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Abstract

We analyze linear-quadratic (LQ) stochastic control problems that arise in optimal
trade execution in models of Obizhaeva-Wang type. Extending previous literature,
order book depth and resilience are both allowed to be stochastic processes. Moreover,
the target position can be a random variable, and we can include a risk term with
stochastic target process.
In discrete time, we �nd via the dynamic programming principle that the optimal

trade sizes and the minimal costs are characterized by a process Y , which is de�ned
by backward recursion, and by, for general targets, a further process ψ. We moreover
investigate properties of our model such as savings in the long-time horizon, existence
of pro�table round trips, and premature closure of the position.
In continuous time, we go beyond the usual �nite-variation strategies, and present

two approaches. In the �rst one, we set up and solve a relevant control problem where
we consider càdlàg semimartingales as execution strategies, while in the second one, we
start from a typical formulation for �nite-variation strategies, extend this continuously
to progressively measurable strategies, and solve the extended problem via reduction
to a standard LQ stochastic control problem and subsequent application of relevant
literature. The counterpart of the process Y from discrete time now is the solution
of a quadratic backward stochastic di�erential equation (BSDE), and ψ becomes the
solution of a linear BSDE. It turns out that optimal strategies indeed can have in�nite
variation.
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Zusammenfassung

Wir analysieren linear-quadratische (LQ) stochastische Kontrollprobleme, die in Mod-
ellen vom Obizhaeva-Wang Typ in der optimalen Handelsausführung auftreten. In
Erweiterung zu bisheriger Literatur werden Orderbuchtiefe und Resilienz beide durch
stochastische Prozesse beschrieben. Auÿerdem darf die Zielposition eine Zufallsvariable
sein, und wir können einen Risikoterm mit stochastischem Zielprozess einbeziehen.
In diskreter Zeit erhalten wir mittels des Prinzips der dynamischen Porgammierung,

dass die optimalen Handelsvolumina und die minimalen Kosten durch einen Prozess Y ,
der über Rückwärtsrekursion de�niert ist, und, im Fall allgemeiner Zielgröÿen, durch
einen weiteren Prozess ψ charakterisiert sind. Wir untersuchen auÿerdem Eigen-
schaften unseres Modells wie langfristige Einsparungen, Existenz von pro�tablen Rund-
fahrten und vorzeitiges Schlieÿen der Position.
In stetiger Zeit gehen wir über die üblichen Strategien endlicher Variation hinaus

und präsentieren zwei Vorgehensweisen. Bei der ersten formulieren und lösen wir ein
relevantes Kontrollproblem, bei dem wir càdlàg Semimartingale als Handelsstrategien
zulassen, während wir bei der zweiten von einer typischen Formulierung für Strate-
gien endlicher Variation starten, diese Formulierung stetig zu progressiv messbaren
Strategien erweitern, und das erweiterte Problem per Reduktion zu einem standard
LQ stochastischen Kontrollproblem und anschlieÿender Anwendung von geeigneter
Literatur lösen. Das Gegenstück zu dem Prozess Y aus diskreter Zeit ist nun die
Lösung einer quadratischen rückwärts stochastischen Di�erentialgleichung (BSDE),
und ψ entspricht nun der Lösung einer linearen BSDE. Es stellt sich heraus, dass
optimale Strategien tatsächlich unendliche Variation haben können.
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Introduction

In a stochastic control problem one seeks to steer, by choosing from a set of controls,
a randomly evolving state in such a way that a performance criterion is optimized.
Stochastic control problems arise in various applications, in particular, but not limited
to, in �nance (see, e.g., the examples in [Pha09, Chapter 2]). In this thesis, we analyze
some linear-quadratic (LQ) stochastic control problems coming from optimal trade
execution.

1.1 Optimal trade execution

Institutional investors regularly face the task to sell or buy a large amount of shares.
Typically, it is not advisable to complete the whole task at once, since trading large
volumes can have a substantial adverse impact on the price due to illiquidity in the
market. One often can do better, i.e., reduce execution costs, by splitting up a large
order into several smaller ones that are executed one after another. The issue thus
consists in �nding a good timing and appropriate sizes of these orders. When splitting
up a large order, one has to keep in mind that there usually is a �xed time by which
the original task needs to be �nished, with a typical time scale ranging from some
hours to a few days. Even if there is no �xed terminal time, taking longer to �nish the
task may bear greater uncertainty. Trading too slowly can therefore be problematic,
e.g., by enforcing a costly trade at the terminal time, whereas trading too fast may
accumulate avoidable costs beforehand. The optimization of such trading schedules is
called optimal trade execution or optimal liquidation problem.
To treat optimal trade execution mathematically, the typical procedure is to model

the impact of the large agent on the price, formulate a control problem based on this,
and solve the control problem (analytically or numerically).

Admissible strategies

One needs to decide between a discrete-time and a continuous-time formulation of the
model, and what trading strategies to allow for. Trading strategies X in the literature
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1 Introduction

usually have the interpretation that at time s, the value of Xs indicates the (sometimes
relative to the goal, and possibly negative) position of the agent in this asset. The task
to sell or buy a certain amount of shares over the given trading period then translates
to the requirement that a speci�c position has to be reached at terminal time, starting
from a given initial position. Optimal trade execution problems are also sometimes
formulated as the problem to close an initial position x ∈ R up to the terminal time,
where a negative value x < 0 means a buy objective and a positive value x > 0 a sell
objective. In this case, the constraint on trading strategies consists in starting in x
and being 0 at terminal time.
Still, one often imposes further (application-motivated and/or technical) conditions

on trading strategies. In some literature (e.g., [OW13], [BF14], [PSS11]), only pure
buy or pure sell strategies are considered. In mathematical terms, such works only
admit monotone functions. Others (e.g., [FSU14], [GZ15]) choose strategies that are
composed of a pure buy and a pure sell strategy. In [Alm12], strategies are assumed
to be absolutely continuous and therefore are fully described by their derivative, called
trading rate. Also in, for example, [GH17] and [HX19], strategies are given via a trading
rate. In contrast, the strategies in [OW13, Section 6] have an absolutely continuous
component and a jump component, where jumps of the trading strategy are called
block trades.
Observe that most assumptions found in the literature restrict strategies to be, in

particular, of �nite variation. Rarely, more general strategies are taken into account.
For instance, in [LS13] semimartingales are considered as strategies in a model that
extends [OW13] to an underlying semimartingale price process. An extension of pro-
ceeds of a large investor from continuous �nite-variation strategies to more general
classes is investigated in [BBF19]. Moreover, strategies of in�nite variation show up
in [HK21] when an instantaneous price impact factor tends to zero.

Cost criterion

Before searching for optimal strategies among the respective class of admissible strate-
gies, one needs to specify a criterion for optimality. In view of the context, this should
certainly involve the (expected) execution costs, where the expression for the execu-
tion costs is tied to other modeling choices such as the set of admissible strategies and
the impact of trading on the price development. Besides that, the optimality criterion
can also contain further aspects. In addition to the strict requirements on admissible
strategies as discussed above, it is possible at this place to incorporate some preferences
on the strategies.
This in particular allows to model risk-aversion of the agent. For example, [AC01]

and [Alm12] use a mean-variance criterion. Although the main part of [OW13] deals
with expected overall execution costs, [OW13, Section 8.3] also contains a result for
mean-variance minimization. The works [SST10] and [SS09] show how to perform
expected utility optimization in a model of the type of [AC01].
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1.1 Optimal trade execution

Moreover, there are articles such as [AK15], [GH17], [HX19], and [HK21] that include
a quadratic risk term into the formulation of the cost criterion. Additionally, a target
process can be followed in, e.g., [BSV17] and [BV18]. A risk term with p-th power,
p > 1, of the position is considered in, e.g., [AJK14] and [GHS18].

Price impact

To set up an expression for the execution costs, one needs to describe how trading
according to a strategy a�ects the price. A common assumption to start with is that
the actual price is the sum of an una�ected price one would observe in absence of
the agent and a price component which contains the impact of the agent's trading on
the price (see, e.g., [OW13], [AC01], [Alm12], [LS13]). This second component is then
often called (price) deviation. To avoid the possibility of negative prices, some works
(e.g., [BL98, Section 3], [GZ15], [BBF18a]) assume that the price component describing
the impact contributes multiplicatively, instead of additively, to the actual price.

Further, the literature distinguishes permanent, instantaneous (also called tempo-
rary), and transient price impact (see, e.g., [GS13, Sections 22.3 and 22.4]). Permanent
price impact means that each trade induces a lasting and unchanging impact on the
price. Especially, the impact of a trade a�ects this trade and all future trades equally.
This kind of price impact can be found, for example, in [BL98, Section 2]. In contrast,
if the impact applies only to the trade that provoked it, this is called instantaneous
price impact. Instantaneous price impact is for instance considered in [BL98, Section
3]. A popular model type that combines a permanent price impact component and an
instantaneous one goes back to Almgren and Chriss (see [AC01]).

Meanwhile, models of Obizhaeva-Wang type (initiated by [OW13]) use transient
price impact. As for permanent price impact, the impact of a trade here a�ects future
trades. However, the transient impact induced by a particular trade develops over
time. In the model of [OW13], the transient impact of a trade on the price decays
exponentially and thus has a stronger in�uence on trades closely thereafter than it has
on trades much later in time. This transient impact is modeled by two components
called price impact (coe�cient) and resilience (coe�cient). Price impact in this sense is
the inverse of the order book depth in an underlying order book model, and resilience
describes the change of the price deviation after a trade, a phenomenon that has
been observed empirically in, e.g., [BHS95], [BGPW04], [Lar07], [LH15], and [May06,
Chapter 4].

Note that [OW13] provide a motivation of their model via a simpli�ed limit order
book model. In Figure 1.1 we depict a limit order book and explain how to derive a
simpli�cation as used in [OW13]. In Figure 1.2 we illustrate the e�ect of a trade in
such a stylized order book. More details are provided in the paragraph �A static order
book model à la Obizhaeva-Wang� after next.
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1 Introduction

Figure 1.1: From a limit order book (left) to a simpli�ed block-shaped order book
model (right). The bid side of the order book is colored in red, whereas the
ask side is colored in blue. In the limit order book (left), the height of the
bar at each tick represents the amount of shares that is currently available
in the order book on the respective price level. To obtain a simpli�cation
(right) as in [OW13], we assume that the bars have all the same (posi-
tive, real-valued) height and that the spacing between price levels becomes
in�nitesimally small.

Limit order books

Limit order books are used to store the limit orders of all market participants for
a particular asset in an electronic market. There are di�erent types of orders that
a market participant can place, with limit orders and market orders being the most
important ones.
A limit order is an order to buy (or sell) a certain amount of shares at a chosen price

level. Here, the amount and the price level are speci�ed by the agent, but the time
when the order is executed depends on availability in the market. Until a limit order
can be matched with orders of other market participants, it stays in the limit order
book.
Market orders, on the other hand, are executed immediately (on a �rst come �rst

serve basis) against the best limit orders available in the order book. This means
that, at the expense of having to accept the current price in the market, the agent
does not need to wait for their order to be executed. The agent in most literature
on optimal trade execution can only use such market orders (exceptions are, e.g.,
[GLFT12,BL14,CJ15]).
To introduce further terminology, the bid side of the order book contains the stored

buy orders, whereas the ask side comprises the stored sell orders. The best bid price
is the highest price for which one can �nd a buy order stored in the order book.
Similarly, the best ask price is the lowest price at which one can buy from the order
book. The distance between the best ask and the best bid price is referred to as
bid-ask spread. An order book model is called symmetric if the ask side resembles
a re�ection of the bid side. It is said to be block-shaped if the amount of shares
available is the same for all price levels on the respective side (more general shapes
are considered in, e.g., [AFS10, AS10, PSS11, AA14]). The height of the blocks in a
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1.1 Optimal trade execution

symmetric block-shaped order book is called order book depth (or market depth).

A static order book model à la Obizhaeva-Wang

As a speci�c example and as a preparation for the control problems considered in this
thesis, we now explain a variant of the order book model by Obizhaeva and Wang; this
is not exactly the same formulation as in [OW13], but it illustrates the basics for models
of Obizhaeva-Wang type. To this end, we �x some terminal time T > 0, and we let
the order book depth q and the resilience coe�cient ρ be strictly positive deterministic
constants as in [OW13]. In [OW13], 1

q
is split up in a permanent and a transient

price impact coe�cient, both assumed to be nonnegative deterministic constants. We
consider only a transient price impact coe�cient, which then is given by γ = 1

q
(see

also Remark 2.1.5 or Remark 5.1.2 for inclusion of a constant deterministic permanent
price impact coe�cient), and we will often call γ just price impact. Together, the order
book parameters γ and ρ will describe the transient price impact of trading.
Let x ∈ R be the initial position with the meaning that |x| is the amount of shares

to be liquidated (if x > 0) or to be acquired (if x < 0) over the trading period [0, T ].
In the following, we consider strategies X = (Xs)s∈[0−,T ] that are càdlàg and of �nite
variation, equipped with the initial position X0− = x, and required to meet XT = 0.
The interpretation is that for each time s ∈ [0, T ], the quantity |Xs−| describes the
amount of shares that the agent would have to sell (if Xs− > 0) or buy (if Xs− < 0)
at time s in order to close the position. A jump of the strategy X at time s ∈ [0, T ] is
interpreted as a block trade and denoted by ∆Xs = Xs −Xs−.
As a meta-model for the impact of trading on the price, we assume that the actual

price of a share is the sum of an una�ected price S0 that is a càdlàg martingale and
a deviation DX , so that S0

t + DX
t− is the price immediately prior to trading at time

t ∈ [0, T ] and S0
t +DX

t is the price immediately after trading at time t (a block trade
∆Xt becomes e�ective only immediately after a possible jump of S0 at time t, which
is economically reasonable, see also [LS13, Remark 2.1]). For simplicity, let S0 be
equivalent to 0 in what follows; this reduction is essentially without loss of generality
(see also, e.g., Remark 2.1.4 or Remark 5.1.1).
We want to derive a control problem from trading in the simpli�ed block-shaped

order book model of Figure 1.1 with the constant deterministic order book depth
q > 0. Suppose that the agent performs a block trade ∆Xt > 0, i.e., a buy trade
(the case of a sell trade works analogously), at time t ∈ [0, T ]. This market order is
matched with the best limit sell orders stored in the order book, taking them away. As
visualized in Figure 1.2, this leads to an increase in the deviation fromDX

t− immediately
prior to the trade to DX

t afterwards. To obtain the shift of the deviation, we consider
the volume removed from the order book

∆Xt =

∫ DXt

DXt−

q dy = (DX
t −DX

t−)q,

5



1 Introduction

which gives ∆DX
t = γ∆Xt. If the agent does not trade between time t and time

s > t, the deviation is assumed to decay exponentially at the constant deterministic
rate ρ > 0:

DX
s = DX

t e
−ρ(s−t).

In the case where trading is only allowed at given times t0 < t1 < . . . < tN for
some N ∈ N and [t0, tN ] ⊆ [0, T ], i.e., if the strategy consists only of block trades at
t0 < t1 < . . . < tN , then the deviation DX = (DX

s )s∈[0−,T ] can be expressed as

DX
s = e−ρsd+

∑
tj≤s

e−ρ(s−tj)γ∆Xtj , s ∈ [0−, T ], (1.1)

where d ∈ R is the initial deviation (typically d = 0) with which the agent enters the
trading period [0, T ]. For trading according to a càdlàg �nite-variation strategy X,
this construction naturally leads to the formulation

dDX
s = −ρDX

s ds+ γdXs, s ∈ [0, T ], DX
0− = d. (1.2)

DX
t− DX

t

q

∆Xt

DX
t− DX

tDX
s

q

Figure 1.2: Visualization of trading in a (stylized) symmetric block-shaped limit order
book model at time t (and then waiting until time s > t). The price is
on the horizontal axis. The order book depth is depicted on the vertical
axis. The red block on the left-hand side stands for the limit buy orders, the
blue block on the right-hand side for the limit sell orders stored in the order
book. Left: Observe that the buy trade ∆Xt takes away the left-most part
of the sell-order block and shifts the price from DX

t− to DX
t . Right: After

having waited until time s > t, some of the ask side has been replenished
by new limit sell orders (and the bid side has closed the remaining gap,
since we assume a model with zero bid-ask spread).

The costs to be paid for the trade ∆Xt correspond to∫ ∆DXt

0

(DX
t− + y)q dy = DX

t−∆Xt +
1

2q
(∆Xt)

2 =
(
DX
t− +

γ

2
∆Xt

)
∆Xt,

which is the same as if the agent would buy all ∆Xt shares at the mid-price

DX
t− +

γ

2
∆Xt
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1.1 Optimal trade execution

between DX
t− and DX

t . To obtain the execution costs, we have to consider the costs
accumulated by all trading activities of the agent during the whole trading interval
[0, T ]. In the setting where the agent can trade only with block trades at given times
t0 < t1 < . . . < tN , this leads to the execution costs

N∑
j=0

(
DX
tj− +

γ

2
∆Xtj

)
∆Xtj . (1.3)

When the agent more generally can use a càdlàg �nite-variation strategy X, then the
execution costs amount to ∫

[0,T ]

(
DX
s− +

γ

2
∆Xs

)
dXs. (1.4)

We can now set up the following continuous-time (deterministic) control problem:
Let the set of functions X = (Xs)s∈[0−,T ] that are càdlàg and of �nite variation with
X0− = x and XT = 0 form the set of admissible strategies. Consider then minimization
of the execution costs (1.4) subject to the deviation dynamics (1.2) over all admissible
strategies.
Note that in stochastic settings where, e.g., γ, ρ, or admissible strategies are stochas-

tic quantities, one would consider the expected value (or conditional expected value at
initial time) in (1.4), as we do in the body of this thesis.
By restricting the set of admissible strategies to functions X = (Xs)s∈[0−,T ] that are

càdlàg, that satisfy X0− = x and XT = 0, and that are constant except for jumps
at the times t0 < t1 < . . . < tN , we get a discrete-time problem that is embedded
in the continuous-time problem. It is worth noting that this in general leads to a
di�erent optimization problem whose solution does not simply follow from the one of
the continuous-time problem.

Control problems from optimal trade execution

To summarize the introduction so far, we usually have the following set-up in control
problems coming from optimal trade execution. The price (or, more common, related
quantities such as the deviation) is taken as the state. Trading strategies (the position
or related quantities such as trading rate or trade sizes) act as the control for the
state. The aim is to minimize a cost functional, which contains execution costs (and
possibly further ingredients such as a risk term), over all admissible trading strategies
(which typically transform a given initial position into a speci�c terminal position).
Less commonly, the problem is formulated (equivalently) as a maximization problem.
One often uses a dynamic formulation where the initial time, the initial position,

and the initial deviation are regarded as variables. The cost functional then is a
function of the strategy, the initial time, the initial position, the initial deviation, and,
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1 Introduction

if one considers conditional expectations, the sample space Ω of the underlying �ltered
probability space. In the example above, we would have the cost functional

Jt(x, d,X) =

∫
[t,T ]

(
DX
s− +

γ

2
∆Xs

)
dXs, t ∈ [0, T ], x, d ∈ R, X ∈ At(x, d),

where we denote, for t ∈ [0, T ] and x, d ∈ R, by At(x, d) the class of admissible
strategies, i.e., of càdlàg �nite-variation functions X = (Xs)s∈[t−,T ] with Xt− = x and
XT = 0, and DX = (DX

s )s∈[t−,T ] is given by dDX
s = −ρDX

s ds + γdXs, s ∈ [t, T ],
DX
t− = d. For each initial time, initial position, and initial deviation, the (possibly also

dependent on Ω) value function provides us with the minimal costs; it is de�ned as the
(essential) in�mum of the cost functional (for these initial values) over all admissible
strategies. In the example above, the value function would be

Vt(x, d) = inf
X∈At(x,d)

Jt(x, d,X), t ∈ [0, T ], x, d ∈ R.

If, given an initial time, initial position, and initial deviation, there exists an admissible
strategy for which the cost functional attains its (essential) in�mum (within the set of
all admissible strategies), this strategy is called an optimal strategy. To stay with our
example, given t ∈ [0, T ] and x, d ∈ R, an optimal strategy (if existent) would be an
element X∗ ∈ At(x, d) such that

Jt(x, d,X
∗) = inf

X∈At(x,d)
Jt(x, d,X).

We remark that a particular di�culty in many control problems from optimal trade ex-
ecution arises from the requirement that a given position has to be reached at terminal
time, which creates a nontrivial restriction on the set of admissible controls.
Some optimal trade execution models, in particular models of Obizhaeva-Wang type

for a block-shaped limit order book, lead to control problems of a linear-quadratic
kind: e.g., observe that the deviation in (1.1) is linear in the trade sizes, and that
the costs in (1.3) are quadratic in the pair of deviation and trade sizes. Similar ob-
servations hold for the variant (1.4) with (1.2) of this problem. Note that there, the
strategy comes in via its jump process and furthermore as integrator both in the state
dynamics and in the cost functional, and thus its in�uence is comparable to the one
of the trade sizes in (1.3) with (1.1). These observations also apply to, e.g., the re-
lated to (1.1)&(1.3), respectively related to (1.2)&(1.4), stochastic control problems of
Section 2.1, respectively of Section 7.1, in the body of this thesis.
The problem in Section 7.1 is not a standard stochastic control problem, but we

will show in Chapter 8 how to derive a related standard LQ stochastic control prob-
lem, where now the control � and not the state, as before � is (a scaled version of) the
deviation. We in this thesis use the term �standard stochastic control problem� for con-
trol problems where the state is driven by a controlled stochastic di�erential equation
(SDE) (with a drift and a di�usion term) and the control is a progressively measurable
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1.2 From constant via time-varying towards stochastic order book parameters

process (not restricted to meet a terminal goal) that acts as one of the arguments in
that SDE and as one of the arguments in the integrand of the target functional. Prob-
lems in this standard form are rather typical for the literature on stochastic optimal
control. For less familiar readers, we suggest, e.g., [YZ99] or [Pha09] (and similar re-
sources) for background on stochastic control theory. In particular, let us mention that
in the linear-quadratic case there is a tight connection between standard LQ stochastic
control problems and Riccati-type backward stochastic di�erential equations, dating
back at least to the works [Bis76] and [Bis78] by Bismut.

1.2 From constant via time-varying towards

stochastic order book parameters

Early versions of optimal trade execution models (e.g., [BL98], [AC01], [OW13]) assume
the parameters describing the impact of a trade on the price to be deterministic and
constant in time. However, it is established (see also, e.g., [CRS01], [ABC01], [LO09],
[Alm12]) that liquidity varies over time, exhibits among others intra-day patterns, and
can be stochastic. To reproduce market activity more realistically, an active direction of
research on optimal trade execution thus is to incorporate randomly evolving liquidity
features. In the sequel, we review the development from constant via time-varying
towards stochastic parameters for the model of [OW13] in greater depth. Works on
optimal trade execution in other models with stochastic parameters include, but are not
limited to, [Alm12, AJK14, AK15, BV18, CS14,GHQ15,GH17,GHS18, HQZ16, HX19,
KP16b,PZ19,Sch13,HK21,BBF18b].

For the model of [OW13] (note that an earlier version of the work [OW13] appeared
in SSRN already in 2005), an extension of the resilience coe�cient from a strictly pos-
itive constant to a deterministic, time-varying, strictly positive function is analyzed
in [AFS08]. As in [OW13], Alfonsi, Fruth, and Schied in [AFS08] assume a symmetric
block-shaped limit order book model (with possible bid-ask spread) and consider ad-
ditive price impact with a fraction of the price impact being permanent and the other
part being transient with exponential resilience. The price impact coe�cients are taken
to be constants in [AFS08], just as in [OW13]. The una�ected price in [AFS08] is as-
sumed to be a martingale and can have jumps, which is more general than the Bachelier
model in [OW13]. Both works assume a �xed, �nite time horizon. In [AFS08], trading
is allowed at �nitely many given time points, which do not need to be equally spaced.
A trading strategy thus is described by the collection of trade sizes for each of these
time points. Without loss of generality, a buy objective is assumed. Trading is allowed
in both directions and with random, adapted sizes (however, optimal strategies turn
out to be deterministic pure buy strategies). Trade sizes need to be bounded from
below and strict liquidation is required of admissible strategies. The aim in [AFS08]
is to minimize expected overall trading costs. Alfonsi, Fruth, and Schied show that
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cost minimization in their model reduces to the minimization of a certain quadratic
form, which makes it possible to include additional linear constraints on admissible
strategies. This problem is then treated using the Kuhn-Tucker theorem.

Alfonsi and Schied moreover investigate a similar, in certain aspects more general,
model in [AS10], with a view towards existence of price manipulation. The price
impact coe�cient is constant in time and deterministic, and the resilience coe�cient
is a deterministic, time-varying, strictly positive function, both as in [AFS08]. The
two main di�erences are that the order book model in [AS10] is not restricted to be
block-shaped, and that an admissible strategy in [AS10] consists of a sequence of a
�xed number of nondecreasing stopping times within a �xed, �nite time horizon, and
corresponding trade sizes (satisfying assumptions as in [AFS08]). Optimal strategies
(for a buy objective) are found to be deterministic pure buy strategies with trades
at homogeneously (with respect to the averaged resilience rate between consecutive
trades) spaced time points.

Alfonsi and Acevedo in [AA14] extend [AS10] to time-dependent price impact. More
precisely, they assume exponential resilience with a deterministic, time-varying, strictly
positive, continuously di�erentiable resilience coe�cient, and a price impact that is
a deterministic, twice continuously di�erentiable, strictly positive function of time
(multiplied by a deterministic, constant in time shape function in case of a non-block-
shaped order book model). For discrete-time trading, admissible strategies are the
same as in [AFS08]. The solution approach to the discrete-time problem is in the
spirit of [AFS08] and [AS10]. Furthermore, Alfonsi and Acevedo consider a continuous-
time version of the problem (in the same article [AA14]). Their admissible strategies
in continuous time also require strict liquidation, and are adapted, left-continuous,
and have �nite variation. The result for the continuous-time problem is obtained
from a guess based on the discrete-time solution and subsequent veri�cation. Optimal
strategies in both cases are deterministic, and Alfonsi and Acevedo provide conditions
under which they are monotone. Furthermore, optimal strategies in continuous time
in general have block trades at the beginning and at the end of the trading period, but
not in between (this is as in [OW13]).

Another work that, too, in an Obizhaeva-Wang type model treats deterministic,
time-varying price impact and resilience coe�cients is [BF14]. In comparison to
[AA14], Bank and Fruth in [BF14] impose stronger assumptions on admissible strate-
gies, but less strict assumptions on resilience and price impact functions to obtain
their results. They study a continuous-time problem which is based on a one-sided
block-shaped order book model with (only) transient price impact and exponential
resilience, where only buy trades are allowed. Thus, admissible strategies need to be
nondecreasing. Furthermore, admissible strategies are assumed to be deterministic,
right-continuous, and such that the associated overall execution costs, which are to
be minimized, are �nite. Completion of the buy task in general is only required at
in�nity, but a �xed time horizon with a given position at this �nite terminal time
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1.2 From constant via time-varying towards stochastic order book parameters

can be enforced by setting the market depth (which corresponds to the inverse of the
price impact coe�cient) to zero from the desired terminal time on. An una�ected
price process is left out of the set-up and only the deviation is introduced, where a
nonzero initial deviation is possible. Bank and Fruth �rst reduce their problem to a
convex optimization problem and then obtain the minimal costs, a characterization of
existence of optimal strategies, and, in this case, a formula for optimal strategies, by
using methods from convex analysis. It is worth noting that their optimal strategies
can have block trades inside the trading period.

A two-sided symmetric block-shaped order book model with exponential resilience
and with the resilience and the transient price impact coe�cients being deterministic
time-varying is investigated in [FSU14]. The resilience coe�cient is assumed to be a
deterministic, strictly positive, Lebesgue-integrable function of time, and the transient
price impact coe�cient is supposed to be a deterministic, strictly positive, bounded
function of time (with more assumptions needed for most continuous-time results).
There is also a permanent price impact component, but this is described by a deter-
ministic constant, and the pertaining costs are the same for all strategies. To include
a trading-dependent bid-ask spread, Fruth, Schöneborn, and Urusov explicitly model
each of the deviations of the una�ected best ask, respectively bid, price, where nonzero
initial deviation is possible and the una�ected prices are assumed to be càdlàg mar-
tingales. The cost criterion is to minimize expected overall execution costs for a �xed,
�nite time horizon. Both, a discrete-time and a continuous-time problem, are consid-
ered. In continuous time, an admissible strategy initially is a pair of two nondecreasing,
adapted, bounded, càglàd processes starting in zero such that the di�erence of the buy
and the sell component reaches a prescribed deterministic terminal value. For dis-
crete time, the set of admissible strategies is restricted to strategies that only trade
at a �nite number of given times. Fruth, Schöneborn, and Urusov show that mixing
buy and sell trades in their model can not be optimal, which reduces the problem.
Furthermore, it su�ces to consider deterministic strategies. A further reduction con-
cerns the dimension of the arguments of the value function due to linearity of optimal
strategies in the initial state. Fruth, Schöneborn, and Urusov provide a characteriza-
tion of the solution via a wait and a trade region and state a formula for the unique
optimal strategy. In discrete time, the proof is based on dynamic programming. The
continuous-time results are derived by an approximation from discrete time and need
stronger assumptions on the price impact coe�cient and the resilience coe�cient.

An extension of the Obizhaeva-Wang model to stochastic parameters is analyzed
in [Fru11] and [FSU19], though neither of them yet takes price impact coe�cient
and resilience coe�cient both to be stochastic within the same model. The model
in [FSU19] exhibits stochastic price impact, but deterministic resilience. Conversely,
in the last chapter of her PhD thesis [Fru11, Chapter 4], Fruth discusses the inclusion of
stochastic resilience in a simpli�ed model with three trading instances when the price
impact coe�cient is constant. We also mention [CKW18, Section 3] which numerically
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deals with optimal trade execution in a setting where the order book depth in a block-
shaped order book with deterministic exponential resilience is given by a discrete-time
Markov chain.

Fruth, Schöneborn, and Urusov in [FSU19] extend the model of their previous ar-
ticle [FSU14] to a price impact coe�cient given by a strictly positive, possibly time-
inhomogeneous, Markov process with �nite �rst moments. Resilience, as in [FSU14],
is exponential with a deterministic, time-varying, strictly positive resilience coe�cient.
Note that in contrast to [FSU14], it is assumed in [FSU19] already from the beginning
on that there is no permanent price impact component and that admissible strategies
(except for the ones in [FSU19, Section 8]) are pure buy strategies. As in [FSU14],
a discrete-time and a continuous-time variant of the problem are analyzed. In line
with the result in the deterministic case [FSU14], the authors �nd that in a subset-
ting where the price impact coe�cient has a special di�usion structure (which also
comprises conditions in relation with the resilience coe�cient), the solution is given in
terms of a wait and a trade region. However, contrasting [FSU14], they provide ex-
amples that for more general, necessarily nondeterministic, speci�cations of the price
impact coe�cient, there can arise situations where this is no longer true; e.g., there
can be multiple wait regions. Moreover, note that optimal strategies in [FSU19] can
be nondeterministic. Several intermediate results in [FSU19] are cognate with the
ones in [FSU14], e.g., that the dimension of the value function can be reduced by
one, that the cost functional admits a helpful alternative representation, and that the
continuous-time results can be approximated from discrete time. On the other hand,
the proof techniques in [FSU19] di�er from those in [FSU14] due to the stochastic
setting in [FSU19].

1.3 Overview and contribution of this thesis

Our work continues the above stream of literature on Obizhaeva-Wang models by
taking price impact and resilience both to be stochastic processes (in a symmetric
block-shaped order book model with zero bid-ask spread and �xed, �nite terminal
time). We �rst study a discrete-time model in Chapter 2 and then devote the remainder
of the thesis to the continuous-time case, where we consider semimartingale strategies
in Chapter 5 and Chapter 6, and progressively measurable strategies in Chapter 7 and
Chapter 8. For the continuous-time case, we moreover analyze a certain Riccati-type
backward stochastic di�erential equation (BSDE) in Chapter 4.

The work presented in this thesis is based on the publications [AKU21b,AKU21a,
AKU22b] and the preprint [AKU22a], all of which are joint work with Thomas Kruse
and Mikhail Urusov.
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Discrete time with stochastic price impact and resilience

In Chapter 2, we study optimal trade execution in an order book model in the sense of
[OW13] in discrete time where price impact (γk)k∈Z and resilience (βk)k∈Z are positive,
adapted, su�ciently integrable processes (see Section 2.1). For interpretation of the
resilience process β, note that exponential resilience with resilience coe�cient ρ as in
the example of Section 1.1 corresponds to the special case βk = e−ρ, k ∈ Z. The
stochastic control problem we look at is a linear-quadratic one with value function V
de�ned in (2.4):

Vn(x, d) = ess inf
X∈Adisc

n (x,d)
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj +

N∑
j=n

γjλj(Xj − ζj)2

]
,

n ∈ Z ∩ (−∞, N ], x ∈ R, d ∈ R,

subject to the deviation evolution de�ned in (2.1):

Dn− = d and Dk− = (D(k−1)− + γk−1ξk−1)βk, k ∈ {n+ 1, . . . , N}.

N ∈ N denotes the (�xed) terminal time. The second sum in the value function is a
risk term (with appropriate stochastic processes λ and ζ) that we will discuss later in
this introduction and that can be ignored at the moment. Optimization happens over
the set Adisc

n (x, d) of real-valued adapted stochastic processes X = (Xk)k∈{n−1,n,...,N}
with Xk ∈ L2+(Fk) for all k ∈ {n, . . . , N} that are equipped with initial position
Xn−1 = x and satisfy XN = ξ̂, where ξ̂ ∈ L2+(FN) is the terminal position to be
achieved through trading. ξj = Xj −Xj−1, j ∈ {n, . . . , N}, denote the trade sizes that
correspond to such a strategy X ∈ Adisc

n (x, d). Note that trading is allowed in both
directions, but is only possible at a �xed set of �nitely many time points.
We are able to solve this optimization problem in that, under appropriate condi-

tions (see Theorem 2.2.1), we obtain existence of a unique optimal strategy and a
characterization of the optimal strategy and the value function in terms of a process
Y = (Yn)n∈Z∩(−∞,N ] and a process ψ = (ψn)n∈Z∩(−∞,N ] that are de�ned by back-
ward recursion (see (2.7), respectively (2.8)) with terminal value YN = 1

2
, respectively

−1
2

√
γN ξ̂. The proof of this result is based on dynamic programming and the quadratic

structure of the problem. An ansatz for the value function Vn at time n as a (bivariate)
quadratic function of the pair of initial position and initial deviation (x, d) ∈ R2, and
an application of the dynamic programming principle, lead to recursive descriptions
for the coe�cients in the value function, and to a characterization of the optimal trade
size ξ∗n(x, d) at time n in the pair of initial position and initial deviation (x, d) ∈ R2 as
the minimizer of a (univariate) quadratic function.

Long-time horizon

It furthermore turns out that Yn (in the basic setting of [AKU21b] where ξ̂ = 0 and
λ ≡ 0) can be interpreted as the (divided by 2) ratio between, in the denominator, the
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costs for selling x = 1 unit immediately at initial time n with initial deviation d = 0
and, in the numerator, the minimal costs for the same task; i.e., Yn = 1

2
Vn(1,0)
γn/2

. To
determine how much better than immediate execution our optimal strategies perform
in the long run, we then investigate the long-time limit limn→−∞ Yn. We observe that
this limit does not always exist, see Lemma 2.4.3 for such a situation. Existence
is guaranteed if the price impact process (γk)k∈Z∩(−∞,N ] up to terminal time N is a
supermartingale, i.e., when the liquidity in the model increases in time on average, see
Proposition 2.4.1.
In the �time-homogeneous expectations�-setting of Proposition 2.4.2, Y is determin-

istic, the limit also exists, and we compute the limit explicitly. We �nd that there are
three di�erent subcases depending on the relation to 1 of the average resilience and
of the average multiplicative increments of the price impact process. In particular,
if the resilience is 1 in expectation throughout the trading period, which means that
the impact of trades on the price is expected to be permanent, then Yn = 1

2
for all

n ∈ Z ∩ (−∞, N ] (see also Corollary 2.3.2), and thus selling the unit immediately
is optimal. If the price impact process is nonincreasing on average, which due to a
structural assumption in our model (cf. Theorem 2.2.1) entails that the resilience is
smaller than 1 on average, then our minimal execution costs vanish asymptotically in
the sense that limn→−∞ Yn = 0.

Round trips

We moreover investigate if, in our model, trading can be bene�cial although one has
no open position. Formulated di�erently, this is the question on existence of pro�table
round trips, or yet the existence of price manipulation. The notion of price manipu-
lation in optimal trade execution models was coined in [HS04] and further studied in,
e.g., [Gat10] and [AS10].
We have as a direct consequence of Theorem 2.2.1 that our model does not exhibit

price manipulation whenever the initial deviation is 0 (cf. (2.53)). This is in line
with the �ndings in [AS10, Corollary 2.8 and Remark 3.2], where it is established
that price manipulation is not possible in a block-shaped Obizhaeva-Wang type model
with zero bid-ask spread, constant price impact, and time-varying (possibly stochastic)
exponential resilience. Our result extends this to stochastic price impact and more
general forms of resilience.
However, if prior to the trading period, the agent has already induced some price de-

viation, then round trips can become pro�table under some market conditions (also for
constant price impact and exponential resilience); see Section 2.5 for details. Similar
conclusions in related models were obtained in [FSU14, Section 8] and [FSU19, Sec-
tion 8].
To decide whether there exist pro�table round trips at initial time n for initial devia-

tion d 6= 0 in our model, it su�ces to study the event {Yn = 1
2
}, as we explain at the be-

ginning of Section 2.5 (cf. (2.53)). We thus characterize this event in Proposition 2.5.2
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and discuss consequences in subsequent results and examples. E.g., in the �processes
with independent multiplicative increments�-setting where for all k ∈ Z ∩ (−∞, N ],
the resilience βk and the multiplicative increment of the price impact, γk

γk−1
, are inde-

pendent of the sigma-algebra Fk−1 (see Section 2.3), existence of pro�table round trips
for nonzero initial deviation can be decided based on the resilience process alone (see
Corollary 2.5.5).

Closing the position in one go

We also look at the question under which conditions one should close the position in
one go, i.e., when it is optimal to execute the outstanding order at once. To this end, we
consider the event {ξ∗n(x, d) = −x ∀x, d ∈ R}. Again, the process Y plays a prominent
role in the description of this event (see Proposition 2.6.2). Besides, Proposition 2.6.2
(note also (2.61)) yields a connection between the existence of pro�table round trips
for initial deviation d 6= 0 and optimality of closing the position in one go.
On the event {Yn = 1

2
}, where round trips for initial deviation d 6= 0 can not be

pro�table, we have that immediate closure is always optimal. However, we show in
Example 2.6.7 that it can be optimal to close any position in one go although there
exist pro�table round trips for d 6= 0. In general, optimality of closing the position
in one go does not necessarily mean to stop trading entirely after the closure. For
instance, in the situation of Example 2.6.7, it is optimal to build up a new position at
the next time point.
From Lemma 2.6.1, which is a direct consequence of Theorem 2.2.1, we derive in

Proposition 2.6.4 that {ξ∗n(x, d) = −x∀x, d ∈ R} is either Ω or ∅ in the �processes with
independent multiplicative increments�-setting (but the optimal trade sizes can still be
random). In this setting we also provide equivalent statements to closing in one go.

Continuous time with stochastic price impact and resilience

The base setting for continuous time (see Section 3.1) includes a price impact pro-
cess (γs)s∈[0,T ] and a resilience process (Rs)s∈[0,T ] (T ∈ (0,∞) is the �xed terminal
time). These stochastic processes are assumed to possess a certain structure (cf. (3.2)
and (3.1)):

dγs = γsµsd[M (1)]s + γsσsdM
(1)
s , s ∈ [0, T ], γ0 ∈ (0,∞),

and
dRs = ρsd[MR]s + ηsdM

R
s , s ∈ [0, T ], R0 = 0,

where M (1),MR are continuous local martingales (Brownian motions in Chapter 6�
Chapter 8) with [−1, 1]-valued correlation r, and µ, σ, ρ, η, r are progressively measur-
able, su�ciently integrable (often bounded) processes. While the price impact pro-
cesses in discrete and in continuous time have the same interpretation, we point out
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that the resilience process R has a slightly di�erent meaning than β from discrete time:
the multiplicative increments of the stochastic exponential of −R are comparable to β.
When the choice of the set of admissible strategies in discrete time was rather

straightforward, this becomes an interesting aspect in continuous time. As in dis-
crete time, we do not want to restrict trading to one direction. Furthermore, we
expect that optimal strategies should respond quickly to �uctuations in the market
conditions. As the price impact process (and also the resilience process) in our model
can have in�nite variation, we therefore aim to include strategies that can have in�nite
variation. Our decision is backed up by empirical evidence and mathematical motiva-
tion in favor of in�nite-variation strategies/inventories in similar situations � we refer
to [CW19], [CL21] and to [LS13], [GP16], [BBF19], [HK21], [FHX22a].
However, a vast part of the literature on optimal trade execution considers strategies

to be, in particular, of �nite variation, and it is not obvious how to formulate (and
later, solve) an appropriate control problem for strategies of in�nite variation. We take
two approaches.

Càdlàg semimartingale strategies

In the �rst approach, since the conventional, �nite-variation formulation (5.7)&(5.8)
(compare also with (1.2)&(1.4)) of the control problem contains the strategy in the
integrator, we assume our strategies to be càdlàg semimartingales. Further, we demand
of admissible strategies X = (Xs)s∈[t−,T ] ∈ Asem

t (x, d) (where t ∈ [0, T ], x, d ∈ R) the
initial position Xt− = x, strict liquidation XT = 0, and that certain integrability
conditions are satis�ed (see Section 5.1.1).
We show in Example 5.1.4 and Example 5.1.6 that, for strategies with in�nite vari-

ation, the conventional, �nite-variation formulation (5.7)&(5.8) of the control problem
can result in an ill-posed optimization problem. With the modi�ed deviation dynam-
ics (5.1):

dDX
s = −DX

s dRs + γsdXs + d[γ,X]s, s ∈ [t, T ], DX
t− = d,

and the modi�ed cost functional (5.2):

J sem
t (x, d,X) = Et

[∫
[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s −

∫ T

t

DX
s d[X,R]s

]
+ Et

[∫ T

t

γsλsX
2
sd[M (1)]s

]
, t ∈ [0, T ], x, d ∈ R, X ∈ Asem

t (x, d),

we provide an appropriate formulation of the control problem for càdlàg semimartingale
strategies, which is motivated by a heuristic limit from our discrete-time model (see
Section 3.2). The last term in the cost functional J sem is a risk term to be discussed
later, with an appropriate stochastic process λ.
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We solve this control problem by purely probabilistic means, see Theorem 5.2.6
for the main result. Under appropriate assumptions, the value function V sem

t (x, d) =
ess infX∈Asem

t (x,d) J
sem
t (x, d,X), t ∈ [0, T ], x, d ∈ R, has a representation very similar to

the representation of the value function in the discrete-time problem, with a process
Y = (Ys)s∈[0,T ] that is the �rst solution component of the quadratic BSDE (4.1) (in
analogy to the discrete-time process de�ned by backward recursion in Theorem 2.2.1,
see also Section 3.3).
To obtain the representation for the value function V sem, we �rst introduce Y into

the cost functional J sem, which in Theorem 5.2.1 leads to the representation (5.23)

J sem
t (x, d,X) =

Yt
γt

(d− γtx)2 − d2

2γt

+ Et

[∫ T

t

1

γs

(
ϑ̃s(γsXs −DX

s ) +DX
s

)2 (
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s

]
,

t ∈ [0, T ], x, d ∈ R, X ∈ Asem
t (x, d),

of the cost functional J sem as the sum of the (later to be identi�ed) minimal costs and
a second, nonnegative term. Therein, κ = 1

2
(2ρ+ µ− σ2 − η2 − 2σηr) (see (3.6)), and

ϑ̃ =
(ρ+ µ)Y + (σ + ηr)Z(1) + η

√
1− r2Z(2) + λ

(σ2 + η2 + 2σηr)Y + κ+ λ

(see (5.22), compare also with the driver (4.2) of BSDE (4.1)), where (Z(1), Z(2))>

is the second solution component of BSDE (4.1). In particular, this representation
for J sem implies a lower bound for the value function V sem. We subsequently argue
that there is equality by approximating the second term in the representation of the
cost functional J sem. More precisely, we show in Lemma 5.2.9 that the auxiliary process
ϑ̃ can be approximated by a sequence of càdlàg semimartingales (ϑn)n∈N. Based on
this sequence (ϑn)n∈N, we further de�ne a sequence of strategies (Xn)n∈N in Asem

t (x, d)
for which we, in Lemma 5.2.10, establish certain helpful properties for the convergence
of the second term in the representation of the cost functional J sem to zero.
For the characterization of existence of a minimizer and for the formula of optimal

strategies, we make use of the representation of the cost functional J sem in combination
with the representation of the value function V sem. It turns out that (under the overall
assumptions of Theorem 5.2.6) there exists an optimal strategy if and only if ϑ̃ is equal
DM(1)-a.e. to a càdlàg semimartingale ϑ. In this case, the (DM(1)-a.e. unique) optimal
strategy is given by (5.36). This is a product of three factors, two of which are of
particular interest when we examine properties of optimal strategies in Section 5.3,
Section 5.4, and Chapter 6.
In particular, we �nd that in several situations we really obtain optimal strategies

of in�nite variation. This does not only concern the setting of Example 5.3.1, where
price impact and/or resilience have in�nite variation, but also certain situations with
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smooth price impact and resilience (see, e.g., Example 5.3.3 and Example 5.3.4). On
the other hand, it is interesting to observe that in the speci�c setting of Section 5.4.2,
in�nite variation in the price impact and in the resilience can cancel out such that the
optimal strategy has �nite variation.
We moreover show how to produce block trades of the optimal strategy inside the

trading interval (see Section 5.4.3, but also the examples in Chapter 6). Recall that
for models similar to [AC01], jumps of the optimal strategy can not occur at all since
admissible strategies are absolutely continuous, and that for models of Obizhaeva-
Wang type, it is typical to obtain optimal strategies with jumps only at the beginning
and at the end of the trading period.
Furthermore, we observe that for constant deterministic price impact γ (i.e., µ ≡

0 ≡ σ) and for a constant deterministic resilience coe�cient ρ > 0 (while η ≡ 0), which
is the setting of [OW13], our (in some sense more general) optimization problem results
in the same optimal strategy as in [OW13, Proposition 3] (see the relevant subcase in
Section 5.4.2).
We also provide an example where, although the value function V sem is �nite, an

optimal strategy in Asem
t (x, d) does not exist (see Section 5.4.1) because there is no

càdlàg semimartingale ϑ that ϑ̃ is equal to DM(1)-a.e. (cf. Theorem 5.2.6). This exam-
ple motivates to try to go beyond semimartingales in the formulation of the control
problem.

Extension to progressively measurable strategies

In the second approach, we begin with the conventional, �nite-variation formulation
of the deviation dynamics and costs in Obizhaeva-Wang type models and establish
in Theorem 7.5.2 a continuous extension to progressively measurable strategies. The
precise formulation of our stochastic control problem for �nite-variation strategies is
stated in Section 7.1 (compare also with (5.7)&(5.8), and with (1.2)&(1.4)). We here
repeat the de�nition of the deviation (7.3):

dDX
s = −DX

s dRs + γsdXs, s ∈ [t, T ], DX
t− = d,

and the de�nition of the cost functional (7.4):

J fv
t (x, d,X) = Et

[∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

]
+ Et

[∫ T

t

γsλs (Xs − ζs)2 ds

]
,

t ∈ [0, T ], x, d ∈ R, X ∈ Afv
t (x, d).

Again, the last term in the cost functional is a risk term that will be discussed later, and
λ and ζ are appropriate stochastic processes. The set of admissible strategies Afv

t (x, d)
(for t ∈ [0, T ], x, d ∈ R) comprises all càdlàg �nite-variation processes X = (Xs)s∈[t−,T ]

that satisfy suitable integrability conditions and possess initial position Xt− = x and
terminal position XT = ξ̂ for a suitable, �xed, FT -measurable ξ̂.
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1.3 Overview and contribution of this thesis

The extension of this stochastic control problem for �nite-variation strategies to
progressively measurable strategies is made possible in the �rst place by the alterna-
tive representations for the deviation and the costs in Proposition 7.2.1, since these
remove the strategy from the integrator. Now, these alternative expressions are also
well-de�ned for progressively measurable strategies, which allows us to introduce the
extended problem of Section 7.3, with the deviation (7.14):

DX
s = γsXs + ν−1

s

(
d− γtx−

∫ s

t

Xrd(νrγr)

)
, s ∈ [t, T ], DX

t− = d,

where ν−1 is the stochastic exponential of −R, and with the cost functional (7.16):

Jpm
t (x, d,X) = Et

[
1

2
γ−1
T (DX

T )2 +

∫ T

t

γ−1
s (DX

s )2κs ds +

∫ T

t

γsλs (Xs − ζs)2 ds

]
− d2

2γt
,

t ∈ [0, T ], x, d ∈ R, X ∈ Apm
t (x, d),

where κ = 1
2
(2ρ+ µ− σ2 − η2 − 2σηr) (see (3.6)). The superset Apm

t (x, d) of Afv
t (x, d)

consists of all progressively measurable processes X = (Xs)s∈[t−,T ] that are equipped

with an initial position Xt− = x, end in XT = ξ̂, satisfy
∫ T
t
X2
sds <∞ a.s., and whose

associated deviation DX meets E[
∫ T
t
γ−1
s (DX

s )2ds] <∞.

We then in (7.30) de�ne by d(X, X̃) = (E[
∫ T
t

(DX
s − DX̃

s )2γ−1
s ds])

1
2 a metric d on

the set of progressively measurable strategies Apm
t (x, d), where the distance between

two progressively measurable strategies X, X̃ ∈ Apm
t (x, d) is measured by some kind

of weighted L2
t -distance between their associated deviation processes DX , DX̃ . With

respect to this metric d, the cost functional Jpm is continuous in the strategy, the set
of �nite-variation strategies Afv

t (x, d) is dense in the set of progressively measurable
strategies Apm

t (x, d), and the set of progressively measurable strategies Apm
t (x, d) is

complete. This result, Theorem 7.5.2, provides a strong justi�cation for our extended
problem, and in particular shows that this problem and the �nite-variation problem
are equivalent in the sense that their value functions coincide (see Corollary 7.5.3).
To show that the cost functional Jpm is continuous in the strategy, we use the

convergence of the deviation processes and the convergence in Lemma 7.4.3 of the
�scaled hidden deviation processes�. For the claim that any progressively measurable
strategy X ∈ Apm

t (x, d) can be approximated, in our metric d, by a sequence of �nite-
variation strategies (Xn)n∈N in Afv

t (x, d), we, in a sense, approximate the deviation
process DX of the progressively measurable strategy X with the help of Lemma 7.5.4
by a sequence that ends up to consist of deviation processes Dn, n ∈ N, for the
desired �nite-variation strategies Xn, n ∈ N. That the set of progressively measurable
strategies Apm

t (x, d) with respect to d is complete essentially comes from completeness
of the L2

t -space of square-integrable, progressively measurable processes.
The previously mentioned scaled hidden deviation process is the continuous process

H
X

= γ−
1
2DX − γ 1

2X that we associate to a strategy X ∈ Apm
t (x, d) and its devia-
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tion DX (see Section 7.4). It is not only relevant for the proof of Theorem 5.2.6, but
plays also an important role in the next step.

We observe in Proposition 7.4.2 that the scaled hidden deviation process H
X

sat-
is�es an SDE that is linear in (H

X
, γ−

1
2DX), and that the cost functional Jpm of the

extended problem depends in a quadratic way on (H
X
, γ−

1
2DX). Thus, we in Sec-

tion 8.1.1 reinterpret the process γ−
1
2DX as a control process u ∈ L2

t and H
X
as the

associated state process. This leads to a standard LQ stochastic control problem which
is equivalent to the extended (and thus also to the �nite-variation) problem, see Corol-
lary 8.1.3. Importantly, there is a one-to-one correspondence between square-integrable
controls u ∈ L2

t for this standard LQ stochastic control problem and progressively mea-
surable execution strategies X ∈ Apm

t (x, d) for our extended problem. In particular,
it is possible to recover the minimizer of the extended problem from the minimizer of
the LQ problem (see Corollary 8.1.4).
We then apply stochastic control literature to solve the LQ problem. More exactly,

we �rst transform the LQ problem of Section 8.1.1 with cross-terms to one without
cross-terms in Section 8.1.2, and subsequently apply results of Kohlmann and Tang
[KT02] (see Section 8.2). Under the assumptions of Theorem 8.2.3, there always exists a
(DW (1)-a.e. unique) optimal control, and the optimal control and its associated costs can
be described by the BSDE of Riccati-type [KT02, (9)], which in our case corresponds
to BSDE (4.1), together with the linear BSDE (8.7). We in Corollary 8.2.4 trace
everything back and obtain a (DW (1)-a.e. unique) optimal execution strategy in the
class of progressively measurable strategies, given by the formula (8.14).

Further features

Our control problems feature some further details that we now want to highlight.

Negative and di�usive resilience

The discrete-time problem as well as the continuous-time problems exhibit more general
types of resilience than the frequently used exponential resilience described by a strictly
positive resilience coe�cient.

In discrete time, we multiply the deviation D(k−1)−+ γk−1ξk−1 directly after a trade
ξk−1 at time k− 1 by βk to get the deviation Dk− immediately prior to the next trade

at time k. The case of exponential resilience corresponds to βk = e−
∫ k
k−1 ρsds for some

resilience coe�cient ρ.
Note that we assume β only to be strictly positive (aside from some integrability

and from the joint structural assumption with the price impact, see Theorem 2.2.1).
In particular, we can have values greater than 1 for the resilience β, which reinforces
the price deviation. Also the case βk = 1 is allowed, which means that there is no
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1.3 Overview and contribution of this thesis

change of the price deviation between the trade at time k − 1 and the next trade at
time k.
In the case of (0, 1)-valued resilience β, we �nd that there exist pro�table round

trips for nonzero initial deviation (cf. Corollary 2.5.4(ii)). This is in accordance with
the results in [FSU14] and [FSU19] who consider only (0, 1)-valued resilience, more
precisely, exponential resilience with strictly positive resilience coe�cient. In contrast,
for (0,∞)-valued resilience β, it can happen that there do not exist pro�table round
trips for any initial deviation d ∈ R (see, e.g., Corollary 2.5.5). A necessary (but not
su�cient, cf. Example 2.5.6) condition for nonexistence of pro�table round trips for
d 6= 0 is that the agent expects the resilience to be 1 (cf. Corollary 2.5.4(ii)).
Moreover, we observe that, if in the �processes with independent multiplicative

increments�-setting closing in one go is optimal, then the resilience right after this
trade is expected to be greater than or equal to 1 (see Corollary 2.6.5). In particular,
closing in one go can not be optimal in the conventional setting with (0, 1)-valued,
deterministic resilience β and deterministic price impact γ; for stochastic β, γ the sit-
uation can be di�erent, even with (0, 1)-valued β, see Example 2.6.6 and the preceding
discussion. But also in a deterministic situation with now (0,∞)-valued β we can
produce closing in one go (see Example 2.6.7).

In continuous time, we describe resilience by the resilience process dRs = ρsd[M (R)]s+
ηsdM

R
s , s ∈ [0, T ], R0 = 0, which enters the deviation process via the stochastic ex-

ponential of −R. If η ≡ 0, we are in the case of exponential resilience with resilience
coe�cient ρ. Otherwise, the resilience still has an exponential structure (see, e.g., Sec-
tion 3.2 and Section 5.1.1), but our resilience process R contains an additional di�usion
part.
Note that [AKU22a] allows a di�usive resilience, whereas [AKU21a] originally does

not. We in this thesis extend the semimartingale setting of [AKU21a] to also include
a di�usion part in the resilience. This makes it necessary to adjust the cost functional
(5.9) from [AKU21a] to (5.2), i.e., to J sem (see Section 3.2 and Example 5.1.5). Also,
in comparison to [AKU21a], we need to consider a more general BSDE (see Chap-
ter 4, motivated by Section 3.3). The respective results and proofs in this thesis are
extensions of those in [AKU21a].
With di�usive resilience, we observe two e�ects (see also [AKU22a, Section 4]). In

Example 5.3.1, we see that not only in�nite variation in the price impact process, but
also di�usive resilience can lead to optimal strategies of in�nite variation. In a rather
speci�c setting (see Section 5.4.2), we �nd that di�usive resilience can override in�nite
variation from the price impact so that the optimal strategy has �nite variation.
Furthermore, we point out that R can take negative values � due to the di�usion

part, but also due to the resilience coe�cient which we do not restrict to be positive.
When R is negative, this means an enhanced price impact. Therefore, a resilience
process that is negative during some time can be used to model self-excitement e�ects
where the trading activities of the large investor animate other market participants to
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trade in the same direction. For more details, see the introduction of Chapter 6.
In Chapter 6 (cf. [AKU22b]), we focus on the resilience coe�cient, and investigate

the e�ects of a negative resilience coe�cient in a subsetting of the semimartingale
problem. To this end, we �rst obtain existence and structure of the optimal strat-
egy via Theorem 5.2.6, where existence of a solution to the BSDE is guaranteed by
Section 4.4. Then, we examine what we call (see De�nition 6.1.1) �overjumping zero�
and �premature closure� of the optimal strategy, which are de�ned in terms of the
process ϑ from Theorem 5.2.6. Roughly speaking, we show that a necessary condition
for overjumping zero or premature closure is to have a negative resilience coe�cient
at least for some time (see Proposition 6.1.4), while a su�cient condition for that is
to have a negative resilience coe�cient for some time close to the time horizon T (see
Proposition 6.1.6). In a setting with piecewise constant resilience coe�cient ρ and a
simple price impact process, we further discuss properties of optimal strategies with
respect to positive and negative values of ρ (see Section 6.2). In particular, in Propo-
sition 6.2.1, the optimal strategy for initial position x > 0 and initial deviation d = 0
is strictly increasing (respectively, strictly decreasing) on the regime where ρ is strictly
negative (respectively, strictly positive). Moreover, we are able to construct a setting �
necessarily with a resilience coe�cient that is not everywhere strictly positive � where
it is optimal to close the position prematurely, and, after a while, reopen again (see
Section 6.3).
For completeness, we mention that without resilience (i.e., ρ ≡ 0 ≡ η) it is optimal

to close the position immediately and quit trading (see Proposition 5.2.3).

Risk term and stochastic targets

To incorporate the possibility that the target position is not known at the beginning of
trading but only revealed at terminal time, we allow the prescribed terminal position ξ̂
to be a random variable (measurable at terminal time, and with suitable integrability).
Situations with random target positions may arise for instance when an airline com-
pany buys kerosene on forward markets, not knowing their precise demand beforehand
because it depends on factors in the future such as ticket sales and weather conditions.
Random variables as terminal targets have also been considered in, e.g., [AK15, Section
3.2], [BSV17], and [BV18].
As in the models of [BSV17] and [BV18], we furthermore include a risk term of

the form En[
∑N

j=n γjλj(Xj − ζj)2], respectively Et[
∫ T
t
γsλs(Xs − ζs)2ds], into the cost

functional; deviations of the position X from the target process ζ are penalized via the
risk coe�cient process λ (the scaling by the price impact process γ is for convenience).
The risk term can be used to model some kind of risk aversion of the large agent.
We point out that in this thesis the notion �risk aversion� is used for the setting with
nonvanishing λ in the cost functional and does not mean risk aversion in the sense of
utility theory.
The target process ζ in the risk term allows to, e.g., take client preferences or reg-
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1.3 Overview and contribution of this thesis

ulations into account, or to improve, but closely follow, popular trading strategies.
Moreover, a possible and natural choice would be ζk = Ek[ξ̂], k ∈ {n, . . . , N}, respec-
tively ζs = Es[ξ̂], s ∈ [t, T ], so that the risk term ensures that any optimal strategy
X∗ does not deviate too much from the (expected) target position ξ̂ during the course
of the trading period.

In the discrete-time model of Chapter 2, we generalize [AKU21b] to FN -measurable
terminal targets ξ̂ ∈ L2+(FN) and adapted risk coe�cient, respectively target, pro-
cesses λ = (λk)k∈Z∩(−∞,N ] and ζ = (ζk)k∈Z∩(−∞,N ] that satisfy λk ≥ 0, λk ∈ L∞−(Fk),
and ζk ∈ L2+(Fk) for all k ∈ Z ∩ (−∞, N ]. Note that in [AKU21b] there is no risk
term, i.e., λ ≡ 0, and positions are required to be closed, i.e., ξ̂ = 0. It is shown
in [AKU21b, Theorem 2.1] that the value function and the optimal strategy in this
subsetting are characterized by the process Y of (2.34). This result now becomes a
corollary (see Corollary 2.2.4) of Theorem 2.2.1 of the present thesis.
When we include λ, we modify the de�nition of Y from (2.34) to (2.7), and λ

appears also in the optimal trade sizes (2.10). More interestingly, if we have a nonzero
target position ξ̂ or nonzero λ and ζ, then we need a second process ψ (see (2.8)
or Remark 2.2.3) in addition to Y in order to describe the value function and the
optimal strategy. For the proof of Theorem 2.2.1, we proceed similarly to the proof
of [AKU21b, Theorem 2.1] with the main di�erence that we now have to consider a
more general, but still quadratic, structure of the value function, leading to the two
recursively de�ned processes Y and ψ. A further discussion on the in�uence of λ, ζ, ξ̂
on Y , ψ, the value function, and optimal strategies is contained in Section 2.2.2.
It is natural to treat the question on existence of pro�table round trips only in a

risk-neutral setting and for deterministic terminal targets. However, we comment in
Remark 2.5.10 that most results of Section 2.5 continue to hold for general λ. For
closing in one go (Section 2.6), we consider ξ̂ = 0 ≡ ζ and provide a somewhat
counterintuitive Example 2.6.8 where it is optimal for a risk-neutral agent, but not for
a risk-averse agent, to close the whole position at time N − 2.

In the semimartingale problem of Chapter 5, we introduce a bounded, progressively
measurable process λ = (λs)s∈[0,T ] (typically nonnegative) into the setting of [AKU21a].
That is, we require to close the position and we incorporate a quadratic risk term
Et[
∫ T
t
γsλsX

2
sd[M (1)]s] with zero moving target; in other models, such risk terms

have been considered in, e.g., [AK15], [GH17], [HX19], and [HK21]. In comparison
to [AKU21a], λ now is part of the driver of the BSDE and of the auxiliary process
ϑ̃ of (5.22). Moreover, λ enters the optimal strategies, but only via ϑ, and the value
function, but only via Y . This is shown in the main result Theorem 5.2.6. The proof
of the alternative representation of the cost functional J sem (i.e., Theorem 5.2.1) and
the proof of Theorem 5.2.6 are generalizations of those in [AKU21a].

In the �nite-variation problem and its continuous extension (Chapter 7�Chapter 8),
we allow for all of ξ̂, λ, ζ. The terminal target ξ̂ is an FT -measurable random variable
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with E[γT ξ̂
2] < ∞, the risk coe�cient process λ = (λs)s∈[0,T ] is a bounded, progres-

sively measurable process (typically nonnegative), and the moving target ζ = (ζs)s∈[0,T ]

is a progressively measurable process with E[
∫ T

0
γsζ

2
sds] <∞.

There are no major di�culties due to the terminal target ξ̂ or due to the risk term
Et[
∫ T
t
γsλs(Xs− ζs)2ds] with moving target ζ in establishing the continuous extension

of the cost functional from J fv to Jpm and the reduction to a standard LQ stochastic
control problem. A minor inconvenience comes from the possible presence of the risk
term. For nonzero λ, the standard LQ problem after the �rst reduction in Section 8.1.1
contains cross-terms and we have to perform a second transformation in Section 8.1.2
to match the formulation of [KT02]. Since the setting in [KT02] (in contrast to,
e.g., [SXY21]) allows for inhomogeneities in the cost functional and in the state process
such as those produced by nonzero ξ̂ or ζ, we then obtain the solution via [KT02]
without further additional work also in the general case.
As a result, we get in Corollary 8.2.4 that the optimal strategies and minimal costs of

the extended problem are characterized by the process Y from BSDE (4.1) (cf. [KT02,
(9)]) and the process ψ from the linear BSDE (8.7) (cf. [KT02, (85)]). Similar to what
we observe in discrete time, Y includes λ, but none of ξ̂ and ζ, whereas ψ contains λ
and ζ (and also ϑ̃ of (5.22)) in the driver and has terminal value ψT = −1

2

√
γT ξ̂. If

ξ̂ = 0 and at least one of λ, ζ vanishes, then ψ ≡ 0, and formulas simplify (see also
the discussion at the end of Section 8.2).
The fact that we were able to incorporate an FT -measurable random variable ξ̂

and a progressively measurable process ζ, satisfying suitable integrability conditions
(see (7.1) and (7.2)), into our analysis, allows us to consider in Section 8.3 the Obizhaeva-
Wang model with random targets. In particular, in the subsetting with only a random
terminal target ξ̂, we �nd that we have to include updates about this random terminal
target in form of a zero-mean stochastic integral into the deterministic optimal strategy
of [OW13, Proposition 3].
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2

Optimal trade execution in a

discrete-time model

We �rst consider an optimal trade execution problem in discrete time. Trading is
allowed at a given �nite number of time points and in both directions. This means
that a strategy can comprise both buy and sell trades. A strategy is determined by
the size and direction of a trade at each time point. A trade that equals 0 means no
trading at this time, a negative value of a trade corresponds to selling, and a positive
value of a trade stands for a buy order. Note that we only consider market orders.
Admissible strategies need to reach a prescribed position at terminal time, which may
be stochastic.
In contrast to [AKU21b], we interpret strategies as the development of the position

in time and not as the progression of trades. Both concepts are equivalent (see also
Remark 2.1.1). The interpretation in the sense of positions is in line with the notion
of a strategy in the continuous-time models in later chapters (see also [AKU21a] and
[AKU22a]).
We work in a stylized symmetric order book model similar to and extending the one

of [OW13, Section 3]; see also the basic example of Obizhaeva-Wang type models in
Section 1.1. Recall that in that example and in [OW13] the order book parameters,
i.e., price impact and resilience coe�cient, are deterministic constants1, and that the
only source of randomness is the underlying una�ected price. However, price impact
and resilience re�ect the trading activity of other market participants and are therefore
described more realistically by stochastic processes. For an overview of the develop-
ment of Obizhaeva-Wang models towards this direction we refer to Section 1.2. In our
model, we now allow price impact and resilience both to be described by stochastic
processes. Additionally, resilience does not need to be exponential.
Furthermore, we incorporate the possibility to prescribe a stochastic target position.

This extends the typical setting where one wants to get from an initial position x ∈
R to terminal position 0 (or, more generally, from a deterministic initial position
to a deterministic terminal position). Moreover, we include a risk term in our cost

1see also [OW13, Section 8.1] for a comment on extension to time-varying deterministic resilience
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functional so that the agent can nudge the strategy to follow a target process during
the course of the trading period. Note that such a risk term and a possibly stochastic
target position expand the setting of [AKU21b].
In Section 2.1, we provide the mathematical formulation of our control problem and

more detail on its �nancial interpretation. Section 2.1 contains also some relevant
remarks on the model. We subsequently solve the control problem in Section 2.2. The
main result is Theorem 2.2.1. We therein characterize the optimal strategy and the
minimal costs by two processes Y and ψ that are de�ned by backward recursion. The
proof is given in Section 2.2.1. In Section 2.2.2 we comment on the main theorem.
Among others, we provide another representation of the process ψ, and we obtain the
main result from [AKU21b] as a special case of our main theorem. Subsequently, we
in Section 2.3 consider a subsetting within our general model that also serves as a
framework for some results and examples in further sections. In Section 2.4 we explain
that the process Y (in the setting of [AKU21b]) has an economic interpretation as a
savings factor and investigate its long-time limit. We study in Section 2.5 the existence
of pro�table round trips, and in Section 2.6 optimality of closing the position in one
go.
This chapter is based on and uses material from the publication [AKU21b] (joint

work with Thomas Kruse and Mikhail Urusov).

2.1 The discrete-time model

Let (Ω,F , (Fk)k∈Z, P ) be a �ltered probability space. For all p ∈ (0,∞) denote by
Lp = Lp(Ω,F , P ) the set of random variables Z on (Ω,F , P ) such that E[|Z|p] < ∞.
Denote L∞− =

⋂
p∈[1,∞) L

p(Ω,F , P ) and L2+ =
⋃
ε>0 L

2+ε(Ω,F , P ).

Observe that L∞− ⊆ L2+ ⊆ L2, and that the following hold (see also [AKU21b,
Appendix B]): If Z1, Z2 ∈ L∞−, then Z1Z2 ∈ L∞−. If Z1 ∈ L∞− and Z2 ∈ L2+, then
Z1Z2 ∈ L2+.
Furthermore, for k ∈ Z, write L∞−(Fk) (resp. L2+(Fk)) for the set of Fk-measurable

random variables in L∞− (resp. L2+). In the sequel, we will use the convention for
sums and products that

∑k
j=n := 0 and

∏k
j=n := 1 if n, k ∈ Z with n > k.

Let β = (βk)k∈Z and γ = (γk)k∈Z be strictly positive adapted stochastic processes,
called the resilience (process) and the price impact (process), respectively. Assume
that βk, γk, 1

γk
∈ L∞− for all k ∈ Z. It turns out to be convenient to denote the

multiplicative increments of γ by Γk = γk
γk−1

, k ∈ Z.
Let N ∈ N. We introduce a random variable ξ̂ ∈ L2+(FN), an adapted stochas-

tic process ζ = (ζk)k∈Z∩(−∞,N ], and a nonnegative adapted stochastic process λ =
(λk)k∈Z∩(−∞,N ]. Assume that ζk ∈ L2+ and λk ∈ L∞− for all k ∈ Z ∩ (−∞, N ]. For
n ∈ Z ∩ (−∞, N ] and x, d ∈ R we denote by Adisc

n (x, d) the set of real-valued adapted
stochastic processes X = (Xk)k∈{n−1,n,...,N} with Xk ∈ L2+ for all k ∈ {n, . . . , N}
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that are equipped with initial position2 Xn−1 = x and satisfy XN = ξ̂. Elements
of Adisc

n (x, d) are called execution strategies. For such an execution strategy X =
(Xk)k∈{n−1,n,...,N} we furthermore introduce its associated trade process ξ = (ξk)k∈{n,...,N}
de�ned by ξk = Xk −Xk−1, k ∈ {n, . . . , N}.

Remark 2.1.1. Note that for n ∈ Z ∩ (−∞, N ], x, d ∈ R, and an execution strat-
egy X = (Xk)k∈{n−1,n,...,N} ∈ Adisc

n (x, d), its trade process ξ is a real-valued adapted
stochastic process with ξk ∈ L2+ for all k ∈ {n, . . . , N} and x+

∑N
j=n ξj = ξ̂. Observe

that it is equivalently possible to start from a real-valued adapted stochastic process
ξ = (ξk)k∈{n,...,N} satisfying x +

∑N
j=n ξj = ξ̂ and ξk ∈ L2+ for all k ∈ {n, . . . , N},

and to de�ne an execution strategy X = (Xk)k∈{n−1,n,...,N} ∈ Adisc
n (x, d) via Xn−1 = x,

Xk = x +
∑k

j=n ξj, k ∈ {n, . . . , N}. This execution strategy then has ξ as its trade

process. Thus, (for �xed n ∈ Z∩ (−∞, N ], x ∈ R, and ξ̂ ∈ L2+(FN)) there is a one-to-
one correspondence between execution strategies and real-valued adapted stochastic
processes (trade processes) ξ = (ξk)k∈{n,...,N} satisfying x +

∑N
j=n ξj = ξ̂ and ξk ∈ L2+

for all k ∈ {n, . . . , N}.

For n ∈ Z ∩ (−∞, N ], x, d ∈ R, and X ∈ Adisc
n (x, d) we de�ne the deviation process

D = (Dk−)k∈{n,...,N} associated to the execution strategy X recursively by

Dn− = d and Dk− = (D(k−1)− + γk−1ξk−1)βk, k ∈ {n+ 1, . . . , N}, (2.1)

where ξ is the trade process for X. Note that the process D = (Dk−)k∈{n,...,N} is
adapted. In addition to the recursive de�nition of the deviation process, we have the
following explicit representation.

Remark 2.1.2. For n ∈ Z ∩ (−∞, N ], x, d ∈ R, and X ∈ Adisc
n (x, d), the deviation

process D = (Dk−)k∈{n,...,N} associated to X is given explicitly by

Dk− = d
k∏

l=n+1

βl +
k∑

i=n+1

γi−1ξi−1

k∏
l=i

βl, k ∈ {n, . . . , N}, (2.2)

where ξ is the trade process for X. This can be established by induction on k ∈
{n, . . . , N}. Observe furthermore that we see from (2.2) and the assumptions βk, γk ∈
L∞− for all k ∈ Z, ξk ∈ L2+ for all k ∈ {n, . . . , N}, that Dk− ∈ L2+ for all k ∈
{n, . . . , N}.

