, whenever X is of finite variation (see [JS03,
Proposmon 1.4.49a)).

X,_dS° = 0

(A6)  E
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5.1 The semimartingale stochastic control problem

is satisfied. Therefore, under (A6), the expected (at time t) costs (over [t,T]) due to
the unaffected price S° are equal to —xS? and thus do not depend on the execution
strategy. Hence, the minimization of the expected (at time t) total costs in
reduces to the minimization of J;*™(z, d, X).

We summarize the discussion as follows. In our work, we minimize J{*™(x, d, X') over
X € A™(z,d), i.e., in particular (A1)—(A5) hold true for X. Given a local martingale
unaffected price S°, a pertinent optimization problem is to minimize J¥*™(x,d, X) over
strategies X € A" (x,d) satisfying (A1)-(A6). Given an optimal strategy X* €
A$™(z, d) one thus needs to examine additionally whether X* satisfies (A6), which
in general is not automatically true. However, if S° is a square-integrable martingale,
then, under the assumptions of Theorem the optimal strategy X* € A" (z, d)
provided in satisfies (A6). Namely, under the assumptions of Theorem , for
X* of (5.36), it holds that Ei[sup,cp (X, )] < co a.s. As SO is a square-integrable
martingale, we have E[[SY]7] < oo, hence E[[S°r — [S°]:] < oo a.s. Condition (A6)
for X* of now follows from the Cauchy-Schwarz inequality.

Remark 5.1.2. Furthermore, in the problem setting introduced above, we can incor-
porate a constant permanent price impact coefficient in addition to the transient price
impact coefficient v (compare also with Remark [2.1.5). To this end, let ¢ € (0, 00)
be the permanent price impact coefficient, and note that the order book depth now is
described by ¢s = (v, +¢)71, s e [0, 7). Fix an initial time ¢ € [0,7] and z,d € R. We
add to the deviation process of a strategy the additional, permanent shift that is
incurred by the permanent price 1mpact when trading according to this strategy. That
is, for X € A" (z, d), we consider the deviation process DX = (Df)se +— 1) defined by

ﬁf:D§+/ ¢dX, = DX + (X, —x)e, se€[t—,T).
9]

The (risk-neutral, but we could also include a risk term) costs from trading under
transient and permanent price impact are given by, for X € A¥™(x,d),

Dj(dXs—i-/ !

T
— | DXd[X,R],. 5.6
3 X [ PR 5

[t.T]

We use the original deviation process DX in [' DXd[X, R], since this component of
the costs is tied to the resilience. For further motivation concerning the definition of
the deviation process and the costs with permanent price impact included, combine

Remark and Section The costs (p.6) for any X € A3 (x,d) decompose into
the sum of the costs in the purely transient case,

T
Df—dXs +/ Ed[X]S _/ Di(d[Xa R]s>
t

[t,7] 1] 2
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5 Cadlag semimartingale strategies

and the costs due to permanent price impact,

? / (X. —2)dX. + ¢ / Lax..
[t,7]

[t.T]

Integration by parts implies for all X € A¥™(x,d) that

1 1
/ (X,_ —)dX, +/ —d[X], = X dX, + 2%+ —/ d[ X,
[t,7] (1] 2 [t,7] 2 Jiem
1 x?
= §(X:% - X2)+a* = 5

Therefore, the added costs due to permanent price impact are the same for all strate-
gies. This means that, effectively, the minimization of the expected (at time t) total
costs in the model with transient and constant permanent price impact reduces to the
minimization of the expected (at time t) total costs in the model with only transient
price impact that we treat in this chapter.

5.1.2 On the deviation process and the cost functional

In this subsection, we consider a risk-neutral investor, i.e., A = 0. The conventional
definitions of the deviation dynamics and the cost functional for finite-variation strate-
gies X, given t € [0,7] and x,d € R, would read

dDX = —DXdR, + v, dX,, sel[t,T], DX =d, (5.7)
and
Ji(z,d, X) = E, V (5,55 + %AXQ dXs} : (5.8)
7]

respectively (see, e.g., [FSU19, equations (2) and (5)]). Tildes in (5.7) and (5.8) are
to distinguish these from our setting. Note that for finite-variation strategies X, def-

initions ({5.1)) and (5.7)) coincide, and the same applies to (5.2]) and (5.8). This is the

content of the next remark.

Remark 5.1.3. Let t € [0,T], z,d € R, and suppose that X € Ai*™(z,d) has finite
variation.

Recall that, for two cadlag semimartingales K = (K)sep—m and L = (Lg)sef—115
it holds for all s € [¢,T] that [K, L|s = (K* L)s + >,y g AKAL, (see [JS03, The-
orem 1.4.52|), where K¢ and L¢ denote the continuous martingale parts of K and L
(see |JS03, Proposition 1.4.27]).

In particular, for our strategy X € A%*™(x, d) of finite variation it holds that X¢ =0,
and thus [X], = 37 ., 4(AX,)% s € [1,T], and d[X], = AX X, s € [t,T] (see
also [JS03, Proposition 1.4.49]). Furthermore, as v and R are continuous, we have for
all s € [t,T] that [y, X]s = (7,X%s =0 and [R, X]; = (R, X)s = 0.

Therefore, if in our setting an execution strategy X is monotone or, more generally,

of finite variation, then (5.1)) reduces to (5.7), while (5.2)) reduces to (5.8]).
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5.1 The semimartingale stochastic control problem

However, it is in general not possible to use definitions and also in our
set-up. We show in Example[5.1.6|and in Example [5.1.4]that a change for the deviation
dynamics and costs in comparison with the usual set-up for finite-variation strategies
indeed can be necessary when optimizing over our set of admissible strategies.

Specifically, using cost functional for strategies X of infinite variation can lead
to arbitrarily large negative costs even with constant deterministic price impact v (in
which case and are the same) and with resilience dRy = pds, s € [0,T],
where p is a deterministic constant, see the next Example [5.1.4, With the right cost
functional we recover a well-posed problem, see Section [5.4.2]

Example 5.1.4. Let m = 2 and assume that (MW, M@H)T = (WO WweHT = W
is a two-dimensional Brownian motion and F, = F}V for all s € [0,T]. Consider the
situation where the price impact v > 0 and the resilience coefficient p > 0 are positive
deterministic constants (that is, 4 = o0 = 0 in terms of our model parameters) and
17 = 0. Since n = 0, we do not need to specify 7. Recall furthermore that A = 0 in the
current subsection. Let t = 0 and fix the initial position = 0 and the initial deviation
d=0.

As v is constant, for all X € A5™(0,0) the associated deviation process DX satisfies

dD¥ = —DXdR, + ~v,dX, + d[y, X], = —DXdR, + vdX,, s¢€[0,T].

In particular, in this setting the dynamics of DX is of type (5.7).
For n € N consider the cadlag semimartingale X" = (X[")cjo— 7] defined by

X =Xr=0, X'=nWW forsel0,T), Xi=0,

i.e., X" follows a scaled Brownian motion on [0,7") and has a block trade at time 7.
For each n € N, let D" = (D¥)sco—,1) be given by

dD" = —pD"ds + yndW® for s € [0,T), Dy =0, Di=DL —~XP .

Note that for each n € N, D™ is an Ornstein-Uhlenbeck process. One can therefore
show that (A1) is satisfied, and due to 0 = 0 and n = 0, (A2)-(A5) are satisfied
as well, thus X" € AF¥™(0,0) for all n € N. Observe that it holds for all n € N that
IN D?dWS(l) is a martingale, that X™ is continuous on (0,7"), that AX}: = —X7_ | and
that AX{§ = 0. Therefore, we obtain that

Jo(0,0,X™) = E { D" dX™ + DI AXD + % (AXW]
0.1)

T
=E {n / Draw) — Dy X7+ %nQ(W}U)Q}
0

= —B[Dp_Xj_| + on’T, neN.
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5 Cadlag semimartingale strategies

We have for all n € N that, by integration by parts,
d(D"X™), = nD"dWY — pX"D"ds + yn*WIHdW L + ynds, s €[0,T),

and hence .
E[X'D!] = —p/ E[X!'D" dr +~n*s, s€0,T).
0

It follows for all n € N that
2
EXrDr =12 (1—e), se0,1),
p

and further that )

E[Xp Dy ] = % (1—e*T), neN.

This implies that

_ 2 2 T
Jol0,0.X") = == (L= eT) 4 ST = - (e_pT —1+ %) . meN.
p p

Now we see that, if p > 0 is chosen in the way that e ?7 — 1 + % < 0 (it is enough to
take p € (0,1/7)), then

Jo(0,0,X") - —c0 asn — 0.
Thus, the cost functional J leads to an ill-posed optimization problem.

Note that in the setting of the previous example, the cost functional

Ji(z,d, X) = E, l DX dXx, +/ Ed[X]S] .z, deRte0,T],X € A™(x,d),

[t.T]

(5.9)
from [AKU21a, equation (3)| and the cost functional J%™ from coincide since R in
this setting has finite variation (also the deviation dynamics from |[AKU21a, equation
(2)] and are the same since 7 = 0 in the previous example). We now illustrate in
Example that in general requires an additional modification when we allow
for a diffusion term in the resilience R. With the right cost functional we recover
a well-posed problem, see Example [5.3.1}

[t.T]

Example 5.1.5. Let m = 2 and suppose that (MY M®)T = (WO WEHT = W
is a two-dimensional Brownian motion, F, = F)V for all s € [0,7], and T = 1. Note
that M® = WM, Assume that v > 0 (i.e., u =0 =0), p > 0, and 1 > 0 are positive
deterministic constants such that 2p — n? > 0 (i.e., condition (Csp) holds). Recall
that A = 0. We take t = 0 and fix some initial position z € R\ {0} and the initial
deviation d = 0.
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5.1 The semimartingale stochastic control problem

For n € N we define X" = (X7')sco- 11 by
Xy =Xy =z, dX!=-nX'dW® forse[0,T), Xp=0,

i.e., X™ follows a geometric Brownian motion on [0,7") and has a block trade at time 7.
For each n € N, let D" = (D¥)sco—,1) be given by

dD" = —pD"ds — n, DMWY — ynXdWW for s € [0,T),
Dl =0, Di=DI —~XE.
We then have for s € [0,7") and n € N that

—nW§1)—%n25>

Y

D? = —ny /S 6*(P+%772)(87T)*77(WS(1)—W,ﬁl))X;z (’I]d?“ + dW,(l)) .
0

X7 :xe<

Since o0 = 0, we only need to verify (A1), (A4), and (A5) for X" to be in AF™(x,0)
for all n € N. Clearly,

E

sup ]Xs”\p] < 00 (5.10)
s€[0,T7]

for all n € N and all p € [1,00). Furthermore, using (5.10)), the Burkholder-Davis-
Gundy inequality, and the Cauchy-Schwarz inequality, one can show that it holds
Elsup,eiom|De[P] < oo for all n € N and all p € [1,00). Tt then moreover holds for all
n € N that E[|D}|P] < oo due to D} = D} — X} _. Hence,

E

sup |DIP| < o0 (5.11)
s€[0,7
for all n € N and all p € [1,00). It follows that (A1) is satisfied for all n € N.

Together with E[fOT n*ds] = n*T < oo, this further implies that (A4) holds true for

all n € N. Finally, we obtain (A5) for all n € N from (5.11)) and the fact that -, n are

deterministic constants. To summarize, we have that X" € A§¥™(z,0) for all n € N.
For the cost functional it holds in the current setting for all n € N that

Jo(z,0,X") = E { D? dX" + Dy _AX7 + % / d[X™]s + %(AX%)Q]
[0.7)

[0,1)
T v T y
—F [_n | prxzaw® - oy xp s Je [ xnpas+ §<X%_>2} .
0 0

From the Burkholder-Davis-Gundy inequality, the Cauchy-Schwarz inequality, (5.10)),

and (5.11), we have for all n € N that [ DQXs"dWS(I) is a martingale. Moreover, it
holds for all n € N, s € [0,T), that

E[(X")?] = a?e"™. (5.12)
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We use these facts and Fubini to obtain for all n € N that

T
Jo(z,0,X™) = —E [D}_X7_] + %n2x2/ e *ds + %ﬁe”QT
0 (5.13)
= %xz (26"2T — 1) - E[D}_X7}_].

It holds by integration by parts that, for all n € N, s € [0, T,

d(D"X") = —pD"X"ds — nD"X"dWY — yn(X") 2w — nDr X dW L
+nnD"X"ds + n*y(X")*ds.

Due to the stochastic integrals on the right-hand side being martingales and (5.12)), it
follows for all n € N, s € [0,T), that

EDIX?=—(p— nn)/ E DX dr + va? (e”QS — 1) . (5.14)
0

Note that there exists ny € N such that for all n € NN [ng, co) it holds that p—nn < —1
and p — nnp + n? > 0. The integral equation (5.14]) yields for all n € NN [ng, o),
s €[0,T), that

2,2
_yrn (e(p*mﬁn?)s _ 1)
p — nn + n? ’

from which we further obtain that (recall also (5.10) and (5.11))), for all n € NN [ng, c0),

EBDIX]] = ¢ (0

’7!132’]12

S TR

(e(p—nn+n2)T . 1) )
We insert this into (5.13)) to get, for all n € NN [ng, 00),

Ji (fL’ 0 Xn) = ’j/{L‘2 6n2T 1 — n—2 _ 1 + n2 e—(p—nn)T
04y Yy p_nn+n2 2 p_n77+n2

2 [ n?T —1 n? —(p—nm)T
<~z le + e\
p—nn+n?  p—nn+n?

2

— plo—nn+n®)T )
p—nn+n? p—nn+n?

2 2
Observe that ~—"—7 — 1 (p=nntn )T 3 o6 and e~ »="DT — o0 as n — oo.

We therefore conclude that

Jo(z,0,X") - —o0 as n — oc.
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5.1 The semimartingale stochastic control problem

In the next Example [5.1.6] we show that even with the right cost functional (5.2)

(which in the setting of Example coincides with (5.9)), the dynamics (5.7) for
the deviation process can lead to arbitrarily large negative costs. With the right

dynamics (5.1) we recover a well-posed problem, see Example [5.3.1]

Example 5.1.6. Let m = 2 and suppose that (MM, MC)T = (WO WEHT = W is
a two-dimensional Brownian motion and F; = FY for all s € [0,T]. We assume that
uw=0,1n=0,A=0, and that 0 > 0 and p > 0 are positive deterministic constants
such that 2p — 02 > 0 (i.e., condition (Csg) holds). As in Example , we do not
need to specify the correlation process 7.

Observe that, in our current setting, the price impact process v is a geometric
Brownian motion v, = 7q exp(aW§1) — %23), s €[0,77.

We consider the starting time ¢ = 0 and fix some initial position x € R\ {0} and
the initial deviation d = 0.

For n € Nlet (X7')scjo—,r be defined by (this is as in Example [5.1.5)
X =Xt =z dX"=-nX"dWWY for s € [0,T), Xr=0.
For each n € N, we assume that D" = (D?).cjo— 1) is given by (5.7), which here reads

dD" = —pD"ds — ny, X"dW®Y, s e[0,T),
D=0, DI=Dl —~ypXP .
In particular, D2 = — [ ne_P(s_’”)%deWT(D for s € [0,7) and n € N.

We first verify that X™ € A3™(x,0) for all n € N. Notice that in the current setting
we have for all p € [1,00) and n € N that

E

sup v, 7| < oo, and F
s€[0,T

sup |X§|p] < 0. (5.15)

sup V7| < o0, FE
s€[0,7T

s€[0,T

This, the Burkholder-Davis-Gundy inequality, and the Holder inequality imply that it
holds for all p € [2,00) and n € N that there exists ¢ € [1,00) such that

T £
( [z dr) ]
0

< enPT:E

E| sup |DgJP

s€[0,7)

<cFk

ap 77| <o
rel0,T]

Furthermore, as D} = D} — vp X} _, we also get E[|D7}|P] < oo for all n € N and
p € [2,00). We thus obtain for all p € [1,00) and n € N that

E| sup |DgJP

s€[0,T]

< o0. (5.16)
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5 Cadlag semimartingale strategies

It now follows from the Hélder inequality, the Minkowski inequality, (5.15]), and
that (A1) is satisfied. Since o is a deterministic constant, (A2) then also holds true.
Furthermore, the Holder inequality, (5.15), and prove that (A3) is satisfied.
Moreover, (A4) and (A5) are trivially satisfied due to = 0. Hence, it holds X" €
A™(2,0) for all n € N.
We next consider the cost functional J%™ defined by . Note that, since n = 0
(and X = 0), this is the same as (5.9). We obtain for all n € N that
Jo (2,0, X™) = Jo(2,0,X"™)
—E[ D* dX? + D} AX”+/ Lop2(Xm)2ds + - “]
- 5— s T— T n (Xs> ds + (AXT>
[0,7) [0,7) 2

(5.17)

2

T T
= —nE [/ DQX;LdWS(”] ~E[D}_ X7 ]+ %/ E [v:(X$)?] ds
0 0

+-F [7T7<X?7)2} .

N | —

By the Burkholder-Davis-Gundy inequality, the Holder inequality, (5.15), and (5.16)),

the stochastic integral [, D?ngWs(l) is a martingale for all n € N, hence its expecta-
tion vanishes. Moreover, it holds for all n € N that

(X2 = o2l = (5 m2)) o ),

and thus
B [75(XM)?] = yz2e™ =25 5 € [0,T). (5.18)

Besides this, we have for all n € N and s € [0,T) that, by integration by parts,
d(D"X™) = —pD"X"ds — nys(X")2dW Y — D" XdW Y + n?y (X)2ds.  (5.19)

Again by the Burkholder-Davis-Gundy inequality, the Holder inequality, and (5.15]),
one can show that | v(X™)2dWY is a martingale for all n € N. Therefore, it follows
from (5.18) and (5.19) for all n € NN (20,00) and s € [0,7") that

B0 = —p [ B+ [ B (X dr
0 0
s n2,yox2 2,
- —p/ E[DIX"] dr + - <e<" ~2om)s _ 1) .
0 n* — 2on

We thus obtain for all n € NN (20,00) and s € [0,T) that

2 2
B[DIX) = e +"n§()_‘”2m (e“’*"Q*W)S _ 1) . (5.20)
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5.1 The semimartingale stochastic control problem

(5.15), (5.16), (5.18)), and (5.20) imply that the cost functional (5.17) for all n €
NN (20, 00) becomes

J5 (2,0, X™)

2 2 2 T 2
_ _epr n="yox (e(p+n2—2on)T . 1) + % / 70‘1,26(n2725n)5d5 + ’70; 6(n272crn)T
0

p+n?—2on
_ 70372 2n2 <€_pT— €(n2—2an)T>_|_ n2 <e(n2—20n)T_ 1) + e(712—2z7n)T
2 \ p+n?—20n n? — 2on
2
Yox
= 7 (1y(n) ~ Lo(m)
where Lin) = (= g +1) and Io(n) = = e, Observe
a
n? 2n? 1o 1 2 1
n?—2on p+n?—20n _1—27" L+1-2
2 o—L4£5_ 2

I T e

(5.21)

i.e., this term behaves as —27" for large n € N (in particular, this term is strictly
negative provided n is sufficiently large). It follows that I1(n) — —oo as n — oo,
whereas I(n) — 1 — 27?1 as n — oo, hence

JoM(2,0,X") - —o0  as n — oo.

Thus, dynamics (5.7)) lead to an ill-posed optimization problem.

Finally, to complement the above discussion on the necessity of some adjustments
in our setting, we discuss related literature. Note that the cost functional and
the counterexample Example [5.1.4] as well as the counterexample Example for
the deviation dynamics, are taken from [AKU21a].

A modification of the cost functional similar to (5.8)—(5.9) already appeared in
a closely related setting in [LS13|. Lorenz and Schied in [LS13| consider an optimal
trade execution problem in an Obizhaeva-Wang model with drift in the unaffected
price. When deriving costs for a semimartingale strategy from the costs of a discrete-
time strategy, they obtain %[X]T as one term in the costs, which for more general
price impact processes 7y corresponds to our term f[tﬂ Zd[X]s. In a less related set-
ting in [GP16|, Garleanu and Pedersen use a term in their cost functional containing
the quadratic variation [X] and justify it via limiting arguments from discrete time.
Moreover, Horst and Kivman in [HK21] prove that the limiting strategy in the case
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5 Cadlag semimartingale strategies

of vanishing instantaneous price impact in their model can be viewed as the optimal
strategy in a problem of optimal execution with semimartingale strategies, where the
cost functional is in the spirit of (5.9).

The adjustment —> in the present thesis is, aside from the motivation from
discrete-time, inspired by [AKU22a], but not explicitly stated there in the form of (5.2)).
It can neither arise in the setting of |[LS13|, where the resilience R is given in terms
of a constant resilience coefficient p, nor in the setting of [AKU21a| or [HK21|, where
the resilience R is given in terms of a randomly evolving resilience coefficient p, since
in all these cases R is a continuous process of finite variation leading to [X, R] = 0.

The additional term in the dynamics of the deviation process in (5.1)) compared
to is to the best of our knowledge a new aspect in [AKU2la]. It does not
emerge in the aforementioned papers because they consider constant v, in which case
[7, X] = 0. In order to see the need for the adjustment —>, it is necessary
to consider the price impact itself (i.e., the process ) to be of infinite variation (or
discontinuous). We also mention that, although the price impact in [F'SU19| can have
infinite variation, the additional term in the deviation containing [y, X] does not show
up there as only strategies X of finite variation are allowed.

5.2 Optimal strategies and minimal costs

In this section, we state and prove the main results and some of their consequences. The
main results include an alternative representation of the cost functional, a representa-
tion of the value function (in terms of a solution to BSDE (4.1))), a characterization
of existence of an optimal strategy, and an explicit expression for the optimal strategy
(when it exists). In Section [5.2.1] we obtain the alternative representation of the cost
functional. We also use this result to present first examples of optimal strategies. We
then provide general results on optimal strategies and minimal costs in Section [5.2.2]

To state and prove these results, we introduce an auxiliary process based on a solu-
tion (in the sense of Definition of BSDE (|4.1)). Note that existence and unique-
ness for BSDE are discussed in Chapter [4] and complemented by Corollary [5.2.8|
If (Cs0) holds (see SectionB.1]), and (Y, Z, M) is a solution of BSDE (&.1]), we define

the progressively measurable process ¥ = (¥,)secjo,7] pertaining to (Y, Z) by

5 _ (et p)Y + (o0 +nT) 2 +ne/T-T228 1),
T (02 + 12 + 20,1,75)Ys + g + Aq

. ose[0,7).  (5.22)

5.2.1 Representation of the cost functional based on the BSDE

We now introduce the first solution component Y of BSDE (4.1) (and the auxiliary
process ¥ from (5.22))) into the cost functional (5.2)). This is done (see the proof of
Theorem [5.2.1)) by splitting the integrals over [¢,T] in the cost functional ((5.2)) up into

126
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integrals over [¢,T) and the contribution on {T'}, and then exploiting the terminal
condition Yy = %, which also holds immediately prior to T' (see Lemma . Along
the way, we obtain that the cost functional , under (Csg) and existence of a
solution to BSDE , is well-defined. It turns out that it can be represented as the
sum of a term that involves Y and does not depend on the strategy, and a conditional
expectation of an integral with respect to d[M ] that has an integrand which is
nonnegative D,,;q)-a.e. This provides us with a lower bound for the value function.
The precise results are stated in the next Theorem [5.2.1} This theorem constitutes an
important step towards the solution of the control problem in Theorem [5.2.6]

Theorem 5.2.1. Let (Csg) be satisfied. Assume that there exists a solution (Y, Z, M)
of BSDE ([4.1)), and let J pertaining to (Y, Z) be defined by (5.22)). For all z,d € R,
t€10,7], and X € Aj*™(x,d) it then holds that the cost functional is well-defined
and admits the a.s. representation

Y, s
Jx,d, X) = — (d — yx)” — —
(70, X) = 2 (d = )’ 5

HH [/ — (06X, = DY) + DY) (0 42 + 20T )Ye + i 4+ A,) d[M P, .
t

(5.23)
In particular, for all z,d € R and t € [0,T) it holds that
Y , &

Vi (x,d) > — (d — vx)” — — a.s. 5.24

Fad) 2 A=) = (5.21)

As a consequence of Theorem we obtain that it is optimal to close the position
immediately whenever the initial position x € R and the initial deviation d € R are
related via z = %, or when the resilience vanishes (i.e., p = 0 and n = 0). We study

these situations in Lemma [5.2.2] and Proposition respectively.

Lemma 5.2.2. Let (Cso) be satisfied and assume that there exists a solution of
, _ d

BSDE (4.1)). Szippose that t € [0,T] and z,d € R with v = =-. It then holds that

Ve (z, d) = _2d_%’ and that the strategy X* = (X7)sep—m defined by X =z, X} =0,

s € [t,T], which closes the position immediately, is optimal in Aj*™(x,d). Moreover,

this optimal strategy is unique up to Dy |pr-null sets.

We now treat the case of vanishing resilience, which means that the impact of trading

on the price is permanent. Note that we do not need to assume existence of a solution
to BSDE (4.1]) as we derive an explicit solution of this BSDE in the proof.

Proposition 5.2.3. Assume (Cso), and that p = 0 and n = 0. Furthermore, let

Elsup,epor V7] + E[fOTazd[M(l)]s] < oo. Then, for all t € [0,T] and z,d € R,
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the value function is given by V"(x,d) = —=x (d— %x), and the strateqy X* =
(X?)se—m defined by X7 =z, X7 =0, s € [t,T], which closes the position im-
mediately, is optimal in A*™(x,d). Moreover, this optimal strategy is unique up to
Dy |, -null sets.

Proofs

In this part, we prove Theorem Lemma and Proposition [5.2.3]
We first introduce the following lemma that we employ in the proofs of Theo-

rem [5.2.1] Lemma [5.2.5] Theorem [5.2.6] and Lemma [5.2.10] It provides helpful rep-

resentations for the dynamics of the process A = X — 47 1DX where X is a cadlag
semimartingale with associated DX,

Lemma 5.2.4. Let d € R and t € [0,T]. Suppose that X = (X;)scp— 1) 15 a cadlag
semimartingale, and let D* = (DX)sep— 1 be given by (B.1)). Define A = (Ay)sepe
by A, = X, — ;7 1DX, s € [t,T].

