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Abstract: Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial
dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various
mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling,
enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency,
while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-
activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However,
fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concen-
tration, and treatment duration determine whether the outcome is beneficial or detrimental when
fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell
decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted
by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly
polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintain-
ing the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative
stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of
apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular
senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial
effects of plant-based nutrients by the example of polyphenols.

Keywords: lipotoxicity; free fatty acids; oxidative stress; mitochondrial dysfunction; beta cell;
diabetes mellitus; polyphenol; ageing

1. Introduction

The onset and progression of diabetes mellitus (DM) is crucially determined by the
deterioration of the glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells. In
2019, there were more than 460 million patients with DM worldwide with a steadily
rising prevalence (9.3%) over the last few decades [1]. The impaired action of insulin
in these patients leads to elevated plasma glucose levels. Chronic hyperglycemia can
damage various molecules and tissues by glycation [2]. To prevent these complications,
the supply with an adequate amount of insulin is necessary. As insulin secretion demands
a lot of biochemical energy [3] and mitochondria contribute to 98% of cellular adenosine
triphosphate (ATP) [4], their proper function becomes a major aspect in developing β-cell
dysfunction and decay.

The progression of type 2 diabetes mellitus (T2DM) is accompanied by elevated free
fatty acids (FFAs) [5–7] as well as the deterioration of the lipid metabolism. FFA are known
to impair the function of β-cells and promote their failure by various mechanisms [8],
among others, by toxic metabolites of lipid degradation, the activation or dysregulation
of signaling pathways, oxidative stress, and an altered energy production. By mediating
this so-called lipotoxicity, FFA can impair the mitochondrial metabolism and other com-
partments of the β-cell and disturb its capacity of both insulin synthesis and release. FFAs
increase insulin resistance by several signaling pathways, including altered translocation
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of glucose transporter (GLUT). FFAs are therefore one of the major promotors of develop-
ing T2DM [9]. Nevertheless, FFAs are physiologically required for energy demands, as
components of membranes or signaling molecules, and there is no defined qualitative or
quantitative cut-off at which toxic effects commence. In general, lipotoxicity is defined as
the impairment of cellular functions like mitochondrial respiration, protein translation and
function, and induction of cell death mediated by the accumulation of FFAs. However,
the underlying mechanisms are more complex and involve an imbalance between uptake,
storage, and utilization of FFAs.

Beside elevation of FFA blood and tissue levels, and associated disorders of lipid
metabolism, cellular senescence [10] is the second major contributor to the increasing
prevalence of T2DM [11]. The rate of apoptotic events is increased while proliferation is
disfavored with age, leading to an incremented decay of the endocrine pancreas. Increased
levels of reactive oxygen species (ROS) and DNA damage diminish the regenerative
capacity and function of β-cells correlating with a general impairment of insulin production
and secretion machinery as well as an increased rate of apoptosis. There is also a connection
between enhanced cellular stress leading to an age-dependent impairment of the lipid
metabolism marked by increased plasma triglyceride (TG) levels and reduced postprandial
TG clearance rates [12]. Likewise, there is a correlation between increased plasma FFA
and age [13]. Concomitant with a decreased antioxidative capacity of β-cells [14], which is
yet challenged by both FFA and age [15], this would promote lipotoxic effects ultimately
leading to an acceleration of senescence and dysfunction of β-cells.

There are available data which point towards beneficial effects of plant-based nutri-
ents [16]. Their beneficial effects are mainly, but not completely, thought to be mediated by
their phytochemicals, consisting of heterogeneous substances with a variety of different
bioactive molecules [17]. Beside e.g., carotenoids, glucosinolates, lectins, terpenes, alka-
loids, and polysaccharides [18,19], the vast group of polyphenols has been investigated
extensively for positive effects to improve insulin resistance and blood glucose levels [20].
Polyphenols can contain molecules like tannins, flavonoids, anthocyanins, proanthocyani-
dins, or derivatives of different organic acids [21–23], which are able to enhance action of
insulin [24], glucose transport [25], or decrease intestinal carbohydrate hydrolysis [26–28].
These compounds can modulate antioxidative enzymes or cellular stress responses by
gene expression [29–31] or regulation of cytokines and signaling pathways to improve
β-cell function. By scavenging radicals and inducing the upregulation of antioxidative
enzymes, phytochemicals can mitigate oxidative stress [32]. They directly control single
steps in the lipid metabolism like uptake and storage of FFA to abate their toxic interme-
diates [33]. Moreover, phytochemicals can directly reverse the lipotoxic effects of FFAs
by counteracting their adverse regulatory effects, e.g., by downregulating the respective
signal pathways of insulin secretion or apoptosis [34]. There is a growing body of evidence
that polyphenols could be able to reverse the negative effects of lipotoxicity and preserve,
restore, and promote the physiological functions of β-cells.

The aim of this review is to (I) summarize the knowledge of basic research on lipo-
toxicity directed against β-cells, in particular their mitochondria, with special regard
to methodology, (II) elucidate the connection with cellular senescence, and (III) outline
potential beneficial effects of dietary measures employing polyphenols as an example.

2. Literature Search

The literature search based for this review was executed on 7th of September and 31st
of December 2020 on PubMed. The search term (lipotox * OR “free fatty acid *”) AND (mito-
chondria * OR polyphenol * OR flavonoid * OR ageing) AND “beta cell *” yielded a total of
149 primary articles. The publication dates ranged from February 1977 to September 2020.
After screening literature, 22 articles were excluded. Exclusion criteria were no suitable
topic (11 exclusions), not written in English (five exclusions), reviews with no primary
data (five exclusions) and no available full-texts (one exclusion), leaving 127 articles. Three
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reviews with primary data have been included. A flow chart of the literature search is
given in Figure 1. A list of all screened articles is provided in Supplementary Material.
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3. Factors Influencing Lipotoxic Outcomes in Tissue Culture

Since lipotoxicity cannot merely be defined by exceeding a specified concentration
of FFA, the respective experimental setup must be considered closely when assessing
experimental outcomes.

The employed amount of FFA is one of the key factors for activating lipotoxic path-
ways. However, only few authors state the rationale for the chosen concentrations. A point
of reference could be the serum FFA level of healthy and diabetic subjects and animals.

Spectroscopic analysis of blood samples revealed that the total FFA concentration in
diabetic human serum is ranging from 3.5 to 15 mM, also giving concentrations of specific
FFA like oleic acid (OA) with 0.74–3.9 mM and palmitic acid (PA) with 1.0–3.8 mM [35–38].
These data also reveal an increase of OA and PA concentrations in diabetic compared
to healthy individuals of approximately 10% [36]. Serum concentrations of rodents are
lower with a total FFA serum concentration of 0.8–1.5 mM [39,40]. Authors claim that a
FFA concentration range of 0.5–2.0 mM is suitable to mimic lipotoxicity in T2DM [41,42].
There is no detailed information about specific FFA concentrations for pancreatic tissue,
which would indicate suitable concentrations for experimental models. Given the distinct
magnitude of β-cell dysfunction on parameters like ATP production or insulin secretion,
the increase of 10% in FFA concentration appears to be insignificant. These facts could
indicate that considering the total FFA concentration is not a satisfactory parameter to
determine a lipotoxic environment. A small increase of FFA concentrations could be
sufficient to have greater impact on deteriorations of β-cell metabolism. All these facts

www.ncbi.nlm.nih.gov/pubmed
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are raising the issue which concentrations should be employed for inducing lipotoxicity
in an experimental setup. The screening of the available literature revealed significant
differences. Most commonly 500 µM were used with a total range of 10–2000 µM. From
the total of performed treatments with FFA (n = 104), there are available data for the
following concentration ranges: 10–99 µM (n = 12), 100–499 µM (n = 53), 500 µM (n = 49),
501–2000 µM (n = 18) (Table 1). Single (n = 82) as well as multiple concentrations (n = 22)
have been employed.