For n ∈ Z ∩ (−∞, N ], x, d ∈ R, we want to minimize over X ∈ Adisc
n (x, d) the

expected costs

En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
+ En

[
N∑
j=n

γjλj(Xj − ζj)2

]
, (2.3)

2d will be the initial value for the state process associated to X, see also (2.1).
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2 Optimal trade execution in a discrete-time model

where d is the starting point of the process D in (2.1), ξ is the trade process associated
to X, and En[·] is a shorthand notation for E[·|Fn].

Remark 2.1.3. Note that the expected costs (2.3) are �nite. To show this, we verify
that for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, X ∈ Adisc

n (x, d) with trade process ξ, each
summand

(
Dj− +

γj
2
ξj
)
ξj, j ∈ {n, . . . , N}, and γjλj(Xj − ζj)

2, j ∈ {n, . . . , N}, is
integrable. Since γj ∈ L∞− and ξj ∈ L2+, the product γjξj is in L2+. By Remark 2.1.2,
Dj− ∈ L2+ as well. Hence, Dj− +

γj
2
ξj ∈ L2+. The Cauchy-Schwarz inequality thus

yields the integrability of
(
Dj− +

γj
2
ξj
)
ξj. For γjλj(Xj−ζj)2, note that Xj−ζj ∈ L2+.

Since γj, λj ∈ L∞−, it follows that γjλj(Xj− ζj) ∈ L2+. Again by the Cauchy-Schwarz
inequality we have that γjλj(Xj − ζj)2 is integrable.

We then de�ne the value function V : Ω× (Z ∩ (−∞, N ])× R× R→ R,

Vn(x, d) = ess inf
X∈Adisc

n (x,d)
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj +

N∑
j=n

γjλj(Xj − ζj)2

]
,

n ∈ Z ∩ (−∞, N ], x ∈ R, d ∈ R.

(2.4)

Let us now explain the �nancial interpretation of the model. The numbers N ∈
N and n ∈ Z ∩ (−∞, N ] specify the end and the beginning of the trading period,
respectively. The possible trading times are given by the set {n, . . . , N}. The number
x ∈ R represents the initial position of the agent, while the random variable ξ̂ ∈
L2+(FN) prescribes the target position at terminal time. Since ξ̂ is assumed to be FN -
measurable, it is possible to model a situation where the value of the target position is
only revealed at terminal time. The condition to close the position corresponds to the
choice ξ̂ = 0. An execution strategy X ∈ Adisc

n (x, d) tracks the agent's position with
the given constraints that the initial position is �xed at x and the terminal position
at ξ̂. For a time point k ∈ {n, . . . , N − 1}, the value of Xk re�ects the position after
the trade at time k and prior to the trade at time k+1. The di�erence ξk = Xk−Xk−1

corresponds to the number of shares traded by the agent at time k ∈ {n, . . . , N} and
will therefore sometimes be called trade size. If ξk > 0, the agent buys shares, whereas
a negative value ξk < 0 means selling. With the last trade ξN , the target position ξ̂
needs to be reached, i.e., ξN = ξ̂ −XN−1 = ξ̂ − x−

∑N−1
j=n ξj.

The process D describes the deviation of the price of a share from the una�ected
price caused by the past trades of the agent. Typically, the initial deviation d ∈ R
immediately prior to the considered trading period {n, . . . , N} is 0. Given a deviation
of size D(k−1)− directly prior to the trade at time k − 1 ∈ {n, . . . , N}, the deviation
directly after a trade of size ξk−1 equals D(k−1)−+γk−1ξk−1. In particular, the change of
the deviation is proportional to the size of the trade, and the proportionality factor is
given by the price impact process γ. In the language of the literature on optimal trade
execution problems, our model thus includes a linear price impact. This corresponds to
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2.1 The discrete-time model

a block-shaped symmetric limit order book, i.e., limit orders are uniformly distributed
to the left and to the right of the mid-market price. Note that in our idealized model
the bid-ask spread is always assumed to be 0. The height of the order book at time
k ∈ Z is given by 1

γk
. In particular, our model allows the height of the limit order book

to evolve randomly in time and thereby captures stochastic market liquidity. Note that
since γ is positive, a purchase ξk > 0 at time k ∈ {n, . . . , N} increases the deviation,
whereas a sale ξk < 0 decreases it.

In the period after the trade at time k − 1 and before the trade at time k, the
deviation changes from D(k−1)− + γk−1ξk−1 to Dk− = (D(k−1)− + γk−1ξk−1)βk due to
resilience e�ects in the market. In the literature on optimal execution the resilience
process β is often assumed to take values in (0, 1) and describes the speed with which
the deviation tends back to zero between two trades, where values of β close to zero
signify a faster reversion to zero. In this case, i.e., for (0, 1)-valued β, the price impact is
usually called transient (cf., e.g., [ASS12]). The case β ≡ 1 corresponds to permanent
impact. In our work we assume β only to be positive. If D(k−1)− + γk−1ξk−1 has the
same sign as the trade ξk−1 at time k − 1, which typically is the case, then a value
βk > 1 describes the e�ect when the deviation continues to move in the direction of
the trade for some time after the trade. In any case, β > 1 reinforces the deviation.
Note that not only γ, but also β evolves randomly in time.

At each time k ∈ {n, . . . , N} the illiquidity costs incurred by a trade ξk amount
to (Dk− + γk

2
ξk)ξk. This means that the price per share that the agent has to pay in

addition to the una�ected price equals the mean of the deviation before the trade Dk−
and the deviation after the trade Dk− + γkξk. The overall illiquidity costs during the
trading period {n, . . . , N} are given by

∑N
k=n(Dk− + γk

2
ξk)ξk.

To these illiquidity costs, we add some costs due to risk preferences
∑N

k=n γkλk(Xk−
ζk)

2. These additional costs should be viewed as penalization or steering of strategies
and are not necessarily of a �nancial nature. The value ζk describes the agent's pre-
ferred position at time k ∈ {n, . . . , N}. In most cases, one might want to choose ζN = ξ̂
at terminal time since any admissible strategy X needs to satisfy XN = ξ̂ anyway. Fur-
thermore, a typical choice for the process ζ is ζk = Ek[ξ̂] for all k ∈ {n, . . . , N}. This
means that at each time k ∈ {n, . . . , N} during the trading period, the agent aims for
a position that is not too far from the best current prediction Ek[ξ̂] of the target ξ̂. The
coe�cient γkλk describes how strict discrepancies of the position Xk from the target
position ζk at time k ∈ {n, . . . , N} are penalized. Note that we use the parametriza-
tion γkλk instead of simply λ̃k to match the notation in [AKU22a] and also for more
convenience in Section 2.2.

To sum up, control problem (2.4) corresponds to minimizing the expected costs
(including risk preferences) of transferring an initial position of size x ∈ R within the
trading period {n, . . . , N} to position ξ̂ at time N given initial deviation d ∈ R, where
the minimization is performed in an extension of symmetric block-shaped limit order
book models to the case of randomly evolving order book depth and resilience.
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2 Optimal trade execution in a discrete-time model

We remark that the above model can be extended to explicitly include an una�ected
price as long as the una�ected price is a square-integrable martingale. This is a fairly
standard assumption in the literature on optimal trade execution (see, e.g., [AFS08,
AFS10, AS10, OW13, PSS11], and [GS13, Section 22.2]). For an example where the
dependence of optimal strategies on a possible drift in the underlying una�ected price
process is analyzed (in a continuous-time model of Obizhaeva-Wang type), we mention
[LS13].

Remark 2.1.4. We can also include an una�ected price process in the model. In-
deed, if the una�ected price process is given by a square-integrable martingale S0 =
(S0

k)k∈Z∩(−∞,N ], then, for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, and X ∈ Adisc
n (x, d), we get

N∑
j=n

S0
j ξj =

N∑
j=n

S0
j (Xj −Xj−1)

=
N∑
j=n

S0
j−1(Xj −Xj−1) +

N∑
j=n

(S0
j − S0

j−1)Xj −
N∑
j=n

(S0
j − S0

j−1)Xj−1

= S0
NXN − S0

n−1Xn−1 −
N−1∑
j=n

(S0
j+1 − S0

j )Xj − (S0
n − S0

n−1)Xn−1

= ξ̂S0
N − xS0

n −
N−1∑
j=n

(S0
j+1 − S0

j )Xj,

and thus

En

[
N∑
j=n

S0
j ξj

]
= En

[
ξ̂S0

N − xS0
n −

N−1∑
j=n

Xj(S
0
j+1 − S0

j )

]
= En[ξ̂S0

N ]− xS0
n.

It follows that for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, the expected costs generated by
an execution strategy X ∈ Adisc

n (x, d) with trade process ξ and deviation process
(Dk−)k∈{n,...,N} of (2.1) satisfy

En

[
N∑
j=n

(
S0
j +Dj− +

γj
2
ξj

)
ξj +

N∑
j=n

γjλj(Xj − ζj)2

]

= En[ξ̂S0
N ]− xS0

n + En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj +

N∑
j=n

γjλj(Xj − ζj)2

]
.

(2.5)

Hence, minimizing En[
∑N

j=n(S0
j + Dj− +

γj
2
ξj)ξj +

∑N
j=n γjλj(Xj − ζj)2] is equivalent

to (2.4).
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2.1 The discrete-time model

As an extension to our model, we could additionally include a constant perma-
nent price impact coe�cient without changing the analysis (see also, e.g., [AFS08]
or [FSU14]).

Remark 2.1.5. To set up a variant of our model with transient and permanent price
impact, let q = (qk)k∈Z be a strictly positive adapted process such that ĉ = 1

qk
−γk is a

strictly positive constant for all k ∈ Z. The setting usually considered in this chapter
corresponds to the choice qk = 1

γk
, k ∈ Z. In general, we interpret q as the order book

depth, γ as the transient price impact coe�cient, and ĉ as the permanent price impact
coe�cient. For n ∈ Z∩ (−∞, N ], x, d ∈ R, and X ∈ Adisc

n (x, d) (with trade process ξ),
we now consider the deviation process D̂ = (D̂k−)k∈{n,...,N} given by

D̂k− = d

k∏
l=n+1

βl +
k∑

i=n+1

γi−1ξi−1

k∏
l=i

βl +
k∑

i=n+1

ĉ ξi−1

= Dk− + (Xk−1 − x)ĉ, k ∈ {n, . . . , N},

and the expected costs3

En

[
N∑
j=n

(
D̂j− +

1

2qj
ξj

)
ξj

]
+ En

[
N∑
j=n

γjλj(Xj − ζj)2

]
. (2.6)

It holds for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, and X ∈ Adisc
n (x, d) that

N∑
j=n

(
D̂j− +

1

2qj
ξj

)
ξj =

N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj + ĉ

N∑
j=n

(
Xj−1 − x+

1

2
ξj

)
ξj,

and for the second term we further obtain that

N∑
j=n

(
Xj−1 − x+

1

2
ξj

)
ξj =

N∑
j=n

(
1

2
Xj−1 − x+

1

2
Xj

)
(Xj −Xj−1)

=
1

2

N∑
j=n

(
X2
j −X2

j−1

)
− x(XN − x)

=
1

2
(ξ̂2 − x2)− x(ξ̂ − x).

It follows that the additional costs due to the permanent price impact coe�cient do not
depend on the choice of the strategy. This shows that minimizing (2.6) is equivalent
to (2.4).

3Recall that the scaling of λ by γ in the risk term is only for convenience.
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2 Optimal trade execution in a discrete-time model

Furthermore, let us mention that the optimization problem for initial position x+ b,
where x, b ∈ R, and terminal position b is not di�erent from the problem to close
the initial position x (the assumption that the terminal positions are deterministic is
important). This is the content of the next remark.

Remark 2.1.6. Let n ∈ Z ∩ (−∞, N ], and x, b, d ∈ R. We denote by A0
n(x, d) (resp.

Abn(x + b, d)) the set of execution strategies X = (Xk)k∈{n−1,...,N} with initial value
Xn−1 = x (resp. Xn−1 = x+b) and terminal value XN = 0 (resp. XN = b). Suppose �rst
that X ∈ A0

n(x, d) with associated trade process ξ. Then, the de�nition X(b)
k = Xk + b

for all k ∈ {n − 1, . . . , N} yields an execution strategy X(b) = (X
(b)
k )k∈{n−1,...,N} ∈

Abn(x + b, d), and the associated trade process ξ(b) = (ξ
(b)
k )k∈{n,...,N} is given by ξ(b)

k =

X
(b)
k − X

(b)
k−1 = Xk − Xk−1 = ξk, k ∈ {n, . . . , N}. Conversely, starting from X(b) ∈

Abn(x+b, d), we can recoverX ∈ A0
n(x, d) viaXk = X

(b)
k −b, k ∈ {n−1, . . . , N}. In fact,

we obtain in this way a one-to-one correspondence between strategies in A0
n(x, d) and

strategies inAbn(x+b, d), and their trade processes coincide. Since the deviation process
and the illiquidity costs only depend on the initial deviation d and the trade process,
but not on the initial or terminal position, it holds that the illiquidity costs associated
to X ∈ A0

n(x, d) and the illiquidity costs associated to X(b) = (Xk + b)k∈{n−1,...,N} ∈
Abn(x+ b, d) are the same. It follows that

ess inf
X∈A0

n(x,d)
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
= ess inf

X(b)∈Abn(x+b,d)
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
.

Therefore, in the risk-neutral case, the minimization problems are the same, and if
there exists an optimal strategy of one problem, it is a shifted version of the optimal
strategy of the other problem, and both have the same trade process and the same costs.
We can also use a risk preference term as in (2.4) provided that both problems use the
same λ and that the target processes ζ, ζ(b) are linked via ζ(b)

k = ζk+b, k ∈ {n, . . . , N}.
Moreover, we can include for both problems the same square-integrable martingale S0

as an una�ected price (see Remark 2.1.4).

2.2 Optimal strategies and minimal costs

The following main result Theorem 2.2.1 provides a solution to the stochastic control
problem (2.4). It shows that the value function and the optimal strategy in (2.4) are
characterized by two processes Y and ψ. The process Y is de�ned via the backward
recursion (2.7) and involves only the resilience β, the multiplicative increments Γ of
the price impact, and λ (recall the risk term

∑N
j=n γjλj(Xj − ζj)2 in (2.4)). In case

of a nonzero target ξ̂ or nonzero λ and ζ, the process ψ (de�ned by (2.8); see also
Remark 2.2.3) enters the representation of the value function and the optimal strategy.
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2.2 Optimal strategies and minimal costs

We provide a proof of Theorem 2.2.1 in Section 2.2.1, and subsequently discuss
Theorem 2.2.1 in Section 2.2.2.

Theorem 2.2.1. Recall the assumptions that βn, γn,
1
γn
, λn ∈ L∞−, ζn ∈ L2+, and

βn, γn > 0, λn ≥ 0 for all n ∈ Z ∩ (−∞, N ] and that ξ̂ ∈ L2+(FN). Suppose

moreover that for all n ∈ Z ∩ (−∞, N − 1] it holds that En[
β2
n+1

Γn+1
] < 1 a.s. and that

(1 − En[
β2
n+1

Γn+1
])−1 ∈ L∞−. Let Y = (Yn)n∈Z∩(−∞,N ] be the process that is recursively

de�ned by YN = 1
2
and, for n ∈ Z ∩ (−∞, N − 1],

Yn = En[Γn+1Yn+1] + λn −
(En [Yn+1 (βn+1 − Γn+1)]− λn)2

En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)
+ λn

] . (2.7)

Furthermore, let ψ = (ψn)n∈Z∩(−∞,N ] be the process that is recursively de�ned by ψN =

−1
2

√
γN ξ̂ and, for n ∈ Z ∩ (−∞, N − 1],

ψn = En

[√
Γn+1ψn+1

]
−√γnλnζn + En

[√
Γn+1ψn+1

(
1− βn+1

Γn+1

)
−√γnλnζn

]
· En [Yn+1 (βn+1 − Γn+1)]− λn
En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)
+ λn

] .
(2.8)

(i) It holds for all n ∈ Z ∩ (−∞, N ] that 0 < Yn ≤ 1
2
and ψn ∈ L2+(Fn).

(ii) It holds for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, that

Vn(x, d) =
Yn
γn

(d− γnx)2 − d2

2γn
− 2

ψn√
γn

(d− γnx)

+ En

[
γN
2
ξ̂2 + γNλN

(
ξ̂ − ζN

)2

+
N−1∑
j=n

γjλjζ
2
j

]

−
N−1∑
j=n

En


(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

]
 .

(2.9)

(iii) For all x, d ∈ R the (up to P -null sets) unique optimal trade size is given by

ξ∗n(x, d) =
En [Yn+1(βn+1 − Γn+1)]− λn

En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)
+ λn

] (x− d

γn

)
− d

γn

−
En

[√
Γn+1ψn+1

(
1− βn+1

Γn+1

)]
−√γnλnζn

√
γnEn

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)
+ λn

] (2.10)
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2 Optimal trade execution in a discrete-time model

for all n ∈ Z ∩ (−∞, N − 1], and ξ∗N(x, d) = ξ̂ − x. It holds that ξ∗n(x, d) ∈ L2+(Fn)
for all n ∈ Z ∩ (−∞, N ], x, d ∈ R.

(iv) In particular, for all n ∈ Z∩(−∞, N ], x, d ∈ R, the process X∗=(X∗k)k∈{n−1,...,N}
recursively de�ned by X∗n−1 = x,D∗n− = d,

X∗k = X∗k−1 + ξ∗k(X
∗
k−1, D

∗
k−),

D∗(k+1)− =
(
D∗k− + γkξ

∗
k(X

∗
k−1, D

∗
k−)
)
βk+1, k ∈ {n, . . . , N},

(2.11)

is a unique optimal strategy in Adisc
n (x, d) for (2.4) with associated trade process

(ξ∗k(X
∗
k−1, D

∗
k−))k∈{n,...,N} and associated deviation process (D∗k−)k∈{n,...,N}.

2.2.1 Proof of the main theorem

In this subsection, we prove Theorem 2.2.1 by using the same techniques as in the
proof of [AKU21b, Theorem 2.1]. In particular, we rely on the dynamic programming
principle and the quadratic nature of the value function.

The main di�erence is that the value function in [AKU21b, Theorem 2.1] has the
structure Ṽn(x, d) = ṽ1,nd

2 + ṽ2,nx
2 + ṽ3,nxd, x, d ∈ R, n ∈ Z ∩ (−∞, N ], for some

Fn-measurable coe�cients ṽj,n, j ∈ {1, 2, 3}, n ∈ Z ∩ (−∞, N ], whereas we here
need to consider Vn(x, d) = v1,nd

2 + v2,nx
2 + v3,nxd + v4,nd + v5,nx + v6,n, x, d ∈ R,

n ∈ Z ∩ (−∞, N ], for some Fn-measurable coe�cients vj,n, j ∈ {1, 2, 3, 4, 5, 6}, n ∈
Z ∩ (−∞, N ]. It turns out that, in contrast to [AKU21b, Theorem 2.1], a single
process Y is in general not su�cient to describe the value function Vn(x, d), x, d ∈ R,
n ∈ Z ∩ (−∞, N ], that has possibly nonvanishing coe�cients v4,n of d and v5,n of x
and shift v6,n, n ∈ Z ∩ (−∞, N ].

We �rst show (i)�(iii) of Theorem 2.2.1 simultaneously by backward induction, and
subsequently (iv) by forward induction.

Proof of (i)�(iii)

For the base case n = N we have YN = 1
2
∈ (0, 1

2
]. Since γN ∈ L∞−(FN), it holds by

Jensen's inequality that also
√
γN ∈ L∞−(FN). Together with ξ̂ ∈ L2+(FN), we then

have that ψN = −1
2

√
γN ξ̂ ∈ L2+(FN). Observe that, for all x, d ∈ R, the admissible

set Adisc
n (x, d) consists exactly of the process X = (Xk)k∈{N−1,N} given by XN−1 = x

and XN = ξ̂. The associated trade process is given by the single trade ξN = ξ̂ − x.
This implies for all x, d ∈ R that VN(x, d) = (d+ γN

2
(ξ̂ − x))(ξ̂ − x) + γNλN(ξ̂ − ζN)2,

and that ξ∗N(x, d) = ξ̂ − x ∈ L2+(FN) is the unique optimal trade size. Since, for all
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2.2 Optimal strategies and minimal costs

x, d ∈ R,(
d+

γN
2

(ξ̂ − x)
)

(ξ̂ − x) = (ξ̂ − x)d+
γN
2

(x2 − 2ξ̂x+ ξ̂2)

= −xd+
1

2
γNx

2 + ξ̂(d− γNx) +
γN
2
ξ̂2

=
YN
γN

(d− γNx)2 − d2

2γN
− 2ψN√

γN
(d− γNx) + EN

[γN
2
ξ̂2
]
,

we conclude that (2.9) holds for n = N .

Consider now the induction step Z∩ (−∞, N ] 3 n+ 1→ n ∈ Z∩ (−∞, N − 1]. For
all x, d ∈ R let

an = γnEn

[
Yn+1

Γn+1

(βn+1 − Γn+1)2 +
1

2

(
1−

β2
n+1

Γn+1

)
+ λn

]
,

bn(x, d) = En

[
d

(
1−

β2
n+1

Γn+1

)
+ 2Yn+1

(
βn+1

Γn+1

− 1

)
(βn+1d− γn+1x)

]
+ En

[
2
√
γn+1ψn+1

(
1− βn+1

Γn+1

)]
+ 2γnλn(x− ζn),

cn(x, d) = En

[
Yn+1

γn+1

(βn+1d− γn+1x)2 −
d2β2

n+1

2γn+1

]
+ En

[
2
√
γn+1ψn+1

(
x− βn+1

γn+1

d

)]
+ γnλn(x− ζn)2 + En

[
γN
2
ξ̂2 + γNλN

(
ξ̂ − ζN

)2

+
N−1∑
j=n+1

γjλjζ
2
j

]

−
N−1∑
j=n+1

En


(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

]
 .

(2.12)

The random variables an, bn(x, d), cn(x, d) are well-de�ned and it holds that an ∈ L∞−,
bn(x, d) ∈ L2+, and cn(x, d) ∈ L1 for all x, d ∈ R. This relies on the assumptions that
βk, γk,

1
γk
, λk ∈ L∞− and ζk, ξ̂ ∈ L2+ for all k ∈ Z∩(−∞, N ], as well as on the induction

hypothesis 0 < Yj ≤ 1
2
and ψj ∈ L2+(Fj) for all j ∈ {n+ 1, . . . , N}. For the last term

in the de�nition of cn(x, d), x, d ∈ R, we also use the assumptions Ek[
β2
k+1

Γk+1
] < 1 and

(1 − Ek[
β2
k+1

Γk+1
])−1 ∈ L∞− for all k ∈ Z ∩ (−∞, N − 1]. Let us treat this last term in

more detail.
First, the assumption Ek[

β2
k+1

Γk+1
] < 1 for all k ∈ Z ∩ (−∞, N − 1], the induction

hypothesis Yj+1 > 0, j ∈ {n, . . . , N − 1}, and λk ≥ 0, γk > 0 for all k ∈ Z ∩ (−∞, N ]
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2 Optimal trade execution in a discrete-time model

imply for all j ∈ {n, . . . , N − 1} that

Ej

[
Yj+1

Γj+1

(βj+1 − Γj+1)2 +
1

2

(
1−

β2
j+1

Γj+1

)
+ λj

]
≥ 1

2

(
1− Ej

[
β2
j+1

Γj+1

])
> 0.

(2.13)

For all j ∈ {n, . . . , N − 1} it then follows from the assumption (1−Ej[
β2
j+1

Γj+1
])−1 ∈ L∞−

that
1

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

] ∈ L∞−. (2.14)

Second, by the induction hypothesis, we have ψj+1 ∈ L2+ for all j ∈ {n, . . . , N − 1}.
Furthermore, we have the assumptions that βk, γk, 1

γk
∈ L∞− for all k ∈ Z ∩ (−∞, N ],

and therefore it holds for all j ∈ {n, . . . , N − 1} that
√

Γj+1ψj+1(1 − βj+1

Γj+1
) ∈ L2+.

Moreover, we have for all k ∈ Z ∩ (−∞, N ] that
√
γk, λk ∈ L∞− and ζk ∈ L2+, and

hence
√
γkλkζk ∈ L2+. Therefore, it holds for all j ∈ {n, . . . , N − 1} that

Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj ∈ L2+. (2.15)

Next, we combine (2.15) and (2.14) to obtain for all j ∈ {n, . . . , N − 1} that

Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

] ∈ L2+. (2.16)

Further, the Cauchy-Schwarz inequality then proves for all j ∈ {n, . . . , N − 1} that(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

] ∈ L1.

We conclude that the last term in the de�nition of cn(x, d), x, d ∈ R, is well-de�ned
and in L1.
We furthermore remark that an

γn
> 0 and an > 0 due to (2.13) and γn > 0. Also,

(2.14) and 1
γn
∈ L∞− show that γn

an
, 1
an
∈ L∞−.

Besides, note that the assumptions that for all k ∈ Z ∩ (−∞, N ] it holds that
βk, γk,

1
γk
, λk ∈ L∞− and ζk, ξ̂ ∈ L2+, and the fact that Yn+1 is bounded and ψn+1 ∈ L2+,

ensure that all conditional expectations in the sequel are well-de�ned and that we can
conduct all our calculations.
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2.2 Optimal strategies and minimal costs

The remainder of the induction step is subdivided into the four paragraphs Optimal
trade size ξ∗n(x, d), Representation of the value function Vn(x, d), Bounds for Yn, and
Integrability property for ψn.

Optimal trade size ξ∗n(x, d). We now prove existence and formula (2.10) for the
optimal trade size, and that ξ∗n(x, d) ∈ L2+(Fn). It holds by the dynamic programming
principle and the induction hypothesis on the value function that for all x, d ∈ R

Vn(x, d) = ess inf
X∈Adisc

n (x,d)

[(
Dn− +

γn
2
ξn

)
ξn + γnλn(Xn − ζn)2 + En

[
Vn+1(Xn, D(n+1)−)

]]
= ess inf

ξ∈L2+(Fn)

[(
d+

γn
2
ξ
)
ξ + γnλn(x+ ξ − ζn)2 + En [Vn+1 (x+ ξ, (d+ γnξ)βn+1)]

]
= ess inf

ξ∈L2+(Fn)

[(
d+

γn
2
ξ
)
ξ + γnλn(x+ ξ − ζn)2

+ En

[
Yn+1

γn+1

((d+ γnξ)βn+1 − γn+1(x+ ξ))2 −
(d+ γnξ)

2β2
n+1

2γn+1

− 2
ψn+1√
γn+1

((d+ γnξ)βn+1 − γn+1(x+ ξ)) + Vn+1(0, 0)

]]

= ess inf
ξ∈L2+(Fn)

En

[
dξ +

γn
2
ξ2 + γnλn(x− ζn)2 + 2γnλn(x− ζn)ξ + γnλnξ

2

+ γn+1Yn+1

(
dβn+1

γn+1

− x+

(
βn+1

Γn+1

− 1

)
ξ

)2

−
d2β2

n+1

2γn+1

−
dβ2

n+1

Γn+1

ξ −
β2
n+1

2Γn+1

γnξ
2 − 2

√
γn+1ψn+1

(
dβn+1

γn+1

− x+

(
βn+1

Γn+1

− 1

)
ξ

)
+ Vn+1(0, 0)

]

= ess inf
ξ∈L2+(Fn)

[
γnEn

[
1

2
+ λn + Γn+1Yn+1

(
βn+1

Γn+1

− 1

)2

−
β2
n+1

2Γn+1

]
ξ2

+ En

[
d+ 2γnλn(x− ζn) + 2γn+1Yn+1

(
βn+1

Γn+1

− 1

)(
dβn+1

γn+1

− x
)

−
dβ2

n+1

Γn+1

− 2
√
γn+1ψn+1

(
βn+1

Γn+1

− 1

)]
ξ

+ En

[
γnλn(x− ζn)2 + γn+1Yn+1

(
dβn+1

γn+1

− x
)2

−
d2β2

n+1

2γn+1

− 2
√
γn+1ψn+1

(
dβn+1

γn+1

− x
)

+ Vn+1(0, 0)

]]
.
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2 Optimal trade execution in a discrete-time model

We thus obtain the representation

Vn(x, d) = ess inf
ξ∈L2+(Fn)

[
anξ

2 + bn(x, d)ξ + cn(x, d)
]
, x, d ∈ R. (2.17)

For all x, d ∈ R we �nd ξ∗n(x, d) = − bn(x,d)
2an

to be the unique minimizer of ξ 7→ anξ
2 +

bn(x, d)ξ + cn(x, d). Note that, for all x, d ∈ R, the facts that bn(x, d) ∈ L2+(Fn) and
1
an
∈ L∞−(Fn) imply that ξ∗n(x, d) ∈ L2+(Fn). Observe further that for all x, d ∈ R it

holds that

− bn(x, d)

2an

= −
En

[
d
γn

1
2

(
1− β2

n+1

Γn+1

)
+ Yn+1

(
β2
n+1

Γn+1

d
γn
− βn+1

d
γn
− βn+1x+ Γn+1x

)]
an/γn

−
En

[√
γn+1ψn+1

(
1− βn+1

Γn+1

)]
+ γnλn(x− ζn)

an

= − d

γn

En

[
1
2

(
1− β2

n+1

Γn+1

)
+ Yn+1

Γn+1
(βn+1 − Γn+1)2 + λn + Yn+1(βn+1 − Γn+1)

]
− λn

an/γn

− xEn [Yn+1(Γn+1 − βn+1)] + λn
an/γn

−
En

[√
γn+1ψn+1

(
1− βn+1

Γn+1

)]
− γnλnζn

an

= − d

γn
+

(
x− d

γn

)
En [Yn+1(βn+1 − Γn+1)]− λn

an/γn

−
En

[√
Γn+1ψn+1

(
1− βn+1

Γn+1

)]
−√γnλnζn

an/
√
γn

,

which yields the representation of ξ∗n(x, d) in (2.10).

Representation of the value function Vn(x, d). We next establish representation (2.9)
of the value function Vn(x, d).
By inserting the optimal trade size ξ∗n(x, d) = − bn(x,d)

2an
into (2.17), we obtain for all

x, d ∈ R that

Vn(x, d) = −bn(x, d)2

4an
+ cn(x, d). (2.18)

Note that by (2.18) and (2.12) it holds that for almost all ω ∈ Ω, Vn is a quadratic
function in (x, d) ∈ R2. We thus have for all x, d ∈ R that

Vn(x, d) =
(∂2
ddVn)(0, 0)

2
d2 +

(∂2
xxVn)(0, 0)

2
x2 + [(∂2

dxVn)(0, 0)]xd

+ [(∂dVn)(0, 0)]d+ [(∂xVn)(0, 0)]x+ Vn(0, 0).
(2.19)
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The dynamic programming principle ensures for all x, d, h ∈ R that

Vn(x, d)−
(
d+

γn
2
h
)
h = ess inf

X∈Adisc
n (x,d)

[(
d+

γn
2
ξn

)
ξn + γnλn(Xn − ζn)2 −

(
d+

γn
2
h
)
h

+ En [Vn+1(x+ ξn, (d+ γnξn)βn+1)]

]
= ess inf

ξ∈L2+(Fn)

[(
d+

γn
2

(ξ + h)
)

(ξ − h) + γnλn(x+ ξ − ζn)2

+ En [Vn+1(x+ ξ, (d+ γnξ)βn+1)]

]
= ess inf

ξ̃∈L2+(Fn)

[(
d+ γnh+

γn
2
ξ̃
)
ξ̃ + γnλn(x+ h+ ξ̃ − ζn)2

+ En

[
Vn+1(x+ h+ ξ̃, (d+ γn(h+ ξ̃))βn+1)

] ]
= Vn(x+ h, d+ γnh).

It follows for all x, d ∈ R that

(∂xVn)(x, d) + γn(∂dVn)(x, d)← Vn(x+ h, d+ γnh)− Vn(x, d)

h
= −

(
d+

γn
2
h
)
→ −d
(2.20)

as h→ 0. Consequently, we obtain that

(∂xVn)(0, 0) + γn(∂dVn)(0, 0) = 0,

(∂2
xxVn)(0, 0) + γn(∂2

dxVn)(0, 0) = 0,

(∂2
xdVn)(0, 0) + γn(∂2

ddVn)(0, 0) = −1.

This implies that

(∂dVn)(0, 0) = − 1

γn
(∂xVn)(0, 0),

(∂2
dxVn)(0, 0) = − 1

γn
(∂2
xxVn)(0, 0),

(∂2
ddVn)(0, 0) =

1

γn

(
−(∂2

dxVn)(0, 0)− 1
)

=
1

γ2
n

(∂2
xxVn)(0, 0)− 1

γn
.

Inserting this into (2.19) proves for all x, d ∈ R that

Vn(x, d) =
(∂2
xxVn)(0, 0)

2

(
d

γn
− x
)2

− d2

2γn
+ (∂xVn)(0, 0)

(
x− d

γn

)
+ Vn(0, 0).

(2.21)
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We obtain (∂2xxVn)(0,0)
2

(resp. (∂xVn)(0, 0)) by identifying the coe�cient of x2 (resp. x)
in (2.18) using (2.12). We therefore consider for all x ∈ R

Vn(x, 0) = −bn(x, 0)2

4an
+ cn(x, 0)

= −

(
En

[√
γn+1ψn+1

(
1− βn+1

Γn+1

)
− γnλnζn

]
+ En

[
Yn+1γn+1

(
1− βn+1

Γn+1

)
+ γnλn

]
x
)2

an
+ En [Yn+1γn+1]x2 + En [2

√
γn+1ψn+1]x+ γnλn(x− ζn)2 + En [Vn+1(0, 0)]

=

(
En [γn+1Yn+1] + γnλn −

γn (En [Yn+1 (Γn+1 − βn+1) + λn])2

an/γn

)
x2

+ (En [2
√
γn+1ψn+1]− 2γnλnζn)x

−
2En

[√
γn+1ψn+1

(
1− βn+1

Γn+1

)
− γnλnζn

]
En [Yn+1 (Γn+1 − βn+1) + λn]

an/γn
x

+ γnλnζ
2
n −

(
En

[√
γn+1ψn+1

(
1− βn+1

Γn+1

)
− γnλnζn

])2

an

+ En

[
γN
2
ξ̂2 + γNλN

(
ξ̂ − ζN

)2

+
N−1∑
j=n+1

γjλjζ
2
j

]

−
N−1∑
j=n+1

En


(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

]


= γnYnx
2 + 2

√
γnψnx+ En

[
γN
2
ξ̂2 + γNλN

(
ξ̂ − ζN

)2

+
N−1∑
j=n

γjλjζ
2
j

]

−
N−1∑
j=n

En


(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

]
 .

It then follows from (2.21) for all x, d ∈ R that

Vn(x, d) = γnYn

(
d

γn
− x
)2

− d2

2γn
+ 2
√
γnψn

(
x− d

γn

)
+ En

[
γN
2
ξ̂2 + γNλN

(
ξ̂ − ζN

)2

+
N−1∑
j=n

γjλjζ
2
j

]

−
N−1∑
j=n

En


(
Ej

[√
Γj+1ψj+1

(
1− βj+1

Γj+1

)]
−√γjλjζj

)2

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)
+ λj

]
 ,
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which equals (2.9).

Bounds for Yn. To show that Yn > 0, observe that

γn
an
Yn = En [Γn+1Yn+1 + λn]

an
γn
− (En [Yn+1(βn+1 − Γn+1)]− λn)2

= En [Γn+1Yn+1 + λn]En

[
Yn+1

(
β2
n+1

Γn+1

− 2βn+1 + Γn+1

)
+

1

2

(
1−

β2
n+1

Γn+1

)
+ λn

]
− (En [Γn+1Yn+1 + λn]− En [βn+1Yn+1])2

= En [Γn+1Yn+1 + λn]En

[
Yn+1

β2
n+1

Γn+1

+
1

2

(
1−

β2
n+1

Γn+1

)]
− (En [βn+1Yn+1])2 .

(2.22)

Since Yn+1 > 0 by the induction hypothesis and γ > 0 and λ ≥ 0, we have that

En [Γn+1Yn+1 + λn] ≥ En [Γn+1Yn+1] > 0. (2.23)

Similarly, it holds that

En

[
Yn+1

β2
n+1

Γn+1

]
≥ 0. (2.24)

By the assumption En[
β2
n+1

Γn+1
] < 1, we moreover have that

En

[
1

2

(
1−

β2
n+1

Γn+1

)]
=

1

2

(
1− En

[
β2
n+1

Γn+1

])
> 0. (2.25)

It now follows from (2.22)�(2.25) that

γn
an
Yn > En [Γn+1Yn+1]En

[
Yn+1

β2
n+1

Γn+1

]
− (En [βn+1Yn+1])2 . (2.26)

The Cauchy-Schwarz inequality implies that

(En [βn+1Yn+1])2 =

(
En

[
βn+1√
Γn+1

√
Yn+1

√
Γn+1

√
Yn+1

])2

≤ En

[
β2
n+1

Γn+1

Yn+1

]
En [Γn+1Yn+1] .

(2.27)

We thus have from (2.26) and (2.27) that γn
an
Yn > 0. Since γn, an > 0, we conclude

that Yn > 0.
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For the upper bound, note that

Yn = En [Γn+1Yn+1] + λn −
(En [Yn+1(βn+1 − Γn+1)]− λn)2

an/γn

≤ En [Γn+1Yn+1] + λn −
(En [Yn+1(βn+1 − Γn+1)]− λn)2

an/γn

+
an
γn

(
En [Yn+1(βn+1 − Γn+1)]− λn

an/γn
+ 1

)2

= En [Γn+1Yn+1] + λn + 2 (En [Yn+1(βn+1 − Γn+1)]− λn) +
an
γn

= En

[
−Γn+1Yn+1 + 2Yn+1βn+1 +

Yn+1

Γn+1

(βn+1 − Γn+1)2 +
1

2

(
1−

β2
n+1

Γn+1

)]
+ λn − 2λn + λn

=
1

2
+ En

[
β2
n+1

Γn+1

(
Yn+1 −

1

2

)]
.

(2.28)

From the induction hypothesis Yn+1 ≤ 1
2
we then obtain that Yn ≤ 1

2
.

Integrability property for ψn. Clearly, ψn from (2.8) is Fn-measurable. By the inte-
grability assumptions that βk, γk, 1

γk
, λk ∈ L∞− for all k ∈ Z ∩ (−∞, N ] and bounded-

ness of Yn+1, we obtain that En[Yn+1(βn+1 − Γn+1)] − λn ∈ L∞−. This together with
γn
an
∈ L∞− shows that

En [Yn+1 (βn+1 − Γn+1)]− λn
an/γn

∈ L∞−. (2.29)

It then follows from (2.15) that the last term in (2.8) is in L2+. Moreover, the induction
hypothesis ψn+1 ∈ L2+ and the assumptions γk, 1

γk
∈ L∞− for all k ∈ Z yield that

En[
√

Γn+1ψn+1] ∈ L2+. Since γn, λn ∈ L∞− and ζn ∈ L2+, we also have that
√
γnλnζn ∈

L2+. Hence, ψn ∈ L2+(Fn).
This completes the induction step.

Proof of (iv)

In the remainder of the proof of Theorem 2.2.1 we show for all n ∈ Z ∩ (−∞, N − 1],
x, d ∈ R, that the process X∗ = (X∗k)k∈{n−1,...,N} recursively de�ned by (2.11) is
in Adisc

n (x, d). It is obvious that then, ξ∗ = (ξ∗k(X
∗
k−1, D

∗
k−))k∈{n,...,N} and D∗ =

(D∗k−)k∈{n,...,N} are the associated trade process and deviation process, respectively,
and uniqueness is a consequence of part (iii).
To this end, we let n ∈ Z ∩ (−∞, N − 1], x, d ∈ R, de�ne X∗ = (X∗k)k∈{n−1,...,N} by

(2.11), and show by (forward) induction on k ∈ {n, . . . , N} thatX∗k (and ξ∗k(X∗k−1, D
∗
k−))

are in L2+(Fk) for all k ∈ {n, . . . , N}.
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For the base case k = n we have ξ∗n(X∗n−1, D
∗
n−) = ξ∗n(x, d), which by part (iii) is

already known to be in L2+(Fn). This further implies thatX∗n = x+ξ∗n(x, d) ∈ L2+(Fn).
We continue with the induction step {n, . . . , N−2} 3 k−1→ k ∈ {n+1, . . . , N−1}.

By the induction hypothesis, it holds that Xj ∈ L2+(Fj) and ξ∗j (X∗j−1, D
∗
j−) ∈ L2+(Fj)

for all j ∈ {n, . . . , k − 1}. As in Remark 2.1.2, we can therefore obtain that D∗k− ∈
L2+(Fk). Now, consider

ξ∗k(X
∗
k−1, D

∗
k−) =

Ek [Yk+1(βk+1 − Γk+1)]− λk
Ek

[
Yk+1

Γk+1
(βk+1 − Γk+1)2 + 1

2

(
1− β2

k+1

Γk+1

)
+ λk

] (X∗k−1 −
D∗k−
γk

)

−
D∗k−
γk
−

Ek

[√
Γk+1ψk+1

(
1− βk+1

Γk+1

)]
−√γkλkζk

√
γkEk

[
Yk+1

Γk+1
(βk+1 − Γk+1)2 + 1

2

(
1− β2

k+1

Γk+1

)
+ λk

] .
(2.30)

Clearly, this is Fk-measurable. To prove that ξ∗k(X
∗
k−1, D

∗
k−) ∈ L2+, note that by

Minkowski's inequality, it su�ces to show that each summand is in L2+. To begin
with, it holds that

D∗k−
γk
∈ L2+ due to D∗k− ∈ L2+, 1

γk
∈ L∞−. Since X∗k−1 ∈ L2+, we

moreover have that X∗k−1 −
D∗k−
γk
∈ L2+. It further follows with (2.29) that

Ek [Yk+1 (βk+1 − Γk+1)]− λk
Ek

[
Yk+1

Γk+1
(βk+1 − Γk+1)2 + 1

2

(
1− β2

k+1

Γk+1

)
+ λk

] (X∗k−1 −
D∗k−
γk

)
∈ L2+. (2.31)

From 1
γk
∈ L∞−, which implies 1√

γk
∈ L∞−, and (2.16) we have that the last term

in (2.30) is in L2+ as well. Therefore, ξ∗k(X
∗
k−1, D

∗
k−) ∈ L2+(Fk), which together

with X∗k−1 ∈ L2+(Fk−1) from the induction hypothesis implies that X∗k = X∗k−1 +
ξ∗k(X

∗
k−1, D

∗
k−) ∈ L2+(Fk). This �nishes the induction step {n, . . . , N − 2} 3 k − 1 →

k ∈ {n+ 1, . . . , N − 1}.
Finally, it also holds true that X∗N = X∗N−1 + ξ∗N(X∗N−1, D

∗
N−) = X∗N−1 + ξ̂−X∗N−1 =

ξ̂ ∈ L2+(FN). As a result, X∗ ∈ Adisc
n (x, d).

This completes the proof of Theorem 2.2.1.

2.2.2 Comments on the main theorem

We �rst have the following supplement to Theorem 2.2.1.

Remark 2.2.2. Suppose that the assumptions of Theorem 2.2.1 are satis�ed and
that ξ̂ ∈ L∞− and ζk ∈ L∞− for all k ∈ Z ∩ (−∞, N ]. Then, by straightforward
modi�cations of the integrability arguments in the proof of Theorem 2.2.1, we see that
ψn, ξ∗n(x, d), and X∗k are in L

∞− for all n ∈ Z∩ (−∞, N ], k ∈ {n− 1, . . . , N}, x, d ∈ R.
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2 Optimal trade execution in a discrete-time model

Next, observe that we have the following representation in Remark 2.2.3 below for
the process ψ from Theorem 2.2.1. The recursion for ψ itself is removed, although not
the recursion entering ψ indirectly via Y .

Remark 2.2.3. Under the assumptions and with the notations of Theorem 2.2.1, it
holds for all n ∈ Z ∩ (−∞, N ] that

ψn = −En

 γN ξ̂
2
√
γn

N−1∏
j=n

1 +

(
1− βj+1

Γj+1

)
Ej [Yj+1(βj+1 − Γj+1)]− λj

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)]
+λj


−

N−1∑
j=n

En

[
γjλjζj√
γn

1 +
Ej [Yj+1(βj+1 − Γj+1)]− λj

Ej

[
Yj+1

Γj+1
(βj+1 − Γj+1)2 + 1

2

(
1− β2

j+1

Γj+1

)]
+ λj


·
j−1∏
k=n

1+

(
1− βk+1

Γk+1

)
Ek [Yk+1(βk+1 − Γk+1)]− λk

Ek

[
Yk+1

Γk+1
(βk+1 − Γk+1)2 + 1

2

(
1− β2

k+1

Γk+1

)]
+λk

].
This can be shown by backward induction.

In particular, it is evident from Remark 2.2.3 that if ξ̂ ∈ L2+(Fn) is known at initial
time n ∈ Z ∩ (−∞, N ], then ψk for all k ∈ {n, . . . , N} and almost all ω ∈ Ω is an
a�ne-linear function (depending on k) of the target position ξ̂. A similar observation
holds for the process ζ provided that ζ is known at initial time n ∈ Z ∩ (−∞, N ]. In
contrast, the involvement of the process λ is more complicated, as it enters ψ directly
at several places and also indirectly via Y . We can however observe that for λ ≡ 0,
the second of the two parts in the representation for ψ in Remark 2.2.3 vanishes. This
is also the case if ζ ≡ 0. For ξ̂ = 0, the �rst part of the representation for ψ vanishes.
We can thus summarize that, if ξ̂ = 0 and at least one of ζ, λ vanishes, then ψ ≡ 0.

Furthermore, in this case, the minimal costs (2.9) in Theorem 2.2.1 for n ∈ Z∩(−∞, N ],
x, d ∈ R, simplify to

Vn(x, d) =
Yn
γn

(d− γnx)2 − d2

2γn
, (2.32)

and the optimal trade size for n ∈ Z ∩ (−∞, N − 1], x, d ∈ R, becomes

ξ∗n(x, d) =
En [Yn+1(βn+1 − Γn+1)]− λn

En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)]
+ λn

(
x− d

γn

)
− d

γn
. (2.33)

In Corollary 2.2.4 below we state that in the important subsetting where ξ̂ = 0, ζ ≡
0, and λ ≡ 0, i.e., when one considers a risk-neutral agent who needs to close a position,
Theorem 2.2.1 reduces to [AKU21b, Theorem 2.1]. Observe that the assumptions
in [AKU21b, Theorem 2.1] and Theorem 2.2.1 aside from the newly introduced ξ̂, ζ,
and λ are the same.
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Corollary 2.2.4. Suppose that ξ̂ = 0, ζ ≡ 0, and λ ≡ 0. Assume that for all

n ∈ Z∩ (−∞, N − 1] it holds that En[
β2
n+1

Γn+1
] < 1 a.s. and that (1−En[

β2
n+1

Γn+1
])−1 ∈ L∞−.

Let (Yn)n∈Z∩(−∞,N ] be the process that is recursively de�ned by YN = 1
2
and

Yn = En[Γn+1Yn+1]− (En [Yn+1 (βn+1 − Γn+1)])2

En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)] , n ∈ Z ∩ (−∞, N − 1].

(2.34)
Then it holds for all n ∈ Z ∩ (−∞, N ], x, d ∈ R, that

Vn(x, d) =
Yn
γn

(d− γnx)2 − d2

2γn
and 0 < Yn ≤

1

2
.

Moreover, for all x, d ∈ R the (up to a P -null set) unique optimal trade size is given
by

ξ∗n(x, d) =
En[Yn+1 (βn+1 − Γn+1)]

En

[
Yn+1

Γn+1
(βn+1−Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)] (x− d

γn

)
− d

γn
, n∈ Z∩(−∞, N−1],

(2.35)
and ξ∗N(x, d) = −x, and we have ξ∗n(x, d) ∈ L∞− for all n ∈ Z∩ (−∞, N ] and x, d ∈ R.

Proof. Since λ ≡ 0, the process de�ned by (2.7) and the process de�ned by (2.34)
coincide. The assumptions ξ̂ = 0, ζ ≡ 0, and λ ≡ 0 imply that ψ ≡ 0 (cf. the
representation in Remark 2.2.3). The claims thus follow from Theorem 2.2.1 (note
also Remark 2.2.2).

The requirement En[
β2
n+1

Γn+1
] < 1 a.s. for all n ∈ Z∩ (−∞, N −1] in Theorem 2.2.1 and

[AKU21b, Theorem 2.1] is a structural assumption. It ensures that the minimization
problem (2.4) preserves its structure with increasing number of time steps. More
precisely, under this assumption the coe�cients an in front of ξ2 in (2.17) and the
random variables Yn in (2.7) stay positive at all times n ∈ Z∩ (−∞, N−1]. To further

discuss the condition En[
β2
n+1

Γn+1
] < 1 a.s. for all n ∈ Z ∩ (−∞, N − 1], we consider a

two-period version of the problem.
Since YN = 1

2
, we can show for time N − 1 that

aN−1 =
γN−1

2
EN−1 [ΓN + 1− 2βN + 2λN−1]

and

YN−1 =
EN−1 [ΓN ]− (EN−1 [βN ])2 + 2λN−1

2EN−1 [ΓN + 1− 2βN + 2λN−1]
.

We already see that for YN−1 to be well-de�ned, we need to require aN−1 6= 0. Fur-
thermore, note that by (2.17) the value function has the structure

VN−1(x, d) = ess inf
ξ∈L2+(FN−1)

[
aN−1ξ

2 + bN−1(x, d)ξ + cN−1(x, d)
]

(2.36)
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for all x, d ∈ R. The quadratic function ξ 7→ aN−1ξ
2 + bN−1(x, d)ξ + cN−1(x, d) for

all x, d ∈ R is strictly convex (resp. strictly concave) if and only if aN−1 > 0 (resp.
aN−1 < 0). Therefore, in the case aN−1 < 0, the minimization problem in (2.36) is
ill-posed in the sense that one can generate in�nite gains (in the limit) by choosing
strategies with |ξ| → ∞. We thus demand that aN−1 > 0. This guarantees that there
exists a (unique) minimizer in (2.36).
aN−1 > 0 is however not su�cient to ensure that also YN−1 > 0: Consider, e.g.,

β ≡ 1
2
, Γ ≡ 1

8
, λ ≡ 0. Then, aN−1 = γN−1

16
> 0, but YN−1 = −1

2
< 0 and further

aN−2 = −17
16
γN−2 < 0. This example furthermore shows that for YN−1 < 0, aN−2 can

become negative, which leads to an ill-posed minimization problem at time N − 2.
As a consequence, we need to impose further conditions on βN−1, ΓN−1, and λN−1.
More precisely, given aN−1 > 0, it holds that YN−1 > 0 if and only if EN−1[ΓN ] −
(EN−1[βN ])2 + 2λN−1 > 0.
Note that the Cauchy-Schwarz inequality implies that

(EN−1[βN ])2 ≤ EN−1

[
β2
N

ΓN

]
EN−1[ΓN ],

and hence it holds that

2EN−1[βN ]− 1

EN−1[ΓN ]
≤ (EN−1[βN ])2

EN−1[ΓN ]
≤ EN−1

[
β2
N

ΓN

]
.

It thus follows that on the event {EN−1[
β2
N

ΓN
] < 1}, we have EN−1[ΓN + 1 − 2βN ] > 0

and EN−1[ΓN ]− (EN−1[βN ])2 > 0, which imply that aN−1 and YN−1 are positive. We
remark that the same still holds true on the larger event { (EN−1[βN ])2

EN−1[ΓN ]
< 1}. However,

replacing the assumption En[
β2
n+1

Γn+1
] < 1 a.s. with the weaker one (En[βn+1])2

En[Γn+1]
< 1 a.s. for

all n ∈ Z∩ (−∞, N − 1] does not in general allow to perform the backward induction,
as the structure of the problem can be lost already on the step N − 1 → N − 2.

Namely, YN−1 can be strictly less than 1
2
(in contrast to YN = 1

2
), while EN−2[

β2
N−1

ΓN−1
]

can be strictly greater than 1 (even assuming (EN−2[βN−1])2

EN−2[ΓN−1]
< 1 a.s.), and we do not

necessarily get positivity of aN−2 (see (2.12)).
To see that the assumptions of Theorem 2.2.1, in particular the structural assump-

tion discussed above, are satis�ed for a reasonably large class of models, consider the
following Example 2.2.5. There will be further examples in subsequent sections.

Example 2.2.5. Let (rn)n∈Z∩(−∞,N ] and (βn)n∈Z∩(−∞,N ] be deterministic strictly pos-
itive sequences such that

β2
n+1rn
rn+1

< 1 for all n ∈ Z ∩ (−∞, N − 1],

e.g., take βn ≡ β ∈ (0, 1) for all n ∈ Z ∩ (−∞, N ] and (rn)n∈Z∩(−∞,N ] a nonde-
creasing sequence in (0,∞). Let (γn)n∈Z∩(−∞,N ] be given by the formula γn = rn

Zn
,
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n ∈ Z ∩ (−∞, N ], where (Zn)n∈Z∩(−∞,N ] is a strictly positive supermartingale such
that Zn, 1

Zn
∈ L∞− for all n ∈ Z ∩ (−∞, N ]. Furthermore, take some ξ̂ ∈ L2+(FN)

and adapted processes ζ, λ with ζk ∈ L2+, λk ∈ L∞−, λk ≥ 0, k ∈ Z ∩ (−∞, N ]. It is
straightforward to see that all assumptions of Theorem 2.2.1 are satis�ed.

Finally, we point out that the process Y de�ned in (2.7) plays a major role in the
analysis of the trade execution problem as it is a main ingredient to describe the
optimal strategy and the optimal costs, see Theorem 2.2.1. Notice that Y involves λ,
but neither ξ̂ nor ζ, which enter the solution of the trade execution problem via the
process ψ. In the case ξ̂ = 0 ≡ ζ, the solution is solely described by the process Y , as
ψ vanishes (see (2.32) and (2.33)). On the other hand, if ξ̂ is general, but λ ≡ 0 (which
implies that all terms containing ζ vanish as well), then de�nition (2.7) coincides with
de�nition (2.34) from [AKU21b, Theorem 2.1].
In the subsetting where ξ̂ = 0 and ζ ≡ 0, the basic observation that, under the

assumptions of Theorem 2.2.1, it holds γnYn = Vn(1, 0) for all n ∈ Z ∩ (−∞, N ] (see
also (2.32)), leads to the following improved upper bound for Y .

Remark 2.2.6. Let n ∈ Z∩(−∞, N ], ξ̂ = 0, and ζ ≡ 0, and suppose that the assump-
tions of Theorem 2.2.1 are satis�ed. Note that for an initial position of size x = 1, a
possible execution strategy is to sell the whole unit at some time k ∈ {n, . . . , N}. For
k ∈ {n, . . . , N}, such a strategy X(k) = (X

(k)
j )j∈{n−1,n,...,N} is given by X(k)

j = 1 for

all j ∈ {n − 1, . . . , k − 1} and X(k)
j = 0 for all j ∈ {k, . . . , N}, with associated trade

process ξ(k) = (ξ
(k)
j )j∈{n,...,N} that satis�es ξ

(k)
k = −1 and ξ(k)

j = 0, j ∈ {n, . . . , N}\{k}.
If there is no initial deviation, i.e., d = 0, it follows for all k ∈ {n, . . . , N} that D(k)

k− = 0

(cf. (2.2)) and that the expected costs of X(k) amount to

En

[
N∑
j=n

(
D

(k)
j− +

γj
2
ξ

(k)
j

)
ξ

(k)
j

]
+ En

[
N∑
j=n

γjλj(X
(k)
j )2

]

= En

[(
D

(k)
k− +

γk
2
ξ

(k)
k

)
ξ

(k)
k

]
+ En

[
k−1∑
j=n

γjλj(X
(k)
j )2

]

= En

[γk
2

]
+

k−1∑
j=n

En [γjλj] .

(2.37)

From Theorem 2.2.1 with ξ̂ = 0 and ζ ≡ 0, we have that γnYn = Vn(1, 0). Since the
expected costs in (2.37) are at least as large as the optimal costs Vn(1, 0), this implies
that

Yn ≤
mink∈{n,...,N}

(
En [γk] + 2

∑k−1
j=nEn [γjλj]

)
2γn

. (2.38)
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Note that

mink∈{n,...,N}

(
En [γk] + 2

∑k−1
j=nEn [γjλj]

)
2γn

≤ En [γn]

2γn
=

1

2
.

Therefore, (2.38) improves the bound Yn ≤ 1
2
provided by Theorem 2.2.1.

2.3 Processes with independent multiplicative

increments

In this section we introduce a subsetting within our general model where the resilience
and price impact processes and λ satisfy

(PIMI) for all k ∈ Z ∩ (−∞, N ] the random variables Γk and βk are independent
of Fk−1, and λk is deterministic.

It turns out that in this case the process Y from Theorem 2.2.1 is deterministic.

Lemma 2.3.1. Assume (PIMI) and that for all n ∈ Z∩ (−∞, N ] it holds E[ β
2
n

Γn
] < 1.

Let Y = (Yn)n∈Z∩(−∞,N ] be the process from Theorem 2.2.1 that is recursively de�ned
by YN = 1

2
and (2.7). Then Y is deterministic, (0, 1

2
]-valued, and satis�es the recursion

Yn = E[Γn+1]Yn+1 + λn −
(Yn+1 (E [βn+1]− E [Γn+1])− λn)2

Yn+1E
[

(βn+1−Γn+1)2

Γn+1

]
+ 1

2

(
1− E

[
β2
n+1

Γn+1

])
+ λn

,

n ∈ Z ∩ (−∞, N − 1].

(2.39)

If furthermore ξ̂ = 0 and at least one of λ, ζ is equivalent to zero, then formula (2.10)
for optimal trade sizes in the state (x, d) ∈ R2 takes the form

ξ∗n(x, d) =
Yn+1 (E [βn+1]− E [Γn+1])− λn

Yn+1E
[

(βn+1−Γn+1)2

Γn+1

]
+ 1

2

(
1− E

[
β2
n+1

Γn+1

])
+ λn

(
x− d

γn

)
− d

γn
,

n ∈ Z ∩ (−∞, N − 1],

(2.40)

and ξ∗N(x, d) = −x.

Proof. Since YN = 1
2
is deterministic and we assume (PIMI), recursion (2.39) follows

from (2.7) by a straightforward induction argument. Formula (2.40) is an immediate
consequence of (2.33), the assumption (PIMI), and the fact that Y is deterministic.

We next show that if the resilience moreover at any time has expectation 1, then
the process Y stays at 1

2
.
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Corollary 2.3.2. Suppose that the assumptions of Lemma 2.3.1 hold true, and that
moreover E[βn] = 1 for all n ∈ Z ∩ (−∞, N ]. It then holds that Yn = 1

2
for all

n ∈ Z ∩ (−∞, N ].

Proof. Since E[βn] = 1 for all n ∈ Z ∩ (−∞, N ], we obtain from (2.39) for all n ∈
Z ∩ (−∞, N − 1] that

Yn =
(E[Γn+1]Yn+1 + λn)

(
Yn+1 − 1

2

) (
E
[
β2
n+1

Γn+1

]
−1
)

+ Yn+1(Yn+1 (E[Γn+1]− 1) + λn)(
Yn+1 − 1

2

) (
E
[
β2
n+1

Γn+1

]
−1
)

+ Yn+1 (E[Γn+1]− 1) + λn
,

which in case of Yn+1 = 1
2
equals 1

2
. Due to YN = 1

2
, it follows inductively that Yn = 1

2

for all n ∈ Z ∩ (−∞, N ].

The situation where (Γk)k∈Z∩(−∞,N ] and (βk)k∈Z∩(−∞,N ] are deterministic4 sequences
and λ ≡ 0 constitutes a particular case of (PIMI). We provide a closed-form expression
for recursion (2.39) in this case. In fact, in this case, it is more convenient to work
with the quantities

Zk =
1

2Yk
, k ∈ Z ∩ (−∞, N ], (2.41)

in place of Yk, k ∈ Z ∩ (−∞, N ].

Corollary 2.3.3. Let λ ≡ 0. Assume that, for all k ∈ Z ∩ (−∞, N ], Γk and βk are
deterministic and satisfy β2

k < Γk. Let the (deterministic) sequence Z = (Zk)k∈Z∩(−∞,N ]

be de�ned by (2.41), where the sequence Y = (Yk)k∈Z∩(−∞,N ] is recursively de�ned by
YN = 1

2
and (2.39). Then Z is [1,∞)-valued and it holds that

Zk =

(
N∏

i=k+1

1

Γi

)
+

N∑
j=k+1

(
j∏

i=k+1

1

Γi

)
(Γj − βj)2

Γj − β2
j

, k ∈ Z ∩ (−∞, N ]. (2.42)

If furthermore ξ̂ = 0, formula (2.40) for optimal trade sizes in the state (x, d) ∈ R2

takes the form

ξ∗k(x, d) =
βk+1 − Γk+1

(Γk+1−βk+1)2

Γk+1
+ Zk+1

(
1− β2

k+1

Γk+1

) (x− d

γk

)
− d

γk
, k ∈ Z ∩ (−∞, N − 1],

(2.43)
and ξ∗N(x, d) = −x.

Proof. In the current setting, recursion (2.39) simpli�es to YN = 1
2
and

Yk =

1
2

(
1− β2

k+1

Γk+1

)
Γk+1Yk+1

Yk+1
(Γk+1−βk+1)2

Γk+1
+ 1

2

(
1− β2

k+1

Γk+1

) , k ∈ Z ∩ (−∞, N − 1],

4It is worth noting that (γk)k∈Z∩(−∞,N ] can be random.
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2 Optimal trade execution in a discrete-time model

which, for the sequence Z, yields ZN = 1 and

Zk =
(Γk+1 − βk+1)2

Γ2
k+1 − Γk+1β2

k+1

+
1

Γk+1

Zk+1, k ∈ Z ∩ (−∞, N − 1]. (2.44)

By backward induction, we obtain (2.42). The fact that Z is [1,∞)-valued follows
from the fact that Y is (0, 1

2
]-valued and (2.41). The statement on the optimal trade

sizes follows by a straightforward transformation in (2.40).

The formulas simplify even further when we additionally assume a constant order
book depth.

Corollary 2.3.4. Let λ ≡ 0. Assume that, for all k ∈ Z ∩ (−∞, N ], γk = γ̂ a.s.
with some strictly positive

⋂
k∈ZFk-measurable random variable γ̂ satisfying γ̂, 1

γ̂
∈

L∞−. In particular, Γk = 1 a.s. for all k ∈ Z ∩ (−∞, N ]. Further, assume that the
sequence (βk)k∈Z∩(−∞,N ] is deterministic and (0, 1)-valued. Then we are in the situation
of Corollary 2.3.3, formula (2.42) simpli�es to

Zk = 1 +
N∑

j=k+1

1− βj
1 + βj

, k ∈ Z ∩ (−∞, N ],

and, if ξ̂ = 0, formula (2.43) for optimal trade sizes in the state (x, d) ∈ R2 takes the
form

ξ∗k(x, d) =
1

1− βk+1 + (1 + βk+1)Zk+1

(
d

γ̂
− x
)
− d

γ̂

=
1

2 + (1 + βk+1)
∑N

j=k+2
1−βj
1+βj

(
d

γ̂
− x
)
− d

γ̂
, k ∈ Z ∩ (−∞, N − 1],

and ξ∗N(x, d) = −x.

Proof. Since Γk = 1 for all k ∈ Z ∩ (−∞, N ], the result follows from Corollary 2.3.3
via straightforward calculations.

2.4 Long-time horizon

Let the assumptions of Corollary 2.2.4 be satis�ed. In particular, we consider ξ̂ = 0
and ζ ≡ 0 ≡ λ. In this situation, we have the following economic interpretation of Y as
a savings factor. Suppose that at time n ∈ Z∩ (−∞, N ] the task is to sell x = 1 share
given an initial deviation of d = 0. Then immediate execution of the share, which
corresponds to the execution strategy X = (Xk)k∈{n−1,n,...,N} de�ned by Xn−1 = 1,
Xk = 0, k ∈ {n, . . . , N}, generates the expected costs γn

2
(see also (2.37)). The optimal
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2.4 Long-time horizon

execution strategy incurs the expected costs Vn(1, 0) = γnYn (cf. Corollary 2.2.4). So,
the random variable 2Yn : Ω→ [0, 1] describes to which percentage the costs of selling
the unit immediately can be reduced by executing the position optimally.
This means that if we want to study the improvement in the costs due to optimal

trading, we can have a look at the process Y . A relevant question is how much better
in comparison to the immediate closure we can do in the long run. To analyze this,
there are basically two starting points, both based on the process Y .
One is to adopt the perspective that trading starts at a �xed point in time, e.g.,

at n = 0, and that the terminal date N when the position has to be closed is shifted
further and further into the future. This corresponds to studying the limit of the
sequence of random variables (Y N

0 )N∈N as N →∞, where Y N is the process de�ned as
in (2.34) pertaining to the terminal time N .5 Recall that Y N

0 = V N
0 (1, 0)/γ0, where V N

is the value function belonging to the terminal time N . Since Y N
0 is nonnegative and

V N
0 (1, 0)/γ0 is nonincreasing6 in N , it follows that limN→∞ Y

N
0 always exists (under

the assumptions of Corollary 2.2.4).
Another perspective consists in �xing the terminal time N and asking what would

have been if one had started trading earlier. This corresponds to investigating the limit
limn→−∞ Yn. In some settings (e.g., in a time-homogeneous deterministic framework or,
more generally, in the setting of Proposition 2.4.2) one can see that both perspectives
coincide by simply relabeling time instances appropriately. In contrast to limN→∞ Y

N
0 ,

the limit limn→−∞ Yn does not always exist (cf. Lemma 2.4.3). In Proposition 2.4.1 we
study the existence of the long-time limit limn→−∞ Yn.
We furthermore remark that the question of the long-time limit is di�erent from

considering the continuous-time limit of the control problem, which corresponds to
�xing N ∈ N and n ∈ Z ∩ (−∞, N ] and letting the number of available trading times
in [n,N ] go to in�nity. A continuous-time variant of the control problem and the
relation to the discrete-time results will be discussed in Chapter 3, Chapter 5, and
Chapter 7�Chapter 8. In particular, the counterpart of the discrete-time process Y
turns out to be a quadratic BSDE.

Proposition 2.4.1. Let the assumptions of Corollary 2.2.4 be satis�ed, and let
(Yn)n∈Z∩(−∞,N ] be the process that is recursively de�ned by YN = 1

2
and (2.34). Fix any

p ∈ [1,∞).

(i) The sequence (γnYn)n∈Z∩(−∞,N ] converges a.s. and in Lp as n → −∞ to a �nite
nonnegative random variable.

(ii) If (γn)n∈Z∩(−∞,N ] is a supermartingale, then the sequence (Yn)n∈Z∩(−∞,N ] con-
verges a.s. and in Lp as n→ −∞ to a �nite nonnegative random variable.

5Note that the �ltered probability space (Ω,F , (Fk)k∈Z, P ) and the processes (γk)k∈Z, (βk)k∈Z do

not depend on N . Furthermore, we currently consider the subsetting where ξ̂ = 0 and ζ ≡ 0 ≡ λ.
6For N + 1, a possible strategy is to �rst trade according to the execution strategy that is optimal
for N , and to not trade at terminal time N + 1.
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2 Optimal trade execution in a discrete-time model

Proof. (i) It follows from (2.34) that for all n ∈ Z ∩ (−∞, N − 1] it holds Yn ≤
En[Γn+1Yn+1] = 1

γn
En[γn+1Yn+1]. Thus, (γnYn)n∈Z∩(−∞,N ] is a submartingale. There-

fore, the backward convergence theorem implies that (γnYn)n∈Z∩(−∞,N ] converges a.s.
as n → −∞. Moreover, (γnYn)n∈Z∩(−∞,N ] is a positive sequence in L∞−. Hence,
its limit is nonnegative, and, by the submartingale property and Jensen's inequality,
(γnYn)p ≤ (En[γNYN ])p ≤ En[(γNYN)p], n ∈ Z ∩ (−∞, N ]. It follows that the se-
quence ((γnYn)p)n∈Z∩(−∞,N ] is uniformly integrable, which implies the convergence in
Lp towards a �nite nonnegative random variable.

(ii) If (γn)n∈Z∩(−∞,N ] is a supermartingale, then it converges a.s. as n → −∞ to an
R∪{+∞}-valued random variable, denoted by γ−∞, due to the backward convergence
theorem. As γn is positive for all n ∈ Z ∩ (−∞, N ], the random variable γ−∞ is, in
fact, [0,+∞]-valued. Furthermore, it holds7

0 = E
[
γ−∞1{γ−∞=0}

]
≥ E

[
γN1{γ−∞=0}

]
≥ 0.

Together with the fact that γN > 0 a.s., this implies γ−∞ > 0 a.s. Therefore, we
have that ( 1

γn
)n∈Z∩(−∞,N ] converges a.s. as n→ −∞ to the �nite nonnegative random

variable 1
γ−∞

. It now follows from (i) that (Yn)n∈Z∩(−∞,N ] converges a.s. as n→∞ to a
�nite nonnegative random variable. As the sequence (Yn)n∈Z∩(−∞,N ] is bounded (being
(0, 1

2
]-valued), it also converges in Lp.

The assumption that (γn)n∈Z∩(−∞,N ] is a supermartingale in Proposition 2.4.1(ii)
means that the liquidity in the model increases in time (in average). In Lemma 2.4.3
below we have that (γn)n∈Z∩(−∞,N ] is a submartingale and (Yn)n∈Z∩(−∞,N ] does not
converge. This shows that the claim in Proposition 2.4.1(ii) does not in general hold
when the liquidity in the model decreases in time.
We are further interested in speci�c examples for the long-time limit limn→−∞ Yn. In

the next Proposition 2.4.2 we compute this limit assuming (PIMI) (see Section 2.3)
and a sort of time-homogeneity for expectations.

Proposition 2.4.2. Suppose that the assumptions of Lemma 2.3.1 hold true, that

λ ≡ 0, and that β̄ = E[βn+1], η̄ = E[Γn+1], and ᾱ = E[
β2
n+1

Γn+1
] do not depend on

n ∈ Z ∩ (−∞, N − 1].

(i) If β̄ = 1, we have η̄ > 1, and it holds for all n ∈ Z ∩ (−∞, N ] that Yn = 1
2
.

(ii) If η̄ ≤ 1, we have β̄ < 1, and the sequence Y = (Yn)n∈Z∩(−∞,N ] converges
monotonically to 0 as n→ −∞.

(iii) If β̄ 6= 1 and η̄ > 1, the sequence Y = (Yn)n∈Z∩(−∞,N ], as n → −∞, converges
monotonically to

1
2

(1− ᾱ) (η̄ − 1)

(1− ᾱ) (η̄ − 1) +
(
β̄ − 1

)2 ∈
(

0,
1

2

)
. (2.45)

7Here we use the convention ∞ · 0 = 0.
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2.4 Long-time horizon

Proof. From (2.39) we have that

Yn = η̄Yn+1 −
Y 2
n+1

(
β̄ − η̄

)2

Yn+1

(
ᾱ− 2β̄ + η̄

)
+ 1

2
(1− ᾱ)

, n ∈ Z ∩ (−∞, N − 1]. (2.46)

De�ne g : [0,∞)→ R,

g(y) = η̄y −
y2
(
β̄ − η̄

)2

y
(
ᾱ− 2β̄ + η̄

)
+ 1

2
(1− ᾱ)

, y ∈ [0,∞). (2.47)

Note that ᾱ < 1 by assumption and that ᾱ− 2β̄ + η̄ ≥ (β̄−η̄)
2

η̄
≥ 0 because β̄2

η̄
≤ ᾱ by

the Cauchy-Schwarz inequality. We �rst show that g is strictly increasing on [0,∞).
To this end, let y ≥ 0. We compute that

g′(y) = η̄ −
(
β̄ − η̄

)2 2y
(
y
(
ᾱ− 2β̄ + η̄

)
+ 1

2
(1− ᾱ)

)
− y2

(
ᾱ− 2β̄ + η̄

)(
y
(
ᾱ− 2β̄ + η̄

)
+ 1

2
(1− ᾱ)

)2

= η̄ −
(
β̄ − η̄

)2 y2
(
ᾱ− 2β̄ + η̄

)
+ y (1− ᾱ)(

y
(
ᾱ− 2β̄ + η̄

)
+ 1

2
(1− ᾱ)

)2 .

Hence, g′(y) > 0 is equivalent to

η̄

(
y
(
ᾱ− 2β̄ + η̄

)
+

1

2
(1− ᾱ)

)2

>
(
β̄ − η̄

)2 (
y2
(
ᾱ− 2β̄ + η̄

)
+ y (1− ᾱ)

)
.

