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V. SUMMARY 

 Extracellular matrix degradation is one of the crucial steps in cancer cell invasion and 

spreading. A number of proteases, including plasmin, mediate disruption of stromal barriers 

and basement membrane and thus facilitate tumor cell movement. Formation of plasmin is a 

result of the plasminogen (PLG) activation cascade, which involves PLG activators and 

receptors. Enolase-1 (ENO-1) is one of the plasminogen receptors (PLG-R). It belongs to the 

so called “moonlighting protein group”, which exhibits various functions at distinct cellular 

and extracellular sites of the cell. This primary glycolytic enzyme was found to be 

overexpressed in more than 20 types of human cancer and accounts for enhanced cancer 

progression and poor clinical outcome. Although numerous studies provide evidence for pro-

tumorigenic properties of cytoplasmic ENO-1, the contribution of cell surface bound ENO-1 

to cancer progression has not yet been described.  

Here, we demonstrate increased expression of ENO-1 in different types of human cancer, 

in particular, in breast ductal carcinoma. Cell fractionation of the breast cancer cells (MDA-

MB-231) revealed elevated ENO-1 cell surface levels, which correlated with enhanced 

migratory and invasive properties of these cells. Overexpression of wild-type ENO-1 

increased invasion of MDA-MB-231 cells. This effect was not observed when ENO-1 mutant 

bearing the mutation in a PLG binding site was overexpressed. Exposure of MDA-MB-231 

cells to LPS further potentiated ENO-1 cell surface expression and simultaneously increased 

release of ENO-1 to the extracellular space in the form of exosomes. These effects were 

independent of de novo protein synthesis and did not require the classical endoplasmic 

reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was diminished upon 

pretreatment of MDA-MB-231 cells with the Ca
2+ 

chelator BAPTA or an inhibitor of 

endoplasmic reticulum Ca
2+

-ATPase pump, cyclopiazonic acid. In line with this observation, 

STIM1 and ORAI1 were found to regulate LPS-induced ENO-1 cell surface expression and 

release. Accordingly, pharmacological blockage or knockdown of STIM1 or ORAI1 reduced 

ENO-1-dependent migration of breast cancer cells. 

Collectively, these data reveal the functional consequence of extracellulary localized ENO-

1 in cancer cell behaviour and the mechanism which drives ENO-1 exteriorization. Thus, 

targeting cell surface bound ENO-1 may offer a novel therapeutic strategy in patients 

suffering from cancer. 
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VI. ZUSAMMENFASSUNG 

Der Abbau der extrazellulären Matrix ist einer der entscheidenden Schritte bei der 

Krebszellinvasion und –ausbreitung. Mehrere Proteasen einschließlich Plasmin vermitteln die 

Auflösung der stromalen Barrieren und der Basalmembran und erleichtern so die Bewegung 

der Tumorzellen. Die Plasminbildung ist das Ergebnis der Plasminogen (PLG)- 

Aktivierungskaskade, die PLG-Aktivatoren und Rezeptoren umfasst. Enolase-1 (ENO-1) ist 

einer dieser Plasminogenrezeptoren (PLG-R). Sie gehört zur Gruppe der sogenannten 

„moonlighting“-Proteine, die mehrere Funktionen in unterschiedlichen zellulären und 

extrazellulären Bereichen der Zelle aufweisen. Dieses primär glykolytische Enzym, das in 

mehr als 20 humanen Krebsarten überexprimiert ist, ist verantwortlich für ein schnelleres 

Fortschreiten der Krebserkrankungen und für eine schlechte klinische Prognose. Obwohl 

zahlreiche Studien die tumorerzeugenden Eigenschaften von zytoplasmatischer ENO-1 

beweisen, wurde der Einfluss der oberflächengebundenen ENO-1 noch nicht beschrieben.  

In dieser Arbeit zeigen wir nun die erhöhte Expression von ENO-1 in verschiedenen 

humanen Tumortypen, insbesondere im duktalen Brustkarzinom. Die Zellfraktionierung der 

Brustkrebszellen MDA-MB-231, ergab ein erhöhtes Niveau der ENO-1 an der Zelloberfläche, 

welches mit den verbesserten Invasions- und Migrationseigenschaften dieser Zellen korreliert. 

Die Überexpression der Wildtyp- ENO-1 erhöht die Einwanderung der MDA-MB-231. 

Dieser Effekt konnte nicht beobachtet werden, wenn eine ENO-1-Mutante überexprimiert 

wurde, die eine Mutation in der PLG-Bindungsstelle aufwies. Wurden die MDA-MB-231 mit 

LPS behandelt, so wurde die Expression der ENO-1 an der Zelloberfläche weiter verstärkt, 

was gleichzeitig zu einer erhöhten Freisetzung der ENO-1 in den extrazellulären Raum in 

Form von Exosomen führte. Diese Effekte waren unabhängig von der de novo

Proteinsynthese und benötigten nicht den klassischen Pfad über das endoplasmatische 

Retikulum und den Golgi-Apparat. Die LPS-gesteuerte Exteriorisation wurde durch eine 

Vorbehandlung der MDA-MB-231 mit BAPTA einem Ca2+-Chelator oder Cyclopiazonsäure 

dem Inhibitor der Ca2+-ATPase-Pumpe des endoplasmatischen Retikulums verringert. Dies 

entsprach der Beobachtung, dass STIM1 und ORAI1 die LPS-induzierte Expression von 

ENO-1 an der Zelloberfläche und die Freisetzung der ENO-1 regulieren. Dementsprechend 

reduzierte eine pharmakologische Blockierung oder ein Knockdown von STIM1 oder ORAI1 

die faktorabhängige Migration der Brustkrebszellen.  
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Zusammengefasst zeigen diese Daten den Mechanismus auf, der die Exteriorization von 

ENO-1 steuert und die funktionellen Auswirkungen dieser extrazellulär lokalisierten ENO-1 

auf das Verhalten der Krebszellen. Folglich stellt die zelloberflächengebundene ENO-1 das 

Ziel einer neuen therapeutischen Strategie bei der Behandlung von Krebspatienten dar.  
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1. INTRODUCTION 

1.1. Cancer development and progression 

Transformation of a normal cell into a cancer cell  is a multistep process, composed of the 

accumulated number of genetic mutations of the normal cell as well as physiologic changes 

within the cancer cell and the host immune system [1, 2]. Three major steps can be 

distinguished in tumorigenesis: (i) initiation; which encompasses damage to, and division of 

affected cells such their growth is changed irreversibly (ii) progression; natural selection of 

cells bearing mutations with multiple rounds of replication mediating transition into 

autonomous, cancerous growth (iii) metastasis; spread of malignant cells [3]. In order to 

acquire ability to form cancer colonies in soft agar or in the immunocompromised mice, 

mutations in more than two oncogenes have to take place [4]. The combined activation of 

oncogenes and inactivation of tumor supressor genes drives the successful progression of 

cancer. However, gain of multiple mutations in oncogenes does not quarantee a full malignant 

state. Natural selection of transformed cells with multiple cycles of replication is needed to  

reach the full metastatic potential [3].   

After succesful gain of mutations, tumor cell invasion has to take place. However, to 

physically invade into blood vessels, proteolytic degradation is required. Proteases are 

produced by cancer cells and they can promote cancer cell invasion and intravasation in 

several ways. Proteases may cleave cell adhesion molecules, leading to the disruption of cell 

contacts. Impairment of cell contacts enables the release of either individual or groups of cells 

[5, 6]. Next, degradation or turnover of proteins in the extracellular matrix (ECM) facilitate 

invasion of cells into surrounding tissue and vasculature. All these steps require complex 

interactions between cancer and host cells and in particular with ECM. ECM, as a part of the 

tumor microenviroment, plays an important role in cell adhesion, proliferation and motility. 

Degradation of ECM within the tumor stroma by diverse spectrum of proteases results in 

disruption of stromal barriers and basement membrane and thus facilitates tumor cell 

movement (Figure 1) [5-7]. A positive correlation between the aggressivness of tumor and 

secretion of various proteases from tumor cells was reported in several studies [8, 9]. In 

addition, some tumor cells may induce expression of proteolytic enzymes in neighbouring 

nonmalignant cells, hijacking their activity to invade tissue [10]. In all steps of tumorigenesis, 

starting from initiation through progression and metastasis, five classes of proteases have 

been reported to be involved: serine, cysteine, aspartic, threonine and metalloproteases [8]. 
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One of the best studied serine proteases involved in cancer cell progression is plasmin 

(PLA). PLA is a final product of the plasminogen (PLG) activation system.  

Figure 1. The role of proteases in cancer progression. (Rao JS, 2003, modified) 

1.1.1. Plasminogen/plasmin system 

1.1.1.1 Plasminogen/plasmin system components 

Plasminogen/plasmin (PLG/PLA) system plays a crucial role in a number of biological as 

well as pathological events. Besides its function in fibrinolysis [11], PLG/PLA system plays 

an important role in processes such as tissue remodeling [12], ovulation [13], embryogenesis 

[14], angiogenesis [15] and tumor invasion [16].   

PLG is a precursor of PLA, predominantly found  in the human circulation [17] and in 

association with ECM [18]. PLA is a final product of the PLG activation system, which 

involves a precursor, cellular receptors and activators of PLG (Figure 2) [19]. The precursor 

of PLA is secreted as a single chain glycoprotein by the liver and circulates in blood in an 

activation-resistant form [20]. Binding of PLG to the cellular receptors alters the 

conformation of PLG and thus enables its activation. Bound PLG is subsequently cleaved by 

urokinase plasminogen activator (uPA) or tissue plasminogen activator (tPA) to PLA [21]. 
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Active PLA remains associated with the cell surface, where it is protected from inhibitors 

[17]. Although PLG binding to the cell surface is necessary for PLA production, the presence 

of PLG activators is critical for successful PLG activation. Thus, only high amounts of uPA 

are able to convert PLG to PLA [22]. uPA is synthesized and secreted as a zymogen (pro-

uPA) and its activation is accelerated upon binding to its cellular receptor (uPAR) [23]. Taken 

together, the efficient activation of PLG requires an active receptor bound uPA, PLG in 

activation-susceptible conformation and uPA-PLG binding. 

Binding of PLG to the cells is mediated by several distinct receptors. Since PLG interacts 

with its receptors through kringle domains, which express high affinity for lysine residues 

[24, 25], the interaction between PLG and cellular receptors can be blocked by the lysine and 

lysine analogs [26]. Physiologic regulation of PLG cascade includes proteases and PLG 

activation inhibitors. The major inhibitor of this cascade is α2-antiplasmin. This inhibitor 

blocks the activity of free unbound PLA, however binding of PLA to the cellular receptor 

provides protection against α2-antiplasmin [17]. The activities of PLG activators are mainly 

regulated by two serine protease inhibitors, plasminogen activator inhibitor (PAI) type 1 and 

type 2. PAI-1 is a major inhibitor of tPA, whereas PAI-2 exhibits inhibitory activity mainly 

toward uPA and is less effective against tPA [27].  

Figure 2. PLG/PLA system components in tumor cell invasion. (Didiasova et al., 2014) 
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PLA displays a broad spectrum activity. On one hand, PLA degrades ECM proteins, 

activates matrix-metalloproteinases (MMP) type 1, 3, 9 and  processes growth factors such as 

transforming growth factor (TGF)-β , basic fibroblast growth factor (bFGF) and vascular 

endothelial growth factor (VEGF) [28]. On the other hand, upon binding to the receptors, 

PLG/PLA activates intracellular signaling pathways and thus affects cellular processes. PLA 

induces neutrophil aggregation, hepatocyte proliferation [29, 30], monocyte chemotaxis [31], 

migration of endotheliocytes [32] as well as expression of proinflammatory [33] and  growth-

factor like genes [34]. There are only few studies elucidating mechanism by which PLA 

regulates cellular processes. Here, protease activated receptor (PAR)-1 and -4, annexin A2 

and integrins such as αϺβ2 and ανβ3 were found to play a pivotal role [34-36]. αϺβ2 

integrin was shown, for example, to regulate PLG-stimulated neutrophil survival [37] and 

ανβ3 integrin was reported to stimulate endotheliocytes migration [32]. Altogether, PLA 

together with its precursor PLG control broad spectrum of cellular activities either trough a 

direct processing of extracellular proteins or by activation of intracellular signaling pathways. 

1.1.1.2 Plasminogen/plasmin receptors 

Plasminogen receptors (PLG-R) are a heterogenous group of cell surface proteins, which 

binds PLG as well as PLA. They are distributed on both prokaryotic and eukaryotic cells. 

Various eukaryotic cells including monocytes [38], monocytoid cells [39], macrophages [40], 

endothelial cells [41, 42], fibroblasts [43], platelets [44] and carcinoma cells [45, 46] express 

PLG-R. The PLG binding capacity of a single cell is relatively high, namely around 105 

binding sites [47]. Multiple PLG-R and their collective expression account for a total PLG 

binding capacity of a cell. The heterogenity of PLG-R and their different cell surface 

expression may explain, how the regulation of diverse biological processes including 

fibrinolysis, inflammation, wound healing and angiogenesis takes place at the same time. 

PLG-R can be grouped into four classes. First class includes proteins possesing preexisting C-

terminal lysine residue, such as α-enolase (ENO-1) on monocytes [26, 48], neurons [49], 

carcinoma cells [50], lymphoid cells [51], myoblasts [52] and pathogenic bacteria [53], 

cytokeratin 8 on carcinoma cells [46], p11 on endothelial cells [54] and glyceraldehyde-3-

phosphate dehydrogenase on bacteria [55]. Second class of PLG-R requires cleavage in order 

to expose a lysine residue and includes annexin A2 on endothelial cells [56] and actin on 
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endothelial and carcinoma cells [57, 58]. Third class includes proteins synthetized without a 

C-terminal lysine residue. αIIbβ3 integrin on platelets [44], activated αMβ2 integrin on PMA-

stimulated neutrophils [59], amphoterin on cancer cells [60] and GP330 in kidney cells [61] 

belong to this class. The fourth group of the receptors binds PLG, but does not promote its 

activation. Tissue factor and gangliosides are members of this group [62, 63].  

The majority of PLG-R belong to the so called “moonlighting proteins“, which exhibit 

multiple functions at distinct cellular and extracellular sites [64, 65]. Indeed, the majority of 

proteins that bind PLG, are well characterized cytosolic or nuclear proteins with established 

functions in metabolism, DNA packaging or cytoskeleton organization. These proteins do not 

contain a signaling sequence that would direct them to the cell surface, and they do not posses 

hydrophobic region to be simply inserted into the membrane, with exception of annexin A2 

[66]. Thus, “non-classical“ protein release independent of the endoplasmic reticulum (ER) -

Golgi pathway has been proposed to explain their cell surface localization [67, 68]. 

1.1.2. Plasminogen/plasmin system in tumorigenesis 

Breakdown of ECM is one of the most important requirements for tumor development and 

progression. PLA, a PLG activation product, degrades ECM and facilitates tissue invasion 

and thus, contributes to metastasis [5, 6]. The PLG/PLA system promotes tumor spreading not 

only by PLA-mediated ECM breakdown but it also controls tumor angiogenesis, a process 

which is essential for nutrition and oxygen supply [69]. First steps in angiogenesis encompass 

vessel wall diassembly, basement membrane degradation and cell migration. All mentioned 

processes are regulated by extracellular protelysis and the PLG/PLA system [15]. In addition, 

PLA may directly activate VEGF [70], which is a key mediator of angiogenesis [71]. 

Furthermore, the PLG/PLA system affects cell adhesion, proliferation, migration [72, 73] and 

apoptosis [74], cellular events that are dysregulated upon tumorigenesis. Excessive production 

of PLA in tumor microenviroment results from the local imbalance between PLG activators 

and PLA [75].  

A prerequisite for PLA formation is the binding of its precursor – PLG to the cell surface. 

Binding of PLG to the cells is mediated by a diverse spectrum of “moonlighting proteins“. 

