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1 Introduction  

Soil salinity is characterized by a high concentration of soluble salts that account for an 

electrical conductivity (EC) of 4 dS m
-1

 (≈ 40 mM NaCl) or more (USDA-ARS 2008). 

Above this EC, yield of most crops declines significantly (Munns and Tester 2008). As 

compared to a drought environment, in which plant growth is impaired due to an 

inadequate water supply, the saline environment may offer abundant but hardly extractable 

water for the plants. Reduction of plant growth in a saline environment is a complex 

phenomenon. The possible physiological, biochemical and molecular mechanisms behind 

the growth reduction of crops has not yet been adequately understood, and for this reason 

development of salt-resistant crops has been slow (Läuchli and Grattan 2007). Because of 

the complex nature of growth inhibition under salinity, it is important to know whether 

plants in a saline environment suffer from water stress or ion stress or from both. The well-

known dogma in this context is known as “biphasic model” of growth responses to salinity 

(Munns 1993). This well accepted theory was a major breakthrough for plant scientists 

who work with the salt-resistance mechanisms of plant. 

1.1  The biphasic model of growth responses to salinity 

 

Figure 1-1: The two-phase model of plant growth under salt stress (modified after Munns 1993). 

Three black dashed-lines show the growth inhibition of sensitive, moderately resistant and resistant 

varieties of a specific genotype. On the other hand, the solid blue line shows the improvement of 

growth in the first phase of salt stress. 
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Some time ago, Munns (1993) proposed a widely accepted biphasic model for the growth 

inhibition of plants under salt stress (Fig. 1-1). According to this biphasic model, growth 

inhibition occurs in two phases. The first phase of salt stress, also known as osmotic phase, 

is characterized by the rapid response in growth reduction due to a decrease in soil water 

potential by decreasing the external osmotic potential. The reduction of shoot growth in 

this phase is due to a water-stress effect regulated by inhibitory signals from the roots (e.g. 

abscisic acid). Therefore, the growth reduction in the first phase is an effect of salt outside 

the plant rather than within it. The growth inhibition in the second phase of salt stress is 

due to the rapid increase in salt concentrations in apoplast or cytoplasm when vacuoles 

cannot sequester incoming salt ions. Thus the second phase is also known as the ionic 

phase. In the original model, Munns (1993) proposed that salt-sensitive and salt-resistant 

genotypes show identical growth inhibition in the first phase of salt stress, while their 

growth responses are different in the second phase. However, osmotically resistant 

genotypes (Fig. 1-1) were reported later that may partially compensate growth reduction in 

the first phase of salt stress (Neumann 1997; Schubert et al. 2009). The two-phase model 

once proposed for wheat and has been partially validated for maize (Zea mays L.) 

genotypes (Fortmeier and Schubert 1995). In maize, ion toxicity may also contribute to 

inhibit growth in the first phase of salt stress though the contribution is negligible (Sümer 

et al. 2004). 

1.2 Schematic history of the development of salt-resistant maize hybrids 

 

A moderately salt-resistant maize hybrid (F1) Pioneer 3906 was developed by crossing of 

two inbred lines, Pioneer 165 (efficient Na
+
 exclusion at the root surface) and Pioneer 605 

(efficient Na
+
 exclusion from the shoot) (Fig. 1-2). Recurrent selections followed by 

selfings over seven generations led to establish a homogeneous Na
+
-excluding inbred line 

(NaExIl) that excludes Na
+
 at the root surface and also restricts translocation of Na

+
 to the 

shoot (Schubert et al. 2009). 
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Figure 1-2: Schematic presentation of the development of maize SR hybrids (Schubert et al. 2009). 

A moderately salt-resistant maize-hybrid (F1) Pioneer 3906 was developed by crossing of two 

inbred lines, (i) Pioneer 165 (efficient Na
+
 exclusion at the root surface) and (ii) Pioneer 605 

(efficient Na
+
 exclusion from the shoot). Recurrent selections followed by selfings were performed 

over seven generations to develop a homogeneous Na
+
-excluding inbred line (NaExIl). Afterwards, 

several SR hybrids were developed by crossing NaExIl with osmotically resistant inbred lines 

(SWS). 

Recurrent 

selections and 

selfings 
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Several salt-resistant (SR) maize hybrids with improved salt resistance (e.g. SR 12, SR 03) 

were developed by crossing a number of osmotically resistant maize inbred lines (SWS) 

with a Na
+
-excluding maize inbred line (NaExIl) in the Institute of Plant Nutrition, Justus 

Liebig University, Giessen, Germany (Schubert et al. 2009). The breeding scheme for 

developing SR hybrids is demonstrated in Fig. 1-2. The newly established SR hybrids 

showed relative improvement in growth (in terms of shoot fresh mass and leaf area) during 

the first phase of salt stress compared to its parental hybrid Pioneer 3906 (Schubert et al. 

2009). Also, the newly developed SR hybrids showed better exclusion of Na
+
 at the root 

surface along with less root-to-shoot translocation of Na
+
 compared to the parental hybrid 

Pioneer 3906. 

1.3 Expansion of plant cells is a highly coordinated process 

Expansion of plant cells occurs in three steps: (i) Plant cells uptake water across the plasma 

membrane due to the gradient in water potential (∆ψw), (ii) Turgor pressure (∆ψp)  builds 

up inside the cells because of the rigidity of the cell wall and (iii)  Biochemical wall-

loosening occurs, allowing the cell to expand in response to turgor pressure (Taiz and 

Zeiger 2000). 

A model for the expansion of plant cells has been developed by Lockhart (1965) and is 

popularly known as “Lockhart equation”: 

GR = m (ψp – Y) 

where, GR is growth rate,  

m is extensibility of the cell wall,  

ψp is turgor pressure  and 

Y is yield threshold (i.e. the minimum pressure required for growth) 
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This equation clearly shows that the rate of cell expansion depends on turgor pressure and 

the mechanical properties of the cell-wall (extensibility). Thus it is evident that the 

principal players behind extension growth of plant cells are located in the symplast (turgor 

pressure) as well as in the apoplast (cell-wall extensibility).  

1.4 What hinders growth of plants during the first phase of salt stress ? 

Growth inhibition in the first phase of salt stress is one of the core questions in the field of 

stress physiology and the mechanisms are not yet precisely known (Munns and Tester 

2008). As a salt-sensitive crop, maize shows a strong inhibition in shoot growth in the first 

phase of salt stress (Pitann et al. 2009; Hatzig et al. 2010). Munns (1993) suggested that 

both salt-sensitive and salt-resistant genotypes show similar growth reductions in the first 

phase of salt stress, though recent evidence (Neumann 1997; Schubert et al. 2009) suggests 

that significant genotypic variation exists even in this first phase of salt stress.  