Table 1. Frequency of FFA concentrations used in screened literature focused on lipotoxicity (n = 132).
Free fatty acids (FFA).

Concentration of FFA Frequency in Screened Articles

10–99 µM 12
100–499 µM 53

500 µM 49
501–2000 µM 18

Insulin secretion and ATP levels were frequently examined. Treatment with 400 or
500 µM FFA led to a 6–90% decrease in ATP [4,43–45]. An incremented concentration of
2000 µM did not mediate higher toxicity [46]. A 15–70% diminished insulin secretion was
induced by a short-or medium-term treatment (up to 72 h) with 400 or 500 µM FFA [47,48].
Exposure to 100 µM for several weeks led to a 20% decrease [49]. Glucose stimulation
treatment was conducted with comparable concentrations of around 25 mM. The available
data did neither reveal a dose dependent effect of FFA on insulin secretion, nor on ATP
levels. Since the described protocols differed a lot in detail, e.g., regarding solvents, bovine
serum albumin (BSA) amount, and incubation times, results were only comparable to
a limited extent. For other readouts, the number of studies was too small to examine
dose dependency.

In most tissue culture reports single rather than multiple FFA were examined. Hence,
another key modulator for in vitro tissue culture is the selected type of FFA. It is noteworthy
that only a small number of FFA have been used repeatedly for studying molecular path-
ways of cells. The most common design was the usage of single PA (n = 52), followed by the
combination of PA + OA (n = 20), the combination of PA + OA + any additional FFA (n = 8),
the combination of PA + any additional FFA (n = 6), treatment with single OA (n = 6), or
with any single FFA (n = 4). Concentration range of combined FFA culture was 100–2000 µM
(PA + OA), 200–1000 µM (PA + OA + any FFA) and 10–500 µM (PA + any FFA). The group
of FFA used occasionally includes myristic, stearic, palmitoleic, linoleic, linolenic, methyl-
palmitic, docosahexaenoic, and arachidonic acid (Table 2). The combination of different
types of FFA could be a suitable model for mimicking a physiological FFA composition [50].
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Table 2. Frequency of FFA and FFA combinations used in screened literature (n = 96). Free fatty
acids (FFA). Palmitic acid (PA). Oleic acid (OA). Any FFA is referring to myristic, stearic, palmitoleic,
linoleic, linolenic, methylpalmitic, docosahexaenoic, and arachidonic acid.

FFA Frequency in Screened Articles

PA 52
PA and OA 20

PA and OA and any FFA 8
PA and any FFA 6

OA 6
Any FFA 4

Furthermore, the preparation of FFA solutions can have a major impact on the outcome
depending on the applied assays. For dissolving FFA, the reviewed articles used ethanol
(n = 25), NaOH or NaCl (n = 12), dimethyl sulfoxide (n = 4), and methanol (n = 3), while
most articles did not specify how the FFA solutions have been prepared (n = 54) (Table 3).
The use of solvents should be tested on key parameters like viability and also insulin
concentration because they can affect the outcome by varying cytotoxic properties [51,52].
In addition, the total BSA concentration as well as the molar FFA:BSA ratio can have a
drastic impact on the mediated lipotoxicity as well as specifically on the MTT viability
assay [53,54], and were only described in detail in half of the studies (n = 53). The uti-
lized BSA content in the respective cell culture media varied markedly, ranging between
0.05–5% for comparable FFA concentrations [55,56]. The molar FFA:BSA ratio determines
the amount of unbound FFA in the treatment media, representing a more decisive pa-
rameter when compared to the total FFA concentration according to some authors [57].
Commonly used molar FFA:BSA ratios within the literature were at maximum 5:1. It was
suggested to not exceed this ratio [57], whereas due to hyperlipidemia, higher ratios could
be suitable for modeling the pathophysiological state in T2DM [58].

Table 3. Frequency of used solvents in screened literature (n = 98).

Solvent Frequency in Screened Articles

Ethanol 25
NaOH or NaCl 12

Dimethyl sulfoxide 4
Methanol 3

No further information 54

The vast amount of the reviewed data (n = 199) were obtained from rodent cell culture
(rodent n = 96, human n = 12, monkey n = 1) and animal models (Table 4). If comparing the
results obtained from cell lines and primary β-cells, there are no remarkable differences if
same FFA concentrations are applied [59,60]. There is no indication that there is an adaption
of applied FFA concentrations depending on whether rodent cell lines and isolated human
islets are used. This leads to the question if FFA concentrations used in rodents are suitable
for studying human-based systems.
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Table 4. Frequency of cell culture models used in screened literature (n = 109). Insulinoma (INS-1).
Mouse insulinoma 6 (MIN6). Human embryonic kidney 293 (HEK 293). Rat insulinoma (Rinm5f).
Hamster islet transformed-tioguanine resistant clone 15 (HIT-T15). Hepatoblastoma (HepG2). Chi-
nese hamster ovary (CHO). NOD/Lt (NIT1). β-tumour cell (βTC6). CV-1 in origin simain-1 (COS1).

Cell Line Frequency in Screened Articles

INS-1 (rodent) 57
MIN6 (rodent) 23

HEK 293 (human) 7
Rinm5f (rodent) 5
HIT-T15 (rodent) 5
HepG2 (human) 3

CHO (rodent) 2
EndoC-βH1 (human) 2

NIT1 (rodent) 2
βTC6 (rodent) 1

BRIN-BD11 (rodent) 1
COS1 (monkey) 1

4. Factors Influencing Lipotoxic Outcomes in Animal Models

In animal experiments a high fat diet ranging from 20–60% fat content (n = 12) was
reported. There was no direct treatment of animals with isolated FFA (n = 18).

Animal models (n = 73) included 23 studies using wild types (C57BL/6 n = 15,
C57BL/6J n = 8) and 11 using specific mutations of metabolism (C57BL/6 mutants n = 8,
C57BL/6J mutants n = 3), Wistar rats (n = 11), Sprague Dawley rats (n = 9), db/db (n = 4),
ob/ob, CD1 mice, Zucker diabetic fatty rats (each n = 3) and ICR, NMRI, KK-Ay, Atg7f/f,
HcB19 and nu/nu mice (each n = 1) (Table 5). In 17 articles, isolated islets from humans
were investigated. The mentioned parameters like chosen model, type, and concentration
of FFA as well as preparation of FFA stock solutions must be carefully considered while
comparing the different results.

Table 5. Frequency of animal models used in screened literature (n = 73). Institute for Cancer
Research (ICR). Naval Medical Research Institute (NMRI). Diabetic KK and lethal yellow (Ay) mice
(KK-Ay). Ubiquitin-like modifier-activating enzyme (ATG7). TXNIP deficiency (HcB19).