The importance of PLG-R for metastasis formation was highlighted  in the study, describing 

paclitaxel-resistant variants of the invasive human cancer cell line in a superinvasive 

metastasis model in vitro [76]. Proteomic approaches revealed a number of significantly 

upregulated cell surface proteins including PLG-R such as ENO-1, annexin A2 and actin in
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the superinvasive cells as compared to the non-invasive ones. This suggests the involvement 

of the afforementioned PLG-R in the regulation of invasive properties of cancer cells. One of 

these PLG-R, namely ENO-1, was found to be overexpressed in more than 20 types of human 

cancer [77].  

1.1.3 Role of ENO-1 in tumorigenesis 

ENO is a key glycolytic enzyme that catalyzes conversion of 2-phosphoglycerate into 

phosphoenolpyruvate in the cytoplasm. Besides its role in glycolysis, ENO may be 

transported from the cytoplasm to the cell surface where it acts as a PLG-R on various cell 

types [78]. In verterbrates, this enzyme possess three distinct subunits and can form homo- or 

heterodimers [79]. Whereas the αα isoenzyme of ENO, also referred to as ENO-1, is 

ubiquitously expressed, the ββ isoenzyme is found predominantly in muscles and the γγ 

isoenzyme is characteristic for nervous tissue.  

Growing body of evidence suggests that ENO-1 does not only exert its house-keeping 

function, but indeed plays a role in numerous pathophysiological processes. Under  

pathological conditions, ENO-1 is translocated to the cell surface, where it acts as a PLG-R  

and thus controls pericellular proteolysis [26, 48]. Cell surface expression of ENO-1 has been 

reported on several cell types including monocytes, T and B cells, neuronal cells as well as 

cancer cells [80]. Cell surface associated proteolysis is frequently observed during 

physiological and pathological events. Binding of PLG to the cell surface, leads to PLA 

production that activates collagenases, degrades fibrin and several other matrix proteins [81]. 

ENO-1-dependent pericellular proteolytic activity allows many pathogens [82] but also 

immune [83] and cancer cells [84] to invade tissue, consequently leading to infection, 

inflammation or metastasis formation. Furthermore, high titer of anti-ENO-1 antibodies in the 

plasma has been associated with different systemic and invasive autoimmune diseases 

including viral hepatitis, retinopathy, systemic lupus erythematosus as well as rheumatoid 

arthritis [85-87]. 

ENO-1 was found to be overexpressed in more than 20 types of human cancer [77] and 

several mechanisms seem to account for the indicated changes in ENO-1 production. Firstly, 

ENO-1 is located in the chromosomal region 1p36 [88], which is frequently rearranged or 

deleted in human malignancy. Secondly, hypoxia drives transcription of ENO-1 gene through 

hypoxia-inducible factor 1 binding element [89]. Thirdly, the expression of ENO-1 is elevated 

in c-Myc overexpressing cells, suggesting the critical role of c-Myc in the regulation of ENO-



Introduction 

___________________________________________________________________________ 

7 

1 expression in cancer cells [90]. Finally, increased levels of ENO-1 in cancer cells may be 

explained by the Warburg effect, which describes the increase in anaerobic glycolysis under 

hypoxic conditions, a common feature of most solid tumors [91].  

High ENO-1 mRNA expression correlates with cancer progression and poor clinical 

outcome of the affected patients. Ectopic overexpression of ENO-1 promotes cell 

proliferation, migration, invasion, and colony formation thereby contributing to metastasis 

formation [80, 92].  ENO-1 was found to be significantly overexpressed in effusion-derived 

tumor cells and tumor specimens of lung cancer [93, 94]. Moreover, levels of the cell surface 

bound ENO-1 were higher in the late and end stage of non-small cell lung cancer (NSCLC). 

ENO-1 cell surface expression negatively correlated with survival and disease reccurence in 

NSCLC patients [93]. Furthermore, subset of NSCLC patients with advanced stages of 

NSCLC demonstrated significantly higher titers of autoantibodies directed against ENO-1 

[95].  

Increased expression of ENO-1 [77, 96] and elevated titers of anti-ENO-1 antibodies in the 

sera were also found in patients suffering from breast cancer [97]. Similarly to lung cancer, 

those patients whose tumors displayed high ENO-1 levels had poor prognosis with greater 

tumor size, poor nodal status, and a shorter disease-free interval [98]. Additionaly, an in vitro

study demonstrated that, transformation of a less metastatic breast cancer cell line MCF-7 into 

a more invasive phenotype was accompanied by increased ENO-1 protein expression [96]. 

Consequently, depletion of ENO-1 expression by small interfering RNA (siRNA) 

significantly decreased proliferation and increased sensitivity to anti-cancer drugs in 

tamoxifen-resistant breast cancer cells [96]. The possible correlation between ENO-1 

expression and invasiveness of breast cancer cells was futher stressed by the observation 

demonstrating that cell surface expression of ENO-1 is significantly elevated in a 

superinvasive cell line as compared to a less invasive cell line [99].  

Upregulated ENO-1 level was also observed in head and neck cancers [100, 101]. Again, 

increased levels of ENO-1 positively correlated with poor prognosis and development of 

recurrence. An in vitro study revealed, that ectopic overexpression of ENO-1 in oral cancer 

cells promotes their proliferation, migration and invasion in a chemokine (C-C motif) ligand 

(CCL)20-dependent manner. This, together with the fact that ENO-1 expression positively 

correlated with CCL20 content in oral cancer cells, led to the conclusion, that  CCL20 is a 

downstream target of ENO-1 that plays a role in ENO-1-mediated cell transformation [100]. 
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Elevated expression of ENO-1 together with its cell surface localization were also 

observed in pancreatic ductal adenocarcinoma (PDAC) [102-104], in different kinds of 

neoplasms of central nervous system [105] as well as in ovarian, uterus and cervic cancer [77, 

106]. Collectively, elevated expression of ENO-1 together with its cell surface localization 

were shown to be a good prognostic marker in human cancers [98].  

1.2. Tumor microenviroment 

Formation of a clinically relevant tumor requires support from a surrounding stroma, also 

reffered to as tumor microenviroment. Two major steps limiting metastasis formation are: 

access to the vasculature at the site of primary tumor [107] and tumor formation at the 

secondary site. Thus, a permissive tumor microenviroment must be present in order to 

promote vascularization at the primary site and proliferation at the secondary site of tumor 

[108]. In other words, a metastatic cell requires an appopriate enviroment in order to create 

tumor at the secondary site [109]. Tumor microenviroment contributes to tumor growth 

mainly by blood supply [110], however its composition may affect tumor progression. The 

role of microenviroment in tumor progression may be positive as well as negative. On one 

hand, tumor cells may reside for decades in a dormant state since the microenviroment at the 

secondary site supresses their growth. Furthermore, such microenviroment may even 

stimulate phenotypic reversion of fully metastatic cells into non-malignant cells [111]. On the 

other hand, pathologic changes in the tissue microenviroment can drive tumor progression 

[112-114]. This idea has been developed by Coussens and Werb, who demonstrated the 

predominant role of inflammation in tumor progression. In fact, many types of cancer may 

even arrise from chronic inflammation, chronic irritation or infection [115]. Cancer cells may 

also regulate the microenviroment, for example, by producing factors that create permissive 

surrounding, so called prometastatic niche, where the metastasis can be seeded [116]. Thus, 

due to cell-cell contact, material exchange or vesicle mediated cell to cell communication, an 

active cross-talk between cancer cells and stroma is achieved [117, 118]. In this context, 

exosomes represent one of major players in cell to cell comunication in cancer cells [119-

121].
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1.2.1. Inflammation and cancer 

Inflammation plays a critical role in cancer progression. Many cancers arise from sites of 

infection, chronic irritation or inflammation [115]. Up to 15 % of malignancies worldwide 

can be attributed to infectious agents [122]. An ongoing infection within the host tissue 

induces inflammation and recruitment of inflammatory cells. Recruited leukocytes and 

phagocytic cells release reactive oxygen (ROS) and nitrogen species, which in turn induce 

DNA damage [123]. Persistent tissue injury and regeneration in the presence of ROS triggers 

proliferation of epithelial cells accompanied by genetic alterations [124]. However, ROS are 

not the only factors released by inflammatory cells that induce or promote tumor progression. 

Cytokines and chemokines secreted from inflammatory cells may support tumor growth as 

well. The most prominent group of cytokines that promotes tumor progression are 

proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and 

IL-17.  

TNF-α is produced by immune cells and can promote tumor survival through induction of 

expression of antiapoptotic genes [125]. It may also play a role in the transformation of 

normal cells into cancerous cells by stimulating the production of molecules, for example 

ROS, that can directly cause genetic damage or mutations [126]. Genetic predisposition 

leading to TNF-α synthesis was found to be associated with increased risk of the development 

of bladder, gastric, breast cancer as well as poor prognosis [127]. In addition, TNF-α was 

shown to be important in later stages of cancer, where it promotes angiogenesis and 

metastasis formation [128]. 

IL-6 is a key growth promoting and antiapoptotic molecule [129]. This cytokine 

contributes to tumor progression mainly by increasing proliferation of cancer cells [130]. In 

addition, not only the cytokine itself, but also its soluable receptor contributes to cancer 

progression. Soluable IL-6 receptor promotes T cell survival and enhances production of IL-6 

by T cells [131]. The production of IL-6 is also regulated by IL-17. IL-17 induces expression 

of other proinflammatory cytokines including TNF-α, IL-6 and IL-1β thereby amplifying 

inflammatory responses [132, 133]. Furthermore, IL-17 enhances tumorigenic growth and 

angiogenesis [134, 135].  

Expression of chemokines and their receptors were also reported to be dysregulated in 

many types of cancer [136]. Chemokines released from inflammatory cells may regulate 

cancer growth in many ways. For instance, growth regulated alpha protein (GROα) also 
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known as C-X-C motif ligand 1 (CXCL1), GROβ/CXCL2, GROγ/CXCL3 and IL-8/CXCL8 

have been shown to dramatically induce cancer cell proliferation [137]. Blockage of GROα or 

CXCR2 receptor attenuates proliferation of cancer cells [138], whereas their overexpression 

enhances cancer cell colony forming activity and invasive potential [139, 140]. Noteworthy, 

cancer cells produce chemokines as well. They do so, to recruit inflammatory cells and to 

promote tumor growth. Chemokines (especially CXCL) released by cancer or inflammatory 

cells are pro-angiogenic and induce endothelial cell chemotaxis [141, 142]. The role of CXCL 

chemokines was extensively studied in the breast cancer metastasis model, where interaction 

between CXCR4 and its ligand CXCL12 triggered metastasis formation [143]. Collectively, 

pro-tumorigenic activities of inflammatory cells include release of chemokines and growth 

factors, as well as stimulation of angiogenesis, DNA damage and ECM remodelling to 

facilitate cancer cell invasion [115].  

Despite the large body of evidence demonstrating the important role of inflammation in 

cancer progression, only little is known about the initial trigger of inflammatory processes. In 

general, infectious agents are though to be the main cause of inflammation in the host 

enviroment. Supporting this concept, about 20 % of cancer cases are directly linked to 

infectious agent [144].  

1.2.1.1. Lipopolysaccharide in cancer 

Endotoxin is a cell wall component of gram-negative bacteria composed of protein, lipids 

and lipopolysaccharide (LPS), which is released when bacteria are lysed [145]. However, 

mainly LPS is responsible for most of the biological properties of bacterial endotoxins [146, 

147]. Bacterial LPS is able to potentiate inflammatory responses in host environment. 

Macrophages and monocytes stimulated by LPS release several pro-inflammatory cytokines, 

including TNF-α, IL-1 and IL-6 [148, 149]. Upon internalization, LPS binds to CD14 protein 

[145]. LPS-CD14 complex activates toll like receptor-4 (TLR-4) and thus initiates 

downstream signaling pathways [145]. However, the immune cells are not the first ones, that 

confront the LPS presence. Epithelial cells function as a barrier restricting pathogen entry and 

actively participate in numerous defence reactions. Upon contact with LPS, epithelial cells 

produce pro-inflammatory cytokines, chemokines and antimicrobial peptides [150]. Released 

mediators attract the immune cells to the site of infection, thereby potentiating inflammatory 

responses [145]. Several studies demonstrated that inflammation initiated by LPS is involved 

in cancer progression [145]. 
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Recent studies have addressed the role of LPS in accelarated metastatic burden after 

surgery. Bacterial constituents, for example LPS are frequently shed into the enviroment 

[151]. Already low concentrations of LPS (0.2 ng/m
3
) in the atmosphere cause harmful effects 

[152]. LPS contaminations are common problem in the clinical settings. During laparotomy or 

air laparoscopy, LPS may contaminate peritoneal cavity and enter the circulation. Few studies 

demonstrated a positive correlation between LPS contamination during surgery and increased 

metastasis formation. Not only LPS from atmosphere, but also gut bacteria, which frequently 

translocate from the gut during operation, represent another post-surgical source of LPS. 

Consequently, mice which underwent air laparoscopy had elevated serum levels of LPS and 

increased metastatic burden [153, 154]. Moreover, a direct LPS injection into mice suffering 

from breast cancer significantly elevated levels of serum VEGF, implicating that LPS may 

increase metastatic potential through stimulation of angiogenesis [153].  

Couple of mechanisms may account for positive effect of LPS on cancer cell progression. 

LPS presence, sensed by both inflammatory and cancer cells, creates an inflammatory 

enviroment, which favours tumor growth. Firstly, LPS attracts inflammatory cells and thus 

aggravates inflammatory reactions [145]. Pro-inflammatory cytokines and ROS produced by 

immune and epithelial cells have pro-tumorigenic properties and may affect different 

processes such as migration, invasion and angiogenis. Depletion of neutrophils in LPS-treated 

mice significantly reduces adhesion of circulating cancer cells [155]. Similarly, LPS-activated 

monocytes increase adhesion of cancer cells to endothelial cells by acting as so called 

“bridging cells”. Here, binding of cancer intercellular adhesion molecule (ICAM)-1 to 

monocyte β2 integrin and binding of endothelial ICAM-1 or vascular cell adhesion molecule 

(VCAM)-1 to monocyte β1 or β2 integrin, play a pivotal role [156].  

Secondly, LPS sensed by cancer cells may initiate signalling processes leading to enhanced 

tumor growth. Cancer cells are mostly arising from epithelial cells, which are though to be the 

first sensors of bacterial infection. Thus, cancer cells may also sense LPS and promote 

inflammatory responses. LPS stimulation of cancer cells positively correlates with NF-κB 

activity [157]. NF-κB is involved in the regulation of pro-inflammatory cytokine gene 

expression, cellular adhesion, apoptosis and oncogenesis [158]. Enhanced activation of NF-

κB in cancer cells is associated with overproduction of VEGF and IL-8, two mediators 

stimulating tumor growth [159]. In addition, LPS-mediated activation of NF-κB promotes 

adhesion of tumor cells in a β1 integrin-dependent manner [160]. Finally, LPS activates 

oncogene, metadherin, which in turn initiates NF-κB signaling, thereby inducing IL-8 and 
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MMP-9 expression. Noteworthy, IL-8 and MMP-9 are important for cancer cell invasion 

[161].  

The link between LPS and cancer progression is well established. However, in order to 

induce all above mentioned processes, LPS must be sensed by the cells. This happens through 

the transmembrane receptor TLR-4 [162]. Binding of LPS to its receptor leads to activation of 

the adaptor proteins: myeloid differentiation primary response gene (MyD) 88 or TIR-

domain-containing adapter-inducing interferon-β (TRIF) [162]. Downstream targets of TLR-4 

activation include NF-κB, mitogen activated protein kinases p38 and ERK1, which can induce 

production of pro-inflammatory cytokines [163]. Couple of studies revealed that there is 

a constitutive expression of TLR-4 in cancer cells [164-168]. LPS-mediated TLR-4 signaling 

can promote tumor cell adhesion and metastasis in colorectal cancer cells by increased β1 

integrin expression [160]. In addition, activation of TLR-4 promotes expression of VEGF and 

TGF-β [168], two molecules, which influence tumor progression, neovascularization and 

immunosupression [169]. Binding of LPS to TLR-4  is also important for activation of uPA-

uPAR system, which in turn increases tumor cell adhesion and invasion [170]. Thus, TLR-4 

may serve as a good target for anti-tumor therapies  [160].   

