I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

ON TALLY LANGUAGES AND
GENERALIZED INTERACTING
AUTOMATA

Thomas Buchholz Andreas Klein
Martin Kutrib

IFIG RESEARCH REPORT 9902

FEBRUARY 1999

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 9902, FEBRUARY 1999

ON TALLY LANGUAGES AND
GENERALIZED INTERACTING AUTOMATA

Thomas Buchholz! Andreas Klein
Martin Kutrib?

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Devices of interconnected parallel acting sequential automata are in-
vestigated from a language theoretic point of view. Starting with the well-known
result that each tally language acceptable by a classical one-way cellular automaton
(OCA) in real-time has to be a regular language we will answer the three natural
questions ‘How much time do we have to provide?” ‘How much power do we have
to plug in the single cells (i.e., how complex has a single cell to be)?’ and ‘How can
we modify the mode of operation (i.e., how much nondeterminism do we have to
add)?’ in order to accept non-regular tally languages.

We show the surprising result that for some classes of generalized interacting auto-
mata parallelism does not lead to more accepting power than obtained by a single
sequential cell.

Adding a wee bit of nondeterminism an infinite hierarchy of unary language families
can be shown by allowing more and more nondeterminism.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

'E-mail: buchholz@informatik.uni-giessen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright (© 1999 by the authors

1 Introduction

Devices of interconnected parallel acting automata have extensively been in-
vestigated from a language theoretic point of view. The specification of such
a system includes the type and specification of the single automata, the in-
terconnection scheme (which sometimes implies a dimension to the system),
a local and/or global transformation and the input and output modes. One-
dimensional devices with nearest neighbor connections whose cells are determ-
inistic finite automata are commonly called cellular automata (CA) resp. it-
erative arrays (IA) in case of parallel resp. sequential input mode. One-way
information flow is indicated by the notion OCA resp. OIA. The family of
languages acceptable by e.g., CAs in real-time (linear-time) is denoted by
Z1(CA) (Z:(CA)) and the corresponding subfamily of tally (unary) languages
by Z4(CA) (Z2(CA)).

There are several important open problems concerning the relations between

the various families. The tally languages are playing an important role in
investigations on that field.

Under unary restriction several essentially different families are identical (e.g.,
Lu(TA) C Z(CA) [6, 20] but L4(IA) = Z4(CA) [18] or L C Zu(OCA)
[15] but 25" = Z4(OCA) [19], where .Z3 denotes the regular languages), from
which follows that the capabilities of some devices become noticable not for
tally languages.

There are incomparable families that become comparable (e.g., .Z+(OCA) is
not comparable to .Z+(IA) [7] but £%(OCA) C Z4%(IA) [4]), which means that
the restriction affects the families differently.

Moreover, for unary families some general open properties are known (e.g.,
“(CA) is closed under concatenation [12]) and some others are still open

(e.g., whether or not .Zj(CA) = Z}(CA)).

From these examples one can obtain that there is no general rule for what

happens if we go from arbitrary to unary languages.

Though any language can be unarily encoded there are differences in time and
space complexity. The tally languages have been investigated in several works
on the field of sequential automata and complexity theory (e.g., [1, 2, 5, 8, 11]).

Tally languages serve in many proofs as (counter-)examples. E.g., in the past
the only languages known not to belong to .Z;;(OCA) had been the non-regular
unary ones. If one intend to accept non-regular tally languages by parallel one-
way devices at least three natural questions arise: How much time do we have
to provide for OCAs? How much power do we have to plug in the single cells?
and How can we modify the mode of operation?

The paper is organized as follows: In section 2 we define the basic notions and
the model in question. Thereby the parallel model is derived from the definition
of general sequential machines that are actually the single cells.

In order to answer the second question in section 3 we generalize the result
L3 = Z%(0OCA) to OCAs whose cells are much more complex, and draw a

stripline to cells that give OCAs the power to accept non-contextfree unary
languages. A consequence is that for these specific devices parallelism does not
lead to more powerful acceptance compared to just one single sequential cell.

Section 4 is devoted to the first question. We show that there exists a complex-
ity class between the real-time and linear-time OCA languages: .Z,;(OCA) C
Zri110g (OCA) C Z146).r¢(OCA). Moreover, there is a gap between .Z1(OCA)
and Z3 1, (OCA). Thus (in terms of tally languages) that at least an amount
of a logarithmic number of time steps have to be added to increase the capa-
bilities of real-time one-way cellular arrays.

Allowing some kind of restricted nondeterminism we prove in section 5 that
a slight increase of nondeterminism as well as adding two-way communication
reduces the time complexity from linear-time to real-time. These results might
be used to show an infinite hierarchy of unary language families allowing more
and more nondeterminism from which an answer to the third question follows.

2 Models and Definitions

We denote the integers by Z, the positive integers {1,2,...} by N and the
set NU {0} by Ng. X3 X ... x X4 denotes the Cartesian product of the sets
X1y, Xg. If X3 = ... = X4 we also write X¢. If (z1,...,24) is a d-tuple
mi(Z1,...,24) = x; is the projection to the ith component.