(i) It holds for all s € [t,T] that d[y~', DX], = —DXd[y~1, R], — v [y, X]s.
(#) It holds that A is continuous.
(1i) It holds for all s € [t,T] that

dA; = —D¥dy;' +~4;'DXdR, + DXd[y™', R],
= (As — Xs) (75d7;1 —dRs — v,d[y™ ", R]s)

= (As - XS) ( B (:Us + ps — Ug - UsnsFS)d[M(l)]s - (‘78 + USFS)dMs(l)
—ney/1 — ngMS@)), s € [t,T).

Proof. (i) It follows from that

diy™, D% = =DFdly ™ Rls + vedly ™ X]s, s € [t 1],
Furthermore, we have by and that

Yyt Xs = —oud MY, X], = =y Ny, X],, s € 1T,

Together, this shows the claim in (i).
(ii) Since ADYX = v,AX,, s € [t,T], it holds that AA, = AX, — 7, !ADX = 0,
s € [t,T].
(iii) Using and (i), we obtain by integration by parts for all s € [¢t,T] that
dAs = dX, — v;'dDY — DXdy; ' — d[y~', D],
= dX, + 7, ' DY dRy — dX, — v, d[y, X]s— D dy; '+ DY¥d[y ™, Rl + 7, ]y, X1,
= 'DYdR, — D¥dy;" + DY d[y™, Rl

128



5.2 Optimal strategies and minimal costs

The second equality in the claim then follows from the fact that —DX = (A — Xo)7s,
s € [t,T], by definition of A. For the third equality, observe that . ) and (3.1]) imply
for all s € [t,T] that

_fysdh/ilv R]s = Usd[M(1)7 R]s = Usnsd[M(l)a MR]S = O-snsfsd[M(l)]s
and that
Yedy7t — dRy = — (s — 02)d[M V], — o, dMY — pd[MD], — 0,7 dMY

— s/ 1 —72dMP.

We are now prepared to prove Theorem [5.2.1]

Proof of Theorem [5.2.1. We fix x,d € R, t € [0,T], and X € A*™(z,d) throughout
the proof.
Observe that

DﬁdX{+/‘:EﬂXk: ngxg+/n T a(x), — DX xXp_ + Lx2
[t,7] [t,7] [t,T) t.7) 2
(5.25)
Since Yr_ = 3 by Lemma it holds that
—1 DX_ 2
_Dj)“(_XT—‘f‘fy?TX% ’Y2T (XT——VTIDX )2_’VT (2T )
2 (5.26)
7 (D7)

= Yr_ (Xr- — 7' Dy )2 - 5

We first consider the term y7Y7_ (X7 — 45" D)% We have by integration by parts,

(4.1)), and (3.2)) for all s € [0, T that
d(15Ys) = =7/ (5, Ya, Z)d[MD), + 7,20 dMP) + 4, 2P dMP) + ~id M-
+ %MSYd[M ] + 7505Ys dM(l) + ”)/sUsZ(l)d[ ]8

o (5 <(Ps + p)Ys + (05 + 07) Z0 + noyJ1 =722 + AS) B AS) d[m V],

+ 9 (Z0 + 0,Y,) dMD + 4, ZPdMP + v, d M.
(5.27)

Denote A, = X, — ;1 DX, s € [t,T]. Part (iii) of Lemma shows for all s € [t,T]
that

dA, = v, ' DX (ps + ps — 02 — o7 )d[M D], + 4, DX (o4 + T ) dMY

+ 7, 'DEney /1 — P2dMP.
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It follows for all s € [t, T] that (recall that [MY)] = [M?)])
d[A]s =7, 2(DF) (0 + 20,7, +172)d[M V]
and
dA% = 24,dA, + d[A],
= 97 DX (24, (petpts =02 = oniT) +77 DX (02 + 207 + ) dIMW, (5 58)
+ 297 DEAg(og + 0T )dMY + 297 DE Ay /1 = T2dMP.

We can combine (5.27)) and (5.28]) to obtain by integration by parts that

Yda+ [ A

Yr¥ro (Xr- = 97" DF)" =Y (v —57d) + / (1)
t, T

(t.T)

T
+/ dlyY, A%,
t , .
= 1Y, (x — ’y{ld) +/ L, d[M(l)]s
t

T
* / 2Y;D:9XAS(US + 1sTs) + Ag'YS(Zs(l) + 0,Y5) dMs(l)
t

T
+ / 2Y,DX Aney/1 — 72 + A%+, 23 am®

t

+ / e A2 dME,
(t.T)
(5.29)

where, for s € [t,T],
L= Yst (2A8(ps + s — O’? - 0'577575) + 'ys_lDf(O'g + 205msTs + 773))
+ AL (5 ((ps + 1) Ys 4 (0, +0T) 20 + 0 J1 =722 + )‘s) - As)
+2A,DF ((Zs“) +0,Ys) (05 + n5Ts) + ZP /1 - Ti) .
Next, we consider the term ~5'(D: )2 Note that
d(D¥)* =2DX dDY +d[D™],, s€[t,T),
and therefore by part (i) of Lemma[5.2.4]

dly™', (D)’ = =2(DJ)%dy~", Rl — 2Dy tdly, X, s € [t,T].
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5.2 Optimal strategies and minimal costs

Moreover, it holds that
d[D*], = (DF)?d[R]s — 2D v d[R, X]s +72d[X]s, s € [t,T].

We use integration by parts and the previous three equations to show for all s € [¢,T]
that

DX P+ [ dy (DY),

[t.T)

v (DF_)? =~ d® + /
[t,T)

=~ td? + 2/ 77tDX aDX +/
[t,T) [t,T)

o |

[t.T)

v, d[D¥)s + / (D )dy;
[t,T)

o [ oXpan R -2 [ DX,
[t,T)

t.T)

DX dX, + 2/ V. ' DEd[y, X,

[t.T)

= 'd =2 / Y, (D) R, +2
[t,7) [t,T)

+ / 2 TH(DX)2d[R], — 2 / DXd[R, X], + / d[X],
[t,T) [t,T) [t.T)

+/ (DX)*dv; ' — 2/ (DX)?dy ™, R]s — 2 DX~ [y, X1,
[t,T) [t,T) [t,T)

T T
— 2 / V(D¥VdR,+2 [ DXdx, + / o (DX)dIR),
t t

[t.T)

T T T
—2 [ DXalR X+ [ X+ [ (DX~ (DX )dp R
t [th) t t

By (3.1) and (3.3) this becomes

T
/7’;1<D7)S—)2 = /Yt_ld2 - / ’75_1(D§)2(2p5 + s — U? - 773 - QanSFS)d[M(l)]S
¢
T T
- / 7;1(D§)2(2778T5 + US)dMégl) - 2/ 75_1(D§)2n5 1- ngMagQ)
t ¢

T
+2 DX dx, — 2/ D¥d[R, X], +/ Yod[ X]s.

[t,T) t [t,T)
(5.30)
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5 Cadlag semimartingale strategies

It now follows from ((5.25)), (5.26), (5.29)), and (5.30)) that

T T
DX dX, + / T q1x], — / DXd[X, R, + / YA X 2d[ M W],
t t

[t,7] 1] 2

T

1

- / Ls + 78)‘ng + 573_1(D§)2(203 + Ms — 03 - 773 - QUSHSFS)d[M(l)]S
t

T

1

* / 2Y8D§AS(US + 775?5) + A378<Zs(1) + USYS) + 578_1(D§)2(277578 + 05) dMs(l)
t

T
+ / 2V, DX Aoy /1 — 72 + A%, ZP 4 471 (DY) e /1 — 72 dMP
t

1
+ / VA2 AME Y, (2 — 7 Nd) — i,
(t,7)

2
(5.31)

For the integrand in the first term, we observe that by definition of L, x, and {9V, it
holds that

L+yAX?+ %7_1(DX)2(2p + 1 — o —n?* = 20m7)
= 2ADYY (p+ p) + v 1 (DY)?Y (0 + 0 + 200F) + Y AX? + v (DY)*k
+ A2y (52 ((6*+ 0> +200T)Y + K+ \) — A)
4 2ADX (Z<1>(a + ) + Z%ﬂ)
=7 HDY)? ((® + 0 +20m7)Y + K+ A) + A (X2 —yA% = 2ADY — y71(D¥)?)
+ A20% (0% + 1% + 2007)Y + K+ ) + 2AD%0 (02 + n? + 2007)Y + K + A
= ((0® + 1%+ 2007)Y + K + \) (ry*l(DX)2 +2ADX0 + A%{sﬁ)
+ A (yX? —yA* = 2ADY — y7H(DY)?).

Since
v X2 —~yA? —2ADY —yH(D¥)2 =0
and )
v HDX)? 4 2ADXG + A%y0? = (19(7)( D)y DX> ,
it follows that
T 1
/ Ls + ’Ys)\ng + 57;1(D§)2(2ps + Hs — 03 - 77? - 2‘73775Fs>d[M(1)]s
t

T
_ / Y (0 (1s X — DY) + DX)? ((02 4 02 + 20n5T5)Ys + ks + As) (MW,
t
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5.2 Optimal strategies and minimal costs

To prove , it therefore remains to show that the conditional expectation of the
stochastic integrals with respect to dM ™, dM® and dM* in (5.31)) vanishes.

Consider first the stochastic integral ftT v 422 dMY . By the Burkholder-Davis-
Gundy inequality and the Cauchy-Schwarz inequality, it holds that for some constant
c € (0,00),

E; | sup

relt,T)

[ oatzan
t

s >
< ([ v?A;‘(ZS’)?d[M“’]s)]
t

o~

< B, [ sup (7,42) (/T<Z§1>)2d[M(1>]s> é]

_sG[t,T}
<c <Et )

This is finite due to E;[[." (Z{")2d[MM],] < oo and (A1). Therefore, [, ~,A2Z"dM
is a true martingale, and hence

1
T £

sup (7243)
s€(t,T]

Nl=
N\
=
\
—~
N

=
SN—
(3%
&
=
=
—_
~__
N

T
E, { / »ySA§Z§1>dM§1>} = 0.
t
Using the same reasoning (with Et[ftT(ZS(Z))zd[M(z)}s] < 00), we obtain that

T
B[ ] -
t

as well. Similarly, F[[M*]r] < oo and (A1) imply that

B, { / %AidMﬂ —0.
(t,1)

Furthermore, (A2) and boundedness of Y yield that Et[(ftT V2 A%02Y2d[MMW],)z] < oo,
and hence

T
Et |:/ ’YsAio-sY:des(l):| = 0.
t

To show that .
E, { / aSD;}Y;ASdMgU] =0,
t

observe that it holds by Young’s inequality that

(DF)?AY = (DI (X =9 D7) < (D597 + 92 (X — 7' D)), s e[t 1)

DO | —
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5 Cadlag semimartingale strategies

This together with boundedness of Y (denote the bound by the constant ¢y € (0, 00))
yields that

1

([ wroxyraonon,) ]
([~ zAﬁd[M%ﬂ ,

which is finite by (A3) and (A2). Similarly, we can argue that

T T
Ei { / nTs DIV AdMY + / nsy/ 1 —?EDstAdeg?)} —0
t

t

T 3
B |( [ oroxprzazapro.) ] < g,
t NG

due to [MMV] = [M?)], (A5), and (A4).
Moreover, it follows from (A3) that

T
E, { / 7, (DS )%de,gU] =0,
t

and from (A5) and [M(] = [M®)] that

T T
H U v (D) d MY +/ 7 (D)0, 1—F§dMs(2)} -0
t t
We have thus shown ([5.23]).
Observe that %(d — yx)? — ;—; does not depend on the strategy, and that

1 /~ 2
— (195(75)(3 - Df) + Df) ((0? + 7}3 + 204n5Ts)Ys + ks + )\S) >0 Dyo-ae.

due to Y > 0 and (Csp). This explains the inequality (5.24). ]

The following result states that, under certain conditions, an optimal strategy is
unique. Although the conditions and the proof involve a (possibly nonunique) solution
of BSDE ([.1)), the uniqueness of optimal strategies holds in a general sense. The
lemma is used to prove that the optimal strategies obtained in Lemma [5.2.2| and
Proposition [5.2.3] are unique. It is also relevant for the proof of Theorem [5.2.6

Lemma 5.2.5. Let (Cso) be satisfied. Let x,d € R, t € [0,T], and suppose that
there exist optimal strategies X*, X € A*™(x,d). Assume that there exists a solution

(Y, Z,M*) of BSDE ([4.1)) such that V*™(x,d) = % (d —yx)° — ;—jt. Then, X* = X

up to Dy | r)-null sets.

134



5.2 Optimal strategies and minimal costs

Proof. Let ¥ (pertaining to (Y, Z)) be defined by (5.22). Combine the assumption

VEem(z, d) = % (d — yx)* — ;—; with Theorem |5.2.1| to obtain that, a.s.,

T 1 _ 9
E; [/ — (195(%Xs - DY)+ Df) (024 02 +20m5T5)Ys + K + As) d[M(l)}s} —0.
t

S

By taking expectations, it follows that

T ,
E [/ — (193(%Xs - DY) + D‘SX) ((a? + 102 4 200575 Ys + kg + )\S) d[M(l)]s} —0.
t

Since (02 + 1%+ 20n7)Y + K+ A > 0 Dy,0)-a.e., this implies that
5(’7X — DX) + DX =0 DM<1)|[t,T]—a.e. (532)

This further yields for the process A = (A,)scpr defined by A, = X, — v 1DX
s € [t, T, that

A= X = 4 IDX =9y H (X = DX) = JA Dy |pr-ace.
By Lemma and [M®M] = [M®], we thus have that
dA, = 0,As (vodr; " = ARy —v,d[y ™ Rl,) . s € [t T).
For X*, DX, and A* = X* — 4y~ 'DX" we analogously obtain
Iy X* = DX)+ DX =0 Dywlur-ae. (5.33)

and

dA; = 0, A% (v, — dR, —v,d[y ' R],) . s €[t.T].
Hence, A and A* satisfy the same dynamics and have the same starting point A, =
x — v, 'd = A;. It follows that A and A* are indistinguishable. Together with (5.32)
and (5.33) this yields that D¥ = —9yA = —9yA* = DX Dy, |pr-a.e. Finally, it
follows from the definition of A and A* that X = X* D,q) |[t7T}—a.e. O

We next give the proof of Lemma [5.2.2] which provides the optimal strategy and

the optimal costs in the case x = %.

Proof of Lemma[5.2.2 Suppose that x = %. Let X* = (X7)sc—1 be defined by
X[ =z, X =0,s€[t,T]. Then, X* is a cadlag semimartingale with X;* = x and
X3 = 0. The associated process D" = (D) e of (b.1)) satisfies

DY =d+ AD} =d+3AX; =d—vr =0,
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5 Cadlag semimartingale strategies

and hence DX = 0 for all s € [t,T] (cf. and the definition of X*). It follows
that X —~;'DX" =0, s € [t,T]. From this, DX" = 0 for all s € [t,T], and the fact
that M™ is continuous, we obtain that the conditions (A1)-(AB) are satisfied, i.e.,
X* € A" (x,d). Since DX =0 and y, X} — DX" =0 for all s € [t,T], Theorem
yields that X* is optimal and that, using any solution (Y, Z, M*) of BSDE (4.1)), it
holds that

Y, d? d?
V(e d) = —(d = yw)’ = o = =5
Ve 2 2
Uniqueness of X* up to Dy |izy-null sets follows from Lemma [5.2.5] O

The next proof is the one of Proposition [5.2.3] on the case of vanishing resilience.

Proof of Proposition[5.2.3. In the case p = 0 = 1, the driver (4.2)) of BSDE (4.1)) for
(Y, Z) = (3,0) equals

2
1 (55 + As) 1
7_70>:_ 2 + = 5+)\5:0, EO,T
1439 =177 i oy 7y " seloT
Hence, (Y, Z, M*) = (£,0,0) is a solution of BSDE (4.1). For (Y,Z, M*) = (3,0,0),
we further obtain in (5.22) that

-~ %,Us + >\s

¥y = =1, se€|0,T].
107+ b(u — o) + 01

Now, fix z,d € R and t € [0,7]. By Theorem it holds for all X € A¥™(z,d) that

1 d? ’ 1
T (2, d, X) = —(d — y42)> — — + E X2 (Spe A ) MY | (5.3
F e d, X) = (= = o B | [ (G )L 5
Let X* = (X7)scp—,r be defined by X =z, X; =0, s € [t,T]. We show that
X* e A (z,d). First, X* is a cadlag semimartingale with X;* = x and X} = 0. The
associated process DX = (DX )sep— 7 defined by (5.1)) satisfies

D =d+ ADY =d+yAX; =d— ya.

Since R, = 0 for all s € [0, 7] and X* = 0 for all s € [t, T, it follows that DX = d—~,x
for all s € [t,T]. From E[sup,c;77; 2] < oo we thus obtain (A1). The assumptions
Elsup,epr 75 7] < oo and E[fOT o2d[M™],] < oo, by the Cauchy-Schwarz inequality,
imply (A2) as well as (A3). Further, (A4) and (A5) are trivially satisfied because of
n = 0. In summary, it holds that X* € Aj™(x,d). Notice that %,u+)\ > %0’2 > 0D,0)-
a.e. due to (Cso). The optimality of closing the position immediately and the formula
for the value function now follow from (5.34). Uniqueness of X* up to Dy |y 7j-null
sets follows from Lemma ]
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5.2.2 Main theorem

We now present and prove the main theorem of this chapter. The theorem provides a
representation of the value function in terms of a solution to BSDE (4.1]), a character-

ization based on (defined in (5.22)) for existence of an optimal strategy, and, in case
of existence, a closed-form representation for the optimal strategy and the associated
deviation.

Theorem 5.2.6. Let (Cso), (Cpaa), and (Cppryy) hold true. Assume that there
exists a solution (Y, Z, M+) of BSDE (4.1)) such that 5, associated to (Y, Z) by (5.22),
s Dysay-a.e. bounded.
(i) For all x,d € R and t € [0,T) it holds that
Y 2 &
Vier(x,d) = — (d — wx)” — — a.s.
Pad) = 2 (=) - o

(ii) Let x,d € R and assume that © # %. Then there exists an optimal strategy
X* = (X))scp-1 € AJ™(x,d) if and only if there exists a cadlag semimartingale
0 = (Vs)sepo,m such that =1 Dy -a.e.

In this case, the optimal strategy is unique up to Dy, -null sets.

(iii) Suppose that there exists a cadlag semimartingale 0 = (U5)sco.1) such that J =1
Dyry-a.e. Define

Qs = — / 3, (0, 4 7 )dMY — / Oy /1 — 72d M

0 0 (5.35)

- / Oe(pir + pr — 02 — 0,7 )d[MW],., s €[0,T).
0

Let x,d € R and t € [0,T]. Then the optimal strategy (X})sep—1 € Ai"(z,d) and
the associated deviation process (DY )se—m) (both unique up to Dyyo|pr-null sets)
are given by the formulas X; =z, DX =d,

=z — d - s
X = ( %) E(Q)rs (1 —1y), e t, 1), (5.36)

X =(r- d - s
Dg = ( %) E(Q)rs (—s0s), s e[t,T), (5.37)

and X3 = 0, DX = (¢ — )E(Q)ur (1),

vt
Note that by formula for the optimal strategy, infinite variation of the optimal
strategy can be attributed to the factor £(Q) (as in Example or to 9 (as in
Example or Example [5.3.4), whereas a jump of the optimal strategy inside the
trading interval has to correspond to a jump of ¥ (see, e.g., Section [5.4.3).
We observe that the optimal strategy and the optimal deviation process are dynam-
ically consistent.

137
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Corollary 5.2.7. Under the assumptions of Theorem consider the case that
there exists a cadlag semimartingale ¥ = (05)sepo,m such that it holds ¥ = 1 Dy -a.e.
Define the process () as in . Let x,d € R and t € [0,T]. Then, for the optimal
strategy and deviation process given in f and for any r € (t,T), we have
that

DX
X! = (X;f_ - f;_ ) EQ)rs(1=1y), selrT),

DX
D: - (X:— B ’}/Ti ) 5(Q)T,S (_’75195)7 5 € [T’ T)7

. DX*
and X7 =0, D" = (X7 — ==)E(Q)rr (—71)-

Under the assumptions of Theorem , it holds that ¥ < To explain this,
let the assumptions of Theorem [5.2.6] be in force, and let ¢ € [0, T] r=1d=0.
Then, the process X = (X;)scp—1) defined by X;— =z, X, =0, s € [t,T], is an
admissible strategy with associated costs J5*™(1,0,X) = % (cf. (5.2)). The minimal
costs for selling x = 1 unit given an initial deviation d = 0 by Theorem [5.2.6] amount
to V(1,0) = vY;. Therefore,

l\)l»—A

VeEem(1,0) < J™(1,0, X) 1
Ve o Ve 2

Y, =

Moreover, we obtain that 2Y; = V**™(1,0)/J*™(1,0, X ), and thus the random vari-
able 2Y;: Q0 — [0, 1] describes to which percentage the costs of selling one unit imme-
diately at time ¢ can be reduced by executing the position optimally. Hence, under the
assumptions of Theorem (and for A = 0), we again (compare with Section
have the economic mterpretatlon of Y as a savings factor.

The relation V*™(1,0) = v,Y;, t € [0, T}, from Theorem can further be used
to establish the following uniqueness result.

Corollary 5.2.8. Assume (C>0) (Chaa), and (Cppry). Let (Y, Z, ML), Y, Z, M*)
be solutions of BSDE (| such that the corresponding processes 9 = (§s>s€[0 1) and
9 = (ﬁs)seoﬂ deﬁned by are Dy)-a.e. bounded. Then, Y and Y are indistin-
guishable, ZU) = 2@ DM<1) _a.e. for j € {1,2}, and M* and M* are indistinguishable.

In particular, if, in the setting of Theorem the process in is Dy;0)-a.e.
bounded for all solutions of BSDE ([£.1), then such a solution of the BSDE is unique.

We finally remark that it is possible to replace the boundedness assumptions in
Theorem by appropriate integrability assumptions. For a more detailed comment
on this aspect, we refer to [AKU21a, Remark 3.5(b)].
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Proofs

This part contains the proofs of Theorem Corollary [5.2.7, and Corollary
As a preparation, we establish helpful results in Lemma [5.2.9] and Lemma [5.2.10
We also use Lemma [£.1.7] and Lemma [4.T.6] from Chapter
We first state and prove an approximation result, based on [KS91, Section 3.2,
Lemma 2.7|, for any progressively measurable, D,,q)-a.e. bounded process ¥J. This is
the content of Lemma and enables us to exploit Lemma for the proof of
the representation of the value function in Theorem [5.2.6]

Lemma 5.2.9. Assume that E[MW]r] < oo, and suppose that ¥ = (Vs)scior) is a
progressively measurable process that is bounded D) -a.e.

Then there exists a sequence (V")nen of cadlag semimartingales 9" = (V7 )sejo,r) that
are Dyyay-a.e. bounded uniformly in n and such that for all p € [1,00) it holds that

E fOT I — IMPA[MWV],] — 0 as n — occ.
Proof. 1t follows from Lemma 2.7 in Section 3.2 of [KS91| that there exists a sequence
(V) nen of (caglad) simple (see [KS91|, Def. 2.3|) processes o = (19 )sefo,r) such that

T
E [/ 9, — ﬁg|2d[M<l>]s] 0 as n— oo
0

Define

0™ (w )—17}{?19”( w), s€[0,7T),we, neN,

and 19% =0, n € N. Then, 9" is cadlag for all n € N. Let b € (0,00) be such that
|¥| < b Dys0-ae., and define, for each n € N, 9" by

I (W) = (52(@ A b) V(=b), s€[0,T], weQ

It then holds that |[¥7(w)| < b for all s € [0,T],w € Q,n € N. It follows that (J"),en
is a sequence of cadlag semimartingales that are D,;1)-a.e. bounded uniformly in n

~

Furthermore, since it holds for all n € N that |9 — ¢ < [0 — 9| and that J" = 9"
D,ry-a.e., we have that

T T
E U |9 — ﬁngd[MU)]s] <E [/ 10y — z9§|2d[M(1)]8}
0 0
T ~
- F V 9 — ﬁ?!zd[M(l)]s} —0 as n — oo.
0
For p € [1,2), the convergence
T
E U 0y — 19:|pd[M<1>]5] —0 as n— oo
0

follows from Jensen’s inequality, and for p € (2,00), the convergence holds due to
|¥ — 9" < 2b Dy0)-ace. O
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In the next lemma we show how to construct from a D,,;u)-a.e. bounded sequence
(9")nen of cadlag semimartingales (e.g., coming from Lemma a sequence of
admissible semimartingale strategies (X™),en with the additional properties ((5.40
and (5.43). We use this result in the proof of Theorem [5.2.6] Note that (5.38
with has the structure of the optimal strategy in Theorem [5.2.6

Lemma 5.2.10. Suppose that (C[M(l)]) and (Cpaq) are satisfied. Let (0")nen be a se-
quence of cadlag semimartingales V" = (%) scom that are Dyq) -a.e. bounded uniformly
inn. Lett € [0,T) and x,d € R. Define for each n € N the process X" = (X7)seft— 11
by X' ==z,
d
X! = (x — —) EQ")s(1—0%), selt,T), (5.38)
Mt

and X} =0, where

Q== [ oot nran — [ o /1 - v

0 0 (5.39)

- / 19?(”7‘ + Pr — 0-3 - Urnrfr)d[M(l)]Ta s € [07 T}
0

Then, the following properties hold.
(i) X™ € A (x,d) for alln € N,

(ii) For all n € N the associated deviation process D" a.s. has the representations

Dy = =9;(v:X{ = Dy), selt,T), (5.40)

and p
D;L - ((L’ - /}/_) 5(Qn>t,s <_7519?)7 s € [t,T), (541)

t

and, for the terminal value D7, we have that
n d n
Dj = (- 2) €@ hr () (5.42)
t
(#ii) It holds that

sup E; | sup (74 (X7 — ’ys_lD?)S)] < 00 a.s. (5.43)

neN s€[t,T)

Proof. Let b € (0,00) such that for all n € N it holds that [9"| < b D,;q)-a.e. Now,
fix n € N.

