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1 Introduction 

1.1 Motivation 

Bioinorganic chemistry is a combination of inorganic chemistry and biology in which 

mainly molecules are investigated that contain metal ions and which are furthermore 

related to biological systems. An important study object are metalloenzymes, a 

subclass of metalloproteins, that are responsible for many different essential 

processes in biology such as dioxygen uptake and oxidation of organic substrates.[1, 

2] Binding and activation of small molecules such as dioxygen or carbon dioxide takes 

place at the so called active site of the enzyme. Responsible for this are, in about half 

of the known proteins, the metal cations bound in the active site which are 

coordinated through donor atoms of the amino acid chains. In order to understand 

such processes and their implications on binding and activation of substrate 

molecules, there have been numerous attempts to mimic the active sites of these 

enzymes and their catalytic reactions using low molecular weight complexes.[2-4] 

Studies of coordination behavior and kinetic investigations of low molecular weight 

metal complexes contribute to the better understanding of the structural and 

functional properties of these metalloproteins. Investigations of model complexes can 

offer a less complicated approach compared with the biological molecules and also 

may allow the development of so called artificial enzymes. Especially it is interesting 

to model the reactivity of the metalloenzymes in regard to find new catalysts for 

selective reactions under mild conditions. For example if selective oxidation reactions 

could be performed in water using a simple metal complex and air. This would mean 

a significant progress towards “greener” chemistry. Due to the fact that such 

oxidation reactions are extremely important there is high interest in the investigation 

of the uptake, transport, activation and transfer of oxygen by iron and copper proteins 

as well as their according model complexes.[2-4] Furthermore, it is important to point 

out that the molecular structure and the functionality of the active centers of 

metalloproteins as well as of the model compounds are determined by the 

coordinated side-chain donor groups and by the properties of the coordinated ligands 

respectively.  
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1.2 Background 

1.2.1  Copper 
 

Copper is already known to mankind for thousands of years. During the Roman 

Empire copper was gained out of mines on Cyprus, hence the origin of the name 

“cyprium”, which was later shortened to cuprum. Copper is an essential trace 

element and its compounds are important for plants and animals. It is found in the 

bloodstream of humans and animals, in various enzymes as a co-factor and in 

copper-based pigments.[5] 

The properties of copper in coordination chemistry are due to the almost nobel metal 

character, the intermediate stability, the reactivity of the d10 electron configuration in 

Cu(I) and the relative small radius of the Cu(II) ion, which contributes to the high 

energy of hydratation and thus to the higher stability of Cu(II) (aq) over Cu(I) (aq).[1, 6-

8] Cu(I) ions need to be stabilized by chelating ligands. The preferred coordination 

geometries of such complexes are four-coordinated tetrahedral or trigonal pyramidal 

structures, but also three- and two coordinated complexes have been reported. 

Furthermore, five coordinated Cu(I) complexes are well known adopting either a 

square pyramidal or a trigonal bipyramidal geometry.[5, 6]  

Comparison of the Cu(II)/Cu(I) redox potentials with those of the Fe(III)/Fe(II) 

potentials in the enzymes with similar biological functions usually show higher 

potentials for the copper systems. Due to the high potential necessary for oxidation of 

the less soluble Cu(I) to Cu(II), copper only became bioavailable to a larger extent, 

once an oxidizing environment was present due to photosynthesis. In contrast Fe(II) 

became less bio-available because it then was easily oxidized to Fe(III) and special 

mechanisms needed to be developed for iron uptake of an organism. However, due 

to this redox activity copper and iron containing enzymes are well suited to 

participate in reactions involving dioxygen such as transport or transfer to substrates 

by oxidases and oxygenases. Furthermore, they are important for the decomposition 

of toxic side products in the O2 metabolism such as superoxide anion.[2-4, 9-11] An 

overview of some of the known copper enzymes and the great variety of their 

reactions with dioxygen is presented in Figure 1-1.[4] 
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Figure 1-1: Selected copper enzymes and proteins that activate O2 

1.2.2 Oxygen 

Dioxygen is a colorless, odorless, tasteless gas with a spin triplet electron 

configuration (ground state). Molecular dioxygen is essential for most animals and 

plants because of generating energy by photosynthesis and cellular respiration in all 

aerobic organisms. Oxygen is the most abundant chemical element in our biosphere.  

Dioxygen was almost not existent until photosynthetic processes of archaea and 

bacteria developed. Today green algae and cyanobacteria in marine environments 

provide about 70% of the free oxygen produced on earth. The rest is produced by 

terrestrial plants. The present atmosphere consists of 21% O2.  

Dioxygen is a very strong oxidant with the second highest electronegativity of all 

elements. However, usualy reactions between O2 and metal complexes proceed 

irreversibly by cleavage of oxygen-oxygen bond leading to oxides, hydroxides or 
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water. With appropriate ligand configurations the reversible binding of dioxygen with 

transition metal complexes is possible.[12] 

1.2.3 Copper proteins 

As described above many metalloproteins and metalloenzymes contain copper ions, 

ranging from active sites with one up to four copper ions which bind and/or activate 

dioxygen and perform a variety of important biological reactions. Copper containing 

enzymes such as laccase, tyrosinase, galactose oxidase, cytochrome c oxidase and 

superoxide dismutase, are involved in the selective oxidation of organic substrates, 

e. g. by transfering one (monooxygenases) or two (dioxygenases) oxygen atoms to 

the substrate molecule. Thus galactose oxidase catalyses the aerobic oxidation of 

primary alcohols to aldehydes while superoxide dimutase is involved in the 

degradation of superoxide anion as a side product of the aerobic metabolism (Figure 

1-1).[2-4, 9-11, 13] 

An exceptionally important copper containing metalloprotein is the respiratory protein 

hemocyanin (Hc) in arthropods and mollusks.[2] Hemocyanins are colourless in the 

reduced deoxygenated state and blue when exposed to air / oxygen dissolved in the 

blood. In the active site a binuclear copper centre is coordinated to the protein by the 

amino acid histidine, so a tris(imidazole) ligation is found at each copper centre.[3, 4] 

The binding site of dioxygen in Hc is shown in Figure 1-2. Hemocyanin has the ability 

to bind and release dioxygen reversible by formation of a µ-η2:η2-peroxo-

dicopper(II,II) unit:  

Desoxy-Hc[Cu(I) Cu(I) ] + O2    Oxy-Hc[Cu(II) O2
2- Cu(II)] 

Related to the binuclear Cu protein hemocyanin are the binuclear Cu enzymes 

tyrosinase (TY) and catechol oxidase (CO) that also can bind O2 reversibly in the 

same way. Both enzymes have been crystallographically characterized and possess 

a very similar structure compared with hemocyanin.[13-15] 
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Tyrosinase, a monooxygenase is involved in the composition of insect’s exoskeleton 

(cuticula) and in browning reactions of vegetables and fruit such as the blackening of 

a peeled or sliced potato when exposed to air. Tyrosinase mediates the hydroxylation 

of monophenols to o-diphenols and the subsequent two-electron oxidation to o-

quinones.[16] Thus the pigment melanin (browning reaction) is formed by 

polymerization and is responsible for the colour of our skin and hair. The reaction of 

tyrosine to melanin is shown in Figure 1-3.[10] 
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O
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H

tyrosinase

O2

tyrosinase

O2

polymerisation

tyrosine dopa dopachinon

indol-3,4-chinon

melanin  
Figure 1-3: Conversion of tyrosine to melanin catalysed by tyrosinase 

As a further member of such type III copper proteins,  the catechol oxidase (CO =1,2-

benzenediol/oxygen oxidoreductase) catalyzes exclusively the oxidation of catechols 

(i.e., o-diphenols) to the corresponding quinones (Figure 1-4) and is believed to be 

responsible for the disease resistance in higher plants. Quinones are reactive 
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compounds, which undergo autopolymerization to produce melanin as already 

described above. COs are generally found in plant tissues, in some insects and 

crustaceans, whereas TYs can be obtained from a variety of plants, fungi, bacteria, 

mammalians and insects.[11, 17, 18] The functional differences between CO and TY 

should not be overemphasized because some plant COs also exhibit weak 

monooxygenase activity.  

OH

OH

O

OCatechol oxidase

1/2 O2 H2O

 
 
 

Figure 1-4: Catechol oxidase activity 

1.2.4 Model complexes for copper proteins 

As described above, low molecular weight copper complexes can be quite important 

for the better understanding of copper proteins and might be interesting in regard to 

their potential use as catalysts in selective oxidation reactions.  Several excellent 

review articles describe these investigations in great detail.[3, 4, 19] The development of 

biomimetic copper complexes, which react with dioxygen in the same way as their 

natural analogues has attracted much interest during the past decades.[3, 4, 20-22] The 

general approach is shown in Figure 1-5.  

Efforts to functionally model the copper protein hemocyanin and different copper 

enzymes led to the development of a series of mononuclear and binuclear copper 

model complexes.[7, 23, 24] The applied ligand system plays a crucial role. Nitrogen 

donor ligands such as pyrole, imidazole, pyridine and derivates have been used 

successfully in experimental studies to model dioxygen “activation” chemistry with 

copper complexes.[3, 4, 21]   
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Figure 1-5: Synthetic analogue to metallobiomolecule active sites[25]  

Especially pyridine based ligands proved to be quite useful in that regard and Karlin 

and co-workers were able to model the reversible dioxygen binding of a copper(I) 

complex at low temperatures using tris(2-pyridylmethyl)amine (tmpa, Figure 1-6) as a 

ligand.[26-28] 

N
N

N

N
 

Figure 1-6: The ligand tris[2-pyridyl)methyl]amine ( tmpa) 

The reaction of dioxygen with two of the Cu(I) complexes led to the formation of a 

purple binuclear copper peroxo complex (Figure 1-7). Karlin and co-workers also 

succeeded for the first time to crystallize and to structurally characterize this copper 

peroxo complex, [Cu2(tmpa)2(O2)]2+, at low temperatures.  
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RCN
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Figure 1-7: The formation of the copper-peroxo complex 
[Cu2(tmpa)2(O2)]2+ 

Tyrosinase activity was first modeled successfully by Karlin and co-workers as well, 

who observed, that an intramolecular ligand hydroxylation occurred during the 

reaction of dioxygen with the binuclear copper(I) complex [Cu2(R-XYL)]2+
 wherein a 

m-xylyl group links two bis[2-(2-pyridyl)ethyl]amine units (Figure 1-8).[28-33]  

NN

N N

N
Cu

N
Cu NN

N N

N
Cu

N
Cu

O

O
H

NN

N N

N
Cu

N
Cu

O2

O2

[Cu2(XYL-H)O2]2+

[Cu2(XYL-H)]2+ [Cu2(XYL-O)OH]2+

2+

2+

2+

 
 

Figure 1-8: Intramolecular ligand hydroxylation during the reaction of [Cu2(R-XYL-H)]2+
 

with dioxygen 

The occurrence of an µ-η2:η2-peroxo bridged dicopper(II) species as an intermediate 

during this reaction was observed spectroscopically in a detailed stopped-flow 

kinetics study and in a resonance raman study. However, further investigations have 

shown that bis-µ-oxo copper units are also capable to perform ligand hydroxylation 

reactions.[34]  



CHAPTER 1 

 
 

9 

1.2.5 Mechanisms of dioxygen binding 

The oxidation of copper(I) complexes with dioxygen leads in a first reaction step to 

the formation of Cu/O2 adduct complexes. During this process dioxygen is activated 

and thus consecutive reaction, the oxidation of a substrate according to the following 

general equation can follow:  

O2metalloenzyme
       or
metal complex

Oxy-form product
substrate

 

Molecular dioxygen can react in different ways with the copper ions of enzymes or 

model compounds. Several of these "oxygen adduct" complexes could be fully 

characterized in recent works and some selected examples of the different binding 

modes are presented in Figure 1-9.[3, 4, 19, 21, 35, 36] As discussed above dioxygen in 

hemocyanin is coordinated as a side-on µ-η²:η² peroxide in contrast to the trans-µ-

1,2-peroxo coordination in [Cu2(tmpa)2(O2)]2+.[37, 38] In methane monooxygenase it is 

most likely that a bis-µ-oxo unit represents the active species.  

CuL
O

O. CuL
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CuL

O

O
CuL

O

O

CuL

O
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Cu LH
CuL

Cu

Cu

L

L

Cu L Cu L

η1-superoxo trans-µ-1,2-peroxoη1-hydroperoxo cis-µ4-η2:η2-peroxo

η2-superoxo µ-η2:η2-peroxo η2-peroxo bis(µ−oxo)
 

 Figure 1-9: Characterized examples of copper "oxygen adduct" complexes 

So far, most of the Cu/O2 adduct complexes described are thermally unstable and 

very reactive. There have been many efforts to stabilize and characterize these 

dioxygen adduct complexes formed during the oxidation of Cu(I) complexes. The 

stability and reactivity of the "dioxygen adduct complexes" can be influenced by 
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changing the ligand system of the model. Systematic variation of the sterical and 

electronic properties of the ligands is an accessible way to generate Cu/O2 adducts 

that could be well characterized.[3, 4, 19, 35] This success is also attributed to modern 

spectroscopic tools and to a better appreciation of appropriate reaction conditions as 

low temperature, aprotic solvents and weakly coordinating anions.  

1.3 Copper(I) complexes with Schiff base ligands 

As described above modeling the tyrosinase activity was first successfully 

demonstrated by Karlin and co-workers who observed an intramolecular ligand 

hydroxylation using the binuclear copper(I) complex [Cu2(R-XYL)]2+. In the following it 

turned out, that the nature of the N-donor atoms is very important for this reaction. 

Substitution of the pyridine groups in [Cu2(R-XYL)]2+ with pyrazole or benzimidazole 

donors surprisingly completely suppressed the intramolecular ligand hydroxylation 

reaction described above. In contrast if two triazacyclononane units, bridged by the 

xylyl group, were used, the intramolecular hydroxylation reaction was observed. So 

far, a clear detailed explanation for these observations is still missing.[21, 34, 39-46]  

Furthermore, for a series of similar and structurally related binuclear copper(I) imine 

complexes (so called Schiff base complexes) intramolecular ligand hydroxylation was 

observed as well, if the complexes were exposed to dioxygen (Figure1-10). 

Interestingly, in these cases the intramolecular hydroxylation reaction is much less 

sensitive towards ligand modifications.[42, 47-56]  

 

Figure 1-10: Hydroxylation of a Schiff base ligand 

 Again, detailed information on the reaction mechanisms is missing. To gain further 

insight into the reaction behavior of such imine systems, several Schiff base ligands 

and their copper complexes have been synthesized and investigated previously by 

Schindler and co-workers. For example, it was observed that the macrocyclic 

N N
Cu Cu

XX

O2
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N N
Cu Cu

XX

O

O
H
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binuclear copper(I) complex [Cu2mac(CH3CN)2](ClO4)2 (mac = 3,6,9,17,20,23-

Hexaaza-tricyclo[23.3.1.1]triaconta-1(29),2,9,11(30),12(13),14,16,23,25,27-decaene) 

as well undergoes an intramolecular ligand hydroxylation when exposed to dioxygen 

(Figure 1-11). However, a dioxygen adduct complex, most likely a copper(II) peroxo 

species, could not be detected by a stopped flow analysis under different conditions. 
[31, 48] Furthermore, these findings are related to kinetic studies performed with the 

complex [Cu2(HBPB-H)(CH3CN)2](BF4)2 (HBPB =1,3-bis[N-(2-pyridylethyl) 

formimidoyl]benzene).[49] 

N N

2+

N N

NN Cu Cu

N N

N N

NN

NCCH3

H3CCN

Cu Cu

O

O
H

2+

O2

-2 CH3CN

 

Figure 1-11: Reaction of [Cu2L1(CH3CN)2](ClO4)2 with dioxygen 

1.4 Copper(I) complexes with phenanthroline and bipyridine as ligands 

It is well known that phenanthroline and bipyridine (Figure 1-12) as well as derivates 

are excellent ligands for complexation of copper(I) ions. 

NN NN  

Figure 1-12: 1,10-phenanthroline and 2,2`-bipyridine 

Already in the 1960ties 2,9-dimethyl-1,10-phenanthroline was successfully applied as 

an analytical reagent because of the stability and the special photo physical 

properties of its copper(I) complexes.[57]  

In Figure 1-13 the copper(I) complex cation is shown. This complex is characterized 

by its intensive orange color which allows the exact analysis of copper(I) ions with a 
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low detection limit.[58] The ligand 2,9-dimethyl-1,10-phenanthroline is commercially 

available under the name  “neocuproine”.  

NN

N N
CuI

+

 
Figure 1-13: Structure of the orange copper(I) phenanthroline complex cation 

1.4.1 Copper oxo species with phenanthroline as ligand  

Due to the fact that transition metal oxides are capable to activate hydrocarbons, 

these processes are important for catalytic reactions and attract continuous interest. 

Furthermore it is well known, that transition metal oxides such as FeO+, NiO+ and 

PtO+, are even capable to oxidize quite inactive alkanes such as methane.[59] To 

perform a selective oxidation of methane to methanol in chemical industry is currently 

one of the big challenges in research. In contrast this oxidation is a facile reaction in 

nature, catalyzed by the enzyme methane monooxygenase, with either iron or copper 

ions in its active site.  

However, it is expected that simple transition metal complexes should have similar 

catalytic properties. So it is assumed that an Fe(IV)=O intermediate generated 

through dioxygen activation could perform the oxidation and functionalization of 

aliphatic C-H bonds. Recently Que Jr. and co-workers were able to synthesize 

several iron(IV) oxo complexes that can be used to oxidize C-H bonds of alkanes at 

room temperature.[60, 61] Furthermore, such an iron(IV) oxo species could be fully 

characterized recently.[62]  

It is also believed that the analogous copper-oxo-species unit should be an important 

reactive intermediate in the oxidation processes in copper chemistry. However so far 

such a species could not be characterized. Recently Schröder, Holthausen and 

Schwarz postulated the generation of a Cu=O+ cation with phenanthroline as a 

stabilizing ligand.[63] This ligated copper oxide ion (phen)CuO+ (the calculated 

structure is shown in Figure 1-14) is accessible by ESI of a copper nitrate solution 

containing equimolar amounts of phenanthroline. It could be demonstrated that this 
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species is able to oxidize simple hydrocarbons such as propane and n-butane. 

However, it has to be kept in mind, that ions generated by ESI undergo 

rearrangement and cannot be described as a single structure.  

               
Figure 1-14: Calculated copper oxide cation (phen)CuO+ 

1.4.2 Copper olefin complexes  

As described above, copper complexes can activate dioxygen and therefore they 

play an essential role not only in nature. Thus it is also interesting to investigate the 

reaction behavior of these copper complexes towards olefins. Furthermore, organo 

copper(I) complexes are often used for different applications in organic synthesis. [64-

67] In this regard, especially the simple unsaturated hydrocarbon ethylene plays an 

important role. Ethylene is produced in chemical industry as the largest amount of an 

organic compound. However, it is also a plant hormone that causes seeds to sprout, 

flowers to bloom and fruit to ripen and fall off. This effect can be observed as well 

with carbon monoxide, acetylene and other olefins with a terminal C=C bond. These 

findings and the requirement of dioxygen for biological processes suggest that a 

metal ion is present at the ethylene receptor site. On this account several copper(I) 

complexes with phenanthroline, bipyridine and derivates and ethylene as ligated 

olefin were investigated in detail some years ago. It could be shown that the 

copper(I) ion (as expected) only has a very weak π-back bonding ability in 

comparison with related  Ni(0) or Pt(0) compounds.  

Other unsaturated hydrocarbons have been used as ligands for copper(I) ions and 

the corresponding complexes have been fully characterized.[65] In this regard 

Munakata et al. could successfully synthesize the first binary copper(I) complex with  

the cyclic olefin cyclooctadiene (COD) where the copper centre is ligated only by 

olefins (Figure 1-15a).[68] In comparison with the isoelectronic [Ni(COD)2] it was 
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observed that both complexes have a very similar molecular structure. [Ni(COD)2] 

plays an important role for the synthesis of several nickel(0) containing compounds 

used in organometallic chemistry. Furthermore, [Cu(bipy)COD]ClO4 also could be 

structurally characterized by Munakata et al. (Figure 1-15b). The molecular structure 

is again quite similar to [Ni(bipy)COD].  

 

Figure 1-15a: Structure of the cation [Cu(COD)2]+ [68] 

 

Figure 1-15b: Structure of the cation [Cu(bipy)(COD)]+[68] 

Important in that regard is that copper(I) complexes containing cyclooctadiene (COD) 

as ligand are characterized by only weak copper-olefin bonds. This offers the 

possibility to use these complexes for reactions where the olefin easily can be 

replaced by other substituents such as dioxygen.  

1.5 Nickel complexes 

1.5.1 The element nickel and some of its compounds 

Because of its silvery appearance nickel was mistaken for other ores for a long time 

and therefore not known as a pure metal. However, the use of nickel is ancient: 
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Since 1000 b.C. it has been used by the Chinese within a copper-nickel alloy to 

manufacture articles for their daily use. 

Also in the ancient Greece coins were made of a copper-nickel alloy. Later on in the 

middle ages nickel salts were of value for coloring glasses green. The mineral used 

for coloring glass was called "Kupfernickel" (false copper).  

Finally nickel was discovered by the Swedish chemist Axel Frederik Cronstedt in the 

mineral niccolite in 1751. Apparently, he had expected to extract copper from this 

mineral but obtained none of it. Instead he discovered a white colored metal that he 

named nickel after the mineral from which it was extracted. Later on the pure nickel 

metal could be isolated by Torben Bergmann.  

Today, most of nickel is obtained from the mineral pentlandite (NiS x 2FeS). Most of 

the world's supply of nickel is found in mines in the Sudbury region of Ontario, 

Canada. It is believed that this large deposit of nickel ore is a result of an ancient 

meteor impact. 

Nickel is a hard, corrosion resistant metal. It can be electroplated onto other metals 

to form a protective coating. Finely divided nickel is used as a catalyst for 

hydrogenations.  

In 1888 the isolation of tetracarbonylnickel was the beginning of nickel organic 

chemistry. Ni(CO)4 was discovered by Ludwig Mond and can be synthesized by the 

direct reaction of finely distributed nickel metal with CO at 80°C. Mond recognized 

the thermal instability of Ni(CO)4 at 180°C and this is used even today to obtain nickel 

metal with a purity of 99,9%.  

The discovery of the Reppe-catalyst in 1940 and of the nickelocene in 1953 triggered 

finally the enormous commercial and industrial interest in the organometallic 

chemistry of nickel.[69]  

1.5.2 Nickel(0) olefin complexes  

Complexes containing Ni(0) as metal centre have become quite important for organic 

synthesis.[69, 70] The current state of chemical technology allows the successful 

handling of these complexes that are very sensitive towards dioxygen. In the 
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following, Ni(0) complexes and their catalytic properties concerning 

cycloOligomerization of alkenes, alkynes and dienes will be described briefly.[69, 71]  

Nickel catalyzed selective cyclooligomerizations of alkynes by W. Reppe and co-

workers in the 1940s and the analogous cyclooligomerizations of 1,3-alkadiens by G. 

Wilke and co-workers were important discoveries in transition metal mediated 

organic synthesis. Reppe postulated that acetylene is principally cyclotrimerized into 

benzene by nickel(0) catalysts, such as (Ph3P)(CO)2Ni. But findings that acetylene is 

cyclotetramerized by catalysts like Ni(CN)2 or by Ni(0) complex having labile ligands 

such as [Ni(COD)2], were difficult to understand. Subsequent detailed mechanistic 

studies of these Oligomerization by Eisch and co-workers have led to a clearer 

picture. The following mechanism was postulated (Figure 1-16): the reactive 

nickelacyclopropene (1) and nickelacyclopentadiene (2) rings are cruical 

intermediates in both cyclooligomerizations. Trimerization to 3 or tetramerization to 4 
depends on whether 2 reacts with a third alkyne (path a) or undergoes 

autodimerization (path b). [72-79] 

Ni

RR

R R

RR
R

R
RR

R

R

Ni
RR

R

R
R

R
R

R

CR CR

CR CR

CR CR

LnNi

-Ni0 -2 Ni0
path a path b

1

2

3 4

 

Figure 1-16: Oligomerization of alkynes[79] 

Today the catalytic dimerization of 1.3-butadiene (C4H6) to 1,5-cyclooctadiene (COD) 

using Ni(0) phosphane complexes as catalysts is performed in industry.[80] Wilke and 

co-workers discovered this reaction, while investigating a new Ziegler Natta catalyst 

for polymerization of 1,3-butadiene. After detailed and careful work a mechanism for 
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the dimerization and trimerization could be postulated. Figure 1-17 shows only the 

reactions leading to COD.[75, 81-85]  

Ni

Ni

+  2 NiLL Ni

L

L

Ni

2COD
 

 

Figure 1-17: Postulated mechanism for the synthesis of COD 

Today this mechanism is well accepted and has been supported and enhanced more 

recently by theoretical calculations performed on this system.[86] Although such nickel 

catalyzed C-C coupling reactions are now well established, they are still of high 

interest because they offer the opportunity to possibly replace more expensive noble 

metal catalysts. 

1.5.3 Dioxygen activation at monovalent nickel 

It is well known and already described herein that dioxygen activation is important 

requirement for many chemical reactions of life. Therefore copper and iron containing 

enzymes constitute an important class of biologically active compounds which 

received a widespread attention from both inorganic chemists and biochemists. 

Because the biological functions of iron and copper enzymes range from oxygen 

transport, superoxide dismutation to oxidation or oxygenation of organic substrates 

including electron transfer processes, investigations focused on these systems for 

the last two decades.  