1.2.2. Exosomes and cancer  

Exosomes are small membranous vesicles with the size ranging from 30-150 nm in 

diameter [171]. They are produced by various cell types under both physiological and 

pathological conditions, and in particular by tumor and hematopoetic cells [172]. The 

biogenesis of exosomes (Figure 3) [173] is controlled by the endosomal sorting complex 

(ESCRT). Recycling of many membrane receptors leads to the formation of plasma 

membrane coated with a clathrin protein [174]. These invaginations evolve into early 

endosomes and then mature into late endosomes, which are also termed multivesicular bodies 

(MVB). Proteins trapped inside MVB may be (i) recycled back to the cell membrane (ii) 

sequestered in intraluminal vesicles within MVB [175, 176] (iii) degradated through fusion 

with lysosomes or (iv) released in the form of exosomes during fusion of MVB with the 

plasma membrane. Exosome secretion is regulated by Ca
2+ 

current. Increase in intracellular 

levels of Ca
2+ 

triggers exosome production as well as their fusion with the plasma membrane 

[177]. Only little is known about signals, which direct proteins into MVB and then control 

their release in the form of exosomes. Mono-ubiquitinylation is one of them and ESCRT have 

been shown to control the sorting of ubiquitinated proteins into intraluminal vesicles [178].  
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However, not all the proteins present in exosomes are ubiquitinylated  and thus, a passive 

mechanism enriching MVB has been considered. It has been shown that tetraspanin family 

members could participate in sorting of proteins into the exosomes as well. Tetraspanins 

belong to the membrane proteins, that may cluster among each other or with other membrane 

and cytosolic proteins, thus creating tetraspanin-enriched microdomains (TEMs). For 

instance, CD9 and CD82 tetraspanins promote β-catenin secretion in exosomes. Similarly, 

loading of metalloprotease CD10 into exosomes, depends on its interaction with tetraspanin 

CD9. CD63 tetraspanin is responsible for the package of epstein-barr virus into exosomes.  

Exosomal proteins are located either at the surface of exosomal membrane or in the lumen. 

The cargo of exosomes largely depends on their cellular origin and contains cytosolic and 

membrane proteins [172]. In addition, exosomes also contain microRNAs, mRNAs and DNA 

fragments, which can be shuttled from a secreting cell to a recipient cell [179]. Some proteins 

are ubiquitosly expressed in all the types of exosomes regardless of their origin and can be 

thus used as markers of exosomes. The most commonly used markers of exosomes are: major 

histocompatibility complex (MHC) class I molecules [180], heat shock proteins (Hsp) such as 

Hsp70 and Hsp90 [181] and tetraspanins including CD9, CD63, CD81 and CD82 [182]. 

Mitochondrial, ER or nuclear proteins are not detected in exosomes [182]. Growing body of 

evidence suggests that exosomes play a pivotal role in cell-to-cell communication by 

transporting proteins and nucleic acids from one to another cell [120]. Although the specific 

sorting of proteins into exosomes is poorly understood, the protein composition of exosomes 

depends on enviromental conditions and thus determines the outcome of the communication. 

Uptake of exosomes by recipient cells occurs usually randomly and depends on the type of 

transmembrane proteins located on the recipient cell [183]. The binding of exosomes to the 

recipient cells is mediated mostly by adhesion molecules such as integrins or ICAM-1. Three 

possible ways of exosome-mediated cell-to-cell communication have been described thus far 

[173] (Figure 3) (i) juxtacrine signaling through receptor-ligand binding [180] (ii) direct 

fusion of an exosome with a membrane of the recipient cells and release of its cargo into 

cytoplasm [184] (iii) internalization of intact exosomes [183]. The internalization of intact 

exosomes may occur through three possible pathways: (i) phagocytosis (ii) pinocytosis or (iii) 

clathrin/dynamin/caveolae-dependent endycytosis. 
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Figure 3. Formation and uptake of exosomes in target cell. (Urbanelli L et al., 2013, 

modified)

Exosomes display a wide variety of biological functions. Beside their immunomodulatory 

properties, they also play a role in the development, protein shedding and tumorigenesis [185-

188]. However, tumor-derived exosomes display a bimodal role. On one hand, exosomes 

produced by cancer cells manipulate tumor microenviroment, favoring processes such as 

adhesion, migration and angiogenesis thereby promoting tumor progression. On other hand, 

exosomes released by cancer cells stimulate immune cells leading to tumor restriction. 

Anti-tumorigenic properties of exosomes are associated with their ability to interact with 

immune cells. Protein cargo of tumor-derived exosomes usually reflects the content of 

parental cells, and thus is rich in tumor specific antigens [189, 190]. Therefore, exosomes 

enrinched in tumor antigens may prime dendritic cells (DCs), which in turn can induce CD8+ 

T cell dependent anti-tumor responses [189, 191]. Furthermore, exosomes may directly 

trigger apoptosis of tumor cells by their ability to increase expression of the pro-apoptotic bax



Introduction 

___________________________________________________________________________ 

15 

gene and decrease expression of the anti-apoptotic bcl-2 gene [192]. Despite these facts, 

exosome involvement in tumor regression in cancer patients is rather marginal [172].  

Pro-tumorigenic properties of exosomes are most frequently observed in the mouse models 

of cancer and different mechanisms seem to account for these effects. Regulation of 

immunological responses is one of them. On one hand, exosomes participate in the 

recruitment of immune cells in the tumor microenviroment and thus enhance release of pro-

inflammatory cytokines [193]. On other hand, exosomes are able to suppress activity of 

cytotoxic T cells. Moreover, exosomes derived from several types of tumors may inhibit 

proliferation of lymphocytes or natural killer cells [194, 195]. In addition some types of 

exosomes may express on their surface Fasl or TRAIL, ligands, which may induce apoptosis 

of cytotoxic T cells [195]. 

Next mechanism supporting the role of exosomes in cancer progression is related to their 

ability to control cancer associated fibroblasts (CAF), the most prominent cell type in tumor 

microenviroment. CAFs are spindle shaped mesenchymal cells that share characteristics with 

smooth muscle cells and fibroblasts. They may originate from a variety of different progenitor 

cells, including locally residing fibroblasts, epithelial and endothelial cells via epithelial-to-

mesenchymal transition (EMT) or bone marrow-derived mesenchymal cells [196]. This 

process is regulated by TGF-β, which is transported from cancer cells into neighbouring cells 

in the form of exosomes [196, 197]. Increased number of CAFs in tumor microenviroment 

contributes to active remodeling of stroma supporting tumor growth and vascularization 

[198]. Furthermore, tumor-derived exosomes may regulate stroma remodeling by themselves. 

Namely, exosomes are rich in MMPs, which may degrade ECM and thus increase tumor 

motility [199, 200]. 

Neovascularization is one of the prerequisite for tumor expansion. Formation of new 

vessels is a result of hypoxic conditions and inflammatory responses in tumor enviroment 

[201]. Couple of studies demonstrated that exosomes are rich in pro-angiogenic factors such 

as VEGF, FGF, TGF-β, platelet derived growth factor (PDGF) and IL-8 [202]. In addition, 

exosomes contain multiple angiogenic microRNAs [203]. Grange et al. extended these 

observations by reporting that exosomes may activate endothelial cells to organize capillary-

like structures on matrigel [204]. In addition, exosomes stimulated organizition of 

endothelium seems to operate through their ability to induce expression of pro-angiogenic 

factors including IL-1α, FGF, granulocyte colony stimulating factor (GCS-F), TNF-α, Leptin, 

TGF-α and VEGF [205].  
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Together, increasing evidence suggests that exosomes may exert anti- as well as pro-

tumorigenic effects. Although the mechanism of exosomal uptake and action in the recipient 

cells is poorly understood, the protein composition of these vesicles is studied in detail. 

Numerous studies demonstrated the presence of ENO-1 in exosomes as well as on the cell 

surface of cancer cells. Despite this fact, the mechanism that drives exteriorization of ENO-1 

and the contribution of the cell surface and exosomal ENO-1 to cancer progression are largely 

unknown.  
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2. AIM OF THE STUDY  

It is well established, that ENO-1 plays an important role during cancer progression. Its 

direct involvement in cancer cell migration and proliferation was demonstrated in several 

studies. However, only little is known about the contribution of cell surface associated ENO-1 

to the metastatic potential of cancer cells. Cell surface bound ENO-1 participates in PLA 

formation and thus increases pericellular proteolytic activity of cancer cells. To accomplish 

this function, ENO-1 must be transported to the cell surface. ENO-1 is primarily a 

cytoplasmic protein, which lacks a signal sequence, and thus cannot be translocated to the cell 

surface through the classical ER-Golgi pathway leaving the mechanism of ENO-1 

exteriorization largely unknown.  

In this context, the aim of the study was: 

1. to characterize the cell surface expression of ENO-1 in different human cancer tissues 

as well as in breast cancer cell lines 

2. to investigate the role of cell surface ENO-1 in migration and invasion of cancer cells 

3. to decipher the molecular mechanism that drives exteriorization of ENO-1 

4. to elucidate whether inhibition of ENO-1 transport to the cell surface has an effect on 

cancer cell migration and invasion 
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3. MATERIAL AND METHODS  

3.1. Materials 

3.1.1. Equipment 

Name                                                                 Company 

Bacteria culture incubator                            Heraeus, Germany 

Cell culture incubator Heraeus, Germany 

Desk Digital Slide Scanner Miramax Zeiss, Germany 

Electrophoresis chambers  Biometra, Germany 

Falcon tubes Greiner-Bio-One, Germany 

Film casette   Kodak, New York 

Filter tips: 10; 100;  1000 µl       Eppendorf, Germany 

Fluorescence and light microscope     Leica, Germany 

Gel Blotting paper                  Amersham Biosciences, UK 

Inverted epifluorescence microscope    Zeiss, Germany 

Multifuge centrifuge   Heraeus, Germany 

PCR-thermocycler    Biometra, Germany 

Petri dishes       Greiner-Bio-One, Germany 

Pipetboy                               Eppendorf, Germany 

Pipets                  Eppendorf, Germany 

Power suply                        Biometra, Germany 

Real-time PCR machine           Applied Biosystems, Germany 

Tissue culture chamber slides   Greiner Bio-One, Germany 

Tissue culture dishes  Greiner Bio-One, Germany 

Transmission electron microscope   Zeiss, Germany 

Ultra Microplate Reader EL 808   Biotek-instruments, Germany 

Ultracentrifuge Optima LE-80K          Beckman, Germany 

Water bath for cell culture            Medingen, Germany   

Western Blot chambers                 Biometra, Germany 

Vortex machine                              VWR, Germany                                
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3.1.2. Reagents 

Name                                                                 Company 

Ammonium persulfate Sigma-Aldrich, Germany  

1-butanol (n-butyl alcohol) Sigma-Aldrich, Germany 

2-mercapto-ethanol Sigma-Aldrich, Germany 

2-propanol Fluka, Germany 

Acetic acid Sigma-Aldrich, Germany 

Acetone  Roth, Germany 

Acrylamide solution, Rotiphorese gel 30  Sigma-Aldrich, Germany 

Agarose Fluka, Germany 

Albumin, bovine serum Sigma-Aldrich, Germany 

Ammonium acetate Sigma-Aldrich, Germany 

Brillant Blue G Sigma-Aldrich, Germany 

Calcium chloride Sigma-Aldrich, Germany 

DMEM Gibco, Germany 

Dimethyl sulfoxide Roth, Germany 

DNA ladder (100 bp, 1 kb) Fermentas, Germany 

Ethanol absolut Roth, Germany 

Ethidium bromide Sigma-Aldrich, Germany 

Ethylene glycol bis(2-aminoethyl ether)  

tetraacetic acid (EGTA) Sigma-Aldrich, Germany 

ECL plus Western blotting detection kit Amersham Biosciences, UK 

Fetal calf serum Hyclone, UK 

Formaldehyde Sigma-Aldrich, Germany 

Glucose Sigma-Aldrich, Germany 

Glutamaxx Invitrogen, Germany 

Glycerol Roth, Germany 

Glycine Roth, Germany 

Hepes Roth, Germany 

High fidelity DNA polymerase Fermentas, Germany 

Lipid transfection reagent Biorad- Laboratories, Germany
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Magnesium chloride Sigma-Aldrich, Germany 

Methanol Roth, Germany 

Milk powder Roth, Germany 

MuLV reverse transcriptase Applied Biosystems, California 

Penicillin/Streptomycin Invitrogen, Germany 

PCR nucleotide mix Fermentas, Germany 

Potassium Chloride Roth, Germany 

Potassium phosphate monobasic Sigma-Aldrich, Germany 

Potassium phosphate dibasic Sigma-Aldrich, Germany 

Random hexamers Applied Biosystems, Germany 

Rnase Inhibitor Applied Biosystems, Germany 

RPMI Gibco, Germany 

Sodium chloride Sigma-Aldrich, Germany 

Sodium deoxycholate Sigma-Aldrich, Germany 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Germany 

Sodium fluoride Sigma-Aldrich, Germany 

Sodium phosphate dibasic Sigma-Aldrich, Germany 

Sodium vanadate Sigma-Aldrich, Germany 

TEMED Roth, Germany 

Trichloroacetic acid (TCA) Sigma-Aldrich, Germany 

Tris Roth, Germany 

Triton X-100 Sigma-Aldrich, Germany 

Trypsin/EDTA PAA Laboratories, Austria 

Tween 20 Sigma-Aldrich, Germany 
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3.2. Methods  

3.2.1. Cell culture  

Human MDA-MB-435 highly metastatic breast carcinoma, human MCF-7 breast 

adenocarcinoma (both from ATCC, Manassas, VA), and human MDA-MB-231 metastatic 

breast carcinoma (LGC Standards GmbH, Wesel, Germany) cell lines were maintained in 

Roswell Park Memorial Institute (RPMI) 1640 medium (Invitrogen Life Technologies, 

Carlsbad, CA) supplemented with 10 % heat-inactivated fetal calf serum (FCS) (Hyclone, 

Cramlington, UK), 2 mM Glutamax and 1 % Penicilin/Streptomycin (both from Invitrogen 

Life Technologies). Human mammary epithelial cells (HMEC) (Invitrogen Life 

Technologies) were cultured in Dulbecco´s Modified Eagle´s Medium (DMEM) (Invitrogen 

Life Technologies) supplemented with FBS and 1 % Penicilin/Streptomycin. Cell cultures 

were maintained at 37 �C in a humidified incubator with 5 % CO2. 

3.2.2. Immunohistochemistry  

Formalin-fixed tissues were obtained from patients with ductal breast carcinoma (n=6), 

squamos cell lung carcinoma (n=5), colon adenocarcinoma (n=11), bronchoalveolar 

carcinoma (n=5) and lung adenocarcinoma (n=12) who underwent surgical resection. The 

investigations have been conducted according to the Declaration of Helsinki principles and 

were approved by the local institutional review board and ethics committee. Five �m tissue 

sections were deparaffinized in xylene and rehydrated through graded ethanol washes. 

Antigen retrieval was performed by the treatment of tissue sections with Fast Enzyme (Zymed 

Laboratories Inc., San Francisco, CA) for 10 min at room temperature. 