Since ¥" is a cadlag semimartingale, it holds that X" defined by is also a
cadlag semimartingale. Note that moreover X' = z and X} = 0. We first show
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that D™ defined by (j5.1)) satisfies (5.40)), (5.41]), and (5.42)). Subsequently, we establish
(5.43). Finally, we argue that X™ € A$*™(x,d).

Let A" = (@;)Se[t’ﬂ be the process defined by

Ar = (g; _ %) E(Q") s, setT)

Observe that for all s € [£,T) it holds that X™ = A™(1 — 9"). This and (5.39) imply
for all s € [t,T] that

dAT = ATdQ?
= 19?;4\? (_(US + nSFS)dMéSl) — s \/ 1 - ngMs(z) - (:us + Ps — 0'5 - Usnst>d[M(1)]s)

= (EZ—XS) <—(as + 0T )AMD —nr /1 — F2dMP — (s + ps—aﬁ—asnst)d[M(”]s)-
(5.44)

Let A" = (A%)ser1) be the process defined by A" = X* —~7'D? s € [t,T]. Then it
holds by Lemmam and (5.44) that A™ and A" satisfy the same dynamics. Further-
more, they start in the same point fAlj} = — % = A} at time t. Consequently, they
are indistinguishable, i.e., almost surely, for all s € [¢,T], it holds that A" = A", This

implies that

D} = (XY = AY) = (K] = AY) = —0v AL, s€T),  (5.45)

s

and, proceeding further,
D? = =00y, AT = =072 (s X — DZ), selt,T).

We thus establish (5.40), while (5.41]) follows from (5.45). For the terminal value D},

we have that
Dy = D} +4rAX] = Dj — 7 X
d d
= (o= ) @ (et~ 1= 95 = (2= 2) @ r ().

Tt i
We next show (5.43). It follows from A" = A", s € [¢,T], that

YUXD — D) = Ak — 4P (E(QM)s)®, s € [L,T).
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Further, it holds for all s € [¢t,T] that
Ve (E(Q™)1s)"
=7, exp (4 /t [ — %afd[M(l)]r + 4[ o'rdMT(l)>
- exp ( -8 /t 8 D (e + pr — 07 — 071, Tr) + %(19?)2(03 + 20,0,y 4+ n2)d[MDY)],
—s [ orton+nr it = s [Com /- rsz,@)
t t

= vyl exp (/ vrd[ MW, +/ M dp) —I—/ 7'752)’”dM£2)) ,
t t

t

where, for all r € [t, T,

v, =4, — 203 — 807 (ptr + pr — 03 — 01 Tr) — 4(19:})2(03 + 20,n,Ty + 773)7
T = 45, — 890, + 0, T),
(

T = 89ty /1 — T2

Therefore, we have that

Ey

sup (v, (X[ — 'Yle?)S)]

se[t,T]
sup exp (/ fod[]\/[(l)]er/ Tﬁl)’”dl\/[,fl)—i-/ T,fz)’"dM7§2)> :
s€t,T] t t t

Since (Cpr;) holds and we have (with ¢, ¢,, ¢5, ¢; from (Cpqa))

=7 (z — v 'd)°E;

V" < 4de, + 2¢2 + 8b (Cu +c, + e+ cgcn) + 4v? (0(27 + 2c,c,y + ci) ,
7M™ < dey + 8b(c, + ¢y),
73" < 8be,,
we obtain from Lemma Observe furthermore that by Jensen’s inequality

it follows that (A1) holds true. (Cjpz;) and boundedness of o (respectively, n) then
yield (A2) (respectively, (A4)). Due to (5.40), we have that

(s (D) = ()92 (X =7 'DY)Y s e[ T).
Since ¥ is D,;m-a.e. bounded, the fact that (A2) (respectively, (A4)) is satisfied

hence already implies that (A3) (respectively, (A5)) holds true as well. We conclude
that X" € A (z,d). O
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5.2 Optimal strategies and minimal costs

We next prove Theorem To establish the representation for the value function,
we first use Lemma to obtain an approximating sequence for 9. Subsequently,
we employ Lemma to get an associated sequence of admissible strategies that
satisfies helpful properties. We then consider, for these strategies, the representation
of the cost functional in Theorem |5.2.1| and show that it tends to % (d —y,x)* — Zd—;,
which yields an upper bound for the value function. By Theorem this is also a
lower bound.

In order to prove the characterization of existence of an optimal strategy, we first
show the direction that existence of an optimal strategy implies existence of a cadlag
semimartingale ¥ = (¥;)scjo.r] such that ¥ = ¥ Dj;a)-a.e. Main ingredients are the
representation of the cost functional (Theorem and the representation of the
value function. We then jointly establish the converse implication and the formula
for optimal strategies. Along the way, we also obtain the formula for the associated
deviation process. Uniqueness is an immediate consequence of Lemma [5.2.5]

Proof of Theorem[5.2.6L We follow the structure outlined above. B

Representation for the value function. Let t € [0,7] and z,d € R. Since ¥ is
Dym-a.e. bounded and we assume (Cpsy), it follows from Lemma that there
exists a sequence (V") ey of cadlag semimartingales 0" = (¥7).¢cjo.1] that are Dy,a)-a.e.
bounded uniformly in n and such that for all p € [1,00) it holds that

T
E, U 10y — 19§|pd[M(1)]s} — 0 in LY(Q, F,P) as n — oo. (5.46)
t

In particular, by passing to a suitable subsequence, we can obtain almost sure conver-
gence in ((5.46). We further obtain from Lemma|5.2.10| that for each n € N there exists
X" e A (z,d) such that D" = —97 (v, X" — D"), s € [t,T), and that

sup Fy
neN

sup (7a(XI —7,'D1)®) | < oo as. (5.47)
s€t,T]

It then holds for all n € N that

(XY = DY) + DI = (0 = 0) (X7 = DY), s € [1.T).
Together with Theorem and X" € A3*™(z,d) this implies for all n € N that, a.s.,
Vi (2, d) < Tz, d, X")

Y; &

= —(d— 2~ 4 FB
( ’th) 2%‘1' t

T _
/ — (0 — 02)* (7. XY — D7)?
Vi t

s

(02 + 172 + 2007)Ye + K+ ) dIMD .

(5.48)
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5 Cadlag semimartingale strategies

By the Cauchy-Schwarz inequality we have for all n € N that

B, [ / “La <vsX2—Ds>2d[M“>]5}

s

-u [ D@ - (e AN (5.9

<(m|[ e AN ’ (5] '@, - odar| )

and that

N|=

T
Et / Vs (Xn — s 1Dn) d[M(l)]S]
t
< E;

(s

Since p, 1, 0,1, A, T, and Y are bounded, it follows from (Cpprc01), (5.47), (5-50), (5.46),
and - ) that, along a suitable subsequence, the right- hand side of ( - ) tends to

sup (Y2(X7 —~;'D)") ((MW]r — [Mm]t)] (5.50)

s€[t,T]

sup (74X - leDZ)S)D (B [ — pr,)?]) .

s€[t,T)

(d vx)? — Qd— a.s., as n — 0o. We obtain the inequality
vem(r, d) < 2 (d )? &
r,d) < —(d—mz)" — — as.
' Tt " 27

The reverse inequality is provided in Theorem

Existence of an optimal strateqy implies existence of V. Let x # %. Assume that
there exists an optimal strategy X* = (XJ)cpo—, € AF™(z,d). It then follows from
V§em(z, d) = % (d — yox)* — % and Theorem [5.2.1}, using also (Cso), that

9 (yX* = DX) + DX =0 Dy-ae (5.51)

S )

that A* — X* = JA* Dy, -a.e. This, Lemma and [M®] = [M®] then yield
that

Let A* = (A%)scio,r) be defined by Af = X} — _1DX s € 10,T]. We have by (5.51))

dAT = 0, A; (vedy, ' — ARy, — v,d[y™' R),), s €0, 7).
Define é = (@s)sE[O,T] by

@s :/ 5T’Yrd7;1 _/ 57’dRT _/ 5r7rd[’771>R]T7 s € {O7T]'
0 0 0
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5.2 Optimal strategies and minimal costs

Since CNQ is a continuous semimartingale, its stochastic exponential £ (CN)) is strictly
positive. From

A= (o= 2)e@. sep

and the assumption x # % we thus conclude that A* is nonvanishing. Consequently,

DX*
%

19:

defines a cadlag semimartingale. By (5.51) and definition of A* we have that 9=
DM(l)—a.e.

FEzistence of ¥ implies that the formulas in part (iii) define a unique optimal strategy.
Suppose that there exists a cadlag semimartingale ¥ = (U;)scp,m such that J =
Dym-ace., and let t € [0,7], z,d € R. Tt then follows from Lemma that
defines a strategy X* € A%™(x,d) such that DX  has representation (5.37)

and, moreover, DX* = —9(yX* — DX*) = —J(yX* — DX) Dy |y-a-e. Then
Theorem [5.2.1|implies that J*™(z,d, X*) = %(d —yz)? — ;—;, and since V" (x,d) =
%(d — )% — ;—jﬁ, the strategy X* is optimal. The uniqueness up to Dy;q)|;,r-null
sets follows from V™ (z, d) = %(d — vzr)? — % and Lemma [5.2.5 O

We next show consistency of the optimal strategy and its deviation.

Proof of Corollary[5.2.7. Notice that the process X*—~;*DX" s € [t, T}, is continuous

(see also Lemma [5.2.4). Together with (5.36) and (5.37)) this yields that, for any
r € (t,T), we have that

* * d
Xro =Dl =X = DY = (“7 - _) E(Q)rs- (5.52)

Moreover, it holds for all r € (¢,7T) and s € [r,T] that £(Q):, £(Q)rs = E(Q)rs. We
therefore obtain for all r € (t,7)) and s € [r,T] that

(X, =% ' DY) E(Q)rs = (m - —) E(Q)rs.

The statements of the corollary now follow from the definitions of X* and DX (see

part (iii) of Theorem [5.2.6)). O

In the final proof of this section, we use Theorem to obtain the uniqueness

result Corollary for BSDE (4.1).

145



5 Cadlag semimartingale strategies

Proof of Corollary[5.2.8 The assumptions allow us to apply part (i) of Theorem [5.2.6|
to both solutions of BSDE (1.1). This yields that

WYy = VP (1,0) = Y, t€[0,T].

Since « is a strictly positive process, this implies that Y and Y are indistinguishable.
The claim now follows from Lemma 4.1.6l m

5.3 Optimal strategies of infinite variation

In the optimization problem of Section indeed, strategies of infinite variation can
come out. We illustrate this by examples.

Example 5.3.1. Let m = 2 and assume that (MM, M®)T = (WO WENT = W is
a two-dimensional Brownian motion and F, = FY for all s € [0,7]. Let A = 0 and
w=0. Suppose that 7€ [—1,1] and 7, ,0, o G R are deterministic constants such that
K= (2,0 —n? —20n7) > 0 and 02 + n? + 20n7 > 0. In particular, we thus need
p > O Moreover notice that o and 7 in the current setting can not both be zerorf] but
ifr7#—1 (respectlvely, 7 # 1), then o and 7 (respectively, —n) are allowed to take the
same nonzero value. Let ¢t = 0 and z,d € R with x # %.

We verify that Theorem [5.2.6) applies and present explicit formulas for the optimal
strategy X* in A5*™(x,d) and the associated deviation process DX . Observe that, in
the current setting, (C>¢), (Cpaa), and (C M(l)]) are satisfied. BSDE (4.1] . ) takes the
form (cf. Remark [£.0.2)

2
(st + (o + ) 28" + V1T — F2Z§2))

dYs = —aZW | 4
(02 4+n?+20n7)(YsVO) + K 7% °
(5.53)
+ ZWaw® 4 z@aw® s € (0,7,
1
YT = 57

and by Proposition {4.3.2| has a unique solution (Y, Z,0). By solving the ODE corre-
sponding to (5.53)) (i.e., (5.53) with Z = 0), we obtain that Z = 0 and

1
K K p°s
= w — , s€10,7T],
o2+ n?+ 20n7 (02+n 24 20nT eXP < 02+n2+207ﬁ>) s€[0.T]
(5.54)
where VW denotes the Lambert W function and
2k + p°T

= 1n(2 .
er = In( )+02+7]2—|—2077F

3The case n = 0 = o corresponds to the setting for the classical Obizhaeva-Wang model and is

covered in Section
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5.3 Optimal strategies of infinite variation

We further have that

= pYs
J, = . sel0,T).
(02 +n2+20n7)Ys + K s€[0,7]

We can show that Y and 9 both are continuous, deterministic, increasing, (0,1/2]-
valued functions of finite variation. In particular, we have that ¥ is bounded and a
cadlag semimartingale. Hence, Theorem [5.2.6 applies, and the optimal strategy X* =
(X?)sefo—] € A¥™(z,d) and its associated deviation process DX = (DX"),¢(o— 17 are
given by the formulas X; =z, D =d,

xi= (- L) e@ua-7). s,
DY = (2= L) £@u (0. sepD)

and X5 =0, D" = (2 — 2)E(Q)r (—vr), where

Yo

E 2 2 — s __
E(Q)s = exp (—(p —o? — onr) / J,dr — i/ 2+ 2007 / ﬁfdr)
0 0

- exp (—(a + T)F)/ 9, dW D — /1 — F2/ 5dWT(2)) , s€l0,7].
0 0

With the help of these representations, we discuss some properties of the optimal
strategy. As is typical for optimal strategies in Obizhaeva-Wang type models, X* has
jumps at initial time 0 and terminal time 7" and is continuous on (0,7"). Since 1 — 9 is
positive, X* has the same sign as x — % on (0,7]. In contrast to the basic Obizhaeva-
Wang model (see the case o = 0 = 7 in Section , the associated deviation process
DX is no longer constant on (0,T). Further, as 1 — ¢ is nonvanishing and has finite
variation on [0, 7], while £(Q), almost surely, has infinite variation on all subintervals
of [0,7], we get that X* almost surely, has infinite variation on all subintervals of
[0,7]. In particular, X* is in no way monotone on any subinterval of [0,7]. The
optimal strategy and its associated deviation for a particular choice of the parameters
are visualized in Figure 5.1 N

We moreover remark that in the current example, all input processes and Y and 9
are deterministic, whereas the optimal strategy and its associated deviation (as well
as v and/or R) are truly stochastic due to nonzero o and/or nonzero 7.

Finally, we point out that the subsetting where n = 0 and o > 0 (respectively, where
o =0,7=1,and n > 0) corresponds to the setting in Example m (respectively,
Example[5.1.5), and that now, with the right dynamics for the deviation (respectively,
the right cost functional), we were able to solve the optimization problem.
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Figure 5.1: Left: A simulation of the optimal strategy X* (black) and the price impact
7 (red) in the setting of Example [5.3.1]for ' = 10, z = 100, d = 0, 7o = 1,
p=0.5,1n7=0,and ¢ = 0.8. Note the difference in scales. Right: The
associated deviation process D* = D*" (black) and the price impact v
(red) for the same situation.

Observe that the price impact process 7 in the situation of Example is given
by s = Yo exp(eWi — %28), s € [0,7], and hence for ¢ # 0 has infinite variation.
Thus, the observation in Example is in accordance with one of our motivations
to include strategies of infinite variation: oscillations of the price impact are reflected
in a similarly rough behavior of the optimal strategy (see also Figure .

It is not surprising that not only the diffusion term in the price impact ~, but also the
diffusion term in the resilience R can lead to infinite variation of the optimal strategy.

However, we find that we even do not need infinite variation in the price impact ~
nor in the resilience R to obtain strategies of infinite variation that are optimal. E.g.,
in the next Example we can choose a smooth price impact process 7y, while at
the same time p is constant and 1 = 0, and nevertheless it is optimal to trade with
infinite variation.

Before we turn to Example [5.3.3] we first prepare the setting upon which Exam-

ple Section [5.4.1] and Section are based.

Remark 5.3.2. Consider the following set-up. Let m = 2, assume that(M®, M@)T =
(WO W)T = W is a two-dimensional Brownian motion, and that (Fy)sepor] =
(FV)sepr)- Let t =0, z,d € R with z # % (for the case x = %, see Lemma, |5.2.2)).
Suppose that A\ = 0. The resilience is taken to be exponential (i.e., n = 0) with
deterministic constant resilience coefficient p € R\ {0} (for the case p = 0, see
Proposition [5.2.3). We consider the price impact v from (3.2) with o = 0, ie.,
Vs = Yo exp(fos ppdr), s € [0,T]. In particular, v is continuous and of finite varia-
tion. We assume that there exist deterministic constants e,z € (0, 00) such that

o+ g >c¢ Dyw-ae. and pu<pu Dyo-ae. (5.55)
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5.3 Optimal strategies of infinite variation

Note that this implies boundedness of i, and we conclude that (C>.) and (Cpaa)
hold. Our current set-up is a special case of the settings considered in Section and

Section Therefore, it follows from Proposition [4.2.1] (alternatively, from Proposi-
tion [4.3.2) that there exists a unique solution (Y,Z, M*) of BSDE (4.1). We notice

that M+ = 0 in our current set-up (cf. Remark (11)) For the process ¢ defined
in (5.22) we obtain that

5f:p+“sm;:(1_ P )m; s e[0,7). (5.56)
2p + s 2p + pus

Notice that, by (5.55)), ¥ is bounded. That is, in our current set-up, including (5.55)),
the assumptions of Theorem [5.2.6] are satisfied. Depending on the choice of p, we have
to distinguish between the following two situations.

Situation 1: There exists a cadlag semimartingale ¥ = (U)o, such that
J=1 Dyo-ae. (5.57)

Situation 2: There is no cadlag semimartingale ¢ such that (5.57)) is satisfied.

As we know from Theorem in Situation 1 there exists a unique (up to Dy,)-null
sets) optimal strategy X* = (X7)scp- 1 € AF™(z,d), and it is given by the formulas
Xi_ =z, X7 =0, and

X+ = (a: _ %) exp (_ /O 9,1y + p) dr) (1—v,), sel0,T), (5.58)

whereas in Situation 2 there does not exist an optimal strategy.

Example 5.3.3. Consider the setting of Remark [5.3.2] To obtain an optimal strategy
of infinite variation in Situation 1 of Remark [5.3.2] note that by (5.58)), we should
construct ¥ of infinite variation. To this end, let p be a continuous process of finite
variation satisfying such that

a.s. the function s — p + ug is nonvanishing on [0, 7. (5.59)
Observe that for a fixed w € 2, the unique solution to the Bernoulli ODE

- us(u))fg(w)> ds, sel0,7T], Yr(w)= !

F o) = (2(p+us(w»27s(w)2 >

2p + ps(w)

is given by the formula

-1

— T9 2

Yi(w) = oli pr(w)dr / Meﬁuu(w)dudr +2 . s€0,T].  (5.60)
s 2p+ pr(w)
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It follows that it is possible to choose p such that Y is not adapted. Choosing p in
such a way we conclude that the solution (Y, Z, M+ = 0) of BSDE (4.1)) satisfies

DW<1)(Z 7& O) >0

This yields that, with positive probability, Y has infinite variation on [0, 7]. Define

2 s
9052—<'0+'u ), s €[0,T],

2p + s

which is a nonvanishing (recall (5.59)) continuous process of finite variation. Hence,
J = @Y (cf. ( (6-56)) is a continuous semimartingale that, with positive probablhty, has
infinite variation on [0,7]. Thus, we are in Situation 1 of Remark [5.3.2] with 9 = 1,
and the optimal strategy X*, which is given by -, ), has, with posmve probability,
infinite variation on [0, T7.

Loosely speaking, infinite variation of the optimal strategy in Example is due to
the incoming information that is reflected in the process Y of the BSDE. We achieved
this via our choice of p as a certain stochastic process (of finite variation). Another
possibility, where we can argue similar to Example [5.3.3] is to choose the resilience
coefficient p (while n = 0) as an appropriate stochastic process (of finite variation and
strictly positive). This is the content of Example Note that in the setting of Ex-
ample the price impact process 7 is just a constant. Therefore, Example is
closer to the work [HK21], where, in a related model with a constant deterministic tran-
sient price impact coefficient and a time-varying, strictly positive stochastic resilience
coefficient, optimal strategies of infinite variation emerge when an instantaneous price
impact factor tends to 0.

Example 5.3.4. Let m = 2, assume that (MW, MOYT = (WO WENT = W is a
two-dimensional Brownian motion, and suppose that F, = F) for all s € [0,T]. Let
t =0, z,d € R with v # %. Moreover, set A =0,n =0, 0 =0, and g = 0. The
resilience coefficient p is assumed to be a continuous process of finite variation such
that there exists €,¢, € (0,00) with ¢ < p < ¢, Dywy-a.e. Then, (C>.) and (Cpaa)
are satisfied. Again, we are in the settings of Section and Section [4.3] Thus, as in
Remark [5.3.2] there exists a unique solution (Y, Z, M) of BSDE (&), and M+ = 0.
We further obtain that 9 = Y. Clearly, Jis a bounded, continuous semimartingale.
By Theorem there exists a unique (up to Dy, )-null sets) optimal strategy X* =
(X¥)seo-1 € AF™(x,d). The optimal strategy is given by the formulas Xj = z,
X5 =0, and X! = (x — vi exp(— [y Yoprdr)(1 =Y,), s € [0,T). For fixed w € €,
consider the ODE

0V .(w) = po(@)Va(w)2ds, s€[0.T], Viw)= %
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which has the unique solution
-1

YS(w):(/STpT(w)dT—FQ) , s€0,7).

This shows that we can choose p such that Y is not adapted. Hence, for such a process
p, we have that Dy,q)(Z # 0) > 0. This leads to Y, with positive probability, having
infinite variation on [0, 7]. The same then holds true for X*.

5.4 Further examples

We here present three more examples.

In Section we examine a situation where the conditions of Theorem are
satisfied (in particular, the value function is finite), but where a minimizer of J%™
within the set A5*™(x,d) of semimartingale strategies does not exist. Together with
Section this indicates that it is worthwhile to include infinite-variation strategies
into the optimization problem as done in this chapter, but that the class of semimartin-
gale strategies considered is not suitable to always find an optimal strategy. We also
refer to the discussion in Chapter [9] and to [AKU22al Section 4.2|.

In Section we observe that infinite variation of the price impact v and infinite
variation of the resilience R may cancel out such that the optimal strategy has finite
variation. A particular subsetting (where n = 0 = o) of the setting in Section [5.4.2
corresponds to the setting for the classical Obizhaeva-Wang model and, moreover, to
the setting in Example 5.1.4f As a by-product, Section shows that we recover
the optimal strategy of [OW13, Proposition 3| (although we consider the different, in
some sense more general, optimal control problem of Section [5.1.1)).

In Section [5.4.3| we illustrate that optimal strategies may also have block trades, i.e.,
jumps, inside the time interval available for trading. Note that this effect can also be
observed in examples in the next Chapter [6] (there, the jumps are due to jumps of p,
whereas here, the jumps are produced by jumps of p).

5.4.1 An example where the semimartingale problem does not
admit a minimizer

Consider the setting of Remark and choose any deterministic cadlag (hence, in
particular bounded) function p such that there exists § € (0,7") with p having infinite
variation on [0,7 — §]. For instance, we could take p to be the Weierstrass function,
or the function s — (ssini)lri(s), s € [0,7]. We also take p € R\ {0} such that
is satisfied.

Notice that, in this deterministic framework, the process Y is a deterministic con-
tinuous function of finite variation explicitly given by (5.60). In particular, Y is non-
vanishing.
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We now prove that we are in Situation 2 of Remark [5.3.2l To this end, assume by
contradiction that there exists a cadlag semimartingale ¥ = () co,r) such that ¥ = o
Dyyay-a.e. (U can be stochastic). Then it follows from (5.56) and the fact that Y is

nonvanishing that
p )
=1—— Dyw-a.e. 5.61
20 + 1 oy Twome (5.61)
Set S =1-— % and notice that it is a cadlag semimartingale. As both sides in (5.61])
are cadlag, they are even indistinguishable on [0,7), i.e., almost surely, it holds that

p
=5, rel0,T). 5.62
2p + pr relo?) (562)

Hence, S # 0 and S_ # 0 on [0,7T), which implies that % is also a semimartingale on
[0,T). Now yields that, almost surely,
,uTzﬁ—Qp, rel0,T).
Sy

Thus, p is itself a semimartingale on [0,7). As u is deterministic, this means that p
has finite variation on each compact subinterval of [0,7T), in particular, on [0,T — d].
The obtained contradiction proves that we are in Situation 2.

This example thus shows that an optimal strategy can fail to exist even when the
value function is finite.

5.4.2 Cancellation of infinite variation

Let m = 2 and assume that (MM, M@)T = (WO WENT = W is a two-dimensional
Brownian motion and F, = F)" for all s € [0,T]. Fix t =0 and z,d € R with z # %.
Let A = 0 and p = 0. Suppose that 7 = —1 and p > 0 are deterministic constants,
and that n and o are progressively measurable, Dy;,a)-a.e. bounded processes such that
n = o Dy m-a.e. It then holds Dy, -a.e. that o +n* + 20n7 = 0 and k = p > 0.

Note that (C.) and (Cpaa) are satisfied. By Proposition [4.3.2, BSDE (4.1)), which
here becomes (cf. Remark

dY, = (pY? — 0,ZM)ds + ZWaw® 4+ zPaw® | s [0,T), Yr==

has a unique solution (Y, Z,0). We find that Z = 0 and

1

Ys=—77i——,
2+ (T —s)p

s €[0,7].

It then holds that ¥ = Y. Observe that o is a continuous, deterministic, increasing,
(0, 1/2]-valued function of finite variation. From Theorem we obtain the existence
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of a unique optimal strategy X* € AF¥™(x,d), and that the optimal strategy X* =
(X7 )sejo—,m is given by the formulas

Xy =z, X;=0,

5= ([ b B
— (m_ %) %}p‘g)p, s € [0,7).

Moreover, for the associated deviation process D" = (DX")scjo— 7 it holds that

X+ X d 2 r T B
DO— = d7 DT =~ (ZE - 'Y_> O+ T CeXp (/ nrdwyg ) — 5/ nrdr> )
0 P 0 0 (564)

. d 1 s I
DX = — (x——) ex (/ rdWT(”——/ ?dr)v s €10,7).
Yo e e A 2 ), " [0,T)
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Figure 5.2: Left: The optimal strategy X* in the setting of Section for T = 10,
x =100, d = 0, 79 = 1, and p = 0.5. Right: The associated deviation
process D* = D*" (red) in the Obizhaeva-Wang case 0 = n = 0 and a
path of the associated deviation process D* = DX (black) in the case
oc=n=0.2.