Beside copper and iron enzymes, more recently nickel has received a growing 

amount of interest. The monovalent oxidation state of nickel is suggested to have a 
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catalytic role in a number of metalloprotein-mediated transformations. For example  

nickel enzymes are responsible for reactions involving transformations of one-carbon 

substrates such as CO or CO2 and methyl equivalents, most essential for early life.[87] 

Nickel proteins found in anaerobic organisms are the acetyl coenzyme A synthase, 

carbon monoxide dehydrogenase and the methyl coenzme M reductase. All these 

proteins catalyze reactions required for autotrophic growth.[87] 

Inspired by the rich biomimetic studies of copper complexes (described in chapter 

1.2.4) and inspired by the discovery of two nickel-dependent enzymes which utilize 

dioxygen (a nickel superoxide dismutase and a  nickel dioxygenase)[88-93], there is a 

recent intent on investigations of nickel dioxygen chemistry.  Corresponding to 

copper chemistry, very labile nickel dioxygen adduct complexes have been 

synthesized using ligands which can stabilize nickel (I) towards disproportionation 

reaction. Therefore monomeric side-on and end-on superoxo and trans-µ-1,2-

peroxodinickel intermediates could be characterized spectroscopically (Figure 1-18). 

Therefore this could become an attractive research area in regard to use such 

complexes and intermediates as stoichiometric and catalytic oxidants in organic 

chemistry.
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Figure 1-18: Nickel dioxygen adduct complexes 
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1.6 Projects 

As discussed above copper and nickel complexes can play an important role in 

organic synthesis. Therefore, the topic of this thesis is a detailed study on reactions 

of these complexes. Investigations on the following projects were performed and are 

described in this work: 

1.6.1 Copper complexes with Schiff base ligands 

As described in the introduction there is high interest to model tyrosinase activity 

using small molecule model systems for a better understanding of the detailed 

mechanism of intra- and intermolecular hydroxylation reactions. So far there is only 

limited knowledge on the mechanisms of these reactions. As mentioned in paragraph 

1.3 Schiff base ligands are well suited to support the according copper complexes to 

model tyrosinase activity. To gain further insight into the reaction behavior of these 

complexes the ligand hydroxylation reaction of the Cu2bis(imine) complex 

[Cu2(DAPA)]2+ (DAPA = 1.3-bis-[(3-(N-dimethyl)propyl)iminomethyl]benzene (fig 1-

19) was investigated.  
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Figure 1-19: Hydroxylation of [Cu2(DAPA)]2+  

1.6.2 Copper complexes with phenanthroline and bipyridine as ligands 

As described in chapter 1.4 it is well known, that bidentate chelate ligands with 

nitrogen donor atoms such as bipyridine and phenanthroline are suitable for 

preparation of copper(I) complexes. Together with these chelate ligands it is possible 

to synthesize complexes containing either saturated or unsaturated hydrocarbons as 

further ligands.  There is a great interest in such transition metal complexes because 

of their possible application as catalysts in organic chemistry. Furthermore, most of 

these complexes with only weakly coordinated olefin ligands are suitable for 
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substitution processes and can easily react with dioxygen. Thus it should be possible 

to observe the formation of "dioxygen adduct" complexes (that might be difficult to 

prepare otherwise) and/or oxidation of the olefin. Reactions of this type were studied 

in detail. 

1.6.2.1 Copper-oxo-species 

In contrast to the according iron complexes, (see 1. 4) so far it was not possible to 

synthesize and fully characterize a copper oxo species. Because such complexes 

seem to play an important role as reactive intermediates in oxidation processes it 

was tried to synthesize such a species. Based on the results of Schröder, Holthausen 

and Schwarz who suggested the formation of such a species from ESI 

measurements and theoretical calculations phenanthroline and derivatives were used 

as ligands in these studies. 

1.6.3 Copper(I) olefin complexes 

The binding of unsaturated hydrocarbons to transition metals such as copper plays 

an essential role not only in nature but also in organometallic chemistry. So organo 

copper(I) complexes are often used for applications in organic synthesis. 

Characterization and investigation of these complexes and their behavior are 

important aspects in organometallic chemistry. Therefore copper complexes with 

several olefin ligands were synthesized, characterized and investigated kinetically.  

1.6.4 Nickel(0) olefin complexes 

As described above transition metal complexes such as Ni(0) complexes are 

essential catalysts in numerous organic synthesis and therefore important materials 

in industry and laboratories. Therefore it is important to synthesize and investigate 

Ni(0) complexes with unsaturated substrates as ligands and their reaction behavior in 

detail. Especially in cooperation with the research group of Prof. A. de Meijere 

(University of Göttingen) several Nickel(0) bipyridine complexes with quite special 

olefin ligands such as bicyclopropylidene bcp (a) and dicyclopropylacetylene dcpa 

(b) were synthesized, characterized and investigated.  

a b  

Figure 1-20: Bicyclopropylidene (a) and dicyclopropylacetylene (b)  
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2 Theoretical part 

2.1 Chemical Kinetics 

Chemical kinetics or reaction kinetics deals with the measurement and study of rates 

of chemical reactions and the analysis of experimental data to gain as much 

information as possible about a chemical reaction. The final goal is the postulation of 

a reaction mechanism and to obtain information on the transition state. Kinetic 

investigations include different experimental conditions like different concentrations, 

temperature, pressure or different solvents and how these can influence the rate and 

the course of a chemical reaction. In the following description the most important 

terms and mathematic relations of reaction kinetics concerning this work will be 

summarized. A complete and detailed summary on this topic is described in detail in 

several textbooks.[94-97]  

2.2 Reaction rate  

The rate of change in the concentrations of the reactants and products can be used 

to characterize the rate of a chemical reaction. In the correct form a reaction can be 

described as the differential change of ni:   

ζν ddn ii ⋅=              [2.1] 

with  

ζ = extent of the reaction 

ni = mol 

νi = stoichiometric coefficient. 

Under constant volume conditions, a reaction can be determined as:  

χζν dv
V
d

V
dn

ii
i ⋅=⋅=           [2.2] 

χ = volume based extent of the reaction        
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The reaction rate Rν  for a chemical reaction occurring in a closed system under 

constant-volume conditions is defined as: 

dt
dc

dt
d i

i
R ⋅==

ν
χν 1             [2.3] 

For a common reaction (eq. 2.4) , the reaction rate is determined as follows (eq. 2.5):  

cCbBaA →+            [2.4] 

[ ] [ ] [ ]
dt
Cd

cdt
Bd

bdt
Ad

aR
111

=−=−=ν           [2.5] 

If the rate of the reaction depends only on the concentrations of A and B, the 

proportionality factor k in the rate law is usually termed the rate constant (eq. 2.6): 

[ ] [ ] [ ]yx
R BAk

dt
Adv =−=           [2.6] 

The terms x and y in equation [2.6] determine the order of the reaction. If 1=x , the 

reaction order is termed first order in A, if 2=y  the reaction rate is second order in B. 

The overall order fo the reaction is yx + .  

2.3 First order dependence 

First order reactions are extremely common chemical reactions. The reaction rate 

depends only on the concentration of one reactant.   

For a reaction such as BA→ , the decrease in concentration of A over time can be 

written as shown in equation [2.7] It is a first order rate law because the rate is 

proportional to the first power of [A]. 

[ ] [ ] [ ]Ak
dt
Bd

dt
Ad

==−            [2.7] 

The differential form leads to an equivalent integrated expression:  

[ ]
[ ]

[ ]
[ ] ktAAkt
A
Adtk

A
AdA

A

t

−=⇒−=⇒−=∫ ∫ ]ln[]ln[ln 0
000

      [2.8] 
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To establish if a reaction follows first order kinetics it is common to plot the measured 

concentration versus the time. Therefore properties which are proportional to the 

concentration of the reactant such as absorbance or conductivity have to be 

measured. A plot of ]ln[A  versus time is a straight line with slope km −= . 

Alternatively, a plot of rate versus [A] is a straight line with a slope of -k. From 

experimental data the rate constant can be calculated from the slope of the 

appropriate plot. Today linearization is not the most accurate method to determine 

the reaction rate but computer programs such as Origin or Igor can be used to fit the 

measured data directly to exponential functions.  

2.4 Second order dependence 

Second order kinetics play an important role in the reactions of complex ions. In a 

general reaction between two molecules A and B (equation 2.4), the reaction order is 

termed 1 in A and B but overall it is a second order rate law because the rate is 

proportional to the product of two concentrations. The reaction law in this case is 

given by: 

[ ] [ ] [ ] [ ][ ]BAk
dt
Cd

dt
Bd

dt
Ad

==−=−           [2.9] 

Integration of the differential equation leads to: 

 [ ] [ ]
[ ] [ ]
[ ] [ ] kt

BA
AB

BA
=

⋅
⋅

⋅
− 0

0

00

ln1                          [2.10] 

These reactions usually are studied under pseudo first order conditions because this 

is a much easier procedure. Pseudo first order conditions mean that one of the 

reactants is provided in excess in respect to the other one of at least a concentration 

ratio of 10 : 1. Thus the concentration of the reactant in excess can be regarded as 

constant and can be included into the rate constant, obtaining a pseudo first order 

constant. That allows to determine a pseudo first order rate constant from a second 

order rate equation. This makes the treatment to obtain an integrated rate equation 

much easier. If B is the reactant whose concentration is constant ([B]>>[A] and [B] ≈ 

[B]0 ≈ const) the rate law can be derived to: 
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k+

k-

[ ] [ ]Ak
dt
Ad

obs=−                             [2.11] 

This leads to the following expression of the rate constant: 

[ ]0Bkkobs =                              [2.12] 

The rate constant k  can be obtained by a plot of obsk  versus [ ]0B . 

2.5 Equilibrium reactions  

Many chemical reactions such like ligand exchange processes of metal complexes 

are equilibrium reactions, defined by a forward and back reaction. 

For example MX and Y react to MY and X: 

 

YXM +−   XYM +−                 [2.13] 

 (M = metal complex ; X, Y = ligands) 

To obtain pseudo first order conditions concerning k+ and k- the ligand concentration 
of X and Y is kept in great excess in respect to the concentration of the metal 
complex. Therefore the reaction rate expression for the above reaction can be 
expressed as 

[ ] [ ] [ ][ ] [ ][ ]XYMkYXMk
dt
Yd

dt
XMd

−−−==
−

− −+               [2.14] 

with  

[ ] [ ]XkYkkobs −+ −=                               [2.15] 

The rate constant kobs can be determined as the sum of k+ and k-. These rate 
constants can be obtained by plots of obsk  versus [X] or [Y].   

2.6 Consecutive Reactions 

Most chemical reactions consist of several reaction steps. Therefore educts, products 

as well as intermediates can influence the reaction kinetics. Several different possible 

reaction pathways are observed. The most simple case includes one intermediate I  

formed in a reversible reaction step. To determine the according rate law is becoming 

more difficult, if more than one reversible reaction step has to be considered as 

shown for example in the first reaction step of equation 2.16.  
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A + B I P
k1

k-1

k2

                [2.16] 

(A, B = educts; I = intermediate; P = product) 

The mathematical description of such reactions becomes more and more difficult and 

is quite complex. Therefore it is common to use approximations to simplify such 

terms.  

One approach is to assume that the first reversible reaction step is much more rapid 

than the second step and so k1 and k-1 are much larger than k2. Therefore the 

intermediate I will be in equilibrium with A and B throughout the reaction  

[ ]
[ ][ ] K

k
k

BA
I

==
−1

1                     [2.17] 

and will be continually maintained. 

Insertion of equation 2.17 in 2.16 offers a mathematical term for kobs, which is 

considered to be the solution of the reaction law.  

The steady-state approximation is an alternative method to simplify such complex 

reactions. It is assumed that the intermediate is quite reactive and therefore the 

concentration of I will be very low throughout the reaction. This means that the rate of 

the concentration change of this reaction intermediate is very close to zero: 

[ ] [ ] [ ] [ ], 0
d I

I A B
dt

〈〈 ≈                                        [2.18] 

and therefore: 

[ ][ ] [ ] [ ] 0211 =−− − IkIkBAk                             [2.19] 

Now it is possible to determine a mathematical term for kobs without knowing the 

exact concentration of the reaction intermediate I. The steady state approximation 

facilitates the solution of the differential equation that arises from most reaction laws, 

which lack of analytical solutions. For example this method is applied in Michaelis 

Menten kinetics.  
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2.7 Determination of enthalpy, entropy and volume of activation: ∆H#, ∆S#, 
∆V# 

The Eyring equation also known as Eyring and Polany equation concerns the theory 

of the transition state and the activated complex. It is also the basis for the 

determination of the activation parameters ∆H#, ∆S# and ∆V#. This equation 

describes the dependence of the reaction rate from temperature and pressure, 

following the transition state theory and the basic thermodynamic concepts.  










 ∆
+

∆
−

⋅= R
S

RT
H

B e
h
Tkk

##

                             [2.20] 

with ∆H#= enthalpy of activation, ∆S#= entropy of activation. 

It can also be written in a linear form:  

R
S

RT
H

h
k

T
k B

##

lnln ∆
+

∆
−






=






                           [2.21] 

If the reaction is performed at different temperatures, the reaction rate can be 

determined.  

The plot of 






T
kln versus 

T
1  gives a straight line with a slope of 

R
H #∆

−  from which 

the enthalpy of activation can be derived. From the intercept 
R
S

h
kB

#

ln ∆
+






 the 

entropy of activation can be derived. 

The study of the temperature dependence provides values of ∆S# that contain 

important information about the transition state complex. A large negative value of 

∆S# (unfavourable) indicates a more ordered transition state complex. This is the 

case if degrees of freedom (translation, rotation, vibration) are reduced in the 

transition state compared with the initial state. A negative value of ∆S# may indicate 

an associative mechanism, while a positive ∆S# supports a dissociative mechanism.  

The determination of ∆S# through linearization and extrapolation (T → ∞), usually 

leads to large errors. In contrast activation volumes can be obtained during high 
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pressure measurements without including such a large error. If possible these 

measurements should be made to obtain more reliable data for a mechanistic 

discussion. The volume of activation is derived from the pressure dependence of the 

rate constant of a reaction (mainly used for reactions in solution), defined by the 

following equation: 

( )
TT p

GVV
p
G









∂
∆∂

=∆⇒=







∂
∂ #

#                  [2.22] 

( )
Tp

kRTV 







∂

∂
−=∆

ln#                   [2.23] 

According to the transition state theory ∆V# is interpreted as the difference between 

the partial molar volumes of the transition state and the sum of the partial volumes of 

the reactants. ∆V# can be determined from the slope, if ln k is plotted versus pressure 

p. 
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3 Aromatic Hydroxylation in a Copper Bis(imine) Complex 

Mediated by a µ-η2:η2 Peroxo Dicopper Core: A Mechanistic 

Scenario 
This work has been published in Chemistry, A European Journal 

Sander, O.; Henß, A.; Näther, C.; Würtele, C.; Holthausen, M. C.; Schindler, S.; 

Tuczek, F;. Aromatic Hydroxylation in a Copper Bis(imine) Complex Mediated by a µ-

η2:η2 Peroxo Dicopper Core: A Mechanistic Scenario Chem. Eur. J., 2008, in press. 

3.1 Abstract  

Detailed mechanistic studies of the ligand hydroxylation reaction mediated by a Cu 

bis(imine) complex are presented. Starting from a structural analysis of the Cu(I) 

complex and the Cu(II) product exhibiting a hydroxylated ligand the optical absorption 

and vibrational spectra of the educt and the product are analyzed. The kinetic 

analysis of the ligand hydroxylation reaction shows that O2-binding is the rate-limiting 

step in the hydroxylation reaction. The reaction is found to proceed much faster in 

methanol than in acetonitrile. Moreover, an inverse kinetic isotope effect is evidenced 

for the reaction in acetonitrile which is attributed to a sterically congested transition 

state leading to the peroxo adduct. In methanol, however, no KIE is observed. A DFT 

analysis of the oxygenation reaction mediated by the µ-η2:η2 peroxo core 

demonstrates that the major barrier after O2-binding is represented by the 

electrophilic attack on the arene ring. The relevant orbital interaction occurs between 

the σ* orbital of the Cu2O2 unit and the HOMO of the ligand. On the basis of the 

activation energy for the rate limiting step (18.3 kcal/mol) this reaction is thermally 

allowed, in agreement with the experimental observation. The calculations also 

predict the presence of a stable dienone intermediate which, however, escaped 

experimental detection so far. Reasons for these findings are considered. The 

implications of the results with respect to the mechanism of tyrosinase are discussed. 

3.2 Introduction  

Recent publication of the first crystal structure determination of a tyrosinase has 

opened a new perspective to understand the chemical reactivity of this class of 

enzymes at a molecular level.[13, 14] Tyrosinases (Ty) are ubiquitous copper enzymes 



CHAPTER 3 

 
 

29 

mediating the hydroxylation of monophenols to o-diphenols and the subsequent two-

electron oxidation to o-quinones.[11] Specifically, tyrosine is converted to 

dopaquinone, the first step of melanine synthesis.[98] Two-electron oxidation of o-

diphenols (catechols) to o-quinones is also catalyzed by the related enzyme catechol 

oxidase (CO) which, however, lacks monooxygenase activity.[99, 100] The active sites 

of Ty and CO exhibit two copper atoms both of which are coordinated by three 

histidines (type3 copper). The third group of proteins with type3 copper active sites is 

that of hemocyanins (Hc) which serve as oxygen carriers in some arthropods and 

mollusks, exhibiting highly cooperative oxygen binding characteristics.[101, 102] 

There have been numerous attempts to reproduce and understand the chemical 

reactivity of tyrosinase with small-molecule model systems, both on the basis of the 

hydroxylation or oxidation of external substrates and on hydroxylations of the 

ligand.[3, 103-105] In the latter case a part of the ligand coordinating one or both copper 

centers is hydroxylated after exposure of the Cu(I) complex to dioxygen. The 

relevance of these reactions to tyrosinase has intensively been discussed, and a 

molecular mechanism of the tyrosinase function has been suggested based on DFT 

calculations.[3, 103-107] It has further been established that both aliphatic and aromatic 

parts of the ligand can be hydroxylated this way (aliphatic and aromatic ligand 

hydroxylation).[3, 108] The latter reactivity has been discovered by Karlin and co-

workers in their study of the [Cu2(XYL)] complex (XYL=tetrakis(2-(pyridin-2-

yl)ethyl)benzene-1,3-diamine).[29, 30] Reaction of the Cu(I)2 precursor with O2 was 

found to lead to hydroxylation of the bridging xylylene spacer in 2-position. It was 

later shown that the Cu(I)2 species binds O2 in a side-on bridging fashion and that 

most probably the Cu2 µ-η2:η2-peroxo unit mediates an electrophilic attack on the 

aromatic ring, leading to O-O cleavage and hydroxylation.[109] A mechanistic 

alternative to this scenario is the full or partial conversion of the Cu(II)2 µ-η2: η2 

peroxo to the Cu(III)2 bis(µ-oxo) form which then mediates the aromatic hydroxylation 

reaction.[110-112] For the Cu2(XYL) complex, this pathway has been excluded. For 

other systems, however, an aromatic ligand hydroxylation mediated by a Cu2 bis(µ-

oxo) species is well established.[34] 

A simplified version of the Karlin system is provided by Cu(II) bis(imine) complexes 

which also mediate a hydroxylation of the bridging ligand upon reaction with O2. This 
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reaction has been intensively studied as well[48, 54, 113, 114] and the relevance to the 

tyrosinase reaction has been stressed.[49, 51] The binucleating ligand contains a 

bridging phenylene group carrying two arms which provide two nitrogen donors (one 

imine and one terminal amine) each. Upon exposure of the Cu(I) precursor to 

dioxygen, the central phenylene spacer is hydroxylated, in analogy to the XYL 

complex (Figure 3-1). With respect to the latter system, however, the bis(imine) 

complex enforces an almost planar molecular geometry which highly restricts the 

configuration space involved in the ligand hydroxylation reaction. Although it has 

been speculated that in this reaction a peroxo or bis(µ-oxo) intermediate is involved, 

no such intermediate has ever been detected. Correspondingly, key features of the 

reaction course applying to this important class of tyrosinase model systems have 

remained unclear to date. 

 

Figure 3-1: Hydroxylation of [Cu(DAPA)] I leading to the product 

Herein we present spectroscopic, kinetic and theoretical investigations on the Cu2 

bis(imine) complex [Cu2(DAPA)]2+ (I; DAPA = 1,3-bis-[(3-(N-

dimethyl)propyl)iminomethyl]benzene; Figure 3-1) with the goal of developing a 

mechanistic scenario for the ligand hydroxylation reaction occurring in this system. 

To this end the kinetics of the reaction is studied in different solvents and at different 

temperatures, also employing a deuterium substituted ligand. In order to monitor the 

time course of the hydroxylation spectroscopically the UV/Vis spectra of the Cu(I) 

precursor I and the hydroxylated Cu(II) product II are analyzed and compared with 

each other. Moreover the vibrational spectroscopic properties of the reactant and the 

product are determined. In particular, the infrared and Raman spectra of the Cu(II) 

complex II are analyzed with the help of 18O substitution and quantum chemical 
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calculations. The reactant I and the product II are further characterized by X-ray 

crystallography. Density functional theory is employed to identify potential reaction 

pathways leading from the initially formed µ-η2:η2 peroxo dicopper intermediate to the 

hydroxylated product II. The quantum chemical results are discussed in light of the 

experimental findings and implications for the reactivity of tyrosinase are discussed. 

3.3  Experimental and Computational Details 

3.3.1 Materials and Techniques.  

The reagents isophthalaldehyde and 3-dimethylaminopropylamine were used as 

received from Aldrich Chemical Co. Tetrakis(acetonitrile)copper(I) 

hexafluorophosphate was either obtained commercially from Aldrich or synthesized 

from copper(I) oxide according to a method described in the literature.[115] Solvents 

used were all reagent grade and have been further purified by refluxing over drying 

agents and distilling under argon. Methanol was distilled from Mg(OCH3)2; 

diethylether was distilled from LiAlH4; acetonitrile was distilled from CaH2. The NMR 

spectra were recorded at 300 K on a Bruker Avance 400 Pulse Fourier Transform 

spectrometer operating at a 1H frequency of 400.13 MHz and 13C frequency of 

100.62 MHz. Referencing was carried out using TMS as the substitutive standard. 

The elemental analysis was performed using a Euro Vector CHNS-O-element 

analyzer (Euro EA 3000). Samples were burned in sealed tin containers by a stream 

of oxygen. FT-IR spectra were recorded in KBr pellets on a Mattson Genesis Type I 

spectrometer. Optical absorption spectra of solutions were recorded on a Cary 5 UV-

Vis-NIR spectrometer equipped with a CTI cryocooler. Raman spectra were recorded 

on a Bruker IFS 66 FT spectrometer equipped with a Raman assembly. 

Variable temperature stopped-flow measurements allowed the collection of time-

resolved UV-vis spectra for the fast reaction of I with dioxygen in methanol. Solutions 

of the complexes were prepared in a glovebox (MBraun, Garching, Germany) and 

transferred using syringes to the low-temperature stopped-flow instrument. A 

dioxygen saturated solution was prepared by bubbling dioxygen through methanol in 

a syringe (solubility of dioxygen at 25 °C in MeOH: 8.5 mM).[116] Lower dioxygen 

concentrations were obtained by mixing these solutions with argon saturated 

solvents. The reaction was studied under pseudo-first-order conditions ([complex] << 



CHAPTER 3 

 
 

32 

[O2]), and time-resolved UV-vis spectra of the reactions of dioxygen with copper(I) 

complexes were recorded with a modified Hi-Tech SF-3L low-temperature stopped-

flow unit (Salisbury, U.K.) equipped with a J&M TIDAS 16-500 photodiode array 

spectrophotometer (J&M, Aalen, Germany). Data fitting was performed using the 

integrated J&M software Kinspec. Details on such studies have been described 

previously.[117] 

3.3.2 Tetrakis(acetonitrile)copper(I) perchlorate 

 CuCO3 was added to 10 mL of perchloric acid until the solution was saturated. The 

remaining precipitate was filtered off and the solution was concentrated in vacuo. 

After cooling the solution over night, blue crystals precipitated which were filtered off 

and dissolved in acetonitrile. The blue solution was refluxed with copper turnings 

under argon till the colour disappeared. After cooling of the colourless solution 

colourless crystals precipitated which were filtered off and dried. Anal. Calcd. for 

CuC8H12N4ClO4: C, 29.37; H, 3.7; N, 17.12; Cl, 10.84. Found: C, 29.2; H, 3.66; N, 

17.4; Cl, 10.81.  

3.3.3 DAPA (1,3-bis-[(3-(N-dimethyl)propyl)iminomethyl]benzene) 

 400 mg (2.98 mmol) isophthalaldehyde and 610 mg (5.96 mmol) 3-

dimethylaminopropylamine were dissolved in 40 mL methanol and refluxed for 1h. 

The solvent was rotary-evaporated and the remaining yellow oil was dried in vacuo. 

The product was purified by chromatography on silica gel with methanol as eluant (Rf 

= 0.4). Anal. Calcd for C18H30N4: C, 71.48; H, 10.0; N, 18.52. Found: C, 70.93; H, 

10.35; N, 18.53; 1H-NMR (400 MHz, CD2Cl2/TMS) δ 8.3 (s, 2H, imin-H), 8.03 (s, 1H, 

Ar-H), 7.76 (dd, 2H, Ar-H), 7.44 (t, 1H, Ar-H), 3.61 (dt, 4H, =N-CH2), 2.3 (t, 4H, 

-CH2-N), 2.18 (s, 12H, -CH3), 1.81 (q, 4H, -CH2- ); 13C-NMR (100.6 MHz, 

CD2Cl2/TMS) δ 160.2, 137.0, 129.6, 128.7, 127.5, 59.4, 57.4, 42.2, 29.0;  MS (EI, 70 

eV): m/z (%) = 303.4 (100) [M+]; calcd: 303.46. 

