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1. Introduction 

 

1.1 Pulmonary hypertension  

  Idiopathic pulmonary arterial hypertension (IPAH) is associated with 

structural changes in the pulmonary vasculature ultimately leading to right heart 

failure if untreated. The changes in vascular structure, also known as vascular 

remodeling, comprise dilatation and atheroma of elastic arteries, medial 

hypertrophy, muscularization of arterioles, and intimal proliferation [1-6]. Despite 

variations in their distribution and severity, these lesions have been included in 

the description of most forms of pulmonary hypertension, including that 

associated with Chronic Obstructive Pulmonary Disease (COPD) and in 

populations living at high altitude [7].  

Characteristic of chronic pulmonary hypertension are changes in the 

structure and function of endothelial cells, smooth muscle cells, and fibroblasts, 

as well as heterogeneity among cell phenotypes, resulting in vascular 

remodeling, altered tone, and vasoreactivity [8-11]. This disease is characterized 

by vascular cell proliferation and obliteration of small pulmonary arteries, which 

leads to sever pulmonary hypertension and right ventricular failure. Typical 

morphological appearances include increased muscularization of small arteries 

and thickening or fibrosis of the intima. The term plexiogenic arteriopathy is also 

used for this disease because of the existence of plexiform lesions (200 to 400 

�m in diameter), which are capillary-like channels adjacent to small pulmonary 

arteries. A significant breakthrough in understanding of the pathogenesis of IPAH 

has emerged recently from genomic analysis. IPAH is rare, with an estimated 

prevalence of 1-2 cases per million, and is twice as common in women as in men 

[12]. 

 Approximately 6% of all IPAH cases have a known family history of the 

disease. Linkage studies in families with multiple affected members have mapped 

the disease locus to a 3cM intercal on chromosome 2q31-32 (locos IPAH) [13].  

Examination of candidate genes within this interval led to the identification of 
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mutations in the Bone Morphogenetic Protein Receptor 2 (BMPRII) gene that 

encodes a disrupted protein and which tracks with the disease. In reports to date, 

inactivating heterozygous mutations have been found distributed throughout the 

BMPRII gene in approx sixty percent of patients with a family history and 26% of 

so-called sporadic cases of IPAH [14;15]. These mutations include frame shifts, 

nonsense and missense mutations, splice site variations and deletions that would 

be predicted to truncate the protein or alter highly conserved regions and 

interfere with ligand binding or kinase activity [16-23]. 

The mechanism by which this loss of function leads to the disease is 

presently the focus of intense research. The precise molecular mechanisms of 

disease pathogenesis remain to be elucidated but are likely to involve altered 

BMPRII function. Recent studies also show that compared with cells from control 

subjects or patients with secondary PH, Pulmonary artery smooth muscle cells 

from patients with IPAH fail to respond to the growth-suppressive effects of bone 

morphogenetic proteins (BMPs). Members of BMPs 2, 4, and 7 inhibit vascular 

smooth muscle cell proliferation and promote apoptosis [14,24;25]. Thus, 

disruption of BMPRII signaling might permit unrestricted cellular proliferation, 

providing the basis for vascular remodeling. 

 

1.2 Bone morphogenetic proteins 

 BMPs were originally identified as molecules that can induce ectopic bone 

and cartilage formation in rodents [25]. With the exception of BMP-1, a 

metalloprotease, they are all members of the transforming growth factor � super 

family of secreted signaling molecules. BMPs are conserved broadly across the 

animal kingdom, ranging from vertebrates to arthropods to nematodes. In 

vertebrates, BMPs also play role in dorsoventral patterning of the early 

embryonic mesoderm and formation of epidermis. In Xenopus, BMP-2, -4, and -7 

ventralize early mesoderm and act as negative regulators of neutralization [25-

29]. Vertebrate BMPs also have roles in limb development, generation of 

primordial germ cells, tooth development, and the regulation of apoptosis [24;30-

35].  
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All BMP ligands are translated as precursor proteins, consisting of an 

amino-terminal pro-region and a carboxyl-terminal ligand. This precursor forms a 

disulfide-linked homodimer in the cytoplasm, and the pro-region is then cleaved 

from the ligand. The pro-region disassociates, and the mature ligand is secreted 

from the cell. How do BMPs elicit such wide biological responses in different 

biological contexts? This diversity appears to be partly due to intracellular 

cofactors that participate in BMP signal transduction, as well as crosstalk 

between BMPs and other signaling pathways.  

 

Aristidis Moustakas et al., JCS 114, 2001. 

Figure 1: Signaling specificity in the TGF-� super family: Classification of the 
mammalian Smad signaling cascade into activin- TGF-� (maroon) and BMP (blue) 
pathways. Representative examples of mammalian ligands (pink shading), type II 
receptors (red shading), type I receptor (orange shading), R-Smads (green shading), 
Co-Smads (bright green shading) and I-Smads (grey shading) are depicted in pathways 
linked by arrows or signs of inhibition. Bifurcation of the TGF-� pathway at the level of 
type I receptors towards both TGF-� and BMP Smads is marked by an asterisk. 
Nomenclature of proteins not detailed in the text are growth and differentiation factors 
(GDFs), Mullerian inhibiting substance (MIS), activin type II and typeIIB 
receptor(ActRII/IIB) , TGF-�  type II receptor (T�RII), BMP type II receptor (BMPRII), 
MIS type II receptor (MISRII), activin receptor-like kinases1 to 6 (ALK1-6). 
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1.3 BMP signal transduction 

Several BMP genes and their downstream signal transducers are 

expressed in early mouse embryos before and during the process of gastrulation. 

These include BMP-2, BMP-4, BMP-5, BMP-7, ALK2, ALK3, ALK6, Smad1, 

Smad5, Smad4, and Smad8 (Figure 1) [36]. The BMPRII gene encodes the cell 

surface Type II BMP receptor, and is a member of the Transforming Growth 

Factor-� (TGF-� ) family [36].  

BMP receptors signal by forming heteromeric complexes of the two types 

of receptor serine/threonine kinases. Sequential binding is observed whereby a 

ligand binds to a Type II receptor, which in turn recruits a Type I, receptor. The 

intracellular serine/ threonine kinase domain of the Type I receptor then initiates 

phosphorylation of cytoplasmic transcription factors known as Smads [36-41]. 

The ligands for the BMPRII receptor comprise BMPs -2, -3 -4,-5, -6, -7, -8, -8b, -

10, -15 and -17 (Figure 1).  

The ligands induce downstream signaling through phosphorylation of 

specific receptor-regulated Smad proteins (RSmad 1, 5, and 8) that form a 

complex with the common mediator Smad4 and translocate to the nucleus to 

regulate gene transcription (Figure 2). The ligand-induced interaction of R-Smads 

with activated Type I receptors results in direct phosphorylation of the two distal 

serines of the C-terminal SSXS motifs by Type I receptor kinases. This 

interaction is specified by sequences in both the receptor and the R-Smad. In 

BMP signal transduction, the ligand first binds to its Type I receptor, which in turn 

activates BMPRII. The activated BMPRII again phosphorylates its Type I 

receptor by trans-phosphorylation (Figure 2). 

 The Type I, but not Type II, receptors contain a characteristic SGSGSG 

sequence, termed the glycine-serine (GS) domain, immediately N-terminal to the 

kinase domain. The activation of the Type I receptor involves the phosphorylation 

of its GS domain by the Type II receptor (Figure3). The activated Type I receptor 

kinase then transduces the BMP signaling into the cell by R-Smad (Smad1, 5 and 

8) phosphorylation. L3 loop, a 17 amino acid region that protrudes from the core 

of the conserved SMAD C-terminal domain. The L3 loop sequence is invariant 
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among TGF-� and BMP-activated SMADS, but differs at two positions between 

these two groups which enable them to distinguish BMP and TGF-� Smads. The 

nine-amino-acid L45 loop in the Type 1 receptor kinase domain is the main 

determinant of receptor signaling and Smad binding specificity, and interacts 

directly with the L3 loop in the MH2 domain of the R-Smad [41;42]. Sequences 

downstream from the L3 loop also contribute to receptor-binding specificity 

(Figure 3). The activated or phosphorylated receptor Smads then bind to a co-

Smad (Smad4), causing the whole complex to move towards the nucleus. The R-

mad/Co-Smad complex then recruits more cofactors in the nucleus to bind the 

BMP-inducible gene promoters to start transcription (Figure 2) [43]. 

 

 

Julian W. Strange et al., Clinical Science, 102 (2002). 

Figure   2: BMP signaling 
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1.4 Smad proteins 

Major families of downstream targets of the TGF-� super family are Smad 

proteins. The first intracellular mediator of TGF-� signaling, mothers-against-

decapentaplegic (MAD) was identified in Drosophila, quickly followed by the 

discovery of orthologs in worm and vertebrates which were named “Smad”. [44-

46]. 

. 

 

Peter Ten Dijke et al., TiBS 29, 2004. 

Figure  3:  Structure of the R-Smads (Smad2 and Smad3), Smad4 and the I-Smads 
(Smad6 and Smad7): The MH1 (dark pink) and MH2 (cyan) domains are conserved 
among Smads. Two regions that are conserved among R-Smads but not other Smads 
are indicated by pale pink boxes. Non-conserved regions (including the linker) are 
shown in yellow. Interactions between partner proteins and particular structural motifs on 
Smad2 and Smad3 (some of which are mutually exclusive) are indicated. The motifs 
shown are the b10-strand (b10, dark blue), a-helix 2 (H2, red), b-strands 8 and 9 (b8/9, 
red), L3 loop (L3, green), a-helix 5 (H5, brown), and pSXpS, the phosphorylated C-
terminal SxS motif of the R-Smads (black). Both the MH1 and the MH2 domain interact 
with transcription factors, but only interactions with transcription factors containing a SIM 
or FM are indicated. FM, Fast or FoxH1 motif; MH, Mad homology; NES, nuclear export 
signal; NLS, nuclear.  
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Subsequently, several genes in Caenorbabditis elegans (Sma2, Sma3, 

and Sma4) have been shown to be homologous to Mad and mutations in these 

genes result in a small phenotype of larval stage embryos. Several vertebrate 

Smad genes (Smad-Mad) have been characterized and different Smad proteins 

transduce signals of different families of the TGF-� -related proteins [44].  

 To date, there are eight vertebrate Smads identified: Smad1 to Smad8. 

The Type I receptors specifically recognize the Smad subgroup known as 

receptor-activated Smads (R-Smads) [45;47-50]. These include Smad2 and 

Smad3, which are recognized by TGF-� and Activin receptors, and Smad 1, 5, 

and 8, recognized by the BMP receptors. The R-Smads consist of two conserved 

domains that form globular structures separated by a linker region (Figure 3) [51]. 

The N-terminal MH1 domain has DNA-binding activity whereas the C-terminal 

MH2 drives translation into the nucleus and has transcription regulatory activity. 

The C-terminal region also contains a serine-rich domain known as SSXS motif, 

which is phosphorylated by the receptors (Figure 3). The linker appears to keep 

these two domains (MH1 and MH2) from a mutually inhibitory interaction before 

activation by phosphorylation. Phosphorylation of the R-Smads leads to their 

activation, Co-Smad interaction, and accumulation in the nucleus [51].   

 Receptor-Smads are directly phosphorylated by the activated Type I 

receptors. The structure of the MH2 domain comprises a central � sandwich, 

capped on one end by a three-helix bundle and on the other end by a collection 

of three surface loops and two auxiliary �-helices. In the crystal structures of the 

MH2 domain from the unphosphorylated R-Smads, the C-terminal 10 residues, 

including the characteristic SSXS motif at the extreme C terminus, are 

completely flexible and disordered. Phosphorylation destabilizes Smad 

interaction with Smad anchor for receptor activation (SARA), allowing 

dissociation of Smad from the complex and the subsequent exposure of a 

nuclear import region on the Smad MH2domain. In addition, R-Smad 

phosphorylation augments its affinity for Smad4. The association of these two 

proteins nucleates the assembly of transcriptional regulation complexes. 
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1.5 Inhibitory Smads (I-Smads) as adaptors for Smurfs 

The regulation of cellular processes requires the activation of specific 

signaling pathways. However, equally important is the down-regulation of the 

signal. In most cell types, the expression of I-Smads (Smad6 and Smad7) is low 

at the basal state. Once the cells are stimulated with BMP or TGF-�, expression 

of inhibitory Smads is induced [45;47-50;59;60]. After their expression, the 

inhibitory Smads play a pivotal role in regulating the signaling by a feedback 

mechanism, binding directly to ser/thr Kinase receptors and thereby blocking R-

Smad access to the receptor. 

