Using stable isotopes to follow excreta N dynamics and N₂O emissions in animal production systems T. J. Clough^{1†}, C. Müller² and R. J. Laughlin³ ¹Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; ²Institut für Pflanzenökologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Giessen, Germany; ³Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK (Received 13 February 2013; Accepted 4 April 2013) Nitrous oxide (N_2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N_2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N_2O , providing additional insight and unequivocal proof of N_2O source, production pathways and consumption. The potential for using stable isotopes of N_2O is underutilised. The intent of this article is to provide an overview of what these tools are and demonstrate where and how these tools could be applied to advance the mitigation of N_2O emissions from animal production systems. Nitrogen inputs and outputs are dominated by fertiliser and excreta, respectively, both of which are substrates for N_2O production. These substrates can be labelled with N_2O emissions. Thus, the effects of changes to animal production systems to reduce feed-N wastage by animals and fertiliser wastage, aimed at N_2O mitigation and/or improved animal or economic performance, can be traced. Further N_2O tracer studies are required to fully understand the dynamics and N_2O fluxes associated with excreta, and the biological contribution to these fluxes. These data are also essential for the new generation of N_2O models. Recent technique developments in isotopomer science along with stable isotope probing using multiple isotopes also offer exciting capability for addressing the N_2O mitigation quest. Keywords: ¹⁵N, climate change, excreta, nitrogen isotopes, nitrous oxide ### **Implications** Nitrous oxide (N_2O) is a potent greenhouse gas and the leading stratospheric ozone-depleting emission. Its concentration continues to increase, predominantly owing to N_2O emissions associated with animal production systems. The number of farmed animals will increase to satisfy growing global population demand. Mitigation is required. Tools to identify mitigation options include the stable isotopes of nitrogen (^{15}N). Past and recently developed ^{15}N methodologies provide tools to better understand the sources of N_2O , while tracing the substrates responsible for N_2O fluxes over space and time through the environment. Integrating the skill sets and efforts of microbiologists, soil and animal scientists will achieve this. ### Introduction Nitrous oxide (N₂O) is a greenhouse gas and the dominant stratospheric ozone-depleting substance emitted by humans in the twenty-first century (Ravishankara et al., 2009). Concentrations of N₂O have increased since 1800 and continue to do so at 0.26% per annum (Forster et al., 2007). Anthropogenic emissions (6.7 Tg/year) represent 40% of the total annual (17.7 Tg/year) global emissions of N₂O (Forster et al., 2007). The main anthropogenically derived substrates for N₂O production include synthetic and organic fertilisers and excreta; thus, agricultural production of N₂O (2.8 Tg/year) dominates anthropogenic emission sources (Denman et al., 2007; Schils et al., 2013). Davidson (2009) showed that the observed increase in tropospheric N₂O between 1860 and 2005 could be explained by 2.0% of manure nitrogen (N) and 2.5% of fertiliser N being emitted as N₂O over this period. Oenema et al. (2005) partitioned N₂O emissions from animal production systems (1.5 Tg/year) into five sources: dung and urine from grazing animals deposited in pastures (41%), indirect sources (27%), animal wastes from housing and storage (19%), application of animal wastes to land (10%) and the burning of dung (3%). The majority of these N₂O emissions from agriculture occur as a result of excreta being deposited onto soil where microbial reactions, driven by nitrifiers and denitrifiers, [†] E-mail: Tim.Clough@lincoln.ac.nz are the major biological pathways for N₂O. The Food and Agriculture Organisation of the United Nations predicts the demand for animal products to increase, and thus animal numbers are projected to increase significantly (OECD FAO, 2012). Given the current trends in tropospheric N₂O concentrations and the predicted increases as a result of increasing animal-based agricultural production, it is urgent that a fuller understanding of the sources, processes and management factors that contribute to these agriculturally based N₂O emissions is developed. Improved knowledge will lead to mitigation options. It is necessary to differentiate agricultural N inputs from N forms found in the soil and which can also contribute to N_2O fluxes. This permits the tracing of a particular N input through the agroecosystem concerned, over time, enabling a full and detailed understanding of the factors affecting N₂O fluxes, their duration and magnitude. This article aims to increase awareness of the stable isotopes of N and the vital role they can play in distinguishing N₂O sources and fate in animal production systems. Specific reference to methodologies for preparing ⁵N-enriched samples for analysis and other practical considerations may be found in the literature (Knowles and Blackburn, 1993; Hauck et al., 1994). ### Stable isotopes of nitrogen The number of protons in an element (equal to the atomic number 'Z') is constant, but the number of neutrons (the neutron number 'Nn') may vary. Isotopes of a given element differ from one another owing to the number of neutrons they contain. This variation in neutron number does not affect the gross chemical properties of the element. The mass of an element (the sum of Z + Nn) is the superscripted number to the left of the element designation (Kendall and Caldwell, 1998). Thus, for N with an atomic number of 7, the stable isotopes have mass numbers of 14 (^{14}N) with seven neutrons) and 15 (^{15}N) with eight neutrons). These N isotopes occur naturally in the environment (Sharp, 2007). In air, the natural abundance of ^{15}N is constant with a $^{15}N/^{14}N$ ratio equal to 1/272 or 0.3676% (Junk and Svec, 1958). Further terms used when studying the isotopic composition of molecules include the words 'isotopologue' and 'isotopomer'. Isotopologues, as defined by the International Union of Pure and Applied Chemistry, are molecules differing from one another only because of isotopic composition (Sharp, 2007). For example, N₂O with mass 44 ($^{14}N + ^{14}N + ^{16}O$) and mass 45 ($^{14}N + ^{15}N + ^{16}O$) are isotopologues of N₂O. However, isotopomers always have the same number of each isotopic atom and as a consequence always have the same mass (Sharp, 2007). For example, the N₂O molecules comprising $^{14}N + ^{15}N + ^{16}O$ and $^{15}N + ^{14}N + ^{16}O$ are isotopomers of N₂O (see below). The stable isotopes of N provide a unique research tool to elucidate the N_2O emission pathways and N_2O fate. Scientists may use N compounds that have been enriched in ^{15}N . This means that more ^{15}N has been added to the substrate of interest before its use in the experimental set-up. Such experiments may be described as 'tracer