3.3.4 Cu(I)2-DAPA (Ia, Ib, Ic) 

 The synthesis was performed under argon atmosphere. The complex was either 

prepared according to the published procedure as the PF6 salt (Ia)[56] or as the ClO4 

salt (Ib) by using the following modified procedure: 230 mg (0.76 mmol) DAPA were 

dissolved in 20 mL dry and degassed methanol. 296 mg (1.52 mmol) 
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tetrakis(acetonitrile)copper(I) perchlorate were added. The resulting yellow solution 

was heated for 1h. After concentrating the solution to 10 mL a yellow solid 

precipitated which was filtered off and washed two times with 5 mL of degassed 

methanol. 1H-NMR (400 MHz, CD3CN/TMS) δ 8.37 (s, 2H, imin-H), 8.25 (s, 1H, Ar-

H), 7.93 (d, 2H, Ar-H), 7.55 (t, 1H, Ar-H), 3.72 (t, 4H, =N-CH2), 2.51 (t, 4H, -CH2-N), 

2.23 (s, 12H, -CH3), 1.81 (q, 4H, -CH2-); 13C-NMR (100.6 MHz, CD3CN/TMS) δ 

163.2, 137.0, 131.8, 130.0, 129.1, 62.7, 60.7, 47.2, 29.3. Crystals suitable for 

diffraction studies were obtained by diffusion of diethyl ether into a solution of  

[Cu(I)2(DAPA)](PF6)2 (Ia) in acetonitrile. 

 

For synthesis of the tetraphenylborate salt of Cu(I)-DAPA (Ic) 200 mg (0.32 mmol) 

Cu(I)-DAPA perchlorate (Ib) were dissolved in 10 mL of dry, degassed acetonitrile. 

228 mg (0.64 mmol) potassium tetraphenylborate dissolved in 15 mL of acetonitrile 

were added. After concentrating the yellow solution to 10 mL a colourless solid 

precipitated and was filtered off. The solution was evaporated to dryness and the 

yellow residue was used without further purification. The conversion of the 

perchlorate to the tetraphenylborate salt was checked for completeness by IR 

spectroscopy. The perchlorate bands were absent in the product. 

3.3.5 Cu(II)2-DAPA-OH (II), perchlorate salt 

 60 mg Cu(I)2-DAPA (Ib) were dissolved in 40 mL of dry dichloromethane. Dioxygen 

was bubbled through the solution for 5 minutes. The colour changed from yellow to 

green. The solution was concentrated to 5 mL. By adding 20 mL of diethylether a 

green solid precipitated which was filtered off. The product was recrystallized from 

dichloromethane by diffusing diethylether into the solution. Green crystals were 

obtained. Anal. Calcd for C18H30N4Cu2O2(ClO4)2(CH2Cl2): C, 30.6; H, 4.33; N, 7.52. 

Found: C, 31.1; H, 4.78; N, 7.63; UV-VIS (CH3CN) λmax nm (ε, M-1 cm-1) 255 (35753), 

357 (9135), 628 (253). The 18O isotopomer of II was prepared analogously, 

employing 18O2 instead of 16O2. 

3.3.6 Isophthalaldehyde-d6 

 2.5g (21.55 mmol) m-xylene-d10 were dissolved in 250 mL of CCl4. 22.55g (126.7 

mmol) NBS and 1 drop of bromine was added. The reaction was started with little 

amounts of AIBN and the mixture was heated for 15h under reflux. The succinimide 
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was filtered off and after removal of the solvent the product was used without further 

purification. The reddish product was dissolved in 30 mL of H2SO4 at 110°C. After the 

formation of bromine the solution was hydrolyzed with 100 mL ice and extracted with 

methyl-tert-butyl-ether (MTBE). The combined organic phases were neutralized with 

NaHCO3-solution and the aqueous phase was again extracted with MTBE. The 

combined organic phases were dried over MgSO4 and after removal of the solvent 

the product was purified chromatographically on silica gel with dichloromethane as 

eluant (rf = 0.35). 1H-NMR shows no signals; 13C-NMR (100.6 MHz, CD2Cl2/TMS) δ 

190.7 (deutero-t), 136.9 (s), 134.1 (deutero-t), 130.2 (deutero-t), 129.4 (deutero-t); 

MS (EI, 70 eV): m/z (%) = 141.1 (100) [M+]; calcd: 141.2. 

3.3.7 Cu(I)2-DAPA-d6, perchlorate salt (ID) 

 0.4 g (2.82 mmol) isophthalaldehyde-d6 was dissolved in 40 m of dry methanol. 0.75 

mL (5.9 mmol) 3-dimethylaminopropylamine was added and refluxed for 1h. After 

cooling 1.1 g (5.9 mmol) tetrakis(acetonitrile)copper(I) perchlorate were added to the 

orange solution and stirred for 1h. After concentrating the solution to 10 mL a yellow 

solid precipitated which was filtered off and washed two times with 5 mL of degassed 

methanol.  1H-NMR (400 MHz, CD3CN/TMS) δ 3.74 (t, 4H, =N-CH2), 2.53 (t, 4H, -

CH2-N), 2.24 (s, 12H, CH3), 1.82 (q, 4H, -CH2-); 2H-NMR (61.4 MHz, CD3CN/TMS) 

between 7.4 and 8.4ppm 4 Peaks with integration ratio 2:2:1:1 are observed; 13C-

NMR (100.6 MHz, CD3CN/TMS) δ 61.8, 59.8, 46.2, 28.2. 

3.3.8 Cu(II)2-DAPA-d6-OH, perchlorate salt (IID) 

 60 mg Cu(I)2-DAPA (ID) were dissolved in 40 mL of dry dichloromethane. Dioxygen 

was bubbled through the solution for 5 minutes. The colour changed from orange to 

green. The solution was concentrated to 5 mL. By adding 20 mL of diethylether a 

green solid precipitated which was filtered off and recrystallized from 

dichloromethane. Anal. Calcd for C18H12D6N4Cu2O2(ClO4)2: C, 32.44; H, 5.44; N, 

8.41. Found: C, 32.92; H, 5.28; N, 8.20; 

 

Caution! Although the compounds reported in this paper seem to be stable to shock 

and heat, extreme care should be used in handling them for the potential explosive 

nature of perchlorate salts. 
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3.3.9 Single crystal structure analysis 

 The X-ray crystallographic data for complex I were collected on a STOE IPDS-

diffractometer at 173 K equipped with a low temperature system (Karlsruher 

Glastechnisches Werk). Mo-Kα radiation (λ= 0.71069 Å) and a graphite 

monochromator was used. Cell parameters were refined by using up to 5000 

reflections. No absorption corrections were applied. The structure was solved by 

Direct Methods in SHELXS97, and refined as a racemic twin by using full-matrix least 

squares in SHELXL97(BASF-Parameter:0.542). It was attempted to solve and refine 

the structure also in the centrosymmetric space group P21/m which was not 

successful. The hydrogen atoms were positioned geometrically and all non-hydrogen 

atoms were refined anisotropically, if not mentioned otherwise. Details of the 

structure determination are given in Table 3-1. 

Data collection on complex II was performed with an Imaging Plate Diffraction 

System (IPDS-1) from STOE & CIE. Structure solutions was done using SHELXS-97 

and structure refinements was performed against F2 using SHELXL-97. All non-

hydrogen atoms were refined with anisotropic displacement parameters. All C-H 

hydrogen atoms were positioned with idealized geometry and were refined 

isotropically using a riding model. The O-H H atom was located in the difference 

map, its bond length was set to ideal values and afterwards it was refined using a 

riding model. Crystallographic data (excluding structure factors) for the two structures 

reported in this paper have been deposited with the Cambridge Crystallographic Data 

Centre as supplementary publication no. CCDC-686492 (I) and CCDC-686493 (II). 
Copies of the data can be obtained, free of charge, on application to CCDC, 12 

Union Road, Cambridge CB2 1 EZ, UK. (fax: +44-(0)1223-336033 or email: 

deposit@ccdc.ca.ac.uk). 

3.3.10 Computational Methods 

 Quantum chemical calculations on reaction pathways have been performed at the 

density functional theory (DFT) level employing the three parameter hybrid functional 

B3LYP/G[118-121] as implemented in the ORCA program.[122] Geometry optimizations 

and harmonic frequency calculations were performed employing the SVP basis set of 

Ahlrichs and co-workers[123] for all atoms. In all calculations we used the TighSCF, 
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NoFinalGrid, and Grid4 options/cutoffs, and the RIJONX approach[124, 125] was used 

together with the SV/J auxiliary basis set[126, 127] for enhanced numerical efficiency via 

the RI approximation.[128] Solvation effects have been included in these calculations 

employing the COSMO continuum model (solvent acetonitrile, dielectric constant at 

room temperature ε = 36.6; the following radii have been used for the construction of 

the cavity: H: 1.300 Å, C: 2.000 Å, N: 1.830 Å, O: 1.720 Å, Cu: 2.223 Å, solvent: 

1.300 Å).[129, 130] The nature of stationary points localized (minima or transition 

structures) were identified by Hessian calculations based on numerical evaluation of 

energies and analytical gradients, which were also used to obtain zero point 

vibrational energy (ZPVE) and thermal contributions to Gibbs free energies at 298.15 

K. We verified the connections between minima and transition structures implied in 

Figure 3-14 below by intrinsic reaction coordinate (IRC) following calculations. For 

transition state searches, IRC calculations, and numerical Hessian calculations we 

used the Gaussian03[131] external driver facility in combination with a Gau_External 

module that we developed to extract energies and gradients from ORCA calculations, 

which were then fed into geometry optimization driver routines of the Gaussian03 

program.[132] Improved final energies were obtained by single point calculations 

employing the B3LYP/G functional in combination with the TZVP basis of Ahlrichs 

and co-workers and the COSMO continuum solvent model (together with the TZV/J 

auxiliary basis sets, with all other program parameters and options as described 

above).  

 

In several instances frequency analyses of stationary points obtained for the full 

molecular model showed spurious imaginary modes related to rotations of the methyl 

groups at the tert-amine N-donor atoms, which seriously deteriorates the use of 

computed ZPVE and thermal contributions to obtain Gibbs free energies. In view of 

the unjustifiably large numerical effort necessary for repeated reoptimizations of 

geometries and numerical frequency calculations, we decided to perform 

investigations on reaction pathways based on a simpler molecular model, in which 

we replaced the methyl groups by hydrogen atoms.  

 

In all species studied here (but TS8 with its closed shell singlet ground state wave 

function, cf. Figure 3-14 and Table 3-4), the presence of two coupled CuII ions with 

their formal d9 electronic configuration gives rise to spin-spin coupling phenomena; 
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i.e., the two unpaired electrons can couple to yield either singlet or triplet states. 

While the treatment of the triplet states is straightforward within the spin-unrestricted 

Kohn-Sham framework, a description of the corresponding singlet states by spin-

restricted Kohn-Sham calculations can be highly problematic, depending on the 

strength of the spin-spin coupling. The broken-symmetry (bs) approach has been 

identified as an efficient means to include the dynamic as well as static correlation 

effects underlying these magnetic interactions to a large extent and it has been 

applied to related bioinorganic problems with considerable success.[133] Following 

Noodleman’s suggestion[134-138] we applied spin-unrestricted broken-symmetry 

calculations for the antiferromagnetically coupled singlet states. The overlap integrals 

<α|β> of the magnetic orbitals obtained for the BS wave functions vary significantly 

(Table 3-4), which indicates strongly varying coupling strengths between the spin 

centers involved. We therefore applied the formalism of Yamaguchi[139, 140] to obtain 

the Heisenberg coupling parameter J relating to the phenomenological Heisenberg 

Hamiltonian H = -2J SASB:  

 

This approach covers the range from weak to strong coupling situations. BS wave 

functions were obtained employing the corresponding orbital transformation 

procedure implemented in ORCA. [141]In the present context, a negative value for J 

corresponds to an ‘antiferromagnetically coupled’ or ‘open-shell’ singlet ground state. 

 

For some species involved in the reaction pathways discussed below we find triplet 

ground states rather than (broken-symmetry) singlet states (J = +25 to +534 cm-1, cf. 

Table 3-4). In some instances we reoptimized the corresponding triplet structures, 

but we did not observe any significant energy lowering or structural change (e.g., 1 

kcal mol-1 in the case of 1 with essentially unaltered structural features). Analysis of 

spin densities for all species investigated revealed that all magnetic interactions are 

caused by interactions of spin densities essentially localized on the copper ions with 

their formal d9 electronic configurations. These Cu(II) based spin systems are 

antiferromagnetically coupled in most cases, giving rise to singlet ground states, but 

triplet ground states result in some instances as a consequence of  ferromagnetic 

2 2

( )              eq. (1)HS BS
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spin coupling. The intricacies of magnetic coupling in related Cu2O2 systems are 

caused by the interplay between electronic and structural properties of the species 

studied are subject of ongoing research efforts[142-151] and are - also in view of the 

general tendency of the B3LYP functional employed to generally overestimate the 

stability of high-spin over low-spin states for transition metal ions[152] – outside the 

scope of our present study. The small energy differences between singlet and triplet 

species documented in Table 3-4 (below 2 kcal mol-1 in all cases) are insignificant in 

the context of our investigation of reaction pathways. Hence, for the present system 

we can safely exclude the possibility that copper based spin couplings give rise to a 

prominent two-state-reactivity scenario[153-155] in the sense that spin crossover 

phenomena could provide alternative reaction pathways that significantly alter the 

relevance of the mechanistic scenario proposed below.[63, 156]  

 

Additional calculations were performed to support analysis of experimental IR- and 

resonance-Raman spectra. Here we used the UBP86 functional[118, 157] based on the 

optimized (bs-) singlet structure for the full molecular model of the hydroxylated 

product, which we generated from the X-ray structure of II. It is well established that 

this level of DFT quite generally provides vibrational frequencies in good agreement 

with experimentally determined spectra.[36, 158] Calculated frequencies were therefore 

used without further scaling. 
 

3.4 X-ray Structure Analysis  

3.4.1 Cu(I) complex (Ia) 

 The DAPA ligand and the corresponding copper complex were prepared according 

to the literature.[115] In contrast to the facile synthesis of I and related bis(imine) 

complexes crystallographic characterization of these compounds is rare. Most 

recently a copper(I) complex with a ligand quite similar to DAPA (ethylene instead of 

propylene bridges) was structurally characterized, however, in this case a dinuclear 

complex with a Cu(I) to ligand ratio of 2 : 2 was obtained.[159] After optimizing 

conditions in our crystallization experiments we succeeded in obtaining crystals of 

[Cu(I)2(DAPA)(CH3CN)3](ClO4)2 (Ia). The molecular structure of the cation of this 

complex is shown in Figure 3-2, bond distances and angles are given in Table 3-2. 
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Figure 3-2: Molecular structure of the cation of I 

Compound Ia crystallizes in the monoclinic space group P21 with two complex 

cations and four complex anions per unit cell. The two copper(I)-centers are bridged 

by a m-xylyl-group with a Cu1…Cu3 separation of 7.1(1) Å. Each copper-ion is 

coordinated by one imine nitrogen (N1/N4) and one aliphatic amine nitrogen (N2/N5) 

per bidentate DAPA arm. As additional co-ligands one or two acetonitrile molecules 

are ligated to the copper ions. One N-bonded MeCN molecule completes the almost 

trigonal planar coordination geometry of Cu1. With two bound acetonitrile molecules 

the coordination geometry around Cu3 is best described as distorted tetrahedral. The 

formation of six membered chelate rings leads to values for the N1-Cu1-N2 and N4-

Cu3-N5 angles of 96.7(3)° and 95.2(3)°, substantially deviating from ideal trigonal or 

tetrahedral geometry. The dihedral angle between the N1-Cu1-N2 and N4-Cu3-N5 

planes is 53.09°. As expected, the Cu-N bond lengths of the tricoordinate Cu1 center 

are shorter than that of Cu3 (Table 3-2). The “harder” amine nitrogens N2 and N5 are 

bound more weakly to the copper(I) ion than the imine nitrogens N1 and N4. 

Feringa and co-workers have reported the synthesis and characterization of a 

structurally related binuclear Cu(I)-complex, in which each copper center is 

coordinated to one bidentate ligand arm and one acetonitrile molecule.[53] 

Comparison of this crystal structure with Ia reveals quite similar Cu-N bond lengths, 

all in the range typical for tricoordinated Cu(I)-complexes,[53, 160] while both complexes 

differ the in bond angles about the copper ions because of their different donor atom 
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environment (aliphatic amines vs. pyridine nitrogen donor atoms). A larger chelate 

ring size and a different Cu to ligand ratio are also responsible for significant 

differences in bond lengths and angles between Ia and a binuclear Cu(I) Schiff base 

complex characterized recently by Mukherjee and co-workers.[159] Further, 

comparison of I with a related dinuclear macrocyclic Schiff base copper(I) complex 

previously described by Utz et al. as well as by Rieger and co-workers also shows 

differences in bond lengths and angles around the tetracoordinated Cu3-center of 

I.[47, 48] Most likely this is a consequence of the macrocyclic ligand that enforces a 

bowl shape of the complex and compared to I it has a much smaller Cu…Cu 

separation of 4.250(3) Å. Dinuclear copper(I) complexes of the non-macrocyclic 

ligand derivative have been described recently, however, for these no hydroxylation 

reactions were observed.[161] 

3.4.2 Cu(II) complex (II) 

 Oxygenation of the Cu(I) precursor Ib in dichloromethane leads to the Cu(II) 

complex Cu(II)2-DAPA-OH II. Single crystals suitable for X-ray analysis were 

obtained by diffusion of diethyl ether into a solution of II in dichloromethane.  The 

structure of the complex is shown in Figure 3-3, bond distances and angles are given 

in Table 3-3. Compound II crystallizes in the triclinic space group P-1 with Z = 2 and 

all atoms in general positions. Each of the two crystallographically independent 

copper atoms are coordinated by two nitrogen atoms and one oxygen atom of the 

ligand as well as one hydroxyl oxygen atom within a strongly distorted square planar 

geometry (Figure 3-3). There are two additional contacts to oxygen atoms of 

perchlorate anions of 2.4497(4) Å (Cu1-O11) and 2.6724(3) Å (Cu2-O13). If these 

contacts are taken into account the coordination around the copper atoms can be 

described as strongly distorted octahedral. In the case of II the copper atoms are 

connected via the perchlorate anions forming chains, which extend in the direction of 

the crystallographic a-axis. 

Evidently the phenyl ring of the bis(imine) ligand has been hydroxylated upon the 

reaction of Ib with O2, forming a phenoxo group that bridges the two Cu(II) centers; a 

second bridge is provided by hydroxide. The µ-hydroxo µ-phenoxo Cu2 unit is 

coordinated by the two terminal amine and the two imine nitrogen atoms of the 

bis(imine) ligand, forming an almost perfectly planar dinuclear complex molecule with 



CHAPTER 3 

 
 

41 

a quadratic-planar coordination of each Cu(II) center. The Cu…Cu distance is 3.0(5) 

Å and the average Cu…N distance is 1.9(4) Å for the imine-nitrogens (N1 and N3) 

and 2.0(3) Å for the amine-nitrogens (N2 and N4) respectively.   

 

Figure 3-3: Molecular structure of the cation of II 

Similar to the Cu(I) complex the N1-Cu1-N2 and N3-Cu2-N4 angles are 95.1(3)° and 

97.8°, respectively which is caused in the six membered chelate ring formation. As 

expected, the molecular structure of II is very similar to the molecular structure of this 

complex published by Drew et al.[56] The Cu…Cu distance in II is slightly longer 

(3.055 instead of 3.015 Å) which most likely is a consequence of the water molecule 

that is addionally coordinated to CuB in Drew´s complex. Moreover, two perchlorate 

anions are coordinated at ~ 2.5 Å (vide supra). 
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Table 3-1: Crystal data and Structure Refinement for I and II. 

Parameters I II 

Empirical formula C24 H39 N7Cu2P2 F12 C19 H32 N4 Cu2 Cl4 O10 

Formula weight 842.64  745.37 

Temperature (K) 173(2)  170(2) K 

Crystal system monoclinic  triclinic 

Space group P2(1) no.4  P-1 

Wavelength (Å)  0.71073 0.71073 
Unit cell dimensions 
 11.491(2) Å a = 7.8818(9) Å  

α = 62.059(12)° 

 25.391(5) Å 
β= 105.59(3)° 

b = 13.9548(14) Å 
β= 84.902(14)° 

 12.564(3) Å c = 14.6487(18) Å 
γ = 81.658(13)° 

Z 4 2 
Density calcd. (Mg/m3)  
 1.585  1.758 

Absorpt. coeffic. (cm-1)  1.386 1.948 

F(000)  1712  760 

Crystal size (mm)  0.25 x 0.1 x 0.12 0.2 x 0.2 x 0.1 

θ range for data collected (°) 2.13 to 26.04 2.61 to 25.03 

Index ranges  -14≤ h ≤13, -31≤ k ≤31, 
-14≤ l ≤15 

-9≤ h ≤9, -16≤ k ≤16, 
-17≤ l ≤17 

Reflection collected  24832 12085 

Independent refl., Rint 13443, 0.1061 4681, 0.1250 

Completeness to theta   97.7 % (theta= 26.04°) 93.9 % (theta= 25.03°) 

Goodness-of-fit on F2  0.780 0.998 

R1 [I>2σ(I)]  0.0532 0.0519 

wR2 [I>2σ(I)]  0.0845 0.1172 

R1 [all data] 0.0805 0.1389 

wR2 [all data]  0.1065 0.1319 
 
Table 3-2: Selected Bond Distances and Angles for I (Å, °) 

Cu(1)-N(3) 1.85(1) 

Cu(1)-N(1) 1.960(9) 

Cu(1)-N(2) 2.055(8) 

Cu(3)-N(7) 1.96(1) 

Cu(3)-N(6) 2.02(1) 
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Cu(3)-N(4) 2.019(9) 

Cu(3)-N(5) 2.11(1) 

N(3)-Cu(1)-N(1) 138.9(3) 
 
 
Table 3-3: Selected Bond Distances and Angles for II (Å, °) 

Cu(1) – O(2) 1.899(3) Cu(2) – O(2) 1.899(4) 

Cu(1) – O(1) 1.986(4) Cu(2) – O(1) 1.991(3) 

Cu(1) – Cu(2) 3.0546(11) O(1) – C(1) 1.324(6) 

Cu(1) – N(1) 1.938(4) Cu(1) – N(2) 2.025(5) 

Cu(2) – N(3) 1.948(5) Cu(2) – N(4) 2.031(4) 

N(1) – Cu(1) – N(2) 95.13 N(3) – Cu(2) – N(4) 97.8 

Cu(1) – O(1) – Cu(2) 100.39 Cu(2) – O(2) – Cu(1) 107.07 
 
 

3.5 Spectroscopic Investigations 

3.5.1 UV-Vis spectroscopy 

The UV/Vis spectrum of II in acetonitrile is shown in Figure 3-4. It exhibits two intense 

bands in the region between 200 – 300 nm and one band at 357 nm (ε = 10000 M-

1cm-1) The latter feature is absent in the spectrum of the Cu(I) precursor I which only 

shows a rising slope below 300 nm, exhibiting a couple of weak shoulders. The 357 

nm band is therefore the most conspicuous UV/Vis-spectroscopic signature of the 

oxygenated complex. It has been assigned to a charge transfer transition from the 

Cu(II) centers to the hydroxylated bis(imine) ligand.[162] At higher concentration a 

weak absorption band can also be detected at 663 nm which is assigned to a ligand-

field transition of the square-planar Cu(II) centers.  

The oxygenation of I to II proceeds only slowly in acetonitrile (see below); therefore 

we employed methanol as solvent as well. Figure 3-5 shows the spectra of I and II in 

methanol; the spectrum of II was obtained after bubbling O2 through a solution of I. 
As in the spectrum of II in acetonitrile, an intense band is observed at 360 nm and a 

ligand-field band at 700 nm.  
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Figure 3-4: UV-Vis spectra of Ib (black line, 8 x 10-5mol/l) in acetonitrile 

 

Figure 3-5: UV-vis showing the oxygenation of Ib to II (red) by bubbling O2 trough the 
solution of Ib (black line, 2,9 x 10-4mol/l) in methanol  
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3.5.2  Vibrational spectroscopy 

 Infrared and Raman spectra of I and II were obtained from solid samples at room 

temperature and are presented in Figures 3-6 to 3-9. We also studied the 18O-

isotopomer of II, which was prepared by reaction of I with 18O2. Spectral assignments 

were facilitated by comparison with computed harmonic frequencies at the bs-

BP86/SVP level, which show an overall pleasing agreement with the experimental 

results (Figure 3-7). In contrast to our initial expectation 16O/18O isotopic substitution 

in II does not lead to the identification of a unique vibrational signature for a C-O 

stretching vibration. Detailed analysis of the computed spectra reveals instead that 

there are several normal modes with varying C-O stretch contributions. We here 

report only assignments of the most prominent vibrational features as a result of a 

careful correlation between measured and computed spectra. Figure 3-10 shows 

dominant atomic contributions to normal modes for the vibrations discussed below.   