It was generally believed that salt stress may reduce the turgor pressure (symplastic player 

in Lockhart´s equation) of plants and thereby reduce growth. However, there is evidence 

that maize can maintain turgor during water-limiting and saline conditions (Neumann et al. 

1994; Van Volkenburgh and Boyer 1985). The newly developed salt-resistant maize 

hybrids SR 03 and SR 12 (Schubert and Zörb 2005; Schubert et al. 2009) are also able to 

maintain shoot turgor under salt stress (De Costa et al. 2007). Moreover, assimilate supply 

to the growing tissue under salt stress was not limiting (De Costa et al. 2007) suggesting 

photosynthesis in the first phase of salt stress does not account for the growth inhibition in 

maize. Additionally, water uptake by maize plants from the saline solution did not limit 

growth (Ingold 2009). Thus, a decrease in cell-wall extensibility (apoplastic player in 

Lockhart´s equation) is likely to be the mechanism for leaf growth reduction under salt 

stress (Cramer 1994). The term extensibility generally refers to the ability of the wall to 



Introduction 

6 

 

expand or extend irreversibly during growth (Cosgrove 1997a). A decrease in cell-wall 

extensibility is triggered by a root-born signal such as abscisic acid and/or pH (Montero et 

al. 1997; Jia and Davies 2007). Growth inhibition in expanding maize leaves due to water 

stress imposed by PEG was accompanied by a significant decrease of leaf and cell-wall 

extensibility (Lu and Neumann 1998).  

According to Cosgrove (1997a), three factors may reduce the cell-wall extensibility. These 

comprise (i) a decrease in wall-loosening processes, (ii) a change in cell-wall composition, 

and (iii) an increase in cross-linking of cell-wall polymers resulting in a more tightened 

wall structure or one that is less susceptible to wall loosening. 

1.5 Factors governing cell-wall extensibility 

1.5.1 Cell-wall loosening processes 

According to the acid growth theory, H
+
 secreted by plasma membrane H

+
-ATPase into the 

cell-wall space serve as cell-wall loosening factor through activation of hydrolytic 

enzymes in the apoplast (Hager 2003, Fig. 1-3 a). The cell-wall loosening process takes 

place by means of hydrolysis of covalent bonds,  transglycosylation  or  disruption  of non-

covalent bonds. Wall-loosening proteins expansins are activated under acidic condition of 

the apoplast (Cosgrove 1993, 2005). Expansins weaken the non-covalent binding between 

wall polysaccharides (e.g. H-bond), thereby allowing turgor-driven wall expansion (Fig. 1-

3 b). Besides expansins, other wall-loosening enzymes such as xyloglucan hydrolase 

(XGH) and xyloglucan endotransglycosylase (XET) are also activated at acidic pH (Fry et 

al. 1992), and they are involved in breaking and ligation of glycosidic bonds (Cosgrove 

2005). In a nut shell, the acidification of the apoplast may affect cell-wall proteins such as 

expansins and xyloglucan endotransglycosylases (XET) and cell-wall polysaccharide 

linkages, thereby loosening the load-bearing cellulose-hemicellulose-pectin networks 
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which in turn augment cell expansion (Rayle and Cleland 1970; Hager et al. 1971; 

Cosgrove 2005). 

 

Figure 1-3: Illustration of (a) the acid-growth theory (modified after Hager et al. 1971) and (b) 

mechanisms for stress relaxation and growth of cell walls (modified after Cosgrove 1997b). An 

activated form of auxin (~A) activates a plasma membrane H
+
-ATPase which pumps H

+
 to the 

apoplast from the cytosol. This acidification of apoplast activates of enzymes (Fig. b) that loosen 

the  cell-wall matrix  and  thus  trigger  cell elongation (XGH = xyloglucan hydrolases, XET = 

xyloglucan endotransglycosylase).  

The plasma membrane H
+
-ATPase-mediated cell-wall acidification was studied in three 

different maize genotypes namely salt-senisitive Pioneer 3906, and salt-resistant genotypes 

SR 12 and SR 03 (Pitann et al. 2009; Hatzig et al. 2010). Surprisingly, only SR 03 can 

maintain plasma membrane H
+
-ATPase-mediated acidification of the apoplast, while SR 

12 and Pioneer 3906 cannot maintain wall acidification during salt stress. Also, the 

growing shoot of salt-resistant SR 03 maintains growth-mediating β-expansin proteins in 

the shoot under salt stress (Geilfus et al. 2010). Thus, better growth of SR 03 under salt 

stress may be due to the maintenance of low wall pH and high activity of β-expansin 

proteins that are involved in the wall-loosening process in order to increase cell-wall 

extensibility. Surprisingly, the genotype SR 12 showed some resistance in the first phase of 

salt stress, which could not be explained in terms of wall acidification. This suggests that 

besides apoplastic pH (Pitann et al. 2009) additional factors control cell-wall extensibility 

(a) (b) 
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and thereby cell-wall growth under salt stress. Thus, a change in cell-wall chemical 

composition and cross-linking of cell-wall polymers might play an important role in 

reducing cell-wall extensibility. 

1.5.2 Chemical composition and architecture of primary cell walls of grasses and their 

sites of synthesis 

A cell wall is a layer of structural material found in the apoplast and it serves two common 

primary functions, (i) regulating cell volume and (ii) stabilizing cell shape. A primary wall 

is one whose polysaccharide structure was deposited for the period of growth  at cell 

surface (Fry 1988).  Primary wall has special characteristics that are reasonably the topic of 

intensive study. The cell wall of grasses (Fig. 1-4) is quite different in composition 

compared to dicot and non-commelinoid monocot species and is called type II cell wall 

(Carpita 1996).  

 

Figure 1-4: The type II cell-wall (modified after Carpita and Gibeaut 1993, reproduced with 

permission from John Wiley and Sons) of the Poaceae represents cellulose microfibrils that are 

coated with hemicelluloses such as glucuronoarabinoxylans (GAX) and GAX themselves are cross-

linked with polyphenolic acids. Pectins form an interlocking hydrated matrix gel, in which all other 

structures are embedded (Brett and Waldron 1996) and which possibly interacts with structural 

proteins. 
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The type II monocot cell-wall is characterized by cellulose microfibrils cross-linked by 

glucuronoarabinoxylan (GAX) and a network of polyphenolic substances (Carpita and 

Gibeaut 1993; Carpita 1996). Grass cell-wall also contains developmentally regulated 

polymers, the mixed-linkage (1→3), (1→4)-β-D-glucans (Carpita 1996).  

1.5.2.1 Cellulose 

Cellulose microfibrils are made of about three dozen linear chains of (1→4)-β-linked D-

glucose condensed to form a long paracrystalline structure around each cell (Delmer and 

Amor 1995). In primary cell walls, cellulose microfibrils are embedded in a highly 

hydrated matrix (Fig. 1-5), and it gives both strength and flexibility to the wall.  