experiments' where the extra ¹⁵N added, that is, the enrichment, is far in excess of the natural abundance of ¹⁵N, thus permitting the scientist to 'trace' the flow of ¹⁵N through the ecosystem of interest. Alternatively, the scientist may elect to use the ¹⁵N already existing in the ecosystem of concern, at natural levels of abundance, and these are termed 'natural abundance' experiments. Initially, the use of ¹⁵N-enriched tracer will be discussed followed by natural abundance. Fractionation causes changes in the natural abundance of ¹⁵N and this is considered below. ### ¹⁵N-enriched tracer studies As with any experiment, the rationale and aims of a 15 N-tracer study need to be clearly thought out. In a tracer experiment, the information gathered from the measurements made includes not only the concentrations of N in the various N pools (e.g. N_2O $\mu l/l$) but also the level of 15 N enrichment (e.g. N_2O atom% 15 N). The term 'atom% 15 N enrichment' is an expression that denotes the concentration of 15 N as a percentage of the total mass of stable N atoms (14 N + 15 N) and is calculated numerically as: atom $$\%^{15}N = \frac{\text{No. of }^{15}N \text{ atoms}}{\text{No. of }^{14}N + {}^{15}N \text{ atoms}} \times \frac{100}{1}$$ (1) Although several methods may be used to measure the atom% ¹⁵N enrichment of a sample (e.g. Fourier transform infrared (FTIR) determination of ¹⁵N₂O), the most common method to date has been isotope-ratio mass spectrometry (IRMS). Rather than measuring individual atoms to determine atom% ¹⁵N, the mass spectrometer measures the molecules of interest on the basis of their mass, which is a function of their isotopic composition. If the sample is a solid, it must first be combusted to produce N2, and then it can be carried in a He flow through the mass spectrometer. Similarly, dissolved N forms, such as inorganic-N, also need to be converted either to a solid form, and then to a gas (Stark and Hart, 1996). Alternatively, the sample may already be in a gaseous state (Stevens and Laughlin, 1994; Laughlin et al., 1997). A detailed explanation of mass spectrometry is beyond the scope of this paper and the reader is directed to other sources (e.g. Mulvaney, 1993; Sharp, 2007). In brief, the gas molecule is introduced into the mass spectrometer's 'ion source' where a fraction of the gas molecules are ionised. The positively charged ions are then moved through a magnetic field with the positively charged ions deflected in a circular trajectory, on the basis of their mass to charge ratio (m/z). The charged ions are collected in Faraday cups, thus forming ion currents (I) that are proportional to the quantity of gas. For the N₂O molecule, the masses of interest are 44, 45 and 46, and for N₂ these masses are 28, 29 and 30. For a given molecular species, the ion currents are used to produce ratios (R). Therefore, for N_2 , the ratios ^{29}R ($^{29}I/^{28}I$) and ^{30}R (301/281) are derived (Stevens et al., 1993). For solid samples, the ratios ²⁹R and ³⁰R, which are derived from the combusted materials, can be used in the appropriate equations to determine the atom% ¹⁵N enrichment (Mulvaney, 1993). Further consideration must also be given to comparing these ratios against standards and determining instrument factors, so that only the true ratio differences between normal and enriched atmospheres are used when deriving gaseous N fluxes (Stevens et al., 1993; Stevens and Laughlin, 1998). A major focus of many ¹⁵N-isotopic studies is to derive N₂ and N₂O fluxes from the soil nitrate pool. Further detailed explanations of the assumptions, derivations and implementation of the ratios used when determining denitrification of 15 N-enriched NO_3^- , and the respective calculation of 15 N-enriched fluxes of N_2 and N_2O , can be found in the literature (Mulvaney and Boast, 1986; Boast et al., 1988; Mosier and Schimel, 1993; Mulvaney, 1993; Stevens et al., 1993; Stevens and Laughlin, 1998; Bergsma et al., 2001). The ion currents at m/z 44, 45 and 46 are used to calculate the concentration of N2O, in conjunction with a reference gas, whereas its ¹⁵N enrichment is calculated from ratios ⁴⁵R or ⁴⁶R (Stevens *et al.*, 1993; Stevens and Laughlin, 1998). Using ¹⁵N-enriched substrates in tracer studies A potential artefact when using 15 N-tracer studies is that the application of a relatively large rate of N may unnaturally perturb the system under investigation. Fortunately, in agroecosystems, this is less of an issue, as substrates containing 15 N, used in tracer studies to follow N_2 O and N_2 emissions, generally consist of N forms such as fertilisers, excreta (dung and urine) and plant residues, which by their very nature perturb the system. Therefore, these types of N substrates are potentially ideal for use in 15 N-tracer studies, if suitable enrichment of the substrate can be undertaken. Once the experiment has been conceived, the experimental treatments must be refined. The first step is to consider the rate of N required in any given treatment. The rationale for this is similar to any non-15N experimentation where an N substrate is being added. Thought then needs to go into determining which of the various N pools the ¹⁵N tracer will be measured in, how often the N pools will be measured and what will be the period of the experiment. Naturally, the type of N substrate being applied will also have a bearing on the N pools being measured and their frequency of measurement. If the ¹⁵N tracer is to be followed in multiple pools (e.g. soil, plant and gases) over time, dilution of the ¹⁵N tracer may occur immediately in the soil, because of antecedent N, or at a slower rate because of other N inputs resulting from management and/or soil-N mineralisation. The ¹⁵N enrichment in the N pool of interest may also be diluted because of the pool of background ¹⁴N being significantly larger than the ¹⁵N pool evolving (e.g. ¹⁵N₂ evolving into ambient air). Alternatively, significant loss of the ¹⁵N tracer may occur early in the experiment. For example, if the experiment aims to follow the contribution of ¹⁵N-enriched urea to an N₂O flux, then allowance needs to be made for a significant fraction of the urea fertiliser (\sim 20%), and the ¹⁵N embodied in it, to be potentially lost within hours of the experiment, starting as a result of ammonia volatilisation. Thus, the N pool(s) of interest, dilution and early loss of ¹⁵N from the experimental system need to be considered when deciding on the level of ¹⁵N enrichment to use. Finally, the last factor to consider when determining what level of ¹⁵N enrichment to use is the sensitivity of the mass spectrometer (Stevens et al., 1993). The more sensitive the mass spectrometer is, the lower the required ¹⁵N enrichment, all things being equal. The experimental set-up and environmental conditions may also determine the level of enrichment to use. When measuring gas fluxes from soils with headspace chambers, the sensitivity increases with high gas fluxes and smaller headspaces (large surface area to volume ratios). Stevens et al. (1993) provide an excellent example of how to determine sensitivity for a mass spectrometer. As ¹⁵N