The empty word is denoted by € and the reversal of a word w by w’t. Similarly
the notions L and Z*® for languages and families of languages are used. Two
languages L and L' are considered to be equal if they differ at most by the
empty word, i.e., L\ {e} = L' \ {e}. If £ is a family of languages we denote
by Z* the subfamily of tally (or unary) languages, i.e., the languages over a
singleton.

2.1 Sequential machines

A sequential machine is basically a memory augmented nondeterministic finite
automaton. Its state transition depends on the actual state, actual input sym-
bol, and additionally on the actual memory content. The memory access is
limited such that the finite control gets only a partial (finite) memory inform-
ation although the memory itself has an infinite capacity. On the other hand
the memory content is updated whereby no memory access limitation is made.

Before defining a sequential machine formally, we introduce a fixed ordered
decidable infinite set V' := {m1,mg, ...} from which a finite number of memory
symbols have to be chosen. Certainly, this is not a real restriction. However
since later we are interested in special subfamilies of sequential machines where
the memory updating and memory access is restricted we avoid by this way
technical difficulties.

Definition 1 A sequential machine (SM) is a system (S, M, D, sy, A, F), where

a) S is the finite, nonempty set of states,

b) M C V is the finite set of memory symbols,

c) so € S is the initial state,

d) A is the finite, nonempty set of input symbols,

e) F C S is the set of accepting states, and

f) D is the finite, nonempty set of local transformations. Each of which is a

triple (6, 4, @) where

e §:Sx(MU{e}) x A— S is a state transition function,
o i:SXM*xA— M*isacomputable memory update function, and
e a: M* — (M U{e}) is a computable memory access function.

Observe that in case of M = () the memory access function is uniquely deter-
mined.

The operation of a SM is now formalized in terms of configurations and a global
transformation function. A configuration of a SM is a description of its global
state which is actually an element of S x M* x A*. During its course of com-
putation a SM nondeterministically steps through a sequence of configurations.
The initial configuration is defined by (sg, €, w) where w is an input word, while
subsequent configurations are chosen according to the global transformation A:

Let ¢ = (s,u,w) and ¢ = (s',u',w’) be two configurations such that w # e.
Then

deAle) & IF(0,u,a) €D :s =6d(s,au),a) ANu' = u(s,u,a) Nw' ==z
where w = ax for some a € A and x € A*.

The i-fold composition of A is defined as follows:

A%c) = {c}
At e) = | A()
ceAi(c)
where 0 <@ < |w|.
Definition 2 Let M be a SM. Then
L(M) :={we A* | Tce Al(sy,e,w) : w1 (c) € F}
is the language accepted by M.

A SM is deterministic if |D| = 1. Deterministic sequential machines are denoted
by DSM.

Since especially the memory update function is not subject to any restrictions
except for being computable the family of languages acceptable in a SM (as
well as in a DSM) is the well-known family of recursive languages. However
sequential machines should rather serve as a general framework to consider
various (more familiar) sequential models simultaneously. Therefore we define
subfamilies of the sequential machines depending on two predicates restricting
the corresponding memory functions.

Definition 3 Let P and @ be two decidable predicates each of which relates
two words over V' where P(u,u) holds for all v € V*. The family of all SM
resp. DSM fulfilling

V(6,p,a) e D,VseS,VYue M \Va€ A: P(u,u(s,u,a)) AN Qu,a(u))
is denoted by SEQ(P, Q) resp. DSEQ(P, Q).

Observe that the assertion on P is a very natural one: sequential machines in
SEQ(P,Q) resp. DSEQ(P, Q) need not to change their memory content.

By supplying suitable predicates we may obtain well known subfamilies of SM.

Example 4 Let P(u,v) iff v = v and let Q(u,v) iff v = ¢, then NFA :=
SEQ(P,Q) resp. DF A := DSEQ(P, Q) denotes the family of nondeterministic
resp. deterministic finite automata.

Example 5 Let P(u,v) iff u = ¢ or u = ay and v = zy where a € V and
z,y € V* and let Q(u,v) iff u =v =€ or u = ay and v = a where a € V
and y € V*. Then PDA := SEQ(P,Q) resp. DPDA := DSEQ(P,Q) is the
family of pushdown automata resp. deterministic pushdown automata without
€-1moves.

In the sequel SEQ always denotes a subfamily of SM resp. DSM which is
induced by some two predicates P and Q, i.e., SEQ = SEQ(P, Q) resp. SEQ =
DSEQ(P,Q). The family of all languages which can be accepted by a SEQ
(i.e., by some sequential machine in SEQ) is denoted by .Z(SEQ).

Observe that the sequential machines have been designed to meet the require-
ments a model has to fulfill such that one can easily construct an interconnected
and interacting array of such machines. Therefore we did not introduce the ca-
pability to perform transitions without consuming input symbols. Further it is
adequate to allow real-time computations only (i.e., the length of the input de-
termines the number of transitions) although the model can easily be extended
to operate beyond real-time.

2.2 Cellular machines

A cellular machine is now an infinite linear array of identical SM, sometimes
called cells, each of them is connected to its both immediate neighbors to the
left and to the right. For our convenience we identify the cells by integers. The
state transition as well as the memory updating of each cell depends on its
actual state and memory content and the actual states of its neighbors. More
precisely at discrete time steps one local transformation is nondeterministically
choosen and applied to all the cells synchronously. Formally:

Definition 6 A cellular machine (CM) is a system (S, M, D, sy, #, F, A), where

a) (S,M,D,sq,S x S, F) is a sequential machine,
b) # € S is the border state satisfying
VseS,VmeMU{e},VpeSxS: s=# <= d(s,m,p)=#
and
VseS,Yue M*VpeSxS: s=# — pu(s,u,p) =u,
c) A C S is the finite, nonempty set of input symbols.