We first discuss the case 0 = n = 0. In the context of optimal trade execution
in a limit order book model, this setting (7 = 70 > 0 a deterministic constant and
dRs = pds, s € [0, T], for a deterministic constant p > 0) is considered in the pioneering
work [OW13], and the optimal strategy X* of (for d = 0) appears in [OW13,
Proposition 3|, where the cost functional J of is minimized over a set of strategies
which, in particular, have finite variation. We stress again that we obtain optimality
of in this setting as a result of a different optimization problem (minimization
of the cost functional J**™ of over semimartingale strategies). Notice that the
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optimal strategy X* of is deterministic, has jumps at times 0 and T (i.e., block
trades at the beginning and at the end) and is continuous on (0,7"). It is worth noting
that the associated deviation process DX is constant on (0, T") (but, clearly, has jumps
at times 0 and 7). In the case d = 0 the strategy X* is monotone. In general, the
strategy is monotone only on (0, 7]. Global monotonicity can fail because of the block
trade in the beginning (the size of the block trade depends not only on x but also
on d).

Suppose now that ¢ = 7 is nonvanishing. We point out that, with general stochastic
o = n and negative correlation ¥ = —1, we still have the same optimal strategy as
in the Obizhaeva-Wang case. In particular, the optimal strategy is deterministic and
of finite variation, although now the price impact v and the resilience R are both
stochastic and of infinite variation. In some sense, the infinite variation in the price
impact process v is “canceled” by the infinite variation in the resilience process R.
While the optimal strategies in the Obizhaeva-Wang case and for general stochastic
o = n with correlation 7 = —1 coincide, this is not true for the associated deviation
processes. In contrast to the constant deviation in the Obizhaeva-Wang case, here DX"

has infinite variation (cf. (5.64)); see also Figure [5.2).

5.4.3 Intermediate jump

Consider the setting of Remark [5.3.2] In order to construct an optimal strategy with
jumps inside (0,7") in Situation 1 of Remark it is enough to take

a cadlag semimartingale p satisfying (5.55) that exhibits jumps in (0,7),
i.e., with positive probability, {s € (0,T) : Aus # 0} # (), and such that
the corresponding process Y is nonvanishing. (5.65)

Indeed, in this case,j}v is a cadlag semimartingale, so we are in Situation 1 of Re-
mark with ¥ = 4. Moreover, as Y is continuous and nonvanishing, we readily see

from ([5.56)) that
Apg 0 < AV, #0,

hence the optimal strategy X*, which is given by (5.58)), contains block trades inside
(0,7).
We consider a particular example.

Example 5.4.1. To show a specific example of this kind, we take, for some tq € (0,7),

a deterministic p given by the formula pg = 1y, 1(s), s € [0,T]. Observe that (5.55)
then is satisfied whenever p > 0, so we choose some p > 0. BSDE (4.1)) here takes the
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5.4 Further examples

form (cf. Remark [4.0.2)

= pY2ds + ZWaw® + Z@aw® | s € (0,1,
( p+1)2v2

~ Y, ) ds + ZWawlh + Z@Daw® | s € [ty, T),
2p+1

N)I»—l

T

and its unique solution is given by (Y, Z = 0, M+ = 0), where

1
Y, = { Yo +{to=9)p’ . s € [0.10), (5.66)
2p+1) (2(p+1)2 =2p%T) ", s € [to, T).

Notice that Y is deterministic, continuous, strictly increasing, and (0, 1/2]-valued. In
particular, (5.65)) is satisfied, and what is stated after (5.65)) applies. Observe that, in
this specific example,

}{97 S 07t )
9, = { 0,%) (5.67)

Y, (1 n 2p+1) s € [to, T,

which is a deterministic, strictly increasing, (0, 1)-valued, cadlag function with the only

jump at time %g:
Yo

2p+1 ~
From ((5.66)) and (5.67) we can compute that

exp (— /0 9 (iir + p) dr) - {Y‘)Ysl’ s €[0,t0), (5.68)

Aﬁto -

eto—s}/b}/;—lj ERS [thT]v

which, together with and (5.67), provides the optimal strategy in closed form
(see (£.58)). However, the qualitative structure of the optimal strategy X*, in fact,
follows from even without calculating (5.68)):

First, X* is deterministic, and, due to ¥ being strictly increasing and (0, 1)-valued,
X* is monotone on (0,7]. Moreover, the facts that ¥ < 1, Ay, > 0, and = # %
together with imply that the optimal strategy necessarily has block trades at
the end and at time ty,. Their signs are opposite to the sign of x — io.

Whether or not X* has a block trade at the beginning depends on the value of
the initial deviation d. Namely, X* has a block trade at the beginning if and only if
x# (v — %)(1 — 1), i.e., if and only if d # —lf%ofyox.

Likewise, we claim the monotonicity of X* only on (0,7] because whether or not
X* is monotone on [0, 7] also depends on d. More precisely, X* is monotone on [0, 7]
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5 Cadlag semimartingale strategies

if and only if either z > 0, d > ——% ~z holds or z < 0, d < —

119%0701‘ holds. In

1-9¢

particular, if d = 0, then X™* is monotone on [0, 7.
Between the block trades, the associated deviation process DX is constant: It follows

from (5.37), (5.67), and (5.68) that

DY (d — vx)Yo, s € 0,t),
C e (14 555) . s et T).

Figure 5.3]is an illustration for specific parameter values.
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Figure 5.3: Left: The optimal strategy X* (black) and the price impact v (red) in the

setting of Example with p, = 1y1(s), s € [0,7], and for T = 5,
x=100,d=0, v =1, p=0.3, and t; = 4. Note the difference in scales.
Right: The associated deviation process D* = DX" (black) and the price
impact 7y (red) for the same situation.

Observe that the reaction of the optimal strategy to changes in the price impact
is rather sensitive: here only p jumps at time ¢y (not the price impact ~ itself), but
this already causes a jump in X* at time ¢y3. Finally, it is worth noting that a model
with deterministic time-varying price impact and resilience coefficient was considered
in [FSU14, Section 8|, but examples of such type are not possible in their framework be-
cause the smoothness assumption in [FSU14, Assumption 8.1] excludes the possibility
of block trades inside (0,7) (cf. [FSU14, Theorem 8.4|).
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Negative resilience coefficient

Trade execution models of Obizhaeva-Wang type and related works incorporate some
kind of resilience effect. This is often[]done by having a term —p,D,ds in the dynamics
of the deviation D, i.e, by an exponential resilience e~ Jiprdr Jeseribed by a resilience
coefficient p; see, e.g, [OW13,|AFS08,AS10,AA14, BF14,FSU14,FSU19|, but also arti-
cles in the line of [GH17]. This resilience coefficient is typically assumed to be positive.
The explanation is that the impact of a trade should decay over time. But a negative
resilience coefficient also has a natural interpretation, as it models self-exciting behav-
ior of the price impact, where trading activities of the large investor stimulate other
market participants to trade in the same direction. As in [CMK16| and in [FHX22b],
we motivate self-exciting price impact by the following reasons. Imagine, for instance,
a large trader performing extensive selling. Firstly, a continued selling pressure makes
it more and more difficult to find counterparties. Secondly, such an extensive selling by
the large trader may trigger stop-loss strategies by other market participants, where
they start selling in anticipation of further decrease in the price. Thirdly, extensive
selling may also attract predatory traders that employ front-running strategies. In
each case, we obtain an increased price impact for subsequent trades.

We point out that there recently appeared several articles on trade execution that, in
different ways (often involving Hawkes processes), model self-excitement of the impact
of trading on the price (see, e.g., [AB16|, [FHX22b]|, [CJR18|, [CMK16]|). We propose
a negative resilience coefficient as an alternative, simple way of modeling this effect.
A “more endogenous” approach is presented by Fu, Horst, and Xia in [FHX22b|, who
consider liquidation games between several large traders (and the corresponding mean-
field limit as well as the single-player subcase) with a self-exciting order flow. There,
the large traders’ trading activity triggers child orders, and the strategies come out as
Nash equilibria in the game. Despite the differences in the set-up, it is interesting to

!There are also works that employ a, typically nonincreasing, decay kernel to model resilience (cf.
[GS13| Section 22.4.1]; see also [Gat10|, [ASS12], and [GSS12|). The case of constant price impact
and resilience coefficient as in [OW13] can be represented by such a decay kernel. In contrast,
when the price impact or resilience coefficient are time-varying, this is not covered by the notion
of decay kernel in the above-mentioned literature, as also remarked in [FSU14, Remark 8.9].

We further mention that also works such as [BBF18a] include resilience.
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6 Negative resilience coefficient

observe the following qualitative similarity in the strategies that may result from our
approach and from the one in [FHX22b|. In this chapter we, in particular, discuss that,
in our framework, it is never optimal to overshoot the execution target whenever the
resilience coefficient is positive, but it can be optimal to overshoot the target if we allow
the resilience coefficient to take negative values. In other words, in our framework,
the possibility to overshoot the target is a qualitative effect of self-excitation via a
negative resilience coefficient. In the same vein, in the single-player benchmark model
for [FHX22b| without self-excitation, which goes back to |[GH17], it is not optimal
to overshoot the execution target (this is observed in [HK21, Theorem 2.2|), whereas
the resulting strategies in the model with self-excitation in [FHX22b| do sometimes
overshoot the target (cf. Figure 1 or Figure 2 in [FHX22b]).

We assume throughout this chapter the framework of Section and consider the
semimartingale control problem of Section Furthermore, as we want to focus
on the effect of the resilience coefficient p taking negative values, we leave aside the
diffusion term in the definition of the resilience process R, i.e., we set n = 0, and we
consider a risk-neutral investor, i.e., we set A = 0. We moreover assume the setting of
Section [4.4] where the local martingales are Brownian motions and the input processes
are adapted to a filtration that is orthogonal to the Brownian filtration. For the whole
chapter, we also suppose that (C>.) and (Cpqa) are satisfied, and we fix the initial
time ¢t = 0.

In Section [6.1] we define and investigate in this framework what we call “overjumping
zero” and “premature closure”. Intuitively, overjumping zero is optimal if, at some
time, the optimal strategy jumps from a strictly negative position to a strictly positive
position, or vice versa. Premature closure is optimal if there is some time point before
the end of the trading period when the optimal position already takes the value 0.
We complement the theory of Section with some case studies in Section and
Section In the latter we study a situation where it is optimal to close the position
prematurely, keep it closed during some time interval, and reenter trading again.

This chapter is based on the publication [AKU22b| (joint work with Thomas Kruse
and Mikhail Urusov) and in particular contains material of Sections 1, 3.2, 4, and 5
thereof.

6.1 Overjumping zero and premature closure

Recall that, in the present set-up (see the end of the introduction of this chapter),
Proposition ensures existence of a solution (Y,0, M*) to BSDE (4.1)). Fix such a
solution (Y, 0, M1). It then holds for the process defined in (5.22)) that

~ Y.
J. — (ps + 1) Y

s , € 10,T]. 6.1
VT 3 o) ST &1)
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6.1 Overjumping zero and premature closure

By (C>¢), (Cbaa), and the fact that Y is [0, 1/2]-valued, we have that 1 is Dyywy-a.e.
bounded. In particular, Corollary implies that (Y,0, M*) is unique (among the
solutions of BSDE (4.1)) whose second component is 0). Under the condition that

3 a cadlag semimartingale 9 such that 7 = 9 Dy -a.c. (6.2)

we obtain from Theorem for any initial values z,d € R (see also Lemma
for the case z = %) the existence of an optimal strategy, which is unique up to
Dyyy-null sets. Notice that, in our present context, this is equivalent to uniqueness
up to indistinguishability. Indeed, if X* and X are optimal strategies, then they are
indistinguishable, as X* and X are cadlag and X* = X Dy, y-a.e. The optimal strategy
and its associated deviation (under the condition (6.2))) are given by the formulas
and , where, in the present set-up,

Qs = —/ Opo, dW D —/ Oty + pr — 0D)dr, s €0,T].
0 0

We remark that condition (6.2)) is in particular guaranteed if p, u, o are deterministic
and of finite variation, as in the examples in Section [6.2] and Section [6.3] below.

In this section we study qualitative effects of a negative resilience coefficient on the
optimal strategy. In particular, we examine effects that we call overjumping zero and
premature closure. Roughly speaking, we are interested in market situations where it
is optimal to change a buy program into a sell program (or vice versa), or where it
is optimal to close the position strictly before the end of the execution period. More
precisely, we intend to identify market conditions under which paths of optimal trade
execution strategies with positive probability jump over the target level 0 or already
take the value O prior to 7'

To this end recall that under (6.2)), given an initial position € R and an initial
deviation d € R, the optimal strategy X* satisfies

X;_=z, X;=0, and X= (x — 'yi) (1 —-95)&(Q)s, s€10,7T).
0

This representation allows to disentangle the contributions to the optimal strategy’s
sign of the initial conditions z and d on the one side and the input processes (recall
that, in this chapter, A = 0 and n = 0) p, u, and o defining the market dynamics on
the other side. Indeed, since the stochastic exponential £(Q)) is positive, the sign of
X! for s € [0,7T) is determined by the signs of the two factors (x — %) and (1 — 9y).

The first factor (z — io) is determined by the initial conditions, does not depend
on time, and thus can only contribute to a change of sign of X* at time 0. Note
that (v — %) has a different sign than the initial condition Xj_ = z if and only if
Yolz| < sgn(z)d. A nonzero initial deviation d # 0 can thus have the effect that X*
changes its sign directly at time 0. In practice, one would typically assume that d = 0,
in which case this factor does not contribute to a change of sign.
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6 Negative resilience coefficient

In the sequel we focus on the contribution of the second factor (1 — ) and provide
definitions of the effects overjumping zero and premature closure which are only built
upon (1 —¢). This factor and hence also these effects are determined by the input
processes p, i, and o driving the market dynamics and are independent of the initial
conditions x and d.

For ease of notation, we extend the domain of ¥ to the point 0— by setting v/g_ = 0.
In what follows, we denote by mq the projection operator from Q x [0, 7] onto Q (in
particular, for C € Fr ® B([0,T)), mq(C) = {w € Q: Is € [0,T] s.t.(w, s) € C}).

Definition 6.1.1. Assume that (6.2)) holds true. Define

Agj ={(w,s) € 2 x[0,T): (1 =V (w))(1 = Vs(w)) <0},
Ape ={(w,5) € 2 x[0,T): (1 —Vs—(w))(1 —Ig(w)) = 0}.

(i) We say that overjumping zero is optimal in the limit order book model driven by
p, i, and o if P(mq(A,;)) > 0.
(i) We say that premature closure is optimal if P(mq(Ay.)) > 0.

In relation with Definition we need to make the following comments.

Remark 6.1.2. (i) mq(Ay;), ma(Ap:) are elements of Fr by the measurable projection
theorem (e.g., [RY99, Theorem 1.4.14]): recall that Fr is complete and notice that, as
¥ is adapted and cadlag, A,;, A, are optional sets, and thus in particular A,;, A, €
Fr @ B([0,T1).

(ii) The terms overjumping zero and premature closure are well-defined, as 9 satis-
fying is unique up to indistinguishability.

It is worth noting that the terms overjumping zero and premature closure could be
equivalently defined with the help of stopping times:

Lemma 6.1.3. Assume that (6.2]) holds true. Then, overjumping zero (resp., prema-
ture closure) is optimal if and only if there exists a stopping time 7: Q — [0,T] such
that P(1 <T) >0 and

(1—-9,)(1—=19,;) <0 (resp., =0) P-a.s. on {T <T}.

Proof. The claims follow from the optional section theorem (e.g., [RY99, Theorem
IV.5.5]), which applies because A,; and A,. are optional sets. We here provide more
detail on the proof for overjumping zero (the proof for premature closure is analogous).

Suppose first that overjumping zero is optimal. Then, we can choose a constant
g € (0,P(ma(Asj))). By the optional section theorem, there exists a stopping time
7z: Q — [0,7] such that P(rz < T) > P(mq(Asj)) —€ > 0, and for any w € {w €
Q: 72(w) < T}, we have that (0, 72(w0)) € A,;.

For the other direction, assume that there exists a stopping time 7: Q@ — [0, 7] such
that P(7 < T) > 0and (1—9,_)(1—9;) <0 P-a.s. on {7 < T'}. Then, P(mq(A,;)) >0
due to mo(Ayj) 2 {w € Q: (1=, ()(w)) 1=V (w)) < 0}N{w € Q: T(w) < T} O
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6.1 Overjumping zero and premature closure

We also remark that a simple attempt to define 7 as, say, T Ainf{s € [0,7): (1 —
Us-)(1=19,) < 0} does not always work, as, for w such that 7(w) < T but the infimum
is not attained, the expression (1 —9;_()(w))(1 = V- (w)) will be zero.

We now turn to the question about new qualitative effects we can get if we allow
for negative values of the resilience coefficient. Loosely speaking, with a resilience
coefficient that is positive everywhere, we will not be able to observe overjumping zero
or premature closure in the optimal strategy. On the contrary, if we allow the resilience
coefficient to take negative values, then overjumping zero and premature closure in the
optimal strategy become possible. Proposition [6.1.4] and Proposition [6.1.6] contain
precise mathematical formulations of these statements. At the end of this section we
also provide a more detailed informal discussion.

Proposition 6.1.4. (i) We have that

v < (1 - Zpﬁ—u ) Lip >0y <1 Dyy-a.e. on {(w,s) € Q2 x[0,T]: ps(w) > 0}.

(i1) Assume (6.2)) and that p > 0 Dy,)-a.e. Then overjumping zero is not optimal.

(iii) Assume (6.2)) and that there exists an Fr-measurable random variable 6 such
that
d>0 P-a.s. and p > 6 Dya)-a.e. (6.3)

Then neither overjumping zero nor premature closure is optimal.
Proof. (i) Define

B={(w,s) € 2x[0,T]: Yiw)e][0,1/2],
2ps(w) + ps(w) — o2(w) > 0,
ps(w) = 0}

and observe that B € Fr®B([0,T]). It is enough to show the claim for every (w, s) € B.
To this end, we fix an arbitrary (w,s) € B. By (6.1) we have to show that

(ps(w) + 1))V (@) <(p$®+u4w
2 (@0)Yo(@) + 220s(@) + (@) — 02@)) — \200(0) + (@)

)1{ps<w)+us<w>>0}- (6.4)

If ps(w) + ps(w) < 0, this inequality is evident. Therefore, we assume in the sequel
that ps(w) + ps(w) > 0. Note that Y,(w) < 3 implies that

9p() + lw) — ()
O 20:(@) + (@) )

| 12p,(@) + () — 3(w)

) = T @) + )
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6 Negative resilience coefficient

This shows that

(0u() + 1a(w)) V() < L&) H 1 (”)) (a§<w>Ys<w> T

= 2ps(w) + ps(w

and hence establishes

(i) We first notice that part (i) and (6.2)) ensure that ¥ < 1 Dya)-a.e. As ¥ has
cadlag paths, by the standard Fublnl argument we infer that P-a.s. it holds: for all
s € [0,T], we have 95 < 1. This shows that overjumping zero is not optimal.

%(2/)3(00) + ps(w) — Uf(w”) ’

(iii) It suffices (cf. part (ii)) to show that premature closure is not optimal. Let
¢ € (0,00) such that |u| <€ Dya)-a-e. and |p| < € Dy ay-a-e. (exists due to (Cpaq))-
Define

C={(w,s) €Qx[0,T]: Yi(w)el0,1/2],
2ps(w) + ps(w) —

02 (w)
max{|ps(w)], |ps (W)} <
6(w) >0 and ps(w) = 6(w )}

and notice that C' € Fr ® B([0,T]). It follows from part (i) that
J,(w) < max {1 - @,O} <1 forall (w,s) e C.
¢

As Dy (2% [0, 7))\ C) = 0 and 9 is cadlag with ¥ = ¥ Dyy-a.e., we conclude that
P-a.s. it holds that

0
sup 19S§max{1—3—c 0}<1

s€[0,T7]

(again by the Fubini argument). Hence, premature closure is not optimal. O]
In relation with Proposition we make the following comments.

Remark 6.1.5. (a) To discuss the assumption in part (iii) of Proposition in more
detail, we remark that, if

f p.>0 P-as., 6.5
sel[%T]p a.s (6.5)

then (6.3) is satisfied. Indeed, in this case we can take § = inf,cjo 17 ps because, by the
measurable projection theorem, for all 2 € R we have that

{w € Q: inf py(w) < z} = 1o ({(w,s) € Q2 x[0,T]: ps(w) < z}) € Fr,

s€[0,T]

ie.,, 0 := infyeo 1) ps is Fr-measurable. More precisely, (6.3 is slightly weaker than
(6.5) and can be equivalently expressed as follows: there exists an Fr ® B(]0,77)-
measurable p such that p = p Dy,w-a.e. and inf,co7 ps > 0 P-as.
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6.1 Overjumping zero and premature closure

(b) The observation in part (iii) of Proposition is in line with [HK21], where in
a different but related setting (with a strictly positive stochastically varying resilience
coefficient) it is observed that the optimal strategy never changes its sign (see |[HK21,
Theorem 2.2|), which in our terminology means that neither overjumping zero nor
premature closure is optimal.

(¢) Comparison of (ii) and (iii) poses the question if premature closure can be optimal
with nonnegative resilience. The answer is affirmative: e.g., if p = 0, then ¥, = 1
for all s € [0,7], and the optimal strategy is to close the position immediately (cf.
Proposition [5.2.3). This is, however, a rather degenerate example. A much more
interesting one, for which we, however, allow the resilience to be negative, is presented
in Section [6.3l

In the sequel, for a set C' C Q x [0,T] and w € €2, we use the notation
C,={s€]0,T]: (w,s) € C}

for the section of C'. We will permanently use the following well-known statements
(see, e.g., [Sall6, Lemma 7.2 and Theorem 7.9|): if C' € Fr @ B([0,T1]), then

e for any w € Q, it holds that C,, € B([0,T1]),
e the mapping Q > w — Leb(C,) is Fr-measurable.

Note that here and in the sequel we use Leb to denote the Lebesgue measure on

([0, 71, B([0, T1)).

Proposition 6.1.6. Assume (6.2)), and that there exists an Fr-measurable random
variable 0 such that

Plloca: vnen teb(Bon[r-L7])>0l) >0, (6.6)
§ (o [r= 1)) > o})

where
B={(w,s) € 2x1[0,T]: §(w) >0 and ps(w) < =d(w)} (€ Fra B([0,T])). (6.7)
Then overjumping zero or premature closure is optimal.

Proof. 1. In the first step of the proof we establish that (Csc), (Cpaa), and
imply that Dy, (C) > 0, where

C={(w,s) € 2x[0,T]: ¥s(w) >1} (€ Fr® B([0,T7])).

To this end, we first recall from Lemma that limgr Yy = Yr (=
for the solution (Y, 0, M*) of BSDE ([4.)), the orthogonal to W) and

) P-a.s., i.e.,

1
)
(2) martingale
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6 Negative resilience coefficient

M+ does not jump at terminal time 7. Let ¢ € (0,00) such that |u| < ¢ Dy,-a-e.
and |p| < € Dyy-a-e. (exists due to (Cpaq)). We define

' 1
A={(w,s)eQx[0,T]: Ll%%lﬁ(&)) =Yr(w) = Y

Y(w) =0,
ZPS(UJ) + ,us(w) - O'?(Cd) > 07
max{|ps(w)|, |[us(w)[} <}

and note that A € Fr @ B([0,T]), Dy ((2 x [0,7]) \ A) = 0. Now we set
K=BNA,
where B is from (6.7). From 0 = DW<1)((Q x [0, 7))\ 4) = [, fo (s)dsP(dw) w

have that 1 = P({w € Q: fo Loy, (s)ds = 0}) = P({w € Q: Leb(( ) ) = 0}). This
0<P ({w € Q: Leb(A,) = Leb(]0,7T]) and Vn € N, Leb (Bw N {T - %T

together with implies that
)>5)
)-o}).

ie., holds with B replaced by K. As Dy (C) = [,Leb(C,) P(dw), we get
Dyyy(C) > 0 once we prove that

:P({weﬂz Vn € N, Leb (AwﬂBwﬂ {T—E,T
n

F:{weawmem1&%&JﬂT—%TD>0}§@eQ:mqu>m.

(6.8)
To establish , we fix an arbitrary wy € F and make the following simple observation

s€K,, < (wo,s)€ Aand ps(wy) < —d(wp) <O0.
This yields that, for s € K,
p1s(wo) — 02 (wo) < [ps(wo)| <@
and further
0 < 2p5(wo) + ps(wo) — 02 (wo) < ps(wo) + pas(wo) — o2 (wo) < T — d(wp). (6.9)

Now we compute from (6.1) that, for s € K, , we have the equivalence

9 pS(WO)
Us(wp) > 1 <= 2Y (wy) > 1+ (@) & g1al0) — 2(w0)” (6.10)
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6.2 Piecewise constant resilience coefficient

Moreover, and (6.10)) reveal that, for s € K,

it 2Yi(wo) > 1 — %

, then Jy(wy) >1 (<= se ). (6.11)
Recalling that wy € F, the definition of the event F in (6.8), and that lim,+7 Y, (wy) =
(as wo € F implies that there exists s € [0,7] with (wp,s) € K C A), we conclud
from (6.11) that there exists ng € N (which depends on wy) such that

1
2
e

1
Koo [T = —T| € Cuy;
o
hence Leb(C,,,) > Leb(K,, N [T — 1/ng, T]) > 0. We thus proved and completed
the first step of the proof.

2. The first step together with (6.2) yields that Dy,a)(¢9 > 1) > 0. Define the
stopping time 7 = T Ainf{s € [0,T]: ¥5 > 1} (as usual, inf () := co0). We get from
Dy (¥ > 1) > 0 that P(r < T) > 0 (by the Fubini argument). Since Jy_ = 0 and ¢
is cadlag, P-a.s. on {r < T} it holds that ¥, <1 and ¥, > 1. By Lemma[6.1.3] this
yields the result. O]

The meaning of is that, with positive probability, the resilience coefficient p is
assumed to be negative with positive Lebesgue measure in any neighborhood of the
terminal time 7.

