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Abstract

Thermoelectric technology is a good option for electricity generation due to its capacity
to turn waste heat directly into employable electrical energy. Thermoelectric modules
are the basis of this technology and are fabricated from doped n- and p-type
semiconductors.

Mg2(Si,Sn) thermoelectric material is one of the top candidates for module assembly
due to its good thermoelectric properties coupled with low density and cost. The low
toxicity and high availability of the precursor elements give this material system crucial
advantages in comparison with other competitors.

Thermoelectric module operation requires a temperature difference, which inevitably
causes differential thermal expansion within a module. Such an expansion in a device
composed of different materials with different expansion coefficients could lead to
failure due to stress-induced fracture, posing a serious threat to reliability and
applicability of thermoelectric modules. It is therefore important for module design to
take into account the different thermal and mechanical properties of the materials
involved in the assembly.

Most of the research on thermoelectric applications, however, is focused on the
optimization of the thermoelectric performance of the materials. Other properties like
elastic modulus, hardness and coefficient of thermal expansion are studied with
substantially lower intensity.

This thesis aims at filling the gap of missing information regarding the mechanical and
thermal properties for the solid solutions Mg2Si1xSnx with x =0 — 1.

This work starts with hardness measurement, Vickers indentations were performed on
the sintered pellets to identify the effect of Sn content in Mg2(Si,Sn) on the hardness
exhibited by the material. Increasing the amount of Sn in the solid solution decreases
the hardness values in a linear relationship. Mgz2Si has the highest value at 5 GPa and
Mg2Sn the lowest at 2 GPa. The fracture toughness of the studied samples did not,
however, follow the same trend, as the material Mg2Sio.6Sno.4 exhibited the highest
value. It was found that Si-rich regions in the microstructure left over from the synthesis
and pressing processes were strengthening the material by adding interfaces, which
deflected or otherwise impeded the growth of the cracks produced by indentation.

The next step towards filling the gap in missing information was to characterize the
elastic moduli of the solid solution series Mg2SiixSnx with x = 0 — 1. Two non-
destructive characterization methods were employed and compared, the Resonant
Ultrasound Spectroscopy and the Impulse Excitation Method. This work innovates in
the parallel measurement and comparison between the results provided by both of
these techniques. The difference between the measurement results is below 9%,
which suggests that using both techniques interchangeably is possible. The main
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differences between the techniques are the sample size required for testing, as well as
the ease at which high temperature measurements can be implemented.

This work presents the first ever report of Young’'s modulus of Mg2(Si,Sn) as a function
of composition and temperature, finding a linear dependence of both. Using these
results, a bilinear dependence was proposed to predict the Young’s modulus of any
material within the solid solution and at any temperature between 300 K and 623 K.

Joining a fast quantification method to estimate the local composition using back-
scattered electron images to the bilinear equation, the effective Young’'s modulus of
several samples was estimated. For this estimation both the Voigt and Reuss
approximations for a composite material were used. The results show that the
composite material approach and the bilinear equation can be used to accurately
predict the effective elastic modulus of typical, not completely homogenized,
Mg2(Si,Sn) material.

To test the effect of doping species on the thermal and mechanical properties of
Mgz(Si,Sn), the materials MQg2Sio.3Sno.essBio.oss and Mgu.e7Llio.03Sio.3Sno.7 were
compared to undoped Mg2Sio.3Sno7 and low doped Mg2Sio.3Sho.6925Bi0.0075. This
information is crucial for accurate module design as any possible effect has not been
identified before.

Room and high temperature Young’'s modulus was measured for all the mentioned
compositions. All of them exhibited a linear behavior, albeit with Bi containing samples
having different slopes. Both materials of interest show, however, very similar values
at application temperatures.

The coefficient of thermal expansion for all the aforementioned samples was measured
from room temperature to 440 °C. It was proposed to use a linear fit and extrapolation
to describe the temperature dependent thermal expansion of the material instead of
the mean value usually given in literature. When the equation obtained from the
extrapolation is used to estimate the room temperature value, the comparison to the
mean value results in a difference <3%.

This work concludes with the simulation of a thermoelectric uni-couple using Finite
Element Modelling. For this simulation, temperature dependent data presented in this
work is used and compared to modeling results based on constant values. The stress
distribution is described using three main stress components, the von Mises stress,
the principal stress 1 and the shear stress along the contact surface. A comparison
between constant values with temperature dependent data for Mg2(Si,Sn) shows that
using constant room temperature or temperature averaged values gives similar results
as full temperature dependent calculations. However, when only one of the main
variables, Young’s modulus or coefficient of thermal expansion, is employed with the
correct temperature dependence, the stress values can be off by more than 10%.
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1. Introduction

Space missions have a high demand for power. This holds especially in the lift-off
phase and the way into orbit but as well for the rest of the mission time. The operation

of launchers requires electrical power that is currently provided by heavy batteries.

Thermoelectric generators (TEG) have been successfully utilized to provide energy to
space faring objects, such as probes, since the 1970°s [1]. These generators can
convert heat directly into usable electrical power with virtually no maintenance

requirements [2].

This technology has been proposed further to use on Moon or other planets to provide
electrical energy, working complementary or in tandem with photovoltaic (PV) panels
[3], which utilize solar radiation to generate electricity. These PV modules are prone to
deterioration by dust and solar radiation, as well as being inactive during
planetary/lunar night. In contrast to these shortcomings of PV technology, TEG can

function in the absence of light [4, 5].

Therefore, the Young Investigator Group “Thermoelectric generators for space
applications”, from in the department of “Thermoelectric Materials and Systems” at the
German Aerospace Center aims for the development of thermoelectric (TE) generators
based on light-weight and high-performance silicides. Development of such generators
requires material testing and optimization as well as the development of contacting
solutions, generator module design, and — as final and most prominent step — the

fabrication and evaluation of the thermoelectric generator devices.

The development cycle of such devices must include a reliability test, in order to ensure
that the hardships of space travel and operation under extreme environments is
overcome. Early TEG technology relied on the trial-and-error approach, by building
and then testing generators under challenging situations until they failed and studying
the failure mode [6]. With the advent of technology and computer simulation software,
these trials can be done in the virtual world with reduced time and money expenditure.
Such a simulation can only yield meaningful results if proper material properties are

used.



The use of finite element modeling (FEM) to mechanically optimize designs in TEG
technology has been explored before [7—9]. The majority of previous studies have only
dealt with room temperature mechanical behavior, mostly because this is the available
information in literature. However, it remains to be tested whether or not the
temperature difference of the mechanical behavior has an influence in the simulated

results.

The focus of this work will be the measurement of different mechanical and thermal
properties, needed for the correct design of a functioning silicide-based TEG. The aim

is to provide a footwork in which to build, to assess the mechanical reliability of a TEG.

Both the effect of temperature and composition on the elastic moduli of Mg2(Si,Sn)
material will be investigated, as well as the effect of doping species in the composition

selected for technological use.

With the information about temperature and composition dependence of mechanical
properties known, a simulation of a thermoelectric uni-couple will be presented and
analyzed. This analysis will focus on the effect of temperature dependent properties

compared to the usual constant room temperature values used in literature.



2. Theoretical background

2.1. Thermoelectric effects

2.1.1. Seebeck and Peltier effect

In 1821, Thomas J. Seebeck observed that whenever a material was heated on one
side and kept at lower temperature on the other, a magnetic needle placed close to the

circuit would move.

This effect is called Seebeck effect in his honor today, it is also now known that the
effect is caused by the thermal diffusion of charge carriers from the hot side to the cold
one [4].

The voltage buildup V and the temperature difference between the ends AT are related
by a proportionality constant
V = —SAT (1)

where S is the Seebeck coefficient and T is temperature. The Seebeck coefficient can
have a positive or a negative value, depending on the type of majority carriers within

the material.

Materials with excess electrons are denominated as n-type, while materials with
excess holes are called p-type. A sketch of electron movement is shown in Figure 2—

1. The voltage will build up between the hot (Th) and cold (T¢) sides of the material.

Movement of electrons

Figure 2-1 Charge carrier movement under a temperature difference



On the other hand, in 1834 a related effect was observed by Jean Charles Athanase
Peltier. He observed that whenever current flowed through the junction of two materials
A and B, this junction would heat up or cool down. The heat absorption or release
depends on the material combination and the direction of the current flow [10]. Thus,
the Peltier effect was described. The Peltier coefficient /17 is defined as the relationship

between the rate of heat flow Q@ and current I following Equation 2 [11]
Q=T1-1 (2)
The Peltier coefficient can is related to the Seebeck coefficient by the Kelvin relation:
Iy — g = (Sq — Sp)T )

Single materials are of limited use technologically, they need to be assembled in pairs,
one p- and one n-type. This is the basic unit of functioning for thermoelectric

technology.

2.1.2. Thermoelectric devices

A thermoelectric couple in its most basic form is the connection of an n-type with a p-

type semiconductor (also called legs) through a metallic bridge [5].

This couple can then function as a generator (using the Seebeck effect) or as a heat
pump (using the Peltier effect), this is illustrated in Figure 2-2.

Heat source

Heat absorption

p n

Heat sink

Heat rejection

Generation mode Heat pump mode

Figure 2—2 Thermoelectric uni-couple in both generation and heat pump modes



As can be seen from the picture, in the generation mode both materials have the same
temperature difference (thermally connected in parallel) to provide the charge carrier
movement necessary to produce the voltage. As they are electrically connected in

series, the small voltages produced by each leg will add up.

The efficiency (n) of such a device is defined by the ratio of output power and heat flow

goinginn = QL , where P is the power and Q,, is the heat going in. Output power is

expressed as P = Q,,; — 0, Where Q,,, is the heat going out of the device [2].

As any heat engine, a thermoelectric device is limited by the Carnot efficiency, defined

as ?—T where Ty is the temperature on the hot side. The maximum efficiency of a
H
thermoelectric generator can be expressed using Equation 4 [2, 12].

_ AT V1+ZT-1
TH \/1+ZT+TC/TH

(4)

where Tcis the temperature on the cold side and ZT is the device figure of merit. This
in turn is similar to the material figure of merit (zT) if the TE properties (see below) of

both TE materials are similar and device effects like contact resistances are small.

This material figure of merit relates all main properties at a given temperature and is
described by Equation 5 [13]

T =257 (5)

where ¢ is the electrical conductivity and x the total thermal conductivity. The term S2¢
is also called the power factor. From Equation 5 it is clear that increasing the Seebeck
coefficient and the electrical conductivity, while keeping the thermal conductivity low is

the key to increase the performance in TE materials.

Thermal conductivity k is the rate at which a solid material can conduct heat when

under a temperature difference between its ends. This heat flow is expressed by
. dr
Q = Ak a

Heat transfer is done mainly by charge carriers (electrons and holes) and by lattice
waves (phonons). These are the main components, the lattice k. and electronic ke
contributions to the total thermal conductivity [14]. The unitin SI for thermal conductivity
is W/m-K



The lattice thermal conductivity governs how thermal energy is transported through the
lattice, and thus will be impacted by the type of bonding present in the material and the

atomic weight of the component elements. A good estimation of this value can be

c

obtained using the equation k; = Tw where C is the specific heat, v is the speed of

sound and [ is the mean free path for the phonons [15].

The electronic component of the thermal conductivity can be estimated, following the
Wiedemann-Franz law, using the equation k, = L¢T where L is the Lorenz number and

¢ the electrical conductivity.

Electrical conductivity is the ease at which the charge carriers move through a material,
producing electrical current. For a single carrier type, it is given by ¢ = ney, where n is

the charge carrier density, e is the electron charge and p the charge carrier mobility. In

the SI, the units used for electrical conductivity are S/m.

Both Seebeck coefficient and electrical conductivity are directly related to charge
carrier concentration, and thermal conductivity is partly influenced (through the
electronic component) by it. The interplay between these variables is shown in Figure
2-3.

Insulator |  Semi Semi
Ic:r::nductr::rl metal

Thermoelectric properties

Charge carrier concentration n

Figure 2—-3 Dependence on carrier concentration of Seebeck coefficient, thermal and electrical
conductivity, based on original work from [16]
Materials with too high (metals) or too small (insulators) carrier concentration tend to
have poor qualities to be used as thermoelectrics [17], thus the class of

semiconductors tends to be the focus of thermoelectric technology development.



2.1.3. Thermoelectric module

A thermoelectric module is composed of several uni-couples connected electrically in
series and thermally in parallel.

Hea urce

Figure 2—4 Thermoelectric module. Adapted from [18]

As can be seen from Figure 2-4, the mechanical support for the generator is given by

insulator ceramic plates on top and bottom.

The TE materials need to be joined to the bridges; these are metallic connections

between legs whose function is to provide electric continuity to the circuit.

Materials commonly used as legs do not join well with some of the most common
bridge materials (Cu, Ni, Al, etc.) [2, 19] and thus an extra layer of metallization needs
to be applied to the material in order to be soldered in the array. Electric connections

to allow the current to flow into and out of the module also need to be provided.

The assembled module shall be placed within a temperature difference, and lower on
the other end. The Seebeck effect will then enable the module to convert heat into

electricity.

This combination of materials used to assemble a module creates an environment in

which high temperatures can lead to several issues, the dominant one amongst them



being the thermal expansion within the module, although stability issues, oxidation or
evaporation of the material, and various other degradation mechanisms are also
present [20—22]



2.2. Mechanical properties

As previously described, a thermoelectric module is composed of different materials
assembled together, thus, thermal expansion of said devices will exert thermally
induced mechanical stress which will act upon the whole assembly.

Several properties need to be known to evaluate the performance of such materials

under working conditions. These will be introduced in this section.
2.2.1. Stress

In order to analyze and understand what stress is, an example can be made using an
arbitrary body. This body is assumed to be in equilibrium and external forces are
assumed to be applied onto its surface. The flat cross-sectional area A can be defined
as shown. Within this area, an arbitrary point Q can be positioned and the resulting
force applied on this area can be defined as F. The 3D orthogonal coordinate system
with the axes directions X, y, z can then be placed with their origin on the point Q and
the components of the force along all three-axis computed, so that Fx, Fy and F; are

known. A diagram exhibiting the forces and surfaces is shown in Figure 2-5

External Internal
forces forces

SN\ — Fy

Figure 2-5 Example of a body under external forces, resultant force on the point Q and diagram of the

area with the three-dimensional axes system

The resultant force will change if the point Q is moved. However, at the point Q
pictured, the stresses are estimated by dividing the force by the area as follows [23].

Fx
O-xx —7 )
F,
— Y
Oxy = A Txy
Fy
Oxz = A Txz
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Where the suffix denotes first the plane on which the stress acts, and then the direction
in which it is acting. So, for example, the stress g,, acts on the x plane (perpendicular
to the x direction) and in the direction of x, while 7,, acts on the x plane and in the
direction of y. Whenever the stresses act on the same direction and plane, they are
called normal stresses. If the stresses act parallel to the surface, they are called shear

stresses.

If, instead of taking only a differential surface on the body, a differential volume is taken,

the three-dimensional stress state can be defined as shown in Figure 2-6.

7 Yo
Figure 2—6 Stress distribution for a three-dimensional body
This stress state can be represented by a matrix (denominated Cauchy stress tensor)
in the form [24]
Oxx ny Oxz Oy Txy Txz
gij = [ny Oyy UyZI = [Tyx Oy TyZI

Ozx Ozy Oz Tzx Tzy O

It can be seen that stress state of an arbitrary body can be defined by these nine
components. The sign convention is as follows, when both the normal and the stress
component point in the positive direction, the stress is positive. If normal and stress
component both point to the negative side of the axis, the stress is positive. Otherwise,
the stress is negative. It can be seen thus, that tensile stresses (pulling apart the body)

are always positive, while compressive stresses are always negative
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In order to check for symmetry, the plane xy will be analyzed, as shown in Figure 2—
7. The system will be assumed to be in static equilibrium, so the sum of all torques
must be zero and the distances from the application point to the origin are the same.

Figure 2—7 Side view of the shear stresses acting on the xy face

Thus, it can be established that 7,, = 7,, and furthermore, doing the same on the xz

and yz planes, it can also be found that 7,, = 7,, and t,,, = 7,,.

2.2.2. Stress transformation

Stress is usually expressed in reference to the orthogonal axes xyz. However, it is

sometimes convenient to use auxiliary axes to refer to stress.

The process to employ auxiliary axes is described next. Taking a differential 2D
element AOB subjected to stress along the y and x axes and slicing it an angle 0
(inclined at the same angle as the auxiliary axes) yields an element AOB. Area AOB
will be assumed to be the unity [23]. The stress components need to be rewritten in

the new coordinate system and yield a diagram as shown in Figure 2-8,
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0,sin(6)

Figure 2—-8 Stress components acting on a tilted differential area

In order to find the normal and shear stress g, and 7, respectively, the sum of forces
on x' and y' needs to be equal to 0, these forces will be calculated as the stress

component multiplied by the area AOB.

The sums are defined as Y F, = 0 = 0y, — Tyysin (8)cos (8) — 14y,cos (8)sin (0) —
gy sin (0)sin () — o,cos (8)cos (0) and Y E, =0 =1y, + 14, sin(f) sin(6) —

Tyy €0S(8) — ay,sin (8)cos (0) + o cos ()sin (6).
The resulting equations are
Oy = 0,c05%(0) + 0y, sin®(0) + Ty, (2 - sin () cos(6))
Taryr = (0 — 0y) » (2 sin(B) cos(6)) + T,y (cos?(0) — sin?(6))
By employing trigonometric identities, the equations are finally found as

oy = %(o’x +0y,) + ; (0, — 0y) - c0s(20) + Ty - sin (26) (6)
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Ty = — % (0, — 0y) - sin(20) + 1,y - cos (20)  (7)

By plotting shear and normal stress as a function of the varied angle, a graph can be
constructed to find the maximum values for these stresses. Such a graph is exemplified
in Figure 2-9.

Stress (Pa)

T T T T T T T T T T T T T
0 50 100 150 200 250 300 350
Angle (°)

Figure 2-9 Stress as a function of rotation angle for the auxiliary axes

As can be seen from the figure, and deduced from the Equations 6 and 7, the
maximum shear and maximum normal stress are separated by 45°. It is also important
to note that when the maximum normal is achieved, shear stress vanishes and when

the maximum shear is achieved, the normal stress will be at the median value.

It is also convenient to know the values for these stresses. In order to achieve this, the
first derivative of Equations 6 and 7 needs to be equaled to 0. The resulting equations
are

Oxto Ox—0y\2
012 = > 2 + \/(Ty) + Txyz (8)

Tmax = \/(@)2 + Txyz 9
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where oy , are the maximum and minimum stresses, also called principal stresses and

sometimes referred to as oy p, [23, 25]

the angle at which the principal stresses are located can be estimated using the

Z'T"y, while the angle at which the maximum shear stress is

Ox—0y

expression tan(26,) =

Ox—0y

located will be calculated using the equation tan(26,) =

2Ty

2.2.3. Strain

A body can be considered to be strained when the relative positions of two arbitrary

points are altered after being subjected to an external force.

As in the case of stresses, strain can be normal (due to forces perpendicular to the
plane) and shear (due to forces parallel to the plane). Normal strain will be introduced
first. Following Figure 2-10, let there be a body with length dx, width dy and a
thickness equal to one unit, in which the points A, B, C and D are defined at the corners,

point A will be assumed to be fixed.

After being subjected to external normal forces, the new points B, C" and D" can be

found as shown.

y

D [T T T T T T T T T IC

fdv : |

|

' S ¢

|

dy |

|

|

v 1 __ |
A B B

du
-—— Jdx —» ——

Figure 2-10 Planar normal strain
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It can be seen that the point B~ was moved from its x position by du due to Fx and point

D" has moved dv in the y axis due to Fy.

Normal strain can be defined as the change of length divided by the original length as

€= L;L", thus the strain along the x axis would be defined by ¢,, = % while the strain

0

along the y axis is described by ¢, = Z—; [23, 26].

Shear strain is typically represented as a change in angle of the original shape. This is

better represented in Figure 2-11.

y

Figure 2-11 Planar shear strain

Point D’ will move along the x axis due to the action of force Fx, and point B’ will move
on the y axis due to Fy. Assuming that the longitudinal deformation is small (AB = AB’),

and that the angles a, (BAB’) and a, (DAD’) are small enough so that tana = «, then

d d . .
both angles can be expressed as a, = é and ay, = d—;‘.The resulting strain can be

. d da .
calculated using yy, = ay + a, = ﬁ + é. Just as in the case of shear stresses, the

shear strain is symmetrical and thus y,, = yy.

In the case of 3D, the introduction of w as the displacement and dz as the original
length in the z axis is necessary. The equations, however, remain the same and the

final three-dimensional strain can be expressed using the following equations

— au _w — aw f | strai
Exx = = gy =5 €12 = or normal strain
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__du dv __du dw _av dw

Yoy = 5t o Vaz =+ — Wz =gt for engineering shear

strain

In a more general form, strains can be estimated using Equation 10 [23]

1 (duy du;
Ekl — E (d_xl + —) (10)

dxk
Where k, [ can take the values x,y, z, and thus du, = dv and dx, = dz, for example.
Following this equation means that the real shear strain is half the engineering shear
strain following &, = %yxy. The measurement of engineering strains predates the

development of the mathematical tool to analyze tensors, thus the real shear strain

was defined and a factor of 0.5 included to keep the equality [23].

Once all the strains have been defined, the matrixial form can be obtained in the form

1 1
Ex 5Vxy SVxz
Exx Exy Exz 1 E %
€kl = [syx Eyy gyZ] Tz & Yz
Ezx  Ezy &2z 1 1
_Eyzx Eyzy &z ]

2.2.4. Elasticity

In 1660, Robert Hooke discovered that the elongation (x) of a spring fixed on one side
and with a set of weighs on the other end would be proportional to the amount of weight
(F) tied to it [27].

F «< x

The proportionality was held through the use of a constant that he denominated k, this

is the stiffness constant.

A similar relationship can be established for the analysis of materials under loads as
well, as long as the strains are small enough (typically below 2% for most materials),
the proportionality is given by the matrix Equation 11 [28]

o=_Ce (11)

Or in the alternative form in Equation 12
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0ij = Cijri€n (12)

Where i,j, k,l can take the values x, y, z and C is the elastic tensor that relates stress
and strain. It can be seen then that this tensor will have 4 dimensions (3 x 3 X 3 x 3)
and a size of 81 elements [27].

Since the elastic tensor is also affected by the symmetries mentioned for both stress
and strain (ij = ji, kl = lk), the original 81 elements can be reduced to 36. Further
simplification can be done by using the Voigt notation, this is done by using the

following substitutions [28]
xx=1 yy=2 zz=3 yz,zy=4 zx,xz2=5 xy,yx=6

The elastic tensor can then be written as

(13)

If the generalized Hooke"s equation in matrix form is written, the following form will be

obtained
01 Ci1 G2 Ciz3y Gy Cis Ciglrén
0, Cr1 Gy Cuzi Gy G5 Cyell&2
O3 _ C31 G35 G331 C3y C35 C3e|]€3 (14)
! Car Cap Cuz i Cun Cus Cugl]é4
Os Cs1 Csp CsziCss Css Csef]s
O6 Cor Cez Cezi Coa Cos Ceellés

However, the simplified nomenclature o, instead of a,, or g; will be used for the rest

of this work to avoid confusion with principal stresses.

It is possible to subdivide the matrix into 4 areas, following the dotted lines, the upper
left area responds to normal stresses, the lower right area responds to shear stresses

and the other two to mixed stresses.

Following Figure 2-10 and Figure 2-11, as well as experimental evidence shows that
mixed stress state does not exist (as normal stresses do not produce shear strain and

vice versa), these regions are considered to be 0, off-diagonal shear stresses are also
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non-existent and thus Cys = Cug = Csq = Csq = Coq = C¢s = 0 [23]. Further conditions

may be applied, according to the specific crystal structure for example.

Cubic crystals have identical properties along axes x,y and z, thus C;; = C,, = Cs3,

Caa = Cs5 = Cop aNd C13 = Cy3 = Cp1 = Cp3 = C31 = C3p

The Hookes law for a cubic crystal is then expressed by the following equation

8x

0x7] [Cin Gz Gz 0O 0 07| g
Oy Ciz €y Cpp 0 0 0 =
oy Ci, C, C;; O 0 0 (|2
n|=l0 0 o ¢, o o |29
Txz 0 0 0 0 C44 0 nyz
7zl lo 0 0o 0o o0 ¢l

5 Vay ]

In this case C;, relates the stress along an axis when a strain is applied in that same
axis, C,, relates the shear stress in the material when a shear strain is applied to it,
and finally, C;, relates the transverse deformation caused by a stress along the

perpendicular axis as shown in Figure 2-12.

o] a
: T
| I
| C |
Nk |
| 1
| I
o a

Figure 2-12 Stress and related strain for different directions

In an isotropic material, a directional behavior of the material under stress is not found.
This is because the properties are the same in all directions. The material will however,

still deform similar to what is shown in Figure 2—-12. When in longitudinal deformation,
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the Young’s modulus E will act as analogous of C;;, while during shear deformation,
the shear modulus G will act as analogous of C,,. The constriction perpendicular to the
stress direction is not described by any individual variable, however the relationship to

the longitudinal deformation is described by the Poisson’s ratio.

To better understand this, a 2D element can be examined. Stress on the x and y axes
are present and both will cause expansion on their respective directions and
constriction on the perpendicular axis as shown in Figure 2-13. The total strain along
x_,

the x axis is the sum of the strains ¢, = % -

y

Figure 2-13 Plane stress and related expansion and constriction

Similar equations can be derived for the y axis. Moreover, this is valid for 3D as well,

thus the total strain in 3D can be estimated using

&y = %[ax — v(ay + UZ)] Exy = %yxy = Tx?y
&y = %[O_y —v(oy + Jz)] &yz = %)/yz = %

gz = %[O-Z - V(O-y + Ux)] ng = %sz — TGﬂ
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The maximum shear stress is located at 45° with respect to the horizontal axis x [23]
as shown by Equation 7 and plane stress transformation can be used to estimate the

normal strain along an auxiliary axis x’ inclined 45° as shown in Figure 2-14.

y

y

0')?—| - ()

0) X
y

Figure 2-14 Plane stress transformation using an auxiliary axis x’
The equation found is €, = T"?y (1 4+ v) [23]. On the other hand, when under pure shear

Ex = Exy = ;"—Gy so by combining these two equations, the relationship between E, G
and v is found.