enrichment and gas fluxes decrease, the coefficient of variation will increase and data quality will suffer (Stevens et al., 1993). For example, using an enclosure time of 2 h with an enclosure volume: surface area ratio of 5:1, and a NO₃⁻⁻¹⁵N enrichment of 60 atom% Stevens and Laughlin (1998) reported a limit of detection for N₂ fluxes of 3.5 g N₂-N/ha per day. A point not always recognised by researchers using ¹⁵N enrichment to measure N₂ fluxes is the requirement to be able to measure both the ²⁹R and ³⁰R ratio. In order to do this, there must be both ¹⁴N and ¹⁵N present. Thus, starting an experiment with a substrate that is 98 atom% ¹⁵N enriched (a commonly available ¹⁵N enrichment), and with little or no potential for ¹⁵N dilution, reduces the chances of measuring robust ²⁹R and ³⁰R ratios. Fractionation results from the differential responses of stable isotopes in either kinetic reactions, where lighter isotopes tend to react faster, or exchange reactions, where heavy isotopes concentrate where bonds are strongest (Fry, 2006). The result is that products have a lighter isotopic composition owing to the fractionation process. The degree of fractionation can be calculated as a fractionation factor. Detailed discussion of fractionation factors is beyond the scope of this article and the reader is directed to other articles (Fry, 2006; Sharp, 2007). It has been experimentally shown that the isotopic fractionation during the production of N₂O via denitrification may vary with the ¹⁵N enrichment of the nitrate substrate; however, the effect of such isotopic fractionation was shown to be negligible if the enrichment of the substrate was greater than 0.6 atom% ¹⁵N (Mathieu et al., 2007). It has also been shown that isotopic fractionation does not bias quantifications of gross N transformations in modelling studies when isotopic ¹⁵N enrichment is used (Rütting, 2012). Thus, the use of high levels of ¹⁵N enrichment avoids any bias owing to isotopic fractionation. ### Labelling of plant materials/fertiliser/ruminant excreta with ¹⁵N The ¹⁵N content of soil inorganic-N, fertilisers, excreta, plants and gases can all be enriched in order to follow the fate of these compounds in the environment. The degree of enrichment required depends on the material being enriched and the proposed nature of the ensuing experiment. Labelling of dairy cow manure or slurry is generally performed by feeding animals herbage that has been fertilised with ¹⁵N-enriched fertilisers or by feeding ¹⁵N-enriched urea. Powell et al. (2004) describe in detail a forage method where feeding of ¹⁵N-enriched forage resulted in an increase in the ¹⁵N enrichment of the urine, the endogenous N (microbes and microbial products from the rumen, intestine and hind gut plus digestive tract N) and the undigested feed N. Silage components had ¹⁵N enrichments of 1.17 to 6.44 and the resulting manure was \sim 2.5 atom% ¹⁵N. They also describe a urea method where ¹⁵N-enriched urea was fed to ruminally fistulated cows that resulted in ¹⁵N enrichment of the urine and the endogenous N but not the undigested feed N, as no ¹⁵N-enriched feed was provided (Powell et al., 2004). Single dosing with 5 atom% $^{15}\mathrm{N}$ urea produced urine $\sim\!1.25\,\mathrm{atom}\%$ ¹⁵N, whereas repeated 50 g doses at regular intervals produced urine \sim 1.25 to 2.15 atom% 15 N. Of particular interest in a study by Powell et al. (2004) are the results showing the time that elapses between administering the ¹⁵N-enriched forage or urea and the observed peak in ¹⁵N enrichment of the excreta. Lampe *et al.* (2006) produced ¹⁵N-enriched (0.72 atom%) slurry by feeding steers ¹⁵N-enriched hay and maize silage. Yue *et al.* (2012) generated a more highly ¹⁵N-enriched manure by letting the animal's gut empty out for 2 days and then feeding mixed silage (26.6 atom% 15N), resulting in cattle manure with 8.0 atom% ¹⁵N. Manures of other animal species (sheep and pigs) have been similarly labelled (Sorensen and Thomsen, 2005; Bosshard et al., 2011). The choice of method for ¹⁵N-labelling excreta depends on the intention of the experiment. Obviously, ¹⁵N labelling of animal excreta is expensive and labour intensive, with due attention needed to be given to animal ethics. However, it provides a genuine urine or faeces matrix that is ¹⁵N labelled. In the case of urine, it avoids the researcher having to choose between synthetic urine mixtures where potential bias in N₂O fluxes may occur as a result (Kool et al., 2006), or having to further dope collected unenriched urine with ¹⁵N urea to generate ¹⁵N enrichment in the collected urine. As seen from these results (Powell et al., 2004), the degree of ¹⁵N enrichment is too low to follow evolution of N2 fluxes, which is ideally 40 to 60 atom% ¹⁵N, but it is sufficient to allow the detection of ¹⁵N-enriched N₂O to partition the N₂O sources. An example of a study that used fresh urine labelled with 15N urea is that of Taghizadeh-Toosi et al. (2011) who, upon applying the $^{15}\text{N-enriched}$ urine to pasture, were able to partition $N_2\text{O}$ sources and show the presence of biochar-mitigated urinederived N₂O emissions, with the contribution of urine to N₂O emissions lower in the presence of biochar. The recent work by Jost *et al.* (2013) is highly relevant when choosing a method to look at manure contributions to N_2O emissions. Jost *et al.* (2013) found that total N_2O emissions were correlated with faecal microbial biomass N, showing the significance of including the endogenous N component. This implies that the *forage* method would be best, if the rationale for the experiment was to determine N fluxes from faeces (e.g. N_2O). Others have collected manure and only labelled inorganic-N pools of the manure by adding ¹⁵N-enriched inorganic-N salts, for example, (Paul and Beauchamp, 1995) to trace N cycling of the inorganic-N. Studies using ¹⁵N-labelled manures have been used to trace manure effects on N cycling in soils and agronomic effects (Berntsen et al., 2007; Bosshard et al., 2009; Bosshard et al., 2011), but the number of studies that have included measures of N₂O and its enrichment following manure, slurry or digestate applications are relatively few (Hauck et al., 1994; Dittert et al., 2001; Lampe et al., 2006; Schouten et al., 2012). The study by Dittert et al. (2001) is a good example of a study where ¹⁵N tracing was used to demonstrate the potential of a nitrification inhibitor (3,4-dimethylpyrazole phosphate) to reduce N₂O emissions from slurry injected into soil. In this instance, the dairy slurry was ¹⁵N enriched and the isotopic composition of the soil and N₂O pools were monitored. Besides having lower N₂O emissions, the ¹⁵N enrichment of the N₂O emitted was lower in the nitrification inhibitor treatment, indicating that less N₂O was derived from the slurry in this treatment. Further such studies are urgently required to assess management and mitigation strategies for reducing N₂O emissions. For example, the call to reduce excess N in the diet of the ruminants or the manipulation of the ruminant diet with feeds varying in C:N ratios will have implications for N2O fluxes from faeces