 

Figure 1-5: The cellulose molecule consists of a repeating cellubiose unit. 

1.5.2.2 Hemicelluloses 

Glucuronoarabinoxylan (GAX) is a major hemicellulosic unit in grass cell-wall that is 

composed of a xylan backbone (xylose monomeric unit) with arabinose and less frequently 

glucuronic acid side chains (Fig. 1-6 a). Glucuronoarabinoxylan is the principal polymer in 

grass cell-wall that interlocks the microfibrils in dividing cells (Carpita and Gibeaut 1993).  

Another unique feature of grass cell-wall is that it contains noncellulosic glucans (Fig. 1-6 

b) at specific developmental stages, particularly in the seed brans. These unbranched 

“mixed-linked” glucans (β-D-glucans) contain both (β1→3) and (β1→4)-linkages. Small 

amounts of other two hemicelluloses, xyloglucan and glucomannan, are also found in 

grasses (Carpita 1996). 

 

Cellubiose 
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Figure 1-6: Structure of (a) glucuronoarabinoxylan (GAX) and (b) (1→3), (1→4)-β-D-glucan of 

grass cell-wall.  

1.5.2.3 Pectin and pectic sugars 

Two major constituents of grass pectins are homogalacturonan (PGA) and 

rhamnogalacturonan I (RG I) (Fig. 1-7). Homogalacturonan is a homopolymer of (1→4)-α-

D-galacturonic acid, and the galacturonic acid residues are often methyl esterified. 

Rhamnogalacturonan I (RG I) contains a backbone of repeating heteropolymer (1→2)-α-L-

rhamnosyl-(1→4)-α-D-galacturonic acid, and often RG I also contains arabinans, 

galactans, and highly branched arabinogalactans of various configurations and sizes as side 

chains (Fig. 1-7). All these side chains are attached to the O-4 of the rhamnosyl moieties of 

RG I (Carpita 1989; Shibuya and Nakane 1984). 

1.5.2.4 Phenolics 

The type II primary wall of monocots is characterized by the presence of substantial 

amount of phenolic substances (Fig. 1-8) that cross-link the glucuronoarabinoxylans 

(Carpita and Gibeaut 1993; Carpita 1996). The glucuronoarabinoxylans are cross-linked in 

walls by both esterified and etherified hydroxycinnamates and by other phenolic 

substances (Iiyama et al. 1993; Scalbert et al. 1985). 

(a) 

(b) 
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Figure 1-7: Schematic representation of homogalacturonan and rhamnogalacturonan I (RG I) of 

grass pectin (based on Carpita and Gibeaut 1993). 

Galactan 

Arabinan 

Arabinogalactan 
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Figure 1-8: Various (a) monomeric phenols and (b) diferulic acids (DFA) present in grass cell-

walls (Bunzel 2010). 

 

 

 

(b) 

(a) 
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1.5.2.5  Synthesis site of cell-wall components 

Syntheses of various wall components take place in different organelles and membranes of 

the cell (Carpita and McCann 2000; Fig. 1-9). Synthesis of cellulose occurs at the surface 

of plasma membrane, while the syntheses of almost all other non-cellulosic 

polysaccharides 

 

Figure 1-9: Biosynthesis of the major cell-wall components and wall modifying enzymes at the 

plasma membrane, Golgi apparatus and rough endoplasmic reticulum (modified after Carpita and 

McCann 2000, reproduced with permission from the American Society of Plant Biologists). 

such as pectins (homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II) and 

cross-linking glycans (glucuronoarabinoxylan, β-glucan, xyloglucan, galactomannan) take 

place in the Golgi apparatus. Polysaccharide synthase along with some major wall-

modifying enzymes e.g. esterases, peroxidases and hydrolases are synthesized at the rough 

endoplasmic reticulum. Synthesis of cell-wall proteins such as arabinogalactan proteins 

(AGPs), hydroxyproline-rich glycoproteins (HRGPs), proline-rich polypeptides (PRPs) 

and glycine-rich proteins (GRPs) also take place at the rough endoplasmic reticulum. 

1.5.2.6 Are cell-wall compositions altered during salt stress to limit cell-wall 

extensibility? 

Cell-wall loosening (acidification of apoplast) only partially answers the large growth 

inhibition in maize genotypes grown in the first phase of salt stress (Pitann et al. 2009; 
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Hatzig et al. 2010). Thus, it is supposed that an altered cell-wall composition in the first 

phase of salt stress may directly be involved in growth inhibition. Changes in cell-wall 

chemical properties as influenced by salt or drought stress have been documented for roots 

of some monocots (Piro et al. 2003; Leucci et al. 2008). Although the root represents the 

first organ in sensing salt stress, shoots are more sensitive to salt stress than roots (Munns 

and Sharp 1993). Salt stress-induced changes in enzyme activities in maize leaf cell-walls 

have been reported (Cramer et al. 2001; Geilfus et al. 2010). Still, there is a lack of 

information about the changes in cell-wall polymer composition that are relevant for 

extension growth during the first phase of salt stress in the growing shoots of maize 

genotypes differing in salt resistance.  

1.5.3 Cross-linking of cell-wall polymers  

Along with the chemical composition of cell walls, an understanding of wall cross-links is 

essential for any attempt to explain the control of wall extensibility and plant growth. 

Covalent cross-linking between/among wall polymers (Fig. 1-10) is an important 

biochemical mechanism for tightening wall components at the end of cell expansion 

(Iiyama et al. 1994). Wall polymers can be cross-linked via various diferulates (DFA) and 

triferulates (Bunzel 2010). The formation of cross-link between hemicellulosic 

polysaccharides via DFA-bridges and the increase in the amount of feruloylated 

polysaccharides in cell walls have been considered to cause a decrease in cell-wall 

extensibility (Fry 1979). In Poaceae, the increase in the wall-bound DFA and ferulic acid 

(FA) maintains a close correlation with a decrease in the cell-wall extensibility (Kamisaka 

et al. 1990; Parvez et al. 1997; Tan et al. 1991), and conversely the reduction in FA and 

DFA maintains the extensibility (Kawamura et al. 2000; Wakabayashi et al. 1997a, b).  

There is evidence in maize that endogenous apoplastic H2O2 and peroxidase are 

responsible for the formation of diferulates by oxidatively coupling feruloyl groups 
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(Encina and Fry 2005). In fact, a transient increase in apoplastic peroxidase leads to 

termination of segmental elongation (De Souza and MacAdam 1998, 2001). The 

availability of apoplastic H2O2 and peroxidases limit formation of diferulates cross-links in 

the maize cell-wall (Grabber et al. 1995; Lindsay and Fry 2008; Burr and Fry 2009). The 

simultaneous increase of peroxidase activity and phenolic compounds in maize 

corroborates a role of this enzyme in oxidation of phenolics (Devi and Prasad 1996).  

