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Abstract

The aim of this work was the design and test of an apparatus for the measurement
of the thermoelectric figure of merit ZT of solids. The thermal and the electric
conductivity as well as the determination of the Seebeck coefficient of cylindrical
bulk-samples can be determined using a newly designed and built set-up. Measure-
ments of the different quantities are performed simultaneously to prevent deviations
due to sample degradation during several temperature cycles. The focus is on the
measurement of the thermal conductivity. Two different steady-state methods and
one transient measurement method are used to determine the thermal conductiv-
ity. The first steady-state method is a comparative approach, where the heat flux
through the sample is measured using sensors built from a known material. The
second steady-state method is an absolute method, where the heat flux is determ-
ined from the electric power of the heater generating the heat flux. Since those
measurement approaches show long measurement durations a transient method was
developed and implemented. Here, the temperatures measured inside the set-up are
fitted to a numerical model and then the thermal conductivity and the thermal
diffusivity of the sample extracted from the fit. Since a numerical model was imple-
mented the heater power can be an arbitrary function of time. The main benefit
of the transient approach is the much higher measurement speed, since the waiting
periods where the steady-state is approached are omitted. By increasing the base
temperature of the set-up continuously a sample can be characterized quickly over a
wide temperature range. The transient measurement method has been investigated
further using Monte-Carlo simulations. With those simulations conclusions about
the influence of certain measurement parameters like the heater waveform or meas-
urement durations on the informative value of the measurement itself can be drawn.
Furthermore, the effect of e.g. the sample geometry or heat radiation has been ana-
lyzed. First experimental results of the set-up confirm that the transient mode is
working properly. Test samples have been investigated with the different modes of
the set-up as well as with other set-ups and the results are found to agree within
the error limits of the set-up. Also, the measurements of the Seebeck coefficient are
working properly. However, the determination of the electric conductivity of the
sample has to be revised, since the contact resistance to the electrical leads is too
large, especially in combination with well conducting samples. Further sources of
measurement error inside the set-up have been investigated and quantified. Different
improvements of the set-up have been suggested for the future.
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Zusammenfassung

Ziel dieser Arbeit war der Entwurf und die Umsetzung eines experimentellen Auf-
baus zur Messung der thermoelektrischen Eigenschaften von Festkörpern. Dieser
Aufbau ermöglicht es, die thermische und die elektrische Leitfähigkeit sowie den
Seebeckkoeffizienten von zylindrischen Proben zu messen und somit deren ther-
moelektrische Gütezahl ZT zu bestimmen. Dies geschieht im gleichen Messzyklus,
um Verfälschungen der Messergebnisse durch Veränderungen an der Probe nach
mehreren Temperaturzyklen auszuschließen. Der Fokus in dieser Arbeit liegt auf
der Messung der thermischen Leitfähigkeit. Diese kann sowohl mit zwei stationären
Methoden als auch mit einem neuen transienten Verfahren bestimmt werden. Als
stationäre Methoden dienen hierbei ein Vergleichsverfahren, bei dem der Wärmefluss
durch die Probe mittels eines bekannten Materials bestimmt wird, und eine absolute
Messung, bei der der Wärmefluss aus der elektrischen Leistung eines Heizers ermit-
telt wird. Da diese Messverfahren lange Messdauern erfordern, wurde zusätzlich eine
transiente Methode entwickelt und implementiert. Hierbei werden die gemessenen
Temperaturen innerhalb des Aufbaus an ein numerisches Modell angepasst und
so die Wärmeleitfähigkeit sowie die Wärmekapazität der Probe bestimmt. Durch
die Implementierung des eindimensionalen numerischen Modells können beliebige
Signalformen für die Heizleistung vorgegeben werden. Der Vorteil des transienten
Verfahrens gegenüber den stationären Methoden ist eine deutlich geringere Messdau-
er, insbesondere da das Warten auf den stationären Zustand nicht nötig ist. Durch
kontinuierliches Erhöhen der Grundtemperatur des Aufbaus kann die Probe daher
über größere Temperaturbereiche hinweg schnell charakterisiert werden.
Das transiente Messverfahren wurde weiterhin mittels Monte-Carlo-Simulationen
untersucht. Diese ermöglichen es, Schlüsse über den Einfluss verschiedener Mess-
parameter wie Heiz-Signalformen, Messraten oder Messdauern auf die Genauigkeit
der Messung zu ziehen. Außerdem wurde der Einfluss der Probengeometrie und von
Wärmestrahlung auf die Messergebnisse analysiert.
Erste experimentelle Ergebnisse zeigen, dass die transiente Messmethode funktio-
niert. Testproben wurden mit dem Aufbau und mit alternativen Verfahren un-
tersucht und die Ergebnisse verglichen, wobei Übereinstimmungen innerhalb der
Messtoleranzen gefunden wurden. Auch Messungen des Seebeckkoeffizienten waren
erfolgreich. Bei den Untersuchungen des elektrischen Widerstands hingegen wurde
festgestellt, dass, insbesondere bei gut leitenden Proben, der Kontaktwiderstand
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zwischen Sensor und Probe zu hoch ist. Daher muss das Messverfahren für diese
Größe überarbeitet werden. Weitere Quellen für Messfehler wurden untersucht, ihr
Einfluss abgeschätzt und darauf aufbauend mögliche Verbesserungen an dem Aufbau
vorgeschlagen.
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1 Introduction

The term thermoelectrics covers a number of effects, linking the fields of electricity
and heat. The most commonly known thermoelectric effects are the Seebeck effect
and the Peltier effect, allowing for a direct conversion of a heat flux into an electric
current and vice versa. Both effects are interesting for many applications like energy
recovery from waste heat or electric power generation for spacecraft far away from
the sun. The energy conversion in thermoelectric devices is done without moving
parts, which makes it attractive for use in rough environments like space or in
the automotive sector. Thermoelectric cooling is contemplated for use in electric
cars for passenger acclimatization, since here the engine does not produce enough
heat for this purpose. Small Peltier elements in the seats could pump heat from
or to the passenger, which in case of the heating is even more efficient than Joule
heating. Another field in which thermoelectric generators are already used is energy
harvesting for sensor networks in remote locations.
However, despite their many advantages, the efficiency of thermoelectric devices
is still too low for an application on a large scale outside their niches. Different
strategies, like nano-structuring, doping or the introduction of scattering centres,
have been used to improve the performance of the materials. A parameter determ-
ining the efficiency of a material is the thermoelectric figure of merit ZT = S2σκ−1,
where S is the Seebeck coefficient, σ is the electric conductivity and κ is the thermal
conductivity. Numerous methods exist to determine these material properties for
samples of different geometries and phases, e.g. solids, liquids or powders. However,
in most cases, the parameters for ZT are determined in individual set-ups, so the
samples have to endure several temperature cycles without showing ageing effects.
Also, the different set-ups may have different requirements with respect to sample
geometry and the sample needs to be reshaped e.g. by cutting or adding a new set of
contacts. Sometimes even different samples have to be used to measure the different
thermoelectric quantities determining ZT , further reducing the conclusiveness of
the measurements.
The aim of this work was to develop a measurement system, which is able to simul-
taneously measure all properties of bulk samples determining their thermoelectric
efficiency. The focus was on the determination of the thermal conductivity, as the
measurement methods for this parameter are most sensitive to the sample geometry.
Many of the commonly used transient measurements are not applicable for thick
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samples. Thus, two steady-state methods have been combined in the set-up. Ad-
ditionally, a transient measurement method, similar to the Ångström method, has
been developed and implemented. This transient approach not only allows one a
faster measurement of the thermal conductivity of the sample, but also enables
one to determine its thermal heat capacity. The numerical model, required for the
evaluation of the transient method, has also been used to investigate the optimum
measurement conditions with respect to accuracy and measurement duration.
This work is structured as follows: chapter 2 contains the theoretical background of
the thermoelectric effects and heat transport. Also, historical outlines on the two
subjects are given. In chapter 3 the concept of the low temperature ZT -meter is
shown and explained in detail. Additionally, the numerical model, needed for the
evaluation of the transient measurement mode is derived and evaluated. In chapter
4 the results from the calibration and test measurements are shown and discussed.
In addition, the error sources for the measurements are identified and improvement
strategies, which may be implemented in the future, are shown.

12



2 Theoretical background

2.1 Introduction to thermoelectrics

2.1.1 Historical background

Inspired by Christian Ørsted’s discovery of the magnetic effects of electric currents
in 1820, Johann Seebeck started to carry out his own investigations on this subject.
Eventually he found the first thermoelectric effect to be discovered, the now called
Seebeck effect. It was observed for the first time around the year 1821 [1, 2] and
explained by Seebeck as magnetic polarization due to a thermal current. Seebeck
joined pieces of two different metals to form a closed ring and observed the magnetic
field beneath them during the heating or cooling of the junctions. He also ranked
several metals according to the strength of this thermoelectric effect, thus defining
the thermoelectric potential series. Seebeck also observed that the field strengths
were larger for greater temperature differences. In 1823 Ørsted explained the Seebeck
effect as an electric current driven by the temperature difference. This current in
turn caused the magnetic field [3]. Accordingly, Ørsted named it thermoelectric
instead of thermomagnetic which in turn was heavily disputed by Seebeck.
The first thermopiles, a number of thermoelectric elements electrically connected in
series, were built, investigated and compared to galvanic cells by Joseph Fourier and
Ørsted in 1823 [4]. Examples of the material arrangements they used are depicted
in figure 2.1a. Those thermogenerators showed a much smaller voltage compared
to galvanic cells but a comparable short-circuit current. They also were found to
be more stable when short-circuited. Thus, they were used by Georg Ohm in his
torsion balance experiment to investigate the relationship between electric resistance,
current, and voltage [5]. In Ohm’s torsion balance a piece of bismuth (a-b-b’-a’)
and copper stripes (a-d) (a’-d) in addition to the sample under investigation formed
the electric circuit (see figure 2.1b). The junctions (a) and (a’) between copper
and bismuth were being cooled by ice and heated by boiling water, respectively.
This equipment enabled Ohm to conduct his investigations under stable voltage
conditions.

13



2 Theoretical background

(a) (b)

Figure 2.1: (a) Experimental set-ups of Fourier and Ørsted to connect multiple
thermoelectric junctions in series (from [4]) and (b) Ohm’s torsion balance using a
thermoelectric generator (a-b-b’-a’) as source of electricity (from [5]).

In 1826 Antoine César Becquerel was the first to use the thermoelectric effect
for temperature measurements using a platinum-palladium thermocouple [6]. This
material combination is in use until today, and is known for its high temperature
stability. With this set-up he was able to estimate the combustion temperature of an
ethanol flame. By using this new method of temperature measurement Jean-Charles
Peltier could investigate the influence of electric currents on the temperatures of
a junction of two dissimilar metals. He published this discovery of the now called
Peltier effect in 1834. This finding was amended four years later by Emil Lenz who
discovered that heat absorption and production are proportional to the electric
current. With his experiments on freezing water and melting ice he was able to
explain the Peltier effect correctly [7].
James Prescott Joule discovered the effect of resistive heating and formulated in the
now called Joule’s first law [8]: the resistive heating of a conductor is proportional
to the electric current squared times the conductor’s resistance. However, at this
time he stated that his findings were somewhat contradictory to the effect found
by Peltier since cooling could not be explained by his law. This shows that Joule
interpreted the Peltier effect not as transport of heat but rather heat creation as a
result of an electric current.

14



2.1 Introduction to thermoelectrics

At an annual meeting in 1847 William Thomson, later known as Lord Kelvin, learned
about Joule’s discovery regarding the conversion of mechanical work into heat, which
was not compatible with the established caloric theory describing heat as a substance.
Eventually Thomson began his work on the subject and developed the mechanical
heat theory. In addition, he found relationships between the thermodynamically
linked quantities Seebeck coefficient and Peltier coefficient: the so called Thomson
or Kelvin relations. In 1929 these relations were generalised by Lars Onsager, who
was awarded the Nobel Prize for this work. As a result of his thermodynamic
investigations Thomson predicted and measured the Thomson effect as a third
thermoelectric effect [9].
In 1851, Gustav Magnus, a German physicist, investigated the influence of the hard-
ness of a metal wire on the magnitude of the thermoelectric effect and also presumed
an influence of the surface oxidation. He thereby found that the thermovoltage is in-
dependent of the exact temperature distribution along the wire, but rather depends
on the total temperature difference only, which is a prerequisite for the reliable use
of thermocouples as temperature sensors [10].
The first to calculate the efficiency of thermoelectric devices was Edmund Altenkirch,
who determined the efficiency of thermogenerators in 1909 [11] and of Peltier cooling
devices in 1911 [12], and thus established the thermoelectric figure of merit ZT [13]. It
is used for the classification of a material’s suitability for thermoelectric applications.
Since 1949 the Russian physicist Abram Ioffe began his scientific work in the area of
thermoelectrics and used ZT to find efficient materials [14]. He developed a modern
theory of thermoelectrics and promoted the use of semiconductors, considering them
to be best suited for applications. Ioffe found proof that alloying may increase the
thermoelectric performance by reducing the thermal lattice conductivity [15]. In
the Western Hemisphere Julian Goldsmid used a material factor, the thermoelectric
quality factor, which depends on the material’s mobility, effective mass and thermal
lattice conductivity. It enables an estimation of a semiconductor’s potential for high
ZT values without optimizing its carrier concentration [16]. He thereby predicted
high figures of merit for semiconductors with a high effective mass, a high carrier
mobility and a low thermal lattice conductivity.
At that time the first radioisotope thermal generators (RTGs) were used to provide
power for spacecraft without employing moving parts or solar cells. The latter is
especially important for missions far away from the sun where the power density
of solar light is not sufficient to power the spacecraft’s instruments by photovol-
taics. Space exploration is one of the first niches where thermoelectric generators,
despite their somewhat poor efficiency compared to other electric power sources,
were used. Further applications are silent refrigerators, small cooling devices, e.g. for
lasers, remote power generation for sensors etc. In the early 1990’s new strategies
in material science based on employing nanotechnology raised hopes to create new
materials with higher ZT values and thus to improve the efficiency of thermoelectric
generators to such an extent that they become competitive in a wide range of ap-
plications. Lyndon Hicks and Mildred Dresselhaus published two theoretical articles
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2 Theoretical background

showing that reducing dimensionality will radically enhance ZT [17, 18]. The field
of thermoelectrics, stalled in the past, was revived and has advanced since then.

2.1.2 Seebeck effect

In a conductive solid exposed to a temperature gradient an electric field will build
up due to thermodiffusion of mobile charge carriers. The thermodiffusion is basically
a result of the temperature dependent and, thus, spatially varying carrier velocities
in the solid.
The Seebeck coefficient is a material parameter relating the temperature difference
∆T and the resulting voltage U between two ends of the material as a proportionality
factor. It is defined as:

S(T ) = − lim
∆T→0

U

∆T (2.1)

A direct measurement of the Seebeck coefficient is not possible, since every wire
used for the measurement of the thermovoltage is also subject to the Seebeck effect.
However, the coefficients can be determined by indirect measurements using the
Thomson effect and the Kelvin relations or by using superconducting materials,
which exhibit Seebeck coefficients of practically zero.

2.1.3 Temperature measurements using thermocouples

The Seebeck effect is often utilized to measure temperature differences by using a
thermocouple consisting of two materials with different Seebeck coefficients S1 and
S2. T1 denotes the temperature at the junction of the two materials and T2 is the
temperature at the measurement instrument. The measured voltage U is given by:

U = −
∫ T2

T1
[S1 (T )− S2 (T )] dT. (2.2)

When absolute temperatures of a thermocouple’s junction are to be measured,
an additional temperature measurement at a reference point is required. At the
reference point the wires of the couple are connected to two wires of the same
material, ensuring that no additional thermovoltage between the two lines is being
built up. This material preferably has a low Seebeck coefficient to reduce errors due
to possible material impurities. At the reference point it has to be ensured that the
temperature of all wires is equal. However, this can be difficult, since simultaneously
the electric insulation has to be preserved. For standard thermocouple types the
voltage U(T1) with a fixed temperature at the reference point, mostly at T2 = 0 ◦C,
are tabulated and can be used to obtain the junction temperature. Temperature
measurements without a stable reference point can be evaluated by calculating:
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T1 = U−1(Umeasured + U(Treference point)). (2.3)

Despite the higher effort necessary to establish a temperature measurement with
thermocouples compared with the use of resistive techniques some advantages prevail.
For one they can be used over a broad temperature range, which is superior to
most resistive methods. Most important for the measurement method used here is
the small thermal mass of the junction, leading only to short temporal delay and
small alterations of the surrounding temperature distribution. Another advantage
is the smaller volume of the sensor, thus, no temperature averaging effect will occur,
possibly shifting the measurement results.
The disadvantages of thermocouples, next to the need for a reference-point, are
potential inhomogeneities in their material composition, resulting in less accurate
measurements if the corresponding device is not calibrated individually. Even by
an individual calibration, this effect cannot be fully accounted for, since the ther-
movoltage of an inhomogeneous thermocouple depends on the exact temperature
distribution along the wires. Furthermore, the handling is more complicated, since
no contamination of the wires should occur and thus soldering is not always a good
option. Very thin thermowires must not be bent too much, as strain on the wire
may alter its Seebeck coefficient. In addition, most materials for thermocouples are
prone to degradation due to ageing. Also, their thermovoltage can change during
the lifetime of the thermocouple, making regular calibrations mandatory.

2.1.4 Optimizing thermoelectric materials: figure of merit ZT

The performance of a thermoelectric device is mainly determined by the dimension-
less thermoelectric figure of merit, established by Altenkirch when he calculated the
efficiency of thermogenerators and Peltier elements:

ZT = S2σ

κ
T. (2.4)

Here σ is the electric conductivity and κ is the total thermal conductivity, which is
the sum of the free carrier contribution κcarriers and the lattice contribution κlattice.
Additionally, the Wiedemann-Franz law states:

κcarriers
σ

= LT, (2.5)

with L being the Lorenz number, a material constant. The Wiedemann-Franz law
holds for materials with a band structure such that the Fermi surface is approx-
imately a sphere. It is valid for many metals, and to a certain degree also for
semiconductors.
As σ and κcarriers cannot be changed independently from another, there are mainly
two different routes for the optimization of ZT for different materials. The first
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isolator semiconductor half-metal metal

σ

κ

S

carrier concentration

ZT

Figure 2.2: The thermoelectric material properties S,σ and κ, as well as the according
ZT , plotted against the carrier concentration. For many material systems the largest
ZT values are settled around the semiconductor half-metal transition (figure adapted
by author from [19]).

one is to decrease κlattice, e.g. by alloying or introducing scattering centres. The
second strategy, which is considered to be mostly independent from the first one,
is to influence the material’s electronic properties, e.g. by adjusting the carrier
concentration or the dopant material. Nanostructuring can be used to improve
materials even further by reducing the dimensionality, amplifying surface effects
or introducing additional thermal boundaries. However, by adding new thermal
boundaries the electronic properties might also be changed such that the overall
ZT is not improved. The interplay between the different thermoelectric quantities
is illustrated exemplarily for varying carrier concentration in figure 2.2.
When testing the success of a material’s optimization, it is important to account
for the transport direction as the thermoelectric material properties might be an-
isotropic. For example, wire-like nanostructures may be aligned within a composite
material, resulting in largely different properties for different spatial directions. Thus,
it must be ensured that all thermoelectric properties are measured in the same trans-
port direction to yield a consistent interpretation of the data.