 

Luisa Izzi et al., Oncogene (2004) 

Figure 4:  Ubiquitin-dependent degradation of Smads: The ubiquitin–proteasome 
pathway regulates both the basal level of Smads as well the turnover of Smads upon the 
activation of the signaling pathway. Smad degradation is mediated at least in part by E3 
ligases including Smurf1, Smurf2, and SCF/Roc1  
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The demonstration that I-Smads bind the Smurf (Smad ubiquitin 

regulatory factors) family of E3 ligases revealed an additional mechanism 

whereby I-Smads can interfere with TGF-� signaling (57, 58, 59).Specifically, I-

Smads can function as adaptors to recruit Smurfs to the receptor complex and 

thereby mediate receptor degradation and down-regulation of TGF-� signaling 

[61;62]. The expression of Smad7 is regulated by a number of extra cellular 

signals, and both TGF-� and BMPs have been shown to increase Smad7 protein 

levels, particularly in the nucleus where Smad7 is preferentially localized. Smurf2 

resides in the nucleus in unstimulatd cells; thus, the increase in Smad7 protein 

levels results in the association of Smad7 with Smurf2 [63;64]. This interaction is 

mediated by the PY motif in Smad7 and the WW2/WW3 domains of Smurf2. 

The Smad7/Smurf2 complex is then exported from the nucleus to the 

cytoplasm, where Smad7 then recruits Smurf2 to the TGF-� receptor complex at 

the cell surface (Figure 4). Once bound to the receptor complex, the Smurfs 

ubiquitinate Smad7 and cause degradation of both Smad7 and the receptor 

complex. The mechanism of Smad6 and 7 associations with Smurf1 and/or 

Smurf2 to target either TGF-� or BMP receptor complex turnover has not been 

resolved, but it may be that different I- Smad/Smurf combinations serve similar 

functions in different cell types or tissues. An additional level of complexity in 

Smad/Smurf-dependent regulation of TGF-� signaling was recently revealed with 

the demonstration that Smad7 serves to protect Smad7 from Smurf1-mediated 

ubiquitination [65].  

 One of the key domains for the regulation of TGF-� or BMP signaling 

appears to be PY motif, as this domain helps the regulatory and inhibitory Smads 

binding to Smurfs, thereby undergoing degradation of major signaling molecules. 

So the presence of this domain in any signal transducer could cause big changes 

in the BMP and TGF-� signal transduction. In the present study, we identified 

and characterized in humans a novel isoform of Smad8 that has this special motif 

(PY) [51]. Here, we analyzed the functional role of new Smad8 isoform in the 

regulation of both BMP and TGF-� signaling.  
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1.6 Smad8 

To date, eight human homologues of the Smad genes have been identified 

and are classified into three distinct classes based on their structures and 

biological functions. The first category consists of pathway-restricted or receptor-

regulated Smads (R-Smads): Smad1, Smad5, and Smad8, which are involved in 

bone morphogenetic protein (BMP) signaling and Smad2 and Smad3, which are 

TGF-�/actin pathway restricted. The Smad8 gene, which displays a high degree 

of homology to the Smad1 and Smad5 genes, was originally described as 

MADH6 in human, often referred to as Smad9 and currently listed as MADH9 in 

EnsEMBL at the genomic location 35220321 to 35292902 bp on chromosome 13. 

 According to previous publications, human Smad8 contains 430 aa, 

lacking exon3 which codes for 37 amino acids.  This molecule is shown to be 

phosphorylated by ALK2, ALK3, and ALK6 upon stimulation with BMP ligands 

[52-57]. The phosphorylated Smad8 moves towards the nucleus along with 

Smad4 to activate transcription of BMP responsive genes. Smad8 has an isoform 

known as Smad8B. This isoform does not possess an SSXS motif; therefore, it 

cannot be phosphorylated. Smad8B is also known to inhibit BMP signaling by 

inhibiting Smad8 by direct interaction and further degradation [58]. No reports 

currently exist regarding the expression and function of the full length of human 

Smad8. Therefore, in this study we analyze the functional characterization of the 

full length of Smad8, which codes for 467 aa.  
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1.7 Aim of the work 

Mutations in BMPRII and its reduced expression are discussed to be a 

cause for idiopathic pulmonary arterial hypertension. Smad 1, 5 and 8 are the 

major signaling molecules for BMP ligand. There are no detailed reports for 

expression patterns of BMP and TGF-� signaling molecules (receptors and 

Smads) during IPAH. In this study we analyzed the expression of Smads and 

TGF-� and BMP receptor expression in IPAH. During expression analysis, we 

discovered a novel Smad8 isoform expressed in the lung. As already described 

Smad8 isoform is called as Smad8B, we call this new Smad8 isoform as 

Smad8C. 

Thus, in the present study we addressed the following aims: 

� Characterization of expression of BMP signaling molecules in the lungs of  

IPAH and control patients 

� Cloning, expression and functional characterization of human Smad8 

isoforms 
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1.8 Experimental Design (FLOWCHART) 

Analysis of the expression of Smad8 isoforms in Different Human Tissues by RT-
PCR  

 

Amplification and cloning of both Smad8 Isoforms (RT-PCR and Cloning into 
pGEMT easy vector) 

 

Localization of both Smad8 isoforms upon BMP or TGF-� stimulation by 
immunofluorescence 

 

Phosphorylation analysis of the both isoforms by overexpression before and after 
stimulation with different ligands 

 

Analysis of transactivation by reporter gene expression using BMP and TGF-� 
reporter constructs 
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2. Materials and Methods  

 

2.1 Bacterial strains and vectors 

 

2.1.1 Bacterial strains 

 DH5� bacterial strain from Invitrogen was used for plasmid transformation. 

The genotype of the strain is F-80lacZ.M15. (vlacZYA-argF) U169 recA1 endA1 

hsdR17 (rk-, mk+) phoA supE44 thi-1 gyrA96 relA1. 

 

2.1.2 Vectors 

 

2.1.2.1 pGEM®-T Easy vector 

 The vector pGEM®-T Easy (Promega, Madison USA) was used for the 

cloning and sequencing of PCR products. The vectors are prepared by cutting 

Promega’s pGEM®-T Easy Vectors with EcoRV and adding a 3´ terminal 

thymidine to both ends. These single 3’-T overhangs at the insertion site greatly 

improve the efficiency of ligation of a PCR product into the plasmids by 

preventing recircularization of the vector and providing a compatible overhang for 

PCR products generated by certain thermo stable polymerase. These 

polymerases often add a single deoxyadenosine, in a template-independent 

fashion, to the 3’-ends of the amplified fragments. The vector contains ColE1 ori 

for the replication in E coli, an Ampicillin-resistance gene for antibiotic selection, 

f1 ori for single-strand DNA production, and LacZ gene encoding �-

galactosidase, which provides the possibility for blue/white color selection of 

recombinant clones. A multiple cloning site (MCS), T7, and SP6 RNA 

polymerase promoters for DNA sequencing are also present. 
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2.1.2.2  pCDNA3.1- vector 

 The vector pCDNA3.1- (Invitrogen) was used in the experiments for the 

cloning and expression of PCR products. Similar to pGEM-T easy, pCDNA3.1- 

also contains ColE1 ori, f1 ori, and MCS. The difference is that pCDNA3.1 – 

contains a strong mammalian CMV promoter for in vivo expression of the cloned 

PCR product, whereas pGEM-T easy is just a cloning vector to store the cDNA of 

any gene.  

 

2.1.2.3  pCMV-2B vector 

 The pCMV-2B vector was used for tagging the protein of interest with an 

N-terminal FLAG epitope. This vector contains ColE1 eukaryotic origin of 

replication, f1 bacterial ori, Kanamycin resistance gene, and the FLAG epitope 

sequence followed by a multiple cloning site (MCS). 

 

2.2 Oligonucleotides 

 The primers were designed against the sequences already published in 

NCBI. The oligonucleotides were designed by an Oligo MS-DOS program and 

produced by Qiagen, Germany, at the synthesis scale of 0.01 µmol. 

 

2.2.1 Oligonucleotides for sequencing of the plasmids  

pGEM®-T Easy vector 

T7 Forward:   5’ TAATACGACTCACTATAG 3’ 

SP6Reverse:  5’ ATTTAGGTGACACTATAGAA 3’ 

 

pcDNA3.1+ vector 

T7 Forward:  5’ TAATACGACTCACTATAG 3’ 

3.1 reverse:  5’ TAGAAGGCACACTCGAGG 3’ 
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pCMV-Flag vector 

Forward: 5’ AGTGTTACTTCTGCTCTAAAAGCTGC 3’ 

Reverse: 5’ CACTGCATTCTAGTTGTGGTTTGT 3’ 

 

2.2.2 Oligonucleotides for PCR reaction 

(Recognition sequence of restriction enzymes in the primers are underlined) 

To clone Human Smads into pGEMT-Easy vector and also to analyze their 

expression by semi quantitative RT-PCR 

Smad1 

Forward: 5’ GGAGACAGCTTTATTTCACCATATC 3’ 

Reverse: 5’ CAATAGTTTTCCAGAGGCAGATG 3’ 

 

Smad2 

Forward: 5’ GGGAGGTTCGATACAAGAGGCT 3’ 

Reverse: 5’ GGACCACACACAATGCTATGACA 3’ 

 

Smad3 

Forward: 5’ AGCCATGTCGTCCATCCTG 3’ 

Reverse: 5’ CTTCTTCCTTGACAACAATGGG 3’ 

 

Smad4 

Forward: 5’ TTCACTGTTTCCAAAGGATCAAAA 3’ 

Reverse: 5’ GTATATCTGGGGGGTTTTGT 3’ 

 

Smad5 

Forward: 5’ CTGTTCTTTCGGTAGCCACTGAC 3’ 

Reverse: 5’ GCATTATGAAACAGAAGATATGGGG 3’ 

 

Smad7 

Forward: 5’ GACTTCTTCATGGTGTGCGG 3’ 

Reverse: 5’ TAGTTTGAAGTGTGGCCTGCTC 3’ 
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Smad8 (to amplify full length of both Smad8 isoforms) 

Forward (P1): 5’ GGCCTCTTATGCACTCCACC 3’  

Reverse (P4): 5’ GGAAATGCAGCTTAAGACATGAC 3’ 

 

Smad8 (N-terminus of Smad8) 

Forward (P1): 5’ GGCCTCTTATGCACTCCACC 3’ 

Reverse (P3): 5’ CTATGAGCACACTTCGGGAG 3’ 

 

Smad8 (C-terminus of Smad8) 

Forward (P5): 5’ GAAGCCTCTGAGACCCAGAGTG 3’ 

Reverse (P4): 5’ GGAAATGCAGCTTAAGACATGAC 3’ 

 

Smad8C (Forward primer, P2 inside the exon 3 of Smad8) 

Forward (P2): 5’ CTCCCGAAGTGTGCTCATAG 3’ 

Reverse (P4): 5’ GGAAATGCAGCTTAAGACATGAC 3’ 

 

2.2.3 Primer sequences to amplify human BMP and TGF-� receptor cDNAs 

by RT-PCR 

ALK1 

Forward: 5’ CATAGTCGACTTGAATCACTTTAGGC 3’ 

Reverse: 5’ ATATGATATCCACCATGACCTTGGGCT 3’ 

 

ALK2 

Forward: 5’ GTGACCAAGAGCCTGCATTAAGTTG 3’ 

Reverse: 5’ CTGGACAATGACAACAACGTCAAATC 3’ 

 

ALK3 

Forward: 5’ GCAAGACCAATTATTAAAGGTGACAG 3’ 

Reverse: 5’ CTAGAGTTTCTCCTCCGATGGTTTAAC 3’ 
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ALK5  

Forward: 5’ CTACTGTAAAGTCATCACCTGGCC 3’ 

Reverse: 5’ GTACAAGATCATAATAAGGCAGTTGG 3’ 

 

ALK6 

Forward: 5’ CTTCCTTGATAACATGCTTTTGCG 3’ 

Reverse: 5’ GAAGAGTACCTGTTGGCTTTCTGCAG 3’ 

 

BMPRII (to amplify both short and long form of BMPRII) 

Forward: 5’ CCCATATTTCTTTTCTTTGCCCTCC 3’ 

Reverse: 5’ GAAAACATTTCACAGACAGTTCATTCC 3’ 

 

2.2.4 Human Smads in pCMV-2B, Flag epitope tagged vector 

Smad1 

Forward (BamHI): 5’ GGATCCAATGTGACAAGTTTA 3’ 

Reverse (HindIII): 5’ AAGCTTTTAAGATACAGATGA 3’ 

 

Smad4 

Forward (BamHI): 5’ GGATCCGACAATATGTCTATT 3’ 

Reverse (HindIII): 5’ AAGCTTTCAGTCTAAAGGTTG 3’ 

 

Smad8 and Smad8C 

Forward (HindIII): 5’ AAGCTTCACTCCACCACCCCCATC 3’ 

Reverse (XhoI): 5’ CTCGAGATTAGACACTGAAGAAAT 3’  

 

2.2.5 Human Smads into pCDNA 3.1- vector 

Smad1 

Forward (BamHI): 5’ GGATCCATGAATGTGACAAGT 3’ 

Reverse (HindIII): 5’ AAGCTTTTAAGATACAGATGA 3’ 
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Smad8 and Smad8C 

Forward (BamHI): 5’ GGATCCATGCACTCCACCACC 3’ 

Reverse (HindIII): 5’ AAGCTTTTAAGACACTGAAAG 3’ 

 

2.3  Enzymes 

 

2.3.1  Platinum taq DNA polymerase (Invitrogen) 

 Platinum® Taq DNA Polymerase High Fidelity is an enzyme mixture 

composed of recombinant Taq DNA polymerase, Pyrococcus species GB-D 

polymerase, and Platinum® Taq Antibody. Pyrococcus species GB-D 

polymerase possesses a proofreading ability by virtue of its 3’ to 5’ exonuclease 

activity. An anti-Taq DNA polymerase antibody complexes with and inhibits 

polymerase activity.  Activity is restored after the denaturation step in PCR 

cycling at 94°C, thereby providing an automatic hot start for Taq DNA 

polymerase in PCR. 