 

Figure 1-10: Schematic diagram showing possible covalent cross-links between/among wall 

polymers (Carpita and McCann 2000, reproduced with permission from the American Society of 

Plant Biologists).  

A significant reduction of leaf and cell-wall extensibility was observed in expanding maize 

leaves with a concomitant reduction in leaf growth as a result of water stress imposed by 

PEG (Lu and Neumann 1998). Still, there is a lack of information about the changes in 

cell-wall polymers composition and cross-linking molecules that are relevant to extension 

growth  of maize shoot during the first phase of salt stress. Moreover, the knowledge of a 

salt-induced change in cell-wall components, if any, in sensitive and newly developed 

resistant SR hybrids (Schubert et al. 2009) may help to find other genotypes with improved 

salt resistance in the first phase of salt stress.  
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Determination of the chemical composition of cell-wall polysaccharides is generally 

performed by some chemical analytical methods. However, before determining the 

chemical composition, the cell walls must first be isolated and cleaned from the 

intracellular contents. For that reason, a convenient and simple method for cell-wall 

isolation in necessary. A set of various  laboratory protocols are required to determine cell-

wall matrix polymers such as cellulose, hemicellulosic sugars, pectin, methylation of 

pectin, lignin and various monomeric phenols and diferulates. 

In such a context, an experiment (Experiment 1) was conducted with the following 

objectives: 

(i) To optimize a method of cell-wall isolation from maize shoot. 

(ii) To standardize  laboratory protocols  for determining cellulose, hemicellulosic sugars, 

uronic acid, non-methylated uronic acid, degrees of methylation (methyl-esterification) 

of uronic acid, lignin, monomeric phenols and various diferulates. 

Another experiment (Experiment 2) was carried out to test the influence of salt stress on 

leaf cell-wall components. The following three hypotheses were tested in this experiment: 

(i) Leaf-growth inhibition in the first phase of salt stress is concomitant with changes in 

leaf cell-wall polysaccharides, which result in tightening of cell wall in growing 

leaves of two maize genotypes (Pioneer 3906 and SR 12) differing in salt resistance. 

(ii) Leaf-growth reduction is accompanied by changes in leaf cell-wall monomeric 

phenols and various diferulates during the first phase of salt stress in two maize 

genotypes showing different salt resistance. 

(iii) Salt stress-induced changes in cell-wall components are different in a salt-sensitive 

(Pioneer 3906) and a salt-resistant (SR 12) genotype.  
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2 Material and methods 

2.1 Material and methods of Experiment 1 

 

2.1.1 Plant cultivation 

An experiment was conducted in plastic containers in a climate chamber. Maize (Zea mays 

L.) cv. Amadeo was grown in 70 L containers (each with 70 plants). The caryopses were 

soaked in an aerated 1 mM CaSO4 solution for 24 h and allowed to germinate at 25
o
C in 

the dark between two layers of filter paper moistened with 1.0 mM CaSO4. On day 4, 

plants were exposed to the light. On day 6, 70 seedlings were transferred to each container 

with 70 L of a 1/4 concentrated nutrient solution. The composition of the full-strength 

nutrient solution is presented in Table 2-1 (Pitann et al. 2009).  

Table 2-1: Composition of the full-strength nutrient solution 

 

Macronutrients Micronutrients 

Substrate Concentration Substrate Concentration 

Ca(NO3)2  2.5 mM  H3BO4 1.0 µM  

K2SO4 1.0 mM  MnSO4 2.0 µM  

KH2PO4 0.2 mM  ZnSO4 0.5 µM  

MgSO4 0.5 mM  CuSO4 0.3 µM  

CaCl2 2.0 mM  (NH4)6
 
Mo7O24  0.01 µM  

  Fe-EDTA 200 µM  

 

Gradually the concentration of nutrient solution was increased to 
1
/2, 

3
/4 and full strength, 

respectively, in the following three consecutive days. On day 10, salt stress started with the 

addition of 25 mM NaCl directly to the root medium. Then on the following three days, the 

doses of NaCl were gradually increased to 50, 75 and 100 mM, respectively. Control 

treatment was maintained with 1 mM NaCl till harvest. On day 21, plants were cut at the 
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base of the shoot and the fresh mass of shoots and roots was recorded accordingly. Plants 

from each treatment were divided into three groups and each group was treated as a 

replicate (thus they were not in fact the biological replicates). Shoots of each group were 

chopped into smaller pieces and were shocked in liquid N2 for short time to stop any 

enzyme activities. After then all shoot materials were stored at -80
o
C till use. 

2.1.2 Cell-wall isolation 

2.1.2.1 Disruption of cells 

The isolation of cell wall from the plant material was carried out according to the method 

of Goldberg (1985) with some modifications (Fig. 2-1). A number of trial runs were 

performed to find out the optimum quantity of plant materials and volume of different 

solutions during cell-wall isolation. In brief, 20 g plant material were added to a blender 

(type: Waring Blender, Waring, New Hartford, Connecticut, USA) together with 80 mL of 

0.4 M ice-cold sucrose solution and then crushed. In total, 12 min crushing was performed 

with 12 breaks each with 1 min time and in-between cooling with ice slurry at less than 

4
o
C.  

2.1.2.2 Recovering cell walls after elimination of contaminants  

The crushed plant materials were centrifuged and sequentially extracted with 0.6 and 1.0 

M sucrose solutions, respectively (Fig. 2-1). In order to eliminate any membrane 

components, the pellet was thoroughly washed with chilled 0.1% Triton X100. The 

suspension was then rinsed intensively with distilled water through nylon sieves with a 

mesh size of 405 and 250 µm, respectively, stacked on each other. Thorough rinsing of 

cell-wall pellets with distilled water was done to eliminate Triton X100 with cytoplasmic 

contaminants. Thus the cell wall isolated from 405 µm sieve was termed “> 405 µm cell-

wall fraction” and that collected from 250 µm sieve was termed “250-405 µm cell-wall 

fraction”. The extracted cell-wall pellets were freeze-dried and stored at -80°C till further 

use. 
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Figure 2-1: Diagrammatic presentation of cell-wall isolation from shoot tissue of maize 

cv. Amadeo.  