 

Figure 3-6: IR-spectra of Ib (black) and II (red) 

The IR (Figures 3-6 and 3-7) and Raman (Figures 3-8 and 3-9) spectra of I and II 
show an intense signal at 1630 cm-1 which correlates with a normal mode in the 

computed spectra dominated by the symmetric stretching motion of the Schiff base 

C=N bonds (1622 cm-1, cf. Figure 3-10); this band exhibits a second feature due the 

corresponding antisymmetric vibration (computed at 1615 cm-1, not shown in Figure 
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3-10) with much lower intensity. Upon oxygenation of I an intense band appears in 

the spectrum of II at 1568 cm-1 (Figure 3-6). This band corresponds to a vibration at 

1551 cm-1 in the computed spectrum (fg.3-10) and can be assigned to an asymmetric 

deformation mode in the aromatic ring in II. As consistently revealed by both, 

experimental and computed spectra, neither band shows any C-O participation. 

Buried among a series of bands between 1443 cm-1 and 1394 cm-1 which are caused 

by C-H stretching and bending vibrations of all parts of the ligand, the computed 

spectra exhibit an intense peak at 1424 cm-1 (shifted to 1420 cm-1 upon 18O 

substitution) that contains some C-O stretching component. In the experimental 

spectra this signal occurs upon oxygenation of I at 1450 cm-1 (Figure 3-6) but does 

not show any significant isotopic shift in the spectrum of 18O-II. One band at 1357 cm-

1 in the spectrum of I moves to 1339 cm-1 in the spectrum of II. Comparison of the IR 

spectra of 16O-II and 18O-II (Figure 3-7) reveals a significant 18O shift of this mode 

from 1339 cm-1 in 16O-II to 1329 cm-1 in the spectrum of 18O-II.  

 

 

Figure 3-7: Experimental (bottom) and calculated (top) IR-spectra of II (black) and 18O2-
II (red) with isotope-sensitive bands 

Almost the same isotopic shift (11 cm-1) is found in the computed spectra (1332 cm-1 

 1321 cm-1), in line with a significant C-O contribution to this normal mode (cf 
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Figure 3-10). At lower energy, there is a band at 866 cm-1 which upon isotopic 

substitution shifts to 861 cm-1. This is reproduced by a computed vibration at 863 cm-

1, shifting to 857 cm-1, which involves significant O-motion (cf Figure 3-10). 

The FT-Raman spectra of I and II obtained with λexc=1064 nm are shown in Figure 3-

8. A comparison of the FT-Raman spectra of 16O-II and 18O-II (Figure 3-9) reveals 

only small isotopic shifts. After oxygenation of I two prominent new peaks appear at 

1450 and 1257 cm-1 but only the latter has some minor C-O contribution: In the 

region around 1250-1280 cm-1, where normally the (phenolate) C-O stretching 

vibration is found,[109, 163] only the intense peak at 1257 shifts to 1254 cm-1 upon 18O-

substitution, and DFT reveals indeed some minor contribution from the C-O stretch to 

this vibration (1249 cm-1  1247 cm-1; not shown in Figure 3-9). Three less intense 

peaks with small isotope shifts are observed at 1313 cm-1 (shifting to 1308 cm-1), 

1330 cm-1 (shifting to 1327 cm-1) and 1371 cm-1 (shifting to 1366   cm-1). The lowest-

energy one may correspond to the vibration calculated at 1317 cm-1, shifting to 1315 

cm-1 (cf Figure 3-10).  

 

Figure 3-8: FT-Raman-spectra of Ib (black) and II (red) 

To conclude, there is only one vibration with a strong isotope shift (-10 cm-1) which is 

located at 1339 cm-1 (exp.; 1332 cm-1 calc.) and has mostly IR intensity. It has the 

most prominent C-O contribution of the spectral range investigated. Some other 
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vibrations show minor isotope shifts of the order of -3 to -5 cm-1, depending upon the 

admixture of the C-O stretching motion.  

 

Figure 3-9: FT-Raman-spectra of II (black) and 18O-II (red) 

 

Figure 3-10: Eigenvectors of the most important vibrations of structure 3 
(corresponding to complex II) 
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3.6 Kinetic Investigations  

Yellow solutions of Ia in methanol turn immediately green when exposed to dioxygen, 

forming II. Time-resolved spectra could be obtained using low temperature stopped-

flow techniques; a typical example of the oxidation reaction in methanol is shown in 

Figure 3-11. The spectra resemble those obtained previously by some of us in kinetic 

studies of the related imine systems [Cu2(HBPB-H)(CH3CN)2](BF4)2 and 

[Cu2mac(CH3CN)2](ClO4)2 (HBPB = 1,3-bis[N-(2-pyridylethyl)formimidoyl]benzene; 

mac = 3,6,9,17,20,23-Hexaaza-tricyclo [23.3.1.1]triaconta-

1(29),2,9,11(30),12(13),14,16,23, 25,27-decaene).[48] Again, similar to these 

systems, we could not detect the build-up of a dioxygen adduct. This is in contrast to 

the complex [Cu2(XYL)] reported by Karlin and co-workers where spectroscopic 

detection of such an intermediate was possible at low temperatures.[29, 30, 109] The 

lack of a detectable O2-intermediate most likely is the consequence of a rate-

determining formation of the reactive intermediate and much faster consecutive 

reactions according to the following general equation: 

productOLCuOLCu fastkslowk  → →+ ++ ,2
22

,
2

2
2

21 )]([][                                     eq. (2). 

Immediately after the dioxygen adduct is formed it further reacts to the product(s) and 

therefore cannot be observed spectroscopically. As a consequence, no kinetic data 

for the reaction of the peroxo complex to the hydroxylated product complex could be 

obtained.  

The absorbance vs time traces could be fitted using one exponential or the sum of 

two or three exponential functions at different temperatures (cf Figure 3-11). 

Acceptable fitting over a larger temperature range was, however, not possible. 

Moreover, we observed a linear dependence on the dioxygen concentration for two 

rate constants with an intercept. This result was not surprising insofar as similar 

difficulties had been encountered for the complexes [Cu2(HBPB-H)(CH3CN)2](BF4)2 

(here a more detailed discussion on the different possible reaction pathways has 

been described) and [Cu2mac(CH3CN)2](ClO4)2 (vide supra). From the present 

findings we can at least state that one part of the rate law should contain the term 

kobs [O2], confirming the occurrence of a dioxygen adduct as an intermediate. The 

reaction proved to be faster than observed for [Cu2(HBPB-H)(CH3CN)2](BF4)2 and for 
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[Cu2mac(CH3CN)2](ClO4)2 and therefore required low temperature stopped-flow 

techniques. This is understandable as the ligands HBPB-H and mac stabilize the 

copper(I) complexes more than DAPA.  

 

Figure 3-11: Spectral changes during reaction of I with dioxygen in methanol (T= -60.1 
°C,[complex] = 0.1 mmol/l, [O2] = 4.25 mmol/l, t = 10.605 s) 

Insert: Absorbance vs. time trace at 353 nm and fit to the sum of two exponentials 
(kobs1 = 3. 1 ± 0.2 s-1; kobs2 = 0.41 ± 0.03 s-1) 

The hydroxylation of Ib leading to II was also investigated in acetonitrile. In this case, 

however, a much slower reaction was observed. This can be attributed to the fact 

that acetonitrile binds fairly strongly to the Cu(I) centers of Ib and has to be replaced 

by O2 in the course of the hydroxylation reaction. Loss of acetonitrile ligands bound to 

I is, of course, impeded if the reaction is performed in this solvent. If, in contrast, the 

reaction is performed in methanol, the acetonitrile ligands of Ia obviously are 

exchanged in a first reaction step; i.e., prior to binding of O2. This follows from the 

observation that in this solvent no isotope effect on the binding of O2 is observed (see 

below). 
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In the course of the present study, DFT calculations indicated several thermally 

accessible pathways from a µ-η2:η2 peroxo adduct to the hydroxylated final product 

(cf next Section) involving proton transfer steps that should show prominent primary 

kinetic isotopic effects upon ligand deuteration. In order to experimentally check 

these predictions, further kinetic investigations based on the deuterated DAPA-

complex ID were performed. The substitution of Ib by ID was expected to decrease 

the reaction rate in the presence of rate-determining H-atom or proton transfer steps 

or leave it unchanged in the absence of such reactions.[164] Importantly, the rate of 

the oxygenation reaction of Ia in methanol was unchanged, indicating the absence of 

a significant KIE (Figure 3-12). In acetonitrile, on the other hand, the reaction of ID 

containing the deuterated ligand was found to be approximately 2.6 times faster (KIE 

= 0.38) than of Ib containing the non-deuterated ligand (Figure 3-13).  

The lack of a primary KIE in MeOH and the observation of an inverse deuterium 

effect in CH3CN are not compatible with the presence of a rate-determining proton 

transfer step in the reaction phase after formation of the �-complex. The inverse 

deuterium effect in CH3CN is rather attributed to the reaction phase before formation 

of the σ-complex; i.e., the binding of O2: Due to the geometry of the complex the O-

O-axis in the peroxo-adduct points to the C-H bond of the aromatic ring; O2 binding 

thus is hindered by the C-H stretching motion of the H-atom at the C2 atom of the 

phenylene spacer, and due to the smaller D-C vibration amplitude O2 binding 

proceeds faster in the deuterated than in the non-deuterated complex. Since O2 

binding is also the rate-limiting process in methanol, the inverse deuterium effect 

should in principle appear in this solvent as well. However, this is not observed, 

which can be attributed to the fact that this solvent is weaker coordinating than 

acetonitrile, thus diminishing the steric congestion in the transition state leading to 

the dioxygen adduct and, correspondingly, the influence of the C-H stretching motion 

on the formation of this adduct.  
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Figure 3-12: Absorbance during oxygenation of Ia at 353 nm in Methanol.  
[T= -60,1°C; [dapa]=0,1 mM; [dapa-d6]= 0,1 mM; [O2]= 4,25mM; t= 10,6 s] 

 

 

Figure 3-13: Absorbance at 358 nm for the DAPA- (Ib, black) and DAPA-d6-complex (1D, 
red) during oxygenation in acetonitrile. 
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3.7 Quantum Chemical Investigations on Reaction Pathways 

As discussed in the Computational Details section above, we assume throughout this 

study that all elementary steps involved in the reaction pathways investigated take 

place on a ground state singlet potential energy surface. In other words, we 

inherently suppose that the spin flip evidently occurring upon binding of O2 with its 

triplet ground state to the bare copper(I) complex occurs as part of the initial steps 

leading to formation of peroxo complex 1. These steps, which include solvent 

exchange at the Cu(I) sites and potentially prominent spin flip phenomena, are not 

studied here.[165-170]  Instead we decidedly concentrate on the fate of the initially 

formed peroxo Cu2O2 species 1 and the elementary steps that are involved in 

reaction pathways leading to the product of the aromatic hydroxylation (3) which 

corresponds to complex II. All relevant intermediates and transition structures are 

compiled in Figure 3-14; corresponding energies are collected in Table 3-4.  

Several minima resulted from geometry optimizations performed for the starting point 

of our quantum chemical investigation, the side-on µ-η2:η2-peroxo intermediate 1; for 

the sake of brevity we only consider the most stable isomers directly involved in the 

reaction pathways discussed below. 1 exhibits a significant butterfly distortion of the 

Cu2O2 moiety indicative of substantial strain introduced by the ligand framework, 

which obviously does not allow for the formation of the planar arrangement of this 

subunit identified experimentally in unstrained systems.[4, 171] Interestingly, we were 

unable to localize a bis(µ-oxo) isomer for the present ligand environment, although 

such a species should generally be more stable than the peroxo intermediate for 

bidentate N-donor ligand environments of Cu2O2 cores such as present here.[3, 32, 172-

178] Even carefully preoptimized bis(µ-oxo) structures obtained by constrained 

geometry optimizations, in which the ideal core substructure was kept fixed while the 

rest of the structure was optimized, fell back into a peroxo structure in subsequent 

unconstrained optimization runs. We take this finding as another consequence of the 

significant strain introduced by the ligand framework, which is not flexible enough to 

allow for the formation of a tighter bis(µ-oxo) core with its closer Cu-Cu contact 

(2.74–2.79 Å) compared to the larger Cu-Cu distance found in the peroxo cores 

(3.37-3.56 Å).[4, 171]  
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Figure 3-14: Reaction pathways identified for the hydroxylation reaction  
starting from the µ-η2:η2 peroxo complex I (Gibbs free energies at 298 K in kcal mol-1 

relative to I; UB3LYP/TZVP+COSMO//UB3LYP/SVP+COSMO results). 
 

Starting from 1 we localized a transition structure (TS1) for the O-O bond cleavage, 

that resembles to a large extent the corresponding transition structure for the 

peroxo/bis(µ-oxo) core isomerisation identified in our previous study on the aliphatic 

hydroxylation reactivity of a Cu2O2 complex bearing unstrained bidentate N-donor 

ligands.[179] In the present system, however, TS1 represents a multicenter transition 

state for the simultaneous O-O bond cleavage and C-O bond formation. IRC 

calculations confirm the direct connection of this transition state with the peroxo 

minimum 1 and the arenium-like σ-complex 2, without occurrence of an intermediate 

bis(µ-oxo)  species. This electrophilic attack of the aromatic ring is connected with a 
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barrier of 18.3 kcal mol-1, and formation of the σ-intermediate 2 is exoergic by 5.7 

kcal mol-1.  

We identified three pathways for the decay of the σ-complex 2. A somewhat 

unexpected but conceptually strikingly simple path is the direct, highly exoergic 

formation of the final product of the overall reaction; i.e., formation of the µ-hydroxo-

µ-phenolato complex 3 (∆GR = -93.4 kcal mol-1 with respect to 1) is possible in a 

single step after passage of TS2. In this transition structure the proton at the 

tetrahedral phenyl-carbon of the σ-complex 2 is abstracted by the µ-oxo atom 

bridging the two copper ions. The unusually low imaginary frequency of i206 cm-1 for 

this proton transfer step is a consequence of the participation of several atoms in the 

transition normal mode resulting from the excessive deformation about the Cu2O2 

moiety necessary to bend the µ-oxo atom over into a bonding range with the proton 

transferred. Somewhat counterintuitively, however, a rather modest barrier of 16.5 

kcal mol-1 results for this step, in spite of the highly strained nature of this transition 

state. Quite obviously this elementary step profits from significant stabilizing Coulomb 

interactions between the proton transferred and the high negative charge of the µ-

oxo atom (formally an O2-). Also, using qualitative Hammond arguments, the large 

exothermicity of this step (∆GR = -87.7 kcal mol-1 with respect to 2) might be seen as 

another factor contributing to the lowering of the barrier. In fact, already at this point 

product formation appears feasible under the thermal conditions of the experiment: 

once the barrier of 18.3 kcal mol-1 connected with TS1 is surmounted, subsequent 

proton transfer via TS2 should be efficient as its barrier is even lower by about 2 kcal 

mol-1.  

The situation is, however, more complicated than that. The arenium intermediate 2 

can actually rearrange almost barrierless (∆G# = 3.9 kcal mol-1) via TS3, the 

transition structure of a [1,2]H-shift across the phenyl ring, to form the 

thermodynamically rather stable dienone 4 (∆GR = -24.1 kcal mol-1). Hence, any 

amount of the σ-intermediate 2 formed will immediately decay to yield the dienone 

rather than passing the significantly larger barrier TS2 that would lead to direct 

product formation. Decay of the dienone intermediate via a [1,3]H-shift onto the 

phenolate oxygen atom to form the more stable phenol intermediate 5 (∆GR = -10.1 

kcal mol-1) is unlikely to occur because of the excessively high  barrier connected 
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with this step via TS4 (∆G# = 51.4 kcal mol-1). Yet another route to phenol formation 

was found via TS5 that connects the σ-complex 2 with 5, but this path has a much 

higher barrier (∆G# = 19.8 kcal mol-1) than TS2 and constitutes the kinetically least 

favorable step among the three routes identified for the decay of 2. Thus, even 

though formation of the intermediate 5 would provide a strong thermodynamic driving 

force and subsequent formation of the product complex 3 via TS6 could occur with a 

moderately low barrier of 16.3 kcal mol-1, this intermediate is unlikely to play any role 

in the course of the overall reaction because unfavorably high barriers preclude its 

formation from 2.  

With the somewhat unexpected nature of TS2 in mind we actually located a 

corresponding transition structure TS9 leading directly from 4 to the final product 3, 

that obviously profits from the same driving force provided by the large proton affinity 

of the bridging µ-oxo atom. This step represents the most favorable pathway we 

could find for product formation from dienone 4. With a barrier of 26.6 kcal mol-1, 

however, this step appears high enough to prevent an immediate decay of the 

dienone intermediate. Because all other barriers surrounding 4 are even higher (i.e., 

reaction back to 2 via TS3 with ∆G# = 28.0 kcal mol-1, or phenol formation via TS4 

with ∆G# =51.4 kcal mol-1), the dienone should be thermodynamically as well as 

kinetically stable enough to attribute to it a significant life time under the experimental 

conditions. Because the barriers in question are related to proton transfer transition 

states these elementary steps should be subject to substantial H/D kinetic isotope 

effects (KIE) upon deuteration of the 2-position of the phenyl ring. Indeed, H/D 

exchange of the respective hydrogen in the optimized stationary points 4 and TS9 

yields an increase of the corresponding barrier by 1.8 kcal mol-1 for the most 

favorable route for the dienone decay. This corresponds to a classical KIE of 21.4 at 

298.15 K. Qualitative consideration of quantum mechanical tunneling[180] employing a 

simple one-dimensional model[181] significantly increases the predicted KIE to 27.1 

(298.15 K). We thus predict a situation in which it might actually be possible to 

identify this species by experimental means even at room temperature employing a 

deuterated ligand framework. Given the fact that it represents the only relevant non-

aromatic intermediate in the mechanistic scenario established so far, we suggest 

NMR spectroscopy as a promising tool for its experimental identification. 
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As an alternative to the reaction paths considered up to this point, we identified a 

route to product formation commencing with an initial rearrangement of the µ-η2:η2 

peroxo species 1 to a µ-η2:η1 coordinated isomer 6, which is less stable than 1 by 6.1 

kcal mol-1. From 6 electrophilic attack of the aromatic ring via TS7 leads to the 

formation of σ-complex 7, a thermodynamically highly unfavorable counterpart of 2 

(i.e. less stable by 33.7 kcal mol-1). From 7, proton transfer with simultaneous O-O 

bond cleavage via TS8 leads to formation of the hydroxylated product 3. With 

formation of two thermodynamically unfavorable intermediates and two energetically 

demanding reaction barriers, this reaction sequence can effectively be seen as a 

unimolecular decomposition of 1 (assuming reaction kinetics with prequilibrium) with 

an overall barrier of 44.6 kcal mol-1 related to TS8. Thus, with the highest effective 

barrier identified in our entire study, this reaction channel is certainly unlikely to 

contribute to product formation.  

Summarizing this part of our investigation we note that we identified four alternative 

reaction pathways leading from the µ-η2:η2 peroxo species 1 to the hydroxylated 

product 3. Three thermally accessible pathways to product formation were identified, 

all of which involve the decay of the σ-intermediate 2. Formation of 2 requires 

passage of an activation barrier of 18.3 kcal mol-1 via TS1 corresponding to the 

electrophilic attack of the aromatic ring by the peroxo Cu2O2 core. 2 can rearrange 

almost without activation barrier to the dienone intermediate 4, which we propose as 

a key intermediate in the course of the aromatic hydroxylation reaction. For the 

energetically least demanding route leading from 4 to product formation via TS9 we 

predict an effective barrier of 26.6 kcal mol-1. Consequently, for the overall 

mechanistic scenario established here, this last proton transfer constitutes the rate 

limiting step for product formation. The preceding electrophilic attack via TS1 is 

energetically significantly less demanding by 8.3 kcal mol-1. For the rate limiting step 

we predict a large H/D-KIE, which might allow future characterizations of the dienone 

intermediate by NMR techniques.  

Why then did the dienone intermediate escape any experimental detection in our 

hands so far? An intuitively striking explanation for the experiments performed in 

methanol is certainly the participation of this protic solvent in the proton transfer steps 

in the latter phase of the reaction sequence. In this case intermolecular proton 
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transfer steps will most likely provide much lower barriers than those identified in our 

computations, which were performed employing a continuum solvent model but 

without explicit consideration of solvent molecules. But also in experiments using 

aprotic solvents, we searched in vain for any trace of this intermediate. Spurred by 

recent reports on the potential importance of counter ions for related systems[161, 182] 

we investigated the influence of a single [ClO4]- counter ion on the rate limiting step of 

the mechanistic scenario suggested above. And indeed, compared to the computed 

barrier height of 26.6 kcal mol-1 for the step 4 TS9 a dramatically lower barrier of 

only 7.5 kcal mol-1 results for the corresponding process 4•ClO4 TS9•ClO4 (Figure 

3-15)! This result implies a high reaction rate for this elementary step at room 

temperature, which straightforwardly explains the lack of any experimental evidence 

for the occurrence of a stable dienone intermediate prior to product formation or any 

prominent KIE in acetonitrile or CH2Cl2.  

 

Figure 3-15: Dienone 4•ClO4 and transition structure TS9•ClO4 leading to product 
formation optimized in the presence of a coordinating ClO4- counter ion  

(Gibbs free energies at 298 K in kcal mol-1 relative to 4•ClO4; 
UB3LYP/TZVP+COSMO//UB3LYP/SVP+COSMO results) 

 

In order to substantiate this quantum-chemical result the hydroxylation reaction was 

repeated in an aprotic solvent, acetonitrile, with the Cu(I) DAPA complex having a 

non-coordinating anion, BPh4 (Ic). Under these conditions a significantly slower 

reaction as compared to the Cu(I) complex with perchlorate as counterion (Ib) was 

observed (cf. Figure 3-14). This indeed supports the presence of a rate limiting 

proton transfer step leading from the dienone to the final product, which gets 

markedly accelerated in the presence of a coordinating counterion. 
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Table 3-4: Computed energy contributions (in atomic units) used to obtain relative free 
energies Grel (in kcal mol-1) and magnetic properties of all species discussed in the 
text. 

Species GB3LYP/SVP/au ∆Gcorr/aua EB3LYP/TZVP/aub G*B3LYP/TZVP/auc Grel/kcal 
mol-1 

J/cm-1 
d <α|β>e 

1 -4195.60056 0.31044 -4197.35914 -4197.04870 0.0 25.0 0.24 

TS1 -4195.56551 0.31172 -4197.33120 -4197.01949 18.3 -1325.4 0.54 

2 -4195.60553 0.31473 -4197.37254 -4197.05781 -5.7 -23.5 0.13 

TS2 -4195.58272 0.30871 -4197.34045 -4197.03175 10.6 251.1 0.15 

3 -4195.75172 0.31483 -4197.51234 -4197.19750 -93.4 -521.8 0.23 

TS3 -4195.59967 0.30969 -4197.36128 -4197.05159 -1.8 -84.5 0.21 

4 -4195.64395 0.31271 -4197.40890 -4197.09619 -29.8 -307.2 0.26 

TS4 -4195.56457 0.30689 -4197.32116 -4197.01427 21.6 -38.0 0.21 

5 -4195.66128 0.31292 -4197.42523 -4197.11231 -39.9 530.1 0.04 

TS5 -4195.57355 0.30669 -4197.33293 -4197.02623 14.1 -516.6 0.31 

6 -4195.59091 0.30904 -4197.34809 -4197.03906 6.1 534.1 0.24 

TS6 -4195.63820 0.31198 -4197.39824 -4197.08625 -23.6 -166.0 0.22 

TS7 -4195.55689 0.30944 -4197.30342 -4196.99398 34.3 -241.6 0.62 

7 -4195.56043 0.30960 -4197.31375 -4197.00415 28.0 -332.1 0.35 

TS8 -4195.53386 0.30495 -4197.28254 -4196.97760 44.6 -3366.1f 1.00f 

TS9 -4195.60805 0.30862 -4197.36248 -4197.05385 -3.2 285.1 0.04 

4•ClO4 -4195.66999 0.31918 -4958.43118 -4958.11200 0.0   

TS9•ClO4 -4955.17452 0.31666 -4958.41677 -4958.10011 7.5   

 
a Thermal corrections to G(298.15) computed at the B3LYP/SVP+COSMO level; 
b Total energies of single point calculations at the B3LYP/TZVP+COSMO level;  
c EB3LYP/TZVP + ∆Gcorr; d Spin coupling constant computed according to eq. 2 (see 

text);  
e Overlap integral of the magnetic orbitals;  
f magnetic coupling constant involving a closed-shell singlet solution, no bs wave 

function found. 
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3.8 Summary and Discussion  

In the preceding sections structural, spectroscopic, kinetic and quantum chemical 

investigations of the ligand hydroxylation reaction mediated by a Cu bis(imine) 

complex have been presented. Starting from a structural analysis of the Cu(I) 

complex I and the Cu(II) product II exhibiting a hydroxylated ligand the optical 

absorption and vibrational spectra have been analyzed. Special attention was 

directed to reproduce the structural and spectroscopic properties of complex II by 

quantum-chemical means. The kinetic analysis of the ligand hydroxylation provided 

evidence for O2-binding being the rate-limiting step in the overall reaction. The 

conversion of I to II was found to proceed much faster in methanol than in 

acetonitrile, which was attributed to the fact that the acetonitrile ligands of the Cu(I) 

precursor I are displaced in the course of O2 binding. Moreover, an inverse kinetic 

isotope effect was evidenced for the reaction in acetonitrile which was rationalized by 

a sterically congested transition state leading to the peroxo adduct. In methanol, 

however, no KIE was observed. Finally, a DFT analysis of the oxygenation reaction 

demonstrated that the dominant barrier after O2 binding is represented by the 

electrophilic attack of the µ−η2:η2 peroxo intermediate 1 on the arene ring. 