18



2.2 Heat transport

2.2 Heat transport

2.2.1 Historical background

With the beginning of the 18th century the phenomenon of heat conduction was more
and more investigated. In 1701 Isaac Newton anonymously published his experiments
about heat [20]. From these experiments especially Newton’s cooling law, a solution
of the heat equation, became publicly known. In 1750 Georg Wilhelm Richmann
conducted an experiment where he compared the heat conductivity of different metal
bars by heating the bars on one side and measuring the temperature on the other
side [21]. Johann Heinrich Lambert also investigated heat phenomena on a metal bar
by heating a bar on one side and measuring the temperatures on different positions
along the bar. He found that the temperature decreases logarithmically with the
distance from the heat source, which is correct when the phenomenon of convection
is considered [22]. Inspired by Benjamin Franklin, Jan Ingenhousz published the
results of his experiments in 1789. He heated different wax-coated metal bars on
one side and observed the positions where a phase transition of the wax occurred,
as well as the speed of the melting process [23]. However, only a ranking of the
heat conductivities of the metals could be derived with these experiments and the
phenomenon of heat conduction could still not be quantified.
A first mathematical description of the problem was published by Jean-Baptiste
Biot in 1804 [24]. Based on the findings from Newton’s cooling law Biot derived a
differential equation, which is identical to the one-dimensional heat equation. He
also successfully conducted experiments to test his formula. However, Biot was not
able to explain external heat effects, such as convection and heat radiation with
his model. Joseph Fourier published his first works on the subject in 1807 [25]. He
continued his work on heat conduction and published his ‘Théorie analytique de
la chaleur’ in 1822, in which he presented a general method of solving the heat
equation for different boundary conditions [26]. Fourier’s law, describing the heat
transport in the steady state, is also formulated in this publication.
Until then thermal conductivities could only be measured in relation to one another.
In his book Fourier suggested three different approaches to determine absolute
thermal conductivities. The first was implemented by Jean Claude Péclet around
1841, by measuring the temperature profile along a metal bar mounted between an
ice block and a steam container [27]. He approximated the amount of heat flowing
through the bar by determining the quantities of condensed steam and melted ice.
This approach turned out to be very imprecise and other methods had to be found.
The next method, proposed and also previously implemented by Fourier, was to
combine the experiment performed by Lambert with an additional cooling experi-
ment to cancel out convection effects. A corresponding experiment was conducted
by James David Forbes and the results were published in 1862 [28]. In contrast to
Fourier he used graphical evaluation methods to fit the cooling function as well as
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the temperature distribution to the measurement data. With this experiment Forbes
was able to show that the thermal conductivity of iron is temperature dependent.
Fourier’s third idea for the determination of absolute thermal conductivities em-
ployed a sinusoidal heating as a boundary condition on one side of the sample.
By solving the heat equation for this boundary condition one is able to determine
the thermal diffusivity and, with an additional measurement of the heat capacity,
the thermal conductivity. Fourier himself performed first measurements using this
method, which were widely unknown to the scientific community. In 1860, William
Thomson, later known as Lord Kelvin, published values of the thermal conductiv-
ities of different soil types calculated from measurements of Forbes [29, 30]. Here
the periodic heat source was the seasonal change of the atmosphere temperature.
The soil temperatures were measured at different times, depths and locations. By
analyzing the decrease of the temperature amplitudes and the phase shifts at dif-
ferent positions he could deduce the thermal diffusivity. A similar approach had
been used by Anders Jonas Ångström in 1861 to obtain the thermal diffusivities of
different metals [31, 32]. In contrast to Thomson he did allow for general periodic
functions as boundary conditions and used a more or less rectangular heat input
realized by alternating application of steam and ice water at one of the boundaries
of the sample. His experimental results turned out to be the most accurate values
of thermal conductivities until then.
Subsequently, numerous experiments were published, all following the designs which
were previously proposed by Fourier differing only in minor details. One significant
improvement, however, was made by Charles Lees in 1898 when he used an electric
heater as a heat source and therefore could measure the heat flux directly [33]. This
steady-state method was further improved by Richard Poensgen in the year 1912 by
adding a heated guard ring and thus eliminating heat losses in the lateral direction.
Revised versions of these hot-plate methods are still being used for the character-
ization of insulation materials. In the following years the different measurement
methods were improved for different sample geometries, sizes and parameters. New
heat sources like laser- or xenon-light as well as lock-in techniques and new data
logging methods enabled more sophisticated transient measurement approaches. The
most important ones will be discussed in one of the next sections.

2.2.2 Heat conduction

In the following the one-dimensional heat equation for nonisotropic solids will be
derived from Fourier’s law and the principle of conservation of heat. The derivation
is based on a deduction for isotropic materials found in Ref. 34. The differential
form of Fourier’s law states that the heat flux density q̇ is equal to the negative
product of the temperature gradient ∂T

∂x and the thermal conductivity κ:

q̇ = −κ (x) ∂T
∂x

. (2.6)
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2.2 Heat transport

Also, the energy density ∆Q required to heat a solid with the specific heat capacity
c and the mass density ρ is given as:

∆Q = c (x) ρ (x) ∆T. (2.7)

In the region x − ∆x ≤ χ ≤ x + ∆x during t − ∆t ≤ τ ≤ t + ∆t a temperature
change of ∆T = T (χ, t+ ∆t)− T (χ, t−∆t) leads, by integration of Eq. (2.7), to
the change in internal energy:

∆Q =
∫ x+∆x

x−∆x
c (χ) ρ (χ) [T (χ, t+ ∆t)− T (χ, t−∆t)] dχ (2.8)

=
∫ t+∆t

t−∆t

∫ x+∆x

x−∆x
c (χ) ρ (χ) ∂T

∂τ
dχdτ. (2.9)

For Eq. (2.9) the fundamental theorem of calculus was used. Without heat sinks or
heat sources inside the space region itself, the change of heat is only caused by the
conduction through the boundaries. This conduction follows Fourier’s law given in
Eq. (2.6):

∆Q =
∫ t+∆t

t−∆t

[
κ (x+ ∆x) ∂T (x+ ∆x, τ)

∂x
− κ (x−∆x) ∂T (x−∆x, τ)

∂x

]
dτ (2.10)

=
∫ t+∆t

t−∆t

∫ x+∆x

x−∆x

∂

∂χ

[
κ (χ) ∂T

∂χ

]
dχdτ, (2.11)

where the fundamental theorem of calculus has been applied a second time. The
consideration of the energy conservation leads to:

∫ t+∆t

t−∆t

∫ x+∆x

x−∆x

[
c (χ) ρ (χ) ∂T

∂τ
− ∂

∂χ
κ (χ) ∂T

∂χ

]
dχdτ = 0. (2.12)

Using the fundamental lemma of calculus of variations, one obtains the heat equation:

c (x) ρ (x) ∂T
∂t
− ∂

∂x
κ (x) ∂T

∂x
= 0. (2.13)

This form of the heat equation will be used later in the numerical model, since here
non-isotropic materials have to be considered. However, for isotropic materials the
heat equation can be simplified to its more common form:

∂T

∂t
= κ

cρ

∂2T

∂x2 . (2.14)

The coefficient D = κ(x)
c(x)ρ(x) is also known as thermal diffusivity.
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2 Theoretical background

2.2.3 Heat radiation

Heat is not only carried by the heat conduction mechanisms in solids, but can also
be transported between two isolated solids by means of radiation. The power P
being emitted by a surface of area A at temperature T to the ambient is given by
the Stefan-Boltzmann law:

P = AεΣT 4. (2.15)

The parameter ε is the emissivity of the surface and Σ is the Stefan-Boltzmann
constant. If the radiation exchange towards the ambient is perfect, and the heat
emitted by the surface is absorbed totally by the environment, the radiative power
between the surface and the ambient at temperature Tambient is:

P = AεΣ
(
T 4 − T 4

ambient
)
. (2.16)

For the calculation of the heat transport between two surfaces with arbitrary orient-
ation form factors have to be used, which describe the fraction of the radiation from
one body reaching the other, taking into account the geometry of the problem. As
specular surfaces must be treated differently than diffuse surfaces, and as most real
surfaces have a mix of specular as well as diffuse properties, the exact description
of heat radiation is difficult. Thus, in thermal conductivity measurements, in which
heat radiation plays a substantial role as it constitutes one possible path of para-
sitic heat currents, it is recommended to minimize the heat radiation rather than
trying to correct for it in the analysis of the data. However, especially at higher
temperatures the minimization of radiation errors may become very complex.

2.3 Methods for determining thermal conductivities

2.3.1 Steady-state methods

The steady-state methods for measuring thermal conductivities may be divided
into absolute and comparative methods. Both kinds make use of Fourier’s law,
Eq. (2.6), and in both the temperature gradient induced by a heat flux is measured.
The methods differ in the way the heat flux is determined. In absolute methods
the heat flux is obtained directly by measuring the power provided for the heat
source or the power arriving at the heat sink respectively. The difficulty with this
approach is to ensure that the whole heat is transported through the sample and not
across electrical or mechanical connections of the measurement set-up. Furthermore,
radiation, especially at the hot surfaces of a heater, might lead to measurement errors
if no precautions are taken. One way of avoiding errors due to radiation and parasitic
heat currents from the sample heater to the mechanical connections of the set-up is
to use a guard heater. This is an additional heater set to the same temperature as
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2.3 Methods for determining thermal conductivities

the sample heater. As both heaters are in thermal equilibrium, no heat conduction
or radiation between the two of them occurs. Furthermore, radiation shields may
reduce radiative parasitic heat transport from the sample to the environment by
reflecting the radiated heat back to the sample surface.
In comparative methods materials with known thermal conductivities are inserted
between heat source and sample and are used as heat flux sensors. The temperature
gradients along the heat flux sensor and the sample are measured and the thermal
conductivity can then be obtained using:

κsample =
(
∂T

∂x

)
sensor

· κsensor ·
(
∂T

∂x

)−1

sample
. (2.17)

The effect of parasitic or radiative heat conduction from the sample to the envir-
onment may be estimated by using a heat flux sensor on each side of the sample.
Without heat radiation both should yield the same heat flux. However, due to radi-
ation and heat conduction over wires used for temperature measurements the heat
flux through the sensors will differ and pose a lower and upper limit for the heat flux
through the sample. In order to minimize these deviations heat shields may be used
whose use is obligatory in absolute methods. Also, the wirings have to be thermally
well connected to a point which has a temperature near the sample temperature.

2.3.2 Transient methods

A number of methods does not use the steady-state heat equation (Eq. (2.6)), but
instead the general heat equation (Eq. (2.13)). In such a transient thermal conduct-
ivity measurement technique the sample is thermally excited and its temperature is
recorded time-dependently. Using a physical model this information is then conver-
ted into physical values of thermal conductivity, heat capacity or thermal diffusivity.
The advantage of such an approach is that it can be faster than most steady-state
methods, as the steady state does not need to be approached and reached during
the measurement. Also, the thermal excitation can be kept very small, leading only
to small errors due to radiation and parasitic conduction. In addition, there may be
fewer boundary conditions resulting in less complicated experimental designs and
thus smaller errors. An example for this is the Ångström method, introduced by
Ångström to determine the thermal conductivity of metal rods. His results turned
out to be significantly more precise than those of previous experiments. One dis-
advantage of transient methods is that they often depend on complex models and
require approximations or numerical evaluations, if no analytic solutions can be
found, making implementations extensive and less accurate.
Since a large number of transient methods exists, only the most important ones will
be discussed in detail in what follows.
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2 Theoretical background

Flash analysis

The flash method, also laser flash analysis, was proposed in 1961 by Parker et al.
[35]. A light pulse heats the front-end of a bulk sample while the temperature of
the backside is measured time-dependently. If the boundary conditions correspond
to an adiabatic coupling of the sample to the environment, the thermal diffusivity
D can be determined as follows:

D = 1.388 · d2

π2t1/2
, (2.18)

where d is the sample thickness and t1/2 is the time difference between the moment
in time when the flash impinges on the sample and the moment in time when
the temperature on the backside has reached half its maximum value ([35]). This
formula does not account for radiation effects, surface convection or the finite lengths
of heat pulses. These effects are taken into account by the more advanced Carpe-
Lehman-model [36]. The flash analysis method has the advantage of being very fast
compared to steady-state methods. However, often the samples have to be prepared
using graphite to increase the optical absorption of the surface, sometimes leading
to contamination effects in further measurements of other properties. Also, the mass
density and the heat capacity of the samples must be known for the determination
of the thermal conductivity and therefore additional measurement methods such as
the differential scanning calorimetry have to be employed. This, however, may lead
to additional uncertainties.

3ω-method

The 3ω-method was proposed by David Cahill and can be used to determine the
thermal conductivity and the thermal diffusivity of bulk and thin-film samples [37–
39]. Modifications also allow one to characterize nanowires or to spatially scan the
thermal conductivity of surfaces [40, 41]. The original method uses a metal stripe
which is attached atop the sample to act as heater and thermometer simultaneously.
This stripe is heated with an alternating current of the frequency ω, leading to a
temperature oscillation with the amplitude ∆T and frequency 2ω. The temperature
amplitude strongly depends on the thermal properties of the sample as well as on
the sample geometry. Since the heater resistance is temperature dependent, it is
also subject to an oscillation of frequency 2ω. The modulation of the oscillations
of the current and of the resistance leads to a small component of frequency 3ω
that is directly related to ∆T . The frequency dependence of ∆T is then used to
calculate the thermal properties of the sample employing an appropriate model. As
only a single metal stripe is employed as thermometer and heater, the experimental
conditions and the boundary conditions are simpler and less error-prone than those
of other methods. Using small excitation amplitudes the radiation errors can be kept
low and with lock-in techniques the signal acquisition is immune to offset voltages.
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2.3 Methods for determining thermal conductivities

In Ref. 38 a model for the amplitude of the temperature oscillation ∆T of a heater
on a semi-infinite substrate is presented. With 1/q =

√
D/i2ω the temperature

oscillation is given by:

∆T = P

lπκ

∫ ∞
0

sin2(kb)
(kb)2

√
k2 + q2dk. (2.19)

Here b is the half heater width, P the heater power, l the heater length and κ the
thermal conductivity of the sample. The absolute value of 1/q is a measure for the
penetration depth of the thermal waves into the sample. The integral can only be
evaluated analytically if the finite heater width is neglected and the out-of-phase
information for the determination of D is discarded. Furthermore, the heat capacity
of the heater is neglected in the model. To account for the heater’s finite width, in
this work, the integral is evaluated numerically. Additionally, the model has been
adapted similarly to the approach described in Ref. 42, in order to take the heat
capacity of the heater into account. The thermal impedance Z of the sample can
be used to calculate ∆T according to:

∆T = Z · P. (2.20)

By adding the thermal capacitance of the heater in series to Z, the total impedance
Z∗ is given by:

Z∗ =
( 1
Z

+ i2ω2blρhchdh
)−1

, (2.21)

where ρh, ch, and dh are the density, the heat capacity, and the thickness of the
heater, respectively. An illustration of an electrical equivalent circuit is shown in
figure 2.3. When, in order to improve the adhesion on the sample, two heater layers
are used, a second capacitance can be added:

Z∗ =
( 1
Z

+ i2ω2bl (ρh1ch1dh1 + ρh2ch2dh2)
)−1

. (2.22)

The temperature amplitude for a one-layer heater is then obtained using:

∆T ∗ = ∆T
1 + i2ω (ρh1ch1dh1 + ρh2ch2dh2) ∆T2bl/P . (2.23)

The thermal interfaces between the layers of the heater and between heater and
sample are still neglected. However, they are expected to be very small for thermally
evaporated heaters. To obtain κ and D, the Eqs. (2.19) and (2.23) are evaluated
numerically using the Romberg method in a modification for open intervals for the
integration. This numerical model is then used in a fitting routine to obtain the
parameters which agree best with the measured ∆T ∗ values.
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thermal current

heater layer 1

heater layer 2

sample

Figure 2.3: Electric equivalent circuit diagram used for the implementation of the
heater’s thermal capacitance in the 3ω-model.

Ångström method

The Ångström method was the first transient measurement method for obtaining
D and is still used today, although to some extent superseded by flash methods.
The original set-up of Ångström is depicted in figure 2.4. On one end of a long
metal bar under test (a), which extends in the direction perpendicular to the figure
plane, he periodically applied 0 ◦C and 100 ◦C using ice water (B) and boiling water
(A), respectively. Thermometers were inserted into the metal bar and monitored at
constant time intervals. After some cycles the temperatures at the thermometers
followed a periodic function with the same frequency as that of the input heat
flux. Heat waves propagating through the sample are attenuated according to the
material’s thermal diffusivityD. Also, the temperatures at the thermometers showed
a phase shift in time with respect to the exciting heat flux. Furthermore, this phase
shift also depends on D.
A derivation of the mathematics behind the method can be found in Ref. 43 and
will be briefly summarized here. The differential equation which needs to be solved
is:

∂T

∂t
= D

∂2T

∂x2 − µT, (2.24)

where µT is a term accounting for the heat losses from the sample to the environment
due to heat radiation and convection. When the experiment is conducted in a vacuum
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2.3 Methods for determining thermal conductivities

Figure 2.4: Schematic of Ångström’s measurement set-up taken from his original
publication [31]. The sample (a) is a bar with its long axis perpendicular to the
figure plane. It can be cooled or heated periodically by ice water from tank B and
steam from tank A, respectively.

where no convection occurs, µ can be approximated by a radiation constant. It is
roughly equal to 4AεΣT 3

avg if the average sample temperature Tavg can be assumed
to be much larger than the amplitude of the temperature oscillations and A is
the surface area of the sample. Furthermore, the temperature difference to the
ambient has to be small, which can be achieved by using a heat shielding around
the measurement chamber. The heat radiating from the environment towards the
sample is supposed to be distributed homogeneously along the sample and, thus,
does not need to be considered. As the temperature at any position of the sample
bar x is expected to be periodic in time it can be expressed as a Fourier sum:

T (x, t) =
∞∑
n=0

Pn(x) cos(nωt) +Qn(x) sin(nωt), (2.25)

with coefficients

Pn(x) = An exp(αnx) cos(βnx− χn) (2.26)
Qn(x) = An exp(αnx) sin(βnx− χn) (2.27)

and
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αn =
{(1

2D
)[(

µ2 + n2ω2
) 1

2 + µ

]} 1
2

(2.28)

βn =
{(1

2D
)[(

µ2 + n2ω2
) 1

2 − µ
]} 1

2
. (2.29)

By inserting Eqs. (2.26) and (2.27) into Eq. (2.25) one obtains finally:

T (x, t) =
∞∑
n=0

An(x) exp(−αnx) cos(nωt− βnx+ χn). (2.30)

Here An and χn are arbitrary constants depending on the boundary conditions.
Additionally, it was assumed that the sample bar is semi-infinite and thus, the
thermal wave is neither reflected nor dissipated at the end of the bar. Due to the
need of different Fourier transformations the evaluation of the measurement data
using the original method is very time consuming and sometimes even induces
additional uncertainty.
Different simplifications for the case of a sinusoidal heater input were introduced by
King [44] and Starr [45]. Under optimized experimental conditions only first harmonic
frequencies are found in the sample temperatures and the thermal diffusivity can be
calculated using the temperature curve parameters at two points of the sample for
two different frequencies each. These two methods were later combined in Ref. 43
such that the measurement has to be conducted only at one frequency. Thus, sample
alterations during longer measurements have a smaller impact on the measurement
results. With the restriction to a sinusoidal boundary condition at x = 0 as a result
of a sinusoidal heater input

T (0, t) = A0 +A1 cos(ωt+ χ1), (2.31)

the Fourier sum in Eq. (2.30) is reduced to the two terms with n = 0 and n = 1:

T (x, t) = A0 exp(−α0x) +A1 exp(−α1x) cos(ωt− β1x+ χ1). (2.32)

The propagation velocity of the heat waves through the bar is given by

v = ω

β1
= 2πf

[
2D

(µ2 + 4π2/f−2)
1
2 + µ

] 1
2

, (2.33)

and the amplitude decrement between two points x1 and x2 is

q = exp(−α1x1)/ exp(−α1x2). (2.34)
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2.3 Methods for determining thermal conductivities

The variables v and q can be read off directly from the measured temperature charts.
By using two sets of measurements with different heater frequencies the thermal
diffusivity can be calculated using the velocity method [44]

D = v1v2
4πf1f2

 v2
1v

2
2

v2
2
f2

2
− v2

1
f2

1

 , (2.35)

where f1 and f2 are the two excitation frequencies, respectively, and v1 and v2 are the
corresponding propagation velocities of the heat waves. Employing the amplitude
method [45]:

D = π(x1 − x2)2f1
ln q1 ln q2

[
a2 − b2

b2 − 1

] 1
2

, (2.36)

with a = f2
f1

and b = ln q1
ln q2

leads to another expression of D. In both cases the
radiation constant µ, which is usually unknown, has been eliminated. By combining
the two methods one obtains the expression of the thermal diffusivity for only one
frequency [43]:

D = (x1 − x2)v
2 ln q . (2.37)

Further extensions of this method have been introduced which, for example, make
use of the Seebeck voltage as indirect temperature measurement as it shows a smaller
temporal delay than thermocouples [46]. Another improvement is to use two Peltier
elements for periodical heating and cooling at both ends simultaneously [47]. One
disadvantage of the Ångström method is that multiple thermocouples have to be
connected directly to the sample which is, however, not always possible. Also, the
sample has to be long enough for the thermal wave to be attenuated before being
reflected at the sample end, because the reflection is not taken into account in the
derivation of the original evaluation method. An approach for the estimation of
thermal diffusivities of short samples using the Ångström method is presented in
Ref. 48.
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3 Low temperature ZT-meter

3.1 Concept

The main idea behind the low temperature ZT -meter was to build a device which
enables one to measure all thermoelectric properties needed for the calculation of
ZT , all done simultaneously on the same bulk sample during the same measure-
ment and in the same transport direction. In many publications different dedicated
measurement set-ups, often requiring different sample geometries, are used for de-
termining the transport parameters needed to calculate ZT . As a result different
samples are used, which, despite identical synthesis, may vary by chance.
The focus is on the measurement of the thermal conductivity κ, since the electric
conductivity as well as the Seebeck coefficient, mainly electric quantities, can be
measured directly with high accuracy using a voltmeter and a current source. The
measurement of κ is much more involved, as, for example, no perfect insulator for
heat exists and a vacuum has to be used to prevent convection. Apart from the
fact that the measurement system cannot completely consist of vacuum and some
fixtures have to be used the problem of heat radiation still exists in vacuum. Thus,
a set-up for thermal conductivity measurements has to be designed carefully to
minimize radiation effects and also to achieve an almost perfect thermal insulation
of the sample where it is required.
Figure 3.1 depicts the main components of the ZT -meter, while in figure 3.2 the
supplementing devices and the wiring are shown schematically. The sample is
embedded between two heat flux sensors, each consisting of a glass cylinder with
three embedded thermocouples which measure the temperatures along the axis of
the glass cylinder. The innermost thermocouples of both cylinders are also in direct
electric and thermal contact with the sample and thus can be used to measure σ and
S. With the heat flux sensors the set-up is suitable to determine κ in a comparative
mode. The two sensors are each connected to a separate heater, whose power can
be measured directly in a 4-contact mode. The heaters 1 and 2 allow one to apply
temperature gradients along the measurement bar. Heater 1 is also used in the
guarded heater mode in which only the temperature difference along the sample and
the power of the heater are measured under the assumption that all heat produced
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base plate with heater

guardheater
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heat flux heat flux
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Figure 3.1: Schematical overview and photograph of the ZT -meter measurement
system for low temperatures.
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and sample heaters
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Figure 3.2: Schematical overview of the devices used in the ZT -meter measurement
system for low temperatures. Copper wires are shown in black, the red-yellow line
depicts the thermowires and the coolant pipe is shown in blue.