 

 

 

 

Supernatant discarded 

 

Pellet 

 

Breaking of maize shoot-tissue in a Sorvall 

omnimixer;  20000 rpm  for 12 min  

 

Broken cells 

 
Centrifugations with 0.4, 0.6 and 1 M sucrose; 700 g for 15 min  

 

Centrifugation with 0.1% Triton; 

 1000 g for 10 min  

 

Washed cell-walls fractions in two sieves 

 

Pellet 

 
Washing of pellets with H2O 

through  nylon  sieves  

 

Freeze drying  

 

Supernatant discarded 

 

Freeze dried cell-walls of  

> 405 µm fraction  

 

Freeze-dried cell walls of 

250-405 µm fraction 

 



Material and methods 
 

20 

 

2.1.3 Cellulose determination  

2.1.3.1 Principle  

The cellulose determination was done by the method of Updegraff (1969) and Fry (1988) 

with minor modification. The method is based on elimination of lignin, hemicellulose and 

xylosans from the cell wall with the help of a reagent composed of acetic acid and nitric 

acid. Then the remaining cellulose is dissolved in 67% (v/v) H2SO4 and  determined with 

the  anthrone reagent. In the anthrone assay, glucose from the cellulose is dehydrated using 

concentrated H2SO4 to form furfural, which in turn condenses with anthrone  to 10-keto-

9,10 dihydroanthracene, which is a bluish green complex that can be measured 

calorimetrically at 620 nm using a spectrophotometer.  

 

2.1.3.2 Chemicals required and preparation of reagents  

Table 2-2: List of chemicals 

Chemicals  Chemical formula  Source  

Acetic acid (CH3)2CO Roth 

Nitric acid HNO3 Sigma-Aldrich 

Sulfuric acid H2SO4 Merck 

Anthrone 

 

Merck 

 

The anthrone reagent was prepared dissolving 200 mg of anthrone in 100 mL of 

concentrated H2SO4.  The solution was prepared fresh daily and chilled for 2 h in a 

refrigerator prior to use. 
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To prepare the stock standard, 60 mg cellulose were dried for 6 h at 105°C and then cooled 

in a silica gel based desiccators. Exactly, 50 mg of dried cellulose were transferred into a 

500 mL volumetric flask. Then content was dissolved in a 10 mL 67% (v/v) H2SO4 with 

gentle heat and volumed to 500 mL with distilled water to contain 100 µg cellulose mL
-1

. 

2.1.3.3 Optimized method for cellulose determination   

In brief, 10 mg freeze-dried cell wall were suspended in acetic-nitric reagent (Acetic acid : 

Water : Nitric acid = 8 : 2 : 1) in test tubes. The tubes were then placed in a boiling water 

bath for 0.5 h to hydrolyze non-cellulosic polysaccharides. The cell-wall suspensions were 

then centrifuged for 5 min at 2500 g. The supernatants were discarded and the pellets 

washed two times with 10 mL each of  water and acetone. The supernatants were discarded 

and the pellets were dried with a mild flow of pressed air.  Dry pellets were hydrolyzed in 

2 mL 67% (v/v) H2SO4 by placing the tubes on water bath for 1 h at 25
o
C with continuous 

shaking. After then, 20 µL of 5 times diluted hydrolysates were transferred to Eppendorf  

tubes having  480 µL water inside. Then 1 mL chilled anthrone reagent was added to each 

Eppendorf tube and vigorously mixed with  the vortex. All tubes were incubated in a 

boiling water bath for 5 min while the tubes were closed with cap. The tubes were then 

allowed to cool in an ice bath for 2-3 min. After keeping the Eppendorf tubes at room 

temperature for 5-10 min, the absorbance was read at 620 nm against a reagent blank (0.5 

mL of bidistillated water + 1 mL anthrone). Stock standard  for cellulose was prepared 

according to Updegraff (1969). Then the standards equivalent to 10, 15, 20, 30 and 40 µg 

mL
-1

 cellulose were subjected to the color reactions in the same way as cell-wall 

hydrolysates. 



Material and methods 
 

22 

 

2.1.4  HPAEC-PAD analysis of cell-wall neutral sugars 

2.1.4.1 Principle 

High performance anion exchange chromatography with pulsed amperometric detection 

(HPAE-PAD or HPAEC-PAD) was used to separate and quantify neutral sugars in the cell 

wall. The amperometric detector measures a change in current due to oxidation, reduction, 

or complex formation of an analyte at the surface of an electrode (Henshall 1999). 

Carbohydrates are good candidates for electrochemical detection because they are easily 

oxidized on gold or platinum electrodes at a high pH (12-14). Oxyanions are formed from 

the neutral sugars at a high pH and these anions facilitate separation by their different ion 

exchange properties. Relative affinity of the analyte ion in competition with the eluent ion 

for the same exchange sites is the basis of ion exchange separation (Fig. 2-2 a). The longer 

retention time is expected when the affinity of the ion is higher and vice versa.  

 

 

 

Figure 2-2: Diagrammatic presentation of (a) ion exchange separations based on the relative 

affinities of the analyte ions (X¯) in competition with the eluent ion (OH¯) for the same 

exchange sites (b) triple potential sequence used in PAD. A repeating sequence of a high 

positive potential followed by a high negative potential is used to clean electrode surface for 

consistent best quality measurement (modified after Henshall 1999). 

The basic principle of PAD is illustrated in Fig. 2-2 b. PAD uses a repeating cycle of high 

positive (E2) and high negative potentials (E3) following each measurement to clean 

electrode surface that ensures very high quality response. A specific potential (E1) 

(a) (b) 
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appropriate for the particular analyte is used to get the detector signal by integrating the 

current for a fixed length of time and storing the resulting charge in a sample-and-hold 

amplifier until the next measurement (Henshall 1999). 

2.1.4.2 Chemicals required  

Table 2-3: List of chemicals 

Chemicals    Formula  Source  

Sulfuric acid   H2SO4 Merck 

50% (w/v) sodium hydroxide   NaOH Sigma-Aldrich 

D-(+)-Glucose 

 

Sigma-Aldrich 

D-(+)-Galactose 

 

Sigma-Aldrich 

D-(+)-Mannose 

 

Fluka 

D-(+)-Xylose 

 

Sigma-Aldrich 

L-(+)-Arabinose 

 

Sigma-Aldrich 

L-Rhamnose 

 

Fluka 

 

 



Material and methods 
 

24 

 

2.1.4.3 Optimized method for cell-wall neutral sugar analysis  

2.1.4.3.1 Cell-wall hydrolysis 

Acid hydrolysis was performed according to the method described by Willför et al. (2009). 

In brief, 10 mg of freeze-dried cell wall were weighed in a hydrolysis tube. Then, 200 µL 

of 72% (w/w) sulfuric acid were added and the sample was pre-hydrolyzed at 30 
o
C in a 

water bath for 1 h. The samples were then transferred into 25 mL volumetric flask together 

with 5.6 mL of ultra-pure water. Flasks were sealed with aluminum foil and autoclaved for 

60 min at 120
o
C. After hydrolysis, the samples were cooled and filtered through a 0.45 µm 

PET membrane filter (membraPure GmbH, Germany).  