It is instructive to compare Proposition with part (iii) of Proposition [6.1.4
The assumptions are “almost” complementary: compare with (6.6)-(6.7). In
both cases, we step a little away from 0 (this is the role of ¢ in and (6.7)) but in
a “soft” sense (the bound ¢ can depend on w).

In view of these interpretations, we informally summarize part (iii) of Proposi-
tion[6.1.4)and Proposition [6.1.6]as follows. Positivity of the resilience coefficient implies
that neither overjumping zero nor premature closure is optimal; negativity “close to T"”
implies optimality of overjumping zero or premature closure. There arises the question
of whether negativity “far from 77 also implies overjumping zero or premature closure.
The answer is negative: see Example below.

6.2 Piecewise constant resilience coefficient

We here analyze the effects of a negative resilience coefficient and discuss the results
of Proposition [6.1.4] and Proposition in a subsetting with N different regimes
of resilience. That is to say that p is piecewise constant. Moreover, we assume that
p is deterministic, g > 0 is constant deterministic, and ¢ = 0. These assumptions
lead to deterministic optimal strategies. We summarize the results in the following
proposition.
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6 Negative resilience coefficient

Proposition 6.2.1. Assume that o > 0 is deterministic and that” x—% > 0. Suppose
furthermore that o = 0, that pu > 0 is a deterministic constant, and that the resilience
coefficient p: [0,T] — (—u/2,00) is piecewise constant in the sense that there exist
NeN, pO . pWN) e (—p/2,00), and 0 =Ty < Ty < ... < Ty =T such that for all
s € [0,T) it holds that

N
Ps = Zp(i)l[Tithi)(S)'
i=1
Then, (C>e) and (Cpaa) are satisfied. The unique solution of BSDE (4.1)) is given by

N i 9 T -1
YS e e(T—S)/J, Z M(e_(SVTi—I)H _ e—Thu,> + 2 ’
i=n(s)+1 M(p(z) + 5'“)

Z(l) — 07 Zs(2) = 07 MSL == 0, s € [OJT]J

s

(6.12)

where n(s) = max{i € {0,...,N}: T; < s}. Moreover, (6.2)) is satisfied with

9,=0,= L1y sep,T).
ps+§:u

The optimal strateqy X* and the associated deviation DX are deterministic, for every
i € {1,...,N} they are continuous on (T;_1,T;), and for every i € {1,...,N — 1}
they have a jump at T; if and only if p has a jump at T;. Furthermore, for every
i € {1,...,N} the deviation DX is constant on (T;_1,T;) and takes negative values,
and the optimal strategy X* is monotone on (T;_1,T;): more precisely, if p > 0 (resp.,
p < 0; resp., pt¥) = 0), then X* is strictly decreasing (resp., strictly increasing; resp.,
constant) on (T;—1,T;).

Proof. Clearly, (C>.) and (Cpaa) are satisfied. Next note that Y from (6.12)) satisfies
for all r € [0, 7] that

—1
T 2

Y, = T / Memsmds Lo
r Ps + 5#’

From this it follows that Y satisfies the Bernoulli ODE

2
s 1
dy, = (MYE _ m@) ds, se[0,T], Yr=-.
ps+ 5 2
Consequently, (Y,0,0) is the, by Proposition unique, solution of BSDE (4.1)).

Moreover, J defined by (6.1) in the current setting reads J, = %Ys, s €[0,7T], and
sTgH

2This assumption is only for ease of exposition. All statements hold also in the case z — % < 0 with
the suitable adjustments.
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6.2 Piecewise constant resilience coefficient

is cadlag and of finite variation, and thus we have (6.2)) with ¥ = J. In particular, ¥ is
deterministic, and since o = 0 and ~g, p, t are deterministic, we have that the optimal
strategy X* and its deviation DX are deterministic as well.

For every i € {1,..., N — 1} observe also that 9 has a jump at T; if and only if p has
a jump at T;. This directly translates into jumps of the optimal strategy X* and jumps
of the associated deviation DX via (5.36) and (5.37). To show that the deviation DX~
is constant on each (T;_1,T;), i € {1,..., N}, observe that for all i € {1,..., N} and
s € (T;—1,T;) it holds that

() (4) 2 ;
4. — + 1 ((P + 1) Y2 - uYs> ds = 0*(p® + p)ds — pdds, (6.13)

D+ i\ p@ o+ Jp
and hence

d (750:E(Q)s) = Vsd(7:E(Q)s) + 7:E(Q)sdVs

= 07E(Q)s (11— Vs(p + p™)) ds + 7,E(Q)s (92(pD + 1) — ) ds
— 0.

It thus follows from (5.37) that DX is constant on (T;_y,T;) for i € {1,...,N}.
Moreover, since p > —%u, u >0, and Y > 0, it holds that ¥ > 0, and therefore
DX" < 0 (recall that we assume x — % > 0).

Next note that we have for all i € {1,..., N} and s € (T;_1,T;) that, using (6.13),

d((1 = 9,)€(Q)s) = (1 = ¥,)dE(Q)s — E(Q)sdVs
= —€(Q)s(1 = 9)0s (1 + p¥) ds — E(Q)s (920" + ) — ) ds
= _5(Q)sﬁsp(i)ds'

Since ¥ > 0 and x — % > 0, we conclude that if p is positive, then X* in (2.10) is

decreasing on (Tj_1,T;), and if p is negative, then X* is increasing on (T;_y,T), i €
{1,...,N}. Clearly, if p®) = 0, then X* is constant on (T;_1,T;),i € {1,...,N}. O

In Example [6.2.2] Example [6.2.3] and Example below we consider the setting
of Proposition with N = 3 different regimes of resilience. More precisely, we
assume in the remainder of this section the setting of Proposition with N = 3,
r=1,d=0,v%=1, =05, and T; =i for i € {1,2,3}.

We already know from Proposition that overjumping zero or premature closure
is optimal if we have a negative resilience coefficient in the last regime (i.e., p® < 0).
In the three examples below we want to analyze under what conditions these effects
occur when the resilience coefficient is positive in the last (and also the first) regime.
We choose pt) = 0.1 and p®® = 1. Proposition entails that we necessarily need
p? < 0 to see these effects. Therefore, we choose a different negative value for p® in
each example.
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6 Negative resilience coefficient

For these choices of p, i € {1,2,3}, Proposition shows that it is optimal to
first sell during (0, 1), change this to a buy program on (1, 2) to profit from the negative
resilience coefficient during that time interval, and then sell again during (2, 3). More-
over, since pt) and p® are positive, we can already derive (e.g., by Proposition
that ¥ < 1 on [0,1) and on [2,3), and hence that X* is strictly positive on [0,1) and
on [2,3) due to z — io =1

Between Examplem Example , and Example we vary the size of p? <
0. This then determines if we get overjumping zero or premature closure for the optimal
strategy. Recall that ¢ in all examples has jumps at s = 1 and s = 2 and is continuous
on (0,1), (1,2), and (2,3), with values strictly smaller than 1 on [0,1) and [2,3). The
facts that pY) = 0.1, u = 0.5, and Y; € (0,1/2] yield that also ¥, < 1. We moreover
have that (1 —J,_)(1—1,) > 0 for all s € [0,1)U(2,3). This, continuity of ¥ on (1,2),
Y- < 1, and ¥5 < 1 imply that overjumping zero is optimal if and only if at least one
of

(2) 41
_ Pt
and o 1
_ Pt
0y = o %le > 1 (6.15)

is satisfied. Premature closure is optimal if and only if
Js € [1,2] such that (1 —9,_)(1 — ) = 0. (6.16)

The function 9 and the optimal strategy X* for each of the examples below are shown
in Figure [6.1

Example 6.2.2. We choose p®? = —0.05. The first row in Figure shows that o
stays strictly smaller than one also on [1,2), and hence the optimal strategy X* is
strictly positive on the time interval [0,3). We conclude that, in general, a period
with negative resilience coefficient does not necessarily lead to overjumping zero or
premature closure.

Example 6.2.3. We next provide an example where a negative resilience coefficient
indeed leads to overjumping zero and premature closure. To this end we choose p?) =
—0.085 in the above set-up. From the second row of Figure [6.1| we observe that ¢
jumps above 1 at time s = 1, but then decays continuously below 1 already before
its next jump at s = 2. It therefore holds that and are satisfied. We
thus have overjumping zero as well as premature closure for the optimal strategy. This
implies (recall x — % = 1) that the optimal strategy jumps to a negative value at time
s = 1 and crosses 0 within the time interval (1,2) to become positive again. Note that
the set of points in time s € [0,7T) for which we have ¥ > 1 is strictly included in the
set where p, < 0 (which is [1,2)).
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6.2 Piecewise constant resilience coefficient
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Figure 6.1: Top row: 9 and X* in Example (p® = —0.05). Middle row: ¥ and X*

in Example (p® = —0.085). Bottom row: ¥ and X* in Example
(p® = —0.15). The initial positions are not depicted.

Example 6.2.4. We finally provide an example where the set of points in time s €
[0,T) for which we have 95 > 1 is equal to the set where p; < 0. This means that the
time periods with negative resilience coefficient exactly coincide with the time periods
where the optimal strategy is negative. We achieve this for example for p® = —0.15
in the above set-up (see the third row of Figure . In particular, @ is satisfied,
i.e., overjumping zero is optimal. Furthermore, we can compute that @ holds true
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6 Negative resilience coefficient

as well. It follows that condition (6.16|) is not met, and therefore, premature closure
is not optimal. Note that the optimal strategy changes its sign twice, but does not
continuously cross 0.

Remark 6.2.5. We can produce the main effects discussed in Example [6.2.2] Exam-
ple[6.2.3] and Example [6.2.4]also in the case with nonzero o, see [AKU22b| Section 5.2]
for more detail. Observe that for deterministic constant o # 0, although BSDE
still has a deterministic solution and the process ¥ = ¥ still is deterministic, the optimal
strategy X* and its associated deviation DX" in general become stochastic. Moreover,
the properties derived in Proposition that DX is constant between jumps and
that X* is monotone between jumps no longer hold when o # 0.

6.3 Premature closure over a time interval

In Example the optimal strategy entails to close the position at a certain point in
time and to reopen it immediately. On the other hand, in the case p = 0, it is optimal
to close the position immediately and to not reenter trading (cf. Proposition . In
the same way we can show that if, say, p = 0 on (73, 7)), for some T} € (0,T), then the
optimal strategy X* satisfies X* = 0 on [T7,7] (and it can involve nontrivial trading
on [0,7;] depending on the behavior of the model parameters on (0,77)). Keeping
the position closed during a time interval and reopening again is more tricky, but also
possible, as we show next. For an illustration, we refer to Figure [6.2]

1.05 0.007
I - 0.006
9 0.005
0.95
0.004
0.90
0.003
0.85 -
0002 4 X
080 / 0.001
0.75 0.000 —fr-zmezeeeeeeee- — oo .
T T T T T T T T T T T T T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30

Figure 6.2: ¢ and a path of the optimal strategy X™* in the setting where ¢ and u =
0% +2 are deterministic constants and p is defined as in . The specific
parameter values are t = 1, d =0,y =1,0=1,T =3, Ty =1, T, = 2,
pM =0.01, p® =1, and ¢ = 2.416. The initial value X = x = 1 is not
depicted. Observe that ¥ =1 and X* = 0 between s =1 and s = 2.

Let Ty, Ty € (0,T) such that T} < T,. Suppose that ¢? > 0 is a deterministic
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6.3 Premature closure over a time interval

constant and that p = ¢ + 2. For deterministic p > —1, p® >0, and ¢ > 0 let

o), s €[0,TY),
Ps = (662(871—‘) + 1)_1/2 — 1, S € [Tl,TQ), (617)
), s € [Ty, T].

Note that (C>c) and (Cpga) are satisfied. Let Y be the unique solution| of the ODE

2 22Y2
di/;: (p3+0 + ) s
o?Y +ps +1

1
(0% + 2)Y5> ds, se€[0,T], Yr= 3 (6.18)

We have (6.2]) with

~ 2 4+ 2)Y.
9, =7, = Pt + 2V
02Ys + ps +1

€ [0,7].

This implies that

{36[O,T]:ﬁszl}:{se[O,T]:YS:Z:i;}.

In the sequel we establish that if c¢ is chosen such that limgp, ZS—E = Yy, then

% =Y on (T1,Ts). To this eild, suppos that limgp, ﬁz—i; = Yr, and define Y = Z—E

on (T1,T3). We show that Y is a solution of (6.18) on (77,73). Tt holds for all
s € (Tl,TQ) that

Y, 1 dpe (et )
ds — (ps+2)2ds (ps +2)%

On the other hand, we obtain for all s € (T3, T) that

(ps +0° +2)%V2 (0% +2)Y, = ( (et +2%pst1) 2)) pst1
0—2}75—|—ps—|—1 ° 02(ps+1)+(p8+1)(p8+2> p5+2
ps +1

s .

ps + 2

In order to show that

2(s—T) (ps +1)° i ps + 1
(ps+2)2 Tps+2

—ce s € (Th, Ty), (6.19)

3E.g., consider a trivial filtration (]—'j)se[O’T] in Proposition to see existence and uniqueness.

1Observe that to determine Y7, it suffices to consider p only on [T, T]. In particular, Y7, does not
depend on the choice of c¢. Moreover, as p(3) # 0, we have that Y7, € (0,1/2) (via a straightforward
comparison argument for (6.18))). Therefore, we can set ¢ = e2(T=72)(1 — 2YT2)YT;2 > 0. It follows

for this c that limgyp, % =Yy,
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6 Negative resilience coefficient

note first that this is equivalent to

_662(5—T)(pS + 1)2 =ps(ps +2), se (T, Tz).

1

Denoting a, = ce?~1) s € (T1,Ty), and using p, + 1 = (as + 1)72, s € (T}, T3), we
can rewrite this as

a(as+1)"t = ((as 11)E - 1) ((as +1)7E 4 1) . se (T

The right-hand side equals (a, +1)~! — 1, s € (T}, T,). We thus obtain the equivalent
equation

—a,=1— (as + 1), s e (T, Ty),
Which clearly holds true This proves . Thus, by uniqueness of the solution of
and limr, 25 5 = Yr,, we have that Y = ﬂ on (Ty,T5).

Th1s implies that ¥ = 1 on (7, T3). It follows that for all x,d € R, almost all paths
of the optimal strategy X* (cf. (5.36)) equal 0 on [T3,T%). Finally, observe that if
x,d € R with x ;é < then almost all paths of X* are nonzero everywhere on [Ty, T')
because, on [TQ,T), we have YV < 1 5 < %, as p® >0, ie,Y = P“ holds nowhere
on [Ty, T).
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Continuous extension from
finite-variation to progressively measurable
strategies

In the current and the subsequent chapter we study optimal trade execution in con-
tinuous time using progressively measurable strategiesﬂ As in Chapter , we allow for
an Fp-measurable terminal position in the definition of the set of admissible strategies
and for a risk term with stochastic target process in the cost functional. We use the
price impact process v and the resilience process R of Section for independent
Brownian motions M = WM M@ = W@ As in Chapter [2] and Chapter |5, we
only include a price deviation into our considerations and do not explicitly deal with
an unaffected price.

To set up the stochastic control problem for progressively measurable strategies,
we start from the finite-variation stochastic control problem of Section Control
problems of the kind of Section[7.I]are typical for continuous-time models of Obizhaeva-
Wang type. We also refer to the discussion in Section and to the basic example
of an Obizhaeva-Wang type model in Section [I.1l The aim in the present chapter is
to establish a continuous extension of the cost functional from finite-variation
strategies to progressively measurable strategies.

In a first step, we in Section provide alternative representations for the cost
functional and for the deviation associated to a finite-variation strategy of Section
that do not contain the strategy in the integrator anymore. This makes it feasible
to, more generally, consider progressively measurable strategies in Section [7.3] In
Section we introduce the scaled hidden deviation process as a tool for the proof
of Theorem and for Section Finally, we in Section present and prove
the main result Theorem [7.5.2] of this chapter on the continuous extension of the cost
functional.

Throughout this chapter, we assume the setting of Section [3.1] and let M) = W),
j €{1,...,m}, be independent Brownian motions.

'We refer to Chapter @] for a discussion of the relation between Chapter |5| (cf. [AKU21a|) and
Chapter [7-Chapter [§] (cf. [AKU22a])
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7 Continuous extension

This chapter makes extensive use of material from Section 1 and Section 5 of the
preprint [AKU22a| (joint work with Thomas Kruse and Mikhail Urusov).

7.1 The finite-variation stochastic control problem

In addition to the setting of Section with MU) = W0, j e {1,...,m}, we assume
that ¢ is an Fp-measurable random variable satisfying

E[7T§2] < 00, (7.1)

and that ¢ = (s)secpo,7] is a progressively measurable process satisfying

E [/OT %Cfds] < o0. (7.2)

As in Chapter [2, we interpret é as the target position to be necessarily reached at
terminal time (see also the definition of the set of admissible strategies), and ( as
a target process that describes a target position to be preferably followed over the
trading period (see also the definition of the cost functional in (7.4))). Note that ¢ can
only become relevant if A is not chosen equivalent to zero.

We next introduce the finite-variation strategies that we consider in the sequel.
Given t € [0,T] and d € R we associate to an adapted, cadlag, finite-variation process
X = (Xy)seft—) a process DX = (D) sepi— ) defined by

dDY¥ = —DXdR, + v.dX,, s€t,T], D} =d. (7.3)
If we have a sequence of adapted, cadlag, finite-variation processes X" = (X7)sc— 11,
n € N, we usually write D" instead of DX" forn € N. Fort € [0,7T], z,d € R we denote
by AN (z,d) the set of all adapted, cadlag, finite-variation processes X = (X)sep— 1]
satisfying

and

(B1) B[/ 5(DX)s| < o,

1

®2) B |([ )

< 00,

(B3) E

B 1

(5 2705 | < 0
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7.2 Alternative representations for the cost functional and the deviation process

Any element X € AY(x,d) is called a finite-variation execution strategy. The process
DX defined via (7.3) is called the associated deviation process.
For t € [0,T], 7,d € R, X € AY(x,d) and associated D, the cost functional J% is

given by
7 T
I¥(z,d, X) = E, U (Df_ n ESAXS> dxs] B U Yo (Xo — G)2ds|  (7.4)
[t’T} t

(see the proofs of Proposition and Proposition for well-definedness under
(Cpad))- The finite-variation stochastic control problem consists of minimizing the
cost functional J& over X € AN (z,d).

7.2 Alternative representations for the cost
functional and the deviation process

In this section we first in Proposition provide the alternative pathwise represen-
tation for the integral with respect to the strategy X that appears in the cost
functional J% in (7.4). This subsequently, in Proposition leads to the alter-
native representation for the cost functional JV. Furthermore, we in the first
proposition also derive the alternative expression for the deviation process D™.
Note that neither X nor DX show up as an integrator in and (7.8). This allows
to extend the definition of JV beyond the set of finite-variation execution strategies
and even semimartingale execution strategies. Moreover, the presentation and proof
of Proposition are kept general in the sense that they do not hinge on the specific
dynamics of the resilience process R or of the price impact process v (as long as both
are continuous semimartingales and + is strictly positive and Ry = 0).

For ¢ € [0,7] we introduce an auxiliary process v = (Vs)scp,r1- It is defined to be
the solution of

dvs = vsd (Rs + [R]s), se[t,T], wn=1. (7.5)
Observe that the inverse is given by
dv;' = —v'dR,, se[t,T], v;'=1 (7.6)

Proposition 7.2.1. Let t € [0,T] and x,d € R. Suppose that X = (X;)scp—,m @5 an
adapted, cadlag, finite-variation process with X,_ = x and with associated process DX

defined by . It then holds that

o 1 T d?
[ (o Zax)ax =5 (won - [ 0¥iaen) - 5 00
[t,T7] 2 2 t 2m

and

Dic = %X + Vr_l (d - NT — / Xsd(VS’YS)) , relt,T] (7.8)
t
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7 Continuous extension

Proof. Observe that integration by parts implies for all s € [t,T] that

d(vsDX) = v, dDX + DX dv, + d[v, D*],
= —v,DXdR, + vV, dX, + v, D} dR, + v,D} d[R], + dlv, DX],
= vyysd X, + VSDfd[R]S +d[v, DX]S.

Since
dlv, DX], = vd[R, D], = —v,DXd[R],, s€[t,T),

it follows that the process DX = v, DX s € [t,T], DX = d, satisfies
dDX = d(v,D¥) = vy, dX,, s€[t,T). (7.9)

In particular, DX is of finite variation. The facts that ADX = y,AX,, s € [t,T], and
dDX = v,y,dX,, s € [t,T)], imply that

/ (2DX +v,AX,) dX, = / (2DX + AD)) dX,
[t, 1] [t,T]

— / (2DX + ADX) ;' tdDX (7.10)
[t,T]
= / (255_ + Af)f) v 2y 1D,
[t.T1]
Denote moreover ¢, = v; 2y, 1, s € [t,T]. Tt then holds for all s € [t,T] that
ADYp,dDY = d[D¥p, D],

due to finite variation of DX. We therefore obtain by integration by parts for all
s € [t,T] that

(213;2 n Aﬁf) 0.dDX = 2DX . dD¥ + d[D* p, D¥],
=d ((55905)55) — DX d(D¢.) + . DX dDY.
Furthermore, it holds for all s € [t,T] that
(DY ¢s) = sdDY + DY di,
and thus, for all s € [t,T],

(2DX +ADY) p.dDY = d ((DYe.) - (DX)de..
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7.2 Alternative representations

Together with (7.10]) this yields that

s 1 o T
| (px+ Fax)ax. = 5 (B er - (052 - [ (Bag.)
(7] 2 2 ¢

1/ B T o
=5 (- - [ToXpa ).
t

This proves (7.7).
In order to show ([7.8]), we obtain from (7.9) and integration by parts that

VTDf( —d=uv,7%X, —vx — Xd(vgys) — / dlvy, X|s, re€lt,T],
[t,7] [t,r]

which implies that

DX =X, + vt (d —x — / Xsd(z/sfys)) , relt,T).
t
[
As a consequence of Proposition [7.2.1, and relying on (B1)-(B3), we can rewrite
the cost functional J as follow Recall from (3.6)) that x = $(2p+pu—0*—n*—200T).

Proposition 7.2.2. Assume (Cpgq). Let t € [0,T] and x,d € R. Suppose that

X e A{"(w, d) with associated deviation process D defined by (7.3). It then holds that
J(x,d, X) in [T4) admits the representation

fo L 1 axy2 L Xy d?

Ji'(w,d, X) =Ey |5y (D) + [ v (DY) ksds| — o—

2 t 2y

(7.11)

+ B, {/T Yeds (X — ) ds} a.s.
t

Proof. We first consider the integrator v=2y~" on the right-hand side of (7.7). It holds
by integration by parts and that
dlv; ) = vty v ) s e+ d Ty e

=y vy vy T T dl Ty

= 2w, 2y MR, + v 2dy;t — v Ay R) Hdlv Ty v, s e[t T).
Note that

dv =ty vy = v M Ry v, = vt {R,/ v tdyt +/ V_ldy_l}
t t s

= —l/s_l%_ld[R, 1/_1]5 — I/S_Qd[R, 7_1]5
= v, 2y Y[R, — v, 2d[R,y s, s€[t,T).

2Compare (7.11) also with representation (E.1) of the cost functional of the zero-spread two-sided
order book model in [FSU19|.
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7 Continuous extension

It hence follows that
d(v;*y, ) = =2v%y AR vy = 20 %d]y T Rl + v P (R, s €[t T

Plugged into (7.7)) (cf. Proposition [7.2.1]), we obtain that

/ (Df_ + kAXS) X,
6,71 2

. <7T1(D¥)2 -] DX (o AR — 27 R, 2l R]s)> 5
(7.12)
We further have by and for all s € [t,T] that
d78_1 + 78—161[}%]S — 275_1dRs o 2d[7‘1, Rl
= =05 (s = 00)ds = d WY 9 s — 200 pads =2 madWSE o

+ 27;103773F5d3
= _7;1 (2)08 + s — U? - 7752, - 20377375) ds — ’Y;lo-sdws(l) - 27;17]de§'

It follows from (B1) and (Cpgq) that

d

The Burkholder-Davis-Gundy inequality together with (B3) shows that it holds for

some constant ¢ € (0,00) that
T >
(/ (D§)475_20§d3) < 00.
t

T
E, [ / (Di‘)zvslasdwsf”} =0.
t
Similarly, (B2) and [WF] = [W®)] imply that
T
E, U 2(D§)27§1ndef} =0.
t

It thus follows from (7.12)), (7.13), and Definition (3.6)) of s that

T
| X @t = o = = 20) ds
t

| <o

E | sup <cFE

relt,T)

/ (DX Py o d W)
t

We therefore have that

. 1 T d?
E, [/ (Df_ + lAXS) dXs] ~ E, {—7;1(1)55)2 +/ (DX)2 Lk, ds] -4
[t,T] 2 2 t 24
By Definition (7.4) of J™ this proves (7.11)). O
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7.3 The extended stochastic control problem

7.3 The extended stochastic control problem

We point out that the right-hand side of is also well-defined for progressively
measurable processes X satisfying an appropriate integrability condition and with
associated deviation DX defined by for which one assumes (B1). This motivates
the following extension of the control problem from Section [7.1]

For t € [0,7], x,d € R, and a progressively measurable process X = (X)sc— 1]

such that ftT X2ds < o0 as. and X;_ = z, we define the process DX = (D )sep— 1) by
DY = 4, X, + vt (d — Y —/ er(z/rfyr)) , set,T), D¥ =d (7.14)
t

(recall v from (7.3)). Notice that the condition [, X2ds < oo a.s. ensures that the
stochastic integral in (7.14]) is well-defined. Again, for a sequence of such progressively
measurable processes X", n € N, we usually write D" instead of DX" for n € N.