that should be ascertained. In comparison with generating ¹⁵N-labelled excreta, the production of ¹⁵N-enriched plant residues is relatively straightforward. Plants are grown with appropriate nutrition and water (avoiding leaching events), generally in a sandy matrix to avoid ¹⁴N mineralisation from the soil organic-N pool diluting the ¹⁵N pool, with N nutrition provided by adding a ¹⁵N-enriched fertiliser. Again urea is best avoided so that ¹⁵N is not lost unnecessarily owing to NH₃ volatilisation. Once the plant is at the required stage of growth, it may be harvested and used in ¹⁵N-tracer experiments. Previous results using ¹⁵N to apportion N₂O sources have shown that emissions from plant residue applications can be short-lived (Frimpong and Baggs, 2010; Frimpong et al., 2011). Ruminant grazing of pasture and forage crops causes fresh litterfall, as animals fail to ingest all harvested herbage (Lodge et al., 2006; Campanella and Bisigato, 2010; Pal et al., 2012). One study, replicating a grazing-induced litterfall event, used ¹⁵N tracer to show that fresh litter deposition contributed to the N₂O flux (1% of N applied) from the soil surface and enriched the soil inorganic-N pool (Pal et al., 2013). Experiments have also been conducted using ¹⁵N-enriched N₂ to study the fate of biologically fixed N₂. For example, Carter and Ambus (2006) showed that easily degradable clover residues (Trifolium sp.) made a minor contribution to N₂O fluxes. Other studies have shown that the dynamics of N₂O emissions derived from ¹⁵N-labelled residues are impacted upon by earthworms (Giannopoulos et al., 2011). Modelling of ¹⁵N studies conducted by Delgado *et al.* (2010) suggest that residues should not be treated in the same way as fertilisers in terms of N₂O emissions, and they call for more residue studies to examine N₂O losses from agroecosystems. This will be done best by using ¹⁵N tracing. The study of fertiliser applications using ¹⁵N tracer is perhaps the easiest of the substrates to deal with, as it requires little preparation other than perhaps diluting the acquired ¹⁵N-enriched isotope fertiliser to a level of enrichment suitable for the experimental objectives. One consideration is the form to apply the fertiliser in. The easiest but perhaps the least conventional way to do this is to water a fertiliser solution onto trial plots. But again the experimental design and objectives need to be considered. ### A role for 15N-enriched N2O It is well recognised that N₂O may be consumed in the soil profile by denitrifiers (Chapuis-Lardy et al., 2007). The use of ¹⁵N-enriched N₂O is an underutilised tool that can increase our understanding of N₂O production and fate in agroecosystems. Again, owing to its very nature, the ¹⁵N-stable isotope acts as a tracer for the N2O molecule when it is added to the soil. If N₂O is sufficiently enriched in ¹⁵N and of high enough concentration, it is theoretically possible to observe N₂ production, but the large N₂ background makes it impractical. However, using soil columns, Clough et al. (2006) demonstrated that the addition of ¹⁵N-enriched N₂O, along with an inert tracer gas SF₆, could be used to calculate an N₂O sink (consumption plus absorption by water), whereas the corresponding decrease in the ¹⁵N enrichment between successive soil depths enabled N₂O production in the soil profile to be calculated simultaneously, as the N₂O diffused through the soil. One reason for the low uptake of ¹⁵N-tracer studies directly using N₂O is the cost of commercially available $^{15}\text{N-enriched}$ $^{15}\text{N-enriched}$ N₂O. However, $^{15}\text{N-enriched}$ N₂O can be made and collected on a small scale in the laboratory by gently and carefully heating small quantities of ammonium nitrate using an oil bath or muffle furnace (Friedman and Bigeleisen, 1950). Further studies with ¹⁵N-enriched N₂O are required to increase our understanding of the factors affecting \dot{N}_2O : N_2 ratios in soils (e.g. carbon supply and soil pH) to enable the design of N2O flux mitigation strategies focused on soil and manure management. ### Modelling N transformations, N_2O and N_2 emissions using ¹⁵N-tracer studies The first models developed using ¹⁵N-tracer data focused on determining gross production and consumption of mineral N, on the basis of the exchange between organic and mineral N (Kirkham and Bartholomew, 1954). These early models were simple enough to allow the development of straightforward analytical solutions. However, process-specific gross N rates including production of an N species (e.g. NO₃⁻) from various sources can only be quantified with models that are based on more realistic N-transformation concepts, such as those developed by Myrold and Tiedje (1986) and Barraclough and Puri (1995). The set of simultaneous equations developed is solved using numerical integration with parameters in these models determined by suitable parameter optimisation routines (Mary et al., 1998). Further developments of more realistic and arguably more complex analysis models utilise parameter optimisation routines that can handle large numbers of parameters, such as Markov Chain Monte Carlo techniques (Muller et al., 2007; Ruetting and Mueller, 2007). Currently, N2O fluxes can be described by such models so that source partitioning and rates of N₂O consumption/ production can be derived (Abbasi and Muller, 2011), and the microbial processes responsible for the observed ¹⁵N dynamics (e.g. autotrophic v. heterotrophic nitrification or denitrification) can also be determined (Stange and Dohling, 2005). Useful future developments in these models would be the use of longer time periods and the use of ¹⁵N-labelled substrate pools to realistically mimic excreta or slurry deposition. To advance our understanding of N-transformation processes related to various soil organic N pools, there needs to be more utilisation of ¹⁵N labelling in experiments, where various organic N and mineral N pools are ¹⁵N labelled. Although the costs of these experiments (15N label and the analysis costs) are relatively high, the data from such studies are essential, if we are to fully understand the role of soil N-transformation processes that produce N2O from animal excreta. Studies with ¹⁵N-enriched substrates focusing on inputs other than inorganic N are beginning to appear and provide insights into the effects of substrate additions on gross N dynamics. For example, Nelissen et al. (2012) modelled soil mineral N dynamics following the application of ¹⁵N-labelled biochar to a soil. With the advances in analytical techniques and analysis models (15N-tracing models), it is now possible to analyse complex system dynamics. It is mainly the costs associated with ¹⁵N-tracing studies that may prevent further large-scale experimental work. Furthermore, analytical challenges are still to be solved, such as the development of reliable field methods to quantify for instance the N_2/N_2O ratios. ## Utilising ¹⁵N-enriched tracers to understand microbial contributions to N₂O dynamics The predominant biological processes in soils forming N₂O predominantly include nitrification, nitrifier denitrification, nitrification-coupled denitrification and denitrification (Wrage *et al.