 

2.3.2 Improme reverse transcriptase (Promega) 

 The ImProm-II™ Reverse Transcription System is a convenient kit that 

includes a newly formulated reverse transcriptase and an optimized set of 

reagents designed for efficient synthesis of first-strand cDNA in preparation for 

PCR amplification. The components of the ImProm-II™ Reverse Transcription 

System can be used to reverse transcribe RNA templates starting with either 

total RNA, poly(A) +mRNA or synthetic transcript RNA. 

 

2.3.3 Restriction endonucleases 

 All restriction endonucleases were obtained from Promega Corporation, 

USA. Their activity was optimized according to buffers provided by the company. 
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The characters of restriction endonucleases were: 

Enzyme Sequence Buffer 

BamHI G^GATCC B 

XbaI T^CTAGA H 

HindIII A^AGCTT B 

Xho1 C^TCGAG H 
 

 

2.3.4 T4 DNA ligase 

 T4 DNA ligase was purchased from Promega, USA. This enzyme 

catalyzes formation of a phosphodiester bond between the 5' phosphate of one 

strand of DNA and the 3' hydroxyl group of the other. This enzyme is used to 

covalently link or ligate fragments of DNA together. Most commonly, the reaction 

involves ligating a fragment of DNA into a plasmid vector. 

 

2.4 RNA isolation from mammalian cells and tissues  

 A549 cells were washed twice with PBS, and then the protocol was 

followed for RNA preparation with a Qiagen RNA Mini/Midi Kit. The quality of the 

RNA was measured in a UV spectrophotometer by taking a 260/280 ratio. For 

RNA extraction from IPAH lungs, frozen lung tissue samples were collected from 

Medical Clinic II, University of Giessen. The patient details were listed in Table1. 

These tissues were homogenized with liquid nitrogen, mortar and pistol.  The 

extracts were lysed, according to the protocol from Qiagen midi prep RNA 

extraction kit. The quality of the RNA was measured in a UV spectrophotometer 

by taking a 260/280 ratio. Human tissue RNA panel and human total embryonic 

RNA were purchased from R&D Systems, Germany. 
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Table 1: Patient details 

Age Sex Disease 
type 

53 M Donor 
36 F Donor 
43 M Donor 
49 F Donor 
28 M Donor 
48 F Donor 
42 F IPAH 
42 F IPAH 
29 M IPAH 
52 F IPAH 
44 M IPAH 
19 F SPH  

 

2.5 Reverse transcriptase polymerase chain reaction (RT-PCR) 

 

2.5.1 Complementary DNA synthesis by reverse transcriptase 

 Reverse transcriptase reaction was conducted by Improme Reverse 

transcriptase from Promega, USA. 1�g of RNA was used for each RT reaction. 

10mM oligo dT was added to the RNA in 5�l reaction with DEPC water and 

heated at 70°C for 5 min. The reaction tube was snap-chilled on ice after the time 

duration to allow the oligo dT to anneal to the poly A tail of the RNA before the 

RNA secondary structure reformed. A master mix containing buffer, Mgcl2, 

dNTPs, RT, and RNAase inhibitor was added to the RNA-Oligo dT mixture. The 

tubes were kept in a PCR machine and programmed as follows: 

 

Reaction Temperature  Time 

Linearization of RNA 25°C 5min 

cDNA synthesis 42°C 1hr 
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RT reaction components (for 20�l reaction) 

RT reaction component Volume 

5x buffer 4 �l 

MgCl2 (25 mM) 2 �l 

dNTPs (10 mM) 1 �l  

RNase inhibitor  1 �l (10 units) 

Reverse transcriptase  1 �l (5 units) 

RNA-Oligo dT mix 5 �l 

DEPC water up to 20�l 
 

 

2.5.2 Polymerase chain reaction 

The polymerase chain reaction (PCR) allowed amplification of DNA 

fragments, due to the repetitive cycles of DNA synthesis. The reaction used two 

specific oligonucleotides (primers), which hybridized to sense and antisense 

strands of the template DNA; four deoxyribonucleotide triphosphates (dNTPs); 

and a heat-stable DNA polymerase. Each cycle consisted of three reactions that 

took place under different temperatures. First, the double-stranded DNA was 

converted into two single strands (denaturation at 94°C), which functioned as 

templates for the synthesis of new DNA. Second, the reaction was cooled (50-

60°C) to allow the annealing (hybridization) of primers to the complementary 

DNA strands. Third, DNA polymerase extended both DNA strands at 72°C (DNA 

synthesis), starting from the primers. Annealing temperature, product length and 

extension time for each primer used were given in Table-2. 
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Table 2: List of annealing temperatures and extension times for PCRs 

PCR product Product length Annealing temp Extension time 

Smad1 1.4 kb 56°C 2.5 min 

Smad2 1.5 kb 57°C 2.5 min 

Smad3 1.4 kb 56°C 2.5 min 

Smad4 1.6 kb 58°C 3 min 

Smad5 1.5 kb 58°C 2.5 min 

Smad7 1.4 kb 55°C 2.5 min 

Smad8 1.4 kb 61°C 2.5 min 

ALK2 1.7 kb 57°C 2.5 min 

ALK3 1.7 kb 57°C 2.5 min 

ALK6 1.7 kb 57°C 2.5 min 

T�RII 1.0 kb 58°C 2 min 

�-Glycon 0.5 kb 58°C 1 min 

Endoglin 1.0 kb 57°C 2 min 

BMPRII 3 kb 56°C 4 min 

ALK1 0.5 kb 55°C 1 min 
 

 

Steps during the PCR program  

PCR step Temperature Time duration 

1st denaturation 95°C 2min 

2nd denaturation 95°C 1min 

Annealing Table 1 1min 

Extension 72°C Table 1 

Cycles (35) --- --- 

Final extension 72°C 10min 
 

After amplification, PCR products (10 µl) were electrophoretically analyzed in a 

1% agarose gel with 0.2 µg /100 ml ethidium bromide, and purified if required. 
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PCR reaction (per 50 �l) 

PCR reaction component Amount 

Template DNA 10 ng 

Forward primer 10 pmole 

Reverse primer 10 pmole 

40 mM dNTP mix 1�l 

10 x PCR buffer 5�l 

Platinum Taq polymerase 0.25 �l 

Water to 50�l 38.75�l 
 

 

2.5.3 DNA electrophoresis and purification from agarose gel 

  The DNA sample was mixed with loading buffer and loaded onto a 1% 

agarose gel. Electrophoresis was performed for 45-60 min with 5 V/cm. (Biorad, 

electrophoresis apparatus, USA). The negatively charged DNA migrated from the 

cathode (-) to the anode (+). To visualize DNA, the gel was treated with ethidium 

bromide (0.5µg/ml), which intercalated between the bases of DNA double 

strands, forming a complex fluorescent under UV light. The size of DNA 

fragments was determined by a DNA molecular weight standard. The 

composition of the DNA sample loading buffer is given below. 

 

Loading buffer final concentration 

Component of the buffer Final concentrations  

Bromophenol blue 0.01 g /100 ml (0.01%) 

Glycerol 40 ml /100 ml (40%) 

10 x TAE buffer 10 ml / 100 ml (1x) 
 

 The corresponding DNA fragment was excised from the gel and purified 

using the QIAEX II kit (Qiagen, Germany). Three volumes of binding and 

solubilization buffer (QX1) and 10µl QIAEX II solution were added to 1 volume of 
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gel. To extract the DNA from the agarose gel the sample was incubated at 50°C 

for 10min with occasional mixing. The suspension was carefully applied to the 

column and centrifuged   at 20800 G for 30s. After centrifugation the column was 

washed once with QX1 buffer and once with PE buffer. After removal of the last 

washing buffer, the column was completely dried by spinning the column at room 

temperature at high speed for 1min.  After the drying procedure 20µl of H2O was 

applied and column was incubated for 5min at room temperature. The DNA was 

eluted by centrifugation of the column at 20800 G for 1min. The supernatant, 

which contained the DNA fragments, was collected into a new tube. 

 

2.6 Cloning 

 

2.6.1 Ligation 

 The purified DNA fragments were ligated into the linearized plasmids by 

T4 ligase. The ligation reaction was incubated overnight at 16°C and then 

transformed into competent E.Coli cells. The components of the ligation reaction 

are given below. 

 

Ligation mixture 

DNA ligation component Amount 

DNA fragment 100 ng 

Linearized plasmid 35 ng 

2xligase buffer 5 �l 

T4 DNA ligase 1 �l 

DD water to   Up to 10�l 
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2.6.2 Isolation of plasmid DNA 

The maxi-preparation of plasmid DNA was performed using a Maxi Prep 

Kit (Qiagen, Germany), according to the manufacturer’s instructions. The 

transformed E.Coli DH5� cells were cultured in 250 ml LB medium to a density of  

109 per ml (OD of 1 - 1.5 at 600 nm). The cells were pelleted by centrifugation at 

4°C, 5860 g (6000 rpm, GSA rotor) for 30 min. The pellet was re-suspended in 

10 ml of buffer P1, which contained 100 µg/ml of RNase. Then 10 ml of buffer P2 

(with NaOH and SDS for bacterial lysis) was added and mixed gently four to six 

times (the mixture was not vortexed, to avoid shearing of genomic DNA). After 5 

min incubation at RT (longer incubation could lead to irreversible denaturation of 

plasmid DNA), 10ml of buffer P3 was added for neutralization of the solution. The 

solution was filtered with the use of the column filters provided in the kit. Buffer 

ER was added to clear antitoxins from the filtrate. The filtrate was carefully 

applied to the column, which was equilibrated with 10 ml of buffer QN. When the 

lysate has been completely run by gravity flow through the column, it was 

washed twice with 20 ml of buffer N3 to remove single-stranded DNA, RNA, and 

all other impurities such as proteins, metabolites, polysaccharides, and NTPs. 

Afterwards, the double-stranded plasmid DNA was eluted with 15 ml of buffer EB 

and precipitated by adding 10.5 ml of isopropanol. Plasmid DNAs were pelleted 

by centrifugation at 4°C, 27000 g (5000 rpm, SS34 rotor) for 30 min. The DNA 

pellet was washed with 70% ethanol to remove salts, air-dried for 30 min, and 

dissolved in 200 µl H2O. To determine the DNA concentration and the presence 

of protein in the probes, the OD at 260 nm (DNA) and 280 nm (protein) was 

measured. The prepared plasmids were checked by restriction analysis as 

described above. 

 

2.6.3 Restriction digestion 

 The DNA fragments (Plasmid and PCR products) were restriction 

digested, following protocol. The mixtures were incubated at optimum 

temperatures for maximum activity of the specific enzymes. Reagents used in the 

restriction digestion reaction are given below. 
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Restriction digestion reaction 

Restriction digestion component Volume (20 �l) 

Plasmid 5 �g / 5�l 

Enzyme 1 �l 

Buffer (10x) 2 �l 

DD Water to 20 µl 12 �l 
 

 

2.6.4 Construction of the Smad1, Smad8, and Smad8C in pCDNA 3.1 

expression vector 

 Smad1, Smad8, and Smad8C in pcDNA 3.1- vector were cloned using 

oligonucleotides. Sub-cloning of Smad1, Smad8, and Smad8C fragments from 

pGEMT-Easy vectors to pcDNA 3.1- vector was done using BamH I and Hind III 

restriction enzymes.  These sites were introduced into the fragments and then 

cloned into pGEMT-Easy by PCR from the original pGEMT-Easy vector as a 

template. The pGEMT-easy vector with restriction sites and the fragments were 

restriction digested with the enzymes and ligated into pCDNA3.1 after purification 

from the agarose gel using Qiagen gel purification columns followed by 

transformation into competent DH5� E.Coli. The colonies were screened for 

positive clones and sequenced for confirmation of the sequences.  

 

2.6.5 Construction of the Smad1, Smad8, and Smad8C in N-terminal FLAG-

tagged pCMV-2B eukaryotic expression constructs 

 Smad1, Smad8, and Smad8C in N-terminal FLAG-tag vector were cloned 

using oligonucleotides. As Smads has the phosphorylation domain (SSXS) on 

the C-terminus, we took N-terminal fusion, which might not disturb the activity of 

the receptor Smads. Sub-cloning of Smad1, Smad8, and Smad8C fragments 

from pGEMT-easy vector to pCMV-2B vector was conducted with the use of 

BamH I and Hind III restriction enzymes for Smad1 and Hind III and Xho1 for 

Smad8 and Smad8C.  These sites were introduced into the fragments and then 
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cloned into pGEMT-Easy by PCR from the original pGEMT-easy vector as a 

template. The pGEMT-easy vector with restriction sites and the fragments were 

restriction digested with the enzymes and ligated into pCMV-2B after purification 

from the agarose gel, using a gel purification columns (Qiagen) followed by 

transformation into competent DH5� E.Coli. The colonies were screened for 

positive clones and sequenced for confirmation of the inframe sequences.  