Further, for t € [0,T], z,d € R, let A?™(x,d) be the set of (equivalence classes of)
progressively measurable processes X = (X;)se— ) with

X, =z and Xy =¢

that satisty ftT X2ds < oo a.s. and such that condition (B1) holds true for D¥ defined
by (7.14). To be precise, we stress that the equivalence classes for A} (z,d) are
understood with respect to the equivalence relation

X~X means X = )? Dy w-a.e. on Q x [t,T],
X,- =X, (=1), and Xp = Xp (= &). (7.15)
Any element X € AY™(z,d) is called a progressively measurable execution strategy.
Again, the process D now defined via ((7.14)) is called the associated deviation process.

Given t € [0,T], #,d € R, and X € AP (z,d) with associated DX (see (7.14)), we
(under (Cpgq)) define the cost functional JP™ by

1 T T 2

JP(w,d, X) = E, [57}1(197)«()2 + / v (DF )k, ds + / s (X5 — G) ds| — 2617
t t t

(7.16)

The extended, or progressively measurable, stochastic control problem is to minimize
the cost functional JP™ over X € AM™(x,d).

Observe that we have the following corollary of Proposition and Proposi-
tion [7.2.2

Corollary 7.3.1. Assume (Cpqa). Let t € [0,T], z,d € R, and X € AP(z,d) with
associated deviation process D given by (7.3)). It then holds that X € A" (x,d), that
DX satisfies (7.14), and that J(z,d, X) = J"™(x,d, X).
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7 Continuous extension

Proof. By of Proposition [7.2.1] DY satisfies (7.14). Since X is cadlag, we have
that ftTdes < o0 as. Clearly, X,. = z, X; = &, and (B1) are satisfied, and
X is progressively measurable; hence, X € A™(x,d). From Proposition and
Definition (7.16]), we immediately see that J¥(z,d, X) = JP™(x, d, X). ]

Put differently, the progressively measurable control problem extends the finite-
variation one in the sense that Al (z,d) C AP™(x,d) and, on AY(x,d), the cost func-
tionals J& and JP™ coincide. In Section [.5] we show that JP™ can be considered as a
continuous extension of JV to progressively measurable strategies and that A (z, d)
is dense in A" (z,d) (with respect to an appropriate metric).

7.4 The scaled hidden deviation process

In this section we introduce the scaled hidden deviation process associated to a strat-
egy X. This process, due to Proposition [7.4.2] plays a key role in Section [8.1.1] as
the state process in the LQ stochastic control problem that we are going to construct.
Furthermore, this process already appears in the proof of Theorem in Section
on the continuous extension of the cost functional. The lemmas in the current section
are part of the preparation for this proof.

Suppose that the agent follows a finite-variation execution strategy X € AY(x,d)
until time s € [¢,T] and then decides to close the position, i.e., to sell X, > 0
units (respectively, to buy |X;_| units in the case X, < 0). By (7.3), this results in
the price deviation DX = DX — ~4,X, immediately after the trade. The value 0
Df, — Vs Xso = Df — v:Xs hence represents the hypothetical deviation if the agent
decides to close the position at time s € [t, T]. In the following, we consider the process
DX — X for all X € AP™(z,d) and scale it by 772 to obtain what we call the scaled
hidden deviation process.

Fort € [0,T], z,d € R, and X € A (z,d) with associated deviation process DX,

we introduce the scaled hidden deviation process 7 = (Hf)se[t,ﬂ defined by

1
X ~3

— _1 1
H, =7 *(Df =7, X,) = DX —42X,, sel[t,T). (7.17)

s

For a sequence of strategies (X™),en in AP™(z,d), we also write H for the process
associated to X™, n € N. Note that, due to ([7.14), it holds that

—X

HY = v (d—%x— / ermw), se[t,T). (7.18)
t

The dynamics of Ff that we compute in the following lemma are used in the proofs
of Proposition [7.4.2] and Lemma [7.4.4

3Note that the process DX — vX is continuous for all X € AP™(x,d), which can, e.g., be seen from
(7.14) and the fact that R (hence also v) and -+ are continuous.
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7.4 The scaled hidden deviation process

Lemma 7.4.1. Let t € [0,T], x,d € R. Assume that X = (X,)scm s a progressively
_1

measurable process such that ftT X2ds < oo a.s. For ag = v, vt s € [t,T], and

Bs =d—max — [ Xod(v,y,), s € [t,T), it then holds for all s € [t,T] that

d(asfBs)
3 LU - (1) [ =27@
= _'752 Xs s + Ps — §Usnsrs - 50-5 ds + (Us + nsrs)dWs + Ns 1— Tdes

1 3 1 1

+ o Bs (( — Ps — §MS + —0‘5 + 50-8775?3>d8 + ( — NsTs — §Us>dWs(1)
—nsy/ 1 — TEdWS(Q)) .

(7.19)

Proof. Observe that o = (o) sep, 7] and 8 = (Bs)sep,r) are semimartingales. Integration
by parts implies that

d(ayf) = —a X dlvys) + Bud(ys ) = Xy 3w L], s€T) (7.20)
It further holds by integration by parts, (7.5)), (3.1)), and for all s € [t,T] that
d(vs7s) = vsdys + YsvsdRs + 5v5d[R]s + vsd[R, 2]
= U Ysttsds + U0 dW + vyapeds + vy T dWED + vy /1 — P2d WP
+ Vs Ys3ds + vsysomsTsds

= Uy, ((us + ps + 773 + asnSFs)ds + (JS + nsfs)dws(l) + /1 — F?dWS(?)).
(7.21)

Also by integration by parts, and using (7.6), (3.1)), and (3.5), we obtain that

1

_1 _1 _1 1
d(ys 2v; ) = =78 2v 'dRy + v dys  — v Y[R, 2],

s
1
2

1 1
= —7s 2V ' peds — s 21/;177373dW8(1) — s 2 /1 — ngWS(Q)

-1 1 3, L -1 w1 -3 7
+ s v | mohs T 505 ) ds — ovs Py ol dWT 4 oy v o Tds
2 8 2 2
1 3 1 1
= as< (—ps — 5,[1/5 + gO’? + 50577575) ds + <_7]SFS - 505> dWS(l)

— s 1—F§dW§2)>, selt,T].

(7.22)
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7 Continuous extension

It follows from ([7.21)) and ([7.22)) that

1

71/'7]5 - Oésys’ys( - 77st - 5

dly 2! Us> (05 +1:7s)ds — avsysng (1 = 7)ds

1 /3 1 (7.23)
= _752 (57780'st + 205 + 775> dS, S € [t,T]

From (7.21)) and (7.23)) we get for all s € [t,T] that

— as Xd(vsys) — Xsd[fyféyfl, s

1 1 1
= 7, 2 X, ((us + ps — 505775F8 — 50?) ds + (O’S + 7757“3 D4 na/1 dW )

(7.24)

We then plug (7.22)) and ([7.24) into (7.20) to obtain (7.19). O

We next use Lemma to show that, under (Cpgq), the scaled hidden deviation
process satisfies a linear SDE and an L?-bound. Moreover, we derive a representation
of JP™ in terms of the scaled hidden deviation process.

Proposition 7.4.2. Assume (Cpgq). Let t € [0,T], x,d € R, and X € A'(x,d).
Then it holds that

_ 1 L, 1 =
de( = <§ (MS B 1_1(73) Hf - 5 (2(ps +,U/s) - U? - USUSFS) s QDL?() o

1 — _1 _1
- (50—st — (05 + 05T )75 2D§) AW — /1 =72, 2DXdW P | s € [t, TY,
—X d
= — — "L’j
t Nar Tt
(7.25)

that E[supyc; (ﬁf)ﬂ < 00, and that

2

1 ,— . T d
"o, X) = By | G + )+ [ (o dn (03] - 5
t

2

o [/T A, (ﬁf n \/ﬂs)? Y (Ff v \/ﬂs) fys_%Dfds} .
t
(7.26)

Proof. We denote o, = 73_ vt s e [t,T), and B, = d — vy — [7 X, d(voy,), s €

It then holds that ﬁf = afs, s € [t, T]. We use Lemma and substitute —

7).

vz X =
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7.4 The scaled hidden deviation process

H" —~42DX in (7.19) to obtain for all s € [t,T] that

- — -1 1 1
dH, = (H, —~: DY) ( (us + s = 5ONTs = §a§> ds + (o4 + g7 ) dW D
+n5y/1 — ngW§2)>
— 1 3 1 1
+ Hf (( — Ps — §Ms + gag + iasnsfs)ds + ( - 773?3 - aas)dWs(l)
—nsy/1— rgdWS(?))
L 1 . 1, _ 1) ) @
=—7 *D; s + ps — 5057757”5 — 5‘75 ds + (as + nsrs)dWs +ns\/ 1 —7LdW,

— 1 1 1
+ Hf( (5,&5 - gO’?) ds + 50-de5,(1)> .

This proves the dynamics in ([7.25)).

In particular, H” satisfies an SDE that is linear in H = and 7_%DX. Furthermore,
boundedness of p, u, o, n, 7 implies that the coefficients of the SDE are bounded. Since

“1 — 1 1
moreover E[ftT (s 2D§)2ds] < o0 by (B1) and since Hf =, 2d — 2z (cf. (7.17)
is square integrable, we have that E[supc 1 (ﬁf)z] < o0 (see, e.g., |Zhal7, Theo-
rem 3.2.2 and Theorem 3.3.1]).

We next prove that the cost functional (7.16|) admits the representation ((7.26)). To
this end, note that by (7.17)) it holds for all s € [t,T] that

_1 —X 1 \2
Vs (Xs - Cs)z = (")/s 2D§< — HS — P)/SQCS)

_1 — 1 — 1 \2
= (DY) =200 DX (H) +92¢) + (HD +93¢,)
Due to Assumption (7.2)) on ¢ and E[sup,c; 7 (ﬁf)Q] < 00, we have that

E; [/T <ﬁf +7§Cs>2ds} < 00.
t

This, (B1), and the Cauchy—Schwarz inequality imply that also

alf

vs 2 DY (FX + 73@)

ds] < 00.
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7 Continuous extension

Since A is bounded, we conclude that

B[ doex -] = m] [ aarna]ss] [ (7 k) s

T ) - .
_2Et |:/ AS’Y;§D:9X (Hf_FfYSQCS) d8:| )
t
(7.27)
where all conditional expectations are well-defined and finite. Moreover, (7.17)) implies

_1 — 1 — ~
that ;2D = Hy + 72Xy, and thus 7 (DX)? = (Hy + 77€)?. Inserting this

and ([7.27)) into (7.16]), we obtain (7.26). O

The next result on the scaled hidden deviation is helpful in the proof of Theorem|[7.5.2]
in order to show convergence of the cost functional.

Lemma 7.4.3. Assume (Cpaa). Let t € [0,T], x,d € R, and X € A" (x,d). Suppose
that (X™)nen 18 a sequence in AY™(x,d) such that

T
lim £ U (D7 — Df)%;lds} =0.
n—oo t

It then holds that

lim F

n—00

o —x\2
sup (HS —Hf) ] = 0.
]

seft,T

——n

Proof. Define 6H = H —HX, n €N, and let forn e N, s € [t,T], z € R

1

1 _1 1 1 1
b?(’z) = _§<2(p8 + MS) - U? - 0-577573> (/Vs 2D: — Vs 2D§() + 5 (/LS — ZO’?) Z,

—1 —1 1 -1 -1
ﬂ@):(—Wf+%ﬂx%2D?—%2D§f+5%%—Wﬂh—fﬂ%zD?—%2D§0-
In view of (7.25]) it then holds for all n € N that

Wi

d(0H,) =02 (0H )ds + a2 (6H ,)d (WS(Q)

>, selt,T]), o0H, =0.

The definitions of b, a", n € N, and boundedness of ;4 and ¢ imply that there exists
c1 € (0,00) such that for all n € N and all 21, 2o € R it holds DW(1)|[t7T}—a.e. that

1 1 1
w%mww%wmww@o—w@Mbsgy—if|a—m+§wwrwﬂ3qm—ay
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7.4 The scaled hidden deviation process

By boundedness of u, p, o, n,7 and Jensen’s inequality, we have some ¢y € (0,00) such
that for all n € N, it holds that

(/ T|b2(0)|d8)2

E.g., [Zhal7, Theorem 3.2.2| (see also [Zhal7, Theorem 3.4.2]) now implies that there
exists c3 € (0,00) such that for all n € N we obtain that

(/ T|b:<o>|ds>2 v T||a3;<o>||%ds]

T
< o3 |:/ (D? — D§)2/75_1d8:| .
t

T T
E +E[/ ||a?:<o>||3ds}s@E { / (DZ—Df)Q%‘lds].
t t

E | sup ’ﬁ?—ﬁf

s€[t,T)

2
S CgE

The claim follows from the assumption that lim,,_,, E[ftT(Dg — DXy lds] =0. O

We next show how to construct an execution strategy X° € AY™(z,d) based on
a square-integrable process u’ and a process H that satisfies SDE (7.25) (with u°
instead of y~2 DX ). This result is crucial for Lemma . It is also used in the proof
of Theorem [.5.21

Lemma 7.4.4. Let t € [0,T] and z,d € R. Suppose that u® = (ud)sepr € L7, and let

HO — (Hg)se[t,T] be given by HE = JL% — Wz,

1 1 1
ng = (5 ([1/5 - ZU?) Hg - 5 (2(ps + ,us) - 03 - 05775F5) ug) ds

(7.28)
1
+ (5051{2 — (og + nsn)u2> AW — o /1 = 722aw P, s e [t,T].

Define X° = (X2)sepe—1) by

~

_1
XSIVSQ(Ug_HS)v Se[t7T)7 ngz'ia ngf

Then, X° € A™(z,d), and for the associated deviation process D* = (D2)sep— 1y it
holds that D° = vX° + V%HO, and H° is the scaled hidden deviation process for X°.

Proof. First, X is progressively measurable and has initial value X = x and terminal
value X2 = ¢. Furthermore, it holds that

T T T
/ (X9)%ds < 2/ v (ug)*ds + 2/ v H(H?)ds < 00 aus.
t t t
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7 Continuous extension

since y~! and H° have a.s. continuous paths and E[ftT(ug)st] < 0o. We are therefore
1
able to define D° by (7.14). Moreover, denote a, = v, 2v;', s € [t,T)], and B, =
1

d—yax— [ X2d(vy,), s € [t,T]. Tt follows from Lemma|7.4.1|and —v2 X? = H —u?,
s € [t,T), that

1 1
d(asBs) = (H? —u?) ((,us + ps — 50377Js — 50?) ds + (as + nsFS)dWS(l)

+ 15/ 1 — rgde))

1 3 1 1
+ a3 (( —Ps = Ghs + gag + 50577575)618 + ( — NsTs — —05> AL

— s 1—F§dWS(2)>, selt,T].

We combine this with

1 1
ng = _ug ((Ns + Ps — 50577373 - 50’3)618 + (Us + nsTs>dWs(1) + s 1- ngWs(Q)>

1 1 1
+ Hg ((5,“/3 - §U§>d8 + 50'de5(1)>’ 5 € [t7T]’

to obtain for all s € [t,T] that

1 3 1
d(asﬁs - Hg) = (asﬁs - HS) (( — Ps — iﬂs + gaz + 50'8775?3>d5

(7.29)
1
+(_ns?s_§as)d”s(l)_ns 1_F§d”s(2)>

1 1
Note that ay8; = v, 2d — v?x = HY. We thus conclude that 0 is the unique solution

of (7.29)), and hence

_1 5
HY =5 2v] <d—%x —/ de(vr%)) , sELT]
t

This implies that D° = v X+~42H, i.e., D = 42ul, s € [t, T), and D% = & +~2 HY.
The fact that E[ftT(ug)2ds] < oo then immediately yields that (B1) holds true. This
completes the proof. O
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7.5 Continuous extension of the cost functional

7.5 Continuous extension of the cost functional

Corollary states that for finite-variation execution strategies, the cost functionals
J% and JP™ are the same. In this section, we show that JP™ can be considered as
a continuous extension of J% to progressively measurable strategies. To this end, we
first need to introduce a metric on AY™(x,d).

For t € [0,T], z,d € R, and X, X € AP (z,d) (with associated deviation processes
D¥, DX defined by (7.14)), we define

d(X,X) = (E MT (DX — Df)%SldsD; (: ny*%(DX - D??)HL%) . (7.30)

Lemma 7.5.1. Lett € [0,T] and x,d € R. Then, (7.30) defines a metric on AP (x,d)
(identifying any processes that are equal Dy, | 1-a.e.).

Note that, for fixed ¢ € [0,7] and z,d € R, and under (Cpqgq), we may consider the
cost functional ((7.16)) as a function

T (@ d, ) (AP (2, d), d) = (LN, Fr, P), || l|e).

Indeed, using (B1), Proposition (7.1), (7.2), and boundedness of the input
processes, we see that J™ (x,d, X) € LY(Q, F;, P) for all X € AP (z,d).
We now come to the main result of this chapter.

Theorem 7.5.2. Assume (Cpaq). Let t € [0,T] and x,d € R.

(i) Suppose that X € AV™(x,d). For every sequence (X™)nen in A'™(x,d) with
lim, 0o d(X™, X) = 0 it holds that lim,_||Jf"(z,d, X") — JI"™(z,d, X)||z» = 0.

(ii) For any X € A" (x,d) there exists a sequence (X™)nen in A(2,d) such that
lim, oo d(X™, X) = 0.

(iii) For any Cauchy sequence (X" )nen in (AY™(z,d),d) there exists X° € AY™(z, d)
such that lim, ., d(X™, X°) = 0.

This establishes that J™ (x,d, X) is continuous in the strategy X € A}™(x,d) (the
first part of Theorem [7.5.2), that AN (x,d) is dense in AP™(xz,d) (the second part of
Theorem [7.5.2)) and that the metric space (A" (x,d),d) is complete (the third part of
Theorem (7.5.2)).

The first and the second parts of Theorem mean that, under the metric d,
JP™(x,d, ) is a unique continuous extension of J{"(z, d, -) from AY (x, d) onto AP™ (x, d).
The third part of Theorem means that, under the metric d, AP (z,d) is the
largest space where such a continuous extension is uniquely determined by th “(x,d, ")
on AY(x,d). This is because the completeness of (AP (x,d),d) is equivalent to the
following statement: for any metric space (A;(z,d),d) containing AP™ (z, d) and such
that 8|Afm(x,dwgm(m7d) = d, it holds that the set AP™(z,d) is closed in A(z, d).

As a corollary of Theorem we obtain the following equivalence of the finite-
variation and the extended stochastic control problem.
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7 Continuous extension

Corollary 7.5.3. Under (Cpaq), it holds for all t € [0,T] and z,d € R that

essmf JP(x,d, X) = essinf J'™(x,d, X). (7.31)
XeAl(z,d) XcAP™ (z,d)

Proofs

In this part, we prove Lemma Theorem and Corollary

Proof of Lemma [7.5.1 Note first that it holds for all X, X € AP™(z,d) that d(X, X) >
0, and that d(X, X) is finite due to (B1). Symmetry of d is obvious.
To establish the trlangle inequality, let X, X, X € AP (z, d) It follows from

and the Cauchy—Schwarz inequality that
T ) X - L~
d(X,X)?=d(X,X)*+2E {/ (DF - Df)%—%(pf — Df)%—%ds +d(X, X)?
t
< d(X,X)?+2d(X, X)d(X, X) +d(X, X)2.

We thus obtain that d(X, X) < d(X, X) + d(X, X).

We now let X, X € AP™(z,d) and show that X = X Dy |jt,r-a-e. if and only if
d(X, X) = 0.

If X=X Dy o |t-a-¢., then 2 DX = 7_%D55 Dy ot r-a-e., and thus

~ T 1 1 ~\ 2 %
d(X,X)_<E [/ (ysipf—ysﬁD;’f) dsD ~0.
t

For the other direction, suppose that d(X,)Z') = 0. This implies that 7_%DX —
72 DX =0 Dy |,r-a.e. By Definition (7.14) of D* and DX it further follows from
a multiplication by Vv% that

v(Xs — X)) = / (X, — X)d() Dy |a-ace.
t

Observe that vy > 0 and define U = (Uy)sepry by Us = [ (o) Hd(vry), s € [, T).
Let K = (K)scpr) be defined by K, = f: vy (X, — X,)dU,., s € [t,T]. Then, K is a
continuous semimartingale with K = vy(X — X) Dy, |m-a-e. It follows that

/ K,dU, = / vy (X, — X,)dU, = K,, s €[t T).
t t

This shows that K = 0 (as a stochastic exponential with start in 0). Since K =
vy(X = X) Dy | m-a-e. and vy > 0, we conclude that X = X Dy |y, r1-a-e. O
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7.5 Continuous extension of the cost functional

In order to establish existence of an appropriate approximating sequence in Theo-
rem we rely on the next Lemma [7.5.4] which is based on [KS91, Section 3.2,
Lemma 2.7|. For the statement of this lemma and for the proof of the second part of
Theorem we introduce a process L = (L;)scjo,r) defined by

S 1 S
L, = exp <—/ (50,. + nm) dw M —/ N/ 1 — FdeT(Q)) . s€[0,T]. (7.32)
0 0

Observe that L solves the SDE

1({/1 2 1
dL, = L~ ((—O‘S + an) + 773(1 —7 )) ds — L, <—as + njs) dWs(l)
2\\2 2 (7.33)

— Loy /1 =72dWP | s€[0,T], Ly=1.

Lemma 7.5.4. Assume (Cpqq). Let L = (Ls)scor) be defined by (7.32). Lett € [0,T]
and let w = (ug)sep) € L. Then there exists a sequence of bounded cadlag finite-
variation processes (V" )nen such that

T
US 2
— —v' ) Lids

[ ()

In particular, for the sequence of processes (u™)nen defined by u™ = v"L, n € N, it

holds for all n € N that u" is a cadlag semimartingale with Elsup gy, |uz|P] < oo for
any p > 2 (in particular, u™ € L£2), and that lim,, . |lu — u"|| gz = 0.

lim F

n—oo

=0.

Proof. Define A = (Ay)sepor by As = [y LZdr, s € [0,T]. Moreover, let v = (v,)sef1)
be defined by v, = 72, s € [t, T]. We verify the assumptions of Lemma 2.7 in Section 3.2
of [KS91] on A and v.

The process A is continuous, adapted, and nondecreasing. Since o, n, and 7 are
bounded, Lemma implies for all p > 2 that Elsup,co|Ls|?] < co. In particular,
it holds that E[Ar] = fOT L2dr] < co. Moreover, v is progressively measurable and

satisfies E[ft vid A, ft u?ds] < oo due to u € L.
Thus, Lemma 2. 7 in Section 3.2 of [KS91] applies and yields that there exists a
sequence (0"),en of (caglad) simple (see |[KS91, Def. 2.3|) processes 0" = (03)scp,17,

n € N, such that
T
lim E [/ (v — @g)QdAs] = 0.
n—oo t

Define v?'(w) = lim, s 0} (w), s € [t,T), w € Q, n € N, and v} = 0, n € N. Then,
(v™)nen is a sequence of bounded cadlag finite-variation processes such that

T /u T
/ (_s —w ) L%ds| = lim E {/ (vs — v?)QdAS] = 0.
. LS n—oo t

lim F
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7 Continuous extension

Moreover, it holds that for each n € N, u™ = (u}))scp, 1) defined by ul = vl L, s € [t, T,
is a cadlag semimartingale. Since v™ is bounded for all n € N and E[sup,c( 71| Ls|?]
is finite for any p > 2, we have that E[sup,c rj|us|?] is finite for all n € N and any
p > 2. It furthermore holds that

T T
||lu — u”H%% =F [/ (us — u?)st} =F [/ (vg — v?)QdAS} —0
t t

as n — oo. O

Lemma is employed in the proof of Theorem [7.5.2(ii) as follows: given X €
AP™ (2, d), we approximate u = y2DX by a sequence u" = v"L, n € N, from
Lemma Based on this sequence (u™),en, we define a sequence of progressively
measurable strategies (X™),ey as in Lemma [7.4.4 Subsequently, we argue that finite
variation of v™ leads to finite variation of X" for all n € N.

Let us now prove Theorem [7.5.2]

Proof of Theorem[7.5.2 (i) Let (X™),en be a sequence in A" (z, d) such that it holds
lim,, 0o d(X™, X) = 0. By (7.26) in Proposition it holds for all n € N that

|Jtpm($vda Xn) - Jtpm(madaX”

1. - 1 . T
5B (T +938)" - (77 +430)"] + B, [ / (ks + A7 ((D2)* = (DY)?) ds

T 1 1 _ 1
—2F, { / Aya (DQ(HS +72¢) — DX(H. ++2 gs)) ds}
t
T -3 i 2 ——=X L 2
+ E, U As ((Hs +79¢)" = (Hy +13¢) )ds] ‘
t

From (Cpgq) and boundedness of A\ and 7 we obtain that there exists a constant
¢ € (0,00) such that for all n € N it holds that

—n 1. — 1.
< B[|( y+49)" - (Hr +18)°

+0EUtT

T . o .
e [0 bt @ rde o
t

[ +eE UT vt (D) = (D;X)2)|ds}

v (D? (I, + %%Cs) — DX(H, + %%Cs)) ‘ dS]

(7.34)

190



7.5 Continuous extension of the cost functional

We treat the terminal costs first. It holds for all n € N that
—n 12 —X L2
B | 7 +428)° - (Hr +79)"

—n —n L1 —X 1.
=F (HT)2 +2H 7€ — (HT>2 —2H 778

< B(|@h? - @] + 20 |7 - 7 )0d

[

n

3
< B (| - @] +2 (2 [ - 7))

(2 el

From .
lim F { / (DI — Df)st‘lds] = lim d(X", X)*=0 (7.35)
n—oo t n—oo
and Lemma [(.4.3] we have that
—n —X)\?2
lim E | sup (HS - ) ~0. (7.36)
n—00 s€(t,T]

Since furthermore E[yr£2] < oo (cf. (7.1)), we obtain that

. 5N L2 ——=X 12
lm B ||(Hr+79)" = (Hy +428)°|| = 0.

The second term in (7.34) converges to 0 using (7.35)). For the third term in (7.34]) we
have for all n € N that

o

r 1 1 1 e
< | [ ke D2 = DX D2 - A
t
T 1 3 T ) i
< (EU (H, +»ys2cs)2dsD (EV (D! — DY) ’ys_lds})
t 1 ' 1
T 2 L - —x\2 2
+ (EU 7;1(Dg)2dsD T E[ sup (T~ M) }
t s€(t,T)

By Proposition [7.4.2] and (7.2)) it holds that E[ftT(ﬁf + %%CS)st} < 00. Moreover,
due to (7.35)), we have that E[ftT v H(D™)?ds] is uniformly bounded in n € N. It thus

follows from (7.35), (7.36), and (7.37) that the third term in ((7.34) converges to 0 as

n — oo. The last term in (7.34) converges to 0 using (7.2]) and :‘7.36). This proves
claim (i).