Nevertheless, on the basis of the activation energy (18.3 kcal/mol) this reaction is 

thermally allowed, in agreement with the experimental observation. Given the fact 

that the B3LYP functional employed has been shown to overestimate barrier heights 

by 4-7 kcal mol-1,[183] the actual barrier height might rather be in the range of 10-15 

kcal mol-1.  

The DFT investigation of the reactivity of the Cu(II) peroxo intermediate 1 formed by 

reaction of the Cu(I) precursor and O2 indicated the presence of four pathways to the 

hydroxylated final product 3. One of the pathways studied involves the 

rearrangement of the µ-η2:η2 peroxo structure to a µ-η2:η1 peroxo intermediate that 

subseqently attacks the aromatic ring. In the present system, however, this pathway 

is associated with an overall barrier of 44.6 kcal/mol which renders it less likely for 

product formation. In this context it is interesting to note that Siegbahn has suggested 

a related sequence (i.e., peroxide attack followed by O-O bond cleavage) as key 

steps for the ortho-hydroxylation of phenolate in the catalytic cycle of tyrosinase, but 

with an overall barrier of only 14.4 kcal mol-1.[106] Alternative pathways were not 
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reported in this study. In contrast, all energetically favorable pathways identified in 

our study involve a direct decay of the µ-η2:η2 peroxo intermediate 1 without 

rearrangement to an alternative peroxide coordination mode.  

The energetically most favorable route commences with a direct electrophilic attack 

of the aromatic ring by the peroxo moiety to form an arenium ion, which subsequently 

undergoes an almost barrierless proton shift to form a rather stable dienone 

intermediate (4). A second proton transfer step from the dienone directly leads to 

product formation. We have identified several alternative pathways with moderate 

barrier heights that would actually be thermally accessible under the experimental 

conditions. None of these pathways, however, can compete with the energetically 

most favorable pathway, even assuming potential errors in computed relative 

energies as large as 7 kcal/mol, and so we feel safe to suggest a single pathway as a 

general mechanistic scenario for the system under study.  

This scenario involves as a key intermediate in the conversion of the peroxo complex 

to the hydroxylated product the dienone intermediate 4, which should eventually be 

detectable experimentally. We attribute the fact that we (and others) were unable so 

far to identify such an intermediate to several factors: first of all, explicit participation 

of protic (or Lewis-basic) solvent molecules (which have not been considered in our 

calculations) in the proton transfer steps after formation of the σ-complex 2 might 

lead to drastically lowered barriers. Secondly, the key proton transfer steps might 

occur in an intermolecular fashion, involving initial deprotonation of the σ-complex by 

another copper dioxygen intermediate. A third factor contributing to the rapid decay 

of the dienone the counterion has explicitly been identified in the Computational 

Section: Compared to the calculated barrier height of 26.6 kcal/mol for the decay of 4 

via TS9, a dramatically lowered barrier of 7.5 kcal/mol was found for the 

corresponding process 4⋅ClO4 → TS9⋅ClO4  → product (3). This hypothesis is 

supported by a measurement of the hydroxylation reaction in acetonitrile employing a 

Cu(I) BPh4 complex; in this case a significantly lower reaction rate as compared to 

the Cu(I) perchlorate salt is observed. In order to directly detect the dienone 

intermediate 4 further experimental studies have to be performed. The present 

system, however, appears less suitable for these investigations as binding of O2 is 
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also associated with a thermal barrier, probably precluding accumulation of a 

dienone species at low temperatures. 

Another notable, and somewhat surprising result of our quantum chemical analysis is 

the finding that no stable bis(µ-oxo) isomer is formed in the ligand environment 

studied here. Based on the experience gathered in related investigations put forward 

by many groups, we would actually expect preferential formation of a bis(µ-oxo) 

species within the chelating bidentate N-donor ligand environment of the system 

studied here. Yet, the initial steps take place without intermediate formation of a bis-

µ-oxo species. While the initial transition state TS1 exhibits structural features nearly 

identical to O-O bond breaking transition states leading to the formation of a bis-µ-

oxo species in related ligand environments,[179] it represents in the present case a 

multicenter transition state for the O-O bond cleavage and simultaneous σ-attack of 

the aromatic ring by the peroxo moiety. We view this finding as a consequence of the 

rather tight coordination sphere of the bis-imine ligand that brings the breaking O-O 

bond in the Cu2O2 subunit in TS1 into close proximity of the aromatic ring, ideally 

oriented for direct orbital interactions with the aromatic π-system to generate the σ-

complex 2 in a single step. 

The mechanistic scenario established here has implications for the ligand 

hydroxylation reaction occurring in Karlin´s prototype system, the binuclear copper 

complex [Cu2(XYL)],[29, 30] upon reaction with O2. In full agreement with our present 

results, Pidcock et al. implied a µ-η2:η2 peroxo complex as active species and 

excluded the occurrence of a corresponding bis(µ-oxo) species in a spectroscopic 

analysis of this reaction.[109] These authors rationalized the electrophilic attack of the 

Cu2O2 moiety onto the aromatic ring in terms of qualitative frontier orbital arguments. 

Within this picture, it was convincingly argued that the HOMO of the arene system 

overlaps with an unoccupied orbital of the electrophile, which can either be the π∗σ or 

the σ* orbital of the side-on peroxo dicopper core (Figure 3-16a). Based on the 

particularities of the coordination geometry present in the tridendate ligand 

environment in that study, an attack via the σ∗peroxide orbital was considered 

unlikely, and a preferred, symmetry allowed pathway via the π∗σ orbital was 

suggested. The geometry of the initial transition state TS1 optimized for the copper 

bis(imine) complex here, however, differs essentially from the assumed transition 
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state geometry discussed by Pidcock et al., and it is in fact the σ* orbital of the 

peroxo group, and not the π∗σ orbital, that is involved in the electrophilic attack on the 

arene ring. In particular, the rather rigid ligand framework studied in the present work 

does not allow for a tilt of the aromatic ring along the O-O axis of the Cu2O2 group in 

the course of this elementary step – which would indeed exclude any constructive 

orbital interaction between the σ∗ peroxo orbital with the aromatic π-system. Instead 

the arene ring and the Cu2O2 group rotate in the transition state about axes 

perpendicular to the O-O vector such that the σ* orbital now interacts with the 

aromatic π-system from below in a symmetry allowed fashion that mediates the initial 

step along the hydroxylation pathway (Figure 3-16b).  

Another interesting implication for the mechanism of Karlin’s XYL system relates to 

the observation of an NIH-shift in studies employing a modified xylyl ligand that was 

methylated in 2-position of the aromatic core.[20, 184] This observation could in fact 

straightforwardly be rationalized assuming the formation of a dienone as a key 

intermediate, in analogy to the mechanistic scenario developed here. A subsequent 

C-N cleavage, in analogy to the cleavage of the methylene-N(amine) bond in the 

XYL-system, would, however, appear unlikely in a bis(imine) complex due to the 

double-bond character of the C-N linkage. 

The present results are also relevant to the enzyme tyrosinase, specifically the ortho-

hydroxylation of tyrosine mediated by the oxy form of this enzyme. Of crucial 

importance for this reaction is the orientation of phenolic substrates with respect to 

the binuclear copper active site. Experimental information on this point has mostly 

been derived from spectroscopic studies on the bonding of inhibitors to 

tyrosinase.[185, 186] Alternatively, it has been proposed that an external tyrosine 

substrate is oriented at the active site of Ty in the same way as Phe49 in the Limulus 

oxy Hc structure.[23, 187]  The recently solved structure of Streptomyces 

castaneoglobisporus tyrosinase has revealed a very similar arrangement with Tyr98 

(provided by the associated caddie-protein) extending into the active site pocket like 

a potential substrate.[14, 101] An external phenolic substrate may be preoriented at the 

active site in a similar geometry (Figure 3-2).  
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Figure 3-16a: Geometries in the transition states leading to the σ-complex: Karlin-
complex 

 

 

 

Figure 3-16b: Geometries in the transition states leading to the σ-complex: 
bis(imine)complex (see text) 
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The analysis of the hydroxylation pathway in the Cu2 bis(imine) complex thus has 

shown that besides the previously discussed π∗σ pathway a second pathway for the 

oxygenation chemistry mediated by binuclear copper site does exist, i.e., electrophilic 

attack of the substrate by the σ∗ orbital of side-on bound peroxide. For systems 

exhibiting more structural flexibility than the Cu bis(imine) systems both pathways 

might be operative. Importantly, the presence of a second orbital pathway provides 

additional flexibility for the position of the aromatic substrate with respect to the 

Cu2O2 unit in the transition state leading to the σ-complex. This is of relevance both 

for the enzyme tyrosinase and for copper model systems which are active in the 

hydroxylation of external substrates.[42, 46, 188] In all of these cases the σ* orbital 

directed along the prolonged O-O vector just has to “hit” the π-system of the 

substrate (except for the nodal plane of the C-orbitals) from an arbitrary angle in 

order to mediate hydroxylation. This structural flexibility in the transition state 

accounts for the wide occurence of oxygenation reactions in binuclear copper 

dioxygen systems exhibiting largely different ligand structures and explains the fact 

that these reactions are not limited to a few systems with special geometries. 

3.9 Unpublished Material 

3.9.1 Kinetic Investigations 

As described above, during the analysis of the oxidation of Ia with dioxygen, we 

could not detect the formation of a dioxygen intermediate like a peroxo complex. 

Compared with the reaction in acetonitrile the oxidation in methanol is much faster. 

Here it was possible to fit the absorbance vs time traces using the sum of two 

exponential functions. Two independent rate constants could be determined which 

indicates two independent reaction steps. In a limited temperature range a linear 

dependence on the dioxygen concentration for the two rate constants with an 

intercept was obtained as shown in Figure 3-17. 

The two reactions that are depending on dioxygen concentration indicate the 

existence of different solvated complex species. This is already known from earlier 

studies by the Schindler group and the Feringa group that in solutions of related 

complexes several species can exist. 
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Table 3-5: Measured reaction rates of the reaction of Ia with O2 in methanol at -60,1°C 

O2 [mM] k1obs/s-1 k2obs/s-1 

1.25 1.65 ± 0.05 0.34 ± 0. 01 

1.77 2.08 ± 0.06 0.40 ± 0.02 

2.55 2.69 ± 0.06 0.49 ± 0.01 

3.4 3.37 ± 0.06 0.61 ± 0.02 

4.25 3.89 ± 0.08 0.72 ± 0.02 
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Figure 3-17: Dependence of the reaction constants kobs1 and kobs2 on dioxygen 
concentration in methanol [Ia] = 1 x 10-4mol/l, T = -60.1°C 

These complexes are mainly different in regard to the number of coordinated 

acetonitrile molecules.[49, 189] For our system such a variety of species is also 

suggested and might cause some kind of problems, because acetonitrile molecules 

compete significantly with dioxygen as a ligand at the copper site.[48] (Figure 3-18) 
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 Figure 3-18: Several complex species existing in solution 
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Additionaly, dependening on the concentration of copper(I) cations and acetonitrile 

molecules, the formation of mononuclear copper(I) species and uncoordinated ligand 

or even the formation of copper(I) polymers might be possible.[162] The intercepts 

could indicate responsible reaction behavior, however, more likely is a consequence 

of preliminary reorganisation steps prior to the reaction with dioxygen. In our efforts 

to simplify the kinetic behavior by reducing the distribution of species in solution, 

copper(I) salt or acetonitrile was added. Unfortunately these attempts did not simplify 

the reaction behavior. It was not possible to fit the time traces over a large 

temperature range. Therefore more detailed analysis could not be performed and 

activation parameters ∆H# and ∆S# could not be determined. 

Related investigations were also performed in dichlormethane as solvent. Compared 

to the measurements in methanol, the oxidation reaction of the complex was 

significantly slower. Most importantly, in this solvent no dependence on dioxygen 

concentration for both reaction rate constants could be observed (Figure 3-19). 

Unfortunately, "clean" fitting was not possible due to the large errors for the data 

fitting. However, the observations support that an additional intermediate is formed, 

probably the dienone that has been predicted from theoretical calculations as 

described above. 

Table 3-6: Measured reaction rates of the reaction of Ia with O2 in CH2Cl2 at 20,0°C 

O2 [mM] k1obs x 10-2/s-1 k2obs x 10-2/s-1 

2.15 15 ± 2 4.3 ± 0.1 

1.935 15 ± 1 4.1 ± 0.1 

1.72 13. ± 2 3.2 ± 0.2 

1.505 15 ± 2 3.6 ± 0.1 

1.29 13. ± 4 2.7 ± 0.1 

1.075 15 ± 1. 3.2 ± 0.2 
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Figure 3-19: Dependence of the reaction constants kobs1 and kobs2 on dioxygen 
concentration in dichlormethan [Ia] = 1 x 10-4mol/l, T = 20°C 
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4 Copper complexes with phenanthroline and bipyridine as 
ligands 

4.1 A Copper(I) complex with an adamantane derivative as ligand 

4.1.1 Introduction 

It is well known that bidentate chelate ligands with nitrogen donor atoms are suitable 

for complexation of copper(I) ions. Therefore numerous copper(I) complexes with 

ligands such as bipyridine or phenanthroline have been synthesized. Furthermore 

several of these complexes are also suitable to coordinate unsaturated hydrocarbons 

e.g. olefins or alkynes. As described in chapter 1.4 there is a great interest to 

investigate such copper complexes containing unsaturated compounds in regard to 

their possible catalytic properties and application in organic synthesis. The research 

group of Prof. Schreiner (JLU Gießen) is interested in the functionalization of 

adamantane derivatives and examples are shown in Figure 4-1.[190, 191]  

Adamantane (tricyclo[3.3.1.13.7]decane) is a cycloalkane and the simplest 

diamondoid. Its formal structure consists of four cyclohexane molecules attached in 

the chair conformation. In nature traces of adamantane can be found in some rock 

crystals or in petroleum, where it was discovered first 1933. Its name derived from 

the Greek adamantinos, due to its diamond-like structure. Adamantane is the most 

stable isomer of C10H16. As an unfunctionalized hydrocarbon, adamantane itself is 

not very useful in contrast to its derivatives that are applied for example in 

pharmaceutical products. . 

1 2 3 4  

Figure 4-1: Adamantane and derivatives: adamantane (1), diamantane (2), triamantane 
(3) and [121] tetramantane (4)[190, 191]   
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In collaboration with the Schreiner group it was decided to try to use the adamantane 

derivative tetracyclo[7.3.1.14,12.02,7]tetradeca-6.11-diene (tctd) shown in Figure 4-2 

as ligand for the complexation of copper(I). This derivative could show some potential  

for the formation of coordination polymers. 

 

Figure 4-2: Tetracyclo[7.3.1.14,12. 02,7] tetradeca-6,11-diene (tctd) 

4.1.2 Results 

Due to the facile preparation of related copper(I) complexes, the synthesis and 

characterization of a copper(I) complex with tctd as ligand seemed to be a facile 

experiment that should be performed. And indeed, applying the same experimental 

conditions as for the synthesis of the related complex [Cu(bipy)COD]PF6
[68], 

[Cu2(bipy)2(tctd)](PF6)2 x C3H6O could be obtained.  

[Cu(CH3CN)4]PF6 + bipy
N

N N

N
CuI CuI

acetone

(PF6)2  

The molecular structure of the cation of [Cu2(bipy)2(tctd)](PF6)2 is shown in Figure 4-3 

(crystallographic data are presented in Tables 4-1 and 4-2). The unit cell contains 

one complex molecule, one solvent molecule (acetone) and two anions.  

Each copper center is coordinated with two nitrogen atoms of bipy and one double 

bond of the adamantyl derivative tctd. The coordination sphere of the copper centers 

is almost square planar, which is common for ternary copper olefin complexes.[65-67, 

192] Due to this the Cu-N bond lengths have typical values around 2,0(2) and are in 

good agreement with those found in similar ternary complexes. [65-67, 192] Furthermore, 

comparable values for the Cu-Colefin distances were observed. 
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Figure 4-3: ORTEP plot of [Cu2(bipy)2(tctd)]2+  
 (50% probability ellipsoids) hydrogen atoms omitted for clarity 

The double bonds lengths C(25)-C(26) and C(31)-C(32) showed with values of 

1,40(5) and 1,38(6) a clear widening compared to the average value of 1,33 Å for a 

simple uncoordinated double bond. Due to the fact that the uncoordinated tctd has 

not been characterized crystallographically yet, a detailed comparison of the bond 

lengths and angles is not possible.  

 

Table 4-1: Crystal data and structure refinement for [Cu2(bipy)2(tctd)]2+ 

Empirical formula C37 H40 Cu2 F12 N4 O P2  

Formula weight 973.75 F(000)  988 

Temperature (K) 193(2) K Crystal size (mm)  0.28 x 0.08 x 0.28 

Crystal system triclinic, p-1   θ range for data 
collected (°) 2.66 to 28.14 

Space group P-1 no.2  Index ranges  -10<=h<=11, -
14<=k<=14, -24<=l<=26 

Wavelength (Å)  0.71073 Reflection 
collected  17289 

Independent refl., 
Rint 8570, 0.0709 

Completeness to 
theta  90.5%  (theta= 28,14°) Unit cell 

dimensions[Å / °] 

a= 8.50(2) 
b = 11.31(3)   
c = 20.49(5)  
α= 91.5(3) 
β= 92.9(3) 
γ = 100.8(3) 

Goodness-of-fit on 
F2  0.888 

Z 2 R1 [I>2σ(I)]  0.0452 
Density calcd. 
(Mg/m3)  1.671 wR2 [I>2σ(I)]  0.1021 

Volume [Å3] 1935.8(8) R1 [all data] 0.0914 
Absorpt. coeffic.  
(cm-1)  1.277 wR2 [all data]  0.1220 
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Table 4-2: Selected bond lengths and angles [Å, °] for [Cu2(bipy)2(tctd)]2+ 

Cu(2)-N(1) 1.99(1) Cu(1)-C(27) 2.02 (4) 

Cu(2)-N(2) 1.98(1) C(31)-C(32) 1.38(6) 

Cu(1)-N(3) 1.99(3) C(26)-C(27) 1.40(5) 

Cu(1)-N(4) 1.99 (3) N(1)-Cu(2)-N(2) 83.2 (1) 

Cu(2)-C(31) 2.04(4) C(32)-Cu(2)-C(31) 40.1(2) 

Cu(2)-C(32) 2.00(3) N(3)-Cu(1)-N(4) 83.3(2) 

Cu(1)-C(26) 2.04(3) C(26)-Cu(1)-C(27) 40.2(2) 
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4.2 Copper(I) complexes with bicyclopropylidene and dicyclopropylacetylene 
as ligands 

4.2.1 Introduction 

In organometallic chemistry unsaturated compounds such as bicyclopropylidene bcp 

(a) and dicyclopropylacetylene dcpa (b) (depicted in Figure 4-4) play an important 

role for the synthesis of special molecules with remarkable properties.[193-195] In that 

regard Armin de Meijere and co-workers successfully used dcpa for the facile 

preparation of octacyclopropylcubane and some of its isomers.[196] Due to these 

novel reactions, transition metal complexes with bcp and dcpa as ligands are 

assumed to have interesting properties and should be investigated in more detail. 

a b  

Figure 4-4: Bicyclopropylidene bcp (a) and dicyclopropylacetylene dcpa (b)  

In collaboration with the research group of Prof. A. de Meijere (University of 

Göttingen) it was possible to prepare successfully the complexes [Cu(bipy)(bcp)]PF6 

and [Cu(bipy)(dcpa)]PF6. This is already a quite interesting and important result 

because so far, only one transition metal complex containing bcp as ligand has been 

synthesized and characterized by de Meijere and co-workers.[195] 

Cu(I) + bpy

N

N

N

N

CuI

CuI

bcp

dcpa

 

To gain a better understanding of the coordination ability of these ligands and in 

regard to investigate further possible applications of their complexes as catalysts we 

were interested in preparing and investigating complexes with bcp and dcpa as 



 CHAPTER 4 

 
 

74 

ligands. Prior to the investigations described herein, a bcp nickel complex was 

successfully synthesized and characterized by L. Römmling in the Schindler 

group.[197]  

4.2.2 Results 

4.2.2.1 [Cu(bipy)(bcp)]PF6  

By mixing copper(I) salt, bipyridine and an excess of the olefin bcp the complex 

[Cu(bipy)(bcp)]PF6 could be synthesized in acceptable yields. Crystals suitable for X-

ray analysis were obtained and the molecular structure of the cation is depicted in 

Figure 4-5. Selected bond lengths and angles are presented in Tables 4-3 and 4-4.  

The geometry of [Cu(bipy)(bcp)]PF6 is best described as square planar. The 

copper(I) center is coordinated by two pyridyl nitrogen atoms and by the double bond 

of the olefin. Due to the space group C2/c there is a plane of symmetry in the 

molecule. The values of 1.98(2) Ǻ for Cu-N- and of 1.96(2) Ǻ for Cu-C-distances are 

comparable to related ternary copper(I) olefin complexes.[64, 66, 67, 192, 198]  

 
Figure 4-5: ORTEP plot of [Cu(bipy)bcp]+ 

 (50% probability ellipsoids) hydrogen atoms omitted for clarity 

Due to the changed hybridization of the coordinated carbon atoms from sp2 to sp3, 

the primal planar bicyclopropylidene shows an out of plane bending of both 

cyclopropyl groups. In that regard an expansion of the coordinated double bond 

compared to the uncoordinated ligand from 1,31 to 1,36(3) Ǻ is observed. In 

comparison with the previously described cobalt complex the out of plane bending of 

the ligand is less with 23,19° (compared to 40°). Furthermore the minor expansion of 



 CHAPTER 4 

 
 

75 

the coordinated double bond (1,36(3) Ǻ compared to 1,40 Ǻ in the cobalt complex) 

confirms that the Cu(I) ion is a poor π-back bonding transition metal cation. As 

expected, the bonds in this complex can be described as predominately σ bonds 

from alkenes to the copper ion.[64-67] This weak π back bonding interaction is also 

observed with dicyclopropylacetylene as ligand in the complex [Cu(bipy)dcpa]PF6 

described below. 

4.2.2.2  [Cu(bipy)dcpa]PF6  

In the same way as [Cu(bipy)bcp]PF6 was synthesized it was possible to obtain the 

analogous alkyne complex with dicyclopropylacetylene (dcpa) as ligand. Treatment 

of [Cu(CH3CN)4]PF6 and bipyridine with dcpa in acetone gave [Cu(bipy)dcpa]PF6 as 

a yellow-orange solid, which was characterized by NMR-spectroscopy. After diffusion 

of diethylether into the solution yellow crystals suitable for X-ray structure analysis 

could be obtained. The molecular structure of the cation of [Cu(bipy)dcpa]PF6 is 

shown in Figure 4-6 while selected bond lengths and angles are given in Tables 4-5 

and 4-6. The coordination environment of  the copper(I) ion is almost trigonal planar 

with two pyridine nitrogen atoms and a side-on bound dicyclopropylacetylene 

molecule.  

 
 Figure 4-6: ORTEP plot of [Cu(bipy)dcpa]+ 

 (50% probability ellipsoids) hydrogen atoms omitted for clarity 

As expected the observed bond angle N(1)-Cu(1)-N(2) and the distances N(1)-Cu(1) 

/ N(2)-Cu(1) and Cu(1)-C(14) / Cu(1)-C(15) are comparable to those determined in 

the structure of [Cu(bipy)bcp]PF6. The carbon-carbon bond length of the coordinated 

dcpa molecule (1.23(4) Ǻ) is only slightly larger than in the free molecule (1.197(3) 

Ǻ).[199] This is in line with the only slightly elongated triple bond of dcpa compared to 
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a related acetylene complex (C-C bond length 1.188(11) Ǻ) and to an uncoordinated 

acetylene molecule (1.204 Ǻ).[67] As a consequence of the changed hybridization (sp 

to sp2) of the coordinated carbon atoms the bonds adjacent to the triple bond are also 

bended. Due to this, the two cyclopropyl rings are bended out of plane as depicted in 

Figure 4-6. 

4.2.2.3 Reactivity towards dioxygen 

As described in the introduction the activation of molecular oxygen by copper 

complexes plays a central role in synthetically useful stoichiometric and catalytic 

conversions of organic molecules and also in biological systems. Furthermore, 

dioxygen adduct complexes are very important species in this regard.[3, 4, 21, 200-202] 

However, it is quite difficult to isolate and characterize these reactive intermediates. 

Therefore, it seemed a good idea to use alkenes or alkynes as ligands, thus 

stabilizing the copper(I) unit but additionally to provide a ligand that could be easily 

substituted by dioxygen during the oxidation process. Thus, in a bench top 

experiment [Cu(bipy)bcp)PF6 and [Cu(bipy)dcpa)PF6 were dissolved in acetone and 

the solution was cooled to -80°C. After dioxygen had been bubbled through the cold 

solution, the color turned slowly pale blue, but no dioxygen adduct complex with 

intensive color could be detected in this preliminary test.  

Unfortunately, the experiment demonstrated that a simple copper complex with only 

bipyridine as ligand could not stabilize a "dioxygen" adduct complex under these 

conditions. However, still an interesting oxidation reaction occurred. According to the 

following equation the oxidation of [Cu(bipy)dcpa)PF6 led to a bis(µ-

hydroxo)dicopper(II) complex as product and its structure is shown in Figure 4-7 

(crystal data, bond distances and angles are presented in Tables 4-7 and 4-8).  