*, 2001; Kool *et al.*, 2011b). The use of ¹⁵N on its own cannot differentiate between the inorganic-N sources contributing to N2O fluxes or determine the significance of individual processes to soil-derived N2O emissions. Thus, Wrage et al. (2005) devised a novel dual isotope method (15N and 18O (oxygen)) to assign N₂O production to these processes. The method assumed (a) no preferential removal of ¹⁸O or ¹⁶O during nitrifier denitrification or denitrification, (b) the ¹⁸O signature of the applied ¹⁸O-labelled water would remain constant over the experimental period and (c) exchange of O between ${\rm H_2}^{18}{\rm O}$ and ${\rm NO_3}^-$ would be negligible. Following the application of N to a silt loam soil at 50% water-filled pore space, the assumptions were validated. Wrage et al. (2005) showed that nitrifier denitrification is a significant source of N₂O in soil. However, the assumption that there was negligible exchange of O between H₂¹⁸O and NO₃⁻ was subsequently proven to be violated (Kool et al., 2007; Kool et al., 2009a and 2009b). Thus, the dual isotope method was revised by introducing an additional ¹⁸O-labelled NO₃ treatment so that O exchange during denitrification could be accounted for (Kool et al., 2010 and 2011a), and it was subsequently shown that nitrifier denitrification made a significant contribution to the N_2O fluxes in a number of soils examined. This method holds great promise for furthering our understanding of the role of biological processes in producing N_2O and needs to be applied across a wider range of soils and agroecosystems, in particular. One of the most intriguing and exciting isotopic developments in recent years has been that of stable isotope probing (SIP) of nucleic acids. The method relies on microorganisms assimilating significant quantities of the isotope concerned. This has been used successfully to trace uptake of ¹³Clabelled compounds into the DNA or RNA of soil microorganism (Radajewski et al., 2003). Previously uncultivated N₂ fixers, which assimilate N, have been identified using this method with ¹⁵N (Buckley et al., 2007). However, the direct use of SIP to identify dissimilatory organisms and/or conditions that promote N₂O production/consumption has generally been limited to conditions where denitrification is optimal and where ¹³C compounds are dosed to identify organisms operating in the denitrifying conditions. For example, a study by Ishii et al. (2011) supplied ¹³C-labelled succinate with and without N2O to determine what microbes were undertaking N₂O consumption in rice paddy soils. This examination of denitrifiers by ¹³C-proxy, under denitrifying conditions, in the absence or presence of substrates has merit, but it should also utilise 15N-labelled N substrate to further strengthen the findings (fate or change in ¹⁵N substrate would provide information on denitrification activity), and with emphasis placed on RNA-SIP under such conditions, as RNA provides information on active microorganisms. It is not vet understood how individual nitrification or denitrification genotypes affect N₂O production (Braker and Conrad, 2011). This methodology holds much promise and needs to be applied widely to excretal and fertiliser inputs in agroecosystems, so we can determine the key microbes and their function as it relates to nitrification and nitrification processes. ### **Natural abundance studies** Natural abundance studies utilise the naturally occurring isotopic composition of the molecule in question and report the abundance of the atom concerned in delta notation (δ) in units of ∞ : $$\delta x = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1\right) \times 1000 \tag{2}$$ where δx is the value of the heavy isotope in the sample (R_{sample}) relative to a standard (R_{standard}), where the international standard for $\delta^{15}N$ is N_2 in air. The measurement of molecules at natural abundance may also be carried out using IRMS (see above), infrared or laser spectroscopy (as noted below). An area where natural abundance of N isotopes has come into play with respect to N_2O is in the field of isotopomers. The N_2O molecule is linear and when ^{16}O is the oxygen isotope in the molecule it takes the form ¹⁴N¹⁵N¹⁶O. ¹⁵N¹⁴N¹⁶O or ¹⁴N¹⁴N¹⁶O. The intramolecular distribution of ¹⁵N at the central (α) or end (β) positions of the molecule are assessed by studying the abundance of ¹⁵N in the molecule. Using δ -notation, $\delta^{15}N$ denotes the difference in the $^{15}N/^{14}N$ ratio with respect to a standard, usually atmospheric N₂ (Mohn et al., 2012). The relative difference in the ratios of $^{14}N^{15}N^{16}O$ to $^{14}N^{14}N^{16}O$ and $^{15}N^{14}N^{16}O$ to $^{14}N^{14}N^{16}O$ are denoted $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$, respectively, whereas bulk value, $\delta^{15}N^{\text{bulk}} = (\delta^{15}N^{\alpha} + \delta^{15}N^{\beta})/2$ (Mohn *et al.*, 2012). The value for $\delta^{15} N^{\text{bulk}}$ in the troposphere is reported to range from 6.3 to 6.7% depending on location and time of sampling (Mohn et al., 2012). Another important piece of data able to be derived from the isotopomer measurement is the site preference (SP = $\delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$) of the N₂O molecule. This is deemed independent of the isotopic composition of the substrate the N₂O molecule derives from and supplies process information (Mohn et al., 2012). Before development of instrumentation for measuring $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$, only the average ^{15}N value of the N_2O molecule was determined ($\delta^{15}N^{\text{bulk}}$). Isotopomers of N_2O can now be measured using FTIR spectroscopy (Griffith et~al., 2009), tuneable diode laser absorption spectroscopy (Pattey et~al., 2006), gas chromatography-IRMS (Toyoda and Yoshida, 1999; Rockmann et~al., 2003; Kaiser et~al., 2004) and more recently quantum cascade laser absorption spectroscopy cavity-ringdown (QCLAS) spectroscopy utilising mid-infrared lasers (Mohn et~al., 2012). It is well recognised that N_2O isotopomers can be used to constrain the atmospheric N_2O budget and they confirm that the increase in atmospheric N_2O is a result of anthropogenic perturbation of the N cycle (Yoshida and Toyoda, 2000; Park *et al.*, 2012). Initial results examining nitrification and denitrification processes showed that different groups of organisms produced differing isotopomer signatures, and that SP values of 33‰ and \sim 0‰ were characteristic of nitrification and denitrification, respectively (Sutka *et al.*, 2003; Sutka *et al.