2.1.4.3.2 Optimized HPAEC-PAD for neutral sugars analysis 

Neutral sugars from the cell wall were determined following high-performance anion-

exchange chromatography (HPAEC-PAD) analysis as suggested by Willför et al. (2009) 

after some modifications. The HPAEC-PAD analysis of non-cellulosic neutral sugars was 

performed using a CarboPac PA-10 column (analytical column 2 mm × 250 mm and guard 

column 2 mm × 50 mm) coupled with a pulsed amperometric detector (Dionex ED 50 gold 

electrode). After injection of the 20 µL sample the monosaccharides were isocratically 

separated using 2 mM NaOH at a flow rate of 0.25 mL min
-1

. Chromeleon software was 

used to process the data. 

2.1.5 Analysis of total uronic acid  

2.1.5.1 Principle 

Generally total uronic acid is determined using colorimetric methods after first hydrolyzing 

the cell-wall polysaccharides in concentrated sulfuric acid (Ahmed and Labavitch 1977; 

Selvendran et al. 1979). Nonetheless, all these methods have some pitfalls in determining 

total uronic acid concentration from cell walls. Colorimetric determination of uronic acids 
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may be influenced by neutral-sugars of the cell wall and their degradation products from 

acid hydrolysis. Filisetti-Cozzi and Carpita (1991) proposed a procedure that solves the 

problem. With this new method, uronic acids can be determined in presence of ten times 

their weight of neutral sugars in the cell-wall hydrolysate. Thus, this  technique is currently 

the colorimetric method of choice. The sulfamate suppresses brown coloration from the 

cell-wall neutral sugars, while tetraborate augments the sensitivity of the reaction with 

uronic acids. A pink color develops after addition of  m-hydroxydiphenyl solution, which 

can be measured at 525 nm against the reagent control. 

2.1.5.2 Chemicals required and preparation of reagents 

Table 2-4: List of chemicals 

Chemicals  Formula  Source  

Sulfuric acid H2SO4 Merck 

Sodium hydroxide NaOH Sigma-Aldrich 

Sodium tetraborate Na2B4O7 Merck 

D-galacturonic acid 

 

Fluka 

Sulfamic acid 
 

Fluka 

m-hydroxydiphenyl 
 

Aldrich 

Exactly 150 mg of m-hydroxydiphenyl were weighed into a 100 mL volumetric flask. Then 

the content was dissolved in < 100 mL of 0.5% (w/v) NaOH and the final volume was 

adjusted to 100 mL with the same. The final reagent mixture was stored in a dark bottle at 

4°C, and in this state the solution may stable for around 1 month (Melton and Smith 2001). 
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Sulfamic acid (molecular weight, 97.09) amounting  to 38.84 g was weighed in a 100 mL 

volumetric flask and after addition of 50 mL of water the content was stirred vigorously.  

Saturated KOH (30 g of KOH were dissolved into 20 mL of water) was added drop-wise 

until the sulfamic acid had been dissolved. The sulfamic acid solution was allowed to cool 

and then the pH was carefully adjusted to 1.6 with saturated KOH. The final volume of 100 

mL was adjusted with some drops of water to give a final concentration of 4 M. The 

reagent was then stored at room temperature. 

2.1.5.3 Optimized method for uronic acid determination from maize shoot cell-wall  

Cell walls were first hydrolyzed using the method of Ahmed and Labavitch (1977) and the 

uronic acid concentrations determined using the method of Filisetti-Cozzi and Carpita 

(1991) with little modifications suggested by Melton and Smith (2001). In brief, 5 mg of 

cell walls  were transferred to a borosilicate glass tube and 1 mL concentrated sulfuric acid 

added to it. A reagent control tube was set up with only 1 mL concentrated sulfuric acid. 

The rack with tubes was placed on ice slurry on a magnetic stirrer. The contents were 

stirred for 5 min by placing small spin bars in each of the tubes. Stirring continued for 

another 3 times 5 min with the successive addition of 1.0 mL concentrated sulfuric acid, 

0.5 mL + 0.5 mL water. Then the content of each tube was diluted into 10 mL from which 

1800 µL hydrolysate were transferred  into an Eppendorf tube and centrifuged for 5 min at 

36000 g at 4°C to get clear hydrolysate. There were  three and two 15 mL borosilicate 

glass tubes for each hydrolysate and reagent control, respectively. Aliquots of 400 µL clear 

suspension from each hydrolysate and reagent control were placed into the respective 

tubes. Then 40 µL of 4 M sulfamic acid/potassium sulfamate solution (pH 1.6) were added. 

After vortexing the content, 2.4 mL of 75 mM sodium tetraborate in sulfuric acid were 

added followed by vigorous shaking with vortex. Then, the tubes were placed in a 100°C 

water bath for 20 min and then cooled by plunging tubes into an ice bath for 10 min. 
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Exactly 80 µL m-hydroxydiphenyl solution were added  to two tubes of each sample and 

the two reagent control tubes. The third tube of each sample received 80 µL of 0.5% 

NaOH instead of m-hydroxydiphenyl (this was the sample control). The content of the 

tubes was vortexed three times and allowed to stand for 10 min to develop a pink color 

complex.  Absorbance was taken at 525 nm against the reagent control. Standard curve was 

made using D-galacturonic acid as a standard with the concentrations of 2.5, 5.0, 10.0, 

15.0, 20.0 and 30.0 µg/400 µL. 

 

2.1.6 Determining the degree of methylation of uronic acid and the concentration of 

methylated uronic acid 

2.1.6.1 Principle 

Methyl-esters of uronic acid are saponified to yield methanol and the free acids with a 

modified procedure of Wood and Siddiqui (1971). Methanol is oxidized to formaldehyde 

by acidic permanganate. Formaldehyde is then condensed with pentane-2,4-dione 

(acetylacetone) and ammonia to give the yellow product, 3,5-diacetyl-1,4-dihydro-2,6-

methylpyridine. Oxidation in the presence of sulfuric acid followed by reduction of excess 

permanganate with sodium arsenite allows sensitive determination of methanol. Paired 

assays of uronic acid give the proportion of methylated uronic acid.             

2.1.6.2 Chemicals required and preparation of reagents 

Table 2-5: List of chemicals 

Chemicals  Formula  Source  

Sulfuric acid H2SO4 Merck 

Sodium hydroxide NaOH Sigma-Aldrich 

Potassium permanganate KMnO4 Fluka 

Sodium arsenite NaAsO2 Sigma-Aldrich 

Pentane-2,4-dione (acetyl acetone) 

 

Fluka 
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NH4OH (0.2 moles, 13.5 mL of 14.8 M stock solution of NH4OH) was added to 50 mL of 

water and the content was gently stirred in a 100 mL beaker placed in an ice bath. Then 

0.25 mole glacial acetic acid (14.4 mL of 17.4 M stock) was added. After the solution had 

cooled to ambient temperature, the content was brought to 100 mL with distilled water and 

this was the 2.0 M CH3COONH4/0.5 M CH3COOH solution. Pentane-2,4-dione (202 mg) 

was poured into a 100 mL volumetric flask and then brought up to the mark with the 

freshly made 2.0 M CH3COONH4/0.5 M CH3COOH. 