Animal Model Frequency in Screened Articles

wild type C57BL/6 and C57BL/6J mouse 15 and 8
mutant C57BL/6 and C57BL/6J mouse 8 and 3

Wistar rat 11
Sprague Dawley rat 9

db/db mouse 4
ob/ob mouse 3
CD1 mouse 3

Zucker diabetic fatty rat 3
ICR mouse 1

NMRI mouse 1
KK-Ay mouse 1
Atg7f/f mouse 1
HcB19 mouse 1
nu/nu mouse 1

5. Lipotoxic Action of FFA on Mitochondria in β-Cells
5.1. Detrimental Effects of Elevated FFA in Type 1 and Type 2 Diabetes Mellitus

FFA are well known to mediate toxic effects and impair the function of β-cells enhanc-
ing blood glucose levels and increasing the cellular abundance of glucose molecules. Since
T2DM patients are exposed to elevated FFA blood levels, they are considered at special risk
to suffer from lipotoxic effects including damaged β-cells.
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Both reduced insulin levels and action promote lipolysis, but the specific cause why
FFA are elevated remain mostly unclear [61]. The abundance of energy generated by the
so-called “obesogenic” environment, hallmarked by low physical activity and high caloric,
Western-style diet rich in short-chain carbohydrates and animal fats [11], is considered
an important link between elevated FFA in T2DM, obesity, and related deteriorations in
lipid metabolism. Importantly, a pathological insulin resistance is promoted by lipotoxic
effects [43], representing a major mechanism for obesity as a risk factor for T2DM. In
type 1 DM, there is no predominant correlation between lipotoxicity and destruction of
β-cells [62].

FFA are able to mediate lipotoxicity at different stages of their metabolism covering
the range from uptake [63] to degradation [64]. Therefore, lipotoxicity is of a multifactorial
etiology and not restricted to a single specific pathway. The following sections will elucidate
the underlying pathophysiological mechanisms.

5.2. Cellular Uptake of FFA by CD36 and Impairment of Calcium Concentration

FFA uptake into the cell is mediated by fatty acid transporter, also known as cluster
of differentiation (CD) 36 [65]. It is known that β-cells abundantly express CD36 [66],
probably to ensure a constant FFA supply for energy allocation. CD36 does have substrate
specificity, preferring long chain over medium chain FFA [67]. By the binding of long chain
FFA to CD36, a pro-inflammatory response is promoted [68] inducing elevated levels of
oxidative stress and cellular damage. A relief from oxidative stress can be detected by
deletion of CD36 [69]. Another mechanism of FFA uptake is by binding to the free fatty acid
receptor 1, also known as the G protein-coupled receptor (GPR) 40 [70]. GPR40 activates
phospholipase C (PLC) [71] which is degrading phosphatidylinositol-4,5-bisphosphate
into the signaling molecules inositol trisphosphate (IP3) and diacylglycerol to increase the
cytosolic calcium (Ca) concentration [72]. Furthermore, Ca storages of the mitochondria are
released by PLC, and the endoplasmic reticulum (ER) can release its Ca storages through the
activation of GPR40 [71]. The increase of the cytosolic Ca concentration induces exocytosis
of insulin vesicles [73]. The replenishment of Ca storages is facilitated by the activation
of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). SERCA activity is
stress-sensitive and can be impaired by abundant FFA. As a result, depleted Ca storages
render GSIS impossible [74], and Ca-sensitive enzymes of the tricarboxylic acid (TCA)
cycle or the transport of NADH as well as the electron transport chain in mitochondria are
dysregulated [73].

5.3. Mitochondrial Uptake and Processing of FFA

Cytosolic FFA must be activated to acyl-CoA by coenzyme A for further reactions.
Acyl-CoA can be transported into the mitochondria by carnitine palmitoyltransferase
(CPT) 1, also known as carnitine acyltransferase I [75]. CPT1, the key enzyme of lipid
metabolism [76], will exchange the CoA residue with carnitine and initiate the transport
across the outer mitochondrial membrane. The transport across the inner mitochondrial
membrane is facilitated by carnitine-acylcarnitine translocase and finally, CPT2 will per-
form the cleavage into carnitine and acyl-CoA in the mitochondrial matrix. Acyl-CoA will
be degraded through several enzymatically catalyzed steps of β-oxidation leading to the
formation of acetyl-CoA and the reduction equivalents NADH and FADH2 [77]. Glycolysis
will generate acetyl-CoA and the respective reduction equivalents. Acetyl-CoA from FFA
or glucose will be used in the TCA cycle to generate more reduction equivalents.

An important biochemical feature of lipotoxicity is the impaired activity of glycolytic
and TCA cycle-related enzymes with the associated ability for anaplerotic reactions. The
impaired enzymes, among others the citrate synthase [78], cause a shortage of intermediates
required for the TCA cycle like oxaloacetate, citrate, and α-ketoglutarate [79], which might
also be caused by a reduced activity of pyruvate carboxylase [80–82], and is also directly
proportional to GSIS [83]. The gene expression of those enzymes is impaired [84], and the
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exchange of pyruvate with TCA cycle intermediates like citrate or malate is abolished and
blunts GSIS [85].

5.4. FFA-Induced Deterioration of Anaplerosis

FFA decrease glutamine levels [86], an amino acid which supports pyruvate trans-
port [87]. Elevated FFA are thought to influence glutamine by increasing the transformation
into glutamate [88] and impairing the activity of glutamine synthetase [89]. Decreased
glutamine levels further impair the function of β-cells by inhibiting cellular respiration
and glucagon-like peptide 1 (GLP-1)-promoted GSIS [86,90] incrementing ROS and the
unfolded protein response (UPR).

Interestingly, Lee et al. reported that pyruvate carboxylase inhibition, both by pheny-
lacetic acid (PAA) as well as by high glucose/PA treatment, mitigates AMP-activated
protein kinase (AMPK), promoting apoptosis in insulinoma (INS-1) cells. By contrast,
AMPK activation was protective against lipotoxic cytotoxicity. PAA and PA treatment
promoted CCAAT/enhancer binding protein homologous protein (CHOP) [79] and phos-
phorylated c-Jun N-terminal kinases (JNK) [91]. The activation of CHOP mediates ATP
depletion, consequently reducing GSIS [92]. The reduced flux of metabolites like oxaloac-
etate, citrate, and α-ketoglutarate worsens the harmful effects of lipotoxicity, whereas
the reconstitution of anaplerosis alleviates the consequences of lipotoxicity, as reactions
providing intermediates for TCA cycle are enhanced [79]. The authors suggest that the
cause for lipotoxicity is closely related to fuel supply by TCA cycle.

In diabetic mouse models it was observed that T2DM correlates with a decreased
activity of the pyruvate dehydrogenase complex [93]. This enzyme complex is necessary
for glucose utilization and energy production in the TCA cycle. Glucose will be degraded
to pyruvate, and through pyruvate dehydrogenase shortened to acetyl-CoA, implicating
pyruvate and its related metabolic pathways exert a crucial role for the mitochondrial
function [79].