Immunohistochemistry was performed using a ZytoChem-Plus AP Polymer-Kit according to 

the manufacturer´s instruction (Zymed Laboratories Inc). A rabbit anti-ENO-1 antibody 

(1:200) (Santa Cruz Biotechnology, Santa Cruz, CA; catalog number: sc-15343) was applied 

overnight at 4 �C. Negative control was performed by replacing the primary antibody with a 

species matched isotype control (1:200) (Sigma-Aldrich, Hamburg, Germany; catalog 

number: I8140). Slides were scanned with a Mirax Desk Digital Slide Scanner (Zeiss, 

Goettingen, Germany) and analyzed using a Mirax Viewer (Zeiss). 
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3.2.3. Western Blotting  

Hundred µg of biotinylated proteins or 20 μl of exosomal fraction were separated on a 10 

% SDS PAGE under reducing conditions, followed by electrotransfer to a PVDF membrane 

(GE Healthcare, Munich, Germany). After blocking the membrane with 5 % non-fat milk 

(Sigma-Aldrich) in TBS-T (5 mM Tris-Cl, 150 mM NaCl, 0.1 % Tween 20, pH 7.5), the 

membrane was probed with one of the following antibodies: rabbit anti-ENO-1 (1:5000) 

(Santa Cruz Biotechnology; catalog number: sc-15343), mouse anti-green fluorescence 

protein (1:1000) (GFP; Santa Cruz Biotechnology; catalog number: sc-9996), mouse anti-26S 

proteasome subunit (1:1000) (P26S; Abcam, Berlin, Germany, catalog number: ab58115), 

mouse anti-β1-integrin (1:1000) (BD Biosciences; catalog number: 610467 ), mouse anti-

CD63 (1:500) (Millipore, Schwalbach, Germany; catalog number: CBL553), mouse anti-heat 

shock protein 70 (1:500) (Hsp70; generous gift from Dr. M. Korfei, Department of Internal 

Medicine, University of Giessen Lung Centre, Giessen, Germany). Afterwards, the membrane 

was incubated with peroxidase labeled secondary antibody (1:5000) [all from Dako, Gostrup, 

Denmark; catalog number: P044701-2 (mouse) and P021702-02 (rabbit)]. Final detection of 

proteins was performed using an ECL Plus Kit (Amersham Biosciences, Freiburg, Germany). 

To determine the amounts of protein loaded on the gel, blots were stripped and reprobed using 

a mouse anti-�-actin antibody (1:10000). (Sigma-Aldrich; catalog number: A1978). 

3.2.4. Cell surface biotinylation assay  

MDA-MB-231, MCF-7 and MDA-MB-435 cells were treated for 2, 4 and 6 h with 10 

µg/ml LPS serotype O111:B4 (Calbiochem, Darmstadt, Germany) or 50 ng/ml TNF-α (R&D, 

Wiesbaden, Germany). In other experiments MDA-MB-231 cells were pretreated for 1 h with 

brefeldin A (BD Biosciences, Heidelberg, Germany), glyburide, methylamine, ouabain, 

ionophore A23187, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′ tetraacetic acid (BAPTA), 

cyclopiazonic acid (CPA), or YM58483 (all from Sigma-Aldrich) and then stimulated with 10 

µg/ml LPS for 2 h. Afterwards, the cells were labeled with 1 mg/ml EZ-link NHS-SS-biotin 

(Thermo Scientific, Schwerte, Germany) for 1 h at 4 °C, rinsed 3× with PBS (137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) containing 100 mM glycine and solubilized 

in cell-lysis buffer [50 mM Tris, 100 mM NaCl, 50 mM NaF, 5 mM β-glycerophosphate, 2 

mM EDTA, 2 mM EGTA, 1 mM sodium orthovanadate, 0.1 % Triton X-100, pH 7.4 

containing protease inhibitor cocktail (Roche Diagnostics, Penzberg, Germany)]. Protein 
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concentration was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific) 

according to the manufacturer’s instructions. Hundred µg of proteins were incubated 

overnight at 4 °C with end-over-end shaking with the Neutravidin Agarose Resin Beads 

(Thermo Scientific). Finally, beads were washed and resuspended in 25 µl of 2× Laemmli 

sample buffer (2 % SDS, 20 % glycerol, 120 mM TRIS, 0.02 % bromphenol blue, 4 % β-

mercaptoethanol). The samples were analyzed by Western blotting as described above.

3.2.5. Transient transfection 

ENO-1 wild type (WT) was recloned from pcDNA3.1 plasmid [83] into the pEGFP-C1 

expression vector (Clontech Laboratories, Inc., Mountain View, CA) using EcoR I and BamH 

I restriction enzymes (Fermentas GmbH, St. Leon-Rot, Germany). ENO-1 WT sequence was 

used as a template to generate ENO-1K434R and ENO-1K434G using a QuikChange® Site-

Directed Mutagenesis Kit (Stratagene, La Jolla, CA). The correct sequence and orientation of 

the inserts were confirmed by sequencing. The MDA-MB-231 cells were seeded onto 6-well 

tissue culture plates in RPMI 1640 medium to obtain 60-70 % confluence. After 16 h, 

medium was exchanged and the cells were incubated overnight in RPMI 1640 medium 

containing 0.1 % FBS. Cells were transfected using LipofectamineTM 2000 (Invitrogen) 

according to the manufacturer’s instructions.  

3.2.6. Generation of stable cell lines  

MDA-MB-231 cells were transfected with pEGFP-C1 (GFP-EV) and pEGFP-C1-ENO-

1WT (GFP-ENO-1) vectors using Lipofectamine
TM

 2000 (Invitrogen) according to the 

manufacturer’s instructions. Positive clones were selected using 800 �g/ml of Geneticin 

disulphate (G418) (Roth, Karlsruhe, Germany). After selection, stable transfectans were kept 

in medium supplemented with 400 �g/ml of G418. Positive clones were tested for GFP and 

ENO-1 expression by Western blotting. 

3.2.7. Proliferation assay 

Proliferation of MDA-MB-231 cells and stable transfectants was determined by a DNA 

synthesis assay based on the uptake of [
3
H] thymidine (PerkinElmer, Waltham, MA). Cells 

were cultured in 48-well plates, growth-arrested in serum-free RPMI medium and left 
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unstimulated or stimulated with 10 µg/ml LPS for 8 h. Subsequently, cells were pulsed with 

0.2 µCi/ml [
3
H] thymidine for 16 h. Afterwards, cells were solubilized in 0.5 M NaOH, and 

[
3
H] thymidine incorporation was determined by liquid scintillation spectrometry.  

3.2.8. Trichloroacetic acid precipitation of proteins  

Proteins present in conditioned cell culture media were precipitated with trichloroacetic 

acid (TCA; Sigma-Aldrich). Briefly, MDA-MB-231 cells were stimulated with 10 µg/ml LPS 

for 2, 4 or 6 h. After indicated time points, supernatants were collected, mixed with TCA 

(final concentration 10 %), vortexed and incubated for 10 min at 4 ºC. The precipitated 

proteins were collected by centrifugation at 20,000 g for 45 min at 4 ºC. The pellets were 

washed twice with 70 % ice-cold ethanol, air dried, and resuspended in 5× Laemmli sample 

buffer.  

3.2.9. Exosome isolation 

Exosomes were isolated either from unstimulated GFP-EV and GFP-ENO-1 cells or 

stimulated MDA-MB-231, MCF-7 and MDA-MB-435 cells. Briefly, MDA-MB-231, MCF-7 

and MDA-MB-435 cells were treated for 24 h with 1 µg/ml LPS or 50 ng/ml TNF-α. In other 

experiments MDA-MB-231 cells were preincubated with 1 µM A23187, 20 µM BAPTA, or 5 

µM YM58483 for 1 h and then stimulated with 1 µg/ml LPS for 24 h. Exosomes were 

isolated from 10 ml of conditioned cell culture media which were first centrifuged at 800 g for 

10 min at room temperature to sediment cells, and then centrifuged at 10,000 g for 10 min at 4 

ºC (Optima LE-80K Ultracentrifuge, Beckman, Ramsey, MN) to remove the cellular debris. 

Exosomes were pelleted by centrifugation at 100,000 g for 3 h at 4 ºC. Finally, the exosome 

pellet was washed once with PBS and resuspended in 100 µl of PBS. Twenty µl exosomal 

fraction was mixed with 5× Laemmli sample buffer and analyzed by Western blotting. The 

viability of the treated cells was assessed in each experiment using a Cytotoxicity Detection 

Kit (Roche Diagnostics).  

3.2.10. Exosome uptake  

Exosomes were purified from cell culture supernatants of GFP-EV and GFP-ENO-1 stably 

transfected cells according to the above mentioned protocol. The purified exosomes were 

resuspended in 100 µl of PBS. MDA-MB-231 cells were cultured in complete RPMI medium 

on the microscope coverslips in the 6-well plates. Cells were serum-starved overnight and 
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then incubated with purified exosomes for 30 min at 37 ºC. Subsequently, cells were washed 

3× with cold PBS, fixed with 4 % paraformaldehyde for 10 min at 4 ºC, incubated with 

rhodamin-conjugated phalloidin (Invitrogen Life Technologies) for 10 min at room 

temperature, and mounted with Vectashield mounting medium (Vector Laboratories, 

Burlingame, CA). Nuclei were visualized by DAPI staining. Images were captured by a Leica 

DMR microscope (Leica, Heidelberg, Germany). Post processing and image analyses were 

done with a MetaMorph™ (Leica Microsystems, Wetzlar, Germany). 

3.2.11. Electron microscopy 

Exosomes were fixed with 2 % paraformaldehyde and deposited onto the butvar-carbon 

coated grids. The vesicle-coated grids were washed twice with PBS, twice with PBS 

containing 50 mM glycine, and finally with PBS containing 0.5 % BSA (PBS/0.5 % BSA), 

stained with 2 % uranyl acetate, and then viewed with a transmission electron microscope 

(TEM;  Zeiss EM900; Zeiss, Jena, Germany). For the immuno-gold labeling exosome 

samples were absorbed onto a carbon coated butvar film on 300 mesh nickel grids, washed in 

PBS buffer containing 10 mM glycine for 5 min and then washed in PBS buffer. Samples 

were placed onto 25 µl drops of 0.4 % skim milk in water for 5 min, blotted dry on filter 

paper and then placed on 25 µl drops of a rabbit anti-ENO-1 antibody (1:25) (Santa Cruz 

Biotechnology; catalog number: sc-15343) and incubated for 1 h at 30 °C. After washing with 

PBS samples were incubated with 0.4 % skim milk for 5 min, blotted dry and then placed 

onto 25 µl drops of a mixture of protein A/G gold and goat-anti rabbit gold nanoparticles 

(1:75 dilution) and incubated for 30 min at room temperature. Samples were then washed 

with PBS and TE-buffer (20 mM TRIS, 2 mM EDTA, pH 7.0) before air-drying. Samples 

were examined in a TEM 910 Zeiss at an acceleration voltage of 80 kV.

3.2.12. Live cell Ca
2+

 imaging 

The cells were cultured on 25 mm glass cover slips which were loaded with 2 µM fura-

2/AM in dark for 45 min followed by a washing step in Ringer solution (5.8 mM KCl, 141 

mM NaCl, 0.5 mM KH2PO4, 0.4 mM NaH2PO4, 11.1 mM glucose, 10 mM Hepes, 1.8 mM 

CaCl2, 1 mM MgCl2, pH 7.4). After 15 min, the single glass cover slip was mounted on the 

stage of a Zeiss 200M inverted epifluorescence microscope coupled to a PolyChrome V 

monochromator (Till Photonics, Munich, Germany) light source in a sealed temperature-

controlled RC-21B imaging chamber (Warner Instruments, Hamden, CT) and perfused with 
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prewarmed solution (32 °C). Fluorescence images were obtained with alternate excitation at 

340 and 380 nm. The emitted light was collected at 510 nm by an air-cooled Andor Ixon 

camera (Andor Technology, Belfast, Ireland). Measurements were made every 3 s. 

Background fluorescence was recorded from each cover slip and subtracted before 

calculation. The acquired images were stored and processed offline with TillVision software 

(Till Photonics). Calcium concentration [Ca
2+

]i was calculated as described by Grynkiewicz et 

al. [206]. Maximal and minimal ratio values were determined at the end of each experiment 

by first treating the cells with 10 µM ionomycin (maximal ratio) and then chelating all free 

Ca
2+

 with 20 mM EGTA (minimal ratio). Cells that did not respond to ionomycin were 

discarded. After 3 min of baseline measurement, the cells were stimulated with 10 µg/ml LPS 

for 10 min in the absence or presence of extracellular Ca
2+

. In the next set of experiments, 

after baseline measurement, cells were pretreated with 20 µM BAPTA or 50 µM CPA 

followed by 10 min of 10 µg/ml LPS treatment. For data analysis, the basal level of Ca
2+

 was 

determined as an average value of the first 50 seconds of the curve. Then, after subtracting the 

baseline, the LPS-induced Ca
2+

 peak height was calculated and is presented as Δ[Ca
2+

]i. All 

chemicals were dissolved and diluted to the desired concentrations in Ringer solution. All the 

solutions were freshly prepared on the day of the experiment and stored at 4 °C until they 

were used. 

3.2.13. Calculating the intracellular calcium concentration 

The Ratio340/380 and F380 (fluorescence at 380 nm excitation) curves were exported offline 

either as *.txt or *.xls files. The intracellular calcium concentration was determined using the 

following equation (2): 

380/340max

min380/340)(][
RatioR

RRatio
KnMCa di

�

�
��� �

Kd =224 nM, is the dissociation constant of Fura-2 

min

max

380

380

F

F
��  from the 380 nm excitation curve 

Rmin is the minimal ratio, determined by 20 mM EGTA 

Rmax is the maximal ratio, determined by 10 µM ionomycin 

Ratio340/380 is the ratio of the fluorescence at 340 nm and 380 nm excitation. 
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3.2.14. Antisense oligonucleotide  

Commercially available siRNA sequence directed against human stromal interaction molecule 

(STIM) 1 (Thermo Scientific), human Ca
2+ 

release-activated calcium modulator (ORAI) 1 

(Life Technologies) and a universal negative-control siRNA (Thermo Scientific) were 

employed. Cells were starved overnight and then treated with 100 nM siRNA using the 

siLentFectTM Lipid transfection reagent (Biorad Laboratories, Munich, Germany) according 

to the manufacturer’s instructions. After 72 h cells were splitted and seeded onto 6 cm cell 

culture dishes, serum-starved overnight and then treated one more time with 100 nM siRNA 

for 48 h. The efficacy of STIM1 and ORAI1 knockdown was assessed by real time PCR.

3.2.15. RNA isolation and reverse transcriptase (RT) reaction 

Isolation of RNA from formalin-fixed, paraffin-embedded tumor tissue and adjacent non-

tumorous tissue was performed as previously described [207]. Isolation of RNA from MDA-

MB-231 cells was performed using a peqGOLD Total RNA Kit (Peqlab, Erlangen, Germany) 

according to the manufacturer's instruction. One µg of RNA obtained from parafin-embedded 

tissue or MDA-MB-231 cells was used in a reaction containing: 2 µl 10× RT buffer, 0.8 µl 

dNTP Mix (100 mM), 2 µl 10× RT Random Primers (25 µM), 1 µl MultiScribe Reverse 

transcriptase (200 U/µl), 1 µl Rnase Inhibitor (20 U/µl), 3.2 µl nuclease-free water. The 

reaction was incubated at 25 ºC for 10 min followed by 37 ºC for 2 h and then 85 ºC for 5 min 

(Tgradient Thermocycler, Biometra, Goettingen, Germany). 