A configuration of a cellular machine at some time ¢ > 0 is a mapping ¢; : Z —
S'x M* giving the actual state and memory content of the single cells. The initial
configuration ¢, at time 0 is defined by the input word w = a; ---a, € A™:

cw,0(i) = (as,e) if 1 <i<n and c¢y0(i) = (#,¢) otherwise.

Similarly, subsequent configurations are choosen accordingly to the global trans-
formation A:

Let ¢ and ¢’ be two configurations with ¢(i) = (s;,u;) and /(i) = (s}, u}). Then

deAlc) & F(6,p,a) €D:st=0d(si,alu), (m(c(i — 1)), (ci + 1)) A

]

ug = p(si, ui, (1 (c(i — 1)), m(c(i + 1))))

for alli € Z.

If the state set is a Cartesian product of some smaller sets S = S1 X ... X S, we
will use the notion register for the single parts of a state. The concatenation of
a specific register of all cells forms a track.

Definition 7 Let M be a CM.

a) A word w is accepted by M iff there exists a (smallest) time step t,, > 1
such that there exists a ¢ € A (¢) with m1(c(1)) € F.

b) L(M) = {w | w is accepted by M} is the language accepted by M.

c) Let t : N = N, #(n) > n, be a mapping. If all w € L(M) are accepted
within ¢, < #(|w|) time steps, then L(M) is said to be of time complexity
t.

If SEQ is a subfamily of the sequential machines then C SEQ@ denotes the
corresponding family of cellular machines. The family of all languages which can
be accepted by a CSEQ with time complexity ¢ is denoted by £, (CSEQ).
If t equals the identity function id(n) := n acceptance is said to be in real-time
and we write .Z+(CSEQ). The linear-time languages .%;(C SEQ) are defined
according to

Zu(CSEQ) = |) Zn(CSEQ)

kEN

If the flow of information in a cellular machine is restricted only to leftwards
the resulting device is a one-way cellular machine (OCM). Le., the behavior of
a cell is independent of its left immediate neighbor.

Usually we write CA resp. OCA for C DF A resp. OC DF A and denote the
corresponding models cellular automata resp. one-way cellular automata. In
connection with CA resp. OCA we often omit the memory augmentation such
that they are considered to be merely systems (S, d, #, F, A) where § maps from
S x S xS resp. from § x S to S.

3 Cells beyond finite automata

It is known that £ (DFA) C £,+(OCA) [15] but L*(DFA) = £4%(0CA) [19].
ILe., although the cells in an OCA are an instance of one finite automaton their
interaction yield capabilities which exceeds those of a single finite state machine.
On the other side the restriction to tally languages collapses that advantage.

A similar result is known for pushdown cellular automata: translated in our
notion it has been shown in [17] that £ (DPDA) C %4,(0OC DPDA) but
Z*“(DPDA) = Z4%(OCDPDA).

The aim of the present section is to show that it is an intrinsic property of real-

time one-way cellular arrays that their computational power becomes effective
for non unary languages only.

First, we will show that Z(SEQ) is contained in .%;(OC SEQ). Clearly, this
inclusion is not a proper one in general since trivially .Z(SM) = .%:(OCM).

Theorem 8 Let SEQ be a subfamily of SM. Then it holds

Z(SEQ) C Z+(OCSEQ)

Proof. Let P and @ be two predicates such that SEQ = SEQ(P, Q). Further
let M = (S, M, D, s, F,A) be some SEQ where D = {(6;, pi, ;) | 1 <i <k}
for a constant number k£ € N.

The construction of an OC SEQ M' = (S§',M',D',#,F', A’) which accepts
L := L(M) in real-time follows a simple idea:

The input word is symbol-wise shifted to the left through the cells. Each cell
fetching such a symbol simulates a corresponding transition of M. Since M
works in real-time by definition a mechanism has to be provided to rule out
acceptance of words beyond real-time in M’. Hence a cell simply stops the
simulation if it fetches information from the rightmost cell which can identify
itself. Altogether the leftmost cell simulates M on its whole input and thus M’
can be designed to be a real-time acceptor of L.

However, since SE(Q) is some abstract subfamily of SM it might be possible that
the SM we have to plug into the cells of M’ in order to achieve the described
tasks does not belong to SEQ. Fortunately, the assertion (on P) that a cell
need not to change its memory content resolves this problem.