Divide by η̄ > 0 and note that
(β̄−η̄)

2

η̄
= β̄2

η̄
− 2β̄ + η̄. This yields the equivalent

statement

0 < y2
(
ᾱ− 2β̄ + η̄

)2
+ y

(
ᾱ− 2β̄ + η̄

)
(1− ᾱ) +

(1− ᾱ)2

4
−
(
β̄ − η̄

)2

η̄
y2
(
ᾱ− 2β̄ + η̄

)
−
(
β̄ − η̄

)2

η̄
y (1− ᾱ)

= y2
(
ᾱ− 2β̄ + η̄

)(
ᾱ− β̄2

η̄

)
+ y

(
ᾱ− β̄2

η̄

)
(1− ᾱ) +

(1− ᾱ)2

4

=

(
y

(
ᾱ− β̄2

η̄

)
+

1− ᾱ
2

)2

+ y2

(
ᾱ− β̄2

η̄

) (
β̄ − η̄

)2

η̄
.

Since ᾱ < 1 and β̄2

η̄
≤ ᾱ, this always holds true for y ≥ 0. It follows that g is strictly

increasing on [0,∞).
Recall that 0 < Yn ≤ 1

2
for all n ∈ Z ∩ (−∞, N − 1] and YN = 1

2
. In particular,

YN−1 ≤ YN . The recursion Yn = g(Yn+1), n ∈ Z ∩ (−∞, N − 1] (cf. (2.46) and (2.47)),
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2 Optimal trade execution in a discrete-time model

and the fact that g is increasing therefore imply by induction that the sequence Y is
nondecreasing, i.e., Yn−1 ≤ Yn for all n ∈ Z ∩ (−∞, N ]. Hence, the limit limn→−∞ Yn
exists and belongs to [0, 1

2
]. Moreover, it is the largest �xed point of g in [0, 1

2
]. Indeed,

since g is increasing, for the largest �xed point ȳ of g in [0, 1
2
], we have that y ≥ ȳ implies

g(y) ≥ g(ȳ) = ȳ. Hence, ȳ is a lower bound of Y . We obtain that limn→−∞ Yn ≥ ȳ and
is a �xed point of g, which means that limn→−∞ Yn = ȳ.

(i) Suppose that β̄ = 1. The claim that η̄ > 1 follows from β̄2

η̄
≤ ᾱ < 1. By

Corollary 2.3.2 it holds that Yn = 1
2
for all n ∈ Z ∩ (−∞, N ].

(ii) Suppose that η̄ ≤ 1. First notice that β̄2 ≤ η̄ᾱ < η̄ ≤ 1 and hence β̄ < 1. Now
it follows from (2.47) that for all y > 0 we have g(y) < y. This yields that 0 is the
only �xed point of g on [0,∞) and hence limn→−∞ Yn = 0.

(iii) Suppose that β̄ 6= 1 and η̄ > 1. In this case (2.45) is a �xed point of g and the
only one in (0,∞). Indeed, for y ∈ (0,∞) the condition g(y) = y is equivalent to

y
((
β̄ − η̄

)2 − (η̄ − 1)
(
ᾱ− 2β̄ + η̄

))
=

1

2
(1− ᾱ) (η̄ − 1) .

From the fact that(
β̄ − η̄

)2 − (η̄ − 1)
(
ᾱ− 2β̄ + η̄

)
= (1− ᾱ) (η̄ − 1) +

(
β̄ − 1

)2
> (1− ᾱ) (η̄ − 1) > 0

we deduce (2.45).

To discuss Proposition 2.4.2, recall that in the setting of Corollary 2.2.4, 2Yn = Vn(1,0)
γn/2

compares the costs γn
2
of selling one unit immediately at time n ∈ Z ∩ (−∞, N ] given

initial deviation 0 to the corresponding optimal costs Vn(1, 0). In general, dividing a
large order into many small orders and executing them at consecutive time points can
be pro�table compared to the immediate execution because of the following reasons:

� the price impact process γ penalizes trades at di�erent times in a di�erent way
whenever γ is nonconstant,

� the resilience process β changes the deviation process D between the trades
whenever β is not identically 1.

From this viewpoint the claims of Proposition 2.4.2 are naturally interpreted as follows.
If the resilience is in expectation 1 (β̄ = 1), then the price impact process γ is

increasing in average (as η̄ > 1), and neither of the above reasons suggests dividing a
large order into many small orders.
We can asymptotically get rid of the execution costs in the case of nonincreasing

price impact (in the sense η̄ ≤ 1). Notice that, in this case, the price impact is allowed
to be constant, but we anyway pro�t from the resilience, which, in expectation, drives
the deviation back to zero between two trades (β̄ < 1).

54



2.4 Long-time horizon

In the remaining case of a nontrivial resilience and a geometrically increasing price
impact (in the sense β̄ 6= 1 and η̄ > 1) we can not fully get rid of the execution costs
regardless of how large our time horizon for execution is.
With Lemma 2.4.3, we now provide an example within the (PIMI) setting where,

in contrast to Proposition 2.4.2, the process Y = (Yn)n∈Z∩(−∞,N ] does not converge as
n → −∞. The idea behind this construction is to alternate between setting (i) and
(iii) in Proposition 2.4.2 and thereby create two subsequences that converge towards
di�erent values.

Lemma 2.4.3. Suppose that the assumptions of Lemma 2.3.1 hold true and that λ ≡ 0.
Let β̄1, β̄2, η̄1, η̄2 ∈ (0,∞), and ᾱ1, ᾱ2 ∈ (0, 1), such that for all k ∈ N0 it holds
β̄1 = E[βN−2k−1] = 1, β̄2 = E[βN−2k] 6= 1, η̄1 = E[ΓN−2k−1], η̄2 = E[ΓN−2k] > 1,

ᾱ1 = E[
β2
N−2k−1

ΓN−2k−1
], and ᾱ2 = E[

β2
N−2k

ΓN−2k
].

Then, γ is a submartingale and Y = (Yn)n∈Z∩(−∞,N ] does not converge as n→ −∞.
In particular, the sequence Y is not monotone.

Proof. Note �rst that β̄1 = 1 and ᾱ1 < 1 imply that η̄1 > 1 by the Cauchy-Schwarz
inequality. It follows from

1 < η̄1 = E [ΓN−2k−1] = EN−2k−2 [ΓN−2k−1] = EN−2k−2

[
γN−2k−1

γN−2k−2

]
=

1

γN−2k−2

EN−2k−2 [γN−2k−1]

and

1 < η̄2 =
1

γN−2k−1

EN−2k−1 [γN−2k]

for all k ∈ N0 that γ is a submartingale.
For j ∈ {1, 2}, denote by gj the function de�ned by (2.47) with β̄ = β̄j, η̄ = η̄j,

and ᾱ = ᾱj. Recall that g1, g2 are strictly increasing, and note that for k ∈ N0, we
have YN−2k−2 = g1(YN−2k−1) and YN−2k−1 = g2(YN−2k). Furthermore, the equations
gj(y) = y, j ∈ {1, 2}, are quadratic ones, and neither g1 nor g2 is the identity function.
Hence, each of the functions g1 and g2 has at most two �xed points. Clearly, 0 is a
�xed point. In view of the proof of Proposition 2.4.2, we conclude that the only �xed
points of g1 are 0 and 1

2
, and the only �xed points of g2 are given by 0 and ȳ ∈ (0, 1

2
)

from (2.45). We also notice that g1(y) > y for y ∈ (0, 1
2
). Indeed, since β̄1 = 1 and

η̄1 > 1, we compute for all y ∈ (0, 1
2
) that

g1(y)− y =
(η̄1 − 1)(1− ᾱ1)y

(
1
2
− y
)

y(ᾱ1 − 2β̄1 + Γ1) + 1
2
(1− ᾱ1)

> 0.

We now prove by induction that YN−m > ȳ for all m ∈ N0. The case m = 0 is
clear. For the induction step N0 3 m → m + 1 ∈ N, if m is even, we have YN−m−1 =
g2 (YN−m) > g2 (ȳ) = ȳ. If m is odd, it holds YN−m−1 = g1 (YN−m) > g1 (ȳ) > ȳ.
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We next show inductively that YN−m ≥ YN−m−2 for all m ∈ N0. For m = 0, this
follows from YN−2 ≤ 1

2
= YN . Consider then the induction step N0 3 m→ m+ 1 ∈ N.

If m is even, we have YN−m−3 = g2(YN−m−2) ≤ g2(YN−m) = YN−m−1. If m is odd, we
have YN−m−3 = g1(YN−m−2) ≤ g1(YN−m) = YN−m−1.
Therefore, the subsequences (YN−2k)k∈N0 and (YN−2k−1)k∈N0 of Y are nonincreas-

ing in k ∈ N0 and bounded from below by ȳ, which implies that the limits Ȳ (e) =
limk→∞ YN−2k ≥ ȳ and Ȳ (o) = limk→∞ YN−2k−1 ≥ ȳ exist. Taking limits on both sides
of YN−2k−1 = g2(YN−2k), we obtain Ȳ (o) = g2(Ȳ (e)) by continuity of g2. Similarly,
it holds that Ȳ (e) = g1(Ȳ (o)). Now, if Ȳ (e) and Ȳ (o) were equal, then Ȳ (e) = Ȳ (o)

would be a common �xed point of g1 and g2 and hence 0, which is a contradiction to
Ȳ (e) ≥ ȳ > 0. We thus conclude that Y does not converge.

We next present examples that fall outside the (PIMI) framework.

Example 2.4.4. A simple observation is that under the assumptions of Corollary 2.2.4
we have limn→−∞ Yn = 0 a.s. whenever (γn)n∈Z∩(−∞,N ] satis�es limn→−∞ γn = +∞ a.s.
This follows from statement (i) of Proposition 2.4.1.

Example 2.4.5. Suppose, in addition to the assumptions of Corollary 2.2.4, that

Γn = βn for all n ∈ Z ∩ (−∞, N ]. (2.48)

It is worth noting that, in this setting, the optimal strategy given initial deviation
d = 0 is to wait until the terminal time N and to close the position at time N . In
contrast, if d 6= 0, the optimal strategy in general consists of nontrivial trades at all
time points. For the sake of discussing the long-time limit limn→−∞ Yn in this setting

we observe that the requirement En[
β2
n+1

Γn+1
] < 1 a.s. from Corollary 2.2.4 under (2.48)

becomes
En[Γn+1] < 1 a.s. for all n ∈ Z ∩ (−∞, N − 1]. (2.49)

Hence, (γn)n∈Z∩(−∞,N ] is a supermartingale. By statement (ii) of Proposition 2.4.1,
limn→−∞ Yn always exists in this setting. Moreover, we have Yn = En[Γn+1Yn+1] for all
n ∈ Z ∩ (−∞, N − 1], and hence by induction

Yn =
1

2
En

[
N∏

j=n+1

Γj

]
=

1

2

En[γN ]

γn
(2.50)

for all n ∈ Z∩ (−∞, N ]. In general, we still can have di�erent values for the long-time
limit. Therefore, we now discuss several more speci�c examples.

(i) Assume there exists c ∈ (0, 1) such that En[Γn+1] ≤ c a.s. (cf. (2.49)) for all
n ∈ Z ∩ (−∞, N − 1]. By intermediate conditioning, it follows from (2.50) that
Yn ≤ 1

2
cN−n a.s. for all n ∈ Z ∩ (−∞, N ], hence limn→−∞ Yn = 0 a.s.
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2.4 Long-time horizon

(ii) On the other hand, it is clear from (2.50) that, even with suitable deterministic
sequences (Γn)n∈Z, we can achieve for the long-time limit limn→−∞ Yn any deterministic
value in (0, 1

2
).

(iii) In order to present an explicit and, possibly, nondeterministic long-time limit, we
�nally consider the following construction. Let (rn)n∈Z∩(−∞,N ] be a strictly decreasing
sequence of nonnegative real numbers. Let Zn, n ∈ Z ∩ (−∞, N ], and K be random
variables such that (Zn)n∈Z∩(−∞,N ] is an i.i.d. sequence independent ofK, and such that
ZN , K ≥ 0 and ZN , K ∈ L∞− (and thus Zn ≥ 0, Zn ∈ L∞− for all n ∈ Z ∩ (−∞, N ]).
We also require at least one of the conditions (a) rN > 0 or (b) 1

ZN
, 1
K
∈ L∞−. We now

de�ne

Un =
N∑
j=n

Zj, Fn = σ(K,Uj; j ∈ Z ∩ (−∞, n]), n ∈ Z ∩ (−∞, N ],

and set

γn = rn +
1

N − n+ 1
UnK, n ∈ Z ∩ (−∞, N ].

Note that γn > 0 for all n ∈ Z∩(−∞, N ], and de�ne βn = Γn = γn
γn−1

, n ∈ Z∩(−∞, N ].
Thus, we are in setting (2.48), and we now verify that the assumptions of Corollary 2.2.4
are satis�ed.
Since rn is deterministic and Zn, K ∈ L∞− for all n ∈ Z ∩ (−∞, N ], it holds that

γn ∈ L∞− for all n ∈ Z∩ (−∞, N ]. To see that also 1
γn
∈ L∞− for all n ∈ Z∩ (−∞, N ],

note that γn > rN and γn ≥ 1
N−n+1

ZNK for all n ∈ Z ∩ (−∞, N ], and use condition
(a) or (b). Clearly, we then also have that βn ∈ L∞− for all n ∈ Z∩ (−∞, N ]. Further,
for n ∈ Z ∩ (−∞, N ] and j ∈ {n, . . . , N}, it holds that En[Zj] = 1

N−n+1
Un. Hence, for

all n ∈ Z ∩ (−∞, N ],

En [γn+1] = rn+1 +
1

N − n

N∑
j=n+1

En [Zj]K = rn+1 +
1

N − n+ 1
UnK

< rn +
1

N − n+ 1
UnK = γn a.s.,

i.e., requirement (2.49) holds true (which is En[
β2
n+1

Γn+1
] < 1 a.s.). Furthermore, we have

that (
1− En

[
β2
n+1

Γn+1

])−1

=

(
γn − En [γn+1]

γn

)−1

=
γn

rn − rn+1

∈ L∞−

for all n ∈ Z ∩ (−∞, N − 1].
By the strong law of large numbers it holds that 1

N−n+1
Un → E[ZN ] a.s., as n→ −∞.

Setting r−∞ = limn→−∞ rn (∈ (0,∞]), we obtain limn→−∞ γn = r−∞ + E[ZN ]K a.s.
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2 Optimal trade execution in a discrete-time model

Furthermore, limn→−∞En[γN ] = rN + E[ZN ]K a.s., and hence

lim
n→−∞

Yn =
1

2
lim

n→−∞

En[γN ]

γn
=

1

2

rN + E[ZN ]K

r−∞ + E[ZN ]K
a.s.,

which is, in general, nondeterministic.

2.5 Round trips

We now turn to the question if an agent who has no initial position in the asset and also
requires position 0 at terminal time nevertheless can expect to bene�t from trading8.
To this end, let x = 0, ξ̂ = 0, and λ ≡ 0 ≡ ζ throughout this section (except for

Remark 2.5.10). In particular, if we assume in addition that for all k ∈ Z∩(−∞, N−1]

it holds that Ek[
β2
k+1

Γk+1
] < 1 a.s. and that (1− Ek[

β2
k+1

Γk+1
])−1 ∈ L∞−, we are in the setting

of Corollary 2.2.4.

De�nition 2.5.1. Let ξ̂ = 0 and λ ≡ 0 ≡ ζ. For any d ∈ R, we call an execution
strategy X ∈ Adisc

n (0, d) a round trip at time n ∈ Z ∩ (−∞, N − 1]. A round trip
X ∈ Adisc

n (0, d) at time n ∈ Z∩ (−∞, N−1] is said to be pro�table for initial deviation
d ∈ R if for the associated costs it holds

P

(
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
≤ 0

)
= 1 and

P

(
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
< 0

)
> 0,

(2.51)

where ξ is the associated trade process and D is the associated deviation process with
Dn− = d.

We formalize our previous question and ask whether there exist pro�table round
trips (at time n ∈ Z ∩ (−∞, N − 1], for given initial deviation d ∈ R). The existence
of pro�table round trips is sometimes also referred to as price manipulation (see, e.g.,
[AS10], [Gat10], or [HS04]).
Note that, for n ∈ Z ∩ (−∞, N − 1], d ∈ R, and under the assumptions of Corol-

lary 2.2.4, there exist pro�table round trips at time n for initial deviation9 d if and
only if

P (Vn(0, d) < 0) > 0. (2.52)

8We could pose a similar question for initial position x and terminal position x, given x ∈ R.
However, this is equivalent to the problem treated here, see Remark 2.1.6 and (2.51).

9Note that for existence of pro�table round trips we in fact only have to distinguish between d = 0
and d 6= 0, see the subsequent discussion.
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2.5 Round trips

In this case, the optimal strategy from Corollary 2.2.4 is such a pro�table round trip.
To see that this indeed holds true, �x, for this paragraph, n ∈ Z ∩ (−∞, N − 1],

d ∈ R, and let the assumptions of Corollary 2.2.4 be in force. Observe that from
Corollary 2.2.4 we have the existence of an optimal strategy X∗ ∈ Adisc

n (0, d) and that

Vn(0, d) =
d2

γn

(
Yn −

1

2

)
(2.53)

with (0, 1
2
]-valued Yn. Suppose �rst that there exists a pro�table round trip X ∈

Adisc
n (0, d). It then follows that a.s.

En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
≥ En

[
N∑
j=n

(
D∗j− +

γj
2
ξ∗j

)
ξ∗j

]
= Vn(0, d).

The fact that X is pro�table implies that

P (Vn(0, d) < 0) ≥ P

(
En

[
N∑
j=n

(
Dj− +

γj
2
ξj

)
ξj

]
< 0

)
> 0.

Suppose now that P (Vn(0, d) < 0) > 0. Since γn is positive and Yn is (0, 1
2
]-valued, it

follows from (2.53) that furthermore P (Vn(0, d) ≤ 0) = 1. The optimal strategy X∗

thus satis�es (2.51), i.e., X∗ is a pro�table round trip.
Observe that (2.53) implies in particular that Vn(0, 0) = 0 for all n ∈ Z∩(−∞, N−1].

Thus, by (2.52), there are no pro�table round trips whenever d = 0. This means
that without initial deviation of the price process the agent can not make pro�ts in
expectation. Moreover, this shows that, if there is no initial deviation of the price
process, our model does not admit price manipulation.
Note also that (2.52) and (2.53) imply that if, for given n ∈ Z∩(−∞, N−1], d0 ∈ R,

there exists a pro�table round trip at time n for initial deviation d0, then there exist
pro�table round trips at time n for any initial deviation d 6= 0.
In the sequel, we study existence of pro�table round trips when the price of a share

deviates from the una�ected price, i.e., when it holds d 6= 0. For n ∈ Z∩ (−∞, N − 1]
and d 6= 0, (2.52) and (2.53) imply the following classi�cation:

� If P (Yn <
1
2
) > 0, there exist pro�table round trips,

� if P (Yn = 1
2
) = 1, there are no pro�table round trips.

Thus, the question reduces to �nding a tractable description of the event {Yn = 1
2
},

n ∈ Z ∩ (−∞, N − 1]. We characterize this event in the next proposition and then
discuss several consequences of this characterization.
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2 Optimal trade execution in a discrete-time model

Proposition 2.5.2. Let the assumptions of Corollary 2.2.4 be satis�ed. Then we have{
Yn =

1

2

}
=

{
En [Yn+1] =

1

2
, En [βn+1] = 1

}
, n ∈ Z ∩ (−∞, N − 1],

where here and below we understand equalities or inclusions for events up to P -null
sets.

Proof. Throughout the proof we �x n ∈ Z ∩ (−∞, N − 1]. With the notation

νn+1 =
1

2
−
(

1

2
− Yn+1

)
β2
n+1

Γn+1

,

and with

an = γnEn

[
Yn+1

Γn+1

(βn+1 − Γn+1)2 +
1

2

(
1−

β2
n+1

Γn+1

)]
from (2.12), we obtain from (2.34) that

Yn = En[Γn+1Yn+1]−(En[Yn+1βn+1])2−2En[Yn+1βn+1]En[Yn+1Γn+1]+(En[Yn+1Γn+1])2

En [νn+1 − 2Yn+1βn+1 + Yn+1Γn+1]

=
En [Γn+1Yn+1]En [νn+1]− (En [Yn+1βn+1])2

En [νn+1 − 2Yn+1βn+1 + Yn+1Γn+1]

=
En [νn+1]En [νn+1 − 2Yn+1βn+1 + Yn+1Γn+1]− (En [νn+1 − Yn+1βn+1])2

En [νn+1 − 2Yn+1βn+1 + Yn+1Γn+1]

=
1

2
− En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
− γn
an

(
1

2
− En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
−En[Yn+1βn+1]

)2

.

Since Γn+1, γn, an > 0 and Yn+1 ≤ 1
2
a.s., it now follows that{

Yn =
1

2

}
=

{
En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
= 0, En [Yn+1βn+1] =

1

2

}
. (2.54)

Let

Cn =

{
En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
= 0

}
and

Bn =

{
En[Yn+1] =

1

2

}
.

We show that Cn = Bn. For the inclusion Cn ⊇ Bn note �rst that, due to {En[Yn+1] =
1
2
} ∈ Fn, it holds∫
{En[Yn+1]= 1

2}
Yn+1 dP =

∫
{En[Yn+1]= 1

2}
En [Yn+1] dP =

∫
{En[Yn+1]= 1

2}
1

2
dP, (2.55)
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which yields that Yn+1 = 1
2
on Bn. This together with the fact that Bn ∈ Fn implies

1BnEn

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
= En

[
1Bn

(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
= 0.

To prove Cn ⊆ Bn, observe that Cn ∈ Fn, and that

Cn ⊆
{(

1

2
− Yn+1

)
β2
n+1

Γn+1

= 0

}
=

{
Yn+1 =

1

2

}
(by an argument similar to (2.55)) since βn+1,Γn+1 > 0 and Yn+1 ≤ 1

2
a.s. It thus holds

that

1CnEn [Yn+1] = En [1CnYn+1] = 1Cn
1

2
.

From Cn = Bn together with (2.54) we obtain{
Yn =

1

2

}
=

{
En[Yn+1] =

1

2
, En [Yn+1βn+1] =

1

2

}
.

Furthermore, we have

1BnEn [Yn+1βn+1] = En [1BnYn+1βn+1] = 1Bn
1

2
En [βn+1] ,

and hence {
Yn =

1

2

}
=

{
En[Yn+1] =

1

2
, En [βn+1] = 1

}
.

Corollary 2.5.3. Under the assumptions of Corollary 2.2.4 it holds that{
YN−1 =

1

2

}
= {EN−1 [βN ] = 1} .

Proof. The result is immediate from Proposition 2.5.2 because YN = 1
2
.

Corollary 2.5.4. Under the assumptions of Corollary 2.2.4 we have the following
inclusions for n ∈ Z ∩ (−∞, N − 1].

(i) It holds that {
Yn =

1

2

}
⊆
{
Yn+1 =

1

2

}
(equivalently, {Yn+1 <

1
2
} ⊆ {Yn < 1

2
}).

(ii) It holds that{
Yn =

1

2

}
⊆ {En [βn+1] = 1} ⊆ {En [βn+1] ≥ 1} ⊆ {En [Γn+1] > 1}

(equivalently, {En[Γn+1] ≤ 1} ⊆ {En[βn+1] < 1} ⊆ {En[βn+1] 6= 1} ⊆ {Yn < 1
2
}).
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2 Optimal trade execution in a discrete-time model

Proof. We �x n ∈ Z ∩ (−∞, N − 1].

(i) The claim follows from{
Yn =

1

2

}
⊆
{
En [Yn+1] =

1

2

}
⊆
{
Yn+1 =

1

2

}
,

where the �rst inclusion is immediate from Proposition 2.5.2, and the second one
follows from the facts that Yn+1 ≤ 1

2
a.s. and (2.55).

(ii) Due to Proposition 2.5.2 only the inclusion {En[βn+1] ≥ 1} ⊆ {En[Γn+1] > 1}
needs to be proved. By the Cauchy-Schwarz inequality and the assumption En[

β2
n+1

Γn+1
] <

1 a.s. we get

(En [βn+1])2 ≤ En

[
β2
n+1

Γn+1

]
En [Γn+1] < En [Γn+1] a.s.,

which implies the claim.

In case of a (0, 1)-valued resilience process β, Corollary 2.5.4(ii) and the discussion
preceding Proposition 2.5.2 imply that for all n ∈ Z ∩ (−∞, N − 1] and d 6= 0 we
have pro�table round trips. We also mention the discussions on existence of pro�table
round trips for nonzero initial deviation in similar models with (0, 1)-valued resilience
in [FSU14, Remark 8.2] and in [FSU19] (after Model 8.3). In particular, they observe
that for a conventional symmetric block-shaped order book model with zero bid-ask
spread, constant price impact, and nonzero initial deviation, the knowledge that the
deviation will be driven towards zero due to the ((0, 1)-valued) resilience allows to
construct pro�table round trips. E.g., even without using Corollary 2.2.4, we can
directly compute in a setting10 where for the trading period {n, . . . , N} for �xed n ∈
Z ∩ (−∞, N − 1], γn = γn+1, βn+1 is (0, 1)-valued, and the initial deviation d ∈ R is
nonzero, that the strategy X ∈ Adisc

n (0, d) with trades ξn = − d
2γn

= −ξn+1 and ξj = 0,

j ∈ {n+ 2, . . . , N}, leads to a.s. negative expected costs − d2

4γn
(1−En[βn+1]) and thus

is a pro�table round trip (cf. [FSU14, Remark 8.2]).
The assumption of (0, 1)-valued resilience is typical in the literature on optimal

trade execution. We more generally assume that the resilience takes values in (0,∞).
It follows from Corollary 2.5.4(ii) and the discussion preceding Proposition 2.5.2 that
also if P (En[βn+1] 6= 1) > 0 there are pro�table round trips for n ∈ Z ∩ (−∞, N − 1],
d 6= 0. That means, to have existence of pro�table round trips, it is enough to expect
the resilience to go in some direction.
A new qualitative e�ect in our setting is that the situation of nonexistence of prof-

itable round trips is possible not only for d = 0, but also for d 6= 0 (see also Corol-
lary 2.5.5). The previous discussion and Corollary 2.5.4(ii) explain that P (En[βn+1] =

10Of course, we also assume that (γk)k∈Z, (βk)k∈Z are adapted, positive, and satisfy γk,
1
γk
, βk ∈ L∞−

for all k ∈ Z. Furthermore, recall that in this section we have set λ ≡ 0 ≡ ζ and ξ̂ = 0.
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1) = 1 is necessary for the nonexistence of pro�table round trips for n ∈ Z∩(−∞, N−1],
d 6= 0.
A somewhat unexpected e�ect is that the inclusion {Yn = 1

2
} ⊆ {En[βn+1] = 1} can

be strict, and hence there might exist pro�table round trips even though P (En[βn+1] =
1) = 1 for n ∈ Z ∩ (−∞, N − 1], d 6= 0 (see Example 2.5.6). In particular, for
n ∈ Z ∩ (−∞, N − 2], we can not distinguish Yn = 1

2
from Yn <

1
2
on the basis of

En[βn+1] alone, and, indeed, the exact characterization of the event {Yn = 1
2
} also

includes En[Yn+1] (see Proposition 2.5.2).
A special case where we obtain an explicit criterion to distinguish between Yn = 1

2

and Yn < 1
2
for all n ∈ Z ∩ (−∞, N − 1] only in terms of the process β is the case of

processes with independent multiplicative increments (PIMI) as in Section 2.3. We
treat this in the next Corollary 2.5.5.
Furthermore, we mention that if P (EN−1[βN ] 6= 1) > 0, then also in the general

setting, by Corollary 2.5.3 it holds that P (YN−1 < 1
2
) > 0, and it further follows

from Corollary 2.5.4(i) that P (YN−2 < 1
2
) ≥ P (YN−1 < 1

2
) > 0. Inductively, we

obtain from Corollary 2.5.4(i) that in this case there exist pro�table round trips at
any time n ∈ Z ∩ (−∞, N − 1] for d 6= 0. More generally, i.e., without assuming
P (EN−1[βN ] 6= 1) > 0, Corollary 2.5.4(i) implies that if there exist pro�table round
trips at some time j ∈ Z∩(−∞, N−1] for d 6= 0, then there also exist pro�table round
trips at all earlier times for nonzero initial deviation. An intuitive explanation is the
following. Suppose that for a �xed time j ∈ Z∩(−∞, N−1] there exist pro�table round
trips at time j for all nonzero deviations. Then, if our trading period is {n, . . . , N}
for some n ∈ Z ∩ (−∞, j − 1] with initial deviation d 6= 0, we can wait until time j
and then make a pro�table round trip (since Dj− = d

∏k
l=n+1 βl 6= 0). Hence, we have

constructed a pro�table round trip at time n < j.
Similar to the last paragraph, we obtain from Corollary 2.5.4(i) that nonexistence of

pro�table round trips at some time j ∈ Z∩ (−∞, N−1] for d 6= 0 implies nonexistence
at all later times k ∈ {j + 1, . . . , N − 1}.
The next corollary contains the announced result on round trips in the setting of

(PIMI).

Corollary 2.5.5. Let the assumptions of Lemma 2.3.1 and Corollary 2.2.4 be in force.
Suppose that E[βj] 6= 1 for some j ∈ Z ∩ (−∞, N ] and de�ne11

n0 = N ∧ inf{n ∈ Z ∩ (−∞, N − 1] : E[βk] = 1 for all k ∈ Z ∩ [n+ 1, N ]}.

Then, for the (deterministic) process Y , we have Yn <
1
2
for n ∈ Z ∩ (−∞, n0) and

Yn = 1
2
for n ∈ Z ∩ [n0, N ].

Proof. The result follows from Proposition 2.5.2 and the fact that, by Lemma 2.3.1,
the process Y is deterministic.

11We use the convention that inf ∅ =∞.
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In addition, note that if E[βn] = 1 for all n ∈ Z ∩ (−∞, N ] in the setting of
Lemma 2.3.1, it holds that Yn = 1

2
for all n ∈ Z ∩ (−∞, N ] (cf. Corollary 2.3.2).

We now discuss the inclusion {Yn = 1
2
} ⊆ {En[βn+1] = 1} (see Corollary 2.5.4(ii))

in more detail. First, we present a simple example where for n = N − 2 this inclusion
is strict.

Example 2.5.6. We take any deterministic sequences β and γ with βN 6= 1 and
βN−1 = 1 that satisfy the assumptions of Corollary 2.2.4. Then the process Y is
deterministic. Corollary 2.5.3 implies that YN−1 <

1
2
. Hence, by Corollary 2.5.4(i), it

holds that YN−2 <
1
2
. We thus have{
YN−2 =

1

2

}
= ∅ ( Ω = {EN−2[βN−1] = 1}.

In other words, we have pro�table round trips at time N − 2 for d 6= 0 despite
EN−2[βN−1] = 1.
This is not surprising in this example: First, we see that pro�table round trips are

already present when we start at time N − 1 due to YN−1 <
1
2
, which is caused by

βN 6= 1. Second, since βN−1 = 1, the deviation will not change from time N − 2 to
N − 1 if we do not trade at time N − 2.
One might, therefore, intuitively expect that here all pro�table round trips do not

contain a trade at time N − 2, but this is not the case. If d 6= 0, then we have for the
(here, deterministic) optimal trade size ξ∗N−2(0, d) of (2.35) that ξ∗N−2(0, d) 6= 0.
To see this, observe that for d 6= 0 and due to the facts that β, Γ, Y are deterministic,

(2.35) implies that ξ∗N−2(0, d) 6= 0 is equivalent to

1 =
YN−1(ΓN−1 − 1)

YN−1
(1−ΓN−1)2

ΓN−1
+ 1

2

(
1− 1

ΓN−1

) .
This in turn holds true if and only if(

1

2
− YN−1

)(
1− 1

ΓN−1

)
= 0,

which in this example is not satis�ed because YN−1 <
1
2
and 1

ΓN−1
=

β2
N−1

ΓN−1
< 1 (recall

the assumptions of Corollary 2.2.4).

To summarize, in Example 2.5.6, we have existence of pro�table round trips at
time N − 2 for d 6= 0 in a (deterministic) setting where P (EN−1[βN ] = 1) = 0 and
P (EN−2[βN−1] = 1) > 0. We next study if pro�table round trips at time n ∈ Z ∩
(−∞, N − 2] for initial deviation d 6= 0 can also occur if P (

⋂N−1
k=n {Ek[βk+1] = 1}) > 0.

Corollary 2.5.5 implies that this is impossible in the framework of (PIMI) (let alone
with deterministic β and γ). But, in general, such a phenomenon is possible, and we
present a speci�c example after the following lemma.
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Lemma 2.5.7. Let the assumptions of Corollary 2.2.4 be in force.

(i) It holds for all n ∈ Z ∩ (−∞, N − 1] that{
Yn =

1

2

}
⊆

N−1⋂
k=n

{Ek[βk+1] = 1}. (2.56)

(ii) Let n ∈ Z∩ (−∞, N − 1]. The inclusion in (2.56) is strict (in the sense that the
set di�erence has positive P -probability) if and only if

N−1⋂
k=n

{Ek[βk+1] = 1} /∈ Fn, (2.57)

where Fn = σ(Fn ∪N ) with N = {A ∈ F : P (A) = 0}.

Proof. (i) We proceed by backward induction. Corollary 2.5.3 shows that the claim
holds true for n = N−1. Consider then the induction step Z∩ (−∞, N−1] 3 n+1→
n ∈ Z ∩ (−∞, N − 2]. It follows from Corollary 2.5.4(i) and the induction hypothesis
that {Yn = 1

2
} ⊆ {Yn+1 = 1

2
} ⊆

⋂N−1
k=n+1{Ek[βk+1] = 1}. Furthermore, we have from

Corollary 2.5.4(ii) that {Yn = 1
2
} ⊆ {En[βn+1] = 1}. This yields (2.56).

(ii) Let n ∈ Z ∩ (−∞, N − 1]. Under (2.57) it holds that the inclusion in (2.56) is
strict (note that {Yn = 1

2
} ∈ Fn). It remains to prove that, if there is An ∈ Fn which

is (up to a P -null set) equal to
⋂N−1
k=n {Ek[βk+1] = 1}, then Yn = 1

2
a.s. on An.

To show this, we �rst establish by backward induction that Ej[Yj+1] = 1
2
a.s. on An

for all j ∈ {n, . . . , N − 1}. For the base case j = N − 1, we have that EN−1[YN ] = 1
2

due to YN = 1
2
. If n = N − 1, we are done; otherwise, consider the induction step

{n+1, . . . , N−1} 3 j+1→ j ∈ {n, . . . , N−2}. By the induction hypothesis, it holds
that Ej+1[Yj+2] = 1

2
a.s. on An. Since Ej+1[βj+2] = 1 a.s. on An, Proposition 2.5.2 thus

implies that Yj+1 = 1
2
a.s on An. As An ∈ Fn ⊆ Fj, we then obtain that Ej[Yj+1] = 1

2

a.s. on An. This completes the induction.
In particular, we now have that En[Yn+1] = 1

2
a.s. on An. Again, the argument that

En[βn+1] = 1 a.s. on An and Proposition 2.5.2 then imply that Yn = 1
2
a.s. on An.

We next present a speci�c example where for n = N − 2 the inclusion in (2.56)
is strict, or, in other words, P (YN−2 < 1

2
, EN−2[βN−1] = EN−1[βN ] = 1) > 0. In

particular, in this example there exist pro�table round trips at time N − 2 for all
d 6= 0, and, at the same time, the event {EN−2[βN−1] = 1} ∩ {EN−1[βN ] = 1} has
positive probability.

Example 2.5.8. Take arbitrary a, p ∈ (0, 1). Let Fn = {∅,Ω} for n ∈ Z∩(−∞, N−2],
FN−1 = FN = σ(βN−1) with βN−1 being distributed according to P (βN−1 = 1) = 1−p
and P (βN−1 = 1± a) = p/2. We set βN = βN−1 and choose any process γ (and βk for
the remaining k ∈ Z \ {N − 1, N}) satisfying the assumptions of Corollary 2.2.4 (e.g.,
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2 Optimal trade execution in a discrete-time model

one can easily take deterministic γ). It then holds that EN−2[βN−1] = E[βN−1] = 1,
and hence {EN−2[βN−1] = 1} ∩ {EN−1[βN ] = 1} = {EN−1[βN ] = 1} = {βN = 1},
which is an event of probability 1 − p ∈ (0, 1). We thus obtain (2.57) for n = N − 2.
By Lemma 2.5.7, the inclusion in (2.56) for n = N − 2 is strict. As a result, we get
P (YN−2 <

1
2
, EN−2[βN−1] = EN−1[βN ] = 1) > 0.

Our discussion of existence of pro�table round trips has mainly focused on the
resilience β (and Y ). In Lemma 2.5.9 we provide a di�erent su�cient condition for
existence of pro�table round trips based on the price impact γ (and Y ).

Lemma 2.5.9. Under the assumptions of Corollary 2.2.4 it holds for all n ∈ Z ∩
(−∞, N − 1] that {

Yn =
1

2

}
⊆
{

min
k∈{n+1,...,N}

En[γk] ≥ γn

}
(equivalently, {mink∈{n+1,...,N}En[γk] < γn} ⊆ {Yn < 1

2
}).

Proof. While the result can be again inferred from the characterization of the event
{Yn = 1

2
} in Proposition 2.5.2, it is shorter to observe that Yn < 1

2
on the event

{mink∈{n+1,...,N}En[γk] < γn} due to Remark 2.2.6 and λ ≡ 0.

In this section, we consider a risk-neutral setting only. One might wonder about
existence of pro�table round trips from the view point of a risk-averse agent. Or one
might ask if the results for the set {Yn = 1

2
}, n ∈ Z ∩ (−∞, N − 1], still hold in the

general setting. We comment on this in the next remark.

Remark 2.5.10. When we consider a risk-averse agent and want to discuss round
trips, we �rst have to think about what we want to understand by a pro�table round
trip in this case.
One possibility is to use exactly the same de�nition as in the risk-neutral case, with

the rationale that the risk term often just implements a penalization and does not
represent actual �nancial costs. Furthermore, in the context of price manipulation,
one can argue that whether price manipulation is possible or not should be a property
of the model irrespective of the risk-preferences of the particular agent (see also [GS13,
Section 22.2]).
Another option is to replace the term En[

∑N
j=n(Dj− +

γj
2
ξj)ξj] in De�nition 2.5.1

by (2.3). The interpretation of a pro�table round trip then is to make sure that
the agent has nonpositive �nancial costs and does not deviate too much from their
preferred strategy.
We now examine this de�nition and the mathematical results for general λ, ζ further.

To this end, let the assumptions of Theorem 2.2.1 be satis�ed.
Observe that the risk-neutral costs associated to a strategy are always smaller than

or equal to the risk-averse costs associated to this strategy. Therefore, if there exists
a pro�table round trip for the risk-averse agent, this is also a pro�table round trip for
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2.5 Round trips

the risk-neutral agent. In particular, this implies that also in the risk-averse case, for
any n ∈ Z∩ (−∞, N − 1], there do not exist pro�table round trips at time n for d = 0.
Suppose for this paragraph that ζ ≡ 0. Since moreover ξ̂ = 0, we then have (2.53)

and that, for n ∈ Z∩ (−∞, N − 1], d ∈ R, there exist pro�table round trips at time n
for initial deviation d if and only if (2.52) is satis�ed. We again obtain the classi�cation
of existence of pro�table round trips at time n ∈ Z ∩ (−∞, N − 1] for d 6= 0 via the
set {Yn = 1

2
}.

The results in Proposition 2.5.2, Corollary 2.5.3, and Corollary 2.5.4 continue to
hold for general λ (and even general ξ̂, ζ, since the focus is on Y ). The crucial point
is to observe that for n ∈ Z ∩ (−∞, N − 1] we have that

Yn =
1

2
− En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
− γn
an

(
1

2
− En

[(
1

2
− Yn+1

)
β2
n+1

Γn+1

]
−En[Yn+1βn+1]

)2

,

with an from (2.12). The only di�erence to the proof of Proposition 2.5.2 is that now, an
contains λ, which is however not relevant for the further arguments in Proposition 2.5.2,
Corollary 2.5.3, and Corollary 2.5.4.
We next show that12, if there exists n ∈ Z ∩ (−∞, N − 1] such that {Yn = 1

2
} = Ω,

then also {Y 0
n = 1

2
} = Ω, where we denote by Y 0 the process de�ned by (2.34). To

this end, let n ∈ Z ∩ (−∞, N − 1] such that {Yn = 1
2
} = Ω. It then follows from

Corollary 2.5.4(i) that {Yk = 1
2
} = Ω for all k ∈ {n, . . . , N − 1}. Corollary 2.5.4(ii)

then implies that {Ek[βk+1] = 1} = Ω for all k ∈ {n, . . . , N − 1}. From this and
Proposition 2.5.2 we obtain that {Y 0

k = 1
2
} = {Ek[Y 0

k+1] = 1
2
} for all k ∈ {n, . . . , N−1}.

Using this equality, we can show by backward induction that {Y 0
n = 1

2
} = Ω.

If ζ = 0, this means that nonexistence of pro�table round trips at time n ∈ Z ∩
(−∞, N−1] for d 6= 0 for the risk-averse agent implies nonexistence of pro�table round
trips at time n for d 6= 0 for the risk-neutral agent.
To conclude, if ζ = 0, then existence of pro�table round trips for a risk-averse agent

does not di�er from existence of pro�table round trips for a risk-neutral agent. This
completes the current remark.

We �nally remark that we could also have de�ned pro�table round trips at time
n ∈ Z∩(−∞, N−1] for initial deviation d ∈ R to be execution strategiesX ∈ Adisc

n (0, d)
such that En[

∑N
j=n

(
Dj− +

γj
2
ξj
)
ξj] < 0 a.s. (instead of (2.51)), for which existence

translates to Vn(0, d) < 0 a.s. (instead of (2.52)). Note that the class of, in this sense,
pro�table round trips is a subset of our class used in this section, and they coincide in
a deterministic setting. Furthermore, since our mathematical analysis is based on the
description of the event {Yn = 1

2
} (or, equivalently, {Yn < 1

2
}), the results and proofs

are the same for both notions of pro�table round trips, and only the discussions would
need some slight modi�cations.

12Recall that we understand equalities of events only up to P -null sets.
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2 Optimal trade execution in a discrete-time model

2.6 Closing the position in one go

A main motivation to consider optimal trade execution problems is the observation
that splitting up a large order into several smaller orders can be advantageous over the
naive strategy to immediately complete the whole task. There are, however, situations
when it is in fact optimal to execute the order at once (for instance in Example 2.6.6
below). To examine under what conditions it is optimal to close any position in one
go13 is the topic of this section.
Let the assumptions of Theorem 2.2.1 be in force. Assume that ξ̂ = 0 and that at

least one of λ, ζ is equivalent to zero. Let n ∈ Z ∩ (−∞, N − 1]. We are interested in
the situation where ξ∗n(x, d) = −x for all x, d ∈ R. Recall that, for each x, d ∈ R, a
version of the optimal trade size ξ∗n(x, d) (which is de�ned up to a P -null set) is given
by the right-hand side of (2.33). We choose the versions in such a way that the random
�eld (x, d) 7→ ξ∗n(x, d) is continuous (the most natural choice in view of (2.33)). Then
we have that

{ξ∗n(x, d) = −x ∀x, d ∈ R} = {ξ∗n(x, d) = −x ∀x, d ∈ Q} =
⋂
x,d∈Q

{ξ∗n(x, d) = −x} ;

hence, {ξ∗n(x, d) = −x ∀x, d ∈ R} is an Fn-measurable event (as a countable intersec-
tion of such events). We have the following description of this event.

Lemma 2.6.1. Let the assumptions of Theorem 2.2.1 be in force. Assume that ξ̂ = 0
and that at least one of λ, ζ is equivalent to zero. Let n ∈ Z ∩ (−∞, N − 1]. It then
holds that

{ξ∗n(x, d) = −x ∀x, d ∈ R} =

{
En

[(
Yn+1 −

1

2

)
β2
n+1

Γn+1

− Yn+1βn+1 +
1

2

]
= 0

}
,

(2.58)
where here and below we understand equalities or inclusions for events up to P -null
sets.

Proof. We compute from (2.33) for all x, d ∈ R that

ξ∗n(x, d) + x =
En

[(
Yn+1 − 1

2

) β2
n+1

Γn+1
− Yn+1βn+1 + 1

2

]
En

[
Yn+1

Γn+1
(βn+1 − Γn+1)2 + 1

2

(
1− β2

n+1

Γn+1

)
+ λn

] (x− d

γn

)
, (2.59)

from which we obtain (2.58).

13We remark that in our analysis we do not exclude the possibility that afterwards the position
reopens again and one appends a round trip (see also Example 2.6.7). Moreover, we mention that
in view of Remark 2.1.6 and for a risk-neutral setting, closing the position x ∈ R in one go is
equivalent to executing the order x at once for deterministic terminal position b ∈ R and current
position x+ b.
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2.6 Closing the position in one go

The next result presents a relation between the previously (see Section 2.5) studied
question of nonexistence of pro�table round trips at time n for initial deviation d 6= 0
and the currently studied question of closing the position in one go.

Proposition 2.6.2. Let the assumptions of Theorem 2.2.1 be in force. Assume that
ξ̂ = 0 and that at least one of λ, ζ is equivalent to zero. Let n ∈ Z ∩ (−∞, N − 1]. It
then holds that{

Yn =
1

2

}
= {ξ∗n(x, d) = −x ∀x, d ∈ R} ∩

{
En[Yn+1] =

1

2

}
.

Proof. We �rst establish the inclusion �⊆�. Recall that by Proposition 2.5.2 and Corol-
lary 2.5.4 (see also Remark 2.5.10) we have that{

Yn =
1

2

}
=

{
En [Yn+1] =

1

2
, En [βn+1] = 1

}
⊆
{
Yn+1 =

1

2

}
.

In particular, on the event {Yn = 1
2
} ∈ Fn it holds that Yn+1 = 1

2
and En[βn+1] = 1,

which implies that on the event {Yn = 1
2
} ∈ Fn we have that

En

[(
Yn+1 −

1

2

)
β2
n+1

Γn+1

− Yn+1βn+1 +
1

2

]
= 0.

Lemma 2.6.1 now yields that{
Yn =

1

2

}
⊆ {ξ∗n(x, d) = −x ∀x, d ∈ R} .

Since also En [Yn+1] = 1
2
on {Yn = 1

2
} ∈ Fn, it follows that{

Yn =
1

2

}
⊆ {ξ∗n(x, d) = −x ∀x, d ∈ R} ∩

{
En[Yn+1] =

1

2

}
.

To prove the reverse inclusion �⊇� we �rst note that{
En[Yn+1] =

1

2

}
⊆
{
Yn+1 =

1

2

}
(2.60)

because Yn+1 ≤ 1
2
a.s. It follows from (2.58) and (2.60) that on the Fn-measurable set

An := {ξ∗n(x, d) = −x ∀x, d ∈ R} ∩
{
En[Yn+1] =

1

2

}
it holds that 1

2
En[βn+1] = En[Yn+1βn+1] = 1

2
, i.e., En[βn+1] = 1. Hence,

An ⊆
{
En [Yn+1] =

1

2
, En [βn+1] = 1

}
=

{
Yn =

1

2

}
,

where the set equality is again Proposition 2.5.2 (see also Remark 2.5.10).
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In particular, we have that{
Yn =

1

2

}
⊆ {ξ∗n(x, d) = −x ∀x, d ∈ R} . (2.61)

It is worth noting that the inclusion in (2.61) can be strict in the sense that the set
di�erence can be nonnegligible. In Example 2.6.7 further below (we also use Proposi-
tion 2.6.4 for Example 2.6.7) we show that, indeed, there can be pro�table round trips
(cf. Section 2.5) at time n for initial deviation d 6= 0 and still it can be optimal to close
the whole position at time n.
However, at time N − 1, we always have equality in (2.61).

Corollary 2.6.3. Let the assumptions of Theorem 2.2.1 be in force. Assume that
ξ̂ = 0 and that at least one of λ, ζ is equivalent to zero. It then holds that{

YN−1 =
1

2

}
=
{
ξ∗N−1(x, d) = −x ∀x, d ∈ R

}
.

Proof. This follows from Proposition 2.6.2 and the fact that YN = 1
2
.

We next provide more details on closing the position in one go for the case of pro-
cesses with independent multiplicative increments (PIMI) of Section 2.3. We recall
that in this case the process Y is deterministic. Notice, however, that the optimal
trade sizes ξ∗n(x, d), x, d ∈ R, in general are still random because of the randomness
in γn, see (2.40).

Proposition 2.6.4. Let the assumptions of Lemma 2.3.1 be satis�ed. Assume that
ξ̂ = 0 and that at least one of λ, ζ is equivalent to zero. Let n ∈ Z ∩ (−∞, N − 1]. It
then holds that {ξ∗n(x, d) = −x ∀x, d ∈ R} is either Ω or ∅. Furthermore, the following
statements are equivalent:

(i) {ξ∗n(x, d) = −x ∀x, d ∈ R} = Ω.

(ii) There exist x, d ∈ R with P (γnx 6= d) > 0 such that {ξ∗n(x, d) = −x} = Ω.

(iii) It holds that

E[βn+1] = 1 +

(
1− E

[
β2
n+1

Γn+1

]) (
1
2
− Yn+1

)
Yn+1

. (2.62)

Proof. Since Y is deterministic and Γn+1 and βn+1 are independent of Fn, Lemma 2.6.1
yields

{ξ∗n(x, d) = −x ∀x, d ∈ R} =

{(
Yn+1 −

1

2

)
E

[
β2
n+1

Γn+1

]
− Yn+1E [βn+1] +

1

2
= 0

}
,

(2.63)
which can be either Ω or ∅.
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The equivalence between (i) and (ii) follows from (2.59) and the fact that the factor in
front of (x− d

γn
) on the right-hand side of (2.59) is deterministic under our assumptions.

For the equivalence between (i) and (iii), note that (2.63) shows that (i) is equivalent
to

Yn+1E [βn+1] = Yn+1 +

(
Yn+1 −

1

2

)(
E

[
β2
n+1

Γn+1

]
− 1

)
,

which clearly is equivalent to (2.62).

Corollary 2.6.5. Let the assumptions of Lemma 2.3.1 be satis�ed. Assume that ξ̂ = 0
and that at least one of λ, ζ is equivalent to zero. Let n ∈ Z∩(−∞, N−1], and assume
that {ξ∗n(x, d) = −x ∀x, d ∈ R} 6= ∅. It then holds that E[βn+1] ≥ 1, and, if Yn+1 <

1
2
,

even that E[βn+1] > 1.

Proof. By Proposition 2.6.4 we have from {ξ∗n(x, d) = −x ∀x, d ∈ R} 6= ∅ that (i) in
Proposition 2.6.4 holds, and thus also (iii). Since Yn+1 is (0, 1

2
]-valued and E[

β2
n+1

Γn+1
] < 1,

the claim follows from (2.62).

The meaning of Corollary 2.6.5 is that in the case of (PIMI) (special case: de-
terministic processes β and γ), closing the position in one go is never optimal in the
conventional framework, where the resilience process β is assumed to be (0, 1)-valued
(and λ ≡ 0).
This raises the question whether closing the position in one go can be optimal in

general (that is, beyond (PIMI)) with the resilience process β taking values in (0, 1)
and λ ≡ 0. In our setting the answer is a�rmative (see the next Example 2.6.6). It
is worth noting that in the related setting where trading is constrained only in one
direction and the process β is (0, 1)-valued (and λ ≡ 0), the answer is negative, i.e.,
closing the position in one go is never optimal in that setting (see [FSU19, Proposition
A.3] and [FSU14, Proposition 5.6]).

Example 2.6.6. In this example we consider a version of our model with three time
points for trading N − 2, N − 1, and N where the resilience process β is (0, 1)-valued
and λ ≡ 0 and still it is optimal at time N − 2 to close the position in one go. To
this end, assume that λ ≡ 0, that FN−2 = {∅,Ω}, and that we can specify the positive
random variables γN−1, γN , and the (0, 1)-valued random variable βN in such a way

that EN−1[
β2
N

ΓN
] < 1, (1 − EN−1[

β2
N

ΓN
])−1 ∈ L∞− and that YN−1 and 1

γN−1
are strictly

negatively correlated, i.e.,

E

[
YN−1

γN−1

]
− E [YN−1]E

[
1

γN−1

]
< 0. (2.64)

At the end of this example we present a speci�c choice such that these assumptions
are satis�ed.
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To continue, by (2.64) we can choose a deterministic

βN−1 ∈

 E
[
YN−1

γN−1

]
E [YN−1]E

[
1

γN−1

] , 1
 (2.65)

and then de�ne

γN−2 =
E
[

1
2
− YN−1βN−1

]
E
[(

1
2
− YN−1

) β2
N−1

γN−1

] . (2.66)

Note that, indeed, βN−1 ∈ (0, 1) and γN−2 > 0. Next, we verify that E[
β2
N−1

ΓN−1
] < 1

(recall FN−2 = {∅,Ω}). By (2.65) it holds that

E [βN−1YN−1]E

[
1

γN−1

]
> E

[
YN−1

γN−1

]
.

This implies that

E

[
1

2
− βN−1YN−1

]
E

[
β2
N−1

γN−1

]
< E

[(
1

2
− YN−1

)
β2
N−1

γN−1

]
.

Due to E[1
2
− βN−1YN−1] > 0, it follows that

E

[
β2
N−1

γN−1

]
<
E
[(

1
2
− YN−1

) β2
N−1

γN−1

]
E
[

1
2
− βN−1YN−1

] =
1

γN−2

.

Since γN−2 is deterministic and ΓN−1 = γN−1

γN−2
, we get E[

β2
N−1

ΓN−1
] < 1.

Having set up the model, we now examine closing the position in one go. From (2.66)
we obtain that

E

[(
YN−1 −

1

2

)
β2
N−1

ΓN−1

− YN−1βN−1 +
1

2

]
= 0.

Therefore, it follows from Lemma 2.6.1 and FN−2 = {∅,Ω} that for all x, d ∈ R it holds
that ξ∗N−2(x, d) = −x, i.e., it is optimal to close the whole position at time N − 2.

It remains to specify positive γN−1, γN , and (0, 1)-valued βN , such that EN−1[
β2
N

ΓN
] <

1, (1 − EN−1[
β2
N

ΓN
])−1 ∈ L∞−, and (2.64) are satis�ed. To this end, let γN−1 be {1

2
, 1}-

valued with P (γN−1 = 1) = p ∈ (0, 1) and P (γN−1 = 1
2
) = 1 − p. De�ne γN = γ2

N−1

and βN = γN−1

2
.

Note that βN is (0, 1)-valued, that γN−1, γN > 0, and that ΓN = γN−1. It further

holds that EN−1[
β2
N

ΓN
] = γN−1

4
≤ 1

4
< 1, and then (1− EN−1[

β2
N

ΓN
])−1 ∈ L∞−.

For (2.64), we �rst compute from (2.34) and YN = 1
2
that

YN−1 =
1

2
EN−1 [ΓN ]−

1
2

(EN−1 [βN ]− EN−1 [ΓN ])2

EN−1 [1− 2βN + ΓN ]
=

1

2

EN−1 [ΓN ]− (EN−1 [βN ])2

1− 2EN−1 [βN ] + EN−1[ΓN ]
.

72



2.6 Closing the position in one go

Using EN−1[ΓN ] = EN−1[γN−1] = γN−1 and EN−1[βN ] = EN−1[γN−1

2
] = γN−1

2
, we thus

have that

YN−1 =
1

2

(
γN−1 −

γ2
N−1

4

)
.

Since

E [γN−1] = p+
1

2
(1− p), E

[
γ2
N−1

]
= p+

1

4
(1− p), and E

[
1

γN−1

]
= p+ 2(1− p),

we obtain (2.64):

E

[
YN−1

γN−1

]
− E [YN−1]E

[
1

γN−1

]
=

1

2

(
1− 1

4
E [γN−1]

)
− 1

2

(
E [γN−1]− 1

4
E
[
γ2
N−1

])
E

[
1

γN−1

]
=

1

2

5

16
p(p− 1) < 0.

For completeness, we mention that for k ∈ {N − 2, N − 1, N} the assumptions
βk, γk,

1
γk
∈ L∞− are trivially satis�ed.

We next provide the announced example on inclusion (2.61).

Example 2.6.7. Let λ ≡ 0. Consider a resilience process β and a price impact process
γ that satisfy the assumptions of Lemma 2.3.1 (in particular, (PIMI)) and, moreover,
E[βN ] 6= 1 and

E[βN−1] = 1 +

(
1− E

[
β2
N−1

ΓN−1

]) (
1
2
− YN−1

)
YN−1

. (2.67)

Below we present a speci�c choice of the parameters such that (2.67) is satis�ed.
We now argue that, with these assumptions, the inclusion in (2.61) for n = N − 2 is

strict. On the one hand, notice that by Proposition 2.6.4, condition (2.67) is equivalent
to {

ξ∗N−2(x, d) = −x ∀x, d ∈ R
}

= Ω. (2.68)

On the other hand, E[βN ] 6= 1 and Corollary 2.5.5 imply that for the deterministic
process Y it holds that Yk < 1

2
for all k ∈ Z ∩ (−∞, N − 1], hence{

YN−2 =
1

2

}
= ∅.

This does not only show that in our example the inclusion in (2.61) is strict, but
also that there exist pro�table round trips at time N−2 and at time N−1 for nonzero
initial deviation. Concurrently, it is optimal at time N − 2 to close the position in one
go.
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2 Optimal trade execution in a discrete-time model

Moreover, we can compute from (2.40) and YN = 1
2
that for all d ∈ R

ξ∗N−1(0, d) =
E[βN ]− 1

1 + E[ΓN ]− 2E[βN ]

d

γN−1

. (2.69)

Therefore, the optimal strategy in this example for the trading period {N − 2, N −
1, N}, any initial position x ∈ R, and any initial deviation d ∈ R is to close the
position at time N −2 (cf. (2.68)), to build up a new position at time N −1 (at least if
D(N−1)− = (d− γN−2x)βN−1 6= 0, cf. (2.69) and E[βN ] 6= 1), and to close this position
at time N .
It remains to explain how we can satisfy (2.67). A possible example where the

requirements on β and γ listed above are satis�ed can be constructed with deterministic
sequences β and γ as follows. Choose arbitrary deterministic γN , γN−1 > 0 and βN ∈
(0,
√

ΓN) \ {1}. Then we clearly have β2
N

ΓN
< 1. Furthermore, these inputs yield a

deterministic YN−1 ∈ (0, 1
2
) (see Corollary 2.5.3). Take a su�ciently small a > 0 such

that
aYN−1

1
2
− YN−1

∈ (0, 1).

Finally, set βN−1 = 1 + a and choose γN−2 > 0 to satisfy

aYN−1

1
2
− YN−1

= 1− (1 + a)2

ΓN−1

(recall that ΓN−1 = γN−1

γN−2
). This choice gives us (2.67) together with

β2
N−1

ΓN−1
< 1.

We brie�y discuss the di�erence between a risk-neutral agent and a risk-averse agent
with respect to closing the position in one go (for ζ ≡ 0 = ξ̂). Observe that the strategy
to close the position immediately and then stop trading yields the same costs for both
agents (cf. (2.3)). Moreover, for any strategy, the associated costs in the risk-neutral
setting are smaller than or equal to those in the risk-averse setting. Therefore, if
the optimal strategy for the risk-neutral agent consists only of a single trade at the
beginning, then the same holds true for the risk-averse agent. However, optimality of
closing in one go for the risk-neutral agent does not imply that closing in one go is
necessarily optimal for the risk-averse agent. Consider the following example where
the risk-neutral agent closes in one go, but the risk-averse agent does not.

Example 2.6.8. Let the resilience process β and the price impact process γ be chosen
as in Example 2.6.7. Denote by Y = (Yn)n∈Z∩(−∞,N ] again the (deterministic) process
from Example 2.6.7, and by ξ∗n(x, d), n ∈ Z∩(−∞, N ], x, d ∈ R, the optimal trade sizes
from Example 2.6.7. To compare the risk-neutral agent from Example 2.6.7 to a risk-
averse agent in the same setting, we now include some deterministic λ = (λn)n∈Z∩(−∞,N ]

satisfying λN−1 > 0. Note that we are still in the setting of Lemma 2.3.1. Denote by
Ỹ = (Ỹn)n∈Z∩(−∞,N ] the (deterministic) process given by ỸN = 1

2
and (2.39) for this λ,
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2.6 Closing the position in one go

and denote by ξ̃∗n(x, d), n ∈ Z ∩ (−∞, N ], x, d ∈ R, the optimal trade sizes (2.40) for
this λ.
Observe that

ỸN−1 − YN−1 =
λN−1 (1− E [βN ])2

(1− 2E [βN ] + E [ΓN ] + 2λN−1) (1− 2E [βN ] + E [ΓN ])
> 0

due to λN−1 > 0 and E[βN ] 6= 1. In particular, we have that ỸN−1 6= YN−1. This implies
that (2.67) does not hold with YN−1 replaced by ỸN−1. It follows from Proposition 2.6.4
that {ξ̃∗N−2(x, d) = −x ∀x, d ∈ R} = ∅, and, using (2.59), that it holds for all x, d ∈ R
with P (γN−2x 6= d) = 1 that{

ξ̃∗N−2(x, d) = −x
}

=

{(
ỸN−1 −

1

2

)
E

[
β2
N−1

ΓN−1

]
− ỸN−1E [βN−1] +

1

2
= 0

}
= ∅.

To sum up, if x, d ∈ R with γN−2x 6= d, then the risk-averse agent does not close
their position x at time N − 2, whereas the risk-neutral agent closes the position at
time N − 2 to append a (nontrivial) round trip at time N − 1 (cf. Example 2.6.7).
If x, d ∈ R such that γN−2x = d, then both agents close their position at time N−2.

Moreover, the risk-neutral agent in this case does not open a new position at time N−1
(cf. (2.69)). Since only the denominator in (2.69) changes for λN−1 > 0, the risk-averse
agent does not open a new position either. I.e., we have the situation described prior
to this example, where it is optimal for both agents to close the position immediately
and quit trading.
We further mention that in the case x = 0 and d 6= 0, both agents perform a

nontrivial round trip: the risk-averse agent starts their round trip at time N − 2, since
closing in one go at time N − 2 is not optimal for them, while the risk-neutral agent
waits until time N − 1 and then starts trading at time N − 1 due to (2.69).
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3

From discrete to continuous time:

base setting and heuristics

For the remainder of the thesis, we are interested in optimal trade execution in a
continuous-time version of the model from Chapter 2. That is, we want to consider
a model of Obizhaeva-Wang type with stochastic resilience and stochastic order book
depth where we allow trading during the whole time interval [0, T ] (for given terminal
time T > 0) instead of only at the time points {0, 1, . . . , N} (for given terminal time
N ∈ N).
Observe that for our continuous-time model, in contrast to Chapter 2, we assume a

certain structure of the processes that describe the resilience and the order book depth.
This set-up is introduced in Section 3.1. Within this set-up, we in Chapter 5 formulate
and solve a continuous-time control problem where we consider càdlàg semimartingales
as execution strategies. In Chapter 7 we, also within the set-up of Section 3.1, start
from a typical formulation for �nite-variation strategies, extend this to progressively
measurable strategies, and solve the extended problem in Chapter 8 via reduction to a
standard LQ stochastic control problem. We refer to, e.g., Chapter 1, Section 5.3, and
Section 5.4.1 for reasons why we want to allow for more general than �nite-variation
strategies.
Section 3.2 and Section 3.3 are purely heuristic treatments and serve to motivate,

in the risk-neutral setting, in particular the semimartingale control problem and its
solution by the discrete-time problem and results from Chapter 2. We �rst, in Sec-
tion 3.2, derive appropriate de�nitions of the deviation dynamics and of the costs in
the continuous-time model for semimartingale strategies via a limiting procedure from
the discrete-time setting. It is worth noting that for semimartingale strategies, there in
general appear certain covariation terms (see also Section 5.1.2 for further discussion).
Subsequently, in Section 3.3, we heuristically show that the process de�ned by back-
ward recursion in (2.34) that characterizes the solution of the discrete-time problem
(see Corollary 2.2.4) gives rise to a quadratic BSDE. This BSDE in fact describes the
solution of the continuous-time problems (see Theorem 5.2.6, and compare also with
Chapter 8). We further analyze this BSDE in Chapter 4.
Section 3.2 and Section 3.3 are extensions (to the setting of possibly di�usive re-
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3 From discrete to continuous time: base setting and heuristics

silience) of [AKU21a, Appendix A] and [AKU21a, Appendix B], respectively.

3.1 Base setting and notations for continuous time

The following mathematical set-up and notations provide a basis for the remaining
chapters of the thesis, where we often specify subsettings of this framework. We here
also introduce some assumptions that are frequently used at several places in the thesis.

Let T ∈ (0,∞) be the terminal time, and let (Ω,F , (Fs)s∈[0,T ], P ) be a �ltered prob-
ability space satisfying the usual conditions and F = FT . Furthermore, we suppose
that for some m ∈ N, m ≥ 2, the �ltered probability space supports m indepen-
dent continuous local martingales1 M (j) = (M

(j)
s )s∈[0,T ], j ∈ {1, . . . ,m}, such that the

quadratic variation processes [M (j)], j ∈ {1, . . . ,m}, are pairwise indistinguishable. In
particular, [M (1)] = [M (2)] and [M (1),M (2)] = 0.

We now introduce some notation. For a (possibly multidimensional) Brownian mo-
tion W = (Ws)s∈[0,T ], the augmented natural �ltration of W is denoted by (FWs )s∈[0,T ].
For t ∈ [0, T ], the Borel sigma-algebra on [t, T ] is written as B([t, T ]). The Lebesgue
measure on ([0, T ],B([0, T ])) is called Leb. We denote by DM(1) the Doléans measure
associated toM (1) on (Ω× [0, T ],F⊗B([0, T ])), i.e., DM(1)(C) = E[

∫ T
0

1C(·, s)d[M (1)]s]
for C ∈ F ⊗ B([0, T ]). For t ∈ [0, T ] we use the notation DM(1)|[t,T ] for the re-
striction of the Doléans measure DM(1) to (Ω × [t, T ],F ⊗ B([t, T ])). For t ∈ [0, T ]
conditional expectations with respect to Ft are denoted by Et[·]. For t ∈ [0, T ]
and a càdlàg process X = (Xs)s∈[t−,T ], a jump at time s ∈ [t, T ] is denoted by
∆Xs = Xs − Xs−. We follow the convention that, for t ∈ [0, T ], r ∈ [t, T ], and a
càdlàg semimartingale L = (Ls)s∈[t−,T ], jumps of the càdlàg integrator L at time t
contribute to integrals of the form

∫
[t,r]

. . . dLs. In contrast, we write
∫

(t,r]
. . . dLs when

we do not include jumps of L at time t into the integral. The notation
∫ r
t
. . . dLs

is sometimes used for continuous integrators L. For a continuous semimartingale
Q = (Qs)s∈[0,T ] we denote by E(Q) = (E(Q)s)s∈[0,T ] its stochastic exponential, i.e.,
E(Q)s = exp

(
Qs −Q0 − 1

2
[Q]s

)
, s ∈ [0, T ]. For t ≤ s in [0, T ] we also use the notation

E(Q)t,s = E(Q)s
E(Q)t

= exp
(
Qs −Qt − 1

2
([Q]s − [Q]t)

)
. A superscript > of a matrix denotes

transpose. A superscript c of a set means its complement. For n ∈ N and y ∈ Rn let
‖y‖n = (

∑n
j=1 y

2
j )

1
2 . For every t ∈ [0, T ] we mean by L1(Ω,Ft, P ) the space of all

real-valued Ft-measurable random variables K such that ‖K‖L1 = E[|K|] < ∞. For
t ∈ [0, T ], let L2

t = L2(Ω × [t, T ],Prog(Ω × [t, T ]),DM(1)|[t,T ]) denote the space of all

1We remark that in the dynamics for the resilience and price impact process, we only make use
of the local martingales M (1) and M (2). The reason why we do not just let m = 2 is that
in Proposition 4.3.2 and Section 8.2, to apply the results from the literature on LQ stochastic
control, we assume that the �ltration (Fs)s∈[0,T ] is generated by an m-dimensional Brownian

motion (W (1), . . . ,W (m))>. The componentsW (3), . . . ,W (m) will therefore serve as further sources
of randomness on which the model inputs may depend.
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(equivalence classes of) real-valued progressively measurable processes u = (us)s∈[t,T ]

such that ‖u‖L2t = (E[
∫ T
t
u2
sd[M (1)]s])

1
2 <∞.

Our model requires six progressively measurable processes µ = (µs)s∈[0,T ], σ =
(σs)s∈[0,T ], ρ = (ρs)s∈[0,T ], η = (ηs)s∈[0,T ], r = (rs)s∈[0,T ], and λ = (λs)s∈[0,T ] such

that
∫ T

0
(|ρs| + |µs| + σ2

s + η2
s)d[M1]s < ∞ a.s., and such that λ is DM(1)-a.e. bounded

and r is [−1, 1]-valued. We de�ne the continuous local martingale MR = (MR
s )s∈[0,T ]

by

dMR
s = rsdM

(1)
s +

√
1− r2

sdM
(2)
s , s ∈ [0, T ], MR

0 = 0,

and refer to r as the correlation (process). Observe that

d[MR]s = r2
sd[M (1)]s + (1− r2

s)d[M (2)]s = d[M (1)]s, s ∈ [0, T ],

due to [M (1)] = [M (2)] and independence ofM (1),M (2). The process ρ, called resilience
coe�cient, and the process η together de�ne the resilience (process)2 R = (Rs)s∈[0,T ],
which is a continuous semimartingale, via

dRs = ρsd[MR]s + ηsdM
R
s , s ∈ [0, T ], R0 = 0. (3.1)

Based on the inputs µ and σ, the price impact (process) γ = (γs)s∈[0,T ], a strictly
positive continuous semimartingale, is modeled by

dγs = γsµsd[M (1)]s + γsσsdM
(1)
s , s ∈ [0, T ], γ0 ∈ (0,∞). (3.2)

The price impact process has the representation

γs = γ0 exp

(∫ s

0

(
µr −

σ2
r

2

)
d[M (1)]r +

∫ s

0

σrdM
(1)
r

)
, s ∈ [0, T ].

For future reference, note that by an application of Itô's formula it holds for all s ∈
[0, T ] that

dγ−1
s = γ−1

s

(
−(µs − σ2

s) d[M (1)]s − σs dM (1)
s

)
, (3.3)

dγ
1
2
s = γ

1
2
s

(
1

2
µs −

1

8
σ2
s

)
d[M (1)]s +

1

2
γ

1
2
s σsdM

(1)
s , (3.4)

dγ
− 1

2
s = γ

− 1
2

s

(
−1

2
µs +

3

8
σ2
s

)
d[M (1)]s −

1

2
γ
− 1

2
s σsdM

(1)
s . (3.5)

2Note that although we call R resilience process, it does not play the same role as the resilience
process β in Chapter 2. Instead, the multiplicative increments of the stochastic exponential of −R
are comparable to β from Chapter 2 (cf., e.g., Section 3.2). Further, R does not have the same
meaning as the resilience coe�cient (also called resilience rate) in, e.g., [OW13] and [FSU19]. If
η vanishes in our model, then the resilience is described by ρ only, and ρ is what most articles
call resilience (coe�cient/rate); see also [AKU21a] for this subsetting (however, ρ in [AKU21a] is
called resilience process to emphasize that it can be stochastic).
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We moreover introduce, for convenience, the process κ = (κs)s∈[0,T ] de�ned by

κs =
1

2

(
2ρs + µs − σ2

s − η2
s − 2σsηsrs

)
, s ∈ [0, T ]. (3.6)

We now formulate some assumptions that we invoke at several places in the thesis.
For most of our results, we assume that:

Assumption (C>0). κ+ λ > 0 DM(1)-a.e.

This is a structural condition on the input processes which, roughly speaking, ensures
that the minimization problems that we consider are convex. To see this, we refer to the
representation in Theorem 5.2.1. Notice also the similar condition in [FSU19, Proposi-
tion 6.2]. Observe furthermore that condition (C>0) ensures that the denominator in
the driver of the quadratic BSDE in Chapter 4 stays strictly positive. We sometimes
(e.g., in Chapter 4 and Chapter 6) strengthen condition (C>0) to boundedness away
from zero, i.e.:

Assumption (C≥ε). There exists ε ∈ (0,∞) such that κ+ λ ≥ ε DM(1)-a.e.

This condition appears also when we consider the �regular case� in [KT02]. For the
�singular case� in [KT02], we introduce the following assumption (note that it always
holds that σ2 + η2 + 2σηr ≥ 0 DM(1)-a.e.).

Assumption (Cs). There exists ε ∈ (0,∞) such that σ2 + η2 + 2σηr ≥ ε DM(1)-a.e.

Further, we sometimes (e.g., in Section 8.2, and most of the time in Chapter 4)
require that λ and κ on their own are nonnegative:

Assumption (Cnonneg). κ ≥ 0 DM(1)-a.e. and λ ≥ 0 DM(1)-a.e.

Note that if λ ≡ 0, then κ ≥ 0 is already implied by (C>0) (which, in turn, is an
implication of (C≥ε)). In Chapter 4, Chapter 6, and Chapter 8, as well as for almost
all of the results in Chapter 7 and some of the results in Chapter 5, we assume that
the input processes are bounded:

Assumption (Cbdd). There exist cρ, cµ, cσ, cη ∈ (0,∞) such that |ρ| ≤ cρ, |µ| ≤ cµ,
|σ| ≤ cσ, |η| ≤ cη DM(1)-a.e.