5.5. Impairment of Iron-Sulfur Cluster Biosynthesis and Ferroptosis Is Induced by FFA

The impaired formation of iron-sulfur (Fe/S) clusters [94,95] was reported to be af-
fected by elevated FFA. These clusters are generated in mitochondria by the iron-sulfur
cluster assembly machinery (ISC) [96]. The ISC contains more than 18 proteins responsible
for the formation, transfer, or insertion of Fe/S clusters into apoproteins [97]. Fe/S clusters
contribute to three-dimensional molecular structure, transfer electrons, or are enzymatic
co-substrates. Some of the Fe/S enzymes are involved in energy metabolism like complex
I [98], II [99], and III [100] of the respiratory chain. Other Fe/S enzymes serve as sensors for
oxygen [101], are involved in gene expression [102] or lipid metabolism [103]. Aconitase,
an Fe/S cluster containing enzyme, is especially interesting in this context [104]. It has dif-
ferent functions in the cell depending on its localization. While the mitochondrial aconitase
is part of the TCA cycle, the cytosolic aconitase has a regulatory function in Fe-homeostasis
and is accordingly termed iron regulatory protein 1 (IRP1) [105]. While losing its Fe/S
cluster in an Fe-deficient state, IRP1 binds the iron regulatory element (IRE) of mRNA.
IREs are part of the cellular iron-regulatory machinery like ferritin, transferrin receptor 1,
divalent metal transporter 1, or ferroportin. By binding IRP1 to IRE, the Fe-uptake into the
mitochondria is increased, thus providing more Fe for the Fe/S cluster formation. This reg-
ulation by IRP1 is highly conserved and found in yeast, plants, animals, and humans [106].
As previously shown, FFA-induced deficiency of glutaredoxin 5 (Glrx5), a protein of the
ISC transferring Fe/S clusters, disrupted the Fe/S cluster insertion into apoproteins [94,95].
FFA-mediated cellular stress or impaired protein maturation could be detrimental for the
sensitive clusters and enzymes. Consequently, enzymes of the TCA cycle and complexes of
the respiratory chain act less efficiently leading to reduced production of ATP. Furthermore,
the Fe-regulation by the cytosolic aconitase is impaired inducing uncontrolled Fe-uptake
into the mitochondria. Mitochondrial Fe-overload in combination with elevated ROS pro-
motes the generation of lipid peroxides leading to an Fe-dependent form of non-apoptotic
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cell death [107] called ferroptosis [60]. Glutathione peroxidase (GPx) 4 is an enzyme which
has protective properties by lowering lipid peroxides in a glutathione (GSH) dependent
reaction [108] thereby counteracting ferroptosis. Furthermore, FFA also deplete GSH,
therefore debilitating the detoxification of lipid peroxides by GPx4 [109]. By increasing
oxidative stress, FFA can induce the transformation of GSH into glutathione disulfide [110].
A lipotoxic-induced deficiency of Glrx5 might therefore impair mitochondrial metabolism
by lowering activity of TCA cycle enzymes and complexes I-III as well as the induction of
β-cell decay by ferroptosis and could be correlated to lower GSIS. Glrx5 mutations have
been described in seven human case reports [106,111–114], of which three describe a link
to DM, ferroptosis, and impaired enzyme activities [106,112,114].

5.6. FFA Utilization in Energy Metabolism Contributes to Oxidative Stress

In cells with adequate oxygen supply complexes I-IV use reduction equivalents gener-
ated by acetyl-CoA to build up a proton gradient in the respiratory chain to generate ATP
at complex V (ATP synthase). The electron transfer caused by complex I, complex II, and
complex III will generate ROS in a reaction with oxygen [115], complex I contributing to
the largest extent [116]. The excessive use of FFA or glucose for energy production will lead
to an increased amount of ROS, eventually damaging the cells by reactions with molecules
like DNA or enzymes or producing lipid peroxide, triggering ferroptosis.

Another way of generating ROS out of FFA is the β-oxidation in peroxisomes. Again,
it is difficult to define at which specific concentrations ROS become harmful for cell
physiology. It is important to note that the imbalance between ROS production and
detoxification is the detrimental key factor for oxidative stress. As β-cells have reduced
amounts of antioxidative enzymes, it seems likely that the threshold of an overwhelmed
antioxidative defense is lower compared to other types of cells.

There are some data indicating that FFAs mediate an increasing level of toxicity
depending on their carbon chain length. Especially long chain fatty acids are suspected to
be preferably metabolized in peroxisomes due to specific FFA importers in mitochondria
and peroxisomes while less toxic short chain and middle chain FFAs are degraded in the
mitochondria [115]. Thus, a diet rich in middle chain fatty acids is not detrimental to β-cells
and even promotes GSIS [117], presumably mediated through GPR40.

In human plasma, the five most abundant FFAs, namely OA, PA, stearic, linoleic, and
palmitoleic acid, do have a minimum carbon chain length of 16 carbon units and belong
to the group of long chain fatty acids. These represent more than 90% of the total amount
of FFA in human plasma [118]. The reactions of β-oxidation in peroxisomes are mostly
similar to the reactions in the mitochondria, except for the initial step that is facilitated by
different enzymes. In peroxisomes the acyl-CoA oxidase will reduce FAD to FADH2 and
form a double binding in the carbon chain of fatty acids. The acyl-CoA dehydrogenase will
perform the same reaction in mitochondria [119]. While the electron transfer to FADH2
in mitochondria by acyl-CoA dehydrogenase can be further used for ATP production, in
peroxisomes the electrons will interact with oxygen to form hydrogen peroxide (H2O2).
Loading with FFA leads to an increased formation of H2O2 in peroxisomes as compared to
mitochondria [120]. H2O2 is membrane permeable [121] and can induce negative effects
also outside of these organelles and impair insulin secretion. These observations support
the hypothesis that ROS production by peroxisomalβ-oxidation as well as by mitochondrial
respiratory chain complexes are the major reasons for lipotoxicity. Due to a lack of the
expression of catalase, GPx1, and superoxide dismutase (SOD), β-cells seem to have only
weak protection against oxidative stress [14,122]. Other authors are raising issues that
β-cells are also equipped with other antioxidant systems like proteins of the thioredoxin
family making them more resistant to stress conditions as generally assumed [123].

5.7. Uncoupling and GLP-1 Agonists Relieve Cellular Stress

As an adaptive response to increased oxidative stress, β-cells are able to induce the
expression of uncoupling protein (UCP) 2. UCP2 is a proton channel localized at the
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inner mitochondria membrane dissipating proton gradients [124]. There are four existing
isoforms, while only UCP2 is occurring in β-cells [125]. Uncoupling of mitochondria in
brown adipose tissue by UCP1 is known as a useful process for generating heat [126].
However, uncoupling in β-cells by UCP2 is not proven as part of thermogenesis [127].
The uncoupling in β-cells is probably a rather adaptive response to increased oxidative
stress. The elevation of ROS, especially superoxide as produced by complexes I and III, is
required for the upregulation of UCP2 [128,129]. Increased H2O2 concentrations further ac-
tivate calcium-independent phospholipase A2 γ (iPLA2γ) and fuel UCP2 uncoupling [56].
iPLA2γ alleviates oxidative stress, but it is also a phospholipid remodeling and repair
factor of the inner mitochondrial membrane targeting oxidized cardiolipin. Cardiolipin
is important for mitochondrial function by regulating gene expression and influencing
electron transfer at the respiratory chain complexes [130]. Exendin-4, a GLP-1 agonist used
in DM therapy, can increase insulin secretion and reduce β-cell apoptosis by mechanisms
including acetylation of iPLA2 γ [131,132] as well as upregulation of pancreatic and duo-
denal homeobox 1 (Pdx1) also known as insulin promotor factor 1 [133]. The regulation
of Pdx1 is additionally mediated by a FFA induced increase of Small heterodimer partner
interacting leucine zipper protein, which again increments apoptosis [134]. FFA are ligands
for the peroxisome proliferator-activated receptor (PPAR), a receptor responsible for modu-
lation of various pathways in lipid metabolism. There are three subtypes of PPAR, namely
PPAR α, PPARβ/δ, and PPARγ [135]. All of these subtypes can be activated by FFA and
will increase the transcription of UCP2 [4,76,136–139]. Polymorphisms in the promotor
area can also lead to a deterioration of lipid metabolism leading to obesity [140].