 

2.6.6 Preparation of competent E.coli 

A single bacterial colony from the E.Coli DH5� glycerol culture was 

cultured in 5 ml LB medium at 37°C overnight. The following day, the bacterial 

suspension was diluted into 500 ml LB medium and kept for shaking in a 37°C 

shaker incubator until the OD reached to 0.3-0.4 at 550 nm (3-6 h). The 

suspension was centrifuged at 4°C, 5000 g for 15 min. The pellet was re-

suspended in 100 ml (1/5 vol) of ice-cold 50 mM CaCl2 and kept on ice for 5 min. 

The cells were again centrifuged at 4°C, 5000 G for 15 min. The pellet was re-

suspended in 25 ml (1/20 vol) of 50 mM CaCl2.  

The cells were again centrifuged at 4°C, 5000 g for 15 min, and the pellet 

was re-suspended in 5 ml of 50 mM CaCl2 in 20% glycerol. Suspension was 

divided into 50 µl aliquots and stored at -70°C. The competence of the bacterial 

cells was checked by the transformation of an Ampicillin or Kanamycin resistant 

plasmid. 

 

2.6.7 Luria Bertani medium (LB) 

LB medium in the form of dehydrated mixture was purchased from 

Invitrogen, USA; 25g of the mixture was mixed in 1000ml of distilled water and 

autoclaved.  
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2.6.8 Transformation of E.coli 

Transformation of E.coli was performed with the heat shock method. The 

ligation mixture or the plasmid DNA was gently mixed with one aliquot of the 

competent cells and incubated at 4°C for 30 min. Then the mixture was heated to 

42°C for exactly 1 min, followed by immediate cooling on ice. Thereafter, the 

bacterial cells were cultured in 200 µl SOC medium without antibiotic at 37°C for 

1 hr. An aliquot of 100 µl was spread over an Ampicillin or a Kanamycin 

containing agar dish and incubated overnight at 37°C. The composition of the 

SOC medium is given below. 

SOC medium Final concentration 

 

Components of the media Final concentration 

Tryptone 2% 

Yeast extract 0.5% 

NaCl 10mM 

KCl 2.5mM 

MgCl2 10mM 

MgSO4 10mM 

Glucose 20mM 

pH 7.3 

 

2.6.9 Ampicillin/Kanamycin agar dishes 

 For preparing agar plates, 500 ml LB medium containing 7.5 g bactoagar 

was autoclaved. After cooling to 50°C, 500 µl Ampicillin stock solution (final 

concentration 1% w/v) or 500l Kanamycin stock solution (final concentration 30 

mg/ml) was added and mixed; 20 ml of the solution was poured into each sterile 

culture dish. The dishes were left for drying at room temperature overnight and 

then stored at 4°C in the dark.  Ampicillin stock solution 0.1 g/ml and Kanamycin 

stock solution 30 mg/ml were used for the transformed bacterial colony selection. 
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The bacterial colonies transformed with a ligation mixture or with a plasmid were 

picked and cultured in 5 ml LB medium with ampicillin (100 µg/ml) or Kanamycin 

(30 µg/ml) at 37°C overnight. Ten µl of the each bacterial culture was re-

suspended in 90 µl of H2O, heated at 95°C for 10 min, and cooled on ice. 1 µl of 

this suspension was used as a template in setting the 25 µl PCR reaction using 

the primers specific for the fragment in question. 

 

2.7 Cell biological methods 

 

2.7.1 Cell culture 

  Culturing of the human pulmonary epithelial cell line A549 (lung carcinoma 

cell line) was performed according to the protocol recommended by the American 

Type Culture Collection. The cells frozen in DMSO at -70°C (app. 5 x 106 cells) 

were thawed at 37°C and then poured onto a 100 mm dish containing 12 ml of 

DMEM F12 1:1 supplemented with 10% FCS, 1% antibiotics (Penicillin and 

Streptomycin), 1% vitamins, 1% glutamate, glucose (1000 mg/l), and 1% non-

essential amino acids. When the cells became confluent, they were trypsinized (2 

ml 1 x trypsin per 100 mm plate for app. 5 min at 37°C). The reaction was 

stopped by adding 10 ml of medium with 10% FCS, which contained trypsin 

inhibitors. 

For further culturing of the A549 cells, which were transferred to a new 

plate, the cells were usually 80% to 90% confluent again after 3 days. For 

transfection, protein or RNA isolation, 2 x 105 cells were plated in 6-well plates. 

For reporter assay, 5 x 104 cells were plated on a 48-well plate. A549 cells were 

cultured in gas-controlled incubators in the water vapor-saturated atmosphere 

with 1% O2 (v/v) or atmospheric O2 (v/v), 5% CO2, and 94% (v/v) or atmospheric 

N2 at 37°C in norm baric conditions. 
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2.7.2 Transfection of A549 cells 

 The liposome-mediated transfection method was employed for 

transfection of A549 cells. Lipofectamine 2000 transfection reagent (Invitrogen) 

was used for transfection. The principle of the method is that DNA gets trapped 

in the lipid mixture, making a liposome that has DNA in it, which is taken up by 

cells via endocytosis. One day before transfection, A549 cells (5 x 104 cells in 

250 µl for 48-well plates and 3 x 105 cells in 2 ml for 6-well plate) were plated on 

respective culture dishes of growth medium without antibiotics, so that they were 

85-90% confluent at the time of transfection (as per the protocol suggested for 

transfections with Lipofectamine 2000 reagent). DNA was diluted (4 µg in 250 µl 

for 6-well and 0.3 µg in 25 µl for 48-well) in Opti-MEM® medium (without) serum 

and mixed gently. Lipofectamine 2000 was mixed gently before use and then 

diluted in the appropriate amount (10 µl for 6-well plate and 1.2 µl for 48-well 

plate) in 250 µl of Opti-MEM® medium for 6-well and 25 µl for 48-well plate. 

Solutions were mixed gently and incubated for 5 min at room temperature. After 

5 min incubation, the diluted DNA and lipofectamine2000 were mixed and 

incubated for 40 min at room temperature, to allow the DNA-Lipofectamine 2000 

complexes to form. DNA-Lipofectamine complexes were added to each well 

containing cells and medium (200 ml for 48-well plate and 1.5 ml for 6-well plate), 

and mixed gently by rocking the plate back and forth. Cells were incubated for 12 

to 16 hr in CO2 incubators as per the experiment. 

 

2.7.3 BMP and TGF-� ligand stimulation 

BMP-2, BMP-4, and TGF-�1 were used as the ligands for all the studies in 

this project. All the ligands were obtained from R&D systems. Both BMP-2 and 

BMP-4 were used at concentrations of 10ng/ml and TGF-�1 was used at 2 ng/ml. 

The cells were stimulated after reaching 70% confluency for one day to analyze 

gene expression. In case of transfected cells the cells were stimulated after 12 

hours of transfection procedure. 
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2.8 Reporter gene assays for transcriptional activity 

The detection of luciferase activity in the cells transfected with reporter 

vectors containing the firefly was performed with a Luciferase Reporter Assay Kit 

(Promega). The luciferase assay is based on enzyme-catalyzed 

chemiluminescence.  Luciferin present in the luciferase assay reagent is oxidized 

by luciferase in the presence of ATP, air oxygen, and magnesium ions. This 

reaction produces light with a wavelength of 562 nm that can be measured by a 

luminometer. Transfections were performed in a 48-well dish. The cells were 

incubated for 14 to 16 hr for protein expression after transfection. The cells were 

washed once with 1 x PBS.  The transfected cells were shaken for 15 min in 100 

µl of 1 x lysis buffer (Promega). For measurement of firefly luciferase activity, 

100µl of the lyste were mixed in black and flat bottom 96-well plates containing 

50 µl luciferase assay reagent, which was freshly prepared by mixing substrate 

and the luciferase assay buffer. The luminescence was measured in a 

luminometer for firefly luciferase activity. Constitutively active ALK2 receptor 

(Q207D) was a kind gift from Jeffrey L. Wrana, department of molecular and 

medical genetics, University of Toronto, Toronto, Canada. 

 

2.9 Western-blot analysis 

 

2.9.1 Total protein isolation from the cultured cells 

 Total protein isolation was conducted using two methods. The first method 

involved adding 1x Lamelli protein loading buffer to the PBS washed cells and 

extracting the protein. The cells were vortexed vigorously five times for 10 sec 

each, and the samples were boiled for 10 min at 100°C. The second method 

involved using RIPA cell lysis buffer (composition given below); 200 �l was added 

to a 6-well dish for western blot analysis, and 500 �l was added for 

immunoprecipitation. 
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2.9.2 Antibodies 

 Antibodies (primary and secondary) used in the experiments are all 

commercially available. Their parameters (dilutions) are given in Table-3. 

Table 3: Primary antibodies 

Antibody Company Dilutions 

Anti-phospho Smad1/5/8 (Rabbit 

Polyclonal) 

Cell signaling 1:1000  

Anti-Smad1/2/3 (Rabbit 

Polyclonal) 

Santa Cruz 

Biotechnology 

1:1000 

Anti-alpha tubulin-(Mouse 

monoclonal) 

Santa Cruz 

Biotechnology 

1:1500 

Anti-P-Smad2(Rabbit Polyclonal) Cell signaling solutions 1:1000 

Anti-FLAG (M5-Mouse 

monoclonal) 

Sigma 1:1500 

Anti-Human Smad8 (Goat 

polyclonal) 

Sigma 1:1000 

Anti-Smad1 (Rabbit Polyclonal) Upstate 1:1000 

Anti-Smurf (Rabbit polyclonal) Santa Cruz 

Biotechnology 

1:1000 

Anti-Smurf2 (Rabbit polyclonal) Santa Cruz 

Biotechnology 

1:1000 

 

 

HRP conjugated secondary antibodies 

Secondary antibody  Company Dilutions 

Anti-mouse IgG antibody Pierce 1:2500 

Anti-rabbit IgG antibody Pierce 1:2500 

Anti-goat IgG antibody Pierce 1:2500 
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2.9.3 Poly Acrylamide Gel Electrophoresis of proteins (SDS-PAGE) 

 In SDS-PAGE the denatured proteins bind SDS and become negatively 

charged. The amount of SDS bound is always proportional to the molecular 

weight of the protein and is independent of its sequence; therefore, SDS-protein 

complexes migrate through polyacrylamide gels in accordance with the size of 

the protein. By using markers of known molecular weight, it is possible to 

estimate the molecular weight of the proteins. Protein sample from cell extract 

was denatured by heating to 95°C for 5 min in 1 x loading buffer, and then cooled 

on ice immediately. The samples were collected by brief centrifugation and then 

loaded onto 10% Bis and polyacrylamide gel. The electrophoresis was performed 

with 200 V constant, and the gel was run until the bromophenol blue reached the 

bottom of the resolving gel (for about 1 hr). 

 

2.9.4 Electro-blotting of immobilized proteins 

 The separated proteins in the SDS-polyacrylamide gel were electrically 

transferred to a nitrocellulose membrane by electro-blotting. To prepare the 

transfer equipment, two layers of Whatmann 3MM filter paper with transfer buffer 

followed by gel with transfer buffer were placed onto the electro-blotting 

chamber. The nitrocellulose membrane and the other two layers of filter paper 

with transfer buffer were placed on the gel. The cathode and anode from the 

power supply were connected with the electro-blotting chamber. Electro-blotting 

was performed at constant current (2mA / cm2) for approximately 90 min. Buffers 

and their compositions used in the western blot analysis are given below. 

Transfer Buffer (pH = 8.3) Final concentration 

Buffer component Final concentration 

Tris 25 mM 

Glycine 192 mM 

Methanol  20% 
 

 



Materials and Methods 
 

 

34 

1X PBS-Tween buffer 

Buffer component Final concentration 

Tween 20 0.1% 

PBS 1x 
 

 

Blocking buffer 

 
Buffer component Final concentration 

PBS-Tween 1X 

Nonfat dry milk 5% 

 

2.9.5 Immunological detection of immobilized proteins 

 The transformed membrane proteins were blocked with 10% nonfat dry 

milk in 1 x PBS-Tween buffer at room temperature for 1 hr, followed by 

incubation with primary antibody at 4°C overnight. After washing with 1 x PBS-

Tween three times for 20 min each, the membrane was incubated with the 

respective secondary antibody at room temperature for 1 hr, followed by washing 

three times with 1 x PBS-Tween buffer for 10 min each. Proteins were detected 

by ECL (Enhanced Chemi-Luminescence) treatment, followed by exposure of the 

membrane in a Kodak chemi-luminescence imager. 