In particular, we rely on this when we prove existence of the BSDE in Chapter 4.
Further, (Cbdd) allows to apply results from the LQ literature in Section 8.2, since
the coe�cient processes in the control problems of such works are typically assumed
to be bounded. To obtain a standard LQ problem in Chapter 8 and for our examples
(including Chapter 6), we considerM (1) (and hence by Lévy's characterization allM (j),
j ∈ {1, . . . ,m}) to be a Brownian motion. When dealing with general continuous local
martingales, we often require the following condition, which, in particular, is satis�ed
in case of an (Fs)s∈[0,T ]-Brownian motion M (1) = W (1):

Assumption (C[M(1)]). For all c ∈ (0,∞) : E
[
exp(c [M (1)]T )

]
<∞.
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3.2 Motivation for the deviation dynamics and the costs

3.2 Motivation for the deviation dynamics and the

costs

We �x an initial position x ∈ R and an initial deviation d ∈ R, and consider a semi-
martingale execution strategy X for the trading interval [0, T ]. By this, we mean a
càdlàg semimartingaleX = (Xs)s∈[0−,T ] withX0− = x, XT = 0, and suitable integrabil-
ity conditions. For any (large) N ∈ N, we set h = T

N
and consider discrete-time trading

at points of the grid {kh : k = 0, . . . , N}. More precisely, the continuous-time strategy
X = (Xs)s∈[0−,T ] is approximated by the discrete-time strategy (Xkh)k∈{−1,...,N} with
initial value X−h = x and terminal value XNh = 0. The discrete-time strategy thus
consists of trades ξkh, k ∈ {0, . . . , N}, at the grid points, where ξkh = Xkh −X(k−1)h,
k ∈ {0, . . . , N}. Notice that ξkh is Fkh-measurable, k ∈ {0, . . . , N}.
Furthermore, we take as discrete-time price impact process3 (γkh)k∈{0,...,N}, and as

discrete-time resilience process (βkh)k∈{1,...,N} de�ned by

βkh = e−(Rkh−R(k−1)h)− 1
2

([R]kh−[R](k−1)h) = E(−R)(k−1)h,kh, k ∈ {1, . . . , N}. (3.7)

We remark that the arguments in the present section do not rely on the speci�c dy-
namics of R or γ. More generally, we could take R to be a continuous semimartingale
with R0 = 0 and γ a continuous positive semimartingale.
Recall that the discrete-time deviation process (Dh

(kh)−)k∈{0,...,N} is de�ned by (2.1)
and has the alternative representation (cf. (2.2))4

Dh
(kh)− = d

k∏
l=1

βlh +
k∑
i=1

γ(i−1)hξ(i−1)h

k∏
l=i

βlh, k ∈ {0, . . . , N},

where
∑0

i=1 := 0,
∏0

l=1 := 1. Substituting the de�nition of (βkh)k∈{1,...,N}, we obtain
that, for all k ∈ {1, . . . , N},

Dh
(kh)− = e−Rkh−

1
2

[R]khd+
k∑
i=1

γ(i−1)hξ(i−1)he
−(Rkh−R(i−1)h)− 1

2
([R]kh−[R](i−1)h)

= E(−R)kh

(
d+

k∑
i=1

γ(i−1)hE(−R)−1
(i−1)hξ(i−1)h

)
= E(−R)khL

h
(k−1)h,

(3.8)

3To be more precise, the price impact and resilience process in Chapter 2 are de�ned for all times
in Z. We here only rely on these processes on the time points of the grid and could de�ne them
outside this set of time points in any way that is in accordance with Chapter 2, which obviously
is possible.

4The minus in the subscript of Dh
(kh)− is purely notational (this is a discrete-time process), the

meaning of Dh
(kh)− is that this is the deviation at time kh directly prior to the trade ξkh at time

kh, see Section 2.1.
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where, for k ∈ {0, . . . , N}, we set

Lhkh = d+
k∑
j=0

γjhE(−R)−1
jh ξjh

= d+ γ0(X0 − x) +
k∑
j=1

γjhE(−R)−1
jh

(
Xjh −X(j−1)h

)
= d+ γ0(X0 − x) +

k∑
j=1

γ(j−1)hE(−R)−1
(j−1)h

(
Xjh −X(j−1)h

)
+

k∑
j=1

(
γjhE(−R)−1

jh − γ(j−1)hE(−R)−1
(j−1)h

) (
Xjh −X(j−1)h

)
.

The last expression shows that the continuous-time limit of the processes (Lhkh)k∈{0,...,N},
as N →∞ (and h = T

N
→ 0), is the process (Ls)s∈[0−,T ] given by L0− = d,

Ls = d+

∫
[0,s]

γrE(−R)−1
r dXr +

∫
[0,s]

d[γE(−R)−1, X]r, s ∈ [0, T ],

(apply [JS03, Proposition I.4.44 and Theorem I.4.47]). Further, note that

d(γsE(−R)−1
s ) = E(−R)−1

s dγs + γsE(−R)−1
s d(Rs + [R]s) + d[γ, E(−R)−1]s, s ∈ [0, T ],

and thus

d[γE(−R)−1, X]s = E(−R)−1
s d[γ,X]s + γsE(−R)−1

s d[R,X]s, s ∈ [0, T ].

It hence turns out that the continuous-time limit of the processes (Dh
(kh)−)k∈{0,...,N} is

the process (Ds)s∈[0−,T ] given by D0− = d,

Ds = E(−R)sLs = e−Rs−
1
2

[R]s

(
d+

∫
[0,s]

γre
Rr+

1
2

[R]rdXr +

∫
[0,s]

eRr+
1
2

[R]rd[γ,X]r

+

∫
[0,s]

γre
Rr+

1
2

[R]rd[R,X]r

)
, s ∈ [0, T ].

(3.9)

Observe that by, e.g., [Pro05, Theorem V.7 and Theorem V.52] this is the unique
solution of the equation

dDs = −DsdRs + γsdXs + d[γ,X]s, s ∈ [0, T ], D0− = d. (3.10)

The above discussion suggests to de�ne the deviation process in the continuous-time
model by (3.10) (or, equivalently, by (3.9)).
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3.3 Motivation for the BSDE

We now turn to the cost functional. In the discrete-time setting the costs over the
whole trading period for a risk-neutral agent are (cf. Section 2.1)

N∑
j=0

(
Dh

(jh)− +
γjh
2
ξjh

)
ξjh.

It holds that

N∑
j=0

(
Dh

(jh)− +
γjh
2
ξjh

)
ξjh =

N∑
j=0

Dh
(jh)−

(
Xjh −X(j−1)h

)
+

N∑
j=0

γ(j−1)h

2

(
Xjh −X(j−1)h

)2

+
N∑
j=0

1

2

(
γjh − γ(j−1)h

) (
Xjh −X(j−1)h

)2
.

(3.11)

For the �rst term on the right-hand side of (3.11), we have that

N∑
j=0

Dh
(jh)−

(
Xjh −X(j−1)h

)
=

N∑
j=0

E(−R)jhL
h
(j−1)h

(
Xjh −X(j−1)h

)
=

N∑
j=0

E(−R)(j−1)hL
h
(j−1)h

(
Xjh −X(j−1)h

)
+

N∑
j=0

Lh(j−1)h

(
E(−R)jh − E(−R)(j−1)h

) (
Xjh −X(j−1)h

)
,

which has the continuous-time limit∫
[0,T ]

E(−R)sLs−dXs +

∫
[0,T ]

Ls−d[E(−R), X]s =

∫
[0,T ]

Ds−dXs −
∫

[0,T ]

Ds−d[R,X]s,

as E(−R) is a continuous process with dE(−R)s = −E(−R)sdRs, s ∈ [0, T ]. Further,
the second term on the right-hand side of (3.11) tends to

∫
[0,T ]

γs
2
d[X]s and the third

term to 1
2
[γ, [X]]T = 0 because γ is continuous. As the continuous-time limit of the

discrete-time costs we thus obtain∫
[0,T ]

Ds−dXs −
∫

[0,T ]

Ds−d[R,X]s +

∫
[0,T ]

γs
2
d[X]s. (3.12)

3.3 Motivation for the BSDE

Now that we have suggested an appropriate problem formulation for semimartingale
strategies based on the discrete-time model, we want to draw inspiration from the
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3 From discrete to continuous time: base setting and heuristics

discrete-time results also for its solution. Recall that in discrete time, the minimal
costs and optimal strategies for zero terminal position in the risk-neutral setting are
characterized by a process de�ned via backward recursion (see Corollary 2.2.4). We
therefore guess that a continuous-time counterpart of this process might also play a
crucial role for the solution in continuous time.
Let us consider a discrete-time version of the stochastic control problem to minimize

the expected costs in (3.12) over the set of semimartingale execution strategies (càdlàg
semimartingales with given initial position, terminal position 0, and some integrability
properties) with deviation (3.10). For h > 0 such that h = T

N
for some N ∈ N, t ∈

[0, T ], and x, d ∈ R, let V h
t (x, d) denote the value function of the problem to minimize

only over the subset of all semimartingale execution strategies X = (Xs)s∈[t−,T ] of
the form Xs =

∑N
k=0 X(kh)∨t1[kh,(k+1)h)(s), s ∈ [t, T ], (and Xt− = x). Then it follows

from Corollary 2.2.4 that for each h > 0 with h = T
N

for some N ∈ N there exists

a process Y h = (Y h
t )t∈{0,h,...,T} such that V h

t (x, d) =
Y ht
γt

(d − γtx)2 − d2

2γt
, x, d ∈ R,

t ∈ {0, h, . . . , T}. The discrete-time process Y h = (Y h
t )t∈{0,h,...,T} is given by the

backward recursion Y h
T = 1

2
and, for t ∈ {0, h, . . . , T − h},

Y h
t = Et

[
γt+h
γt

Y h
t+h

]
−
(
Et

[
Y h
t+h

(
E(−R)t,t+h −

γt+h
γt

)])2

·

(
Et

[
Y h
t+h

γt
γt+h

(
E(−R)t,t+h −

γt+h
γt

)2

+
1

2

(
1− γt

γt+h
E(−R)2

t,t+h

)])−1

.

(3.13)

It seems plausible to expect that also the value function of the continuous-time problem
will turn out to have the form Yt

γt
(d−γtx)2− d2

2γt
, x, d ∈ R, t ∈ [0, T ], for some continuous-

time variant Y of Y h. The aim is thus to derive heuristically the limit of Y h when the
distance h between the time points for trading tends to 0. We hence make the ansatz
that there is a continuous-time limit Y = (Yt)t∈[0,T ] of Y h as h → 0, and that Y can
be decomposed as

dYt = atd[M (1)]t + Z
(1)
t dM

(1)
t + Z

(2)
t dM

(2)
t + dM⊥

t , t ∈ [0, T ], (3.14)

where (at)t∈[0,T ], (Z
(j)
t )t∈[0,T ], j ∈ {1, 2}, are progressively measurable processes (the

process (at)t∈[0,T ] is to be determined) and M⊥ = (M⊥
t )t∈[0,T ] is a local martingale

orthogonal to M (1) and M (2).
From (3.14) we deduce that (at)t∈[0,T ] should be identi�ed as the limit

at = lim
h→0

Et[Yt+h]− Yt
Et [[M (1)]t+h]− [M (1)]t

, t ∈ [0, T ].

Assume that replacing Y h with Y of (3.13) introduces an error only of the magnitude
o
(
Et
[
[M (1)]t+h

]
− [M (1)]t

)
. Then we can get the expression for at by evaluating the
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3.3 Motivation for the BSDE

limit

at = lim
h→0

1

Et [[M (1)]t+h]− [M (1)]t

 Et [Yt+h]− Et
[
γt+h
γt

Yt+h

]

+

(
Et

[
Yt+h

(
E(−R)t,t+h − γt+h

γt

)])2

Et

[
Yt+h

γt
γt+h

(
E(−R)t,t+h − γt+h

γt

)2

+ 1
2

(
1− γt

γt+h
E(−R)2

t,t+h

)]
 , t ∈ [0, T ].

(3.15)

For the remainder of this section we �x t ∈ [0, T ] and assume that all stochastic
integrals with respect to dM (1), dM (2), and dM⊥ that appear are true martingales.
We de�ne the process Γ = (Γs)s∈[t,T ] by Γs = γs

γt
for s ∈ [t, T ].

Since

d(ΓsYs) = ΓsdYs + YsdΓs + d[Γ, Y ]s

= Γsasd[M (1)]s + ΓsZ
(1)
s dM (1)

s + ΓsZ
(2)
s dM (2)

s + ΓsdM
⊥
s

+ YsΓsµsd[M (1)]s + YsΓsσsdM
(1)
s + ΓsσsZ

(1)
s d[M (1)]s

= (Γsas + YsΓsµs + ΓsσsZ
(1)
s )d[M (1)]s + (ΓsZ

(1)
s + YsΓsσs)dM

(1)
s

+ ΓsZ
(2)
s dM (2)

s + ΓsdM
⊥
s , s ∈ [t, T ],

it holds for all h ∈ (0, T − t) that

Et [Γt+hYt+h] = Yt + Et

[∫ t+h

t

(
Γsas + YsΓsµs + ΓsσsZ

(1)
s

)
d[M (1)]s

]
. (3.16)

Together with

Et [Yt+h] = Yt + Et

[∫ t+h

t

asd[M (1)]s

]
, h ∈ (0, T − t),

we obtain heuristically that

Et [Yt+h]− Et [Γt+hYt+h]

Et [[M (1)]t+h]− [M (1)]t
=
Et

[∫ t+h
t

(
as(1− Γs)− YsΓsµs − ΓsσsZ

(1)
s

)
d[M (1)]s

]
Et

[∫ t+h
t

d[M (1)]s

]
−−→
h→0

−Ytµt − σtZ(1)
t .

(3.17)
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3 From discrete to continuous time: base setting and heuristics

Furthermore, it holds that

d(YsE(−R)t,s) = −YsE(−R)t,sdRs + E(−R)t,sasd[M (1)]s + E(−R)t,sZ
(1)
s dM (1)

s

+ E(−R)t,sZ
(2)
s dM (2)

s + E(−R)t,sdM
⊥
s − E(−R)t,sd[Y,R]s

= −YsE(−R)t,sρsd[M (1)]s − YsE(−R)t,sηsrsdM
(1)
s

− YsE(−R)t,sηs

√
1− r2

sdM
(2)
s + E(−R)t,sasd[M (1)]s

+ E(−R)t,sZ
(1)
s dM (1)

s + E(−R)t,sZ
(2)
s dM (2)

s + E(−R)t,sdM
⊥
s

− E(−R)t,sZ
(1)
s ηsrsd[M (1)]s − E(−R)t,sZ

(2)
s ηs

√
1− r2

sd[M (2)]s

= E(−R)t,s

(
−Ysρs + as − Z(1)

s ηsrs − Z(2)
s ηs

√
1− r2

s

)
d[M (1)]s

+ E(−R)t,s
(
Z(1)
s − Ysηsrs

)
dM (1)

s + E(−R)t,sdM
⊥
s

+ E(−R)t,s

(
Z(2)
s − Ysηs

√
1− r2

s

)
dM (2)

s , s ∈ [t, T ].

We then have for all h ∈ (0, T − t) that

Et [Yt+hE(−R)t,t+h]

= Yt + Et

[∫ t+h

t

E(−R)t,s

(
−Ysρs + as − Z(1)

s ηsrs − Z(2)
s ηs

√
1− r2

s

)
d[M (1)]s

]
.

(3.18)

From (3.16) and (3.18) we derive heuristically that

Et [Yt+h (E(−R)t,t+h − Γt+h)]

Et [[M (1)]t+h]− [M (1)]t

= Et

[ ∫ t+h

t

(
E(−R)t,s

(
−Ysρs + as − Z(1)

s ηsrs − Z(2)
s ηs

√
1− r2

s

)
− Γs

(
as + Ysµs + σsZ

(1)
s

))
d[M (1)]s

](
Et

[∫ t+h

t

d[M (1)]s

])−1

−−→
h→0

−Ytρt − Z(1)
t ηtrt − Z(2)

t ηt

√
1− r2

t − Ytµt − σtZ
(1)
t .

(3.19)

Recall that Γ−1
s = γ−1

s

γ−1
t

, s ∈ [t, T ], and therefore

dΓ−1
s = −Γ−1

s

(
µs − σ2

s

)
d[M (1)]s − Γ−1

s σsdM
(1)
s , s ∈ [t, T ].
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3.3 Motivation for the BSDE

We compute that

d
(
YsΓ

−1
s

)
= −YsΓ−1

s

(
µs − σ2

s

)
d[M (1)]s − YsΓ−1

s σsdM
(1)
s + Γ−1

s asd[M (1)]s

+ Γ−1
s Z(1)

s dM (1)
s + Γ−1

s Z(2)
s dM (2)

s + Γ−1
s dM⊥

s − Z(1)
s Γ−1

s σsd[M (1)]s

=
(
−YsΓ−1

s

(
µs − σ2

s

)
+ Γ−1

s as − Z(1)
s Γ−1

s σs
)
d[M (1)]s

+
(
Γ−1
s Z(1)

s − YsΓ−1
s σs

)
dM (1)

s + Γ−1
s Z(2)

s dM (2)
s + Γ−1

s dM⊥
s , s ∈ [t, T ].

(3.20)

Moreover, we have that

d(E(−R)t,s − Γs)
2 = −2E(−R)t,s(E(−R)t,s − Γs)dRs − 2(E(−R)t,s − Γs)dΓs

+ d [E(−R)t,·]s − 2d [Γ, E(−R)t,·]s + d [Γ]s

= −2E(−R)t,s(E(−R)t,s − Γs)ρsd[M (1)]s

− 2E(−R)t,s(E(−R)t,s − Γs)ηsrsdM
(1)
s

− 2E(−R)t,s(E(−R)t,s − Γs)ηs

√
1− r2

sdM
(2)
s

− 2Γsµs(E(−R)t,s − Γs)d[M (1)]s − 2Γsσs(E(−R)t,s − Γs)dM
(1)
s

+ E(−R)2
t,sd[R]s + 2E(−R)t,sd[Γ, R]s + Γ2

sσ
2
sd[M (1)]s

=
(
− 2(E(−R)t,s − Γs)(E(−R)t,sρs + Γsµs) + Γ2

sσ
2
s + E(−R)2

t,sη
2
s

+ 2E(−R)t,sηsrsσsΓs
)
d[M (1)]s

− 2(E(−R)t,s − Γs) (E(−R)t,sηsrs + Γsσs) dM
(1)
s

− 2(E(−R)t,s − Γs)E(−R)t,sηs

√
1− r2

sdM
(2)
s , s ∈ [t, T ].

(3.21)

It follows from (3.20) and (3.21) that it holds for all h ∈ (0, T − t) that

Et
[
Yt+hΓ

−1
t+h (E(−R)t,t+h − Γt+h)

2]
= Et

[ ∫ t+h

t

YsΓ
−1
s

(
Γ2
sσ

2
s − 2(E(−R)t,s − Γs)(E(−R)t,sρs + Γsµs) + E(−R)2

t,sη
2
s

+ 2E(−R)t,sΓsσsηsrs

)
− 2(E(−R)t,s − Γs)Γ

−1
s

(
(E(−R)t,sηsrs + Γsσs)(Z

(1)
s − Ysσs)

+ E(−R)t,sZ
(2)
s ηs

√
1− r2

s

)
+ (E(−R)t,s − Γs)

2Γ−1
s (−Ys(µs − σ2

s) + as − Z(1)
s σs) d[M (1)]s

]
.

Therefore, we obtain heuristically that

Et
[
Yt+hΓ

−1
t+h (E(−R)t,t+h − Γt+h)

2]
Et [[M (1)]t+h]− [M (1)]t

−−→
h→0

Yt(σ
2
t + η2

t + 2σtηtrt). (3.22)
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3 From discrete to continuous time: base setting and heuristics

Since

dE(−R)2
t,s = E(−R)2

t,s(η
2
s − 2ρs)d[M (1)]s − 2E(−R)2

t,sηsrsdM
(1)
s

− 2E(−R)2
t,sηs

√
1− r2

sdM
(2)
s , s ∈ [t, T ],

we have that

d(Γ−1
s E(−R)2

t,s) = Γ−1
s E(−R)2

t,s(η
2
s − 2ρs − µs + σ2

s + 2σsηsrs)d[M (1)]s

− Γ−1
s E(−R)2

t,s(2ηsrs + σs)dM
(1)
s

− 2Γ−1
s E(−R)2

t,sηs

√
1− r2

sdM
(2)
s , s ∈ [t, T ],

and we further derive heuristically that

Et
[

1
2

(
1− Γ−1

t+hE(−R)2
t,t+h

)]
Et [[M (1)]t+h]− [M (1)]t

=
Et

[∫ t+h
t

1
2

(
Γ−1
s E(−R)2

t,s (2ρs + µs − σ2
s − η2

s − 2σsηsrs)
)
d[M (1)]s

]
Et

[∫ t+h
t

d[M (1)]s

]
−−→
h→0

1

2

(
2ρt + µt − σ2

t − η2
t − 2σtηtrt

)
.

(3.23)

We conclude from (3.15), (3.17), (3.19), (3.22), and (3.23) that

at = −Ytµt− σtZ(1)
t +

(
−Yt(ρt + µt)− Z(1)

t (σt + ηtrt)− Z(2)
t ηt

√
1− r2

t

)2

Yt(σ2
t + η2

t + 2σtηtrt) + 1
2
(2ρt + µt − σ2

t − η2
t − 2σtηtrt)

. (3.24)
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4

A Riccati-type BSDE

In the previous chapter we have motivated the importance of a certain quadratic
BSDE for the continuous-time (semimartingale) problem. Now, we study existence
and uniqueness for this BSDE (we additionally incorporate a risk coe�cient process λ
into the driver (3.24)).
To this end, assume the framework of Section 3.1. We introduce the BSDE

Yt =
1

2
+

∫ T

t

f(s, Ys, Zs)d[M (1)]s −
∫ T

t

Z(1)
s dM (1)

s −
∫ T

t

Z(2)
s dM (2)

s −
(
M⊥

T −M⊥
t

)
,

t ∈ [0, T ],

(4.1)

with terminal condition YT = 1
2
and driver f : Ω× [0, T ]× R× R2 → R de�ned by, in

the case when (C>0) is satis�ed,

f(s, y, z) = −

(
(ρs + µs)y + (σs + ηsrs)z

(1) + ηs
√

1− r2
sz

(2) + λs

)2

(σ2
s + η2

s + 2σsηsrs)(y ∨ 0) + κs + λs

+ µsy + σsz
(1) + λs,

(4.2)

for s ∈ [0, T ], y, z(1), z(2) ∈ R, z = (z(1), z(2))>. In di�erential notation, (4.1) reads

dYs = −f(s, Ys, Zs)d[M (1)]s + Z(1)
s dM (1)

s + Z(2)
s dM (2)

s + dM⊥
s , s ∈ [0, T ], YT =

1

2
.

We are interested in solutions of BSDE (4.1) in the following sense1.

De�nition 4.0.1. A solution of BSDE (4.1) is a triple (Y, Z,M⊥) of processes where

1Note that this notion of a solution of BSDE (4.1) summarizes the de�nition of a solution of the
corresponding BSDE in [AKU21a] and the properties required in condition (CBSDE) of [AKU21a],
except for the fact that we in this thesis only assume boundedness of Y and not the speci�c bound
1
2 . Nevertheless, the upper bound 1

2 comes out as part of our results in this section (or as a
consequence of Theorem 5.2.6) and is natural in view of Section 3.3 and Theorem 2.2.1.
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4 A Riccati-type BSDE

� M⊥ is a càdlàg local martingale with M⊥
0 = 0, [M⊥,M (j)] = 0 for j ∈ {1, 2},

and E[[M⊥]T ] <∞,

� Z = (Z(1), Z(2))>, where Z(1), Z(2) ∈ L2
0, i.e., Z

(1), Z(2) are progressively measur-
able processes such that E[

∫ T
0

(Z
(j)
s )2d[M (1)]s] <∞ for j ∈ {1, 2},

� Y is an adapted, càdlàg, nonnegative, and bounded process,

such that
∫ T

0
|f(s, Ys, Zs)| d[M (1)]s <∞ a.s. and (4.1) is satis�ed a.s.

Remark 4.0.2. (i) We assume (C>0) and write y∨0 (instead of simply y) in (4.2) only
to make sure that the denominator in the de�nition of the driver is strictly positive
(at least DM(1)-a.e.). At some places (e.g., in Proposition 4.3.2 and Section 8.2) we
also want to consider BSDE (4.1) without assuming (C>0). In this case, we implicitly
understand under

∫ T
0
|f(s, Ys, Zs)| d[M (1)]s < ∞ a.s. and (4.1) being satis�ed a.s. by

(Y, Z,M⊥) that moreover the fraction(
(ρ+ µ)Y + (σ + ηr)Z(1) + η

√
1− r2Z(2) + λ

)2

(σ2 + η2 + 2σηr)Y + κ+ λ

in the driver is well-de�ned DM(1)-a.e.

(ii) Notice that Y from a solution (Y, Z,M⊥) of BSDE (4.1) is necessarily a special
semimartingale (see [JS03, Section I.4c]).

(iii) In a setting where (M (1), . . . ,M (m))> = (W (1), . . . ,W (m))> = W is an m-
dimensional Brownian motion and Fs = FWs for all s ∈ [0, T ], (4.1) is equivalent
to the formulation

Yt =
1

2
+

∫ T

t

f(s, Ys, (Z
(1)
s , Z(2)

s )>)ds−
m∑
j=1

∫ T

t

Z(j)
s dW (j)

s , t ∈ [0, T ], (4.3)

(with f as in (4.2)). The reason is as follows.
If (Y, (Z(1), . . . , Z(m))>) is a solution of (4.3) (in the sense similar to De�nition 4.0.1,

but with Z(j) ∈ L2
0 for all j ∈ {1, . . . ,m}), then (Y, (Z(1), Z(2))>,M⊥) with M⊥

· =∑m
j=3

∫ ·
0
Z

(j)
s dW

(j)
s clearly is a solution of BSDE (4.1).

Suppose now that (Y, (Z(1), Z(2))>,M⊥) is a solution of BSDE (4.1). By the mar-
tingale representation theorem, and since M⊥ is an (FWs )s∈[0,T ]-local martingale with
M⊥

0 = 0 and E[[M⊥]T ] < ∞, there exist unique L(j) ∈ L2
0, j ∈ {1, . . . ,m}, such that

M⊥
· =

∑m
j=1

∫ ·
0
L

(j)
s dW

(j)
s . For j ∈ {1, 2}, we have

∫ ·
0
(L

(j)
s )2ds =

∫ ·
0
L

(j)
s d[M⊥,W (j)]s =

0, and thus L(1) = 0 = L(2) DW (1)-a.e. It follows that M⊥
· =

∑m
j=3

∫ ·
0
L

(j)
s dW

(j)
s , which

shows that (Y, (Z(1), Z(2), L(3), . . . , L(m))>) is a solution of (4.3).
In particular, if m = 2, then BSDE (4.1) reduces to

Yt =
1

2
+

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z(1)
s dW (1)

s −
∫ T

t

Z(2)
s dW (2)

s , t ∈ [0, T ].
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4.1 Preparations

We in this chapter discuss existence and uniqueness for BSDE (4.1) in three subset-
tings. Typically, we suppose that (C≥ε), (Cbdd), and (Cnonneg) (see Section 3.1) are
satis�ed.
In the �rst setting (see Section 4.2) we do not impose restrictions on the �ltration

but assume σ ≡ 0 ≡ η in order to meet a Lipschitz condition in some place. We further
assume (C[M(1)]). For existence and uniqueness in this �rst setting, we apply results
from [PPS18].
Subsequently (in Section 4.3), we consider a setting with general σ and η, where we

assume [M ]T ≤ c1 for some deterministic c1 ∈ (0,∞) and that (Fs)s∈[0,T ] is a continuous
�ltration in the sense that any (Fs)s∈[0,T ]-martingale is continuous2. We derive an
existence result using [Mor09]. When (M (1), . . . ,M (m))> = (W (1), . . . ,W (m))> = W
is an m-dimensional Brownian motion and (Fs)s∈[0,T ] = (FWs )s∈[0,T ], we provide an
existence and uniqueness result based on an application of [SXY21] and [KT02].
Finally, we study the BSDE in a setting where the continuous local martingales

M (1), M (2) are Brownian motions W (1), W (2) and the input processes are independent
of the �ltration generated by these Brownian motions (see Section 4.4 for the precise
assumptions). To show existence in this framework, we employ [KR21].
The approach common to all three subsettings (except for Proposition 4.3.2) is that

we �rst consider a variant of BSDE (4.1) with a truncated driver. For the BSDE with
truncated driver and under appropriate additional assumptions, we then verify that
the conditions in relevant literature on existence of BSDEs are satis�ed. This provides
us with existence of a solution to the BSDE with truncated driver. Subsequently,
we use comparison arguments to show that such a solution is actually a solution of
BSDE (4.1).
This chapter is based on and uses material from the publication [AKU21b] (joint

work with Thomas Kruse and Mikhail Urusov). Furthermore, Proposition 4.3.2 is
related to the preprint [AKU22a], and Section 4.4 comes from Section 3.1 of the pub-
lication [AKU22b] (both joint work with Thomas Kruse and Mikhail Urusov).

4.1 Preparations

Before we consider the aforementioned subsettings, we establish some helpful results.
The following technical lemma is used, e.g., in the proofs of Lemma 4.1.2 and

Lemma 5.2.10. It provides conditions which ensure that the conditional expectation
of the supremum of a process with a certain exponential structure is a.s. �nite.

Lemma 4.1.1. Suppose that (C[M(1)]) is satis�ed. Let τ (j) = (τ
(j)
s )s∈[0,T ], j ∈ {1, 2},

and ν = (νs)s∈[0,T ] be progressively measurable processes such that |τ (j)| ≤ cj DM(1)-
a.e., j ∈ {1, 2}, and ν ≤ c3 DM(1)-a.e. for some constants cj ∈ (0,∞), j ∈ {1, 2, 3}.

2This condition is for example satis�ed for a Brownian �ltration.

91



4 A Riccati-type BSDE

Let t ∈ [0, T ], and de�ne N = (Ns)s∈[t,T ] by

Ns = exp

(∫ s

t

τ (1)
r dM (1)

r +

∫ s

t

τ (2)
r dM (2)

r +

∫ s

t

νrd[M (1)]r

)
, s ∈ [t, T ].

It then holds that

Et

[
sup
s∈[t,T ]

Ns

]
≤ 16

9

(
Et

[
e28c21([M(1)]T−[M(1)]t)

]) 1
8
(
Et

[
e28c22([M(1)]T−[M(1)]t)

]) 1
8

·
(
Et

[
e(2c3+c21+c22)([M(1)]T−[M(1)]t)

]) 1
2
<∞ a.s.

Proof. We introduce the continuous local martingales U (j) = (U
(j)
s )s∈[t,T ], j ∈ {1, 2},

de�ned by

U (j)
s = exp

(∫ s

t

τ (j)
r dM (j)

r −
1

2

∫ s

t

(τ (j)
r )2d[M (j)]r

)
, s ∈ [t, T ], j ∈ {1, 2}.

We then have that

Ns = U (1)
s U (2)

s exp

(∫ s

t

(
νr +

1

2

(
(τ (1)
r )2 + (τ (2)

r )2
))

d[M (1)]r

)
, s ∈ [t, T ],

and thus, by applying the Cauchy-Schwarz inequality twice,

Et

[
sup
s∈[t,T ]

Ns

]
≤

(
Et

[
sup
s∈[t,T ]

(U (1)
s )4

]) 1
4
(
Et

[
sup
s∈[t,T ]

(U (2)
s )4

]) 1
4

·

(
Et

[
sup
s∈[t,T ]

exp

(∫ s

t

(
2νr + (τ (1)

r )2 + (τ (2)
r )2

)
d[M (1)]r

)]) 1
2

.

(4.4)

Since 2ν + (τ (1))2 + (τ (2))2 is bounded from above by 2c3 + c2
1 + c2

2, it holds that

Et

[
sup
s∈[t,T ]

exp

(∫ s

t

(
2νr + (τ (1)

r )2 + (τ (2)
r )2

)
d[M (1)]r

)]
≤ Et

[
e(2c3+c21+c22)([M(1)]T−[M(1)]t)

]
.

(4.5)
Next, observe that for j ∈ {1, 2}

E

[
exp

(
1

2

∫ T

0

(τ (j)
r )2d[M (j)]r

)]
<∞ a.s.

because (τ (j))2 is bounded, [M (2)] = [M (1)], and (C[M(1)]) is assumed to hold. There-
fore, we obtain by Novikov's criterion that U (j), j ∈ {1, 2}, are true martingales. Thus,
it follows from Doob's maximal inequality that(

Et

[
sup
s∈[t,T ]

(U (j)
s )4

]) 1
4

≤ 4

3

(
Et

[
(U

(j)
T )4

]) 1
4
, j ∈ {1, 2}. (4.6)
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4.1 Preparations

For j ∈ {1, 2}, we de�ne Ũ (j) = (Ũ
(j)
s )s∈[t,T ] by

Ũ (j)
s = exp

(∫ s

t

8τ (j)
r dM (j)

r −
1

2

∫ s

t

(
8τ (j)
r

)2
d[M (j)]r

)
, s ∈ [t, T ],

and observe that by the Cauchy-Schwarz inequality it holds that

Et

[
(U

(j)
T )4

]
= Et

[
(Ũ

(j)
T )

1
2 exp

(∫ T

t

14(τ (j)
r )2d[M (j)]r

)]
≤
(
Et

[
Ũ

(j)
T

]) 1
2

(
Et

[
exp

(∫ T

t

28(τ (j)
r )2d[M (j)]r

)]) 1
2

.

(4.7)

For j ∈ {1, 2}, as a nonnegative local martingale, Ũ (j) is a supermartingale, hence
Et[Ũ

(j)
T ] ≤ Ũ

(j)
t = 1. Recall moreover that [M (2)] = [M (1)], that (τ (1))2 is bounded by

c2
1, and that (τ (2))2 is bounded by c2

2. We thus obtain from (4.7) that, for j ∈ {1, 2},

Et

[
(U

(j)
T )4

]
≤
(
Et

[
e28c2j([M(1)]T−[M(1)]t)

]) 1
2
. (4.8)

It �nally follows from (4.4), (4.5), (4.6), and (4.8) that

Et

[
sup
s∈[t,T ]

Ns

]
≤ 16

9

(
Et

[
e28c21([M(1)]T−[M(1)]t)

]) 1
8
(
Et

[
e28c22([M(1)]T−[M(1)]t)

]) 1
8

·
(
Et

[
e(2c3+c21+c22)([M(1)]T−[M(1)]t)

]) 1
2
.

This is a.s. �nite due to (C[M(1)]).

We next provide a representation for the �rst component of solutions of some lin-
ear BSDEs3. Representations of this kind are classical (as is our proof) and play
an important role for comparison principles. We use Lemma 4.1.2 in the proofs of
Proposition 4.1.3 and Proposition 4.1.4.

Lemma 4.1.2. Suppose that (C[M(1)]) is satis�ed. Assume that g
(i) : Ω× [0, T ]→ R,

i ∈ {0, 1, 2, 3}, are progressively measurable, that g(0) is DM(1)-a.e. bounded from above,

that g(1) and g(2) are DM(1)-a.e. bounded, and that
∫ T

0
|g(3)
s | d[M (1)]s < ∞ a.s. De�ne

g : Ω× [0, T ]× R× R2 → R by

g(s, y, (z(1), z(2))>) = g(0)
s y + g(1)

s z(1) + g(2)
s z(2) + g(3)

s , s ∈ [0, T ], y, z(1), z(2) ∈ R.

Let A = (As)s∈[0,T ] be an adapted càdlàg process of �nite variation. Let M⊥ be a
càdlàg local martingale with M⊥

0 = 0, [M⊥,M (j)] = 0 for j ∈ {1, 2}, and E[[M⊥]T ] <

3We also include an additional �nite-variation process A in the BSDE in Lemma 4.1.2 because such
a situation appears in the proof of Proposition 4.1.4.
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4 A Riccati-type BSDE

∞. Let Z(1), Z(2) ∈ L2
0. Let ξ be an FT -measurable random variable. Suppose that

Y = (Ys)s∈[0,T ] is an adapted, càdlàg process with g(i)Y ∈ L2
0 for i ∈ {1, 2} and∫ T

0
|g(0)
s Ys| d[M (1)]s <∞ a.s. that satis�es a.s.

dYs = −g(s, Ys, (Z
(1)
s , Z(2)

s )>)d[M (1)]s + Z(1)
s dM (1)

s + Z(2)
s dM (2)

s + dM⊥
s − dAs,

s ∈ [0, T ],

YT = ξ.

Let Γ = (Γt)t∈[0,T ] be de�ned by

Γt = exp

(∫ t

0

g(0)
s d[M (1)]s +

∫ t

0

g(1)
s dM (1)

s +

∫ t

0

g(2)
s dM (2)

s

− 1

2

∫ t

0

(g(1)
s )2 + (g(2)

s )2 d[M (1)]s

)
, t ∈ [0, T ].

It then holds that Y admits the representation

Yt = Γ−1
t Et

[
ΓTYT +

∫ T

t

Γsg
(3)
s d[M (1)]s +

∫
(t,T ]

ΓsdAs

]
, t ∈ [0, T ]. (4.9)

Proof. Note that

dΓs = Γsg
(0)
s d[M (1)]s + Γsg

(1)
s dM (1)

s + Γsg
(2)
s dM (2)

s , s ∈ [0, T ], Γ0 = 1.

We have by integration by parts that

d(ΓsYs) = Γs
(
g(0)
s Ys − g(s, Ys, (Z

(1)
s , Z(2)

s )>) + g(1)
s Z(1)

s + g(2)
s Z(2)

s

)
d[M (1)]s

+ Γs
(
g(1)
s Ys + Z(1)

s

)
dM (1)

s + Γs
(
g(2)
s Ys + Z(2)

s

)
dM (2)

s

+ ΓsdM
⊥
s − ΓsdAs, s ∈ [0, T ].

We thus obtain for all t ∈ [0, T ] that

ΓtYt +

∫ T

t

Γs
(
g(1)
s Ys + Z(1)

s

)
dM (1)

s +

∫ T

t

Γs
(
g(2)
s Ys + Z(2)

s

)
dM (2)

s +

∫
(t,T ]

ΓsdM
⊥
s

= ΓTYT +

∫ T

t

Γsg
(3)
s d[M (1)]s +

∫
(t,T ]

ΓsdAs.

If the local martingales N (j) =
∫ ·

0
Γs(g

(j)
s Ys+Z

(j)
s )dM

(j)
s , j ∈ {1, 2}, and U=

∫
(0,·] ΓsdM

⊥
s

are true martingales, then it follows that

ΓtYt = Et

[
ΓTYT +

∫ T

t

Γsg
(3)
s d[M (1)]s +

∫
(t,T ]

ΓsdAs

]
, t ∈ [0, T ],
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4.1 Preparations

which yields (4.9). To show that for each j ∈ {1, 2}, N (j) is a martingale, observe that
it holds by the Cauchy-Schwarz inequality for j ∈ {1, 2} that

E
[
[N (j)]

1
2
T

]
= E

[(∫ T

0

Γ2
s

(
g(j)
s Ys + Z(j)

s

)2
d[M (1)]s

) 1
2

]

≤ E

( sup
t∈[0,T ]

Γ2
t

) 1
2 (∫ T

0

(
g(j)
s Ys + Z(j)

s

)2
d[M (1)]s

) 1
2


≤

(
E

[
sup
t∈[0,T ]

Γ2
t

]) 1
2 (

E

[∫ T

0

(
g(j)
s Ys + Z(j)

s

)2
d[M (1)]s

]) 1
2

.

(4.10)

Recall the assumptions Z(j), g(j)Y ∈ L2
0, j ∈ {1, 2}. Therefore, the second factor in the

last line of (4.10) is �nite. For the �rst factor, observe that, since g(1), g(2) areDM(1)-a.e.
bounded and 2g(0) − (g(1))2 − (g(2))2 is DM(1)-a.e. bounded from above, Lemma 4.1.1
implies that E[supt∈[0,T ] Γ2

t ] < ∞. Finiteness in (4.10) and the Burkholder-Davis-

Gundy inequality show for j ∈ {1, 2} that E[supt∈[0,T ]|N
(j)
t |] <∞, and thus that N (j),

j ∈ {1, 2}, are martingales. Similarly, we can show, using E[[M⊥]T ] <∞, that U is a
martingale as well, which completes the proof.

In the next Proposition 4.1.3, we by standard techniques derive a comparison result
that is used in Section 4.2 and Section 4.4. In this proposition, we are interested in a
BSDE of the form

dYs = −g(s, Ys)d[M (1)]s+Z
(1)
s dM (1)

s +Z(2)
s dM (2)

s +dM⊥
s , s ∈ [0, T ], YT = ξ, (4.11)

with a progressively measurable driver g : Ω×[0, T ]×R→ R and an FT -measurable ter-
minal value ξ, and we denote such a BSDE by BSDE(g, ξ). By a solution of BSDE(g, ξ)
we in Proposition 4.1.3 understand a triple (Y, Z,M⊥) where M⊥ is a càdlàg lo-
cal martingale with M⊥

0 = 0, [M⊥,M (j)] = 0 for j ∈ {1, 2}, and E[[M⊥]T ] < ∞,
Z = (Z(1), Z(2))> with Z(1), Z(2) ∈ L2

0, and Y is an adapted, càdlàg process, such that∫ T
0
|g(s, Ys)| d[M (1)]s < ∞ a.s. and (4.11) holds a.s. We do not consider dependence

of g on Z in (4.11) since in the proofs of Proposition 4.2.1 and Proposition 4.4.1 the
driver does not depend on Z.

Proposition 4.1.3. Assume (C[M(1)]). Let g, g̃ : Ω× [0, T ]× R→ R be progressively

measurable, and let ξ, ξ̃ be FT -measurable. Suppose that (Y, Z,M⊥) is a solution of

BSDE(g, ξ) and that (Ỹ , Z̃, M̃⊥) is a solution of BSDE(g̃, ξ̃). Assume that b de�ned
by

bs = 1{Ys 6=Ỹs}
g(s, Ys)− g(s, Ỹs)

Ys − Ỹs
, s ∈ [0, T ],
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4 A Riccati-type BSDE

is DM(1)-a.e. bounded from above4 and that
∫ T

0
|(Ys − Ỹs)bs| d[M (1)]s <∞ a.s. Further,

introduce the process Γ = (Γt)t∈[0,T ] given by Γt = exp(
∫ t

0
bsd[M (1)]s), t ∈ [0, T ].

Then, Y − Ỹ admits the representation

Yt − Ỹt = Γ−1
t Et

[
ΓT (ξ − ξ̃) +

∫ T

t

Γs

(
g(s, Ỹs)− g̃(s, Ỹs)

)
d[M (1)]s

]
, t ∈ [0, T ].

(4.12)
In particular:

(i) If ξ ≥ ξ̃ a.s. and g(s, Ỹs) ≥ g̃(s, Ỹs) DM(1)-a.e., then Yt ≥ Ỹt a.s. for all t ∈ [0, T ].

(ii) If ξ ≤ ξ̃ a.s. and g(s, Ỹs) ≤ g̃(s, Ỹs) DM(1)-a.e., then Yt ≤ Ỹt a.s. for all t ∈ [0, T ].

Proof. Denote δYt = Yt − Ỹt, δgt = g(t, Ỹt) − g̃(t, Ỹt), δZ
(j)
t = Z

(j)
t − Z̃

(j)
t , j ∈ {1, 2},

and δM⊥
t = M⊥

t − M̃⊥
t for all t ∈ [0, T ]. It then holds for all t ∈ [0, T ] that

δYt = δYT +

∫ T

t

(
g(s, Ys)− g̃(s, Ỹs)

)
d[M (1)]s −

∫ T

t

δZ(1)
s dM (1)

s −
∫ T

t

δZ(2)
s dM (2)

s

−
(
δM⊥

T − δM⊥
t

)
.

Since

g(s, Ys)− g̃(s, Ỹs) = g(s, Ys)− g(s, Ỹs) + g(s, Ỹs)− g̃(s, Ỹs) = bs δYs + δgs, s ∈ [0, T ],

it follows that

d δYs = − (bs δYs + δgs) d[M (1)]s + δZ(1)
s dM (1)

s + δZ(2)
s dM (2)

s + dδM⊥
s , s ∈ [0, T ].

We can now apply Lemma 4.1.2 to obtain representation (4.12) of δY = Y − Ỹ . The
claims (i) and (ii) then are straightforward consequences of (4.12).

Comparison principles often use some kind of assumptions on the dependence of the
driver on Z (e.g., Lipschitz-continuity in [KP16a], or condition (H2) in [Mor09]) which
do not �t well with the structure of our driver (4.2) (or truncated in Y variants of this
driver) when σ or η are present. This is why, for the proof of Proposition 4.3.1, we
now compute the bounds in our speci�c situation by hand. The upper bound is also
used in the proof of Proposition 4.3.2.
Observe that the upper bound holds in a general setting, whereas for the lower bound

we assume a continuous �ltration. This ensures that Y is continuous, so that when we
apply Itô's formula to h(Y ) in the proof of the lower bound, we avoid additional jump
terms. In Proposition 4.3.1 we have to assume a continuous �ltration anyways as this
is part of the setting in [Mor09].

4A su�cient condition for b to be DM(1)-a.e. bounded from above is existence of some c ∈ (0,∞)

such that for all y, y′ ∈ R with y 6= y′ it holds g(s,y)−g(s,y′)
y−y′ ≤ c DM(1)-a.e. This is for example

satis�ed whenever g is Lipschitz continuous in y uniformly in s.
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Proposition 4.1.4. Assume (Cbdd) and (C[M(1)]). Let c ∈ [1/2,∞) and

L : R→ [0, c], L(y) = (y ∨ 0) ∧ c, y ∈ R.

Let M⊥ be a càdlàg local martingale with M⊥
0 = 0, [M⊥,M (j)] = 0 for j ∈ {1, 2}, and

E[[M⊥]T ] <∞. Let Z(1), Z(2) ∈ L2
0, and denote Z = (Z(1), Z(2))>. Suppose that Y is

an adapted, càdlàg, bounded process such that5

∃ c ∈ (0,∞) : (σ2 + η2 + 2σηr)L(Y ) + κ+ λ ≥ c DM(1)-a.e. (4.13)

and that satis�es a.s.

dYs = −f(s, Ys, Zs)d[M (1)]s + Z(1)
s dM (1)

s + Z(2)
s dM (2)

s + dM⊥
s , s ∈ [0, T ], YT =

1

2
,

where

f(s, Ys, Zs) = −

(
(ρs + µs)L(Ys) + (σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s + λs

)2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
+ µsL(Ys)

+ σsZ
(1)
s + λs.

(i) It then holds that Y ≤ 1
2
.

(ii) Assume in addition (C≥ε), (Cnonneg), and that the �ltration (Fs)s∈[0,T ] is con-
tinuous in the sense that any (Fs)s∈[0,T ]-martingale is continuous. Then, Y ≥ 0.

Proof. (i) For the upper bound, let

Ŷ =
1

2
− Y, Ẑ(j) = −Z(j), j ∈ {1, 2}, and M̂⊥ = −M⊥.

Then it holds that

dŶs = f(s, Ys, Zs)d[M (1)]s + Ẑ(1)
s dM (1)

s + Ẑ(2)
s dM (2)

s + dM̂⊥
s , s ∈ [0, T ], ŶT = 0.

(4.14)
We want to express Ŷ using a driver that is linear in Ŷ , Ẑ(1), and Ẑ(2) with bounded
coe�cients and nonnegative o�set. Note that

1

2
− L(Ys) = Ŷ

L(Ys)− 1
2

Ys − 1
2

, s ∈ [0, T ],

5Condition (4.13) is in particular satis�ed whenever (C≥ε) holds true.
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where here and below we use the convention that 0/0 := 0. Observe that |L(y)− 1
2
| ≤

|y − 1
2
| for all y ∈ R, hence L(Y )− 1

2

Y− 1
2

is bounded. For the driver in (4.14), we have that

−f(s, Ys, Zs) =
((ρs + µs)L(Ys) + λs)

2 +
(

(σs + ηsrs)Z
(1)
s + ηs

√
1− r2

sZ
(2)
s

)2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

−
2 ((ρs + µs)L(Ys) + λs)

(
(σs + ηsrs)Ẑ

(1)
s + ηs

√
1− r2

sẐ
(2)
s

)
(σ2

s + η2
s + 2σsηsrs)L(Ys) + κs + λs

− 1

2
µs + Ŷsµs

L(Ys)− 1
2

Ys − 1
2

+ σsẐ
(1)
s − λs, s ∈ [0, T ].

(4.15)

Further, we compute for all s ∈ [0, T ] that

((ρs + µs)L(Ys) + λs)
2 −

(
1

2
µs + λs

)(
(σ2

s + η2
s + 2σsηsrs)L(Ys) + κs + λs

)
= ρ2

sL(Ys)
2 + µs(2ρs + µs)L(Ys)

2 + 2λs(ρs + µs)L(Ys) + λ2
s

−
(
L(Ys)−

1

2

)(
1

2
µs + λs

)
(σ2

s + η2
s + 2σsηsrs)

−
(

1

2
µs + λs

)(
1

2
(σ2

s + η2
s + 2σsηsrs) + κs + λs

)
= ρ2

sL(Ys)
2 −

(
1

4
− L(Ys)

2

)
µs(2ρs + µs) +

1

4
µs(2ρs + µs) + λs(ρs + µs)

+

(
1

2
− L(Ys)

)((
1

2
µs + λs

)
(σ2

s + η2
s + 2σsηsrs)− 2λs(ρs + µs)

)
+ λ2

s

−
(

1

2
µs + λs

)(
1

2
(2ρs + µs) + λs

)
= ρ2

sL(Ys)
2 −

(
1

4
− L(Ys)

2

)
µs(2ρs + µs)

+

(
1

2
− L(Ys)

)((
1

2
µs + λs

)
(σ2

s + η2
s + 2σsηsrs)− 2λs(ρs + µs)

)
=

(
1

2
− L(Ys)

)((
1

2
µs + λs

)
(σ2

s + η2
s + 2σsηsrs)− 2λs(ρs + µs)

)
+ ρ2

sL(Ys)
2

−
(

1

2
− L(Ys)

)(
L(Ys) +

1

2

)
µs(2ρs + µs).

(4.16)
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4.1 Preparations

De�ne g(i) : Ω× [0, T ]→ R, i ∈ {0, 1, 2, 3}, by

g(0)
s =

L(Ys)− 1
2

Ys − 1
2

(
µs +

(
1
2
µs + λs

)
(σ2

s + η2
s + 2σsηsrs)− 2λs(ρs + µs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

−
(
L(Ys) + 1

2

)
µs(2ρs + µs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

)
,

g(1)
s = σs −

2(σs + ηsrs) ((ρs + µs)L(Ys) + λs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
,

g(2)
s =

−2ηs
√

1− r2
s ((ρs + µs)L(Ys) + λs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
,

g(3)
s =

(
(σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s + λs

)2

+ ρ2
sL(Ys)

2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
, s ∈ [0, T ].

It then follows from (4.14), (4.15), and (4.16) that

dŶs = −f̂(s, Ŷs, Ẑs)d[M (1)]s + Ẑ(1)
s dM (1)

s + Ẑ(2)
s dM (2)

s + dM̂⊥
s , s ∈ [0, T ], ŶT = 0,

where f̂ : Ω× [0, T ]× R× R2 → R is de�ned by

f̂(s, y, z) = g(0)
s y + g(1)

s z(1) + g(2)
s z(2) + g(3)

s , s ∈ [0, T ], y, z(1), z(2) ∈ R.

Observe that, due to (4.13), (Cbdd), boundedness of λ, [−1, 1]-valued r, and de�nition
of L, the coe�cients g(0), g(1), and g(2) areDM(1)-a.e. bounded. Moreover, Ŷ is bounded,
and we have

∫ T
0
|g(3)
s | d[M (1)]s <∞ a.s. Therefore, Lemma 4.1.2 applies. Since g(3) ≥ 0

DM(1)-a.e. and ŶT = 0, we deduce from representation (4.9) of Ŷ that Ŷ ≥ 0, i.e.,
Y ≤ 1

2
.

(ii) Now, we show that, under the additional assumptions, Y is nonnegative. To this
end we �rst choose δ ∈ (0,∞) such that

δ

2
≥ 2(σ2 + η2 + 2σηr)

κ+ λ
DM(1)-a.e.,

which is possible due to (C≥ε) and (Cbdd). Let

h : R→ R, h(y) = 1− e−δy, y ∈ R,

and let Ỹ = (Ỹs)s∈[0,T ] be the process

Ỹs = h(Ys), s ∈ [0, T ].
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4 A Riccati-type BSDE

Observe that h is, in particular, twice continuously di�erentiable and that M⊥, [M⊥],
and Y are continuous. Then it holds by Itô's formula for all s ∈ [0, T ] that

dỸs = dh(Ys) = h′(Ys)dYs +
1

2
h′′(Ys)d[Y ]s

= −

(
f(s, Ys, Zs)h

′(Ys)−
(Z

(1)
s )2 + (Z

(2)
s )2

2
h′′(Ys)

)
d[M (1)]s

+ Z(1)
s h′(Ys)dM

(1)
s + Z(2)

s h′(Ys)dM
(2)
s + h′(Ys)dM

⊥
s +

1

2
h′′(Ys)d[M⊥]s.

(4.17)

Let Z̃(j) = (Z̃
(j)
s )s∈[0,T ], j ∈ {1, 2}, M̃⊥ = (M̃⊥

s )s∈[0,T ], and A = (As)s∈[0,T ] be the
processes

Z̃(j)
s = h′(Ys)Z

(j)
s , j ∈ {1, 2},

M̃⊥
s =

∫ s

0

h′(Yr)dM
⊥
r , and As = −1

2

∫ s

0

h′′(Yr)d[M⊥]r, s ∈ [0, T ].

Observe that it holds for all y ∈ R that

h′(y) = δe−δy = δ(1− h(y)),

h′′(y) = −δ2e−δy = −δh′(y).

In particular, the process A is nondecreasing due to h′′ ≤ 0. We compute that

f(s, Ys, Zs)h
′(Ys)−

(Z
(1)
s )2 + (Z

(2)
s )2

2
h′′(Ys)

= −h′(Ys)
((ρs + µs)L(Ys) + λs)

2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

− h′(Ys)
2 ((ρs + µs)L(Ys) + λs)

(
(σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s

)
(σ2

s + η2
s + 2σsηsrs)L(Ys) + κs + λs

− h′(Ys)

(
(σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s

)2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

+ δ(1− Ỹs)µsL(Ys) + σsZ̃
(1)
s + h′(Ys)λs +

δ

2
h′(Ys)

(
(Z(1)

s )2 + (Z(2)
s )2

)
= g̃(0)

s Ỹs + g̃(1)
s Z̃(1)

s + g̃(2)
s Z̃(2)

s + g̃(3)
s , s ∈ [0, T ],
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4.1 Preparations

where we de�ned g̃(i) : Ω× [0, T ]→ R, i ∈ {0, 1, 2, 3}, by

g̃(0)
s =

L(Ys)δ(1− Ỹs)
Ỹs

(
µs −

(ρs + µs)
2L(Ys) + 2(ρs + µs)λs

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

)
,

g̃(1)
s = σs −

2(σs + ηsrs) ((ρs + µs)L(Ys) + λs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
,

g̃(2)
s = − 2ηs

√
1− r2

s ((ρs + µs)L(Ys) + λs)

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs
,

g̃(3)
s =

δ

2
h′(Ys)

(
(Z(1)

s )2 + (Z(2)
s )2

)
− h′(Ys)

(
(σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s

)2

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

+ h′(Ys)λs

(
1− λs

(σ2
s + η2

s + 2σsηsrs)L(Ys) + κs + λs

)
, s ∈ [0, T ].

This, (4.17), and the de�nitions of A, Z̃(j), j ∈ {1, 2}, and M̃⊥ imply that

dỸs = −f̃(s, Ỹs, Z̃s)d[M (1)]s + Z̃(1)
s dM (1)

s + Z̃(2)
s dM (2)

s + dM̃⊥
s − dAs, s ∈ [0, T ],

where f̃ : Ω× [0, T ]× R× R2 → R is de�ned by

f̃(s, y, z) = g̃(0)
s y + g̃(1)

s z(1) + g̃(2)
s z(2) + g̃(3)

s , s ∈ [0, T ], y, z(1), z(2) ∈ R.

Note that the process

L(Ys)δ(1− Ỹs)
Ỹs

=
δL(Ys)e

−δYs

1− e−δYs
, s ∈ [0, T ],

is bounded. This is clear in the case Ys ≤ 0 because of L(Ys) = 0 (recall also the current
convention 0/0 = 0). For 0 < Ys ≤ 1

2
, it follows from L(Ys) = Ys and 0 < 1−eδYs ≤ δYs.

We then use boundedness of L(Y )δ(1−Ỹ )

Ỹ
together with (C≥ε), (Cbdd), boundedness of λ,

[−1, 1]-valued r, and 0 ≤ L ≤ c to see that g̃(0), g̃(1), and g̃(2) are DM(1)-a.e. bounded.
Furthermore, (C≥ε), nonnegativity of L and h′, and Jensen's inequality imply that
DM(1)-a.e.

g̃(3) ≥ h′(Y )(Z(1))2

(
δ

2
− 2(σ + ηr)2

κ+ λ

)
+ h′(Y )(Z(2))2

(
δ

2
− 2η2(1− r2)

κ+ λ

)
+ h′(Y )λ

(
1− λ

κ+ λ

)
.

Observe moreover that (σ+ηr)2+η2(1−r2) = σ2+η2+2σηr. Using nonnegativity of λ,
κ, and h′ together with our choice of δ, we thus obtain that g̃(3) ≥ 0 DM(1)-a.e. Besides,
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4 A Riccati-type BSDE

∫ T
0
|g̃(3)
s | d[M (1)]s < ∞ a.s. due to Z(1), Z(2) ∈ L2

0, boundedness of λ and Y , (Cbdd),
and (4.13). We further remark that by boundedness of Y , we obtain for j ∈ {1, 2}
from Z(j) ∈ L2

0 that Z̃(j) ∈ L2
0, and from E[[M⊥]T ] <∞ that

E
[
[M̃⊥]T

]
= E

[∫ T

0

(h′(Yr))
2d[M⊥]r

]
<∞.

It moreover holds for all t ∈ [0, T ], j ∈ {1, 2}, that

[M̃⊥,M (j)]t =

∫ t

0

h′(Yr)d[M⊥,M (j)]r = 0.

Since g̃(3) is nonnegative DM(1)-a.e., A is nondecreasing, and Ỹ has nonnegative ter-
minal value 1− e− δ2 , the representation (4.9) of Ỹ in Lemma 4.1.2 shows that Ỹ ≥ 0,
and hence Y ≥ 0.

When we have a solution (Y, Z,M⊥) of BSDE (4.1), we can say about Y that it does
not jump at terminal time, see the next lemma. This is exploited later in the proof of
Theorem 5.2.1 and in the proof of Proposition 6.1.6.

Lemma 4.1.5. Let (Y, Z,M⊥) be a solution of BSDE (4.1). Then YT− = 1
2
a.s., i.e.,

Y does not jump at terminal time.

Proof. We have, with f de�ned in (4.2), that

Yt =
1

2
+ Et

[∫ T

t

f(s, Ys, Zs)d[M (1)]s

]
=

1

2
+ Et[AT ]− At, t ∈ [0, T ], (4.18)

where At =
∫ t

0
f(s, Ys, Zs)d[M (1)]s, t ∈ [0, T ]. As A = (At)t∈[0,T ] is a continuous process,

it holds that limt↑T At = AT , hence AT is FT−-measurable. Therefore,

lim
t↑T

Et[AT ] = E [AT |FT−] = AT a.s.

The result now follows from (4.18).

To close this section, we show that uniqueness of a solution in the �rst component
already implies uniqueness of the solution triple. This is referenced in the proof of
Corollary 5.2.8. We remark that Lemma 4.1.6 in fact does not only hold for BSDE (4.1),
but also for a BSDE of the same structure with possibly di�erent driver and terminal
value.

Lemma 4.1.6. Assume (C>0). Suppose that (Y, Z,M⊥) and (Ŷ , Ẑ, M̂⊥) are solutions
of BSDE (4.1) such that Y and Ŷ are indistinguishable. It then holds that Z(j) = Ẑ(j)

DM(1)-a.e. for j ∈ {1, 2}, and that M⊥ and M̂⊥ are indistinguishable.
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4.1 Preparations

Proof. Compare the following canonical decompositions (see [JS03, Section I.4c]) of
the special semimartingale Y = Ŷ :

Yt = Y0 −
∫ t

0

f(s, Ys, Zs)d[M (1)]s +

∫ t

0

Z(1)
s dM (1)

s +

∫ t

0

Z(2)
s dM (2)

s +M⊥
t

= Y0 −
∫ t

0

f(s, Ys, Ẑs)d[M (1)]s +

∫ t

0

Ẑ(1)
s dM (1)

s +

∫ t

0

Ẑ(2)
s dM (2)

s + M̂⊥
t , t ∈ [0, T ].

For the local martingale parts we have that∫ ·
0

Z(1)
s dM (1)

s +

∫ ·
0

Z(2)
s dM (2)

s +M⊥
· =

∫ ·
0

Ẑ(1)
s dM (1)

s +

∫ ·
0

Ẑ(2)
s dM (2)

s + M̂⊥
· . (4.19)

This implies that

[M⊥ − M̂⊥]t =

[
M⊥ − M̂⊥,

∫ ·
0

(Ẑ(1)
s − Z(1)

s )dM (1)
s +

∫ ·
0

(Ẑ(2)
s − Z(2)

s )dM (2)
s

]
t

=

∫ t

0

(Ẑ(1)
s − Z(1)

s ) d[M⊥ − M̂⊥,M (1)]s

+

∫ t

0

(Ẑ(2)
s − Z(2)

s ) d[M⊥ − M̂⊥,M (2)]s

= 0, t ∈ [0, T ].

Thus, M⊥ − M̂⊥ is a local martingale starting in 0 with [M⊥ − M̂⊥] = 0. It follows
from the Burkholder-Davis-Gundy inequality that M⊥ and M̂⊥ are indistinguishable.
Then, (4.19) implies further that∫ ·

0

(Ẑ(1)
s − Z(1)

s )dM (1)
s +

∫ ·
0

(Ẑ(2)
s − Z(2)

s )dM (2)
s = 0.

Using [M (1)] = [M (2)], we obtain that

0 =

[∫ ·
0

(Ẑ(1)
s − Z(1)

s )dM (1)
s +

∫ ·
0

(Ẑ(2)
s − Z(2)

s )dM (2)
s

]
=

∫ ·
0

(Ẑ(1)
s − Z(1)

s )2d[M (1)]s +

∫ ·
0

(Ẑ(2)
s − Z(2)

s )2d[M (2)]s

=

∫ ·
0

(Ẑ(1)
s − Z(1)

s )2 + (Ẑ(2)
s − Z(2)

s )2 d[M (1)]s.

It follows that Z(1) = Ẑ(1) DM(1)-a.e. and that Z(2) = Ẑ(2) DM(1)-a.e.
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4 A Riccati-type BSDE

4.2 General �ltration and σ ≡ 0 ≡ η

Proposition 4.2.1. Assume that σ ≡ 0 ≡ η. Let (C≥ε), (Cbdd), (Cnonneg), and
(C[M(1)]) hold true. Then, there exists a unique solution (Y, Z,M⊥) of BSDE (4.1).
Furthermore, it holds that Y ≤ 1

2
.

Proof. We de�ne the truncation function L : R→ [0, 1/2] by L(y) = (y∨0)∧ 1
2
, y ∈ R,

and consider BSDE (4.1) with the truncated driver f : Ω× [0, T ]× R→ R,

f(s, y) = −((ρs + µs)L(y) + λs)
2

κs + λs
+ µsL(y) + λs, s ∈ [0, T ], y ∈ R,

instead of f de�ned in (4.2); i.e., with the notation of Proposition 4.1.3, we consider
BSDE(f, 1

2
). Our aim is to �rst obtain a unique solution (Y, Z,M⊥) (in the sense of

Proposition 4.1.3) of BSDE(f, 1
2
) via [PPS18, Theorem 3.5] and then show that Y is

[0, 1/2]-valued.
To this end, we �rst check that conditions (F1)�(F5) in [PPS18, Section 3.1] are

satis�ed in our situation. (F1) follows from the Burkholder-Davis-Gundy inequality
and (C[M(1)]). Due to (C≥ε), (Cbdd), boundedness of λ, and the de�nition of L, it
holds for all y, y′ ∈ R that

|f(s, y)− f(s, y′)|

=

∣∣∣∣(ρs + µs)
2(L(y′)2 − L(y)2) + 2(ρs + µs)(L(y′)− L(y))λs

κs + λs
+ µs(L(y)− L(y′))

∣∣∣∣
=

∣∣∣∣(ρs + µs)
2(L(y′) + L(y)) + 2(ρs + µs)λs

κs + λs
+ µs

∣∣∣∣ · |L(y′)− L(y)|

≤
(

2(c2
ρ + c2

µ) + 2(cρ + cµ)cλ

ε
+ cµ

)
|y − y′| DM(1)-a.e.,

(4.20)

where cλ denotes the DM(1)-a.e. bound for λ. Therefore, assumption (F3) in [PPS18] is
satis�ed. SinceM (1) is continuous, (F4) holds for all Φ > 0. From (C[M(1)]), and since

our terminal value of the BSDE is deterministic, we obtain (F2) for all β̂ > 0. Observe
that, due to (C≥ε), (Cbdd), boundedness of λ, and the de�nition of L, it holds that
there exists a constant c̃ ∈ (0,∞) such that

sup
y∈R
|f(s, y)| ≤

c2
ρ + c2

µ + 2c2
λ

ε
+

1

2
cµ + cλ ≤ c̃ DM(1)-a.e.. (4.21)

By the Cauchy-Schwarz inequality, this implies for all β̂ > 0 that

E

[∫ T

0

eβ̂[M(1)]sf(s, 0)2d[M (1)]s

]
≤ c̃2E

[
eβ̂[M(1)]T [M (1)]T

]
≤ c̃2

(
E
[
e2β̂[M(1)]T

]) 1
2
(
E
[
e2[M(1)]T

]) 1
2
.
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4.3 Continuous �ltration and general σ and η

(F5) now follows from (C[M(1)]).
Thus, by [PPS18, Theorem 3.5] (see also Corollary 3.6 therein) there exists a unique

solution (Y, Z,M⊥) of BSDE(f, 1
2
). In particular, the norm in [PPS18, Theorem 3.5]

being �nite implies that E[[M⊥]T ] <∞ and E[
∫ T

0
(Z

(j)
s )2d[M (1)]s] <∞, j ∈ {1, 2}.

In order to show that Y is [0, 1/2]-valued, we apply the comparison result Proposi-
tion 4.1.3 (recall also (4.20) and (4.21)).
Observe that (Ỹ , Z̃, M̃⊥) = (1

2
, 0, 0) is a solution of BSDE(f̃ , 1

2
) for f̃ ≡ 0, which

clearly satis�es E[[M̃⊥]T ] < ∞ and E[
∫ T

0
(Z̃

(j)
s )2d[M (1)]s] < ∞, j ∈ {1, 2}. Moreover,

it holds by (C≥ε) that

f(s, Ỹs) = f(s,
1

2
) =

−ρ2
s

4(κs + λs)
≤ 0 = f̃(s, Ỹs) DM(1)-a.e.

and YT = 1
2

= ỸT . Therefore, case (ii) of Proposition 4.1.3 yields that Y ≤ Ỹ = 1
2
.

For the other bound, note that (Ŷ , Ẑ, M̂⊥) = (0, 0, 0) is a solution of BSDE(f̂ , 0)

for f̂ ≡ 0 with E[[M̂⊥]T ] <∞ and E[
∫ T

0
(Ẑ

(j)
s )2d[M (1)]s] <∞, j ∈ {1, 2}. Further, we

have by nonnegativity of λ and κ that

f(s, Ŷs) = f(s, 0) =
λsκs
κs + λs

≥ 0 = f̂(s, Ŷs) DM(1)-a.e.

Since moreover YT = 1
2
≥ 0 = ŶT , it follows from case (i) of Proposition 4.1.3 that

Y ≥ Ŷ = 0.
We have thus shown that (Y, Z,M⊥) is a solution of (4.1). Finally, to see unique-

ness, suppose that there is another solution (Y ′, Z ′, (M⊥)′) of (4.1). Then, by Propo-
sition 4.1.4, we have that Y ′ ≤ 1

2
. It follows that (Y ′, Z ′, (M⊥)′) is also a solution of

BSDE(f, 1
2
), which (by uniqueness of the solution in [PPS18, Theorem 3.5]) implies

that (Y ′, Z ′, (M⊥)′) = (Y, Z,M⊥).

We further mention that in the setting of Proposition 4.2.1, for any solution (Y,Z,M⊥)

of BSDE (4.1), the appurtenant process ϑ̃ de�ned in (5.22) is bounded, and we could
thus obtain uniqueness also via Corollary 5.2.8 of the main theorem on the solution of
the semimartingale control problem.

4.3 Continuous �ltration and general σ and η

Proposition 4.3.1. Assume that the �ltration (Fs)s∈[0,T ] is continuous in the sense
that any (Fs)s∈[0,T ]-martingale is continuous. Let [M (1)]T ≤ c1 a.s. for some deter-
ministic c1 ∈ (0,∞). Suppose (C≥ε), (Cbdd), and (Cnonneg). Then, there exists a
solution of BSDE (4.1). Furthermore, any solution (Y, Z,M⊥) of BSDE (4.1) satis�es
Y ≤ 1

2
.
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4 A Riccati-type BSDE

Proof. We �rst consider BSDE (4.1) with its driver replaced by the truncated driver
f : Ω× [0, T ]× R× R2 → R,

f(s, y, z) = −

(
(ρs + µs)L(y) + (σs + ηsrs)z

(1) + ηs
√

1− r2
sz

(2) + λs

)2

(σ2
s + η2

s + 2σsηsrs)L(y) + κs + λs
+ µsL(y)

+ σsz
(1) + λs, s ∈ [0, T ], y, z(1), z(2) ∈ R, z = (z(1), z(2))>,

where L : R→ [0, 1/2], L(y) = (y ∨ 0) ∧ 1
2
, y ∈ R. Note that f is continuous in (y, z).

For this BSDE, we now show that condition (H ′1) in [Mor09] is satis�ed. We denote
the DM(1)-a.e. bound for λ by cλ. Observe that (C≥ε), L ≥ 0, and σ2 + η2 + 2σηr ≥ 0
imply that |(σ2 + η2 + 2σηr)L(y) + κ+ λ| ≥ ε DM(1)-a.e. for all y ∈ R. We further use
(Cbdd), −1 ≤ r ≤ 1, and 0 ≤ L ≤ 1

2
to obtain that there exist deterministic constants

c2, c3 ∈ (0,∞) such that for all y, z(1), z(2) ∈ R it holds that

|f(s, y, z)| ≤
2(ρs + µs)

2L(y)2 + 2
(

(σs + ηsrs)z
(1) + ηs

√
1− r2

sz
(2) + λs

)2

ε

+
1

2
cµ + cσ|z(1)|+ cλ

≤
c2
ρ + c2

µ + 16
(
(c2
σ + c2

η)(z
(1))2 + c2

η(z
(2))2

)
+ 4c2

λ

ε
+

1

2
cµ + cλ

+ cσ
(
1 + (z(1))2

)
≤ c2 +

c3

2

(
(z(1))2 + (z(2))2

)
DM(1)-a.e.

Furthermore, it holds that
∫ T

0
c2d[M (1)]s ≤ c1c2. Hence, assumption (H ′1) in [Mor09]

is satis�ed.
Step 3 and 4 in the proof of [Mor09, Theorem 2.5] show that there exists a solution

(Y, Z,M⊥) (in the sense of De�nition 4.0.1, but without the nonnegativity condition
on Y ) of BSDE (4.1) with driver f .
We conclude from Proposition 4.1.4 that Y is [0, 1/2]-valued and that (Y, Z,M⊥) is

also a solution of BSDE (4.1) with the original driver f (as de�ned in (4.2)).
Moreover, since any solution (Ŷ , Ẑ, M̂⊥) of BSDE (4.1), by De�nition 4.0.1, is

bounded, we in the current setting can apply Proposition 4.1.4(i) to obtain that
Ŷ ≤ 1

2
.

In the setting of Proposition 4.3.1 we only provide an existence result and do not
claim uniqueness. This is due to the fact that [Mor09, Theorem 2.6] (uniqueness)
requires stronger assumptions than [Mor09, Theorem 2.5] (existence). More precisely,
the issue is the monotonicity assumption in y uniformly in z on the driver in condition
(H2) in [Mor09]. However, we can obtain uniqueness (and also existence) via [SXY21]
or [KT02] in a Brownian setting, as we state next. Proposition 4.3.2 is in particular
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4.3 Continuous �ltration and general σ and η

relevant in Section 8.2 when we solve our continuous-time trade execution problem for
progressively measurable strategies.