E
G= 2(1+v) (16)

Combining the 3D strain equations with Equation 16 and rearranging to get the stress,

the generalized Hooke’s law for isotropic materials is found

Oy = 2Gex + A(ex + & + &) Ty = GYxy = 2G &y,
oy =2Ge, + A(ex + &, + &) Tyz = GYyy = 2G &y,
0, =2Ge, + A(ex + &, + &) Tyy = GV = 26y,

Ev

A is the Lamé constant [23] and is defined as 4 = ————.
A+v)(1-2v)

The generalized Hooke

law can also be written as
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[ Ox 26+ A A A 0 0 0 r x
Oy A 2G + A A 0 0 0%
0z _ A A 26+4 0 0 0] &z (17)
lyz 0 0 0 26 0 0 ||éyz
Txz 0 0 0 0 2G 0 ||xz
[ Ty 0 0 0 0 0 2GiLExy

Stress-strain diagrams and fracture

Stress and strain can be related in a graph, which is usually obtained through a traction
test, in which a sample material is fixed on one end and pulled on the other uniaxially.

This test will then display normal stress and strain.

These kinds of diagrams show different areas, as shown in Figure 2-15. The region
before the yield point is denominated as the elastic part. Deformation undergone in this
area will disappear after the load is removed and the material will return to the original
shape [29].

In other words, the energy applied to the system is low enough so that it can return to

the original state.

The region after the yield point is called the plastic zone. Deformation in this region will
not completely disappear after the load is removed and thus, the material will not return
to the original shape. In this case, atomic movement can be seen as slipping or
cracking.

elastic regime ;ilastic regime

—f \

O, |

€

Figure 2-15 Stress-strain diagram
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Materials can generally be classified according to the curve shape in these diagrams.
Those that break after a relatively large plastic region are denominated ductile
materials. Metals and polymers are an example of these. Materials that break with little
to no plastic deformation are denominated brittle. Ceramics are the best known
materials with brittle nature [30]. As can be seen in Figure 2-16, ductile materials after
fracture have increased in length more extensively, while brittle materials have barely

changed.

Figure 2-16 a) original sample before deformation, b) ductile sample after extensive plastic
deformation and fracture and c) brittle sample exhibiting almost no plastic deformation
In engineering and materials testing, Young’s modulus is measured using a traction
test in which the sample is pulled on one side and kept stiff on the other. This test does
not produce shear stress and thus G can be disregarded. Before the proportional limit,
constriction due to normal stress (and thus Poisson effects) are very small and can
also be disregarded. Therefore, Young’s modulus can also be referred as the slope of
the stress-strain diagrams before the proportional limit [29]. Thus, Equation 11 can be

rewritten as

o =Ee (18)

2.2.5. Failure theories

According to Ugural and Fenster, failure of an element comes when said element
cannot perform the task for which it was designed [23]. This can mean different failure

modes, like deformation beyond a certain limit or fracture.

Several theories have been proposed, many of which are specialized in specific

materials, like the Coulomb-Mohr theory for rocks and concrete.
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The maximum principal stress concept was developed by William John Macquorn
Rankine, Gabriel Lamé, and Claude-Louis Navier. According to this theory, the
material is characterized by its tensile and compressive strengths. Failure will then

come whenever one of the principal stresses goes over the value of one of these limits.

As this theory was developed to describe ceramic materials, and these typically have
compressive strengths 5-10 times larger than tensile strengths, the usual failure criteria
used is the first principal stress described by Equation 8 [26]. This principal stress

must be lower than the maximum tensile stress g, of a material.
01 < Out

Behavior of ductile materials is described by the von Mises theory. This theory was

formulated by Richard von Mises in 1913.

According to the von Mises theory, failure by yielding will occur whenever the combined
stress state has the amount of energy equal to that of yielding of the material under
pure tensile testing [23]. In order to make the comparison, an equivalent stress called

the von Mises stress needs to be estimated.

Oeq = \/%([Ux - Uy]z + oy - UZ]Z + [0, = 0x]% + 61,2 + 7,7 + szz]) (19)

Ocq = \/% [0y — 0312 + [0, — 03]% + [05 —01]*>  (20)

Thus, the criterion rests on the equivalent von Mises stress being smaller than the yield

stress gy of a particular element to avoid failure.

Oeq < Oy
2.2.6. Fracture toughness

A fracture occurs when the material separates into two or more parts. This in principle
means that the bonds between the constituent atoms are broken. Fracture occurs
when a crack propagates through the material. Stress is usually the driving factor

behind crack appearance and growth; however, it is aided by defects in the lattice.

Crack nucleation can happen within the grain or at the grain boundaries. In the first
type, transcrystalline cracks happen when dislocations pile up at any obstacle. This
pile-up leads to bonding separation and cracks. The cracking occurs most of the time
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along preferred directions within a grain and can change direction as it jumps from
grain to grain, following preferred directions in each subsequential grain [26].

Intracrystalline crack nucleation happens when the boundaries are weaker than the

grains, in this case pile-up and grain sliding are the main factors driving the nucleation.

Both processes are brittle in nature, which means that little plastic deformation is

involved around the new surfaces

Crack opening can happen in three forms, as shown in Figure 2-17, mode | is related

to tensile stress, modes Il and Il are related to shear stresses [31].

Figure 2-17 Crack aperture modes, adapted from [31]

This work will focus on mode I, as it is the most relevant in general and particularly for
thermoelectric generator applications as previous research has shown that the tensile
stresses tend to be the most prominent in the module assembly [7] due to the fact that
most materials have compressive strengths 2-10 times higher than the tensile strength.

The appearance of a crack in a material means that less area is available to spread
the force acting on the element. It can be seen then, that the stress distribution will
change. A stress concentration will occur, following the example shown in Figure 2—
18 [31].
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Figure 2-18 Representation of an infinite long plate under tensile stress without and with a crack
inside, the lines represent the stress distribution within the material
The reduction in area will increase the amount of stress on the material. This

concentration of stress is represented by K and is expressed in Equation 21 [26, 31]
K, = Yovma (21)

where Y is a geometry factor dependent on the ratio of the width of the plate to the
size of the crack. Higher values (longer cracks or shorter plates) will produce higher
geometric factors to account for the increased area loss in a relatively smaller plate. K|
will then have the unit MPa m¥2 and is a representation of how much area is lost due

to the appearance of a discontinuity in the material.

Cracks do not necessarily grow when under stress. For this to happen a specific critical
load needs to be applied to the material. When this happens the stress concentration

factor reaches a value called fracture toughness, also represented as Kic [32].

Determination of such a property is usually done through standardized tests called
single edge notched beam (SENB) [33]. This test includes a tensile or bending test of
a sample manufactured in a specific size and with a notch that serves as crack initiator.

Kicis then estimated from the stress, crack length and load.

On ceramic materials with low plasticity, estimating fracture toughness is possible by

the use of the cracks produced after indentation with a Vickers diamond punch [34].

When the indenter penetrates an isotropic material, it will create two opposing effects.
The first one will be a compressive force that will leave an imprint on the material, the
second effect will act upon release of the force and is a tensile component that will tear

open cracks on the areas that have the highest stress concentrations (edges) of the
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imprint [35]. The crack produced will have a semicircular shape, centered around the

imprint and can be then expressed by Equation 22
F
Ky = xr 53_/2 (22)

where K, is the stress intensity factor driving the crack opening, F is the applied load,
c is the median half-length of the crack and y,. depends on the relationship between
hardness (H) and Young's modulus as shown in Equation 23

5)1/2

=0z (23)

where ¢ is a geometrical correction factor whose value is 0.016 [35] when using a
Vickers indenter. Substituting y,- from Equation 21 into Equation 22, the expression

()"

to estimate fracture toughness from Vickers indentation can be found as K, = —3 S
c

Further descriptions of hardness, and more specifically Vickers indentations will be

discussed in the following section.

2.2.7. Hardness

Hardness can be defined as the resistance to localized and permanent deformation.
This deformation can be applied through scratching, wear, bending or indentation,
however it is the last one that has received the most attention as it is also the easiest

to perform in a reproducible manner [36].

Indentation can be done on a macro scale, as well as micro and nano, depending on
the amount of the load. Forces from 2 N and up to 30 kN are used in macro testing,
micro testing on the other hand uses loads below 2 N and indentation depths larger
than 0.2 um. Nanoindentation on the other hand, uses anywhere between a few uN to
about 200 mN [37].

Different scales exist, however the one used in this work is Vickers Hardness.
Vickers Hardness (HV)

Developed by the British corporation Vickers ltd. in 1920, it relies on the use of a

pyramidal indenter with a specific geometry.
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The indenter has an angle of 136° between opposing edges of the pyramid, as shown

in Figure 2-19.

/ N\
- \
d‘l 136\
| A ___ /
| I _7
do

Figure 2-19 Geometry of a Vickers indenter

The hardness estimation is then calculated with the force divided by the real imprint
area, this area in turn is estimated by measuring the diagonals d using an optical

microscope [38]. This process is summed up in Equation 24

L 2L, 136° _ i
H _A_T_ESLTLT_ 1854d2 (24)

Loads used in this technique range from 1 to 120 kgf (9.8 N-1.2 kN) when macro-
hardness is being measured, while microhardness testing allows for loads as low as
100 gf. If the force is measured in gf, the hardness is reported as hardness Vickers

units (HV), if the force is measured in newtons, the hardness is reported in Pascals.
The load application is done in 2-8 s, and then held for 10-15 s.

The American ASTM E92-16 and the international ISO 6507 are the standards used
for this kind of testing [39, 40].

2.2.8. Temperature dependence of Young’s modulus

As thermoelectrics have to work in an environment where the temperature is high, their

properties will change in comparison to room temperature behavior. Mechanical
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properties are not an exception and thus, it is convenient to know what the state of the
art is in models for temperature dependence of mechanical properties.

Wachtman et al. [41] published a paper where they found that on many ceramic

materials, the temperature dependence of Young’s modulus obeyed the equation

—T,

E(T) =E, —BTeT , Where E,, B and T, where experimentally determined values.

Moreover as T, is reported to be 0.3-0.5 of the Debye temperature, for T values T >>

-T
Ty, eT tends to 1 and thus, the temperature dependence of E becomes linear.

Temperatures close to the melting point are not covered by this equation, however, as

every material has a particular behavior at such high temperatures.

More recently, Rahemi and Li [42] developed an equation from the Lennard-Jones
potential to describe the bonds between atoms in the lattice and thus, explain the
temperature dependence of E. They found an equation in the form E(T) =

2 6
(k5T) ] where B, ¢, and 9 are constants determined experimentally. This
0

B [‘Po -V
model takes into account not only the interaction with the closest neighboring atom,

but the 2" and 3" closest neighbors as well. This equation has been only tested on

pure metal samples.

This work performed high temperature measurements of Young’s modulus. Further
analysis for this data was performed using the Wachtman equation since it was
developed for ceramic materials and it is proven to be accurate for such material

systems.
2.2.9. Effective properties of multi-phase materials

Many materials, thermoelectric amongst them, can have several phases present in
their structure. This happens as a consequence of processing or intentionally, e.g. to
improve the TE properties by increased phonon scattering or to strengthen a material

by adding strain fields in the lattice.

Room temperature Mgz(Si,Sn) solid solutions are no exception to this, given the known
solubility gap between both ends of the spectrum. This will be discussed more in
detailed in chapter 2.4.1. however, it is important to state that a material composed of

phases with different properties will behave differently in comparison with the pure
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materials. A composite-material approach will be used in this work and therefore,
information about composites is needed beforehand.

A composite material is defined by Taya and Arsenault as a man-made material that
is composed of at least two materials chemically different from each other, assembled
in a 3D manner with properties that would not be achieved by their individual

components [43].

Mechanical properties in these kinds of materials are, thus, different from the matrix
(main component) and the inclusions. These inclusions will be addressed as “fibers”
however they can be any material that has different enough properties compared to

the matrix. This work will focus on the Young’s modulus of such materials.

The first model used to describe the effective properties in a composite is the law of

mixtures, first proposed by Waldemar Voigt and sometimes called after him.

The law of mixtures works in an iso-strain environment, in which all the particles in the
material are deformed by the same amount under stress. A simple 3 element model

can be used to envision strain in Voigt’'s approximation, this is shown in Figure 2-20.

matrix

Figure 2—20 Sketch of a multi-phase material being stretched with the inclusion aligned parallel to the

force
In this case since the strain is the same in the complete material, and since the total
volume V on which the stress is acting is the sum of the matrix 7,, and the inclusion V
following V = V; + 1}, and since the total energy that can be absorbed by the material
is defined as oV [43] the equation for this energy in the composite becomes gV =
osV¢ + 0,y V. Following Equation 13 this can be rewritten as E€V = ErefVy + Ep&n V.
But £ = ¢, = &, so the equation is reduced to EV = E¢V; + E,,; Vi, in the case of a two-

material system. This can be generalized to an n element material as shown in
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where V; is the volume percentage fraction of a given phase and E; is the Young’s

modulus exhibited by that specific phase.

The second approximation was proposed by Andras Reuss to complement Voigt's
work, this model in comparison works with the iso-stress condition. Figure 2—21 shows

a diagram of a three-element material under these conditions.

matrix

fiber

Figure 2-21 Sketch of a multi-phase material being stretched with the inclusion aligned perpendicular
to the force

Similar to the previous case, the volume is subjected to the same stress, the strain

however will be different as e.g. the matrix is softer than the inclusion and will deform

further. In this case the total volumetric strain is eV = & Vs + eV [43], and just as the

previous case, using Equation 18, the total strain expression can be rewritten as EETV =

Vso 1% . _ . %4 74 v, .
L4 m%m ) put since & = o = g, the expression reduces to = =-L+-2 This
Ef Ef E Ef Em

equation can be expanded to a material with n elements using

F=(2%)" (29)

E;

Both the Voigt and Reuss approximations work on the premise that the inclusions are
perfectly aligned with the stress. However, in most cases the inclusions are aligned in
a random pattern and the material will not behave exactly as these previous models
predict. Instead, they will be the limits of the mechanical behavior exhibited by the

composite as shown in Figure 2-22.
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Figure 2—22 Effective Young's modulus of a material as a function of volume fraction of the inclusion

V¢ if the inclusion has a Young’s modulus 100 times higher than the matrix. Adapted from [43]

As Naslain describes [44], several authors have introduced correction factors to better

approximate the real behavior or a composite with randomly oriented reinforcing fibers.
2.2.10. Thermal expansion

The materials within the module assembly will inevitably expand under the high module

operation temperature.

Whenever a material is heated, the atomic distances will increase because of the rising
repulsive forces between atoms due to a higher overlap between electron distributions.

A more detailed description of this overlap is given next.

Within the bond, two competing forces act upon the atoms, the dispersing force and
the repulsive force. The dispersing force (also called London dispersing force) acts to
bring atoms together through the attraction exerted by the creation of instantaneous
dipoles, these in turn, caused by the rearrangement of electrons in an atom because

of the fluctuation in the position of the electrons in its closest neighborhood.

However, as they become closer together their electron charge distributions start to
overlap. Based on Pauli’s exclusion principle, atoms repulse each other to prevent

electrons from occupying prohibited energetic states [28].
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This interplay between forces is expressed in the Lennard-Jones potential, denoted as

12 6
U(r) = 4e [(é) - (é) ] where U is the energy of the system, r the distance between
atoms, € and ¢ are experimental values representing the dispersion energy and
distance at which the interatomic potential energy is 0. The exponent 6 for the attractive

term was described by London and later proved to be correct by quantum chemical

6
calculations [45], since the attractive forces decay with the relationship (%) . The

repulsion force has an exponent 12, which does not have a real physical meaning but
approximates the Pauli repulsion well and is easily expressed as the square of the
attractive forces.

The form of the Lennard-Jones potential curve is shown in Figure 2-23

3k -
2L -
W
= 1 _
~
0
-1 -
0 1y 2 3 4
rl ¢

Figure 2-23 Lennard-Jones potential
. . 1 . .
The minimum value is found at 2 /65, which corresponds to the energy minimum —e.

The Lennard-Jones potential is a simplified model that does not take into account
interactions with the 2" or third closest neighbors, however it is the best simple model

that describes an interaction between atoms in a realistic way.

It can be seen that providing thermal energy to the bond increases the distance

between atoms to prevent further overlap between electron charge distributions.
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Thermal volumetric expansion relates how much a material changes in volume by
exposing it to a different temperature than its original state. This change in volume can

be expressed by

Vi -

where the subscripts i and f refer to initial and final states respectively, V refers to

volume and g is the volumetric coefficient of thermal expansion.

Linear expansion on the other hand, is a similar concept that relates how much a
material changes in length upon being heated or cooled. The rate at which this
happens is called the coefficient of thermal expansion (CTE or «) [46]. In this case, the

elongation due to temperature change can be expressed as
le—1;
where [ refers to length. Note also that § = 3a.

Whenever this change in size is restricted, a pressure or tension will build up in the
material. These stresses bring about the possibility of failure to an assembly. It is

therefore imperative to keep them at the lowest possible level [7].

Materials need to be paired with contacts and bridges in a way that the CTE is as
similar as possible. Failing to do so will lead to bigger stresses and more possibilities
to fail [21].
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2.3. Mg2X
2.3.1. Mg2X system

The material system Mg2X (X = Si, Ge, Sn) is a good thermoelectric material, known
since the 1960°s. It has been in recent years, however, that the attention of the

scientific community has returned to these materials.

All the materials having an Mg2X formula exhibit a Fm3m antifluorite crystal structure,
with an FCC arrangement. Mg atoms sit on the eight tetrahedral positions (Wyckoff
positions 8c), while the X atoms fill the corners and face centers (Wyckoff positions
4a). This identical crystal structure favors the alloying between materials as the X

position can be filled by either element, or a combination of them [47].

Special attention has been given to the solid solution Mg2(Si,Sn), which in comparison
to Ge-containing material has a better cost/performance ratio. All elements present in
the material are highly abundant in the earth’s crust and pose little to no danger to life
or environment. The added benefit of a very low density also makes it a very good
candidate for TE technology.

Mg2Si

The best studied member of the family of Mg2X materials has a lattice parameter of
6.354 A and a density of 2 g/cm3. It has a natural n-type conduction, however adding
elements belonging to the IA group in the Mg position can lead to p-type materials [48—
55].

It has a melting temperature above 1373 K, however material degradation due to Mg

oxidation can be seen from 1073 K [56].
Mg2Sn

This material has a lattice parameter of 6.764 A and a density of 3.6g/cm3. Its melting
temperature is 1050 K, however oxidation has been observed from 773 K [47, 52, 57,
58].
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Mg2(Si,Sn)

The solid solution benefits from having two different types of atoms in the X position,
as such, the thermal conductivity will drop [59] as phonon scattering is increased
through alloying.

The lattice parameter and density also obey Vegard's law and they can be estimated
using a linear interpolation between the binaries [60]. One very common way to define
the stoichiometry in the solid solution is Mg2Si1-xSn.

The solid solution has a solubility gap. The extend depends on temperature but the
reported results differ between different publications, as shown in Figure 2-24,
however most agree that the compositions around x = 0.5 are outside the solubility
range for the material system at room temperature and up to 700 °C. This creates a
potential issue for material stability as the material will tend to remain in a metastable
state [61—-64]. Whether or not the compositions with different x Sn content than the
nominal composition can be considered as secondary phases has been challenged
during the course of this work. A more detailed description will be done in the

discussion part.
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Figure 2—-24 Miscibility gap for the Mg,Si-Mg.Sn material system, taken from [63]. Gradient color
indicates a full miscibility while striped color indicates the miscibility gap

Another interesting feature in the solid solution is the convergence of the two lowest

lying conduction bands, which according to most authors happens around the
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composition Mg2Sio.4Sho.s. This effect produces favorable electric properties for the n-
type material and, according to some recent research, good thermal properties through

the lowered speed of sound [65-67].

Synthesis of these materials is not a trivial process. The difference in melting points for
the precursors (923 K for Mg, 505 K for Sn and 1683 K for Si) as well as the high Mg
vapor pressure make the synthesis through traditional melting challenging. In this
regard, several process routes have been tried, e.g. induction melting [68, 69], melt
spinning [70-72]. Other methods like ball milling have been developed and vyield
material with good properties (zT = 1.2-1.4), albeit with material quantity limited to
some 10°s of grams as published by [73-76].

Mixed synthesis methods, e.g. melting + milling, have also been developed to produce

larger (>50 g) amounts of precursor material with consistent zT values of 1.3 [77].
2.3.2. TE properties of Mg2(Si,Sn)

In contrast to most work performed on thermoelectric materials this work will not be
focusing on the thermoelectric properties exhibited by them. A small introduction to
highlight the good performance achieved by Mg2(Si,Sn) is given in the following

paragraphs nonetheless.

Mechanical properties exhibited by thermoelectrics in general, and more specifically
Mg2(Si,Sn) will be introduced in chapter 2.5.

n-type

n-type Mgz(Si,Sn) is typically doped with elements belonging to the VA group like Sb
and Bi. It is known, in the case of Bi, that the solubility limit in the binary Mg2Si is around
2 at% [49]. The solid solution does not have a reported limit on the solubility for Bi,
however Seebeck coefficient values reported previously in material with x = 0.7 place
this value between 3.5 and 4 at% [78].

Optimized thermoelectric properties have been found for the material
Mg2Sio.3Sno.e65Bi0.035. This composition exploits the band convergence effect and the
high solubility limit of Bi in the material. The maximum zT achieved by this material was
1.25 at 700 K [77].
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p-type

The doping is usually done by substituting Li in the Mg sites [60, 79, 80], however work
with Na, Ag and Ga has also been published [70, 81].

Experimental values, as well as calculations to find the optimum p-type composition is

the focus of some recent work by Kamila et al. [82]

This work will focus on the material Mg1.97Li0.03Si0.3Sno.7. Such a composition is known

to have relatively good thermoelectric properties.
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2.4. Mechanical properties of TE materials

2.4.1. Non-silicide systems

Mechanical properties of TE materials are a subject that has been recently re-visited
by researchers. It is still far behind in comparison with the material optimization for TE

performance.

One of the material systems that has been studied is Half Heusler compounds (HH).
These kinds of materials have the general formula XYZ, where X and Y are transition

metals and Z is an element whose valence electrons come from the p orbital.

Half Heusler materials are most commonly used in the middle to high temperature
ranges (700-1000 K) [12].

As a family of very diverse materials, it is also expected to find a wide range of
mechanical properties amongst them. So, for example materials like ZrNiSn with a
hardness of 14 GPa can be found. In contrast, some softer materials like
Zro.5Hfo.5C00.1Rh0.9SN0.01Sbo.99 with merely 3.8 GPa also exist. The median values for

hardness as reported by Rogl et al. is 10 GPa [83].

The elastic modulus values of such materials are as diverse as their hardness and
therefore it is found that VCoSn has a Young's modulus of 243 GPa and
ZrNiSno.95Sho.os has 71.8 GPa. The median values reported are 200 GPa [83].

A more direct comparison of Mg2X can be made to Skutterudites. These materials have
an application in the mid-temperature range (between 400 and 800 K), just as the

aforementioned material.

Skutterudites are based on the general formula XY3, where X can be Co, Fe and Ni,
while Y corresponds to As or Sb. Their crystal structure is Im-3, composed normally of
8 Co cubes, 6 of which are filled by Sb square shaped rings [12].

Extra elements can be added to fill these empty cube cells, whenever the Skutterudite
material has these fillers, they are denominated “filled Skutterudites”. Such elements
contribute to a lower thermal conductivity by scattering phonons by rattling inside the
icosahedral voids in the lattice as a point defect [17, 84].
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Just as with the HH, Skutterudites form a very wide family of materials and their
mechanical properties are varying, although not as much as with the previous case.
Hardness values are found in literature ranging from 2 GPa for the hand milled
DDo.2sFe2.sNi1sSbiz (DD, or Didymium is an alloy from Praseodymium and
Neodymium), while Bao.o75Sro.025Yb0.1C04Sbi2 shows a hardness of 5.6 GPa. The
median values reported are around 5 GPa [85, 86].

The Young’s modulus exhibited by skutterudites ranges from 100 to 148 GPa, with the

aforementioned Didymium filled material being the softest and CoSbs being the stiffest.
2.4.2. Mgz(Si,Sn)

Magnesium silicide, magnesium stannide and the solid solutions have also received

some attention in regard to their mechanical properties.

Magnesium silicide, the most studied of them, has a reported hardness value of 5 GPa
[87], while the reports for Young's modulus vary between 85 and 145 GPa [50, 55, 87—
91]. The wide range of values for the Young's modulus depends on the type of
measurement done on it. While ultrasound methods yield a value more consistent with
the median, other methods like nanoindentation and compressive testing yield values

off the median.

Magnesium stannide has been, on the other hand, the main point only for very few
publications. One paper reports the hardness of the material to be 1.7 GPa [92], further
publications address the elastic constants and the Young’s modulus, this last value
was reported to be 82 GPa [57, 58].

A solid solution has also been researched, Mg2Sio.4Sno.s was studied by Gao et al. [92]
and Gelbstein et al. [93] finding a hardness value of 3.06 GPa and a Young’s modulus
of 88 GPa for the former, the latter study found a hardness of 3.57 GPa and elastic
modulus of 83 GPa.

Other compositions within the solid solutions whose mechanical properties are known
are Mg2Sio.6Sho.4, in a very recent paper that was published during the course of this
work, Mejri et al. [94] report a hardness value of 4.5 GPa and a Young's modulus of
90 GPa. They also performed temperature dependent measurements on the elastic

properties and found a linear influence of temperature in the Young’s modulus.
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Lattice dynamics were studied to understand the effect of the Si/Sn ratio for some
compositions along the solid solution [67]. Results were published during the
experimental work on this study. Klobes et al. found that the Si-Mg bond has a more
covalent nature compared to Mg-Sn, and thus increasing the Si content in the material
the strength of the bonding becomes larger. This substitution has the consequence of

stronger mechanical properties and higher thermal stability.
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2.5. Thermoelectric module evaluation

Mechanical evaluation of the performance achieved by a thermoelectric module is not
usually done, with the electric power output being the most important parameter to

study.

However it has been proved before that mechanical degradation can lead to a

reduction in TE performance as the electrical resistance increases [22].

In practice, mechanical stability of a thermoelectric module is evaluated qualitatively
by producing the module, submitting it to thermal annealing or cycling and observing
the damage on the module [19, 22, 95, 96] Figure 2-25 shows published pictures of
damage on TE modules. Both images are from modules built with HMS p-type and

Mg2(Si,Sn) n-type legs.

£ H ot sid ~ Fallure of n-type

Figure 2—25 Damage seen in several modules. Taken from [19, 95]

The use of computational methods to predict areas susceptible to damage by means
of a finite element model (FEM) simulation has spread to the field of thermoelectricity

as well.

The role of a FEM simulation is to provide insight into the mechanical and/or also TE
performance of a module without the need to actually build it. It can be used to test
different parameters such as leg geometry, metallization material, bridge material and
size, etc. [7, 97-99].