 

2.10 Immunostaining 

 The A549 cells cultured on chamber slides were transfected with human 

Smad8 and Smad8C in a pCDNA 3.1 vector. After 20 hr of transfection, cells 

were treated with BMP-2 and BMP-4 (10 ng/ml each) for 1 hr. Cells were washed 

twice with ice-cold PBS and then fixed with ice-cold methanol/acetone (1:1) for 

10 min. Slides were blocked with 5% FCS in PBS for 30 min. Then the cells were 
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incubated with an anti-human Smad8 antibody (1:250 in 2.5% FCS) for 1 hr. 

After washing three times with 0.2% BSA in 1 x PBS, a FITC-conjugated rabbit 

anti-goat IgG secondary antibody (1:400) was applied to detect the binding of the 

primary antibody. The glass chamber slides were observed under a fluorescent 

inverted microscope (Leica, Germany)  

 

2.11 Statistics  

Statistical analysis was performed using student t test and a P value less 

than 0.05 was considered significant. 

 

2.12 Densitometric analysis  

Relative band intensity was measured by densitometric analysis using the 

Quantity one software (Biorad) 
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3. Results 

 

3.1 Expression of BMP and TGF-� signaling molecules in the human lung 

 

3.1.1 Expression of Smads in human lung RNA  

To characterize the expression of Smads in the human lung, RT-PCR was 

performed. cDNA was produced by Reverse Transcriptase (RT) reaction with the 

use of total human lung RNA as a template, and full-length PCR products were 

obtained for all the Smads (R-Smad, Co-Smad, and I-Smads), using their 

respective gene-specific primers. All the Smads except I-Smads were found to 

be expressed in the human lung (Figure 5). An additional band at the expected 

size was observed for Smad8 PCR product (Figure 5). 

 

Figure 5: RT-PCR analysis of different Smad mRNA expression in the human lung: 
The cDNA was prepared from human lung RNA, and PCR products were obtained by 
using gene-specific primers for full-length human Smads (S1 – S8).  

 

3.1.2 Expression of BMP and TGF-� receptors in human tissues 

 Members of the transforming growth factor � family of proteins (TGF-�, 

BMP, and Activin) signal through cell surface transmembrane serine/threonine 

protein kinases known as Type I and Type II receptors. The expression of these 

receptors on the cells controls various cellular activities (e.g., cell proliferation, 

cell death, and polarity). To analyze these receptor expressions in different 

human tissues, we chose heart, brain, kidney, liver, testis, spleen, skeletal 

1.5 Kb 
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muscle, and lung RNAs. All the receptors were expressed in several adult human 

tissues (Figure 6). With the designed primers, we observed both isoforms for 

BMPRII (long and short). Full-length cDNA sequences of ALK2, ALK3, ALK6, 

and BMPRII isoforms were characterized by cloning and sequencing alignment. 

 

Figure 6: Expression of BMP and TGF-� receptors in various human tissues: BMP 
and TGF-� receptor expression was analyzed in various human tissues: heart (H), lung 
(L), liver (Li), kidney (K), testis (T), brain (B), spleen (Sp), skeletal muscle (Sk), and total 
human embryonic RNA (Ht). N represents water control.  

 

3.1.3 Expression analysis of BMP receptors in donor and IPAH lungs 

BMPRII is known to have reduced expression during pulmonary 

hypertension (76). So we analyzed the mRNA expression of other Type I BMP 

receptors (ALK3, and ALK6) along with ALK2 and BMPRII in lungs from donors 

and IPAH. We observed no differences in BMPRII isoforms (long and short) 
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along with ALK2, ALK3 and ALK6 (Figure 7A). Human HSC was used as an 

equal loading control. The densitometric analysis of Figure 7A is shown in Figure 

7B. 
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Figure 7: Expression of BMP receptors in donor and IPAH lungs: A) RNA isolated 
from donor and IPAH human lungs were analyzed for the expression of human BMP 
receptors (Type I and Type II). ‘C’ represents water control. HSC short and HSC long 
served as loading controls. B shows densitometric analysis of A.  Values on the Y 
axis correspond to the band intensity ratio between specific receptor to HSC short. 
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3.1.4 Expression analysis of Smads in donor and IPAH human lungs 
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Figure 8: Expression profile of Smads in donor and IPAH lungs: A) RNA from 
donors and idiopathic pulmonary arterial hypertension (IPAH) patient’s lungs was 
analyzed for human (HSmad1, 2, 3, 4, 5, and 8 expressions by RT-PCR. ‘N’ represents 
water control. HSC short and HSC long PCRs were performed as control for equal 
loading. B shows the relative band intensity by densitometric analysis of A. Values on 
the Y axis correspond to the band intensity ratio between specific Smad to HSC. 
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As BMP receptors are known to be down-regulated in IPAH, we 

proceeded to investigate whether the same applies for Smad expression pattern. 

RNA was extracted from lungs of six donors and six IPAH patients, and analyzed 

for the mRNA expression of Smads by RT-PCR. All Smads showed almost equal 

expression between the two groups (Figure 8).  

 

3.2 Cloning and expression analysis of Smad8 isoforms 

 

3.2.1 Cloning of human Smads 

In order to study the function of Smads in more detail, Smad1, Smad4, 

Smad8 and Smad8C were amplified from total human lung RNA by RT-PCR and 

were cloned into pGEMT-easy. As explained earlier, this vector contains 

thymidine ”T” overhangs which are designed for cloning of PCR product with 

adenine ”A” overhangs.    

A)                                 B)                           C)                           D) 

 

     

Figure 9: Cloning of human Smads: Smad1, Smad4, Smad8 and Smad8C were 
cloned into pGEMT-easy and analyzed by restriction digestion for the insert release from 
the vector. A) Human Smads cloned into pGEMT-easy were digested with EcoR I 
Smad4 and Smad8) with Not I (Smad1. Restriction digestion of Smad1 is in panel A; 
Smad4 is in panel B; Smad8 is in panel C and Smad8C is in panel D. All the Smads 
were screened for single clone. 1C represents the restriction digestion with 1 enzyme to 
linearize the vector, and 2C represents restriction digestion with 2 enzymes to release 
the insert from the vector (EcoRI Smad8C). 
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Clones were analyzed for the presence of the insert by blue/white 

screening (based on the �-galectosidase expression in E.coli), restriction 

digestion (Figure 9), and full-length cDNA sequencing. The DNA sequencing 

reports were compared to the published sequences from NCBI to confirm the 

right clones. Restriction digestion of the plasmid DNA from white colonies 

showed an insert release at expected sizes (Figures 9A, 9B, 9C and 9D), 

confirming the right clones 

 

3.2.2 Identification, cloning and sequence confirmation of novel human 
Smad8 isoform 

 During initial PCR amplification (Figure 1) of the full length of the Smad8 

from total human lung RNA, we identified two specific bands on an agarose gel 

electrophoresis after RT-PCR. Cloning and sequencing analysis of both bands 

revealed that both molecules were alternatively spliced variants of Smad8. It is 

known from NCBI genome nucleotide database (GenBank accession numbers 

BC011559 and BC104760 for Smad8 and Smad8C respectively) that these two 

isoforms differ by 111bp, corresponding to 37 amino acids. Genome analysis 

confirmed that the region corresponded to exon3 of Smad8.  Structurally, exon3 

is in the linker domain of the Smad8, which connected both MH1 and MH2 

domains (Figure 10). These results showed that we could amplify and clone the 

full length of Smad8, which we called Smad8C.  

 

Figure 10: Domain alignment of Smad8 isoforms: The major domains of human 
Smad8, MH1, MH2 (orange), and the linker (light blue) are shown. Exon3 (dark blue), 
which is present in only Smad8C, is depicted in blue. P (1-5) indicates the primer 
positions designed to amplify different regions (Full length, N-terminus, C-terminus and 
only Smad8C) of Smad8 isoforms.  
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3.2.3 Expression profile of Smad8 isoforms in various human tissues  

 In order to analyze the expression profile of human Smad8 isoforms in 

different human tissues, RNA from human heart, kidney, brain, lung, testis, 

placenta, trachea, uterus, and thyroid, as well as total human RNA, were 

investigated. Primers P1 & P4 were designed to amplify the full length, P1 & P3 

to amplify N-terminus of Smad8 isoforms, P5 & P4 to amplify C-terminus Smad8 

sioforms (Figure 10).  

 

Figure 11: Expression profile of Smad8 isoforms in various tissues: Smad8 
isoform expression was analyzed by RT-PCR from ten different human tissues. 
The PCR products were obtained using the primer pairs P1 + P4 for the first 
panel (full lengths of Smad8C and Smad8 with product length 1437 & 1326 bp, 
respectively), P1 + P3 for the second panel (N-terminus of Smad8C and Smad8 
with product lengths 903 and 792 bp, respectively), P5 + P4 for the third panel 
(C-terminus of Smad8C and Smad8 with the same product length of 727 bp) and 
P2 + P4 for the fourth panel (only Smad8C with product length 554 bp).  Various 
tissues used in this study are: B- Brain, He- Heart, K-Kidney, Li- Liver. L-Lung, 
Pl- Placenta, Te- Testis, Thy- Thyroid, U- Uterus, Ht-Human total, N- Water 
control. HSC served as a loading control 

 

A forward primer (P2) was also designed inside the exon3 to amplify only 

the Smad8C.  Both isoforms were expressed in almost all the tissues (Figure 11). 

Heart and Thymus showed lower expression of Smad8 isoforms, compared to 

that of other tissues. 
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3.3 Functional characterization of Smad8 isoforms 

 

3.3.1 Cloning of Smad8 isoforms into N-terminal FLAG fusion vector 

For further functional characterization of the Smad8C isoform, we cloned 

Smad1, Smad8, and Smad8C into N-terminal FLAG-tagged vector (pCMV 2B). 

The expression of these constructs was analyzed by western blot with anti-FLAG 

antibody. A549 cells were transfected with FLAG-tagged Smad1, Smad8, and 

Smad8C. The lysates were run on an SDS-PAGE gel and western blotted for 

FLAG-tagged proteins with anti-FLAG antibodies. We observed Smad1, Smad8, 

and Smad8C expression at the expected sizes (Figure 12). 

 

Figure 12: Cloning of Smads into eukaryotic expression vectors with FLAG tag: 
Smad1 (S1), Smad8, and Smad8 full length (8C) were cloned into N-terminal FLAG and 
tagged vector, and their expression was analyzed by western blotting with Anti-FLAG 
antibody. Empty vector (EV) was used as a no-transfection control.  

 

3.3.2 Phosphorylation analysis of human Smad8 isoforms 

 

3.3.2.1 Anti-Smad1/2/3 antibody can cross-react with Smad8 and Smad8C  

As no good antibody was available for human Smad8 at this time, we 

screened several antibodies that could cross-react with human Smad8 isoforms. 

As Smad1 is more homologous to the sequence of Smad8, anti-Smad1/2/3 

antibody was analyzed for its cross-reactivity with Smad8 isoforms. An immuno-
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precipitation experiment was performed with Smad1, Smad8, and Smad8C 

cloned into an N-terminal FLAG tag vector.  

 

 

Figure 13: Cross-reaction of anti-Smad 1/2/3 antibody with Smad8 and Smad8C: 
A549 cells were transfected with FLAG-tagged Smad1 (S1), Smad8 (S8) and Smad8C 
(8C), and the cell lysates were immuno-precipitated (IP) with anti-FLAG antibody. The IP 
samples were analyzed by western blot (WB) with anti-Smad1, 2, and 3 antibody. Anti-
FLAG antibody (Ab) and antibody with cell lysate transfected with empty vector (EV) 
were used as IP control. 

 

A549 cells were transfected with Smad1, Smad8, and Smad8C with a 

FLAG tag and immuno-precipitated with anti-FLAG antibody. The samples after 

IP were analyzed by western blot with anti-Smad1/2/3 antibody.  We observed 

specific bands corresponding to Smad1, Smad8C, and Smad8 (Figure 13). This 

result confirmed that we had found an antibody that could cross-react with 

Smad8 isoforms and be used in the following experiments. 
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3.3.2.2 Phosphorylation analysis of Smad8C  

An important property of receptor Smads is the ability to be 

phosphorylated by Type I receptors in the presence of the ligand. So we 

analyzed the phosphorylation property of the full-length form of Smad8 

(Smad8C).  A549 (lung epithelial cell line) was transfected with Smad1, Smad8, 

and Smad8C in pCDNA 3.1-, a eukaryotic over-expression vector in a 6-well 

dish. Smad1 and Smad8 phosphorylation was also analyzed as a positive control 

for BMP stimulation. After 24 hr of transfection, the cells were stimulated with 

BMP-2 (10 ng/ml) and with TGF-�1 (5 ng/ml) for 1 hr. The protein extracts were 

analyzed for the presence of phosphorylated Smads by western blotting. The cell 

lysate was divided into two parts, and the first part was analyzed for 

phosphorylation of Smad1, 5, and 8 with anti-phospho Smad1/5/8 specific 

antibody. The second part of the lysate was analyzed for phospho-Smad2 as a 

positive control for TGF-� stimulation. As expected, we found an increased 

amount of phosphorylation for Smad1 when it was stimulated with BMP-2 ligand.