Proposition 4.3.2. Let M (j) = W (j), j ∈ {1, . . . ,m}, for an m-dimensional Brown-
ian motion W = (W (1), . . . ,W (m))>, and assume that the �ltration (Fs)s∈[0,T ] for the
�ltered probability space (Ω,F , (Fs)s∈[0,T ], P ) is the augmented natural �ltration of W .
Suppose (Cbdd). Furthermore, assume that at least one of the following conditions
holds:

(a) There exists δ ∈ (0,∞) such that, for all u ∈ L2
0 and the associated process Hu

de�ned in (8.1) with Hu
0 = 0, the uniform convexity assumption

E

[
1

2
(Hu

T )2 +

∫ T

0

(κs + λs)u
2
s + λs(H

u
s )2 − 2λsH

u
s us ds

]
≥ δE

[∫ T

0

u2
sds

]
(4.22)

is satis�ed, or

(b) (Cnonneg) and (C≥ε), or

(c) (Cnonneg) and (Cs).

Then, there exists a unique solution (Y, Z,M⊥) of BSDE (4.1). Furthermore, there
exists c ∈ (0,∞) such that (σ2 + η2 + 2σηr)Y + κ+ λ ≥ c DW (1)-a.e., and it holds that
Y ≤ 1

2
.

Proof. 1. Assume �rst that (a) holds true, i.e., the uniform convexity assumption (4.22)
is satis�ed. Observe that BSDE (4.1), in the form of (4.3), corresponds to [SXY21,
SRE (92)] for the underlying standard LQ stochastic control problem with state pro-
cess (8.1) and cost functional (8.2) if we set ξ̂ = 0 and ζ ≡ 0 in these de�nitions. Since
ρ, µ, σ, η, r, λ are assumed to be bounded and progressively measurable, (A1)' and (A2)
of [SXY21] are satis�ed. Moreover, condition (4.22) is just the uniform convexity condi-
tion in [SXY21] in our situation (see, e.g., their assumption in Theorem 9.1). Further-
more, the �ltration by assumption in the current proposition is generated by the Brow-
nian motion (W (1), . . . ,W (m))>. Therefore, we can indeed apply the results of [SXY21]
in our setting. By [SXY21, Theorem 9.1] (see also [SXY21, Theorem 6.3]), there exist
unique processes Y , Z(j), j ∈ {1, . . . ,m}, such that Y is an adapted, continuous, non-
negative6, bounded process, Z(j) ∈ L2

0 for all j ∈ {1, . . . ,m}, and (4.3) is satis�ed P -a.s.
Moreover, there exists c ∈ (0,∞) such that (σ2 +η2 +2σηr)Y +κ+λ ≥ c DW (1)-a.e. It
follows from Remark 4.0.2 that (Y, (Z(1), Z(2))>,M⊥) with M⊥

· =
∑m

j=3

∫ ·
0
Z

(j)
s dW

(j)
s is

the unique solution of BSDE (4.1). Due to (σ2 + η2 + 2σηr)Y + κ + λ ≥ c DW (1)-a.e.
and boundedness of Y , we can use Proposition 4.1.4(i) to get Y ≤ 1

2
.

6Although [SXY21] does not seem to state it explicitly, the �rst solution component of the BSDE
in [SXY21] is always nonnegative. This comes from the uniform convexity assumption on the
cost functional together with the equivalence [SXY21, Theorem 4.2] of their problems (SLQ) and

(ŜLQ) and the representation of the value function in terms of the �rst solution component of the
BSDE in [SXY21, Corollary 5.7].
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4 A Riccati-type BSDE

2. Assume now that (Cnonneg) is satis�ed. In view of the standard LQ stochastic
control problem with state process (8.4) and cost functional (8.5), we can show by
some computations that [KT02, BSRDE (9)] for appropriately de�ned coe�cients (see
Table 8.1) is the same as BSDE (4.1) in the form of (4.3). These coe�cients, due to
(Cbdd) and (Cnonneg), are bounded, and we have that 1

2
≥ 0, λ+ κ ≥ 0, and λκ

λ+κ
≥ 0

DW (1)-a.e. (see also Remark 8.2.1, and for λ
λ+κ

, note the convention of Section 8.1.2).
Thus, they satisfy the conditions in [KT02]. Moreover, our �ltration is generated by
the Brownian motion (W (1), . . . ,W (m))>, as demanded in [KT02].
If (C≥ε) holds in addition to (Cnonneg) (i.e., if (b) is satis�ed), then we are in the

�regular case� and can apply [KT02, Theorem 2.1]. It follows that there exist unique
processes Y , Z(j), j ∈ {1, . . . ,m}, such that Y is an adapted, continuous, nonnegative,
bounded process, Z(j) ∈ L2

0 for all j ∈ {1, . . . ,m}, and (4.3) is satis�ed P -a.s. Observe
that (C≥ε) and nonnegativity of Y imply that (σ2 +η2 +2σηr)Y +κ+λ ≥ ε DW (1)-a.e.

From Remark 4.0.2, we have that (Y, (Z(1), Z(2))>,M⊥) withM⊥
· =

∑m
j=3

∫ ·
0
Z

(j)
s dW

(j)
s

is the unique solution of BSDE (4.1), and Proposition 4.1.4(i) provides the speci�c
bound Y ≤ 1

2
.

Let now (Cs) be satis�ed in addition to (Cnonneg) (i.e., (c) holds). This corresponds
to the �singular case� that is treated in [KT02, Theorem 2.2]. This theorem implies
that there exist unique processes Y , Z(j), j ∈ {1, . . . ,m}, such that Y is an adapted,
continuous, nonnegative, bounded process, Z(j) ∈ L2

0 for all j ∈ {1, . . . ,m}, and (4.3)
is satis�ed P -a.s. Moreover, Y is uniformly positive (in the sense of [KT02, Lemma
4.4]). The fact that Y is uniformly positive together with (Cs) and (Cnonneg) yields
that there exists c ∈ (0,∞) such that (σ2 + η2 + 2σηr)Y + κ + λ ≥ c DW (1)-a.e.
Again, Remark 4.0.2 and Proposition 4.1.4(i) show that (Y, (Z(1), Z(2))>,M⊥) with
M⊥
· =

∑m
j=3

∫ ·
0
Z

(j)
s dW

(j)
s is the unique solution of BSDE (4.1) and that Y ≤ 1

2
.

Note that to prove the second and third case in Proposition 4.3.2, we could also have
used [SXY21], where in both cases [SXY21, Proposition 7.1] shows that the uniform
convexity condition on the cost functional (8.5) (with ξ̂ = 0 and ζ ≡ 0) is met so
that [SXY21, Theorem 9.1] applies.

4.4 Brownian motion with independent input

processes

We now consider yet another subsetting where we can guarantee existence of a solution
of BSDE (4.1), and which will (for η ≡ 0 and λ ≡ 0) be the setting of Chapter 6.
We assume that M (1) = W (1) and M (2) = W (2) are independent Brownian mo-

tions on (Ω,FT , (Fs)s∈[0,T ], P ). Let (FWs )s∈[0,T ] be the �ltration generated by the two-
dimensional Brownian motionW = (W (1),W (2))>. We suppose that (Fs)s∈[0,T ] has the
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4.4 Brownian motion with independent input processes

structure

Fs =
⋂
ε>0

(FWs+ε ∨ F⊥s+ε), s ∈ [0, T ), FT = FWT ∨ F⊥T ,

where (F⊥s )s∈[0,T ] is a right-continuous complete �ltration such that FWT and F⊥T
are independent. Furthermore, we assume that ρ, µ, σ, η, r, and λ are (F⊥s )s∈[0,T ]-
progressively measurable.
To obtain a solution of BSDE (4.1), we �rst consider, under (C>0) and with f

de�ned as in (4.2), the BSDE

dYs = −f(s, Ys, 0)ds+ dM⊥
s , s ∈ [0, T ], YT =

1

2
, (4.23)

on the �ltered probability space (Ω,F⊥T , (F⊥s )s∈[0,T ], P |F⊥T ). Note that P |F⊥T denotes
the probability measure P restricted to the sigma algebra F⊥T , and that the expressions
�P -a.s.� and �P |F⊥T -a.s.� have the same meaning.
We establish the following result on BSDE (4.23) and BSDE (4.1) in the setting of

the current section.

Proposition 4.4.1. Let (C≥ε), (Cbdd), (Cnonneg), and the assumptions of this section
be in force.

(i) There exists a unique pair (Y,M⊥) such that Y is a càdlàg, (F⊥s )s∈[0,T ]-adapted,
nonnegative, bounded process, M⊥ is a càdlàg (F⊥s )s∈[0,T ]-martingale with M

⊥
0 = 0 and

E[[M⊥]T ] <∞,
∫ T

0
|f(s, Ys, 0)| ds <∞ a.s., and BSDE (4.23) is satis�ed a.s.

(ii) (Y, 0,M⊥) with (Y,M⊥) from (i) is a solution of BSDE (4.1) with Y ≤ 1
2
.

Proof. Let L : R → [0, 1/2] be the truncation function de�ned by L(y) = (y ∨ 0) ∧ 1
2
,

y ∈ R. Let f : Ω× [0, T ]× R→ R be the function de�ned by

f(s, y) = − ((ρs + µs)L(y) + λs)
2

(σ2
s + η2

s + 2σsηsrs)L(y) + κs + λs
+ µsL(y) + λs, s ∈ [0, T ], y ∈ R.

We begin by studying, on the �ltered probability space (Ω,F⊥T , (F⊥s )s∈[0,T ], P |F⊥T ),

BSDE (4.23) with its driver replaced by f . In the calculations below we assume with-
out loss of generality that ρ, µ, σ, η, r, and λ satisfy (C≥ε), (Cbdd), |λ| ≤ cλ (for a
constant cλ ∈ (0,∞)), and (Cnonneg) not only DW (1)-a.e., but for all (ω, s) ∈ Ω× [0, T ],
as we can otherwise replace them in f with (F⊥s )s∈[0,T ]-progressively measurable pro-
cesses ρ, µ, σ, η, r, and λ that satisfy (C≥ε), (Cbdd), |λ| ≤ cλ, and (Cnonneg) for all
(ω, s) ∈ Ω× [0, T ] and such that ρ = ρ DW (1)-a.e., µ = µ DW (1)-a.e., σ = σ DW (1)-a.e.,
η = η DW (1)-a.e., r = r DW (1)-a.e., and λ = λ DW (1)-a.e. To apply [KR21, Propo-
sition 5.1], we justify that conditions (H1)�(H5) in [KR21, Section 2] are satis�ed.
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4 A Riccati-type BSDE

Observe that there exists a constant c̃ ∈ (0,∞) such that

sup
y∈R
|f(s, y)| ≤

2
(
(ρs + µs)

2 1
4

+ λ2
s

)
ε

+
cµ
2

+ cλ

≤
c2
ρ + c2

µ + 2c2
λ

ε
+
cµ
2

+ cλ

≤ c̃, s ∈ [0, T ].

(4.24)

In particular, we have for all s ∈ [0, T ] that |f(s, 0)| ≤ c̃. Since moreover YT = 1
2
, this

shows that (H1) holds true. Furthermore, supy∈R|f(s, y)−f(s, 0)| ≤ 2c̃ for all s ∈ [0, T ]
implies that, in particular, (H5) holds. (H3) is trivially satis�ed. Observe that for all
s ∈ [0, T ] the function R 3 y 7→ f(s, y) is continuous, i.e., (H4) is satis�ed. Moreover,
it holds for all s ∈ [0, T ] that this function is constant on (−∞, 0] and constant on
[1/2,∞). Furthermore, for all s ∈ [0, T ], (0, 1/2) 3 y 7→ f(s, y) is twice di�erentiable
with, for y ∈ (0, 1/2),

∂yf(s, y) =
((ρs+µs)y + λs)

2(σ2
s + η2

s + 2σsηsrs)

a(y)2
− 2 ((ρs+µs)y + λs) (ρs+µs)

a(y)
+µs,

∂2
yyf(s, y) = −2

(
ρs + µs

a(y)
1
2

− ((ρs + µs)y + λs) (σ2
s + η2

s + 2σsηsrs)

a(y)
3
2

)2

,

where we abbreviated a(y) = (σ2
s +η2

s +2σsηsrs)y+κs+λs. Since ∂2
yyf(s, y) ≤ 0 for all

y ∈ (0, 1/2), s ∈ [0, T ], we have for all s ∈ [0, T ] that (0, 1/2) 3 y 7→ f(s, y) is concave.
We therefore obtain for all s ∈ [0, T ] and y, y′ ∈ R with y′ 6= y that

f(s, y)− f(s, y′)

y − y′
≤ max

{∣∣∂+
y f(s, 0)

∣∣ , ∣∣∂−y f(s, 1/2)
∣∣} .

Due to (C≥ε), (Cbdd), and boundedness of λ, there exists a constant c ∈ (0,∞) such
that it holds for all s ∈ [0, T ] and y, y′ ∈ R with y′ 6= y that

f(s, y)− f(s, y′)

y − y′
≤ c. (4.25)

It follows for all s ∈ [0, T ] and y, y′ ∈ R that
(
f(s, y)− f(s, y′)

)
(y − y′) ≤ c(y − y′)2;

hence, also (H2) is satis�ed. We can thus apply [KR21, Proposition 5.1], which yields
that there exists a unique pair (Y,M⊥) such that BSDE (4.23) with its driver replaced
by f is satis�ed a.s., Y is a càdlàg (F⊥s )s∈[0,T ]-adapted process with E[sups∈[0,T ] Y

2
s ] <

∞, and M⊥ is a càdlàg (F⊥s )s∈[0,T ]-martingale with M⊥
0 = 0 and E[[M⊥]T ] <∞.

We next show that (Y, 0,M⊥) is a solution of BSDE(f, 1/2) (on the �ltered probabil-
ity space (Ω,FT , (Fs)s∈[0,T ], P )), where the notation and the notion of a solution are as
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4.4 Brownian motion with independent input processes

in Proposition 4.1.3. Since FWT and F⊥T are independent and Fs =
⋂
ε>0(FWs+ε ∨ F⊥s+ε)

for all s ∈ [0, T ), we have that M⊥ is not only an (F⊥s )s∈[0,T ]-martingale, but also an
(Fs)s∈[0,T ]-martingale. Furthermore, we can show for j ∈ {1, 2} that M⊥W (j) is an
(Fs)s∈[0,T ]-martingale. It follows that 〈M⊥,W (j)〉 = 0, j ∈ {1, 2}. For j ∈ {1, 2}, we
have from continuity of W (j) that [M⊥,W (j)] is continuous, and hence [M⊥,W (j)] =
〈M⊥,W (j)〉 = 0. Therefore, (Y, 0,M⊥) is a solution of BSDE(f, 1/2).
It remains to justify that Y is [0, 1/2]-valued. Due to (4.24) and (4.25), we can apply

Proposition 4.1.3. For the lower bound, note that (0, 0, 0) is a solution of BSDE(0, 0),
and that f(s, 0) = λsκs

κs+λs
≥ 0, s ∈ [0, T ], due to (Cnonneg). We thus obtain from

Proposition 4.1.3(i) that Y ≥ 0. For the upper bound, we consider BSDE(0, 1/2) with
solution (1/2, 0, 0), and the fact that

f(s,
1

2
) = − ρ2

s

4
(
κs + λs + 1

2
(σ2

s + η2
s + 2σsηsrs)

) ≤ 0, s ∈ [0, T ].

The upper bound Y ≤ 1
2
then follows from Proposition 4.1.3(ii). This completes the

proof of (i) and (ii).
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5

Càdlàg semimartingale strategies

for optimal trade execution in a

continuous-time model

In this chapter we examine optimal trade execution in continuous time using semi-
martingale strategies. We restrict our problem to the case of terminal positions 0.
That means, we consider an agent who holds an initial position x ∈ R in the asset, and
at terminal time T needs to possess exactly |x| shares less (if x ≥ 0) or more (if x < 0)
than at the beginning. Starting at time t ∈ [0, T ], the agent has the time interval [t, T ]
at disposal for trading. The agent may penalize large (in square) positions over the
course of the trading period, which is new compared to [AKU21a] (as is the possible
di�usion part in the resilience).
The underlying market conditions are described by the price impact process γ and

the resilience process R of Section 3.1. We still need to specify how trading according to
a semimartingale strategy a�ects the price, and what costs this incurs. As in Chapter 2,
we suppose that the actual prize is the sum of an una�ected price, which we assume
to be a martingale, and a price deviation, and we only focus on the price deviation
(see also Remark 5.1.1). The de�nitions (5.1) and (5.2) that we give in Section 5.1.1
for the deviation and for the cost functional are motivated by Section 3.2. We further
discuss these de�nitions in Section 5.1.2, where we compare with relevant literature
and show by counterexamples that the conventional de�nitions (5.7) and (5.8) can
lead to arbitrarily large negative costs when optimizing over our class Asem

t (x, d) of
càdlàg semimartingales. In Remark 5.1.3, we explain that (in the risk-neutral case)
our de�nitions of the deviation and of the expected costs associated to a strategy X
coincide with (5.7) and (5.8) whenever X has �nite variation. Furthermore, observe
that we integrate with respect to the strategy X in both formulations. This is still
possible in the present setting due to our choice of the set of admissible strategies:
strategies can have in�nite variation, but are still càdlàg semimartingales.
We solve the semimartingale stochastic control problem of Section 5.1.1 in Sec-

tion 5.2. Our approach is based on a solution of the BSDE that we analyzed in Chap-
ter 4. We �rst rewrite the cost functional with the help of a solution of BSDE (4.1) (see
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5 Càdlàg semimartingale strategies

Section 5.2.1, in particular Theorem 5.2.1), before we come to a representation for the
value function, a characterization of the existence of an optimal strategy, and, in this
case, an explicit formula for the optimal strategy in the main theorem (Theorem 5.2.6)
in Section 5.2.2.
We �nd several interesting e�ects, which we discuss in examples in Section 5.3 and

Section 5.41. These include optimal strategies that indeed have in�nite variation as
well as optimal strategies that do not only have jumps at the beginning and at the end
of the trading period, but also in between.
Throughout the chapter, we assume the set-up of Section 3.1.
This chapter is based on and uses material from the publication [AKU21a] (joint

work with Thomas Kruse and Mikhail Urusov). The examples in Section 5.3 and
Section 5.4 also incorporate parts of Section 4 of the preprint [AKU22a] (joint work
with Thomas Kruse and Mikhail Urusov).

5.1 The semimartingale stochastic control problem

We formulate our continuous-time stochastic control problem for semimartingale strate-
gies (within the set-up of Section 3.1) in Section 5.1.1 and discuss the de�nitions of
the deviation and of the cost functional in Section 5.1.2.

5.1.1 Problem formulation

Given an initial time t ∈ [0, T ] and d ∈ R, we associate to a càdlàg semimartingale
X = (Xs)s∈[t−,T ] a càdlàg semimartingale DX = (DX

s )s∈[t−,T ] de�ned by

dDX
s = −DX

s dRs + γsdXs + d[γ,X]s, s ∈ [t, T ], DX
t− = d. (5.1)

By, e.g., [Pro05, Theorem V.7], there indeed exists a unique solution of (5.1), and by,
e.g., [Pro05, Theorem V.52], it admits the representation

DX
s =

(
d+

∫
[t,s]

eRr−Rt+
1
2

([R]r−[R]t)γrdXr +

∫
[t,s]

eRr−Rt+
1
2

([R]r−[R]t)γrd[γ,X]r

+

∫
[t,s]

eRr−Rt+
1
2

([R]r−[R]t)γrd[R,X]r

)
e−(Rs−Rt)− 1

2
([R]s−[R]t), s ∈ [t, T ],

DX
t− = d.

If we have a sequence of càdlàg semimartingales Xn = (Xn
s )s∈[t−,T ], n ∈ N, we usually

write Dn instead of DXn
for n ∈ N.

For t ∈ [0, T ], d ∈ R, and a càdlàg semimartingale (Xs)s∈[t−,T ] with associated
(DX

s )s∈[t−,T ] de�ned by (5.1), we formulate the conditions

1We also provide further examples in Section 6.2 and Section 6.3, where we focus on the e�ect of a
negative resilience coe�cient.
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5.1 The semimartingale stochastic control problem

(A1) Et

[
sup
s∈[t,T ]

(
γ2
s

(
Xs − γ−1

s DX
s

)4
)]

<∞ a.s.,

(A2) Et

[(∫ T

t

γ2
s

(
Xs − γ−1

s DX
s

)4
σ2
sd[M (1)]s

) 1
2

]
<∞ a.s.,

(A3) Et

[(∫ T

t

(
γ
− 1

2
s DX

s

)4

σ2
sd[M (1)]s

) 1
2

]
<∞ a.s.,

(A4) Et

[(∫ T

t

γ2
s

(
Xs − γ−1

s DX
s

)4
η2
sd[M (1)]s

) 1
2

]
<∞ a.s.,

(A5) Et

[(∫ T

t

(
γ
− 1

2
s DX

s

)4

η2
sd[M (1)]s

) 1
2

]
<∞ a.s.

Note that if Et[
∫ T
t
σ2
sd[M (1)]s] < ∞ a.s., then, by the Cauchy-Schwarz inequality,

(A2) follows from (A1). Similarly, if Et[
∫ T
t
η2
sd[M (1)]s] < ∞ a.s., then (A4) follows

from (A1).
For x, d ∈ R and t ∈ [0, T ], let Asem

t (x, d) be the set of all càdlàg semimartingales
X = (Xs)s∈[t−,T ] with Xt− = x, XT = 0, and satisfying conditions (A1)�(A5). Any
element X ∈ Asem

t (x, d) is called a semimartingale execution strategy, and x is the
initial position. The process DX de�ned via (5.1) is called its associated deviation
process, and d is the initial deviation.
We consider the cost functional J sem de�ned by

J sem
t (x, d,X) = Et

[∫
[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s −

∫ T

t

DX
s d[X,R]s

]
+ Et

[∫ T

t

γsλsX
2
sd[M (1)]s

] (5.2)

for t ∈ [0, T ], x, d ∈ R, X ∈ Asem
t (x, d) and associated DX . Conditions under which

the cost functional is well-de�ned for all x, d ∈ R, t ∈ [0, T ], and X ∈ Asem
t (x, d) are

provided in Theorem 5.2.1. The last summand in the cost functional (5.2) represents a
risk term. The choice λ ≡ 0 corresponds to a risk-neutral investor who only experiences
the expected (at time t) execution costs (over the trading period [t, T ]) given by the
�rst line in (5.2). The value function of our control problem is given by

V sem
t (x, d) = ess inf

X∈Asem
t (x,d)

J sem
t (x, d,X), x, d ∈ R, t ∈ [0, T ]. (5.3)
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5 Càdlàg semimartingale strategies

Remark 5.1.1. In the problem setting introduced above we focused on the price
deviation only. However, the considerations above also allow to explicitly include
an una�ected price into the picture, provided that the una�ected price is a (local)
martingale.
To this end, assume that the una�ected price is modeled by a càdlàg local martingale

S0 = (S0
r )r∈[0−,T ]. Fix an initial time t ∈ [0, T ], initial position x ∈ R, and initial

deviation d ∈ R. Consider a càdlàg semimartingale X = (Xr)r∈[t−,T ] satisfying Xt− =
x, XT = 0, and (A1)�(A5), i.e., X ∈ Asem

t (x, d). When we take the una�ected
price S0 into account, the execution costs (including the risk term) generated by X
over [t, T ] are given by the formula∫

[t,T ]

S0
r− dXr +

∫
[t,T ]

d[S0, X]r +

∫
[t,T ]

DX
r− dXr +

∫
[t,T ]

γr
2
d[X]r

−
∫ T

t

DX
r d[X,R]r +

∫ T

t

γrλrX
2
r d[M (1)]r.

(5.4)

The �rst and the second cost terms in (5.4) are due to the una�ected price process
S0. It was �rst observed in [LS13] via a limiting argument from discrete time that, in
continuous time and for semimartingale strategies, the expression for the cost terms
due to the una�ected price is∫

[t,T ]

S0
r− dXr +

∫
[t,T ]

d[S0, X]r (5.5)

(see [LS13, Lemma 2.5]).2 Using integration by parts for the semimartingales X and S0

together with Xt− = x and XT = 0 we obtain that∫
[t,T ]

S0
r− dXr +

∫
[t,T ]

d[S0, X]r = XTS
0
T −Xt−S

0
t− −

∫
[t,T ]

Xr− dS
0
r

= −Xt−S
0
t− −

∫
(t,T ]

Xr− dS
0
r −Xt−∆S0

t

= −xS0
t −

∫
(t,T ]

Xr− dS
0
r .

It follows from the Burkholder-Davis-Gundy inequality that Et[
∫

(t,T ]
Xr− dS

0
r ] = 0

whenever the condition

(A6) Et

[(∫
(t,T ]

X2
r− d[S0]r

) 1
2

]
<∞ a.s.

2We notice that in the literature preceding [LS13] the execution strategies X were always assumed
to be of �nite variation (often just monotone), while the part of execution costs coming from
the una�ected price was given by the expression

∫
[t,T ]

S0
r dXr. This is consistent with (5.5),

as
∫
[t,T ]

S0
r− dXr +

∫
[t,T ]

d[S0, X]r =
∫
[t,T ]

S0
r dXr whenever X is of �nite variation (see [JS03,

Proposition I.4.49a]).
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5.1 The semimartingale stochastic control problem

is satis�ed. Therefore, under (A6), the expected (at time t) costs (over [t, T ]) due to
the una�ected price S0 are equal to −xS0

t and thus do not depend on the execution
strategy. Hence, the minimization of the expected (at time t) total costs in (5.4)
reduces to the minimization of J sem

t (x, d,X).
We summarize the discussion as follows. In our work, we minimize J sem

t (x, d,X) over
X ∈ Asem

t (x, d), i.e., in particular (A1)�(A5) hold true forX. Given a local martingale
una�ected price S0, a pertinent optimization problem is to minimize J sem

t (x, d,X) over
strategies X ∈ Asem

t (x, d) satisfying (A1)�(A6). Given an optimal strategy X∗ ∈
Asem
t (x, d) one thus needs to examine additionally whether X∗ satis�es (A6), which

in general is not automatically true. However, if S0 is a square-integrable martingale,
then, under the assumptions of Theorem 5.2.6, the optimal strategy X∗ ∈ Asem

t (x, d)
provided in (5.36) satis�es (A6). Namely, under the assumptions of Theorem 5.2.6, for
X∗ of (5.36), it holds that Et[supr∈[t,T ](X

∗
r−)2] < ∞ a.s. As S0 is a square-integrable

martingale, we have E[[S0]T ] < ∞, hence Et[[S0]T − [S0]t] < ∞ a.s. Condition (A6)
for X∗ of (5.36) now follows from the Cauchy-Schwarz inequality.

Remark 5.1.2. Furthermore, in the problem setting introduced above, we can incor-
porate a constant permanent price impact coe�cient in addition to the transient price
impact coe�cient γ (compare also with Remark 2.1.5). To this end, let ĉ ∈ (0,∞)
be the permanent price impact coe�cient, and note that the order book depth now is
described by qs = (γs + ĉ)−1, s ∈ [0, T ]. Fix an initial time t ∈ [0, T ] and x, d ∈ R. We
add to the deviation process (5.1) of a strategy the additional, permanent shift that is
incurred by the permanent price impact when trading according to this strategy. That
is, for X ∈ Asem

t (x, d), we consider the deviation process D̂X = (D̂X
s )s∈[t−,T ] de�ned by

D̂X
s = DX

s +

∫
[t,s]

ĉ dXr = DX
s + (Xs − x)ĉ, s ∈ [t−, T ].

The (risk-neutral, but we could also include a risk term) costs from trading under
transient and permanent price impact are given by, for X ∈ Asem

t (x, d),∫
[t,T ]

D̂X
s−dXs +

∫
[t,T ]

1

2qs
d[X]s −

∫ T

t

DX
s d[X,R]s. (5.6)

We use the original deviation process DX in
∫ T
t
DX
s d[X,R]s since this component of

the costs is tied to the resilience. For further motivation concerning the de�nition of
the deviation process and the costs with permanent price impact included, combine
Remark 2.1.5 and Section 3.2. The costs (5.6) for any X ∈ Asem

t (x, d) decompose into
the sum of the costs in the purely transient case,∫

[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s −

∫ T

t

DX
s d[X,R]s,
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5 Càdlàg semimartingale strategies

and the costs due to permanent price impact,

ĉ

∫
[t,T ]

(Xs− − x)dXs + ĉ

∫
[t,T ]

1

2
d[X]s.

Integration by parts implies for all X ∈ Asem
t (x, d) that∫

[t,T ]

(Xs− − x)dXs +

∫
[t,T ]

1

2
d[X]s =

∫
[t,T ]

Xs−dXs + x2 +
1

2

∫
[t,T ]

d[X]s

=
1

2
(X2

T −X2
t−) + x2 =

x2

2
.

Therefore, the added costs due to permanent price impact are the same for all strate-
gies. This means that, e�ectively, the minimization of the expected (at time t) total
costs in the model with transient and constant permanent price impact reduces to the
minimization of the expected (at time t) total costs in the model with only transient
price impact that we treat in this chapter.

5.1.2 On the deviation process and the cost functional

In this subsection, we consider a risk-neutral investor, i.e., λ ≡ 0. The conventional
de�nitions of the deviation dynamics and the cost functional for �nite-variation strate-
gies X, given t ∈ [0, T ] and x, d ∈ R, would read

dD̃X
s = −D̃X

s dRs + γsdXs, s ∈ [t, T ], D̃X
t− = d, (5.7)

and

J̃t(x, d,X) = Et

[∫
[t,T ]

(
D̃X
s− +

γs
2

∆Xs

)
dXs

]
, (5.8)

respectively (see, e.g., [FSU19, equations (2) and (5)]). Tildes in (5.7) and (5.8) are
to distinguish these from our setting. Note that for �nite-variation strategies X, def-
initions (5.1) and (5.7) coincide, and the same applies to (5.2) and (5.8). This is the
content of the next remark.

Remark 5.1.3. Let t ∈ [0, T ], x, d ∈ R, and suppose that X ∈ Asem
t (x, d) has �nite

variation.
Recall that, for two càdlàg semimartingales K = (Ks)s∈[t−,T ] and L = (Ls)s∈[t−,T ],

it holds for all s ∈ [t, T ] that [K,L]s = 〈Kc, Lc〉s +
∑

r∈[t,s] ∆Kr∆Lr (see [JS03, The-
orem I.4.52]), where Kc and Lc denote the continuous martingale parts of K and L
(see [JS03, Proposition I.4.27]).
In particular, for our strategy X ∈ Asem

t (x, d) of �nite variation it holds that Xc ≡ 0,
and thus [X]s =

∑
r∈[t,s](∆Xr)

2, s ∈ [t, T ], and d[X]s = ∆XsdXs, s ∈ [t, T ] (see
also [JS03, Proposition I.4.49]). Furthermore, as γ and R are continuous, we have for
all s ∈ [t, T ] that [γ,X]s = 〈γ,Xc〉s = 0 and [R,X]s = 〈R,Xc〉s = 0.
Therefore, if in our setting an execution strategy X is monotone or, more generally,

of �nite variation, then (5.1) reduces to (5.7), while (5.2) reduces to (5.8).
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5.1 The semimartingale stochastic control problem

However, it is in general not possible to use de�nitions (5.7) and (5.8) also in our
set-up. We show in Example 5.1.6 and in Example 5.1.4 that a change for the deviation
dynamics and costs in comparison with the usual set-up for �nite-variation strategies
indeed can be necessary when optimizing over our set of admissible strategies.
Speci�cally, using cost functional (5.8) for strategies X of in�nite variation can lead

to arbitrarily large negative costs even with constant deterministic price impact γ (in
which case (5.1) and (5.7) are the same) and with resilience dRs = ρds, s ∈ [0, T ],
where ρ is a deterministic constant, see the next Example 5.1.4. With the right cost
functional (5.2) we recover a well-posed problem, see Section 5.4.2.

Example 5.1.4. Let m = 2 and assume that (M (1),M (2))> = (W (1),W (2))> = W
is a two-dimensional Brownian motion and Fs = FWs for all s ∈ [0, T ]. Consider the
situation where the price impact γ > 0 and the resilience coe�cient ρ > 0 are positive
deterministic constants (that is, µ ≡ σ ≡ 0 in terms of our model parameters) and
η ≡ 0. Since η ≡ 0, we do not need to specify r. Recall furthermore that λ ≡ 0 in the
current subsection. Let t = 0 and �x the initial position x = 0 and the initial deviation
d = 0.
As γ is constant, for all X ∈ Asem

0 (0, 0) the associated deviation process DX satis�es

dDX
s = −DX

s dRs + γsdXs + d[γ,X]s = −DX
s dRs + γdXs, s ∈ [0, T ].

In particular, in this setting the dynamics of DX is of type (5.7).
For n ∈ N consider the càdlàg semimartingale Xn = (Xn

s )s∈[0−,T ] de�ned by

Xn
0− = Xn

0 = 0, Xn
s = nW (1)

s for s ∈ [0, T ), Xn
T = 0,

i.e., Xn follows a scaled Brownian motion on [0, T ) and has a block trade at time T .
For each n ∈ N, let Dn = (Dn

s )s∈[0−,T ] be given by

dDn
s = −ρDn

s ds+ γndW (1)
s for s ∈ [0, T ), Dn

0− = 0, Dn
T = Dn

T− − γXn
T−.

Note that for each n ∈ N, Dn is an Ornstein-Uhlenbeck process. One can therefore
show that (A1) is satis�ed, and due to σ ≡ 0 and η ≡ 0, (A2)�(A5) are satis�ed
as well, thus Xn ∈ Asem

0 (0, 0) for all n ∈ N. Observe that it holds for all n ∈ N that∫ ·
0
Dn
s dW

(1)
s is a martingale, that Xn is continuous on (0, T ), that ∆Xn

T = −Xn
T−, and

that ∆Xn
0 = 0. Therefore, we obtain that

J̃0(0, 0, Xn) = E

[∫
[0,T )

Dn
s−dX

n
s +Dn

T−∆Xn
T +

γ

2
(∆Xn

T )2

]
= E

[
n

∫ T

0

Dn
s dW

(1)
s −Dn

T−X
n
T− +

γ

2
n2(W

(1)
T )2

]
= −E

[
Dn
T−X

n
T−
]

+
γ

2
n2T, n ∈ N.
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5 Càdlàg semimartingale strategies

We have for all n ∈ N that, by integration by parts,

d(DnXn)s = nDn
s dW

(1)
s − ρXn

sD
n
s ds+ γn2W (1)

s dW (1)
s + γn2ds, s ∈ [0, T ),

and hence

E [Xn
sD

n
s ] = −ρ

∫ s

0

E [Xn
rD

n
r ] dr + γn2s, s ∈ [0, T ).

It follows for all n ∈ N that

E [Xn
sD

n
s ] =

γn2

ρ

(
1− e−ρs

)
, s ∈ [0, T ),

and further that

E
[
Xn
T−D

n
T−
]

=
γn2

ρ

(
1− e−ρT

)
, n ∈ N.

This implies that

J̃0(0, 0, Xn) = −γn
2

ρ

(
1− e−ρT

)
+
γ

2
n2T =

γn2

ρ

(
e−ρT − 1 +

ρT

2

)
, n ∈ N.

Now we see that, if ρ > 0 is chosen in the way that e−ρT − 1 + ρT
2
< 0 (it is enough to

take ρ ∈ (0, 1/T )), then

J̃0(0, 0, Xn)→ −∞ as n→∞.

Thus, the cost functional J̃ leads to an ill-posed optimization problem.

Note that in the setting of the previous example, the cost functional

Jt(x, d,X) = Et

[∫
[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s

]
, x, d ∈ R, t ∈ [0, T ], X ∈ Asem

t (x, d),

(5.9)
from [AKU21a, equation (3)] and the cost functional J sem from (5.2) coincide since R in
this setting has �nite variation (also the deviation dynamics from [AKU21a, equation
(2)] and (5.1) are the same since η ≡ 0 in the previous example). We now illustrate in
Example 5.1.5 that (5.9) in general requires an additional modi�cation when we allow
for a di�usion term in the resilience R. With the right cost functional (5.2) we recover
a well-posed problem, see Example 5.3.1.

Example 5.1.5. Let m = 2 and suppose that (M (1),M (2))> = (W (1),W (2))> = W
is a two-dimensional Brownian motion, Fs = FWs for all s ∈ [0, T ], and r ≡ 1. Note
that MR = W (1). Assume that γ > 0 (i.e., µ ≡ σ ≡ 0), ρ > 0, and η > 0 are positive
deterministic constants such that 2ρ − η2 > 0 (i.e., condition (C>0) holds). Recall
that λ ≡ 0. We take t = 0 and �x some initial position x ∈ R \ {0} and the initial
deviation d = 0.
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5.1 The semimartingale stochastic control problem

For n ∈ N we de�ne Xn = (Xn
s )s∈[0−,T ] by

Xn
0− = Xn

0 = x, dXn
s = −nXn

s dW
(1)
s for s ∈ [0, T ), Xn

T = 0,

i.e., Xn follows a geometric Brownian motion on [0, T ) and has a block trade at time T .
For each n ∈ N, let Dn = (Dn

s )s∈[0−,T ] be given by

dDn
s = −ρDn

s ds− ηsDn
s dW

(1)
s − γnXn

s dW
(1)
s for s ∈ [0, T ),

Dn
0− = 0, Dn

T = Dn
T− − γXn

T−.

We then have for s ∈ [0, T ) and n ∈ N that

Xn
s = xe

(
−nW (1)

s − 1
2
n2s
)
,

Dn
s = −nγ

∫ s

0

e
−(ρ+ 1

2
η2)(s−r)−η

(
W

(1)
s −W

(1)
r

)
Xn
r

(
ηdr + dW (1)

r

)
.

Since σ ≡ 0, we only need to verify (A1), (A4), and (A5) for Xn to be in Asem
0 (x, 0)

for all n ∈ N. Clearly,

E

[
sup
s∈[0,T ]

|Xn
s |p
]
<∞ (5.10)

for all n ∈ N and all p ∈ [1,∞). Furthermore, using (5.10), the Burkholder-Davis-
Gundy inequality, and the Cauchy-Schwarz inequality, one can show that it holds
E[sups∈[0,T )|Dn

s |p] <∞ for all n ∈ N and all p ∈ [1,∞). It then moreover holds for all
n ∈ N that E[|Dn

T |p] <∞ due to Dn
T = Dn

T− − γXn
T−. Hence,

E

[
sup
s∈[0,T ]

|Dn
s |p
]
<∞ (5.11)

for all n ∈ N and all p ∈ [1,∞). It follows that (A1) is satis�ed for all n ∈ N.
Together with E[

∫ T
0
η2ds] = η2T < ∞, this further implies that (A4) holds true for

all n ∈ N. Finally, we obtain (A5) for all n ∈ N from (5.11) and the fact that γ, η are
deterministic constants. To summarize, we have that Xn ∈ Asem

0 (x, 0) for all n ∈ N.
For the cost functional (5.9) it holds in the current setting for all n ∈ N that

J0(x, 0, Xn) = E

[∫
[0,T )

Dn
s−dX

n
s +Dn

T−∆Xn
T +

γ

2

∫
[0,T )

d[Xn]s +
γ

2
(∆Xn

T )2

]
= E

[
−n
∫ T

0

Dn
sX

n
s dW

(1)
s −Dn

T−X
n
T− +

γ

2
n2

∫ T

0

(Xn
s )2ds+

γ

2
(Xn

T−)2

]
.

From the Burkholder-Davis-Gundy inequality, the Cauchy-Schwarz inequality, (5.10),
and (5.11), we have for all n ∈ N that

∫ ·
0
Dn
sX

n
s dW

(1)
s is a martingale. Moreover, it

holds for all n ∈ N, s ∈ [0, T ), that

E
[
(Xn

s )2
]

= x2en
2s. (5.12)
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We use these facts and Fubini to obtain for all n ∈ N that

J0(x, 0, Xn) = −E
[
Dn
T−X

n
T−
]

+
γ

2
n2x2

∫ T

0

en
2sds+

γ

2
x2en

2T

=
γ

2
x2
(

2en
2T − 1

)
− E

[
Dn
T−X

n
T−
]
.

(5.13)

It holds by integration by parts that, for all n ∈ N, s ∈ [0, T ),

d (Dn
sX

n
s ) = −ρDn

sX
n
s ds− ηDn

sX
n
s dW

(1)
s − γn(Xn

s )2dW (1)
s − nDn

sX
n
s dW

(1)
s

+ nηDn
sX

n
s ds+ n2γ(Xn

s )2ds.

Due to the stochastic integrals on the right-hand side being martingales and (5.12), it
follows for all n ∈ N, s ∈ [0, T ), that

E [Dn
sX

n
s ] = −(ρ− nη)

∫ s

0

E [Dn
rX

n
r ] dr + γx2

(
en

2s − 1
)
. (5.14)

Note that there exists n0 ∈ N such that for all n ∈ N∩[n0,∞) it holds that ρ−nη < −1
and ρ − nη + n2 > 0. The integral equation (5.14) yields for all n ∈ N ∩ [n0,∞),
s ∈ [0, T ), that

E [Dn
sX

n
s ] = e−(ρ−nη)s γx2n2

ρ− nη + n2

(
e(ρ−nη+n2)s − 1

)
,

from which we further obtain that (recall also (5.10) and (5.11)), for all n ∈ N∩[n0,∞),

E
[
Dn
T−X

n
T−
]

= e−(ρ−nη)T γx2n2

ρ− nη + n2

(
e(ρ−nη+n2)T − 1

)
.

We insert this into (5.13) to get, for all n ∈ N ∩ [n0,∞),

J0(x, 0, Xn) = γx2

(
en

2T

(
1− n2

ρ− nη + n2

)
− 1

2
+

n2

ρ− nη + n2
e−(ρ−nη)T

)
≤ γx2

(
en

2T −1

ρ− nη + n2
+

n2

ρ− nη + n2
e−(ρ−nη)T

)
= γx2e−(ρ−nη)T

(
n2

ρ− nη + n2
− 1

ρ− nη + n2
e(ρ−nη+n2)T

)
.

Observe that n2

ρ−nη+n2 → 1, 1
ρ−nη+n2 e

(ρ−nη+n2)T → ∞, and e−(ρ−nη)T → ∞ as n → ∞.
We therefore conclude that

J0(x, 0, Xn)→ −∞ as n→∞.
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5.1 The semimartingale stochastic control problem

In the next Example 5.1.6, we show that even with the right cost functional (5.2)
(which in the setting of Example 5.1.6 coincides with (5.9)), the dynamics (5.7) for
the deviation process can lead to arbitrarily large negative costs. With the right
dynamics (5.1) we recover a well-posed problem, see Example 5.3.1.

Example 5.1.6. Let m = 2 and suppose that (M (1),M (2))> = (W (1),W (2))> = W is
a two-dimensional Brownian motion and Fs = FWs for all s ∈ [0, T ]. We assume that
µ ≡ 0, η ≡ 0, λ ≡ 0, and that σ > 0 and ρ > 0 are positive deterministic constants
such that 2ρ − σ2 > 0 (i.e., condition (C>0) holds). As in Example 5.1.4, we do not
need to specify the correlation process r.
Observe that, in our current setting, the price impact process γ is a geometric

Brownian motion γs = γ0 exp(σW
(1)
s − σ2

2
s), s ∈ [0, T ].

We consider the starting time t = 0 and �x some initial position x ∈ R \ {0} and
the initial deviation d = 0.
For n ∈ N let (Xn

s )s∈[0−,T ] be de�ned by (this is as in Example 5.1.5)

Xn
0− = Xn

0 = x, dXn
s = −nXn

s dW
(1)
s for s ∈ [0, T ), Xn

T = 0.

For each n ∈ N, we assume that Dn = (Dn
s )s∈[0−,T ] is given by (5.7), which here reads

dDn
s = −ρDn

s ds− nγsXn
s dW

(1)
s , s ∈ [0, T ),

Dn
0− = 0, Dn

T = Dn
T− − γTXn

T−.

In particular, Dn
s = −

∫ s
0
ne−ρ(s−r)γrX

n
r dW

(1)
r for s ∈ [0, T ) and n ∈ N.

We �rst verify that Xn ∈ Asem
0 (x, 0) for all n ∈ N. Notice that in the current setting

we have for all p ∈ [1,∞) and n ∈ N that

E

[
sup
s∈[0,T ]

γps

]
<∞, E

[
sup
s∈[0,T ]

γ−ps

]
<∞, and E

[
sup
s∈[0,T ]

|Xn
s |p
]
<∞. (5.15)

This, the Burkholder-Davis-Gundy inequality, and the Hölder inequality imply that it
holds for all p ∈ [2,∞) and n ∈ N that there exists c ∈ [1,∞) such that

E

[
sup
s∈[0,T )

|Dn
s |p
]
≤ cE

[(∫ T

0

n2e−2ρ(T−r)γ2
r (Xn

r )2 dr

) p
2

]

≤ cnpT
p
2E

[
sup
r∈[0,T ]

γpr |Xn
r |p
]
<∞.

Furthermore, as Dn
T = Dn

T− − γTXn
T−, we also get E[|Dn

T |p] < ∞ for all n ∈ N and
p ∈ [2,∞). We thus obtain for all p ∈ [1,∞) and n ∈ N that

E

[
sup
s∈[0,T ]

|Dn
s |p
]
<∞. (5.16)
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5 Càdlàg semimartingale strategies

It now follows from the Hölder inequality, the Minkowski inequality, (5.15), and (5.16)
that (A1) is satis�ed. Since σ2 is a deterministic constant, (A2) then also holds true.
Furthermore, the Hölder inequality, (5.15), and (5.16) prove that (A3) is satis�ed.
Moreover, (A4) and (A5) are trivially satis�ed due to η ≡ 0. Hence, it holds Xn ∈
Asem

0 (x, 0) for all n ∈ N.
We next consider the cost functional J sem de�ned by (5.2). Note that, since η ≡ 0

(and λ ≡ 0), this is the same as (5.9). We obtain for all n ∈ N that

J sem
0 (x, 0, Xn) = J0(x, 0, Xn)

= E

[∫
[0,T )

Dn
s−dX

n
s +Dn

T−∆Xn
T +

∫
[0,T )

γs
2
n2(Xn

s )2ds+
γT
2

(∆Xn
T )2

]
= −nE

[∫ T

0

Dn
sX

n
s dW

(1)
s

]
− E

[
Dn
T−X

n
T−
]

+
n2

2

∫ T

0

E
[
γs(X

n
s )2
]
ds

+
1

2
E
[
γT−(Xn

T−)2
]
.

(5.17)

By the Burkholder-Davis-Gundy inequality, the Hölder inequality, (5.15), and (5.16),
the stochastic integral

∫ ·
0
Dn
sX

n
s dW

(1)
s is a martingale for all n ∈ N, hence its expecta-

tion vanishes. Moreover, it holds for all n ∈ N that

γs(X
n
s )2 = γ0x

2e

(
(σ−2n)W

(1)
s −

(
σ2

2
+n2

)
s
)
, s ∈ [0, T ),

and thus
E
[
γs(X

n
s )2
]

= γ0x
2e(n2−2σn)s, s ∈ [0, T ). (5.18)

Besides this, we have for all n ∈ N and s ∈ [0, T ) that, by integration by parts,

d (Dn
sX

n
s ) = −ρDn

sX
n
s ds− nγs(Xn

s )2dW (1)
s − nDn

sX
n
s dW

(1)
s + n2γs(X

n
s )2ds. (5.19)

Again by the Burkholder-Davis-Gundy inequality, the Hölder inequality, and (5.15),
one can show that

∫ ·
0
γs(X

n
s )2dW

(1)
s is a martingale for all n ∈ N. Therefore, it follows

from (5.18) and (5.19) for all n ∈ N ∩ (2σ,∞) and s ∈ [0, T ) that

E [Dn
sX

n
s ] = −ρ

∫ s

0

E [Dn
rX

n
r ] dr + n2

∫ s

0

E
[
γr(X

n
r )2
]
dr

= −ρ
∫ s

0

E [Dn
rX

n
r ] dr +

n2γ0x
2

n2 − 2σn

(
e(n2−2σn)s − 1

)
.

We thus obtain for all n ∈ N ∩ (2σ,∞) and s ∈ [0, T ) that

E [Dn
sX

n
s ] = e−ρs

n2γ0x
2

ρ+ n2 − 2σn

(
e(ρ+n2−2σn)s − 1

)
. (5.20)
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5.1 The semimartingale stochastic control problem

(5.15), (5.16), (5.18), and (5.20) imply that the cost functional (5.17) for all n ∈
N ∩ (2σ,∞) becomes

J sem
0 (x, 0, Xn)

= −e−ρT n2γ0x
2

ρ+ n2 − 2σn

(
e(ρ+n2−2σn)T − 1

)
+
n2

2

∫ T

0

γ0x
2e(n2−2σn)sds+

γ0x
2

2
e(n2−2σn)T

=
γ0x

2

2

(
2n2

ρ+ n2 − 2σn

(
e−ρT− e(n2−2σn)T

)
+

n2

n2 − 2σn

(
e(n2−2σn)T− 1

)
+ e(n2−2σn)T

)

=
γ0x

2

2
(I1(n)− I2(n)) ,

where I1(n) = e(n2−2σn)T ( n2

n2−2σn
− 2n2

ρ+n2−2σn
+1) and I2(n) = n2

n2−2σn
− 2n2e−ρT

ρ+n2−2σn
. Observe

that

n2

n2 − 2σn
− 2n2

ρ+ n2 − 2σn
+ 1 =

1

1− 2σ
n

− 2
ρ
n2 + 1− 2σ

n

+ 1

= − 2

n

σ − ρ
n

+ ρσ
n2 − 2σ2

n(
1− 2σ

n

) (
ρ
n2 + 1− 2σ

n

) , n ∈ N ∩ (2σ,∞),

(5.21)

i.e., this term behaves as −2σ
n

for large n ∈ N (in particular, this term is strictly
negative provided n is su�ciently large). It follows that I1(n) → −∞ as n → ∞,
whereas I2(n)→ 1− 2e−ρT as n→∞, hence

J sem
0 (x, 0, Xn)→ −∞ as n→∞.

Thus, dynamics (5.7) lead to an ill-posed optimization problem.

Finally, to complement the above discussion on the necessity of some adjustments
in our setting, we discuss related literature. Note that the cost functional (5.9) and
the counterexample Example 5.1.4, as well as the counterexample Example 5.1.6 for
the deviation dynamics, are taken from [AKU21a].
A modi�cation of the cost functional similar to (5.8)→(5.9) already appeared in

a closely related setting in [LS13]. Lorenz and Schied in [LS13] consider an optimal
trade execution problem in an Obizhaeva-Wang model with drift in the una�ected
price. When deriving costs for a semimartingale strategy from the costs of a discrete-
time strategy, they obtain 1

2
[X]T as one term in the costs, which for more general

price impact processes γ corresponds to our term
∫

[t,T ]
γs
2
d[X]s. In a less related set-

ting in [GP16], Gârleanu and Pedersen use a term in their cost functional containing
the quadratic variation [X] and justify it via limiting arguments from discrete time.
Moreover, Horst and Kivman in [HK21] prove that the limiting strategy in the case
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5 Càdlàg semimartingale strategies

of vanishing instantaneous price impact in their model can be viewed as the optimal
strategy in a problem of optimal execution with semimartingale strategies, where the
cost functional is in the spirit of (5.9).
The adjustment (5.9)→(5.2) in the present thesis is, aside from the motivation from

discrete-time, inspired by [AKU22a], but not explicitly stated there in the form of (5.2).
It can neither arise in the setting of [LS13], where the resilience R is given in terms
of a constant resilience coe�cient ρ, nor in the setting of [AKU21a] or [HK21], where
the resilience R is given in terms of a randomly evolving resilience coe�cient ρ, since
in all these cases R is a continuous process of �nite variation leading to [X,R] ≡ 0.
The additional term in the dynamics of the deviation process in (5.1) compared

to (5.7) is to the best of our knowledge a new aspect in [AKU21a]. It does not
emerge in the aforementioned papers because they consider constant γ, in which case
[γ,X] ≡ 0. In order to see the need for the adjustment (5.7)→(5.1), it is necessary
to consider the price impact itself (i.e., the process γ) to be of in�nite variation (or
discontinuous). We also mention that, although the price impact in [FSU19] can have
in�nite variation, the additional term in the deviation containing [γ,X] does not show
up there as only strategies X of �nite variation are allowed.

5.2 Optimal strategies and minimal costs

In this section, we state and prove the main results and some of their consequences. The
main results include an alternative representation of the cost functional, a representa-
tion of the value function (in terms of a solution to BSDE (4.1)), a characterization
of existence of an optimal strategy, and an explicit expression for the optimal strategy
(when it exists). In Section 5.2.1, we obtain the alternative representation of the cost
functional. We also use this result to present �rst examples of optimal strategies. We
then provide general results on optimal strategies and minimal costs in Section 5.2.2.
To state and prove these results, we introduce an auxiliary process based on a solu-

tion (in the sense of De�nition 4.0.1) of BSDE (4.1). Note that existence and unique-
ness for BSDE (4.1) are discussed in Chapter 4, and complemented by Corollary 5.2.8.
If (C>0) holds (see Section 3.1), and (Y, Z,M⊥) is a solution of BSDE (4.1), we de�ne
the progressively measurable process ϑ̃ = (ϑ̃s)s∈[0,T ] pertaining to (Y, Z) by

ϑ̃s =
(ρs + µs)Ys + (σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s + λs

(σ2
s + η2

s + 2σsηsrs)Ys + κs + λs
, s ∈ [0, T ]. (5.22)

5.2.1 Representation of the cost functional based on the BSDE

We now introduce the �rst solution component Y of BSDE (4.1) (and the auxiliary
process ϑ̃ from (5.22)) into the cost functional (5.2). This is done (see the proof of
Theorem 5.2.1) by splitting the integrals over [t, T ] in the cost functional (5.2) up into
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5.2 Optimal strategies and minimal costs

integrals over [t, T ) and the contribution on {T}, and then exploiting the terminal
condition YT = 1

2
, which also holds immediately prior to T (see Lemma 4.1.5). Along

the way, we obtain that the cost functional (5.2), under (C>0) and existence of a
solution to BSDE (4.1), is well-de�ned. It turns out that it can be represented as the
sum of a term that involves Y and does not depend on the strategy, and a conditional
expectation of an integral with respect to d[M (1)] that has an integrand which is
nonnegative DM(1)-a.e. This provides us with a lower bound for the value function.
The precise results are stated in the next Theorem 5.2.1. This theorem constitutes an
important step towards the solution of the control problem in Theorem 5.2.6.

Theorem 5.2.1. Let (C>0) be satis�ed. Assume that there exists a solution (Y, Z,M⊥)

of BSDE (4.1), and let ϑ̃ pertaining to (Y, Z) be de�ned by (5.22). For all x, d ∈ R,
t ∈ [0, T ], and X ∈ Asem

t (x, d) it then holds that the cost functional (5.2) is well-de�ned
and admits the a.s. representation

J sem
t (x, d,X) =

Yt
γt

(d− γtx)2 − d2

2γt

+ Et

[∫ T

t

1

γs

(
ϑ̃s(γsXs −DX

s ) +DX
s

)2 (
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s

]
.

(5.23)

In particular, for all x, d ∈ R and t ∈ [0, T ] it holds that

V sem
t (x, d) ≥ Yt

γt
(d− γtx)2 − d2

2γt
a.s. (5.24)

As a consequence of Theorem 5.2.1, we obtain that it is optimal to close the position
immediately whenever the initial position x ∈ R and the initial deviation d ∈ R are
related via x = d

γt
, or when the resilience vanishes (i.e., ρ ≡ 0 and η ≡ 0). We study

these situations in Lemma 5.2.2 and Proposition 5.2.3, respectively.

Lemma 5.2.2. Let (C>0) be satis�ed and assume that there exists a solution of
BSDE (4.1). Suppose that t ∈ [0, T ] and x, d ∈ R with x = d

γt
. It then holds that

V sem
t (x, d) = − d2

2γt
, and that the strategy X∗ = (X∗s )s∈[t−,T ] de�ned by X

∗
t− = x, X∗s = 0,

s ∈ [t, T ], which closes the position immediately, is optimal in Asem
t (x, d). Moreover,

this optimal strategy is unique up to DM(1) |[t,T ]-null sets.

We now treat the case of vanishing resilience, which means that the impact of trading
on the price is permanent. Note that we do not need to assume existence of a solution
to BSDE (4.1) as we derive an explicit solution of this BSDE in the proof.

Proposition 5.2.3. Assume (C>0), and that ρ ≡ 0 and η ≡ 0. Furthermore, let

E[sups∈[0,T ] γ
−2
s ] + E[

∫ T
0
σ2
sd[M (1)]s] < ∞. Then, for all t ∈ [0, T ] and x, d ∈ R,
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5 Càdlàg semimartingale strategies

the value function is given by V sem
t (x, d) = −x

(
d− γt

2
x
)
, and the strategy X∗ =

(X∗s )s∈[t−,T ] de�ned by X∗t− = x, X∗s = 0, s ∈ [t, T ], which closes the position im-
mediately, is optimal in Asem

t (x, d). Moreover, this optimal strategy is unique up to
DM(1)|[t,T ]-null sets.

Proofs

In this part, we prove Theorem 5.2.1, Lemma 5.2.2, and Proposition 5.2.3.
We �rst introduce the following lemma that we employ in the proofs of Theo-

rem 5.2.1, Lemma 5.2.5, Theorem 5.2.6, and Lemma 5.2.10. It provides helpful rep-
resentations for the dynamics of the process A = X − γ−1DX where X is a càdlàg
semimartingale with associated DX .

Lemma 5.2.4. Let d ∈ R and t ∈ [0, T ]. Suppose that X = (Xs)s∈[t−,T ] is a càdlàg
semimartingale, and let DX = (DX

s )s∈[t−,T ] be given by (5.1). De�ne A = (As)s∈[t,T ]

by As = Xs − γ−1
s DX

s , s ∈ [t, T ].

(i) It holds for all s ∈ [t, T ] that d[γ−1, DX ]s = −DX
s d[γ−1, R]s − γ−1

s d[γ,X]s.

(ii) It holds that A is continuous.

(iii) It holds for all s ∈ [t, T ] that

dAs = −DX
s dγ

−1
s + γ−1

s DX
s dRs +DX

s d[γ−1, R]s

= (As −Xs)
(
γsdγ

−1
s − dRs − γsd[γ−1, R]s

)
= (As −Xs)

(
− (µs + ρs − σ2

s − σsηsrs)d[M (1)]s − (σs + ηsrs)dM
(1)
s

− ηs
√

1− r2
sdM

(2)
s

)
, s ∈ [t, T ].

Proof. (i) It follows from (5.1) that

d[γ−1, DX ]s = −DX
s d[γ−1, R]s + γsd[γ−1, X]s, s ∈ [t, T ].

Furthermore, we have by (3.3) and (3.2) that

γsd[γ−1
s , X]s = −σsd[M (1), X]s = −γ−1

s d[γ,X]s, s ∈ [t, T ].

Together, this shows the claim in (i).

(ii) Since ∆DX
s = γs∆Xs, s ∈ [t, T ], it holds that ∆As = ∆Xs − γ−1

s ∆DX
s = 0,

s ∈ [t, T ].

(iii) Using (5.1) and (i), we obtain by integration by parts for all s ∈ [t, T ] that

dAs = dXs − γ−1
s dDX

s −DX
s dγ

−1
s − d[γ−1, DX ]s

= dXs + γ−1
s DX

s dRs − dXs − γ−1
s d[γ,X]s−DX

s dγ
−1
s +DX

s d[γ−1, R]s+ γ−1
s d[γ,X]s

= γ−1
s DX

s dRs −DX
s dγ

−1
s +DX

s d[γ−1, R]s.
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The second equality in the claim then follows from the fact that −DX
s = (As −Xs)γs,

s ∈ [t, T ], by de�nition of A. For the third equality, observe that (3.3) and (3.1) imply
for all s ∈ [t, T ] that

−γsd[γ−1, R]s = σsd[M (1), R]s = σsηsd[M (1),MR]s = σsηsrsd[M (1)]s

and that

γsdγ
−1
s − dRs = −(µs − σ2

s)d[M (1)]s − σsdM (1)
s − ρsd[M (1)]s − ηsrsdM (1)

s

− ηs
√

1− r2
sdM

(2)
s .

We are now prepared to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. We �x x, d ∈ R, t ∈ [0, T ], and X ∈ Asem
t (x, d) throughout

the proof.
Observe that∫
[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s =

∫
[t,T )

DX
s−dXs +

∫
[t,T )

γs
2
d[X]s −DX

T−XT− +
γT
2
X2
T−.

(5.25)
Since YT− = 1

2
by Lemma 4.1.5, it holds that

−DX
T−XT− +

γT
2
X2
T− =

γT
2

(
XT− − γ−1

T DX
T−
)2 −

γ−1
T (DX

T−)2

2

= γTYT−
(
XT− − γ−1

T DX
T−
)2 −

γ−1
T (DX

T−)2

2
.

(5.26)

We �rst consider the term γTYT−(XT− − γ−1
T DX

T−)2. We have by integration by parts,
(4.1), and (3.2) for all s ∈ [0, T ] that

d(γsYs) = −γsf(s, Ys, Zs)d[M (1)]s + γsZ
(1)
s dM (1)

s + γsZ
(2)
s dM (2)

s + γsdM
⊥
s

+ γsµsYsd[M (1)]s + γsσsYsdM
(1)
s + γsσsZ

(1)
s d[M (1)]s

= γs

(
ϑ̃

(
(ρs + µs)Ys + (σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s + λs

)
− λs

)
d[M (1)]s

+ γs
(
Z(1)
s + σsYs

)
dM (1)

s + γsZ
(2)
s dM (2)

s + γsdM
⊥
s .

(5.27)

Denote As = Xs − γ−1
s DX

s , s ∈ [t, T ]. Part (iii) of Lemma 5.2.4 shows for all s ∈ [t, T ]
that

dAs = γ−1
s DX

s (ρs + µs − σ2
s − σsηsrs)d[M (1)]s + γ−1

s DX
s (σs + ηsrs)dM

(1)
s

+ γ−1
s DX

s ηs

√
1− r2

sdM
(2)
s .
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It follows for all s ∈ [t, T ] that (recall that [M (1)] = [M (2)])

d[A]s = γ−2
s (DX

s )2(σ2
s + 2σsηsrs + η2

s)d[M (1)]s

and

dA2
s = 2AsdAs + d[A]s

= γ−1
s DX

s

(
2As(ρs+µs−σ2

s−σsηsrs) +γ−1
s DX

s (σ2
s + 2σsηsrs + η2

s)
)
d[M (1)]s

+ 2γ−1
s DX

s As(σs + ηsrs)dM
(1)
s + 2γ−1

s DX
s Asηs

√
1− r2

sdM
(2)
s .

(5.28)

We can combine (5.27) and (5.28) to obtain by integration by parts that

γTYT−
(
XT− − γ−1

T DX
T−
)2

= γtYt
(
x− γ−1

t d
)2

+

∫
(t,T )

γsYsdA
2
s +

∫
(t,T )

A2
sd(γsYs)

+

∫ T

t

d[γY,A2]s

= γtYt
(
x− γ−1

t d
)2

+

∫ T

t

Ls d[M (1)]s

+

∫ T

t

2YsD
X
s As(σs + ηsrs) + A2

sγs(Z
(1)
s + σsYs) dM

(1)
s

+

∫ T

t

2YsD
X
s Asηs

√
1− r2

s + A2
sγsZ

(2)
s dM (2)

s

+

∫
(t,T )

γsA
2
s dM

⊥
s ,

(5.29)

where, for s ∈ [t, T ],

Ls = YsD
X
s

(
2As(ρs + µs − σ2

s − σsηsrs) + γ−1
s DX

s (σ2
s + 2σsηsrs + η2

s)
)

+ A2
sγs

(
ϑ̃

(
(ρs + µs)Ys + (σs + ηsrs)Z

(1)
s + ηs

√
1− r2

sZ
(2)
s + λs

)
− λs

)
+ 2AsD

X
s

(
(Z(1)

s + σsYs)(σs + ηsrs) + Z(2)
s ηs

√
1− r2

s

)
.

Next, we consider the term γ−1
T (DX

T−)2. Note that

d(DX
s )2 = 2DX

s−dD
X
s + d[DX ]s, s ∈ [t, T ],

and therefore by part (i) of Lemma 5.2.4,

d[γ−1, (DX)2]s = −2(DX
s )2d[γ−1, R]s − 2DX

s γ
−1
s d[γ,X]s, s ∈ [t, T ].
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Moreover, it holds that

d[DX ]s = (DX
s )2d[R]s − 2DX

s γsd[R,X]s + γ2
sd[X]s, s ∈ [t, T ].

We use integration by parts and the previous three equations to show for all s ∈ [t, T ]
that

γ−1
T (DX

T−)2 = γ−1
t d2 +

∫
[t,T )

γ−1
s d(DX

s )2 +

∫
[t,T )

(DX
s )2dγ−1

s +

∫
[t,T )

d[γ−1, (DX)2]s

= γ−1
t d2 + 2

∫
[t,T )

γ−1
s DX

s−dD
X
s +

∫
[t,T )

γ−1
s d[DX ]s +

∫
[t,T )

(DX
s )2dγ−1

s

− 2

∫
[t,T )

(DX
s )2d[γ−1, R]s − 2

∫
[t,T )

DX
s γ
−1
s d[γ,X]s

= γ−1
t d2 − 2

∫
[t,T )

γ−1
s (DX

s )2dRs + 2

∫
[t,T )

DX
s−dXs + 2

∫
[t,T )

γ−1
s DX

s d[γ,X]s

+

∫
[t,T )

γ−1
s (DX

s )2d[R]s − 2

∫
[t,T )

DX
s d[R,X]s +

∫
[t,T )

γsd[X]s

+

∫
[t,T )

(DX
s )2dγ−1

s − 2

∫
[t,T )

(DX
s )2d[γ−1, R]s − 2

∫
[t,T )

DX
s γ
−1
s d[γ,X]s

= γ−1
t d2 − 2

∫ T

t

γ−1
s (DX

s )2dRs + 2

∫
[t,T )

DX
s−dXs +

∫ T

t

γ−1
s (DX

s )2d[R]s

−2

∫ T

t

DX
s d[R,X]s +

∫
[t,T )

γsd[X]s +

∫ T

t

(DX
s )2dγ−1

s − 2

∫ T

t

(DX
s )2d[γ−1, R]s.

By (3.1) and (3.3) this becomes

γ−1
T (DX

T−)2 = γ−1
t d2 −

∫ T

t

γ−1
s (DX

s )2(2ρs + µs − σ2
s − η2

s − 2σsηsrs)d[M (1)]s

−
∫ T

t

γ−1
s (DX

s )2(2ηsrs + σs)dM
(1)
s − 2

∫ T

t

γ−1
s (DX

s )2ηs

√
1− r2

sdM
(2)
s

+ 2

∫
[t,T )

DX
s−dXs − 2

∫ T

t

DX
s d[R,X]s +

∫
[t,T )

γsd[X]s.

(5.30)
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It now follows from (5.25), (5.26), (5.29), and (5.30) that∫
[t,T ]

DX
s−dXs +

∫
[t,T ]

γs
2
d[X]s −

∫ T

t

DX
s d[X,R]s +

∫ T

t

γsλsX
2
sd[M (1)]s

=

∫ T

t

Ls + γsλsX
2
s +

1

2
γ−1
s (DX

s )2(2ρs + µs − σ2
s − η2

s − 2σsηsrs)d[M (1)]s

+

∫ T

t

2YsD
X
s As(σs + ηsrs) + A2

sγs(Z
(1)
s + σsYs) +

1

2
γ−1
s (DX

s )2(2ηsrs + σs) dM
(1)
s

+

∫ T

t

2YsD
X
s Asηs

√
1− r2

s + A2
sγsZ

(2)
s + γ−1

s (DX
s )2ηs

√
1− r2

s dM
(2)
s

+

∫
(t,T )

γsA
2
s dM

⊥
s + γtYt

(
x− γ−1

t d
)2 − 1

2
γ−1
t d2.

(5.31)

For the integrand in the �rst term, we observe that by de�nition of L, κ, and ϑ̃, it
holds that

L+ γλX2 +
1

2
γ−1(DX)2(2ρ+ µ− σ2 − η2 − 2σηr)

= 2ADXY (µ+ ρ) + γ−1(DX)2Y (σ2 + η2 + 2σηr) + γλX2 + γ−1(DX)2κ

+ A2γ
(
ϑ̃2
(
(σ2 + η2 + 2σηr)Y + κ+ λ

)
− λ
)

+ 2ADX
(
Z(1)(σ + ηr) + Z(2)η

√
1− r2

)
= γ−1(DX)2

(
(σ2 + η2 + 2σηr)Y + κ+ λ

)
+ λ

(
γX2 − γA2 − 2ADX − γ−1(DX)2

)
+ A2γϑ̃2

(
(σ2 + η2 + 2σηr)Y + κ+ λ

)
+ 2ADX ϑ̃

(
(σ2 + η2 + 2σηr)Y + κ+ λ

)
=
(
(σ2 + η2 + 2σηr)Y + κ+ λ

) (
γ−1(DX)2 + 2ADX ϑ̃+ A2γϑ̃2

)
+ λ

(
γX2 − γA2 − 2ADX − γ−1(DX)2

)
.

Since
γX2 − γA2 − 2ADX − γ−1(DX)2 = 0

and

γ−1(DX)2 + 2ADX ϑ̃+ A2γϑ̃2 = γ−1
(
ϑ̃(γX −DX) +DX

)2

,

it follows that∫ T

t

Ls + γsλsX
2
s +

1

2
γ−1
s (DX

s )2(2ρs + µs − σ2
s − η2

s − 2σsηsrs)d[M (1)]s

=

∫ T

t

γ−1
s (ϑ̃s(γsXs −DX

s ) +DX
s )2

(
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s.
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To prove (5.23), it therefore remains to show that the conditional expectation of the
stochastic integrals with respect to dM (1), dM (2), and dM⊥ in (5.31) vanishes.
Consider �rst the stochastic integral

∫ T
t
γsA

2
sZ

(1)
s dM

(1)
s . By the Burkholder-Davis-

Gundy inequality and the Cauchy-Schwarz inequality, it holds that for some constant
c ∈ (0,∞),

Et

[
sup
r∈[t,T ]

∣∣∣∣∫ r

t

γsA
2
sZ

(1)
s dM (1)

s

∣∣∣∣
]
≤ cEt

[(∫ T

t

γ2
sA

4
s(Z

(1)
s )2d[M (1)]s

) 1
2

]

≤ cEt

[
sup
s∈[t,T ]

(
γsA

2
s

)
·
(∫ T

t

(Z(1)
s )2d[M (1)]s

) 1
2

]

≤ c

(
Et

[
sup
s∈[t,T ]

(
γ2
sA

4
s

)])1
2 (
Et

[∫ T

t

(Z(1)
s )2d[M (1)]s

])1
2

.

This is �nite due to Et[
∫ T
t

(Z
(1)
s )2d[M (1)]s] <∞ and (A1). Therefore,

∫ ·
t
γsA

2
sZ

(1)
s dM

(1)
s

is a true martingale, and hence

Et

[∫ T

t

γsA
2
sZ

(1)
s dM (1)

s

]
= 0.

Using the same reasoning (with Et[
∫ T
t

(Z
(2)
s )2d[M (2)]s] <∞), we obtain that

Et

[∫ T

t

γsA
2
sZ

(2)
s dM (2)

s

]
= 0

as well. Similarly, E[[M⊥]T ] <∞ and (A1) imply that

Et

[∫
(t,T )

γsA
2
sdM

⊥
s

]
= 0.

Furthermore, (A2) and boundedness of Y yield that Et[(
∫ T
t
γ2
sA

4
sσ

2
sY

2
s d[M (1)]s)

1
2 ] <∞,

and hence

Et

[∫ T

t

γsA
2
sσsYsdM

(1)
s

]
= 0.

To show that

Et

[∫ T

t

σsD
X
s YsAsdM

(1)
s

]
= 0,

observe that it holds by Young's inequality that

(DX
s )2A2

s = (DX
s )2(Xs − γ−1

s DX
s )2 ≤ 1

2
((DX

s )4γ−2
s + γ2

s (Xs − γ−1
s DX

s )4), s ∈ [t, T ].
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This together with boundedness of Y (denote the bound by the constant cY ∈ (0,∞))
yields that

Et

[(∫ T

t

σ2
s(D

X
s )2Y 2

s A
2
sd[M (1)]s

) 1
2

]
≤ cY√

2
Et

[(∫ T

t

σ2
s(D

X
s )4γ−2

s d[M (1)]s

) 1
2

]

+
cY√

2
Et

[(∫ T

t

σ2
sγ

2
sA

4
sd[M (1)]s

) 1
2

]
,

which is �nite by (A3) and (A2). Similarly, we can argue that

Et

[∫ T

t

ηsrsD
X
s YsAsdM

(1)
s +

∫ T

t

ηs

√
1− r2

sD
X
s YsAsdM

(2)
s

]
= 0

due to [M (1)] = [M (2)], (A5), and (A4).
Moreover, it follows from (A3) that

Et

[∫ T

t

γ−1
s (DX

s )2σsdM
(1)
s

]
= 0,

and from (A5) and [M (1)] = [M (2)] that

Et

[∫ T

t

γ−1
s (DX

s )2ηsrsdM
(1)
s +

∫ T

t

γ−1
s (DX

s )2ηs

√
1− r2

sdM
(2)
s

]
= 0.