33
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by the heater is flowing through the sample. Thus, on the one hand heater 1 has
to be thermally insulated from its environment, on the other hand it needs to be
mounted mechanically stable onto the sensor. This is realized by using an additional
heater as a guard heater mirroring the temperature of heater 1. Both are connected
using Teflon plates and a spring, allowing for the compensation of thermal expansion
as well as serving as thermal insulation. The temperature difference between the
guard heater and the heater is measured by a thermocouple and serves as the input
signal for the guard heater control.
In order to minimize radiation effects the whole measurement bar is surrounded by a
copper shield which reflects thermal radiation of the sample back onto the sample and
thus keeps radiative heat transport at a minimum level. Moreover, in the optimum
case the temperature distributions of the shield and the measurement bar are equal
so that both are in thermal equilibrium. Only radiative transport not perpendicular
to the shield would influence the measurement. As the temperature distribution
along the sample and along the heat flux sensors is only linear if both have the
same thermal conductivities, this ideal state is rarely achieved in a measurement.
Furthermore, the shield transports heat from the guard towards the cooled base
allowing for a better temperature control of the guard. The whole measurement
device is mounted on top of a base plate holding a heater system as well as a cold
finger. It can be cooled by liquid nitrogen or helium allowing a temperature control
of the sample-holder. A second radiation shield further minimizes the heat radiation
to the environment which is at room temperature.

3.2 Measurement set-up

Most voltage and resistance measurements of the set-up are carried out using a data-
logger system utilizing relays for the channel switching. This has the advantage that
the voltage offset of the measurement is almost equal for all channels and that
this solution is comparatively inexpensive. Disadvantages are a slower measurement
process, as well as time offsets between the channels which have to be accounted
for. Also, relays are prone to wear and the lifetime of the instrument is constrained
by the number of switching cycles. For the temperature measurements carried out
with the thermocouples a copper reference point with an embedded Pt100 resistive
thermometer, connected in 4-contact technique to the data-logger, is used. The
whole copper block is embedded in insulating material to shield it from changes of
the ambient temperature. The temperature difference between heater 1 and guard
needs to be determined very accurately. It is measured directly with a thermocouple
between them, with one measurement point on the guard and the other on heater
1. The thermocouple is connected by copper wires of equal length to a voltmeter.
This has proven to be more accurate than using two independent thermocouples
measuring the temperatures at the two points of measurements and the reference
point and then calculating the difference. The disadvantage is that no absolute
temperatures can be determined at the two points.

34



3.2 Measurement set-up

B

A

B

A

A

A

B

B

ch
an

ne
l1

ch
an

ne
l2

sample

Figure 3.3: Switching circuit for the Seebeck coefficient measurements. The relays
A are closed during temperature measurements while the B relays are closed for the
measurements of the Seebeck voltages or the electric resistances.

The two thermocouples being in contact with the sample are also used as electric
contacts in addition to serving as temperature sensors. Thus, a switching system has
to be employed. Figure 3.3 depicts the relay circuit utilized to switch between the
temperature measurement mode and the mode for measuring the electric transport
properties of the sample. The latter is done in a quasi 4-contact configuration, in
which one wire pair is used to induce a current through the sample and the resulting
voltage is measured with the other pair. With this measurement configuration the
resistance of the wire is eliminated. However, the measured values still depend
on the contact resistance between the thermocouple junction and the sample. To
account for the heat production of the coils inside the relays of the switching circuit,
which may lead to unintentional thermovoltages, the circuit layout is kept strictly
symmetrical for both measurement configurations. As a consequence two, for the
switching function unnecessary, relays are also in use. During the measurements
all four relays corresponding to a configuration are switched at the same time to
yield the best possible cancellation of thermovoltages. Another result of the circuit
layout being strictly symmetrical is that in configuration B the sign of the measured
voltage of channel 2 needs to be reversed to correspond to the correct sign with
respect to the current direction. This is accounted for in the evaluation.
The measurement of the electric resistance is carried out in a quasi 4-contact mode.
The current and the voltage branches are connected to the inner thermocouples each
to two wires of equal material type. As the material of the thermocouple exhibits a
large Seebeck coefficient it is necessary to account for the resulting thermovoltages
either by recording a complete current voltage curve or by measuring at least two
points of the curve. The data logger utilized within the set-up is able to do the latter.
In addition, a source meter may be used to perform fast voltage sweeps and to take

35



3 Low temperature ZT-meter

the C-V data. The resistance can then be determined by evaluating R = ∂U/∂I
instead of R = U/I.
To reduce parasitic heat transport through the wires their diameters are chosen as
small as possible. For the minimization of Joule heating of the wires, the heater
resistances are chosen such that they can be driven with larger voltages and thus
smaller currents while keeping the power output at the same level. Furthermore,
the wires of the upper section near the guard are thermally connected to the guard,
whereas the wires of the lower section are connected to the base plate.
The two sample heaters and the guard heater consist of resistors tightly inserted into
copper cylinders. A common problem with Joule heaters is that the wires transport
much heat as they are in direct contact with the heat source. If the wiring is not done
carefully, those parasitic heat currents can be larger in magnitude than the intended
heat current through the sample. The thermal resistance between the resistor and
the copper has been kept small and the thin wires, serving as leads to the resistor,
are wound around the copper cylinder so that the temperatures can equilibrate.
However, the electric insulation has to be conserved.
The heater powers are obtained by using the data logger to determine the current
through the heater as well as the voltage drop across the heater. The voltage is
measured with separate wires to minimize errors due to the wire resistances. It is
not possible to directly measure currents with the data logger without interrupting
them during the switching of the channels. Therefore, the currents are determined
by measuring the voltage over high precision shunt resistors, located outside the
cryostat. All power supplies are computer controlled which may lead to safety issues
if for some reason the temperature control loops fail. As a precaution relays are
inserted between all heaters and their respective power supplies. All relays in the
set-up are connected to a microcontroller, which sets all relays into open state if a
failure is detected.
To achieve a steady base temperature as well as fast temperature changes a motorized
valve controls the flux rates of the cooling liquid. The power applied for the heating
of the base plate is used as input parameter for the valve’s control mechanism which
is parametrized for slow flux reductions if the heater power is above a certain limit.
Below this limit the valve is opened very quickly, since in such situations the sample
temperature cannot be cooled down further by reducing the heater power. The
electronic valve has many advantages: it reduces the amount of coolant needed for
a measurement and also leads to a steadier temperature at the base plate at low
temperatures. With increasing heater power boiling effects of the coolant play a
larger role and temperature oscillations may occur, especially at low temperatures.
All devices are controlled by a computer running a LabView program which controls
the measurement instruments, the switching relays, the heaters and the coolant
valve. The program handles the data acquisition by the instruments as well as
the data storage. Furthermore, it provides a first evaluation of the measurement
data. Moreover, digital PID control-loops can be established flexibly for all sensor-
heater configurations so that the measurements take place under stable boundary
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Figure 3.4: Overview of the parts of the set-up which are relevant for the measure-
ments of the Seebeck coefficient.

conditions. Multiple heating and PID configurations can be saved as setpoints
and then be executed sequentially and automatically. This takes place under the
consideration of freely adjustable temperature constraints which are checked before
the next setpoint is initiated. These constraints are for example temperature limits
or the stability of the temperature readings of certain thermocouples.

3.3 Thermopower measurements

The measured Seebeck voltages need to be evaluated and corrected for the ther-
movoltages of the measurement wires. A good guidance for the analysis of Seebeck
measurements can be found in Ref. 49, giving hints at the typical mistakes which
can be made. The derivations and considerations discussed here are mainly following
this publication. An overview of the measured quantities and the relevant parts of
the set-up is shown in figure 3.4.
The first condition for valid measurements is a sufficiently small temperature dif-
ference along the sample for the assumption of a constant Seebeck coefficient S to
hold. Then U , the voltage along the sample, measured at T3 and T4, is proportional
to the applied temperature difference ∆T = T4 − T3:

U = −
∫ T4

T3
S (T ) dT (3.1)

≈ − (T4 − T3) · S
(
T
)
, T = T3 + T4

2 . (3.2)
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3 Low temperature ZT-meter

The voltage measured by the voltmeter is the sum of the thermovoltage of the sample
and the contributions of the two measurement wires. Ssample and Swire denote the
Seebeck coefficients of the sample and the wires, respectively. The voltmeter is at
temperature Tref. The measured voltage Umeasured is then given by:

Umeasured =− (T3 − Tref) · Swire
(
T
)

(3.3)

− (T4 − T3) · Ssample
(
T
)

(3.4)

− (Tref − T4) · Swire
(
T
)

(3.5)

=− (T4 − T3) ·
[
Ssample

(
T
)
− Swire

(
T
)]
. (3.6)

As a result Ssample can be calculated using:

Ssample
(
T
)

= −Umeasured
T4 − T3

+ Swire
(
T
)
. (3.7)

However, as the thermovoltage is comparatively small, even small offset voltages at
the measurement instrument may lead to large deviations. Therefore, it is advisable
to conduct the measurement with different temperature gradients and thus eliminate
possible offsets in Umeasured:

Ssample
(
T
)

= −∂Umeasured
∂∆T + Swire

(
T
)
. (3.8)

Two values for Ssample can be obtained by evaluating Eq. (3.8) for both wire material
types of the thermocouple. One problem of this method is the temporal delay between
the temperature and voltage measurements due to the switching, especially if the
measurements are not performed under steady-state conditions. The evaluation
software for the present set-up accounts for this by performing a temporal linear
interpolation of the measurements. This approach, however, is not always successful
in the case of fast and nonlinear temperature changes. A further improvement is
realized by the calculation of the temperatures using a numerical model presented
later in this work.
In Ref. 49 another evaluation process is proposed where the Seebeck coefficient is
calculated without using the temperatures at the sample boundaries T3 and T4. The
new approach combines the equations for both wires from Eq. (3.8) to cancel out
the applied temperature difference ∆T . Ssample can then be calculated using:

Ssample
(
T
)

=
STC

(
T
)

1− ∂Uwire1
∂Uwire2

+ Swire2
(
T
)
, STC = Swire1 − Swire2 (3.9)

with Swire1 and Swire2 being the Seebeck coefficients of the respective thermocouple’s
materials. The method does not need to directly rely on interpolated temperature
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3.4 Thermal conductivity measurements

values. Only for the assignment of the resulting values to a temperature an absolute
temperature measurement is required. Just the Seebeck voltages along the sample
need to be acquired simultaneously. As a consequence, this approach is suitable for
usage in dynamic measurement modes, in which no steady state is realized. Also,
the uncertainty of the resulting values is supposed to be considerably smaller, since
only two voltage measurements have to be conducted.
Both evaluation types rely on the knowledge of the absolute Seebeck coefficients
Swire1 and Swire2 of the wires which need to be determined carefully. Three values
for Ssample can be obtained by Eqs. (3.8) and (3.9), and it should be noted that
the match of all three values is no suitable verification of the values for Swire1 and
Swire2.
In some of the dynamic measurement procedures, in which no steady state is reached,
the Seebeck voltages are determined during changes of the base temperature using
a high sampling rate. For the evaluation the measurements are assigned to groups
of the same average sample temperatures and the measurements with too large tem-
perature differences are rejected. Reversing the temperature gradient by activating
the respective heater on the opposite side of the sample at the right moment in time
leads to more measurements being considered and thus a smaller uncertainty.
Figure 3.5 shows a typical temperature curve of the sensors at both sides of the
sample during the steps of the base temperature which are used for the Seebeck
measurements. By employing heater 2 the reversed gradient is generated. Also, the
corresponding Seebeck voltages of the first T -crossing of the sensors are shown and
plotted against ∆T , showing a linear voltage behaviour for both branches.

3.4 Thermal conductivity measurements

With the ZT -meter the thermal conductivity of a sample can be measured in dif-
ferent ways. The most intuitive ones are the two steady-state modes, either using
the guarded heater method or the comparative method, both presented before. A
third way, the transient mode, is a mix of the Ångström method for the thermal
conductivity and a heat-flow meter method for the heat capacity using arbitrary
waveforms. This method will be presented in the next section. All three methods
rely on the parts and the sensors of the set-up depicted in figure 3.6.
The disadvantage of the two steady-state methods are the comparatively long times
needed to equilibrate the system. In particular, this holds for the guarded heater
method as it employs a control loop to minimize the temperature between heater
1 and guard which adds an additional delay before reaching the steady state. Also,
radiation effects have a considerable effect on the measurement quality at higher
temperatures.
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Figure 3.5: Sample temperatures (a) and corresponding Seebeck voltages (b) during
a typical measurement with the set-up. In phase I measurements of the thermal con-
ductivity κ and of the thermal diffusivity D, here at an average sample temperature
of 190K, are conducted. During phase II the base temperature of the sample is in-
creased and the thermovoltages are measured. The sign reversal of the temperature
gradient at 195K is achieved by using heater 2 for a certain amount of time. In
the third phase the measurements of the thermal properties are started at the next
base temperature. The thermovoltages, shown on the right, were recorded during
the first crossing of the two sample temperatures and are in a linear relationship to
∆T . They are not corrected for the contribution due to the Seebeck coefficient of
the wire used in the measurement. The corrected Seebeck coefficients of the sample,
Ssample1 and Ssample2, are shown in the corresponding legend. Additionally Sboth,
calculated from Eq. (3.9) is depicted.
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Figure 3.6: Overview of the parts of the set-up used for the measurements of the
thermal conductivity κ of the sample. T1–T6 are thermocouples which determine the
heat flux through the sample as well as the temperature gradient along the sample.
With an additional thermocouple (blue and red) between heater 1 and the guard
a voltage which is proportional to the temperature difference between the two is
determined. The temperature can be minimized by controlling the guard heater to
minimize the heat flux between guard and heater 1.

Both available steady-state methods can be combined and carried out in the same
measurement cycle. This allows one to easily compare the corresponding results.
When both measurement methods are used simultaneously, the procedure is the
following: In a first step, after changing the base temperature by employing the base
plate heater, the power of heater 1 is controlled for the upper side of the sample
to reach a certain temperature. At the same time, the guard heater is utilized to
minimize the voltage of the differential thermocouple between heater 1 and the guard
and thereby minimizing the heat-flow between the two. Here the control loop for the
minimization is configured with quite aggressive PID parameters, compared with the
conservative values used for the control of heater 1. Both heaters interact with each
other and the coupling constants of the two control loops are not known precisely
enough to use a more sophisticated control method. After the temperatures T1 to
T6 have reached a certain degree of stability, the control loop for heater 1 is disabled
and the heater power is kept constant. The control loop of the guard heater stays
enabled until a steady state is reached and finally the measurements are performed.
In order to save time the heater powers of both heaters are saved and used as start
values at the next base temperature step.
The evaluation of the measurement data is done using Fourier’s law, as written in
Eq. (2.6), in case of the guarded heater mode and with Eq. (2.17) in case of the
comparative mode. For the calculation of the temperature gradient in the heat flux
sensors, needed in Eq. (2.17), a least-squares fit of the three temperatures in each
sensor is used. Following the least squares approach for linear functions and inserting
it into Eq. (2.17), leads to an expression for κsample:
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3 Low temperature ZT-meter

κsample = −κsensorlsample
2∆Tsample

· T1 (x2 + x3 − 2x1)T2 (x1 + x3 − 2x2)T3 (x1 + x2 − 2x3)
x2

1 + x2
2 + x2

3 − x1x2 − x2x3 − x1x3
.

(3.10)
Here T1, T2 and T3 are the temperatures of the thermocouples inside the sensor, x1,
x2 and x3 are the respective positions of the sensors, ∆Tsample is the temperature
difference along the sample and lsample the sample length.

3.5 Transient heat conduction

In the following an additional method enabling one to determine not only the
heat conductivity of a sample but in addition also its heat capacity with the ZT -
meter set-up, will be presented. As source for the extra information about the heat
capacities the time dependence of the temperatures T1 to T6 is used. It combines the
direct measurement of κ as in the steady-state methods with the speed of transient
methods, at the cost of a much more complicated evaluation.
The sensors and the samples have to be in a known state at the beginning of the
measurement. An easy way to achieve that is to bring the sample in a defined steady
state along the measurement bar as the starting point of a transient measurement.
However, it is also possible to use periodic oscillations as a start condition. During
the measurement heat fluxes from both sides of the sensor-sample arrangement will
change the temperatures of the sensors. These temperature variations are determined
by the heat conductivities and heat capacities of both, sample and heat flux sensors.
Unfortunately, the heat flux cannot be determined directly by using the heater’s
power, since a guarding method might be too slow to handle fast temperature
changes. Thus, the heat fluxes cannot be used as a boundary condition in the
modelling required to extract the sample’s heat conductivity and heat capacity.
The temperature at the sensors are recorded as a function of time until no further
information about the sample properties can be gained from the measurements. A
method to estimate the effect of prolonged measurement duration on the reduction
of the measurement uncertainties will be presented and may be used in real-time
during the measurements if further optimized for speed.
The heat capacity and heat conductivity of the sample are extracted by fitting the
measurement data to a numerical model of the heat flux sensors and the sample.
The model is based on the method of finite differences and uses the time-dependent
temperatures measured at the two outermost thermocouples (T1 and T6) and the
respective material parameters heat conductivity κ and the volumetric heat capacity
c · ρ of the heat flux sensors and the sample as input parameters (figure 3.7). In the
fitting procedure the temperatures are calculated for discrete time steps on discrete
grid points, are interpolated temporally and spatially to match the measurement
conditions, and are compared with the measured values. The sum of the differences
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3.5 Transient heat conduction
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Figure 3.7: Diagram of all physical parameters used as input parameters in the
numerical model for the transient heat conduction in the heat flux sensors and the
sample.

among all measurement points and the simulation results is defined as the cost
function for an optimization algorithm and is being minimized to obtain cρ and κ
of the sample.
In the following the numerical model, employed to calculate the temperatures in the
sample, will be discussed. A number of methods exists to calculate the temperatures
inside a one-dimensional homogeneous bar for different boundary conditions, both
analytically and numerically in the form of finite differences. As a consequence of
using the measurement data for the outermost sensors as an input parameter of the
model, the boundary condition is not an analytic expression, thus, a numerical model
has to be employed. The measurement bar can consist of at least two different ma-
terials for sensors and the sample and therefore cannot be regarded as homogeneous.
Some modifications of standard numerical methods have to be made to allow for
inhomogeneous material parameters as well as non-uniform spatial discretizations.
The latter is needed to enable one to perform calculations for arbitrary sample and
sensor sizes. Starting point of the derivation of the model is the heat conduction
equation (Eq. 2.13):

c(x) · ρ(x) · ∂
∂t
T (x, t) = ∇ [κ(x) · ∇T (x, t)] . (3.11)

By separating the spatial and temporal parameters one obtains an expression which
can be discretized in two steps:

∂

∂t
T (x, t) = 1

c(x) · ρ(x) · ∇ [κ(x) · ∇T (x, t)] (3.12)
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Figure 3.8: Scheme of the finite differences model used to solve the transient heat
equation. Temperatures T , heat capacities c and densities ρ are defined at the grid
points, thermal conductivities κ are defined in between. ∆x resembles the distances
between the points.