Formally M’ can be constructed as follows.

is a new symbol which belongs neither to A nor to S x A.
S =Sx(Au{#})UAU{#}, M =M, A=A F :={(s,#)|s€F}

D' = {(6,p}, o) |1 <i <k} where Vie {1,...,k}:
!
ap =
Vs'e AVt e AU{#},Vm' e MU{e} :

Si(#,m') = #
G(s',m',t") = (di(so,m’, '), 1)

Vs eSS Vshe AV (t),th) € Sx (AU{#}),Vm' e MU{e}:

0i((s1,#),m’, (t1,3)) = (s1,#)

6i((s1,89),m', (t1,5)) == (di(s},m,s3),15)
Ve AVte AU{#},Vu' € M*:

pi(') = o

M;’(Slaul’t,) = Mi(307ul’3,)
Vsi €S, Vsye AV (t),t5) € S x (AU {#}),Vu' € M*:

pi((s1,#), 4", (81,15)) = o
u;((sllasé)’u,’(tllaté)) = /‘i(sllﬂu,’SIZ) 0O

For the converse we have to restrict to tally languages:

Lemma 9 Let SEQ be a subfamily of SM. Then it holds

Z4(OCSEQ) C £*(SEQ)

Proof. Let L be some tally language in .£%(OC SEQ) over the alphabet
A = {a}. Denote by M = (S,M,D,#,F, A) an OC SEQ which is a real-time
acceptor of L where D = {(d;, ui, ;) | 1 <4 < k} for some constant number
k € N. W.Lo.g. we may assume that a cell of M which once enters an accepting
state remains in an accepting state (eventually we have to introduce some new
states).

On input w = a" we make two observations (cf. figure 1):

At every time step one of the local transformations is applied to all cells. Thus
two cells having the same state and memory content act equally if they obtain
the same state information from their corresponding right neighbors. Therefore
ci(l) =...=ci(n—1) since ¢y (1) = ... = cyo(n) = (a,€). And similarly we
have for all time steps ¢t with 0 <t <mn —1: ¢(1) = ... = ¢(n —1).

aa al#]

ai a; ailb;] ai|b;
aj aj e aj bj a]. bj
g bk‘ ak|by
[ba) ba

Figure 1: Example to the proof of lemma 9. Memory contents are omitted.

Since M’ is a real-time acceptor the behavior of the leftmost cell cannot be
influenced by the states of a cell i (1 < ¢ < n) at time ¢ with ¢t > n — i+ 1.
Furthermore a cell is not able to access the memory of its neighbor directly.
Hence together with the first observation it suffices to know the state of the
cells 7 at time n — 4 4+ 1 to simulate the state and memory transitions of the
leftmost cell of M up to time n.

A corresponding SEQ M' = (S',M', D', s, F', A") with L = L(M’) uses two
registers. In the first one it simulates the behavior of the cells 1,...,7 at time
n —14 and in the second the behavior of the cell 7 at timen —i+1 for 1 <4 < n.

Now the construction of M’ is straight forward:
S'=8x%x8, M =M, A:={a}, F :={(s,t)|tEeF}, s0:=(a,#)
D' :={(0}, p}, o) | 1 <i <k} whereVie {1,...,k}:

o = o
V(s,t) € S",\Vme MU{e}:
5i((s,t),m,a) = (8;(s,m,s),d(s,m,t))
V(s,t) € S',\Vue M*:
pi(s,t),u,a) = pi(s,u,s) o

The previous lemma together with theorem 8 yields our main result in this
section:

Theorem 10 Let SEQ be a subfamily of SM. Then it holds
ZLYSEQ) = 2, (0CSEQ)

In [16] the so-called nondeterministic time-varying cellular automata (which
actually are C NFA) have been investigated and related to NCA. An NCA
is basically a C NF' A where the mode of operation is significantly modified.
Not only one nondeterministically determined local transition is applied to all
the cells during each time step but for each cell a local transformation may
individually nondeterministically be chosen. It has been left an open problem
whether or not the inclusion .%(OC NFA) C £(NOCA) is a proper one.
Now we can answer it positively.

Corollary 11 Z.+(OCNFA) C %:(NOCA)

Proof. By Theorem 10 we obtain Zj(OCNFA) = L*(NFA) is the family
of regular tally languages. On the other side results in [3] imply .Z;(CA) C
2Z+(NOCA) which in turn means that .Z,,(NOCA) contains non-regular tally
languages [4]. O

An one-way stack automaton is a push-down automaton with an additional
feature (cf. figure 2). In addition to push and pop at the top of the stack
a stack head can enter the stack in read-only mode, traveling up and down
the stack without rewriting any symbol. Hence an one-way stack automaton
may intuitively be seen to be only slightly more complicated than a push-down
automaton.

input
Finite a1 | ag
2 control
‘g
2
2
g
&
[
-
by
>
=
g
=) by
&
(9]
-
by

Figure 2: An one-way stack automaton.

In terms of sequential machines stack automata may be defined as follows. Let
Vo = {mg, mq, mg,...}. Moreover, let P(u,v) iff u = € and v € {e,m1y}
or u = m1 and v = myy or u = miay and v = mizy or u = zamiby and
v € {zmyaby, zamby, zabm 1y} where a,b,c € Vy and z,y € Vj*. Let Q(u,v)
iff u € {g,zm;1} and v = € or u = myay and v = a or u = zamim;y and
v = mjt1 where a,m; € Vy and z,y € V. Then OSA := SEQ(P,Q) resp.
DOSA := DSEQ(P, Q) denotes the family of one-way stack automata resp.
deterministic one-way stack automata.

10

Lemma 12 .£%(OCA) C .£%(OCDOSA)

Proof. It is known that Z*(DOSA) contains non-regular languages [9, 10].
O

4 One-way arrays beyond real-time

The previous section showed that especially the capabilities of finite state ma-
chines coincides with the capabilities of real-time one-way cellular automata
as far as tally languages are considered. Now we are going to prove that this
relation remains valid even if we allow an amount of o(log) more computation
time.