5.8. ATP Production Is Diminished by Uncoupling and Reduction of ATP Synthase Activity

The promotor region of UCP2 contains a sterol regulatory element (SRE). Bind-
ing by sterol regulatory element binding protein (SREBP)-1c can increase UCP2 expres-
sion [141,142]. This process is promoted by FFA. Furthermore, hormone sensitive lipase,
an enzyme degrading TG into FFA, activates UCP2 linking elevated FFA levels to UCP2
activation [137].

It was shown that the uncoupling of the proton gradient is dependent on the structure
of FFA, and saturated FFA promote uncoupling and exert cytotoxic effects [143]. The
uncoupling of the respiratory chain by UCP2 will reduce the amount of ROS, though
also lowering the ATP production at complex V. FFA can also influence the ATP synthase
regardless of uncoupling factors. The ATP synthase consists of two complexes, F1 and F0.
While F0 will decrease the proton gradient, F1 is the catalytic complex forming ATP [144].
The F1 complex is build up by several subunits. Among these, the β-subunit has a crucial
role in ATP production because of its ATP binding site. It is reported that FFA can reduce
the expression of that specific subunit leading to a decreased ATP production [145]. FFA
can also induce acetylation of Sirtuin, which modulates the activity of complex V [146].

5.9. Membrane Potential Is Modulated by the Abundance of Glucose and FFA, and Impairs
Insulin Secretion

The mitochondrial membrane potential (MMP) is dependent on a sufficiently high
proton gradient within the mitochondria. FFA are well known to decrease the MMP by
an UCP2-induced lowered proton gradient [49]. The reduced MMP is not only linked to
reduced ATP amounts and mitochondrial dysfunction, but also to the early stage of apop-
tosis and therefore β-cell decay [147]. A decreased MMP and a lowered cellular ATP/ADP
ratio are counteracting insulin production and secretion of insulin vesicles, connecting
mitochondrial function to insulin release. The uncoupling of respiratory chain complexes
is a mechanism to relieve cells of oxidative stress, whereas extensive uncoupling subsides
the ATP production. As the aerobic ATP production and reduced hyperpolarization of
MMP is a crucial factor for inducing insulin secretion [148,149], extensive uncoupling
is not favorable for β-cells. If studied in vitro, the lipotoxic effect by uncoupling of the
respiratory chain is mostly seen in states of elevated glucose concentrations [59,78]. In a
glucose-stimulated state, β-cells are more depending on ATP rendering them more vulnera-
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ble against inefficiencies of the respiratory chain activity. Further suggestions indicate, that
the lipotoxic uncoupling requires a high membrane potential reached at elevated glucose
levels [150]. Interestingly, the impact of different glucose concentrations is suggested to be
highly dependent on the employed model. While INS-1 cells show a glucose-dependent
increase in apoptosis, no such effect was detectable in mouse insulinoma 6 (MIN6) cells or
cultured human islets [151]. In the screened literature, few articles were able to observe
such a glucose dependency in other cell lines than INS-1 [59,116,152–156].

5.10. PPAR Activity Is Incremented By FFA

Glucose can decrease the action of PPARα leading to limited fatty acid metaboliza-
tion [138]. This so-called glucose fatty-acid cycle (Randle cycle) ensures a sufficient energy
supply to the cells as lipid storages are not used for energy production if enough glucose
is available and remain unaffected for phases of starvation. In general, a downregu-
lated rate of fat metabolism with decreased FFA clearance enhances lipotoxic effects by
accumulation of lipid intermediates [157] such as acyl-CoA and malonyl-CoA. The accu-
mulation of especially long chain acyl-CoA in the cytosol induces functional impairment
and apoptosis by mediating signaling effects and Ca release. Acyl-CoA interacts with
PPARα [138] promoting apoptosis [72], uncoupling of respiratory complexes [133], and
storage as TG [158], ultimately impairing GSIS [157]. Based on the acyl-CoA content of
hamster islet transformed-tioguanine resistant clone 15 (HIT-T15) cells and the average dis-
tribution of cytosolic and mitochondrial mass in mouse pancreas [159], it is estimated that
the cytosolic acyl-CoA concentration in rodent β-cells is 90 µM, while tissue concentrations
are unknown [160]. Malonyl-CoA inhibits CPT1 preventing the mitochondrial uptake of
acyl-CoA [156]. Yet, there are contrary conclusions regarding the influence of CPT1 in the
context of lipotoxicity. While two publications indicate that mitochondrial FFA oxidation is
required for lipotoxic effects and can be counteracted by the inhibition of CPT1 [93,138], an-
other study suggests that the inhibition of CPT1 has no effect on lipotoxicity [57] indicating
that FFA mediate lipotoxicity independently from mitochondrial metabolism.

5.11. The Process of Autophagy Is Disturbed by FFA

PPARγ regulates the gene expression responsible for autophagy [139] and apoptosis.
While low grade autophagy activity is a requirement for remodeling of damaged cellular
components [161], enhanced autophagy leads to disintegration of the β-cell [162]. In case
of mitochondria, this process is called mitophagy. In the first step, damaged cellular
components form autophagosomes [43], which are degraded by lysosomes. The activity of
lysosomes is depending on ATP needed for acidification [43]. Thereby, FFA can reduce the
lysosomal activity [163,164]. This will lead to an accumulation of autophagosomes [161].
Additionally, FFAs can disturb the process of autophagy by lowering the expression of
the mechanistic target of rapamycin (mTOR) [43] and overexpression of optic atrophy
protein 1 [163] or dynamin-related protein 1 [165]. An increase in mTOR by FFAs is also
related to insulin resistance [43].

5.12. Acyl-CoA Abates Insulin Synthesis in B-Cells

Acyl-CoA is able to degrade the proton gradient of the respiratory chain through the
formation of mitochondrial permeability transition pore [166] disturbing GSIS [71]. An
increase in long chain acyl-CoA can inhibit the closure of ATP-dependent potassium (K)-
channels [167,168]. Factors involved in this effect are the acyl group, the CoA component,
and protein kinase C [169]. FFA can open K-channels by direct interaction [170] or as a
consequence of GPR40 mediated Ca influx, which is both decreasing the ability of glucose
to stimulate insulin secretion. In addition, the mRNA level of insulin is reduced by acyl-
CoA [156] and palmitoylation [57,171], as well as the interaction with hepatic nuclear
factor 4a, which could be related to uncoupling by UCP2 [45]. Some authors claim that
the activation of FFA into acyl-CoA is one of the most essential aspects mediating harmful



Antioxidants 2021, 10, 293 12 of 27

effects as the inhibition of acyl-CoA synthase could suppress lipotoxicity-mediated cell
death [172,173].