 

 

Figure 14: Differential phosphorylation of Smad8 isoforms: A549 cells were 
transfected with Smad1, Smad8, and Smad8C in pCDNA3.1-, along with the empty 
vector (EV) as a no-transfection control. After 20 hr of transfection, the cells were 
stimulated with BMP-2 (10 ng/ml) and TGF-�1 (5 ng/ml). The cell lysates were analyzed 
by western blot for phospho-Smad1 and 8 with anti-phospho Smad1/5/8 antibody. Anti-
Smad1/ 2 /3 was used as a control of equal transfection. �-tubulin blot showed equal 
protein-loading.  
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Smad8 isoform, which lacked exon3, was found to be phoshorylated at a 

basal level (Figure 14). Even though there was a slight increase in the 

phosphorylation of Smad8 after BMP stimulation, basal phosphorylation was 

much greater than that of Smad1. Smad8C did not show any phosphorylation 

even after stimulation with BMP or TGF-� (Figure 14). The same results were 

found when the cells were stimulated with BMP-4 (data not shown). 

Not only was Smad8C not phosphorylated, but it was also affected 

endogenous Smad1 phosphorylation. The band intensity for endogenous 

phospho-Smad1 decreased when the cell were transfected with Smads8C. The 

same membrane was stripped and blotted for Smad1, 2 and 3 which could cross-

react with Smad8C and Smad8, to analyze the equal expression of transfected 

Smads (Smad1, Smad8 and Smad8C). It was observed that neither Smad8 nor 

Smad8C was responsive for TGF-� stimulation (Figure 14). This result shows 

that Smad8 was getting more basal phosphorylation, compared to Smad1 and 

Smad8C. Smad8C was not phosphorylated at any stage of stimulation; instead, it 

showed possible inhibitory action on Smad1 phosphorylation after BMP 

stimulation.  

 

3.3.3 Inhibitory function of Smad8C 

 

3.3.3.1 Smad8C inhibits Smad1 phosphorylation after BMP stimulation  

We observed decreased BMP-induced endogenous Smad1 

phosphorylation in A549 cells when co-transfected with Smad8C (Figure 15). To 

confirm this result, we analyzed Smad1 phosphorylation after transfection of 

Smad8C in a dose-dependent manner. A549 cells were transfected with 0.5 �g, 

1 �g, 2 �g, 3 �g, and 4 �g of Smad8C (in pCDNA 3.1-) in a 6-well dish. During 

transfection, the DNA was equalized in all the wells with an empty vector of 

pCDNA 3.1-. Twenty-four hours after transfection, the cells were stimulated with 

BMP-4 (10 ng/ml), and proteins were extracted and analyzed for phospho-

Smad1 with anti-phospho-Smad1/5/8 antibody. 
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Figure 15: Effect of Smad8C on Smad1 phosphorylation: A549 cells were 
transfected with increasing amounts of Smad8C (0.5 �g, 1 �g, 2 �g, 3 �g, and 4 �g).  
BMP + and – indicates the presence and absence of BMP-4 stimulation (10ng/ml). The 
upper panel is the blot for phospho-Smad1/ 5/ 8. The middle panel is the blot for Smad8, 
and the last one is for �-tubulin. The EV (empty vector) was taken as no transfection 
control. 

We observed a decrease in the amount of endogenous phosphorylation 

when the amounts of Smad8C were increased.  The same blot was stripped and 

blotted for Smad8C over-expression with anti-Smad8 antibody (Figure 15). The 

lower band we observed in the Smad8 blot was believed to be a degradation 

product. The same membrane was stripped again and blotted for human ALK6 

(the only available BMP receptor antibody at that time) to determine if the 

decrease in the phosphorylation of Smad1 was due to receptor degradation. No 

change in the expression of ALK6 was observed (Figure 15). These results 

showed that Smad8C inhibited BMP-induced phosphorylation of Smad1. 

 

3.3.3.2 Smad8C inhibits BMP signal transduction  

Analysis of the Smad8C transcriptional activity was the next interesting 

functional assay. So we performed a BMP reporter gene assay with a 4X BRE 

(BMP responsive element) (i.e., four times BRE sequence was cloned in front of 

a luciferase gene). A549 cells were transfected in a 48-well dish with empty 

vector, Smad1, Smad8, and Smad8C in two different experiments. 
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Figure 16: Smad8 and Smad8C show opposite effects: A) A549 cells were 
transfected with empty vector, Smad1, and Smad8, whereas Smad8 was transfected 
with increasing amounts (20 ng, 50 ng, 150 ng). 100 ng of 4XBRE and 200 ng of Smad1 
were used for BMP-4 positive response. B) A549 cells were transfected with empty 
vector, Smad1, and Smad8C, whereas Smad8C was transfected with increasing 
amounts (20 ng, 50 ng, 150 ng). 100 ng of 4XBRE and 200 ng of Smad1 were used for 
BMP-4 positive response. The experiment was performed from 4 different samples and 
the error bars show the standard deviation. *, P < 0.01 
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In the first experiment, cells were transfected with empty vector, Smad1 

(200 ng/well), and Smad8 in increasing amounts (20 ng, 50 ng and 150 ng) 

(Figure 16A). In the second experiment, cells were transfected with empty vector, 

Smad1 with constant, and Smad8C in increasing amounts (20 ng, 50 ng, and 

150 ng) (Figure 16B). 

The DNA in all the wells was normalized by the empty vector to avoid 

discrepancies in transfection efficiency. After 12 hr of transfection, the cells were 

stimulated with BMP-4 (10 ng/ml) for 12 hr. We observed an increase in BMP 

signal when Smad8 was transfected. The increase in the signal was gradual but 

significant, and it corresponded to increasing amounts of Smad8 (Figure 16A). In 

the case of Smad8C, the BMP signaling was inhibited significantly in a dose-

dependent manner. Inhibition was observed at both the basal and the BMP-

stimulated states (Figure 16B). This result supported the previous 

phosphorylation findings, indicating that Smad8C could be a potential inhibitor of 

BMP signaling. 

 

3.3.3.3 Smad8C does not interfere in transcriptional activity of Smad8 

 Previous publications have indicated that there is another isoform of 

Smad8, known as Smad8B. This isoform does not possess an SSXS motif. 

Consequently, it is not phosphorylated even after BMP stimulation. Smad8B was 

also shown to be an inhibitor of Smad8. Since Smad8C also functions as an 

inhibitory Smad, we investigated whether Smad8C could inhibit Smad8:   Smad8 

was co-transfected at increasing amounts (20ng, 50ng, 150ng) in a 48-well dish 

in the presence of constant Smad8C. 

After BMP-4 stimulation, we observed that Smad8 could gradually 

increase BMP signaling even in the presence of Smad8C (Figure 17). We also 

determined that the inhibitory effect of Smad8C on BMP signaling was not the 

result of inhibiting Smad8. Thus, it might interfere with some other molecule 

which could transmit BMP signaling (e.g., Smad1 or Smad5). 
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Figure 17: Coordination of BMP signaling by Smad8 isoforms: A549 cells were 
transfected with empty vector, Smad8C, and Smad8 in increasing amounts (20 ng, 50 
ng, 150 ng). 100 ng of 4XBRE and 200 ng of Smad1 were used for BMP-4 positive 
response in the respective wells. BMP signaling increased when the cells were 
transfected with Smad8 (Smad8S), even in the presence of constant Smad8C (150ng). 
The experiment was performed from 4 different samples and the error bars show the 
standard deviation. *, P < 0.01 

 

3.3.3.4 Effect of Smad8C on regulation TGF-� reporter activity 

Some BMP signaling molecules, such as Smad1, are activated by TGF-�. 

Thus, we wanted to analyze transcriptional activity of Smad8C on TGF-� 

responsive reporter gene. For this purpose, we chose the (CAGA)x12 reporter, 

which contains 12 repeats of CAGA sequence cloned in front of a luciferase 

gene. A549 cells were transfected in a 48-well dish with empty vector, Smad1, 

Smad8, and Smad8C. After BMP-4 and TGF-� stimulation, the cells were lysed 

and analyzed for luciferase expression in a luminometer. We observed a tenfold 

increase of luciferase activity when the cells were stimulated with TGF-�1 (Figure 

18). Almost no response was observed when the cells were stimulated with 

BMP-4 on this reporter. We also observed a slight decrease in the luciferase 

activity with TGF-� stimulation when Smad8C was transfected. This result 
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indicated that Smad8 could inhibit not only the BMP reporter gene assay but also 

the TGF-� reporter, to some extent. 

 

Figure 18: Regulation of TGF-� responsive reporter (CAGA) by Smad8 isoforms: 
A549 cells were transfected with empty vector, Smad1, Smad8 Smad8C in pCDNA 3.1-
vector (300 ng) in each well of 48-well dish.  Cells were stimulated with BMP-4 (10 
ng/ml) and TGF-�1 (5 ng/ml) for 12 hr. Luciferase activity was measured 24 hr after 
transfection The experiment was performed from 4 different samples and the error bars 
show the standard deviation. *, P < 0.02  

 

3.3.3.5 Smad8C can inhibit constitutively active ALK2  

  To confirm our previous phosphorylation and reporter gene results (Figure 

14 &16) with BMP-4 ligand stimulation, we measured the effect of constitutively 

active ALK2 receptor (CaALK2) on Smad8 and Smad8C. CaALK2, when 

transfected along with Smad1/Smad8/Smad8C, its activity was inhibited by 

Smad8C as shown in the figure 19, where Smad1 or Smad8 enhanced CaALK2 

activity to the empty vector control 
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Figure19: Inhibitory effect of Smad8C: A549 cells were transfected with 100ng of 
CaALK2 along with 200ng of EV/Smad1/Smad8/Smad8C in 48 well cell culture dish. 
Empty vector was transfected as no BMP stimulation control in the first panel of the 
figure. Luciferase activity was measured 24 hours after transfection. The experiment was 
performed from 4 different samples and the error bars show the standard deviation. *, P 
< 0.02. 

 

3.3.4 Smad8C is an early responsive gene for BMP-2 and BMP-4  

 

3.3.4.1 Expression of Smad8C mRNA increases after BMP-2 and BMP-4 

stimulation 

It is known that Smad6 and Smad7 expression is low at the basal state but 

increases upon BMP and TGF-� stimulation. After expression they inhibit BMP 

and TGF-� signaling by the degradation of their concerned receptors with the 

help of Smad ubiquitine regulatory factor (Smurfs). So we wanted to investigate 

whether the Smad8C could act in the same way. A549 cells were stimulated with 
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BMP-2 (10 ng/ml) and BMP-4 (10 ng/ml) at different time points (2 hr, 4 hr, 8 hr, 

16 hr, 24 hr, 36 hr), and the RNA was analyzed for Smad8 expression by RT-

PCR. We found a massive increase in the RNA levels of Smad8C but not 

Smad8. Smad8 could not be observed in the gel as its expression was much less 

in A549 cells. We could observe an increased expression starting from 2 hr of 

stimulation until 36 hr (Figure 20A, B).  From the same aliquot of RNA, RT-PCRs 

were also performed for human Smad1 and Smad5, but no change was 

observed in their expression after stimulation (Figures 20A & B) 

A) 

 

B) 

 

Figure 20: Smad8C expression is increased after BMP-2 and BMP-4 stimulation: 
A549 cells were stimulated with BMP-2 (10ng/ml) (A) and BMP-4 (10ng/ml) (B) at 
different time points, indicated in the figure. The RNAs were extracted from these cells 
and analyzed for expression of Smad8 isoforms, Smad1 and Smad5. HSC was used as 
a positive control of loading  

BMP-2 (hr) - 2        4       8     16      24    36      N      8C    S8 
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3.3.4.2 Effect of BMP-2 and BMP-4 stimulation on Smad8C protein 
expression in A549 cells 

A) 

 

B) 

 

 

C)                                                           D) 
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Figure 21: Smad8C expression at the protein level increases after BMP-2 and 
BMP-4 stimulation: Proteins were extracted from A549 cells after BMP-2 (A) and BMP-
4 (B) stimulation at the time points. The cells were lysed with RIPA cell lysis buffer, and 
the lysates were analyzed for Smad8 expression by western blot. The same blot was 
stripped and blotted for �-tubulin as a protein loading control. C and D show the 
densitometric analysis of A and B respectively.  Values on the Y axis correspond to 
the band intensity ratio between Smad8C to �-tubulin. 
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As mRNA of Smad8C showed increased expression, we also wanted to 

determine its protein levels after BMP-2 and BMP-4 ligand stimulation. Proteins 

were extracted from A549 cells before and after stimulation with BMP-2 (Figure 

21A) and BMP-4 (Figure 21B) at different time points analyzed for Smad8C 

expression by western blot with anti-Smad8 antibody.  We found a significant 

increase in the protein levels of Smad8C after 24 hr of stimulation. This result 

indicates that Smad8C expression was enhanced after BMP stimulation and 

suggests that Smad8C is an early BMP responsive gene. Figure 21C and Figure 

21D show the relative fold intensity by densitometric analysis of Figure 21A and 

Figure 21B respectively. 