We have thus shown (5.23).
Observe that Yt

γt
(d− γtx)2 − d2

2γt
does not depend on the strategy, and that

1

γs

(
ϑ̃s(γsXs −DX

s ) +DX
s

)2 (
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
≥ 0 DM(1)-a.e.

due to Y ≥ 0 and (C>0). This explains the inequality (5.24).

The following result states that, under certain conditions, an optimal strategy is
unique. Although the conditions and the proof involve a (possibly nonunique) solution
of BSDE (4.1), the uniqueness of optimal strategies holds in a general sense. The
lemma is used to prove that the optimal strategies obtained in Lemma 5.2.2 and
Proposition 5.2.3 are unique. It is also relevant for the proof of Theorem 5.2.6.

Lemma 5.2.5. Let (C>0) be satis�ed. Let x, d ∈ R, t ∈ [0, T ], and suppose that
there exist optimal strategies X∗, X ∈ Asem

t (x, d). Assume that there exists a solution
(Y, Z,M⊥) of BSDE (4.1) such that V sem

t (x, d) = Yt
γt

(d− γtx)2 − d2

2γt
. Then, X∗ = X

up to DM(1)|[t,T ]-null sets.

134



5.2 Optimal strategies and minimal costs

Proof. Let ϑ̃ (pertaining to (Y, Z)) be de�ned by (5.22). Combine the assumption
V sem
t (x, d) = Yt

γt
(d− γtx)2 − d2

2γt
with Theorem 5.2.1 to obtain that, a.s.,

Et

[∫ T

t

1

γs

(
ϑ̃s(γsXs −DX

s ) +DX
s

)2 (
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s

]
= 0.

By taking expectations, it follows that

E

[∫ T

t

1

γs

(
ϑ̃s(γsXs −DX

s ) +DX
s

)2 (
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s

]
= 0.

Since (σ2 + η2 + 2σηr)Y + κ+ λ > 0 DM(1)-a.e., this implies that

ϑ̃(γX −DX) +DX = 0 DM(1)|[t,T ]-a.e. (5.32)

This further yields for the process A = (As)s∈[t,T ] de�ned by As = Xs − γ−1
s DX

s ,
s ∈ [t, T ], that

A−X = −γ−1DX = ϑ̃γ−1(γX −DX) = ϑ̃A DM(1) |[t,T ]-a.e.

By Lemma 5.2.4 and [M (1)] = [M (2)], we thus have that

dAs = ϑ̃sAs
(
γsdγ

−1
s − dRs − γsd[γ−1, R]s

)
, s ∈ [t, T ].

For X∗, DX∗ , and A∗ = X∗ − γ−1DX∗ we analogously obtain

ϑ̃(γX∗ −DX∗) +DX∗ = 0 DM(1)|[t,T ]-a.e. (5.33)

and
dA∗s = ϑ̃sA

∗
s

(
γsdγ

−1
s − dRs − γsd[γ−1, R]s

)
, s ∈ [t, T ].

Hence, A and A∗ satisfy the same dynamics and have the same starting point At =
x − γ−1

t d = A∗t . It follows that A and A∗ are indistinguishable. Together with (5.32)
and (5.33) this yields that DX = −ϑ̃γA = −ϑ̃γA∗ = DX∗ DM(1)|[t,T ]-a.e. Finally, it
follows from the de�nition of A and A∗ that X = X∗ DM(1) |[t,T ]-a.e.

We next give the proof of Lemma 5.2.2, which provides the optimal strategy and
the optimal costs in the case x = d

γt
.

Proof of Lemma 5.2.2. Suppose that x = d
γt
. Let X∗ = (X∗s )s∈[t−,T ] be de�ned by

X∗t− = x, X∗s = 0, s ∈ [t, T ]. Then, X∗ is a càdlàg semimartingale with X∗t− = x and
X∗T = 0. The associated process DX∗ = (DX∗

s )s∈[t−,T ] of (5.1) satis�es

DX∗

t = d+ ∆DX∗

t = d+ γt∆X
∗
t = d− γtx = 0,
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and hence DX∗
s = 0 for all s ∈ [t, T ] (cf. (5.1) and the de�nition of X∗). It follows

that X∗s − γ−1
s DX∗

s = 0, s ∈ [t, T ]. From this, DX∗
s = 0 for all s ∈ [t, T ], and the fact

that M (1) is continuous, we obtain that the conditions (A1)�(A5) are satis�ed, i.e.,
X∗ ∈ Asem

t (x, d). Since DX∗
s = 0 and γsX∗s −DX∗

s = 0 for all s ∈ [t, T ], Theorem 5.2.1
yields that X∗ is optimal and that, using any solution (Y, Z,M⊥) of BSDE (4.1), it
holds that

V sem
t (x, d) =

Yt
γt

(d− γtx)2 − d2

2γt
= − d2

2γt
.

Uniqueness of X∗ up to DM(1) |[t,T ]-null sets follows from Lemma 5.2.5.

The next proof is the one of Proposition 5.2.3 on the case of vanishing resilience.

Proof of Proposition 5.2.3. In the case ρ ≡ 0 ≡ η, the driver (4.2) of BSDE (4.1) for
(Y, Z) ≡ (1

2
, 0) equals

f
(
s,

1

2
, 0
)

= −
(

1
2
µs + λs

)2

1
2
σ2
s + 1

2
(µs − σ2

s) + λs
+

1

2
µs + λs = 0, s ∈ [0, T ].

Hence, (Y, Z,M⊥) ≡ (1
2
, 0, 0) is a solution of BSDE (4.1). For (Y, Z,M⊥) ≡ (1

2
, 0, 0),

we further obtain in (5.22) that

ϑ̃s =
1
2
µs + λs

1
2
σ2
s + 1

2
(µs − σ2

s) + λs
= 1, s ∈ [0, T ].

Now, �x x, d ∈ R and t ∈ [0, T ]. By Theorem 5.2.1 it holds for all X ∈ Asem
t (x, d) that

J sem
t (x, d,X) =

1

2γt
(d− γtx)2 − d2

2γt
+ Et

[∫ T

t

γsX
2
s

(1

2
µs + λs

)
d[M (1)]s

]
. (5.34)

Let X∗ = (X∗s )s∈[t−,T ] be de�ned by X∗t− = x, X∗s = 0, s ∈ [t, T ]. We show that
X∗ ∈ Asem

t (x, d). First, X∗ is a càdlàg semimartingale with X∗t− = x and X∗T = 0. The
associated process DX∗ = (DX∗

s )s∈[t−,T ] de�ned by (5.1) satis�es

DX∗

t = d+ ∆DX∗

t = d+ γt∆X
∗
t = d− γtx.

Since Rs = 0 for all s ∈ [0, T ] and X∗s = 0 for all s ∈ [t, T ], it follows that DX∗
s = d−γtx

for all s ∈ [t, T ]. From E[sups∈[t,T ] γ
−2
s ] < ∞ we thus obtain (A1). The assumptions

E[sups∈[t,T ] γ
−2
s ] < ∞ and E[

∫ T
0
σ2
sd[M (1)]s] < ∞, by the Cauchy-Schwarz inequality,

imply (A2) as well as (A3). Further, (A4) and (A5) are trivially satis�ed because of
η ≡ 0. In summary, it holds thatX∗ ∈ Asem

t (x, d). Notice that 1
2
µ+λ > 1

2
σ2 ≥ 0 DM(1)-

a.e. due to (C>0). The optimality of closing the position immediately and the formula
for the value function now follow from (5.34). Uniqueness of X∗ up to DM(1)|[t,T ]-null
sets follows from Lemma 5.2.5.
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5.2.2 Main theorem

We now present and prove the main theorem of this chapter. The theorem provides a
representation of the value function in terms of a solution to BSDE (4.1), a character-
ization based on ϑ̃ (de�ned in (5.22)) for existence of an optimal strategy, and, in case
of existence, a closed-form representation for the optimal strategy and the associated
deviation.

Theorem 5.2.6. Let (C>0), (Cbdd), and (C[M(1)]) hold true. Assume that there

exists a solution (Y, Z,M⊥) of BSDE (4.1) such that ϑ̃, associated to (Y, Z) by (5.22),
is DM(1)-a.e. bounded.

(i) For all x, d ∈ R and t ∈ [0, T ] it holds that

V sem
t (x, d) =

Yt
γt

(d− γtx)2 − d2

2γt
a.s.

(ii) Let x, d ∈ R and assume that x 6= d
γ0
. Then there exists an optimal strategy

X∗ = (X∗s )s∈[0−,T ] ∈ Asem
0 (x, d) if and only if there exists a càdlàg semimartingale

ϑ = (ϑs)s∈[0,T ] such that ϑ̃ = ϑ DM(1)-a.e.
In this case, the optimal strategy is unique up to DM(1)-null sets.

(iii) Suppose that there exists a càdlàg semimartingale ϑ = (ϑs)s∈[0,T ] such that ϑ̃ = ϑ
DM(1)-a.e. De�ne

Qs = −
∫ s

0

ϑr(σr + ηrrr)dM
(1)
r −

∫ s

0

ϑrηr

√
1− r2

rdM
(2)
r

−
∫ s

0

ϑr(µr + ρr − σ2
r − σrηrrr)d[M (1)]r, s ∈ [0, T ].

(5.35)

Let x, d ∈ R and t ∈ [0, T ]. Then the optimal strategy (X∗s )s∈[t−,T ] ∈ Asem
t (x, d) and

the associated deviation process (DX∗
s )s∈[t−,T ] (both unique up to DM(1)|[t,T ]-null sets)

are given by the formulas X∗t− = x, DX∗
t− = d,

X∗s =

(
x− d

γt

)
E(Q)t,s (1− ϑs), s ∈ [t, T ), (5.36)

DX∗

s =

(
x− d

γt

)
E(Q)t,s (−γsϑs), s ∈ [t, T ), (5.37)

and X∗T = 0, DX∗
T = (x− d

γt
)E(Q)t,T (−γT ).

Note that by formula (5.36) for the optimal strategy, in�nite variation of the optimal
strategy can be attributed to the factor E(Q) (as in Example 5.3.1) or to ϑ (as in
Example 5.3.3 or Example 5.3.4), whereas a jump of the optimal strategy inside the
trading interval has to correspond to a jump of ϑ (see, e.g., Section 5.4.3).
We observe that the optimal strategy and the optimal deviation process are dynam-

ically consistent.
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Corollary 5.2.7. Under the assumptions of Theorem 5.2.6 consider the case that
there exists a càdlàg semimartingale ϑ = (ϑs)s∈[0,T ] such that it holds ϑ̃ = ϑ DM(1)-a.e.
De�ne the process Q as in (5.35). Let x, d ∈ R and t ∈ [0, T ]. Then, for the optimal
strategy and deviation process given in (5.36)�(5.37) and for any r ∈ (t, T ), we have
that

X∗s =

(
X∗r− −

DX∗
r−

γr

)
E(Q)r,s (1− ϑs), s ∈ [r, T ),

D∗s =

(
X∗r− −

DX∗
r−

γr

)
E(Q)r,s (−γsϑs), s ∈ [r, T ),

and X∗T = 0, DX∗
T = (X∗r− −

DX
∗

r−
γr

)E(Q)r,T (−γT ).

Under the assumptions of Theorem 5.2.6, it holds that Y ≤ 1
2
. To explain this,

let the assumptions of Theorem 5.2.6 be in force, and let t ∈ [0, T ], x = 1, d = 0.
Then, the process X = (Xs)s∈[t−,T ] de�ned by Xt− = x, Xs = 0, s ∈ [t, T ], is an
admissible strategy with associated costs J sem

t (1, 0, X) = γt
2
(cf. (5.2)). The minimal

costs for selling x = 1 unit given an initial deviation d = 0 by Theorem 5.2.6 amount
to V sem

t (1, 0) = γtYt. Therefore,

Yt =
V sem
t (1, 0)

γt
≤ J sem

t (1, 0, X)

γt
=

1

2
.

Moreover, we obtain that 2Yt = V sem
t (1, 0)/J sem

t (1, 0, X), and thus the random vari-
able 2Yt : Ω→ [0, 1] describes to which percentage the costs of selling one unit imme-
diately at time t can be reduced by executing the position optimally. Hence, under the
assumptions of Theorem 5.2.6 (and for λ ≡ 0), we again (compare with Section 2.4)
have the economic interpretation of Y as a savings factor.
The relation V sem

t (1, 0) = γtYt, t ∈ [0, T ], from Theorem 5.2.6 can further be used
to establish the following uniqueness result.

Corollary 5.2.8. Assume (C>0), (Cbdd), and (C[M(1)]). Let (Y, Z,M⊥), (Ŷ , Ẑ, M̂⊥)

be solutions of BSDE (4.1) such that the corresponding processes ϑ̃ = (ϑ̃s)s∈[0,T ] and

ϑ̂ = (ϑ̂s)s∈[0,T ] de�ned by (5.22) are DM(1)-a.e. bounded. Then, Y and Ŷ are indistin-

guishable, Z(j) = Ẑ(j) DM(1)-a.e. for j ∈ {1, 2}, and M⊥ and M̂⊥ are indistinguishable.

In particular, if, in the setting of Theorem 5.2.6, the process in (5.22) is DM(1)-a.e.
bounded for all solutions of BSDE (4.1), then such a solution of the BSDE is unique.
We �nally remark that it is possible to replace the boundedness assumptions in

Theorem 5.2.6 by appropriate integrability assumptions. For a more detailed comment
on this aspect, we refer to [AKU21a, Remark 3.5(b)].
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5.2 Optimal strategies and minimal costs

Proofs

This part contains the proofs of Theorem 5.2.6, Corollary 5.2.7, and Corollary 5.2.8.
As a preparation, we establish helpful results in Lemma 5.2.9 and Lemma 5.2.10.

We also use Lemma 4.1.1 and Lemma 4.1.6 from Chapter 4.
We �rst state and prove an approximation result, based on [KS91, Section 3.2,

Lemma 2.7], for any progressively measurable, DM(1)-a.e. bounded process ϑ. This is
the content of Lemma 5.2.9 and enables us to exploit Lemma 5.2.10 for the proof of
the representation of the value function in Theorem 5.2.6.

Lemma 5.2.9. Assume that E[[M (1)]T ] < ∞, and suppose that ϑ = (ϑs)s∈[0,T ] is a
progressively measurable process that is bounded DM(1)-a.e.
Then there exists a sequence (ϑn)n∈N of càdlàg semimartingales ϑn = (ϑns )s∈[0,T ] that

are DM(1)-a.e. bounded uniformly in n and such that for all p ∈ [1,∞) it holds that

E[
∫ T

0
|ϑs − ϑns |pd[M (1)]s]→ 0 as n→∞.

Proof. It follows from Lemma 2.7 in Section 3.2 of [KS91] that there exists a sequence
(ϑ̂n)n∈N of (càglàd) simple (see [KS91, Def. 2.3]) processes ϑ̂n = (ϑ̂ns )s∈[0,T ] such that

E

[∫ T

0

|ϑs − ϑ̂ns |2d[M (1)]s

]
→ 0 as n→∞.

De�ne
ϑ̊ns (ω) = lim

r↓s
ϑ̂nr (ω), s ∈ [0, T ), ω ∈ Ω, n ∈ N,

and ϑ̊nT = 0, n ∈ N. Then, ϑ̊n is càdlàg for all n ∈ N. Let b ∈ (0,∞) be such that
|ϑ| ≤ b DM(1)-a.e., and de�ne, for each n ∈ N, ϑn by

ϑns (ω) =
(
ϑ̊ns (ω) ∧ b

)
∨ (−b), s ∈ [0, T ], ω ∈ Ω.

It then holds that |ϑns (ω)| ≤ b for all s ∈ [0, T ], ω ∈ Ω, n ∈ N. It follows that (ϑn)n∈N
is a sequence of càdlàg semimartingales that are DM(1)-a.e. bounded uniformly in n.
Furthermore, since it holds for all n ∈ N that |ϑ − ϑn| ≤ |ϑ − ϑ̊n| and that ϑ̊n = ϑ̂n

DM(1)-a.e., we have that

E

[∫ T

0

|ϑs − ϑns |2d[M (1)]s

]
≤ E

[∫ T

0

|ϑs − ϑ̊ns |2d[M (1)]s

]
= E

[∫ T

0

|ϑs − ϑ̂ns |2d[M (1)]s

]
→ 0 as n→∞.

For p ∈ [1, 2), the convergence

E

[∫ T

0

|ϑs − ϑns |pd[M (1)]s

]
→ 0 as n→∞

follows from Jensen's inequality, and for p ∈ (2,∞), the convergence holds due to
|ϑ− ϑn| ≤ 2b DM(1)-a.e.
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5 Càdlàg semimartingale strategies

In the next lemma we show how to construct from a DM(1)-a.e. bounded sequence
(ϑn)n∈N of càdlàg semimartingales (e.g., coming from Lemma 5.2.9) a sequence of
admissible semimartingale strategies (Xn)n∈N with the additional properties (5.40)
and (5.43). We use this result in the proof of Theorem 5.2.6. Note that (5.38)
with (5.39) has the structure of the optimal strategy in Theorem 5.2.6.

Lemma 5.2.10. Suppose that (C[M(1)]) and (Cbdd) are satis�ed. Let (ϑn)n∈N be a se-
quence of càdlàg semimartingales ϑn = (ϑns )s∈[0,T ] that are DM(1)-a.e. bounded uniformly
in n. Let t ∈ [0, T ] and x, d ∈ R. De�ne for each n ∈ N the process Xn = (Xn

s )s∈[t−,T ]

by Xn
t− = x,

Xn
s =

(
x− d

γt

)
E(Qn)t,s (1− ϑns ), s ∈ [t, T ), (5.38)

and Xn
T = 0, where

Qn
s = −

∫ s

0

ϑnr (σr + ηrrr)dM
(1)
r −

∫ s

0

ϑnr ηr

√
1− r2

rdM
(2)
r

−
∫ s

0

ϑnr (µr + ρr − σ2
r − σrηrrr)d[M (1)]r, s ∈ [0, T ].

(5.39)

Then, the following properties hold.

(i) Xn ∈ Asem
t (x, d) for all n ∈ N.

(ii) For all n ∈ N the associated deviation process Dn a.s. has the representations

Dn
s = −ϑns (γsX

n
s −Dn

s ), s ∈ [t, T ), (5.40)

and

Dn
s =

(
x− d

γt

)
E(Qn)t,s (−γsϑns ), s ∈ [t, T ), (5.41)

and, for the terminal value Dn
T , we have that

Dn
T =

(
x− d

γt

)
E(Qn)t,T (−γT ). (5.42)

(iii) It holds that

sup
n∈N

Et

[
sup
s∈[t,T ]

(
γ4
s (X

n
s − γ−1

s Dn
s )8
)]

<∞ a.s. (5.43)

Proof. Let b ∈ (0,∞) such that for all n ∈ N it holds that |ϑn| ≤ b DM(1)-a.e. Now,
�x n ∈ N.
Since ϑn is a càdlàg semimartingale, it holds that Xn de�ned by (5.38) is also a

càdlàg semimartingale. Note that moreover Xn
t− = x and Xn

T = 0. We �rst show
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5.2 Optimal strategies and minimal costs

that Dn de�ned by (5.1) satis�es (5.40), (5.41), and (5.42). Subsequently, we establish
(5.43). Finally, we argue that Xn ∈ Asem

t (x, d).

Let Ân = (Âns )s∈[t,T ] be the process de�ned by

Âns =

(
x− d

γt

)
E(Qn)t,s, s ∈ [t, T ].

Observe that for all s ∈ [t, T ) it holds that Xn
s = Âns (1 − ϑns ). This and (5.39) imply

for all s ∈ [t, T ] that

dÂns = ÂnsdQ
n
s

= ϑns Â
n
s

(
−(σs + ηsrs)dM

(1)
s − ηs

√
1− r2

sdM
(2)
s − (µs + ρs − σ2

s − σsηsrs)d[M (1)]s

)
=
(
Âns−Xn

s

)(
−(σs + ηsrs)dM

(1)
s −ηs

√
1− r2

sdM
(2)
s −(µs + ρs−σ2

s−σsηsrs)d[M (1)]s

)
.

(5.44)

Let An = (Ans )s∈[t,T ] be the process de�ned by Ans = Xn
s − γ−1

s Dn
s , s ∈ [t, T ]. Then it

holds by Lemma 5.2.4 and (5.44) that Ân and An satisfy the same dynamics. Further-
more, they start in the same point Ânt = x − d

γt
= Ant at time t. Consequently, they

are indistinguishable, i.e., almost surely, for all s ∈ [t, T ], it holds that Ans = Âns . This
implies that

Dn
s = γs(X

n
s − Ans ) = γs(X

n
s − Âns ) = −ϑnsγsÂns , s ∈ [t, T ), (5.45)

and, proceeding further,

Dn
s = −ϑnsγsAns = −ϑns (γsX

n
s −Dn

s ), s ∈ [t, T ).

We thus establish (5.40), while (5.41) follows from (5.45). For the terminal value Dn
T ,

we have that

Dn
T = Dn

T− + γT∆Xn
T = Dn

T− − γTXn
T−

=

(
x− d

γt

)
E(Qn)t,T

(
−γTϑnT− − γT (1− ϑnT−)

)
=

(
x− d

γt

)
E(Qn)t,T (−γT ).

We next show (5.43). It follows from Ans = Âns , s ∈ [t, T ], that

γ4
s (X

n
s − γ−1

s Dn
s )8 = γ4

s (x− γ−1
t d)8 (E(Qn)t,s)

8 , s ∈ [t, T ].
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5 Càdlàg semimartingale strategies

Further, it holds for all s ∈ [t, T ] that

γ4
s (E(Qn)t,s)

8

= γ4
t exp

(
4

∫ s

t

µr −
1

2
σ2
rd[M (1)]r + 4

∫ s

t

σrdM
(1)
r

)
· exp

(
− 8

∫ s

t

ϑnr (µr + ρr − σ2
r − σrηrrr) +

1

2
(ϑnr )2(σ2

r + 2σrηrrr + η2
r)d[M (1)]r

− 8

∫ s

t

ϑnr (σr + ηrrr)dM
(1)
r − 8

∫ s

t

ϑnr ηr

√
1− r2

rdM
(2)
r

)
= γ4

t exp

(∫ s

t

νnr d[M (1)]r +

∫ s

t

τ (1),n
r dM (1)

r +

∫ s

t

τ (2),n
r dM (2)

r

)
,

where, for all r ∈ [t, T ],

νnr = 4µr − 2σ2
r − 8ϑnr (µr + ρr − σ2

r − σrηrrr)− 4(ϑnr )2(σ2
r + 2σrηrrr + η2

r),

τ (1),n
r = 4σr − 8ϑnr (σr + ηrrr),

τ (2),n
r = −8ϑnr ηr

√
1− r2

r.

Therefore, we have that

Et

[
sup
s∈[t,T ]

(γ4
s (X

n
s − γ−1

s Dn
s )8)

]

= γ4
t (x− γ−1

t d)8Et

[
sup
s∈[t,T ]

exp

(∫ s

t

νnr d[M (1)]r +

∫ s

t

τ (1),n
r dM (1)

r +

∫ s

t

τ (2),n
r dM (2)

r

)]
.

Since (C[M(1)]) holds and we have (with cµ, cρ, cσ, cη from (Cbdd))

|νn| ≤ 4cµ + 2c2
σ + 8b

(
cµ + cρ + c2

σ + cσcη
)

+ 4b2
(
c2
σ + 2cσcη + c2

η

)
,

|τ (1),n| ≤ 4cσ + 8b(cσ + cη),

|τ (2),n| ≤ 8bcη,

we obtain (5.43) from Lemma 4.1.1. Observe furthermore that by Jensen's inequality
it follows that (A1) holds true. (C[M(1)]) and boundedness of σ (respectively, η) then
yield (A2) (respectively, (A4)). Due to (5.40), we have that

(γ
− 1

2
s (Dn

s ))4 = (ϑns )4γ2
s (X

n
s − γ−1

s Dn
s )4, s ∈ [t, T ).

Since ϑn is DM(1)-a.e. bounded, the fact that (A2) (respectively, (A4)) is satis�ed
hence already implies that (A3) (respectively, (A5)) holds true as well. We conclude
that Xn ∈ Asem

t (x, d).
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5.2 Optimal strategies and minimal costs

We next prove Theorem 5.2.6. To establish the representation for the value function,
we �rst use Lemma 5.2.9 to obtain an approximating sequence for ϑ̃. Subsequently,
we employ Lemma 5.2.10 to get an associated sequence of admissible strategies that
satis�es helpful properties. We then consider, for these strategies, the representation
of the cost functional in Theorem 5.2.1 and show that it tends to Yt

γt
(d− γtx)2 − d2

2γt
,

which yields an upper bound for the value function. By Theorem 5.2.1, this is also a
lower bound.
In order to prove the characterization of existence of an optimal strategy, we �rst

show the direction that existence of an optimal strategy implies existence of a càdlàg
semimartingale ϑ = (ϑs)s∈[0,T ] such that ϑ̃ = ϑ DM(1)-a.e. Main ingredients are the
representation of the cost functional (Theorem 5.2.1) and the representation of the
value function. We then jointly establish the converse implication and the formula
for optimal strategies. Along the way, we also obtain the formula for the associated
deviation process. Uniqueness is an immediate consequence of Lemma 5.2.5.

Proof of Theorem 5.2.6. We follow the structure outlined above.
Representation for the value function. Let t ∈ [0, T ] and x, d ∈ R. Since ϑ̃ is
DM(1)-a.e. bounded and we assume (C[M(1)]), it follows from Lemma 5.2.9 that there
exists a sequence (ϑn)n∈N of càdlàg semimartingales ϑn = (ϑns )s∈[0,T ] that are DM(1)-a.e.
bounded uniformly in n and such that for all p ∈ [1,∞) it holds that

Et

[∫ T

t

|ϑ̃s − ϑns |pd[M (1)]s

]
→ 0 in L1(Ω,F , P ) as n→∞. (5.46)

In particular, by passing to a suitable subsequence, we can obtain almost sure conver-
gence in (5.46). We further obtain from Lemma 5.2.10 that for each n ∈ N there exists
Xn ∈ Asem

t (x, d) such that Dn
s = −ϑns (γsX

n
s −Dn

s ), s ∈ [t, T ), and that

sup
n∈N

Et

[
sup
s∈[t,T ]

(
γ4
s (X

n
s − γ−1

s Dn
s )8
)]

<∞ a.s. (5.47)

It then holds for all n ∈ N that

ϑ̃s(γsX
n
s −Dn

s ) +Dn
s = (ϑ̃s − ϑns )(γsX

n
s −Dn

s ), s ∈ [t, T ).

Together with Theorem 5.2.1 and Xn ∈ Asem
t (x, d) this implies for all n ∈ N that, a.s.,

V sem
t (x, d) ≤ J sem

t (x, d,Xn)

=
Yt
γt

(d− γtx)2 − d2

2γt
+ Et

[∫ T

t

1

γs
(ϑ̃s − ϑns )2(γsX

n
s −Dn

s )2

·
(
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
d[M (1)]s

]
.

(5.48)
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By the Cauchy-Schwarz inequality we have for all n ∈ N that

Et

[∫ T

t

1

γs
(ϑ̃s − ϑns )2(γsX

n
s −Dn

s )2d[M (1)]s

]
= Et

[∫ T

t

γs(ϑ̃s − ϑns )2(Xn
s − γ−1

s Dn
s )2d[M (1)]s

]
≤
(
Et

[∫ T

t

γ2
s (X

n
s − γ−1

s Dn
s )4d[M (1)]s

]) 1
2
(
Et

[∫ T

t

(ϑ̃s − ϑns )4d[M (1)]s

]) 1
2

(5.49)

and that

Et

[∫ T

t

γ2
s (X

n
s − γ−1

s Dn
s )4d[M (1)]s

]

≤ Et

[
sup
s∈[t,T ]

(
γ2
s (X

n
s − γ−1

s Dn
s )4
) (

[M (1)]T − [M (1)]t
)]

≤

(
Et

[
sup
s∈[t,T ]

(
γ4
s (X

n
s − γ−1

s Dn
s )8
)]) 1

2 (
Et

[(
[M (1)]T − [M (1)]t

)2
]) 1

2
.

(5.50)

Since ρ, µ, σ, η, λ, r, and Y are bounded, it follows from (C[M(1)]), (5.47), (5.50), (5.46),
and (5.49) that, along a suitable subsequence, the right-hand side of (5.48) tends to
Yt
γt

(d− γtx)2 − d2

2γt
a.s., as n→∞. We obtain the inequality

V sem
t (x, d) ≤ Yt

γt
(d− γtx)2 − d2

2γt
a.s.

The reverse inequality is provided in Theorem 5.2.1.

Existence of an optimal strategy implies existence of ϑ. Let x 6= d
γ0
. Assume that

there exists an optimal strategy X∗ = (X∗s )s∈[0−,T ] ∈ Asem
0 (x, d). It then follows from

V sem
0 (x, d) = Y0

γ0
(d− γ0x)2 − d2

2γ0
and Theorem 5.2.1, using also (C>0), that

ϑ̃
(
γX∗ −DX∗

)
+DX∗ = 0 DM(1)-a.e. (5.51)

Let A∗ = (A∗s)s∈[0,T ] be de�ned by A∗s = X∗s − γ−1
s DX∗

s , s ∈ [0, T ]. We have by (5.51)
that A∗ − X∗ = ϑ̃A∗ DM(1)-a.e. This, Lemma 5.2.4, and [M (1)] = [M (2)] then yield
that

dA∗s = ϑ̃sA
∗
s

(
γsdγ

−1
s − dRs − γsd[γ−1, R]s

)
, s ∈ [0, T ].

De�ne Q̃ = (Q̃s)s∈[0,T ] by

Q̃s =

∫ s

0

ϑ̃rγrdγ
−1
r −

∫ s

0

ϑ̃rdRr −
∫ s

0

ϑ̃rγrd[γ−1, R]r, s ∈ [0, T ].
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Since Q̃ is a continuous semimartingale, its stochastic exponential E(Q̃) is strictly
positive. From

A∗s =

(
x− d

γ0

)
E(Q̃)s, s ∈ [0, T ],

and the assumption x 6= d
γ0

we thus conclude that A∗ is nonvanishing. Consequently,

ϑ = −D
X∗

γA∗

de�nes a càdlàg semimartingale. By (5.51) and de�nition of A∗ we have that ϑ̃ = ϑ
DM(1)-a.e.

Existence of ϑ implies that the formulas in part (iii) de�ne a unique optimal strategy.

Suppose that there exists a càdlàg semimartingale ϑ = (ϑs)s∈[0,T ] such that ϑ̃ = ϑ
DM(1)-a.e., and let t ∈ [0, T ], x, d ∈ R. It then follows from Lemma 5.2.10 that
(5.36) de�nes a strategy X∗ ∈ Asem

t (x, d) such that DX∗ has representation (5.37)
and, moreover, DX∗ = −ϑ(γX∗ − DX∗) = −ϑ̃(γX∗ − DX∗) DM(1)|[t,T ]-a.e. Then
Theorem 5.2.1 implies that J sem

t (x, d,X∗) = Yt
γt

(d− γtx)2− d2

2γt
, and since V sem

t (x, d) =
Yt
γt

(d − γtx)2 − d2

2γt
, the strategy X∗ is optimal. The uniqueness up to DM(1)|[t,T ]-null

sets follows from V sem
t (x, d) = Yt

γt
(d− γtx)2 − d2

2γt
and Lemma 5.2.5.

We next show consistency of the optimal strategy and its deviation.

Proof of Corollary 5.2.7. Notice that the processX∗s−γ−1
s DX∗

s , s ∈ [t, T ], is continuous
(see also Lemma 5.2.4). Together with (5.36) and (5.37) this yields that, for any
r ∈ (t, T ), we have that

X∗r− − γ−1
r DX∗

r− = X∗r − γ−1
r DX∗

r =

(
x− d

γt

)
E(Q)t,r. (5.52)

Moreover, it holds for all r ∈ (t, T ) and s ∈ [r, T ] that E(Q)t,r E(Q)r,s = E(Q)t,s. We
therefore obtain for all r ∈ (t, T ) and s ∈ [r, T ] that

(
X∗r− − γ−1

r DX∗

r−
)
E(Q)r,s =

(
x− d

γt

)
E(Q)t,s.

The statements of the corollary now follow from the de�nitions of X∗ and DX∗ (see
part (iii) of Theorem 5.2.6).

In the �nal proof of this section, we use Theorem 5.2.6 to obtain the uniqueness
result Corollary 5.2.8 for BSDE (4.1).
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Proof of Corollary 5.2.8. The assumptions allow us to apply part (i) of Theorem 5.2.6
to both solutions of BSDE (4.1). This yields that

γtYt = V sem
t (1, 0) = γtŶt, t ∈ [0, T ].

Since γ is a strictly positive process, this implies that Y and Ŷ are indistinguishable.
The claim now follows from Lemma 4.1.6.

5.3 Optimal strategies of in�nite variation

In the optimization problem of Section 5.1.1, indeed, strategies of in�nite variation can
come out. We illustrate this by examples.

Example 5.3.1. Let m = 2 and assume that (M (1),M (2))> = (W (1),W (2))> = W is
a two-dimensional Brownian motion and Fs = FWs for all s ∈ [0, T ]. Let λ ≡ 0 and
µ ≡ 0. Suppose that r ∈ [−1, 1] and η, ρ, σ ∈ R are deterministic constants such that
κ = 1

2
(2ρ− σ2 − η2 − 2σηr) > 0 and σ2 + η2 + 2σηr > 0. In particular, we thus need

ρ > 0. Moreover, notice that σ and η in the current setting can not both be zero3, but
if r 6= −1 (respectively, r 6= 1), then σ and η (respectively, −η) are allowed to take the
same nonzero value. Let t = 0 and x, d ∈ R with x 6= d

γ0
.

We verify that Theorem 5.2.6 applies and present explicit formulas for the optimal
strategy X∗ in Asem

0 (x, d) and the associated deviation process DX∗ . Observe that, in
the current setting, (C≥ε), (Cbdd), and (C[M(1)]) are satis�ed. BSDE (4.1) takes the
form (cf. Remark 4.0.2)

dYs =


(
ρYs + (σ + ηr)Z

(1)
s + η

√
1− r2Z

(2)
s

)2

(σ2 + η2 + 2σηr)(Ys ∨ 0) + κ
− σZ(1)

s

 ds

+ Z(1)
s dW (1)

s + Z(2)
s dW (2)

s , s ∈ [0, T ],

YT =
1

2
,

(5.53)

and by Proposition 4.3.2 has a unique solution (Y, Z, 0). By solving the ODE corre-
sponding to (5.53) (i.e., (5.53) with Z ≡ 0), we obtain that Z ≡ 0 and

Ys =
κ

σ2 + η2 + 2σηr
W
(

κ

σ2 + η2 + 2σηr
exp

(
cT −

ρ2s

σ2 + η2 + 2σηr

))−1

, s ∈ [0, T ],

(5.54)
where W denotes the Lambert W function and

cT = ln(2) +
2κ+ ρ2T

σ2 + η2 + 2σηr
.

3The case η = 0 = σ corresponds to the setting for the classical Obizhaeva-Wang model and is
covered in Section 5.4.2.
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5.3 Optimal strategies of in�nite variation

We further have that

ϑ̃s =
ρYs

(σ2 + η2 + 2σηr)Ys + κ
, s ∈ [0, T ].

We can show that Y and ϑ̃ both are continuous, deterministic, increasing, (0, 1/2]-
valued functions of �nite variation. In particular, we have that ϑ̃ is bounded and a
càdlàg semimartingale. Hence, Theorem 5.2.6 applies, and the optimal strategy X∗ =
(X∗s )s∈[0−,T ] ∈ Asem

0 (x, d) and its associated deviation process DX∗ = (DX∗
s )s∈[0−,T ] are

given by the formulas X∗0− = x, DX∗
0− = d,

X∗s =

(
x− d

γ0

)
E(Q)s (1− ϑ̃s), s ∈ [0, T ),

DX∗

s =

(
x− d

γ0

)
E(Q)s (−γsϑ̃s), s ∈ [0, T ),

and X∗T = 0, DX∗
T = (x− d

γ0
)E(Q)T (−γT ), where

E(Q)s = exp

(
−(ρ− σ2 − σηr)

∫ s

0

ϑ̃rdr −
σ2 + η2 + 2σηr

2

∫ s

0

ϑ̃2
rdr

)
· exp

(
−(σ + ηr)

∫ s

0

ϑ̃rdW
(1)
r − η

√
1− r2

∫ s

0

ϑ̃dW (2)
r

)
, s ∈ [0, T ].

With the help of these representations, we discuss some properties of the optimal
strategy. As is typical for optimal strategies in Obizhaeva-Wang type models, X∗ has
jumps at initial time 0 and terminal time T and is continuous on (0, T ). Since 1− ϑ̃ is
positive, X∗ has the same sign as x− d

γ0
on (0, T ]. In contrast to the basic Obizhaeva-

Wang model (see the case σ ≡ 0 ≡ η in Section 5.4.2), the associated deviation process
DX∗ is no longer constant on (0, T ). Further, as 1 − ϑ̃ is nonvanishing and has �nite
variation on [0, T ], while E(Q), almost surely, has in�nite variation on all subintervals
of [0, T ], we get that X∗, almost surely, has in�nite variation on all subintervals of
[0, T ]. In particular, X∗ is in no way monotone on any subinterval of [0, T ]. The
optimal strategy and its associated deviation for a particular choice of the parameters
are visualized in Figure 5.1.
We moreover remark that in the current example, all input processes and Y and ϑ̃

are deterministic, whereas the optimal strategy and its associated deviation (as well
as γ and/or R) are truly stochastic due to nonzero σ and/or nonzero η.
Finally, we point out that the subsetting where η = 0 and σ > 0 (respectively, where

σ = 0, r = 1, and η > 0) corresponds to the setting in Example 5.1.6 (respectively,
Example 5.1.5), and that now, with the right dynamics for the deviation (respectively,
the right cost functional), we were able to solve the optimization problem.
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Figure 5.1: Left: A simulation of the optimal strategy X∗ (black) and the price impact
γ (red) in the setting of Example 5.3.1 for T = 10, x = 100, d = 0, γ0 = 1,
ρ = 0.5, η = 0, and σ = 0.8. Note the di�erence in scales. Right: The
associated deviation process D∗ = DX∗ (black) and the price impact γ
(red) for the same situation.

Observe that the price impact process γ in the situation of Example 5.3.1 is given
by γs = γ0 exp(σW

(1)
s − σ2

2
s), s ∈ [0, T ], and hence for σ 6= 0 has in�nite variation.

Thus, the observation in Example 5.3.1 is in accordance with one of our motivations
to include strategies of in�nite variation: oscillations of the price impact are re�ected
in a similarly rough behavior of the optimal strategy (see also Figure 5.1).
It is not surprising that not only the di�usion term in the price impact γ, but also the

di�usion term in the resilience R can lead to in�nite variation of the optimal strategy.
However, we �nd that we even do not need in�nite variation in the price impact γ

nor in the resilience R to obtain strategies of in�nite variation that are optimal. E.g.,
in the next Example 5.3.3, we can choose a smooth price impact process γ, while at
the same time ρ is constant and η ≡ 0, and nevertheless it is optimal to trade with
in�nite variation.
Before we turn to Example 5.3.3, we �rst prepare the setting upon which Exam-

ple 5.3.3, Section 5.4.1, and Section 5.4.3 are based.

Remark 5.3.2. Consider the following set-up. Letm = 2, assume that(M (1),M (2))>=
(W (1),W (2))> = W is a two-dimensional Brownian motion, and that (Fs)s∈[0,T ] =
(FWs )s∈[0,T ]. Let t = 0, x, d ∈ R with x 6= d

γ0
(for the case x = d

γ0
, see Lemma 5.2.2).

Suppose that λ ≡ 0. The resilience is taken to be exponential (i.e., η ≡ 0) with
deterministic constant resilience coe�cient ρ ∈ R \ {0} (for the case ρ = 0, see
Proposition 5.2.3). We consider the price impact γ from (3.2) with σ ≡ 0, i.e.,
γs = γ0 exp(

∫ s
0
µrdr), s ∈ [0, T ]. In particular, γ is continuous and of �nite varia-

tion. We assume that there exist deterministic constants ε, µ ∈ (0,∞) such that

ρ+
µ

2
≥ ε DW (1)-a.e. and µ ≤ µ DW (1)-a.e. (5.55)
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5.3 Optimal strategies of in�nite variation

Note that this implies boundedness of µ, and we conclude that (C≥ε) and (Cbdd)
hold. Our current set-up is a special case of the settings considered in Section 4.2 and
Section 4.3. Therefore, it follows from Proposition 4.2.1 (alternatively, from Proposi-
tion 4.3.2) that there exists a unique solution (Y, Z,M⊥) of BSDE (4.1). We notice
that M⊥ ≡ 0 in our current set-up (cf. Remark 4.0.2(ii)). For the process ϑ̃ de�ned
in (5.22) we obtain that

ϑ̃s =
ρ+ µs
2ρ+ µs

2Ys =

(
1− ρ

2ρ+ µs

)
2Ys, s ∈ [0, T ]. (5.56)

Notice that, by (5.55), ϑ̃ is bounded. That is, in our current set-up, including (5.55),
the assumptions of Theorem 5.2.6 are satis�ed. Depending on the choice of µ, we have
to distinguish between the following two situations.

Situation 1: There exists a càdlàg semimartingale ϑ = (ϑs)s∈[0,T ] such that

ϑ̃ = ϑ DW (1)-a.e. (5.57)

Situation 2: There is no càdlàg semimartingale ϑ such that (5.57) is satis�ed.

As we know from Theorem 5.2.6, in Situation 1 there exists a unique (up to DW (1)-null
sets) optimal strategy X∗ = (X∗s )s∈[0−,T ] ∈ Asem

0 (x, d), and it is given by the formulas
X∗0− = x, X∗T = 0, and

X∗s =

(
x− d

γ0

)
exp

(
−
∫ s

0

ϑr(µr + ρ) dr

)
(1− ϑs), s ∈ [0, T ), (5.58)

whereas in Situation 2 there does not exist an optimal strategy.

Example 5.3.3. Consider the setting of Remark 5.3.2. To obtain an optimal strategy
of in�nite variation in Situation 1 of Remark 5.3.2, note that by (5.58), we should
construct ϑ of in�nite variation. To this end, let µ be a continuous process of �nite
variation satisfying (5.55) such that

a.s. the function s 7→ ρ+ µs is nonvanishing on [0, T ]. (5.59)

Observe that for a �xed ω ∈ Ω, the unique solution to the Bernoulli ODE

dY s(ω) =

(
2 (ρ+ µs(ω))2 Y s(ω)2

2ρ+ µs(ω)
− µs(ω)Y s(ω)

)
ds, s ∈ [0, T ], Y T (ω) =

1

2
,

is given by the formula

Y s(ω) = e
∫ T
s µr(ω)dr

(∫ T

s

2 (ρ+ µr(ω))2

2ρ+ µr(ω)
e
∫ T
r µu(ω)dudr + 2

)−1

, s ∈ [0, T ]. (5.60)
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It follows that it is possible to choose µ such that Y is not adapted. Choosing µ in
such a way we conclude that the solution (Y, Z,M⊥ ≡ 0) of BSDE (4.1) satis�es

DW (1)(Z 6= 0) > 0.

This yields that, with positive probability, Y has in�nite variation on [0, T ]. De�ne

ϕs =
2(ρ+ µs)

2ρ+ µs
, s ∈ [0, T ],

which is a nonvanishing (recall (5.59)) continuous process of �nite variation. Hence,
ϑ̃ = ϕY (cf. (5.56)) is a continuous semimartingale that, with positive probability, has
in�nite variation on [0, T ]. Thus, we are in Situation 1 of Remark 5.3.2 with ϑ ≡ ϑ̃,
and the optimal strategy X∗, which is given by (5.58), has, with positive probability,
in�nite variation on [0, T ].

Loosely speaking, in�nite variation of the optimal strategy in Example 5.3.3 is due to
the incoming information that is re�ected in the process Y of the BSDE. We achieved
this via our choice of µ as a certain stochastic process (of �nite variation). Another
possibility, where we can argue similar to Example 5.3.3, is to choose the resilience
coe�cient ρ (while η ≡ 0) as an appropriate stochastic process (of �nite variation and
strictly positive). This is the content of Example 5.3.4. Note that in the setting of Ex-
ample 5.3.4 the price impact process γ is just a constant. Therefore, Example 5.3.4 is
closer to the work [HK21], where, in a related model with a constant deterministic tran-
sient price impact coe�cient and a time-varying, strictly positive stochastic resilience
coe�cient, optimal strategies of in�nite variation emerge when an instantaneous price
impact factor tends to 0.

Example 5.3.4. Let m = 2, assume that (M (1),M (2))> = (W (1),W (2))> = W is a
two-dimensional Brownian motion, and suppose that Fs = FWs for all s ∈ [0, T ]. Let
t = 0, x, d ∈ R with x 6= d

γ0
. Moreover, set λ ≡ 0, η ≡ 0, σ ≡ 0, and µ ≡ 0. The

resilience coe�cient ρ is assumed to be a continuous process of �nite variation such
that there exists ε, cρ ∈ (0,∞) with ε ≤ ρ ≤ cρ DW (1)-a.e. Then, (C≥ε) and (Cbdd)
are satis�ed. Again, we are in the settings of Section 4.2 and Section 4.3. Thus, as in
Remark 5.3.2, there exists a unique solution (Y, Z,M⊥) of BSDE (4.1), and M⊥ ≡ 0.
We further obtain that ϑ̃ ≡ Y . Clearly, ϑ̃ is a bounded, continuous semimartingale.
By Theorem 5.2.6, there exists a unique (up to DW (1)-null sets) optimal strategy X∗ =
(X∗s )s∈[0−,T ] ∈ Asem

0 (x, d). The optimal strategy is given by the formulas X∗0− = x,
X∗T = 0, and X∗s = (x − d

γ0
) exp(−

∫ s
0
Yrρr dr)(1 − Ys), s ∈ [0, T ). For �xed ω ∈ Ω,

consider the ODE

dY s(ω) = ρs(ω)Y s(ω)2ds, s ∈ [0, T ], Y T (ω) =
1

2
,
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which has the unique solution

Y s(ω) =

(∫ T

s

ρr(ω)dr + 2

)−1

, s ∈ [0, T ].

This shows that we can choose ρ such that Y is not adapted. Hence, for such a process
ρ, we have that DW (1)(Z 6= 0) > 0. This leads to Y , with positive probability, having
in�nite variation on [0, T ]. The same then holds true for X∗.

5.4 Further examples

We here present three more examples.
In Section 5.4.1 we examine a situation where the conditions of Theorem 5.2.6 are

satis�ed (in particular, the value function is �nite), but where a minimizer of J sem

within the set Asem
t (x, d) of semimartingale strategies does not exist. Together with

Section 5.3, this indicates that it is worthwhile to include in�nite-variation strategies
into the optimization problem as done in this chapter, but that the class of semimartin-
gale strategies considered is not suitable to always �nd an optimal strategy. We also
refer to the discussion in Chapter 9 and to [AKU22a, Section 4.2].
In Section 5.4.2 we observe that in�nite variation of the price impact γ and in�nite

variation of the resilience R may cancel out such that the optimal strategy has �nite
variation. A particular subsetting (where η ≡ 0 ≡ σ) of the setting in Section 5.4.2
corresponds to the setting for the classical Obizhaeva-Wang model and, moreover, to
the setting in Example 5.1.4. As a by-product, Section 5.4.2 shows that we recover
the optimal strategy of [OW13, Proposition 3] (although we consider the di�erent, in
some sense more general, optimal control problem of Section 5.1.1).
In Section 5.4.3 we illustrate that optimal strategies may also have block trades, i.e.,

jumps, inside the time interval available for trading. Note that this e�ect can also be
observed in examples in the next Chapter 6 (there, the jumps are due to jumps of ρ,
whereas here, the jumps are produced by jumps of µ).

5.4.1 An example where the semimartingale problem does not

admit a minimizer

Consider the setting of Remark 5.3.2 and choose any deterministic càdlàg (hence, in
particular bounded) function µ such that there exists δ ∈ (0, T ) with µ having in�nite
variation on [0, T − δ]. For instance, we could take µ to be the Weierstrass function,
or the function s 7→ (s sin 1

s
)1(0,T ](s), s ∈ [0, T ]. We also take ρ ∈ R \ {0} such that

(5.55) is satis�ed.
Notice that, in this deterministic framework, the process Y is a deterministic con-

tinuous function of �nite variation explicitly given by (5.60). In particular, Y is non-
vanishing.
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We now prove that we are in Situation 2 of Remark 5.3.2. To this end, assume by
contradiction that there exists a càdlàg semimartingale ϑ = (ϑs)s∈[0,T ] such that ϑ̃ = ϑ
DW (1)-a.e. (ϑ can be stochastic). Then it follows from (5.56) and the fact that Y is
nonvanishing that

ρ

2ρ+ µ
= 1− ϑ

2Y
DW (1)-a.e. (5.61)

Set S = 1− ϑ
2Y

and notice that it is a càdlàg semimartingale. As both sides in (5.61)
are càdlàg, they are even indistinguishable on [0, T ), i.e., almost surely, it holds that

ρ

2ρ+ µr
= Sr, r ∈ [0, T ). (5.62)

Hence, S 6= 0 and S− 6= 0 on [0, T ), which implies that 1
S
is also a semimartingale on

[0, T ). Now (5.62) yields that, almost surely,

µr =
ρ

Sr
− 2ρ, r ∈ [0, T ).

Thus, µ is itself a semimartingale on [0, T ). As µ is deterministic, this means that µ
has �nite variation on each compact subinterval of [0, T ), in particular, on [0, T − δ].
The obtained contradiction proves that we are in Situation 2.
This example thus shows that an optimal strategy can fail to exist even when the

value function is �nite.

5.4.2 Cancellation of in�nite variation

Let m = 2 and assume that (M (1),M (2))> = (W (1),W (2))> = W is a two-dimensional
Brownian motion and Fs = FWs for all s ∈ [0, T ]. Fix t = 0 and x, d ∈ R with x 6= d

γ0
.

Let λ ≡ 0 and µ ≡ 0. Suppose that r = −1 and ρ > 0 are deterministic constants,
and that η and σ are progressively measurable, DW (1)-a.e. bounded processes such that
η = σ DW (1)-a.e. It then holds DW (1)-a.e. that σ2 + η2 + 2σηr = 0 and κ = ρ > 0.
Note that (C≥ε) and (Cbdd) are satis�ed. By Proposition 4.3.2, BSDE (4.1), which

here becomes (cf. Remark 4.0.2)

dYs = (ρY 2
s − σsZ(1)

s )ds+ Z(1)
s dW (1)

s + Z(2)
s dW (2)

s , s ∈ [0, T ], YT =
1

2
,

has a unique solution (Y, Z, 0). We �nd that Z ≡ 0 and

Ys =
1

2 + (T − s)ρ
, s ∈ [0, T ].

It then holds that ϑ̃ ≡ Y . Observe that ϑ̃ is a continuous, deterministic, increasing,
(0, 1/2]-valued function of �nite variation. From Theorem 5.2.6 we obtain the existence
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of a unique optimal strategy X∗ ∈ Asem
0 (x, d), and that the optimal strategy X∗ =

(X∗s )s∈[0−,T ] is given by the formulas

X∗0− = x, X∗T = 0,

X∗s =

(
x− d

γ0

)
exp

(
−
∫ s

0

ρ

2 + (T − r)ρ
dr

)
1 + (T − s)ρ
2 + (T − s)ρ

=

(
x− d

γ0

)
1 + (T − s)ρ

2 + Tρ
, s ∈ [0, T ).

(5.63)

Moreover, for the associated deviation process DX∗ = (DX∗
s )s∈[0−,T ] it holds that

DX∗

0− = d, DX∗

T = −γ0

(
x− d

γ0

)
2

2 + Tρ
exp

(∫ T

0

ηrdW
(1)
r −

1

2

∫ T

0

η2
rdr

)
,

DX∗

s = −γ0

(
x− d

γ0

)
1

2 + Tρ
exp

(∫ s

0

ηrdW
(1)
r −

1

2

∫ s

0

η2
rdr

)
, s ∈ [0, T ).

(5.64)
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Figure 5.2: Left: The optimal strategy X∗ in the setting of Section 5.4.2 for T = 10,
x = 100, d = 0, γ0 = 1, and ρ = 0.5. Right: The associated deviation
process D∗ = DX∗ (red) in the Obizhaeva-Wang case σ = η = 0 and a
path of the associated deviation process D∗ = DX∗ (black) in the case
σ = η = 0.2.

We �rst discuss the case σ = η = 0. In the context of optimal trade execution
in a limit order book model, this setting (γ = γ0 > 0 a deterministic constant and
dRs = ρds, s ∈ [0, T ], for a deterministic constant ρ > 0) is considered in the pioneering
work [OW13], and the optimal strategy X∗ of (5.63) (for d = 0) appears in [OW13,
Proposition 3], where the cost functional J̃ of (5.8) is minimized over a set of strategies
which, in particular, have �nite variation. We stress again that we obtain optimality
of (5.63) in this setting as a result of a di�erent optimization problem (minimization
of the cost functional J sem of (5.2) over semimartingale strategies). Notice that the
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5 Càdlàg semimartingale strategies

optimal strategy X∗ of (5.63) is deterministic, has jumps at times 0 and T (i.e., block
trades at the beginning and at the end) and is continuous on (0, T ). It is worth noting
that the associated deviation process DX∗ is constant on (0, T ) (but, clearly, has jumps
at times 0 and T ). In the case d = 0 the strategy X∗ is monotone. In general, the
strategy is monotone only on (0, T ]. Global monotonicity can fail because of the block
trade in the beginning (the size of the block trade depends not only on x but also
on d).
Suppose now that σ = η is nonvanishing. We point out that, with general stochastic

σ = η and negative correlation r = −1, we still have the same optimal strategy as
in the Obizhaeva-Wang case. In particular, the optimal strategy is deterministic and
of �nite variation, although now the price impact γ and the resilience R are both
stochastic and of in�nite variation. In some sense, the in�nite variation in the price
impact process γ is �canceled� by the in�nite variation in the resilience process R.
While the optimal strategies in the Obizhaeva-Wang case and for general stochastic
σ = η with correlation r = −1 coincide, this is not true for the associated deviation
processes. In contrast to the constant deviation in the Obizhaeva-Wang case, here DX∗

has in�nite variation (cf. (5.64); see also Figure 5.2).

5.4.3 Intermediate jump

Consider the setting of Remark 5.3.2. In order to construct an optimal strategy with
jumps inside (0, T ) in Situation 1 of Remark 5.3.2, it is enough to take

a càdlàg semimartingale µ satisfying (5.55) that exhibits jumps in (0, T ),

i.e., with positive probability, {s ∈ (0, T ) : ∆µs 6= 0} 6= ∅, and such that

the corresponding process Y is nonvanishing. (5.65)

Indeed, in this case, ϑ̃ is a càdlàg semimartingale, so we are in Situation 1 of Re-
mark 5.3.2 with ϑ ≡ ϑ̃. Moreover, as Y is continuous and nonvanishing, we readily see
from (5.56) that

∆µs 6= 0 ⇐⇒ ∆ϑ̃s 6= 0,

hence the optimal strategy X∗, which is given by (5.58), contains block trades inside
(0, T ).
We consider a particular example.

Example 5.4.1. To show a speci�c example of this kind, we take, for some t0 ∈ (0, T ),
a deterministic µ given by the formula µs = 1[t0,T ](s), s ∈ [0, T ]. Observe that (5.55)
then is satis�ed whenever ρ > 0, so we choose some ρ > 0. BSDE (4.1) here takes the
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form (cf. Remark 4.0.2)

dYs = ρY 2
s ds+ Z(1)

s dW (1)
s + Z(2)

s dW (2)
s , s ∈ [0, t0],

dYs =

(
2(ρ+ 1)2Y 2

s

2ρ+ 1
− Ys

)
ds+ Z(1)

s dW (1)
s + Z(2)

s dW (2)
s , s ∈ [t0, T ],

YT =
1

2
,

and its unique solution is given by (Y, Z ≡ 0,M⊥ ≡ 0), where

Ys =

{
1

Y −1
t0

+(t0−s)ρ
, s ∈ [0, t0),

(2ρ+ 1)
(
2(ρ+ 1)2 − 2ρ2es−T

)−1
, s ∈ [t0, T ].

(5.66)

Notice that Y is deterministic, continuous, strictly increasing, and (0, 1/2]-valued. In
particular, (5.65) is satis�ed, and what is stated after (5.65) applies. Observe that, in
this speci�c example,

ϑs =

{
Ys, s ∈ [0, t0),

Ys

(
1 + 1

2ρ+1

)
, s ∈ [t0, T ],

(5.67)

which is a deterministic, strictly increasing, (0, 1)-valued, càdlàg function with the only
jump at time t0:

∆ϑt0 =
Yt0

2ρ+ 1
> 0.

From (5.66) and (5.67) we can compute that

exp

(
−
∫ s

0

ϑr(µr + ρ) dr

)
=

{
Y0Y

−1
s , s ∈ [0, t0),

et0−sY0Y
−1
s , s ∈ [t0, T ],

(5.68)

which, together with (5.66) and (5.67), provides the optimal strategy in closed form
(see (5.58)). However, the qualitative structure of the optimal strategy X∗, in fact,
follows from (5.58) even without calculating (5.68):
First, X∗ is deterministic, and, due to ϑ being strictly increasing and (0, 1)-valued,

X∗ is monotone on (0, T ]. Moreover, the facts that ϑ < 1, ∆ϑt0 > 0, and x 6= d
γ0

together with (5.58) imply that the optimal strategy necessarily has block trades at
the end and at time t0. Their signs are opposite to the sign of x− d

γ0
.

Whether or not X∗ has a block trade at the beginning depends on the value of
the initial deviation d. Namely, X∗ has a block trade at the beginning if and only if
x 6= (x− d

γ0
)(1− ϑ0), i.e., if and only if d 6= − ϑ0

1−ϑ0γ0x.
Likewise, we claim the monotonicity of X∗ only on (0, T ] because whether or not

X∗ is monotone on [0, T ] also depends on d. More precisely, X∗ is monotone on [0, T ]
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5 Càdlàg semimartingale strategies

if and only if either x ≥ 0, d ≥ − ϑ0
1−ϑ0γ0x holds or x ≤ 0, d ≤ − ϑ0

1−ϑ0γ0x holds. In
particular, if d = 0, then X∗ is monotone on [0, T ].
Between the block trades, the associated deviation processDX∗ is constant: It follows

from (5.37), (5.67), and (5.68) that

DX∗

s =

{
(d− γ0x)Y0, s ∈ [0, t0),

(d− γ0x)Y0

(
1 + 1

2ρ+1

)
, s ∈ [t0, T ).

Figure 5.3 is an illustration for speci�c parameter values.
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Figure 5.3: Left: The optimal strategy X∗ (black) and the price impact γ (red) in the
setting of Example 5.4.1 with µs = 1[t0,T ](s), s ∈ [0, T ], and for T = 5,
x = 100, d = 0, γ0 = 1, ρ = 0.3, and t0 = 4. Note the di�erence in scales.
Right: The associated deviation process D∗ = DX∗ (black) and the price
impact γ (red) for the same situation.

Observe that the reaction of the optimal strategy to changes in the price impact
is rather sensitive: here only µ jumps at time t0 (not the price impact γ itself), but
this already causes a jump in X∗ at time t0. Finally, it is worth noting that a model
with deterministic time-varying price impact and resilience coe�cient was considered
in [FSU14, Section 8], but examples of such type are not possible in their framework be-
cause the smoothness assumption in [FSU14, Assumption 8.1] excludes the possibility
of block trades inside (0, T ) (cf. [FSU14, Theorem 8.4]).
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6

Negative resilience coe�cient

Trade execution models of Obizhaeva-Wang type and related works incorporate some
kind of resilience e�ect. This is often1 done by having a term −ρsDsds in the dynamics
of the deviation D, i.e, by an exponential resilience e−

∫ s
t ρrdr described by a resilience

coe�cient ρ; see, e.g, [OW13,AFS08,AS10,AA14,BF14,FSU14,FSU19], but also arti-
cles in the line of [GH17]. This resilience coe�cient is typically assumed to be positive.
The explanation is that the impact of a trade should decay over time. But a negative
resilience coe�cient also has a natural interpretation, as it models self-exciting behav-
ior of the price impact, where trading activities of the large investor stimulate other
market participants to trade in the same direction. As in [CMK16] and in [FHX22b],
we motivate self-exciting price impact by the following reasons. Imagine, for instance,
a large trader performing extensive selling. Firstly, a continued selling pressure makes
it more and more di�cult to �nd counterparties. Secondly, such an extensive selling by
the large trader may trigger stop-loss strategies by other market participants, where
they start selling in anticipation of further decrease in the price. Thirdly, extensive
selling may also attract predatory traders that employ front-running strategies. In
each case, we obtain an increased price impact for subsequent trades.
We point out that there recently appeared several articles on trade execution that, in

di�erent ways (often involving Hawkes processes), model self-excitement of the impact
of trading on the price (see, e.g., [AB16], [FHX22b], [CJR18], [CMK16]). We propose
a negative resilience coe�cient as an alternative, simple way of modeling this e�ect.
A �more endogenous� approach is presented by Fu, Horst, and Xia in [FHX22b], who
consider liquidation games between several large traders (and the corresponding mean-
�eld limit as well as the single-player subcase) with a self-exciting order �ow. There,
the large traders' trading activity triggers child orders, and the strategies come out as
Nash equilibria in the game. Despite the di�erences in the set-up, it is interesting to

1There are also works that employ a, typically nonincreasing, decay kernel to model resilience (cf.
[GS13, Section 22.4.1]; see also [Gat10], [ASS12], and [GSS12]). The case of constant price impact
and resilience coe�cient as in [OW13] can be represented by such a decay kernel. In contrast,
when the price impact or resilience coe�cient are time-varying, this is not covered by the notion
of decay kernel in the above-mentioned literature, as also remarked in [FSU14, Remark 8.9].
We further mention that also works such as [BBF18a] include resilience.
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6 Negative resilience coe�cient

observe the following qualitative similarity in the strategies that may result from our
approach and from the one in [FHX22b]. In this chapter we, in particular, discuss that,
in our framework, it is never optimal to overshoot the execution target whenever the
resilience coe�cient is positive, but it can be optimal to overshoot the target if we allow
the resilience coe�cient to take negative values. In other words, in our framework,
the possibility to overshoot the target is a qualitative e�ect of self-excitation via a
negative resilience coe�cient. In the same vein, in the single-player benchmark model
for [FHX22b] without self-excitation, which goes back to [GH17], it is not optimal
to overshoot the execution target (this is observed in [HK21, Theorem 2.2]), whereas
the resulting strategies in the model with self-excitation in [FHX22b] do sometimes
overshoot the target (cf. Figure 1 or Figure 2 in [FHX22b]).

We assume throughout this chapter the framework of Section 3.1 and consider the
semimartingale control problem of Section 5.1.1. Furthermore, as we want to focus
on the e�ect of the resilience coe�cient ρ taking negative values, we leave aside the
di�usion term in the de�nition of the resilience process R, i.e., we set η ≡ 0, and we
consider a risk-neutral investor, i.e., we set λ ≡ 0. We moreover assume the setting of
Section 4.4, where the local martingales are Brownian motions and the input processes
are adapted to a �ltration that is orthogonal to the Brownian �ltration. For the whole
chapter, we also suppose that (C≥ε) and (Cbdd) are satis�ed, and we �x the initial
time t = 0.
In Section 6.1 we de�ne and investigate in this framework what we call �overjumping

zero� and �premature closure�. Intuitively, overjumping zero is optimal if, at some
time, the optimal strategy jumps from a strictly negative position to a strictly positive
position, or vice versa. Premature closure is optimal if there is some time point before
the end of the trading period when the optimal position already takes the value 0.
We complement the theory of Section 6.1 with some case studies in Section 6.2 and
Section 6.3. In the latter we study a situation where it is optimal to close the position
prematurely, keep it closed during some time interval, and reenter trading again.
This chapter is based on the publication [AKU22b] (joint work with Thomas Kruse

and Mikhail Urusov) and in particular contains material of Sections 1, 3.2, 4, and 5
thereof.

6.1 Overjumping zero and premature closure

Recall that, in the present set-up (see the end of the introduction of this chapter),
Proposition 4.4.1 ensures existence of a solution (Y, 0,M⊥) to BSDE (4.1). Fix such a
solution (Y, 0,M⊥). It then holds for the process de�ned in (5.22) that

ϑ̃s =
(ρs + µs)Ys

σ2
sYs + 1

2
(2ρs + µs − σ2

s)
, s ∈ [0, T ]. (6.1)
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6.1 Overjumping zero and premature closure

By (C≥ε), (Cbdd), and the fact that Y is [0, 1/2]-valued, we have that ϑ̃ is DW (1)-a.e.
bounded. In particular, Corollary 5.2.8 implies that (Y, 0,M⊥) is unique (among the
solutions of BSDE (4.1) whose second component is 0). Under the condition that

∃ a càdlàg semimartingale ϑ such that ϑ̃ = ϑ DW (1)-a.e. (6.2)

we obtain from Theorem 5.2.6 for any initial values x, d ∈ R (see also Lemma 5.2.2
for the case x = d

γ0
) the existence of an optimal strategy, which is unique up to

DW (1)-null sets. Notice that, in our present context, this is equivalent to uniqueness
up to indistinguishability. Indeed, if X∗ and X are optimal strategies, then they are
indistinguishable, asX∗ andX are càdlàg andX∗ = X DW (1)-a.e. The optimal strategy
and its associated deviation (under the condition (6.2)) are given by the formulas (5.36)
and (5.37), where, in the present set-up,

Qs = −
∫ s

0

ϑrσrdW
(1)
r −

∫ s

0

ϑr(µr + ρr − σ2
r)dr, s ∈ [0, T ].

We remark that condition (6.2) is in particular guaranteed if ρ, µ, σ are deterministic
and of �nite variation, as in the examples in Section 6.2 and Section 6.3 below.
In this section we study qualitative e�ects of a negative resilience coe�cient on the

optimal strategy. In particular, we examine e�ects that we call overjumping zero and
premature closure. Roughly speaking, we are interested in market situations where it
is optimal to change a buy program into a sell program (or vice versa), or where it
is optimal to close the position strictly before the end of the execution period. More
precisely, we intend to identify market conditions under which paths of optimal trade
execution strategies with positive probability jump over the target level 0 or already
take the value 0 prior to T .
To this end recall that under (6.2), given an initial position x ∈ R and an initial

deviation d ∈ R, the optimal strategy X∗ satis�es

X∗0− = x, X∗T = 0, and X∗s =

(
x− d

γ0

)
(1− ϑs)E(Q)s, s ∈ [0, T ).

This representation allows to disentangle the contributions to the optimal strategy's
sign of the initial conditions x and d on the one side and the input processes (recall
that, in this chapter, λ ≡ 0 and η ≡ 0) ρ, µ, and σ de�ning the market dynamics on
the other side. Indeed, since the stochastic exponential E(Q) is positive, the sign of
X∗s for s ∈ [0, T ) is determined by the signs of the two factors (x− d

γ0
) and (1− ϑs).

The �rst factor (x − d
γ0

) is determined by the initial conditions, does not depend
on time, and thus can only contribute to a change of sign of X∗ at time 0. Note
that (x − d

γ0
) has a di�erent sign than the initial condition X∗0− = x if and only if

γ0|x| < sgn(x)d. A nonzero initial deviation d 6= 0 can thus have the e�ect that X∗

changes its sign directly at time 0. In practice, one would typically assume that d = 0,
in which case this factor does not contribute to a change of sign.
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6 Negative resilience coe�cient

In the sequel we focus on the contribution of the second factor (1− ϑ) and provide
de�nitions of the e�ects overjumping zero and premature closure which are only built
upon (1 − ϑ). This factor and hence also these e�ects are determined by the input
processes ρ, µ, and σ driving the market dynamics and are independent of the initial
conditions x and d.
For ease of notation, we extend the domain of ϑ to the point 0− by setting ϑ0− = 0.

In what follows, we denote by πΩ the projection operator from Ω × [0, T ] onto Ω (in
particular, for C ∈ FT ⊗ B([0, T ]), πΩ(C) = {ω ∈ Ω: ∃s ∈ [0, T ] s.t.(ω, s) ∈ C}).

De�nition 6.1.1. Assume that (6.2) holds true. De�ne

Aoj = {(ω, s) ∈ Ω× [0, T ) : (1− ϑs−(ω))(1− ϑs(ω)) < 0},
Apc = {(ω, s) ∈ Ω× [0, T ) : (1− ϑs−(ω))(1− ϑs(ω)) = 0}.

(i) We say that overjumping zero is optimal in the limit order book model driven by
ρ, µ, and σ if P (πΩ(Aoj)) > 0.

(ii) We say that premature closure is optimal if P (πΩ(Apc)) > 0.

In relation with De�nition 6.1.1 we need to make the following comments.

Remark 6.1.2. (i) πΩ(Aoj), πΩ(Apc) are elements of FT by the measurable projection
theorem (e.g., [RY99, Theorem I.4.14]): recall that FT is complete and notice that, as
ϑ is adapted and càdlàg, Aoj, Apc are optional sets, and thus in particular Aoj, Apc ∈
FT ⊗ B([0, T ]).
(ii) The terms overjumping zero and premature closure are well-de�ned, as ϑ satis-

fying (6.2) is unique up to indistinguishability.

It is worth noting that the terms overjumping zero and premature closure could be
equivalently de�ned with the help of stopping times:

Lemma 6.1.3. Assume that (6.2) holds true. Then, overjumping zero (resp., prema-
ture closure) is optimal if and only if there exists a stopping time τ : Ω → [0, T ] such
that P (τ < T ) > 0 and

(1− ϑτ−)(1− ϑτ ) < 0 (resp., = 0) P -a.s. on {τ < T}.

Proof. The claims follow from the optional section theorem (e.g., [RY99, Theorem
IV.5.5]), which applies because Aoj and Apc are optional sets. We here provide more
detail on the proof for overjumping zero (the proof for premature closure is analogous).
Suppose �rst that overjumping zero is optimal. Then, we can choose a constant

ε̃ ∈ (0, P (πΩ(Aoj))). By the optional section theorem, there exists a stopping time
τε̃ : Ω → [0, T ] such that P (τε̃ < T ) ≥ P (πΩ(Aoj)) − ε̃ > 0, and for any ω̃ ∈ {ω ∈
Ω: τε̃(ω) < T}, we have that (ω̃, τε̃(ω̃)) ∈ Aoj.
For the other direction, assume that there exists a stopping time τ : Ω→ [0, T ] such

that P (τ < T ) > 0 and (1−ϑτ−)(1−ϑτ ) < 0 P -a.s. on {τ < T}. Then, P (πΩ(Aoj)) > 0
due to πΩ(Aoj) ⊇ {ω ∈ Ω: (1−ϑτ−(ω)(ω))(1−ϑτ(ω)(ω)) < 0}∩{ω ∈ Ω: τ(ω) < T}.
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6.1 Overjumping zero and premature closure

We also remark that a simple attempt to de�ne τ as, say, T ∧ inf{s ∈ [0, T ) : (1 −
ϑs−)(1−ϑs) < 0} does not always work, as, for ω such that τ(ω) < T but the in�mum
is not attained, the expression (1− ϑτ−(ω)(ω))(1− ϑτ(ω)(ω)) will be zero.
We now turn to the question about new qualitative e�ects we can get if we allow

for negative values of the resilience coe�cient. Loosely speaking, with a resilience
coe�cient that is positive everywhere, we will not be able to observe overjumping zero
or premature closure in the optimal strategy. On the contrary, if we allow the resilience
coe�cient to take negative values, then overjumping zero and premature closure in the
optimal strategy become possible. Proposition 6.1.4 and Proposition 6.1.6 contain
precise mathematical formulations of these statements. At the end of this section we
also provide a more detailed informal discussion.

Proposition 6.1.4. (i) We have that

ϑ̃. ≤
(

1− ρ.
2ρ. + µ.

)
1{ρ.+µ.>0} ≤ 1 DW (1)-a.e. on {(ω, s) ∈ Ω× [0, T ] : ρs(ω) ≥ 0}.

(ii) Assume (6.2) and that ρ ≥ 0 DW (1)-a.e. Then overjumping zero is not optimal.

(iii) Assume (6.2) and that there exists an FT -measurable random variable δ such
that

δ > 0 P -a.s. and ρ ≥ δ DW (1)-a.e. (6.3)

Then neither overjumping zero nor premature closure is optimal.