The effectiveness of such a simulation will be influenced mainly by two factors, how
precise the properties of the materials involved are characterized and how realistic/

adequate the boundary conditions are selected [8].
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One of the main goals of this work is to produce a precise database of mechanical
properties to be used in FEM simulation. This will increase the usefulness of software

usage in the development of a Mg2X based thermoelectric module.
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3. Summary of research

3.1. Research motivation

The development cycle of TE modules involves the optimization of material for the legs,
the metallization of said legs to facilitate assembly and the soldering of the
functionalized legs to the bridges.

These processes require the material to undergo loads, both mechanical and thermal.
As previously described in chapter 2, loading of the material will produce stress, which

depending on the magnitude might be enough to damage the leg.

Stresses caused by mechanical and thermal loads will continue to be present in the
module even when it is placed in working conditions, due to the principle under which
TE technology works. It is therefore important to add a step in the development cycle

to assess the mechanical stability of any design intended for a TE module.

First principles calculations and measurements of mechanical properties have been
reported for the Mg2(Si,Sn) solid solution, however in most cases the information

provided is very specific to a composition and only at room temperature.

Furthermore, mechanical stability of TE modules is still in the process of migrating from
the trial-and-error used in previous decades to the fully digital FEM simulation. This
step can decrease costs and time to a large extent, however appropriate data needs

to be provided in order to produce a meaningful result.

3.2. Thesis overview

The aim of this work is to provide temperature and composition dependent mechanical

properties for the solid solution series Mgz(Si,Sn).

Chapter 5 describes the experimental determination of hardness and fracture
toughness of Mg2Si1xSnx solid solutions with x = 0, 0.4, 0.5, 0.6, 0.7, 1. The hardness
values follow a linear trend between the binaries, with the Si-rich Mg2Sio.6Sno.4

composition deviating from the expected values.

This trend continued in the fracture toughness, as the Mg2Sio.eSno.4« sample exhibited
fracture toughness values above the binary Mg2Si material. This was attributed to the
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strengthening factor of the Si-rich inhomogeneities that dotted the sample due to an

incomplete reaction from the elemental precursors.

Chapter 6 describes the temperature- and composition-dependent behavior of
Young’s and shear moduli for the same compositions as studied in chapter 5. For this
part of the study, the synthesis method had to be expanded since the samples for

mechanical characterization were required to be larger.

The samples showed a linear behavior both with composition and temperature, thus a
bi-linear equation was proposed to predict the elastic properties (both Young's and
shear modulus) of any composition within the solid solution and at any temperature up
to 623 K.

Chapter 7 moves to samples with different doping concentration and species, all in the
Mg2Sio.3Sno.7 composition. This material is close to the electronic band convergence

and has good thermoelectric properties.

Room and high temperature Young's moduli are determined and temperature
dependent coefficient of thermal expansion values are measured. Using these results,
the potential thermally induced stress and an analytical estimation of stress under

homogeneous heating are estimated.

This last chapter gives evidence of a very good compatibility of mechanical properties
and thermal expansion values between n- and p-type Mgz(Si,Sn) and provides proof

that a module entirely made of this material is mechanically feasible.

Chapter 8 includes a description of structural and mechanical properties exhibited by
samples obtained using powder synthetized by different methods.

The last section of this work is reserved to present mechanical modelling using the
data obtained in the course of this work, showing the positions on the pn couple
assembly (n-type, p-type and Cu interconnections) where the highest stresses will be
found and providing a hint at the possible zones where a failure can be expected.



45

4. Materials and Methods

4.1. Synthesis methods
4.1.1. Direct melting in the DSP

The synthesis method employed throughout this work is based on the work previously
done by Farahi et al. [77] on the Mg2Sio.3Sno.7 thermoelectric material.

The method was expanded to cover the whole solid solution series of Mg2Si—Mg2Sn.
The melting points of both binary compounds were used for a linear interpolation
(following Vegard’s law) to find the numerical estimates of melting points of several
interesting points within the solid solution as shown in Figure 4-1. Literature results

previously published show a good agreement with a linear behavior [100].
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Figure 4-1 Binary literature values and interpolated solid solution melting temperature for the Mg,Si—
Mg.Sn material system

The original method was divided in three melting cycles, each one divided in three
temperature steps. This is displayed in Table 4-1.



Table 4-1 Details of the melting route used to synthetize Mg>Sio.3Sno.7

Temperature step

1

Temperature step
2
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Temperature step
3

Melting step 1
Melting step 2

Melting step 3

300 °C for 10 min

600 °C for 20 min

800 °C for 20 min

300 °C for 10 min

600 °C for 20 min

850 °C for 20 min

300 °C for 10 min

600 °C for 20 min

900 °C for 20 min

The temperature of the first step in each melting cycle is set above the melting point of
Sn (232 °C), the second one slightly below the melting temperature of Mg (650 °C) and

the last target temperature changes slightly on each sequential step.

The first step ends ~25 °C above the melting temperature of Mg2Sn (778 °C), while the
3 step ends ~25 °C above the melting temperature of the intended final composition
Mg2Sio.3Sno.7 (875.2 °C). The middle step is set halfway through both of these.

In order to expand this method for the other compositions, the first melting step was
always left at 800 °C, while the last step was set using the melting temperatures
presented in Figure 4-1 and adding 25 °C. The middle melting step was set to the

average between 800 °C and the maximum temperature previously established.

Binaries were treated as an exception. Mg2Sn had three steps of melting at 800 °C,
while Mg2Si had three reaction steps at 1100 °C (maximum temperature achievable

with the used setup).

Once the material was obtained in an ingot form after all three cycles, it was removed
from the crucible, cleaned using ethanol to remove BN contamination and transferred

inside an Ar filled glovebox for further processing.

The ingot was broken into smaller pieces using hammer and chisel, then put inside a
milling jar with balls in a ratio of 0.81 (one 8.1-gram ball to 10 g of material). The jar
was then sealed and transferred outside to mill in a SPEX D8000 ball mill for 30

minutes.

The resulting powder was then transferred to a container inside the glovebox.
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Pressing conditions, as well as structural and mechanical properties are discussed in

chapter 5.

Direct melting has some advantages compared to ball milling as a synthesis method
for the material system studied in this work, namely, a larger batch of material
available, shorter synthesis times and comparable quality. Chapter 6 includes

microstructural characterization to prove good material quality.

Several publications have been based on material synthesized with this method [101—
103].
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4.2. Characterization methods

4.2.1. Structural characterization

XRD

The X-Ray Diffractometer is a device that shines high energy photons (20-50 keV) onto
a material in a specific angle and then collects the diffracted ones. In its most basic
form, it is composed of an X-ray source, a working table and a detector, a scheme
shown in Figure 4-2

Sample holder

Figure 4-2 Basic X-ray diffractometer with the source, detector and sample holder.

The basics of X-ray diffraction will be presented in the following paragraphs.

Crystals, as discussed in section 2.1, are a set of atoms arranged in a periodical array.
As such, they can diffract light incident on them. Since atoms are closely packed
together in the lattice, a source with a very small wavelength is needed in order to be
useful. The light whose photons have the wavelength in the desired range are X-rays
produced with 20-50 kV.

Whenever light impacts an atom and it coherently scatters the incident energy, this
energy will be redistributed in all directions with the same wavelength as the original,
also called an elastic scattering [104]. When this happens in an array of atoms, like a
crystalline lattice, the waves from the scattered photons from each individual atom will
undergo interference. This interference can be positive or negative. If the interference
IS negative, it is called destructive and its intensity is reduced to a minimum. On the

other hand, if the interference is positive, its intensity will increase.

At this point it is convenient to underline certain aspects from the irradiated material

which will diffract light. A crystallographic plane is an imaginary construct that can be
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used to explain the phenomenon of diffraction. They need to intersect all lattice points,
be parallel to each other and equally spaced. Their distance is called the interplanar
distance and is represented as d. Each of the planes is defined by a set of integers
called the Miller indices (hkl). These will divide each lattice vector a, b and c into a

specific number of parts. Such representation is better visualized in Figure 4-3

diyon=a diaony=a/2

1 4 1 9

= — 4+ —+—
d- a- h= -
(213)

Figure 4-3 Different crystallographic planes and their representation. Taken from [104].

It can be seen from the pictures that a Miller index of 2 divides the axis in 2, while

higher order miller indices will further divide the unit.

Interplanar distance is related to the angle at which the positive interference appears.

This relationship is called the Bragg equation and is expressed as
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nA = 2d sinf (29)

The interplanar distance is also related to the lattice parameter a, in the case of a cubic
crystal the relationship is described by

a

d = ——
Vh2+k2+12

(30)
where h, k,l are the Miller indices.

This work will use XRD to identify the phases present in the material obtained.
Equation 30 will be further employed to estimate the lattice parameter to corroborate
that the nominal phase is obtained.

SEM

The Scanning Electron Microscope (SEM) uses a magnetically directed fine electron
beam to characterize materials. This beam is pointed at a particular spot similar to the
cathode televisions, illuminating an area. The interactions of the electrons with the
material will produce several effects: secondary electrons, backscatter electrons,

Auger electrons, as well as continuous X-rays and characteristic X-rays [105].

Secondary electrons have usually a very low energy (3-5 eV) and are collected in a
detector that is charged typically with +200 V. This kind of electrons are produced when
the highly accelerated electron beam hits the surface of the specimen and an inelastic
collision occurs with the nucleus of the atoms present near the surface. They are
usually employed to observe the topography of the sample. this is done through
counting the number of secondary electrons that arrive to the detector. Surfaces
inclined in the direction of the detector will reflect more than a surface inclined away
from the detector, and thus will appear brighter on the image. Materials with heavier
elements will also reflect more electrons, as the probability of collision with larger nuclei

is greater.

Backscatter electrons are produced similarly to the secondary electrons, in this case
the collision is elastic and the electrons retain most of their energy. Thus, energy values
of 16-18 keV are not uncommon. They are collected by a detector charged with -50 V,
this is enough to divert any secondary electrons. Backscattered electrons travel only
in straight lines, so only those that travel directly from the point of contact between the
beam and the specimen, and the detector are effectively counted.
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The ratio of electrons that are backscattered to the incident electrons is called the

backscatter coefficient 7. This coefficient varies with the atomic number Z

In (Z2) 1

approximately as n = " [106].

The backscatter coefficient is thus sensitive to composition, as materials with different
atomic numbers (and homogeneous mixtures of materials with different atomic

percentages) will have different backscatter coefficients.

Continuous x-rays are produced when a specimen is bombarded by an electron beam
with low acceleration voltage (~20kV), the specimen will then emit a constant and
continuous (within the wavelength limit) x-ray radiation. Increasing the voltage above
the short wavelength limit will make the characteristic Ka and Kg lines.

EDX

Energy dispersive X-ray spectroscopy or EDX uses the characteristic Ka and Kg

emission lines to identify elemental species present in the sample.

When an electron with high energy interacts with the inner K shell of electrons, some
of these will be ejected, then one electron from the outer L shell will fill in this gap and
in the process emit an X-ray photon of a particular energy [105]. This is called a Ka
interaction, while an electron from the K shell being ejected and another electron from
the M level filling in is called a Kg interaction. The energy emitted is particular to every
element in the periodic table, however elements lighter than boron (Z = 5) cannot be
identified by this method for most setups. Likewise, elements lighter than sodium (Z =

11) and heavier than Boron can usually only be qualitatively identified.
Fast quantification method

Since EDX mapping usually takes a long time (>20 min) Yasseri et al. developed a
technique to use backscatter electron images as a quantification tool to estimate the x
value in Mg2Si1xSnx [106].

The method is based on the dependency of the backscatter coefficient on the

composition being studied. This coefficient can be expressed as

1=XinGC (31)
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Where 1, is the backscatter coefficient of the ith element present in the material, while
C; is the weight fraction of said element. This fraction, can be expressed by the atomic

fractions n; with

C; = Min;
XiMin;

(32)

Where M; is the atomic mass of the ith element.

Yasseri et al. noticed that for the case of Mg2Si1-xSnx, the Mg atomic percentage would
remain 66.66%, leaving the rest to be divided between Si and Sn, thus creating a
system with only one degree of freedom, the Sn content value x. This was mentioned

as a prerequisite for the method to work properly.

They proceeded to rewrite Equation 31 using this condition and arrived to the following

expression

7= nygMmglmg+tnsiMsinsi+(1-npg—nsi)Msnlsn (33)
nygMpg+nsiMsi+(1-npyg—nsi)Msn
In (2)
6

Since ny, is known, and M values are known for all samples, and ; = i [107],

the only variables left unknown are ng; and 7.

The mean backscatter coefficient ;7 can be estimated by taking advantage of another
observation done by Yasseri et al. The gray value (0-255) as read in the image from
SEM is assumed to be related linearly with the aforementioned mean backscatter
coefficient. This is approximately valid if contrast and brightness settings of the picture
remain constant and a couple of other conditions are fulfilled [106]. Thus, only a couple
of EDX points are needed as calibration to relate them to each other as shown in
Figure 4-4.
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Figure 4—4 Backscatter coefficient as a function of gray value

In the end the gray value, known for each point in the image obtained through SEM,
can be related to a specific ng; and from there to the x Sn content value in the material
Mg2Si1-xSnx.

4.2.2. Mechanical characterization

Hardness

Samples subjected to hardness measurements were tested in a Clemex hardness
testing machine shown in Figure 4-5. The sample holder for this machine has a

standard 45 mm allocation for an embedded sample.
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Figure 4-5 Clemex hardness testing machine

The embedding was done on a Struers hot press using the sensitive mode, by heating
at 180 °C and pressing with 25 bar for 2 minutes and then increasing to 100 bar, then
holding for 5 minutes. Then a cooling process of 2 minutes was performed on the

samples.

For Vickers indentation [39], samples were polished. The first step was grinding with
SiC paper in an ATM Saphir grinding machine with a designation of 1200, 2500 and
4000. This grinding was done under water and at a constant speed of 150 rpm, turning

the sample 90° each time the SiC paper was changed.

After the last grinding step, the samples were thoroughly dried to avoid oxidation due

to the remaining water.

Four polishing steps were introduced, all of them under ethanol and for 6 minutes in
an ATM Saphir sample moving machine. The first step used a diamond suspension
with a particle size of 3 um, the consecutive steps used particle sizes of 1, 0.25 and
0.05 pm.



55

In between the polishing steps, samples were rinsed with ethanol to remove diamonds
still sticking to the surface. At the end of the last polishing step, a 10 min ultrasound
bath in ethanol was performed to remove as many diamonds as possible, then a 10-

minute cleaning run in the machine under pure ethanol.

Polished and clean samples were installed in the hardness testing machine, then using
the included software an array of 6 x 6 indentations was made, keeping the distance
between the center of each indentation at 100 um. The standard requires a distance
between centers of at least 4d [39]. This distance is smaller than the one programmed

into the array.

Indentations done on the sample were carried out at 100 gf (0.981 N) for 10 s, the
diagonals were measured with the in-built microscope and software. Crack length was
also measured using this procedure, albeit with the manual correction to re-position

the length markers.

Using Equation 24, hardness values were estimated, while fracture toughness was
estimated using Equation 22. Both properties were estimated for each individual

indentation, then the mean value and variation were estimated.
IET

The impulse excitation technique (IET) relies on the free vibration of a beam after it

has been hit with a small projectile. This free vibration can be expressed by [108]

0%y %y
Elﬁ+pAﬁ—O (34)

Where E is the Young’'s modulus, A the transversal area and I is the second moment

of area. The second moment of area is a property of said area that reflects how points

are distributed around an axis. In the case of a rectangle with base b and height h, this

valueis I = bg—h.

12
Equation 34 relates the sum of total energy in the beam, both potential (deformation
based) and kinetic (movement based). The wave produced by the impact will travel

longitudinally through the sample causing deflection in the perpendicular direction.

The 4" order partial differential equation has a solution in the form y(x, t) = u(x)v(t).

This is the characteristic equation of a standing wave.
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A standing wave is a phenomenon that occurs when interference happens between a
wave traveling from the origin of the vibration and the wave being reflected off the end
of the vibrating material. This generates a wave whose nodes (maximum amplitude)
and anti-nodes (minimum amplitude) are fixed at certain positions along the length of
the element. The function that governs the oscillation pattern for this kind of waves is
[109]
y(x,t) = 2Ymax Sin(kx) cos (wt) (35)

where yn.x IS the maximum amplitude of the wave, w the angular frequency, equal to
2nf, and k is the wavenumber, which denotes the number of radians traveled per unit

distance and is defined as 27” Note also that from Equation 34 the relationship

between them is

2 _ EI 4
w —pAk (36)

The characteristic equation y(x,t) = u(x)v(t) can be separated into the time and

displacement components as follows
u(x) = Cy sin(kx) + C, cos(kx) + C5 sinh(kx) + C4cosh (kx) (37)
v(t) = d;sin(wt) + dycos(wt) . (38)

Only the displacement-based equation can be subjected to boundary conditions. In

order to do this, it is convenient to know what the derivatives of this equation mean.

The first derivative of Equation 37 in relation to the length x will be the slope of the
deformation, the second derivative the bending moment and the third will be the shear
stress. With this information and the free vibration constraints (no bending or shear
stress at both ends), it follows that u”(0) = u”"(0) = u” (L) = u”"(L) = 0 [109]

Substituting in Equation 37, it follows that
u”(L) = —Cy sin(kL) — C, cos(kL) + C5 sinh(kL) + C, cosh(kL) = 0 (39)
u”’(L) = —Cy cos(kL) + C, sin(kL) + C5 cosh(kL) + C, sinh(kL) = 0 (40)
W(0)=—C,+Cy=0 (41)

wW(0)=—-C,+C3=0 (42)
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Substituting Equation 41 and Equation 42 in Equation 39 and Equation 40, then

rearranging in a matrix form, the expression turns to

sinh(kL) — sin (kL) cosh(kL) — cos (kL)] [gl] _ [8]

cosh(kL) — cos (kL) sinh(kL) + sin (kL) (43)

Now in order to get a solution, the term cosh(kL) cos(kL) = 1 needs to be found. There

is not an analytical solution, so a few numerical solutions are presented in Table 4-3

Table 4-3 First three numerical solutions to the vibration of a free beam

Order of solutionn kL

1 4.73
2 7.853
3 10.995

With the help of Equation 36, the resonant frequency can be found.

The standard ASTM E1876 includes the most important parameters and equations,
based on numerical solutions to the previously presented equations, to measure both
Young's modulus and shear modulus in different geometries [110]. Since this work
focuses on flat pellets cut into bars, the methodology for rectangular bars of material

will be presented.

The samples can be characterized at either room temperature or high temperature.
The equipment used to perform the measurements for this work is an Integrated
Material and Control Engineering HT1600 device. The room temperature set is
composed of a sample holder with elastic supports, projectile and microphone as
shown in Figure 4—-6
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Figure 4-6 Room temperature setup for the IET

The high temperature setup consists of a ceramic sample holder with titanium
supports, ceramic projectile and infrared position sensor shown in Figure 4-7. These
elements are inside an oven that reaches 1600 °C, however without the possibility to

connect a vacuum pump or perform measurements under inert atmosphere.
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TIMce

Figure 4-7 High temperature setup for the IET

The samples intended for IET measurements all had a length of 40-43 mm, a width of
12 mm and a thickness of 2.5-3 mm. It is paramount for a successful measurement to
have parallel faces with a precision of 0.01 mm thus, after cutting the samples, they

were grinded with a special sample holder to size.

The prepared samples were placed on the room temperature setup as shown in Figure
4-8. The distance between the supports depends on the sample size and is given by
the control software when typing in the required data.
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Figure 4-8 Sketch of the positioning of the supports (gray), the impact place (red) and the position of

the microphone (blue) to perform a simultaneous Young’s and shear modulus measurement

From this setup two sets of frequencies are registered by the microphone, a
longitudinal and a transversal component. These are related to the elastic properties

using the following set of equations.

Young's modulus estimation is done using
_ mfZ L3
E = 09465 ("L) (5) T, (44)

Where m is the mass of the sample, f the fundamental (lowest) frequency; b,t and L
the width, thickness and length of the sample and T; is a correction factor for the finite

thickness of the sample and the Poisson ratio expressed by .

t\2 £\4
Ty = 1+ 6.585(1 +0.0752v + 0.8109v%) (1) —0.969 (1) —

(45)

4
8.34(1+0.2023v+2.1731/2)(%) l

2
1+6.338(1+0.1408v+1.536v2)(%)

The shear modulus, on the other hand is estimated by

2
G=""lp (46)
bt
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where f; is the transversal resonant frequency, B is a geometrical correction factor
defined by

b t
—4—

b= 4(%)—2.52(})20.21(%)6 “7)

For testing at high temperatures, the equations remain the same, however the

positioning of the sample and the area of impact change due to the sample holder

being different.

Measurements at room temperature were made using 48% of the maximum energy of
the projectile to avoid sample damage and to prevent the sample from moving away
from the supports. This excitation was done for 0.2 s. The lower end sensitivity
excitation voltage for the microphone was set at 0.05 V to pick up second harmonics

for both longitudinal and transversal frequencies.

Samples measured at high temperature had the same parameters. However, the
distance between nodes is fixed, as the supports cannot be moved. The only
frequencies picked up are longitudinal as the transversal frequencies are dampened
out. The high temperature program was set to have a maximum temperature of 623 K
with a heating and cooling ramp of 1 K/min. Measurements were taken every 30 s.

Upon reaching the maximum temperature, a 60 min holding time was programmed.

RUS

Resonant Ultrasound Spectroscopy is based on the forced vibration of a small sample
clamped between a pair of transducers. While one of these transducers is excited to
vibrate with changing frequencies, the other one is used to detect any vibration
transmitted through the sample. As such mechanical vibrations are usually strongly

damped, only resonance frequencies of the sample are transmitted.

Resonant frequencies of solid materials depend on sample geometry and size, as well
as on the elastic moduli exhibited by the material [108]. Thus, known resonance
frequencies can be used to determine elastic constants, the principle of which will be

described in the following paragraphs.
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Following Equation 12, the elastic tensor relates the stress and strain present in a
three-dimensional sample. The equation that describes motion generated by the
vibration is [111]

aO'ij _ 9%,

axj at2

(48)

where u; are the displacement vectors.

So, by substituting Equation 12 into Equation 48, the new form is

Cijri0ur 9%y
6xjxl ot2

(49)
The solutions to Equation 49 are complicated to find, however Migliori et al. [112] have
proposed an approximation.

By taking advantage of the fact that the displacements u; (x;) with free boundaries are
both a solution to Equation 49 and points where the derivative of the elastic

Lagrangian is at a minimum, the possible solution starts to take form in
1
L= gf(szuiz(r) = Cijritij (T)ukl(r))dV (50)

where the first half of the equation denotes the kinetic energy and the second half the

strain energy.

The displacement vectors in Equation 50 can be expanded to a different base by using

appropriate expansion coefficients a; and base functions ¢(r)

w; = a;¢(r) . (51)

The base functions are chosen depending on the geometry of the sample, thus for
parallelepipeds, a good choice are the Legendre polynomials due to their orthogonality.
In a more general case, the expansion can be done using basis power functions in the

form YR ¢, = x'y™z". Where [ + n + m = a and R is the limiting factor of the series.

Substituting Equation 51 in Equation 50 yields
1 2
L= 5(,00) a;a; [ (5ij¢(7”)) dV — a;a; [ Cijiud;(r)d(r) dV) (52)

Which can be re-written in matrix form by grouping the elements in the integrals into

matrices.

L= %(pa)zaTEa —a'ra) (53)
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Now the minimum values of the derivative of Equation 53 with respect to the
displacement vectors can be found, which are the extreme values of the Lagrangian

(where the value is 0) and the result is
la=pw?Ea . (54)

Equation 54 is a generalized eigenvalue problem that can be solved to find the
eigenvalues (pw?). The eigenvector a of displacements can also be estimated,
however this is not normally done as the technique is mostly interesting to estimate

elastic constants.

The values of the matrices I' and E will be estimated with Equation 52, with the left
side of the integral constituting the kinetic energy part assigned to matrix E and the

right side constituting the potential energy and assigned to matrix I'.

As can be seen from Equation 52, the kinetic energy matrix is estimated using also
the Kronecker symbol, and will thus be a diagonal matrix. If the displacements are
expanded using the Legendre polynomials, the orthogonality of said expressions will

make it a unity matrix.

Since the expansion series has an infinite number of elements, the matrices can also
have an infinite number of elements. This is the reason behind the limiting factor R, for

R = 10, the matrices have an element number of 858.

Using Equation 54 and given the dimensions and density of a sample, it is possible to
estimate the resonant frequencies assuming an initial value for the elastic constants

by finding the eigenvalue and using f = w/Zn'

The estimation method per se is based on the comparison and fitting of the predicted
resonant frequencies estimated by the process earlier described, and the measured

values obtained from the transducers, shown in Figure 4-9.
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Figure 4-9 RUS spectrum showing the frequencies at which the material has a resonance against the
root of the relative amplitude of displacement.

For this work, a Python script developed in the University of Applied Sciences
Bremerhaven was used. The first 20-25 resonances were fit using a least squares

method.

Spectra were taken using an in-house build RUS in a range of 300 kHz to 1.2 MHz.
The range of frequencies was adjusted after a trial-and-error search depending on the

sample geometry.

All samples presented in this work had a size of 3 x 4 x 5 mm3, were cut using a

diamond saw and ground to a parallel face, with a maximum deviation of 0.01 mm.

CTE

The coefficient of thermal expansion was measured in an analog dilatometer from Bahr

Analytics.

The dilatometer is composed of a ceramic sample holder where the slabs can rest. On
one side of the sample holder, two ceramic rods can be found. These are connected
to the displacement sensor and are used to measure thermal expansion as shown in
Figure 4-10. The whole assembly fits into an oven that can reach 1200 °C. This oven
is also connected to a vacuum pump, so measurements in the absence of air can be

done.
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Figure 4-10 Dilatometer used and close-up of the sample holder

Samples to be measured in this equipment had a size of 3 x 5 x 40 mm?. They were
measured from room temperature up to 440 °C (713 K) under vacuum (<1 x 10 bar)

using a heating ramp of 1 K/min.
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5. Hardness and Fracture Toughness of
Solid Solutions of Mg2Si and Mg>Sn

One of the most studied mechanical properties is hardness, due to the relative ease at
which it can be measured in comparison with other destructive and non-destructive

characterization [36].

Several other works have reported on the hardness of thermoelectric materials
Mg2(Si,Sn). However, most works focus on a single composition [74, 85, 87, 89, 91,
92, 113].

In this first paper, the relationship between Sn content in the solid solution and the
hardness of said material is investigated. Additional characterization was made to
measure the crack length in order to estimate fracture toughness.