 

3.3.4.3 Smad8C inhibits BMP signaling through the degradation of Smad1  

There are two possibilities through which Smad8C can inhibit BMP 

signaling. One is by degradation of type I or type II receptors, and the other is by 

the degradation of BMP responsive Smads, Smad1, and Smad5. So we 

analyzed the expression of Smad1 and ALK6 in A549 cells after stimulation with 

BMP-2 and BMP-4 by western blot with gene-specific antibodies. We observed a 

decrease in the protein levels of Smad1 after BMP-2 and BMP-4 stimulation 

(Figures 22A & B). Our previous phosphorylation results and these results might 

indicate that the Smad8C inhibition of BMP signaling may be through the 

degradation of Smad1. Figure 22C and Figure 22D show the relative band 

intensity by densitometric analysis of the Figure 22A and Figure 22B 

respectively. 
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Figure 22: Smad1 is getting degraded after BMP stimulation: Western blot for native 
Smad1 was performed from A549 cell lysates after BMP-2 (A) and BMP-4 (B) 
stimulations at the time points indicated in the figure. The same membranes were 
stripped and blotted for �-tubulin for protein loading control. C and D show the 
densitometric analysis of the A and B respectively. Values on the Y axis correspond to 
the band intensity ratio between Smad1 to �-tubulin. 

 

3.3.4.4 Cellular localization of Smad8 isoforms 

As Smad function is also dependent on cellular localization, we analyzed 

the occurrence of Smad8C before and after stimulation with BMP. For this 

purpose, A549 cells were transfected with Smad8 and Smad8C. After 16hr of 
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-   2           4           8          16          24          36 BMP-4 (hr) 
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transfection, the cells were treated with or with out BMP-4 (10 ng/ml) for 1 hr. 

Smad8 was mostly distributed in both cytoplasm and nucleus before stimulation 

and translocated towards cytoplasm when the cells were treated with BMP-4 

(Figure 23). Smad8C was mostly located in the cytoplasm and translocated 

towards the nucleus after BMP stimulation.  

A) 

       

B) 

    

Figure 23: Cellular localization of Smad8 isoforms: Smad8 and Smad8C in 
pCDNA3.1- vector were transfected in A549 cells. Sixteen hr after transfection, the cells 
ere stimulated with BMP-4 (10 ng/ml) for 1 hr and stained for Smad8 with anti-human 
Smad8 antibody.  

Smad8 Smad8 + DAPI 

Smad8 Smad8 + DAPI 
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4. Discussion 

        In our present study, we analyzed the expression of BMP and TGF-� 

signaling molecules during IPAH and identified a novel human Smad8 isoform. 

The receptors for BMP and TGF-� are expressed in most of the human tissues. 

During IPAH, the expression of BMPRII and Type I receptors along with ALK2 

was unchanged. During the expression analysis a novel isoform of Smad8 was 

identified with 37 additional amino acids in the linker region and was termed as 

Smad8C. Further characterization of this molecule revealed that Smad8C does 

not get phosphorylated upon BMP stimulation unlike Smad8. Over expression of 

Smad8C inhibited BMP induced Smad1/5 phosphorylation. Reporter gene 

analysis also revealed that Smad8C inhibits BMP signal transduction. Similar to 

inhibitory Smads, mRNA and protein expression of Smad8C was enhanced after 

BMP stimulation. We also observed decreased protein levels for Smad1 after 

prolonged BMP stimulation indicating that inhibitory action of Smad8C on BMP 

signaling might be through reduced protein levels of Smad1. In summary, we 

identified and functionally characterized a novel isoform of human Smad8.  

 

4.1 Expression profile of human Smads 

Idiopathic pulmonary arterial hypertension (IPAH) is associated with 

structural changes in both the pulmonary vasculature and the right ventricle, due 

to muscularization of arterioles and intimal proliferation [66-70]. Recent reports 

have shown that some mutations in the Bone morphogenetic protein (BMP) 

signaling molecules which could make them dysfunctional are one of the causes 

for this disease. BMP belongs to TGF-� super family and has major role in 

embryo development and cell proliferation [71;72]. It is known that Smads are 

expressed throughout embryonic development. Transforming growth factor-� 

(TGF-�)/Smad pathway can induce growth inhibitory and apoptotic responses. 

Inactivation of intracellular components of these pathways has been shown to 

contribute for tumorogenesis. Therefore, we analyzed the expression of Smads in 

total human lung RNA. Our results revealed that most of the Smads (receptor 

Smads and Co-Smad) were expressed in the normal human total lung RNA 
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where as the mRNA expression of Smad6 and Smad7 was not detectable by RT-

PCR. Smad6 and Smad7 are the inhibitory Smads, and their expression 

depended on the other growth factor expression and activity [59;73-76]. BMP and 

TGF-� induced Smad6 and Smad7 expression in the cells after stimulation [77]. 

 The TGF-� super family is composed of many multifunctional cytokines 

including TGF-�s, activins, and bone morphogenetic proteins (BMP). These 

proteins regulate a variety of biological responses such as proliferation, 

differentiation, apoptosis, and development [78]. Members of this family signal 

through cell surface transmembrane serine/threonine protein kinases are known 

as Type I and Type II receptors. Expression of these receptors in different cell 

types controls cell fate. In this study, we analyzed the mRNA expression of these 

receptors in different organs of humans. All the receptors were found to be 

expressed in most of the tissues suggesting a possible role of these molecules in 

the cellular functions during the adult stage. 

 IPAH is characterized by obstruction of pre-capillary arteries, leads to 

sustained elevation of pulmonary arterial pressure [43;71;72]. Even though the 

cause of the disease is not really understood, the histological features reveal 

proliferation of endothelial and smooth muscle cells with vascular remodeling. In 

order to explore the expression of BMP signaling molecules in these cell types, 

we analyzed expression of all human Smads in primary epithelial and endothelial 

cells. Despite a slightly decreased expression in epithelial cell fraction, most of 

the Smads were expressed in both cell types (data not shown). 

 

4.2 Expression of BMP and TGF-� signaling molecules in normal and 

diseased (IPAH) human lungs 

 Signaling by TGF-� family members occurs through Type I and Type II 

serine/threonine kinase receptors. Five Type II and seven Type I receptors, also 

termed Activin Receptor-Like Kinases (ALKs), have been identified in vertebrates 

[79]. Members of the TGF-� family play crucial roles in development and tissue 

homeostasis therefore differences in these receptor expressions in the tissues 
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affects cell proliferation and cell death. Here, we analyzed receptor expression 

within various tissues of the human body. Most of the BMP and TGF-� receptors 

were expressed in the human tissues. This finding may suggest that receptors of 

BMP and TGF-� play a role not only during development but also in the functional 

maintenance of various tissues. 

 BMP ligands signal by binding the BMP Type II receptor (BMPRII) or the 

activin Type II receptors (ActRIIa and ActRIIb) in conjunction with Type I 

receptors to activate Smads 1, 5, and 8 as well as members of the mitogen-

activated protein kinase family [80;81]. Loss of function of BMPRII through 

reduced expression and mutations in the gene is reported as a cause of IPAH. 

Here, we sought to determine the expression pattern of Smads during this 

disease. Though BMPRII is known to have reduced expression in the lung during 

IPAH [14] we did not see major differences in the expression of both BMPRII 

isoforms. Recent reports have confirmed that lack of tail in the BMPRII did not 

affect the kinase activity of the receptor. Therefore, we speculated that BMPRII 

long and short forms might have similar functions and reduction in either of these 

forms might lead to IPAH. We also observed that Type I receptors for BMP 

ligands (ALK3 and ALK6) along with ALK2 had no change in the expression 

during IPAH. Reduced expression or mutation in the BMP signaling molecules 

causes disturbance in cell division, leading to the disease. 

 

4.3 Smad8 isoforms 

 Smad8 is a BMP-responsive Smad. Until now, the Smad8 isoform, which 

lacks the 3rd exon, is known as Smad8 [57;82]. An isoform of human Smad8 

(Smad8B) has been functionally characterized and is known to lack the  SSXS 

domain [58].  
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A) 
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Figure 24: Smad8C possesses a PY motif in its linker domain: Sequence alignment 
of linker domain of Smad8C (Smad8C) with Smad8 and other BMP signaling molecules, 
Smad1 and 5 (A). Sequencing alignment of PY motif from Smad8C with other known PY 
motif in the receptor Smads and inhibitory Smads (B). 

 Another form of Smad8, which is Smad8C, has been revealed in this 

study. A difference of 111bp, which corresponds to 37 amino acids, distinguishes 

both forms of Smad8 (Figure 24 A). The initial finding of the Smad8C came from 

a PCR against the full length of Smad8. Several PCR primers were designed to 
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amplify different regions of Smad8. It has been found that both isoforms are 

expressed in most human tissues, but the expression of the Smad8C is slightly 

greater than that of the short form.  

 To determine the function of the additional sequence (37 amino acids) of 

Smad8C, the sequence of protein was closely observed for possible conserved 

domains that are common in the Smads. Interestingly, a domain known to be 

present in inhibitory Smads and receptor Smads, ”PY motif,” was found in this 

additional sequence of the Smad8C (Figure 24 B). The inhibitory Smads (Smad6 

and Smad7) are known to bind to Smurf1 and 2 (Smad ubiqitination regulatory 

factor) to inhibit BMP and TGF-� signaling by degrading their receptors by 

proteosome pathway [65;83-86]. Thus, from the initial sequencing results we 

hypothesized that Smad8C might play an inhibitory role on BMP or TGF-� 

signaling by interaction with either of the Smurfs and thereby undergo receptors 

or receptor Smad degradation. 

 

4.4 Phosphorylation of Smad8 isoforms 

 Mouse Smad8 phosphorylation is downstream of BMP receptors ALK 2, 

ALK 3, and ALK 6 [82]. Phosphorylation analysis for human Smad8 isoforms 

gave interesting new results. Smad8, which is known to be BMP responsive, 

showed basal phosphorylation without any stimulation. Though an increase in 

phosphorylation was evident after BMP-2 and BMP-4 stimulation, the basal 

phosphorylation was much higher, compared to Smad1 and Smad8C. There are 

several speculations regarding such behavior. The first possibility is a break in 

the linker region of the Smad8. Linker is known to keep the MH1 and MH2 

domains of receptor Smads together and cause them to inhibit each other, 

preventing receptor Smads from interacting with Type 1 receptors or other 

transcription factors in the absence of the ligand. The absence of the linker may 

give MH2 domain more freedom to interact with BMP Type 1 receptor and to be 

phoshorylated better than any other receptor Smads at the basal level. Another 

interesting point is the lack of phosphorylation for Smad8C at the basal as well as 

the activated state. The reason could be that the phospho-Smad1/5/8 antibody 
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used to detect phosphorylation in the BMP-activated Smads detects 

phosphorylation in the SSXS domain. With this result, one can only say that no 

phosphorylation for Smad8C occurred at this major phosphorylation domain, but 

from the previous literature, it is known that Smads also can get phosphorylated 

at other structures (e.g., serine and tyrosine rich linker domain) [51]. Here, we 

speculate that the same could happen with the Smad8C. 

 

4.5 Inhibitory function of Smad8C 

 Until now, Smad6 and 7 have been the only known inhibitory Smads [76]. 

Smad8 is known as the BMP responsive transcription factor carrying its signal 

from the cell membrane to the nucleus. In this study a novel isoform of Smad8 

(Smad8C) showed an interesting and opposite effect to the normal receptor 

Smad. Even though Smad8C appears similar to a receptor Smad with MH1, MH2 

domains along with an SSXS motif for phosphorylation, Smad8C could inhibit 

BMP responsive signal significantly and TGF-� responsive signal to some extent. 

The fact that an inhibitory Smad contains a phosphorylation domain is intriguing. 

Another isoform of Smad8, named Smad8B, acts opposite the BMP signaling 

pathway; however, its inhibition is limited to Smad8 [58]. 

The inhibitory function of Smad8C was first observed in phosphorylation 

analysis. Smad8C after BMP-2 and BMP-4 stimulation revealed no signal of 

phosphorylation indicating that Smad8C might not be a regular receptor Smad. 

Further, the endogenous Smad1 phosphorylation was reduced when Smad8C 

was over expressed in A549 cells. These findings may imply that Smad8C might 

inhibit BMP signal by inhibiting Smad1 phosphorylation. In our dose-dependent 

experiment when Smad8C was over expressed, there was a significant reduction 

in the BMP-4 induced phosphorylation of Smad1 which indicates that Smad8C 

can inhibit Smad1 phosphorylation, supporting our previous data. Though a weak 

signal for Smad5 was observed after BMP stimulation but not much difference 

was observed in its phosphorylation. Smad8 was not observed in the control blots 

because of its low endogenous expression in A549 cells.  
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Smad8 is known to induce signal transduction on BRE4, a BMP reporter 

upon BMP stimulation and act as a transcription factor. Where as, in this study 

Smad8C, which contains PY motif inhibited BMP induced luciferase expression 

on BRE4 reporter. Smad8C could also show its inhibitory action when co-

transfected with constitutively active ALK2 which mimics BMP stimulation. The 

similar inhibitory action was also observed on Id-I, another reporter gene for BMP 

ligands (data not shown). CAGA, a TGF-� reporter was also screened for 

Smad8C activity, where a slight inhibition of TGF-� mediated transcriptional 

activity was observed. All these results showed Smad8C as possible inhibitory 

Smad. 