3.2.16. Real time PCR 

Real-time PCR (qPCR) was performed to amplify transcripts of human ENO-1, human 

STIM1, human ORAI1, human subunit of L-type calcium channnel (LTCC Cav1.2), human 

porphobilinogen deaminase (PBGD) and human beta-actin (β-ACT) (Table 1). PBGD or β-

ACT were used as reference genes. Cycling conditions were 95 °C for 10 min, followed by 40 

cycles of 95 °C for 15 s and  60 °C for 60 s. Melting curve analysis and gel electrophoresis 

were performed to confirm the exclusive amplification of the expected PCR product. All 

changes in the target gene mRNA levels are presented as delta Ct (�Ct) which was calculated 

by subtracting the Ct value of the target gene from the Ct value of the reference gene. The 

higher values of ΔCt correspond to higher relative expression of the gene of interest.
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Table 1. List of primers used for qRT-PCR 

Gene 
Accession 

number 
Nucleotide sequences (5‘→3‘) 

1
Tm

(°C) 

Amplicon 

size 
2
(nt) 

ENO-1 NM_001428.3 

3
F:  GAA TAA AGA AGG CCT GGA GC 

4
R:  TAG ACA CCA CTG GGT AGT CC 

60 217 

STIM1 NM_001277961.1 
F:  AGT GAG AAG GCG ACA GGA 

R:  ATG TTA CGG ACT GCC TCG 
60 130 

ORAI1 NM_032790.3 
F:  ACC TCG GCT CTG CTC TCC 

R: CAG GCA CTG AAG GCG ATG 
60 86 

Cav1.2 NM_001167625.1 
F:  TGG TCC ATG GTC AAT GAG  

R:  CGC ATT GGC ATT CAT GTT 
60 107 

PBGD NM_000190.3 
F:  CCC ACG CGA ATC ACT CTC AT 

R:  TGT CTG GTA ACG GCA ATG CG 
60 69 

β-ACT NM_001101.3 
F:  ATT GCC GAC AGG ATG CAG GAA 

R:  GCT GAT CCA CAT CTG CTG GAA 
60 149 

1
Tm, melting temperature; 

2
nt, nucleotide; 

3
F, forward; 

4
R, reverse 

3.2.17. Lactate dehydrogenase (LDH) release or cytotoxicity assay 

MDA-MB-231 cells were stimulated with 10 µg/ml LPS for 2, 4 or 6 h. After indicated 

time points, LDH release was assessed using a Cytotoxicity Detection Kit (Roche 

Diagnostics) according to the manufacturer's instruction. MDA-MB-231 cells treated with 1 

% Triton X-100 for 5 min were used as a positive control.  

3.2.18. Wound healing assay 

MDA-MB-231 cells or cells stably transfected with GFP-EV and GFP-ENO-1 were seeded 

onto 6-well tissue culture plates and serum-starved overnight. MDA-MB-231 cells were 

stimulated either with 10 µg/ml LPS alone or in combination with a peptide blocking binding 

of PLG to ENO-1 (KFAGRNFRNPLAK; kindly provided by Dr. S. Bergmann, Institute of  
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Microbiology, Technical University Braunschweig, Braunschweig, Germany) or a scramble 

peptide (KFAGRNFRNPLA; Thermo Scientific). Cells were washed with PBS and wounds 

were incised by scratching the cell monolayers using a pipette tip. Images of the scratch were 

captured with a microscope immediately after incision (0 h) and 8 h after scratching to assess 

the rate of gap closure.  

3.2.19. Transwell inasion assay 

Invasion assay was performed either with unstimulated GFP-EV and GFP-ENO-1 cells or 

stimulated MDA-MB-231 cells. Briefly, MDA-MB-231 cells were starved overnight and 

stimulated either with 1 µg/ml LPS or with exosomes isolated from GFP-EV and GFP-ENO-1 

cells. Cells (5×10
4
) were added into the upper chamber containing the fibronectin-coated 

polycarbonate membrane (8 µM pore size, BD Biosciences). Five hundred µl RPMI medium 

containing 2 % FBS was added into the lower chamber of the transwell. Cells were then 

cultured for 16 h at 37 °C. Afterwards, cells on the upper surface of the polycarbonate 

membrane of the transwell were removed with a cotton swab and the cells that migrated onto 

the underside of the membrane were fixed with aceton/methanol (1:1) solution, washed with 

PBS and stained with 0.5 % crystal violet for 30 min. Cells that migrated to the lower surface 

of the filter were counted. 

3.2.20. Statistics 

The statistical analysis was performed using a GraphPad Prism version 5.02 for Windows 

(GraphPad Software, La Jolla, CA). Data are presented as mean values � S.E.M. unless 

otherwise stated. Differences between two groups were tested using a Student’s t-test. 

Comparison of multiple groups was performed by analysis of variance (ANOVA) followed by 

Tukey's post hoc test. All tests were performed with an undirected hypothesis. p value less 

than 0.05 was considered as statistically significant. 
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4. RESULTS  

4.1. Expression of ENO-1 is elevated on the cell surface of cancer cells and contributes to 

cancer cell invasion  

To investigate the role of cell surface bound ENO-1 in cancer cell invasion, we first 

determined the expression level of this protein in different tumor types. Immunohistochemical 

staining of ductal breast carcinoma, squamos cell lung carcinoma, colon adenocarcinoma, 

bronchoalveolar carcinoma and lung adenocarcinoma revealed high ENO-1 protein 

expression in cancer cells (Fig. 4.1A, indicated by arrowheads). qPCR confirmed high ENO-1 

mRNA expression in tumor tissue as compared to adjacent non-tumorous tissue (Fig. 4.1B).   

Figure 4.1. Expression of ENO-1 in different human cancer tissue and breast cancer cell 

line. 

(A) Representative breast ductal carcinoma (BDC; n=6), squamos cell lung carcinoma 

(SCLC; n=5), colon adenocarcinoma (CAC; n=11), bronchoalveolar carcinoma (BC; n=5), 

and lung adenocarcinoma (LAC; n=12) tissue sections stained for ENO-1. ENO-1 positive 

staining is indicated by arrowheads. Bar size 100 µM. (B) qPCR analysis of ENO-1 mRNA 

expression in tumor and adjacent non-tumorous tissue. qPCR data are expressed as �Ct using 

β-actin as a reference gene. n=5 per group.  
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As the highest ENO-1 expression was detected in ductal carcinoma of the breast, in the 

further studies we focused on the role of ENO-1 in breast cancer cells. In order to demonstrate 

subcellular localization of ENO-1 in cancer cells, various experimental approaches were 

conducted. Cell fractionation revealed markedly increased levels of cell surface associated 

ENO-1 in a highly metastatic breast cancer cell line MDA-MB-231 as compared to primary 

human mammary epithelial cells (HMEC) (Fig. 4.2A). Flow cytometry analysis confirmed 

high cell surface abundance of ENO-1 on MDA-MB-231 cells (Figure 4.2B). To verify ENO-

1 distribution in cancer cells, MDA-MB-231 cells were transfected with a vector carrying 

either GFP alone (GFP-EV) or GFP tagged ENO-1 (GFP-ENO-1) and the localization of 

ENO-1 was examined by fluorescence microscopy. While GFP was exclusively expressed in 

the cytoplasm (Fig. 4.2C, bottom panel), GFP-ENO-1 was present in the cytoplasm as well as 

on the cell surface (Fig. 4.2C, upper panel, indicated by arrows). 

Figure 4.2. Localization of ENO-1 in a highly invasive MDA-MB-231 breast cancer cell 

line.

(A) Cell surface expression of ENO-1 in primary human mammary epithelial cells (HMEC) 

and in MDA-MB-231 cells. The purity of cytosolic and cell membrane fractions was assessed 

by probing the samples for β1-integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are shown. (B) Cell surface expression of ENO-1 in MDA-MB-231 cells as 

assessed by flow cytometry. n=3. (C) Distribution of ENO-1 in MDA-MB-231 cells stably 

transfected with GFP-EV or GFP-ENO-1. Arrows indicate the cell surface-associated GFP 

tagged ENO-1. Bar size 5 µm. 
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In order to explore the functional consequence of increased ENO-1 cell surface expression 

in cancer cells, wound healing and transwell invasion assays with MDA-MB-231 cells that 

overexpress GFP-ENO-1 were performed. Transfection of MDA-MB-231 cells with GFP-

ENO-1 enhanced their migratory (Fig. 4.3A, B) and invasive (Fig. 4.3C, D) properties. These 

effects were dependent on the impact of ENO-1 on cancer cell motility as overexpression of 

GFP-ENO-1 did not increase the number of cells (Fig. 4.3E). 

Figure 4.3. Overexpression of ENO-1 correlates with migratory and invasive properties 

of MDA-MB-231 breast cancer cells.

(A) Confluent monolayers of stable transfectants expressing either GFP (GFP-EV) or GFP 

tagged ENO-1 (GFP-ENO-1) were scratched and incubated for 8 h at 37 °C in serum-free 

RPMI medium. Representative pictures from the wound-healing assay at time 0 h and 8 h are 

shown. (B) The rate of wound closure was assessed by counting the cells that migrated into 

the same-sized square fields. Data represent mean values � S.E.M. n=3; ***, p<0.001. (C) 

Stable transfectants expressing either GFP (GFP-EV) or GFP tagged ENO-1 (GFP-ENO-1) 

were seeded onto a fibronectin-coated membrane and allowed to invade for 16 h. 

Representative images of the cells that invaded the underside of the membrane are shown. (D) 

Cells that invaded the underside of the membrane were counted. Data represent mean values �

S.E.M. n=3. (E) Proliferation of GFP-EV and GFP-ENO-1 overexpressing cells as assessed 

by [
3
H] thymidine incorporation. Data represent mean values � S.E.M. n=3; *, p<0.05.  
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4.2. C-terminal lysine residue in PLG binding site of ENO-1 controls invasion of MDA-

MB-231 cells 

Pericellular proteolytic activity is critical for cancer cell migration and invasion. Binding 

of PLG to the cell surface associated ENO-1 facilitates its conversion to PLA and enables 

invasion of cancer cells [50]. C-terminal lysine residue of ENO-1 was identified to be 

responsible for the binding to PLG [26]. To explore, whether cell surface ENO-1 regulates 

cancer cell motility through a PLG-dependent mechanism, C-terminal lysine residue in PLG-

binding region of ENO-1 was mutated to glycine or arginine (Fig. 4.4A). Overexpression of 

ENO-1 wild type (GFP-ENO-1) and ENO-1 mutants (GFP-ENO-1K434G; GFP-ENO1-

K434R) in MDA-MB-231 cells was confirmed by Western blotting (Fig. 4.4B).   

Figure 4.4. Overexpression of ENO-1 mutants.  

(A) Schematic representation of ENO-1 mutants. C-terminal lysine (K) residue was replaced 

by glycine (G) or arginine (R). (B) Overexpression of ENO-1 mutants in MDA-MB-231 cells 

as assessed by Western blotting. β-actin (β-ACT) served as a loading control. Representative 

blots are demonstrated. n=3. 

In order to explore the functional consequence of ENO-1 mutation, MDA-MB-231 cells 

were transfected with GFP-ENO-1, GFP-ENO-1K434G or GFP-ENO-1K434R and a 

transwell invasion assay was performed. Cells transfected with GFP-ENO-1 exhibited 

increased invasion as compared to GFP-EV transfected cells. Substitution of ENO-1 C-

terminal lysine residue by glycine or arginine slightly diminished invasion of cancer cells as 

compared to the cells transfected with wild type ENO-1 (Fig. 4.5A, B). To exclude, that the 

observed effect is not a result of altered cell proliferation, cell growth of MDA-MB-231 cells 

overexpressing wild type and mutated forms of ENO-1 was controled. However, no change in 

cell proliferation was observed (Fig. 4.5C). 
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Figure 4.5. Substitution of C-terminal lysine residue by glycine or arginine in ENO-1 

PLG binding site impairs cancer cell invasion. 

(A) Untransfected MDA-MB-231 cells (UNT) or cells overexpressing GFP (GFP-EV), GFP 

tagged ENO-1 (GFP-ENO-1) or GFP tagged ENO-1 mutants (GFP-ENO-1K434G and GFP-

ENO-1K434R) were seeded onto a fibronectin-coated membrane and allowed to invade for 16 

h. Representative images of the cells that invaded the underside of the membrane are shown. 

(B) Cells that invaded the underside of the membrane were counted. Data represent mean 

values � S.E.M. n=3. (C) Proliferation of untransfected MDA-MB-231 cells (UNT) or GFP-

EV, GFP-ENO-1, GFP-ENO-1K434G and GFP-ENO-1K434R overexpressing cells as 

assessed by [
3
H] thymidine incorporation. Data represent mean values � S.E.M. n=3. 

4.3. LPS induces translocation of ENO-1 to the cell surface and to the extracellular space 

Inflammation has long been thought to contribute to tumor progression, for example, by 

influencing the invasive potential of cancer cells (23). In line with this notion, treatment of 

MDA-MB-231 cells with LPS markedly augmented their migratory and invasive properties 

(Fig. 4.6A-D). The increased migration of MDA-MB-231 cells observed in the presence of 

LPS was abolished by a peptide directed against C-terminal part of ENO-1 involved in the 
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binding of PLG (Fig. 4.6A, B). Stimulation of cells with LPS did not affect their growth (Fig. 

4.6E).  

Figure 4.6. ENO-1 mediates LPS-triggered migration and invasion of cancer cells.  

(A) Impact of ENO-1 peptide on LPS-driven MDA-MB-231 cell migration. Representative 

pictures from the wound healing assay at time 0 h and 8 h are shown. (B) The rate of wound 

closure was assessed by counting the cells that migrated into the same-sized square fields. 

Data represent mean values � S.E.M. n=4; ***, p<0.001. SC, scramble. (C) LPS stimulated 

MDA-MB-231 cells were seeded onto a fibronectin-coated membrane and allowed to invade 

for 16 h. Representative images of cells that invade the underside of the membrane are 

demonstrated. (D) Cells that invaded the underside of the membrane were counted. Data 

represent mean values � S.E.M. n=3; *, p<0.05. (E) Proliferation of MDA-MB-231 cells 

stimulated with LPS for 8 h as assessed by [
3
H] thymidine incorporation. Data represent mean 

values � S.E.M. n=3.  

LPS-mediated increase in cell migration was accompanied by elevated cell surface 

expression of ENO-1. Alterations in cell membrane bound ENO-1 levels were visible 2 h 

after stimulation and remained unchanged thereafter (Fig. 4.7A). Moreover, LPS-induced 
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mobilisation of ENO-1 on the cell surface was TLR-4-dependent as preincubation of cells 

with an anti-TLR-4 blocking antibody inhibited ENO-1 translocation (Fig. 4.7B).  

Figure 4.7. LPS upregulates cell surface expression of ENO-1.  

(A) Cell surface expression of ENO-1 in MDA-MB-231 cells exposed to LPS for the 

indicated time points. The purity of cytosolic and cell membrane fractions was assessed by 

probing the samples for β1 integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are shown. (B) Cell surface expression of ENO-1 in MDA-MB-231 cells 

stimulated with LPS in the absence or presence of an anti-TLR-4 antibody. The purity of 

cytosolic and cell membrane fractions was assessed by probing the samples for β1 integrin 

(β1 INT) and P26S, respectively. n=3. Representative Western blots are demonstrated. TLR, 

toll-like receptor; IgG, isotype control. 

Augmented levels of cell surface bound ENO-1 occcured in the absence of detectable 

changes in total cellular expression of ENO-1 mRNA and protein (Fig. 4.8A, B), suggesting 

that alterations in cell surface ENO-1 abundance are independent of the new protein synthesis.  

Figure 4.8. LPS does not influence ENO-1 mRNA and protein expression.  

(A, B) Time course of ENO-1 mRNA and protein expression after treatment of MDA-MB-

231 cells with LPS for indicated time points as assessed by qPCR (A) and Western blotting 

(B) qPCR data are expressed as �Ct using PBGD as a reference gene. n=3. β-actin served as 

loading control for Western blotting. n=3. Representative Western blots are shown. 
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Interestingly, there was not only an increased ENO-1 translocation to the cell surface, but 

also an increased release into the extracellular space upon LPS stimulation (Fig. 4.9A). 

Elevated extracellular levels of ENO-1 were positively correlated with the markers of 

exosomes, CD63 and Hsp70 implying that ENO-1 is secreted from LPS-treated MDA-MB-

231 cells in the form of vesicles (Fig. 4.9A). To exclude that the release of ENO-1 is a result 

of cell damage, a LDH assay was performed. This experimental procedure revealed no impact 

of LPS on cell viability (Fig. 4.9B). 

Figure 4.9. LPS induces release of ENO-1 into the extracellular space.  

(A) Levels of ENO-1 in conditioned culture media collected after stimulation of MDA-MB-

231 cells with LPS for indicated time points. Hsp70 and CD63 served as exosome markers. 

Coomassie brilliant blue (CBB) staining served as a loading control. n=3. Representative 

Western blots are shown. (B) Release of LDH to cell culture media collected from the cells 

exposed to LPS for indicated time points. Triton X-100 was used as a positive control. Data 

represent mean values � S.E.M. n=3. LDH, lactate dehydrogenase. 