5.13. Ceramides Increase Oxidative Stress through Inducible Nitric Oxide Synthase

Palmitoyl-CoA, the activated form of PA, is substrate for the de novo formation of
ceramides and upregulates sphingosine kinase 2 (SK2), a key enzyme of ceramide synthe-
sis. Ceramides have impact on various pathways including proliferation, differentiation,
growth arrest, and apoptosis [174,175]. They can impair insulin sensitivity by protein
kinase C [138] and phosphorylation of insulin receptor substrate 1 (IRS-1) [176] as well
as reduce insulin expression by Pdx1 [78]. IRS-1, which is likewise regulated by SREBP-
1c [153], is integrated in proliferation signals by PI3K and Akt, while Akt also regulates
glucose uptake by GLUT4. Furthermore, ceramides disrupt the acetylation of proteins of
the mitochondrial metabolism [177], inhibit complex III, and decrease MMP [42]. They in-
crease cellular oxidative stress through the activity of inducible nitric oxide synthase (iNOS)
producing nitrogen oxide [57,79,139,178,179] and NADPH oxidase 2 (NOX2) producing
superoxide [55,178,180–182]. The activation of both iNOS and NOX2 induces apoptosis
by damaging mitochondrial DNA [155], which is more susceptible to harm due to the
absence of introns [179]. Damaged DNA can be recognized by stimulator of interferon
genes (STING), increasing inflammation and apoptosis. The STING pathway is enhanced
under lipotoxic conditions and activates interferon regulatory factor 3 [47]. It has been
shown that the presence of ceramides is crucial for the induction of apoptosis. While
the regulation of mitogen-activated protein kinase (MAPK) pathway including JNK and
extracellular-signal-regulated kinase (ERK) as well as Pi3K/Akt pathway are undoubtedly
essential for cell survival, there are contrasting data regarding their exact role for the β-cell.
According to literature, effects differ crucially between cell types and highly depend on
the chosen treatment conditions [132,183], e.g., PA inhibited ERK and induced apoptosis
in INS-1 cells [184], but exposure of glucose and interleukin (IL)-1β triggered apoptosis
concomitant with elevated ERK levels in human β-cells [44,185].

Additionally, SK2 was reported to increase apoptosis through Bcl-2, while SK2 inhibi-
tion prevented lipotoxic cell death [186]. The regulation of apoptosis by ceramides is seen
as one of the most important factors for β-cell decay mediated by lipotoxicity [187]. While
unsaturated FFA are not able to increase ceramides [188], other data indicate facilitated
ceramide production through an increasedω6:ω3 ratio of fatty acids [189].

5.14. Augmented Apoptosis in B-Cells by Long-Chain and Saturated FFAs

The initiation and execution of the mitochondrial apoptosis pathway is complex and
highly regulated. Briefly, the membrane of damaged cells starts to permeabilize, which is
enhanced by Bax or p53-upregulated modulator of apoptosis and suppressed by Bcl-2 [190].
The permeabilization is promoted by several stress markers related to the ER, like CHOP,
or the activating transcription factor [191]. The release of pro-apoptotic factors eventually
triggers downstream caspases like caspase 3. In consequence, chromatin will condensate,
DNA will be fragmented, and apoptosis is executed. Particularly long chain and saturated
FFA as opposed to intermediate chain length and unsaturated FFAs induce ER stress [64]
and counteract protective factors such as Sirtuin3 [44,91]. The fragmentation of DNA is
further promoted by oxidative stress sensitive transient receptor potential melastatin-2
channels, inducible by lipotoxicity [55].

6. Positive Effects of FFA on β-Cell Function

The number of articles reporting beneficial effects of FFA to β-cells and insulin secre-
tion is remarkably low. Most intriguingly, they share the same underlying pathways as
detrimental effects. Although this seems to pose a contradiction at first, a more detailed
look into the respective methodologies can give possible explanations.

FFA concentrations employed in studies delivering evidence for a beneficial impact
were notably lower [71,170,171,192]. While publications reporting detrimental effects of
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FFA usually applied concentrations around 500 µM, favorable effects were reported with
concentrations far below 100 µM. Furthermore, shorter treatment times were associated
with positive results indicating a difference between the acute and chronic exposure to
FFA. Acute effects were observed after a few hours of treatment while chronic effects
were noticeable after at least 24 h. Exposure of INS-1 cells to 100 µM for several weeks
severely blunted their insulin secretion (−80%) [49], whereas it was promoted by 1 h
incubation with 150 µM PA [56]. The short time treatment with low FFA concentration
led to the activation of PPARγ coactivator 1α/β [193] and a depletion of Ca storages
by GPR40, mediating insulin release [170]. The so-called “fatty acid stimulated insulin
secretion” (FASIS) is induced by acute FFA uptake and oxidation through the activation
of cellular energy production [72,158,194]. Resulting physiological low concentrations
of ROS are also promoting insulin secretion, which is referred to as “redox stimulated
insulin secretion” (RSIS) [56]. This effect is explained by PTEN-induced kinase 1 (PINK1)-
mediated autophagy activation, which is improving net insulin release pattern by disposal
of damaged cells [162]. In contrast, chronic elevation of FFA exerts a detrimental impact on
insulin secretion through permanent depletion of Ca-storages, and an abundance of ROS.

Another decisive aspect in lipotoxicity is the homeostasis between FFA and fat storage
mobilization. The available data indicate that stored neutral TG do not act lipotoxic in
contrast to FFA [195]. Therefore, it is crucial to differentiate between an energy surplus
leading to an excess of FFA on one hand and a storage as neutral TG on the other hand.
While adipocytes have a nearly unlimited TG storing capacity, fat storing in β-cells is
limited [195,196]. There are some articles implying that unsaturated FFA promote TG
storage, thereby counteracting the toxic effect of saturated FFA [195,197]. Other authors
assume that the protective effect is independent from fat storage [198], but rather reliant
on a positive effect of unsaturated FFA to proapoptotic factors [46], while also inducing
mitochondrial apoptosis [199]. Further data suggest an anti-lipotoxic effect of unsaturated
FFA [200]. However, the underlying mechanisms have not yet been elucidated. Unsatu-
rated FFA reveal their anti-lipotoxic effect mainly in co-treatment with saturated FFA. As
sole treatment with unsaturated FFA is also toxic, enhanced lipid storing by unsaturated
FFA should be further investigated as protective mechanism. It has been shown that the
amount of unbound FFA is a better parameter for lipotoxicity instead of total concentration
of FFA [57]. A summary of beneficial effects to β-cell physiology can be found in Table 6.
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Table 6. Summary of metabolic effects of FFA treatment and respective pathways. Palmitic acid (PA). Insulinoma (INS-
1). Glucose-stimulated insulin secretion (GSIS). Adenosine triphosphate (ATP). Calcium (Ca). Free fatty acids (FFA).
Hamster islet transformed-tioguanine resistant clone 15 (HIT-T15). Phospholipase C (PLC). Endoplasmic reticulum (ER).
Peroxisome proliferator-activated receptor (PPAR). Institute for Cancer Research (ICR). Chinese hamster ovary (CHO).
Human embryonic kidney 293 (HEK 293). Hepatoblastoma (HepG2). Mouse insulinoma 6 (MIN6). Uncoupling protein
(UCP). G protein-coupled receptor (GPR). PTEN-induced kinase 1 (PINK1). Oleic acid (OA). Triglyceride (TG).