As expected, Smad8 could increase BMP signal at the basal and 

stimulated states when overexpressed in A549 cells. In contrast, Smad8C did not 

show its inhibitory role when Smad8 was overexpressed along with Smad8C. 

This experiment implies that Smad8C may not inhibit BMP induced Smad8 

transcriptional activity which is different from Smad8B. These results also 

suggested that Smad8C may not only inhibit Smad1 or Smad5, since Smad1 

phosphorylation decreased in the presence of Smad8C in A549 cells. It is still 

difficult to speculate about the regulation of Smad5 transcriptional activity 

because of the lack of individual phospho-specific antibodies. 

 

4.6 Increased expression of Smad8C upon BMP-2 and BMP-4 stimulation  

 Smad6 and Smad7 are known to increase their expression after BMP and 

TGF-� stimulation [87]. As Smad8C functions much similar to inhibitory Smads, 

we also analyzed its expression after BMP and TGF-� stimulation. BMP-2 and 

BMP-4 could dramatically increase Smad8C expression. TGF-� induction of 

Smad8 expression was not as significant as BMP. The induction in the 

expression of Smad8 has been shown both at RNA and protein level. This 

observation may suggest that Smad8C inhibition on BMP signaling is through a 

feedback mechanism. Interestingly, the increase in expression was found in only 

Smad8C but not in Smad8. 



Discussion 
 

 

65 

Expression of most genes depends on their promoter activity. As there 

was a significant change in the expression of Smad8 after BMP stimulation, the 

promoter of Smad8 was also analyzed for its activity by luciferase reporter gene 

assay. No significant change was observed in its promoter activity in A549 cells 

after BMP-2 and BMP-4 stimulation (data no shown). This result may indicate the 

fact that the real promoter for Smad8 stayed more upstream (before -2000bp) of 

the Smad8 open reading frame (ORF). We also speculate that an enhancer 

sequence may be needed for Smad8 gene expression, which might be lying very 

far from the Smad8 gene locus. 

 

4.7 Smad8C can inhibit BMP signal transduction by degrading Smad1 

Inhibition of BMP signaling through Smad8C could take place in several 

ways. Based on our results, there could be two ways of possible inhibition: One 

through the degradation of Smad1 or Smad5 and the second by blocking of the 

phosphorylation of Smad1 and Smad5. To determine if the Smad8C-induced 

inhibition of BMP signaling was through Smad1, Smad1 expression was analyzed 

after Smad8C overexpression after BMP-2 and BMP-4 stimulation. Interestingly, 

degradation of Smad1 at the initial stages (8-16 hours) of BMP stimulation was 

observed, but its levels were resumed to normal at the later stages (36 hours). 

This data may suggest that the Smad8C induced inhibition of BMP signaling is 

only through the degradation of phosphorylated Smad1 but not the native Smad1. 

Increased expression of Smad8C after BMP stimulation and its action inhibiting 

BMP signaling appeared to supports this hypothesis. Additionally, we did not 

observe any degradation of Type 1 receptor (ALK 6) after BMP stimulation.  

 Several reports indicate that phospho-Smad1 levels become low after 4 to 

6 hr of BMP stimulation [88]. The reasons for this phenomenon are unclear but 

one possibility could be that a phosphatase that might get activated after BMP 

stimulation and inhibit Smad1 phosphorylation. Another possibility is that a 

protease that could degrade phospho-Smad1 might also get activated upon BMP 

stimulation. Recently it has been shown that receptor Smads can be degraded by 

Smurf1 or Smurf2 with the help of inhibitory Smads (Smad6 and Smad7) after 
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prolonged stimulation with BMP or TGF-� [86;89;90]. In this context, it is 

speculated that once Smad8C is expressed after BMP stimulation, it could easily 

access Smurf1 or 2 with its PY motif and degrade receptor Smads. Thus, 

Smad8C mediated inhibition of BMP signaling may occur through degradation of 

Smad1 with the help of Smurfs. 

 

4.8 Cellular localization of Smad8 isoforms 

Variation in cellular localization is a common feature in receptor Smads. 

Most of the receptor Smads stays in the cytoplasm in the native state and moving 

towards the nucleus once they get phoshorylated by their concerned receptor 

[79]. Smad8 is also known to localize in the cytoplasm and moves towards 

nucleus upon phosphorylation by Type 1 receptors [55]. In the immuno-staining 

experiments, it was observed that Smad8 was present in both cytoplasm and 

nucleus before stimulation and moving towards nucleus after stimulation. This 

result supports our previous phosphorylation data, as we observed Smad8 

phosphorylation at the basal level. 

In contrast, it was interesting to observe that most of the Smad8C was in 

the cytoplasm before and after stimulation. It was moving towards the nucleus 

once the cells were stimulated with BMP-2 or BMP-4. In this study movement of 

Smad8C was not expected after BMP stimulation as it does not contain any 

phosphorylation domain. With these results one can speculate that Smad8 once 

expressed may bind to receptor Smads and moves towards the nucleus after 

stimulation. Thus, Smad8C may possibly bind to Smad1 and move towards the 

nucleus and there after degrading it either in the nucleus or in the cytoplasm. This 

phenomenon might explain the way that Smad8C could inhibit BMP signaling. 

 

4.9 Inhibition of BMP signaling by Smad8C is via Smads 1 or 5 or 8? 

 In this study, it has been shown that human Smad8 isoforms (Smad8, 

Smad8C) differ in 37 amino acids in the linker region, which enable them to act 
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differently at the functional level. The expression studies of both Smad8 isoforms 

in different tissues confirm their importance in the maintenance of the tissues. 

Even though both isoforms are expressed in most tissues, Smad8C expression is 

much higher than that of Smad8. In this case, the enzymes that can splice the 

Smad8C RNA and produce the short isoform may play a role in maintaining the 

homeostasis between the two isoforms.  However, a balance between receptor 

Smads for BMP (Smad1, 5, and 8) is also necessary, since any of them could 

take BMP signaling from the membrane to the nucleus. During the functional 

studies it has been shown that Smad1 gets degraded by Smad8C, but the same 

is not true for Smad8. These findings show that Smad8C has a unique way on its 

inhibitory action of BMP signaling. So understanding the regulation of these 

molecules has a greater importance. 
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5. Future Directions 

Crystallizing recombinant Smad8 and resolving its tertiary structure would 

help to understand constitutively active nature of Smad8.  It would also resolve 

the structure of Smad8C and explains the reasons behind its non-phosphorylated 

state after stimulation even though it possesses the SSXS motif. Possible 

interaction of Smad8C with Co-Smad (Smad4) or other receptor Smads should 

be analyzed, as it plays an inhibitory role through degradation of Smad1. 

Interaction of Smad8C with Smurf1 and Smurf2 should be the focus of immediate 

analysis as Smurfs play a major role in the degradation of receptors and thereby 

inhibit BMP and TGF-� signaling. Promoter or enhancer of the Smad8 should be 

studied more closely, as Smad8 expression increases after BMP-2 and BMP-4 

stimulation. Smad8 promoter should be cloned in front of the luciferase reporter 

gene, and its expression after BMP stimulation should be analyzed.  
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6. Summary 

 Idiopathic pulmonary arterial hypertension (IPAH) is associated with 

structural changes to the pulmonary vasculature that ultimately lead to right 

ventricular failure. A breakthrough in our understanding of the pathogenesis of 

IPAH was identification in IPAH patients of inactivating heterozygous mutations in 

the gene encoding the type II bone morphogenetic protein (BMP) receptor 

(BMPRII). Bone morphogenetic proteins and transforming growth factor (TGF)-� 

are a superfamily of polypeptide ligands that transduce signals via their cognate 

receptors and the Smad family of transcription factors. There are eight different 

Smads, of which Smads 1, 5 and 8 are BMP receptor-activated Smads. In this 

study we describe a novel splice-isoform of human Smad8 (Smad8C), and 

present its preliminary characterization.  

Initially, the expression of BMP receptors and their associated Smads in 

healthy donor lungs and in lungs from patients with IPAH was assessed by 

reverse-transcription polymerase chain reaction (RT-PCR). No changes in mRNA 

expression were observed comparing lungs from donors and IPAH patients. 

However, during the Smad expression studies, a Smad8 splice-variant with a 

higher molecular mass (which we have called Smad8C) was identified. 

Sequencing of the full-length Smad8C transcript revealed that the transcript 

contained an insertion of an additional 111 nucleotides, encoding an additional 

37-amino acid residue insertion in the Smad8C polypeptide chain. This additional 

coding sequence inserted a PY domain (which directs protein stability) into the 

important regulatory “linker” region of Smad8, located between the 

phosphorylation (MH1) and DNA binding (MH2) domains. Unlike all the receptor-

activated Smads, Smad8C did not exhibit any phosphorylation after BMP or TGF-

� stimulation, but rather dose-dependently inhibited the phosphorylation of 

endogenous Smad1 upon over-expression of Smad8C in human lung epithelial 

A549 cells. Furthermore, when Smad8C was over-expressed in A549 cells, the 

BMP-induced expression of the luciferase gene, when placed downstream of the 

BRE4 BMP-response element, was inhibited. These data demonstrated that 

Smad8C could attenuate BMP signaling. 
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In conclusion, we have identified a novel human Smad8 isoform (Smad8C) 

containing an additional insertion in its linker region. This novel Smad8 splice-

isoform appears to negatively-regulate BMP-signaling in lung epithelial cells.   
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7. Zusammenfassung 

 

Bei der primären pulmonalen arteriellen Hypertonie (IPAH) sind die 

Blutgefäße in der Lunge stark verengt, wodurch der Widerstand und somit der 

Druck in diesen Gefäßen steigt. Langfristig führt der erhöhte Druck auch zu 

Veränderungen in der Struktur der Blutgefäße in der Lunge, dem so genannten 

Remodelling. Durch eine zunehmende Obliteration der Lungenstrombahn kommt 

es zu einer progredienten Belastung des rechten Herzens, die in einem 

Rechtsherzversagen resultieren kann. 

 

In einem Großteil der Patienten mit IPAH liegen Keimbahnmutationen im 

BMP Typ II Rezeptor (BMPR2) vor. Bone morphogenic proteins und 

Transforming Growth Factor-ß (TGF-ß) vermitteln ihre Signale über Membran-

gebundene Serin/Threonin Kinase Rezeptoren, die nach Stimulation Smad 

Proteine phosphorylieren und dadurch deren nukleäre Translokation und 

transkriptionelle Aktivierung auslösen. Die Rezeptor-aktivierten Smads 1, 5 und 8 

werden über BMP Rezeptoren phosphoryliert. In der vorliegenden Arbeit wird die 

funktionelle Charakterisierung der neuen Smad Isoform Smad 8 beschrieben. 

 

 Die Analyse der Genexpression von BMP Rezeptoren und deren 

assoziierten Smad Proteine mittels  Polymerase-Kettenreaktion (PCR) ergab, 

dass in Lungenhomogenaten von IPAH Patienten keine Änderung der 

Expression von BMP Rezeptoren und den bisher bekannten Smad Proteinen zu 

beobachten ist.  Jedoch konnte eine neue, bislang nicht charakterisierte Isoform 

von Smad8 identifiziert und vollständig sequenziert werden, die als Smad8C 

bezeichnet wurde. Die Basensequenz von Smad8C unterscheidet sich von 

Smad8 durch 111 zusätzliche Nukleotide, die für 37 zusätzliche Aminosäuren 

kodieren. Innerhalb dieser Aminosäuresequenz, die zwischen der 

Phosphorylierungs- und DNA-Bindungsdomäne von Smad8C lokalisiert ist, 

konnte ein als PY-Domäne bezeichnetes Sequenzmotiv nachgewiesen werden, 

welches die Proteinstabilität beeinflusst.  Im Gegensatz zu Rezeptor-aktivierten 

Smads wird Smad8C nicht durch die BMP- oder TGF-ß vermittelte Stimulation 

phosphoryliert, sondern bewirkt eine dosisabhängige Inhibierung der 
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Phosphorylierung von endogenem Smad1 in der epithelialen Lungenzelllinie 

A549. Zudem resultierte die Überexpression von Smad8C in A549 Zellen in einer 

signifikanten Abnahme der Aktivität des BMP-abhängigen BRE4-Luciferase 

Reportergens. Die vorliegenden Daten geben somit Grund zu der Annahme, 

dass die identifizierte Smad8 Isoform eine BMP-vermittelte Signaltransduktion 

inhibitorisch moduliert. 
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