 

N

N
CuI O2, air N

N N

N
CuII CuII

O

O

H

H

2+

 
 

Oxidation of the coordinated dcpa was not observed. As depicted in Figure 4-7, the 

dcpa molecule is not coordinated to the copper centre anymore. Therefore, a 
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binuclear copper(II) complex was formed in which both copper ions are bridged by a 

hydroxido group of the inserted oxygen. It is assumed that this hydroxido group is 

formed from a bis-µ-oxo precursor and traces of water due to the fact, that these 

crystals were obtained by oxidation of [Cu(bipy)dcpa)PF6 with air instead of using dry 

dioxygen.  

Each unit cell contains one binuclear copper(II) complex and two distorted PF6
-
 

anions. At a first glance the structure of the cation seems to be symmetrical but the 

determined space group C2/c reveals a monoclinic crystal system. Due to this the 

Cu2O2 core is only almost planar. The Cu(II)-N and Cu(II)-O distances as well as the 

O-Cu-O and Cu-O-Cu angles are in line with the metric parameters of closely related 

complexes.[203, 204] 

 
   Figure 4-7: ORTEP plot [Cu2(bipy)2(OH)2]2+ 

 (50% probability ellipsoids) hydrogen atoms omitted for clarity 
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Table 4-3: Crystal data and structure refinement for [Cu(bipy)bcp]PF6 

Empirical formula C8H8Cu0,5 F3 N1P0,5  

Formula weight 222.41 F(000)  896 

Temperature (K) 200 (2) Crystal size (mm)  0.35 x 0.35 x 0.25  

Crystal system monoclinic  θ range for data 
collected (°) 2.67 to 28.27 

Space group C2/c, no.15 Index ranges  
-11 ≤ h ≤ 11, 
-19 ≤ k ≤ 19, 
-17 ≤ l ≤ 16 

Wavelength (Å)  0.71073 Reflection collected  10033 

Independent refl., Rint 2101, 0.0284 

Completeness to theta  49.5%  (theta= 28.27°) Unit cell 
dimensions[Å / °] 

a = 8.98(2)  
b = 14.63(1) 
c = 13.13(9) 
α = 90 
β = 96.6(1) 
γ  = 90 

Goodness-of-fit on F2  1.091 

Z 8 R1 [I>2σ(I)]  0.0266 
Density calcd. 
(Mg/m3)  

1.724 
 wR2 [I>2σ(I)]  0.0725 

Volume [Å3] 1713.9(2)  
 R1 [all data] 0.0312 

Absorpt. coeffic.  
(cm-1)  

1.431 
 wR2 [all data]  0.0745 

 

Table 4-4: Selected bond lengths and angles [Å, °] for [Cu(bipy)bcp]PF6 

Cu(1)-N(1) 1.98(2) C(11)-Cu(1)-C(12) 40.7(1) 

Cu(1)-N(2) 1.98(2) C(11)-Cu(1)-N(2) 158.8(7) 

Cu(1)-C(11) 1.96 (2) C(12)-Cu(1)-N(2) 118.1(6) 

Cu(1)-C(12) 1.96(2) C(11)-Cu(1)-N(1) 118.1(6) 

C(11)-C(12) 1.36 (3) C(12)-Cu(1)-N(1) 158.7(7) 

N1-Cu(1)-N2 83.2(8)   

 

Table 4-5: Crystal data and structure refinement for [Cu(bipy)dcpa]PF6 

Empirical formula C18H18CuF6N2P  

Formula weight 470.85 F(000)  952 

Temperature (K) 193(2)  Crystal size (mm)  0.2 x 0.32 x 0.04 

Crystal system monoclinic θ range for data 
collected (°) 2.17 to 26.01 

Space group P2(1)/n  (no. 14) Index ranges  
-13<=h<=13,  
-10<=k<=10, 
-23<=l<=22 
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Wavelength (Å)  0.71073 Reflection collected  13372 

Independent refl., Rint 3584, 0.0596 

Completeness to theta  97.4% (theta= 26,01°) Unit cell 
dimensions[Å / °] 

a = 11.12(2)                
b = 8.97(2)                    
c = 18.92(1)                   
α = 90                             
β = 96.6(2)                      
γ = 90 

Goodness-of-fit on F2  1.005 

Z 4 R1 [I>2σ(I)]  0.0470 

Density calcd. 
(Mg/m3)  1.671 wR2 [I>2σ(I)]  

0.1238  

 
Volume [Å3] 1872.2(4) R1 [all data] 0.0699 
Absorpt. coeffic.  
(cm-1)  1.315 wR2 [all data]  0.1388 

 

Table 4-6: Selected bond lengths and angles [Å, °] for [Cu(bipy)dcpa]PF6 

Cu(1)-C(14)      1.95(4) C(14)-Cu(1)-N(2)   118.9(2) 

Cu(1)-C(15)      1.96(4) C(15)-Cu(1)-N(2) 155.3(2) 

Cu(1)-N(2)                   1.98(3) C(14)-Cu(1)-N(1) 158.0(2) 

Cu(1)-N(1)                   1.99(3) C(15)-Cu(1)-N(1)     121.6(2) 

C(14)-C(15) 1.23(4) N(2)-Cu(1)-N(1)       83.0(2) 

C(14)-Cu(1)-C(15)    36.8(2)   

 

Table 4-7: Crystal data and structure refinement for [Cu2(bipy)2(OH)2](PF6)2 

Empirical formula C20 H18 Cu2 F12 N4 O2 P2  

Formula weight 761.39 F(000)  3008 

Temperature (K) 193(2) K Crystal size (mm)  0.16 x 0.08 x 0.24 

Crystal system monoclinic θ range for data 
collected (°) 2.64 to 28.05 

Space group C2/c (No. 15) Index ranges  
-29<=h<=29, 
-18<=k<=18, 
-21<=l<=21 

Wavelength (Å)  0.71073 Reflection 
collected  22725 

Independent refl., 
Rint 5775, 0.1850 

Completeness to 
theta  92.8%  (theta= 28,05°) Unit cell 

dimensions[Å / °] 

a = 24.4(1) 
b = 14.1(3) 
c = 16.1(3) 
α = 90  
β = 112.5(3) 
γ  = 90 

Goodness-of-fit on 
F2  0.880 

Z 8 R1 [I>2σ(I)]  0.0853 
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Density calcd. 
(Mg/m3)  1.977 wR2 [I>2σ(I)]  0.1915 

Volume [Å3] 5116.5 R1 [all data] 0.1900 
Absorpt. coeffic.  
(mm-1)  1.905 wR2 [all data]  0.2506 

 

Table 4-8: Selected bond lengths and angles [Å, °] for [Cu2(bipy)2(OH)2](PF6)2 

N(1)-Cu(1)    1.96(9) O(2)-Cu(1)               1.95(7) 

N(2)-Cu(1)   1.96(8) Cu(1)-Cu(2)             2.91(2) 

N(3)-Cu(2)  1.96(8) N(2)-Cu(1)-N(1)       82.2(4) 

N(4)-Cu(2)    1.96(1) O(1)-Cu(1)-O(2) 80.9(3) 

O(1)-Cu(2)    1.94(6) O(1)-Cu(2)-O(2)       81.5(3) 

O(1)-Cu(1)    1.94(7) N(4)-Cu(2)-N(3)       82.5(4) 

O(2)-Cu(2)                   1.93(9)   
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4.3 Copper(I) complexes with phenanthroline and derivatives as ligands 

4.3.1 Introduction 

Considering “greener chemistry”, today catalysis plays a more and more important 

role in organic chemistry.[205-207] In an effort to synthesize single stereoisomers for 

production and marketing of new drugs, asymmetric catalysis will play an integral part 

in future applications. Therefore the asymmetric preparation of enantiomerically pure 

compounds has become an extremely important aspect in organic synthesis and a 

challenge for academic and industrial chemists.  

Chelating diphospane ligands are commonly used as chiral catalysts due to their 

successful application in Rh(I) complexes for asymmetric hydrogenation and for 

many other asymmetric reactions.[208-215]  Recently it has been recognized that 

chelating ligands containing nitrogen donor atoms such as phenanthroline can also 

be used as catalysts for asymmetric synthesis. 1,10 phenanthroline is well known as 

analytical reagent and can be used as a template for the preparation of chiral ligands. 

The chiral information can be introduced by chiral groups at the 2-,3-,8- and/or 9-

position (I,II) or by ring fusion (III) depicted in Figure 4-8.[216]  

N N

N NN N

*R R*

*R R*

*R R*

I

II III  

   Figure 4-8: Ligand templates[216] 

The research group of Prof. Elke Schoffers (Chemistry Department, Western 

Michigan University, Kalamazoo, USA) is trying to prepare such modified 

phenanthroline ligands and to investigate their properties towards enantioselective 

recognition reactions. Therefore these ligands are modified either by introducing 

chiral groups or by introducing epoxide groups into the ring system which causes the 

loss of aromaticity and planarity, shown in Figure 4-9.[214, 216, 217] 
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In regard to the application as asymmetric catalysis we thought it could be interesting 

to investigate the properties of copper containing complexes of such functionalized 

phenanthroline derivatives. From this a collaboration with the group of Prof. Schoffers 

developed and several Cu(I) and Cu(II) complexes of numerous phenanthroline 

ligands were synthesized and structurally characterized during my diploma thesis.[218] 

A selection of the used ligands are depicted in Figure 4-9. 

N N N NN N

O O HO NH

OMe

I                                II                               III  

   Figure 4-9: Phenanthroline derivatives used as ligands:  
1,10-phenanthroline-5,6-epoxide (I), 2,9-dimethyl-1,10-phenanthroline-5,6-epoxide (II) 

5,6-dihydro-[1,10]phenanthroline-5,6-aminoalcohol (III) 

So far tests on these complexes as catalysts in asymmetric synthesis have not been 

performed yet because it was not the goal of this thesis. Such experiments will be 

performed in the future in the Schoffers group. 

4.3.2 Results 

4.3.2.1 [Cu(dmpe)2]PF6 x 1/2 CH3CONH2 

An interesting reaction was observed when 2,9-dimethyl-1,10-phenanthroline-5,6-

epoxide (II) (dmpe) as a ligand was mixed with [Cu(CH3CN)4]PF6 in a stoichiometric 

ratio in acetone.  

NN

O

[Cu(CH3CN)4]PF6

[acetone]

N

N
O

N

N
OCuI

PF6

+ 1/2 CH3CONH2
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Crystals of the complex [Cu(dmpe)2]PF6 x 1/2 CH3CONH2 were obtained and the 

molecular structure of the cation of [Cu(dmpe)2]PF6 is shown in Figure 4-10. Crystal 

data, bond lengths and angles are presented in Tables 4-9 and 4-10.  

 

   Figure 4-10: ORTEP plot of [Cu(dmpe)2]+ (50% probability ellipsoids)  
hydrogen atoms omitted for clarity 

The unit cell contains the fourfold coordinated complex cation [Cu(dmpe)2]+, a PF6
-
 

anion and furthermore an acetamide molecule (in every second unit cell) depicted in 

Figure 4-11.  

 

Figure 4-11: ORTEP ellipsoide plot of a part of the unit cell of 
[Cu(dmpe)2]+ x 1/2 CH3CONH2 (50% probability ellipsoids) 

hydrogen atoms omitted for clarity 

This is quite amazing due to the fact that no acetamide was added to the reaction 

solution. Nevertheless, under certain conditions the formation of this acetamide 

molecule can be assumed and explained. The formation of an amide as intermediate 
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during hydrolysis of nitrils is well known. Such hydrolysis of nitrils catalysed by acids 

or bases are a common method to synthesize carbon acids. Therefore, since a 

catalytic effect caused by protons or hydroxyl ions can be excluded, it might be 

possible, that the copper cation is responsible for the formation of acetamide from 

acetonitrile. Acetonitrile is present from the starting material [Cu(CH3CN)4]PF6 and 

traces of water might be present in the dried absolute acetone. This furthermore 

explains why acetamide instead of the corresponding carbon acid was formed.  

C NH3C CuI
complex CH3C Cucomplex C NH3C Cucomplex

H2O-CuI
complex

CuI
complex + CH3CONH2

N

 

Unfortunately the quality of the obtained crystals was not great. The structural 

refinement was not so good showed disorder problems encountered with the epoxide 

groups and the acetamide molecules. Due to this the formation of acetamide is 

assumed but not clearly proofed. Therefore efforts in obtaining better quality single 

crystals have to follow as well as further investigations to gain a better understanding 

of the described catalytic reaction. 

The structure of the cation in Figure 4-10 shows a distorted tetrahedral geometry. 

The copper(I) ion is coordinated by the four nitrogen atoms of the phenanthroline 

ligands, whereas the formation of five membered chelate rings leads to values for the 

N(1)-Cu(1)-N(2) and N(3)-Cu(1)-N(4) angles of 82,6(3)° and 83,0(3)°, significantly 

deviating from ideal tetrahedral angle. Due to sterical demand both phenanthroline 

molecules are coordinated almost at right angles. Furthermore, the epoxide groups in 

the middle ring of the phenanthroline molecule are responsible for the loss of 

aromaticity. Due to this and to the sterical effects of the methyl groups, there is no 

planarity of the ligand system anymore and the disordered oxygen atoms are 

standing out of plane. With 2,01(6) and 2,02(6) Å the values of the Cu-N bonds are 

comparable to those of related Cu(I) phenanthroline complexes.[219, 220] 
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Table 4-9: Crystallographic data for [Cu(dmpe)2]PF6 x 1/2 CH3CONH2 

Empirical formula C29 H26,5 Cu F6 N4,5O2,5 P  

Formula weight 686.56 F(000)  2800 

Temperature (K) 200(2) Crystal size (mm)  0.1 x 0.15 x 0.2 

Crystal system monoclinic. θ range for data 
collected (°) 1.88 to 28.29 

Space group C2/c  (no 15) Index ranges  
-30≤ h ≤ 24,  
-15 ≤ k ≤14,  
-29 ≤ l ≤ 32 

Wavelength (Å)  0.71073 Reflection collected  14882 
Independent refl., 
Rint 6984, 0.1901 

Completeness to 
theta   

95.9 % 
(theta= 28.29°) Unit cell dimensions[Å / °] 

a = 23.17(6) 
b = 11.67(3) 
c = 24.10(6) 
α = 90 
β = 115.9(4) 
γ = 90 Goodness-of-fit on F2  0.862 

Z 8 R1 [I>2σ(I)]  0.0752 

Density calcd. (Mg/m3)  1.556 wR2 [I>2σ(I)]  0.1403 

Volume [Å3] 5860(2) R1 [all data] 0.3127 

Absorpt. coeffic. (cm-1)  0.876 wR2 [all data]  0.2138 

 

Table 4-10: Selected bond lengths (Å) and bond angles (°) for [Cu(dmpe)2]PF6 x 1/2 
CH3CONH2 

Cu(1)-N(1) 2.01(6) N(3)-Cu(1)-N(4) 83.0(3) 

Cu(1)-N(2) 2.01(6) N(1)-Cu(1)-N(4) 116.6(2) 

Cu(1)-N(3) 2.01(6)  N(1)-Cu(1)-N(3) 130.6(2) 

Cu(1)-N(4) 2.02(6) N(2)-Cu(1)-N(3) 121.0(3) 

N(1)-Cu(1)-N(2) 82.6(3) N(4)-Cu(1)-N(2) 129.4(3) 
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4.4 Efforts to synthesize a copper-oxo-species 

4.4.1 Introduction 

As described above the challenge to synthesize and fully characterize a copper oxo 

species is still open. Because it is a highly reactive intermediate responsible for many 

oxidizing processes, isolation and characterization of such a species failed so far. 

Recently Schroeder, Holthausen and Schwarz could successfully generate a copper-

oxo-complex with phenanthroline as ligand via ESI.[63] Based on these results it 

seemed promising to use derivatives of phen and bipy as ligands in an attempt to 

stabilize such a species. Therefore, several copper(I) complexes with bipyridine, 

phenanthroline and its derivatives as ligands were reacted with air, pure dioxygen or 

ozone. 

As mentioned above, dimethylphenanthroline dmp has been used as reagent for the 

detection of copper(I) ions since 1960. Because of the intense color of its copper(I) 

complexes it is still a common and commercial available detection reagent and was 

therefore used by us in our first attempts to obtain an oxo-complex. In general 

bidentate ligands with nitrogen donor atoms such as dmp, phen or the related bipy 

coordinate to Cu(I) in a ratio of 2:1 or 3:1 (ligand to Cu(I) center). In this regard we 

obtained as expected the [Cu(dmp)2]+ complex cation with two dmp molecules 

coordinated to one copper ion, depicted in Figure 4-12. Due to this the copper(I) 

center and its oxidation state +I is stabilized and the reactivity towards dioxygen is 

rather low.  

 
 Figure 4-12: ORTEP plot of [Cu(dmp)2]+ (50% probability ellipsoids)  

hydrogen atoms omitted for clarity  
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To facilitate a reaction with dioxygen it is absolutely necessary to generate a complex 

with a Cu(I) to ligand ratio of 1:1. Here dioxygen is then supposed to coordinate to 

the copper center and form a "dioxygen adduct" complex. Therefore one dmp ligand 

of [Cu(dmp)2]+ has to be substituted by an only weakly coordinated ligand such as an 

olefin. In that regard the olefin cyclooctadiene seemed to be suitable to saturate the 

coordination sphere of the copper(I) center being weakly bonded and appropriate for 

substitution.  

Due to the fact that bipy has related ligation properties as phen or dmp and due to 

the facile preparation of the olefin complex [Cu(bipy)COD]+, this complex was 

synthesized to investigate its reaction behavior towards dioxygen. The complex 

[Cu(bipy)COD]+ is already known from the literature and has been described in 

chapter 1.4. 

4.4.2 Results 

4.4.2.1 Reactivity of [Cu(bipy)COD]+ towards dioxygen  

To gain first insights into the reactivity of this complex a bench top experiment was 

performed. After having cooled a solution of [Cu(bipy)COD]+ in acetone to -80°C, 

pure dioxygen was bubbled through this solution. This facile procedure allows rapid 

detection of thermal unstable dioxygen-adducts which usually can be recognized by 

an intensive color. However, it was observed that [Cu(bipy)COD]+ only reacted very 

slowly with dioxygen while the yellow color of the solution turned to blue. UV-vis 

spectroscopic investigations using stopped-flow technique were performed. The 

spectral changes that occurred during the reaction of [Cu(bipy)COD]+ with dioxygen 

in acetone are shown in Figure 4-13. The decrease of the maximum at 339 nm 

indicates the decomposition of the complex; only weak d-d product bands were 

observed. The insert shows the data fit to the sum of two exponential functions at 

339 nm. Two reaction rate constants could be determined, which reveals the 

existence of a parallel or consecutive reaction. From previous studies of related 

systems from S. Goldstein and G. Czapski it is well known that such reactions with 

dioxygen are very complex.[221, 222] 
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Figure 4-13: Spectral changes during reaction of [Cu(bipy)COD]+ with dioxygen in 
acetone (T = 20 °C, [complex] = 1.0 mM, [O2] = 4,0 mM, t = 5400 s) 

Insert: Absorbance vs. time trace at 339 nm and fit to the sum of two exponentials 
(kobs1 = 3. 72 x 10-3 ± 4 x 10-5 s-1; kobs2 = 4,94 x 10-4 ± 3 x 10-6 s-1) 

 

Unfortunately, no formation of a dioxygen adduct complex could be detected during 

the oxidation reaction. An analogue reaction behavior was expected for the related 

complex [Cu(phen)COD]+, which was synthesized easily according to the preparation 

method as for the bipy complex. 

4.4.2.2 [Cu(phen)COD]PF6 

Mixing phenanthroline, 1,5-cyclooctadiene (COD) and Cu(I) salt afforded a grey 

material that could be recrystalized from acetone. By ether diffusion crystals suitable 

for X-ray structural analysis were obtained.  

[Cu(CH3CN)4]PF6 +phen [Cu(phen)(COD)]PF6 + 4 CH3CNCOD
 

The ORTEP representation of [Cu(phen)COD]+ is shown in Figure 4-14, crystal data, 

bond lengths and angles are presented in Tables 4-11 and 4-12. In contrast to 
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[Cu(bipy)COD]PF6 the complex [Cu(phen)COD]PF6 has not been described in the 

literature so far. 

 
Figure 4-14: ORTEP plot of [Cu(phen)COD]+ (50% probability ellipsoids)  

hydrogen atoms omitted for clarity  

 

The structure of the cation [Cu(phen)COD]+ shows a distorted tetrahedral geometry 

coordinated with two nitrogen atoms of the phenanthroline ligand and two double 

bonds of the COD ligand. The Cu-N bonds (av 2,0 Å) are shorter than Cu-N bond of 

related copper(I) complexes of phen, bipy and their derivatives.[68, 198, 223-225] In 

contrast the coordination of the ligand COD is only weak due to the longer Cu-Colefin 

bonds in comparison with related ternary complexes.[64-66] Furthermore the C=C bond 

distance of 1,31 Å is similar to the values of uncoordinated cyclooctadiene.[226] 

4.4.2.3 Efforts to synthesize a [Cu(dmp)COD]+ complex 

 Since it was not possible to detect a dioxygen adduct complex using [Cu(bipy)COD]+ 

or [Cu(phen)COD]+ it seemed to be necessary to use ligands with more sterical 

demand such as dmp. However, it was not possible to synthesize [Cu(dmp)COD]+ 

according to the preparation of [Cu(phen)COD]+: instead of coordinated COD, an 

acetonitrile molecule coordinates to the copper center: 

[Cu(CH3CN)4]PF6 + dmp [Cu(dmp)(CH3CN)]PF6 + 3 CH3CNCOD
 

The crystals obtained during this synthesis were suitable for crystallographic 

characterization and the determined molecular structure is shown in Figure 4-15. The 

coordinated acetonitrile molecule acts as an additional ligand and saturates the 
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coordination sphere of the copper(I) ion. In this case acetonitrile molecules compete 

with COD for the coordination site of the copper centre due to the sterical effects of 

the dmp ligand. Its methyl groups prevent coordination of COD that is a much weaker 

ligand for copper(I) ions compared to acetonitrile. The crystal structure of this 

complex shows a three coordinated copper(I) ion and has already been reported 

previously by M. Munakata et al. in 1989.[227] The reported crystal data, bond lengths 

and angles are consistent with our data.  

 
Figure 4-15: ORTEP plot of  [Cu(dmp)CH3CN]+ 

(50% probability ellipsoids) hydrogen atoms omitted for clarity 

Due to the strong ligated acetonitrile molecule and the stability of [Cu(dmp)CH3CN]+ 

towards oxidation with air, the reactivity of this complex towards dioxygen is 

extremely slow and no formation of a dioxygen adduct complex could be observed.  

Further efforts to synthesize a [Cu(dmp)COD]+- or another [Cu(dmp)olefin]+-complex 

(to gain more reactivity) also failed despite modified reaction conditions 

(concentration, solvent) and always resulted in the formation of three coordinated 

Cu(I) centres with acetonitrile as additional ligand instead of the olefin. 

To avoid this unfavorable coordination it made sense to use a preparation route for 

these complexes without using tetrakis-acetonitrile-copper(I) salts as educt. Such a 

new oxidation-based synthetic route was recently developed by B. A. Ghandi et al.. 
[228] Copper powder is reacted with a silver salt according to the following equation: 

Cu(s) + AgY + nL [CuLn]Y + Ag(s)
acetone
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But even with this method it was not possible to obtain the target molecules. Again 

molecular structures demonstrated that only crystals of 1:2 ratio of Cu(I) to dmp-

ligand could be obtained. The structure of [Cu(dmp)2]+ is shown in Figure 4-12. 

Crystal data, bond lengths and angles are given in Tables 4-13 and 4-14.  