To examine whether the level of cell surface ENO-1 associates with the metastatic 

potential of cancer cells, ENO-1 cell surface expression was explored in a less metastatic 

breast cancer cell line, MCF-7, and a highly metastatic breast cancer cell line, MDA-MB-435. 

In contrast to MDA-MB-435 cells, which exhibited high cell surface bound ENO-1 levels 

under basal conditions, cell membrane associated ENO-1 was not detectable on MCF-7 cells 

(Fig. 4.10). Following LPS exposure, levels of cell surface bound ENO-1 increased on MCF-

7 cells but remained unchanged on MDA-MB-435 cells (Fig. 4.10). This intimates that the 

level of ENO-1 on the cell surface of MDA-MB-435 cells is already saturated under basal 

condition. Altogether, these results imply that i) LPS-triggered ENO-1 exteriorization 

aggravates the malignant behavior of tumor cells and that ii) there is a positive correlation 

between the level of cell surface ENO-1 and the metastatic potential of cancer cells. 
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Figure 4.10. Cell surface-bound ENO-1 associates with the metastatic potential of breast 

cancer cells. 

Cell surface expression of ENO-1 in MCF-7, MDA-MB-231 and MDA-MB-435 cells 

exposed to LPS for 2 h. The purity of cytosolic and cell membrane fractions was assessed by 

probing the samples for β1-integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are shown. 

To study whether ENO-1 exteriorization is stimulus dependent, MDA-MB-231 cells were 

treated with TNF-α and cell surface ENO-1 mobilisation as well as exosome release were 

analysed. In contrast to LPS, TNF-α did not promote ENO-1 translocation to the cell 

membrane (Fig. 4.11A). However, it potentiated exosome production and thus the release of 

ENO-1 into the extracellular space (Fig. 4.11B). 

Figure 4.11. TNF-α induces release of ENO-1 into conditioned medium without affecting 

its cell surface abundance. 

(A) Cell surface expression of ENO-1 in MDA-MB-231 cells exposed to 50 ng/ml TNF-α for 

the indicated time points. The purity of cytosolic and cell membrane fractions was assessed 

by probing the samples for β1-integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are shown. (B) Abundance of ENO-1 in exosomes isolated from MDA-MB-

231 cells exposed to 50 ng/ml TNF-α as assessed by Western blotting. Hsp70 and CD63 

served as exosome markers. n=3. Representative Western blots are demonstrated. 
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4.4. ENO-1 released from MDA-MB-231 cells in the form of exosomes enhances tumor 

cell migration in a paracrine manner 

Accumulating evidence suggests that cancer cells secrete abundant levels of exosomes, 

small (30-150 nm in diameter) membranous vesicles [171]. Thus, we examined whether 

ENO-1 detected in the cell culture media of MDA-MB-231 cells is associated with exosomes. 

Exosomes were isolated by serial ultracentrifugation steps from cell culture supernatants of 

MDA-MB-231 cells overexpressing GFP-EV or GFP-ENO-1 (Fig. 4.12.).  

Figure 4.12. Exosome isolation. 

Schematic representation of exosome purification from the cells overexpressing GFP-EV or 

GFP-ENO-1.

Electron microscopy confirmed the presence of double membrane vesicles with a size 

range between 100 and 150 nm in the recovered high speed pellets (Fig. 4.13A, upper panel). 

ENO-1 detected by an anti-ENO-1 antibody coupled to gold particles was observed on the 

surface of exosomes (Fig. 4.13A, lower panel). Purified exosomes were further analyzed by 

Western blotting. Despite similar expression levels of GFP and GFP tagged ENO-1 in MDA-

MB-231 total cell lysates, only GFP-ENO-1 was found in exosomes (Fig. 4.13B). Isolated 

exosomes were also positive for CD63 and Hsp70 (Fig. 4.13B). In order to assess whether 

LPS-triggered increase in the amount of extracellular ENO-1 is a result of augmented 

exosome secretion, exosomes were isolated from LPS-treated MDA-MB-231 cells and 

subjected to Western blotting with an anti-ENO-1 antibody. Stimulation of cells with LPS 
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resulted in increased levels of ENO-1, which was accompanied by a concomitant increase in 

the levels of Hsp70 and CD63 (Fig. 4.13C). As LPS did not potentiate cell proliferation (Fig. 

4.6E), changes in the cell numbers could not account for the observed effect. 

Figure 4.13. ENO-1 is released from MDA-MB-231 cells in the form of exosomes. 

(A) Transmission electron micrographs of exosomes isolated from MBA-MB-231 cells. 

Exosomes negatively stained with 2 % uranyl acetate (upper panel). Exosomal ENO-1 

visualized by a gold particle-coupled anti-ENO-1 antibody (lower panel). Bar size 100 nm. 

(B) Levels of ENO-1 in total protein extracts (left panel) and exosomes (right panel) isolated 

from GFP-EV and GFP-ENO-1 overexpressing MDA-MB-231 cells as assessed by Western 

blotting. Hsp70 and CD63 served as exosome markers. n=3. Representative Western blots are 

shown. (C) Abundance of ENO-1 in exosomes isolated from MDA-MB-231 cells exposed to 

LPS as assessed by Western blotting. Hsp70 and CD63 served as exosome markers. n=3. 

Representative Western blots are demonstrated. 

To assess a functional role of exosomal ENO-1 in cancer cells, an exosome uptake assay 

was performed. Immunofluorescence analysis demonstrated uptake of GFP-ENO-1 loaded 

exosomes by parental MDA-MB-231 cells and their redistribution in the perinuclear region 

(Fig. 4.14A). To determine whether exosomal ENO-1 is able to influence migratory and 

invasive properties of recipient cells, wound healing and transwell invasion assays were 

performed in the presence of exosomes isolated from cells overexpressing either GFP alone or 

GFP tagged ENO-1. The rate of wound closure was markedly increased when GFP-ENO-1 

loaded vesicles were applied (Fig. 4.14B, C). Similarly, invasion of MDA-MB-231 cells was 

enhanced when exosomes isolated from cells overexpressing GFP-ENO-1 were used (Fig. 

4.14D, E). These results support the functional role of exosomal ENO-1 in the regulation of 

cancer cell motility.  
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Figure 4.14. ENO-1 released in the form of exosomes enhances tumor cell migration and 

invasion.

(A) Representative pictures demonstrating uptake of exosomes isolated from GFP-EV and 

GFP-ENO-1 overexpressing cells by MDA-MB-231 cells. Bar size 5 µM. n=3. (B) Impact of 

exosomes isolated from GFP-EV or GFP-ENO-1 cells on MDA-MB-231 cell migration. 

Representative pictures from the wound-healing assay at time 0 h and 8 h are shown. (C) The 

rate of wound closure was assessed by counting the cells that migrated into the same-sized 

square fields. Data represent mean values � S.E.M. n=3; **, p<0.01. (D) MDA-MB-231 cells 

stimulated with exosomes isolated from cells overexpressing either GFP-EV or GFP-ENO-1 

were seeded onto a fibronectin-coated membrane and allowed to invade for 16 h. 

Representative images of cells that invaded the underside of the membrane are shown. (E) 

Cells that invaded the underside of the membrane were counted. Data represent mean values �

S.E.M. n=3; *, p<0.05. 

In order to assess whether LPS potentiates release of ENO-1 into the extracellular space 

from other breast cancer cell lines, MCF-7 and MDA-MB-435 cells were analyzed for 

exosome production. ENO-1, Hsp70 and CD63 were not detected under basal conditions and 

upon LPS stimulation when MCF-7 cells were employed (Fig. 4.15). MDA-MB-435 

displayed high extracellular levels of ENO-1, Hsp70, and CD63 already under basal 

condition. LPS stimulation did not further increase exosome production in these cells (Fig. 
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4.15). Observed differences in exosome secretion cannot arise from dissimilarities in cell 

growth as exosomes were always isolated from the same number of cells, irrespective of the 

conditions applied. Together, our results suggest that not only the level of cell surface bound 

ENO-1 but also the amount of ENO-1 released into the extracellular space in the form of 

exosomes correlate with the metastatic potential of cancer cells.  

Figure 4.15. LPS-triggered release of exosomal ENO-1 from different breast cancer cell 

lines. 

Levels of ENO-1 in exosomes isolated from MCF-7, MDA-MB-231 and MDA-MB-435 cells 

exposed to LPS as assessed by Western blotting. Hsp70 and CD63 served as exosome 

markers. n=3. Representative Western blots are demonstrated. 

4.5. Translocation of ENO-1 to the cell surface of MDA-MB-231 cells occurs via a 

nonclassical secretory pathway 

As ENO-1 lacks a N-terminal signal peptide motif, which is required for ER/Golgi 

targeting, a nonconventional protein secretion pathway has been suggested to explain 

transport of ENO-1 to the cell surface. To verify this notion, several biochemical approaches 

were applied. Preincubation of MDA-MB-231 cells with brefeldin A, a known blocker of 

ER/Golgi transport, did not inhibit translocation of ENO-1 to the cell surface upon exposure 

of cells to LPS, implying that a nonclassical secretion pathway is involved (Fig. 4.16A). 

Several mediators of nonconventional cell surface protein expression have been described, 

including ABC transporter, endosomal recycling, and Na
+
/K

+
 ATPase. However, glyburide, 

an ABC transporter inhibitor, methylamine, an endosomal recycling blocker, and ouabain, a 

Na
+
/K

+
 ATPase antagonist had no effect on LPS-driven transport of ENO-1 to the cell surface 

(Fig. 4.16B - D).  
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Figure 4.16. Translocation of ENO-1 to the cell surface of MDA-MB-231 cells occurs a 

via nonclassical secretory pathway.

(A-D) Cell surface expression of ENO-1 in MDA-MB-231 cells stimulated with LPS in the 

absence or presence of 10 �g/ml brefeldin A (A), 5 mM glyburide (B), 5 mM methylamine 

(C) or 100 nM ouabain (D). The purity of cytosolic and cell membrane fractions was assessed 

by probing the samples for β1-integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are demonstrated.  

4.6. LPS-driven ENO-1 exteriorization is mediated by Ca
2+ 

As L-type Ca
2+

 channels (LTCC) have been implicated in exteriorization of another PLG 

receptor, histone 2B (H2B) [208], we next investigated the role of Ca
2+

 in the transport of 

ENO-1 to the cell surface. First, preincubation of MDA-MB-231 cells with the Ca
2+

ionophore A23187 induced a time and concentration dependent translocation of ENO-1 to the 

cell surface (Fig 4.17A). To elucidate whether LPS and A23187 share a common pathway to 

regulate ENO-1 exteriorization, MDA-MB-231 cells were simultanously treated with these 

two reagents. Although A23187 and LPS increased transport of ENO-1 to the cell surface, 

this effect was not further increase when both stimuli were applied at the same time (Fig 

4.17B), indicating that A23187 and LPS use a similar mechanism to regulate ENO-1 cell 
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surface abundance. To further explore the involvement of Ca
2+

 in LPS-triggered transport of 

ENO-1 to the cell surface, the levels of intracellular Ca
2+ 

were depleted by pretreatment of 

MDA-MB-231 cells with  the Ca
2+ 

chelator BAPTA. As depicted in Figure 4.17C, BAPTA 

blocked LPS-driven ENO-1 translocation. Similar results were obtained when cyclopiazonic 

acid (CPA), an inhibitor of ER Ca
2+

ATPase pump was used (Fig 4.17D).  

Figure 4.17. LPS-driven translocation of ENO-1 to the cell surface is dependent on 

intracellular Ca
2+

 levels.  

(A-D) Cell surface expression of ENO-1 in MDA-MB-231 cells stimulated with LPS in the 

absence or presence of 10 �M A23187 (A, B), 20 �M BAPTA (C), or CPA (D). The purity of 

cytosolic and cell membrane fractions was assessed by probing the samples for β1-integrin 

(β1 INT) and P26S, respectively. n=3. Representative Western blots are demonstrated.  

In order to investigate whether the release of ENO-1 into the extracellular space also 

depends on Ca
2+

 levels, MDA-MB-231 cells were first preincubated with the Ca
2+

 ionophore 

A23187. A23187 augmented exosomal levels of ENO-1, which positively correlated with 

elevated levels of CD63 and Hsp70 (Fig. 4.18A). Similar results were obtained when MDA-

MB-231 cells were exposed to LPS. Moreover, LPS-driven release of exosomal ENO-1 was 

blocked by BAPTA. Notably, BAPTA alone completely abolished release of exosomes into 

the extracellular space (Fig. 4.18B). 
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Figure 4.18. The release of exosomes is regulated by intracellular Ca
2+ 

levels. 

(A, B) Levels of ENO-1 in exosomes isolated from MDA-MB-231 cells stimulated with 1 �M 

A23187 (A) or with combination of LPS and 20 �M BAPTA (B) as assessed by Western 

blotting. Hsp70 and CD63 served as exosome markers. n=3. Representative Western blots are 

shown.

To demonstrate the direct effect of LPS on Ca
2+

 levels, cells were treated either with LPS 

alone or in combination with BAPTA or CPA and intracellular Ca
2+

 was measured by live cell 

imaging. There was no difference in the basal intracellular calcium level of the cells, 

regardless of the treatment or presence of extracellular Ca2+ (Fig. 4.19A, B). The LPS-induced 

intracellular Ca
2+

 increase was significantly diminished by removal of the extracellular Ca
2+ 

or 10 minutes of BAPTA or CPA treatment (Fig. 4.19A, C). These data indicate that the LPS-

induced ENO-1 exteriorization is Ca
2+

 -dependent. 
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Figure 4.19. LPS-mediated increase in intracellular Ca
2+ 

level. 

(A) Representative traces of live cell calcium measurements upon LPS stimulus in the 

presence and absence of extracellular Ca
2+

, 20 µM BAPTA and 50 µM CPA. (B, C) 

Quantitative data illustrating basal Ca
2+

 levels (B) and LPS-induced intracellular Ca
2+

 change 

(C) in MDA-MB-231 cells. Data represent mean values � S.E.M. n=4; n cells=26-52 in each 

group; **, p<0.01; ***, p<0.001.

4.7. Blockage of STIM1/ORAI1 inhibits LPS-induced ENO-1 exteriorization 

To further investigate the role of Ca
2+ 

in the regulation of ENO-1 translocation, the 

expression STIM1 and its interacting partner - ORAI1, a member of store-operated calcium 

(SOC) channels, as well as the Cav1.2 subunit of LTCC was assessed. We focused on STIM1, 

ORAI1, and Cav1.2 LTCC since these Ca
2+ 

channels have been found to control translocation 

of other PLG receptors to the cell surface and to regulate LPS-induced inflammatory 

responses [208-210]. Whereas STIM1 and ORAI1 mRNA was detected in MDA-MB-231 

cells, Cav1.2 was not expressed in this cell line (Fig. 4.20A). In order to determine the 

potential role of STIM1 and ORAI1 in LPS-triggered transport of ENO-1 to the cell surface, a 

selective SOC channel inhibitor YM58483 was employed. Pretreatment of MDA-MB-231 

cells with YM58483 suppressed, in a dose dependent manner, LPS-induced translocation of 

ENO-1 to the cell surface (Fig. 4.20B). Concomitantly, YM58483 inhibitor reduced release of 

exosomal ENO-1 into the extracellular space (Fig. 4.20C).  
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Figure 4.20. Blockage of STIM1/ORAI1 inhibits LPS-induced ENO-1 exteriorization. 

(A) qPCR analysis of STIM1, ORAI1 and Cav1.2 mRNA expression in MDA-MB-231 cells. 

Data are expressed as �Ct using PBGD as a reference gene. n=3. N.D; not detectable. (B) Cell 

surface expression of ENO-1 in MDA-MB-231 cells exposed to LPS in the absence or 

presence of YM58483. The purity of cytosolic and cell membrane fractions was assessed by 

probing the samples for β1 integrin (β1 INT) and P26S, respectively. n=3. Representative 

Western blots are shown. (C) Levels of ENO-1 in exosomes isolated from MDA-MB-231 

cells exposed to LPS in the absence or presence of 5 �M YM58483 as assessed by Western 

blotting. Hsp70 and CD63 served as exosome markers. n=3. Representative Western blots are 

shown. 