The effect of Si-rich phases in the deflection and shortening of cracks in investigated
through SEM and discussed. The relationship between hardness and composition is
also discussed and the first ever proposedly-made Mg2Sn hardness value is
presented.
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L. INTRODUCTION

Thermoelectric materials have been studied for a
long time as a means of reusing waste heat and con-
verting it to electricity. From the variety of materials
available for such effect, magnesium allovs such as
Mg,5i, Mg,Sn, and Mg,Ge [1] started to attract atten-
tion lately because of their light weight, high abun-
dance, negligible toxicity [2, 3] and their similar crys-
tal structure. They form solid solutions with improved
thermoelectric properties compared to the corre-
sponding binary compounds [1, 4]. Most of the mate-
rials research is focused on improving thermoelectric
properties [5—11], whereas mechanical properties
received little attention to date even though they are
also crucial for the development of durable thermo-
electric generators (TEG).

Thermoelectric materials in TEG operation are
subjected to a variety of mechanical and thermal
stresses [12, 13] caused by thermal expansion coeffi-
cient mismatch, thermal cycling, and static and
dynamic mechanical loads. Materials must be able to
withstand such stresses for a long service life.

Mechanical loading of the material is expected 1o
create micro-cracking within the material [14], and
previous studies show that crack appearances in the

material lead to performance decay [15, 16]. More-
over, the failure mode for brittle materials has been
described as the appearance and growth of such cracks
[17]. Therefore it is of utmost importance to charac-
terize the mechanical properties exhibited by thermo-
electrics on-par with their energy conversion optimi-
Zation.

It is commonly established that elastic properties
such as Young’s modulus and shear modulus, as well
as the surface hardness and fracture toughness, are
good indicators of a material’s ability to withstand
loads [18].

Magnesium silicide is a well-known material
whose mechanical properties have been predicted
using First principles calculations (110 GPa for the
Young's modulus) [19] and experimentally studied
using resonant ultrasound spectroscopy [20, 21].
hardness testing [22], and compression tests [23].
These methods vielded several Young's modulus val-
ues, ranging from 76 GPa for induction melted cast
material up to 145 GPa for 5PS, with their corre-
sponding hardness values of 4 and 5.4 GPa. The differ-
ence was attributed by the authors to differences in
grain size, as spark plasma sintering produces very

1831
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Table 1. Pressing parameters and achieved density of com-
pacted Mg,Si; _ ,Sn, pellets

Mg;Si; _ ,Sn,, X| Temperature (K) [Time (s)| Density (g/cm’)
0 1073 600 1.959
04 998 1800 2.507
0.5 973 1200 2.744
0.6 973 1200 2.909
07 973 600 3.012
1 873 600 3.425

small grains while cast material promotes grain
growth.

On the other hand, research for Mg,5n has a more
limited literature than Mg,5i. First principles calcula-
tions for this binary show a Young's modulus of
82 GPa [24] and a hardness of 1.7 GPa [25]. The solid
solutions Mg,5i—Mg,5n are attracting attention due
to the reported band convergence, the known misci-
bility gap and the increased performance compared 1o
the binary compounds [1, 5, 7, 26]. However this
interest has yvet to be more widely extended towards the
mechanical properties. Gao et al. report the hardness
and Young's modulus in Mg,5i, ,Sn; cas 3.07 GPaand
90 GPa, respectively.

This lack of information coupled with the ever bet-
ter thermoelectric properties obtained for the material
system prompts this work to study the mechanical
properties exhibited by the binaries Mg,5i and Mg,Sn,
as well as some compositions along the solid solution
series by micro hardness testing using Vickers indenta-
tion. By describing the effect of the variation of Si:Sn
ratio within the solid solutions we aim at another pos-
sibility of nano-structuring that will produce a
mechanically stable and robust material for TE gener-
ation. Potential candidates from the wide range of
compositions were identified through previous
research [27, 28].

2. MATERIALS AND METHODS

Undoped Mg3Si,Sn; _ , solid solutions with x=0,
0.4, 0.5, 0.6, 0.7, 1 were synthesized by mechanical
alloving, employing high energy ball milling (SPEX
8000D). The precursors (Mg tumings (Merck), Si
(<6 mm, ChemPUR}), S5n (<71 pm, Merck)) were
weighed according to stoichiometry. 5% excess of Mg
was added as to account for any type of Mg loss during
processing and pressing for all compositions, except
Mg,Sn, which had 7.5% excess. The desired elements
were transferred into a stainless steel jar with a ball to
powder ratio 1.7:1. All the procedures were conducted
inside a glove box under Ar atmosphere to prevent oxi-
dation and contamination.

The elements were milled with constant rotation
speed (~800 rpm) for 10—12 h until fine and homoge-
neous powders were obtained. Details for the com-
plete milling are given elsewhere [27]. The obtained
powders were transferred to a graphite die (&10 mm)
and sintered at 873— 1073 K by utilizing a direct sinter
press DSP 510 SE, Dr. Fritsch GmbH, Fellbach, Ger-
many under vacuum condition (~10~% bar), at a sinter-
ing pressure of 66 MPa with a heating rate of 1 K/s.
Table 1 contains the pressing conditions for all sam-
ples as well as densities measured by Archimedes
method in ethanol.

Pellets were cut using a precision diamond wire
cutter (Well Diamond Wire Saws SA) into pieces mea-
suring 2 mm in thickness and then embedded in con-
ductive polymer in pairs. Each pair displayed both the
cross section and the surface of the pellet (parallel and
perpendicular to the pressing direction). The embed-
ded samples were then ground using SiC paper and
polished with ethanol based diamond suspension
down to a polish particle size of 0.25 pm.

Hardness testing was done using a Vickers micro
hardness machine (Clemex SMT-XT7) for 10 s and
0.98 N. Each sample was indented 20 times for each
surface orientation (parallel and perpendicular to
pressing) for a total of 40 indentations per composi-
tion. Imprint analysis was done using the in-built
microscope and software, and calculations were done
following Oliver and Pharr methodology [29] using
Eq. (1) to estimate sample hardness

1.854P
H= ; (1)
(2dy*

where Pis the load exerted by the machine and d being
the half length of the plastic imprint left by the inden-
tation. Fracture toughness was estimated using

Eq. (2):

172
Kk:g(EL?J’ (2

P

where £ is a geometrical constant estimated to be 0.016
for the Vickers indenter by previous research [29], and
H is the hardness obtained from Eq. (1). P is the load,
¢ is the half average crack length measured from the
center of the imprint, and E is the Young's modulus
estimated in this work by linearly interpolating
between theoretical values obtained from previous first
principles calculations [19, 24] as shown in Table 2. It is
assumed that a linear behavior will be dominant since

previous research shows this trend for other properties
[30].

Microstructure analysis was carried out using a
Scanning Electron Microscope Zeiss Ultra 55 SEM
with a Zeiss QBSE detector, also equipped with an
Oxford energy dispersive X-ray (EDX) detector
({PentaFET = 3).

SEMICONDUCTORS  Vol. 53 MNo. 13 2019
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3. RESULTS Table 2. Young's modulus used to estimate fracture tough-
As first observation in this study, we found no sig- ness .
nificant change between measurements done on the Mg,5i) S0, X Young’s modulus (GPa)
cross section and the base face of the pellet as shown 0 0
in Fig. 1. This is mainly because of the cubic isotropic
nature of the material. Therefore results shall be 0.4 98.8
addressed as a function of composition only. 0.5 05
Using the in-built software, each of the diagonals 0.6 93.2
in every indentation was measured. Afterwards hard- 0.7 90.4
ness values were calculated using the known force 1 30
applied. Figure 2 shows an optical micrograph of an

indentation showing the typical radial crack appear-
ance at the tips of the imprint.

Given the brittle nature of the material, scarce
strengthening effects are noted in Fig. 2. Intrinsic
strengthening, acting ahead of the crack tip is seldom
found in ceramic materials since it relies on the mate-
rial's ability to plastically deform, therefore weak when
present. It is however possible to induce crack devia-
tion by using secondary phases or by reducing grain
size [31].

As expected from the known behavior in other
properties like lattice parameter [30], hardness has a
mainly linear behavior with the increase ofthe Sn con-
tent over the solid solution as shown in Fig. 3; except
for the points x = 0.5 and 0.4. As the material forms by
diffusion of 5i into the Mg,Sn matrix; the secondary
phases are smaller in size and number in low Si con-
tent samples. However, increasing the Si:Sn ratio also
increases this Si-rich areas in both size and number,
also increasing both the hardness and fracture tough-
ness.

Figure 4 shows the fracture toughness of some
compositions along the solid solution series. Here the
difference between the binaries is smaller compared to
hardness and is related to the tradeoff between the
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Fig. 1. Comparison between all compositions and the
directional {parallel and perpendicular to pressing direc-
tion) characterization.
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amounts of plastic deformation as compared to the
crack length.

These values have a peculiar behavior around x =
0.5—0.4 which can be attributed to the strengthening
effect exerted by the Si rich areas in the material as
shown in Fig. 5.

The area around EDX point 3 has the composition
Mg,Si; ;Sny 4; while two areas with clear contrast dif-
ference can be seen near points 1 and 4. These regions
have composition that ranges between Mg,Si; 7550, 25
(dark gray area) and Mg,Si; 5 5n, 4 (light gray). The
dark areas visible near point 2 are Mg,5i,_,Sn, +
MgO, and the dark spois in the center of the picture
are MgO particles.

4. DISCUSSION

Deviation from linearity in hardness with composi-
tion (Fig. 3) can be expected in non-uniform material
with secondary phases. SEM images show regions
within the homogenous material that retain a higher
content of silicon that was not diffused into the matrix
during the high energy ball mill and the following cur-
rent assisted sintering. Previous reports also show an
influence of both milling time and sintering parame-
ters on the thermoelectric properties [27, 30]. Preva-
lence of these Si rich areas was observed with lower
milling time in the same material system where they
did not cause any significant change in either the ther-
mal conductivity or electrical properties. Their influ-
ence on the mechanical properties is however higher
due to the stress fields they produce around the area
where they are located.

DSP sintered materials show a slightly larger grain
size compared to SPS reports [32] and the mechanical

Fig. 2. Optical micrograph of an Mg,5i indentation.
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properties decrease accordingly. However, they are
better compared to cast material with a typical large
grainsize [23]. Therefore material synthesis and press-
ing plays a critical role in the properties exhibited by
thermoelectric materials.

Literature values for the hardness of the binary
Mg,Si vary with a low estimate being 3.96 GPa [23],
while most values are around 5 GPa [20-22, 32]. In
our case, the value of 5.56 + 0.14 GPa is within a rea-
sonable range. Previous studies have shown that hard-
ness is influenced by grain size: and that smaller grain
size results in a higher hardness value. This is related to
the amount of plastic deformation allowed by the sys-
tem. In fact, smaller grains have lower possibility to
deform further and are restrained from moving, there-
fore hardening the material.

Mg,5n literature values for hardness are scarce and
one study [33] gives a value of 1.17 GPa. Our measured
value, however, was comparatively higher with 2.44 +
0.28 GPa, which is a 100% increase from the literature
value. This after mentioned study was done on a mag-
nesium alloy with tin inclusions and not an intention-
ally synthetized binary stannide for thermoelectric
applications, which might be the cause of the devia-
tion.

Fracture toughness values were obtained using the
interpolated value for Young's modulus from first
principles calculations. It is possible that a variation in
the concentration of secondary phases within the
material influenced the elastic properties. Therefore
this is another source of variation for the results pre-
sented in this work.

Values for K, in the binary Mg,Si range between
0.8 and 1.7 MPa m'? for pristine material [20—22, 32]
where our material falls within the lower part of the
interval at 0.76 %+ 0.06 MPa m"2. Current-assisted sin-
tering produces larger grains (1—10 pm) compared to
an SPS previous report [32] and it is known that a
smaller grain size prevents crack growth [22, 31] which
might be behind this lower value.

In pristine binary Mg,5n, there are, to the best of
our knowledge, no values reported for fracture tough-
ness. Our samples exhibited a value of 0.64 +
0.06 MPa mY2 This value is very similar to Mg,Si,
which might be caused by the lower brittleness exhib-
ited by the material. The work being applied to the
material by the indentation can either be released as
plastic deformation (imprint) or as new surfaces
{cracks). The value for Young’s modulus is reduced in
a similar ratio to the hardness, thus, according to
Eq. (2), the fracture toughness will remain compara-
tively high.

Crack lengths for both silicide (22.7 + 2.1 pm) and
stannide (26.99 + 3.54 pm) remained similar. The
imprint size, however, was not. Magnesium silicide

SEMICONDUCTORS Vol 53 MNo. 13 201%
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Fig. 6. SEM pictures showing the comparison between a homogenous Mg;Sig 3Sng 7 material (a, c) compared to an Mg;Sig ¢Sng 4
material with secondary phases (b, d). Note the difference in crack length.

has a noticeably smaller residual deformation (1.80 £
0.02 pm) compared to the magnesium stannide
(27.41 £ 0.46 pm).

Brittle materials like magnesium silicide-stannide
have a very low plastic deformation capability and
therefore, the only way to strengthen them intrinsi-
cally is to include flaws in the lattice. A change in
direction due to a pinned stress field caused by the
grain boundary is the main strengthening factor in a
single phase material with no inclusions [31] (Fig. 6¢).
The coexistence of several phases in the material
strengthens it against crack growth by this very same
method, as the crack is forced to go through several
stress fields (phase boundaries) caused by the phase
mismatch (Fig. 6b).

Magnesium silicide-stannide ranks somewhere in
the middle within other thermoelectric material fami-
lies regarding hardness values. They are clearly above
tellurides which exhibit a value ranging from 0.7—
1.5 GPa [34, 35], have a comparable hardness value to
Skutterudites (3—7 GPa) [35, 36], and are below half-
Heuslers which can surpass 10 GPa [35, 37].

SEMICONDUCTORS Vol.53 No.13 2019

When comparing fracture toughness exhibited by
different thermoelectric materials, we find the
Mg,Si—Mg,Sn system to be at the lower end, havinga
lower value than half-Heuslers (1.8—2 MPa m'/?) [37]
and tellurides (1.1 MPa m'/2) [38]. However, they are
comparable to Skutterudites (0.4—0.8 MPa m'?2) [39].

5. CONCLUSIONS

Different compositions of magnesium silicide-
magnesium stannide solid solutions were successfully
synthetized and characterized. They exhibited
medium to low hardness and low fracture toughness
when compared to other thermoelectric materials. In
this work, the first ever report of the fracture tough-
ness in magnesium stannide binary compound was
discussed.

Magnesium silicide is a very brittle material with a
high hardness value, whereas magnesium stannide has
a lower brittleness. However, both have similar frac-
ture toughness due to the fact that Mg,Sn is capable of
more plastic deformation compared to Mg,Si.
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Considerable strengthening effect of secondary
phases was observed in higher silicon content samples.
This was credited to interphase stress shortening and
deflecting crack growth. Secondary phases that do not
interfere with thermoelectric properties can thus exert
a beneficial effect of a shoriened material preparation.

Further work is needed to strengthen the material
through microstructure optimization or nanoinclu-
sions, and complement the low density and low toxic-
ity properties that make it an attractive TE material.
Mechanical properties should be tailored to the appli-
cation desired. This in turn, prompts the scientific
community to deepen the knowledge in the subject, 1o
be able to engineer the material tospecification both in
thermoelectric and mechanical properties.

This study shed light on the material mechanical
properties and its place among other potential candi-
dates for TE generator materials in relation to how well
they manage crack nucleation and growth.
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6. Room and high temperature mechanical
properties of Mg.Si, Mg2Sn and their solid

solutions

Following the characterization of composition dependent hardness, the next step was

to continue the measurement of mechanical properties in the Mg2(Si,Sn) material.

A relatively new method called Impulse Excitation Technique was used to estimate the
room and high temperature Young’s modulus in the solid solution. These
measurements were compared to the more established Resonant Ultrasound

Spectroscopy similar to previous studies comparing both techniques [114].

Following the composition and temperature dependent results, a new equation to
predict both Young’s and shear modulus was proposed. With the help of said equation
and a quick phase determination process proposed earlier by Yasseri et al. [106] the
effective Young’s modulus of a composite Mgz(Si,Sn) material with different Si-content
was estimated. These values were in turn, very similar to the measured values in all

samples.
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ment. Additionally, by estimating the Poisson ratio, we calculate the temperature-dependent shear
modulus G and finally provide a simple bilinear function for Young's and shear moduli as a function of
temperature and composition.
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1. Introduction

Thermoelectric generators (TEG) for thermal-to-electric energy
conversion in their most basic form consist of both n- and p-type
doped semiconductor materials (commonly referred to as legs)
electrically connected by a metallic bridge. Such devices have
attracted the attention of researchers due to their inherent ad-
vantages such as simple construction, free scalability, lack of
moving parts, and reduced maintenance cost and effort [1-3]. Their
ability to perform under vacuum and in the absence of light also
makes them perfect candidates for space mission energy supply, as
exemplified by the Voyager missions and numerous further deep
space and lander missions from the 1970’s [4]. TEGs can also be
used in/are also candidates for terrestrial applications, such as
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waste heat recovery in industrial facilities, combustion engines and
mobile or autarkic current supply e.g. for sensors.

Current TEG technology is mainly based on rare or toxic mate-
rials such as Te or Sb, which makes the “en masse” application of
thermoelectric generators unattractive [5]. In this context, research
on light, inexpensive, and more importantly environmentally
benign materials becomes a priority to facilitate the technology’s
inclusion into the market. One of such materials is the Mgx(Si,Sn)
system, composed of a solid solution of Mg,Si and Mg,Sn. Both
binaries and their solid solutions form a family of light and highly
available (therefore inexpensive) materials [1,2].

Mg>(Si,Sn) has shown a good thermoelectric performance, as
indicated by the high dimensionless figure of merit zT defined as
2T = S%ax~'T, where S, a, k, and T represent Seebeck coefficient,
electrical conductivity, total thermal conductivity, and absolute
temperature, respectively. n-type Mg(Si,Sn) achieved a zT > 1.2 at
temperatures close to 973 K [6—12], while p-type materials reached
0.55 around the same temperatures [11,13—17].

Several other factors besides TE performance have to be taken
into account when building a functional generator, such as the
electrode that connects the functional material to the electrical
bridge. Further progress has been made in this regard with possible
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candidates already selected and tested. Cu and Ag seem to be
feasible options for the Sn-rich solid solutions given their
compatible coefficient of thermal expansion (CTE) values [18,19],
while Ni appears to be a solution for binary Mg,Si [20—22].

The selection of the TE material, the contacting electrode and
the bridging electrical conductor is not trivial. In fact, CTE mis-
matches between these materials will produce thermal stresses at
working temperature that could potentially threaten the mechan-
ical integrity of the module. Using the same material system for
both n- and p-type legs is one way to reduce the CTE mismatch; it
will, however, not completely eliminate the issue, Therefore, ther-
mal stress and its potentially destructive effects cannot be avoided
(23].

It is, thus, imperative to know the room and high temperature
mechanical behavior of the materials in order to design the module
in a way that minimizes possible mechanical failure.

The mechanical properties of the binary magnesium silicide
were predicted using first principles calculations, obtaining a value
of 110 GPa for the Young's modulus [24,25], and were measured
using several techniques. Among these techniques, we find dy-
namic methods like Resonant Ultrasound Spectroscopy (RUS) and
traditional static characterizations like micro-hardness and
compression tests [26—29]. These previous studies reported a wide
range of values for the elastic behavior of Mg,Si, ranging from
76 GPa to 145 GPa, with hardness values ranging from 4 to 5.4 GPa.
The authors put great emphasis on the effect of grain size distri-
bution on the mechanical properties in these studies.

In contrast, reported data on Mg,Sn is more limited. First prin-
ciples calculations for this binary yield a Young's modulus of
67—-82 GPa [25,30,31], and an experimental hardness value of
1.7 GPa was reported [12].

Recent work in our research group was done on the mechanical
properties of the solid solutions Mg;Siy_,Sn, (with x = 0—1), finding
a mostly linear influence of the Sn content on the hardness. How-
ever, Mg;SipgSng4 showed an increased value compared to what
the interpolation between binaries suggests and above the linear
behavior characteristic in the low Si content material. Such
behavior was attributed to secondary phases strengthening the
material [32]. Room temperature measurements of the elastic
constants have also been carried out on the solid solution [33], and
the study found a strengthening of the material as the Si amount
increased. However, the composition MgsSig4Sngs showed
diminished elastic properties, which was attributed by the authors
to a possible connection between electronic and vibrational
properties.

On the other hand, high temperature values are scarce. One
recent paper reported the Young's modulus of the Mg;SiggSno.4
material [34] where a linear decrease with temperature was found.
The material had a reduction of ~10% in its total elasticity during the
heating phase; however, no further information was given on the
cooling phase.

One complication of the Mg;Si—Mg;Sn material system is the
miscibility gap, which, depending on the author, can be found in
different compositional ranges [35,36]. The gap also depends
heavily on temperature, as it widens at lower temperatures. It was
observed in previous studies that homogenized samples decom-
pose into separate phases after being annealed. Due to the phase
separation at high temperatures, it is of utmost importance to know
the material stability while being subjected to temperature.

Therefore, this work focuses on the microstructural and Young’s
modulus characterizations of MgSi,Snq_x materials (x = 0—1), at
both room and high temperatures using different techniques:
Resonant Ultrasound Spectroscopy (RUS) and Impulse Excitation
Technique (IET).

Table 1
Sintering parameters for Mg,Si;_Sny.
X Pressure (MPa) Temperature (°C) Time (min)
0 66 800 10
04 66 750 30
0.5 66 700 20
0.6 66 700 20
0.7 66 700 10
1 66 600 10

2, Materials and methods

Undoped Mg,Sii,Sny samples were synthesized using
commercially available precursor elements, namely Mg turnings
(Merck), Si chunks (<6 mm, ChemPur), and Sn (<71 um, Merck)
with high purity >99.5%. Elemental materials were put in a graphite
crucible and melted into an ingot using a previously described
method [11]. The obtained ingot was then ball milled in a SPEX
8000D Shaker Mill for an hour to obtain a homogenous powder,
and pellets were synthesized by pressing the powder in a direct
current press DSP 510 SE from Dr. Fritsch GmbH. The temperature
and time used to press each composition have been reported pre-
viously [6,11,19,36,37] and are detailed in Table 1. These reports
showed very good thermoelectric properties for both n and p-type
materials. Samples of compositions Mg»SiixSny, x = 0.4, 0.5, 0.6
require extra time for pressing conditions due to the slow process
of phase formation. It was previously observed that if Mg,Sn and
Mg,Si formations are competing, Mg,Sn forms first and then Si
diffuses slowly into the matrix [6,36].

The pellets obtained measured 50 mm in diameter and ~3 mm
in thickness. They were then subsequently cut using a diamond disc
saw (DISCO Co) into pieces measuring 12 x 45 x 3.0 mm for the [ET
experiments and 3.0 x 4.0 x 5.0 mm for the RUS characterization.
Two separate samples were cut and tested for each composition
and technique. The remaining circular segments were embedded in
conductive resin, grinded with SiC paper and polished with dia-
mond suspension for microstructure analysis.

Resonant ultrasound spectroscopy (RUS) utilizes mechanical
resonance frequencies of a given sample to determine the elastic
tensor of a material. Parallelepiped shaped polycrystalline samples
of 60 mm?® were investigated by a custom made spectrometer
similar to the setup described in Ref. [38]. Using the first 20 reso-
nances, C;; and Cy4g were determined following the analytical
scheme described in Refs. [39] and implemented in Python. In all
cases, the root-mean-square residual between calculated and
measured resonance frequencies was below 0.5%.

Independent elastic constants Cyj, Ci2 and Ca4 [40] characterized
by RUS can then, be related to the elastic moduli. The bulk B
modulus can be estimated by the relationship

3B=Ciy +2Cp (1)
The shear modulus G can be described by Equation (2) for ma-
terials with cubic crystal structure.
G=Caq (2)
Finally Young's modulus can be estimated using Equation 3
9B-G
" 3B+G (3)

RUS experiments were carried out in a self-built setup at room
temperature sweeping frequencies between 300 kHz and 1 MHz.
Characterization was done repeatedly while changing the position
of the sample between transducers to maximize the amount of

E
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resonant frequencies registered for the fitting.

The Impulse Excitation Technique (IET) relies on the free vi-
bration of a bar shaped sample set on top of supports. A micro-
phone picks up the resulting vibration frequency. A simple set of
equations are then used to compute the Young's and shear
modulus.

273
E= 0.9465% %Tl (4)
_4LmF? B (5)
~ bt 1-A

Where m is the mass of the sample, L, b and t are the length, width
and thickness respectively; F; is the longitudinal resonant fre-
quency and F; the transverse resonant frequency. T;, B and A are all
geometrical correction factors described in the standard ASTM E
1876 — 01 [41]. In such a case, it is important to ensure that the
fundamental (lowest resonant frequency) has been identified. The
ratio to higher order frequencies can be used to determine if the
fundamental is present, and whether we measured longitudinal or
transverse. For longitudinal frequencies the ratio to the funda-
mental is 1:2.757:5.404:8.933 ...; meanwhile, for the transverse,
the relationship is simpler, 1:2:3:4 ...

Slight variations in the thickness of the samples during prepa-
rations alter the precision of the method following Eq. (4), therefore
we grinded all samples to get a 4E < 1 GPa.

IET characterization was done employing a system from IMCE
NV at room temperature with an automatic excitation time of
30 ms. High temperature measurements were done in air until
623 K, and then the sample was held at this temperature for 30 min.
Heating and cooling ramp was 5 K per minute, and one data point
was collected every 60 s during both processes. The oven can only
control the cooling ramp down to 423 K; afterwards the cooling
through natural convection happens slower.

Phase identification was done using X-ray diffraction, which was
performed on sample pellets utilizing a Siemens D5000 Bragg-
Brentano diffractometer with a secondary monochromator.
Spectra were taken using Cu K, radiation (1.5406 A) in the 20 range
20°—80° with a step size of 0.01°, and the lattice parameters were
estimated using the Bragg equation. Microstructure analysis was
carried out using a Scanning Electron Microscope Zeiss Ultra 55
SEM with a Zeiss QBSE detector, also equipped with an Oxford
energy dispersive X-ray (EDX) detector (PentaFETx3). The grain size
was observed from SEM pictures and estimated using Image]
software.

Density measurements needed for the RUS and IET calculations
were obtained using the Archimedes method in ethanol. All sam-
ples exhibited relative densities higher than 96%. The solid solution
relative density was taken as linear interpolation between the
binaries.

3. Results

Most pressed pellets exhibit high phase purity, as shown by the
XRD patterns in Fig. 1. Samples with x = 0.5 and 0.4 exhibit a
shoulder or peak bifurcation. Which could be an indicator that
secondary phases are present in the material. Only phases with a
composition of Mg,SijxSnx were found, i.e. no MgO or elemental Si
or Sn (see Fig. 1 in SI).