Theorem 13 Let t: N — N, t € o(log) be a mapping. Then it holds

T’§+t(OCA) = ‘Z#(OCA) .

Proof. Let L (say C {a}™) be a tally language such that L belongs to
Z1+1(OCA), and let M = (S, 0, #, F, A) be an OCA which is a witness for that
fact. W.l.o.g. we may assume |L| is infinite.

Let N := {n € N | a™ € L} be the image of L under the length homomorphism.
Further denote for all n € N by ¢, the smallest nonnegative integer for which
(At (g 4n))(1) € F holds, i.e. the number of time steps more than real-time
that the acceptance of a™ by M requires. T := {t, | n € N} is the set of all
such numbers.

We are going to prove that 7" is bounded by some k € Ny, which allows us to
conclude that L belongs to £+, (OCA). Since Z+x(OCA) = Z,,(OCA) [13]
and all tally languages in .%,;(OCA) are regular [19] L must be regular, too.

It suffices to show the boundness of T. Contrarily, we assume that T is un-
bounded. Since ¢ € o(log) we can find (especially) for b := (|S| 4+ 1)® a positive
integer ng such that ¢(n) < [logy(n)| for all n > ng. The infinity of L and
the unboundness of T" imply the existence of an n € N with n > ng such that
tn > ty, for all m € N with n > m (cf. figure 3).

Now let w(©® := a” and define w® := A(w(@~V) for all i € N. The symbols of
w® are denoted by wg) yenn ,wgi) and numbered from right to left. We consider
for 1 < i < n the words u(® := wgi_l)wgi) e wgi_lﬂm of length [I] + 1 where
[= logﬁg‘(n) describing the evolution of the ith cell (from right) between the
time steps 4 — 1 and 4 — 1 + [/] inclusively.

Using the equality [= logg(n)/2 the number [S |UJ+1 of all words of length
1] +1 over S can be approximated by |S|UF! =S| + (S| < ||S)'] + S| <
|v/n| +|S|. By our choice of b we further have 1 < [log,(n)| and therefore
IS|> < n and thus |S| < |v/n] since |S| > 2. So we are done with ||+ <

lva)* <n.

11

n(>m)

no
——
[log(n)] +1
i
F
Nl
7
/
/
/
/
/
/
/
- /
/
L
F|
e
Figure 3: Example to the proof of theorem 13.
Now the pidgenhole principle ensures that at least two of the words w1, ..., uy

are equal, say u; and u; with 1 <4 < j < n. Since 5(w,(ck_1),w,(ck_1)) = w,(cli)l
for all 1 < k < n, and because of the determinism of the local transformation
we observe that w1 is uniquely determined by uj. Therefore the equality of

u; and u; implies especially the equality of u,1; ; and u,.

Since [I] +1 > [logy(n)] > t(n) > t, at least one symbol of u, = upii;
belongs to F. Due to the one-way information flow the evolution of a cell is
independent of the behavior of the cells on the left from it. So we can conclude
that a”**~7 € L and moreover t, = tn+i—; which contradicts our choice of n. O

The theorem has shown that at least for tally languages there is a gap between
real-time and real-time plus logarithmic time in OCA. On the other hand, the
following lemma shows that an amount of log more time strictly increases the
family of accepted languages, which answers our first question.

Lemma 14 It holds
{aQ“ | ne [N} € rllf‘,—l—log(OCA) .

Proof. The following OCA M = (S, 4,#,{a}, F) accepts L := {a?" | n € N}
with time complexity rt + log:

S = {a’e7 17+7 07 ;7 -;_-7#}

A= {a}

F:={+}

12

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»

»
»
»
»
»
»
»
»
»
»
»
»
»
»

)

)

)

)

)

)

)

)

)

)

)

)

')
|

®

|

»
»
»
»
»
»
»
»
»
»

)

)

)

)

)

)

)

)
|

e

»
»

-t

B |
R R R oe

[

-
o
o
o
o
o
o
o

s e [[[[[[3w [w2 w]
-
[
[
[
[
[

(o)
Fe| 3R |3k |3 FR | 3|33 IR 3R FR (IR FR) FR R IR FE

o
o
o
e e R e e e e N R R
o
o Il e I o o o I I [Ao Aol I I [

o
o
o
o

N N RNt
o
o
o

+
®
(o)
(0]
®
(o)
(0]
(o)

Figure 4: Example to the proof of lemma, 14.

Vs, te§:
(e if (s¢{ T, +alAte{e+})V(s=aAt=4#)
+ if (s::/\t:e)
T if (s=aAte{e,) V(s=]At=1)
8(s,t):=1¢ o if (s=ant=7)V(s=gAte{],1})
0 if (s¢{a3}Ate{s,0})
1 if (s=gAte{0,e,4})V(s# T At=1)
[s otherwise

On input a”, n € N, in the first time step a (vertical) binary counter (initialized
by zero) is generated in the rightmost cell which moves leftwards with maximal
speed. Subsequently, the counter is incremented by one in every time step. If
a carry over takes place the counter is enlarged by one digit.