Table 4-11: Crystallographic data for [Cu(phen)COD]+ 

Empirical formula C40 H40 Cu2 F12 N4 P2  

Formula weight 993.78 F(000)  2016 

Temperature (K) 200 (2) Crystal size (mm)  0.1 x 0.1 x 0.4 

Crystal system monoclinic θ range for data 
collected (°) 1.71 to 28.34 

Space group PC(1)/n  (no 14) Index ranges  -32 ≤ h ≤ 32, -9 ≤ k ≤9, 
-31 ≤l ≤ 31 

Wavelength (Å)  0.71073 Reflection collected  45562 

Independent refl,. Rint 9662, 0.0674 

Completeness to theta   98.0%  (theta= 28.34°) 
 
Unit cell dimensions 
[Å / °] 

a= 24.13(3)      
b = 6.89(8) 
c = 24.19(3)      
α= 90    
β= 100.6(2) 
γ = 90 

Goodness-of-fit on F2  1.089 

Z 4 R1 [I>2σ(I)]  0.1735 

Density calcd. (Mg/m3)  1.670 wR2 [I>2σ(I)]  0.4101 

Volume [Å3] 3953.5(8) R1 [all data] 0.2180 

Absorpt. coeffic. (cm-1)  1.251 wR2 [all data]  0.4307 

 

Tab. 4-12: Selected bond lengths (Å) and bond angles (°) for [Cu(phen)COD]+  

Cu(1)-N(1) 2.01(1) C(13)-Cu(1)-N(1) 114.9(5) 

Cu(1)-N(2) 2.01(1) C(20)-Cu(1)-N(1) 149.3(6) 

Cu(1)-C(13) 2.09(2)  C(20)-Cu(1)-N(2) 113.7(6) 

Cu(1)-C(20) 2.12(2)  C(13)-Cu(1)-C(20) 38.0(6) 

Cu(1)-C(17) 2.34(2)   C(17)-Cu(1)-N(2) 98.9(5) 

Cu(1)-C(16) 2.48(2)  C(17)-Cu(1)-N(1) 120.6(5) 

C(16)-C(17) 1.31(2) C(16)-Cu(1)-N(1) 102.7(5) 

C(20)-C(13) 1.37(2) C(16)-Cu(1)-N(2) 125.2(5) 

N(1)-Cu(1)-N(2) 84.2(4) C(16)-Cu(1)-C(17) 31.4(5) 

C(13)-Cu(1)-N(2) 146.7(5)   
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Tab. 4-13: Crystallographic data for [Cu(dmp)2]CF3SO3 

Empirical formula C29 H24 Cu F3 N4 O3 S    

Formula weight 629.12    F(000)  1288   

Temperature (K) 193(2) K    θ range for data 
collected (°) 2.38 to 26.06 

Crystal system monoclinic Reflection collected  19731 

Space group P2(1)/n   Independent refl., Rint 5364, 0.0882 

Wavelength (Å)  0,71073 Completeness to theta 
26.06       98.1 %    

Unit cell dimensions 
[Å / °] 

a = 13.55 (3)     
b = 11.09(2)     
c = 18.47(4)     
α = 90  
β = 96.2(3)  
γ = 90 

Index ranges  
 -16<=h<=16, 
 -13<=k<=13,  
-22<=l<=22    

Density calcd. (Mg/m3)  1.513 Goodness-of-fit on F2  0.884    

Z 4 R1 [I>2σ(I)]  0.0489 

Volume [Å3] 2761.4(10) wR2 [I>2σ(I)]  0.1057    

Absorpt. coeffic. (mm-1)  0.926 R1 [all data] 0.1000 

Crystal size [mm]   0.16 x 0.08 x 0.08 wR2 [all data]  0.1237  
             

Tab. 4-14: Selected bond lengths (Å) and bond angles (°) for [Cu(dmp)2]CF3SO3 

Cu(1)-N(1)   2.01 (3) N(1)-Cu(1)-N(4) 131.4(1) 

Cu(1)-N(2)                     2.06 (3)                           N(1)-Cu(1)-N(4)  131.4(1) 

Cu(1)-N(3)                     2.05(3) N(3)-Cu(1)-N(2)    113.2(1)              

Cu(1)-N(4)                     2.02(3) N(4)-Cu(1)-N(3)    82.3 (1) 

N(1)-Cu(1)-N(2)      82.3 (1) N(4)-Cu(1)-N(2) 122.2(1) 

N(1)-Cu(1)-N(3) 129.5(1) N(4)-Cu(1)-N(2) 122.2(1) 
 

4.4.2.4 Oxidation with dioxygen 

Despite the unfavorable aspect of two coordinated dmp molecules and an expected 

minor reactivity towards dioxygen, first attempts were made to oxidize this complex. 

First of all the [Cu(dmp)2]+ was treated with air and after a few days crystals were 

obtained suitable for X-ray crystallographic studies.  

4 [Cu(dmp)2]+ [Cu4(2-methoxy-9-methyl-phenanthroline)4]4+air
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Although it turned out that the crystals were either twinned or badly grown and thus 

did not allow a perfect determination of the crystal structure, it was at least possible 

to obtain a clear picture of the cation of the formed complex. The molecular structure 

of the product is shown in Figure 4-16 and crystallographic data, selected bond 

lengths and angles are given in Tables 4-15 and 4-16.  

 
Figure 4-16: ORTEP plot of  [Cu4(2-methoxy-9-methyl-phenanthroline)4]4+ 

(50% probability ellipsoids) hydrogen atoms omitted for clarity 

 The structure of the cation depicted in Figure 4-16 consists of four 

dimethylphenantroline molecules, each two of them parallel and almost at right 

angles to the remaining two. The four copper centres, each in a distorted square 

planar environment, are each ligated by two phenanthroline nitrogen atoms and by 

two oxygen atoms which act as bridge between opposed copper centres. 

The crystal structure shows that hydroxylation of a ligand methyl group occurred 

during the oxidation reaction with the result, that the copper(II) ion is now coordinated 

to the inserted oxygen of the alkoxide group. Recently, a related reaction has been 

observed by Maiti et al. who reported, that during the reaction of a copper(II) 

superoxo complex similar C-H substrate oxygenation was observed. In this work a 

copper oxo complex was proposed as reactive intermediate, responsible for the 

hydroxylation.[229] Most likely the oxidation [Cu(dmp)2]+  with dioxygen follows the 

same reaction pathway and the postulated mechanism is depicted in Figure 4-17. 
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Figure 4-17: [Cu(dmp)2]+ + O2;  
Proposed reaction pathway: Generation of an copper-oxo species? 

Therefore, during the hydroxylation reaction of the [Cu(dmp)2]+ complex should be 

the reactive intermediate an oxo species such as  −⋅OIICu )(  ( OIIICu =↔ )( ) or 

−⋅OIIICu )(  (i.e. { } +2CuO ).[229-231] However, so far it was not possible to detect or 

isolate this intermediate. The methyl groups cannot stabilize such a reactive 

dioxygen intermediate and have been oxidized themselves. Therefore, more oxidant 

resistant and bulky groups such as CF3 or tert-butyl at the positions 2 and 9 of the 

phenanthroline ligand system seem to be more appropriate for stabilizing such an 

intermediate. Furthermore phenanthroline derivates with more bulky substituents 

offer the possibility to synthesize complexes with a copper(I) to ligand ratio of 1:1. 

These complexes are supposed to be more reactive towards dioxygen and may form 

an oxo species that can be detected and even isolated. 

4.4.2.5 Ozonolysis 

As the studied complexes showed only minor reactivity towards dioxygen an 

alternative strategy was applied. In iron chemistry Grapperhaus et al. reported 

previously  that an iron(IV) oxo complex could be generated by ozonolysis of an 

iron(III)-cyclam-acetato complex.[232] The formation of this oxo-species occurred 

during the reaction of ozone with an iron cyclam complex in an acetone/water mixture 

at -80°C. The generation of the iron oxo species could be detected by UV-vis- and 

Mössbauer analysis and the following mechanism, depicted in Figure 4-18 for the 

formation of this species was proposed.  

With this background it seemed promising to use a similar approach for the synthesis 

of a copper oxo complex. Therefore, a solution of [Cu(dmp)2]+ in acetone was cooled 

to -80°C and ozone (using different amounts/concentrations) was bubbled through it. 
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Interestingly a large number of different color changes occurred during the reaction 

process (Figure 4-19). 

[(cyclam-acetato)FeIII(O3SCF3)]+

[(cyclam-acetato)FeIII(OH2)]2+

[(cyclam-acetato)FeIV(OH)]2+ [(cyclam-acetato)FeIV(O)]+

intermediate X

-H2O+H2O

O3

H+

-H+

"green species"
 

Figure 4-18: Generation of an iron(IV)oxo species by oxidizing with O3 

The color of the solution immediately turned from red to brown to green and blue. 

After warming the color of the solution turned again red. The spectral changes that 

occurred during the reaction under these conditions are shown in Figure 4-20.  

           
 

Figure 4-19: [Cu(dmp)2]+ + O3 
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Figure 4-20: Spectral changes during reaction of [Cu(dmp)2]+ with ozone in acetone 
(T= - 80°C , [complex] = 1.0 mmol/l) 

A buildup of an absorbance maximum at 327 nm and a decrease of absorbance at 

460 nm could be observed. Interestingly the spectra detected after warming the 

solution to RT corresponds to the educt-spectra. These findings reveal a reversible 

formation of a possible “O2- or O3
”- adduct complex as intermediate. So far it was not 

possible to detect spectroscopically any intermediate such as a dioxygen, an ozonide 

or an oxo species. The reaction is extremely interesting, however again it is more 

likely that it is possible to analyze the different intermediate products if a sterically 

more demanding phenantroline ligand will be used. 
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Tab. 4-15: Crystallographic data for [Cu4(2-methoxy-9-methyl-
phenanthroline)4](CF3SO3)4 

Empirical formula C17.14 H12.86 Cu1.14 F3.43 
N2.29 O4.57 S1.14 

 

Formula weight [g/mol] 498.41    θ range for data 
collected (°) 2.09 to 22.47 

Temperature (K) 173(2) K Reflection collected  18411 

Z 7 Independent refl., Rint 9199, 0.0619 

Wavelength (Å)  0.71073 Completeness to theta   98.0%  (theta= 28.34°) 

Goodness-of-fit on F2  2.773 

R1 [I>2σ(I)]  0.2017 
Unit cell dimensions 
[Å / °] 

a = 13.92(3)                   
b = 16.57(3)      

c = 19.12(4)    

α = 108.5(3)  

β = 98. 2(3)  

γ = 109.3(3)  

Index ranges  
-14<=h<=14                    
-17<=k<=17  
-20<=l<=20  

Density calcd. (Mg/m3)  1.526 wR2 [I>2σ(I)]  0.5646 

Volume [Å3] 3795.4(13) R1 [all data] 0.2239 

Absorpt. coeffic. (cm-1)  1.310 wR2 [all data]  0.5773 

F(000)  1754    

 
Tab. 4-16: Selected bond lengths (Å) and bond angles (°) for                                                
[Cu4(2-methoxy-9-methyl-phenanthroline)4](CF3SO3)4 

Cu(1)-N(2)  1.86(3) O(2)-Cu(1)-O(5) 95.1(7) 

Cu(1)-O(2)  1.897(2) N(2)-Cu(1)-O(2)    161.9(8) 

Cu(1)-O(1)   2.01(2) O(1)-Cu(1)-N(1) 160.4(7) 

Cu(1)-N(1)    2.13(2) N(2)-Cu(1)-O(5)  102.8(8) 

Cu(1)-O(5)   2.33(2) O(1)-Cu(1)-O(5)              100.3(7) 

O(2)-Cu(1)-O(1)  92.8(6)  N(1)-Cu(1)-O(5) 87.2(7) 

N(2)-Cu(1)-N(1)    78.8(9)  N(2)-Cu(1)-O(1) 81.9(8) 

O(2)-Cu(1)-N(1) 104.6(7)   
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4.5 Experimental Section 

4.5.1 Materials and Reagents 

Commercial reagents were used as obtained without further purification. Solvents 

were dried according to standard procedures. Absolute (dry) acetone for kinetic 

measurements was either obtained commercially (Acros) or by destillation of 

analytical grade acetone. All handling (as well as storage) of oxygen sensitive 

compounds and materials used in the kinetic studies was carried out in a glove box 

(M. Braun, Germany, O2 < 0,1 ppm, H2O < 0,1 ppm) under an argon atmosphere.  

4.5.2 Physical Measurements 

UV-vis spectra were measured using an Agilent 8453 diode-array 

spectrophotometer. 

1H NMR spectra were recorded on a Bruker-Aspect 2000/3000 400-MHz 

spectrometer by Dr. Hausmann (Institute for Organic Chemsitry, JLU-Giessen). 

4.5.3 Kinetic Measurements 

Kinetic measurements of slower reactions were carried out using a stopped-flow unit 

(HI)-Tech Scientific SFA20 Rapid Kinetics Acessory) connected to the Agilent 

spectrophotometer. 

Kinetic measurements of faster reactions were performed using a home built low 

temperature stopped-flow unit. A more detailed description of the stopped-flow 

technique and the used instruments has been described previously.[97, 117] Additional 

information on the kinetics of inorganic reactions have been described in chapter 2. 

Data fitting was performed using Specfit and Origin (OriginLab Corporation, 

Northhampton, MA, USA). 

The solutions of the copper(I) complexes were prepared in the glove box and than 

transferred into quartz cuvettes or glass syringes with attached valves. The 

concentration of the copper(I) complex solutions usually was adjusted to 1,0 x 10-4 

mol/l.  
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A dioxygen saturated solution was prepared by bubbling dioxygen for 20 minutes 

through acetone. The solubility of dioxygen in acetone is 8.0 mmol/l at 20°C.[116] 

4.5.4 X-ray Crystallography 

X-ray data were collected either on a Siemens SMART CCD diffractometer of the 

Forschungszentrum Karlsruhe or on a STOE Imaging Plate Diffraction System of the 

Justus-Liebig-University. Intensity data were collected on a Siemens SMART CCD 

1000 diffractometer or on a STOE Imaging Plate Diffraction System equipped with a 

low temperature system (Karlsruher Glastechnisches Werk).  The X-ray 

crystallographic data were collected by the ω-scan technique.  The collected 

reflections were corrected for absorption, Lorentz and polarization effects.[233] All 

structures were solved by direct methods and refined by least-squares techniques 

using the SHELX-97 program package.[234] The hydrogen atoms were positioned 

geometrically and all non-hydrogen atoms were refined anisotropically, if not 

mentioned otherwise. 

4.5.5 Synthesis of the complexes 

The ligands bicyclopropylidene bcp, dicyclopropylacetylene dcpa, and 

Tetracyclo[7.3.1.14,12. 02,7]tetradeca-6,11-diene tctd were prepared by the research 

groups of Prof. A. de Mejere (bcp, dcpa) and Prof. P. Schreiner (tctd). The 

phenanthroline derivative 2,9-dimethyl-phenepoxide was prepared by co-workers of 

Prof. E. Schoffers. The Cu(I) salts [Cu(CH3CN)4]PF6/ BF4/ SbF6/ CF3SO3 were 

prepared according to a procedure described in the literature.[115] 

4.5.5.1 [Cu2(bipy)2(tctd)](PF6)2   

To a stirred solution of 37.2 mg (0.1mmol) [Cu(CH3CN)4]PF6  in 3 ml acetone 15.6 mg 

(0.1 mmol) of 2,2’-bipyridine was added. The resulting red solution was stirred 

furthermore for 2 hours and then an excess amount of tctd (160 mg, 0.8 mmol) was 

added. The solution was filtered through a pad of zeolite. Diffusion of diethyl ether 

into the solution at room temperature resulted in the formation of light yellow crystals 

suitable for X-ray structure determination.  



 CHAPTER 4 

 
 

100 

4.5.5.2 [Cu(bipy)bcp]PF6 

37.2 mg (0.1 mmol) of [Cu(CH3CN)4]PF6 and 15.6 mg (0.1 mmol) of 2,2’-bipyridine 

were dissolved in 3 ml acetone. After addition of 16 mg (0.2 mmol) of 

bicyclopropylidene the reaction mixture was stirred for 10 minutes and the color of 

the solution turned pale yellow. Vapor diffusion of diethyl ether into the complex 

solution yielded single crystals of [Cu(bipy)bcp]PF6 suitable for X-ray 

characterization.  

1H-NMR (400 MHz, acetone d6, δ/ppm): 

1.59 (b s 8H), 7.87 (t 2H); 8.36 (t 2H); 8.7 (d 2H); 8.96 (d 2H)  

13C-NMR (100 MHz, acetone d6, δ/ppm): 

9.1,124.3, 129.3, 143.1, 151.1, 153.9  

4.5.5.3 [Cu(bipy)dcpa]PF6 

38.8 mg (0.36 mmol) of dicyclopropylacetylene were added to a mixture of 37.2 mg 

(0.1mmol) of [Cu(CH3CN)4]PF6 and 15.6 mg (0.1 mmol) of bipyridine in 3 ml acetone 

under stirring. After 10 minutes the color of the solution turned pale yellow. Crystals 

suitable for X-ray characterization were obtained after several days by diffusion of 

ether into the solution at –5°C. 

1H-NMR (400 MHz, acetone d6, δ/ppm):  

0.56 (m 2H); 0.79 (m 2H); 1.36 (m 1H); 7.92 (t 2H); 8.41 (t 2H); 8.71 (d 2H); 9.01 (d 

2H)  

13C-NMR (100 MHz, acetone d6, δ/ppm):  

152.6, 150.8, 141.5, 127.7, 122.9, 80.8 

4.5.5.4 [Cu2(bipy)2(OH)2]2+ 

38.8 mg (0.36 mmol) of dicyclopropylacetylene were added to a mixture of 37.2 mg 

(0.1 mmol) of [Cu(CH3CN)4]PF6 and 15.6 mg (0.1 mmol) of bipyridine in 3 ml acetone 

under stirring. After 10 minutes the color of the solution turned pale yellow. After 



 CHAPTER 4 

 
 

101 

exposure to air, the color of the solution turned slightly blue and after a few days blue 

crystals suitable for X-ray characterization were obtained.  

 

4.5.5.5 [Cu(phen)COD]PF6 

To a stirred solution of 372.7 mg (1 mmol) [Cu(CH3CN)4]PF6 and 180.2 mg (1 mmol) 

1,10-phenanthroline in 5 ml acetone an excess of 1,5-cyclooctadiene (3.24 g. 

30mmol)  in 5 ml acetone was added drop wise. The pale yellow solution turned grey 

and after stirring for one hour a grey colored precipitate was obtained which was 

collected by filtration and dried in vacuum. Dissolution of the complex in acetone and 

diffusion of diethyl ether at room temperature resulted in colorless crystals suitable 

for X-ray structural analysis.  

1H-NMR (400 MHz, acetone d6, δ/ppm):  

2.80 (s 8H),  5.95 (s 4H), 8.18 (q 2H), 8.32 (s 2H), 8.95 (dd 2H), 9.36 (dd, 2H) 

13C-NMR (100 MHz, acetone d6, δ/ppm) 

30, 18.6,127.6, 128.9, 131.3, 140.8, 145.2, 152.4    

4.5.5.6 [Cu(dmp)2]CF3SO3 

To a stirred solution of 100 mg (0.481 mmol) 2,9-dimethylphenanthroline in acetone 

an excess of copper powder (1 g) and 123 mg (0.481 mmol) AgCF3SO3 were added 

portion wise. The bright red solution was stirred for 1 hour and than filtered off. Slow 

diffusion of diethyl ether resulted in red crystals suitable for X-ray structural analysis. 

 

4.5.5.7 [Cu4(2-methoxy-9-methyl-phenanthroline)4]4+ 

In the glove box, a solution of [Cu(dmp)2]CF3SO3 in acetone (1.0 mmol/l) was filled in 

a small test tube which was closed with a septum. Exposure to air resulted in a blue 

colored solution after several days. After 2 weeks blue crystals suitable for X-ray 

characterization were obtained.  
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4.5.6 Ozonolysis  

In a typical experiment a solution of [Cu(dmp)2]CF3SO3 in acetone (1.0 mmol/l) was 

filled in a small test tube which was closed with a septum (in the glove box). If 

necessary, the solution was filtered to remove trace amounts of silver impurities. 

The test tube was placed in a Dewar filled with ethanol at -80 °C. The temperature of 

the solution was monitored during the reaction and remained constant within 5 °C. A 

stream of ozone provided by an ozone generator (Ozonosan PM 80, Germany) was 

passed through the solution for 10 - 30 min. Within 3 min the red color of the solution 

initially fades to brown, green and blue. For UV-vis measurements during ozonolysis, 

the reaction was performed in a quartz UV-vis cell closed with a septum at -80 °C up 

to room temperature with a constant ozone stream during the measurements. 
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5 Nickel-olefin complexes 

5.1 Introduction 

Nickel catalyzed reactions are of high interest in organic chemistry and play an 

integral role in laboratory as well as in industry. It is well known that various Ni(0) 

complexes are responsible for catalytic induced reactions such as oligomerization of  

alkenes, dienes and alkynes as well as C-C-coupling reactions. As mentioned before 

the catalytic dimerization of 1,3-butadiene to 1,5 cyclooctadiene (COD) using Ni(0) 

phosphane complexes as catalysts is performed on industrial scale and the 

mechanism of the reaction was investigated by Wilke and co-workers. [75, 81-85]  

Despite the fact that Ni(0) complexes are very air sensitive, several of these 

complexes were synthesized and characterized successfully in the Schindler group. 

For some of these complexes the reaction behavior was also investigated in 

detail.[235, 236] Interestingly, only a few Ni(0) bipyridine complexes with unsaturated 

hydrocarbons as ligands have been described so far. Amongst others H. Weiss could 

successfully synthesize and characterize the first nickel cyclopropene complex, 

which was demonstrated to be a crucial intermediate during the oxidative cyclization 

of cyclopropenes at the nickel(0) site.  

 
 

Figure 5-1: Right: ORTEP plot of nickel(0) cyclopropene complex[235] 
(50% probability ellipsoids) hydrogen atoms omitted for clarity 

Left: Molecular structure of 2,2-bipyridyl (η2- diphenylacetylene)nickel[79] 
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Figure 5-2: Proposed mechanism for the catalytic oxidative cyclization of 
cyclopropenes with Ni(0) complexes  

The structure is depicted in Figure 5-1, the mechanism in Figure 5-2. Another 

previously reported bipyridine complex is the 2,2-bipyridyl (η2-

diphenylacetylene)nickel complex, characterized by Eisch and co-workers (Figure 5-

1).[79] 

5.2 Ni(0) complex with dcpa and bcp as ligands  

To gain a better understanding of the properties of Ni(0) complexes with unsaturated 

compounds as ligands in regard to their possible application as catalysts in organic 

synthesis, we thought it could be interesting to prepare and to investigate Ni(0) 

complexes with bipyridine and unsaturated ligands. Within the collaboration with the 

research group of de Meijere from the University of Göttingen the olefin 

bicyclopropylidene bcp (a) and the alkyne dicyclopropylacetylene dcpa (b) were 

used as special ligands for complexation of Ni(0). (Figure 5-3) This is in complete 

analogy to the copper(I) complexes with these ligands described in chapter 4.2. 

a b  

Figure 5-3: Bicyclopropylidene (a) and dicyclopropylacetylene (b)  

Prior to the investigations of the nickel dcpa complex described herein, a bcp nickel 

complex was successfully obtained by L. Römmling in the Schindler group.[197] 
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Crystals of [Ni(bipy)bcp] were characterized by X-ray studies and the reaction of the 

precursor [Ni(bipy)COD] with bcp was investigated kinetically using stopped flow 

technique. The proposed mechanism was in line with the one previously postulated 

by H. Weiss, which is depicted in Figure 5-2. The determined structure of the 

obtained [Ni(bipy)bcp] is shown in Figure 5-4 and the reaction mechanism is depicted 

in Figure 5-5. 

 

Figure 5-4: ORTEP plot of [Ni(bipy)bcp] [197] 
(50% probability ellipsoids) hydrogen atoms omitted for clarity 
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Figure 5-5: Proposed mechanism for [Ni(bipy)COD] with bcp 
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5.3 Results  

5.3.1 [Ni(bipy)dcpa]  

Due to the successful preparation and investigation of the complex [Ni(bipy)bcp] we 

were interested in obtaining the related [Ni(bipy)dcpa] complex and to investigate its 

formation mechanism.  

Therefore [Ni(bipy)COD] was mixed with an excess amount of dcpa in THF obtaining 

pale yellow crystals suitable for crystallography study. The determined structure of 

[Ni(bipy)dcpa] is in line with the related [Cu(bipy)dcpa]PF6 complex and with the 

previously reported complex of J. J. Eisch et al. The structure of the complex is 

depicted in Figure 5-6. The crystallographic data are shown in Table 5-2, bond 

lengths and angles are given in Table 5-3. 

 

Figure 5-6: ORTEP plot of [Ni(bipy)dcpa] 
(50% probability ellipsoids) hydrogen atoms omitted for clarity 

 

The structure of [Ni(bipy)dcpa] shows characteristic trigonal planar Ni(0) geometry 

with a nickel center being coordinated by two nitrogen atoms of bipyridine and the 

triple bond of dicyclopropylacetylene. The essentially planar interaction of the 

bipyridyl ligand and the C≡C is evident (Figure 5-6). The average of Ni-Calkyne 

distances of 1.85(2) Å is similar with σ-Ni-C bonds involving sp2-hybrized carbon 

centers.[79, 237] Due to this the acetylenic C-C separation with 1.28(3) is more 

congruent with a C-C double bond than with the presence of a triple bond. Compared 

with the related copper(I) complex [Cu(bipy)dcpa]+ the separation of the C-C (alkyne) 

found in the Ni(0) complex is remarkably larger. This is in line with the fact that 

copper(I) is supposed to be a poorer π-back bonding metal center as Ni(0). 
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5.3.2 Mechanistic studies of the reaction of [Ni(bipy)COD] with dcpa 

Mechanistic studies of such reactions are quite difficult due to the extreme sensitivity 

of dilute solutions of nickel(0) complexes towards traces of dioxygen. However, in the 

past the Schindler group successfully managed to overcome these difficulties by 

using special techniques for handling of the samples.  

The formation of [Ni(bipy)dcpa] can be followed by UV-vis spectra using stopped flow 

techniques. Time-resolved spectra for the reaction of [Ni(bipy)COD] with dcpa are 

shown in Figure 5-7. Isosbestic points were observed at 390 nm and 485 nm. The 

reaction rate is significantly slower compared to the related reaction of [Ni(bipy)COD] 

with cyclopropene or bcp. However, due to the previous findings from H. Weiss it was 

supposed, that the reaction follows a simple rate law such as  

[ ]dcpaCODbipyNik
dt
CODbipyNid ])([])([

= .  