Tm+1
j − Tmj

∆t = 1
cj · ρj

· ∇
[
κ(x) ·

Tmj+0,5 − Tmj−0,5
(∆xj,j+1 + ∆xj−1,j)/2

]
(3.13)

= 1
cj · ρj

·
[

2κj,j+1 · (Tmj+1 − Tmj )
∆xj,j+1 · (∆xj,j+1 + ∆xj−1,j)

−
2κj−1,j · (Tmj − Tmj−1)

∆xj−1,j · (∆xj−1,j + ∆xj,j+1)

]
(3.14)

=: f (tm, Tm) . (3.15)

In Eq. (3.13) the temporal discretization was carried out by using the forward
difference quotient whereas in case of the spatial discretization a central difference
quotient has been applied. This constellation is often known as the Forward-Time
Central-Space-scheme (FTCS), the temporal discretization is identical to the explicit
Euler method. The continuous variables for the spatial coordinate x and the time
t have been replaced by discrete positions j and points in time m. The distance
between two neighbouring grid points k, l is given by ∆xk,l and the difference
between two consecutive time steps by ∆t. In case of the spatial discretization two
temporary grid points were introduced which are only used in the first derivation
step. The definition of the variables and grid points is depicted in figure 3.8. By
approximating the second derivative with respect to position one obtains Eq. (3.14).
The additional grid points cancel out and solving for Tm+1

j leads to the conditional
equation for the temperature at the grid point j at the next time step m+ 1.
The temperatures are then calculated for all grid points and all time steps. As
stated before the starting conditions need to be known and the easiest way is to
assume stationary conditions and obtain the starting temperatures by solving the
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Figure 3.9: The stencils for the FTCS, the BTCS and the Crank-Nicolson schemes
show the spatial and temporal relationships of the grid points which are implemen-
ted by the respective equation. The yellow points indicate the grid points under
calculation.

stationary heat equation 2.6. Hereby the two outermost temperatures are used again
as boundary conditions. For time steps small enough the method is numerically
stable. As an indication for the required time step length serves the following
relationship [50]:

κ(x) ·∆t
c(x) · ρ(x) ·∆x2 <

1
2 . (3.16)

If this condition is not fulfilled, the FTCS-scheme may yield unstable and oscillating
solutions.
If the backward differences were applied on the left hand side of Eq. (3.14), this would
result in the implicit Backward-Time Central-Space-scheme (BTCS). Regarding the
heat equation this method is stable and shows no oscillations for large time steps.
The global truncation errors are O(∆x2) and O(∆t), and are identical to those of
the FTCS. However, due to the implicit nature of the equation the numerical and
the implementation efforts are significantly larger. A similarly numerically costly
combination of both schemes is the Crank-Nicolson-scheme, which is also stable if
applied to the heat equation. The truncation error in time is of the order O(∆t2)
[51, 52]. Figure 3.9 illustrates the stencils for the different schemes.
One way to improve the temporal truncation error of the explicit Euler method
without using the more complex implicit methods is the implementation of a
predictor-corrector method like the Heun’s-method [53], also known as improved
Euler’s method. This second order Runge-Kutta method is shown in the following:

45



3 Low temperature ZT-meter

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0

20

40

60

80

y′ = y

forward Euler step:
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Figure 3.10: Heun’s method illustrated for the differential equation y′ = y with
y0 = y(2) as startpoint: the blue circle shows the result of the predictor step ŷ(4),
the red circle the result of the corrector step y(4). The step size of 2 has been
exaggerated for illustration purposes.

T̂m+1
j = Tmj + ∆t · f (tm, Tm) (3.17)

Tm+1
j = Tmj + ∆t

2 ·
[
f (tm, Tm) + f

(
tm+1, T̂

m+1
j

)]
, (3.18)

where the function f (tm, Tm) is defined by the right-hand-side of Eq. (3.14), which
is the approximation of the partial derivative of the temperature with respect to t
at the mth time step. The first step (Eq. 3.17) is the original forward Euler step,
the so called predictor. Its result T̂m+1

j is used as an argument for f in the second
step (Eq. 3.18), which is called corrector step. The results of f in both steps are
averaged and carried into the next iteration. Figure 3.10 shows the principle of the
method graphically.
The predictor step has an order of accuracy of O(∆t) while the corrector step
shows a global truncation error of O(∆t2) [54]. A downside of this approach is the
roughly doubling of the computation time, as the function f has to be evaluated
twice for each time step. The stability condition stays the same as for the original
Euler method. Figure 3.11 depicts a comparison between the forward Euler method
and Heun’s method, showing the improved convergence rate of the latter method
regarding ∆t.
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Figure 3.11: Comparison of the forward Euler method with the Heun’s method:
fit-results using the Euler method converge linearly with ∆t while the results using
Heun’s method show quadratic behaviour.

With this procedure the simulation provides the time-dependent temperatures at the
grid points. To enable a comparison between the simulation and the measurement
the simulation results are interpolated quadratically in time and space. The position
of the two outermost and the two innermost grid points are always chosen to be on
the exact position of the respective thermocouples T1, T3, T4 and T6. Having the
temperature data in a continuous form the following cost function can be calculated
and minimized:

χ2 =
∑
n

∑
i

[T (x(i), t(n))− Ti(t(n))]2 , (3.19)

where i is the index labelling all thermocouples and n is the measurement index. The
cost function can be minimized for the desired parameters κSample, κSensor, cρSample
or cρSensor. The specific heat capacity c and the density ρ cannot be determined
independently. Also, only three of the four parameters above can be evaluated
simultaneously without knowledge of the exact heat-flows into the sample. However,
if the parameters of the sensors are known, the system becomes over-determined
and the additional parameter may be used for error estimation. Figure 3.12 shows
a plot of χ2 with varying values of κ and cρ. It shows a single minimum which can
be found easily with an appropriate algorithm and also reveals that the sensitivity
towards cρ is much smaller compared to that towards κ. The sensitivity ratio can
be shifted by changing measurement parameters such as the thermal diffusivity of
the sensors or the waveform of the heater input.
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Figure 3.12: The contour plot of χ2 for variations of κ and cρ shows a simple
structure with a single minimum. For all simulation cases only single minima have
been observed, resulting in short convergence times for the optimization algorithm.
The contour plot shows that χ2 is much more sensitive towards changes of the κ
than towards changes of cρ.

3.5.1 Implementation of interface resistances between sample and
sensors

In order to handle interface resistances between the two sensors and the sample
in the transient simulations a new set of equations has to be derived, accounting
for the thermal transport across the material boundaries. As shown in figure 3.13
additional grid points are introduced so that each boundary is now enclosed directly
by two grid points.
The relation between the thermal interface resistance RInterface, the temperatures
of the two grid points on the two material surfaces, Tj and Tj+1 and the thermal
current through the interface q is given by:

RInterface = Tj − Tj+1
q

. (3.20)

By applying the control-volume-method [55] to the problem an equation for the
heat transport via the left grid point at Tj can be obtained:

A · cj · ρj ·∆xj−1,j ·
Tn+1
j − Tnj

2∆t = A · κj−1,j ·
∂T

∂x

∣∣∣∣
j−0,5

−A · q, (3.21)
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Figure 3.13: Illustration of the implementation of interface resistances by using the
control volume method.

where A denotes the area of the heat flux sensors and the sample. By expressing the
partial derivative by a difference quotient and reordering the spatial and temporal
terms the following equation is derived:

Tn+1
j − Tnj

∆t = 2κj−1,j
ρj · cj

Tnj−1 − Tnj
∆x2

j−1,j
− 2q
ρj · cj ·∆x2

j−1,j
. (3.22)

In both equations the minuends on the right sides treat the normal bulk transport
while the subtrahends treat the thermal current across the interface.
In a similar manner one obtains for the right grid point Tj+1:

A · cj+1 · ρj+1 ·∆xj+1,j+2 ·
Tn+1
j+1 − Tnj+1

2∆t = A · κj+1,j+2 ·
∂T

∂x

∣∣∣∣
j+1,5

−A · q (3.23)

and

Tn+1
j+1 − Tnj+1

∆t = 2κj+1,j+2
ρj · cj

Tnj+2 − Tnj+1
∆x2

j+1,j+2
− 2q
ρj+1 · cj+1 ·∆x2

j+1,j+2
. (3.24)

In the system of Eqs. (3.20), (3.22), (3.24) the variable q may now be eliminated
and solutions for Tn+1

j and Tn+1
j+1 may be found.

3.5.2 Implementation of heat radiation

To account for effects of heat radiation in the simulation a simple model is derived,
where the ambient temperature is assumed to be constant. This corresponds to
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3 Low temperature ZT-meter

the situation where the inner shield, despite all precautions, does not mirror the
temperature distribution of the measurement column and, on the contrary, is at a
constant temperature.
The net-heat exchange between two bodies at different temperatures is given by
the Stefan-Boltzmann-law in Eq. (2.15). To obtain an expression for a cylindrical
column this can be inserted as an external heat source into the heat equation given
in Eq. (3.12):

c(x) · ρ(x) · ∂
∂t
T (x, t) = ∇ [κ(x) · ∇T (x, t)] + 2πrh

πr2h
εΣ
(
T 4 − T 4

ambient
)
, (3.25)

where r is the radius and h is the height of the cylinder.
It should be noted that this is only an approximation, as the thermal conduction
is calculated in one dimension only. In reality the radiation leads to a heat-flow
perpendicular to the direction of the heat conduction. For wider cylinders a two-
dimensional calculation is required. However, in the geometries used in this work,
other sources of error, such as the unknown ambient temperatures and emissivities,
are expected to have a larger impact than the approximation made in Eq. (3.25).

3.5.3 Uncertainty analysis

As the temperature values acquired by the sensors are experimentally measured
quantities they possess a certain degree of uncertainty due to limited accuracy and
limited precision of the set-up and its instrumentation. Those uncertainties influence
the thermal conductivities and diffusivities, obtained by the fit algorithm introduced
in the previous section. In this section a method [56] for estimating the uncertainties
of the derived quantities is presented.
The standard procedure to propagate the uncertainty from the measured to the
derived quantities is to calculate the covariance matrix which might already be
determined during the χ2 minimization. However, if the function or the physical
model is non-linear, the uncertainties of the derived quantities may deviate from a
Gaussian distribution and the conclusions drawn from the covariance matrix may
be invalid. Moreover, the fitting algorithm itself and the numerical model describing
the experiment might lead to additional uncertainty which is also not accounted for
by the covariance method.
The method employed in this work is a Monte-Carlo simulation and circumvents
these problems. The principle of this approach is shown in figure 3.14. First the χ2

minimization is applied to the data measured and a set of parameters a0 is obtained.
In the next step, the measurement data are used to create a synthetic data set with
an additional normal-distributed uncertainty. Unfortunately, as the measurement
data is not an independent set of data-points, the bootstrap method, shown in
Ref. 56, cannot be applied and the uncertainty in the temperature measurement
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Figure 3.14: Flow-chart of the Monte-Carlo simulation used to estimate the uncer-
tainty of the derived parameters.

has to be estimated. As an approximation the noise and its standard deviation in
the temperature measurement can be determined and used for the generation of the
synthetic data sets by adding the noise to the measured values:

Tsynthetic = Tmeasured + ∆T. (3.26)

The absolute statistical measurement uncertainty for thermocouples ∆T is, by as-
suming a linear U − T relationship, approximately given by:

∆T =
√

∆T 2
reference point + (Sthermocouple ·∆U)2, (3.27)

with ∆Treference point being the absolute uncertainty of the temperature of the ref-
erence point, Sthermocouple being the Seebeck coefficient of the thermocouple and
∆U the absolute uncertainty of the voltage measurement. As ∆U is larger for lower
temperatures, the statistical uncertainty for the temperatures is usually higher at
low temperatures.
The fitting process is then applied to a number of synthetic data sets. The statistical
distribution of the obtained parameters contains information on the uncertainty of
the derived parameters. Based on these results conclusions on the efficiency of
different measurement modes may be drawn.

3.5.4 Implementation of the model

The model was completely implemented as a C++ program and is able to load the
measurement data, to interpolate the temperature data of the outer thermocouples
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and to simulate the temperature distribution in the measurement bar for given
material parameters. Eventually the results are compared with the input data using
Eq. (3.19) and χ2 is shown as output. As most of the processing time is spent
inside the simulation loop, and in particular for the repeated calculation using
Eq. (3.14), the loop was optimized to utilize the SSE/AVX SIMD extensions of
modern processors. In theory a performance gain of up to 400% on an AVX processor
in double precision can be achieved. However, it was not optimized for the use of
multiple processor cores in the simulation loops, since the synchronization overhead
would be too large in comparison with the relatively short computations in a single
time step. The Monte-Carlo simulation, employing multiple single fits, can be run
in parallel.
A first program mode only calculates χ2 for a given set of parameters and meas-
urement data. In a second program mode χ2 is minimized by varying the material
parameters of the sample and running the simulation of the first program mode
several times. The optimization is done using PRAXIS, a C implementation of
Powell’s method by Karl Gegenfurtner [57–59]. Powell’s method is a modification
of the conjugated gradients method which does not rely on calculated gradients.
As in some cases PRAXIS uses random steps to overcome small local minima, the
fitting results may not always be the same for different runs. Consequently, the
optimization routine can be run multiple times on the same data set to obtain the
optimal fitting results.
A third program mode implements the Monte-Carlo simulation presented in section
3.5.3. The routine of the second program mode is run multiple times on an identical
measurement data set, modified for each run with a simulated error. This was
implemented by adding pseudo-random numbers following a normal distribution
with a given standard deviation to each measurement value. The program is able
to use the pseudo-random number generators SHR3, CONG and MWC as well as
KISS the latter being a combination of the other three. The uniform distribution of
these pseudo-random numbers is then converted into a normal distribution using a
C implementation of the Ziggurat algorithm [60–62].

3.6 Testing of the model using Comsol Finite Element
simulations

The first tests of the implemented model were performed by taking data generated
with the Finite Elements tool Comsol Multiphysics 4.4 as input parameters. With
Comsol the heat transport in a segmented bar was simulated very precisely for dif-
ferent heating parameters and material parameters. The simulated, time-dependent
temperature data could then be used as input parameters for the fit-program de-
scribed above. This enables one to study the influence of different parameter-sets and
boundary conditions on the fit-routine itself, while excluding experimental issues.
The results of these investigations are presented in the following.
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3.6 Testing of the model using Comsol Finite Element simulations

If not stated otherwise, the Comsol simulations used cylindrical heat flux sensors
and samples with a length of 10mm and a radius of 6mm, which is close to the
geometries used in the actual set-up. The volumetric heat capacity for samples and
heat flux sensors was cρ0 = 2MJK−1 m−3 and the thermal conductivities of the heat
flux sensors were κsensor = 2Wm−1 K−1 and κ0 = 1Wm−1 K−1 for the sample. On
one side of the sensor-sample-sensor combination a constant temperature of 273.15K
has been assumed, on the other side a time dependent heat flux was injected. Time
frames of 10, 000 s ≈ 2.77 h were considered in the simulations. This simulation
parameters are tabulated in table B.1.

3.6.1 Round-off, truncation, and interpolation error

The presented numerical method for the calculation of the temperatures in the
measurement bar is prone to three primary sources of error. The first type of error
arises because the data types used for numerical calculations in computers cannot
represent values with infinite precision. Most calculation results need to be rounded.
This leads to minor round-off errors at every calculation step which might sum up
to larger errors, especially in large simulations with small time steps. However, in
the implementation the usage of both single and double data types for floating-point
calculations were compared and no quantitative differences could be found.
A second source of error are truncation errors, which occur due to the spatial and
temporal discretization. Eq. (3.14) is exactly equal to Eq. (3.12) for infinitely small
time steps and infinitely small ∆x only. For the calculations performed here a trade-
off between small time steps and high spatial resolution (i.e. the resulting large
accuracy and long computation time) has to be found. As Heun’s method is used
in the implementation, the global truncation errors are O(∆t2) and O(∆x2).
In addition to the previous error sources, appearing in most numerical simulations,
spatial and temporal interpolations are another source of uncertainty in the simula-
tions carried out in this work. The interpolations are applied to the input temper-
atures prior to the simulation as well as to the output temperatures and the grid
positions during the calculation of χ2. In figure 3.15, which depicts the fit-results for
cρ for an increasing number of grid points, one can observe that every second data
point shows a larger difference to the original value cρ0. These deviations originate
from the fact that in every second simulation the grid points do not coincide with
the positions of the thermocouples being in the middle of the heat flux sensors.
Thus, their temperatures have to be linearly interpolated in the calculation of χ2,
leading to larger deviations from the true values. The usage of smaller ∆x steps is,
however, limited by the stability criterion valid for the forward Euler method, given
by Eq. (3.16).
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Figure 3.15: For finer spatial grid resolution the fit-results converge towards a fixed
value as the spatial truncation error is reduced. One can observe that every second
refinement step shows a larger deviation which is due to linear interpolation of the
temperatures at the probe points (gray circles) if the probes are not located directly
on a grid point (red circles).

3.6.2 Influence of the pseudo-random number generator on the
Monte-Carlo simulations

Although the pseudo-random number generators (PRNG) implemented for the
Monte-Carlo simulations pass several statistical tests on the randomness they are
not suited for generating true random numbers. To test whether the algorithm of
the PRNG has a direct influence on the simulation results, a set of Monte-Carlo
simulations has been carried out using different PRNGs and two different standard
deviations for the input temperatures. The results, plotted in figure 3.16, show no
obvious dependence of the calculated standard deviations of the fit-results on the
chosen PRNG. This, however, can never be totally excluded.