9t (D +96) = DY (Y +4:¢))| ds]

(7.37)
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7 Continuous extension

(ii) Suppose that X € A" (z,d). Let u = (uy)sep,r be defined by u, = s 2DX
s € [t,T]. Then, u is a progressively measurable process, and due to assumption (Bl)
it holds that Eft u?ds] < oo, i.e., u € L.

By Lemma [7.5.4] there exists a sequence of bounded cadlag finite-variation processes
(v™)nen such that lim, ., E ft (7 - v")2L2ds] = 0, where L is defined in (7.32).
Set " = v"L, n € N. This is a Sequence of cadlag semimartingales in £? that
satisfies lim,, o [|u — u"||z2 = 0. Moreover, it holds for all n € N and any p > 2 that
Elsup,ejy | ug|’] < oo.

For each u™, n € N, let H" = (H”)se[t 1) be the solution of (7.28). We then define
X" = (XDsep—q, n €N, by X0 =, 2(ul — H?), s € [t,T), X" =z, X} = £. Note
that this is a sequence of cadlag semimartingales. Moreover, for all n € N, Lemma|7.4.4

proves that X € AP™(z,d) and that D™ = yX™ 4+ 2 H™ for the associated deviation
process D" = (D7) e 17-

It follows for all n € N that D7 = ’ys
that

s € [t,T). Therefore, it holds for all n € N

s’

d(X", X) = (E MT (D" - Df)%sldsDé = (E UtT(ug - us)%zs] )é .

Due to lim,, o0 [|u — u™[| ;2 = 0, we thus have that lim, ., d(X", X) = 0.
We next show that for all n € N, X” has finite variation. To this end, we observe
that for all n € N and s € [t,T) it holds by integration by parts that

1

AXT =72 Fd(ul — H) + (uf — HD)dve ® +dly 50" — B, (7.38)

M

Again by integration by parts, and using (7.33), we have for all n € N and s € [t, T
that

dul = vidLs + Lsdv? + d[v", L]s
1//1 _ 1 N o
= ull= <—ch + 7757"s> +n2(1 —72) |ds — u” ( os + 7757"5> AW
2 2 2
—uMner /1 — F2dW P + Lo

This and (7.28)) yield for all n € N and s € [¢,T] that

1 1

1 1 1 3 1 /1 1
Vs Pd(uy — HY) =75 ? (ps+us+2ns 3 ) ugds — s * (2us—§0§> Hds
_11 _1
s 5o (ul — HY)AW + 75 Lodv.
(7.39)
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7.5 Continuous extension of the cost functional

Moreover, it follows from (3.5) for all n € N and s € [¢t,T] that

il

QJSdWS(U.

(7.40)

We combine (7.38]), (7.39)), and (7.40)) to obtain for all n € N and s € [t,T") that

_1 1 1 3 -
(= H2)a = (= B (=gt o2 ds = (= 2D

1

—1 1 1 -1 .1 -1
dX$ = "ug (Ps Tghs T 5775) ds — s QHSZafds s 2 Lydv? + d[y~2, 0" — H",.

Since v™ has finite variation for all n € N, this representation shows that also X™ has
finite variation for all n € N.

Note that for all n € N, by Proposition the process associated to the
cadlag finite-variation process X" is nothing but D". Since 7 is bounded, there exists

¢ € (0,00) such that for all n € N
T 3
([ nrazas)
t

T 3
( / (D2)*yy 2773658)
t

This implies (B2). Similarly, by boundedness of o, we obtain (B3). We thus conclude
that X™ € AY(z,d) for all n € N,

(iii) Let (X™)en be a Cauchy sequence in (AP™(x,d),d). Then, (y"2D"),ey is a
Cauchy sequence in (L7, ||| z2). Since (L7, ||z2) is complete (see, e.g., Lemma 2.2 in
Section 3.2 of [KS91|), there exists u® € £2 such that lim, .|y~ 2 D" — w2 = 0.

. 1
Define X0 = (X0)sep—m by X =2, X9 =¢, X =~ 2(u) — H?), s € [t,T), where
HY is given by (7.28)). By Lemma it holds that X° € AP (x,d). We furthermore
obtain from Lemma that, for the associated deviation, D° = vX° + W%HO. By

definition of X°; this yields vs 2D% =%, s € [t,T). Tt follows that

E =F < CE[ sup (ug)ﬂ < 00.

se[t,T]

1
T 2 2 1
d(X",X°>=<E {/ (v =i 00) d]) = D" =l g,
t

and hence lim,, ., d(X", X%) = 0. O
We conclude with the proof of the equivalence of the control problems.

Proof of Corollary[7.5.5 For the proof, fix t € [0,T] and x,d € R. We know from
Corollary that AN (x,d) C AP™(z,d) and that JV(z,d, X) = JP™(x,d, X) for all
X € A (x,d). Hence,

essinf JV(x,d, X) > essinf JP™(z,d, X).
Xe Al (z,d) XeAP™ (z,d)
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7 Continuous extension

It further follows from Theorem that, for every X% € AM™(z,d), there exists a
sequence (X™),ey in AN (2, d) such that J&(z,d, X™) — JP™(z,d, X°) in L(Q, F;, P)
as n — oo (with a.s. convergence for a subsequence). Therefore, for every X° €
AP (z,d), it holds that

essinf JN(z,d, X) < JP™(x,d, X°).

X e A (z,d)
This implies that

essinf JV(z,d, X) < essinf JP™(x,d, X).
X €A (x,d) X €AP™ (2,d)
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Solution of the extended problem
via reduction to a standard LQ stochastic
control problem

We here continue our investigations of Chapter []] The aim of the present chapter
is to solve the extended problem of Section (and, potentially, the finite-variation
problem of Section [7.1)).

We do this by reducing the extended problem to a standard L(Q) stochastic control
problem in Section [8.I] Subsequently, in Section we apply stochastic control
literature (more precisely, Kohlmann and Tang [K'T02]) to solve the LQ problem (under
additional assumptions). A direct link between the control problems allows us to
recover the solution of the extended problem in Corollary In particular, we
find that the unique optimal strategy in general is characterized by the solutions of
two BSDEs. The first BSDE is (4.1}, while the second one is linear (with in general
unbounded coefficients) and enters the solution in case of a nonzero terminal position
or when one tries to follow a nonzero target position over the course of the trading
period. We provide a formula for the optimal strategy and a representation for the
minimal costs. Finally, we in Section present the Obizhaeva-Wang model (i.e., v
and p are constants, and 7 = 0) with random targets é and (.

Throughout this chapter, we assume the setting of Section and let M) = W),
j € {1,...,m}, be independent Brownian motions. f and ( are as introduced in
Section We further suppose that the condition (Cpgq) is always in force.

This chapter makes extensive use of material from Sections 2, 3, 4, and 5 of the
preprint [AKU22a| (joint work with Thomas Kruse and Mikhail Urusov).

8.1 Reduction to a standard LQ stochastic control
problem

We recast the problem of minimizing JP™ over X € A" (z,d) as a standard LQ
stochastic control problem. That means, we transform the extended problem into a
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8 Solution of the extended problem

control problem where the state is driven by a controlled SDE and the control acts
as one of the arguments in that SDE and as one of the arguments in the integrand
of the cost functional. Moreover, the pair of control and state enters linearly into the
dynamics of the state and quadratic into the cost functional.

8.1.1 The first reduction

Observe that ([7.26) in Proposition shows that for ¢ € [0,7], z,d € R, and
X € AP™(xz,d) the costs JP™(z,d, X) depend in a quadratic way on (ﬁx,y_%DX).
Moreover, (7.25) in Proposition m ensures that the dynamics of iZ depend linearly

X . . e .
on (H ,7_%DX ). These two observations suggest to view the minimization problem
of JP™ over X € AP™(x,d) as a standard LQ stochastic control problem with state

process A" and control fy’%DX , and motivate the following definitions.

For every t € [0,T], z,d € R, and u € L] (i.e., u = (u)seft,7] Is a progressively mea-
surable process with E[ftT uZds] < 00), we consider the state process H* = (H")sept,]
defined by

1 1 1
dH = <— (Ms - _03) Hf -5 (2(ps + ps) — ‘73 - 03775?5) US) ds

2 4 2
1
+<§%Hg—mfwmg%)ﬂwn—mw1—ﬁ%ﬂw% selt,T], (81)
d
H = — — /i,

Nan

and the cost functional J“? defined by

d 1 N2 T
L (2 — B, | = (HY + /77 As) uid
Jt (ﬁ Y, U) t [2 ( T + fYTg) + /t (Hs + 5) usas

T
+ / N (HY 4 J756)% — 2 (H' + /A5G usds |
(8.2)

Our standard LQ stochastic control problem (with possible cross-terms) is to minimize
(8.2) over the set of admissible controls £?.

It holds that for every progressively measurable execution strategy X € A" (x,d)
there exists a control v € £? such that the cost functional JP™ can be rewritten in
terms of JMQ (and —%). In fact, this is achieved by taking u = 42 DX, as outlined
in the motivation above. We state this as Lemma

Lemma 8.1.1. Lett € [0,T] and z,d € R. Suppose that X € A'™(x,d) with associated

1
deviation D*. Define u = (uy)sepn) by us = vs DX, s € [t,T). It then holds that

s )
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8.1 Reduction to a standard LQ) stochastic control problem

u € L? and that

d?

—  a.s.
2

d
‘]tpm(xade):JtLQ (ﬁ_ ’Vt%u) -

Proof. By definition of u we have that u is progressively measurable and, due to as-
sumption (B1), satisfies E[ftT u?ds] < oo; hence, u € L?.
— _1 1
Let Hf =, 2 DX —~2 X, s € [t,T], be the scaled hidden deviation (7.17)) associated
to X. We can substitute u = 42D in the cost functional (7.26) and also in the
dynamics ([7.25)) of HY. Observe that A" follows the same dynamics as the state

: ==X
pr;)((:ess H" associated to u (see (8.1)), and that H, = \/% — V7w = Hy'. Therefore,
H" and H" coincide, which completes the proof. O

On the other hand, we may also start with u € L£? and derive a progressively
measurable execution strategy X € AY™(x,d) such that the expected costs match.

Lemma 8.1.2. Let t € [0,7] and z,d € R. Suppose that u = (us)sepr) € L7 and let
H*" be the associated solution of (8.1). Define X = (X;)scp— 1) by

~

_1
XSIVSQ(U,S—H;L)7 S & {t,T)’ Xt7:x7 XT:§

It then holds that X € A" (x,d) and that

o d P2
me(x,d,X):JtQ(ﬁ— %x,u)—Q—% a.s.

Proof. Tt follows from Lemma that X € AP™(x,d). Moreover, we have from
Lemma|7.4.4/that the associated deviation satisfies DX = yX —i—véH“, ie., DX = 75% Us,
s € [t,T), and H" is the scaled hidden deviation of X. It thus holds that J/™(z,d, X)
is given by with #* = H*. In the definition of JMQ, we may replace u
under the integrals with respect to the Lebesgue measure by fy_%DX. This shows that
me(:z:,d,X):JtLQ(\;L%— Yo, u) — L O

2yt

Lemma and Lemma together with Corollary establish the following
equivalence of the control problems pertaining to J%, JP™, and J"<.

Corollary 8.1.3. Fort € [0,T] and z,d € R it holds that

essinf J'(x,d, X) = essinf J'™(z,d, X)

XeAl (x,d) XeAP™ (x,d)
d d>
— essinf JF9O [ — — r,u| —— as.
u€L? ! (\/% o ) 2v
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8 Solution of the extended problem

Proof. The first equality is just Corollary The inequality that J™(z,d, X) >

essinf, e 2 JtLQ(\/% — /T, u) — % for all X € AP™(x,d) follows from Lemma [8.1.1}
whereas essinfyc apm(pq) i (7,d, X) < JtLQ(\/L77 — /T, u) — % for all uw € £? is an
immediate consequence of Lemma [8.1.2 O

Furthermore, Lemma Lemma [8.1.2) and Corollary provide a method
to obtain an optimal progressively measurable execution strategy, and potentially an

optimal finite-variation execution strategy, from an optimal control of the standard
LQ stochastic control problem and vice versa.

Corollary 8.1.4. Let t € [0,T] and z,d € R.
(i) Suppose that X* = (X})sep—1 € A" (x,d) minimizes J*™ over A"™(x,d) and
let DX" be the associated deviation process. Then, u* = (u})ser) defined by

ul =5 °DX . seltT],

minimizes J*9 over L2
(i1) Suppose that u* = (u})sepr) € L7 minimizes J*9 over L7 and let H* be the
associated solution of (8.1)) for u*. Then, X* = (XJ)scp,r defined by

~

X:=nitu—HY), seltT), X =z Xp=¢

minimizes JP™ over AP™(x,d). Moreover, if X* € A'(x,d) (in the sense that there
is an element of A"(x,d) within the equivalence class of X*, see (7.15)), then X*
minimizes J® over A (x,d).

Proof. Part (i) is an immediate consequence of Corollary and Lemma |8.1.1] Part
(i) follows directly from Corollary and Lemma [8.1.2] O

Moreover, we keep uniqueness of a minimizer.

Corollary 8.1.5. Let t € [0,T] and x,d € R. There exists a (Dy o |jr-a-€.) unique
minimizer of J*™ over AY™(x,d) if and only if there exists a (Dyw|pr-a.e.) unique
minimizer of JL9 over L£2.

Proof. Assume first that X* uniquely minimizes J*™ over AY™(x,d). Then, by Corol-
lary 8.1.4(1), u* = v 2DX" defines a minimizer of J“Q over £2. Suppose that *
also minimizes J“Q over £?. We have from Corollary (ii) that X* defined by
Xr = vgé(ﬂj — H™), s € [t,T), X; = =, X} = &, minimizes JP™ over AP™(z,d).
Lemma @ yields that u* = fy‘éDy(*. Since X* = X* Dy |jt,m-a-e., it holds that
DX = pX° Dy o | m-a.e., and we conclude that u* = @* Dy [ r1-a-e.

For the other direction, assume that u* uniquely minimizes J“? over £2. We obtain
from Corollary [8.1.4(ii) that X* defined by X = ys_%(u: —HY), set,T), X} =u,
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8.1 Reduction to a standard LQ) stochastic control problem

Xz = £, minimizes JP™ over AP (z, d). From Lemma we have that u* = v~ 2 DX,
Suppose that X* minimizes J*™ over AP™(z,d). Then, Corollary [8.1.4(i) implies that
@ =~72DX" defines a minimizer of J“@ over £2. Since y 2 DX = y* = i* = y 2 DX
Dy o |it,m-a-€., we get that d(X*,X*) = 0, and hence that X* = X* Dy |it,m-a-€.
(recall that d defined in (7.30) is a metric by Lemma [7.5.1)). m

8.1.2 Formulation without cross-terms

The last integral in the definition of the cost functional J*? involves a product
between the state process H" and the control process u. A larger part of the literature
on LQ optimal control considers cost functionals that do not contain such cross-terms.
In particular, this applies to [KT02], whose results we want to apply in Section[8.2] For
this reason we provide in this subsection a reformulation of the control problem (8.1)
and that does not contain cross-terms. In order to carry out the transformation
necessary for this, we need to impose a further condition on our model inputs: we
assume in the current subsection that there exists a constant C' € [0, 00) such that for
all s € [0,T] we have P-a.s. that

I\ < CIA + ). (8.3)

Note that this assumption ensures that the set {\; + ks = 0} is a subset of {\; = 0}
(up to a P-null set). For this reason, in the sequel, we use the following convention:

S

under (8.3) we always understand =0 on the set {\; + ks = 0}.

s T Ks

Now in order to get rid of the cross-term in (8.2]) we transform for ¢ € [0, 7] any control

process u € L2 in an affine way to i, = u, — )\S)J‘:HS (HY 4 \/75Cs), s € [t,T]. This leads

to the new controlled state process H? = (ﬁf)se[tﬂ that is defined for every t € [0, T],
r,d € R, and @ € L? by

5 s 1 /\s 2 s s_s i
i — (M__ o2 (psws_w)) fitds

2 8 As + Ks 2
0%+ 0TS As 02+ 0snsTs
- ps—i_/“’LS_T usds_)\ +/{/ pS—i_ILLS_T \/%Csds
(2o Ao o)) BAWD — (0, + nr)a,d WD
9 )\5“‘/{5 s sl's s s s st 8/)s s
" (05 4 15T5) /7 CedW D — As ner/1 — P2 H W@
)\3"’/‘?3 ° o o s )\s_'_/iss e °
— As /
—Ns 1- FiﬂdeS@) o A + K Ts 1-— ?g\/%gsdwsa)? s € [tv TL
~ - d
H = — — /n.

R
(8.4)
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8 Solution of the extended problem

The meaning of (8.4) is that we only reparametrlze the control (u — @) but not the
state variable (H® = H"), see Lemma for the formal statement. For ¢ € [0, 77,
z,d € R, 4 € £2 and associated H® deﬁned by (8-4), we define the cost functional J'Q
by

A d
JtLQ (— — /i, ﬁ)
vV \ (8.5)

:Et[% (ﬁ%+\/v_T€>2+/tT X f}{ (ﬁf+\/%cs>2+(As+ns)a§ds .

This cost functional does not exhibit cross-terms and is equivalent to J“@ of (8.2)) in
the sense of the following lemma.
Lemma 8.1.6. Assume that (8.3) holds true. Let t € [0,T] and z,d € R.

(i) Suppose that u = (us)sepr) € L7 with associated state process H" defined by
(8.1). Then, i = (is)se,r) defined by

As
as = Us — )\ Tk ( + \/%Cs) s € [t,T],
is in L2, and it holds that H* = H* and JF9(-L — /qz,u) = JFO(-L YT, ).

VIt N
(ii) Suppose that & = (ls)sep) € L7 with associated state process H® defined by
(8.4). Then, u = (us)scp,r) defined by

As
8NS t? T Y
(G, el T)
is in £2, and it holds that H* = H* and JtLQ(\/;‘% — VN, u) = JLQ(\/‘% YT, ).
(#ii) It holds that

d d .
eqszzr;fJ (ﬁ — %x,u) = esiing (ﬁ — ytm,u) :

Ug = Ug +

Proof. Note first that, if u,4 € £? with the relations @ = u — m(H“ + /() and
H® = H*, then
Ns(H 4 VA5Gs)? = 2A(HY + /7sCo)us + (s + As)ug

2

— A (HY + ) — (i) 25 (Y 4 )

(As + £s) 56
# O ) (e = 4 ) ) |

AsK

e (F2 +v3e) + Ot ri2s se 1)

200



8.2 Solving the LQ) problem and the extended problem

(i) We have that @ is progressively measurable. Furthermore, the fact that all
of EL ulds|, Elsup,epr(HY)?], and E[fOT%(fds] are ﬁnite and (8.3) imply that

fT 42ds) < co. Hence, @ € L7. Substituting u, = i, + 32— (H“+\/%CS) s €t,T],
in . ) leads to ( - Equality of the cost functionals follows from (8.6)).

(ii) Note that (8.4) is an SDE that is linear in H® @, and V¢ Furthermore,
boundedness of p, i, o, n, 7 and (8.3)) imply that the coefficients of the SDE are bounded.
Since moreover E| ft iis)? + ’ysCst} < 0o and Hg‘ is square integrable, we know that
Elsupep, T}(f[ )?] < oo (see, e.g., [Zhal7, Theorem 3.2.2 and Theorem 3.3. 1]) We can

thus argue similar to (i) that u € £7. A substitution of @ in (8.4) yields (8.1)). Equality
of the cost functionals again follows from (8.6).

(iii) This is an immediate consequence of (i) and (ii). O

As a corollary, we obtain the following link between an optimal control for JLQ and
an optimal control for J"Q.

Corollary 8.1.7. Assume that (8.3)) holds true. Let t € [0,T] and z,d € R.

(i) Suppose that u* = (u})ser) € L7 is a (unique) optimal control for J*©, and let
H"™" be the solution of (8.1) for u*. Then, 0* = (4})sepr,r) defined by

A *
s =u; — * (H" sCs ), elt,T],
= = T+ G), s IT]
is a (unique) optimal control in L7 for JEQ. Moreover, H" = Hv".
(i1) Suppose that 0* = (4%)sepr) € L7 is a (unique) optimal control for JEQ, and let
H™ be the solution of ([8.4) for 0*. Then, u* = (u})sep.r) defined by

)\5 I
w=4F + (Hg + \/%CS)’ s € [th]7

P
is a (unique) optimal control in L2 for J*9. Moreover, H* = H™ .

Proof. This is clear from Lemma [8.1.6 [

8.2 Solving the LQ problem and the extended
problem

We now solve the control problems. More precisely, we consider the problem formula-
tion of Section and obtain, under appropriate assumptions, via [KT02| existence
of a unique optimal control in terms of two associated BSDEs and a representation
for the minimal costs in Theorem From this, we derive in Corollary a

201



8 Solution of the extended problem

unique optimal strategy for the extended problem of Section via Corollary [8.1.7]
Corollary and Corollary

In our general setting (see the end of the introduction of the present chapter) we, for
this section, additionally assume that the filtration (F)scjo,7] for the filtered probability
space (82, Fr, (Fs)scp,r), P) is the augmented natural filtration of the Brownian motion
(WO W) T Furthermore, we set the initial time to ¢ = 0. We moreover assume
that (Chonneg) is in force.

Remark 8.2.1. Note that the assumption (Chonneg) 0f nonnegativity of A and « is
necessary to apply the results of [KT02]. Indeed, [KT02]| requires that A+« (the coeffi-
cient in front of 4% in (8.5)) and £~ (the coefficient in front of (H® + V7s6s)? in (B.5))
are nonnegative and bounded, which implies that A and s have to be nonnegative.
Moreover, we note that nonnegativity of A and s ensures that is satisfied, and
we observe that the mentioned coefficients A\ + x and % are bounded, as required.
Indeed, it clearly holds that ﬁ < K, and it remains to recall that u, o, p,n,7, and A

are bounded.

Observe that the standard LQ stochastic control problem without cross-terms of
Section , which consists of minimizing J“Q in (8.5) with state dynamics given
by (8.4), is of the form considered in [KT02, (79)—(81)] (note also Table [8.1). The
solution can be described by the two BSDEs [KT02, (9) and (85)]. In our setting, the
BSDE of Riccati-type [KT02, (9)], after some computations, turns out to correspond
to BSDE (in the form of (4.3)). Recall from Proposition that, if (C>c)
or (C;) holds, then we are guaranteed existence of a unique solution (Y, Z, M*) of
BSDE and it holds that (6% + n* + 20nT)Y + kK + A > ¢ Dyy-a.e. for some
¢ € (0,00). For such a solution (V,Z, M) of BSDE (1)), we define 9 = (J,)co.1] as
in (5.22)), and consider the second BSDE [KT02, (85)], which in our setting reads

2 2 —_
s 9 o +0-s775rs q
d. = — | | B2 - 28 _ . K
s <2 3 (ps+us 5 ) ) (IR
Os _ =319 ) 1) _ _ =29 42 9
(%= (o7 3) o0 = ney/1 = 720,62 + VAT, — 1) | ds
+ § PV aw s e 0,7,
j=1
1 ~
vr = =5Vt

(8.7)

Definition 8.2.2. A pair (¢,¢) with ¢ = (1), ¢ ... ¢(™)T is called a solution
of BSDE (8.7) if ¢ is an adapted continuous process with E[supse[O,T] 2] < oo, ¢ is
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8.2 Solving the LQ) problem and the extended problem

[KT02] | Our setting

M 3
_\/'YTé

AK
AR

3

Q

q vals
N A+ K
A

B

f

b= % — ot u— )
(p + e o +UT]T)
,\+n (p+p— 2+Um)\/§€
Ch 7~ /\Jm(a +1n7)
Cy —A—Mn\/ﬁ
D, —(o +17)
D, V1 -7
91 —ﬁ(g‘i‘?ﬁ)ﬁf

92 —,\—i,ﬂ\/l -7/

Table 8.1: We make the following identifications of quantities in [KKT02| with quantities
in our setting.

progressively measurable with fOTﬂcﬁSands < o0 P-as., and BSDE (8.7) is satisfied
P-a.s.

Observe that BSDE is linear, but existence of a solution is not evident since
the coefficients of this BSDE in general are unbounded.

For a solution (Y, Z, M*) of BSDE and a corresponding solution (¢, ¢) of
BSDE (8.7), we define ¥° = (99)ep0,11 by

. (ps + ps — > +"S”S“) Vs + (05 + 1T + 1/ T = T208 — /A5G
vy = . s €10,T7.
(02 +n?2+ 2057757°3)Y5 + Ks + As
(8.8)

We then further introduce for x,;d € R the SDE
d

dH; = B dK, +dL,, se(0,T), Hj=——
Vi

— oz, (8.9)
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8 Solution of the extended problem

where

T 2 2 =
s o 0. +0MsTs \ ~
Kr: — = s s_s— Q93 d
0 (2 8 (p o 2 ) ) ’
n / (%—(as+nsn)5s> aw — / nev/1 — 72 0,dW®
0 0

T 2 X ) (8.10)
b= / (ps Ms_w)ﬁgdﬁ / (04 + 0,7 ) AW D)
0 0

2
+/ ney/1 =72 90%W®, re[0,T].
0

We will show that the solution H* of (8.9) is the optimal state process in the stochastic

control problem to minimize JYQ of (8.3 (8-5). Notice that H* can be easily expressed via
K and L in closed form, e.g.,

H* = E(K), (\/—_—\/’%x—i-/ E(K);'d(Ls —[L,K], )) rel0,7]. (8.11)

In the next theorem, we summarize consequences from [KTO02| in our setting to
obtain a minimizer of J“? in (8.5 and a representation of the minimal costs.

Theorem 8.2.3. Let the assumptions of this section be in force and assume that (C>c)
or (Cs) s satisfied. Let (Y, Z, M*) be the unique solution of BSDE (cf. Propo-
sition .