A cell switches into the accepting state iff the counter which moves digit by
digit through that cell consists of ones only. Thus, the counter represents the
number 2¥ — 1 for some &k € N.

Hence, the counter reaches the leftmost cell at time step n. After that it
additionally takes log(n) time steps to inspect the counter such that the time
complexity is rt + log .

13

Apart from the self-explanatory states ; represents the digit zero with a carry

over flag and 1' the digit one with the information that all of the former digits
has been ones, too. An accepting computation for a'6 is shown in figure 4. O

Corollary 15 Let t: N — N, ¢ € o(log), be a mapping. Then it holds

LY(DFA) = £3(OCA) = £, (OCA) C Z%,155(OCA) C Z(OCA).

5 A wee bit nondeterminism

Now we are going to restrict the nondeterminism of an NCA in the following
way. The set of local transformations is divided into two parts D = {4} U Dpq
giving a distinguished so-called deterministic local transformation é4 and a pos-
sibly empty set of so-called nondeterministic local transformations D, 4. During
the first time step a nondeterministically chosen transformation from D, is ap-
plied to at most k cells where k € Ny is a fixed constant number. The other
cells have to work according to 4. The cells performing a local transformation
from D, 4 are called nondeterministic and the others deterministic with respect
to the actual computation. In subsequent time steps d4 is applied to all the
cells. We denote such a model by kC 1G-CA (k cells one guess CA).

The aim of the present section is to investigate kC1G-CA and their one-way
variants the kC 1G-OCA with respect to tally languages. Observe that in case
of k = 0 these models are CA resp. OCA.

5.1 Time versus nondeterminism

The following theorem states that it is in some sense possible to gain time by
allowing additional nondeterminism.

Theorem 16 Let ¢t : N — N, ¢(n) > n, be a mapping and ¢ € N and k& € Ny
be constant numbers. Then it holds

Ly (kC1G-OCA) C Z¢) ((k +1)C1G-OCA).

Proof. Let M be a kC1G-OCA which accepts a tally language L with time
complexity c-t(n). Say L is a language over {a}.

To achieve the desired speed-up an (k 4+ 1)C1G-OCA acceptor M’ of L has to
simulate M ¢ times faster. Therefore, in principle each cell of M’ simulates ¢
consecutive cells of M. So at every time step a cell of M’ can simulate ¢ time
steps of M. Further, since L is a tally language each cell ‘knows’ the initial
state of the cells it has to simulate from the very beginning (namely a).

Actually M’ works as follows on an input of length n. Its additional non-
deterministic power is used to guess which might be cell [n/c| by marking
some of the cell(s). Additionally it forces the marked cell(s) to simulate only

14

some r < c cells of M. Subsequently a signal which is generated during the
first time step in the rightmost cell and which moves with maximal speed to
the left is used to verify that exactly one such cell has been marked. Namely
it prohibits each cell it enters to switch into an accepting state unless it has
already passed through exactly one marked cell.

We may assume that exactly one cell : has been marked. It behaves as if it
would manage the rightmost r cells of M in the simulation. Subsequently using
two leftward moving signals it can be verified that 7 = n — ¢(i — 1) (and hence
¢ = [n/c]), ie., that M’ simulates exactly n cells of M. Namely one signal
is generated during the first time step in the marked cell 4+ which is delayed r
time steps in cell ¢ and ¢ time steps in each cell left from it. The other signal
is generated in the rightmost cell during the first time step and moves with
maximal speed. Subsequently a cell is allowed to switch into an accepting state
iff the two signals meet in that cell. So, the leftmost cell of M’ is allowed to
enter an accepting state only if ¢(¢ — 1) + 7 = n holds.

Finally, the remaining k nondeterministic transformations of M’ can be brought
in in such a way that at most & of the leftmost [n/c| cells are able to simulate
some cells of M which perform a nondeterminitic transformation during the
first time step. Obviously, since k is finite within the first n time steps it can
be ensured that at most k& nondeterministic cells of M have been simulated. O

Corollary 17 Let k € Ny be a constant number. Then it holds

Z¥(kC1G-OCA) C .£%((k + 1)C1G-OCA) .

Theorem 16 can directly be transferred to kC 1G-CA. However for our purposes
it suffices to formulate the corresponding corollary.

Corollary 18 Let k € Ny be a constant number. Then it holds

Z4(kC1G-CA) € £%((k + 1)C1G-CA) .

The next result shows that corollary 17 can actually be improved: not only
inlusion but equality holds. Hence we have in this clearly defined situation a
trade-off between time and nondeterminism.

Theorem 19 Let k& € Ny be a constant number. Then it holds

LE(kC1G-OCA) = .Z2%((k +1)C1G-OCA).

Proof. It suffices to prove .Z/;((k + 1)C1G-OCA) C Z}(kC1G-OCA). We
transform a real-time (k 4+ 1)C1G-OCA acceptor M for some tally language
in five steps into a desired linear-time acceptor with the reduced amount of
nondeterminism. Suppose L := L(M) is a language over the singleton {a}.

Step 1 At first M is modified such that its leftmost cell switches into an
accepting state at time ¢ if the already processed prefix of length n — ¢ of the

15

input a”™ belongs to L. More precisely, if the actual distribution and action of
the nondeterministic cells within the leftmost n—t cells would lead to acceptance
of a” .