3.6.3 Interpretation of the Monte-Carlo results

In figure 3.17 the fit-results of 10,000 Monte-Carlo runs with a standard deviation
σ of 0.1K for the input temperature error distribution are shown as well as the
corresponding 99th percentile ellipse. It can be observed that the ellipse is not skewed
and the distributions regarding both parameters follow a Gaussian distribution. Also,
it can be seen that the cρ parameter seems to be more sensitive to error than κ,
since its standard deviation in relation to its absolute value is larger.
However, in this plot the average of the parameters obtained using the Monte-Carlo
simulations deviates from the fit-results on undisturbed data. As this deviation shows
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Figure 3.16: The comparison of the four different pseudo-random number generators
used to obtained synthetic data sets shows no clear dependence of the choice of the
PRNG on the results. Each data point was determined using 10,000 Monte-Carlo
iterations.
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Figure 3.17: Data set of a Monte-Carlo simulation including 10,000 points with κ
and cρ of a sample as free parameters. The histograms show Gaussian distributions
and the mean value of the data points from the Monte-Carlo simulation deviates
from the fit values of the undisturbed simulation.
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Figure 3.18: Monte-Carlo results for the cρ parameter at different standard deviations
σ, obtained with 10,000 fits per data-point: the mean values of the Monte-Carlo
simulation show the previously mentioned deviation from the fit-results on the
undisturbed data. The deviation is increasing for larger σ irrespective of whether
the sample is being heated up or cooled. If the temperature values of the outermost
thermocouples are left unchanged, the differences are almost zero.

a characteristic behaviour in all simulations, statistical reasons cannot explain the
shift. This leads to the conclusion that input data with a statistical error may yield
shifted fit-results, which will be an issue as the measurement data always includes
some statistical error. Thus, the effect will be investigated further in what follows.
Figure 3.18 depicts results for the cρ parameter of three different sets of Monte-Carlo
simulations as well as the fit without artificial noise. During the simulations the
standard deviation σ of the artificial noise added to the input temperatures has
been varied. In the first set of simulations a single heat-pulse was used as signal for
the heater power and in the second set of simulations the sample was cooled instead
of being heated. In the third simulation set the heat pulse was used again, but the
artificial noise was not applied to the temperatures assigned to the two outermost
sensors T1 and T6.
As expected, it can be observed that the standard deviation of cρ is proportional
to σ for all simulation sets. Furthermore, the results of the case where the sample
is cooled and the case where the sample is heated do not differ significantly. The
difference between the Monte-Carlo average and the fit-result from the simulation
without noise rises with σ2 for the first two sets of Monte-Carlo simulations. This
difference is nearly the same for the first two simulation sets and becomes almost
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zero in the third set of simulations, in which the artificial error was not applied
to the two outermost temperature sensors. Also, the standard deviations of cρ are
somewhat smaller as less input parameters are modified in this case.
The fact that the deviation will disappear if the thermocouples at the outer boundar-
ies do not show noise explains why the fit-results for an actual measurement deviate
from the real values due to noise. If the data for the boundary thermocouples is
carefully smoothed using a moving average filter or another suitable method without
changing the characteristics of the temperature development, the fitted parameters
will not be shifted.

3.6.4 Measurement duration, sampling rate and informative value

Conclusions regarding the validity of the extracted fitting parameters may be de-
duced using the Monte-Carlo method. The waveform and the length of a heat pulse or
cool pulse into the measurement bar has an influence on the accuracy achievable in a
transient measurement with a fixed number of data points. Further knowledge about
these effects may allow one to define an optimized measurement strategy which will
minimize the number of measurements and therefore reduces measurement duration
as well as wear effects of the relays used in the set-up.
The uncertainties of the fit-results are directly influenced by the maximum heater
power. As the temperature differences along the sample increase linearly with the
heater power, the corresponding standard deviations of the fitting parameters de-
crease. For a valid comparison throughout a simulation series this effect has to be
considered. In an actual experiment the amplitude of the temperature must not be
chosen too large as this may lead to errors due to radiation or non-constant material
parameters. Thus, a compromise has to be made.
In a first step the influence of the steepness of a heat ramp was tested. The maximum
power of the ramp was kept constant as well as the temperature sampling rate and
the total number of samples. The heater powers and the results of the simulations
are depicted in figure 3.19. If the ramp is very steep, the temperatures do not follow
this increase due to the finite thermal diffusivity of the heat flux sensors and the
sample. Thus, in these cases, the fit-results and the Monte-Carlo results are nearly
constant. For less steep ramps the uncertainties begin to increase, because then the
average temperature differences begin to decrease. If the slope is too low for the
sample to reach a steady state, the standard deviations are further increasing until
the errors are too large to allow the fitting algorithm to converge. This leads to the
conclusion that if a single heat step is being used as input waveform for the heater
power, the step should be as steep as possible. Additionally, the thermal diffusivity
of the heat flux sensors should be small enough to not significantly limit the speed
of the temperature rise.
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Figure 3.19: The results of a Monte-Carlo simulation for single steps of the heater
power with different steepnesses: the heater powers are depicted in (a). (b) shows
the corresponding mean values and the standard deviations of the extracted cρ
normalized to cρ0 as a function of the ratio of rise time to full heater power and total
simulation time. For fast heat steps the simulation results are almost constant, as
the system hardly follows the temperature excitation. An increase of the uncertainty
of cρ can be observed only for lower steepnesses.
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Figure 3.20: The Monte-Carlo simulations for a single heat step suggest a reciprocal
relationship between the uncertainty of all fit parameters and the sampling rate.
This relationship is here shown for ∆cρ.
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Figure 3.21: The results of the Monte-Carlo simulations for different simulation
durations using a single heat step show a steep decrease of the uncertainty of κ
which after 6,000 s is nearly constant. This shows that after a certain time nearly no
additional information can by gained, as a steady state has been established. The
uncertainty in cρ shows almost the same behaviour.

Figure 3.20 depicts the influence of the measurement sampling rate on the standard
deviation of the cρ parameter. ∆cρ shows a reciprocal relation to the sampling rate
and the same relation holds for the uncertainty of the κ parameter of the sample.
For the simulation the input data, generated with Comsol in a high time resolution,
was reduced by deleting evenly distributed sets of data.
Since there is no need for further sampling if no additional information can be
obtained, the measurement time following a single heat step is also of interest. The
simulations for different measurement durations, shown in figure 3.21, demonstrate
that there are only very small changes of the standard deviations of the parameters
cρ and κ after an equilibrium state is reached. The same holds for the deviations
between Monte-Carlo simulations and the fits on the undisturbed data. This might
seem contradictory to the fact that the total number of data points is still rising.
However, as only the steady-state data is remeasured, only the steady-state inform-
ation is duplicated and less disturbed by the artificial noise. This results in very
slightly decreasing standard deviations for κ, as κ is mainly derived from the steady-
state information. cρ instead is almost entirely determined by the dynamic part and
should hardly be influenced if the steady-state data become more precise. However,
the information for cρ also depends on the thermal diffusivity of the sample, thus, a
more accurate measurement of κ subsequently leads to slightly more precise values
of cρ.
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The findings that measurements in different states of the experiments have different
informative value per data-point may be used for decreasing the sampling rate and
thus reducing measurement data as well as minimizing stress on the relays in the
set-up while preserving the accuracy of the measurement. The strategy to optimize
the informative value per data-point comprises sampling at a high rate when the
temperatures change fast and at a low rate for slowly changing temperatures.

3.6.5 Periodic heating

The results of the previous investigations show that mostly heat flux changes lead to
informative gain in transient measurements. Since the maximum heat flux cannot
be increased arbitrarily due to radiation issues a periodic heating, very similar to
the Ångström method, may turn out to be advantageous. The Ångström method,
however, relies only on the temperatures along the sample and does not employ heat
flux sensors. Thus, only the thermal diffusivity of a sample can be determined. In
contrast to the Ångström method the heat flux sensors surrounding the sample in
our method enable the measurement of both, thermal conductivity κ and volumetric
heat capacity cρ simultaneously.
Apart from the larger informative value an additional difference between non-
periodic and periodic transient measurements with the ZT -meter is that the steady
state as starting point is not a prerequisite. Instead, the measurement already may
be started after a settling time, when the temperature oscillations behave uniformly.
The numerical simulation requires the temperature distribution throughout both,
the sample and the heat flux sensors, at the time of the initialization. Thus, for such
measurements, the temperature data is extended periodically in a first evaluation
step. A steady-state is assumed at the initialization and the simulation is executed
several times on the same periodic input data, until the temperature oscillations
become uniform. Eventually, a correct starting point for the simulation is estab-
lished and the usual calculation procedure as described in the previous section can
commence. The periodic extension of the input data has to be carried out very
carefully, as the measurement sampling rate is not always constant and the length
of a measurement is not necessarily a multiple of the cycle length. In this case the
data has to be interpolated. Otherwise, the oscillations are not uniform.
First the influence of the waveform on the measurement efficiency was tested by
comparing a simulation with a square wave as heater power signal and one using
a sine wave. The standard deviations obtained for the two different signal forms
did not differ significantly for κ as well as for cρ, when the same power amplitude
was used. However, in the real set-up the waveform at the sensor blocks tends to
be sine-like due to the heat capacity of the heater and the resulting damping of the
higher frequencies of the excitation. Only the sinusoidal waveform is discussed and
used in the experiments with periodic excitation in what follows.
In contrast to measurements with a single switching of the heater power in which
the information gain tends to zero when the steady state is approached, periodic
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Figure 3.22: In contrast to measurements with only a single switching of the heater
power the periodic excitations lead to a continuous gain of information. This results
in a smaller uncertainty of the deduced variables for larger measurement durations,
here shown for the cρ parameter. The same applies for κ.

measurements yield a continuous refinement of the results with increasing duration
of the measurement. The heat flux alternation is particularly beneficial for the
determination of cρ. The κ parameter benefits indirectly from this. Figure 3.22
shows the reciprocal relationship between the standard deviation of cρ, obtained
from Monte-Carlo simulations, and the number of periods which had been simulated.
An example for temperature distributions in the sample and the heat flux sensors
during a periodic measurement is shown for different phases of the heat excitation in
figure 3.23. The waveform of the heat excitation at the left boundary is a sine func-
tion, the temperature at the right boundary was fixed at 273.15K. The decreasing
distance between the maximal and minimal temperatures (dotted lines) visualizes
that the amplitudes of the oscillation are increasingly attenuated with larger dis-
tances from the heater. In order to obtain information from the measurement by
phase and attenuation evaluations, the penetration depth of the thermal waves has
to be large enough to reach the end of the set-up. The average temperatures (dashed
line) follow an equivalent steady-state distribution, thus the value of κ could be
evaluated without the finite difference model by employing a steady-state evaluation
method. However, the thermal diffusivity cannot be obtained with a simple analytic
model. The evaluation methods for the Ångström method are also not suitable, as
the sample geometry does not fulfil the requirement of being thin and long enough
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Figure 3.23: The figure shows the temperatures of the heat flux sensors and the
sample, plotted as a function of position for different times in a simulation with
periodic heating. The heater is placed on the left side while the temperature of the
right side is kept constant. On the left side the time dependence of the temperature
of the boundary between heat flux sensor and the heater is plotted. The dashed
lines show the average temperatures, resulting in a position dependence which can
be evaluated in a similar fashion than those obtained by the steady-state methods.
The minimum and maximum temperatures are plotted as dotted lines visualizing
the amplitudes of the oscillation. Their difference decreases exponentially in their
respective material regime.
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for the thermal waves not to be reflected or dissipated at the end of the bar or
at the interfaces between sample and sensors. A modification of a more advanced
evaluation method such as the one presented in Ref. 48, which takes reflections
into account, might lead to correct results. Furthermore, no evaluation approach for
Ångström’s method is suitable for inhomogeneous bars such as the sample-sensor
arrangements in the ZT -meter.
The attenuation of the thermal waves in the heat flux sensors and the sample strongly
influences the accuracy of a measurement. However, the attenuation itself depends
on the boundary conditions of the experiment. As the analytic investigation of the
whole heat flux sensor–sample arrangement is very complicated, a simpler model
will be employed in the following. The heat equation is solved for a homogenous
one-dimensional bar, which is heated and cooled at x = 0 to reach a periodic
boundary temperature of T (x = 0, t) = cos(ωt), with ω being the angular frequency
of the oscillation. For the boundary condition of the other side of the medium three
different cases are analyzed. Detailed derivations of the solutions can be found in
appendix A.
In the first case the medium is assumed to be semi-infinite leading to the boundary
condition

lim
x→∞T (x, t) = 0. (3.28)

The solution for T (x, t) in this case is given by:

T (x, t) = e−x
√

ω
2D · cos

(
ωt− x

√
ω

2D

)
. (3.29)

This shows that the amplitude of the thermal wave is attenuated exponentially
with increasing distance to the heated boundary. The inverse of the decay constant
x0 =

√
2D
ω is called thermal penetration depth. Furthermore, 2πx0 denotes the

wavelength of the wave.
The other two boundary conditions both consider a finite medium of length l. In
one of them a Dirichlet boundary condition is applied with T (l, t) = 0. For the other
case the medium is considered to be thermally isolated from the environment at
x = l, leading to the Neumann boundary condition

∂T

∂x

∣∣∣
x=l

= 0. (3.30)

For l >> x0 the solution for the Dirichlet as well as the Neumann boundary condi-
tions are equal to the case of the semi-infinite medium. If the thermal penetration
depth, however, approaches l, the wave will be reflected in case of the Neumann
boundary condition and dissipated in case of the Dirichlet boundary condition, lead-
ing to differences of the three temperature distributions at the boundary close to
x = l. For all three types of boundary conditions, the temperature distribution
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becomes a linear function between the temperatures at the boundaries, if x0 is large
compared with l. However, the slopes are very different. Figure 3.24 depicts the
temperature maximum as function of x for the three sets of boundary conditions
and different values of x0.
As mentioned earlier an analytic description of the complete arrangement of heat flux
sensors and the sample is rather complicated. One of the reasons is that reflections
of the thermal waves at each boundary have to be considered. The approximation
using a uniform medium shows the importance of the type of boundary for the
measurement especially for large x0 as a result of low frequencies or high thermal
diffusivities. Due to the large diffusivity of the copper around heater 2 and the good
coupling to the coolant the boundary condition at the end of the heat flux sensor
in the real set-up is considered to be mostly of Dirichlet type. However, a small
reflection of the wave cannot be excluded entirely.
As in the ZT -meter the sample is only heated, the temperature excitation at the
heated boundary has an offset leading to a steady-state temperature distribution
being added to the periodic one. This offset enables the measurement of κ, whereas
the dynamic component of the temperature excitation allows one to determine D.
As the maximum temperature differences inside the set-up are constrained due to
radiation effects, it is essential to understand the interplay between the dynamic
component and the static component of the temperature signal. Furthermore, the
boundary temperature at the interface between the heater and the heat flux sensor
is not controlled directly during the measurements but rather the heat flux density
at the boundary. When using periodic heating, the heat flux density q from the
heater into the heat flux sensor can be described by:

q(t) = Aq, periodic (cos(ωt+ φ)) +Aq, steady, (3.31)

where Aq, periodic is the amplitude of the heat flux oscillation, Aq, steady is an offset
value equal to or larger than Aq, periodic and φ is a phase shift. If the heater were
replaced by a Peltier element, Aq, steady would assume lower values and q would
take negative values. The heat flux density is proportional to the gradient of the
temperature at the boundary:

q(t) = −κ∂T (x, t)
∂x

∣∣∣
x=0

. (3.32)

As the exact analytic expression for T (x, t) is unknown, the solution of the heat-
equation for the uniform medium will be used as an approximation. For small
thermal penetration depths the solution for the Dirichlet boundary condition, which
is expected to be present in the set-up, is equal to the solution for the semi-infinite
medium in Eq. (3.29). The offset of the heat flux will be considered by an additional
term, interpolating linearly between the temperatures of the boundaries. For small
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Figure 3.24: Temperature distribution along a one-dimensional, uniform medium
with a periodic temperature excitation on the left side and three different boundary
types on the right side. If the thermal penetration depth x0 of the thermal waves,
introduced on the left side, is small compared to the length of the medium l, all
three boundary conditions lead to the same temperature distribution. For larger x0
the solutions split up at x = l and begin to diverge.
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Figure 3.25: Figure (a) depicts the static offset AT, steady, as well as the amplitude
of the oscillation AT, periodic of the temperature at T1 for different ratios of the
heater power’s amplitude and the heater power’s offset. The absolute powers were
chosen such that the maximum temperature difference in the input data is 10K.
The corresponding uncertainties for κ and cρ, shown in (b), illustrate the opposing
relationships between Aq, steady and ∆κ as well as Aq, periodic and ∆cρ respectively.

thermal penetration depth x0, the temperatures inside the uniform medium of length
l are then expressed by:

T (x, t) = AT, periodice
−x
√

ω
2D · cos

(
ωt− x

√
ω

2D

)
+AT, steady(l − x) + T0. (3.33)

AT, periodic is the temperature amplitude of the oscillation and AT, steady the differ-
ence between the average temperatures at both boundaries. T0 states the temperat-
ure at x = l. Inserting Eq. (3.33) into Eq. (3.32) leads to:

q(t) = − κAT, steady︸ ︷︷ ︸
=Aq, steady

−
√

2
x0
κAT, periodic︸ ︷︷ ︸

=Aq, periodic

· cos
(
ωt − 3

4π︸ ︷︷ ︸
φ

)
. (3.34)

Thus, a given ratio Aq, steady/Aq, periodic results in a ratio of AT, steady/AT, periodic
which depends on the measurement frequency and the thermal properties of the
sample. The absolute values of AT, steady and AT, periodic strongly influence the uncer-
tainty of a measurement with regard to κ and cρ respectively. The interplay between
the parameters is shown in figure 3.25. Simulations for various Aq, steady/Aq, periodic
ratios have been conducted and the resulting boundary temperatures T1 at x = 0
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have been obtained. The heater powers were chosen such that the difference between
the minimum temperature and the maximum temperature in the input data was
10K. Additionally, a Monte-Carlo simulation yielded the corresponding uncertainties
for the κ and the cρ parameters, which behave inversely to the respective amplitudes
Aq, steady and Aq, periodic. The resulting uncertainties show that it might be beneficial
to implement a Peltier element for sample cooling to achieve Aq, steady/Aq, periodic
ratios of below one.
During a measurement the penetration depth can be controlled by adjusting the
frequency of the periodic excitation. For constant amplitude of the heater power
and varying frequency, low frequencies f lead to higher amplitudes and larger pen-
etration depths of the thermal waves. On the other hand at high f the thermal
penetration depths may become too small for the thermal wave to reach the second
heat flux sensor. At low frequencies the heater oscillation period increases as does
the time required for the temperature oscillation throughout the sensor-sample-
sensor arrangement to become uniform. Furthermore, since at low frequencies the
temperature amplitude increases, uncertainties due to radiation become larger. A
compromise between the two extremes which yields a maximum of information
has to be found. To further investigate the influence of the heater frequency a set
of Comsol simulations was used as input parameters for Monte-Carlo simulations.
To remove the effect of rising amplitudes the heater power was adapted such that
the upper sensor always reaches the same maximum temperature. The simulation
results are shown in figure 3.26.
The material parameters κ and cρ are shown as a function of

√
1/ω, which is roughly

proportional to the thermal penetration depth x0, defined above. The exact thermal
penetration depth, however, is difficult to calculate, since the thermal diffusivities
D change at the interface between the heat flux sensor and the sample. At low
penetration depths, and thus high frequencies, the situation is comparable to a
steady-state condition. The thermal waves do not propagate very deep into the
sample and mainly the steady state component, arising due to the offset of the
temperature excitation, is being measured. Thus, the informative gain regarding cρ is
low while it is high for κ. With larger oscillation period the amplitude of the dynamic
component rises and the mean temperatures are decreasing in relation as a result of
the 10K limitation. Since the uncertainty of κ also influences the determination of cρ,
at a certain point ∆cρ starts also to rise for higher penetration depth. Other reasons
for the increase of ∆cρ at very low frequencies are the decreasing phase differences
between the temperatures of the thermocouples and that the heat oscillation only
penetrates into heat flux sensor 1 and does not reach the actual sample.
To conclude the discussion of the influence of the heat waveform on the measure-
ment results of the ZT -meter a number of different input signal combinations will
be presented and their performance compared. All simulations were run over the
same time-frame of 10,000 s and with the same sampling rate of 1Hz for the tem-
perature input data. Also, the differences between the minimum temperature and
the maximum temperature were normalized to an equal range of 10K to permit a
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Figure 3.26: κ and cρ as a function of
√

1/ω for a sinusoidal heat stimulation. The
frequency of the input signal changes the amplitude of the temperature oscillation
and the thermal penetration depth of the thermal wave, and thus has a large influence
on the measurement uncertainty.

valid comparison between the different waveforms. The first waveform is a simple
step function (fig. 3.27a), whereas the second waveform consists of two steps with
a break in between (fig. 3.27b). This is followed by a simulation with a sinusoidal
heater power, starting after the temperature oscillations became uniform (fig. 3.27c).
The next two waveforms used sinusoidal heating and cooling at both ends of the
measurement bar, one with both ends in anti-phase (fig. 3.27e) and the other in-
phase (fig. 3.27d). Finally, a sine function was applied as heater input but this time
a steady state had been used as starting point (fig. 3.27f).
The results of the fits for κ and cρ are shown in figures 3.27g and 3.27h. For most
types of input waveforms the standard deviations and the deviations of the Monte-
Carlo averages from the exact value are relatively small for κ. In the case of cρ the
periodic sine heating exhibits the smallest standard deviations while the step-wise
heating shows larger standard deviations and absolute deviations. This is expected
as the measurement takes mostly place in the steady-state regime.
The simulations in which both ends were heated and cooled show large deviations
between the average results of the Monte-Carlo simulations, the fit-results for the
undistorted data, and the original values for κ0 and cρ0. If both ends of the sample
are heated in-phase, no net-heat flow through the sample occurs resulting in a
constant average temperature along the sample. As the gradient of the average
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Figure 3.27: Comparison of different waveforms as heater inputs for the transient
measurement mode: (a) ramp; (b) two steps; (c) sine; (d) sine antiphase; (e) sine in
phase and (f) sine with start. The uncertainties were determined with Monte-Carlo
simulations and the simulations using the sine waveform as heater input show the
smallest errors for both κ and cρ in (g) and (f), respectively.
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temperatures is important for the determination of κ, the in-phase heating mode
results in a less certain knowledge of κ. When using the opposite mode, heating in
anti-phase manner, the heat flow through the sample is maximized but the phase
shifts between the thermocouples are significantly smaller. As the phase shift is an
important parameter for the determination of cρ this measurement mode leads to
larger deviations from cρ0.
For the sine waveform with a steady state as starting point the uncertainty in both
parameters is higher compared to the pure sine function. This behaviour is expected
as the average temperature amplitudes over the whole time-frame are smaller in this
case. The comparison between all waveform shows that the periodic measurement
mode “sine” is favourable when using the transient mode to determine κ and cρ
as it shows the lowest uncertainties and deviations from the original parameters κ0
and cρ0.