2.1.6.3 Optimized method for determining degree of methylation of maize cell-wall 

Exactly 5 mg of cell-wall material and 1.125 mL of distilled water were filled into 2.0 mL 

Eppendorf centrifuge vials. Afterwards, 375 µL of 1.5 M NaOH were added to each of the 

vials with occasional vortexing for 30 min. The vials were chilled on ice slurry and then 

375 µL of 4.5 M H2SO4 were added and the vials were placed on ice slurry for 10 min. The 

samples were then centrifuged for 10 min at 0
o
C at 36000 g. Afterwards, 1.0 mL of the 

clear saponified acidic supernatant was pipetted directly to the bottom of a 10 mL glass 

tube placed on ice slurry.  

After addition of 200 µL of 2% (w/v) KMnO4 to the saponified acidic supernatant, the vials 

were kept chilled on ice for 15 min. Extra care was taken not to run any trace of the 

KMnO4 down the sides of the tube. Then exactly 200 µL of Na-arsenite reagent (0.5 M in 

0.06 M H2SO4) were added and after vortexing the sample was allowed to stand at ambient 

temperature for 60 min. Finally, 2.0 mL of a freshly prepared pentane-2,4-dione reagent 

(0.02 M pentane-2,4-dione in 2.0 M CH3COONH4/0.5 M CH3COOH) were added to each 

vial and vortexed quickly. The tubes were capped with marbles and heated at 60°C for 15 

min and then allowed to cool down to room temperature for full color development. The 

absorbance of yellow chromagen was measured at 412 nm. By this way, methanol release 
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(mmol) from a specific amount of cell wall was calculated. The degree of methylation of 

uronic acids was then calculated based on the uronic acid concentrations of cell wall. 

Using the data of degree of methylation of uronic acids in cell wall, the concentrations of 

methylated uronic acids were quantified. The concentrations of non-methylated uronic 

acids were calculated by subtracting the values for concentrations of methylated uronic-

acids from the values of concentrations of total uronic acids. 

2.1.7 Determination of lignin 

2.1.7.1 Principle 

A spectrophotometric method was used for determining the lignin concentration by 

dissolving cell walls in acetyl-bromide reagent (CH3COBr : CH3COOH = 1 : 3, v/v) and 

measuring the absorbance at 280 nm (Johnson et al. 1961). The method results in the 

formation of acetyl derivatives of unsubstituted OH groups of lignin macromolecule and 

Br replacement of α-carbon OH groups making the lignin molecule soluble in acetic acid 

(Fig. 2-3). 

 

Figure 2-3: Reaction mechanisms of for acetyl derivatization of lignin by acetyl bromide 

reagent in order to solubilize lignin in acidic solution (Hatfield and Fukushima 2005). 

However, proteins and substituted cinnamic acids (e.g. ferulic acid,  p-coumaric acid) in 

grass cell-walls may interfere with the lignin determination. Nearly 90-95% of these 
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cinnamic acid constituents can be removed by a pretreatment of cell-wall with pyridine : 

pyrrolidine (1 : 1, v/v). Finally, washing of cell-wall materials with methanol and 

subsequently with hot water can efficiently remove proteins. This allows more precise 

determination of lignin by the modified acetyl bromide method (Morrison and Stewart 

1995). 

2.1.7.2 Chemicals required 

Table 2-6: List of chemicals 

Chemicals  Formula  Source  

Acetyl bromide 
 

Sigma-Aldrich 

Sodium hydroxide NaOH Fluka 

Hydroxylamine NH2OH Aldrich 

Glacial acetic acid CH3COOH Merck 

Pyridine 

 

Sigma-Aldrich 

Pyrrolidine 

 

Fluka 

Methanol CH3OH Roth 

2.1.7.3 Optimized method for lignin determination 

2.1.7.3.1 Removal of non-lignin phenolics and protein 

Exactly 20 mg freeze-dried cell-wall materials were taken into a  glass vial and 1 mL of 

pyrrolidine : pyridine (1 : 1, v/v) was poured to it. Then all vials were closed with the 

teflon-lined cap and were placed in a water bath at 80°C for 18 h (Mansson and 

Samuelsson 1981). Then the reaction mixture was transferred to a 15 mL centrifuge tube 

with the help of 5 mL methanol. After centrifuging at 350 g for 20 min, the solution was 
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pipetted out and the residue was washed with methanol and recentrifuged for further 5 

times each with 4 mL methanol.  After discarding the methanol, 4 mL of water were added 

to cell-wall residues. All tubes were then placed in a water bath at 70°C for 3 h by keeping 

a glass marble on top of each tube.  All tubes were then recentrifuged as before and the 

supernatants were discarded. The pellet was washed with cold water and finally with the 

methanol followed by centrifugation. Then the resultant pellets were transferred into the 

screw capped tubes and were placed in an oven to dry the pellets at 50°C overnight. 

2.1.7.3.2 Modified optimized acetyl bromide method to determine lignin in cell wall 

Individual samples were removed from the oven and 2.5 mL of freshly prepared acetyl 

bromide reagent (acetyl bromide : glacial acetic acid = 1 : 3, v/v) were added. The tubes 

were capped immediately with a PTFE-coated silicone cap and heated in water bath at 

50°C for 4 h with occasional shaking. Then the sample was quantitatively transferred to a 

50 mL volumetric flask with a reagent mixture containing 10 mL of 2 M NaOH and 12 mL 

of acetic acid.  Exactly 1750 µL of 0.5 M hydroxylamine were added to each flask, and 

samples were diluted to 50 mL with glacial acetic acid. The absorption of the final solution 

was measured at 280 nm. Finally the lignin concentration was determined using the 

following formulas (Morrison 1972): 

 

(i) Absorbance value =  
Absorbance of sample – Absorbance of blank 

Concentration of sample (g L
-1

) 

(ii) Lignin concentration (mg g
-1

 cell wall) = (33.6 × Absorbance value) – 11.1  
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2.1.8 Determination of cell-wall esterified phenolics using RP-HPLC 

2.1.8.1 Principle 

Wall-bound phenolics are released by sequential alkaline hydrolysis of isolated cell-wall 

material under progressively more vigorous conditions (Hartley and Morrison 1991). The 

sequential treatments to extract the cell wall-bound esterified phenolics is as follows: 0.1 

M NaOH for 1 h, 0.1 M NaOH for 24 h, 1 M NaOH  for 24 h and finally 2 M NaOH  for 

another 24 h. The general reaction mechanism of releasing cell-wall esterified phenolics 

under alkaline condition is presented below.  