Using the main peaks (111) and (220), the Bragg equation was
used to estimate the lattice parameter for each sample. The results
were then averaged and shown together with density and
composition in Table 2.

s - § = s 8
Dol = hag ey =5 (3 S
61 8 BN % B3 v E
| = | s 1 it ct >~ x=0
5 | I
=i B VA Ry S vl 1)
~ 4- ) ‘
© | I :
3 SO | J N\ N ——— Y o - X=05
L
=
g 2 A B Ol CaReu! (ol e 1) ;)
=] L
14 Wl J U x=0.7
04 1 L l l - (. B | G x=1
T T T

20 30 40 50 60 70 80
Angle (20)

Fig. 1. XRD Spectra for the solid solution Mg,Siy_xSny, x = 0-1.

The grain sizes were estimated using image processing software
and were found to be very similar for all compositions; this is
presumably because of the preparation procedure. While the
melting temperature is different between the compositions, the
final step before compaction is a 1-h ball milling of the ingot, which
is the same for all samples. This similarity between samples means
any differences in mechanical properties will not come from grain
size difference, but from other sources i.e. Sn—Si ratio, secondary
phases amount, etc.

Room temperature IET measurements for Mg;Sij,Sny (Fig. 2 a)
show a linear influence of the tin content in the solid solution on
the Young's modulus, with the exception of x = 0.4. This compo-
sition does not follow the linear behavior observed for the other
compositions.

RUS allows us to characterize the elastic constants (see Table 1 in
SI), and then, by using Eq. (1), Eq. (2) and Eq. (3), the moduli were
calculated for the samples studied in this work (Fig. 2 a). These
results also exhibit a linear behavior as the Sn content increases,
and go well in accordance with previously reported values [33].
Nevertheless, we observed a reduced elastic constant value at
x=0.6, as also previously reported in the same paper.

Using previously reported hardness data [32], the fracture
toughness of the studied composition along the solid solution was
estimated using Equation (6) [32].

Kkzw (6)

where H is the measured hardness, P the load used for the inden-
tation and c the length of the crack as measured from the center of
the indentation, ¢ is a geometrical correction factor set to be 0.016
[43]. Crack length and diagonal needed for hardness estimation
were measured using the in-built microscope as described in
Refs. [32].

Fig. 2b shows the difference in K. between using first principles
and experimental values recorded by RUS and IET measurements
for the estimation. Mg,SipgSng4 exhibited the highest fracture
toughness in the original study with the interpolated Young's
modulus. Using the measured value instead does not change the
trend.
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Table 2
Structural parameters for Mg,Si;_Sny.

b Density (g/cm?) Relative density Lattice parameter (A) Grain size (um)
0 1.97 0.99 6.35 7+1
0.4 2.65 1.00 6.46 8+2
0.5 2.83 1.01 6.58 T2
0.6 297 1.00 6.58 8+2
0.7 3.09 0.99 6.62 7+3
1 3.46 0.96 6.76 7%1
-« x=0
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Fig. 2. a) Comparison between elastic constants obtained by RUS and IET with liter-
ature data [12,25,30,34,42] and b) Estimation of fracture toughness using (i) values of
Young's modulus obtained by linear interpolation between first principles calculation
[32] and (ii) experimental observation.

Previous work predicted a linear decrease in elastic constants
above room temperature [25]. This work confirms this behavior, as
all the samples show a linear dependence of Young's modulus with
increasing temperature (Fig. 3a).

Mg,Sn exhibits the highest percentage of softening at high
temperature (623 K) with 11%, while the samples containing Si
(solid solutions and binary Mg>Si) only lose 7—8% of their total
strength. Such behavior does not come as a surprise as the stiff-
ening of the Mg»(Si,Sn) solid solutions were previously described
by Klobes et al. [33] as the effect of the covalent Mg—Si bond.

Once the material reaches the holding temperature, a small
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110
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104-
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Fig. 3. a) Heating curve for high temperature measurements of Young's modulus
showing all compositions tested and b) heating and cooling curve for Mg,Si, showing a
noticeable hysteresis.

strengthening takes place (<1%), which continues when the cooling
process starts, as shown in Fig. 3 b). The hysteresis behavior was
observed for all samples and is typical of a micro crack healing
mechanism that takes place at higher temperatures. Once the
material starts to cool down, the thermal stress re-opens micro
cracks and the material returns to its original state [44]. It cannot be
excluded, however, that the micro-crack healing process starts
before the holding temperature. However, with the employed
measurement approach, it is noticeable only when the maximum
testing temperature is reached, and the temperature-induced
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Fig. 4. Temperature dependent shear modulus obtained from E(T) and the Poisson
ratio at room temperature.

decrease in Young’s modulus ceases.

The integrity of the microstructure after the measurement cycle
can be attested by the fact that the initial value is reached again at
room temperature. Furthermore, previous work in the research
group has proven that long time annealing of samples obtained
through the very same method retains the microstructure [11].

The setup used to test high temperature Young’s modulus does
not permit the easy characterization of shear modulus. However, it
can be derived using the Poisson ratio, which is defined as v = £ —
1

In this regard, we find one previous report of Poisson’s ratio
measurement for the solid solution x = 0.6 [12] which shows a
small increase from 0.197 to 0.215 in the temperature range from
300 K to 600 K. Meanwhile, a calculation made with data obtained
from first principles calculations [25] yields values for the binary
materials that range from 0.173 to 0.176 for Mg,Si and 0.20—0.198
for Mg;Sn in the same temperature range. Therefore, assuming a
constant Poisson ratio which was obtained from the room tem-
perature measurements, we calculated the temperature-
dependent shear modulus for the complete range of composi-
tions tested in this work, as seen in Fig. 4.

The phase purity can be assessed from the microstructure
shown in Fig. 5. Secondary phases are present to some degree in all
solid solution samples. However, only the samples with x = 0.4 and
0.5 have secondary phases in such size and concentration as to be
observable in XRD patterns; this is confirmed by the displayed SEM
pictures.

Fig. 5 ¢), d) and e) show the typical microstructure for the solid
solution Mg,Si—Mg,Sn with secondary phases rich in Si, typical for
a melting route synthesis. The appearance of such secondary pha-
ses is due to the incomplete diffusion, which is a consequence of a
short pressing time during sintering [6,36]. Longer sinter times
produce purer samples with fewer amounts of Si-rich phases.
However, excessive time can also induce Mg loss, which is detri-
mental to phase formations [36].

Phase quantification in backscatter SEM pictures was done
following the methodology described in Ref. [45] for two samples,
Mg,SipeSno4 and Mg,Sip3Sng7 and the results are presented in
Fig. 6.

The sample x = 0.4 is shown in Fig. 6 a). It shows a bifurcated

peak in XRD, and phase quantification confirms the incomplete
phase homogenization. Sn-rich phases can be seen surrounding
phases with greater Si content creating many interfaces, which will
introduce further strain into the matrix according to the inclusion
theory [46]. These additional strains might be the reason for the
observed increase in Young's modulus. On the other hand, the
sample with x = 0.7 shown in Fig. 6 b) has a better phase purity,
confirming the XRD measurements. The matrix (orange) is
noticeable in the picture, and embedded within it, we can identify
particles with higher Si content (shown as darker shade of red) and
reddish diffusion zones around them. The cumulative percentage of
phases belonging to specific compositions (see Fig. 5. In SI) shows
that the target phase with Ax = 0.2 composes more than 90% of the
area. These diffusion zones confirm the observations done by Yas-
seri et al. [36] that Si-rich Mgy(Si,Sn) remnant from the synthesis
reacts in the sintering phase as the Si slowly substitutes Sn in the
matrix, dissolving the MgSi. Additionally, binary Mg,Si can also be
identified in both pictures.

Given the comparatively low variation in Young's modulus
values for Mg,Si;xSny and, assuming the area depicted in the SEM
picture is representative of the volume fraction of secondary phases
in the rest of the material, we can expect very little change in the
effective Young’s modulus measured. This is because to estimate
the elastic modulus in composite materials the contributions of
each phase are considered linearly in the Voigt approximation (E =
S"n;E;) and approximately linearly in the Reuss approximation (E =

1

oni/E~') [47).

Previous studies on Mgy(Si,Sn) obtained through the same
method described in this work have shown no indication of
microstructural change after annealing at 723K for more than 700
hours [11]. It is therefore assumed that the thermal cycle experi-
enced by the samples during the measurement did not affect the
microstructure present in the pristine samples.

4. Discussion

Previous reports for the Young’s modulus of Mg,Si show similar
values to what we report,109 GPa [26—29], except for a value of
145 GPa obtained through nano-indentation [28]. With regard to
that characterization technique, Radison et al. [48] proved that
nano-indentation is a good method to characterize the Young’s
modulus of a material, yet it was also prone to overestimate the
value. This might be the reason for the considerable discrepancy
between what we present in this work for the binary material and
previous reports by Muthiah et al. [28].

RUS and IET were compared in the past by Radovic et al. [48].
The paper describes thickness as the main source of uncertainty in
IET. As much as 9% variation in elastic moduli can be expected with
a variation of thickness below 3%. In our study, the maximum
variation for the samples following the linear behavior was 5%,
which is well within the previously reported precision for the
techniques used. The outliers from linearity are probably due to
different effects, such as the inhomogeneity for the x = 0.4
composition and the possible influence of the band convergence on
the vibrational properties for the x = 0.6 sample, rather than
technique-dependent uncertainties.

Fracture toughness values do not deviate widely from each
other due to the fact that the Young’s modulus measurements agree
with the linear interpolation used in the first study [32]. Said work
also described the effect of secondary phases and particle sizes as
strengthening factors in the material. Such mechanisms can be
observed in samples with x <0.5. In this case, the high concentra-
tion of interfaces is likely to deflect or shorten cracks due to the
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Fig. 5. Backscatter SEM images of a) Mg;Si, b) MgSio6Sno.4, ¢) Mg:Sio.sSng 5, d) Mg2Sin.4Snos, €) Mg;Sio 35n07 and f) Mg,Sn, dark areas show the secondary Si rich phases in the solid

solution.

intergranular energy at the particle boundaries [49].

The temperature dependent elastic behavior in polycrystalline
materials, in general, can be divided into three regions, of which the
first two can be described by the empirical Wachtman equation E =

Ey— bTe—*where Ep is the Young’s modulus at 0 K, b and Ty are
constants [50]. Previous work has set Ty to 0.3—0.5 Debye tem-
perature (6p) [51].

Beginning at the low temperature of ~0.3 fp, the slope dE/dT

decreases as e ! increases gradually with temperatures falling
down to 0 K, where E = Ey. Above 0.3 fp we find the linear region

where dE/dT remains constant as et approaches unity. Finally, the
high temperature regime can no longer be described by the
Wachtman equation, because the slope deviates from linearity as it
gradually increases. The onset of such slope change depends on the
material and can be obtained experimentally [51]. Thus, in order to
identify the region where this experiment takes place, we esti-
mated the Debye temperature.

For that, the average acoustic sound velocity was calculated
using Equation 7

172 1\
=5+ ) i
Where vs is the transverse acoustic velocity (vs = \/‘;?) and v; is the

longitudinal acoustic velocity (v = \/E) [52]. Then the acoustic
Debye temperature was estimated as

_h (3q Nap)'7
D_k_B(EV) Um. (8)

where h and kg are the Plank and Boltzmann constants, q is the
number of atoms per molecule, M the molecular weight, N4 the
Avogadro number and p the material density. Results for v, vs, vm
and fp are shown in Table 3. The presented data has an uncertainty
of 20 m/s for sound velocities and 5 K for the Debye temperature.

With the Debye temperature and the Wachtmann model, we
can expect the high temperature values for Young’s modulus to be
linear, as 0.3—0.5 fp is well below the temperature range of this
study for all compositions.

The high temperature behavior of elastic moduli was predicted
[25] and experimentally observed to be a linear decrease for
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Table 4
Values used to fit the model from rosom temperature up to 600K
Modulus A; (GPa) b(GPaK™) c (GPa) R?
Young’s modulus 116.55 -0.0234 —32.032 0.99
Shear modulus 49.77 —0.0098 -14.513 0.99
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Fig. 6. Backscatter SEM pictures and their respective phase quantification for the
samples a) Mg,SipsSng.4 and b) Mg,Sig 3Sng 7.

Table 3
Room temperature sound velocities: longitudinal (v) shear (vg) and average (vp,); as
well as Debye temperature (fp) for the solid solution Mg5Si;_Sny.

X Vi (m/s) Vs (m/s) Vi (m/s) fip (K)
0 7730 4860 5350 570
0.4 6510 4040 4460 460
05 5920 3700 4080 420
0.6 5760 3560 3930 400
0.7 5560 3410 3760 380
1 5040 3080 3400 340

Mg,Sip4Snoe [12] and Mg,SigeSno4 [34], which is in agreement
with our results. Both previous studies report a reduction of 5—10%
in the characterized elastic constants. In the previous work [34], the
behavior of the Mg;Sip4Snps sample was fitted using a linear
function and had a very good coefficient of determination
(R? = 0.995) in the temperature range 300—600 K.

Our results, as well as previous literature reports, therefore
indicate the validity of using a bilinear function in the form A(x,T)
= Ar+ bT + cx.

For this linear equation, A, is either modulus at 0 K, Young's

modulus (E) or shear modulus (G). The values used to fit the
equation are detailed in Table 4 including the coefficient of deter-
mination obtained as described in Ref. [53]. Here the sample with
x = 0.4 was excluded from the fitting due to the observed poor
phase quality. However, as can be seen for the results including x =
0.4 (see SI), the coefficient of determination was very lightly
modified.

Table 4 allows for the thermomechanical modelling of a TEG
under operational conditions, and for an optimization with respect
to composition, taking mechanical properties into account. The
prediction of lattice thermal conductivities can also benefit from
more precise data of the mechanical properties. A previous work on
Mg,SiqxSny materials [54] estimated the lattice thermal conduc-
tivity using the Debye approximation in the form

K= 2_7‘&; (’“%) %ﬁc where we see the average sound velocity

vm. The approximation also depends on the Boltzmann constant kg,
the Plank constant h and the reduced phonon energy y which in
turn is estimated with y = lfThT% where  is the phonon frequency.

Knowledge of the elastic constants is also important for the
modelling of the electronic properties. Scattering by acoustic pho-
nons is the dominant scattering mechanism for electrons above
room temperature for most materials [9,55]. This interaction is
characterized by the deformation potential Ep.s which is related to

the carrier mobility by u ocEQ—Cn'?-; where m” is the carrier effective
Def

mass and C; is given by C; = E — G for cubic crystals [40]. Practically,
Epef is usually obtained from the measured mobility at high tem-
perature using room temperature values for E and G [37,55—58].
However, as both exhibit clear temperature dependence, this leads
to incorrect values of Epes and should be considered as a fair
approximation only.

5. Conclusion

High temperature elastic constants, as well as hardness and
fracture toughness, are important parameters to predict the me-
chanical behavior of a certain material under load. Knowledge of
said parameters will allow to thermo-mechanically model a
possible TEG manufactured using Mg5Si;xSny, with correct values
for the mechanical properties under application conditions.

Elastic moduli E and G are presented for several compositions
along the Mg,Si;_xSny (x = 0 — 1) solid solution series at both room
and high temperatures. The first ever experimental value for binary
polycrystalline Mg,Sn is presented and is in good agreement with
first principles calculations. It was also shown that both the tem-
perature and composition have a linear influence on both the
moduli, which facilitates the description of the behavior by a simple
bilinear equation.

Additionally, we describe that, besides a prominence of sec-
ondary phases, phase distribution can also affect the elastic
behavior by stiffening the material, as was the case with the Si-rich
(x = 0.4) Mg,Siq-xSnx. Mg>Sip Sngp4 was the only sample to deviate
from the linear decrease in Young's modulus in the IET measure-
ments. Such behavior is closely related to the microstructure found
in the material, where small Si-rich areas are found surrounded by
Sn-rich phases, creating a biphasic material with a great amount of
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interfaces.

Mg;Sip4Snpe, on the other hand, deviated from the linear
behavior in the RUS characterization. This is well in agreement with
previous reports and possibly a consequence of the convergence of
the conduction bands in this composition.

A better estimation of the temperature dependent elastic
moduli is not only beneficial for mechanical design and modelling,
but also for electronic and thermal properties of the thermoelectric
materials.
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thermoelectric Mg2Sio.3Sho 7

With the composition and temperature dependent elastic properties known, the next step
into the module simulation was the study of whether or not the doping influenced the

mechanical properties.

This chapter is focused on the composition Mg2Sio.3Sno.7, as this is reported to have
excellent TE properties [60, 73, 77]. The effect of doping with Bi (for the n-type) and Li

(for the p-type) was studied against the undoped sample from the previous chapter.

For this chapter, also the coefficient of thermal expansion was studied, which is essential

for module simulation.

Using both the Young’s modulus and the CTE, the potential to develop thermal stresses
(E - a) was estimated and compared to other material systems like Skutterudites and Half

Heusler.

Finally, a small comparison between thermally induced stress is presented. This stress
was estimated using a combination of temperature dependent and constant properties.
The difference observed in these comparisons serves as base for the modelling

presented later in the discussion part of this thesis
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Abstract: Thermoelectric generators are an excellent option for waste heat reuse. Materials for such
devices have seen their thermoelectric properties improving constantly. The functioning of a gener-
ator, however, does not only depend on thermoelectric properties. Thermal and mechanical prop-
erties play a decisive role in the feasibility of any thermoelectric generator. To shed light on the
properties exhibited by thermoelectric materials, we present the temperature dependent character-
ization of Young’s modulus and coefficient of thermal expansion for Mg:Sin3Snoz. Comparing un-
doped to Bi-doped n-type and Li-doped p-type material, we investigated the influence of doping in
the relevant temperature regime and found the influences to be minor, proving similar properties
for n- and p-type. We found a Young’s modulus of 84 GPa for the p-type and 83 GPa for the n-type,
similar to that of the undoped compound with 85 GPa. The thermal expansion coefficients of un-
doped, as well as n- and p-type were equally similar with values ranging from 16.5 to 17.5 x 10-¢
1/K. A phase analysis was performed to further compare the two materials, finding a similar phase
distribution and microstructure. Finally, using the gathered data, estimations on the possible ther-
mally induced stresses under a temperature difference are provided to evaluate the relevance of
knowing temperature dependent thermal and mechanical properties.

Keywords: mechanical properties; thermoelectric; Mg:Si; Mg:Sn; thermal expansion

1. Introduction

Thermoelectric generators (TEG) are solid state devices that can convert waste heat
into usable electricity [1]. TEG have several advantages compared to other electrical
power generation technologies in that they have no mobile parts and thus have low
maintenance costs and high reliability and can function in the absence of light, in contrast
to photovoltaic technology.

TEG can be manufactured from a wide range of materials, some of which are light
and inexpensive [2,3]. The basic unit of such a TEG is a pair of doped semiconductors
called legs, one n-type and the other p-type. Both legs are joined to a metallic connector
usually denominated as the bridge. The legs are thus connected electrically in series and
thermally in parallel [1,4], allowing to convert a fraction of the heat flowing through the
legs into electricity.

The legs are ranked according to the power generating capabilities they possess. This
classification is summed up in the dimensionless figure of merit zT, which is defined as
zT = S?px'T, where S, p, k, and T represent the Seebeck coefficient, electrical resistivity,
total thermal conductivity, and absolute temperature, respectively.
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Among the materials that show good zT values, as well as other desirable properties
like low density and cost, are the Mg:Si-Mg:5n solid solutions. These materials have been
thoroughly studied before, with zT values of 1.2-1.4 at 973 K for the n-type [5-11], while
the p-type value is about 0.55 at the same temperature [12-17]. In conjunction with a den-
sity ranging from 1.99-3.5 g/cm?, the material system becomes a prime candidate for low-
cost and non-toxic TEG technology development.

For TEG design, not only is the development of the thermoelectric properties im-
portant, but several other challenges need to be tackled as well. In particular, progress on
contact technology and mechanical stability is also important. Contacting technology for
Mg:Si-MgaSn has shown substantial progress as several candidate schemes have been
evaluated [18-22] and their thermal stability assessed [23]. Mechanical properties have
been studied, with our previous work detailing the temperature and composition depend-
ent elastic behavior for the whole solid solution series [11,24-26].

Silicide-based TEG have traditionally been manufactured with an n-type Mg2(Si,Sn)
and an higher manganese silicide (HMS) p-type leg because of the poor properties exhib-
ited by p-type Mgz(Si,Sn) [25,27,28]. HMS has, on the other hand, quite different mechan-
ical properties compared to Mg2(Si,Sn). In recent developments, however, both p-materi-
als have achieved similar thermoelectric (TE) performance [12], and modules using only
Mg2(Si,5n) seem to be a realistic possibility now. Using n- and p-type legs from the same
material class with similar compositions can be highly advantageous as the thermal and
mechanical properties are expected to show similarity. This similarity is especially im-
portant since it has been proven that differences in the coefficient of thermal expansion
(CTE) for the materials used in the legs may cause high thermally induced mechanical
stresses, potentially damaging or destroying the module [29]. Moreover, the effect of dam-
age caused by mechanical stress in modules, even if not destroying the module completely
by a fracture, has been shown to decrease the device figure of merit to less than half the
original value [20,30].

Having the same CTE for both leg materials is, however, not a guarantee that the
module will have mechanical integrity, as other effects such as bridge or substrate expan-
sion need to be considered. Previous work has been done on modeling the mechanical
behavior of a Bi2Tes module, where the said module employed legs that had the same CTE
and Young's modulus, but high stresses were found in the TEG module [31].

Since the thermal expansion will cause stresses even if the CTE of the TE materials is
similar, it is important not to design a module only based on the CTE, but take into account
Young’s modulus and Poisson’s rate of the materials as well.

Mechanical properties of materials with similar compositions and an identical micro-
structure are expected to be equally similar. However, doping species have been known
to alter the mechanical response in some TE materials. Skutterudites, in particular, typi-
cally have a Young's modulus of E > 140 GPa for n-type materials, while p-type materials
rarely exhibit higher values than 130 GPa [32]. Within the same doping type, we see slight
differences as well. P-type didymium (mixture of praseodymium and neodymium) filled
material DDoseFesSbi2 shows a Young’s modulus of 123 GPa, while the composition
DDossFesCoSbiz reaches 127 GPa. DDossFesSbiz has also been tested and shows a Young's
modulus of 105 GPa, but here it remains unclear if the difference is due to changes in
composition or mainly due to a modified synthesis approach.

Mg2X material belongs to space group Fm3m with Mg filling the 8c Wyckoff posi-
tion and X the 44 position. X can be filled with Si and Sn to produce the Mgz(Si,Sn) solid
solution. Doping for n-type is also done in this position. The typical n-type dopants Bi and
Sb substitute X, as discussed e.g., in [33]. Bi-doped Mg(Si,Sn) shows good thermoelectric
properties [10,34,35] and thus, the effect of Bi on other properties has received more atten-
tion lately. The hardness in a Bi-doped Mg:Si material was reported to increase [26] from
327 Hv in undoped material to 475 Hv with an atomic dopant percentage of 2.5%. The
authors of this work attribute the hardness increase to the substitution of Si by Bi in the
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materials crystal lattice. Note that the original work reports the change in composition as
0.0025 at%, which is very likely a typographical error.

The lattice parameter of the Bi-doped cubic Mg>(5i,Sn) has been studied as well. Pre-
vious work details the effect of up to x =4 at% Bi in a Mg2Si035Snoss-+Bix material. In this
case, the lattice parameter increased from 6.607 A t0 6.632 A with no indication of a solu-
bility limit [34]. The authors attribute the increase to Bi occupancy of Si, Sn place in the
lattice.

As most previous studies have focused on the effect of Bi on the thermoelectric prop-
erties of said materials, little is reported about the CTE and the Young’s modulus, which
are important for the stress formation in TEG modules in service. As high stresses may
result in damages impairing the thermoelectric efficiency and finally may affect the struc-
tural integrity of the TEG, we performed the first ever characterization of CTE and
Young’s modulus for a p-type Mg2(Si,Sn) material, in comparison with the n-type and
undoped material. A discussion of the potential consequences for TEG development is
also presented.

2. Materials and Methods

Mg:Sio3Snoz samples with different doping levels and species were synthesized using
a mixed method described elsewhere [10]. The doping amount for n-type (3.5% Bi) and p-
type (3% Li) was chosen according to previous work [10,12]; these compositions yield the
best possible thermoelectric properties for the synthesis route. The low 0.75% Bi sample
was chosen as initially, Bi segregation was deemed likely to happen and the effect of this
was to be studied. However, as described later, no Bi-rich secondary phases were ob-
served.

Precursor materials were Mg turnings (Merck, Darmstadt, Germany), Si chunks (<6
mm, ChemPur, Karlsruhe, Germany), Sn (<71 um, Merck) with high purity > 99.5%, Li
and Bi. A pellet was pressed from the powder in a direct current sinter press DSP 510 SE
(Dr. Fritsch GmbH, Fellbach, Germany). The parameters of temperature (Tsjpter) and

pressure (Dsinter) used to sinter each sample are detailed in Table 1. Samples containing
no Li were synthetized using extra Mg to account for losses in the process due to evapo-
ration in the synthesis and pressing steps. These samples require, thus, extra time in the
sintering step.

Table 1. Composition and sintering time for the employed Mg2SioaSnoz samples. We furthermore
employed Tginter = 973 K and Pginter = 66 MPa.

Nominal Composition Time (min)
Mgj.97Li0.03Si0aSnoz 10
Mg2.065i0.3Sno.7 10
Mg2.06Si0.35n0.6925Bi0.0075 20
Mg:2.06Si0.3Sn0.665Bi0.035 20

The pellets obtained had a diameter of 50 mm and a thickness of 3.5 mm. They were
cut using a diamond disc saw (DISCO Corp., Tokyo, Japan) into pieces measuring (12 x
45 x 3.0) mm? for the Young’s modulus measurement and (5 x 40 x 3.0) mm? for the CTE
measurement. Small semi-circular segments of the pellets were embedded in conductive
resin, grinded with SiC paper, and polished with diamond suspension for microstructure
analysis.

The Impulse Excitation Technique (IET) was used to determine the Young’s modu-
lus. Its measuring principle is based on the free vibration of a sample (bar or pellet) set on
top of supports. It has been extensively described by other authors, as well as in our pre-
vious work [24,36]. Young's modulus measurement was done using a device from Inte-
grated Material Control Engineering NV (Genk, Belgium). High temperature characteri-
zation was done in air from RT until 673 K with a heating and cooling rate of 1 K/min, and
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Intensity (a.u.)

a holding step of 60 min at maximum temperature was established. One data point was
obtained every 30 s throughout the whole process. The cooling process can be controlled
by the device down to 423 K; afterwards the cooling happens through natural convection.
Two independent measurements were done per composition, the variation between them
was lesser than the measurement precision and thus, this precision is reported.