To exclude nontarget effects of the YM58483 inhibitor, siRNA directed against STIM1 

and ORAI1 was applied. Depletion of STIM1 markedly decreased LPS-driven translocation 

of ENO-1 to the cell surface (Fig. 4.21A). Similar results  were obtained  when ORAI1 

siRNA was employed (Fig. 4.21B). Efficiency of STIM1 and ORAI1 knockdown in MDA-

MB-231 cells is demonstrated in figure 4.21C, D.  
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Figure 4.21. Knock down of STIM1/ORAI1 inhibits LPS-induced ENO-1 exteriorization. 

(A) Effect of STIM1 depletion on ENO-1 cell surface levels in MDA-MB-231 stimulated 

with LPS. The purity of cytosolic and cell membrane fractions was assessed by probing the 

samples for β1 integrin (β1 INT) and P26S, respectively. n=3. Representative Western blots 

are demonstrated. siSTIM1, siRNA directed against STIM1; siCtrl, control siRNA. (B) Effect 

of ORAI1 depletion on ENO-1 cell surface levels in MDA-MB-231 stimulated with LPS. The 

purity of cytosolic and cell membrane fractions was assessed by probing the samples for β1 

integrin (β1 INT) and P26S, respectively. n=3. Representative Western blots are 

demonstrated. siORAI1, siRNA directed against ORAI1. (C, D) Efficacy of STIM1 and 

ORAI1 knockdown in MDA-MB-231 cells as assessed by qPCR. Data are expressed as �Ct 

using PBGD as a reference gene. n=3. 

To prove the direct involvement of STIM1/ORAI1 in LPS-mediated Ca
2+

 influx in GFP-

EV and GFP-ENO-1 cells, cells were transfected with STIM1 or ORAI1 siRNA and changes 

in intracellular Ca
2+

 were measured by live cell imaging. GFP-ENO-1 overexpressing cells 

were characterized by increased basal intracellular Ca
2+

 levels as compared to GFP-EV cells. 

Transfection of cells with STIM1 or ORAI1 siRNA slightly diminished basal intracellular 

Ca
2+ 

levels in GFP-ENO-1 and GFP-EV cells (Fig. 4.22A). Upon LPS stimulation, GFP-

ENO-1 cells displayed increased intracellular Ca
2+

 levels as compared to LPS-treated GFP-

EV cells. Depletion of STIM1 or ORAI1 significantly reduced LPS-triggered Ca
2+

 influx as 

opposed to the cells treated with control siRNA in both cell types (Fig. 4.22B). These results 
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imply that ENO-1 overexpression in MDA-MB-231 cells triggers STIM1/ORA1-dependent 

Ca
2+

 entry following LPS stimulation.  

Figure 4.22. Depletion of STIM1/ORAI1 inhibits LPS-induced Ca
2+

 entry.  

(A) Quantitative data illustrating basal Ca
2+

 levels in GFP-EV and GFP-ENO-1 cells treated 

with control siRNA or siRNA directed against ORAI1 or STIM1. Data represent mean values 

� S.E.M. n=3; n cells=44-119 in each group. (B) Quantitative data illustrating LPS-induced 

changes in intracellular Ca
2+

 level in GFP-EV and GFP-ENO-1 cells upon STIM1 or ORAI1 

depletion. Data represent mean values � S.E.M. n=3; n cells=44-119 in each group; ***, 

p<0.001. 

4.8. Blockage of STIM1/ORAI1 reduces ENO-1-dependent MDA-MB-231 cell motility  

To elucidate the potential role of STIM1/ORAI1 in LPS-driven ENO-1 exteriorization and 

thus in the regulation of cell motility, a wound healing assay employing MDA-MB-231 cells 

overexpressing GFP alone or GFP-ENO-1 was performed. Overexpression of GFP-ENO-1 

markedly increased the rate of wound closure as compared to the cells transfected with GFP-

EV. YM58483 inhibited the effect of GFP-ENO-1 overexpression, decreasing cell migration 

to the level observed in YM58483-treated GFP-EV overexpressing MDA-MB-231 cells (Fig. 

4.23A,B). To confirm these results, cells transfected either with GFP-EV or GFP-ENO-1 were 

treated with siRNA directed against STIM1 or control siRNA. A clear tendency towards 

reduced cell migration was observed in ENO-1 overexpressing cells treated with STIM1 

siRNA as compared to the control siRNA transfected cells (Fig. 4.23C, D).  
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Figure 4.23. Suppression of STIM-1 reduces ENO-1-mediated migration of MDA-MB-

231 cells. (A, B) Effect of 5 �M YM58483, a SOC channel inhibitor, on non-directional 

migration of MDA-MB-231 cells stably transfected with GFP-EV or GFP-ENO-1. Cells were 

scratched and incubated for 8 h at 37 °C in serum-free RPMI medium. Representative pictures 

from the wound-healing assay at time 0 h and 8 h are shown. The rate of wound closure was 

assessed by counting the cells that migrated into the same-sized square fields. Data represent 

mean values � S.E.M. n=5; *, p<0.05 (C, D) Impact of STIM1 knockdown on nondirectional 

migration of MDA-MB-231 cells stably transfected with GFP-EV or GFP-ENO-1. Cells were 

scratched and incubated for 8 h at 37 °C in serum-free RPMI medium. Representative pictures 

from the wound-healing assay at time 0 h and 8 h are shown. The rate of wound closure was 

assessed by counting the cells that migrated into the same-sized square fields. Data represent 

mean values � S.E.M. n=3; *, p<0.05.   

Similar results were obtained when ORAI1 siRNA was employed (Fig. 4.24A, B). To 

further confirm that suppressed migration of MDA-MB-231 cells is a result of decreased 

ENO-1 cell surface expression, STIM1 depleted non-overexpressing MDA-MB-231 cells 

were treated with a peptide directed against C-terminal part of ENO-1 involved in the binding 

of PLG and a wound healing assay was performed. Treatment of cells with the ENO-1 peptide 

or STIM1 siRNA considerably reduced their migratory properties, however, this effect was 
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not potentiated when these two reagents were applied at the same time (Fig. 4.24C, D). These 

results support the crucial role of STIM1-mediated Ca
2+

 influx in ENO-1-dependent cell 

migration. 

Figure 4.24. ENO-1-mediated migration of MDA-MB-231 cells depends on ORAI1 and 

STIM1 expression.   

(A) Effect of ORAI1 knockdown on nondirectional migration of MDA-MB-231 cells stably 

transfected with GFP-EV or GFP-ENO-1. Cells were scratched and incubated for 8 h at 37 °C 

in serum-free RPMI medium. Representative pictures from the wound-healing assay at time 0 

h and 8 h are shown. (B) The rate of wound closure was assessed by counting the cells that 

migrated into the same-sized square fields. Data represent mean values � S.E.M. n=3; *, 

p<0.05. (C) Effect of STIM1 knockdown and/or ENO-1 peptide on nondirectional migration 

of MDA-MB-231 cells. Cells were scratched and incubated for 12 h at 37 °C in serum-free 

RPMI medium. Representative pictures from the wound-healing assay at time 0 h and 12 h 

are shown. SC; scramble. (D) The rate of wound closure was assessed by counting the cells 

that migrated into the same-sized square fields. Data represent mean values � S.E.M. n=3; **, 

p<0.01; ***, p<0.001. 



Discussion 

___________________________________________________________________________ 

52 

5. DISCUSSION 

5.1. Cell surface expression of ENO-1 is elevated on breast cancer cells 

Cancer cell invasion is a multistep process which requires proteolytic activity, in order to 

invade tissue and metastasize. Various proteases have been associated with the movement of 

cancer cells [5, 6], the best characterized is a serine protease PLA. PLA results from PLG 

activation. Accumulation of PLG on the cell surface and its subsequent conversion to PLA 

contributes to the modulation of pericellular proteolytic activity and thus to the regulation of 

migratory properties of numerous cell types including cancer cells [57, 83]. Binding of PLG 

to the cell surface is mediated by a number of molecules, including ENO-1, annexin A2, H2B, 

cytokeratin 8 or β-actin. ENO-1 is a glycolytic enzyme primary localized in the cytoplasm of 

prokaryotic and eukaryotic cells [78]. Besides its participation in glycolysis, ENO-1 may be 

translocated to the cell surface where it binds PLG and thus takes part in cell surface 

proteolysis. Dysregulated expression of ENO-1 has been reported in many cancer types and 

several mechanisms seem to account for the indicated changes. Firstly, ENO-1 gene is located 

in the chromosomal region 1p36 [88], which is frequently rearranged in human cancers. 

Secondly, ENO-1 gene expression may be induced by hypoxia through a hypoxia-inducible 

factor 1 binding element [89]. Thirdly, the expression of ENO-1 has been observed to be 

increased in cells overexpressing prooncogenic c-Myc [90]. In line with these observations, 

high levels of ENO-1 were found in many types of cancer, including head, neck, breast and 

lung cancer [77]. Increased levels of ENO-1 in cancer cells correlate with cancer progression 

and poor clinical outcome of the affected patients [98]. Ectopic overexpression of ENO-1 

promotes cell proliferation, migration, invasion, and colony formation thereby contributing to 

metastasis formation [80, 92]. The ability of ENO-1 to regulate so many processes related to 

cancer cell biology results from its participation in glucose metabolism and therefore in 

energy production as well as its capability to modulate expression of genes involved in cell 

growth and inflammation [80]. Although increased abundance of ENO-1 was described on the 

cell surface of cancer cells, the contribution of cell surface bound ENO-1 to the increased 

migratory and invasive properties of tumor cells as well as the mechanism underlying ENO-1 

exteriorization have not yet been reported.  

Our results indicate, that ENO-1 is highly expressed in different human cancers, including 

breast ductal carcinoma, squamos cell lung carcinoma, bronchoalveolar carcinoma, lung and 

colon adenocarcinoma. Among tested human cancers the highest expression of ENO-1 was 
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observed in breast ductal carcinoma. Cell fractionation and immunofluorescence analysis 

revealed, that ENO-1 is not only present in the cytosolic but also in the membrane fractions. 

Although breast cancer cells were characterized by high cell surface levels of ENO-1, 

augmented ENO-1 cell surface abundance was not noted on the primary mammary epithelial 

cells, indicating that cell surface expression of ENO-1 is associated with the pathological 

condition. Cell surface bound ENO-1 was also detected on immune cells (neutrophils, 

monocytes, T cells and B cells), neurons and pathogenic bacteria [80]. Due to its ability to 

concentrate PLG on the cell surface, ENO-1 contributes to acquisition of the invasive 

phenotype and thus allows pathogens, immune cells and cancer cells to spread [80]. 

Consequently, higher cell surface expression of ENO-1 in patients with NSCLC was found to 

correlate with aggressive behaviour of cancer cells, shorter progression-free period and overal 

survival of the patients [84, 211].  

The significance of increased cell surface ENO-1 expression in human cancer tissue was 

analyzed in breast cancer cells overexpressing ENO-1. Cells transfected with GFP tagged 

ENO-1 (GFP-ENO-1) diplayed increased migratory and invasive properties, suggesting the 

role of ENO-1 in the transformation of breast cancer cells into more aggressive phenotype. 

This notion is futher supported by the experiments, in which the mutated forms of ENO-1 

were used. Mutation of ENO-1 in PLG binding site reduced motility of MDA-MB-231 cells. 

The importance of PLG/PLA system in cancer cell invasion has been well documented [212]. 

Mice lacking PLG were shown to develop smaller primary tumors with delayed metastasis 

formation [213]. The PLG/PLA system may contribute to tumor progression in a direct as 

well as an indirect way. The direct effect is associated with the ability of PLA to degrade 

ECM. The indirect contribution involves degradation of ECM proteins and subsequent 

activation of tumor promoting factors, including MMPs, TGF-β, bFGF and VEGF. Most of 

these molecules are stored in the ECM in the inactive form. PLA mediated proteolytic 

proccessing leads to their release and activation [19]. Thus interference with PLG binding to 

the cell surface could represent one of the approaches in anti-cancer therapies.  

5.2. LPS increases cell surface expression of ENO-1 

The role of inflammation in cancer development and progression has been discussed in 

several studies [115, 122, 123]. Infection, chronic irritation or factors released by the 

inflammatory cells may cause or accelarate cancer [115]. In particular, ROS and nitrogen 

species, cytokines such as TNF-α, IL-6 and -17, chemokines (CXCL family) or 
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infectious agents (Helicobacter pylori, human papilomavirus) have been described as pro-

oncogenic factors. LPS, which can be released from bacteria may cause inflammatory 

responses within host tissue. Recent studies have documented association of LPS with a 

marked acceleration of the metastatic phenotype. Systemic administration of LPS into animals 

suffering from breast cancer increased adhesion and enhanced angiogenesis in a VEGF-

dependent manner. In addition, tumor cells in LPS-treated animals displayed increased 

invasion [155, 170], implying that LPS contributes to accelerated spreading of cancer cells.  

Our study demonstrates a link between LPS treatment and increased migration and 

invasion of breast cancer cells. LPS-triggered increased motility of cancer cells was blocked 

by a peptide directed against C-terminal part of ENO-1, involved in PLG binding, suggesting 

a crucial role of this glycolytic enzyme in LPS-driven cancer cell migration. Cell surface 

bound rather than cytosolic ENO-1 seemed to be more important in this procces, as PLG 

binding and its subsequent activation takes place on the cell surface. Indeed, cell fractionation 

of breast cancer cells after LPS treatment revealed increased levels of ENO-1 on the cell 

surface and reduced abundance of ENO-1 in the cytosolic compartment, suggesting that LPS 

potentiates cell membrane expression of ENO-1 through its translocation from the cytoplasm 

to the cell surface. This notion is supported by the results demonstrating no change in ENO-1 

mRNA and total protein expression following exposure of cancer cells to LPS. Altogether, 

our data imply that LPS-triggered ENO-1 translocation is independent of its de novo protein 

synthesis. 

Although high cell surface expression of ENO-1 has been detected on cancer cells, our 

results indicate that inflammatory stimuli may further increase cell surface levels of this 

glycolytic enzyme. LPS-induced inflammatory responses have been shown to regulate cancer 

development/progression by several ways, they may (i) potentiate expression of proteins 

involved in the breakdown of the ECM [214], ii) increase adhesive properties of cancer cells 

that are essential for the metastatic colonization of a normal tissue [160], iii) induce 

recruitment of inflammatory cells into the tumor microenvironment which in turn can 

contribute to ECM turnover [215], iv) regulate angiogenesis [168], and v) modulate, as 

indicated by our study, cell surface associated proteolysis by triggering PLG receptor 

exteriorization. This notion is further supported by a study, in which a murine model of LPS-

induced lung injury was used [83]. In this study, LPS application promoted recruitment of 

monocytes overexpressing ENO-1 to the acutely inflammed lung but not the cells that were 

overexpressing truncated form of ENO-1 lacking PLG binding site. These findings together 
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with our results, implicate that (i) LPS-triggered translocation of ENO-1 to the cell surface is 

cell type independent  and (ii) further support the link between cell surface bound ENO-1 and 

invasive potential of cells. In addition, our study revealed causal relationship between 

exposure of breast cancer cells to LPS and their metastatic potential.  

LPS-mediated increase in cell surface levels of ENO-1 could be readily blocked by an anti-

TLR-4 antibody, which blocks LPS binding to its receptor. Although our study did not 

analyze the effect of the TLR-4 blocking antibody on cancer cell migration, numerous studies 

pointed out an essential role of TLR-4 in cancer progression. Expression and activation of 

TLR-4 has been demonstrated in breast, colon, prostate, lung and melanoma cancer cells 

[216]. Activation of TLR-4 in mouse colon carcinoma cells allowed tumor cells to avoid the 

host immune system [216]. Furthermore, supernatants from LPS-stimulated cancer cells were 

shown to inhibit T-cell proliferation. Moreover, administration of siRNA directed against 

TLR-4 or a TLR-4 blocking peptide prolonged the survival of mice bearing transplantable 

prostate carcinoma cells [217].  