Therefore each cell of the resulting (k + 1)C1G-OCA M; consists of two re-
gisters. In the first register the normal computation of M takes place. The
second register of a cell 4 (1 <4 < n) holds at time ¢, 1 < ¢ < 4, the correspond-
ing state of cell i of M on input a®~™. Thus, during the first time step each
cell additionally computes its state under the assumption that its neighbor is
in the border state and stores the result in its second register. Subsequently
the content of the second register of a cell results from applying the determin-
istic local transformation (of M) to the state stored in its first register and the
content of the second register of its neighbor.

Since M is an interim construction we better say that it accepts virtually if
its leftmost cell contains an accepting state in its second register.

Step 2 Now M; is modified such that its rightmost cell behaves as if all
cells right from it would have been initialized by a and perform subsequently
deterministic transformations.

Therefore the rightmost cell additionally to its own work simulates another
(virtual) cell which is located to its right and is initialized by a. The state
transition of that virtual cell simply results from applying its actual state s to
the local deterministic transformation d4; of M1 under the assumption that its
right neighbor would be in the same actual state: d41(s,s). Since the rightmost
cell can identify itself this behavior can be achieved.

Now the leftmost cell of the newly obtained (k + 1)C1G-OCA My (which is
no longer real-time bounded) may accept virtually at time ¢ iff a’ € L and,
additionally, there exists an accepting computation of M for which the (at
most) (k + 1) nondeterministic cells are contained in the leftmost n cells.

Step 3 Consider a computation of a (k + 1)C1G-OCA which requires k + 1
nondeterministic cells and in which the rightmost cell is one of the nondetermi-
nistic ones. Such a computation can be simulated by a kC1G-OCA as follows
(cf. figure 5 (a) and (b)).

The k nondeterministic cells apart from the rightmost cell are located as in
the considered computation. The rightmost cell which can identify itself de-
terministically simulates all possible transitions it might nondeterministically
have been performed. Therefore it (and all the other cells) consists of |Dp4| +
1 registers where D, is the set of nondeterministic transitions of the (k +
1)C1G-OCA into which the corresponding states are stored. So, after the first
time step all possible configurations depending on the rightmost cell can be
simulated on different tracks in parallel. Finally, the computation leads to
acceptance if at least on one of the tracks acceptance is simulated.

Now denote by Mj the corresponding kC 1G-OCA which is build from M.
Assume that My virtually accepts at time ¢t whereby cell ¢ is the rightmost
nondeterministic cell (if any). Let d = n —i. Then cell d + 1 of M3 would be
able to accept virtually at time ¢ if the nondeterministic cells are shifted by d
to the right.

16

2n

()

1 n
0 XX X
d
——
1 n
0 XX
l d+1
t
n
(a) n—d
n
d d
—— ——
1 n
0 DI X
|
, |
|
|
|
i 2n —d
¢ |
|
|
|
|
|
|

(b)

Figure 5: Overview of the construction in the proof of theorem 19. (a) Real-time
(k+1)C1G-OCA, (b) right shift of the computation in step 3, (¢) delayed computation
in step 5. Nondeterministic cells are marked by X.

On the other side virtual acceptance in cell j of M3 at time ¢ where the cells
1,...,7 — 1 are deterministic ones implies that the leftmost cell of Mo would
virtually accept at time ¢ if the nondeterministic cells are located correspond-
ingly.

Step 4 Now the computation of M3 is delayed by one time step for each cell
from right to left. I.e., a cell ¢ of the resulting kC 1G-OCA My simulates at
time ¢+ (n—i+1) the state of cell 7 at time ¢. Therefore especially the leftmost
cell of M4 simulates at time 2n the state of M3 at time n.

The cells of M, consist of two registers. During the first time step each cell
simulates a transformation of M3 and stores the corresponding state in its
first register. Subsequently the second register is used to store the previously
simulated state. If a cell is allowed to proceed with the simulation only if the
second register of its neighbor is not empty then the required delay can be
reached. Observe that the rightmost cell which, again, can identify itself is
excluded from that restriction.

Step 5 Finally My is modified in the following way what results in M5 (cf.
figure 5 (c)): In the first time step a leftward moving signal s is generated in the
rightmost cell which moves with speed 1/2. Further, if a cell accepts virtually it

17

generates a signal ¢ which is sent to the left with maximal speed. If the signal s
meets some signal ¢ in some cell the corresponding cell enters a (real) accepting
state.

Obviously, the leftmost cell is reached by s at time 2n. Hence My is a linear-
time kC 1G-OCA acceptor.

Now let a”™ € L. Then there exists some cell 7 of My which virtually accepts
at time n+ (n —4+ 1). Its signal ¢ arrives in the leftmost cell at time n + (n —
i+1)+i—1=2n. Hence a" € L(Ms5).

If on the other side a” € L(Ms5) then the leftmost cell of L(Ms5) has been
reached by a signal ¢ which was generated in some cell ¢ at time 2n — ¢+ 1 =
n + (n — i+ 1). This holds also for cell 7 of L(Myj) and hence a” € L, i.e.,
L= L(M5). O

5.2 Information flow versus nondeterminism

In the sequel the relation between k£C 1G-OCA and kC 1G-CA will be investi-
gated whereby the amount of nondeterminism is taken into account.