Article Treatment Model Results and Respective
Pathways

Green et al., 2009 [192] 50 µM PA, 1 h INS-1 cells, human islets
- liver X receptor improved GSIS
- β-oxidation provided ATP for GSIS
- lipid signaling supported Ca influx

Komatsu et al., 1999
[171] 10 µM PA, 1 h Wistar Rat islets - FFA supported GSIS within first 10 min of secretion

Remizov et al., 2003
[170]

100 µM PA,
30-60 min HIT-T15 cells, primary mice β-cells - FFA caused Ca mobilization from internal storages

Zhao et al., 2013 [71] 20 µM linoleic acid,
2-10 min Sprague Dawley rat islets

- FFA stimulated Ca increase. Effect depended on
Acyl-CoA synthase, PLC, and ER/mitochondrial Ca
storages

Oropeza et al., 2015
[193] 100 µM PA, 1 h C57BL/6J mice islets

- FFA increased PPARγ coactivator 1α expression,
regulating key enzymes in lipolysis and the
glycerolipid/free fatty acid cycle

Chen et al., 2020 [72] 10 µM linolenic acid, 1 h INS-1 cells, KO mice islets, Wistar Rat
islets

- FFA receptor 1 agonist supported insulin secretion
by increased mitochondrial function and
β-oxidation

Li et al., 2020 [194] 10 µM linolenic acid, 1 h
ob/ob mice, ICR mice, C57BL/6 mice,
CHO cells, HEK293 cells, HepG2 cells,

MIN6 cells

- FFA receptor 1 agonist supported insulin secretion
and glycemic control

Li et al., 2020 [158] No FFA C57BL/6 mice, ob/ob mice, db/db
mice

- FFA receptor 1/PPAR agonist supported β-cell
function and fatty acid metabolism

Ježek et al., 2015 [56] 150 µM PA, 1 h INS-1 cells
- FFA activated UCP2. Oxidative stress by

physiological FFA uptake was prevented.
- PA increased insulin secretion by GPR40

Guo et al., 2019 [162] 100–500 µM PA,
24–48 h RIN-m5f cells

- sonodynamic therapy increased insulin secretion of
damaged cells by activated PINK1 autophagy

Cho et al., 2012 [195]

100–500 µM PA, 24 h and
10–62 µM arachidonic acid and

20–120 µM unsaturated FFA
(OA, arachidonic acid,

palmitoleic acid)

HIT-T15 cells
- unsaturated fatty acids protected against PA

damages, probably by TG accumulation

Tuo et al., 2011 [199] 50–500 µM linoleic acid, 48 h INS-1 cells
- negative effects occurred from 250 µM upwards for

viability, effect depended on high glucose
concentrations

Ježek et al., 2018 [200] 100 µM PA,
10-60 min C57BL6J mice islets

- monoacylglycerol bound to GPR119 and enhanced
insulin secretion

Cnop et al., 2001 [57] 125–500 µM PA and OA, 2 d
and 8 d Wistar Rat islets

- OA treatment accumulated more TG than PA,
ameliorating the detrimental effects of FFA

7. Influence of Ageing on β-Cell Function

Since there are multiple mechanisms by which lipotoxicity can impair β-cell function,
this section will review which of the underlying pathways are especially related to acceler-
ated ageing and senescence of β-cells and the pancreas. Cellular senescence is defined by a
cell cycle arrest triggered by damaged DNA, exerting an anti-tumorigenic purpose [201]. It
can be induced due to telomere shortening at the end of a cell’s life span, or, dependent on
the physiological conditions, as part of the cellular stress response. Lipotoxicity is linked
to cellular senescence by the p38 MAPK pathway which is age-dependently correlating
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with decreased cell proliferation and insulin release in β-cells. Lipotoxicity can contribute
to the activation of p38 MAPK by elevated ROS and ceramides. p38 MAPK promotes
senescence through different pathways, which are dependent on and independent of telom-
erase length [202]. As autophagy can be regulated by MAPK, it is tempting to speculate
that lipotoxicity might thereby impair the degradation of damaged organelles and cellular
regeneration. Age-dependently, ROS and levels of radicals tend to accumulate and lead
to enhanced damaging of mitochondrial proteins and DNA, leading to cellular dysfunc-
tion. Beside cellular damaging and signal pathways, glucose and insulin homeostasis is
impaired by decline in mitochondrial ATP synthesis capacity and reduced expression and
translocation of GLUT2 [117]. In addition, depending on age, the insulin dependent uptake
by GLUT4 is decreased by Ras-related C3 botulinum toxin substrate 1 (Rac1), a protein
which is correlating with ceramide-mediated senescence [203]. In presence of ceramides,
the activation of Rac1 could also influence oxidative stress by induction of NOX2 [178].
With increasing age, the activity of insulin like growth factor (IGF) binding protein 3 as
well as the total amount of IGF decline. A reduced binding of IGF leads to the deterioration
of glucose tolerance, lipid metabolism, and increased stress by absent UCP regulation [204].
FFA can further have negative effects on the activity of the subunits of farnesyl transferase
(FTase) and geranylgeranyl transferase (GGTase). FTase and GGTase are enzyme com-
plexes required for the prenylation of proteins determining localization and transport of
proteins. The degradation of subunits of FTase and GGTase by FFA activation of caspase is
chronically activating Rac1 leading to increased cellular stress. The impairment of protein
prenylation has negative consequences on GSIS and is connected to ageing syndromes [180].
A further increase of senescence has been seen in involving caveolin-1, a membrane protein
inducing apoptosis by Src family kinases-mediated phosphorylation of tyrosine-14, which
is promoted by FFA [42]. While they are known ways, how lipotoxicity is correlating with
acceleration of β-cell senescence, the data in this literature search are limited to few articles
(n = 15).

8. Potential Protective Effects of Plant-Based Nutrients

A healthy lifestyle involving sufficient exercise and a balanced diet is a pivotal part
of the treatment of T2DM. Plant-based nutrients as mainly recommended in the so-called
Mediterranean diet contain numerous phytochemicals mediating wholesome effects. In
particular, the major group of polyphenols was reported to wield protective properties,
e.g., ameliorating glucotoxicity [205,206], oxidative stress [207], and ER stress [208] as
well as inhibiting α-amylase [209,210] and preventing protein glycation [211]. Yet, their
effects on the mitochondria of β-cells have been barely investigated (in cell lines: n = 5,
in animal experiments: n = 5). Most interestingly, the beneficial effects of polyphenols
are targeting pathways affected by lipotoxicity. They counteract the dysregulation of the
MAPK and Pi3K pathway [22,23,212–214], and mitigate apoptosis by altering Bax/Bcl
ratio and up-regulation of Pdx1, protein kinase A, and cAMP response element-binding
protein signaling [215]. They stabilize the mitochondrial membrane preventing the re-
lease of proapoptotic factors and enhancing Ca signaling [23]. Moreover, polyphenols
support insulin release through interaction with Pdx1 [212] in a forkhead box protein O1
(FoxO1)-dependent manner [214] and inhibit dipeptidylpeptidase-4 (DPP4) to increase
GLP-1 levels–a pathway successfully used in clinical practice by DPP4 inhibitors and GLP-1
receptor agonists [33,216,217]. In addition, the dysregulation of GLUT2 and GLUT4 can be
reversed by polyphenols improving elevated blood glucose levels and increasing insulin
sensitivity [22]. Furthermore, relief from oxidative stress due to their radical scavenging
capacity [33], and amelioration of ROS production by iNOS was reported. Polyphenols
promote the activity and regeneration of antioxidative enzymes like SOD, catalase, GSH
reductase, and GPx [21,33,212,218]. Particularly, GPx4 reduces lipid peroxides in the con-
text of ferroptosis. As lipotoxicity-induced ferroptosis is also closely related to restrictions
of Fe/S enzymes, plant-based nutrients rich in polyphenols were shown to sustain the
activity of those enzymes, e.g., cytochrome C oxidase or succinate dehydrogenase, which
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showed lowered activity in an animal study with high fat diet [212] counteracting mito-
chondrial dysfunction. Possible beneficial effects of polyphenols could be also mediated by
improved fat metabolism through upregulation of SREBP-1c including signals from Akt
or the estrogen receptor α [22,23] and lipid storing, improving lipid parameters [21,218].
Polyphenols further exert anti-inflammatory effects through decreased cytokine levels and
ER stress [212,219].