Proof. (i) De�ne

B = {(ω, s) ∈ Ω× [0, T ] : Ys(ω) ∈ [0, 1/2],

2ρs(ω) + µs(ω)− σ2
s(ω) > 0,

ρs(ω) ≥ 0}

and observe thatB ∈ FT⊗B([0, T ]). It is enough to show the claim for every (ω, s) ∈ B.
To this end, we �x an arbitrary (ω, s) ∈ B. By (6.1) we have to show that

(ρs(ω) + µs(ω))Ys(ω)

σ2
s(ω)Ys(ω) + 1

2
(2ρs(ω) + µs(ω)− σ2

s(ω))
≤
(
ρs(ω) + µs(ω)

2ρs(ω) + µs(ω)

)
1{ρs(ω)+µs(ω)>0}. (6.4)

If ρs(ω) + µs(ω) ≤ 0, this inequality is evident. Therefore, we assume in the sequel
that ρs(ω) + µs(ω) > 0. Note that Ys(ω) ≤ 1

2
implies that

Ys(ω)− 1

2

2ρs(ω) + µs(ω)− σ2
s(ω)

2ρs(ω) + µs(ω)
≤ Ys(ω)

(
1− 2ρs(ω) + µs(ω)− σ2

s(ω)

2ρs(ω) + µs(ω)

)
=

σ2
s(ω)Ys(ω)

2ρs(ω) + µs(ω)
.
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6 Negative resilience coe�cient

This shows that

(ρs(ω) + µs(ω))Ys(ω) ≤ ρs(ω) + µs(ω)

2ρs(ω) + µs(ω)

(
σ2
s(ω)Ys(ω) +

1

2
(2ρs(ω) + µs(ω)− σ2

s(ω))

)
,

and hence establishes (6.4).

(ii) We �rst notice that part (i) and (6.2) ensure that ϑ ≤ 1 DW (1)-a.e. As ϑ has
càdlàg paths, by the standard Fubini argument, we infer that P -a.s. it holds: for all
s ∈ [0, T ], we have ϑs ≤ 1. This shows that overjumping zero is not optimal.

(iii) It su�ces (cf. part (ii)) to show that premature closure is not optimal. Let
c ∈ (0,∞) such that |µ| ≤ c DW (1)-a-e. and |ρ| ≤ c DW (1)-a-e. (exists due to (Cbdd)).
De�ne

C = {(ω, s) ∈ Ω× [0, T ] : Ys(ω) ∈ [0, 1/2],

2ρs(ω) + µs(ω)− σ2
s(ω) > 0,

max{|ρs(ω)|, |µs(ω)|} ≤ c,

δ(ω) > 0 and ρs(ω) ≥ δ(ω)}

and notice that C ∈ FT ⊗ B([0, T ]). It follows from part (i) that

ϑ̃s(ω) ≤ max

{
1− δ(ω)

3c
, 0

}
< 1 for all (ω, s) ∈ C.

As DW (1)((Ω× [0, T ]) \C) = 0 and ϑ is càdlàg with ϑ̃ = ϑ DW (1)-a.e., we conclude that
P -a.s. it holds that

sup
s∈[0,T ]

ϑs ≤ max

{
1− δ

3c
, 0

}
< 1

(again by the Fubini argument). Hence, premature closure is not optimal.

In relation with Proposition 6.1.4 we make the following comments.

Remark 6.1.5. (a) To discuss the assumption in part (iii) of Proposition 6.1.4 in more
detail, we remark that, if

inf
s∈[0,T ]

ρs > 0 P -a.s., (6.5)

then (6.3) is satis�ed. Indeed, in this case we can take δ = infs∈[0,T ] ρs because, by the
measurable projection theorem, for all z ∈ R we have that{

ω ∈ Ω: inf
s∈[0,T ]

ρs(ω) < z
}

= πΩ ({(ω, s) ∈ Ω× [0, T ] : ρs(ω) < z}) ∈ FT ,

i.e., δ := infs∈[0,T ] ρs is FT -measurable. More precisely, (6.3) is slightly weaker than
(6.5) and can be equivalently expressed as follows: there exists an FT ⊗ B([0, T ])-
measurable ρ̃ such that ρ̃ = ρ DW (1)-a.e. and infs∈[0,T ] ρ̃s > 0 P -a.s.
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6.1 Overjumping zero and premature closure

(b) The observation in part (iii) of Proposition 6.1.4 is in line with [HK21], where in
a di�erent but related setting (with a strictly positive stochastically varying resilience
coe�cient) it is observed that the optimal strategy never changes its sign (see [HK21,
Theorem 2.2]), which in our terminology means that neither overjumping zero nor
premature closure is optimal.

(c) Comparison of (ii) and (iii) poses the question if premature closure can be optimal
with nonnegative resilience. The answer is a�rmative: e.g., if ρ ≡ 0, then ϑs = 1
for all s ∈ [0, T ], and the optimal strategy is to close the position immediately (cf.
Proposition 5.2.3). This is, however, a rather degenerate example. A much more
interesting one, for which we, however, allow the resilience to be negative, is presented
in Section 6.3.

In the sequel, for a set C ⊆ Ω× [0, T ] and ω ∈ Ω, we use the notation

Cω = {s ∈ [0, T ] : (ω, s) ∈ C}

for the section of C. We will permanently use the following well-known statements
(see, e.g., [Sal16, Lemma 7.2 and Theorem 7.9]): if C ∈ FT ⊗ B([0, T ]), then

� for any ω ∈ Ω, it holds that Cω ∈ B([0, T ]),

� the mapping Ω 3 ω 7→ Leb(Cω) is FT -measurable.

Note that here and in the sequel we use Leb to denote the Lebesgue measure on
([0, T ],B([0, T ])).

Proposition 6.1.6. Assume (6.2), and that there exists an FT -measurable random
variable δ such that

P

({
ω ∈ Ω: ∀n ∈ N, Leb

(
Bω ∩

[
T − 1

n
, T
])

> 0

})
> 0, (6.6)

where

B = {(ω, s) ∈ Ω× [0, T ] : δ(ω) > 0 and ρs(ω) ≤ −δ(ω)} (∈ FT ⊗ B([0, T ])). (6.7)

Then overjumping zero or premature closure is optimal.

Proof. 1. In the �rst step of the proof we establish that (C≥ε), (Cbdd), and (6.6)
imply that DW (1)(C) > 0, where

C = {(ω, s) ∈ Ω× [0, T ] : ϑ̃s(ω) > 1} (∈ FT ⊗ B([0, T ])).

To this end, we �rst recall from Lemma 4.1.5 that lims↑T Ys = YT (= 1
2
) P -a.s., i.e.,

for the solution (Y, 0,M⊥) of BSDE (4.1), the orthogonal to W (1) and W (2) martingale
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6 Negative resilience coe�cient

M⊥ does not jump at terminal time T . Let c ∈ (0,∞) such that |µ| ≤ c DW (1)-a-e.
and |ρ| ≤ c DW (1)-a-e. (exists due to (Cbdd)). We de�ne

A = {(ω, s) ∈ Ω× [0, T ] : lim
r↑T

Yr(ω) = YT (ω) =
1

2
,

Ys(ω) ≥ 0,

2ρs(ω) + µs(ω)− σ2
s(ω) > 0,

max{|ρs(ω)|, |µs(ω)|} ≤ c}

and note that A ∈ FT ⊗ B([0, T ]), DW (1)((Ω× [0, T ]) \ A) = 0. Now we set

K = B ∩ A,

where B is from (6.7). From 0 = DW (1)((Ω× [0, T ]) \A) =
∫

Ω

∫ T
0

1(Ac)ω(s)dsP (dω) we

have that 1 = P ({ω ∈ Ω:
∫ T

0
1(Ac)ω(s)ds = 0}) = P ({ω ∈ Ω: Leb((Aω)c) = 0}). This

together with (6.6) implies that

0 < P

({
ω ∈ Ω: Leb(Aω) = Leb([0, T ]) and ∀n ∈ N,Leb

(
Bω ∩

[
T − 1

n
, T

])
> 0

})
= P

({
ω ∈ Ω: ∀n ∈ N,Leb

(
Aω ∩Bω ∩

[
T − 1

n
, T

])
> 0

})
,

i.e., (6.6) holds with B replaced by K. As DW (1)(C) =
∫

Ω
Leb(Cω)P (dω), we get

DW (1)(C) > 0 once we prove that

F :=

{
ω ∈ Ω: ∀n ∈ N, Leb

(
Kω ∩

[
T − 1

n
, T
])

> 0

}
⊆ {ω ∈ Ω: Leb(Cω) > 0}.

(6.8)
To establish (6.8), we �x an arbitrary ω0 ∈ F and make the following simple observation

s ∈ Kω0 ⇐⇒ (ω0, s) ∈ A and ρs(ω0) ≤ −δ(ω0) < 0.

This yields that, for s ∈ Kω0 ,

µs(ω0)− σ2
s(ω0) ≤ |µs(ω0)| ≤ c

and further

0 < 2ρs(ω0) + µs(ω0)− σ2
s(ω0) < ρs(ω0) + µs(ω0)− σ2

s(ω0) ≤ c− δ(ω0). (6.9)

Now we compute from (6.1) that, for s ∈ Kω0 , we have the equivalence

ϑ̃s(ω0) > 1 ⇐⇒ 2Ys(ω0) > 1 +
ρs(ω0)

ρs(ω0) + µs(ω0)− σ2
s(ω0)

. (6.10)
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6.2 Piecewise constant resilience coe�cient

Moreover, (6.9) and (6.10) reveal that, for s ∈ Kω0 ,

if 2Ys(ω0) > 1− δ(ω0)

c− δ(ω0)
, then ϑ̃s(ω0) > 1 (⇐⇒ s ∈ Cω0). (6.11)

Recalling that ω0 ∈ F , the de�nition of the event F in (6.8), and that limr↑T Yr(ω0) = 1
2

(as ω0 ∈ F implies that there exists s ∈ [0, T ] with (ω0, s) ∈ K ⊆ A), we conclude
from (6.11) that there exists n0 ∈ N (which depends on ω0) such that

Kω0 ∩
[
T − 1

n0

, T
]
⊆ Cω0 ;

hence Leb(Cω0) ≥ Leb(Kω0 ∩ [T − 1/n0, T ]) > 0. We thus proved (6.8) and completed
the �rst step of the proof.

2. The �rst step together with (6.2) yields that DW (1)(ϑ > 1) > 0. De�ne the
stopping time τ = T ∧ inf{s ∈ [0, T ] : ϑs > 1} (as usual, inf ∅ := ∞). We get from
DW (1)(ϑ > 1) > 0 that P (τ < T ) > 0 (by the Fubini argument). Since ϑ0− = 0 and ϑ
is càdlàg, P -a.s. on {τ < T} it holds that ϑτ− ≤ 1 and ϑτ ≥ 1. By Lemma 6.1.3, this
yields the result.

The meaning of (6.6) is that, with positive probability, the resilience coe�cient ρ is
assumed to be negative with positive Lebesgue measure in any neighborhood of the
terminal time T .
It is instructive to compare Proposition 6.1.6 with part (iii) of Proposition 6.1.4.

The assumptions are �almost� complementary: compare (6.3) with (6.6)�(6.7). In
both cases, we step a little away from 0 (this is the role of δ in (6.3) and (6.7)) but in
a �soft� sense (the bound δ can depend on ω).
In view of these interpretations, we informally summarize part (iii) of Proposi-

tion 6.1.4 and Proposition 6.1.6 as follows. Positivity of the resilience coe�cient implies
that neither overjumping zero nor premature closure is optimal; negativity �close to T �
implies optimality of overjumping zero or premature closure. There arises the question
of whether negativity �far from T � also implies overjumping zero or premature closure.
The answer is negative: see Example 6.2.2 below.

6.2 Piecewise constant resilience coe�cient

We here analyze the e�ects of a negative resilience coe�cient and discuss the results
of Proposition 6.1.4 and Proposition 6.1.6 in a subsetting with N di�erent regimes
of resilience. That is to say that ρ is piecewise constant. Moreover, we assume that
ρ is deterministic, µ > 0 is constant deterministic, and σ ≡ 0. These assumptions
lead to deterministic optimal strategies. We summarize the results in the following
proposition.
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6 Negative resilience coe�cient

Proposition 6.2.1. Assume that γ0 > 0 is deterministic and that2 x− d
γ0
> 0. Suppose

furthermore that σ ≡ 0, that µ > 0 is a deterministic constant, and that the resilience
coe�cient ρ : [0, T ] → (−µ/2,∞) is piecewise constant in the sense that there exist
N ∈ N, ρ(1), . . . , ρ(N) ∈ (−µ/2,∞), and 0 = T0 < T1 < . . . < TN = T such that for all
s ∈ [0, T ) it holds that

ρs =
N∑
i=1

ρ(i)1[Ti−1,Ti)(s).

Then, (C≥ε) and (Cbdd) are satis�ed. The unique solution of BSDE (4.1) is given by

Ys = e(T−s)µ

(
N∑

i=n(s)+1

(ρ(i) + µ)2eTµ

µ(ρ(i) + 1
2
µ)

(e−(s∨Ti−1)µ − e−Tiµ) + 2

)−1

,

Z(1)
s = 0, Z(2)

s = 0, M⊥
s = 0, s ∈ [0, T ],

(6.12)

where n(s) = max{i ∈ {0, . . . , N} : Ti ≤ s}. Moreover, (6.2) is satis�ed with

ϑs = ϑ̃s =
ρs + µ

ρs + 1
2
µ
Ys, s ∈ [0, T ].

The optimal strategy X∗ and the associated deviation DX∗ are deterministic, for every
i ∈ {1, . . . , N} they are continuous on (Ti−1, Ti), and for every i ∈ {1, . . . , N − 1}
they have a jump at Ti if and only if ρ has a jump at Ti. Furthermore, for every
i ∈ {1, . . . , N} the deviation DX∗ is constant on (Ti−1, Ti) and takes negative values,
and the optimal strategy X∗ is monotone on (Ti−1, Ti): more precisely, if ρ

(i) > 0 (resp.,
ρ(i) < 0; resp., ρ(i) = 0), then X∗ is strictly decreasing (resp., strictly increasing; resp.,
constant) on (Ti−1, Ti).

Proof. Clearly, (C≥ε) and (Cbdd) are satis�ed. Next note that Y from (6.12) satis�es
for all r ∈ [0, T ] that

Yr = e(T−r)µ

(∫ T

r

(ρs + µ)2

ρs + 1
2
µ
e(T−s)µds+ 2

)−1

.

From this it follows that Y satis�es the Bernoulli ODE

dYs =

(
(ρs + µ)2

ρs + 1
2
µ
Y 2
s − µYs

)
ds, s ∈ [0, T ], YT =

1

2
.

Consequently, (Y, 0, 0) is the, by Proposition 4.2.1 unique, solution of BSDE (4.1).
Moreover, ϑ̃ de�ned by (6.1) in the current setting reads ϑ̃s = ρs+µ

ρs+
1
2
µ
Ys, s ∈ [0, T ], and

2This assumption is only for ease of exposition. All statements hold also in the case x− d
γ0
< 0 with

the suitable adjustments.
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6.2 Piecewise constant resilience coe�cient

is càdlàg and of �nite variation, and thus we have (6.2) with ϑ = ϑ̃. In particular, ϑ is
deterministic, and since σ ≡ 0 and γ0, ρ, µ are deterministic, we have that the optimal
strategy X∗ and its deviation DX∗ are deterministic as well.
For every i ∈ {1, . . . , N −1} observe also that ϑ has a jump at Ti if and only if ρ has

a jump at Ti. This directly translates into jumps of the optimal strategy X∗ and jumps
of the associated deviation DX∗ via (5.36) and (5.37). To show that the deviation DX∗

is constant on each (Ti−1, Ti), i ∈ {1, . . . , N}, observe that for all i ∈ {1, . . . , N} and
s ∈ (Ti−1, Ti) it holds that

dϑs =
ρ(i) + µ

ρ(i) + 1
2
µ

(
(ρ(i) + µ)2

ρ(i) + 1
2
µ
Y 2
s − µYs

)
ds = ϑ2

s(ρ
(i) + µ)ds− µϑsds, (6.13)

and hence

d (γsϑsE(Q)s) = ϑsd(γsE(Q)s) + γsE(Q)sdϑs

= ϑsγsE(Q)s
(
µ− ϑs(µ+ ρ(i))

)
ds+ γsE(Q)s

(
ϑ2
s(ρ

(i) + µ)− µϑs
)
ds

= 0.

It thus follows from (5.37) that DX∗ is constant on (Ti−1, Ti) for i ∈ {1, . . . , N}.
Moreover, since ρ > −1

2
µ, µ > 0, and Y > 0, it holds that ϑ > 0, and therefore

DX∗ < 0 (recall that we assume x− d
γ0
> 0).

Next note that we have for all i ∈ {1, . . . , N} and s ∈ (Ti−1, Ti) that, using (6.13),

d((1− ϑs)E(Q)s) = (1− ϑs)dE(Q)s − E(Q)sdϑs

= −E(Q)s(1− ϑs)ϑs
(
µ+ ρ(i)

)
ds− E(Q)s

(
ϑ2
s(ρ

(i) + µ)− µϑs
)
ds

= −E(Q)sϑsρ
(i)ds.

Since ϑ > 0 and x − d
γ0
> 0, we conclude that if ρ(i) is positive, then X∗ in (2.10) is

decreasing on (Ti−1, Ti), and if ρ(i) is negative, then X∗ is increasing on (Ti−1, Ti), i ∈
{1, . . . , N}. Clearly, if ρ(i) = 0, then X∗ is constant on (Ti−1, Ti), i ∈ {1, . . . , N}.

In Example 6.2.2, Example 6.2.3, and Example 6.2.4 below we consider the setting
of Proposition 6.2.1 with N = 3 di�erent regimes of resilience. More precisely, we
assume in the remainder of this section the setting of Proposition 6.2.1 with N = 3,
x = 1, d = 0, γ0 = 1, µ = 0.5, and Ti = i for i ∈ {1, 2, 3}.
We already know from Proposition 6.1.6 that overjumping zero or premature closure

is optimal if we have a negative resilience coe�cient in the last regime (i.e., ρ(3) < 0).
In the three examples below we want to analyze under what conditions these e�ects
occur when the resilience coe�cient is positive in the last (and also the �rst) regime.
We choose ρ(1) = 0.1 and ρ(3) = 1. Proposition 6.1.4 entails that we necessarily need
ρ(2) < 0 to see these e�ects. Therefore, we choose a di�erent negative value for ρ(2) in
each example.
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6 Negative resilience coe�cient

For these choices of ρ(i), i ∈ {1, 2, 3}, Proposition 6.2.1 shows that it is optimal to
�rst sell during (0, 1), change this to a buy program on (1, 2) to pro�t from the negative
resilience coe�cient during that time interval, and then sell again during (2, 3). More-
over, since ρ(1) and ρ(3) are positive, we can already derive (e.g., by Proposition 6.1.4)
that ϑ < 1 on [0, 1) and on [2, 3), and hence that X∗ is strictly positive on [0, 1) and
on [2, 3) due to x− d

γ0
= 1.

Between Example 6.2.2, Example 6.2.3, and Example 6.2.4 we vary the size of ρ(2) <
0. This then determines if we get overjumping zero or premature closure for the optimal
strategy. Recall that ϑ in all examples has jumps at s = 1 and s = 2 and is continuous
on (0, 1), (1, 2), and (2, 3), with values strictly smaller than 1 on [0, 1) and [2, 3). The
facts that ρ(1) = 0.1, µ = 0.5, and Y1 ∈ (0, 1/2] yield that also ϑ1− < 1. We moreover
have that (1−ϑs−)(1−ϑs) > 0 for all s ∈ [0, 1)∪ (2, 3). This, continuity of ϑ on (1, 2),
ϑ1− < 1, and ϑ2 < 1 imply that overjumping zero is optimal if and only if at least one
of

ϑ1 =
ρ(2) + 1

2

ρ(2) + 1
4

Y1 > 1 (6.14)

and

ϑ2− =
ρ(2) + 1

2

ρ(2) + 1
4

Y2 > 1 (6.15)

is satis�ed. Premature closure is optimal if and only if

∃ s ∈ [1, 2] such that (1− ϑs−)(1− ϑs) = 0. (6.16)

The function ϑ and the optimal strategy X∗ for each of the examples below are shown
in Figure 6.1.

Example 6.2.2. We choose ρ(2) = −0.05. The �rst row in Figure 6.1 shows that ϑ
stays strictly smaller than one also on [1, 2), and hence the optimal strategy X∗ is
strictly positive on the time interval [0, 3). We conclude that, in general, a period
with negative resilience coe�cient does not necessarily lead to overjumping zero or
premature closure.

Example 6.2.3. We next provide an example where a negative resilience coe�cient
indeed leads to overjumping zero and premature closure. To this end we choose ρ(2) =
−0.085 in the above set-up. From the second row of Figure 6.1 we observe that ϑ
jumps above 1 at time s = 1, but then decays continuously below 1 already before
its next jump at s = 2. It therefore holds that (6.14) and (6.16) are satis�ed. We
thus have overjumping zero as well as premature closure for the optimal strategy. This
implies (recall x− d

γ0
= 1) that the optimal strategy jumps to a negative value at time

s = 1 and crosses 0 within the time interval (1, 2) to become positive again. Note that
the set of points in time s ∈ [0, T ) for which we have ϑs > 1 is strictly included in the
set where ρs < 0 (which is [1, 2)).
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Figure 6.1: Top row: ϑ and X∗ in Example 6.2.2 (ρ(2) = −0.05). Middle row: ϑ and X∗

in Example 6.2.3 (ρ(2) = −0.085). Bottom row: ϑ and X∗ in Example 6.2.4
(ρ(2) = −0.15). The initial positions are not depicted.

Example 6.2.4. We �nally provide an example where the set of points in time s ∈
[0, T ) for which we have ϑs > 1 is equal to the set where ρs < 0. This means that the
time periods with negative resilience coe�cient exactly coincide with the time periods
where the optimal strategy is negative. We achieve this for example for ρ(2) = −0.15
in the above set-up (see the third row of Figure 6.1). In particular, (6.14) is satis�ed,
i.e., overjumping zero is optimal. Furthermore, we can compute that (6.15) holds true
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6 Negative resilience coe�cient

as well. It follows that condition (6.16) is not met, and therefore, premature closure
is not optimal. Note that the optimal strategy changes its sign twice, but does not
continuously cross 0.

Remark 6.2.5. We can produce the main e�ects discussed in Example 6.2.2, Exam-
ple 6.2.3, and Example 6.2.4 also in the case with nonzero σ, see [AKU22b, Section 5.2]
for more detail. Observe that for deterministic constant σ 6= 0, although BSDE (4.1)
still has a deterministic solution and the process ϑ = ϑ̃ still is deterministic, the optimal
strategy X∗ and its associated deviation DX∗ in general become stochastic. Moreover,
the properties derived in Proposition 6.2.1 that DX∗ is constant between jumps and
that X∗ is monotone between jumps no longer hold when σ 6= 0.

6.3 Premature closure over a time interval

In Example 6.2.3 the optimal strategy entails to close the position at a certain point in
time and to reopen it immediately. On the other hand, in the case ρ ≡ 0, it is optimal
to close the position immediately and to not reenter trading (cf. Proposition 5.2.3). In
the same way we can show that if, say, ρ = 0 on (T1, T ), for some T1 ∈ (0, T ), then the
optimal strategy X∗ satis�es X∗ = 0 on [T1, T ] (and it can involve nontrivial trading
on [0, T1] depending on the behavior of the model parameters on (0, T1)). Keeping
the position closed during a time interval and reopening again is more tricky, but also
possible, as we show next. For an illustration, we refer to Figure 6.2.
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Figure 6.2: ϑ and a path of the optimal strategy X∗ in the setting where σ and µ =
σ2 +2 are deterministic constants and ρ is de�ned as in (6.17). The speci�c
parameter values are x = 1, d = 0, γ0 = 1, σ = 1, T = 3, T1 = 1, T2 = 2,
ρ(1) = 0.01, ρ(3) = 1, and c = 2.416. The initial value X∗0− = x = 1 is not
depicted. Observe that ϑ = 1 and X∗ = 0 between s = 1 and s = 2.

Let T1, T2 ∈ (0, T ) such that T1 < T2. Suppose that σ2 > 0 is a deterministic
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6.3 Premature closure over a time interval

constant and that µ = σ2 + 2. For deterministic ρ(1) > −1, ρ(3) > 0, and c > 0 let

ρs =


ρ(1), s ∈ [0, T1),(
ce2(s−T ) + 1

)−1/2 − 1, s ∈ [T1, T2),

ρ(3), s ∈ [T2, T ].

(6.17)

Note that (C≥ε) and (Cbdd) are satis�ed. Let Y be the unique solution3 of the ODE

dYs =

(
(ρs + σ2 + 2)2Y 2

s

σ2Ys + ρs + 1
− (σ2 + 2)Ys

)
ds, s ∈ [0, T ], YT =

1

2
. (6.18)

We have (6.2) with

ϑs = ϑ̃s =
(ρs + σ2 + 2)Ys
σ2Ys + ρs + 1

, s ∈ [0, T ].

This implies that

{s ∈ [0, T ] : ϑs = 1} =
{
s ∈ [0, T ] : Ys =

ρs + 1

ρs + 2

}
.

In the sequel we establish that if c is chosen such that lims↑T2
ρs+1
ρs+2

= YT2 , then
ρ+1
ρ+2

= Y on (T1, T2). To this end, suppose4 that lims↑T2
ρs+1
ρs+2

= YT2 and de�ne Ỹ = ρ+1
ρ+2

on (T1, T2). We show that Ỹ is a solution of (6.18) on (T1, T2). It holds for all
s ∈ (T1, T2) that

dỸs
ds

=
1

(ρs + 2)2

dρs
ds

= −ce2(s−T ) (ρs + 1)3

(ρs + 2)2
.

On the other hand, we obtain for all s ∈ (T1, T2) that

(ρs + σ2 + 2)2Ỹ 2
s

σ2Ỹs + ρs + 1
− (σ2 + 2)Ỹs =

(
(ρs + σ2 + 2)2(ρs + 1)

σ2(ρs + 1) + (ρs + 1)(ρs + 2)
− (σ2 + 2)

)
ρs + 1

ρs + 2

= ρs
ρs + 1

ρs + 2
.

In order to show that

− ce2(s−T ) (ρs + 1)3

(ρs + 2)2
= ρs

ρs + 1

ρs + 2
, s ∈ (T1, T2), (6.19)

3E.g., consider a trivial �ltration (F⊥s )s∈[0,T ] in Proposition 4.4.1 to see existence and uniqueness.
4Observe that to determine YT2

it su�ces to consider ρ only on [T2, T ]. In particular, YT2
does not

depend on the choice of c. Moreover, as ρ(3) 6= 0, we have that YT2 ∈ (0, 1/2) (via a straightforward
comparison argument for (6.18)). Therefore, we can set c = e2(T−T2)(1−2YT2)Y −2T2

> 0. It follows

for this c that lims↑T2

ρs+1
ρs+2 = YT2 .
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note �rst that this is equivalent to

−ce2(s−T )(ρs + 1)2 = ρs(ρs + 2), s ∈ (T1, T2).

Denoting as = ce2(s−T ), s ∈ (T1, T2), and using ρs + 1 = (as + 1)−
1
2 , s ∈ (T1, T2), we

can rewrite this as

−as(as + 1)−1 =
(

(as + 1)−
1
2 − 1

)(
(as + 1)−

1
2 + 1

)
, s ∈ (T1, T2).

The right-hand side equals (as + 1)−1 − 1, s ∈ (T1, T2). We thus obtain the equivalent
equation

−as = 1− (as + 1), s ∈ (T1, T2),

which clearly holds true. This proves (6.19). Thus, by uniqueness of the solution of
(6.18) and lims↑T2

ρs+1
ρs+2

= YT2 , we have that Y = ρ+1
ρ+2

on (T1, T2).
This implies that ϑ = 1 on (T1, T2). It follows that for all x, d ∈ R, almost all paths

of the optimal strategy X∗ (cf. (5.36)) equal 0 on [T1, T2). Finally, observe that if
x, d ∈ R with x 6= d

γ0
, then almost all paths of X∗ are nonzero everywhere on [T2, T )

because, on [T2, T ), we have Y ≤ 1
2
< ρ(3)+1

ρ(3)+2
, as ρ(3) > 0, i.e., Y = ρ+1

ρ+2
holds nowhere

on [T2, T ).
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7

Continuous extension from

�nite-variation to progressively measurable

strategies

In the current and the subsequent chapter we study optimal trade execution in con-
tinuous time using progressively measurable strategies1. As in Chapter 2, we allow for
an FT -measurable terminal position in the de�nition of the set of admissible strategies
and for a risk term with stochastic target process in the cost functional. We use the
price impact process γ and the resilience process R of Section 3.1 for independent
Brownian motions M (1) = W (1), M (2) = W (2). As in Chapter 2 and Chapter 5, we
only include a price deviation into our considerations and do not explicitly deal with
an una�ected price.
To set up the stochastic control problem for progressively measurable strategies,

we start from the �nite-variation stochastic control problem of Section 7.1. Control
problems of the kind of Section 7.1 are typical for continuous-time models of Obizhaeva-
Wang type. We also refer to the discussion in Section 5.1.2 and to the basic example
of an Obizhaeva-Wang type model in Section 1.1. The aim in the present chapter is
to establish a continuous extension of the cost functional (7.4) from �nite-variation
strategies to progressively measurable strategies.
In a �rst step, we in Section 7.2 provide alternative representations for the cost

functional and for the deviation associated to a �nite-variation strategy of Section 7.1
that do not contain the strategy in the integrator anymore. This makes it feasible
to, more generally, consider progressively measurable strategies in Section 7.3. In
Section 7.4 we introduce the scaled hidden deviation process as a tool for the proof
of Theorem 7.5.2 and for Section 8.1. Finally, we in Section 7.5 present and prove
the main result Theorem 7.5.2 of this chapter on the continuous extension of the cost
functional.
Throughout this chapter, we assume the setting of Section 3.1 and let M (j) = W (j),

j ∈ {1, . . . ,m}, be independent Brownian motions.

1We refer to Chapter 9 for a discussion of the relation between Chapter 5 (cf. [AKU21a]) and
Chapter 7�Chapter 8 (cf. [AKU22a])

173



7 Continuous extension

This chapter makes extensive use of material from Section 1 and Section 5 of the
preprint [AKU22a] (joint work with Thomas Kruse and Mikhail Urusov).

7.1 The �nite-variation stochastic control problem

In addition to the setting of Section 3.1 with M (j) = W (j), j ∈ {1, . . . ,m}, we assume
that ξ̂ is an FT -measurable random variable satisfying

E[γT ξ̂
2] <∞, (7.1)

and that ζ = (ζs)s∈[0,T ] is a progressively measurable process satisfying

E

[∫ T

0

γsζ
2
sds

]
<∞. (7.2)

As in Chapter 2, we interpret ξ̂ as the target position to be necessarily reached at
terminal time (see also the de�nition of the set of admissible strategies), and ζ as
a target process that describes a target position to be preferably followed over the
trading period (see also the de�nition of the cost functional in (7.4)). Note that ζ can
only become relevant if λ is not chosen equivalent to zero.
We next introduce the �nite-variation strategies that we consider in the sequel.

Given t ∈ [0, T ] and d ∈ R we associate to an adapted, càdlàg, �nite-variation process
X = (Xs)s∈[t−,T ] a process DX = (DX

s )s∈[t−,T ] de�ned by

dDX
s = −DX

s dRs + γsdXs, s ∈ [t, T ], DX
t− = d. (7.3)

If we have a sequence of adapted, càdlàg, �nite-variation processes Xn = (Xn
s )s∈[t−,T ],

n ∈ N, we usually writeDn instead of DXn
for n ∈ N. For t ∈ [0, T ], x, d ∈ R we denote

by Afv
t (x, d) the set of all adapted, càdlàg, �nite-variation processes X = (Xs)s∈[t−,T ]

satisfying
Xt− = x, XT = ξ̂,

and

(B1) E
[∫ T

t
γ−1
s (DX

s )2ds
]
<∞,

(B2) E

[(∫ T
t

(DX
s )4γ−2

s η2
sds
) 1

2

]
<∞,

(B3) E

[(∫ T
t

(DX
s )4γ−2

s σ2
sds
) 1

2

]
<∞.
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7.2 Alternative representations for the cost functional and the deviation process

Any element X ∈ Afv
t (x, d) is called a �nite-variation execution strategy. The process

DX de�ned via (7.3) is called the associated deviation process.
For t ∈ [0, T ], x, d ∈ R, X ∈ Afv

t (x, d) and associated DX , the cost functional J fv is
given by

J fv
t (x, d,X) = Et

[∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

]
+ Et

[∫ T

t

γsλs (Xs − ζs)2 ds

]
(7.4)

(see the proofs of Proposition 7.2.2 and Proposition 7.4.2 for well-de�nedness under
(Cbdd)). The �nite-variation stochastic control problem consists of minimizing the
cost functional J fv over X ∈ Afv

t (x, d).

7.2 Alternative representations for the cost

functional and the deviation process

In this section we �rst in Proposition 7.2.1 provide the alternative pathwise represen-
tation (7.7) for the integral with respect to the strategy X that appears in the cost
functional J fv in (7.4). This subsequently, in Proposition 7.2.2, leads to the alter-
native representation (7.11) for the cost functional J fv. Furthermore, we in the �rst
proposition also derive the alternative expression (7.8) for the deviation process DX .
Note that neither X nor DX show up as an integrator in (7.7) and (7.8). This allows
to extend the de�nition of J fv beyond the set of �nite-variation execution strategies
and even semimartingale execution strategies. Moreover, the presentation and proof
of Proposition 7.2.1 are kept general in the sense that they do not hinge on the speci�c
dynamics of the resilience process R or of the price impact process γ (as long as both
are continuous semimartingales and γ is strictly positive and R0 = 0).
For t ∈ [0, T ] we introduce an auxiliary process ν = (νs)s∈[t,T ]. It is de�ned to be

the solution of
dνs = νsd (Rs + [R]s) , s ∈ [t, T ], νt = 1. (7.5)

Observe that the inverse is given by

dν−1
s = −ν−1

s dRs, s ∈ [t, T ], ν−1
t = 1. (7.6)

Proposition 7.2.1. Let t ∈ [0, T ] and x, d ∈ R. Suppose that X = (Xs)s∈[t−,T ] is an
adapted, càdlàg, �nite-variation process with Xt− = x and with associated process DX

de�ned by (7.3). It then holds that∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs =

1

2

(
γ−1
T (DX

T )2 −
∫ T

t

(DX
s )2ν2

sd
(
ν−2
s γ−1

s

))
− d2

2γt
(7.7)

and

DX
r = γrXr + ν−1

r

(
d− γtx−

∫ r

t

Xsd(νsγs)

)
, r ∈ [t, T ]. (7.8)
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7 Continuous extension

Proof. Observe that integration by parts implies for all s ∈ [t, T ] that

d(νsD
X
s ) = νsdD

X
s +DX

s dνs + d[ν,DX ]s

= −νsDX
s dRs + νsγsdXs + νsD

X
s dRs + νsD

X
s d[R]s + d[ν,DX ]s

= νsγsdXs + νsD
X
s d[R]s + d[ν,DX ]s.

Since
d[ν,DX ]s = νsd[R,DX ]s = −νsDX

s d[R]s, s ∈ [t, T ],

it follows that the process D̃X
s = νsD

X
s , s ∈ [t, T ], D̃X

t− = d, satis�es

dD̃X
s = d(νsD

X
s ) = νsγsdXs, s ∈ [t, T ]. (7.9)

In particular, D̃X is of �nite variation. The facts that ∆DX
s = γs∆Xs, s ∈ [t, T ], and

dD̃X
s = νsγsdXs, s ∈ [t, T ], imply that∫

[t,T ]

(
2DX

s− + γs∆Xs

)
dXs =

∫
[t,T ]

(
2DX

s− + ∆DX
s

)
dXs

=

∫
[t,T ]

(
2DX

s− + ∆DX
s

)
γ−1
s ν−1

s dD̃X
s

=

∫
[t,T ]

(
2D̃X

s− + ∆D̃X
s

)
ν−2
s γ−1

s dD̃X
s .

(7.10)

Denote moreover ϕs = ν−2
s γ−1

s , s ∈ [t, T ]. It then holds for all s ∈ [t, T ] that

∆D̃X
s ϕsdD̃

X
s = d[D̃Xϕ, D̃X ]s

due to �nite variation of D̃X . We therefore obtain by integration by parts for all
s ∈ [t, T ] that(

2D̃X
s− + ∆D̃X

s

)
ϕsdD̃

X
s = 2D̃X

s−ϕsdD̃
X
s + d[D̃Xϕ, D̃X ]s

= d
(

(D̃X
s ϕs)D̃

X
s

)
− D̃X

s−d(D̃X
s ϕs) + ϕsD̃

X
s−dD̃

X
s .

Furthermore, it holds for all s ∈ [t, T ] that

d(D̃X
s ϕs) = ϕsdD̃

X
s + D̃X

s dϕs,

and thus, for all s ∈ [t, T ],(
2D̃X

s− + ∆D̃X
s

)
ϕsdD̃

X
s = d

(
(D̃X

s )2ϕs

)
− (D̃X

s )2dϕs.
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7.2 Alternative representations

Together with (7.10) this yields that∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs =

1

2

(
(D̃X

T )2ϕT − (D̃X
t−)2ϕt −

∫ T

t

(D̃X
s )2dϕs

)
=

1

2

(
γ−1
T (DX

T )2 − γ−1
t d2 −

∫ T

t

(DX
s )2ν2

sd
(
ν−2
s γ−1

s

))
.

This proves (7.7).
In order to show (7.8), we obtain from (7.9) and integration by parts that

νrD
X
r − d = νrγrXr − γtx−

∫
[t,r]

Xsd(νsγs)−
∫

[t,r]

d[νγ,X]s, r ∈ [t, T ],

which implies that

DX
r = γrXr + ν−1

r

(
d− γtx−

∫ r

t

Xsd(νsγs)

)
, r ∈ [t, T ].

As a consequence of Proposition 7.2.1, and relying on (B1)�(B3), we can rewrite
the cost functional J fv as follows2. Recall from (3.6) that κ = 1

2
(2ρ+µ−σ2−η2−2σηr).

Proposition 7.2.2. Assume (Cbdd). Let t ∈ [0, T ] and x, d ∈ R. Suppose that
X ∈ Afv

t (x, d) with associated deviation process DX de�ned by (7.3). It then holds that
J fv
t (x, d,X) in (7.4) admits the representation

J fv
t (x, d,X) = Et

[
1

2
γ−1
T (DX

T )2 +

∫ T

t

γ−1
s (DX

s )2κs ds

]
− d2

2γt

+ Et

[∫ T

t

γsλs (Xs − ζs)2 ds

]
a.s.

(7.11)

Proof. We �rst consider the integrator ν−2γ−1 on the right-hand side of (7.7). It holds
by integration by parts and (7.6) that

d(ν−2
s γ−1

s ) = ν−1
s d(γ−1

s ν−1
s ) + γ−1

s ν−1
s dν−1

s + d[ν−1, γ−1ν−1]s

= 2ν−1
s γ−1

s dν−1
s + ν−2

s dγ−1
s + ν−1

s d[γ−1, ν−1]s + d[ν−1, γ−1ν−1]s

= −2ν−2
s γ−1

s dRs + ν−2
s dγ−1

s − ν−2
s d[γ−1, R]s + d[ν−1, γ−1ν−1]s, s ∈ [t, T ].

Note that

d[ν−1, γ−1ν−1]s = −ν−1
s d[R, γ−1ν−1]s = −ν−1

s d

[
R,

∫ ·
t

γ−1dν−1 +

∫ ·
t

ν−1dγ−1

]
s

= −ν−1
s γ−1

s d[R, ν−1]s − ν−2
s d[R, γ−1]s

= ν−2
s γ−1

s d[R]s − ν−2
s d[R, γ−1]s, s ∈ [t, T ].

2Compare (7.11) also with representation (E.1) of the cost functional of the zero-spread two-sided
order book model in [FSU19].
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7 Continuous extension

It hence follows that

d(ν−2
s γ−1

s ) = −2ν−2
s γ−1

s dRs + ν−2
s dγ−1

s − 2ν−2
s d[γ−1, R]s + ν−2

s γ−1
s d[R]s, s ∈ [t, T ].

Plugged into (7.7) (cf. Proposition 7.2.1), we obtain that∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

=
1

2

(
γ−1
T (DX

T )2 −
∫ T

t

(DX
s )2

(
dγ−1

s + γ−1
s d[R]s − 2γ−1

s dRs − 2d[γ−1, R]s
))
− d2

2γt
.

(7.12)

We further have by (3.1) and (3.3) for all s ∈ [t, T ] that

dγ−1
s + γ−1

s d[R]s − 2γ−1
s dRs − 2d[γ−1, R]s

= −γ−1
s (µs − σ2

s)ds− γ−1
s σsdW

(1)
s + γ−1

s η2
sds− 2γ−1

s ρsds− 2γ−1
s ηsdW

R
s

+ 2γ−1
s σsηsrsds

= −γ−1
s

(
2ρs + µs − σ2

s − η2
s − 2σsηsrs

)
ds− γ−1

s σsdW
(1)
s − 2γ−1

s ηsdW
R
s .

(7.13)

It follows from (B1) and (Cbdd) that

E

[∣∣∣∣∫ T

t

(DX
s )2γ−1

s

(
2ρs + µs − σ2

s − η2
s − 2σsηsrs

)
ds

∣∣∣∣] <∞.
The Burkholder-Davis-Gundy inequality together with (B3) shows that it holds for
some constant c ∈ (0,∞) that

E

[
sup
r∈[t,T ]

∣∣∣∣∫ r

t

(DX
s )2γ−1

s σsdW
(1)
s

∣∣∣∣
]
≤ cE

[(∫ T

t

(DX
s )4γ−2

s σ2
sds

) 1
2

]
<∞.

We therefore have that

Et

[∫ T

t

(DX
s )2γ−1

s σsdW
(1)
s

]
= 0.

Similarly, (B2) and [WR] = [W (1)] imply that

Et

[∫ T

t

2(DX
s )2γ−1

s ηsdW
R
s

]
= 0.

It thus follows from (7.12), (7.13), and De�nition (3.6) of κ that

Et

[∫
[t,T ]

(
DX
s− +

γs
2

∆Xs

)
dXs

]
= Et

[
1

2
γ−1
T (DX

T )2 +

∫ T

t

(DX
s )2γ−1

s κs ds

]
− d2

2γt
.

By De�nition (7.4) of J fv this proves (7.11).
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7.3 The extended stochastic control problem

7.3 The extended stochastic control problem

We point out that the right-hand side of (7.11) is also well-de�ned for progressively
measurable processes X satisfying an appropriate integrability condition and with
associated deviation DX de�ned by (7.8) for which one assumes (B1). This motivates
the following extension of the control problem from Section 7.1.
For t ∈ [0, T ], x, d ∈ R, and a progressively measurable process X = (Xs)s∈[t−,T ]

such that
∫ T
t
X2
sds <∞ a.s. and Xt− = x, we de�ne the process DX = (DX

s )s∈[t−,T ] by

DX
s = γsXs + ν−1

s

(
d− γtx−

∫ s

t

Xrd(νrγr)

)
, s ∈ [t, T ], DX

t− = d (7.14)

(recall ν from (7.5)). Notice that the condition
∫ T
t
X2
sds < ∞ a.s. ensures that the

stochastic integral in (7.14) is well-de�ned. Again, for a sequence of such progressively
measurable processes Xn, n ∈ N, we usually write Dn instead of DXn

for n ∈ N.
Further, for t ∈ [0, T ], x, d ∈ R, let Apm

t (x, d) be the set of (equivalence classes of)
progressively measurable processes X = (Xs)s∈[t−,T ] with

Xt− = x and XT = ξ̂

that satisfy
∫ T
t
X2
sds <∞ a.s. and such that condition (B1) holds true for DX de�ned

by (7.14). To be precise, we stress that the equivalence classes for Apm
t (x, d) are

understood with respect to the equivalence relation

X ∼ X̃ means X. = X̃. DW (1)-a.e. on Ω× [t, T ],

Xt− = X̃t− (= x), and XT = X̃T (= ξ̂). (7.15)

Any element X ∈ Apm
t (x, d) is called a progressively measurable execution strategy.

Again, the process DX now de�ned via (7.14) is called the associated deviation process.
Given t ∈ [0, T ], x, d ∈ R, and X ∈ Apm

t (x, d) with associated DX (see (7.14)), we
(under (Cbdd)) de�ne the cost functional Jpm by

Jpm
t (x, d,X) = Et

[
1

2
γ−1
T (DX

T )2 +

∫ T

t

γ−1
s (DX

s )2κs ds+

∫ T

t

γsλs (Xs − ζs)2 ds

]
− d2

2γt
.

(7.16)

The extended, or progressively measurable, stochastic control problem is to minimize
the cost functional Jpm over X ∈ Apm

t (x, d).
Observe that we have the following corollary of Proposition 7.2.1 and Proposi-

tion 7.2.2.

Corollary 7.3.1. Assume (Cbdd). Let t ∈ [0, T ], x, d ∈ R, and X ∈ Afv
t (x, d) with

associated deviation process DX given by (7.3). It then holds that X ∈ Apm
t (x, d), that

DX satis�es (7.14), and that J fv
t (x, d,X) = Jpm

t (x, d,X).
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7 Continuous extension

Proof. By (7.8) of Proposition 7.2.1, DX satis�es (7.14). Since X is càdlàg, we have
that

∫ T
t
X2
sds < ∞ a.s. Clearly, Xt− = x, XT = ξ̂, and (B1) are satis�ed, and

X is progressively measurable; hence, X ∈ Apm
t (x, d). From Proposition 7.2.2 and

De�nition (7.16), we immediately see that J fv
t (x, d,X) = Jpm

t (x, d,X).

Put di�erently, the progressively measurable control problem extends the �nite-
variation one in the sense that Afv

t (x, d) ⊆ Apm
t (x, d) and, on Afv

t (x, d), the cost func-
tionals J fv and Jpm coincide. In Section 7.5 we show that Jpm can be considered as a
continuous extension of J fv to progressively measurable strategies and that Afv

t (x, d)
is dense in Apm

t (x, d) (with respect to an appropriate metric).

7.4 The scaled hidden deviation process

In this section we introduce the scaled hidden deviation process associated to a strat-
egy X. This process, due to Proposition 7.4.2, plays a key role in Section 8.1.1 as
the state process in the LQ stochastic control problem that we are going to construct.
Furthermore, this process already appears in the proof of Theorem 7.5.2 in Section 7.5
on the continuous extension of the cost functional. The lemmas in the current section
are part of the preparation for this proof.
Suppose that the agent follows a �nite-variation execution strategy X ∈ Afv

t (x, d)
until time s ∈ [t, T ] and then decides to close the position, i.e., to sell Xs− > 0
units (respectively, to buy |Xs−| units in the case Xs− ≤ 0). By (7.3), this results in
the price deviation DX

s = DX
s− − γsXs− immediately after the trade. The value of3

DX
s− − γsXs− = DX

s − γsXs hence represents the hypothetical deviation if the agent
decides to close the position at time s ∈ [t, T ]. In the following, we consider the process
DX − γX for all X ∈ Apm

t (x, d) and scale it by γ−
1
2 to obtain what we call the scaled

hidden deviation process.
For t ∈ [0, T ], x, d ∈ R, and X ∈ Apm

t (x, d) with associated deviation process DX ,

we introduce the scaled hidden deviation process H
X

= (H
X

s )s∈[t,T ] de�ned by

H
X

s = γ
− 1

2
s (DX

s − γsXs) = γ
− 1

2
s DX

s − γ
1
2
s Xs, s ∈ [t, T ]. (7.17)

For a sequence of strategies (Xn)n∈N in Apm
t (x, d), we also write H

n
for the process

associated to Xn, n ∈ N. Note that, due to (7.14), it holds that

H
X

s = γ
− 1

2
s ν−1

s

(
d− γtx−

∫ s

t

Xrd(νrγr)

)
, s ∈ [t, T ]. (7.18)

The dynamics of H
X

s that we compute in the following lemma are used in the proofs
of Proposition 7.4.2 and Lemma 7.4.4.

3Note that the process DX − γX is continuous for all X ∈ Apm
t (x, d), which can, e.g., be seen from

(7.14) and the fact that R (hence also ν) and γ are continuous.
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7.4 The scaled hidden deviation process

Lemma 7.4.1. Let t ∈ [0, T ], x, d ∈ R. Assume that X = (Xs)s∈[t,T ] is a progressively

measurable process such that
∫ T
t
X2
sds < ∞ a.s. For αs = γ

− 1
2

s ν−1
s , s ∈ [t, T ], and

βs = d− γtx−
∫ s
t
Xrd(νrγr), s ∈ [t, T ], it then holds for all s ∈ [t, T ] that

d(αsβs)

= −γ
1
2
s Xs

((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+

(
σs + ηsrs

)
dW (1)

s + ηs

√
1− r2

sdW
(2)
s

)

+ αsβs

((
− ρs −

1

2
µs +

3

8
σ2
s +

1

2
σsηsrs

)
ds+

(
− ηsrs −

1

2
σs

)
dW (1)

s

− ηs
√

1− r2
sdW

(2)
s

)
.

(7.19)

Proof. Observe that α = (αs)s∈[t,T ] and β = (βs)s∈[t,T ] are semimartingales. Integration
by parts implies that

d(αsβs) = −αsXsd(νsγs) + βsd(γ
− 1

2
s ν−1

s )−Xsd[γ−
1
2ν−1, νγ]s, s ∈ [t, T ]. (7.20)

It further holds by integration by parts, (7.5), (3.1), and (3.2) for all s ∈ [t, T ] that

d(νsγs) = νsdγs + γsνsdRs + γsνsd[R]s + νsd[R, γ]s

= νsγsµsds+ νsγsσsdW
(1)
s + νsγsρsds+ νsγsηsrsdW

(1)
s + νsγsηs

√
1− r2

sdW
(2)
s

+ νsγsη
2
sds+ νsγsσsηsrsds

= νsγs

((
µs + ρs + η2

s + σsηsrs
)
ds+

(
σs + ηsrs

)
dW (1)

s + ηs

√
1− r2

sdW
(2)
s

)
.

(7.21)

Also by integration by parts, and using (7.6), (3.1), and (3.5), we obtain that

d(γ
− 1

2
s ν−1

s ) = −γ−
1
2

s ν−1
s dRs + ν−1

s dγ
− 1

2
s − ν−1

s d[R, γ−
1
2 ]s

= −γ−
1
2

s ν−1
s ρsds− γ

− 1
2

s ν−1
s ηsrsdW

(1)
s − γ

− 1
2

s ν−1
s ηs

√
1− r2

sdW
(2)
s

+ γ
− 1

2
s ν−1

s

(
−1

2
µs +

3

8
σ2
s

)
ds− 1

2
γ
− 1

2
s ν−1

s σsdW
(1)
s +

1

2
γ
− 1

2
s ν−1

s σsηsrsds

= αs

((
−ρs −

1

2
µs +

3

8
σ2
s +

1

2
σsηsrs

)
ds+

(
−ηsrs −

1

2
σs

)
dW (1)

s

− ηs
√

1− r2
sdW

(2)
s

)
, s ∈ [t, T ].

(7.22)
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7 Continuous extension

It follows from (7.21) and (7.22) that

d[γ−
1
2ν−1, νγ]s = αsνsγs

(
− ηsrs −

1

2
σs

)(
σs + ηsrs

)
ds− αsνsγsη2

s(1− r2
s)ds

= −γ
1
2
s

(
3

2
ηsσsrs +

1

2
σ2
s + η2

s

)
ds, s ∈ [t, T ].

(7.23)

From (7.21) and (7.23) we get for all s ∈ [t, T ] that

− αsXsd(νsγs)−Xsd[γ−
1
2ν−1, νγ]s

= −γ−
1
2

s Xs

((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+

(
σs + ηsrs

)
dW (1)

s + ηs

√
1− r2

sdW
(2)
s

)
.

(7.24)

We then plug (7.22) and (7.24) into (7.20) to obtain (7.19).

We next use Lemma 7.4.1 to show that, under (Cbdd), the scaled hidden deviation
process satis�es a linear SDE and an L2-bound. Moreover, we derive a representation
of Jpm in terms of the scaled hidden deviation process.

Proposition 7.4.2. Assume (Cbdd). Let t ∈ [0, T ], x, d ∈ R, and X ∈ Apm
t (x, d).

Then it holds that

dH
X

s =

(
1

2

(
µs −

1

4
σ2
s

)
H
X

s −
1

2

(
2(ρs + µs)− σ2

s − σsηsrs
)
γ
− 1

2
s DX

s

)
ds

+

(
1

2
σsH

X

s − (σs + ηsrs)γ
− 1

2
s DX

s

)
dW (1)

s − ηs
√

1− r2
sγ
− 1

2
s DX

s dW
(2)
s , s ∈ [t, T ],

H
X

t =
d
√
γt
−√γtx,

(7.25)

that E[sups∈[t,T ](H
X

s )2] <∞, and that

Jpm
t (x, d,X) = Et

[
1

2

(
H
X

T +
√
γT ξ̂
)2

+

∫ T

t

(κs + λs)γ
−1
s (DX

s )2ds

]
− d2

2γt

+ Et

[∫ T

t

λs

(
H
X

s +
√
γsζs

)2

− 2λs

(
H
X

s +
√
γsζs

)
γ
− 1

2
s DX

s ds

]
.

(7.26)

Proof. We denote αs = γ
− 1

2
s ν−1

s , s ∈ [t, T ], and βs = d− γtx−
∫ s
t
Xrd(νrγr), s ∈ [t, T ].

It then holds that H
X

s = αsβs, s ∈ [t, T ]. We use Lemma 7.4.1 and substitute −γ 1
2X =

182



7.4 The scaled hidden deviation process

H
X − γ− 1

2DX in (7.19) to obtain for all s ∈ [t, T ] that

dH
X

s =
(
H
X

s − γ
− 1

2
s DX

s

)((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+

(
σs + ηsrs

)
dW (1)

s

+ ηs

√
1− r2

sdW
(2)
s

)

+H
X

s

((
− ρs −

1

2
µs +

3

8
σ2
s +

1

2
σsηsrs

)
ds+

(
− ηsrs −

1

2
σs

)
dW (1)

s

− ηs
√

1− r2
sdW

(2)
s

)

= −γ−
1
2

s DX
s

((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+

(
σs + ηsrs

)
dW (1)

s + ηs

√
1− r2

sdW
(2)
s

)

+H
X

s

((
1

2
µs −

1

8
σ2
s

)
ds+

1

2
σsdW

(1)
s

)
.

This proves the dynamics in (7.25).

In particular, H
X
satis�es an SDE that is linear in H

X
and γ−

1
2DX . Furthermore,

boundedness of ρ, µ, σ, η, r implies that the coe�cients of the SDE are bounded. Since

moreover E[
∫ T
t

(
γ
− 1

2
s DX

s

)2
ds] < ∞ by (B1) and since H

X

t = γ
− 1

2
t d − γ

1
2
t x (cf. (7.17))

is square integrable, we have that E[sups∈[t,T ](H
X

s )2] < ∞ (see, e.g., [Zha17, Theo-
rem 3.2.2 and Theorem 3.3.1]).
We next prove that the cost functional (7.16) admits the representation (7.26). To

this end, note that by (7.17) it holds for all s ∈ [t, T ] that

γs (Xs − ζs)2 =
(
γ
− 1

2
s DX

s −H
X

s − γ
1
2
s ζs

)2

= γ−1
s (DX

s )2 − 2γ
− 1

2
s DX

s

(
H
X

s + γ
1
2
s ζs

)
+
(
H
X

s + γ
1
2
s ζs

)2

.

Due to Assumption (7.2) on ζ and E[sups∈[t,T ](H
X

s )2] <∞, we have that

Et

[∫ T

t

(
H
X

s + γ
1
2
s ζs

)2

ds

]
<∞.

This, (B1), and the Cauchy�Schwarz inequality imply that also

Et

[∫ T

t

∣∣∣γ− 1
2

s DX
s

(
H
X

s + γ
1
2
s ζs

)∣∣∣ ds] <∞.
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Since λ is bounded, we conclude that

Et

[∫ T

t

λsγs (Xs − ζs)2 ds

]
= Et

[∫ T

t

λsγ
−1
s (DX

s )2ds

]
+ Et

[∫ T

t

λs

(
H
X

s + γ
1
2
s ζs

)2

ds

]
− 2Et

[∫ T

t

λsγ
− 1

2
s DX

s

(
H
X

s + γ
1
2
s ζs

)
ds

]
,

(7.27)

where all conditional expectations are well-de�ned and �nite. Moreover, (7.17) implies

that γ
− 1

2
T DX

T = H
X

T + γ
1
2
TXT , and thus γ−1

T (DX
T )2 = (H

X

T +
√
γT ξ̂)

2. Inserting this
and (7.27) into (7.16), we obtain (7.26).

The next result on the scaled hidden deviation is helpful in the proof of Theorem 7.5.2
in order to show convergence of the cost functional.

Lemma 7.4.3. Assume (Cbdd). Let t ∈ [0, T ], x, d ∈ R, and X ∈ Apm
t (x, d). Suppose

that (Xn)n∈N is a sequence in Apm
t (x, d) such that

lim
n→∞

E

[∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]
= 0.

It then holds that

lim
n→∞

E

[
sup
s∈[t,T ]

(
H
n

s −H
X

s

)2
]

= 0.

Proof. De�ne δH
n

= H
n −HX

, n ∈ N, and let for n ∈ N, s ∈ [t, T ], z ∈ R

bns (z) = −1

2

(
2(ρs + µs)− σ2

s − σsηsrs
)(
γ
− 1

2
s Dn

s − γ
− 1

2
s DX

s

)
+

1

2

(
µs −

1

4
σ2
s

)
z,

ans (z) =

(
−(σs + ηsrs)

(
γ
− 1

2
s Dn

s − γ
− 1

2
s DX

s

)
+

1

2
σsz, −ηs

√
1− r2

s

(
γ
− 1

2
s Dn

s − γ
− 1

2
s DX

s

))
.

In view of (7.25) it then holds for all n ∈ N that

d(δH
n

s ) = bns (δH
n

s )ds+ ans (δH
n

s )d

(
W

(1)
s

W
(2)
s

)
, s ∈ [t, T ], δH

n

t = 0.

The de�nitions of bn, an, n ∈ N, and boundedness of µ and σ imply that there exists
c1 ∈ (0,∞) such that for all n ∈ N and all z1, z2 ∈ R it holds DW (1)|[t,T ]-a.e. that

|bn(z1)−bn(z2)|+‖an(z1)−an(z2)‖2 ≤
1

2

∣∣∣∣µ− 1

4
σ2

∣∣∣∣ |z1−z2|+
1

2
|σ||z1−z2| ≤ c1|z1−z2|.

184



7.4 The scaled hidden deviation process

By boundedness of µ, ρ, σ, η, r and Jensen's inequality, we have some c2 ∈ (0,∞) such
that for all n ∈ N, it holds that

E

[(∫ T

t

|bns (0)|ds
)2
]

+ E

[∫ T

t

‖ans (0)‖2
2ds

]
≤ c2E

[∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]
.

E.g., [Zha17, Theorem 3.2.2] (see also [Zha17, Theorem 3.4.2]) now implies that there
exists c3 ∈ (0,∞) such that for all n ∈ N we obtain that

E

[
sup
s∈[t,T ]

∣∣∣Hn

s −H
X

s

∣∣∣2] ≤ c3E

[(∫ T

t

|bns (0)|ds
)2

+

∫ T

t

‖ans (0)‖2
2ds

]

≤ c2c3E

[∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]
.

The claim follows from the assumption that limn→∞E[
∫ T
t

(Dn
s −DX

s )2γ−1
s ds] = 0.

We next show how to construct an execution strategy X0 ∈ Apm
t (x, d) based on

a square-integrable process u0 and a process H0 that satis�es SDE (7.25) (with u0

instead of γ−
1
2DX). This result is crucial for Lemma 8.1.2. It is also used in the proof

of Theorem 7.5.2.

Lemma 7.4.4. Let t ∈ [0, T ] and x, d ∈ R. Suppose that u0 = (u0
s)s∈[t,T ] ∈ L2

t , and let
H0 = (H0

s )s∈[t,T ] be given by H0
t = d√

γt
−√γtx,

dH0
s =

(
1

2

(
µs −

1

4
σ2
s

)
H0
s −

1

2

(
2(ρs + µs)− σ2

s − σsηsrs
)
u0
s

)
ds

+

(
1

2
σsH

0
s − (σs + ηsrs)u

0
s

)
dW (1)

s − ηs
√

1− r2
su

0
sdW

(2)
s , s ∈ [t, T ].

(7.28)

De�ne X0 = (X0
s )s∈[t−,T ] by

X0
s = γ

− 1
2

s (u0
s −H0

s ), s ∈ [t, T ), X0
t− = x, X0

T = ξ̂.

Then, X0 ∈ Apm
t (x, d), and for the associated deviation process D0 = (D0

s)s∈[t−,T ] it

holds that D0 = γX0 + γ
1
2H0, and H0 is the scaled hidden deviation process for X0.

Proof. First, X0 is progressively measurable and has initial valueX0
t− = x and terminal

value X0
T = ξ̂. Furthermore, it holds that∫ T

t

(X0
s )2ds ≤ 2

∫ T

t

γ−1
s (u0

s)
2ds+ 2

∫ T

t

γ−1
s (H0

s )2ds <∞ a.s.
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since γ−1 and H0 have a.s. continuous paths and E[
∫ T
t

(u0
s)

2ds] <∞. We are therefore

able to de�ne D0 by (7.14). Moreover, denote αs = γ
− 1

2
s ν−1

s , s ∈ [t, T ], and βs =

d−γtx−
∫ s
t
X0
r d(νrγr), s ∈ [t, T ]. It follows from Lemma 7.4.1 and −γ

1
2
s X0

s = H0
s −u0

s,
s ∈ [t, T ), that

d(αsβs) = (H0
s − u0

s)

((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+

(
σs + ηsrs

)
dW (1)

s

+ ηs

√
1− r2

sdW
(2)
s

)

+ αsβs

((
− ρs −

1

2
µs +

3

8
σ2
s +

1

2
σsηsrs

)
ds+

(
− ηsrs −

1

2
σs

)
dW (1)

s

− ηs
√

1− r2
sdW

(2)
s

)
, s ∈ [t, T ].

We combine this with

dH0
s = −u0

s

((
µs + ρs −

1

2
σsηsrs −

1

2
σ2
s

)
ds+ (σs + ηsrs)dW

(1)
s + ηs

√
1− r2

sdW
(2)
s

)

+H0
s

((1

2
µs −

1

8
σ2
s

)
ds+

1

2
σsdW

(1)
s

)
, s ∈ [t, T ],

to obtain for all s ∈ [t, T ] that

d(αsβs −H0
s ) = (αsβs −H0

s )

((
− ρs −

1

2
µs +

3

8
σ2
s +

1

2
σsηsrs

)
ds

+
(
− ηsrs −

1

2
σs

)
dW (1)

s − ηs
√

1− r2
sdW

(2)
s

)
.

(7.29)

Note that αtβt = γ
− 1

2
t d − γ

1
2
t x = H0

t . We thus conclude that 0 is the unique solution
of (7.29), and hence

H0
s = γ

− 1
2

s ν−1
s

(
d− γtx−

∫ s

t

X0
r d(νrγr)

)
, s ∈ [t, T ].

This implies that D0 = γX0+γ
1
2H0, i.e., D0

s = γ
1
2
s u0

s, s ∈ [t, T ), and D0
T = γT ξ̂+γ

1
2
TH

0
T .

The fact that E[
∫ T
t

(u0
s)

2ds] <∞ then immediately yields that (B1) holds true. This
completes the proof.
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7.5 Continuous extension of the cost functional

Corollary 7.3.1 states that for �nite-variation execution strategies, the cost functionals
J fv and Jpm are the same. In this section, we show that Jpm can be considered as
a continuous extension of J fv to progressively measurable strategies. To this end, we
�rst need to introduce a metric on Apm

t (x, d).
For t ∈ [0, T ], x, d ∈ R, and X, X̃ ∈ Apm

t (x, d) (with associated deviation processes
DX , DX̃ de�ned by (7.14)), we de�ne

d(X, X̃) =

(
E

[∫ T

t

(
DX
s −DX̃

s

)2
γ−1
s ds

]) 1
2

(
=
∥∥∥γ− 1

2

(
DX −DX̃

)∥∥∥
L2t

)
. (7.30)

Lemma 7.5.1. Let t ∈ [0, T ] and x, d ∈ R. Then, (7.30) de�nes a metric on Apm
t (x, d)

(identifying any processes that are equal DW (1)|[t,T ]-a.e.).

Note that, for �xed t ∈ [0, T ] and x, d ∈ R, and under (Cbdd), we may consider the
cost functional (7.16) as a function

Jpm
t (x, d, ·) : (Apm

t (x, d),d)→ (L1(Ω,Ft, P ), ‖·‖L1).

Indeed, using (B1), Proposition 7.4.2, (7.1), (7.2), and boundedness of the input
processes, we see that Jpm

t (x, d,X) ∈ L1(Ω,Ft, P ) for all X ∈ Apm
t (x, d).

We now come to the main result of this chapter.

Theorem 7.5.2. Assume (Cbdd). Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that X ∈ Apm

t (x, d). For every sequence (Xn)n∈N in Apm
t (x, d) with

limn→∞ d(Xn, X) = 0 it holds that limn→∞‖Jpm
t (x, d,Xn)− Jpm

t (x, d,X)‖L1 = 0.

(ii) For any X ∈ Apm
t (x, d) there exists a sequence (Xn)n∈N in Afv

t (x, d) such that
limn→∞ d(Xn, X) = 0.

(iii) For any Cauchy sequence (Xn)n∈N in (Apm
t (x, d),d) there exists X0 ∈ Apm

t (x, d)
such that limn→∞ d(Xn, X0) = 0.

This establishes that Jpm
t (x, d,X) is continuous in the strategy X ∈ Apm

t (x, d) (the
�rst part of Theorem 7.5.2), that Afv

t (x, d) is dense in Apm
t (x, d) (the second part of

Theorem 7.5.2) and that the metric space (Apm
t (x, d),d) is complete (the third part of

Theorem 7.5.2).
The �rst and the second parts of Theorem 7.5.2 mean that, under the metric d,

Jpmt (x, d, ·) is a unique continuous extension of Jfvt (x, d, ·) fromAfv
t (x, d) ontoApm

t (x, d).
The third part of Theorem 7.5.2 means that, under the metric d, Apm

t (x, d) is the
largest space where such a continuous extension is uniquely determined by Jfvt (x, d, ·)
on Afv

t (x, d). This is because the completeness of (Apm
t (x, d),d) is equivalent to the

following statement: for any metric space (Ât(x, d), d̂) containing Apm
t (x, d) and such

that d̂|Apm
t (x,d)×Apm

t (x,d) = d, it holds that the set Apm
t (x, d) is closed in Ât(x, d).

As a corollary of Theorem 7.5.2, we obtain the following equivalence of the �nite-
variation and the extended stochastic control problem.
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Corollary 7.5.3. Under (Cbdd), it holds for all t ∈ [0, T ] and x, d ∈ R that

ess inf
X∈Afvt (x,d)

J fv
t (x, d,X) = ess inf

X∈Apmt (x,d)
Jpm
t (x, d,X). (7.31)

Proofs

In this part, we prove Lemma 7.5.1, Theorem 7.5.2, and Corollary 7.5.3.

Proof of Lemma 7.5.1. Note �rst that it holds for allX, X̃ ∈ Apm
t (x, d) that d(X, X̃) ≥

0, and that d(X, X̃) is �nite due to (B1). Symmetry of d is obvious.
To establish the triangle inequality, let X, X̃, X̂ ∈ Apm

t (x, d). It follows from

(DX −DX̃)2 = (DX −DX̂)2 + 2(DX −DX̂)(DX̂ −DX̃) + (DX̂ −DX̃)2

and the Cauchy�Schwarz inequality that

d(X, X̃)2 = d(X, X̂)2 + 2E

[∫ T

t

(
DX
s −DX̂

s

)
γ
− 1

2
s

(
DX̂
s −DX̃

s

)
γ
− 1

2
s ds

]
+ d(X̂, X̃)2

≤ d(X, X̂)2 + 2d(X, X̂)d(X̂, X̃) + d(X̂, X̃)2.

We thus obtain that d(X, X̃) ≤ d(X, X̂) + d(X̂, X̃).
We now let X, X̃ ∈ Apm

t (x, d) and show that X = X̃ DW (1)|[t,T ]-a.e. if and only if
d(X, X̃) = 0.
If X = X̃ DW (1)|[t,T ]-a.e., then γ−

1
2DX = γ−

1
2DX̃ DW (1)|[t,T ]-a.e., and thus

d(X, X̃) =

(
E

[∫ T

t

(
γ
− 1

2
s DX

s − γ
− 1

2
s DX̃

s

)2

ds

]) 1
2

= 0.

For the other direction, suppose that d(X, X̃) = 0. This implies that γ−
1
2DX −

γ−
1
2DX̃ = 0 DW (1) |[t,T ]-a.e. By De�nition (7.14) of DX and DX̃ it further follows from

a multiplication by νγ
1
2 that

νsγs(Xs − X̃s) =

∫ s

t

(Xr − X̃r)d(νrγr) DW (1)|[t,T ]-a.e.

Observe that νγ > 0 and de�ne U = (Us)s∈[t,T ] by Us =
∫ s

0
(νrγr)

−1d(νrγr), s ∈ [t, T ].

Let K = (Ks)s∈[t,T ] be de�ned by Ks =
∫ s
t
νrγr(Xr − X̃r)dUr, s ∈ [t, T ]. Then, K is a

continuous semimartingale with K = νγ(X − X̃) DW (1)|[t,T ]-a.e. It follows that∫ s

t

KrdUr =

∫ s

t

νrγr(Xr − X̃r)dUr = Ks, s ∈ [t, T ].

This shows that K = 0 (as a stochastic exponential with start in 0). Since K =

νγ(X − X̃) DW (1)|[t,T ]-a.e. and νγ > 0, we conclude that X = X̃ DW (1)|[t,T ]-a.e.
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In order to establish existence of an appropriate approximating sequence in Theo-
rem 7.5.2, we rely on the next Lemma 7.5.4, which is based on [KS91, Section 3.2,
Lemma 2.7]. For the statement of this lemma and for the proof of the second part of
Theorem 7.5.2, we introduce a process L = (Ls)s∈[0,T ] de�ned by

Ls = exp

(
−
∫ s

0

(
1

2
σr + ηrrr

)
dW (1)

r −
∫ s

0

ηr

√
1− r2

rdW
(2)
r

)
, s ∈ [0, T ]. (7.32)

Observe that L solves the SDE

dLs = Ls
1

2

((
1

2
σs + ηsrs

)2

+ η2
s(1− r2

s)

)
ds− Ls

(
1

2
σs + ηsrs

)
dW (1)

s

− Lsηs
√

1− r2
sdW

(2)
s , s ∈ [0, T ], L0 = 1.

(7.33)

Lemma 7.5.4. Assume (Cbdd). Let L = (Ls)s∈[0,T ] be de�ned by (7.32). Let t ∈ [0, T ]
and let u = (us)s∈[t,T ] ∈ L2

t . Then there exists a sequence of bounded càdlàg �nite-
variation processes (vn)n∈N such that

lim
n→∞

E

[∫ T

t

(
us
Ls
− vns

)2

L2
sds

]
= 0.

In particular, for the sequence of processes (un)n∈N de�ned by un = vnL, n ∈ N, it
holds for all n ∈ N that un is a càdlàg semimartingale with E[sups∈[t,T ]|uns |p] <∞ for
any p ≥ 2 (in particular, un ∈ L2

t ), and that limn→∞‖u− un‖L2t = 0.

Proof. De�ne A = (As)s∈[0,T ] by As =
∫ s

0
L2
rdr, s ∈ [0, T ]. Moreover, let v = (vs)s∈[t,T ]

be de�ned by vs = us
Ls
, s ∈ [t, T ]. We verify the assumptions of Lemma 2.7 in Section 3.2

of [KS91] on A and v.
The process A is continuous, adapted, and nondecreasing. Since σ, η, and r are

bounded, Lemma 4.1.1 implies for all p ≥ 2 that E[sups∈[0,T ]|Ls|p] <∞. In particular,

it holds that E[AT ] = E[
∫ T

0
L2
rdr] < ∞. Moreover, v is progressively measurable and

satis�es E[
∫ T
t
v2
sdAs] = E[

∫ T
t
u2
sds] <∞ due to u ∈ L2

t .
Thus, Lemma 2.7 in Section 3.2 of [KS91] applies and yields that there exists a

sequence (v̂n)n∈N of (càglàd) simple (see [KS91, Def. 2.3]) processes v̂n = (v̂ns )s∈[t,T ],
n ∈ N, such that

lim
n→∞

E

[∫ T

t

(vs − v̂ns )2dAs

]
= 0.