Surprisingly, LPS did not only act on the cell surface levels of ENO-1, but also increased 

amount of exosomal ENO-1 in cell culture conditioned media. Although, the direct 

involvement of LPS in exosome production has not been documented yet, some of the studies 

reported a link between exosomes and inflammation [218, 219]. A very recent study 

characterized exosomes present in BALF obtained from the patients suffering from 

sarcoidosis [218]. Sarcoidosis is a systemic disease with unknow etiology characterized by 

inflammation and damage of the lung. Patients with sarcoidosis displayed significantly higher 

exosome production in the lung. In addition, exosomes from these patients exhibited different 

protein composition and appeared to have pro-inflammatory effects towards monocytes and 

bronchial epithelial cells.  

In our study, we also explored the potential impact of TNF-α on cell surface bound and 

exosomal ENO-1. TNF-α is a pro-inflammatory cytokine, which was found to be important 

during the early events of tumorigenesis, due to its ability to regulate activity of MMPs and 

processes such as cell adhesion and angiogenesis [115]. Although, stimulation with TNF-α 

did not change the level of cell surface bound ENO-1, it increased the abudance of exosomal 

ENO-1. These findings are in line with another study, which demonstrated alterations in 

exosome content after stimulation of endothelial cells with TNF-α. In particular, exposure of 

endothelial cells to TNF-α changed protein and mRNA composition of exosomes [220]. The 

major changes observed in exosomes released from the stimulated cells, were associated with 
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increased abundance of ICAM-1 and tumor necrosis factor alpha-induced protein 3 

(TNFAIP3). Besides proteins, gene expression analysis of the exosomes revealed increased 

amount of mRNA of 18 genes, mostly involved in stress response, such as superoxide 

dismutase, IL-8, VCAM-1 and NF-κB pathway members. Altered exosome composition was 

also demonstrated in recent study, describing elevated levels of cytokines and miRNAs in 

macrophages stimulated with LPS [219]. Although these two studies reported changes in 

exosome composition rather than exosome amount upon stimulatory conditions, our findings 

demonstrated for the first time that both, LPS and TNF-α, may increase exosome abundance 

and thus ENO-1 amount in conditioned media of cancer cells.  

5.3. Exosomal bound ENO-1 enhances tumor cell migration and invasion  

Exosomes are small extracellular vesicles (30-150 nm) formed by endosomal budding 

from most of the cell types including cancer cells [171]. They contain proteins and nucleic 

acids of the parental cells and are actively involved in the intercellular communication. Most 

frequently, exosomes contain proteins involved in the membrane transport and membrane 

fusion, proteins present in lipid microdomains such as integrins and tetraspanins, but also 

cytoskeletal proteins and proteins involved in metabolic and signalling pathways. Although 

exosomes contain broad spectrum of proteins, their content is dynamic and can vary with 

regard to enviromental conditions. The molecular mechanism of protein targetting to 

exosomes is unknown thus far. 

Strikingly, our results imply that ENO-1 is packed into the exosomes and actively released 

into the extracellular space. A growing body of evidence suggests that exosomes may act as 

regulators of cell-to-cell communication. This concept is based on the finding demonstrating 

that exosomes released from a given cell type may interact with other cells, leading to their 

stimulation [173]. Several mechanisms have been proposed to explain effects of exosomes on 

target cells. Firstly, exosome surface proteins may interact with receptors on target cells and 

thus activate signalling pathways. Secondly, exosome membrane proteins can be cleaved by 

cellular proteases allowing soluable ligands to bind to the respective receptors. Thirdly, 

exosomes may be internalized by target cells, releasing their content directly to the cytoplasm 

[173]. Exosomes were found to regulate a variety of processes, including cell proliferation, 

differentiation, migration, and invasion [173]. Tumor cells were shown to release large 

amounts of exosomes [221]. Exosomes derived from tumor cells may transfer oncogenes and 

pro-angiogenic molecules to stromal cells, and thus promote tumor vascularization. 
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Additionally, they can contribute to stromal remodelling and tumor cell invasion by carrying 

active MMPs [173]. In view of these findings, it is tempting to speculate that exosomal ENO-

1 could contribute to tumor progression either by concentrating proteolytic activity on the 

cancer cell surface or by enlarging the cytoplasmic pool of ENO-1 thereby regulating 

expression of genes involved in cell growth, migration, and inflammation. Our results 

demonstrate, that GFP-ENO-1 loaded exosomes may alter cancer cell behaviour by increasing 

cancer cell migration and invasion. Yet, it is unclear whether exosomal ENO-1 increases the 

migratory and invasive properties of target cells by being reattached to the cell membrane or 

by being endocytosed and consequently translocated to the cell surface. Although stimulation 

of MDA-MB-231 cells with GFP-ENO-1 loaded vesicles led to their uptake and subsequent 

perinuclear redistribution of GFP-ENO-1, the fate of uptaken GFP-ENO-1 in recipient cells is 

unknown and needs future investigation. 

The fact that the mechanism of ENO-1 release into the extracellular space in response to 

LPS is similar to the mechanism responsible for translocation of this glycolytic enzyme to the 

cell surface implies that these two processes may occur simultaneously or successively. 

Namely, cell surface localization of ENO-1 may assure its association with the intralumenal 

vesicles of the multivesicular endosomes and its further release into the extracellular space in 

the form of exosomes. Rebinding of exteriorized ENO-1 to the cell surface closes the cycle of 

ENO-1 extracellular transport. Similar mechanism has been proposed to explain extracellular 

localization of annexin A2 [222]. Nonetheless, it still remains to be elucidated which part of 

ENO-1 stays on the cell surface and which one is packed into exosomes and where the 

decision about ENO-1 sorting is made. 

5.4. Transport of ENO-1 to the cell surface and to the extracellular space is regulated by 

intracellular levels of Ca
2+

ENO-1 is a cytoplasmic protein with established function in a glucose metabolism. As 

ENO-1 lacks a N-terminal signal peptide motif, which is required for ER/Golgi targeting 

[223], a nonconventional protein secretion pathway has been suggested to explain transport of 

ENO-1 to the cell surface. Four potentional mechanisms describing translocation of cytosolic 

proteins into the extracellular space have been reported thus far [224]. Two of them involve 

intracellular vesicles such as secretory lysosomes and exosomes. Other two mechanisms are 

characterized either by direct translocation of cytoplasmic proteins across the plasma 

membrane with the help of ABC transporters or by membrane blebbing. Our data clearly 



Discussion 

___________________________________________________________________________ 

58 

demonstrate, that the transport of ENO-1 into the extracellular space may occur in the form of 

exosomes. To further support this notion, we employed pharmacological blockers of known 

secretory pathways and analyzed cell-surface levels of ENO-1. However, blockers of 

ER/Golgi transport, ABC transport, endosomal recycling and Na
+
/K

+
 ATPase antagonist had 

no effect on LPS-driven transport of ENO-1 to the cell surface. These data suggest that 

translocation of ENO-1 to the cell surface occurs through a nonconventional secretion 

pathway.  

Despite the evidence of the nonclassical transport of ENO-1 to the extracellular milieu, the 

precise mechanism, which underlies ENO-1 exteriorization remains unknown. As exosome 

release is tightly regulated at the level of intracellular Ca
2+

, we verified the importance of 

Ca
2+ 

for ENO-1 exteriorization. LPS-mediated increase of cell surface bound and exosomal 

ENO-1 was reduced upon pretreatment of the cells with Ca
2+ 

blockers, implying an essential 

role of this ion in ENO-1 transport. Intracellular Ca
2+

 modulates various cellular functions 

including proliferation, differentiation and apoptosis. The level of intracellular Ca
2+

 is a result 

of Ca
2+ 

entry from the extracellular space and intracellular stores, such as ER and 

mitochondria [225]. Some human diseases including Alzheimer´s disease, diabetes and cancer 

have been associated with dysregulated levels of intracellular Ca
2+

. Although abnormal 

changes in intracellular levels of Ca
2+

 may not necessary trigger the malignant phenotype, 

Ca
2+

 may orchestrate processes leading to tumor progression, including proliferation, 

migration and invasion [225]. This notion is supported by the fact that agents targeting Ca
2+ 

signaling pathways are currently tested in clinical trials. Here, the best known example is 

carboxyamidotriazole (CAI), an inhibitor of non-voltage-operated Ca
2+ 

channels and Ca
2+

channel-mediated signaling pathways. The efficacy of CAI was tested in patiens suffering 

from epithelial ovarian cancer and renal cancer [226-228]. Although this agent was shown to 

stabilize the progression of the disease, treatment of the patients with CAI was associated 

with severe side effects. To narrow the adverse effects of Ca
2+ 

channels blockers, new 

therapeutic strategies for the patients suffering from prostate cancer use the prostate specific 

antigen (PSA) to target an inhibitor of SERCA to the cancer cells only [229]. Our hypothesis 

stating an important role of intracellular Ca
2+ 

in ENO-1 exteriorization is supported by the 

following findings: (i) depletion of intracellular stores of Ca
2+

 reduced cell surface and 

exosomal levels of ENO-1 (ii) inhibition of SERCA decreases cell surface bound ENO-1 (iii) 

increase in intracellular Ca
2+ 

concentration elevated cell surface and extracellular abundance 

of ENO-1. In addition, our study demonstrates, that breast cancer cells transfected with ENO-
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1 display increased intracellular levels of Ca
2+

 and are characterized by enhanced migratory 

and invasive properties. Taking this into consideration, it is tempting to speculate, that one of 

the mechanisms explaining the positive effect of Ca
2+

 blockers on tumor regression may lie in 

their ability to interfere with ENO-1 exteriorization.  

Our findings are in line with previously published studies, demonstrating the importance of 

Ca
2+

 in exteriorization of H2B, another PLG receptor [230, 231]. Moreover, the release of 

annexin A2 in the form of exosomes was also shown to be regulated at the level of 

intracellular Ca
2+

. All these observations underlie the important role of Ca
2+ 

in the 

mobilization of PLG-R to the cell surface and suggest, that PLG-R may simultaneously be 

exteriorized. Recently published results support this idea, by showing the interaction of ENO-

1 with annexin A2 [92]. As both of these proteins were reported to be present in exosomes, it 

is tempting to speculate that exosomal pathway could represent one of the mechanism, which 

is reponsible for PLG-R exteriorization. How exactly PLG-R are anchored to the cell 

membrane is unclear. However, annexin A2 via its ability to bind phospholipids could serve 

as a docking site for other PLG-R, including ENO-1. The detailed mechanism of annexin A2 

and ENO-1 transport across the membrane needs future investigation. 

Although we show the critical role of Ca
2+

 in ENO-1 exteriorization, mediators and 

molecular pathways responsible for increased Ca
2+ 

entry following LPS stimulation need to be 

explored. Our investigations, point out an essential role of STIM1 and ORAI1 in this process. 

Pharmacological inhibition of SOC mediated Ca
2+ 

entry and depletion of STIM1 or ORAI1 

disturbed ENO-1 transport to the cell surface and into the extracellular space following LPS 

stimulation. STIM1 molecules in the ER and ORAI1 proteins in the plasma membrane are 

two main components of SOC entry, which can couple into a pore forming complex to 

regulate levels of intracellular Ca
2+

. Stimulation of STIM1 can activate SOC entry, leading to 

sustained extracellular calcium influx. It has been documented, that SOC mediated Ca
2+ 

entry 

accounts for a number of LPS-triggered negative effects in host enviroment. In particular, 

LPS can induce Ca
2+ 

entry into the endothelial cells via STIM1 and thus Ca
2+ 

overload, which 

finally may lead to inflammation and cell injury [209]. In agreement with these findings, our 

study demonstrates a direct involvement of STIM1 and ORAI1 in LPS-triggered Ca
2+ 

entry 

into breast cancer cells. Furthermore, we show increased basal intracellular Ca
2+

 levels in 

ENO-1 overexpresing cells. This suggests, that overexpression of ENO-1 in cancer cells may 

alter Ca
2+ 

levels. Dysregulation of intracellular Ca
2+

 homeostasis is often observed in cancer 

cells in particular in those cells which have high metastatic potential [225]. Taking this into 
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account, changes in the level of intracellular Ca
2+

 observed between GFP-EV and GFP-ENO-

1 cells may be explained by the different phenotype of these cells. ENO-1 overexpression in 

MDA-MB-231 cells potentiated their migratory and invasive properties and thus aggravated 

their malignant behaviour. 

Ca
2+ 

entry pathways are important for the modulation of cell migration and invasion. 

STIM1/ORAI1 mediated SOC represents the major Ca
2+ 

influx mechanism in epithelium 

originating cancer cells. In view of these findings, we demonstrate, that depletion of both 

SOC components, STIM1 and ORAI1, markedly reduced ENO-1-mediated cancer cell 

migration. The relationship between STIM1 depletion and ENO-1-driven migration of breast 

cancer cells was demonstrated by simultaneous application of STIM1 siRNA and the ENO-1 

peptide. This experimental proccedure did not further decreased migration of MDA-MB-231 

cells, implying that the presence of STIM1 is essential for ENO-1-mediated motility of cancer 

cells. Several studies demonstrated a critical role of STIM1 in cancer cell migration and 

metastasis formation [232, 233]. For instance, pharmacological blockage or depletion of 

STIM1 was reported to reduce proliferation of cancer cells and to decrease tumor metastasis 

in animal models. Concomitantly, overexpression of STIM1 has been observed in various 

types of human cancer and it was found to have diagnostic as well as prognostic value [225]. 

Given the fact that STIM1 and ORAI1-dependent ENO-1 exteriorization markedly 

contributes to the increased breast cancer cell motility, pharmacological blockers of either 

STIM1 or ORAI1 could represent one of the possible approaches in anti-cancer therapies. 

Supporting this concept, suppression of STIM1 in the animal model of human glioblastoma 

significantly inhibited tumor growth and metastasis formation [232].  

Collectively, present study provides new insights into the mechanism responsible for 

translocation of ENO-1 to the cell surface of cancer cells and its release into the extracellular 

space. The pivotal role of STIM1/ORAI1-mediated Ca
2+

 influx in aforementioned processes 

may, in part, explain the beneficial effect of STIM1 inhibition in the experimental models of 

cancer [232, 233]. 
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6. CONCLUSIONS 

Acquisition of a metastatic phenotype by cancer cells is a complex process, which requires 

deattachment of cancer cells from underlying basement membrane, migration and invasion 

into the surrounding tissue. All these steps are carried out with the help of proteases. PLA is a 

serine protease, which was found to be dysregulated during cancer progression. PLA 

activation occurs upon binding of its precursor PLG to the cell surface. Molecules, called 

“moonlighting proteins”, which exhibit various functions at distinct cellular and extracellular 

compartments, have been proposed to bind PLG on the cell membrane. The glycolytic 

enzyme ENO-1 is one of them. Overexpression of ENO-1 was observed in more than 20 types 

of human cancer. In addition, high levels of ENO-1 in cancer cells were reported to correlate 

with cancer progression and poor clinical outcome of the affected patients. Although, 

numerous investigations supported the role of ENO-1 in cancer progression, the contribution 

of cell surface localized ENO-1 to tumorigenesis and the mechanism of its translocation to the 

cell surface has not yet been addressed.  

In the present study, increased levels of ENO-1 were observed in ductal breast carcinoma 

and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated 

cell surface abundance of ENO-1 correlated with augmented MDA-MB-231 cell migratory 

and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of 

ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. 

LPS-triggered ENO-1 exteriorization was supressed by pretreatment of MDA-MB-231 cells 

with the Ca
2+ 

blockers - BAPTA and cyclopiazonic acid. In line with these findings, STIM1 

and ORAI1-mediated Ca
2+

 entry was found to regulate LPS-induced ENO-1 exteriorization. 

Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent 

migration of MDA-MB-231 cells. Altogether, our results demonstrate an essential role of 

STIM1/ORAI1-mediated Ca
2+

 influx in ENO-1 exteriorization and in ENO-1-driven cancer 

cell migration and invasion. Thus, our study proposes the mechanism explaining, in part, the 

beneficial effects of drugs interfering with Ca
2+ 

influx in patients suffering from cancer. 

.  
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