3.6.6 Effect of the thermal properties of the sample on the meas-
urement uncertainties

The thermal properties of the sample and the heat flux sensors have direct influence
on the quality of the measurement results. As stated before, low thermal diffusivities
lead to small penetration depths of the thermal waves. Also, the equilibration times
needed to reach a steady state will be longer if the sample or the sensors show low heat
conductivities and large heat capacities. Furthermore, the thermal conductivities
of the components should be within the same order of magnitude. If the thermal
conductivity of the sample is much lower than κSensor, most of the temperature
gradient along the measurement bar will be located inside the sample and vice versa.
Thus, for very low ratios κSensor/κSample the temperature difference along the sample
cannot be measured, for very large ratios the determination of the heat flux by the
sensors does not work properly.
Figure 3.28 shows the results of a series of Monte-Carlo simulations where a sine-like
excitation has been used. The thermal properties of the sample were changed in
two different ways. At first only the cρ parameter of the sample has been varied
and, thus, the penetration depth of the thermal waves. In a second series, again
the cρ parameter of the sample was varied while altering its κ parameter such that
the thermal diffusivity D is kept constant. With the first series the impact of a
change in the thermal penetration depth is investigated, while with the second series
mainly the influence of different κ values for the heat flux sensors and the sample
is studied. The results for the standard deviation of the κ parameter show that the
change of only cρ does not lead to a change of the uncertainty of κ. However, if in
addition κ of the sample itself is varied a minimum in the uncertainty is found for
intermediate ratios of cρ to cρ0 and thus of intermediate ratios κ to κ0 and κsensor.
If the ratio between κ and κsensor is very small, the temperature gradient along
the sample will be small and will be measured with a larger uncertainty. This is
reflected by the larger standard deviations in this case. The same holds for large
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Figure 3.28: Standard deviations of κ and cρ for different ratios of cρ to cρ0 of
the sample during periodic excitation. In one simulation series κ of the sample was
kept constant at κ0, in the other, the κ value was changed such, that the thermal
diffusivity is constant. In the latter series, both uncertainties show a minimum, for
the case where the thermal properties of the sample and the heat flux sensors are
comparable.

ratios between κ and κsensor, where the temperature gradient along the heat flux
sensors is small. The results for the standard deviation of cρ show a small decrease
of the uncertainties if only the cρ parameter is decreased, probably due to the larger
penetration depth. However, if the cρ parameter gets too small or too large, the
simulations themselves will take more time, since the stability criterion in Eq. (3.16)
needs to be fulfilled using smaller time steps. When both parameters, cρ and κ
are varied while keeping D constant, a minimum for the standard deviation of cρ
is found, again at intermediate values of cρ. For low as well as large values the
uncertainties increase strongly, since here the heat fluxes cannot be determined
accurately. This also applies to the uncertainties of the κ value.
Thus, in order to achieve optimum measurement results, the thermal conductivities
of the sample and the heat flux sensors should not differ too much. The ratios of the
thermal heat capacities also show an influence on the results. This impact, however,
is smaller and probably a result of the change of thermal penetration depth. The
thermal penetration depth can be adjusted by changing the frequency of the exciting
waveform. Thereby, a mismatch between the heat capacities of the sample and the
sensors can be compensated.
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Figure 3.29: Comparison of the Monte-Carlo simulations using a sine function fitted
to the input data of none, of the boundary thermocouples or of all thermocouples. The
method reduces the deviation between the Monte-Carlo averages and the original
values greatly as long as the boundary sensors are fitted. The standard deviations
of the results are not changed.

3.6.7 Reduction of the temperature noise at the simulation bound-
aries

The absolute deviation which is seen in the results as a deviation of the average of
the Monte-Carlo results from the fit of the undisturbed measurement, is also present
in measurements with a periodic excitation. A simple moving average filtering of the
boundary temperatures will improve the results, but can lead to a reduction of the
temperature maxima and minima. In case of the sine heating a more suitable method
is to make use of the condition that the temperatures at the thermocouples always
evolve sinusoidally in time, by fitting a sine function to the temperature data of the
thermocouples. The fit-data can then be used in the simulation. Figure 3.29 shows a
set of Monte-Carlo simulations, in which the data of all thermocouples, only of the
outer thermocouples, and none of the thermocouples, respectively, was fitted to a sine
and then used as input in the numerical model. The plot shows that neither standard
deviation nor bias are different for the first two cases. However, both fit methods show
a greatly reduced deviation compared to the third case, where the distorted data
was used in the simulation directly. Thus, the method of fitting the known waveform
function to the measurement data of the thermocouples prior to conducting the rest
of the evaluation appears to be a good way to reduce the deviation of the fit-results,
which is introduced by noise on the boundary temperatures.
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3.6.8 Considerations on the sample geometry

In the following the influence of the sample geometry on the measurement accuracy
will be discussed. The arrangement will be optimum if the cross-sections of the heat
flux sensors are identical to the cross-section of the sample, since the assumption of
one-dimensional transport is fulfilled best in this case. Cylindrical glass sensors with
a radius of 6mm are used in the present set-up. They possess the same dimensions
and shape as the metal stamps used for fabricating the samples by hot compression
moulding. However, there might be small deviations from the optimum sample
geometry due to thermal expansion inside the moulding form resulting in a deviation
of the sample radius from the ideal radius. Thus, the magnitude of this effect on
the measurement results needs to be discussed.
If the sample has a larger radius than the sensors, two limiting cases need to be
considered in terms of sample length. In case of a very short sample the transport
path does not widen from the heat flux sensor to the sample radius before leaving
the sample again (Fig. 3.30a). If the sample is very long compared with the width
difference between heat flux sensor and sample, the portion of the sample in which
the transport is not one-dimensional can be neglected (Fig. 3.30b). In the former
case the measurement results will not be influenced by the sample width whereas in
the latter case the thermal conductivity will have to be corrected by using the cross-
sectional areas of the two cylinders. In real measurements these extreme cases will
not occur and a correction of the obtained values for κ and cρ is fairly complicated
and preferably avoided. Furthermore, if a broader sample has a much larger thermal
conductivity than the sensors, the transport inside the heat flux sensors themselves
is not one-dimensional anymore. This is also the case for samples with a much
smaller radius than the sensors (Fig. 3.30c). As a consequence the heat flux in the
sensors can strongly deviate from being one-dimensional and in most of these cases
the deviations from the one-dimensional numerical model are too large for the fit
algorithm to find a minimum of χ2.
To further investigate the problem a set of two-dimensional, transient FEM simula-
tions was performed. Different sample thicknesses, lengths and thermal conductivities
were used and a sinusoidal excitation waveform has been chosen. The rotational
symmetry of the cylinders representing the sample and the heat flux sensors permits
the reduction of the dimensionality of the model from three to two dimensions. The
temperature data of the FEM model was then fitted using the one-dimensional
finite difference model and the parameters κ and cρ of the sample structure were
extracted.
In figure 3.31a the obtained values for κ are plotted against the sample length
for different sample radii. If the sample radius is identical to the sensor radius
of r0 = 6mm, the correct results for κ are obtained. For very short samples and
sample radii larger than the sensor radius the results also agree quite well with the
nominal values and are only slightly overestimated. This changes for longer samples
with larger radii than the heat flux sensors. Here the heat current in the samples
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(a) (b) (c)

Figure 3.30: Examples of steady-state temperature distributions, shown by iso-
thermal lines, and heat-flow directions (black arrows) for sample geometries where
the sample width is not equal to the width of the heat flux sensors. As the numer-
ical model used for the fits handles the heat transport only in one dimension, the
fit-results are very sensitive to deviations from the optimum geometries.

spreads perpendicular to the measurement direction leading to higher values of κ
than expected.
However, if the sample radius is smaller than the radius of the sensors, the transport
inside the sensors deviates strongly from the one-dimensional model and cannot be
fitted anymore. Only for r = 5mm the fit routine converged and the corresponding
results for κ deviate from the original values for all sample lengths.
Figure 3.31b shows the same results corrected for the true sample cross-section. The
geometry correction κcorrected = r2

0
r2κ is valid only for samples which are much longer

than wide. Consequently, the values converge to the correct value with increasing
length. However, in a real measurement case using the current set-up the samples
cannot be long enough for this model to be valid.
The fit-results for the cρ parameters are found in figure 3.31c and the ones corrected
for the cross-section in figure 3.31d. In the latter figure a correction for the cross-
section cρcorrected = r2

0
r2 cρ was used. For small deviations of the radius in both

directions the corrected values are in good agreement with the nominal value. In all
investigated cases the relative deviation for the corrected cρ is much smaller than
the corresponding average relative deviation of κ. The explanation for this finding is
that the periodic portion of the thermal transport does not have a forced direction
and the waves propagate in all directions. This is in direct contrast to the stationary
portion of the transport taking place between the heater 1 and heater 2. Due to
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Figure 3.31: Fit-results of the numerical transient model for cylindrical samples of
different widths and lengths. The results without geometry correction on the left-
hand side diverge from the correct values for longer samples. On the right-hand side
the same fit-results were corrected for geometry using a simple model. While the
results for κcorrected are converging for longer samples, some of the cρcorrected-curves
show a minimal deviation at a certain length. The diameter of the heat flux sensor
was set to 6mm in all calculations.
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Figure 3.32: The fit-results of κ and cρ to a two-dimensional Comsol model with
activated ambient radiation show good results when fitted to a model with the
one-dimensional radiation approximation. Only for large sample emissivities the
values for cρ are slightly underestimated. As waveform for the heat flux a sine input
has been used.

the isotropic propagation of the heat waves more heat flows perpendicular to the
regular transport direction and the measurement can be considered one-dimensional
for shorter samples than it is the case for the stationary heat transport.

3.6.9 Effect of heat radiation on the measurement

It was proven that Ångströms method is mostly insensitive to radiation towards the
ambient. To show that this is also the case for the presented numerical evaluation
method heat radiation effects were also implemented into the model for the transient
heat equation using Eq. (3.25). However, the exact emissivities of the sample and
the sensors are often unknown. The implemented model is strictly one-dimensional
and neglects the width of the sample. For a good estimation of the radiation effects
they are being investigated in the following. A two-dimensional Comsol simulation
with heat radiation between the boundaries of the sample and the ambient at a
temperature of 273K was used to generate temperature data. This was evaluated
with the fit tool including heat radiation as proposed in Eq. (3.25) and with treating
ε as a fit parameter. The results in figure 3.32 show large deviations of nearly 8%
for the obtained value of κ if the effect of heat radiation is not implemented in the
fit model. The results for the fit-model with radiation are in much better agreement
with the correct values, but underestimate the values for cρ as well as κ for larger
ε slightly. This is due to the implementation in one transport direction only and
the resulting negligence of the sample thickness, which would otherwise result in
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a smaller radiative current. The cost of the additional fit parameter ε is that the
uncertainty of κ in an additional Monte-Carlo simulation was found to be about
10% larger for all ε. However, at the same time ∆cρ decreased linearly with ε and
ended up at a value of 14% for ε = 1.

3.6.10 Influence of the thermal contact resistance on the measure-
ment

The thermal contact resistance between the heat flux sensors and the sample directly
influences the measurement results of the ZT -meter. This could be circumvented by
using thermometers inside the sample itself, as it is done in the Ångström method.
Another possibility to eliminate the effect of the boundary resistances is to measure
the surface temperatures of the sample e.g. with an IR camera, a method used
in some laser flash analysis set-ups. However, for this approach the sample has to
be coated to ensure that the emissivity coefficient is known and that the radiative
power density can be converted into a temperature.
Since the thermocouples used in the ZT -meter are not inserted into the sample itself,
the measured thermal resistance Rthermal includes the thermal interface resistance.
Rthermal can be calculated from the thermal conductivity of the sample κsample, the
total interface resistivity ρinterfaces, the sample length l and the cross-section of the
sample A:

Rthermal = l

κsampleA
+ ρinterfaces

A
= l

κmeasuredA
. (3.35)

On the other hand, the determined values for cρ are mostly independent of the inter-
face resistances. The determination of cρ depends on the difference of the measured
heat fluxes into and out of the sample as well as the corresponding temperature
changes. These mechanisms are not directly influenced by the interface resistances.
However, the total thermal diffusivity increases due to the interface resistances and
the measurement uncertainty can increase as a result. Figure 3.33 shows a corres-
ponding simulation of a transient measurement with a periodic input for varying
interface resistivities ρinterfaces. The obtained values for κ agree with those obtained
with Eq. (3.35), while the values of cρ are nearly constant.
If the thermal conductivity of the sample or the thermal interface resistances are
known, the fit-program can be used to determine the other value. However, for small
interface resistances the current implementation with the FTCS scheme requires
small time steps, otherwise oscillations will occur. Figure 3.34 shows a series of
fits to the same sets of input data as before, but with a fixed value for κ. Instead,
ρinterfaces and cρ were used as fit parameters. For very small values of ρinterfaces the
fit did not converge towards the original value, as the FTCS implementation became
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Figure 3.33: Fit-results of a simulation series with varying interface resistances
ρinterfaces show that the ZT -meter measures too low values for κ if interface res-
istances are present. However, the determination of cρ is barely influenced in this
case.

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

ρinterfaces from Comsol model / m2 mKW−1

fit
te
d
ρ

in
te

rf
ac

es
/
m

2
m
K
W

−
1

(a)

0.0 0.5 1.0 1.5

0.995

0.996

0.997

0.998

0.999

ρinterfaces from Comsol model / m2 mKW−1

fit
te
d
cρ

/
cρ

0

(b)

Figure 3.34: Fit of the numerical model with implemented interface resistances to
the Comsol simulations: the interface resistance values (a) are in good agreement
except for the simulation with the interface resistance being zero. The results for
the cρ parameter are nearly constant. The current finite difference implementation
with the FTCS scheme becomes unstable for small ρinterfaces. Since the numerical
errors are getting larger for decreasing ρinterfaces, the deviations from cρ0 grow in
this case.
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numerically unstable. Also, the cρ values show a growing deviation from the original
values cρ0 when the interface resistances decrease.

3.6.11 Transient measurements over large temperature ranges

The transient measurement mode has the potential to dramatically reduce the meas-
urement times compared with common steady-state modes. However, in the cases
shown before, either a steady-state at the beginning of the measurement has to be
reached or the measurement has to be paused until all temperatures vary periodic-
ally. In the following an approach to avoid these waiting times is presented. Instead
of increasing the base temperature step-wise, it is increased continuously. Thus, the
material parameters κ and cρ of the heat flux sensors and the sample are always a
function of temperature. In the other methods those parameters could be approx-
imated as being constant during the periods of constant base temperatures. The
implementation of the numerical model supports the use of temperature dependent
parameters. However, the complete fitting of a measurement over a large temperat-
ure range in a single run of the current fitting procedure raises two problems. Since
the overall measurement time is probably longer than the time needed for a single
measurement step at a constant base temperature, the computation time for a single
calculation of χ2 rises, since more measurement time has to be covered. Moreover,
if the thermal properties of the sample are described by a piecewise interpolation
between several nodes, the number of fit parameters increases and, thus, the number
of simulations needed to complete the fit procedure also increases. Therefore, a fit
of the complete measurement is too complex from a computational point of view.
Moreover, it also would not be very efficient since the respective values of κ and cρ
are valid for a certain temperature range only.
Figure 3.35 describes an evaluation process which can be used instead and should
yield better results. In a first step the input data is divided into several intervals pn.
For each interval the average sample temperature Tn is calculated. In a next step
each interval is fitted to the numerical model assuming that κ and cρ of the sample
are temperature independent. As a starting point for the simulations succeeding the
first interval, the last temperature distribution of the simulation of the preceding
interval is used. As a result, values for κn and cρn are obtained, each approximately
valid in their respective interval pn. The values might show a larger error due to the
crude assumption of a constant κ and cρ. Thus, in a third step each interval pn is
fitted again, now using temperature dependent values for κ an cρ, which are piecewise
linearly interpolated between κn−1,κn, κn+1 and cρn−1,cρn, cρn+1 respectively. In
this step only the values for κn and cρn are varied, while the neighbouring values
remain fixed. This third step is executed several times until the resulting parameters
converge self-consistently. The resulting curves can eventually be refined by adding
intermediate grid points into the piecewise interpolation of κ and cρ. However, if
the number of grid points becomes too large, deviations due to uncertainties may be
enlarged, since the number of measured temperatures for each κ or cρ point is too
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Figure 3.35: Flow-chart for the evaluation process for measurements over a large
temperature range with temperature dependent thermal properties of the sample
and heat flux sensor material.
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3 Low temperature ZT-meter

low. After the insertion of additional grid points, the third step has to be executed
again.
Figure 3.36 depicts the results of an evaluation process as it is described above. The
input data has been generated using Comsol, with temperature dependent thermal
properties of the sample and of the heat flux sensors. The thermal parameters of the
sensors where presumed to be known in the evaluation. To improve the sensitivity
towards the cρ parameter, a sinusoidal heater power was applied with heater 1. The
base temperature was increased linearly from 100K to 300K. In figure 3.36a the
temperatures of the six thermocouples are shown as a function of time. Figures
3.36b and 3.36c depict the fit-results for κ and cρ, respectively, at different stages of
the evaluation process. The results after the first fitting step, in which temperature
independent κ and cρ were used show deviations from the original values k0 and
cρ0. In the following steps (step 2 – step 4), both parameters converge towards the
original values.
The approach renders large savings in time possible since most waiting times are
omitted and data are taken during the entire temperature sweep. An idea of the
gain in speed of the measurement using the novel approach can be obtained by
considering typical waiting times in the measurements discussed previously. In the
steady-state measurements of this work 5 hours of waiting time were needed at each
base temperature for the system to equilibrate, prior to actually taking data. In
the transient measurement with sinusoidal heat excitation the waiting time, prior
to taking data, at each base temperature was reduced to 3 hours. With the novel
approach it can be entirely omitted. Furthermore, the continuous measurement
allows for a finer temperature resolution without the necessity of additional waiting
times.
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Figure 3.36: In (a) the simulated temperatures for a measurement without a constant
base temperature are shown. (b) and (c) depict the corresponding results for κ and
cρ of the sample obtained with the evaluation method shown in figure 3.35.
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4 Calibration and first measure-
ments

4.1 Thermocouples

Since the material composition of the wires used in thermocouples is subject to
small variations, the measured thermovoltages can deviate slightly from the stand-
ard calibration curves for thermocouples found, for example, in Ref. 63. Thus, the
thermocouples in the set-up need to be calibrated to enable precise measurements.
Several measurements without a sample, in which the temperature of the base plate
was held at different temperatures for several hours, were conducted. The control
mechanism for the guard-heater minimized the heat flux through the guard and
consequently the heat flux through the heat flux sensors. Without a heat flux applied,
the temperature differences between the thermocouples inside the heat flux sensors
can be assumed to be zero. Of course, radiation effects and parasitic currents may
cause deviations, but these are small, since all parts of the set-up are nearly at the
same temperature. The temperatures for all thermocouples in the heat flux sensors
where calculated for different temperatures of the base plate according to the tables
found in Ref. 63. The average temperature was then used as reference value in the
calibration of the different thermocouples.
To calculate a conversion function U(T ) from the thermovoltage Umeasured to the
temperature Tsensor, which is independent of the prevailing temperature in the labor-
atory, the temperature of the reference-point Treference point has to be considered.
Eq. (2.3) directly leads to:

U(Tsensor) = Umeasured + U(Treference point). (4.1)

The function U(T ) for a thermocouple is determined iteratively, by making a guess
for U(Treference point) and fitting the right side of Eq. (4.1) to a polynomial. This is
repeated by using the obtained polynomial for the value of U(Treference point), until
U(T ) is not changed anymore. The order of the polynomial was four and has been
chosen such that the function is well fit and no oscillations occur. To account for
smaller local deviations in the thermovoltage, the difference between the measured
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Figure 4.1: The figure depicts the noise of the thermocouples used in the set-up at
different temperatures. It is larger for the outermost sensors, since they are, from a
thermal point of view, closest to the temperature oscillations at the cold finger.

voltage and the respective data of the polynomial has been interpolated and added
to the calibration table. Repeated calibrations showed a repetitive error of about
0.15K. This can be mainly attributed to unstable temperature conditions in the
laboratory, leading to temperature fluctuations of the reference point and along the
thermowires outside the cryostat.
Figure 4.1 depicts the standard deviation of the temperature measured by the six
thermocouples during a measurement. T6 being next to the base plate shows the
highest fluctuations. As stated before, boiling effects of the coolant lead to temper-
ature oscillations at the base plate. Those have a larger impact at low temperatures,
since, in this case, the heat capacities of the materials used are usually smaller,
and the oscillations are less filtered by the copper. The temperatures at T1 are
also influenced, as the thermal waves are transported via the copper shield to the
heat flux sensor. Inside the sample the temperature fluctuations are damped fur-
ther and smaller standard deviations are observed. Due to the implementation of
the automatic coolant valve the noise could be reduced. A larger thermal mass at
the base plate could be used to achieve a further reduction at the cost of a slower
controllability of the base temperature.
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Figure 4.2: Thermal properties of the borosilicate glass 3.3 which was used in the two
heat flux sensors, measured using 3ω-method and Xenon flash analysis. The thermal
conductivity values are needed in the evaluation of the comparative measurements
of the ZT -meter.