The coefficient of thermal expansion was measured on a Bahr thermoanalysis dila-
tometer (Hiillhorst, Germany) in the temperature range of 300-720 K, using a sapphire
calibration. The measurement was performed under vacuum (<1 x 10~ bar) with a heating
ramp of 1 K/min.

X-ray diffraction was used to identify the phases present. Such a measurement was
performed on pieces of the obtained pellets utilizing a Bruker D8 advance diffractometer
(Billerica, MA, USA) using Cu-Ka radiation (1.5406 A) in the 20 range 20°-80° with a step
size of 0.01°. The Bragg equation was employed to estimate lattice parameters using the
main diffraction peaks (111) and (220). Microstructure analysis was carried out using a
Scanning Electron Microscope (SEM) Zeiss Ultra 55 SEM (Oberkochen, Germany) with a
Zeiss QBSE detector, also equipped with an Oxford energy dispersive X-ray (EDX) detec-
tor (PentaFETx3) (Milpitas, CA, USA). The grain size was observed through SEM pictures
and estimated using ImageJ on an average of 30 grains.

The electronic transport properties were measured utilizing an in-house developed
facility utilizing a four-probe technique [37,38]. Density measurements were obtained us-
ing the Archimedes method in ethanol.

3. Results

XRD patterns shown in Figure 1 along with standard Mg:Si and Mg:Sn patterns con-
firm the presence of phases belonging to Mgz(Si,Sn) for the Li doped sample where there
is also one unidentified impurity peak (~30°theta). The peak could be related to LiO: or
SiO2 but cannot be identified with certainty.

=) & Impurity
. = a4 = Mg,Si
40 = B o 2 § o VS
U9 o N B
] & S g os T ©
3.5+ ﬁv _— A _undoped
3.0 ‘
2.5
- A l L A A LJ\O75% Bi
2.0
1.5
o 1 == AN N ~3.5% Bi
0-5— L
00] St A A B%Li
g i TN V0 ' 0 1 T A G
20 40 60 80

26 (%)

Figure 1. X-ray diffractograms of the samples studied.
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As can be seen from Table 2, we do not see a systematic change of the lattice param-
eter with a change in doping species or with an increasing Bi content. Previous work, in
comparison, shows a systematic increase with increasing Bi substitution in the lattice
[26,35,39,40] in the range of 0.01-0.03 A, depending on the Bi amount. This apparent in-
consistency could be related to the broadness of the peaks. The n-type with 3.5% Bi has
broader XRD peaks compared to other compositions, possibly indicating the presence of
several similar phases or compositional variations within on phase. An exemplary decon-
volution into two different compositions, see Supporting Information (SI) Figure S1,
shows that the (220) peak is composed of 2 main components positioned at 20 = 38.379°
and 37.586° (Table S1 in SI), which correspond to material having an x (Sn content) for
Mg:Sii.Sn: of 0.67 and 0.59, respectively. Our research focuses on upscaled material with
a higher yield. It is thus not unexpected to find a range of compositions in such a big
sample.

The position and occupation fraction of the dopants can thus not be determined from
the XRD pattern directly, but it is clear from the thermoelectric properties discussed later
on that doping has been successful, i.e., Bi occupies the 4a positions, while Li tends to go
to the 8c position as discussed e.g., in [41].

Table 2. Summary of structural properties for the Mg>Sio3Snoz samples

Composition Density (g/cm?) Lattice Parameter (A) Grain Size (um)
Mgj.97Li0.03Si03Sno7 3.10+0.01 6.61 +0.01 743
Mg206Si03Sn07 3.11+0.01 6.63 +0.01 7+3
Mg2.065i035n0.6925Bio.0o7s 3.09 £ 0.01 6.62 +0.01 6+2
Mg.065i03Sn0.665Biooss  3.11 + 0.01 6.61 +0.01 5+3

The grain size of all samples is comparable, which is most likely due to the similar
preparation route. An example can be seen in Si Figure S2.

Samples obtained using the same method and the same parameters have recently
been shown to have state-of-the-art thermoelectric properties with zTmax=1.3 at 773 K for
the n-type [10]. The high carrier concentrations reported in these works n~10%°cm™3
prove that the dopants have been incorporated and are active. The charge carrier density
was estimated assuming a single parabolic band model and using the measured Seebeck
coefficient as well as an effective mass of my, = 1.43 for the p-type material, while mp =
2.5 was used for the n-type and undoped materials [13,42]. The mobility (1) was esti-
mated using the equation ¢ = nep where ¢ is the electrical conductivity, n is the charge
carrier density, and e is the charge of an electron. Electronic transport properties of the
samples are shown in Table 3

Table 3. Electronic transport properties shown by the MgzSio35no7 samples at 25 °C.

Electrical

Composition (S:él/);;k Conductivity n (cm-) ?f:l?/ll‘;:)y
(S/cm)

Mg .97Li0.03Si035n07 101 644 1.7 x 102 24

Mg206Si035n07 -453 29 3.7 x 108 50

Mg2.06Si03Sno.6925Bi0.0075 =157 1178 1.4 x 1020 53

Mg?.06510.35n0.665B10.035 -114 2138 2.8 x 1020 48

Our previous work has proven that the material shows a linear dependence of elastic
moduli on x [24]; this work also provides evidence on the little difference in the mechani-
cal properties we would expect for such small differences in composition.

Previous work on Bi-doped Mg>(Si,Sn) shows that the lattice parameter keeps on in-
creasing beyond 3 at.% Bi, however, the solubility limit can be assumed to be between 3
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at.% and 4 at.% from the Seebeck and electrical conductivity values reported in [34]. It is
therefore highly plausible that the range of Bi content within this study is within the sol-
ubility limit of Bi in Mg2(5i,5n). Comparison with the work of Nieroda et al. [16] further-
more indicates that the Li-content in our sample is well below the solubility limit. The
room temperature mechanical properties exhibited by the samples are shown in Figure 2.
Samples without Bi have a slightly higher Young’s modulus.
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Figure 2. Room temperature Young's modulus of the Mg:SiosSno7 samples.

All materials studied in this work exhibit a general similarity in mechanical proper-
ties. This behavior is presumably due to the overall similarity in composition but the mi-
nor differences in composition lead to some small differences in high temperature
Young’s modulus. Such differences can be seen in Figure 3. Undoped and p-type Li-doped
samples show the same slope of temperature dependency and a small difference in abso-
lute values.

90

1 Undoped
88 —3% Li

1 ——3.5% Bi
86 —0.75% Bi

T " T . T e T x T = T * T % 1
300 350 400 450 500 550 600 650
Temperature (K)

Figure 3. High temperature Young’s modulus of the Mg:Sio3Sno7samples.

90



Materials 2022, 15, 779

7 of 15

We can thus prove that at relevant application temperatures, undoped and both n-
and p-type doped Mg:Sio3Snez show similar absolute values and similar temperature de-
pendence of the Young’s moduli. The minor amount of impurity found in the 3% Li doped
sample did not affect the room temperature values of the said material significantly.

In our previous work, we provided information about the Poisson ratio and argued
that the value could be considered as constant in the temperature region studied by this
work [24]. The room temperature measurement results for the shear modulus G are shown
in Table 4, as well as the values for Poisson’s ratio estimated using the equation v = % -
1.

Table 4. Room temperature shear modulus and Poisson'’s ratio.

Composition Shear Modulus (GPa) Poisson Ratio
Mg .97Lio0SinaSnor 352+03 0.193 + 0.002
Mgz.065i035n0.7 357+0.3 0.191 + 0.002
Mgz.065i035n0.6925Bio.0075 32703 0.217 +0.003
Mg206Si03Sn.665Bio.0ss 346+03 0.209 + 0.002

The coefficient of thermal expansion (z) data as a function of temperature is given in
Figure 4 and shows two distinct parts: A strongly non-linear behavior from room temper-
ature to ~400 K, which according to literature, stems from thermal inertia originated from
internal stress [43], followed by an almost perfectly linear correlation between tempera-
ture and a. The raw data and extrapolation process are shown in the Supplementary In-
formation figure S3.

Previous first principles calculations performed by Ganeshan et al. on the binaries
Mg:X (X = Si, Sn) predict a linear behavior of both the cell volume and CTE above room
temperature [44]. These values were derived from the vibrational free energy per atom
calculated from the phonon density of states [44]. Assuming the same linear behavior for
our material and taking the values of the second region as well, the CTE values for low
temperatures were derived by extrapolating the linear function a(T) from the high tem-
perature regime between 450 and 700 K, and these values are shown in Figure 4. CTE
values for the samples range between room temperature and 700 K. The linear function
a(T) will be used in subsequent estimations, however an example of raw data for elonga-
tion and CTE is available in Supporting Information Figure 54.

20 1
18 -
3
= 164
g undoped
= a5 3%Li
——0.75% Bi
124 ——3.5% Bi
—— Mg,Sig SNy 4 [27]
5 —— Mg,Siy 4Sny 6 [25]

T T T T T T T T T
300 350 400 450 500 550 600 650 700
Temperature (K)

Figure 4. CTE between room temperature and 700 K for all samples of this study and selected liter-
ature results. Values for comparison are adapted from [25,27] in purple and black, respectively. Full
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lines depict linear behavior range, dashed lines show the extrapolation to room temperature of our
measurements, and dotted lines indicate the strongly non-linear region in the reference data.

The a values from the Mg2Sio4Snos are consistent with our data. The work done on
this material reports a mean value of 17 x 10 1/K [25]. The temperature dependence of
the CTE in this work was obtained by dividing the reported elongation value by the tem-
perature at which the data was obtained.

In the case of the Mg:SiosSnos, the slope is similar to what we report, albeit with lower
absolute values. This can be explained by the increased Si content in the material, as it is
known that binary Mg:Si has an a value of 14 x 10-¢ 1/K [45], and therefore a material with
a higher Si content would be expected to have a lower CTE, closer to the binary.

4. Discussion

Previous work has detailed the effect of Bi doping on binary Mg:Si and the Mg:Si-
Mg:Sn solid solutions; the solubility limit of Bi in the material, as well as its effects on the
thermoelectric properties were described in [34,35,39,46], while different mechanical
properties of the material with different Bi concentrations were detailed in [26].

The authors of some of the previous works have reported phases outside the Mg:Si-
Mg:5n solid solution like MgO, MgsBiz, and SiO: in the samples, some of which increase
systematically as the Bi content increases.

These phases, as well as regions with different x Sn content could affect the mechan-
ical response of the material [47]. Our XRD patterns show a very minor phase not belong-
ing to the Mg:5i-Mg2Sn material system, which seems to have no effect on the microstruc-
ture or mechanical properties measured.

However, the width of the peaks in the sample with 3.5% Bi is larger than that of the
others. The compositions found through deconvolution of the peak have a x Sn content
difference below 0.1, which, according to previous work on the dependence of the
Young’s modulus on the Bi content, would yield a difference in the Young’s modulus of
<3 GPa.

Previous studies have described phase formation from the elements into Mgz(Si,Sn)
under milling, where, in the presence of both Si and Sn, Mg:5n tends to form first and then
Si from brittle elemental debris slowly diffuses into the Mg>(Si,Sn) matrix [48]. This pro-
cess might be influenced by the miscibility gap in the Mg25i-Mg:Sn quasibinary system
which is controversially discussed [49,50]. However, as discussed in [48], this could be the
reason for the observed sharp contrast between regions of different Si content.

Longer sintering processes, studied in [44], were found to reduce the size and num-
ber of the Si-rich areas. However, a short process is technologically desirable, moreover
the interfaces related to these inclusions are also known to act as phonon scatterers, re-
ducing the thermal conductivity [13]. Inclusions with different mechanical properties also
influence the mechanical properties. They are an intrinsic way to strengthen a material
[51] and thus, a small number of areas with different x Sn content can be beneficial for the
overall performance of the TE material.

The phase quantification was done following the procedure described in [52] on the
four investigated materials. As detailed in the original publication, the Mg content is taken
as constant (66.6 at%) and Si and Sn account for the difference to unity. The only degree
of freedom is thus, the Si:Sn ratio.

The gray value obtained from the backscatter electron image was related to a com-
position measured by EDX, this relationship was then used to estimate the composition
in the complete area observed through SEM.

Figure 5 displays SEM images of the four investigated materials. On half of each im-
age, the Sn concentration is displayed as a color-coded overlay.
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Figure 5. SEM images of the four studied materials; partly overlaid with color-coded plots visualiz-
ing the Sn concentration. For undoped material the same SEM picture shown in [24] was used as a
base for the analysis.

From the compositional distribution estimated and shown in Figure 5, the mean com-
position was determined by plotting a histogram of the individual point compositions
and fitting a Gaussian peak to the distribution (see SI figure S5). The peak center and full
width at half maximum (FWHM) were taken as mean phase composition and its variation
respectively. The results are shown in Table 5 whereas the graphs corresponding to the
fitting can be found in the Supplementary Information.

Table 5. Mean phase composition as calculated from the grey values from the SEM images by
backscattered electrons for Mg>Si1xSnx.

Sample Sn Content x and FWHM
Mgi.97Li0.035i035n0.7 0.72+0.11
Mg206Si035n0.7 0.73+0.21
Mg2.06Si0.3Sn0.6925Bi0.0075 0.74 +0.15
Mg2.06Si03Sn0.665Bi0.035 0.69 +0.13

It can be seen that all samples are located around x = 0.7 for Mg:Sii-»Snx, with similar
variation in their composition. This is partially due to the similarity in the preparation
method that is melting followed by crushing the ingot in a high energy ball mill. As the
mean and distribution width values are estimated from the grey value of the BSE micro-
graphs, the method tends to overestimate the variation in composition.

The composition histogram calculated through the phase quantification was used as
a simple base for the calculation of effective mechanical properties, for the following

93



Materials 2022, 15, 779

10 of 15

estimations, the whole histogram (SI) was used and we can define n; as the fraction of
the total material that has a specific i Sn content.

We used the linear equation to predict elastic moduli that we proposed in a previous
work: E(T,x) =E, + bT + cx where E,=116.5GPa, b= —0.0234 GPaK™!, and ¢ =
—32.032 GPa. Since the calculations are done at room temperature, we set T = 300K [24].

Values for x Sn content were taken from the compositional percentages calculated
(see SI) and thus the elastic modulus characteristic to that specific composition E; is de-

_ _ N1
fined, we find that both the Voigt (E = ¥; n;E;) and Reuss (E = (Zi L /| E') ) approxi-
13

mations yield a theoretical elastic modulus of 87 + 2 GPa for all samples. This is in line
with the measured value for the undoped material of 85.14 GPa. The difference to the
actual values of the doped samples (which are between 4% and 6% larger) stems probably
from using the relation of E(x) for the undoped material, obtained in our previous work
whereas the slightly overestimated variation in composition is caused by the quantifica-
tion method. This variation in turn is within the same range as the precision of the meas-
urement presented.

Mechanical properties are heavily influenced by the nature of the bonding between
atoms and hence the composition, in this case the Si:Sn ratio, is known to have an effect
on the Young’s modulus [24,53].

Similar changes might be expected due to doping, however on a smaller scale due to
a smaller change of composition. Such a change is material specific and not clear a priori.
Having established that our material is secondary-phase free and confirmed through local
composition estimation that the Si:Sn ratio is similar, we can prove that both n- and p-type
materials behave similarly at application temperatures. Moreover, the drastic hardness
differences reported for Mg:Si in [26] are most likely linked to secondary phases, not the
intrinsic material properties.

In an application, the thermoelectric materials will be assembled in a generator, being
soldered or otherwise joined to metallic contact bridges fixed to insulating, often ceramic
substrates. In this configuration and with a variation of temperature, stresses will arise
due to the different expansion of TE material and bridge.

The magnitude of the stresses occurring in the TEG depend on the design, the oper-
ating conditions of the TEG, and the thermal and mechanical properties of the TEG mate-
rials. For stationary conditions, the material parameters CTE, Young’s modulus and Pois-
son’s ratio are sufficient to calculate the stresses.

For example, the maximum stress ¢ in a fully restrained material sample, which has
been subjected to a temperature change, is defined by Equation (1) [54].

P Ea(Ty —Ty) a)
1-v

where T, and T; are the temperatures before and after heating the material sample, v is

the Poisson’s ratio, and a is the coefficient of thermal expansion.

If we analyze the case where we are at the threshold of failure, where the fracture
tensile stress o, is reached, and using Equation (1), we can identify the maximum sudden
temperature change To — T1 that a material can withstand [54,55]. This parameter is also
called the thermal shock resistance R, which is defined by Equation (2) [54,56]:

To—Ty =200 =g, @

This equation is valid when the surface temperature of the material sample changes
instantaneously.

If the heat transfer is not instant but kept at a constant rate, then the speed at which
the heat flows from the core to the outer layer in a cylinder-shaped sample, and from there
to the ambient, will also play a decisive role in the stress distribution. In this case, a second
thermal resistance parameter, R’, is employed, whose governing equation is:
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Koy (1-v)
Ea

R' = (©)

In both cases, the product E-a is an important parameter to characterize a material
subjected to temperature differences.

We, therefore, used a linear fit for the thermal dependence of E (as shown in Figure
3) and a (as shown in Figure 4) and plotted the behavior of the product E-a in the target
application temperature range 400-620 K as shown in Figure 6. Note that not E - a /(1 —
v) but E-a is plotted, the order of the curves is slightly modified, see Figure S6 in SI. How-
ever, it is still the p-type that develops the highest stress among the optimized TE materi-
als.

1480 ~ 3% Li
——3.5% Bi
1460 - —0.75% Bi
Undoped

1440

<

®

0 1420 1

X,

(]

W 1400 4
1380
1360 \\

T T
400 450 500 550 600
Temperature (K)

Figure 6. Temperature dependence of (E-a), the product of Young’s modulus and CTE.

The temperature dependence of E-a in the thermoelectric optimized materials exhib-
its a convergent behavior. Both n- (3.5% Bi) and p-type (3% Li) exhibit a very similar value
at application temperature and thus, are expected to develop similar thermally induced
stresses.

Other thermoelectric material systems have comparable E-a values for the tempera-
ture range between 400 and 600 K: BasGaisGeso shows a value of 1462 kPa/K, while
SrsGaisGeso has a value of 1198 kPa/K. Tellurides show a lower value, with 1148 and 674
for PbTe and Bi:Tes respectively [55]. A more direct comparison can be done to
Skutterudites, the mechanical properties of these materials are also well known [32,57]
and thus their E-z values can be estimated. Such values range from 1129 kPa/K for
DDao.sFesaNioeSbiz to >1700 kPa/K for CoSbs. Silicide-based TEG have thus an E-a product
comparable to skutterudites, with the added advantage of a lower density and toxicity.

Using the previously detailed parameters, it is also possible to predict the thermally
induced stress the material of a single leg of a thermoelectric module could have if it
would be confined in length and heated from a homogenous temperature To to higher
homogenous temperature T1. Using Equation (1) and the data presented in this work, we
estimated the theoretical stress the leg would undergo for T: values between 400 and 600
Kif Tois 325 K.

To visualize the effect of using temperature dependent data, this is compared to the
hypothetical stress when the room temperature values of E and/or 2 are employed instead
of the temperature dependent data, see Figure 7.
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Figure 7. Comparison of thermal stress with both E and a as temperature dependent variables
(black), both as constant with RT values (red), only E as constant (green) and only CTE as constant
(blue) in material containing (a) 3.5% Bi and (b) 3% Li.

As can be seen from both graphs, the values estimated for thermal stress are at a
maximum when the Young’s modulus is considered constant. These values ignore the
reducing of E with increasing temperature. The temperature dependence of the CTE has
a small influence on the thermal stress as Z—: ~ 1079 K2,

By using the temperature dependent elastic modulus, however, the difference in
stress at the temperatures studied is close to 10% in comparison to the use of room tem-
perature values.

These thermal stress values, however, only depict the effect of thermal expansion of
a single leg and can be taken as an indication for the relevance of T-dependent mechanical
properties. For a complete picture, it is necessary to consider, additionally, the effects of
the expansion in the bridge and substrate.

5. Conclusions

We presented the temperature dependent elastic properties exhibited by
Mgi.97L10.0351035n07 and Mg2SiosSnoessBiooss and compared it to undoped and low doped n-
type material Mg206Sio3Snoss2sBiocrs. We observed a similarity between these values with
a relative difference to the values of the undoped material of less than 4% at room tem-
perature. The Young’s modulus is for all materials decreasing with an increasing temper-
ature. Microstructural analysis shows that local fluctuation in Si:Sn observed for all sam-
ples does not affect their mechanical properties strongly. Furthermore, they can be pre-
dicted with good accuracy using the linear equation proposed and the composition range
estimated through SEM pictures.

The CTE values for both of these materials were measured. They all share similar
values with differences between the n- and p-type being 6% at operating temperature.

The comparison between analytic stress estimation using room temperature meas-
urements and temperature dependent data shows a ~10% difference at To= 325 K and T1=
600 K due to the overestimation of the Young’s modulus in the constant data estimation,
emphasizing the need for temperature dependent measurements if high accuracy is re-
quired.

We found that the difference in elastic moduli behavior in Mgue7Li0.035i03Sn07 and
Mg:SiosSnoessBiooss is partially accounted for with the difference in CTE, as the thermal
stress developed by the legs is very similar. The similarity of both Young’s modulus and
CTE in n- and p-type further confirms the viability of using Mg2Sio3Sno for TEG develop-
ment.
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The data presented in this work expands the knowledge of mechanical behavior in
TE materials, indispensable for developing a functional TEG with long life expectancy.
The information is, however, not complete as the fracture stress of the materials is yet to
be measured, as are the fatigue limits.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/1996-1944/15/3/779/s1, Figure S1: Exemplary deconvolution of the (220) peak ex-
hibited by the Mg206Si03SnossBiooss sample; Table S1: Fitted peaks for the XRD spectrum belonging
to the sample doped with 3.5% Bi with peaks near the 38° mark highlighted; Figure S2: SEM
backscatter image of the Mg2sSio3Sno.sssBiooss sample with markings for some grains used to estimate
average grain size; Figure S3: (a) Coefficient of thermal expansion for an undoped MgaSinaSnoz after
calibration showing the linear and non-linear regimes. (b) fitting and extrapolation done on the same
data; Figure S4:(a) Raw data corresponding to elongation and (b) raw data corresponding to CTE,
the CTE values were obtained by dividing elongation by temperature; Figure S5:Histograms for
local composition quantification showing the mean composition and distribution ; Figure S6: Sensi-
tivity to thermal stress in all materials studied.
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8. Discussion

This chapter will aim at joining the information presented in chapters 5, 6 and 7 with
additional original non-published information on the topic to get a better overview of

the goals achieved by this work.

As detailed in chapter 3, our general objective with this work is to provide information

that facilitates module design from a mechanical performance point of view.

This work aims at bridging the gap between the existing scarce knowledge on
mechanical properties and the progress in TE performance research by providing not
only detailed information about mechanical properties of Mgz(Si,Sn), but also
describing a methodology that can be followed to obtain temperature dependent data

for other material systems.

A mechanically sound TE module is described in literature as one composed of legs
having similar CTE values [21]. However, expansion of the bridge, and the bending
stress it imposes on the TE legs, is rarely taken into account in these kinds of studies.
It is thus important, as detailed in chapter 6 and 7, to also characterize the elasticity
shown by the TE material.

8.1. The role of secondary phases

With respect to the areas where the contrast is different in the SEM pictures presented
in previous chapters when compared to the matrix, chapter 5 refers to them as
“secondary phases” where the composition is different from the matrix. However, this
is as of yet challenged, as the composition in the material is still Mg2X, the desired
material, and fluctuations within the Sn:Si ratio are expected in this system when
process times are low. More accurate examples of a secondary phase would be MgO

or elemental Si or Sn, as they do not belong to the solid solution.

The role of these areas is detailed in chapter 5 as strengthening of the matrix against
crack propagation, by introducing an interphase between the mean composition of the
material and a Si-rich region. These regions exhibit a different lattice parameter and

general Si:Sn ratio compared to the matrix. The increased Si content in the material
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creates a stiffer bond between Mg and Si and thus, these regions exhibit higher
hardness than Sn-richer zones.

However, in the case of macro-properties, such as the Young’s modulus, the effect of
local compositional fluctuations within the material seems to be less pronounced. This
is evident in chapter 6, where the relationship between composition and Young's
moduli values for all samples fit very well into a linear model. In this case, although the
Si-rich areas are present, they correspond to a very small percentage of the volume

within the sample.

This behavior can be explained using a composite material approach, by employing
the Reuss and Voigt models for estimation of the effective Young’s modulus. Using an
estimation of the percentage of material belonging to a specific composition and using
the equation A(T) = A, + bT + cx, derived from chapter 6, the Young’s modulus
expected for that specific mixture of material was estimated. Both approximations

yielded good agreement with the measured values.

This situation was not altered when the doping species and amount was varied.
Chapter 7 shows that even though the Young's modulus slightly varies with doping,
the effective properties can still be predicted with reasonable precision (~4%).
Secondary phases out of the Mg2X system, in the case of the unidentified
contamination in the p-type sample shown in Figure 1 Chapter 7 has a negligible effect
on the Young’s modulus, however it might be due to the fact that this phase was only

found in traces amount and cannot be generalized.
8.2. Relationship of Young's modulus with
hardness and CTE

It has been established in literature that a higher stiffness (high Young’s modulus) is
generally accompanied by a higher hardness [115]. However as described in [116], no
definite rule can be established to generally encompass all materials. Instead, the

relationship between the indenter mechanical properties and those of the sample can

—y2 —y.2
be employed by using the reduced modulus E,, defined as Ei =82 4 820 \where

T E Ej

the subscripts i denote the indenter.
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Most indenters for microhardness testing are made of diamond, whose E; and v; values

are known to be 1141 GPa and 0.07 respectively.

That same work details that through the use of Oliver and Pharr method [117], there

are only two independent variables involved in the amount of energy dissipated or

recovered during an indentation process. These being the hardness and the reduced

modulus mentioned before. They are related to each other through the recovery

2
resistance R, defined as R, = 2.263% [116]. This resistance parameter is related to

the energy that can be dissipated during an indentation, either through a larger imprint

or through cracking.