*, 2006). Isotopomer science is in its infancy in the context of examining N₂O fluxes and sources from agroecosystems. The isotopomer analyses of N₂O have been applied to examine the effects of various treatments on N2O production and consumption including: biogas residue application to soil (Koster et al., 2011), cropping soils receiving organic and synthetic fertilisers (Toyoda et al., 2011), comparisons of tropical forest and cropping soils (Park et al., 2011), soil moisture conditions (Well et al., 2006; Jinuntuya-Nortman et al., 2008; Bergstermann et al., 2011), composting (Maeda et al., 2010), stimulated soil denitrification using glucose (Meijide et al., 2010), cultivation of temperate grassland (Ostrom et al., 2010). microbial processes (Bol et al., 2003; Toyoda et al., 2005; Perez et al., 2006; Sutka et al., 2006; Well et al., 2008), the effect of ruminant diet on subsequent slurry N₂O fluxes (Cardenas et al., 2007) and ruminant urine (Yamulki et al., 2001). Most of these early studies were of short duration and had limited temporal sampling. The study by Park's et al. (2011) suggested that the δ^{15} N^{bulk} data could be used for distinguishing N₂O fluxes from fertilised and natural 'background' fluxes, and that the SP δ^{15} N results could be used to differentiate between consumption and production of N₂O by microbial pathways. Enticingly, the use of QCLAS has been shown to be capable of continuous analysis of N₂O isotopomers with identification of N₂O source processes possible (Mohn *et al.*, 2012). This technology also needs to be deployed across agroecosystems to help understand not only excreta sources of N₂O, and temporal dynamics, but also to explore and demonstrate the success of mitigation options. #### Conclusion The impending increase in tropospheric N_2O emissions as a result of existing and projected increases in anthropogenic animal production systems demands mitigation options. These can only be implemented if N_2O emission sources and their temporal dynamics can be traced in conjunction with N_2O fate. The stable isotopes of N and associated methodologies provide the tools to achieve this tracing. More ^{15}N -tracer studies are needed to ascertain soil and excreta contributions to N_2O dynamics. Relatively new research fronts using SIP and isotopomers of N_2O offer exciting potential as diagnostic tools to evaluate effects and mitigation success. Collaborations between microbiologists, animal production specialists and soil scientists will bring much needed synergies to address the N_2O issue. ### **Acknowledgements** This paper was published as part of a supplement to *animal*, publication of which was supported by the Greenhouse Gases & Animal Agriculture Conference 2013. The papers included in this supplement were invited by the Guest Editors and have undergone the standard journal formal review process. They may be cited. The Guest Editors appointed to this supplement are R. J. Dewhurst, D. R. Chadwick, E. Charmley, N. M. Holden, D. A. Kenny, G. Lanigan, D. Moran, C. J. Newbold, P. O'Kiely, and T. Yan. The Guest Editors declare no conflict of interest. #### References Abbasi MK and Muller C 2011. Trace gas fluxes of CO_2 , CH_4 and N_2O in a permanent grassland soil exposed to elevated CO_2 in the Giessen FACE study. Atmospheric Chemistry and Physics 11, 9333–9342. Barraclough D and Puri G 1995. The use of ¹⁵N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biology & Biochemistry 27, 17–22. Bergsma TT, Ostrom NE, Emmons M and Robertson GP 2001. Measuring simultaneous fluxes from soil of N_2O and N_2 in the field using the $^{15}\text{N-Gas}$ "nonequilibrium" technique. Environmental Science and Technology 35, 4307–4312. Bergstermann A, Cardenas L, Bol R, Gilliam L, Goulding K, Meijide A, Scholefield D, Vallejo A and Well R 2011. Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N₂O during denitrification. Soil Biology & Biochemistry 43, 240–250. Berntsen J, Petersen BM, Sorensen P and Olesen JE 2007. Simulating residual effects of animal manures using N-15 isotopes. Plant and Soil 290, 173–187. Boast CW, Mulvaney RL and Baveye P 1988. Evaluation of nitrogen-15 tracer techniques for direct measurement of denitrification in soil: I. Theory. Soil Science Society of America Journal 52, 1317–1322. Bol R, Toyoda S, Yamulki S, Hawkins JMB, Cardenas LM and Yoshida N 2003. Dual isotope and isotopomer ratios of N_2O emitted from a temperate grassland soil after fertiliser application. Rapid Communications in Mass Spectrometry 17, 1–7. Bosshard C, Sorensen P, Frossard E, Dubois D, Mader P, Nanzer S and Oberson A 2009. Nitrogen use efficiency of N-15-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems. Nutrient Cycling in Agroecosystems 83, 271–287. Bosshard C, Oberson A, Leinweber P, Jandl G, Knicker H, Wettstein HR, Kreuzer M and Frossard E 2011. Characterization of fecal nitrogen forms produced by a sheep fed with N-15 labeled ryegrass. Nutrient Cycling in Agroecosystems 90, 355–368. Braker G and Conrad R 2011. Diversity, structure, and size of N₂O-producing microbial communities in soils—what matters for their functioning? In Advances in Applied Microbiology, Vol. 75 (ed. Al Laskin, S Sariaslani and GM Gadd), pp. 33–70. Elsevier Inc., Amsterdam, The Netherlands. Buckley DH, Huangyutitham V, Hsu SF and Nelson TA 2007. Stable isotope probing with ¹⁵N₂ reveals novel noncultivated diazotrophs in soil. Applied and Environmental Microbiology 73, 3196–3204. Campanella MV and Bisigato AJ 2010. What causes changes in plant litter quality and quantity as consequence of grazing in the Patagonian Monte: plant cover reduction or changes in species composition? Austral Ecology 35, 787–793. Cardenas LM, Chadwick D, Scholefield D, Fychan R, Marley CL, Jones R, Bol R, Well R and Vallejo A 2007. The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmosphere Environment 41, 7096–7107. Carter MS and Ambus P 2006. Biologically fixed N_2 as a source for N_2 O production in a grass-clover mixture, measured by N-15. Nutrient Cycling in Agroecosystems 74, 13–26. Chapuis-Lardy L, Wrage N, Metay A, Chotte JL and Bernoux M 2007. Soils, a sink for N_2O ? A review. Global Change Biology 13, 1–17. Clough TJ, Kelliher FM, Wang YP and Sherlock RR 2006. Diffusion of N-15-labelled N_2O into soil columns: a promising method to examine the fate of N_2O in subsoils. Soil Biology & Biochemistry 38, 1462–1468. Davidson EA 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosciences 2, 659–662. Delgado JA, Del Grosso SJ and Ogle SM 2010. N-15 isotopic crop residue cycling studies and modeling suggest that IPCC methodologies to assess residue contributions to N_2 0-N emissions should be reevaluated. Nutrient Cycling in Agroecosystems 86, 383–390. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC and Zhang X 2007. Couplings between changes in the climate system and biogeochemistry. In Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In (ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor and HL Miller), pp. 499–587. Cambridge University Press, Cambridge. Dittert K, Bol R, King R, Chadwick D and Hatch D 2001. Use of a novel nitrification inhibitor to reduce nitrous oxide emission from N-15 labelled dairy slurry injected into soil. Rapid Communications in Mass Spectrometry 115, 1291–1296. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn RG, Raga G, Schulz M and Van Dorland R 2007. Changes in atmospheric constituents and in radiative forcing. In Climate change 2007: the physical basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor and HL Miller), pp. 129–234. Cambridge University Press, Cambridge. Friedman L and Bigeleisen J 1950. Oxygen and nitrogen isotope effects in the decomposition of ammonium nitrate. The Journal of Chemical Physics 18, 1325–1331. Frimpong KA and Baggs EM 2010. Do combined applications of crop residues and inorganic fertilizer lower emission of N_2O from soil? Soil Use and Management 26, 412–424. Frimpong KA, Yawson DO, Baggs EM and Agyarko K 2011. Does incorporation of cowpea-maize residue mixes influence nitrous oxide emission and mineral nitrogen release in a tropical luvisol? Nutrient Cycling in Agroecosystems 91, 281–292. Fry B 2006. Stable isotope ecology. Springer, USA. Giannopoulos G, van Groenigen JW and Pulleman MM 2011. Earthworm-induced N_2O emissions in a sandy soil with surface-applied crop residues. Pedobiologia 54, S103–S111. Griffith D, Parkes SD, Haverd V, Paton-Walsh C and Wilson SR 2009. Absolute calibration of the intramolecular site preference of N-15 fractionation in tropospheric N₂O by FT-IR spectroscopy. Analytical Chemistry 81, 2227–2234. Hauck RD, Meisinger JJ and Mulvaney RL 1994. Practical considerations in the use of nitrogen tracers in agricultural and environmental research. In Methods of soil analysis, part 2. Microbiological and biochemical properties_SSSA book series, no. 5 (ed. RW Weaver), pp. 907–950. Soil Science Society of America, Madison, WI, USA. Ishii S, Ohno H, Tsuboi M, Otsuka S and Senoo K 2011. Identification and isolation of active N_2O reducers in rice paddy soil. International Society for Microbial Ecology Journal 5, 1936–1945. Jinuntuya-Nortman M, Sutka RL, Ostrom PH, Gandhi H and Ostrom NE 2008. Isotopologue fractionation during microbial reduction of N₂O within soil mesocosms as a function of water-filled pore space. Soil Biology & Biochemistry 40, 2273–2280. Jost DI, Joergensen RG and Sundrum A 2013. Effect of cattle faeces with different microbial biomass content on soil properties, gaseous emissions and plant growth. Biology and Fertility of Soils 49, 61–70. Junk G and Svec H 1958. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica et Cosmochimica Acta 14, 234–243. Kaiser J, Park S, Boering KA, Brenninkmeijer CAM, Hilkert A and Rockmann T 2004. Mass spectrometric method for the absolute calibration of the intermolecular nitrogen isotope distribution in nitrous oxide. Annalytical Bioanalytical Chemistry 378, 256–269. Kendall C and Caldwell EA 1998. Fundamentals of isotope geochemistry. In Isotope tracers in catchment hydrology (ed. C Kendall and JJ McDonnell), pp. 51–86. Elsevier Science, Amsterdam. Kirkham D and Bartholomew WV 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Proceedings 18, 33–34. Knowles R and Blackburn TH 1993. Nitrogen isotope techniques. Academic Press Inc., San Diego. Elsevier Inc., Amsterdan, The Netherlands. Kool DM, Van Groenigen JW and Wrage N 2011a. Determination of nitrous oxide based on nitrogen and oxygen isotope tracing: dealing with oxygen exchange. In Methods in enzymology vol 46: research on nitrification and related processes, Pt B (ed. MG Klotz and LY Stein), pp. 139–160. Elsevier Inc., Amsterdam, The Netherlands. Kool DM, Dolfing J, Wrage N and Van Groenigen JW 2011b. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology & Biochemistry 43, 174–178. Kool DM, Hoffland E, Abrahamse SPA and van Groenigen JW 2006. What artificial urine composition is adequate for simulating soil N_2O fluxes and mineral N dynamics? Soil Biology & Biochemistry 38, 1757–1763. Kool DM, Wrage N, Oenema O, Dolfing J and Van Groenigen JW 2007. Oxygen exchange between (de) nitrification intermediates and $\rm H_2O$ and its implications for source determination of $\rm NO_3^-$ and $\rm N_2O$: a review. Rapid Communications in Mass Spectrometry 21, 3569–3578. Kool DM, Muller C, Wrage N, Oenema O and Van Groenigen JW 2009a. Oxygen exchange between nitrogen oxides and $\rm H_2O$ can occur during nitrifier pathways. Soil Biology & Biochemistry 41, 1632–1641. Kool DM, Wrage N, Oenema O, Harris D and Van Groenigen JW 2009b. The O-18 signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Communications in Mass Spectrometry 23, 104–108. Kool DM, Wrage N, Zechmeister-Boltenstern S, Pfeffer M, Brus D, Oenema O and Van Groenigen JW 2010. Nitrifier denitrification can be a source of N_2O from soil: a revised approach to the dual-isotope labelling method. European Journal of Soil Science 61, 759–772. Koster JR, Cardenas L, Senbayram M, Bol R, Well R, Butler M, Muhling KH and Dittert K 2011. Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology & Biochemistry 43, 1671–1677. Lampe C, Dittert K, Sattelmacher B, Wachendorf M, Loges R and Taube F 2006. Sources and rates of nitrous oxide application of N-15-labelled emissions from grazed grassland after mineral fertilizer and slurry. Soil Biology & Biochemistry 38, 2602–2613. Laughlin RJ, Stevens RJ and Zhuo S 1997. Determining nitrogen-15 in ammonium by producing nitrous oxide. Soil Science Society of America Journal 61, 462–465. Lodge GM, King KL and Harden S 2006. Effects of pasture treatments on detached pasture litter mass, quality, litter loss, decomposition rates, and residence time in northern New South Wales. Australian Journal of Agricultural Research 57, 1073–1085. Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Morioka R and Yoshida N 2010. Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Applied and Environmental Microbiology 76, 1555–1562. Mary B, Recous S and Robin D 1998. A model for calculating nitrogen fluxes in soil using tracing. Soil Biology & Biochemistry 30, 1963–1979. Mathieu O, Lévêque J, Hénault C, Ambus P, Milloux M-J and Andreux F 2007. Influence of ¹⁵N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil. Rapid Communications in Mass Spectrometry 21, 1447–1451. Meijide A, Cardenas LM, Bol R, Bergstermann A, Goulding K, Well R, Vallejo A and Scholefield D 2010. Dual isotope and isotopomer measurements for the understanding of N₂O production and consumption during denitrification in an arable soil. Applied & Environmental Microbiology 76, 1555–1562. Mohn J, Tuzson B, Manninen A, Yoshida N, Toyoda S, Brand WA and Emmenegger L 2012. Site selective real-time measurements of atmospheric N_2O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques 5, 1601-1609. Mosier AR and Schimel DS 1993. Nitrification and denitrification. In Nitrogen isotope techniques (ed. R Knowles and TH Blackburn), pp. 181–208. Academic Press Inc., San Diego. Muller C, Rutting T, Kattge J, Laughlin RJ and Stevens RJ 2007. Estimation of parameters in complex N-15 tracing models by Monte Carlo sampling. Soil Biology & Biochemistry 39, 715–736. Mulvaney RL 1993. Mass spectrometry. In Nitrogen isotope techniques (ed. R Knowles and TH Blackburn), pp. 11–57. Academic Press Inc., San Diego. Mulvaney RL and Boast CW 1986. Equations for determination of nitrogen-15 labeled dinitrogen and nitrous oxide by mass spectrometry. Soil Science Society of America Journal 50, 360–363. Myrold DD and Tiedje JM 1986. Simultaneous estimation of several nitrogencycle rates using N-15 theory and application. Soil Biology & Biochemistry 18, 559–568. Nelissen V, Rütting T, Huygen D, Staelens J, Ruysschaerta G and Boeckx P 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology & Biochemistry 55, 20–27. OECD_FAO 2012. OECD-FAO Agricultural Outlook 2012-2021 (ed. aAOotU Nations). OECD Publishing. http://www.oecd.org/site/oecd-faoagriculturalout look/#publication2012 Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J and Kuikman PJ 2005. Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems 72, 51–65. Ostrom NE, Sutka RL, Ostrom PH, Grandy AS, Huizinga KM, Gandhi H, von Fischer JC and Robertson GP 2010. Isotopologue data reveal bacterial denitrification as the primary source of N_2O during a high flux event following cultivation of a native temperate grassland. Soil Biology & Biochemistry 42, 499–506. Pal P, Clough TJ, Kelliher FM and Sherlock RR 2013. Nitrous oxide emissions from *in situ* deposition of ¹⁵N labeled ryegrass litter in a pasture soil. Journal of Environmental Quality 42, 323–331. Pal P, Clough TJ, Kelliher FM, van Koten C and Sherlock RR 2012. Intensive cattle grazing affects pasture litter-fall: an unrecognized nitrous oxide source. Journal of Environmental Quality 41, 444–448. Park S, Pérez P, Boering KA, Trumbore SE, Gil J, Marquina S and Tyler SC 2011. Can N_2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N_2O production and consumption in tropical soils? Global Biogeochemical Cycles 25, 1–16. Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D, Fraser PJ, Kim KR, Krummel PB, Langenfelds RL, van Ommen TD, Steele LP and Trudinger CM 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience 5, 261–265. Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D and MacPherson JI 2006. Application of a tunable diode laser to the measurement of CH $_4$ and N $_2$ O ### Clough, Müller and Laughlin fluxes from field to landscape scale using several micrometeorological techniques. Agriculture and Forest Meteorology 136, 222–236. Paul JW and Beauchamp EG 1995. Availability of manure slurry ammonium for corn using N-15-labelled (NH₄)₂SO₄. Canadian Journal of Soil Science 75, 35–42. Perez T, Garcia-Montiel D, Trumbore S, Tyler S, De Camargo P, Moreira M, Piccolo M and Cerri C 2006. Nitrous oxide nitrification and denitrification N-15 enrichment factors from Amazon forest soils. Ecological Applications 16, 2153–2167. Powell JM, Wu ZG, Kelling K, Cusick P and Munoz G 2004. Differential nitrogen-15 labeling of dairy manure components for nitrogen cycling studies. Agronomy Journal 96, 433–441. Radajewski S, McDonald IR and Murrell JC 2003. Stable isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Current Opinion in Biotechnology 14, 296–302. Ravishankara AR, Daniel JS and Portmann RW 2009. Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125. Rockmann T, Kaiser J, Brenninkmeijer CAM and Brand WA 2003. Gas chromatography/isotope-ratio mass spectrometry method for high- precision position-dependent N-15 and O-18 measurements of atmospheric nitrous oxide. Rapid Communications in Mass Spectrometry 17, 1897–1908. Ruetting T and Mueller C 2007. N-15 tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils. Soil Biology & Biochemistry 39, 2351–2361. Rütting T 2012. Ignoring isotopic fractionation does not bias quantifications of gross nitrogen transformations. Rapid Communications in Mass Spectrometry 26, 1639–1640. Schils RLM, Eriksen J, Ledgard SF, Vellinga TV, Kuikman PJ, Luo J, Petersen SO and Velthof GL 2013. Strategies to mitigate nitrous oxide emissions from herbivore production systems. Animal 7, 29–40. Schouten S, van Groenigen JW, Oenema O and Cayuela ML 2012. 'Bioenergy from cattle manure? Implications of anaerobic digestion and subsequent pyrolysis for carbon and nitrogen dynamics in soil'. Global Change Biology Bioenergy 4, 751–760. Sharp Z 2007. Priciples of stable isotope geochemistry. Pearson Prentice Hall, Upper Saddle River, New Jersey. Sorensen P and Thomsen IK 2005. Production of nitrogen-15-labeled pig manure for nitrogen cycling studies. Soil Science Society of America Journal 69, 1639–1643. Stange F and Dohling F 2005. 15 N tracing model SimKIM to analyse the NO and N₂O production during autotrophic, heterotrophic nitrification, and denitrification in soils. Isotopes in Environmental & Health Studies 41, 261–274. Stark JM and Hart RH 1996. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Science Society of America Journal 60, 1846–1855. Stevens RJ and Laughlin RJ 1994. Determining nitrogen-15 in nitrite or nitrate by producing nitrous oxide. Soil Science Society of America Journal 58, 1108–1116. Stevens RJ and Laughlin RJ 1998. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems 52, 131–139. Stevens RJ, Laughlin RJ, Atkins GJ and Prosser SJ 1993. Automated determination of nitrogen-15 labelled dinitrogen and nitrous oxide by mass spectrometry. Soil Science Society of America Journal 57, 981–988. Sutka RL, Ostrom NE, Ostrom PH, Gandhi H and Breznak JA 2003. Nitrogen isotopomer site preference of N_2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Communications in Mass Spectrometry 17. 738–745. Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ and Li F 2006. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72. 638–644. Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR and Craigie RA 2011. Biochar incorporation into pasture soil suppresses *in situ* N_2O emissions from ruminant urine patches. Journal of Environmental Quality 40, 468–476. Toyoda S and Yoshida N 1999. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry 71, 4711–4718. Toyoda S, Mutobe H, Yanmagishi H, Yoshida N and Tanji Y 2005. Fractionation of N_2O isotopomers during production by denitrifier. Soil Biology & Biochemistry 37. 1535–1545. Toyoda S, Yano M, Nishimura S, Akiyama H, Hayakawa A, Koba K, Sudo S, Yagi K, Makabe A, Tobari Y, Ogawa NO, Ohkouchi N, Yamada K and Yoshida N 2011. Characterization and production and consumption processes of N_2O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Global Biogeochemical Cycles 25, 1–17. Well R, Kurganova I, de Gerenyu VL and Flessa H 2006. Isotopomer signatures of soil-emitted N_2O under different moisture conditions — a microcosm study with arable loess soil. Soil Biology & Biochemistry 38, 2923–2933. Well R, Flessa H, Xing L, Ju XT and Romheld V 2008. Isotopologue ratios of N_2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification. Soil Biology & Biochemistry 40, 2416–2426. Wrage N, Velthof GL, van Beusichem ML and Oenema O 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry 33, 1723–1732. Wrage N, van Groenigen JW, Oenema O and Baggs EM 2005. A novel dual-isotope labelling method for distinguishing between soil sources of N_2O . Rapid Communications in Mass Spectrometry 19, 3298–3306. Yamulki S, Toyoda S, Yoshida N, Veldkamp E, Grant B and Bol R 2001. Diurnal fluxes and the isotopomer ratios of N_2O in a temperate grassland following urine amendment. Rapid Communications in Mass Spectrometry 15, 1263–1269. Yoshida N and Toyoda S 2000. Constraining the atmospheric N_2O budget from intramolecular site preference in N_2O isotopomers. Nature 405, 330–334 Yue XL, Liao SQ, Ji HJ, Zhang WL, Zuo YB and Rong XN 2012. Nitrogen-15 labeling and nitrogen transformation in silage maize-cattle manure system. Zhongguo Shengtai Nongye Xuebao/Chinese Journal of Eco-agriculture Vol. 20, 24–27.