4.2 Heat flux sensors

For the determination of κ with the comparative method the thermal conductivity
of the heat flux sensors has to be known. This knowledge can either be obtained by
employing the guarded heater mode of the ZT -meter to measure κ of the heat flux
sensors directly, or by using another method to determine κ of the glass material
used for the sensors. To allow for a comparison between the guarded heater mode
and the comparative method, the latter approach has been chosen and κ of the glass
has been determined by the 3ω-method.
The thermal conductivity of the glass was determined using a self-built 3ω-set-up.
For the evaluation the method presented in section 2.3.2 was employed. Further
investigations of the thermal diffusivity of the heat flux sensor material have been
conducted with the Xenon flash analysis method [64]. The results for κ and D are
shown in figure 4.2.
A comparison with values for borosilicate glasses from the literature [65, 66] shows
that κ is likely to be overestimated while the values for thermal diffusivity are
somewhat smaller. However, there are different types of Pyrex glasses and the
sources are unclear about which kind was used exactly for the measurement.
The thermocouples for the heat flux measurement where inserted into holes with
a distance of about 4mm and a diameter of 0.8mm, which were drilled by a CNC
drilling machine. Their positions are assumed to be exact. As the thermocouples

87



4 Calibration and first measurements

(a)

0.0 0.5 1.0 1.5 2.0
0.90

0.95

1.00

κholes / κ0

κ
se

ns
or

,
to

ta
l

/
κ

0
(b)

Figure 4.3: (a) Geometry used for the simulation of the thermal conductivity of the
heat flux sensors with filled holes. The glass material is shown in red, the holes for
the thermocouples are depicted in green. (b) The thermal conductivity of the heat
flux sensors κsensor, total for different thermal conductivities of the fill material κholes.

had a diameter of about 0.5mm at the junction, the position uncertainty of the
junctions is about 0.3mm. After the assembly, the positions of the junctions were
determined using a Vernier calliper with an uncertainty of about 0.1mm.
The holes inside the glass cylinders lead to a change of the total thermal resist-
ance of the heat flux-sensors. Unfortunately the thermal conductivity of the mix
between heat transfer paste and thermocouple cannot be determined accurately. A
3-dimensional FEM simulation has been conducted to estimate the impact of the
holes on the thermal conductivity measured by the three thermocouples inside each
heat flux sensor. Figure 4.3 depicts the geometry used in the model and the corres-
ponding values of κsensor, total for various values of κholes, the thermal conductivity
of the fill material. For κholes being zero, κ of the sensors is at about 90% of its
original value, while for an infinite large κholes, it is at 112%. With the exact value
for κholes being unknown, an exact correction factor cannot be determined. Thus, for
the evaluation of the measurement data it has been assumed that the fill material
has the same κ as its surroundings.

4.3 Seebeck coefficients of the measurement wires

For the measurement of the absolute Seebeck coefficient using the method presented
in section 3.3 the Seebeck coefficients of each of the two materials of a thermo-
couple needs to be known. In the current set-up a type K thermocouple consisting
of chromel and alumel was used. Unfortunately the precise material composition
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Figure 4.4: Measurements on pure platinum using an existing Seebeck measurement
system fit well to values from the literature.

of thermocouples is not standardized and depends on the manufacturer. Only the
resulting thermovoltages of the whole pair can be obtained using tables e.g. from
Ref. 63. To obtain the thermopower of alumel and chromel independently of each
other an existing measurement system for low temperature measurements of the See-
beck coefficient was used [67]. Its accuracy has been confirmed using measurements
on a pure platinum sample. The obtained values are in good agreement with values
of the absolute Seebeck coefficients found in the literature [68] and are plotted in
figure 4.4. They show the reliability of the set-up used.
In a next step the Seebeck coefficient S of the two wire types was determined. For
both measurement series material from the same coil as used in the ZT -meter set-up
was taken, in order to minimize the impact of property changes due to production
fluctuations. The wires were suspended on a glass substrate during the measurement
to obtain stable temperature gradients. The results are shown in figure 4.5 and were
fitted to a polynomial of second order.
As a test the thermovoltage of a thermocouple made of alumel and chromel was
calculated by the thermovoltages from 0 ◦C to the respective temperature and
subtracting both integrals. Figure 4.6 shows that these values agree very well with
the voltages of a standard type K couple.
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Figure 4.5: Measurements of the absolute Seebeck coefficients for the materials of a
type K thermocouple chromel and alumel. The two respective measurements using
different applied temperature gradients and samples agree very well and are fitted
to a polynomial of second order.
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Figure 4.6: The thermovoltages calculated from the measurements of the Seebeck
coefficient of each material are in good agreement with the expected values of a type
K thermocouple.
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Figure 4.7: The measurement of the electric resistance between the two thermo-
couples in direct contact and the measurement with a sample in between both of
them show that for well conducting samples the interface resistance is larger than the
resistance of the sample. Furthermore, the interface resistance cannot be subtracted
from the measurement results, as it changes when the samples are exchanged.

4.4 Measurements of the electric conductivity

First tests of the electric conductivity mode of the ZT -meter showed that the
interface resistance, which cannot be neglected in the current quasi 4-contact meas-
urement method, is larger than expected and temperature dependent. Furthermore,
it cannot be reproduced in different measurements, since the exact impact of the
Galinstan solder is different each time the Galinstan is reapplied. Thus, a simple
correction by using the interface resistance as an offset is not a valid option. Figure
4.7 shows two measurements, one with no sample in between the two contacts and
the other one with a well conducting BiSb sample. The resistance values without the
sample are mostly larger than those with the sample, illustrating the issue that the
interface resistance cannot be reproduced, since it should be the other way around.
As a result, only samples with low electric conductivities can be measured, since here
the interface resistance plays a minor role. For well conducting samples the electric
conductance measurement of the ZT -meter has to be fundamentally redesigned to
achieve a true 4-contact measurement.
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4.5 First κ measurements on glass samples

The first thermal conduction measurements were performed on glass samples, cut
from the same glass as that used for the sensors. This allows one to estimate the
thermal interface resistances, since κ of the heat flux sensors can be directly compared
with the measured κ of the sample and the interfaces. Additionally, measurements
without a sample have been carried out.
Figure 4.8 shows the results for the comparative approach (a) and the guarded
heater method (b). For the comparative method the κ-values were determined with
both heat flux sensors and are plotted separately. Those two values, κsample,1 and
κsample,2 are mostly in good agreement. This shows that the heat flux sensors detect
the same flux before and after the sample. Heat radiation from the sample as well as
parasitic currents from the two thermocouples T3 and T4 would lead to a difference
in the flux and thus are supposed to be small. The plot for the comparative mode
also depicts the assumed value for the thermal conductivities κsensor,1 and κsensor,2
of the respective heat flux sensors. κsample,1 and κsample,2 show large deviations from
κsensor,1 and κsensor,2 at low temperatures. This is mainly attributed to a thermal
interface resistance, but can also be a result of an uncertainty in the temperature
measurements. It was observed that the Galinstan, used for a better thermal contact
at the interfaces, is squeezed out of the gaps, possibly due to thermal expansion
effects. At larger temperatures the Galinstan melts and the interface resistance is
supposed to be smaller as possible gaps get closed. Here κsample,1 and κsample,2 even
become larger than κsensor,1 and κsensor,2. This can be explained with the previously
mentioned change of the thermal resistance of the heat flux sensors due to the drilled
holes inside the heat flux sensors, which is probably towards larger resistances than
that of a pure glass cylinder. The κ-values for the sample with 9.5mm length are
higher than those of the 7.3mm sample. As the thermal interface resistance is
included into the conductivity value of the sample, shorter samples will show lower
conductivities if the interface resistance is equal for both samples. Nevertheless, an
estimation of the interface resistance was not possible as either the assumption of a
constant value does not hold or the measurement errors are too large.
In figure 4.8b the results for the guarded heater mode are depicted. Similarly to the
results of the comparative measurements, again the 9.3mm sample shows a larger
thermal conductivity. In the guarded heater mode, the magnitude of the values is
larger compared with those obtained with the comparative mode, especially at higher
temperatures. One possible explanation is that the radiation losses at the heater
become larger, despite the use of the guard heater. Also, the assumed κ-values for
the glass of the heat flux sensors, which were derived with the 3ω-method might be
too low.
Not only the thermal conductivity of the sample is determined during a guarded
heater measurement but also that of the two heat flux sensors. Figure 4.9 shows
the results for the measurements with the two glass samples and the measurement
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Figure 4.8: Thermal conductivities of two glass samples with 7.3mm and 9.5mm
length in the comparative mode (a) and the guarded heater mode (b). For the
comparative mode two values (κsample,1 and κsample,2) are shown for each sample,
each calculated from the heat flux determined with one of the two heat flux sensors.
The plot also depicts the assumed thermal conductivities for the heat flux sensor
κsensor,1 and κsensor,2. The results obtained by the guarded heater method are higher,
especially at higher temperatures, possibly due to radiation errors, or due to the
application of too low thermal conductivities for the heat flux sensors in the evalu-
ation.
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Figure 4.9: Thermal conductivity of the two heat flux sensors obtained with guarded
heater measurements of glass samples with 7.3mm and 9.5mm lengths. Additionally,
a measurement without a sample is shown. The orange squares show the thermal
conductivities used in the evaluation of the comparative mode, being smaller over
the whole temperature range.

without any sample. Additionally, the calibration curve of the glass material is shown.
The six curves corresponding to the three measurements are in good agreement with
each other. The calibration curve differs from the measurement results at higher
temperatures, which has also been observed in the results shown previously.
In another guarded heater measurement a test without a sample has been conducted.
At a constant base temperature of 280K the heater power has been varied from zero
to 70mW. Figure 4.10a shows that the measured thermal conductivity of the heat
flux sensors remains constant for heater powers larger than zero. The temperature
difference at the interface between the two temperature sensors T3 and T4, which
if neither a sample nor a thermal interface resistance is present should equal zero
is shown in figure 4.10b. At low heater powers the difference is positive, meaning
that the heated side is warmer than the cooled side. At higher temperatures the
difference becomes negative. However, these deviations from zero are well within
the error limits for temperature difference measurements of ±0.3K, derived from
the previously stated error limits of ±0.15K for single temperature measurements.
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Figure 4.10: The thermal conductivity of the heat flux sensors at 280K for various
heater powers is nearly constant (a). The temperature difference between T3 and
T4 is shown in (b) and is zero within the error limits for the measurement of a
temperature difference of ±0.3K which is twice the margin of error of a single
temperature measurement.

4.5.1 Transient measurements

Figure 4.11 shows the temperatures of the thermocouples during transient measure-
ments of the 7.3mm glass sample. The respective simulated results are shown in red.
For the simulation, it was assumed that the heat flux sensors have the same material
properties as the sample and that thermal interfaces between the glass cylinders
exist. As a sinusoidal heat excitation was used, the temperatures of the outermost
thermocouples, which are used as input parameters for the simulation, were fitted
to a sine function. The simulated temperatures exhibit offsets from the measured
ones, but the fit routine still manages to obtain the correct phasing and oscillation
amplitudes. The direct comparison between the measurement at 100K and the
measurement at 300K shows that the temperature difference along the sample is
smaller in relation to the total temperature difference. This implies that the inter-
face resistances are getting smaller. Furthermore, the damping of the thermal wave,
related to the thermal diffusivity is visible.
The values for cρ and the thermal diffusivity D were extracted from the simulation
and plotted in figure 4.12. The results for D are slightly lower than those obtained
from the 3ω-method, probably due to the existence of thermal interface resistances.
However, the decreasing behaviour of D towards higher temperatures coincides with
that of the 3ω-results.
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Figure 4.11: Measured (blue) and simulated (red) temperatures of the thermocouples
during a transient measurement of a glass sample with a periodic excitation at 100K
(a) and 300K (b).
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Figure 4.12: cρ (a) and the corresponding thermal diffusivity (b) obtained during a
transient measurement of a glass sample.
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4.6 Measurements on a BiSb sample

As a further test, the thermal properties of a BiSb sample with an antimony content
of 20% have been investigated. Results of all measurement modes for the thermal
conductivity are shown in figure 4.13a. At larger temperatures, again the κ values
obtained with the guarded heater method are larger than those obtained with the
other methods. The difference between the results obtained with the two heat flux
sensors in the comparative mode is larger compared to previous measurements.
The measured volumetric heat capacity cρ of the BiSb sample is depicted in figure
4.13b. It is nearly constant over a wide temperature range and shows an outlier
at 280K. The values increase slightly towards higher temperatures. Figure 4.13c
depicts the thermal diffusivity, obtained with the transient mode and laser flash
analysis measurements on a similar sample at higher temperatures. The results at
room temperature, where the temperature ranges of both measurements overlap,
match well with each other.
During the transient measurement of the BiSB sample also measurements of the
Seebeck coefficient were conducted. As described previously, this was done during
the increases of the base temperature. The results were evaluated using the voltages
from the two wire branches separately. Also, the alternative approach, using the
wires of both material types simultaneously has been realized. The values, plotted
in figure 4.13d, show only small deviations from each other for the three evaluation
types. Another BiSb sample with the same material composition but prepared in a
different production run has been investigated using a different measurement set-up
for the Seebeck coefficient. Its results are in good agreement with those obtained
with the ZT -meter, the deviations are inside the production tolerance of the sample.

4.7 Measurements on a POM sample

Measurements on a polyoxymethylene (POM) sample have been conducted to test
the set-up with a sample having a low thermal conductivity. In the case of such a
sample, the temperature gradient along the sample is larger compared with those
along the heat flux sensors and the determination of the heat flux has a larger
uncertainty. Additionally, parasitic heat currents are more likely due to the larger
thermal resistance of the sample. Thus, the guarded heater mode, which is especially
sensitive to such parasitic currents, can show large deviations, especially at higher
temperatures. Furthermore, since only small heater powers are used to define the
required temperature gradient, the impact of small offsets in the power determination
is higher. The measurement results of the POM sample are depicted in 4.14.
The values for κ from the two sensors in the comparative mode and the fit-results
for κ from the transient approach are in good agreement with each other. However,
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Figure 4.13: (a) Thermal conductivity measured on a BiSb sample with the guarded
heater mode, the comparative mode and the transient mode. (b) Volumetric heat
capacity of the BiSb sample, obtained by measurements in the transient mode of the
ZT -meter. (c) Thermal diffusivity obtained with the transient measurement mode
and by laser flash analysis measurements on a similar sample. (d) The Seebeck
coefficient of the BiSb sample evaluated using the alumel wires, the chromel wires
and both wires at the same time, employing the methods presented in section 3.3.
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Figure 4.14: The measurements of the thermal properties of the POM sample show
that the results for κ of guarded heater measurement mode deviates strongly from
the results of the other modes, probably due to radiative heat losses. On the right side
the thermal heat capacity is shown which increases linearly with the temperature.

the values from the guarded heater mode deviate strongly for higher temperatures,
probably due to parasitic currents. The literature value at room temperature is
slightly beneath the values obtained with the comparative method, which is due to
the overestimation of the thermal conductivity of the heat flux sensors. However,
the values for cρ, obtained with the transient approach, are in good agreement with
the literature values for all temperatures. This is unexpected, since the cρ value
indirectly also depends on the calibration of the heat flux sensors.
In addition, an example for the temperature distribution in the set-up during the
steady-state measurement of the POM sample at 300K is shown in figure 4.15. The
three thermocouples in each of the two heat flux sensors show a temperature being
proportional to its position. Both heat flux sensors measure nearly the same heat
flux, since their ∂T/∂x values match.