The following result is already known for the deterministic case £k = 0. In [21]
Z(CA) C ZE (OCA) has been shown and in [4] the converse was proved.
Using speed-up theorems [14] one obtains the corresponding result for linear-
time. Observe, that for tally languages it clearly holds .£4(CA) = .Z¥(OCA).

Theorem 20 Let &k € Ny be a constant number. Then it holds
L (kC1G-0OCA) = Z;(kC1G-CA).

Proof. The proof is analogous to the previously cited deterministic case.

However the adaption might require a cell of a kC1G-OCA to perform a non-
deterministic transformation during the second time step. Therefore observe
that a local transformation can be represented as a finite array of S? x S states.
So a cell may guess such an array (and hence a local transformation) during
the first time step which is applied to the cell in the second one. O

Corollary 21 Let k¥ € Ny be a constant number. Then it holds
(kC1G-CA) = Z4((k+1)C1G-OCA).

Proof. The assertion follows by theorem 19 and theorem 20. Namely, it
holds .Z}(kC1G-CA) = £} (kC1G-OCA) and .2} (kC1G-OCA) = £ ((k +
1)C1G-CA). O

From corollary 21 it follows .Z}(kC1G-CA) D> Z4((k + 1)C1G-OCA) and

" (kC1G-CA) C Z¢((k + 1)C1G-OCA) such that we obtain the relations
depicted in figure 6.

Observe further that corollary 21 also covers the deterministic case k& = O:

u(CA) = £%(1C 1G-OCA).

18

References

Ul
Z(2C1G-CA)

Ul
Z%(3C1G-0CA)

ul I
L(2C1G-CA) = .Z¥(2C1G-OCA)
Ul Ul
LU(1C1G-CA) £4(2C1G-OCA)

ul I
LY(1C1G-CA) = .ZY(1C1G-OCA)
Ul Ul

ZU(CA) £4(1C1G-OCA)
ul I
£3(CA) = Z(0CA)
U
Z71(0CA)
I
LU(DFA)

Figure 6: A hierarchy of tally families.

[1]
[2]

[3]

[4]
[5]
[6]

[7]

Book, R. V. Tually languages and complezity classes. Information and
Control 26 (1974), 186-193.

Book, R. V. Contezt-sensitive tally languages. Bulletin of the European
Association for Theoretical Computer Science 15 (1981), 31-34. Technical
Contributions.

Buchholz, Th., Klein, A., and Kutrib, M. One guess one-way cellular
arrays. Mathematical Foundations in Computer Science 1998, LNCS 1450,
1998, pp- 807-815.

Choffrut, C. and Culik II, K. On real-time cellular automata and trellis
automata. Acta Informatica 21 (1984), 393—407.

Chrobak, M. Finite automata and unary languages. Theoretical Computer
Science 47 (1986), 149-158.

Cole, S. N. Real-time computation by n-dimensional iterative arrays of
finite-state machines. IEEE Transactions on Computers C-18 (1969), 349
365.

Dyer, C. R. One-way bounded cellular automata. Information and Control
44 (1980), 261-281.

19

(8]

[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Geidmanis, D., Kaneps, J., Apsitis, K., and Taimina, D. Tally languages
accepted by alternating multitape finite automata. Lecture Notes in Com-
puter Science 1276 (1997), 422.

Ginsburg, S., Greibach, S. A., and Harrison, M. A. One-way stack auto-
mata. Journal of the ACM 14 (1967), 389-418.

Ginsburg, S., Greibach, S. A., and Harrison, M. A. Stack automata and
compiling. Journal of the ACM 14 (1967), 172-201.

Hemachandra, L. A. and Rubinstein, R. S. Separating complexity classes
with tally oracles. Theoretical Computer Science 92 (1992), 309-318.

Ibarra, O. H. and Jiang, T. Relating the power of cellular arrays to their
closure properties. Theoretical Computer Science 57 (1988), 225-238.

Ibarra, O. H., Kim, S. M. and Moran, S. Sequential machine characteriz-
ations of trellis and cellular automata and applications. STAM Journal on

Computing 14 (1985), 426-447.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. Journal of Parallel and Distributed Computing 2 (1985),
182-218.

Kasami, T. and Fuji, M. Some results on capabilities of one-dimensional
iterative logical networks. Electronics and Communications in Japan 51-C
(1968), 167-176.

Krithivasan, K. and Mahajan, M. Nondeterministic, probabilistic and al-
ternating computations on cellular array models. Theoretical Computer
Science 143 (1995), 23-49.

Kutrib, M. Pushdown cellular automata. Theoretical Computer Science
215 (1999), 239-261.

Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata.
Research Report RR 94-50, Ecole Normale Supérieure de Lyon, Lyon, 1994.

Seidel, S. R. Language recognition and the synchronization of cellular auto-
mata. Technical Report 79-02, Department of Computer Science, Univer-
sity of Iowa, Iowa City, 1979.

Smith ITI, A. R. Real-time language recognition by one-dimensional cellular
automata. Journal of Computer and System Sciences 6 (1972), 233-253.

Umeo, H., Morita, K., and Sugata, K. Deterministic one-way simulation of
two-way real-time cellular automata and its related problems. Information
Processing Letters 14 (1982), 158-161.

20