According to these data, plant-based nutrients rich in polyphenols might be promising
agents to counteract lipotoxic damage to β-cell mitochondria in diabetes and account for
the beneficial effects of the Mediterranean diet. Yet, their clinical and therapeutical benefit
has not been studied in clinical trials, and some authors even claim that toxic effects might
arise from dosages required to achieve therapeutic levels in humans [33]. A summary of
the described effects is given in Table 7.

Table 7. Summary of metabolic effects mediated by plant-based polyphenols and respective pathways. Oleic acid (OA).
Mouse insulinoma 6 (MIN6). Glutathione peroxidase (GPx). Free fatty acids (FFA). Glucagon-like peptide 1 (GLP-1).
Dipeptidylpeptidase-4 (DPP4). Reactive oxygen species (ROS). Superoxide dismutase (SOD). Triglyceride (TG). Palmitic
acid (PA). Insulinoma (INS-1). Pancreatic and duodenal homebox 1 (Pdx1). Extracellular-signal-regulated kinase (ERK).
Glucose-stimulated insulin secretion (GSIS). Endoplasmic reticulum (ER). Insulin receptor substrate 1 (IRS-1). Glucose
transporter (GLUT). Rat insulinoma (Rinm5f). AMP-activated protein kinase (AMPK). Mechanistic target of rapamycin
(mTOR). High fat diet (HFD). Interleukin (IL). Tumor necrosis factor α (TNFα). Forkhead box protein O1 (FoxO1).

Article Treatment Model Extract, Substance Results and Respective
Pathways

Zakłos-Szyda et al.,
2020 [33] 100 µM OA, 24 h MIN6 cells

Viburnum opulus L., fresh juice
and phenolic rich fraction with

chlorogenic acid, flavanols,
procyanidins

- reduced oxidative stress
by radical scavenging and
activation of antioxidative
enzymes (GPx)

- increased FFA uptake and
lipid droplets
accumulation

- increased GLP-1 secretion
by inhibited DPP4 activity

- higher extract dosages
increased
necrosis/apoptosis by
caspase activation and
elevated ROS

Renganathan et al.,
2020 [21] No induction Wistar rats

Dhanwantaram kashayam,
polyherbal formulation

containing Sida spinosa L.,
Hordeum vulgare L., Aegle

marmelos (L.) Corrêa, Bauhinia
forficata Link.

- less oxidative stress by
activation of antioxidative
enzymes (catalase, SOD,
GPx, glutathion reductase)

- improved lipid
parameters (total
cholesterol, FFA,
phospholipids, TG)

- extract abated
antioxidative enzymes in
control rats
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Table 7. Cont.

Article Treatment Model Extract, Substance Results and Respective
Pathways

Liu et al., 2019 [34] 200 µM PA,
24–96 h

INS-1 cells, C57BL/6J
mice islets Dracorhodin perchlorate

- increased Pdx1 expression
by ERK1/2

- decreased apoptosis by
Bax/Bcl-2 ratio

- lowered blood glucose by
improved GSIS, increased
islet size/number

- diminished ER stress

Sun et al., 2019 [23] 100 µM PA, 48 h INS-1 cells Silibinin

- improved viability, GSIS,
lipid metabolism by
estrogen receptor

- increased mitochondrial
mass and improved
mitochondrial membrane
potential

Gharib and
Montasser Kouhsari,

2019 [22]
No induction Wistar rats

Punica granatum L., fruit extract
with punicalagin,

anthocyanins, ellagic acid, gallic
acid, caffeic acid,

catechins, quercetin, rutin

- lowered fasting glucose by
modulations of IRS-1, Akt,
GLUT2/4 mRNA

- enhanced lipid parameters
(FFA, TG)

Gharib et al., 2018
[213] No induction Wistar rats

Punica granatum L., fruit extract
with punicalagin,

anthocyanins, ellagic acid, gallic
acid, caffeic acid,

catechins, quercetin, rutin

- improved lipid parameters
(FFA, TG)

- increased insulin sensitiv-
ity by decreased p53, p65,
miR-145 and elevated IRS-
1

- reduced ROS

Huang et al., 2017
[216] 100 µM PA, 24 h RINm5F cells

Abelmoschus esculentus (L.)
Moench, extract with quercetin

glucosides, pentacyclic
triterpene ester,

carbohydrates, polysaccharides

- increased GLP-1 effect by
decreased DPP4 activity

- reduced apoptosis by
AMPK, mTOR, PI3K
signaling

Liu et al., 2017 [212] HFD, 6 weeks Sprague dawley rats
islets

Morus nigra L., leaf extract with
polysaccharides

- improved lipid
parameters (FFA, TG,
low-density lipoprotein)

- decreased IL-6, TNFα
- lowered fasting glucose
- promoted mitochondrial

enzymes (succinate
dehydrogenase,
cytochrome C oxidase)

- morphological
improvement of β-cells

Hao et al., 2015
[214] 500 µM PA, 24 h MIN6 cells Curcumin

- reduced apoptosis by
caspase and Bax/Bcl-2
ratio

- improved GSIS by
mitochondrial membrane
potential, Akt, FoxO1

- reduced oxidative stress
by antioxidative enzymes
(MnSOD, catalase, GPx,
glutathione reductase)
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9. Conclusions

Mitochondrial function is a key parameter crucially determining energy supply and
cell survival. By those factors, it plays a central role in β-cell decay and development of
T2DM. FFAs are well known to impair the glucose metabolism by mediating negative
effects on mitochondria generally known as lipotoxicity. As lipotoxicity is multifactorial,
most of the reviewed studies described lipotoxic effects mediated by increased oxidative
stress, uncoupling of energy production by UCP2, deterioration of lipid homeostasis by
PPAR and SREBP-1c signaling, extra-mitochondrial signaling through accumulation of
acyl-CoA, and eventually enhanced apoptosis. While lipotoxicity can accelerate senescence
of β-cells, there is evidence for a sustained mitochondrial metabolism and reversed effects
of lipotoxicity by polyphenols as apparent in plant-based nutrients. However, the data are
extremely limited and covering a wide range of different plants and ingredients, preventing
a distinct verdict on their significance for T2DM and lipotoxicity. When studying the effects
of FFAs, parameters like structure, concentration, treatment duration, and preparation
should be considered carefully since they have massive impact on the outcome of the
experimental setup. Especially the employed concentration substantially determines if
FFAs will have an adverse or beneficial effect on β-cells. Judging cautiously from literature
it can be generally assumed that in vitro FFAs mediate physiological effects in the lower
micromolar range (Table 6), whereas concentrations in the upper micromolar range and
higher exert lipotoxic effects. In contrast, concentrations are considerably higher in vivo
with human serum containing levels in the lower millimolar range and murine serum with
approximately 10% of this amount.

The different results of FFAs and polyphenol treatment as well as the multifactorial
presentation of lipotoxicity leaves several questions unanswered. Therefore, further studies
with clearly defined experimental setups would benefit this promising field of research
and further elucidate the execution of lipotoxicity and respective protective mechanisms
for the pancreatic β-cell.
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