4.8 Sources of measurement error

In the following the sources of measurement error of the ZT -meter are discussed
and possible countermeasures are suggested and explained. The most obvious source
error is to be found in the voltage measurements with the data-logger system, which
can have voltage offsets or scaling errors, originating from the instrument itself or
from unwanted thermovoltages. Offsets originating from the instrument itself are
handled by carrying out a reference measurement at the beginning and the end of
each measurement on a separate input channel which has been short-circuited. The
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Figure 4.15: Measured temperatures as function of position during a steady state
measurement of a POM sample at 300K.

resulting offset voltage is then subtracted from each voltage measurement. Additional
thermovoltages might have their origin in the coils of the relays, used for the input
signal switching, causing non-symmetrical heating. In the self-designed circuits this
problem was avoided by paying attention to a strictly symmetrical design and a
symmetrical driving of the relays. Another possible source of thermovoltages are
material variations in the measurement wires, leading to different Seebeck coefficients
inside a wire pair, and, thus, decrease the accuracy of the temperature measurements.
The bouncing of the relays can lead to uncertainties in the voltage measurement,
so an appropriate waiting time between the measurements of two signal channels
has to be established. Also, if an auto-ranging function of the instrument is used,
the waiting time has to be long enough to ensure that the auto-ranging is complete.
This, however, can be abbreviated by presorting the channels by their expected
signal sizes and thus avoid measuring a small Seebeck voltage directly after the
considerably higher driving voltage of a heater.
Imprecise voltage or resistance measurements of the instrument influence the meas-
urement in several ways. First of all, the sample and the heat flux sensor temperatures
are evaluated by voltage measurements and by the determination of the resistance of
a Pt100 resistor inside the reference block. A constant and equal voltage offset on all
channels creates a temperature offset nearly equal for all sensors and should hardly
influence the results of the thermal conductivity measurements in the comparat-
ive or transient mode. Also, the Seebeck coefficient measurements are designed to
handle such an offset by performing several measurements at different temperature
gradients along the sample. The voltage offset can then be eliminated by using

100



4.8 Sources of measurement error

Eq. (3.8) or Eq. (3.9). However, if varying offsets occur, this would not be accounted
for. A constant offset in the voltage measurement also greatly reduces the accuracy
of the guarded heater method for determining κ, as the power of the heater cannot
be determined correctly. Also, the shunt resistor for the heater current measurement
has to be known very precisely and should not exhibit a temperature dependence
for the same reasons.
Another issue leading to errors in the determination of the temperatures and Seebeck
coefficients are inhomogeneities or contaminations of the thermowires. The two
innermost thermocouples are connected to the sample by using Galinstan for a better
thermal and electric contact. Unfortunately Galinstan is known to be aggressive
towards some metals and could corrode the wires materials, though, this effect was
not observed during the investigations. Replacing the thermocouples by a resistive
measurement method might be an option. However, the thermal masses of the
resistors would probably be larger than the thermal masses of the thermocouples,
leading to unwanted phase shifts.
In the case of the steady-state measurement method for the thermal conductivities
other sources of systematic errors are also of relevance. Here especially unwanted heat
flows, like heat conduction along the heater wires or the thermocouples should be
kept small, which can be achieved by using longer, thinner wirings and also keeping
them in good thermal contact with the guard. Another problem is heat radiation,
especially at higher temperatures. It leads to heat fluxes from the heaters to the shield
or to the sample, or from the sample to the shield. For the steady-state mode this
cannot be accounted for in the evaluation. In particular the radiation from the heater,
being the hottest point in the measurement system, poses a problem. An estimation
of this error turns out to be rather complex as the amount of radiation depends on
many unknown parameters. Thus, only the error due to heat radiation of the sample
and the sensors to the ambient, which also play a role in the other measurement
modes, will be treated in the following elaboration. In order to estimate the error
due to heat radiation it is best to compare the heat conductance of the sample and
the sensors G to the radiative conductance Gradiative. The heat conductance G is
defined as:

G = P

∆T = πr2κ

l
, (4.2)

where P denotes the power to the heated side of the sample, r is the sample radius
and l the sample length. For two nested cylinders the radiative conductance under
the assumption of a constant ambient temperature and by neglecting the view-factors
(which are 1 for specular surface radiation) is given by:

Gradiative = Σε2πr
∫ l

0
T (z)4 − T 4

ambientdz, (4.3)

where Σ is the Stefan-Bolzmann constant and ε the material’s emissivity. By assum-
ing a linear T (z) dependence and that ∆T << T one obtains:
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Gradiative
G

≈ 4εΣl2T 3
ambient
rκ

. (4.4)

This result shows that the length of the sample and the sensors must not become
too large, otherwise the heat transport by radiation becomes dominant. However,
the formula shows the worst case scenario, as it neglects the gradient of the inner
heat shield. If the temperature gradient from the sample and the sensors is mirrored
by the shield perfectly, no net radiation flux can occur except from the lower and
upper end of the measurement system.
The contact between the heat flux sensors and the sample is important, not only
for the measurements of κ, but also for the determination of the electric conduct-
ivity σ. Galinstan with its good wetting properties and good thermal and electric
properties is used to reduce the thermal and electric contact resistances at the in-
terfaces. Unfortunately, in addition to possible corrosion effects of the sample and
the thermocouples, Galinstan undergoes a solid-liquid phase transition during the
temperature cycles, thereby the interface properties are altered. Also, due to the
thermal expansion of the measurement bar, the Galinstan may flow out of the gap
and thus has to be renewed after one temperature cycle. As the measurement of
the electric conductance is carried out with the wires of the two thermocouples, a
4-contact measurement mode, where the contact resistances are cancelled out, is
not possible. Since voltage and current contacts either side of the sample are in
the same place, the contacts between the junction and the sample influence the
results. For samples with a high electric conductivity the interface resistance may
be larger than the sample resistance which makes a measurement unreasonable and
other methods need to be employed. The situation is somewhat similar in case of the
thermal conductivity measurements of good heat conductors. However, as most good
thermoelectric materials are poor conductors of heat, this problem is considered to
be small. The imperfect contacts between the sample and the thermocouples also
influence the error for the Seebeck coefficients, as the temperature gradients cannot
be measured exactly. In addition, Galinstan may add a small thermovoltage since
it is also subject to a small temperature difference. As the difference should be very
small compared with the difference of the sample, this effect should be negligible.
Interfaces also play a role in the temperature measurements inside the heat flux
sensors. First of all, the drilles holes inside the glass cylinders change the thermal
mass and resistance of the sensors, and thus should be kept very small. The impact
of this effect has been calculated above and is in the range of ±12 % deviation for
the thermal conductivity of the heat flux sensor, depending on the filling material.
Furthermore, the contact between glass and thermocouple introduces errors. As
the junctions of the thermocouples are surrounded by the glass, they should be
approximately at the same temperature as the glass, thus, this temperature offset
is negligible. However, the contact resistance and the thermal mass of the filling
material introduce a temporal lag, which influences the phase information in transient
measurements. The problem itself cannot be avoided completely, but by making the
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Figure 4.16: Results for κ and cρ from a fit to a three-dimensional FEM simulation
which takes the thermal conductivity of filling material of the drilled holes inside
the glass cylinders into account. The increase in both values can be explained with
the lower values of κholes. The effect of the temporal lag of the temperatures has
only a small impact in this configuration due to the high symmetry of the delay.

bondings of the thermocouples as identical as possible, the phase shift should be
equal for all temperature sensors and will cancel out in the transient evaluation.
A three-dimensional FEM simulation was employed to further evaluate the problem
of the temporal lag in transient measurements. The geometry used for the heat
flux sensors was similar to the one shown in figure 4.3. Figure 4.16 depicts the
corresponding fit-results after fitting the FEM data to the one-dimensional model.
For a low conducting filling material, κ gets overestimated. Furthermore, as the heat
flux sensors measure a heat flux which is higher than the correct value, the value
for cρ is too high. If the filling material has a higher thermal conductivity, the κ of
the sample, as well as cρ is underestimated.
As the relative deviations for both quantities are almost the same, the predicted
effect of the temporal lag is rather small. The values of (cρ/cρ0)/(κ/κ0) are in the
range of 1±4 % for the investigated case. The small impact is probably a result of the
nearly symmetric arrangement of the holes in the glass cylinders. Furthermore, the
values indicate that if the sensor material and the filling material have a mismatch
of their κ values by a factor smaller than two, the measurement values deviate by
less than 10% for a symmetric arrangement. Of course this number changes for
different material parameters than those chosen for the simulation but are a good
starting point for an error estimation.
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source of error ∆ of input parameter ∆κcomparative ∆κguarded heater
Wm−1 K−1 Wm−1 K−1

T-measurement 0.15K 0.30 0.31
position of TCs 0.1mm 0.06 0.03
κsensor 0.2Wm−1 K−1 0.23 0
heater power ( ±5 % ) 5.4mW 0 0.15
measurement results 1.46 2.14

Figure 4.17: Maximum error margins during a steady-state measurement of a glass
sample of 9.5mm length at 300K with a difference of 10K between the minimum
and the maximum temperature along the measurement bar.

4.8.1 Estimation of the error limits for selected error sources

In the comparative mode, the value for κsample is determined by performing a least-
squares fit on the data from one of the heat flux sensors versus the positions and
inserting the resulting heat flux as well as the temperature difference κsensor along
the sample into Fourier’s law. With the temperatures of the thermocouples inside
the sensor being T1, T2 and T3 and x1, x2 and x3 being the respective positions,
κsample is given by:

κsample = −κsensorlsample
2∆Tsample

· T1 (x2 + x3 − 2x1)T2 (x1 + x3 − 2x2)T3 (x1 + x2 − 2x3)
x2

1 + x2
2 + x2

3 − x1x2 − x2x3 − x1x3
.

(4.5)
In the guarded heater mode, κsample is determined directly by Fourier’s law:

κsample = P · lsample
A ·∆Tsample

, (4.6)

where A is the cross-section of the sample and P is the heater power.
Eqs. (4.5) and (4.6) can be used to estimate the error limits for the values by means of
error propagation. A list of the influence of the estimated errors in the measurement
of position, temperature or power on the final results is shown exemplarily for the
measurement of the 9.5mm glass sample in table 4.17. The temperature difference
applied to the heat flux sensors was approximately 10K and the measurement was
done at 300K. The table suggests that the two largest portions of the error budget
are the temperature measurement and the calibration of the heat flux sensor.
Of course other sources of error, like parasitic heat currents due to improper guarding
and thermal interface resistance also increase the error, but a proper estimation of
those effects is hardly possible.
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Figure 4.18: The temperature measurement inside the heat flux sensors can be
improved by implementing differential measurements using thermocouples. Blue
and red wires depict two different materials for a thermocouple and the green wires
are made of a material with a low Seebeck coefficient, preferably metallic.

4.8.2 Strategies to enhance the measurement accuracy of the ZT-
meter

In the previous section the different sources of error were identified and for some of
them the impact on the measurement result was quantified. The most important error
source is the temperature measurement inside the heat flux sensors. Unfortunately
it is very difficult to obtain more precise temperatures with thermocouples in the
current configuration of the set-up. A change of the material from type K to type E
which has a ≈ 58 % higher thermovoltage output may reduce the errors. However,
this is still not sufficient to obtain reliable measurements of κ. A large uncertainty
is introduced into the temperature measurement by the use of long wires to the
reference point, where material inhomogeneities can occur. The solution to this
problem could be to implement a differential temperature measurement, like it is
done for the determination of the temperature difference between heater and guard.
Figure 4.18 depicts possible implementations of such a method.
The direct conversion of the principle which was already used for the guard is shown
on the left and will be rather complicated to apply due to the possible crossings
of the wires. On the right-hand side, a more advanced method is shown, which
reduces the number of required wires to four and still enables one to perform an
absolute temperature measurement at one boundary. With this method the glass
could even be replaced by a thermoelectric material. The functionality of the wires
in the direction parallel to the cylinder axis is then established by the heat flux
sensor material itself. Thus, also materials with larger thermal conductivities could
be employed as heat flux sensors, which would increase the measurement range of the
ZT -meter. It is also possible to embed the wirings directly at the time of synthesis
of the sensor material which would improve the thermal contact to the wirings. Both
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methods still require a temperature reference for the measurement of the absolute
temperature at T3 and T4 in the second heat flux sensor. To avoid the summation of
the error due to material inhomogeneities along a long thermowire and over a large
temperature difference it is advisable to move the reference into the vacuum chamber
itself. The measurement of the temperature gradient along the sample, which poses
another important contribution to the error, could greatly benefit from this redesign.
In addition, the electric contact to the sample will probably be improved, too,
when the heat flux sensor material is electrically conducting. The quasi-4-contact
configuration, used for the electric measurements, as well as the measurements of
the Seebeck coefficients is still possible without changes to the wiring.
The measurement of the electric conductivity is strongly influenced by the quality of
the electric interface between the thermocouples and the sample. Unfortunately, if
the interface resistance is larger than the sample resistance, the measurement mode
is not applicable to electrically well conducting samples. In addition, the interface
resistance changes with temperature probably due to mechanical stress and the
phase change of the Galinstan solder. To improve the reliability of the electric
conductance measurements the solder might be replaced. Also, multiple contacts at
each side can be used to establish a real 4-contact measurement. However, geometry
corrections for the cylindrical shapes would be needed and a possible anisotropy of
the sample conductivities would render the evaluation process difficult in that case.
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In this work an apparatus for the determination of the thermoelectric properties
κ, S and σ of bulk samples has been designed and built. Hereby the focus was on
the determination of the thermal conductivity. In order to achieve this the set-up
uses two well known approaches, the guarded heater method and the comparative
mode. Based on the latter, a new transient mode has been developed, which re-
duces measurement time, and allows one to determine the thermal diffusivity of the
sample in addition to its thermal conductivity. It relies on a variable heater power
during the measurement and on a one-dimensional numerical model of the heat flux
sensors and the sample to extract the measurement parameters. The transient mode
can be implemented in most existing set-ups relying on heat flux sensors for the
determination of the heat flux through the sample. In contrast to other transient
methods like the Ångström method, this approach yields κ directly without the
need for an additional measurement of the heat capacity of the sample. Also, the
requirements to the sample geometry are not as strict as in the Ångström method,
since the numerical model can be applied for various types of boundary conditions.
The new transient approach has been investigated using a FEM-model to gener-
ate temperature data and fitting this to a numerical model which also has been
implemented. Knowledge of the information content of single data-points could
be obtained by employing Monte-Carlo simulations. Different parameters for the
measurement, such as sampling rate, excitation waveform and frequency, have been
tested with respect to their impact on the informative value of the measurements. It
was shown that a sinusoidal heating is preferable, as here the most information from
each data-point can be retrieved. Also, the impact of the measurement geometry and
interfaces between sample and heat flux sensors has been investigated. The effect of
heat radiation on the measurement results was discussed and it was demonstrated
that it can be partially eliminated in the evaluation process.
A new transient measurement mode was presented, where a steady state needs
to be approached only at the beginning of the measurement. After that the base
temperature is changed step-wise or continuously and the data is taken in the
entire temperature range of interest. Eventually the fit-algorithm tunes interpolation
functions instead of constant values as thermal properties to achieve the best fit to
the data. The advantage over the commonly used steady-state methods is a greatly
reduced measurement time, as the waiting times for the steady state are omitted.
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The set-up, which has been built, may be employed not only for measuring κ and
D, but also for determining the electric transport properties, i.e. Seebeck coefficient
and electric conductivity, of the sample. A relay switching system allows one to use
the thermocouples next to the sample as electric leads for resistance and voltage
measurements. An additional current source enables one to measure C-V-curves.
For the actual measurements, the sensors inside set-up had to be calibrated. The
U(T )-functions for the thermocouples were determined and 3ω-measurements were
conducted on the material of the heat flux sensors to obtain their thermal conduct-
ivity and thermal diffusivity. Additional measurements of the Seebeck coefficient of
the thermocouple materials were performed with another set-up.
First tests of the ZT -meter were carried out on a set of samples and showed that the
new transient approach is working properly. Moreover, the other modes of the ZT -
meter provide good results, except for the determination of the electric conductivity,
which has to be redesigned to enable a true 4-contact measurement. However, for the
implementation of the two measurement methods for κ, the guarded heater mode
and the comparative mode, into the device, compromises had to be found. The heat
flux sensor between guarded heater and the sample increases the thermal resistance
of this heat path. Thus, the accuracy of the guarded heater mode is reduced, since
the portion of parasitic heat currents is larger. On the other hand, the large thermal
resistance between the guarded heater and the shield, results in a bad coupling to
the coolant. This is intended in case of the guarded heater mode, but reduces the
controllability of the temperature in the comparative mode. Other issues which
are decreasing the accuracy of the results are the inaccuracy of the thermocouples
and the thermal and electric interface resistances between heat flux sensors and the
sample. A solution to the first issue could be another temperature measurement
method, such as a resistive approach or a method with differential thermocouples.
The problem of interface resistances may probably be overcome by replacing the
used Galinstan solder by another solder, more suitable for low temperatures.
In the final section the different error sources leading to measurement inaccuracies
in the set-up were discussed and quantified. Strategies for the improvement of the
set-up concerning the precision and measurement speed were also presented. Apart
from improvements of the set-up itself, also the control and the evaluation processes
can lead to more accurate and faster results. The Crank-Nicholson scheme can
be implemented into the numerical model, allowing larger time steps and thus a
faster computation of the simulation. By performing the numerical simulation in the
frequency domain, instead of the time domain, the evaluation of measurements with
sinusoidal excitation could be sped up enormously, as the elaborate computation of
the settlement phase is not needed.
A faster numerical simulation could be used in a model predictive controlling (MPC)
approach to enable a better temperature control inside the set-up during the meas-
urements. Also, a direct error estimation using Monte-Carlo simulations during the
measurement can be used to limit the measurement time needed for achieving a
given precision goal to the minimum.
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Appendix

A Solution of the heat equation for oscillating bound-
ary conditions

In the following the one-dimensional heat-conduction equation for isotropic materials
will be solved for a periodic temperature excitation on one of the boundaries. At
the other boundary three different types of boundary conditions will be applied: a
constant temperature, perfect thermal insulation, and the assumption of the medium
being semi-infinite. The heat equation, which is a parabolic partial differential
equation can be written as:

∂T

∂t
= D

∂2T

∂x2 . (A.1)

An often used method to solve this type of equation is the separation of variables,
also known as Fourier method. By assuming that the solution T (x, t) can be written
as:

T (x, t) = F (t) ·G(x), (A.2)

the partial differential equation can be transformed into:

1
F (t)

∂F (t)
∂t

= ξ = D

G(x)
∂G(x)2

∂x2 , (A.3)

with ξ being a constant value. Both sides can now be solved separately. The solutions
for F (t) and G(x) are:

F (t) = αeξt (A.4)

and

G(x) = β1e
x
√
ξ/D + β2e

−x
√
ξ/D. (A.5)
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Reinserting the solutions back into Eq. (A.2) leads to:

T (x, t) = αeξtβ1e
x
√
ξ/D + αeξtβ2e

−x
√
ξ/D. (A.6)

The coefficients α, β1, β2 and ξ can now be determined using the boundary conditions.
First the periodic temperature excitation at x = 0 is written as a Fourier series:

T (0, t) =
N∑

n=−N
Ane

inωt. (A.7)

In a first step only one single summand of the series is compared with the solution
in Eq. (A.6) at T (0, t):

Ane
inωt = α(β1 + β2)eξt. (A.8)

This leads to

ξ = inω (A.9)

and

An = α(β1 + β2). (A.10)

As the heat-equation is linear the principle of superposition holds and T (x, t) can
be written for all n as:

T (x, t) =
N∑

n=−N

An
β1 + β2

einωt
[
β1e

x
√
inω/D + β2e

−x
√
inω/D

]
. (A.11)

Furthermore, the substitution γ = β1
β1+β2

leads to:

T (x, t) =
N∑

n=−N
Ane

inωt
[
γex
√
inω/D + (1− γ)e−x

√
inω/D

]
. (A.12)

The boundary condition for the semi-infinite medium is given by:

lim
x→∞T (x, t) = 0, (A.13)

which leads directly to

γ = 0. (A.14)
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A Solution of the heat equation for oscillating boundary conditions

When the excitation temperature at x = 0 is chosen to be T (0, t) = cos(ωt), the
corresponding Fourier coefficients are given by:

A−1 = A1 = 1
2 . (A.15)

By inserting this into Eq. (A.12) one obtains finally:

T (x, t) = e−x
√

ω
2D cos

(
ωt− x

√
ω

2D

)
. (A.16)

In the case of a medium with a finite length l and the Dirichlet boundary condition
of T (l, t) = 0, one obtains for γ:

γ =
(

1− e2l
√
inω/D

)−1
. (A.17)

With the temperature excitation of T (0, t) = cos(ωt) this leads to the following
expression for the temperature distribution:

T (x, t) = 1
4e

itω

coth

l
√
iω

D

− 1

(e√ iω
D

(2l−x) − ex
√

iω
D

)

+1
4e
−itω

coth

l
√
− iω
D

− 1

(e√− iω
D

(2l−x) − ex
√
− iω

D

)
. (A.18)

For medium of finite length l and perfect isolation at the boundary x = l the
temperature gradient at the boundary has to be zero:

∂T

∂x

∣∣∣
x=l

= 0. (A.19)

This leads to the following condition for γ:

γ =
(

1 + e2l
√
inω/D

)−1
. (A.20)

By inserting this into Eq. (A.11) and using the excitation of T (0, t) = cos(ωt) again,
one obtains:

T (x, t) = −1
2e

itωsech

l
√
iω

D

 sinh

√ iω

D
(l − z)


−1

2e
−itωsech

l
√
− iω
D

 sinh

√− iω
D

(l − z)

 . (A.21)
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Appendix

B Parameters used in the numerical simulations

parameter value
κsensor 2Wm−1 K−1

κsample 1Wm−1 K−1

cρsensor 2MJK−1 m−3

cρsample 2MJK−1 m−3

sensor length 10mm
sample length 10mm
sensor radius 6mm
sample radius 6mm
timeframe 10, 000 s

Table B.1: Simulation parameters used in the Comsol simulations unless stated
otherwise in the corresponding section.
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