 

 

 

 

 

 

 

 

 

 
Figure 5-7: Spectral changes during reaction of [Ni(bipy)COD] with dcpa in THF 

 (T= 20.1 °C, [complex] = 0.25 mmol/l, [dcpa] = 30 mmol/l, t = 51.256 s) 
Insert: Absorbance vs. time trace at 561nm and fit to a single one-exponential function 

(kobs = (83 ± 6) x 10-3s-1) 
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However, it was not possible to obtain acceptable fittings to single one-exponential 

functions for all considered concentrations of dcpa over the selected temperature 

range. The decomposition of [Ni(bipy)COD] which arises from the labile ligand COD 

impeded the kinetic measurements, although an excess of COD  was added to 

suppress this annoying side reaction. Moreover, the high temperature range (10-

25°C) applied in this kinetic study supported the decomposition of [Ni(bipy)COD].  

However, the reaction of [Ni(bipy)COD] with dcpa proved to be slower than observed 

for [Ni(bipy)COD] with bcp. This could be understandable as the substitution of COD 

and the coordination of the C-C triple bond of dcpa might be inhibited kinetically. The 

obtained dependence of the observed rate constant kobs on the concentration of dcpa 

at different temperatures is almost linear. In contrast to the previously studied 

reaction of [Ni(bipy)COD] with bcp, an intercept is obtained (Figure 5-8).  

This intercept may indicate that the reaction is reversible and therefore a second-

order rate constant for a forward or back reaction can be assumed. In that regard and 

due to the difficulties that occurred during the measurements, a more detailed kinetic 

analysis of this reaction has not been possible. 

 

Table 5-1: Measured reaction rates of the reaction of [Ni(bipy)COD] with dcpa in THF: 
[Ni(bipy)COD] = 0.25 mmol/l 

 kobs/s-1 

dcpa [mM] 10°C 15°C 20°C 25°C 

10 (19 ± 4)x10-3 (29 ± 7)x10-3 (42 ± 10)x10-3 (54 ± 13)x10-3 

15 (24. ± 8)x10-3 (35 ± 11)x10-3 (50 ± 16)x10-3  

20 (24 ± 5)x10-3 (36 ± 8)x10-3 (53 ± 11)x10-3 (62 ± 15)x10-3 

25 (32 ± 4.)x10-3 (43 ± 6)x10-3 (62 ± 8)x10-3 (73 ± 10)x10-3 

30 (32 ± 2)x10-3 (44 ± 3)x10-3 (84 ± 6)x10-3 (114 ± 8)x10-3 
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Figure 5-8: Plot of observed rate constants kobs vs dcpa concentration at different 
temperatures: [Ni(bipy)COD] = 0.25mmol/l 

 
 
 
Table 5-2: Crystallographic data for [Ni(bipy)dcpa] 

Empirical formula C24 H24 N2.67 Ni1.33  

Formula weight 428.07  F(000)  672 

Temperature (K) 200(2) Crystal size (mm)  0.3 x 0.15 x 0.05 

Crystal system monoclinic. θ range for data 
collected (°) 1.94 to 28.29 

Space group P2(1)/c  (no 14) Index ranges  
12<=h<=14.  
-13<=k<=12.  
-19<=l<=18 

Wavelength (Å)  0.71073 Reflection collected  10000 
Independent refl.. 
Rint 3628. 0.0508 

Completeness to 
theta   

92.3 % 
(theta= 28.29°) Unit cell dimensions[Å / °] 

a = 11.10(5)   
α = 90                              
b = 9.83(6)   
β =108.8 (5)                     
c = 14.5(8)   
γ = 90  Goodness-of-fit on F2 0.938 

Z 3 R1 [I>2σ(I)]  0.0398 

Density calcd. (Mg/m3)  1.556 wR2 [I>2σ(I)]  0.0756 

Volume [Å3] 1495.8(14) R1 [all data] 0.0790 

Absorpt. coeffic. (cm-1)  1.426 wR2 [all data]  0.0840  
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Table 5-3: Selected bond lengths (Å) and bond angles (°) for [Ni(bipy)dcpa] 

Ni(1)-N(1) 1.93(2) N(1)-Cu(1)-N(2) 82.6(3) 

Ni(1)-N(2) 1.92(2)  N(3)-Cu(1)-N(4) 83.0(3) 

Ni(1)-C(11) 1.85(3) N(1)-Cu(1)-N(4) 116.6(2) 

Ni(1)-C(15) 1.85(3) N(1)-Cu(1)-N(3) 130.6(2) 

C(11)-C(15)                    1.28(3) N(2)-Cu(1)-N(3) 121.0(3) 

  N(4)-Cu(1)-N(2) 129.4(3) 
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5.4 Experimental Section 

5.4.1 Materials and Reagents 

Commercial reagents were used as obtained without further purification. Solvents 

were dried according to standard procedures. Absolute (dry) THF for kinetic 

measurements was either obtained commercially (Acros) or by distillation of 

analytical grade THF over sodium. All handling (as well as storage) of the oxygen 

sensitive Ni(0) compounds and materials used in the kinetic studies was carried out 

in a glove box (M. Braun, Germany, O2 < 0,1 ppm, H2O < 0,1 ppm) within argon 

atmosphere. The complex [Ni(bipy)COD] was previously prepared in the Schindler 

group and could be used without further purification. 

5.4.2 Kinetic Measurements 

Variable temperature stopped-flow measurements allowed the collection of time-

resolved UV-vis spectra for reaction of [Ni(bipy)COD] with dcpa in THF. The solutions 

of the complex were prepared in a glovebox and transferred using syringes to the 

low-temperature stopped-flow instrument.   

The reaction was studied under pseudo-first-order conditions ([Ni(bipy)COD] << 

[dcpa]) and the concentration of the solutions were 10 mmol/l up to 30 mmol/l 

(concentration is determined after mixing with solvent during measurement). 

Temperature was varied from 10°C up to 25°C. Time-resolved UV-vis spectra of 

these reactions were recorded with a home built stopped-flow unit or with a modified 

Hi-Tech SF-3L low-temperature stopped-flow unit (Salisbury, U.K.) equipped with a 

J&M TIDAS 16-500 photodiode array spectrophotometer (J&M, Aalen, Germany). 

Data fitting was performed using the integrated J&M software Kinspec and Origin 

(OriginLab Corporation, Northhampton, MA, USA). Details on such studies have 

been described previously.[117] Additional informations about kinetic of inorganic 

reactions are given in Chapter 2. 

5.4.3 X-ray Crystallography 

Intensity data were collected on a Siemens SMART CCD 1000 diffractometer 

equipped with a low temperature system (Karlsruher Glastechnisches Werk).  The X-

ray crystallographic data were collected by the ω-scan technique.  The collected 



 CHAPTER 5 

 
 

112 

reflections were corrected for absorption, Lorentz and polarization effects.[233] All 

structures were solved by direct methods and refined by least-squares techniques 

using the SHELX-97 programme package.[234] The hydrogen atoms were positioned 

geometrically and all non-hydrogen atoms were refined anisotropically, if not 

mentioned otherwise. 

5.4.4 Synthesis of the complexes 

The ligand dcpa was prepared by the research group of Prof. A. de Mejere.   

5.4.4.1 [Ni(bipy)(dcpa)]   

To a stirred purple suspension of 3.2 mg (0.01 mmol) [Ni(bipy)COD] in 2 ml THF 106 

mg (1 mmol) dcpa in 2 ml THF was added (both solutions were precooled to -20°C). 

The resulting solution was stirred furthermore for 2 hours. The solution was filtered of 

a pad of zeolite. Diffusion of n-pentane into the solution -5°C resulted in crystals 

suitable for X-ray structure determination.  
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6 Summary 

Selective oxidations of organic substrates using a catalyst and air as an oxidant play 

an important role in the field of so called “green chemistry”. Nature has demonstrated 

that these reactions in principle are possible. Therefore, chemists have been trying 

for some years to model the reactivity of the according metalloenzymes using low 

molecular weight complexes as catalysts instead. 

Thus hydroxylation reactions are important and are catalyzed for example by copper 

based enzymes such as the monooxygenase tyrosinase. This enzyme is responsible 

for the hydroxylation of monophenols to o-diphenols and the subsequent two-electron 

oxidation to o-quinones. However, so far a complete mechanism for this oxidation 

reaction could not be postulated. Therefore, to obtain a better understanding on this 

type of reaction, a Cu(I)bis(imine)complex [Cu2(DAPA)]2+ (DAPA = 1,3-bis-[(3-(N-

dimethyl)propyl)iminomethyl]benzene) has been synthesized and the structure of its 

Cu(I) complex as well as the structure of the Cu(II) product complex exhibiting a 

hydroxylated ligand was analyzed and characterized. The observed ligand 

hydroxylation reaction mediated by this complex was investigated spectroscopically 

(the optical absorption and vibrational spectra), kinetically and by quantum chemical 

DFT analysis.  

The kinetic analysis of the ligand hydroxylation provided evidence for O2-binding 

being the rate-limiting step in the overall reaction. The conversion into the 

hydroxylated Cu(II) complex was found to proceed much faster in methanol than in 

acetonitrile, which is due to the fact that the acetonitrile ligands of the Cu(I) precursor 

have to be displaced in order to bind O2. Moreover, an inverse kinetic isotope effect 

(KIE) was observed for the reaction in acetonitrile while in methanol, however, no KIE 

was detected.  

The DFT analysis of reaction of the Cu(I) precursor and O2 demonstrated that the 

dominant barrier after O2 binding is represented by the electrophilic attack of a 

µ−η2:η2 peroxo intermediate on the arene ring. The reactivity of this Cu(II) peroxo 

intermediate proposed the presence of four pathways to the hydroxylated final 

product. One of the pathways studied involves the rearrangement of the µ-η2:η2 

peroxo structure to a µ-η2:η1 peroxo intermediate that subsequently attacks the 
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aromatic ring. However, the energetically favorable pathways identified in the DFT 

study involve a direct decay of the µ-η2:η2 peroxo intermediate without 

rearrangement. Furthermore no stable bis(µ-oxo) isomer is formed in the ligand 

environment studied here, although its formation is expected from former studies. In 

contrast the energetically most favorable route provides the formation of a rather 

stable dienone intermediate which subsequently undergoes a second proton transfer 

step leading to the product formation. This scenario involves as a key intermediate 

the conversion of the peroxo complex to the hydroxylated product the dienone 

intermediate, which should eventually be detectable experimentally. (Chapter 3) 

Besides the investigations on the activity of tyrosinase, efforts have been made to 

synthesize and characterize an oxo species in copper chemistry which is considered 

to be a highly reactive intermediate responsible for many oxidizing processes. 

However, isolation and characterization of such a species is lacking so far.  

In that regard several Cu(I) complexes with nitrogen donor ligands such as bipyridine 

bipy and phenanthroline phen and derivatives were synthesized. To further increase 

the reactivity of these complexes towards dioxygen olefin ligands such as 

cyclooctadiene were used as co ligands to allow facile substitution reactions. The 

reactivity of these complexes towards air, dioxygen as well as ozone was 

investigated by bench top experiments and by using UV-vis spectroscopy. Therefore 

the reactivity of the well known complex [Cu(bipy)COD]+ towards dioxygen was 

investigated, but no formation of an adduct complex was detected. These findings 

are also valid for the reactivity towards dioxygen of the so far unknown complex 

[Cu(phen)COD]PF6, which was successfully characterized using X-ray diffraction 

methods during this work.  Unfortunately, no formation of an oxo species or any other 

dioxygen adduct complexes was observed spectroscopically under these conditions. 

These findings showed that complexes such as [Cubipy]+ or [Cuphen]+ were not 

capable to stabilize such sensitive and reactive intermediates. Therefore 2,9-

dimethylphenanthroline dmp was used as ligand which is more sterically hindered. 

Oxidation of [Cu(dmp)2]+ resulted in insertion of dioxygen and the oxidation product 

[Cu4(2-methoxy-9-methyl-phenanthroline)4]4+: one methyl group of each dmp ligand 

was hydroxylated. Therefore the formation of an oxo species such as −⋅OIICu )( , 

( OIIICu =↔ )( ) , −⋅OIIICu )(  or { } +2CuO  during the hydroxylation reaction of the 
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[Cu(dmp)2]+ complex can be postulated. Unfortunately, it was not possible to isolate 

such an oxo-species or even to detect it spectroscopically in the course of the 

reaction (Chapter 4.4). 

Phenanthroline and its derivatives are not only assumed to be suitable to stabilize 

dioxygen adduct complexes, its complexes are also supposed to be catalysts and 

templates for asymmetric synthesis. Therefore in collaboration with Prof. E. Schoffers 

several copper complexes with derivatives of phenanthroline were synthesized and 

characterized. The crystal structure of [Cu(dmpe)2]PF6 x 1/2 CH3CONH2 is reported 

herein. Interestingly an amide molecule can be found in every second unit cell. Its 

formation is assumed from a reaction of acetonitrile and traces of water. Due to this a 

catalytic influence of the Cu(I) center is revealed (Chapter 4.3). 

However, considering “greener chemistry”, there is great interest in transition metal 

complexes containing unsaturated compounds and their reaction behavior. In 

collaboration with the research group of Prof. A. deMeijere Cu(I) and Ni(0) complexes 

with the unsaturated hydrocarbons bicyclopropylidene bcp and 

dicyclopropylacetylene dcpa were synthesized and characterized by X-ray analysis:  

- [Cu(bipy)bcp]PF6 

- [Cu(bipy)dcpa]PF6 

- [Ni(bipy)dcpa] 

The reported crystal structures of [Cu(bipy)dcpa]PF6 and [Ni(bipy)dcpa] are supposed 

to be the first Ni(0) and Cu(I) complexes containing dcpa as ligand.(Chapters 4.2 and 

5)  

The behavior of the Cu(I) complexes towards dioxygen was investigated, but no 

formation of a dioxygen adduct complex could be detected during oxidation. When 

[Cu(bipy)bcp]PF6 was exposed to air, [Cu2(bipy)2(OH)2]2+ was obtained. No 

polymerization or other reaction of acetylene catalyzed by the coordinated copper 

center could be observed (Chapter 4.2). 

The formation of [Ni(bipy)dcpa] from the reaction of [Ni(bipy)COD] and dcpa was 

investigated using stopped flow techniques (Chapter 5). 
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Furthermore, in collaboration with the research group of Prof. P. Schreiner a 

copper(I) complex with the adamantane derivative (tetracyclo 

[7.3.1.14,12.02,7]tetradeca-6,11-diene tctd could be synthesized and the crystal 

structure of Cu2(bipy)2(tctd)](PF6)2 is reported herein. Complexes of transition metals 

containing such adamantane derivatives are supposed to have catalytic properties 

useful for several reactions in organic chemistry. In this regard also strong efforts 

have been made to synthesize the Ni(0) complex, but no crystals suitable for X-ray 

diffraction could be obtained. (Chapter 4.1) 
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7 Zusammenfassung 

Die selektive Oxidation organischer Substrate durch Luftsauerstoff mit Hilfe von 

Katalysatoren spielt eine wichtige Rolle im Bereich “Green Chemistry”. Die Natur hat 

uns gezeigt, dass solche Reaktionen durchaus möglich sind. Daher ist es für die 

chemische Forschung schon seit Jahren eine Herausforderung, die aus der Natur 

bekannten, meist enzymatischen Reaktionen, mit Hilfe von synthetischen 

Modellkomplexen nachzuahmen. Eine wichtige Rolle in diesem Zusammenhang 

spielen kupferhaltige Enzyme, wie zum Beispiel die Monooxygenase Tyrosinase. 

Dieses Enzym ist für die Hydroxylierung von o-Phenol zu Diphenol und für die 

anschließende Oxidation zum o-Chinon verantwortlich. Trotz intensiver 

Untersuchungen konnte bisher der genaue Reaktionsmechanismus für diese 

Umsetzung noch nicht aufgeklärt werden. Um solche Hydroxylierungsreaktionen 

besser zu verstehen, wurde im Rahmen dieser Arbeit ein Kupfer(I)-Bis-Imin-Komplex 

([Cu2(DAPA)]2+ (DAPA = 1,3-bis-[(3-(N-dimethyl)propyl)iminomethyl]benzol 

synthetisiert und charakterisiert. Ebenso wurde der Kupfer(II)-Komplex dargestellt 

und kristallographisch charakterisiert. Die durch den Komplex vermittelte 

Hydroxylierung wurde spektroskopisch verfolgt und untersucht (Absorptions- und 

Schwingungsspektroskopie). Weiterhin wurden kinetische Untersuchungen 

durchgeführt und DFT-Berechnungen angefertigt. 

Bei den kinetischen Messungen konnte gezeigt werden, dass die Anbindung des 

Sauerstoffs der geschwindigkeitsbestimmende Schritt ist. Die sich anschließende 

Umwandlung in den hydroxylierten Kupfer(II)-Komplex läuft dabei in Methanol 

bedeutend schneller ab als in Acetonitril. Dies lässt sich durch die koordinierten 

Acetonitrilmoleküle begründen, die der anbindende Sauerstoff ersetzen muss. 

Weiterhin konnte in Acetonitril ein inverser Isotopeneffekt beobachtet werden, 

während dies in Methanol nicht der Fall war. 

Die DFT-Berechnungen für die Reaktion des Kupfer(I)-Vorläufer-Komplexes mit O2 

haben gezeigt, dass nach der Anbindung des Sauerstoffs der elektrophile Angriff des 

µ−η2:η2-Intermediats auf das aromatische Ringsystem die größte energetische 

Barriere während der Hydroxylierungsreaktion darstellt. Aufgrund der Reaktivität des 

gebildeten Peroxo-Intermediats sind vier verschiedene Reaktionswege, die zum 

hydroxylierten Produkt führen, möglich. Einer dieser bereits in früheren Arbeiten 
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untersuchten Reaktionswege geht von der Umlagerung der µ−η2:η2-Peroxo-Struktur 

in ein µ−η2:η1−Intermediat aus, welches dann anschließend den Aromaten angreift. 

Durch die DFT-Rechnungen konnte allerdings gezeigt werden, dass ein direkter 

Zerfall des Intermediats ohne Umlagerung energetisch günstiger ist. Auch konnte die 

Bildung eines bis(µ-oxo)-Isomers nicht bestätigt werden, obwohl dies in früheren 

Arbeiten als mögliches Intermediat vermutet wurde. Vielmehr zeigten die 

Berechnungen, dass die Ausbildung eines recht stabilen Dienons der energetisch 

günstigste Reaktionsweg ist. Dieses Dienon geht nach zweimaliger 

Protonenübertragung in das hydroxylierte Produkt über. Bei dieser Reaktion spielt es 

eine Schlüsselrolle und sollte daher auch experimentell nachweisbar sein. (Kapitel 3) 

Neben Untersuchungen zur Tyrosinase-Aktivität sollte es Ziel dieser Arbeit sein, 

einen Kupfer-Oxo-Komplex zu erhalten und spektroskopisch bzw. kristallographisch 

zu charakterisieren.  Diese sehr reaktiven Oxo-Intermediate sind vermutlich für viele 

Oxidationsprozesse verantwortlich, konnten allerdings in der Kupfer-Chemie noch 

nicht erfolgreich  isoliert und untersucht werden. 

Daher wurden im Rahmen dieser Arbeit verschiedene Kupfer(I)-Komplexe mit 

Stickstoff-Donorliganden wie Bipyridin oder Phenanthrolin und deren Derivate 

dargestellt. Um die Reaktivität dieser Komplexe gegenüber Sauerstoff zu erhöhen, 

wurden verschiedene Olefin-Liganden wie zum Beispiel Cyclooctadien COD an diese 

Komplexe angebunden. Es hat sich gezeigt, dass diese Olefin-Liganden nur 

schwach an das Kupfer-Zentrum koordiniert sind und somit leicht gegen Sauerstoff 

ausgetauscht werden können. Die Reaktivität dieser Komplexe gegenüber Luft, 

reinem Sauerstoff und Ozon wurde in Bench-Top-Versuchen und anschließend mit 

Hilfe der UV-vis-Spektroskopie untersucht. In diesem Zusammenhang wurden der in 

der Literatur bekannte [Cu(bipy)COD]PF6 Komplex  synthetisiert und dessen 

Reaktivität gegenüber Sauerstoff untersucht. Allerdings konnte keine Ausbildung 

eines Sauerstoff-Addukt-Komplexes beobachtet werden. Gleiches gilt für die 

Reaktivität des noch nicht in der Literatur bekannten Komplexes [Cu(phen)COD]PF6, 

der im Rahmen dieser Arbeit auch erfolgreich dargestellt und kristallographisch 

charakterisiert werden konnte. Diese Untersuchungen zeigten, das „einfache“ 

Cu(I)phen- und Cu(I)bipy-Komplexe unter diesen Bedingungen nicht in der Lage 

sind, reaktive Sauerstoffintermediate auszubilden und diese zu stabilisieren, was 
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eine Isolierung und spektroskopische Charakterisierung unmöglich macht. Aus 

diesem Grund wurde für weitere Untersuchungen der sterisch anspruchsvollere 

Ligand 2,9-Dimethylphenanthrolin dmp verwendet. Oxidation des Komplexes 

[Cu(dmp)2]+ an Luft  führte zu  [Cu4(2-methoxy-9-methyl-phenanthroline)4]4+ als 

Oxidtionsprodukt, wobei jeweils eine Methylgruppe des dmp-Liganden hydroxyliert 

worden ist. Aufgrund ähnlicher Beobachtungen in anderen Arbeiten, liegt die 

Vermutung Nahe, dass als reaktives Intermediat ein Kupfer-Oxo-Komplex −⋅OIICu )(  

( OIIICu =↔ )( ) , −⋅OIIICu )(  or { } +2CuO  ausgebildet wird und für die Hydroxylierung 

der Methylgruppen verantwortlich ist. Dennoch war es nicht möglich, diese Oxo-

Spezies tatsächlich zu isolieren oder spektroskopisch zu detektieren. (Kapitel 4.4.)  

Phenanthrolin und dessen Derivate sind aber nicht nur zur Stabilisierung möglicher 

Sauerstoff-Addukt-Komplexe geeignet, sondern es hat sich gezeigt, dass 

Phenanthrolin-Komplexe auch besondere katalytische Eigenschaften haben und als 

Template in asymmetrischen Synthesen genutzt werden können. Im Rahmen einer 

Zusammenarbeit mit Prof. E. Schoffers wurden daher verschiedene Kupfer-

Komplexe mit Phenanthrolinderivaten erfolgreich dargestellt und charakterisiert. 

Dabei konnte diese interessante Beobachtung gemacht werden: Die Kristallstruktur 

des Komplexes [Cu(dmpe)2]PF6 x 1/2 CH3CONH2 weist in jeder zweiten Einheitszelle 

ein Acetamidmolekül auf, welches sich vermutlich katalytisch durch Hydrolyse von 

vorhandenem Acetonitril und Spuren von H2O gebildet hat. Dies sollte in einer 

weiterführenden Arbeit näher untersucht werden (Kapitel 4.3). 

Bezüglich “Green Chemistry” besteht seit Jahren großes Interesse an der 

Erforschung von Übergangsmetallkomplexen mit ungesättigten Liganden und deren 

Reaktionsverhalten. In Zusammenarbeit mit der Arbeitsgruppe von Prof. A. deMeijere 

(Universität Göttingen) gelang die erfolgreiche Darstellung und Charakterisierung 

folgender Cu(I) und Ni(0)-Komplexe mit den ungesättigten Kohlenwasserstoffen 

Bicyclopropylidene bcp und Dicyclopropylacetylene dcpa: 

- [Cu(bipy)bcp]PF6 

- [Cu(bipy)dcpa]PF6 

- [Ni(bipy)dcpa] 
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Die in dieser Arbeit gezeigten und beschriebenen Kristallstrukturen von 

[Cu(bipy)dcpa]PF6 und [Ni(bipy)dcpa] sind die ersten bekannten Cu(I) und Ni(0)-

Komplexe mit dem Liganden dcpa (Kapitel 4.2 und Kapitel 5). 

Das Reaktionsverhalten dieser Kupfer(I)-Komplexe gegenüber Sauerstoff wurde 

ebenfalls untersucht. Dabei zeigte es sich wiederum, dass aufgrund des zu geringen 

Stabilisierungsvermögens des bipy-Liganden kein reaktives Sauerstoff-Intermediat 

beobachtet werden konnte. Bei der Reaktion des Komplexes [Cu(bipy)dcpa]PF6 mit 

Luft wurde [Cu2(bipy)2(OH)2]2+ als Oxiadtionsprodukt erhalten. Eine eventuell 

erwartete katalytisch induzierte Polymerisationsreaktion des koordinierten Acetylens 

konnte nicht beobachtet werden. Die Kinetik der Bildung des Komplexes 

[Ni(bipy)dcpa] aus [Ni(bipy)COD] und dcpa wurde mit Hilfe von Stopped-Flow-

Technik untersucht. (Kapitel 5) 

Im Rahmen einer weiteren Zusammenarbeit mit der Arbeitsgruppe von P. Schreiner 

(Universität Gießen) war es möglich, ein weiteres ungewöhnliches Olefin für die 

Komplexierung mit Kupfer(I)-Ionen zu verwenden. Das Adamantan-Derivat 

(Tetracyclo[7.3.1.14,12.02,7]tetradeca-6,11-Dien tctd konnte erfolgreich zu dem 

Komplex Cu2(bipy)2(tctd)](PF6)2 umgesetzt werden. Bei solchen 

Übergangsmetallkomplexen mit koordinierten Adamantan-Derivaten werden 

besondere  katalytische Eigenschaften vermutet, die für die Organische Synthese 

von Nutzen sein könnten. Dies muss aber noch in weiterführenden Untersuchungen 

gezeigt werden. Leider gelang es im Rahmen dieser Arbeit nicht, den 

entsprechenden Ni(0)-Komplex zu charakterisieren, da keine für kristallographische 

Untersuchungen geeigneten Kristalle erhalten werden konnten. (Kapitel 4.1)  
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