De�ne vns (ω) = limr↓s v̂
n
r (ω), s ∈ [t, T ), ω ∈ Ω, n ∈ N, and vnT = 0, n ∈ N. Then,

(vn)n∈N is a sequence of bounded càdlàg �nite-variation processes such that

lim
n→∞

E

[∫ T

t

(
us
Ls
− vns

)2

L2
sds

]
= lim

n→∞
E

[∫ T

t

(vs − vns )2dAs

]
= 0.
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Moreover, it holds that for each n ∈ N, un = (uns )s∈[t,T ] de�ned by uns = vnsLs, s ∈ [t, T ],
is a càdlàg semimartingale. Since vn is bounded for all n ∈ N and E[sups∈[0,T ]|Ls|p]
is �nite for any p ≥ 2, we have that E[sups∈[t,T ]|uns |p] is �nite for all n ∈ N and any
p ≥ 2. It furthermore holds that

‖u− un‖2
L2t

= E

[∫ T

t

(us − uns )2ds

]
= E

[∫ T

t

(vs − vns )2dAs

]
→ 0

as n→∞.

Lemma 7.5.4 is employed in the proof of Theorem 7.5.2(ii) as follows: given X ∈
Apm
t (x, d), we approximate u = γ−

1
2DX by a sequence un = vnL, n ∈ N, from

Lemma 7.5.4. Based on this sequence (un)n∈N, we de�ne a sequence of progressively
measurable strategies (Xn)n∈N as in Lemma 7.4.4. Subsequently, we argue that �nite
variation of vn leads to �nite variation of Xn for all n ∈ N.
Let us now prove Theorem 7.5.2.

Proof of Theorem 7.5.2. (i) Let (Xn)n∈N be a sequence in Apm
t (x, d) such that it holds

limn→∞ d(Xn, X) = 0. By (7.26) in Proposition 7.4.2 it holds for all n ∈ N that

|Jpm
t (x, d,Xn)− Jpm

t (x, d,X)|

=

∣∣∣∣∣ 1

2
Et

[(
H
n

T + γ
1
2
T ξ̂
)2 −

(
H
X

T + γ
1
2
T ξ̂
)2
]

+ Et

[∫ T

t

(κs + λs)γ
−1
s

(
(Dn

s )2 − (DX
s )2
)
ds

]
− 2Et

[∫ T

t

λsγ
− 1

2
s

(
Dn
s

(
H
n

s + γ
1
2
s ζs
)
−DX

s

(
H
X

s + γ
1
2
s ζs
))
ds

]
+ Et

[∫ T

t

λs

((
H
n

s + γ
1
2
s ζs
)2 −

(
H
X

s + γ
1
2
s ζs
)2
)
ds

] ∣∣∣∣∣.
From (Cbdd) and boundedness of λ and r we obtain that there exists a constant
c ∈ (0,∞) such that for all n ∈ N it holds that

E [|Jpm
t (x, d,Xn)− Jpm

t (x, d,X)|]

≤ E
[∣∣∣(Hn

T + γ
1
2
T ξ̂
)2 −

(
H
X

T + γ
1
2
T ξ̂
)2
∣∣∣]+ cE

[∫ T

t

∣∣γ−1
s

(
(Dn

s )2 − (DX
s )2
)∣∣ ds]

+ cE

[∫ T

t

∣∣∣γ− 1
2

s

(
Dn
s

(
H
n

s + γ
1
2
s ζs
)
−DX

s

(
H
X

s + γ
1
2
s ζs
))∣∣∣ ds]

+ cE

[∫ T

t

∣∣∣(Hn

s + γ
1
2
s ζs
)2 −

(
H
X

s + γ
1
2
s ζs
)2
∣∣∣ ds] .

(7.34)
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We treat the terminal costs �rst. It holds for all n ∈ N that

E
[∣∣∣(Hn

T + γ
1
2
T ξ̂
)2 −

(
H
X

T + γ
1
2
T ξ̂
)2
∣∣∣]

= E
[∣∣∣(Hn

T )2 + 2H
n

Tγ
1
2
T ξ̂ − (H

X

T )2 − 2H
X

T γ
1
2
T ξ̂
∣∣∣]

≤ E
[∣∣∣(Hn

T )2 − (H
X

T )2
∣∣∣]+ 2E

[∣∣∣(Hn

T −H
X

T

)
γ

1
2
T ξ̂
∣∣∣]

≤ E
[∣∣∣(Hn

T )2 − (H
X

T )2
∣∣∣]+ 2

(
E
[(
H
n

T −H
X

T

)2
]) 1

2
(
E
[
γT ξ̂

2
]) 1

2
.

From

lim
n→∞

E

[∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]
= lim

n→∞
d(Xn, X)2 = 0 (7.35)

and Lemma 7.4.3 we have that

lim
n→∞

E

[
sup
s∈[t,T ]

(
H
n

s −H
X

s

)2
]

= 0. (7.36)

Since furthermore E[γT ξ̂
2] <∞ (cf. (7.1)), we obtain that

lim
n→∞

E
[∣∣∣(Hn

T + γ
1
2
T ξ̂
)2 −

(
H
X

T + γ
1
2
T ξ̂
)2
∣∣∣] = 0.

The second term in (7.34) converges to 0 using (7.35). For the third term in (7.34) we
have for all n ∈ N that

E

[∫ T

t

∣∣∣γ− 1
2

s

(
Dn
s

(
H
n

s + γ
1
2
s ζs
)
−DX

s

(
H
X

s + γ
1
2
s ζs
))∣∣∣ ds]

≤ E
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t

∣∣HX

s + γ
1
2
s ζs
∣∣ ∣∣Dn

s −DX
s

∣∣γ− 1
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− 1

2
s

∣∣Dn
s

∣∣ |Hn

s −H
X

s |ds
]

≤
(
E

[ ∫ T

t

(
H
X

s + γ
1
2
s ζs)

2ds

]) 1
2
(
E

[ ∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]) 1
2

+

(
E

[ ∫ T

t

γ−1
s (Dn

s )2ds

]) 1
2

T
1
2

(
E

[
sup
s∈[t,T ]

(
H
n

s −H
X

s

)2
]) 1

2

.

(7.37)

By Proposition 7.4.2 and (7.2) it holds that E[
∫ T
t

(H
X

s + γ
1
2
s ζs)

2ds] < ∞. Moreover,

due to (7.35), we have that E[
∫ T
t
γ−1
s (Dn

s )2ds] is uniformly bounded in n ∈ N. It thus
follows from (7.35), (7.36), and (7.37) that the third term in (7.34) converges to 0 as
n → ∞. The last term in (7.34) converges to 0 using (7.2) and (7.36). This proves
claim (i).
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(ii) Suppose that X ∈ Apm
t (x, d). Let u = (us)s∈[t,T ] be de�ned by us = γ

− 1
2

s DX
s ,

s ∈ [t, T ]. Then, u is a progressively measurable process, and due to assumption (B1)

it holds that E[
∫ T
t
u2
sds] <∞, i.e., u ∈ L2

t .
By Lemma 7.5.4 there exists a sequence of bounded càdlàg �nite-variation processes

(vn)n∈N such that limn→∞E[
∫ T
t

( us
Ls
− vns )2L2

sds] = 0, where L is de�ned in (7.32).
Set un = vnL, n ∈ N. This is a sequence of càdlàg semimartingales in L2

t that
satis�es limn→∞‖u − un‖L2t = 0. Moreover, it holds for all n ∈ N and any p ≥ 2 that
E[sups∈[t,T ]|uns |p] <∞.
For each un, n ∈ N, let Hn = (Hn

s )s∈[t,T ] be the solution of (7.28). We then de�ne

Xn = (Xn
s )s∈[t−,T ], n ∈ N, by Xn

s = γ
− 1

2
s (uns −Hn

s ), s ∈ [t, T ), Xn
t− = x, Xn

T = ξ̂. Note
that this is a sequence of càdlàg semimartingales. Moreover, for all n ∈ N, Lemma 7.4.4
proves that Xn ∈ Apm

t (x, d) and that Dn = γXn + γ
1
2Hn for the associated deviation

process Dn = (Dn
s )s∈[t−,T ].

It follows for all n ∈ N that Dn
s = γ

1
2
s uns , s ∈ [t, T ). Therefore, it holds for all n ∈ N

that

d(Xn, X) =

(
E

[∫ T

t

(
Dn
s −DX

s

)2
γ−1
s ds

]) 1
2

=

(
E

[∫ T

t

(uns − us)2ds

]) 1
2

.

Due to limn→∞‖u− un‖L2t = 0, we thus have that limn→∞ d(Xn, X) = 0.
We next show that for all n ∈ N, Xn has �nite variation. To this end, we observe

that for all n ∈ N and s ∈ [t, T ) it holds by integration by parts that

dXn
s = γ

− 1
2

s d(uns −Hn
s ) + (uns −Hn

s )dγ
− 1

2
s + d[γ−

1
2 , un −Hn]s. (7.38)

Again by integration by parts, and using (7.33), we have for all n ∈ N and s ∈ [t, T ]
that

duns = vns dLs + Lsdv
n
s + d[vn, L]s

= uns
1

2

((1

2
σs + ηsrs

)2

+ η2
s(1− r2

s)

)
ds− uns

(1

2
σs + ηsrs

)
dW (1)

s

− unsηs
√

1− r2
sdW

(2)
s + Lsdv

n
s .

This and (7.28) yield for all n ∈ N and s ∈ [t, T ] that

γ
− 1

2
s d(uns −Hn

s ) = γ
− 1

2
s

(
ρs + µs +

1

2
η2
s −

3

8
σ2
s

)
unsds− γ

− 1
2

s

(
1

2
µs −

1

8
σ2
s

)
Hn
s ds

+ γ
− 1

2
s

1

2
σs(u

n
s −Hn

s )dW (1)
s + γ

− 1
2

s Lsdv
n
s .

(7.39)
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Moreover, it follows from (3.5) for all n ∈ N and s ∈ [t, T ] that

(uns −Hn
s )dγ

− 1
2

s = (uns −Hn
s )γ

− 1
2

s

(
−1

2
µs +

3

8
σ2
s

)
ds− (uns −Hn

s )γ
− 1

2
s

1

2
σsdW

(1)
s .

(7.40)

We combine (7.38), (7.39), and (7.40) to obtain for all n ∈ N and s ∈ [t, T ) that

dXn
s = γ

− 1
2

s uns

(
ρs +

1

2
µs +

1

2
η2
s

)
ds− γ−

1
2

s Hn
s

1

4
σ2
sds+ γ

− 1
2

s Lsdv
n
s + d[γ−

1
2 , un −Hn]s.

Since vn has �nite variation for all n ∈ N, this representation shows that also Xn has
�nite variation for all n ∈ N.
Note that for all n ∈ N, by Proposition 7.2.1, the process (7.3) associated to the

càdlàg �nite-variation process Xn is nothing but Dn. Since η is bounded, there exists
c ∈ (0,∞) such that for all n ∈ N

E

[(∫ T

t

(Dn
s )4γ−2

s η2
sds

) 1
2

]
= E

[(∫ T

t

(uns )4η2
sds

) 1
2

]
≤ cE

[
sup
s∈[t,T ]

(uns )2
]
<∞.

This implies (B2). Similarly, by boundedness of σ, we obtain (B3). We thus conclude
that Xn ∈ Afv

t (x, d) for all n ∈ N.
(iii) Let (Xn)n∈N be a Cauchy sequence in (Apm

t (x, d),d). Then, (γ−
1
2Dn)n∈N is a

Cauchy sequence in (L2
t , ‖·‖L2t ). Since (L2

t , ‖·‖L2t ) is complete (see, e.g., Lemma 2.2 in

Section 3.2 of [KS91]), there exists u0 ∈ L2
t such that limn→∞‖γ−

1
2Dn − u0‖L2t = 0.

De�ne X0 = (X0
s )s∈[t−,T ] by X0

t− = x, X0
T = ξ̂, X0

s = γ
− 1

2
s (u0

s −H0
s ), s ∈ [t, T ), where

H0 is given by (7.28). By Lemma 7.4.4 it holds that X0 ∈ Apm
t (x, d). We furthermore

obtain from Lemma 7.4.4 that, for the associated deviation, D0 = γX0 + γ
1
2H0. By

de�nition of X0, this yields γ
− 1

2
s D0

s = u0
s, s ∈ [t, T ). It follows that

d(Xn, X0) =

(
E

[∫ T

t

(
γ
− 1

2
s Dn

s − γ
− 1

2
s D0

s

)2

ds

]) 1
2

= ‖γ−
1
2Dn − u0‖L2t ,

and hence limn→∞ d(Xn, X0) = 0.

We conclude with the proof of the equivalence of the control problems.

Proof of Corollary 7.5.3. For the proof, �x t ∈ [0, T ] and x, d ∈ R. We know from
Corollary 7.3.1 that Afv

t (x, d) ⊆ Apm
t (x, d) and that J fv

t (x, d,X) = Jpm
t (x, d,X) for all

X ∈ Afv
t (x, d). Hence,

ess inf
X∈Afv

t (x,d)
J fv
t (x, d,X) ≥ ess inf

X∈Apm
t (x,d)

Jpm
t (x, d,X).
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It further follows from Theorem 7.5.2 that, for every X0 ∈ Apm
t (x, d), there exists a

sequence (Xn)n∈N in Afv
t (x, d) such that J fv

t (x, d,Xn)→ Jpm
t (x, d,X0) in L1(Ω,Ft, P )

as n → ∞ (with a.s. convergence for a subsequence). Therefore, for every X0 ∈
Apm
t (x, d), it holds that

ess inf
X∈Afv

t (x,d)
J fv
t (x, d,X) ≤ Jpm

t (x, d,X0).

This implies that

ess inf
X∈Afv

t (x,d)
J fv
t (x, d,X) ≤ ess inf

X∈Apm
t (x,d)

Jpm
t (x, d,X).
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8

Solution of the extended problem

via reduction to a standard LQ stochastic

control problem

We here continue our investigations of Chapter 7. The aim of the present chapter
is to solve the extended problem of Section 7.3 (and, potentially, the �nite-variation
problem of Section 7.1).
We do this by reducing the extended problem to a standard LQ stochastic control

problem in Section 8.1. Subsequently, in Section 8.2, we apply stochastic control
literature (more precisely, Kohlmann and Tang [KT02]) to solve the LQ problem (under
additional assumptions). A direct link between the control problems allows us to
recover the solution of the extended problem in Corollary 8.2.4. In particular, we
�nd that the unique optimal strategy in general is characterized by the solutions of
two BSDEs. The �rst BSDE is (4.1), while the second one is linear (with in general
unbounded coe�cients) and enters the solution in case of a nonzero terminal position
or when one tries to follow a nonzero target position over the course of the trading
period. We provide a formula for the optimal strategy and a representation for the
minimal costs. Finally, we in Section 8.3 present the Obizhaeva-Wang model (i.e., γ
and ρ are constants, and η ≡ 0) with random targets ξ̂ and ζ.
Throughout this chapter, we assume the setting of Section 3.1 and let M (j) = W (j),

j ∈ {1, . . . ,m}, be independent Brownian motions. ξ̂ and ζ are as introduced in
Section 7.1. We further suppose that the condition (Cbdd) is always in force.
This chapter makes extensive use of material from Sections 2, 3, 4, and 5 of the

preprint [AKU22a] (joint work with Thomas Kruse and Mikhail Urusov).

8.1 Reduction to a standard LQ stochastic control

problem

We recast the problem of minimizing Jpm over X ∈ Apm
t (x, d) as a standard LQ

stochastic control problem. That means, we transform the extended problem into a

195
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control problem where the state is driven by a controlled SDE and the control acts
as one of the arguments in that SDE and as one of the arguments in the integrand
of the cost functional. Moreover, the pair of control and state enters linearly into the
dynamics of the state and quadratic into the cost functional.

8.1.1 The �rst reduction

Observe that (7.26) in Proposition 7.4.2 shows that for t ∈ [0, T ], x, d ∈ R, and
X ∈ Apm

t (x, d) the costs Jpm
t (x, d,X) depend in a quadratic way on (H

X
, γ−

1
2DX).

Moreover, (7.25) in Proposition 7.4.2 ensures that the dynamics of H
X
depend linearly

on (H
X
, γ−

1
2DX). These two observations suggest to view the minimization problem

of Jpm over X ∈ Apm
t (x, d) as a standard LQ stochastic control problem with state

process H
X
and control γ−

1
2DX , and motivate the following de�nitions.

For every t ∈ [0, T ], x, d ∈ R, and u ∈ L2
t (i.e., u = (us)s∈[t,T ] is a progressively mea-

surable process with E[
∫ T
t
u2
sds] <∞), we consider the state process Hu = (Hu

s )s∈[t,T ]

de�ned by

dHu
s =

(
1

2

(
µs −

1

4
σ2
s

)
Hu
s −

1

2

(
2(ρs + µs)− σ2

s − σsηsrs
)
us

)
ds

+

(
1

2
σsH

u
s − (σs + ηsrs)us

)
dW (1)

s − ηs
√

1− r2
susdW

(2)
s , s ∈ [t, T ],

Hu
t =

d
√
γt
−√γtx,

(8.1)

and the cost functional JLQ de�ned by

JLQ
t

(
d
√
γt
−√γtx, u

)
= Et

[
1

2

(
Hu
T +
√
γT ξ̂
)2

+

∫ T

t

(κs + λs)u
2
sds

+

∫ T

t

λs (Hu
s +
√
γsζs)

2 − 2λs (Hu
s +
√
γsζs)usds

]
.

(8.2)

Our standard LQ stochastic control problem (with possible cross-terms) is to minimize
(8.2) over the set of admissible controls L2

t .

It holds that for every progressively measurable execution strategy X ∈ Apm
t (x, d)

there exists a control u ∈ L2
t such that the cost functional Jpm can be rewritten in

terms of JLQ (and − d2

2γt
). In fact, this is achieved by taking u = γ−

1
2DX , as outlined

in the motivation above. We state this as Lemma 8.1.1.

Lemma 8.1.1. Let t ∈ [0, T ] and x, d ∈ R. Suppose that X ∈ Apm
t (x, d) with associated

deviation DX . De�ne u = (us)s∈[t,T ] by us = γ
− 1

2
s DX

s , s ∈ [t, T ]. It then holds that
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u ∈ L2
t and that

Jpm
t (x, d,X) = JLQ

t

(
d
√
γt
−√γtx, u

)
− d2

2γt
a.s.

Proof. By de�nition of u we have that u is progressively measurable and, due to as-
sumption (B1), satis�es E[

∫ T
t
u2
sds] <∞; hence, u ∈ L2

t .

LetH
X

s = γ
− 1

2
s DX

s −γ
1
2
s Xs, s ∈ [t, T ], be the scaled hidden deviation (7.17) associated

to X. We can substitute u = γ−
1
2DX in the cost functional (7.26) and also in the

dynamics (7.25) of H
X
. Observe that H

X
follows the same dynamics as the state

process Hu associated to u (see (8.1)), and that H
X

t = d√
γt
−√γtx = Hu

t . Therefore,

H
X
and Hu coincide, which completes the proof.

On the other hand, we may also start with u ∈ L2
t and derive a progressively

measurable execution strategy X ∈ Apm
t (x, d) such that the expected costs match.

Lemma 8.1.2. Let t ∈ [0, T ] and x, d ∈ R. Suppose that u = (us)s∈[t,T ] ∈ L2
t and let

Hu be the associated solution of (8.1). De�ne X = (Xs)s∈[t−,T ] by

Xs = γ
− 1

2
s (us −Hu

s ), s ∈ [t, T ), Xt− = x, XT = ξ̂.

It then holds that X ∈ Apm
t (x, d) and that

Jpm
t (x, d,X) = JLQ

t

(
d
√
γt
−√γtx, u

)
− d2

2γt
a.s.

Proof. It follows from Lemma 7.4.4 that X ∈ Apm
t (x, d). Moreover, we have from

Lemma 7.4.4 that the associated deviation satis�esDX = γX+γ
1
2Hu, i.e., DX

s = γ
1
2
s us,

s ∈ [t, T ), and Hu is the scaled hidden deviation of X. It thus holds that Jpm
t (x, d,X)

is given by (7.26) with H
X

= Hu. In the de�nition (8.2) of JLQ, we may replace u
under the integrals with respect to the Lebesgue measure by γ−

1
2DX . This shows that

Jpm
t (x, d,X) = JLQ

t ( d√
γt
−√γtx, u)− d2

2γt
.

Lemma 8.1.1 and Lemma 8.1.2 together with Corollary 7.5.3 establish the following
equivalence of the control problems pertaining to J fv, Jpm, and JLQ.

Corollary 8.1.3. For t ∈ [0, T ] and x, d ∈ R it holds that

ess inf
X∈Afvt (x,d)

J fv
t (x, d,X) = ess inf

X∈Apmt (x,d)
Jpm
t (x, d,X)

= ess inf
u∈L2t

JLQ
t

(
d
√
γt
−√γtx, u

)
− d2

2γt
a.s.
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Proof. The �rst equality is just Corollary 7.5.3. The inequality that Jpm
t (x, d,X) ≥

ess infu∈L2t J
LQ
t ( d√

γt
− √γtx, u) − d2

2γt
for all X ∈ Apm

t (x, d) follows from Lemma 8.1.1,

whereas ess infX∈Apm
t (x,d) J

pm
t (x, d,X) ≤ JLQ

t ( d√
γt
−√γtx, u) − d2

2γt
for all u ∈ L2

t is an
immediate consequence of Lemma 8.1.2.

Furthermore, Lemma 8.1.1, Lemma 8.1.2, and Corollary 8.1.3 provide a method
to obtain an optimal progressively measurable execution strategy, and potentially an
optimal �nite-variation execution strategy, from an optimal control of the standard
LQ stochastic control problem and vice versa.

Corollary 8.1.4. Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that X∗ = (X∗s )s∈[t−,T ] ∈ Apm

t (x, d) minimizes Jpm over Apm
t (x, d) and

let DX∗ be the associated deviation process. Then, u∗ = (u∗s)s∈[t,T ] de�ned by

u∗s = γ
− 1

2
s DX∗

s , s ∈ [t, T ],

minimizes JLQ over L2
t .

(ii) Suppose that u∗ = (u∗s)s∈[t,T ] ∈ L2
t minimizes JLQ over L2

t and let Hu∗ be the
associated solution of (8.1) for u∗. Then, X∗ = (X∗s )s∈[t,T ] de�ned by

X∗s = γ
− 1

2
s (u∗s −Hu∗

s ), s ∈ [t, T ), X∗t− = x, X∗T = ξ̂,

minimizes Jpm over Apm
t (x, d). Moreover, if X∗ ∈ Afv

t (x, d) (in the sense that there
is an element of Afv

t (x, d) within the equivalence class of X∗, see (7.15)), then X∗

minimizes J fv over Afv
t (x, d).

Proof. Part (i) is an immediate consequence of Corollary 8.1.3 and Lemma 8.1.1. Part
(ii) follows directly from Corollary 8.1.3 and Lemma 8.1.2.

Moreover, we keep uniqueness of a minimizer.

Corollary 8.1.5. Let t ∈ [0, T ] and x, d ∈ R. There exists a (DW (1)|[t,T ]-a.e.) unique
minimizer of Jpm over Apm

t (x, d) if and only if there exists a (DW (1)|[t,T ]-a.e.) unique
minimizer of JLQ over L2

t .

Proof. Assume �rst that X∗ uniquely minimizes Jpm over Apm
t (x, d). Then, by Corol-

lary 8.1.4(i), u∗ = γ−
1
2DX∗ de�nes a minimizer of JLQ over L2

t . Suppose that ũ∗

also minimizes JLQ over L2
t . We have from Corollary 8.1.4(ii) that X̃∗ de�ned by

X̃∗s = γ
− 1

2
s (ũ∗s − H ũ∗

s ), s ∈ [t, T ), X̃∗t− = x, X̃∗T = ξ̂, minimizes Jpm over Apm
t (x, d).

Lemma 7.4.4 yields that ũ∗ = γ−
1
2DX̃∗ . Since X∗ = X̃∗ DW (1)|[t,T ]-a.e., it holds that

DX∗ = DX̃∗ DW (1) |[t,T ]-a.e., and we conclude that u∗ = ũ∗ DW (1)|[t,T ]-a.e.
For the other direction, assume that u∗ uniquely minimizes JLQ over L2

t . We obtain

from Corollary 8.1.4(ii) that X∗ de�ned by X∗s = γ
− 1

2
s (u∗s −Hu∗

s ), s ∈ [t, T ), X∗t− = x,
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8.1 Reduction to a standard LQ stochastic control problem

X∗T = ξ̂, minimizes Jpm over Apm
t (x, d). From Lemma 7.4.4 we have that u∗ = γ−

1
2DX∗ .

Suppose that X̃∗ minimizes Jpm over Apm
t (x, d). Then, Corollary 8.1.4(i) implies that

ũ∗ = γ−
1
2DX̃∗ de�nes a minimizer of JLQ over L2

t . Since γ
− 1

2DX∗ = u∗ = ũ∗ = γ−
1
2DX̃∗

DW (1)|[t,T ]-a.e., we get that d(X∗, X̃∗) = 0, and hence that X∗ = X̃∗ DW (1) |[t,T ]-a.e.
(recall that d de�ned in (7.30) is a metric by Lemma 7.5.1).

8.1.2 Formulation without cross-terms

The last integral in the de�nition (8.2) of the cost functional JLQ involves a product
between the state process Hu and the control process u. A larger part of the literature
on LQ optimal control considers cost functionals that do not contain such cross-terms.
In particular, this applies to [KT02], whose results we want to apply in Section 8.2. For
this reason we provide in this subsection a reformulation of the control problem (8.1)
and (8.2) that does not contain cross-terms. In order to carry out the transformation
necessary for this, we need to impose a further condition on our model inputs: we
assume in the current subsection that there exists a constant C ∈ [0,∞) such that for
all s ∈ [0, T ] we have P -a.s. that

|λs| ≤ C|λs + κs|. (8.3)

Note that this assumption ensures that the set {λs + κs = 0} is a subset of {λs = 0}
(up to a P -null set). For this reason, in the sequel, we use the following convention:

under (8.3) we always understand
λs

λs + κs
= 0 on the set {λs + κs = 0}.

Now in order to get rid of the cross-term in (8.2) we transform for t ∈ [0, T ] any control
process u ∈ L2

t in an a�ne way to ûs = us − λs
λs+κs

(Hu
s +
√
γsζs), s ∈ [t, T ]. This leads

to the new controlled state process Ĥ û = (Ĥ û
s )s∈[t,T ] that is de�ned for every t ∈ [0, T ],

x, d ∈ R, and û ∈ L2
t by

dĤ û
s =

(
µs
2
− 1

8
σ2
s −

λs
λs + κs

(
ρs + µs −

σ2
s + σsηsrs

2

))
Ĥ û
s ds

−
(
ρs + µs −

σ2
s + σsηsrs

2

)
ûsds−

λs
λs + κs

(
ρs + µs −

σ2
s + σsηsrs

2

)
√
γsζsds

+

(
σs
2
− λs
λs + κs

(σs + ηsrs)

)
Ĥ û
s dW

(1)
s − (σs + ηsrs)ûsdW

(1)
s

− λs
λs + κs

(σs + ηsrs)
√
γsζsdW

(1)
s −

λs
λs + κs

ηs

√
1− r2

sĤ
û
s dW

(2)
s

− ηs
√

1− r2
sûsdW

(2)
s −

λs
λs + κs

ηs

√
1− r2

s

√
γsζsdW

(2)
s , s ∈ [t, T ],

Ĥ û
t =

d
√
γt
−√γtx.

(8.4)
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8 Solution of the extended problem

The meaning of (8.4) is that we only reparametrize the control (u → û) but not the
state variable (Ĥ û = Hu), see Lemma 8.1.6 for the formal statement. For t ∈ [0, T ],
x, d ∈ R, û ∈ L2

t and associated Ĥ û de�ned by (8.4), we de�ne the cost functional ĴLQ

by

ĴLQ
t

(
d
√
γt
−√γtx, û

)
= Et

[
1

2

(
Ĥ û
T +
√
γT ξ̂
)2

+

∫ T

t

λsκs
λs + κs

(
Ĥ û
s +
√
γsζs

)2

+ (λs + κs)û
2
sds

]
.

(8.5)

This cost functional does not exhibit cross-terms and is equivalent to JLQ of (8.2) in
the sense of the following lemma.

Lemma 8.1.6. Assume that (8.3) holds true. Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that u = (us)s∈[t,T ] ∈ L2

t with associated state process Hu de�ned by
(8.1). Then, û = (ûs)s∈[t,T ] de�ned by

ûs = us −
λs

λs + κs
(Hu

s +
√
γsζs), s ∈ [t, T ],

is in L2
t , and it holds that Ĥ û = Hu and JLQ

t ( d√
γt
−√γtx, u) = ĴLQ

t ( d√
γt
−√γtx, û).

(ii) Suppose that û = (ûs)s∈[t,T ] ∈ L2
t with associated state process Ĥ û de�ned by

(8.4). Then, u = (us)s∈[t,T ] de�ned by

us = ûs +
λs

λs + κs
(Ĥ û

s +
√
γsζs), s ∈ [t, T ],

is in L2
t , and it holds that Hu = Ĥ û and JLQ

t ( d√
γt
−√γtx, u) = ĴLQ

t ( d√
γt
−√γtx, û).

(iii) It holds that

ess inf
u∈L2t

JLQ
t

(
d
√
γt
−√γtx, u

)
= ess inf

û∈L2t
ĴLQ
t

(
d
√
γt
−√γtx, û

)
.

Proof. Note �rst that, if u, û ∈ L2
t with the relations û = u − λ

λ+κ
(Hu +

√
γζ) and

Ĥ û = Hu, then

λs(H
u
s +
√
γsζs)

2 − 2λs(H
u
s +
√
γsζs)us + (κs + λs)u

2
s

= λs(H
u
s +
√
γsζs)

2 − (λs + κs)
λ2
s

(λs + κs)
2 (Hu

s +
√
γsζs)

2

+ (λs + κs)

(
us −

λs
λs + κs

(Hu
s +
√
γsζs)

)2

=
λsκs
λs + κs

(
Ĥ û
s +
√
γsζs

)2

+ (λs + κs)û
2
s, s ∈ [t, T ].

(8.6)
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(i) We have that û is progressively measurable. Furthermore, the fact that all
of E[

∫ T
t
u2
sds], E[sups∈[t,T ](H

u
s )2], and E[

∫ T
0
γsζ

2
sds] are �nite and (8.3) imply that

E[
∫ T
t
û2
sds] <∞. Hence, û ∈ L2

t . Substituting us = ûs + λs
λs+κs

(Hu
s +
√
γsζs), s ∈ [t, T ],

in (8.1) leads to (8.4). Equality of the cost functionals follows from (8.6).

(ii) Note that (8.4) is an SDE that is linear in Ĥ û, û, and
√
γζ. Furthermore,

boundedness of ρ, µ, σ, η, r and (8.3) imply that the coe�cients of the SDE are bounded.
Since moreover E[

∫ T
t

(ûs)
2 + γsζ

2
sds] < ∞ and Ĥ û

t is square integrable, we know that

E[sups∈[t,T ](Ĥ
û
s )2] <∞ (see, e.g., [Zha17, Theorem 3.2.2 and Theorem 3.3.1]). We can

thus argue similar to (i) that u ∈ L2
t . A substitution of û in (8.4) yields (8.1). Equality

of the cost functionals again follows from (8.6).

(iii) This is an immediate consequence of (i) and (ii).

As a corollary, we obtain the following link between an optimal control for ĴLQ and
an optimal control for JLQ.

Corollary 8.1.7. Assume that (8.3) holds true. Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that u∗ = (u∗s)s∈[t,T ] ∈ L2

t is a (unique) optimal control for JLQ, and let
Hu∗ be the solution of (8.1) for u∗. Then, û∗ = (û∗s)s∈[t,T ] de�ned by

û∗s = u∗s −
λs

λs + κs
(Hu∗

s +
√
γsζs), s ∈ [t, T ],

is a (unique) optimal control in L2
t for Ĵ

LQ. Moreover, Ĥ û∗ = Hu∗.

(ii) Suppose that û∗ = (û∗s)s∈[t,T ] ∈ L2
t is a (unique) optimal control for ĴLQ, and let

Ĥ û∗ be the solution of (8.4) for û∗. Then, u∗ = (u∗s)s∈[t,T ] de�ned by

u∗s = û∗s +
λs

λs + κs
(Ĥ û∗

s +
√
γsζs), s ∈ [t, T ],

is a (unique) optimal control in L2
t for J

LQ. Moreover, Hu∗ = Ĥ û∗.

Proof. This is clear from Lemma 8.1.6.

8.2 Solving the LQ problem and the extended

problem

We now solve the control problems. More precisely, we consider the problem formula-
tion of Section 8.1.2 and obtain, under appropriate assumptions, via [KT02] existence
of a unique optimal control in terms of two associated BSDEs and a representation
for the minimal costs in Theorem 8.2.3. From this, we derive in Corollary 8.2.4 a
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8 Solution of the extended problem

unique optimal strategy for the extended problem of Section 7.3 via Corollary 8.1.7,
Corollary 8.1.4, and Corollary 8.1.5.

In our general setting (see the end of the introduction of the present chapter) we, for
this section, additionally assume that the �ltration (Fs)s∈[0,T ] for the �ltered probability
space (Ω,FT , (Fs)s∈[0,T ], P ) is the augmented natural �ltration of the Brownian motion
(W (1), . . . ,W (m))>. Furthermore, we set the initial time to t = 0. We moreover assume
that (Cnonneg) is in force.

Remark 8.2.1. Note that the assumption (Cnonneg) of nonnegativity of λ and κ is
necessary to apply the results of [KT02]. Indeed, [KT02] requires that λ+κ (the coe�-
cient in front of û2 in (8.5)) and λκ

λ+κ
(the coe�cient in front of (Ĥ û

s +
√
γsζs)

2 in (8.5))
are nonnegative and bounded, which implies that λ and κ have to be nonnegative.
Moreover, we note that nonnegativity of λ and κ ensures that (8.3) is satis�ed, and
we observe that the mentioned coe�cients λ + κ and λκ

λ+κ
are bounded, as required.

Indeed, it clearly holds that λκ
λ+κ
≤ κ, and it remains to recall that µ, σ, ρ, η, r, and λ

are bounded.

Observe that the standard LQ stochastic control problem without cross-terms of
Section 8.1.2, which consists of minimizing ĴLQ in (8.5) with state dynamics given
by (8.4), is of the form considered in [KT02, (79)�(81)] (note also Table 8.1). The
solution can be described by the two BSDEs [KT02, (9) and (85)]. In our setting, the
BSDE of Riccati-type [KT02, (9)], after some computations, turns out to correspond
to BSDE (4.1) (in the form of (4.3)). Recall from Proposition 4.3.2 that, if (C≥ε)
or (Cs) holds, then we are guaranteed existence of a unique solution (Y, Z,M⊥) of
BSDE (4.1) and it holds that (σ2 + η2 + 2σηr)Y + κ + λ ≥ c DW (1)-a.e. for some
c ∈ (0,∞). For such a solution (Y, Z,M⊥) of BSDE (4.1), we de�ne ϑ̃ = (ϑ̃s)s∈[0,T ] as
in (5.22), and consider the second BSDE [KT02, (85)], which in our setting reads

dψs = −

[(
µs
2
− σ2

s

8
−
(
ρs + µs −

σ2
s + σsηsrs

2

)
ϑ̃s

)
ψs

+
(σs

2
− (σs + ηsrs) ϑ̃s

)
φ(1)
s − ηs

√
1− r2

s ϑ̃s φ
(2)
s +

√
γsζsλs(ϑ̃s − 1)

]
ds

+
m∑
j=1

φ(j)
s dW (j)

s , s ∈ [0, T ],

ψT = −1

2

√
γT ξ̂.

(8.7)

De�nition 8.2.2. A pair (ψ, φ) with φ = (φ(1), φ(2), . . . , φ(m))> is called a solution
of BSDE (8.7) if ψ is an adapted continuous process with E[sups∈[0,T ] ψ

2
s ] < ∞, φ is
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8.2 Solving the LQ problem and the extended problem

[KT02] Our setting

M 1
2

ξ −√γT ξ̂

Q λκ
λ+κ

q −√γζ

N λ+ κ

A µ
2
− σ2

8
− λ

λ+κ
(ρ+ µ− σ2+σηr

2
)

B −(ρ+ µ− σ2+σηr
2

)

f − λ
λ+κ

(ρ+ µ− σ2+σηr
2

)
√
γζ

C1
σ
2
− λ

λ+κ
(σ + ηr)

C2 − λ
λ+κ

η
√

1− r2

D1 −(σ + ηr)

D2 −η
√

1− r2

g1 − λ
λ+κ

(σ + ηr)
√
γζ

g2 − λ
λ+κ

η
√

1− r2√γζ

Table 8.1: We make the following identi�cations of quantities in [KT02] with quantities
in our setting.

progressively measurable with
∫ T

0
‖φs‖2

mds < ∞ P -a.s., and BSDE (8.7) is satis�ed
P -a.s.

Observe that BSDE (8.7) is linear, but existence of a solution is not evident since
the coe�cients of this BSDE in general are unbounded.
For a solution (Y, Z,M⊥) of BSDE (4.1) and a corresponding solution (ψ, φ) of

BSDE (8.7), we de�ne ϑ0 = (ϑ0
s)s∈[0,T ] by

ϑ0
s =

(
ρs + µs − σ2

s+σsηsrs
2

)
ψs + (σs + ηsrs)φ

(1)
s + ηs

√
1− r2

sφ
(2)
s −

√
γsζsλs

(σ2
s + η2

s + 2σsηsrs)Ys + κs + λs
, s ∈ [0, T ].

(8.8)

We then further introduce for x, d ∈ R the SDE

dĤ∗s = Ĥ∗s dKs + dLs, s ∈ [0, T ], Ĥ∗0 =
d
√
γ0

−√γ0x, (8.9)
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where

Kr =

∫ r

0

(
µs
2
− σ2

s

8
−
(
ρs + µs −

σ2
s + σsηsrs

2

)
ϑ̃s

)
ds

+

∫ r

0

(σs
2
− (σs + ηsrs)ϑ̃s

)
dW (1)

s −
∫ r

0

ηs

√
1− r2

s ϑ̃sdW
(2)
s ,

Lr =

∫ r

0

(
ρs + µs −

σ2
s + σsηsrs

2

)
ϑ0
sds+

∫ r

0

(σs + ηsrs)ϑ
0
sdW

(1)
s

+

∫ r

0

ηs

√
1− r2

s ϑ
0
sdW

(2)
s , r ∈ [0, T ].

(8.10)

We will show that the solution Ĥ∗ of (8.9) is the optimal state process in the stochastic
control problem to minimize ĴLQ of (8.5). Notice that Ĥ∗ can be easily expressed via
K and L in closed form, e.g.,

Ĥ∗r = E(K)r

(
d
√
γ0

−√γ0x+

∫ r

0

E(K)−1
s d (Ls − [L,K]s)

)
, r ∈ [0, T ]. (8.11)

In the next theorem, we summarize consequences from [KT02] in our setting to
obtain a minimizer of ĴLQ in (8.5) and a representation of the minimal costs.

Theorem 8.2.3. Let the assumptions of this section be in force and assume that (C≥ε)
or (Cs) is satis�ed. Let (Y, Z,M⊥) be the unique solution of BSDE (4.1) (cf. Propo-
sition 4.3.2).

(i) There exists a unique solution (ψ, φ) of BSDE (8.7).

(ii) Let x, d ∈ R, and let Ĥ∗ be the solution of SDE (8.9). Then, û∗ = (û∗s)s∈[0,T ]

de�ned by

û∗s =

(
ϑ̃s −

λs
λs + κs

)
Ĥ∗s −

(
ϑ0
s +
√
γsζs

λs
λs + κs

)
, s ∈ [0, T ], (8.12)

is the unique optimal control in L2
0 for ĴLQ, and Ĥ∗ is the corresponding state process

(i.e., Ĥ∗ = Ĥ û∗).

(iii) Let x, d ∈ R. The costs associated to the optimal control (8.12) are given by

inf
û∈L20

ĴLQ
0

(
d
√
γ0

−√γ0x, û

)
= ĴLQ

0

(
d
√
γ0

−√γ0x, û
∗
)

= Y0

(
d
√
γ0

−√γ0x

)2

− 2ψ0

(
d
√
γ0

−√γ0x

)
+ C0,

where

C0 =
1

2
E
[
γT ξ̂

2
]

+ E

[∫ T

0

γsλsζ
2
sds

]
− E

[∫ T

0

(ϑ0
s)

2
(
(σ2

s + η2
s + 2σsηsrs)Ys + κs + λs

)
ds

]
.

(8.13)
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Proof. Observe that the problem in Section 8.1.2 �ts the problem considered in [KT02,
Section 5]. In particular, note that the coe�cients in SDE (8.4) for Ĥ û and in the cost
functional ĴLQ (see (8.5)) are bounded, and that the inhomogeneities are in L2

0. The
initial state Ĥ û

0 = d√
γ0
−√γ0x is in R. Moreover, we have that 1

2
, λκ
λ+κ

, and λ + κ are
nonnegative. Furthermore, the �ltration by assumption in this section is generated by
the Brownian motion (W (1), . . . ,W (m))>.

(i) This is due to [KT02, Theorem 5.1].

(ii) The �rst part of [KT02, Theorem 5.2] yields the existence of a unique optimal
control û∗, which is given in feedback form by the formula û∗ = θĤ û∗ + u0, where

θ =

(
ρ+ µ− λ

λ+κ
(σ2 + 2σηr + η2)

)
Y + (σ + ηr)Z(1) + η

√
1− r2Z(2)

λ+ κ+ (σ2 + 2σηr + η2)Y

= ϑ̃− λ

λ+ κ

and

u0 = −

((
ρ+ µ− σ2 + σηr

2

)
ψ +

λ

λ+ κ

√
γζ(σ2 + 2σηr + η2)Y

+ (σ + ηr)φ(1) + η
√

1− r2 φ(2)

)
·
(
λ+ κ+ (σ2 + 2σηr + η2)Y

)−1

= −
(
ϑ0 +

√
γζ

λ

λ+ κ

)
.

We obtain (8.9) by plugging the formula for û∗ into the dynamics (8.4) for Ĥ û∗ .

(iii) The second part of [KT02, Theorem 5.2], after a straightforward computation
for C0, provides us with the optimal costs.

For our trade execution problem, this implies the following.

Corollary 8.2.4. Let the assumptions of this section be in force and assume that
(C≥ε) or (Cs) is satis�ed. Let (Y, Z,M⊥) be the unique solution of BSDE (4.1),
(ψ, φ) the unique solution of BSDE (8.7), and recall de�nitions (5.22) of ϑ̃ and (8.8)
of ϑ0. Let x, d ∈ R. Then, X∗ = (X∗s )s∈[0−,T ] de�ned by

X∗0− = x, X∗T = ξ̂,

X∗s = γ
− 1

2
s

((
ϑ̃s − 1

)
Ĥ∗s − ϑ0

s

)
, s ∈ [0, T ),

(8.14)
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with Ĥ∗ from (8.9), is the unique (up to DW (1)-null sets) optimal execution strategy in
Apm

0 (x, d) for Jpm. The associated costs are given by

inf
X∈Apm0 (x,d)

Jpm
0 (x, d,X) = Jpm

0 (x, d,X∗)

=
Y0

γ0

(d− γ0x)2 − d2

2γ0

− 2
ψ0√
γ0

(d− γ0x) + C0

with C0 from (8.13).

Proof. By Theorem 8.2.3(ii), û∗ from (8.12) is the unique optimal control in L2
0 for Ĵ

LQ,
and Ĥ∗ = Ĥ û∗ . Corollary 8.1.7(ii) implies further that u∗ = û∗ + λ

λ+κ
(Ĥ û∗ +

√
γζ) =

ϑ̃Ĥ∗ − ϑ0 is the unique optimal control in L2
0 for JLQ, and Hu∗ = Ĥ û∗ = Ĥ∗. It then

follows from Corollary 8.1.4(ii) and Corollary 8.1.5 that X∗0−, X
∗
T = ξ̂, X∗s = γ

− 1
2

s (u∗s −
Hu∗
s ) = γ

− 1
2

s ((ϑ̃s − 1)Ĥ∗s − ϑ0
s), s ∈ [0, T ), is the unique optimal strategy in Apm

0 (x, d)
for Jpm. The representation for the minimal costs is an immediate consequence of
Theorem 8.2.3(iii), Lemma 8.1.6(iii), and Corollary 8.1.3.

A special case of our setting is when, as in Chapter 5, we require to close the
position (i.e., ξ̂ = 0) and do not try to follow a (nonzero) target process (i.e., ζ or the
risk coe�cient λ vanishes). We remark that BSDE (4.1) neither contains ξ̂ nor ζ. In
particular, the solution component Y , the process ϑ̃, and the process K from (8.10)
do not depend on the choice of ξ̂ or ζ (although they depend on the choice of λ). In
contrast, BSDE (8.7) involves both ξ̂ and ζ. If ξ̂ = 0 and at least one of λ and ζ is
equivalent to 0, we have that (ψ, φ) from (8.7), ϑ0 from (8.8), L from (8.10), and C0

from (8.13) vanish.
In general, the terminal costs and the running costs in (8.2) (and also (8.5)) contain

terms such as (Hu
T +
√
γT ξ̂)

2 and λs(Hu
s +
√
γsζs)

2, which are inhomogeneous. In the
case where ξ̂ = 0 and where at least one of λ and ζ vanishes, the problem becomes
homogeneous. In that case, we could also apply results of [SXY21]. For instance,
by applying [SXY21] to the problem of Section 8.1.1 (note that [SXY21] allows for
cross-terms), it is possible to obtain the results of Corollary 8.2.4 also if we replace
the assumptions (Cnonneg), (C≥ε), and (Cs) by the set of the following assumptions1:
ξ̂ = 0, at least one of ζ and λ vanishes, and there exists δ ∈ (0,∞) such that, for
all u ∈ L2

0 and the associated process Hu de�ned in (8.1) with Hu
0 = 0, the uniform

convexity assumption (4.22) is satis�ed. The uniform convexity assumption on the
cost functional is a weaker requirement than the usually in the LQ literature imposed
nonnegativity and positivity assumptions on the coe�cients of the cost functional.
If ξ̂ = 0 and at least one of λ and ζ vanishes, we �nd that the optimal strategy

of Corollary 8.2.4 can be represented by a formula that is very close to the one of
Theorem 5.2.6(iii) (see also Chapter 9):

1We still require the remaining assumptions, e.g., (Cbdd) and that the �ltration is generated by the
Brownian motion (W (1), . . . ,W (m))>.
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8.3 The Obizhaeva-Wang model with random targets

Remark 8.2.5. Let the assumptions of Theorem 8.2.3 be in force and de�ne

Q̃s = −
∫ s

0

ϑ̃r(σr + ηrrr)dW
(1)
r −

∫ s

0

ϑ̃rηr

√
1− r2

rdW
(2)
r

−
∫ s

0

ϑ̃r(µr + ρr − σ2
r − σrηrrr)dr, s ∈ [0, T ].

We can compute from (3.5), (8.9), and (8.10) that γ−
1
2E(K) = γ

− 1
2

0 E(Q̃). Using (8.11)
with (8.14), we then obtain that the optimal strategy in Apm

0 (x, d) for Jpm on s ∈ [0, T )
can be expressed as

X∗s =

(
x− d

γ0

− γ−
1
2

0

∫ s

0

E(K)−1
r d(Lr − [L,K]r)

)
E(Q̃)s(1− ϑ̃s)− γ

− 1
2

s ϑ0
s.

In particular, in the subsetting where ξ̂ = 0 and at least one of ζ and λ vanishes, the
optimal strategy (8.14) can be represented as

X∗0− = x, X∗T = 0, X∗s =

(
x− d

γ0

)
E(Q̃)s

(
1− ϑ̃s

)
, s ∈ [0, T ).

8.3 The Obizhaeva-Wang model with random

targets

The models developed by Obizhaeva and Wang [OW13] can essentially2 be considered
as special cases of the set-up in Chapter 7. Indeed, we obtain the framework of [OW13,
Section 6] by setting µ ≡ 0, σ ≡ 0, η ≡ 0, r ≡ 0, λ ≡ 0 and choosing ρ ∈ (0,∞) and
ξ̂ ∈ R as deterministic constants. Also the extension in [OW13, Section 8.3] including
risk aversion can be regarded as a special case of our setting by allowing λ ∈ (0,∞) to
be a positive constant and choosing ζ ≡ 0.
In this section we apply our results (in particular, Corollary 8.2.4) and provide

closed-form solutions (see (8.19) below) for optimal progressively measurable execution
strategies in versions of these problems which allow for general random terminal targets
ξ̂ and general running targets ζ.
To this end let x, d ∈ R and t = 0. Assume that (Fs)s∈[0,T ] is the augmented

natural �ltration of the Brownian motion (W (1), . . . ,W (m))>. Suppose that µ ≡ 0,
σ ≡ 0, η ≡ 0, and r ≡ 0. Furthermore, assume that ρ ∈ (0,∞) and λ ∈ [0,∞) are
deterministic constants. We take some ξ̂ and ζ as speci�ed in Section 7.1 (in particular,
see (7.1) and (7.2)). Note that the conditions of Proposition 4.3.2, Theorem 8.2.3, and
Corollary 8.2.4 hold true, and that γs = γ0 for all s ∈ [0, T ]. We �nd the unique

2Note that the set of admissible strategies in the continuous-time optimization problem of [OW13]
is slightly di�erent even from our �nite-variation problem of Section 7.1.
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8 Solution of the extended problem

solution (cf. Proposition 4.3.2) of BSDE (4.1) in the current setting by solving the
scalar Riccati ODE with constant coe�cients

dYs =

(
ρ2

ρ+ λ
Y 2
s +

2λρ

ρ+ λ
Ys −

λρ

ρ+ λ

)
ds, s ∈ [0, T ], YT =

1

2
.

Such an equation can be solved explicitly, and in our situation we obtain in the case
λ > 0 that

Ys =
1

2

λ tanh
(√

λρ(T−s)√
λ+ρ

)
+
√
λ(ρ+ λ)

(ρ
2

+ λ) tanh
(√

λρ(T−s)√
λ+ρ

)
+
√
λ(ρ+ λ)

, s ∈ [0, T ], (8.15)

and in the case λ = 0 that

Ys =
1

2 + (T − s)ρ
, s ∈ [0, T ]. (8.16)

Hence, (Y, Z,M⊥) with Z ≡ 0 ≡ M⊥ and Y of (8.15) (if λ > 0), respectively (8.16)
(if λ = 0), is the unique solution of BSDE (4.1) in the present setting. The process ϑ̃
from (5.22) here is given by

ϑ̃s =
ρYs + λ

ρ+ λ
, s ∈ [0, T ].

Note that ϑ̃ is deterministic and bounded by |ϑ̃| ≤
1
2
ρ+λ

ρ+λ
. BSDE (8.7) becomes

dψs = −
(
−ρϑ̃sψs +

√
γ0 ζsλ(ϑ̃s − 1)

)
ds+

m∑
j=1

φ(j)
s dW (j)

s , s ∈ [0, T ],

ψT = −1

2

√
γ0ξ̂.

(8.17)

By Theorem 8.2.3(i), there exists a unique solution (ψ, φ). Let us show that φ(j) ∈ L2
0

for all j ∈ {1, . . . ,m}. To this end, consider
m∑
j=1

∫ r

0

φ(j)
s dW (j)

s = ψr − ψ0 +

∫ r

0

(
−ρϑ̃sψs +

√
γ0 ζsλ(ϑ̃s − 1)

)
ds, r ∈ [0, T ],

and apply to this continuous local martingale the Burkholder-Davis-Gundy inequality,
and subsequently Jensen's inequality, to obtain existence of some c̃ ∈ (0,∞) such that

E

[ m∑
j=1

∫ ·
0

φ(j)
s dW (j)

s

]
T

 ≤ c̃ E

 sup
r∈[0,T ]

(
m∑
j=1

∫ r

0

φ(j)
s dW (j)

s

)2


≤ 8 c̃ E

[
sup
r∈[0,T ]

ψ2
r

]
+ 4 c̃ T 2ρ2

( 1
2
ρ+ λ

ρ+ λ

)2

E

[
sup
r∈[0,T ]

ψ2
r

]

+ 4 c̃ Tλ2

( 1
2
ρ+ λ

ρ+ λ
+ 1

)2

E

[∫ T

0

γ0ζ
2
sds

]
.
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8.3 The Obizhaeva-Wang model with random targets

Due to De�nition 8.2.2 and (7.2), the right-hand side is �nite. Since[
m∑
j=1

∫ ·
0

φ(j)
s dW (j)

s

]
T

=
m∑
j=1

∫ T

0

(φ(j)
s )2ds,

this shows that φ(j) ∈ L2
0 for all j ∈ {1, . . . ,m}. Observe moreover that the coe�cient

of ψ in the driver of BSDE (8.17) is bounded. It thus follows, e.g., by Lemma 4.1.2
(with g(0) = −ρϑ̃, g(1) = 0 = g(2), g(3) =

√
γ0ζλ(ϑ̃− 1), A = 0, ξ = −1

2

√
γ0ξ̂), that the

solution component ψ of (8.17) is given by

ψs = Γ−1
s

√
γ0

(
−1

2
ΓTEs[ξ̂]−

ρλ

ρ+ λ

∫ T

s

Γr(1− Yr)Es[ζr]dr
)
, s ∈ [0, T ],

where

Γs = exp

(
−ρ
∫ s

0

ϑ̃rdr

)
= exp

(
− ρ

ρ+ λ

(
λs+ ρ

∫ s

0

Yrdr

))
, s ∈ [0, T ]. (8.18)

It holds for the process in (8.8) that

ϑ0
s =

ρψs −
√
γ0 ζsλ

ρ+ λ
, s ∈ [0, T ].

Further, the processes K and L for SDE (8.9) in our current setting are given by

Kr = −ρ
∫ r

0

ϑ̃sds, Lr = ρ

∫ r

0

ϑ0
sds, r ∈ [0, T ].

It then follows from Corollary 8.2.4 (see also Remark 8.2.5, and note that E(K) =

E(Q̃) = Γ in the current setting) that X∗ = (X∗s )s∈[0−,T ] de�ned by X∗0− = x, X∗T = ξ̂,
and

X∗s =

(
x− d

γ0

+
ρ

ρ+ λ

∫ s

0

Γ−1
r

(
λζr −

ρ
√
γ0

ψr

)
dr

)
Γs

ρ

ρ+ λ
(1− Ys)

+
ρ

ρ+ λ

(
λ

ρ
ζs −

1
√
γ0

ψs

)
, s ∈ [0, T ),

(8.19)

is the (up to DW (1)-null sets unique) execution strategy in Apm
0 (x, d) that minimizes

Jpm.
We consider the case λ = 0 as a particular example.

Example 8.3.1. Suppose that λ = 0. If the terminal target ξ̂ ∈ R is a deterministic
constant (and d = 0), then the optimal strategy3 from [OW13, Proposition 3] is given
by X∗0− = x, X∗T = ξ̂, and

X∗s = (x− ξ̂)1 + (T − s)ρ
2 + Tρ

+ ξ̂, s ∈ [0, T ); (8.20)

3We will see in (8.22) that, for ξ̂ ∈ R (and d = 0), this is also the optimal strategy in our extended
problem, and moreover in our �nite-variation problem (cf. Corollary 8.1.4(ii)).
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8 Solution of the extended problem

it consists of potential block trades at times 0 and T and a continuous linear trading
program on [0, T ). In the following we analyze how this structure changes when we
allow for a random terminal target ξ̂.
First recall that the solution component Y of BSDE (4.1) is given in this case by

(8.16). It follows that Γ from (8.18) simpli�es to

Γs =
2 + (T − s)ρ

2 + Tρ
, s ∈ [0, T ].

For the solution component ψ of BSDE (8.17), we thus obtain that

ψs = −
√
γ0

2 + (T − s)ρ
Es[ξ̂], s ∈ [0, T ].

The optimal strategy from (8.19) for s ∈ [0, T ) becomes

X∗s =

(
x− d

γ0

− ρ
√
γ0

∫ s

0

Γ−1
r ψrdr

)
Γs(1− Ys)−

1
√
γ0

ψs

=

(
x− d

γ0

+ (2 + Tρ)ρ

∫ s

0

Er[ξ̂]

(2 + (T − r)ρ)2
dr

)
1 + (T − s)ρ

2 + Tρ
+

Es[ξ̂]

2 + (T − s)ρ
.

(8.21)

Integration by parts implies that (note that (Er[ξ̂])r∈[0,T ] is a continuous martingale)∫ s

0

Er[ξ̂]

(2 + (T − r)ρ)2
dr =

∫ s

0

Er[ξ̂]d
1

(2 + (T − r)ρ)ρ

=
Es[ξ̂]

(2 + (T − s)ρ)ρ
− E0[ξ̂]

(2 + Tρ)ρ
−
∫ s

0

1

(2 + (T − r)ρ)ρ
dEr[ξ̂], s ∈ [0, T ).

Substituting this into (8.21) yields for s ∈ [0, T ) that

X∗s =

(
x− E0[ξ̂]− d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ Es[ξ̂]−

∫ s

0

1 + (T − s)ρ
2 + (T − r)ρ

dEr[ξ̂]

=

(
x− E0[ξ̂]− d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ E0[ξ̂] +

∫ s

0

(
1− 1 + (T − s)ρ

2 + (T − r)ρ

)
dEr[ξ̂].

We �nally obtain the alternative representation

X∗s =

(
x− E[ξ̂]− d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ E[ξ̂] +

∫ s

0

1 + (s− r)ρ
2 + (T − r)ρ

dEr[ξ̂], s ∈ [0, T ),

(8.22)
for (8.21). We see that this optimal strategy X∗ ∈ Apm

0 (x, d) consists of two additive
parts: the �rst part (for d = 0) exactly corresponds to the optimal deterministic
strategy in (8.20) where the deterministic terminal target is replaced by the expected
terminal target E[ξ̂]. The second part represents �uctuations around this deterministic
strategy which incorporate updates about the random terminal target ξ̂. Note that
this stochastic integral vanishes in expectation.
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9

The semimartingale problem vs.

the extended problem

Let us discuss the relation between the semimartingale problem (see Chapter 5) and
the extended problem (see Chapter 7�Chapter 8).

Although the semimartingale problem and the extended problem use the same base
setting of Section 3.1, the set-ups of both problems exhibit some di�erences.
For instance, for the semimartingale problem, we work with the independent contin-

uous local martingales M (j), j ∈ {1, . . . ,m}, of Section 3.1 and in a general �ltration,
whereas for the extended problem, we assume that M (j) = W (j), j ∈ {1, . . . ,m}, are
independent Brownian motions. In Section 8.2 we additionally require the �ltration to
be generated by these Brownian motions and we consider initial time t = 0.
A di�erence in the setting where Chapter 7�Chapter 8 is more general than Chapter 5

concerns the possibility to include nonzero, stochastic targets ξ̂, ζ, and to consider
progressively measurable strategies.

The shared motivation for the de�nition of the cost functional and of the deviation
process in the semimartingale problem and in the extended problem is the usual kind
of formulation for �nite-variation strategies in Obizhaeva-Wang type models (see Sec-
tion 1.1, Section 5.1.2, and Section 7.1). The formulation in the semimartingale prob-
lem is in addition motivated by a heuristic limit from discrete time (see Section 3.2),
while counterexamples show that the conventional formulation here indeed is not suf-
�cient (see Section 5.1.2). In contrast, we give a rigorous justi�cation (Theorem 7.5.2)
for the particular formulation that we use in the extended problem.
Having set up the problems, the solution approaches that we take, in both cases,

are probabilistic and BSDE (4.1) plays a crucial role. In the semimartingale problem,
this BSDE appears already in the alternative representation of the cost functional (see
Section 5.2.1), whereas in the extended problem BSDE (4.1) arises as a special case
of [KT02, BSRDE (9)] in the context of a standard LQ stochastic control problem.
This is related to the di�erence that the solution approach in Chapter 5 is more

self-contained than the one in Chapter 8, where we eventually rely on literature on
LQ optimal control to solve the standard LQ and thus our trade execution problem.
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9 The semimartingale problem vs. the extended problem

Instead, a large e�ort in Chapter 7�Chapter 8 goes into showing equivalence of certain
control problems.
To show one of these equivalences, namely, that the cost functional Jpm can be con-

sidered as a continuous extension of J fv from �nite-variation strategies to progressively
measurable strategies, we in Lemma 7.5.4 exploit [KS91, Section 3.2, Lemma 2.7]. Ob-
serve that we rely on [KS91, Section 3.2, Lemma 2.7] also in Lemma 5.2.9 to ultimately
prove the main theorem on the semimartingale problem. In the �rst case, [KS91, Sec-
tion 3.2, Lemma 2.7] is used to approximate the deviation, whereas in the second case,
the same result [KS91, Section 3.2, Lemma 2.7] is used to approximate ϑ̃ of (5.22).

Recall that in Chapter 7�Chapter 8, the scaled hidden deviation process H
X

=
γ−

1
2DX − γ 1

2X of Section 7.4 is important for the proof of several results and essen-
tially becomes the state process in the standard LQ stochastic control problem (see

Section 8.1). The counterpart in Chapter 5 of H
X
is the process A = X − γ−1DX . In

particular, note that we place H
X
into the cost functional Jpm (see Proposition 7.4.2)

and that, in fact, we also introduce A into the cost functional J sem; see the proof of
Theorem 5.2.1 and observe that 1

γ
(ϑ̃(γX −DX) +DX)2 = γ(ϑ̃A+ γ−1DX)2 in (5.23).

Moreover, A shows up when proving uniqueness of optimal strategies in Lemma 5.2.5,
when approximating strategies in Lemma 5.2.10, and in the proof of the main result
Theorem 5.2.6.

To be better able to compare the main results Theorem 5.2.6 and Corollary 8.2.4,
let us in the sequel consider the following subsetting of Section 3.1: assume that the
continuous local martingale (M (1), . . . ,M (m))> = (W (1), . . . ,W (m))> = W is an m-
dimensional Brownian motion, that Fs = FWs for all s ∈ [0, T ], ξ̂ = 0, ζ ≡ 0, t = 0,
and that (Cbdd) is satis�ed. Note that Theorem 5.2.6 in addition requires (C>0) (and
existence of the BSDE (4.1) and boundedness of ϑ̃ of (5.22)), whereas in Corollary 8.2.4
we demand the slightly di�erent additional conditions1 (Cnonneg) and at least one of
(C≥ε), (Cs). Let us now assume that (C>0), (Cnonneg), and at least one of (C≥ε),
(Cs) hold. Then, there exists a unique solution of BSDE (4.1) (cf. Proposition 4.3.2).
Moreover, we know that the denominator in de�nition (5.22) of ϑ̃ is strictly positive
and bounded away from zero. However, due to Z(1) and Z(2) in (5.22), we can in general
not guarantee that ϑ̃ is DW (1)-a.e. bounded. Thus, the premises of Theorem 5.2.6 are
not yet completely satis�ed. We therefore assume now in addition that ϑ̃ is DW (1)-a.e.
bounded. Then, we can apply both, Theorem 5.2.6 and Corollary 8.2.4.
We �nd that the optimal costs in the semimartingale problem and in the extended

problem (for all x, d ∈ R) are the same (cf. Theorem 5.2.6(i) and Corollary 8.2.4, since
ψ ≡ 0, C0 = 0 for ξ̂ = 0 ≡ ζ). In the extended problem, there always exists an optimal
strategy (cf. Corollary 8.2.4), whereas in the semimartingale problem, for x 6= d

γ0
, we

1In the current case of ξ̂ = 0 ≡ ζ, we could obtain the results of Corollary 8.2.4 also under slightly
weaker conditions than these when we apply [SXY21] to the standard LQ problem with cross-terms
of Section 8.1.1.

212



have existence of an optimal strategy if and only if we can �nd a càdlàg semimartingale
ϑ such that ϑ̃ = ϑ DW (1)-a.e.
As an example, we have illustrated in Section 5.4.1 that an optimizer of the semi-

martingale problem does not exist when we consider the setting of Remark 5.3.2 with
µ chosen as a deterministic càdlàg function such that there exists δ ∈ (0, T ) with µ
having in�nite variation on [0, T −δ]. Note that the setting in that example is a special
case of our current setting. In particular, the conditions of Corollary 8.2.4 are satis-
�ed, and we are able to compute via (8.14) a unique optimal strategy in the extended
problem (see also [AKU22a, Section 4.2]).
If existent, the (unique) optimal strategy of the semimartingale problem is given

by the formulas in Theorem 5.2.6(iii). The (unique) optimal strategy of the extended
problem satis�es the formulas in Remark 8.2.5. The only di�erence is that in the
solution of the extended problem, we keep ϑ̃, which we replace in the solution of the
semimartingale problem by ϑ. Nevertheless, the solutions coincide, as ϑ̃ = ϑ DW (1)-
a.e. and as uniqueness of optimal strategies is up to DW (1)-null sets. In particular2, for
x, d ∈ R, the optimal semimartingale strategy in Asem

0 (x, d) from Theorem 5.2.6(iii) is
also the optimal progressively measurable strategy in Apm

0 (x, d). In general, though,
we do not have that X ∈ Asem

0 (x, d) implies that X ∈ Apm
0 (x, d) (nor that Asem

0 (x, d)
is a superset of Afv

0 (x, d)) due to di�erences in the respective integrability assumptions
on admissible strategies.

A natural question that arises is whether for X ∈ Asem
t (x, d) ∩ Apm

t (x, d) (for
t ∈ [0, T ], x, d ∈ R) the control problems considered in Section 5.1.1 and Section 7.3
coincide. The answer is a�rmative. Indeed, for X ∈ Asem

t (x, d) ∩ Apm
t (x, d), we can

show that de�nitions (5.1) and (7.14) of the associated deviations in the semimartin-
gale, respectively extended, problem coincide and that J sem

t (x, d,X) = Jpm
t (x, d,X),

see Proposition 9.0.1. Moreover, we remark that if X ∈ Asem
t (x, d)∩Afv

t (x, d), it holds
that the associated deviations (5.1) and (7.3) in the semimartingale, respectively �nite-
variation, problem agree and that J sem

t (x, d,X) = J fv
t (x, d,X) (see also Remark 5.1.3).

Proposition 9.0.1. Consider the setting of Section 3.1 and suppose that M (j) = W (j),
j ∈ {1, . . . ,m}, are independent Brownian motions and that ξ̂ = 0 and ζ ≡ 0. Fix
t ∈ [0, T ] and x, d ∈ R. Let X ∈ Asem

t (x, d) ∩ Apm
t (x, d). Let D be de�ned by (5.1),

and let D be de�ned by (7.14). Assume that J sem
t (x, d,X) of (5.2) and Jpm

t (x, d,X)
of (7.16) are well de�ned.

(i) It holds that D = D.

(ii) It holds that J sem
t (x, d,X) = Jpm

t (x, d,X).

Proof. (i) Denote βs = d − γtx −
∫ s
t
Xrd(νrγr), s ∈ [t, T ], where we recall that ν is

de�ned in (7.5). Observe that X, β, and D = γX + ν−1β are semimartingales. We

2Especially, note that the optimal strategies of Example 5.3.1, Example 5.3.3, Example 5.3.4,
Section 5.4.2, and Section 5.4.3 are also the optimal strategies in the extended problem (see
also [AKU22a, Section 4] for Example 5.3.1 and Section 5.4.2).
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9 The semimartingale problem vs. the extended problem

compute by integration by parts, and using (7.6), for all s ∈ [t, T ] that

dDs = γsdXs +Xsdγs + d[γ,X]s + ν−1
s dβs + βsdν

−1
s + d[ν−1, β]s

= γsdXs +Xsdγs + d[γ,X]s − ν−1
s Xsd(νsγs)− ν−1

s βsdRs + ν−1
s Xsd[R, νγ]s.

(9.1)

Furthermore, it holds by integration by parts for all s ∈ [t, T ] that

d(νsγs) = νsdγs + γsνsdRs + γsνsd[R]s + νsd[R, γ]s. (9.2)

We obtain from (9.1) and (9.2) for all s ∈ [t, T ] that

dDs = γsdXs +Xsdγs + d[γ,X]s −Xsdγs −XsγsdRs −Xsγsd[R]s −Xsd[R, γ]s

− ν−1
s βsdRs +Xsd[R, γ]s +Xsγsd[R]s

= γsdXs + d[γ,X]s − (γsXs + ν−1
s βs)dRs

= γsdXs + d[γ,X]s −DsdRs.

D also satis�es this SDE with the same initial value Dt− = d = Dt−. Since the solution
is unique, we have that D = D.

(ii) From (5.1) we have that

dXs = γ−1
s dDs + γ−1

s DsdRs − γ−1
s d[γ,X]s, s ∈ [t, T ],

and further that

d[X]s = γ−2
s d[D]s + γ−2

s D2
sd[R]s + 2γ−2

s Dsd[D,R]s

= γ−2
s d[D]s + γ−2

s D2
sd[R]s − 2γ−2

s D2
sd[R]s + 2γ−1

s Dsd[X,R]s, s ∈ [t, T ].

Moreover, since
dγ−1

s = −γ−2
s dγs + γ−3

s d[γ]s, s ∈ [0, T ],

it holds that

−γ−1
s d[γ,X]s = γsd[γ−1, X]s = d[γ−1, D]s +Dsd[γ−1, R]s, s ∈ [t, T ].

We then obtain for all s ∈ [t, T ] that

Ds−dXs +
γs
2
d[X]s −Dsd[X,R]s

= Ds−γ
−1
s dDs + γ−1

s D2
sdRs +Dsd[γ−1, D]s +D2

sd[γ−1, R]s +
1

2
γ−1
s d[D]s

+
1

2
γ−1
s D2

sd[R]s − γ−1
s D2

sd[R]s +Dsd[X,R]s −Dsd[X,R]s

= γ−1
s Ds−dDs + γ−1

s D2
sdRs +Dsd[γ−1, D]s +D2

sd[γ−1, R]s +
1

2
γ−1
s d[D]s

− 1

2
γ−1
s D2

sd[R]s.

(9.3)
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Furthermore, it holds by integration by parts that

d(γ−1
s D2

s) = γ−1
s dD2

s +D2
sdγ

−1
s + d[γ−1, D2]s

= 2γ−1
s Ds−dDs + γ−1

s d[D]s +D2
sdγ

−1
s + 2Dsd[γ−1, D]s, s ∈ [t, T ],

and thus

γ−1
s Ds−dDs =

1

2
d(γ−1

s D2
s)−

1

2
γ−1
s d[D]s −

1

2
D2
sdγ

−1
s −Dsd[γ−1, D]s, s ∈ [t, T ].

We insert this into (9.3) and obtain for all s ∈ [t, T ] that

Ds−dXs +
γs
2
d[X]s −Dsd[X,R]s

=
1

2
d(γ−1

s D2
s)−

1

2
D2
sdγ

−1
s + γ−1

s D2
sdRs +D2

sd[γ−1, R]s −
1

2
γ−1
s D2

sd[R]s.

Using the dynamics (3.1) and (3.3) of R and γ−1, it follows for all s ∈ [t, T ] that

Ds−dXs +
γs
2
d[X]s −Dsd[X,R]s

=
1

2
d(γ−1

s D2
s) +

1

2
γ−1
s (µs − σ2

s)D
2
sds+

1

2
γ−1
s σsD

2
sdW

(1)
s + γ−1

s D2
sρsds

+ γ−1
s D2

sηsrsdW
(1)
s + γ−1

s D2
sηs

√
1− r2

sdW
(2)
s − γ−1

s D2
sσsηsrsds−

1

2
γ−1
s D2

sη
2
sds.

This yields that∫
[t,T ]

Ds−dXs +

∫
[t,T ]

γs
2
d[X]s −

∫ T

t

Dsd[X,R]s

=
1

2
γ−1
T D2

T −
d2

2γt
+

∫ T

t

γ−1
s D2

sκsds+

∫ T

t

γ−1
s D2

s

(
1

2
σs + ηsrs

)
dW (1)

s

+

∫ T

t

γ−1
s D2

sηs

√
1− r2

sdW
(2)
s .

(9.4)

By the Burkholder-Davis-Gundy inequality, Jensen's inequality, and Minkowski's in-
equality, there exists c ∈ (0,∞) such that

Et

[
sup
r∈[t,T ]

∣∣∣∣∫ r

t

γ−1
s D2

s

(
1

2
σs + ηsrs

)
dW (1)

s

∣∣∣∣
]

≤ cEt

(∫ T

t

γ−2
s D4

s

(
1

2
σs + ηsrs

)2

ds

) 1
2


≤ cEt

[(∫ T

t

γ−2
s D4

s

1

2
σ2
sds

) 1
2

]
+ cEt

[(∫ T

t

γ−2
s D4

s 2η2
sds

) 1
2

]
.
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9 The semimartingale problem vs. the extended problem

The �rst and the second conditional expectation on the right-hand side are �nite due
to (A3) and (A5) of Section 5.1.1, respectively. It follows that

Et

[∫ T

t

γ−1
s D2

s

(
1

2
σs + ηsrs

)
dW (1)

s

]
= 0. (9.5)

Similarly, we can show by the Burkholder-Davis-Gundy inequality and (A5) of Sec-
tion 5.1.1 that

Et

[∫ T

t

γ−1
s D2

sηs

√
1− r2

sdW
(2)
s

]
= 0. (9.6)

(9.4) together with (9.5), (9.6), and D = D proves that J sem
t (x, d,X) = Jpm

t (x, d,X).
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