These values, as well as the hardness and Young's modulus are presented in Table

8-1

Table 8-1 Hardness, moduli and recovery resistance for Mg,SiixSny

X Sn content Hardness Young’s Reduced Recovery
in Mg2Si1xSnx  (GPa) Modulus (GPa) Modulus resistance
(GPa) (GPa)
1 2.45 78.70 91.51 7746.33
0.7 3.69 86.30 99.21 6029.46
0.6 4.02 89.88 101.81 5832.91
0.5 4.67 91.33 101.90 5028.26
0.4 5.02 102.88 114.47 5903.47
0 5.56 109.30 119.42 5801.92

Using the data gathered in chapters 5 through 7, the recovery resistance was

compared to imprint size (2d) and total crack length (2¢) as shown in Figure 8-1
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Figure 8-1 Composition dependent recovery resistance, total crack length (2¢) and imprint size (2d)
for Mg2Si1xSny
It can be seen that the samples with greater amounts of inhomogeneity XRD wise (x =
0.4-0.5) have a disproportionally small total crack length in comparison with the imprint
size. This was attributed to the role of Si-rich areas deflecting cracks and strengthening
the material. This confirms that a desired unmixing of the Mg2X over the miscibility gap
would not only improve the material by reducing thermal conductivity but also by

improving its mechanical properties.

The recovery resistance also remains roughly constant for all solid solution samples
and the binary Mg2Si. Binary Mg2Sn has a disproportionately large recovery energy,
that comes in agreement to the observations made in chapter 5 about the fracture

toughness of the materials studied.

When comparing the recovery resistance to the Young's modulus shown in Figure 8—
2, both values at x = 0.4 are high. This is probably due to the phase separation present
in this sample. Si-rich phases would then make the material stiffer (elevating the
Young’'s modulus value) as well as shorten and deflect cracks and prevent plastic

deformation through indentation.
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Figure 8-2 Comparison of the recovery resistance to the Young’s modulus over the solid solution
series Mg2Si1xShx
Lower values of the recovery resistance are characteristic to materials whose ability to
recover from localized deformation is high. Binary Mg2Si and the solid solution get this

characteristic through intrinsic or extrinsic strengthening of their lattice.

8.3. Influence of material synthesis method on

microstructure and hardness

Sample preparation originally started with ball milled powder obtained through the
same preparation as in [63, 73]. However, geometrical constraints for measurement of
mechanical properties require larger samples. This in turn means larger batches of
material synthesis and compaction. Two options were tried to fabricate this material,
gas atomization and a hybrid melting-milling method, the latter being described in

chapter 4.1 and employed heavily for the sample fabrication of this thesis.

Samples from gas atomization did not have optimized TE properties, but powder was
readily available from a previous batch. 30 mm and 50 mm pellets were pressed and
cut to long rods for testing in the IET. 30 mm samples proved to be unreliable as the
frequencies produced were too high (due to the sample length being too short and

thus, too stiff) that yielded unrealistically high values for Young’s modulus because of
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equipment limitations on sample size. However, from a 50 mm pellet a 43 x 12 x 3 mm?

sample was produced fitting for testing at both room and high temperature.

Using this information, it was clear that large samples were needed and thus, large
amounts of powder would be needed. The melting route was selected due to the faster
processing time and the better control of Mg loss during synthesis compared to gas

atomization, albeit with a smaller batch size.

XRD characterization was performed on all samples. Diffractograms are presented in
Figure 8-3. Samples pressed from gas atomized powder showed impurities of
elemental Bi. This is probably the reason behind the poor TE performance achieved
by the material. All other samples showed good purity without secondary phases not
belonging to the Mgz(Si,Sn) system.
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Figure 8-3 X-ray diffractograms from samples obtained by pressing powder synthetized by different
methods
Grain size was also similar in all samples, since all samples were pressed for the same
time (20 min) under a relatively high temperature (973 K). It is possible that smaller
grains were coarsening into bigger ones. This would leave only grains in the ranges

mentioned in Table 8-2 present in the material.
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Table 8-2 Summary of structural and mechanical data for material Mg.Sio.3Sno.sesBio.oss Synthesized

through different methods: ball milled samples following [60, 73] and melting samples following [118].

Synthesis Grain size Lattice Young's Density (g/cm3)
methods (um) parameter (&) modulus (GPa)

Gas atomization | 6+ 3 6.60 783 3.07

Ball milling 5+2 6.61 - 3.10

Melting + Ball|7%3 6.61 84+1 3.09

milling

As mentioned earlier, mechanical characterization was possible on the samples
obtained from gas atomization and melting, but the samples obtained through ball
milling could not be measured due to their smaller size. It can be seen that the gas
atomization sample has a lower Young’s modulus. Segregated Bi and lower density of

the sample are probably the reasons behind this lower value.

Another point of comparison between the different synthesis methods was the Vickers

Hardness of the material as shown in Figure 8-4
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Figure 8—4 Vickers hardness of samples pressed from powder synthetized by different processes.

It can be seen that all materials, independent of the preparation method, have a similar
hardness value. This is most likely due to the similar microstructure. It is particularly

interesting to note that the gas atomization material did not exhibit different hardness
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values compared to the other samples, in contrast to what the Young's modulus

measurement showed.

Characterization through SEM imaging also provides information about the similarity
between all samples. Si-rich areas are present in a similar pattern as shown in Figure
8-5
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Figure 8-5 SEM backscatter images for Mg2Sio.3Sno.essBio.0zs Samples synthetized by a) melting +
milling, b) ball milling and c) gas atomization. All samples were compacted at 66 MPa and 700 °C for
20 min.

As can be seen from the pictures, the gas atomized powder was not completely
densified as particle boundaries can still be seen with gaps between them. The Si-rich
phases have a roughly similar size and distribution in a) and b), gas atomization sample

shows larger, albeit fewer Si-rich regions.

Secondary phases outside the Mg2(Si,Sn) system are only present in material from the
gas atomization process. This process also produces a sample with lower density
compared to the other methods. However, hardness values do not seem to be affected

by either the lower density or the secondary phases.
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The dependence of mechanical properties on the synthesis parameters was not
investigated in full depth. However, it was exemplarily shown here that quite different
synthesis routes can yield similar microstructural properties and thus, similar Young’s
modulus and hardness. Such findings extend the conclusion from chapter 7 where it
was shown that a change of carrier type results also only in a minor change of the

mechanical response.

8.4. Mechanical modelling of a Mg2(Si,Sn) pn-
couple considering the temperature

dependence of the material properties

To identify the effect of the temperature dependence of mechanical material properties
(E, G, CTE) on the mechanical response of a module, a simple model of a uni-couple

was developed in SolidWorks.

The uni-couple consists of a pair of legs, joined together by a copper bridge. Additional
copper contacts were added at the bottom side of the legs. The geometry of the model
is kept similar to literature reports [7, 8, 119-121] and can be observed in Figure 8—6.
The model is studied under the assumption that electrical current is not flowing through
the assembly, thus Peltier and Joule heating effects are disregarded.
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Figure 8—6 Dimensions in mm and 3D geometry of the model employed for FEM analysis, with the n-
type on the left and p-type on the right.

In order to keep the model simple, both legs had exactly the same geometry. This is

also common in real TE modules, even though having legs with the same geometry

does not lead to an optimum in energy conversion if the thermoelectric properties

(specifically zT) are different for the n and p-type material, as is the case for Mg2X [7,

8, 119].

The mechanical data for the copper was taken from the SolidWorks library. These
values correspond to a DIN copper alloy Cu-DHP. The mechanical data for the
thermoelectric materials were taken from the results detailed in chapter 7. The
thermoelectric legs were composed of Mg2Sio.3sSno.sssBio.oss for the n-type and
Mgz.97Li0.03Si0.3Sno.7 for the p-type. These compositions were chosen for their reported
good thermoelectric properties [60, 77, 101, 102]. Table 8-3 summarizes the data used

for room temperature calculations.
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Property Young’s Poisson CTE (10° Thermal conductivity | Density
modulus (GPa) ratio 1/K) (W/mK) (g/cm?3)
N-type 83,3 0,209 16,5 2,96 3,11
P-type 84,1 0,193 17,6 2,43 3,09
Bridge (Cu- 120 0,37 17 384 8,9
DHP)

The raw data, fitting procedure and temperature dependent data for the thermoelectric

materials is available in the Appendix 2.

The zero-stress condition for the model was set at 22 °C. The residual stress within

the module after soldering is not taken into account here, these stresses were ignored

in order to keep the model simple. However, in a real case, cooling down from the

processing temperature, as well as solidification of the solder material will produce

residual stress in the module.

The thermal boundary conditions were as follows: a temperature of 300 °C was set to

the hot side of the assembly, while the cold side was kept at 22 °C. Temperature

dependent thermal conductivity values for the TE material were used in all cases. The

temperature profile obtained is shown in Figure 8-7.
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Figure 8—7 Temperature distribution used for the simulation

Five main cases were studied that were chosen to identify the effect of using
temperature dependent data in comparison with constant room temperature and
averaged properties.

YTe ATy

The average property is estimated using the equation A = oy
L

where A is any temperature dependent property and n; the number of temperature
points taken. The average was taken using 100 datapoints obtained using the

equations for temperature dependent properties (see Appendix).

These conditions are summarized in Table 8-4



112

Table 8-4 Material properties employed for each of the 5 different cases studied, here E is the Young's

modulus, CTE the coefficient of thermal expansion

Case A B C D E

N-type E Constant RT | T-dependent

N-type CTE T-dependent | Constant RT T-dependent
Constant RT | Constant avg

P-type E Constant RT | T-dependent

P-type CTE T-dependent | Constant RT

Bridge Constant

Although case E is the closest to the real situation, adding cases A-D helps isolate the
individual effects of certain properties, as well as a comparative tool to correlate with

the literature process of constant property simulation.

While the TE module assembly with mechanical fixation by ceramic plates (e.g. Direct
Bonded Copper (DBC)) on top and bottom side is practically quite common, several
examples of assemblies with a DBC only on the cold side are found [121]. The model
presented here corresponds to having no DBC on the hot side and the mechanical
constraints will be chosen accordingly. The lower nodes in the model (cold side) were
fixed in all 6 degrees of freedom, no translation or rotation was allowed. This is chosen
to represent the copper contact being firmly bonded to an Al2O3 plate that does not
expand. The upper nodes are left free, analogous to a plate-less thermoelectric

module. A simple diagram showing these restraints is shown in Figure 8-8
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Figure 8-8 Diagram showing the model and the mechanical constraints

Meshing was done using the standard mesh type and an element size of 0.6 mm,
comparable to previous studies where a size of 1 mm was chosen [120]. The mesh is

shown in Figure 8-9.

Figure 8-9 Meshed model
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Only figures for cases A (all properties RT constant) and E (all T-dependent) are
shown, the summary at the end displays also data for the other cases. Along with the
von Mises equivalent stress, the maximum principal and shear stress in the xz plane
are presented. This approach was initially proposed by Karri [7], where additional

parameters besides von Mises stress were used to study TE module stability.
All the results presented next have the same exaggeration factor for deformation, 60.

The von Mises stress distribution for both presented cases is shown in Figure 8-10
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Figure 8-10 von Mises stress distribution for material properties a) all RT constant and b) all

temperature dependent 25 — 300°C.
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The stress distribution is similar in both cases, with the highest stress concentration
happening around the area where the leg is in contact with the lower electrode. In this
region, compressive stresses are caused by the expansion of the bridge on top of the

legs.

The maximum first principal stress (which is the most positive of the three main stress
values) is shown in Figure 8-11.
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Figure 8-11 Distribution of the first principal stress for material properties a) all RT constant and b) all

temperature dependent

The effect of the expanding bridge that pushes both legs apart from each other
generates a high compressive stress on the outer lower edge (light blue circle) as well
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as tensile stress on the inside part of the assembly near the alumina plate (red circle).
The upper part of the bridge has also a higher tensile stress in comparison with the
lower part of this same component. This is due to the bending caused by the thermal

expansion.

The expansion of the bridge does not only happen in one direction only, transversal
expansion is also happening and this will cause edge effects on the interface between
the bridge and the thermoelectric leg. These effects are shown with the shear stress

7, along the xz plane in Figure 8-12.
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Figure 8-12 Cut view from the shear stress 7,,, for material properties a) all RT constant and b) all

temperature dependent at 300°C

A cut version showing the shear stresses with an absolute value above 7.9 x 107 Pa

along the xz plane shows a clear maximum towards the edge.
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The shear stresses are lower when using constant mechanical properties compared to
using temperature dependent values. This is partially caused by the increase of CTE
in the thermoelectric legs while the copper bridges remain constant as shown in Figure
8-13.

T T T T T T T T T T T T T 1
250 300 350 400 450 500 550 600
Temperature (K)

Figure 8-13 Comparison between the CTE for the thermoelectric legs and the copper bridge

The magnitude of these stresses is affected by the lateral size of the contact. Wider
interfaces between TE leg and bridges, produced by larger cross section of the legs,
will generate greater maximum shear stresses. This is because an element that has a
greater initial length will expand more at the same temperature than a shorter one,

bringing the difference in total displacement between bridge and leg further apart.

A mismatch between the CTE values between bridge and TE material will also
influence this stress, as previously described, and could cause delamination or

cracking, reducing TE performance and eventually destroy the device.

A final comparison between the maximum values for the von Mises stress, principal

stress 1 and shear 7,,, between all the cases studied is shown in Table 8-5
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Table 8-5 Maximum values for the von Mises equivalent stress, principal 1 stress and shear stress t,,

for all cases
Case von Mises (MPa) Principal 1 (MPa) Shear 7,,, (MPa)
a 310.0 160.0 48.0
b 301.9 160.3 37.4
C 306.8 164.0 37.8
d 301.7 158.0 41.7
e 304.7 162.0 37.5

The lowest stresses values can be found in case D, where the Young’'s modulus is

allowed to vary with temperature and the CTE is left constant. In contrast, the maximum

tensile stress is found in case C, where the CTE is allowed to vary with temperature

and Young’'s modulus is left constant. This behavior answers to the temperature

dependence of both properties, while the thermal expansion slightly increases with

temperature, the Young’s modulus decreases as shown in Figure 8-14.

85

84
83
82
814

80

E (GPa)

79
78
77+

76

75

T T T T T T T T T
250 300 350 400 450

Temperature (K)

—
500

T
550

600

172 =

18.0
17.8
17.6

174
e

w©

[ o
17.0 =

=

L
16.8 =
16.6
16.4
16.2

16.0

Figure 8-14 Temperature dependent Young’s modulus and CTE for the n-type material showing the

compensating mechanical effects at higher temperatures

This behavior corresponds to the analytical stress estimation done in chapter 7 (figure

7). The effect of the sinking Young’s modulus is partially compensated by the rising
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CTE in case E, which gives a similar value to room temperature and average constant
values of cases A and B. However, when one of them is left constant, the
compensation does not happen and smaller or bigger stresses (case C and D) can be

seen.

Using average values (case B) compared to only room temperature values (case A) or
temperature dependent values (case E) does not affect greatly the maximum stress
values. Given the linear behavior of both properties, and the overall maximum
difference between room and high temperature values (~10%), the average value
differs 5% from constant room temperature values and has minimal influence on the

result.

It is therefore a recommendation from this work that either temperature dependent data
for both properties should be used, or constant values. Both these approaches give
very similar values. However, using only one of them as temperature dependent can

give variations of up to 10% in the computed stress and could lead to a faulty design.

It is a general trend in solid materials to increase in CTE and reduce in Young’s
modulus with increasing temperature [122], which makes this recommendation
applicable to most materials, thermoelectric and metallic, for module assembly. The
extent of the compensation between CTE and Young’s modulus depends on every

material, however.

Further work needs to be done in order to find accurate boundary conditions regarding
mechanical coupling and residual stresses for the device under which to run the model,
as well as to provide strength values of the materials used in the assembly to be able
to assess whether or not these stresses/deformations can cause component failure.
However, the ground work and initial database for such work was laid down with the

information provided in this thesis.
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9. Conclusions and outlook

The focus of this work is to provide a first insight into the mechanical properties of the
Mg2Si-Mg2Sn solid solutions, to fill the gap in the information needed for the design of

a long-lasting module.

The samples chosen for this study were all prepared using parameters that provide the
best TE properties with the best cost/effort ratio, in preparation for an upscaling to an
industrial mass production process-. These samples are known to have regions with
different Si/Sn ratio. Chapter 5 was dedicated to study the effect of Si/Sn ratio on the
hardness and fracture toughness in the material, as well as to describe the effect of

the local compositional variation in these properties.

It was found that local spots of Si-rich material act as toughening factors by introducing
interfaces to the material, as well as providing strain fields to increase the hardness of
the particular area in which they are present.

Chapter 6 was dedicated to the study of Young's and shear modulus in the solid
solution. Values for the moduli were provided at both room and high temperature.
These values were accurately described by a linear model and thus an interpolation
formula to estimate the effective moduli for any material within the compositional range

and temperature was provided.

Using this formula and the rapid determination of composition through SEM imaging,
chapter 7 was dedicated to estimate Young's modulus for samples with different
doping species and amount. A very good agreement between the predicted and
observed elastic properties in the samples was found, despite the variation factors

described in chapter 8.

Chapter 7 also presented the temperature dependent CTE for Mgai.97Li0.03Si0.3Sno.7,
Mg2.06Si0.3SNo.7, M@2.06Si0.3SN0.6925Bi0.0075, MQ2.06Si0.3Sno.665Bi0.035. These values were
in good agreement with literature and more importantly, were very similar. The material
sensitivity to thermally induced stresses was presented as the product of the Young’s
modulus and the coefficient of thermal expansion E - a, finding similar values between
the optimized n-type and the optimized p-type. These comparisons were expanded to

other material systems like skutterudites. In this regard, Mgz(Si,Sn) materials showed
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a similar potential to develop thermally induced stress compared to skutterudites and
Bi2Tes, with the added advantage of a low toxicity and cost.

The similarity of mechanical properties exhibited by the main candidates for an

Mg2(Si,Sn)-only module suggests that such a device is mechanically feasible.

A gap in the information needed to better design thermoelectric modules was filled with
the information provided in this work. However, further work is still needed in the
characterization of mechanical properties of thermoelectric materials. Some
suggestions to complement and enhance the information presented in this work will

now be discussed.

9.1. Outlook

e Suggestion on determination of critical stress values

The information collected by this work can be used for modelling and design
optimization using a mechanical simulation software. However, once the stresses are
identified in the assembly, it is important to know if such a stress will damage the

material.

Destructive testing is needed to provide information on the maximum tensile and
compressive stresses to evaluate if the maximum stresses identified through FEM can
damage the assembly.

Due to the brittle nature of the material, tensile testing is not recommended. Bending
tests are better suited for such a material and indeed, literature results already
published support this approach [93]. Such a test requires elongated samples,
however the procedure detailed in this work for IET samples should fulfill the

requirements of any bending test.

Compressive testing is also recommended, as restricted expansion in a material will
cause compressive stress. In this case small diameter samples are better suited for
such a test, as the force needed to collapse it will be smaller. The Direct Sinter Press
method can produce 8 mm diameter samples, which are the best suited for

compressive tests.

Note that in the case of testing done in DLR premises, a way to prevent powder spread
in the laboratory needs to be provided in the means of a protective pouch or screen.
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e Suggestion on improving the boundary conditions for
the FEM

The boundary conditions in the simulation presented in this work do not represent the
working conditions of many modules. Further work needs to be done on this to enhance
the model and its usefulness.

Constant properties were used for copper. Being a metal, these properties will be
strongly affected by temperature and this needs to be accounted for. Accurate data is

needed for the correct alloy used in module assembly.

The zero-stress condition needs to be set to a realistic temperature. The module is
assembled at 450 °C, however if the module operation is limited to 300 °C (due to
thermal, mechanical or chemical stability), this should be the starting point. Cooling
from this temperature to 25 °C will cause internal strain and residual stresses that need
to be taken into account to accurately describe the real module with the model.

Although there exist modules without a cover plate on the hot side, most of them have
such a component. The model presented in this work did not include a cover plate to
keep simulations simple. A further developed model should include such a plate and a
means to replicate the holding pressure on the hot side. This is particularly important

if the model is a module with more than one uni-couple.

e Suggestion on determination of thermal stability of

mechanical properties

Just as it has been previously reported for thermoelectric properties, mechanical
properties can be expected to change after long time annealing. It is thus imperative
to perform experiments to assess the thermal stability of mechanical properties after

the samples have been thermally treated.

The effect of time, as well as of atmosphere and protective coating should be studied,
since it is known that Mg loss within the material leads to degradation and eventually

corrosion of the sample.
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Several coatings have been tested in order to suppress degradation, however,
experience within the research group has proven that BN slurry can be sufficient to
keep the Mg loss at bay for the duration of the experimental trials. It is highly

recommended to follow this approach.

Since one of the main objectives of our research is to provide a thermoelectric
generator prototype to be used in space technology, it would be advantageous to know

how the material behaves under vacuum.

A design of experiments using the 2 full factorial approach is recommended as shown
in Table 9-1.

Table 9-1 Proposed factors and levels for the annealing experiment

Factor Option 1 Option 2
Atmosphere Vacuum Argon
Coating BN coating No coating
Time (days) 5 10
Temperature (°C) 300 600

Mechanical characterization, in the form of hardness tests and Young’s modulus

estimation through RUS is recommended as they can be done using small samples.

Microstructural characterization through XRD and SEM imaging is also beneficial to
identify any possible change in microstructure and pinpoint the origin of any possible

change to mechanical properties.

e Suggestion on determining the thermal cycling resistance

Additional to long term annealing, thermal cycling is an important factor in TE modules

life expectancy.

Previous reports show a decrease up to 90% in thermoelectric properties after ~10%

cycles. Mechanical performance after such testing has, however, not been reported.
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If the materials undergo any sort of change during cycling, such as Mg loss or
oxidation, this could impact the resistance of said material to the thermally and

statically induced stresses related to expansion within the assembly.

It is recommended to perform thermal cycling using similar parameters to the annealing

experiments. However, the time factor could be replaced by number of cycles.
An initial run to identify a possible number of cycles to failure can be implemented.

As with the annealing experiments, both mechanical and microstructural

characterization are recommended to identify changes within the material.



128

10.References

Below are the references used for chapters 1 through 4, 8 and 9.

1.

10.

11.

12.

13.

Rowe DM (1991) Applications of nuclear-powered thermoelectric generators in
space. Appl Energy 40:241-271. https://doi.org/10.1016/0306-2619(91)90020-X

Lee H (2016) Thermoelectrics: Design and Materials

Keser OF, idare B, Bulat B, Okan A (2019) The Usability of PV-TEG Hybrid
Systems on Space Platforms. In: 2019 9th International Conference on Recent
Advances in Space Technologies (RAST). pp 109-115

Rowe DM (2006) General Principles and Basic Considerations. In:
Thermoelectrics Handbook Macro to Nano, 1st ed. Taylor and Francis, Florida,
pp 1-14

Rowe DM (2018) Thermoelectrics Handbook: Macro to Nano. CRC Press

Rowe DM, Min G (1998) Evaluation of thermoelectric modules for power
generation. J Power Sources 73:193-198. https://doi.org/10.1016/S0378-
7753(97)02801-2

Karri NK, Mo C (2018) Reliable Thermoelectric Module Design under Opposing
Requirements from Structural and Thermoelectric Considerations. J Electron
Mater 47:3127-3135. https://doi.org/10.1007/s11664-017-5934-6

Karri NK, Mo C (2018) Structural Reliability Evaluation of Thermoelectric
Generator Modules: Influence of End Conditions, Leg Geometry, Metallization,
and Processing Temperatures. J Electron Mater 47:6101-6120.
https://doi.org/10.1007/s11664-018-6505-1

Sakamoto T, lida T, Ohno Y, et al (2013) Stress Analysis and Output Power
Measurement of an n-Mg2Si Thermoelectric Power Generator with an
Unconventional Structure. J Electron Mater 43:1620-1629.
https://doi.org/10.1007/s11664-013-2814-6

Goldsmid HJ (1958) The Electrical Conductivity and Thermoelectric Power of
Bismuth Telluride. Proc Phys Soc 71:633. https://doi.org/10.1088/0370-
1328/71/4/312

Tritt T (2011) Thermoelectric Phenomena, Materials, and Applications.
https://doi.org/10.1146/ANNUREV-MATSCI-062910-100453

Ren Z, Lan Y, Zhang Q (2017) Advanced Thermoelectrics: Materials, Contacts,
Devices, and Systems. CRC Press, New York

loffe AF, Sti’bans LS, lordanishvili EK, et al (1959) Semiconductor
Thermoelements and Thermoelectric Cooling. Phys Today 12:42-42.
https://doi.org/10.1063/1.3060810



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

29.