(1) There ezists a unique solution (¢, ¢) of BSDE (8.7).

(ii) Let x,d € R, and let H* be the solution of SDE (8-9). Then, a* = (4})sepo,
defined by

Ak q )\s 0
;= (195 N —I—KJS) (19 + \/%CS)\ n HS) s € 0,7, (8.12)

is the unique optimal control in L3 for jLQ, and H* is the corresponding state process
(i.e., H* = HV).
(7ii) Let x,d € R. The costs associated to the optimal control (8.12)) are given by

d A d
inf JLQ (— — a:,zl) = Je (— — x,ﬂ*)
decs ~ Y0 0 ~ Y0
() () v
0 \/% Y0 0 \/% Yo 0;

Co = %E | + B { /O ' %As@?ds}

T
- E { / (92)2 ((02 + 2 + 204n5Ts) Y5 + ks + As) ds} .

where

(8.13)

0
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8.2 Solving the LQ) problem and the extended problem

Proof. Observe that the problem in Section fits the problem considered in [KT02,
Section 5|. In particular, note that the coefficients in SDE for H® and in the cost
functional JQ (see (8.5)) are bounded, and that the inhomogeneities are in £3. The
initial state ﬁé‘ = \/i% — /Yo is in R. Moreover, we have that %, /\’}r—”ﬁ, and \ + k are
nonnegative. Furthermore, the filtration by assumption in this section is generated by
the Brownian motion (WM ... W)T,

(i) This is due to |[KT02, Theorem 5.1|.

(ii) The first part of [KT02, Theorem 5.2] yields the existence of a unique optimal
control 4*, which is given in feedback form by the formula @* = 0H® + u°, where

(p+n—2=(0* 4+ 2007 +1%) Y + (0 +17) Z0 + V1 — 72 Z3)

9 —
A+ K&+ (02 4+ 20T +2)Y

and

2 —
= _ “_—} - 2 Y
“ ((p+ 2 )w+)\+,€\/§§(a + 0‘777"+77)

+ (o + 7)) M + v/ 1 — 72 ¢(2)> (A K+ (0* 4 20mT + 772)Y)71
=— (9" + ¢ A
B xvr)
We obtain by plugging the formula for @* into the dynamics (8.4) for H*" .
(iii) The second part of [KT02, Theorem 5.2|, after a straightforward computation

for Cy, provides us with the optimal costs. O

For our trade execution problem, this implies the following.
Corollary 8.2.4. Let the assumptions of this section be in force and assume that

(Cse) or (C,) is satisfied. Let (Y,Z, M™*) be the unique solution of BSDE (4.1,

(1, @) the unique solution of BSDE (8.7), and recall definitions ([5.22) of U and (8-8)
of 0°. Let x,d € R. Then, X* = (X¥)sepo—1) defined by

(8.14)
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8 Solution of the extended problem

with H* from , is the unique (up to Dy,a)-null sets) optimal execution strategy in
Ab™(z,d) for JP™. The associated costs are given by

inf J (2, d, X) = J"(x,d, X*
Xejgm(%d) o ( ) o ( )

d? o
=% —(d — yx)* — 20 QE(CZ Yoz) + Co
with Cy from (8.13).
Proof. By Theorem m(ii), 4 from (8.12) is the unique optimal control in £2 for JUQ,
and H* = H*. Corollary [8.1.7(ii) implies further that u* = 4* + m(H“ +7C) =
J9H* — ¥° is the unique optimal control in L2 for JXQ, and HY = H¥ = H*. It then

follows from Corollary [8.1.4(ii) and Corollary [8.1.5 that X;_, X5 = &, X* = ~; * (u?

1~ o~
HY) =75 2((9s — 1)H — %), s € [0,T), is the unique optimal strategy in A" (z, d)
for JP™. The representation for the minimal costs is an immediate consequence of

Theorem [8.2.3iii), Lemma [8.1.6[iii), and Corollary [3.1.3| O

A special case of our setting is when, as in Chapter [j bl we require to close the
position (i.e., € = 0) and do not try to follow a (nonzero) target process (i.e., ¢ or the
risk coefﬁ01ent A vanishes). We remark that BSDE ( neither contains 5 nor . In
particular, the solution component Y, the process 19 and the process K from (8.10)
do not depend on the choice of € or ¢ (although they depend on the choice of \). In
contrast, BSDE (| involves both 5 and (. Iff = 0 and at least one of )\ and ( is
equivalent to 0, we have that (¢, ¢) from (8.7), ¥° from (8.8), L from (8.10), and Cj
from (8.13) vanish.

In general, the terminal costs and the running costs in (8.2)) (and also (8.5])) contain
terms such as (H% + /7€) and A\, (H" + /75(s)?, which are inhomogeneous. In the

case where é = 0 and where at least one of A and ( vanishes, the problem becomes
homogeneous. In that case, we could also apply results of [SXY21|. For instance,
by applying [SXY21] to the problem of Section [8.1.1] (note that [SXY21] allows for
cross-terms), it is possible to obtain the results of Corollary also if we replace
the assumptions (Chonneg), (C>¢), and (Cs) by the set of the following assumptionﬂ
é = 0, at least one of ( and A vanishes, and there exists § € (0,00) such that, for
all uw € £ and the associated process H" defined in (8.1) with HY = 0, the uniform
convexity assumption is satisfied. The uniform convexity assumption on the
cost functional is a weaker requirement than the usually in the LQ literature imposed
nonnegativity and positivity assumptions on the coefficients of the cost functional.

If é = 0 and at least one of A\ and ( vanishes, we find that the optimal strategy
of Corollary can be represented by a formula that is very close to the one of
Theorem [5.2.6(iii) (see also Chapter [9):

'We still require the remaining assumptions, e.g., (Cpaa) and that the filtration is generated by the
Brownian motion (W, ... Wwm)T,
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8.3 The Obizhaeva-Wang model with random targets

Remark 8.2.5. Let the assumptions of Theorem be in force and define

Qs = — / 9, (0 + 0,7 )dWD — / G/ 1 — P2dW
0 0

_ / @(ur + pr — 02 — o, T, )dr, s €[0,T).
0

We can compute from (B:5), (8.9), and (8:10) that v 2E(K) =, 28 ). Using (8.11))

with (8.14]), we then obtain that the optimal strategy in A5™ (z, d) for me ons€[0,7T)
can be expressed as

xi= (o= S ongt [CER) L, - (LK) ) €@ - T~

In particular, in the subsetting where é = 0 and at least one of ( and A vanishes, the
optimal strategy (8.14) can be represented as

Xa;:l', X;::O, X:: (l’—i) 5(@)8(1—53)7 SE[O,T)
0

8.3 The Obizhaeva-Wang model with random
targets

The models developed by Obizhaeva and Wang [OW13] can essentiallyﬂ be considered
as special cases of the set-up in Chapter |7} Indeed, we obtain the framework of [OW13]
Section 6| by setting u =0, 0 =0,n7=0,7 =0, A = 0 and choosing p € (0,00) and
¢ € R as deterministic constants. Also the extension in [OW13, Section 8.3] including
risk aversion can be regarded as a special case of our setting by allowing A € (0, 00) to
be a positive constant and choosing ( = 0.

In this section we apply our results (in particular, Corollary and provide
closed-form solutions (see below) for optimal progressively measurable execution
strategies in versions of these problems which allow for general random terminal targets
¢ and general running targets (.

To this end let ,d € R and t = 0. Assume that (F)s,cpr is the augmented
natural filtration of the Brownian motion (W(l), ..., W) T Suppose that pu = 0,
oc=0,1n7=0,and 7 = 0. Furthermore, assume that p € (0,00) and A € [0,00) are
deterministic constants. We take some é and ( as specified in Section (in particular,

see (7.1) and (7.2)). Note that the conditions of Proposition [4.3.2] Theorem [8.2.3] and
Corollary [8.2.4 hold true, and that ~, = 7 for all s € [0,7]. We find the unique

2Note that the set of admissible strategies in the continuous-time optimization problem of [OW13]
is slightly different even from our finite-variation problem of Section
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8 Solution of the extended problem

solution (cf. Proposition [4.3.2]) of BSDE (4.1) in the current setting by solving the
scalar Riccati ODE with constant coefficients

2
P7 e 2N Ap 1
dy, — Y Y, — ds, s€[0.T], Yp=-.

<p+)\5+p+)\ p+A>S s€[0.7] T=3

Such an equation can be solved explicitly, and in our situation we obtain in the case
A > 0 that

Atanh(f"(T )>+ Ap+ )

1 o
Y= VG , S€E [OaT]v (815)
2 (6 + ) tanh (240 1 /3(p )
and in the case A = 0 that
1
€ [0, 7. (8.16)

Y=,

24+ (T —s)p

Hence, (Y, Z, M*) with Z =0 = M+ and Y of (8.15)) (if A > 0), respectively (8.16)

(if A = 0), is the unique solution of BSDE ({4.1)) in the present setting. The process ¥

from ([5.22)) here is given by

~ Y.

g, =Pt

p+A

s € 0,77

~ ~ 1
Note that ¥ is deterministic and bounded by || < Ep‘i\/\. BSDE (8.7)) becomes

Ay = = (=0, + VA CAD, = 1)) ds + > 6PaWD, s € 0.7,
po (8.17)

1 A
r = =3V

By Theorem [8.2.3(i), there exists a unique solution (1, ¢). Let us show that ¢\¥) € £2
for all j € {1,...,m}. To this end, consider

i Ay T -
;/g ¢ dW ) = i, ¢o+/0 ( P05t + /Yo CA (s 1)) ds, re[0,7T],

and apply to this continuous local martingale the Burkholder-Davis-Gundy inequality,
and subsequently Jensen’s inequality, to obtain existence of some ¢ € (0, 00) such that

m . m r 2
> / oV aw | | <CE | sup (Y / oW aw )
sup 4y

Lo\ 2
ATT?? (ﬂ> E
r€[0,T] p

N + A ? T
L ATTN? (2p + 1) E [/ 'yogfds} .
p+A 0

<8cFKE
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8.3 The Obizhaeva-Wang model with random targets

Due to Definition [8.2.2)and (7.2)), the right-hand side is finite. Since

[Z/¢ ] Z/w

this shows that ¢/ € £2 for all j € {1,...,m}. Observe moreover that the coefficient
of ¢ in the driver of BSDE ( - ) is bounded. It thus follows, e.g., by Lemma [1.1.2]

(with g© = —pd, g = 0 =g, g® = AV — 1), A=0, £ = —1,/75¢), that the
solution component v of is given by

by = T —lr E[é]—ﬂ Tr(l—Y)E[g]d e [0,7]
s — 3\/% 2Ts p+/\ r T slGrjar |, S ) )

s

where

Iy =exp (—p/ @dr) = exp (—L <)\s —|—p/ Kdr)) , s€[0,7]. (8.18)
0 p+A 0

It holds for the process in (8.8)) that
s s)\
g = VT VIGA
p+ A
Further, the processes K and L for SDE (8.9) in our current setting are given by

:—p/ﬁds L—p/ﬁods € [0,7].

It then follows from Corollary 8.2.4] (see also Remark [8.2.5] and note that £(K) =
£(Q) =T in the current setting) that X* = (X7)scp— 1) defined by X§_ =z, X} =¢,

and
d p / 1( p > ) p
Xr=|o—-——+—"-— NG — =1, ) dr | T,—"—(1 -,
( Yo ptA ¢ \/702/) p+/\( )

1
S S | 7T7
+pH(< mw €[0,T)

is the (up to Dyya)-null sets unique) execution strategy in A5"(z,d) that minimizes
JPm,
We consider the case A = 0 as a particular example.

(8.19)

Example 8.3.1. Suppose that A = 0. If the terminal target é € R is a deterministic
constant (and d = 0), then the optimal strategyE] from [OW13, Proposition 3| is given
by Xi_ =z, X7 =&, and

1+ (T —s)p

X =(z—9§) T +& sel0,T); (8.20)

S

3We will see in (8.22) that, for f € R (and d = 0), this is also the optimal strategy in our extended
problem, and moreover in our finite-variation problem (cf. Corollary ii)).
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8 Solution of the extended problem

it consists of potential block trades at times 0 and 7" and a continuous linear trading
program on [0,7). In the following we analyze how this structure changes when we
allow for a random terminal target 3

First recall that the solution component Y of BSDE is given in this case by

(8.16). Tt follows that I" from (8.18)) simplifies to
2+ (T —s)p
s 2 + Tp ?

For the solution component ¢» of BSDE ({8.17)), we thus obtain that

€ [0,T7.

SRR
b= g Bl s 0.1

The optimal strategy from (8.19) for s € [0,T’) becomes

X;“:(x———ﬁ/F z/zrdr) (1Y, >—7ws

_ l’—i Er[g] r 1+<T—S)p Es[é]
_< 70+(2+Tp)p/0 (2+(T—)p)2d> 21Tp 2+ (T—-s)p

(8.21)

Integration by parts implies that (note that (£, [f])re[oj] is a continuous martingale)

’ E.[¢] U 1
[ eraar = ), "=y
_ E,[¢] Bl / ’ 1
2+ T =s)p)p 2+Tp)p Jo 2+ (T —=7)p)p
Substituting this into (8.21)) yields for s € [0,T) that

Xr = (x ~ Blé] - i) 1+ T =), E[¢] - /O Md&[é}

dE,[§], sel0,T).

Yo 2+Tp 24+ (T —r)p

We finally obtain the alternative representation

X; = (:r — E[§] - %) %j_ﬂ:)f’ + E[€] + /Os %dﬂ[ﬂ, s€0,7),
(8.22)

for (8.21). We see that this optimal strategy X* € Aj™(z,d) consists of two additive
parts: the first part (for d = 0) exactly corresponds to the optimal deterministic
strategy in (8.20) where the deterministic terminal target is replaced by the expected
terminal target E[£]. The second part represents fluctuations around this deterministic
strategy which incorporate updates about the random terminal target é Note that
this stochastic integral vanishes in expectation.
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The semimartingale problem vs.
the extended problem

Let us discuss the relation between the semimartingale problem (see Chapter [5) and
the extended problem (see Chapter [-Chapter [8).

Although the semimartingale problem and the extended problem use the same base
setting of Section [3.1] the set-ups of both problems exhibit some differences.

For instance, for the semimartingale problem, we work with the independent contin-
uous local martingales M), j € {1,...,m}, of Section and in a general filtration,
whereas for the extended problem, we assume that M) = WU j € {1,... m}, are
independent Brownian motions. In Section [8.2] we additionally require the filtration to
be generated by these Brownian motions and we consider initial time ¢ = 0.

A difference in the setting where Chapter[7}-Chapter §]is more general than Chapter[j
concerns the possibility to include nonzero, stochastic targets f , ¢, and to consider
progressively measurable strategies.

The shared motivation for the definition of the cost functional and of the deviation
process in the semimartingale problem and in the extended problem is the usual kind
of formulation for finite-variation strategies in Obizhaeva-Wang type models (see Sec-
tion [1.1] Section and Section [7.1)). The formulation in the semimartingale prob-
lem is in addition motivated by a heuristic limit from discrete time (see Section [3.2)),
while counterexamples show that the conventional formulation here indeed is not suf-
ficient (see Section . In contrast, we give a rigorous justification (Theorem
for the particular formulation that we use in the extended problem.

Having set up the problems, the solution approaches that we take, in both cases,
are probabilistic and BSDE plays a crucial role. In the semimartingale problem,
this BSDE appears already in the alternative representation of the cost functional (see
Section , whereas in the extended problem BSDE arises as a special case
of [KT02, BSRDE (9)] in the context of a standard LQ stochastic control problem.

This is related to the difference that the solution approach in Chapter |5 is more
self-contained than the one in Chapter [§ where we eventually rely on literature on
LQ optimal control to solve the standard 1.QQ and thus our trade execution problem.
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9 The semimartingale problem vs. the extended problem

Instead, a large effort in Chapter [7-Chapter [§] goes into showing equivalence of certain
control problems.

To show one of these equivalences, namely, that the cost functional JP™ can be con-
sidered as a continuous extension of J from finite-variation strategies to progressively
measurable strategies, we in Lemmaexploit |KS91) Section 3.2, Lemma 2.7]. Ob-
serve that we rely on [KS91} Section 3.2, Lemma 2.7 also in Lemmato ultimately
prove the main theorem on the semimartingale problem. In the first case, [KS91, Sec-
tion 3.2, Lemma 2.7] is used to approximate the deviation, whereas in the second case,
the same result [KS91, Section 3.2, Lemma 2.7| is used to approximate J of (6-22).

Recall that in Chapter |[7-Chapter , the scaled hidden deviation process " =
1 1 . . .

~v~2DX — 42X of Section is important for the proof of several results and essen-

tially becomes the state process in the standard LQ stochastic control problem (see

Section . The counterpart in Chapter |5 of A" is the process A = X —~y~'D¥X. In

particular, note that we place H into the cost functional JP™ (see Proposition
and that, in fact, we also introduce A into the cost functional J*"; see the proof of
Theorem [5.2.1|and observe that - (J(yX — D¥) + D¥)? = y(0A +~7'D¥)* in (5.23).
Moreover, A shows up when proving uniqueness of optimal strategies in Lemma [5.2.5]

when approximating strategies in Lemma [5.2.10, and in the proof of the main result
Theorem [5.2.6

To be better able to compare the main results Theorem and Corollary [8.2.4]
let us in the sequel consider the following subsetting of Section assume that the
continuous local martingale (MM ... M)T = (WO WENT = W is an m-
dimensional Brownian motion, that F, = F) for all s € [0, 7], £=0,(=0,t=0,
and that (Cpqa) is satisfied. Note that Theorem [5.2.6]in addition requires (Cs¢) (and
existence of the BSDE and boundedness of 9 of (5-22))), whereas in Corollary
we demand the slightly different additional ConditionsE] (Chonneg) and at least one of
(C>e), (Cs). Let us now assume that (Cso), (Chonneg), and at least one of (Cx.),
(Cs) hold. Then, there exists a unique solution of BSDE (cf. Proposition [4.3.2)).
Moreover, we know that the denominator in definition (5.22)) of J is strictly positive
and bounded away from zero. However, due to Z() and Z® in (5.22), we can in general
not guarantee that 3 is Dyyay-a.e. bounded. Thus, the premises of Theorem are
not yet completely satisfied. We therefore assume now in addition that J is Dyroy-a.e.
bounded. Then, we can apply both, Theorem and Corollary

We find that the optimal costs in the semimartingale problem and in the extended
problem (for all z, d € R) are the same (cf. Theorem [5.2.6(i) and Corollary since
v =0, Cy=0for é =0 = (). In the extended problem, there always exists an optimal
strategy (cf. Corollary , whereas in the semimartingale problem, for x # 4, we

Yo’

'In the current case of f = 0 = ¢, we could obtain the results of Corollary also under slightly
weaker conditions than these when we apply [SXY21] to the standard LQ problem with cross-terms

of Section
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have existence of an optimal strategy if and only if we can find a cadlag semimartingale
¥ such that ¥ = ¥ Dyy0)-a.e.

As an example, we have illustrated in Section that an optimizer of the semi-
martingale problem does not exist when we consider the setting of Remark with
i chosen as a deterministic cadlag function such that there exists § € (0,7) with p
having infinite variation on [0, 7'—d]. Note that the setting in that example is a special
case of our current setting. In particular, the conditions of Corollary are satis-
fied, and we are able to compute via (8.14)) a unique optimal strategy in the extended
problem (see also [AKU22al Section 4.2]).

If existent, the (unique) optimal strategy of the semimartingale problem is given
by the formulas in Theorem [5.2.6{(iii). The (unique) optimal strategy of the extended
problem satisfies the formulas in Remark The only difference is that in the
solution of the extended problem, we keep 9, which we replace in the solution of the
semimartingale problem by 1J. Nevertheless, the solutions coincide, as ¥ = ¥ Dy,q)-
a.e. and as uniqueness of optimal strategies is up to Dy, )-null sets. In particularﬂ for
z,d € R, the optimal semimartingale strategy in A5™ (z, d) from Theorem [5.2.6{iii) is
also the optimal progressively measurable strategy in AS™(x,d). In general, though,
we do not have that X € A¥™(z,d) implies that X € A5"(z,d) (nor that A™(z,d)
is a superset of ALY (z,d)) due to differences in the respective integrability assumptions
on admissible strategies.

A natural question that arises is whether for X € A¥™(z,d) N AP (z,d) (for
t €10, T], z,d € R) the control problems considered in Section and Section
coincide. The answer is affirmative. Indeed, for X € A%*™(z,d) N A}™(x,d), we can
show that definitions and of the associated deviations in the semimartin-
gale, respectively extended, problem coincide and that J*™(z,d, X) = J™(z,d, X),
see Proposition . Moreover, we remark that if X € A (z,d) N AY(z,d), it holds
that the associated deviations and in the semimartingale, respectively finite-
variation, problem agree and that J&™(z,d, X) = J¥(z,d, X) (see also Remark [5.1.3).

Proposition 9.0.1. Consider the setting of Section and suppose that M) = W0,
Jj € {1,...,m}, are independent Brownian motions and that f =0and ( =0. Fix
t €[0,T] and z,d € R. Let X € A¥*™(x,d) N A" (x,d). Let D be defined by (5.1)),
and let D be defined by (7.14). Assume that J3*™(z,d, X) of and JI"(z,d, X)
of are well defined.

(i) It holds that D = D.

(1) It holds that JF*™(z,d, X) = JI™(x,d, X).

Proof. (i) Denote f; = d — v — [ X,d(v,,), s € [t,T], where we recall that v is
defined in (7.5). Observe that X, 3, and D = vX + '3 are semimartingales. We

2Especially, note that the optimal strategies of Example [5.3.1, Example [5.3.3) Example [5.3.4]
Section [5.4.2] and Section are also the optimal strategies in the extended problem (see

also [AKU22al Section 4| for Example and Section [5.4.2).
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9 The semimartingale problem vs. the extended problem

compute by integration by parts, and using (7.6)), for all s € [t, T] that

dD, = v,dX, + Xdys + dly, X]s + v; 'dBs + Bsdvyt + dlv, Bl
= v,d X + Xodys +dly, X]s — v, Xod(vsys) — v ' BsdRs + vy ' X d[R, vy
(9.1)

Furthermore, it holds by integration by parts for all s € [¢t,T] that
d(vsys) = vsdrys + YsVsdRs + Ysvsd[R]s + vsd[ R, 7]s. (9.2)
We obtain from (9.1) and (9.2)) for all s € [t,T] that

dDy = ~d X, + Xodrys + dly, X]s — Xodys — XoysdRy — Xo7,d[R]s — Xd[R, 7]
— vy ' BedRy + X(d[R,7]s + Xoy.d[ R
= v d X, +dy, X]s — (7 X, + v, B)dR,
= v, dX, +d[y, X], — D,dR,.

D also satisfies this SDE_With the same initial value D,_ = d = D,_. Since the solution
is unique, we have that D = D.

(ii) From (5.1) we have that
dX, =7, dD, + v, ' DydR, — v ]y, X1, s € [t,T),
and further that

d[X]s = 7, %d[D], + ~v;2D2d[R], + 27, *D.d[D, R,
= 4. 2%d[D), + v, 2D2d[R], — 27, 2D2d[R], + 27, 'D.d[X, R],, s € [t,T].

Moreover, since
dy; ' = =%y + 0%, s € 00,7,
it holds that

—y Y[y, X]s = v.d[y ', X]s = d[y*, D], + Dyd[y ', R],, s€[t,T).
We then obtain for all s € [¢,T] that
Dy dX, + %d[X]S — D,d[X, R,

1
= Dy v 'dD, +~v;'D?dR, + Dyd[y ™", D], + D*d[y ™", R]s + =~ 'd[D],

2
1
+ 57 D[R] — 7, Did[R), + Dyd[X, R], — Dyd[X, R]; (9:3)
1
=~ 'D,_dD, +~v;'D*dR, + D[y~ ', D], + D*d[y" ', R], + 57;165[1)]5

1
— 5% D[R]
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Furthermore, it holds by integration by parts that
d(v; ' D) = 7, 'dD; + Didvy,; " +dly ™, D,
= 2v,'D,_dD, +~,'d[D], + D?dy;* +2D.d[y"', D],, s€[t, T,
and thus

1 1 1
. 'D, dD, = §d(75‘1D§) — 5gld[D]s — §D§d7;1 — D[y, D],, seltT).

We insert this into and obtain for all s € [t,T] that
D, dX, + %d[X]S — D,d[X, R],
= %d(%lD?) - %Did%l +9, ' DR + Ddly™", R, — %’Vle?d[R]s-
Using the dynamics and of R and 7!, it follows for all s € [t,T] that
D,_dX, + %d[X]S — D,d[X, R,
- %d(%‘lD?) + %%‘l(us —02)Dids + %%ZIOSDEdWS(” +9, ' Dpsds
+ . D2 AW + 47 D2 [1 = 72dW P — 47 Do rods — %% 'D2n2ds.

S

This yields that
~ T
/ D._dX, + / T g x], — / D.d[X, R).
[t,7] 7] 2 ¢
1 2 T T 1
= —%FID% - — 4+ / vs_ngmsds + / 75_1D§ (505 + 775?5) dWS(D (9.4)
t t

T
+/ VI D /1 — P2AW P
t

By the Burkholder-Davis-Gundy inequality, Jensen’s inequality, and Minkowski’s in-
equality, there exists ¢ € (0,00) such that

T 1
/ s ' D? (505 + 775?5) aw !
t
[/ 1 2\
<ck, (/ 7;21);1 (505 + 77573) ds)
t
i T 1 % T %
<ck; (/ v 2D éagds) (/ 72D 277§ds> .
t t

E; | sup

re(t,T)

+ c E;
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9 The semimartingale problem vs. the extended problem

The first and the second conditional expectation on the right-hand side are finite due
to (A3) and (A5) of Section [5.1.1] respectively. It follows that

T
1
Et |:/ ,YS_ID'E (50-8 + 77st> dWs(l):| = 0. (95)
t

Similarly, we can show by the Burkholder-Davis-Gundy inequality and (A5) of Sec-
tion that

T
E, U 7. ' Dingy /1 —?deS(Q)} = 0. (9.6)
t
(9-4) together with (9.5), (9-6), and D = D proves that J*™(z,d, X) = JF™(z,d, X).
O
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