129

Yang J (2004) Theory of Thermal Conductivity. In: Tritt TM (ed) Thermal
Conductivity: Theory, Properties, and Applications. Springer US, Boston, MA, pp
1-20

Berman R (1980) Thermal Conduction in Solids

Heikes RR (1961) Thermoelectricity: science and engineering. New York,
Interscience Publishers

Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater
7:105-114. https://doi.org/10.1038/nmat2090

Zhang QH, Huang XY, Bai SQ, et al (2016) Thermoelectric Devices for Power
Generation: Recent Progress and Future Challenges. Adv Eng Mater 18:194—
213. https://doi.org/10.1002/adem.201500333

Skomedal G, Holmgren L, Middleton H, et al (2016) Design, assembly and
characterization of silicide-based thermoelectric modules. Energy Convers
Manag 110:13-21. https://doi.org/10.1016/j.enconman.2015.11.068

Inoue H, Yoneda S, Kato M, et al (2018) Examination of oxidation resistance of
Mg2Si thermoelectric modules at practical operating temperature. J Alloys
Compd 735:828-832. https://doi.org/10.1016/).jallcom.2017.11.202

Ni JE, Case ED, Schmidt RD, et al (2013) The thermal expansion coefficient as
a key design parameter for thermoelectric materials and its relationship to
processing-dependent bloating. J Mater Sci 48:6233—-6244.
https://doi.org/10.1007/s10853-013-7421-7

Barako MT, Park W, Marconnet AM, et al (2013) Thermal Cycling, Mechanical
Degradation, and the Effective Figure of Merit of a Thermoelectric Module. J
Electron Mater 42:372—-381. https://doi.org/10.1007/s11664-012-2366-1

Ugural AC, Fenster SK (2003) Advanced Strength and Applied Elasticity.
Pearson Education

Gould PL, Feng Y (2018) Introduction to Linear Elasticity, 4th ed. Springer
International Publishing

Craig R Mechanics of Materials, 3rd ed. wiley

Gross D, Seelig T (2018) Fracture Mechanics: With an Introduction to
Micromechanics, 3rd ed. Springer International Publishing

FUNG YC (1965) Foundations of Solid Mechanics
Kittel C (2004) Introduction to Solid State Physics

Norton RL Machine Design, 5th ed. Pearson



30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

130

Gross D, Seelig T (2007) Klassische Bruch- und Versagenshypothesen. In:
Bruchmechanik: Mit einer Einfuhrung in die Mikromechanik. Springer, Berlin,
Heidelberg, pp 41-50

Anderson TL, Anderson TL (2005) Fracture Mechanics: Fundamentals and
Applications, Third Edition. CRC Press

Broberg KB (1999) Cracks and Fracture

EO08 Committee Test Method for Linear-Elastic Plane-Strain Fracture Toughness
Klc of Metallic Materials. ASTM International

Matsumoto RLK (1987) Evaluation of Fracture Toughness Determination
Methods as Applied to Ceria-Stabilized Tetragonal Zirconia Polycrystal. J Am
Ceram Soc 70:C-366-C—-368. https://doi.org/10.1111/j.1151-
2916.1987.tb04921 .x

Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A Critical Evaluation of
Indentation Techniques for Measuring Fracture Toughness: |, Direct Crack
Measurements. J Am Ceram Soc 64:533-538. https://doi.org/10.1111/j.1151-
2916.1981.tb10320.x

Walley SM (2012) Historical origins of indentation hardness testing. Mater Sci
Technol 28:1028-1044. https://doi.org/10.1179/1743284711Y.0000000127

DIN EN ISO 14577-1:2015-11, Metallische Werkstoffe - Instrumentierte
Eindringprufung zur Bestimmung der Harte und anderer Werkstoffparameter_-
Teil_1: Priufverfahren (ISO_14577-1:2015); Deutsche Fassung EN_ISO_14577-
1:2015. Beuth Verlag GmbH

Smith RL, Sandly GE (1922) An Accurate Method of Determining the Hardness
of Metals, with Particular Reference to Those of a High Degree of Hardness.
Proc Inst Mech Eng 102:623-641.
https://doi.org/10.1243/PIME_PROC_1922_102_033_02

E28 Committee Test Method for Vickers Hardness of Metallic Materials. ASTM
International

DIN EN I1SO 6507-1:2018-07, Metallische Werkstoffe - Harteprifung nach
Vickers_- Teil_1: Prufverfahren (ISO_6507-1:2018); Deutsche Fassung
EN_ISO_6507-1:2018. Beuth Verlag GmbH

Wachtman JB, Tefft WE, Lam DG, Apstein CS (1961) Exponential Temperature
Dependence of Young’'s Modulus for Several Oxides. Phys Rev 122:1754—-1759.
https://doi.org/10.1103/PhysRev.122.1754

Rahemi R, Li D (2015) Variation in electron work function with temperature and
its effect on the Young’'s modulus of metals. Scr Mater 99:41-44.
https://doi.org/10.1016/j.scriptamat.2014.11.022



43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

131

Taya M, Arsenault RJ (1989) Metal Matrix Composites: Thermomechanical
Behavior. Butterworth-Heinemann Ltd, Oxford, England ; New York

Daviaud R, Filliatre C, Naslain R (1983) Introduction aux matériaux composites.
CNRS, Paris

Eisenschitz R, London F (1930) Uber das Verhéltnis der van der Waalsschen
Krafte zu den homoopolaren Bindungskraften. Z Fuar Phys 60:491-527.
https://doi.org/10.1007/BF01341258

Cverna F (2003) Bagdade, S: AMS Ready Reference: Thermal Properties of
Metals. ASM International, Materials Park, Ohio

Liu X, Xi L, Qiu W, et al (2016) Significant Roles of Intrinsic Point Defects in
Mg2X (X = Si, Ge, Sn) Thermoelectric Materials. Adv Electron Mater 2:1500284.
https://doi.org/10.1002/aelm.201500284

de Boor J, Compere C, Dasgupta T, et al (2014) Fabrication parameters for
optimized  thermoelectric  Mg2Si. J Mater Sci  49:3196-3204.
https://doi.org/10.1007/s10853-014-8023-8

Fiameni S, Battiston S, Boldrini S, et al (2012) Synthesis and characterization of
Bi-doped Mg2Si thermoelectric materials. J Solid State Chem 193:142-146.
https://doi.org/10.1016/j.jssc.2012.05.004

Huang ZW, Zhao YH, Hou H, Han PD (2012) Electronic structural, elastic
properties and thermodynamics of Mg17Al12, Mg2Si and AI2Y phases from first-
principles calculations. Phys B Condens Matter 407:1075-1081.
https://doi.org/10.1016/j.physb.2011.12.132

Imai M, Isoda Y, Udono H (2015) Thermal expansion of semiconducting silicides
B-FeSi2 and Mg2Si. Intermetallics 67:75-80.
https://doi.org/10.1016/j.intermet.2015.07.015

Kasai H, Song L, Andersen HL, et al (2017) Multi-temperature structure of
thermoelectric Mg2Si and Mg2Sn. Acta Crystallogr Sect B 73:1158-1163.
https://doi.org/10.1107/S2052520617014044

Mito Y, Ogino A, Konno S, Udono H (2017) Influence of Humidity, Volume
Density, and MgO Impurity on Mg2Si Thermoelectric-Leg. J Electron Mater
46:3103-3108. https://doi.org/10.1007/s11664-016-5182-1

Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with
improved homogeneity: Synthesis, characterization and optimization of
thermoelectric  properties. J Phys Chem  Solids 103:147-1509.
https://doi.org/10.1016/j.jpcs.2016.11.027

Wang L, Qin XY, Xiong W, Zhu XG (2007) Fabrication and mechanical properties
of bulk nanocrystalline intermetallic Mg2Si. Mater Sci Eng A 459:216-222.
https://doi.org/10.1016/].msea.2007.01.038



56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

132

Skomedal G, Burkov A, Samunin A, et al (2016) High temperature oxidation of
Mg2(Si-Sn). Corros Sci 111:325-333.
https://doi.org/10.1016/j.corsci.2016.05.016

Davis LC, Whitten WB, Danielson GC (1967) Elastic constants and calculated
lattice vibration frequencies of Mg2Sn. J Phys Chem Solids 28:439-447.
https://doi.org/10.1016/0022-3697(67)90311-3

Li X, Xie H, Yang B, Li S (2020) Elastic and Thermodynamic Properties
Prediction of Mg2Sn and MgTe by First-Principle Calculation and Quasi-
Harmonic Debye Model. J Electron Mater 49:464-471.
https://doi.org/10.1007/s11664-019-07682-w

D. A. Pshenai-Severin MIF (2013) The Influence of Grain Boundary Scattering
on Thermoelectric Properties of Mg2Si and Mg2Si0.8Sn0.2. J Electron Mater
42:. https://doi.org/10.1007/s11664-012-2403-0

Kamila H, Sankhla A, Yasseri M, et al (2019) Synthesis of p-type Mg2Sil-xSnx
with x = 0-1 and optimization of the synthesis parameters. Mater Today Proc
8:546-555. https://doi.org/10.1016/j.matpr.2019.02.052

Orenstein R, Male JP, Toriyama M, et al (2021) Using phase boundary mapping
to resolve discrepancies in the Mg2Si—Mg2Sn miscibility gap. J Mater Chem A
9:7208-7215. https://doi.org/10.1039/D1TA00115A

Yasseri M, Mitra K, Sankhla A, et al (2021) Influence of Mg loss on the phase
stability in Mg2X (X = Si, Sn) and its correlation with coherency strain. Acta Mater
208:116737. https://doi.org/10.1016/j.actamat.2021.116737

Yasseri M, Sankhla A, Kamila H, et al (2020) Solid solution formation in
Mg2(Si,Sn) and shape of the miscibility gap. Acta Mater 185:80-88.
https://doi.org/10.1016/j.actamat.2019.11.054

Viennois R, Jund P, Colinet C, Tédenac J-C (2012) Defect and phase stability of
solid solutions of Mg2X with antifluorite structure. An ab-initio study. AIP Conf
Proc 1449:49-52. https://doi.org/10.1063/1.4731494

Mao J, Kim HS, Shuai J, et al (2016) Thermoelectric properties of materials near
the band crossing line in Mg2Sn—Mg2Ge—Mg2Si system. Acta Mater 103:633—
642. https://doi.org/10.1016/j.actamat.2015.11.006

LiuW, Tan X, Yin K, et al (2012) Convergence of Conduction Bands as a Means
of Enhancing Thermoelectric Performance of n-Type Mg2Sil-xSnx Solid
Solutions. Phys Rev Lett 108:166601.
https://doi.org/10.1103/PhysRevLett.108.166601

Klobes B, de Boor J, Alatas A, et al (2019) Lattice dynamics and elasticity in
thermoelectric Mg2Sil-xSnx. Phys Rev Mater 3:025404.
https://doi.org/10.1103/PhysRevMaterials.3.025404



68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

133

Dasgupta T (2019) High Thermoelectric Performance in Mg2(Si0.3Sn0.7) by
Enhanced Phonon Scattering. https://doi.org/10.1021/acsaem.8b02148

Mitra K, Goyal GK, Rathore E, et al (2018) Enhanced Thermoelectric
Performance in Mg2Si by Functionalized Co-Doping. Phys Status Solidi A
215:1700829. https://doi.org/10.1002/pssa.201700829

Tang X, Zhang Y, Zheng Y, et al (2017) Improving thermoelectric performance
of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method.
Appl Therm Eng C:1396-1400.
https://doi.org/10.1016/j.applthermaleng.2016.05.146

Liu W, Chi H, Sun H, et al (2014) Advanced thermoelectrics governed by a single
parabolic band: Mg2Si0.3Sn0.7, a canonical example. Phys Chem Chem Phys
16:6893-6897. https://doi.org/10.1039/C4CP00641K

Gao P, Davis JD, Poltavets VV, Hogan TP (2016) The p-type Mg2LixSi0.4Sn0.6
thermoelectric materials synthesized by a B203 encapsulation method using
Li2CO3 as the doping agent. J Mater Chem C 4:929-934.
https://doi.org/10.1039/C5TC03692E

Sankhla A, Patil A, Kamila H, et al (2018) Mechanical Alloying of Optimized
Mg2(Si,Sn) Solid Solutions: Understanding Phase Evolution and Tuning
Synthesis Parameters for Thermoelectric Applications. ACS Appl Energy Mater
1:531-542. https://doi.org/10.1021/acsaem.7b00128

Vivekanandhan P, Murugasami R, Kumaran S (2018) Microstructure and
mechanical properties of magnesium silicide prepared via spark plasma assisted
combustion synthesis. Mater Lett 231:109-113.
https://doi.org/10.1016/j.matlet.2018.08.017

Bux SK, Yeung MT, Toberer ES, et al (2011) Mechanochemical synthesis and
thermoelectric properties of high quality magnesium silicide. J Mater Chem
21:12259-12266. https://doi.org/10.1039/C1IM10827A

Farahi N, Prabhudev S, Botton GA, et al (2016) Nano- and Microstructure
Engineering: An Effective Method for Creating High Efficiency Magnesium
Silicide Based Thermoelectrics. ACS Appl Mater Interfaces 8:34431-34437.
https://doi.org/10.1021/acsami.6b12297

Farahi N, Stiewe C, Truong DYN, et al (2019) High efficiency Mg2(Si,Sn)-based
thermoelectric materials: scale-up synthesis, functional homogeneity, and
thermal stability. RSC Adv 9:23021-23028.
https://doi.org/10.1039/C9RA04800F

Macario LR, Cheng X, Ramirez D, et al (2018) Thermoelectric Properties of Bi-
Doped Magnesium Silicide Stannides. ACS Appl Mater Interfaces 10:40585—
40591. https://doi.org/10.1021/acsami.8b15111



79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

134

de Boor J, Dasgupta T, Saparamadu U, et al (2017) Recent progress in p-type
thermoelectric magnesium silicide based solid solutions. Mater Today Energy
4:105-121. https://doi.org/10.1016/].mtener.2017.04.002

Nieroda P, Kolezynski A, Oszajca M, et al (2016) Structural and Thermoelectric
Properties of Polycrystalline p-Type Mg2-xLixSi. J Electron Mater 45:3418—
3426. https://doi.org/10.1007/s11664-016-4486-5

Saparamadu U, de Boor J, Mao J, et al (2017) Comparative studies on
thermoelectric properties of p-type Mg2Sn0.75Ge0.25 doped with lithium,
sodium, and gallium. Acta Mater 141:154-162.
https://doi.org/10.1016/j.actamat.2017.09.009

Kamila H, Sahu P, Sankhla A, et al (2019) Analyzing transport properties of p-
type Mg2Si—-Mg2Sn solid solutions: optimization of thermoelectric performance
and insight into the electronic band structure. J Mater Chem A 7:1045-1054.
https://doi.org/10.1039/C8TA08920E

Rogl G, Grytsiv A, Gurth M, et al (2016) Mechanical properties of half-Heusler
alloys. Acta Mater 107:178-195. https://doi.org/10.1016/j.actamat.2016.01.031

Rogl G, Rogl P (2017) Skutterudites, a most promising group of thermoelectric
materials. Curr Opin Green Sustain Chem 4:50-57.
https://doi.org/10.1016/j.cogsc.2017.02.006

He R, Gahlawat S, Guo C, et al (2015) Studies on mechanical properties of
thermoelectric materials by nanoindentation. Phys Status Solidi A 212:2191—
2195. https://doi.org/10.1002/pssa.201532045

Zhang L, Rogl G, Grytsiv A, et al (2010) Mechanical properties of filled
antimonide skutterudites. Mater Sci Eng B 170:26-31.
https://doi.org/10.1016/j.mseb.2010.02.022

Schmidt RD, Case ED, Giles J, et al (2012) Room-Temperature Mechanical
Properties and Slow Crack Growth Behavior of Mg<Subscript>2</Subscript>Si
Thermoelectric Materials. J Electron Mater 41:1210-1216.
https://doi.org/10.1007/s11664-011-1879-3

Milekhine V, Onsgien MI, Solberg JK, Skaland T (2002) Mechanical properties
of FeSi (¢), FeSi2 (Ca) and Mg2Si. Intermetallics 10:743-750.
https://doi.org/10.1016/S0966-9795(02)00046-8

Schmidt RD, Fan X, Case ED, Sarac PB (2015) Mechanical properties of Mg2Si
thermoelectric materials with the addition of 0-4 vol% silicon carbide
nanoparticles (SICNP). J Mater Sci 50:4034-4046.
https://doi.org/10.1007/s10853-015-8960-x

Whitten WB, Chung PL, Danielson GC (1965) Elastic constants and lattice
vibration frequencies of Mg2Si. J Phys Chem Solids 26:49-56.
https://doi.org/10.1016/0022-3697(65)90071-5



91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

135

Muthiah S, Singh RC, Pathak BD, Dhar A (2017) Mechanical properties of
thermoelectric n-type magnesium silicide synthesized employing in situ spark
plasma reaction sintering. Mater Res Express 4:075507.
https://doi.org/10.1088/2053-1591/aa76a8

Gao P, Berkun I, Schmidt RD, et al (2014) Transport and Mechanical Properties
of High-ZT Mg2.08Si0.4-xSn0.6SbxThermoelectric Materials. J Electron Mater
43:1790-1803. https://doi.org/10.1007/s11664-013-2865-8

Gelbstein Y, Tunbridge J, Dixon R, et al (2014) Physical, Mechanical, and
Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for
Practical Thermoelectric Applications. J Electron Mater 43:1703-1711.
https://doi.org/10.1007/s11664-013-2848-9

Mejri M, Thimont Y, Malard B, Estournés C (2019) Characterization of the
thermo-mechanical properties of p-type (MnSil.77) and n-type (Mg2Si0.6Sn0.4)
thermoelectric materials. Scr Mater 172:28-32.
https://doi.org/10.1016/j.scriptamat.2019.06.037

Mejri M, Malard B, Thimont Y, et al (2020) Thermal stability of Mg2Si0.55Sn0.45
for  thermoelectric  applications. J  Alloys Compd  846:156413.
https://doi.org/10.1016/j.jallcom.2020.156413

Skomedal G, Vehus T, Kanas N, et al (2019) Long term stability testing of oxide
unicouple thermoelectric modules. Mater Today Proc 8:696-705.
https://doi.org/10.1016/j.matpr.2019.02.070

Ebling D, Bartholomé K, Bartel M, Jagle M (2010) Module Geometry and Contact
Resistance of Thermoelectric Generators Analyzed by Multiphysics Simulation.
J Electron Mater 39:1376-1380. https://doi.org/10.1007/s11664-010-1331-0

Erturun U, Erermis K, Mossi K (2014) Effect of various leg geometries on thermo-
mechanical and power generation performance of thermoelectric devices. Appl
Therm Eng 73:128-141. https://doi.org/10.1016/j.applthermaleng.2014.07.027

Mu Y, Chen G, Yu R, et al (2014) Effect of geometric dimensions on
thermoelectric and mechanical performance for Mg2Si-based thermoelectric
unicouple. Mater Sci Semicond Process 17:21-26.
https://doi.org/10.1016/j.mssp.2013.08.009

Jung |, Kang DH, Park W, et al (2007) Thermodynamic modeling of the Mg-Si—
Sn system. https://doi.org/10.1016/J.CALPHAD.2006.12.003

Ayachi S, Castillo Hernandez G, Pham NH, et al (2019) Developing Contacting
Solutions for Mg2Sil-xSnx-Based Thermoelectric Generators: Cu and
Ni45Cu55 as Potential Contacting Electrodes. ACS Appl Mater Interfaces
11:40769-40780. https://doi.org/10.1021/acsami.9b12474

Camut J, Pham NH, Nhi Truong DY, et al (2021) Aluminum as promising
electrode for Mg2(Si,Sn)-based thermoelectric devices. Mater Today Energy
21:100718. https://doi.org/10.1016/].mtener.2021.100718



103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

136

Graff JS, Schuler R, Song X, et al (2021) Fabrication of a Silicide Thermoelectric
Module Employing Fractional Factorial Design Principles. J Electron Mater
50:4041-4049. https://doi.org/10.1007/s11664-021-08902-y

Pecharsky VK, Zavalij PY (2009) Fundamentals of Diffraction. In: Fundamentals
of Powder Diffraction and Structural Characterization of Materials. Springer US,
Boston, MA, pp 133-149

Reed-Hill RE, Abbaschian R (1992) Physical metallurgy principles. PWS-Kent
Pub., Boston

Yasseri M, Farahi N, Kelm K, et al (2018) Rapid determination of local
composition in quasi-binary, inhomogeneous material systems from
backscattered electron image contrast. Materialia 2:98-103.
https://doi.org/10.1016/j.mtla.2018.06.014

Lloyd GE (1987) Atomic number and crystallographic contrast images with the
SEM: a review of backscattered electron techniques. Mineral Mag 51:3-19.
https://doi.org/10.1180/minmag.1987.051.359.02

Timoshenko S (1953) History of strength of materials : with a brief account of the
history of theory of elasticity and theory of structures. New York : McGraw-Hill

Han SM, Benaroya H, Wei T (1999) DYNAMICS OF TRANSVERSELY
VIBRATING BEAMS USING FOUR ENGINEERING THEORIES. J Sound Vib
225:935-988. https://doi.org/10.1006/jsvi.1999.2257

E28 Committee Test Method for Dynamic Youngs Modulus, Shear Modulus, and
Poissons Ratio by Impulse Excitation of Vibration. ASTM International

Leisure RG, Willis FA (1997) Resonant ultrasound spectroscopy. J Phys
Condens Matter 9:6001-6029. https://doi.org/10.1088/0953-8984/9/28/002

Migliori A, Sarrao JL, Visscher WM, et al (1993) Resonant ultrasound
spectroscopic techniques for measurement of the elastic moduli of solids. Phys
B Condens Matter 183:1-24. https://doi.org/10.1016/0921-4526(93)90048-B

Satyala N, Krasinski JS, Vashaee D (2014) Simultaneous enhancement of
mechanical and thermoelectric properties of polycrystalline magnesium silicide
with conductive glass inclusion. Acta Mater 74:141-150.
https://doi.org/10.1016/j.actamat.2014.04.007

Radovic M, Lara-Curzio E, Riester L (2004) Comparison of different experimental
techniques for determination of elastic properties of solids. Mater Sci Eng A
368:56—70. https://doi.org/10.1016/j.msea.2003.09.080

Ajit Prasad SL, Mayuram MM, Krishnamurthy R (1999) Response of plasma-
sprayed alumina—titania composites to static indentation process. Mater Lett
41:234-240. https://doi.org/10.1016/S0167-577X(99)00136-6



116.

117.

118.

1109.

120.

121.

122.

123.

137

Bao YW, Wang W, Zhou YC (2004) Investigation of the relationship between
elastic modulus and hardness based on depth-sensing indentation
measurements. Acta Mater 52:5397-5404.
https://doi.org/10.1016/j.actamat.2004.08.002

Oliver WC, Pharr GM (1992) An improved technique for determining hardness
and elastic modulus using load and displacement sensing indentation
experiments. J Mater Res. https://doi.org/10.1557/JMR.1992.1564

Castillo-Hernandez G, Yasseri M, Klobes B, et al (2020) Room and high
temperature mechanical properties of Mg2Si, Mg2Sn and their solid solutions. J
Alloys Compd 156205. https://doi.org/10.1016/j.jallcom.2020.156205

Edwards M, Brinkfeldt K (2013) Thermo-mechanical modelling and design of
SiGe-based thermo-electric modules for high temperature applications. In: 2013
14th International Conference on Thermal, Mechanical and Multi-Physics
Simulation and Experiments in Microelectronics and Microsystems (EuroSimE).
pp 1-11

Jia X, Gao Y (2014) Estimation of thermoelectric and mechanical performances
of segmented thermoelectric generators under optimal operating conditions.
Appl Therm Eng 73:335-342.
https://doi.org/10.1016/j.applthermaleng.2014.07.069

Tewolde M, Fu G, Hwang DJ, et al (2016) Thermoelectric Device Fabrication
Using Thermal Spray and Laser Micromachining. J Therm Spray Technol
25:431-440. https://doi.org/10.1007/s11666-015-0351-y

Ho CY, Taylor RE (1998) Thermal Expansion of Solids. ASM International

Yasseri M, Schupfer D, Weinhold M, et al (2020) Comparing Raman mapping
and electron microscopy for characterizing compositional gradients in
thermoelectric materials. Scr Mater 179:61-64.
https://doi.org/10.1016/j.scriptamat.2020.01.002


https://doi.org/10.1016/j.scriptamat.2020.01.002

138

11. Appendix

11.1. Limitations on the use of the rapid
compositional analysis in Mg2X

In order to apply the rapid determination method developed by Yasseri et al. [106] EDX
composition points for calibration of the grey-tone scale are needed. The original work
details the process needed to estimate the spatial resolution for each EDX point. It is
related to a specific gray value in the SEM picture. The process is done by hand and
is of course subjected to human error. Additionally, there exists also the grey tone
variation within a sample. As shown in Figure 11-1, even areas with a homogeneous
color to the naked eye have a great variation within a small area. In this case a mean
gray value of 230 is used, however values 210-251 are contained in the apparently

uniform region.
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Figure 11-1 Exemplary image of a Mg2(Si,Sn) sample with a variety of gray values for a small area

(red circle).

The fitting of said gray values to the backscatter coefficient is done in a tool developed
in excel. Values within the variation shown in Figure 11-1 are manually fed into the
fitting to produce the best R? possible, equations with a goodness of fit below 0.95 are

not used due to a low reliability for further analysis.
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Furthermore, the equation found in the previous step is fed into a MATLAB script that

estimates the local composition for each individual pixel in the picture.

The variation imposed by all these factors is however mitigated by the use of some
good practices; namely adding EDX points close or within very identifiable spots on
the SEM image, to avoid confusion when estimating the gray values, as well as avoid
using low R? fitting. The accuracy of this quantification method is not 100% reliable but
has a very good degree of agreement with EDX mapping, XRD phase quantification
and Raman mapping [63, 106, 123].

11.2. Material properties used for simulation

n-type Mg2Sio.3Sno.e65Bi0.035

A linear fit was used for the Young’'s modulus measured, this is shown in Figure 11-2
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Figure 11-2 Raw data and fitting for the Young’s modulus of n-type Mg2Sio.3Sno.7

The measurement of the coefficient of thermal expansion shows two distinctive areas
as discussed in chapter 7. A linear fit was added to the linear part and extrapolation
used for values at room temperature as shown in Figure 11-3. Spikes in the raw data

stem from the calibration, most likely a movement of the sapphire standard.
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As described in chapter 7, the CTE is usually reported as mean values. The mean
value for the n-type Mg2(Si,Sn) is 16.8107° 1/K. On the other hand, using the linear fit
and extrapolation yields a value of CTE(22 °C) = 16.44 x 107% 1/K.
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Figure 11-3 Raw data and fitting for the coefficient of thermal expansion of the n-type Mg.Sio.3Sho.7

Thermal conductivity was not measured on the same samples studied in this work,
however the material for those samples came from the same batch of powder and
pressed under the same conditions. It is therefore assumed that the properties are the

same.

The fitting of thermal conductivity was done using a polynomial function of order 3.

Figure 11-4 shows the fit.
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Figure 11-4 Raw data and fitting for the total thermal conductivity of the n-type Mg2Sio.sSnho.7
p-type Mgz1.97Li0.03Si0.3SNo.7

Similar to the n-type, the Young’s modulus of the p-type thermoelectric material was
fitted with a linear function shown in Figure 11-5.
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Figure 11-5 Raw data and fitting for the Young’s modulus of the p-type Mg2Sio.3Sho.7
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A linear fit and extrapolation were used for the p-type material as well. In this case the
mean value for the p-type Mg2(Si,Sn) is 17.372 x 10~¢ 1/K, while CTE(22°C) =

17.588 x 107¢ 1/K is found using the extrapolation. These results are shown in Figure

11-6.
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Figure 11-6 Raw data and fitting for the coefficient of thermal expansion of the p-type Mg2Sio.sSnho.7
The total thermal conductivity was fitted to a 3" degree polynomial function as well.

This process is illustrated by Figure 11-7
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Figure 11-7 Raw data and fitting for the total thermal conductivity of the p-type Mg2Sio.3Sno.7

The functions used to fit the data in the temperature range 22 - 300 °C (295 - 573 K)

are summarized in Table 11-1

Table 11-1 Equations used to fit data for the simulation, temperature values are given in Kelvin

Property Equation for n-type Equation for p-type
Young’s E(T) = 87.80 — 0.015T E(T) = 90.27 — 0.020T
modulus (GPa)
Coefficient of CTE(T) = 15.037 + 0.0048 T CTE(T) = 16.85 + 0.0025 T
thermal
expansion
(107%1/K)
Thermal k(T) = 3.31 — 2.66x107*T — 4.34 x 107°T? | «(T) = 3.44 — 1.58x1073 T — 1.01 x 107°T?

conductivity _9m3 —8m3
(W/mK) +4.25x107°T +1.35x107°T