 

Reverse phase high performance liquid chromatography (RP-HPLC) with ultra violet (UV) 

detection can be used successfully in the separation and determination of diferulic acids, 

monomeric cell wall phenolic acids and aldehydes (Waldron et al. 1996). 
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2.1.8.2 Chemicals required 

Table 2-7: List of chemicals 

Chemicals  Formula  Source  

HPLC grade water H2O Roth 

50% (w/v) sodium hydroxide NaOH Sigma-Aldrich 

Methanol, ROTISOLV
®
 Ultra LC-MS CH3OH Roth 

Acetonitrile, ROTISOLV
®
 Ultra LC-MS CH3CN Roth 

p-OH-benzaldehyde 

 

Sigma-Aldrich 

p-OH-benzoic acid 

 

Sigma-Aldrich 

trans-cinnamic acid 
 

Sigma-Aldrich 

trans-ferulic acid 

 

Sigma-Aldrich 

trans-p-coumaric acid 

 

Sigma-Aldrich 

Trifluoroacetic acid 

  
Sigma-Aldrich 

trans-p-coumaric acid 

 

Sigma-Aldrich 

Vanillic acid 

 

Fluka 

Vanillin 

 

Fluka 
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2.1.8.3 Optimized method for the determination of cell-wall esterified phenolics 

The procedure described by Waldron et al. (1996) was followed with some modifications 

to fit the extraction procedure to the micro level. Exactly 30 mg cell-wall materials were 

taken in an Eppendorf tube and then 600 µL of 0.1 M anaerobic (degassed with N2) NaOH 

were added. After addition of 6 µg trans-cinnamic acid as an internal standard, the liquid 

was covered with N2 gas and then the lid closed tightly. Afterwards all tubes were placed 

in a water bath for 1 h at 25
o
C with continuous shaking in darkness. 

The Eppendorf tubes containing alkaline hydrolysates were centrifuged at 36000 g for 10 

min and afterwards the supernatant was carefully collected in a new tube with a 

micropipette. The solution was acidified with HCl to a pH < 2 and the phenols in acidified 

supernatant were extracted with three volumes of acetic ethyl-ester. After extraction, acetic 

ethyl-esters were removed in a vacuum evaporator and the remaining solid was dissolved 

in 300 µL of 50% (v/v) aqueous methanol for subsequent analysis in HPLC.  

The cell-wall materials remaining in the Eppendorf tube after first extraction were further 

extracted sequentially with 0.1 M NaOH for 24 h, 1 M NaOH for 24 h, and 2 M NaOH for 

24 h. The same procedure described before was followed to get the sample ready for 

HPLC-analysis. Thus from each cell-wall sample, four HPLC vials were ready for the final 

analyses. 

The standards of various monomeric phenols were dissolved in 50% (v/v) aqueous 

methanol; trans-cinnamic acid was added to the mixtures as an internal standard. An 

aliquot of 25 µL was injected by the autosampler (Dionex A550) and analyzed on a RP-

HPLC column (LiChrospher ®100 RP-18 end capped 5 µm column (250 mm × 4.6 mm), 

Techlab, Erkerode, Germany). The gradient profile developed by Waldron et al. (1996) for 

the separation of cell-wall esterified phenolic monomers and dimers was used with 
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modification: initially 90% Solvent A (10% (v/v) aqueous acetonitrile plus TFA to 1 mM), 

5% Solvent B (80% (v/v) aqueous methanol plus TFA to 1 mM) and 5% Solvent C (80% 

(v/v) aqueous acetonitrile plus TFA to 1 mM); linear gradient over 25 min to 26% A, 37% 

B and 37% C; linear gradient over 5 min to 0% A, 50% B and 50% C. Linear gradient over 

15 min to 90% A, 5% B and 5% C; this composition of eluent was kept for further 10 min. 

Peak area was recorded at 210, 265, 280 and 325 nm.  

Quantitation was based on integration of peak areas at 280 nm. Monophenols were 

quantified based on their standard substances. Phenolic dimers were identified through 

analysis at 210, 265, 280 and 325 nm. Four different diferulic acids (8-5´-DFA, 5-5´-DFA, 

8-0-4´-DFA and 8-5´-DFA (benzofuran form) were quantified with the following formulae 

(Waldron et al. 1996):  

 

(ii) DFA (µg g-1 cell wall) =   

(i) trans-FA equivalent of DFA =  

Peak area of DFA at 280 nm × amount of trans-FA (µg g-1) on that particular run 

Area of trans-FA 

(a) 8-5´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 8-5´-DFA × 0.36  

                             0.18 

trans-FA equivalent of DFA × RF of trans-FA according to Waldron et al. (1996) 

RF of that DFA according to Waldron et al. (1996) 

(b) 5-5´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 5-5´-DFA × 0.36  

                             0.21 

(c) 8-0-4´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 8-0-4´-DFA × 0.36  

                             0.14 

(d) 8-5´-DFA (benzofuran form) (µg g-1 cell wall) =    
trans-FA equivalent of 8-5´-DFA (benzofuran form) × 0.36  

                             0.12 

Here, FA = trans-ferulic acid; DFA = diferulic acid; RF = response factor 
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2.1.9 Synthesis of diferulates using horse radish peroxidase (HRP) and ferulic acid 

An attempt was made to prepare some diferulates in the laboratory (Ward et al. 2001). 

Oxidation of trans-ferulic acid was done with peroxidase from horseradish (SERVA 

Electrophoresis; EC 1.11.1.7; 1000 U mg
-1

) in 100 mM citric acid + KOH buffer, pH 3.5, 

in a total reaction volume of 1 mL in the Eppendorf vial. H2O2-dependent inactivation of 

horseradish peroxidase was prevented by stepwise addition of H2O2 in aliquots of 100 

nmol min
-1

 for a period of 30 min. Three concentrations of trans-FA (0.1, 0.3 and 1.2 mM) 

were tested with 1 µM enzyme. Two controls were set, first one with trans-ferulic acid and 

H2O2 in the assay medium but without enzyme; second one with trans-ferulic acid in the 

assay medium but without enzyme and H2O2. One min after addition of last aliquot of 

H2O2 the reaction mixture was extracted with three volumes of acetic ethyl-ester. The 

extract was dried in a vacuum evaporator and the remaining solid was dissolved in 50% 

(v/v) aqueous methanol for subsequent analysis with RP-HPLC.  

 

2.1.10 Statistical analysis 

In Experiment 1, plants were grown in three groups in one pot per treatment. Results are 

given as arithmetic means of these three groups with standard errors of means (SE). As 

there was a lack of true biological replication no test was performed for determining 

significant differences between treatments.  
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2.2 Material and methods of Experiment 2 

2.2.1 Plant cultivation 

Maize (Zea mays L. hybrids Pioneer 3906 and SR 12) were grown in hydroponics in a 

climate chamber with two treatments (control with 1 mM NaCl and salt treatment with 100 

mM NaCl) and four replications in each. Plants of each genotype were cultivated in 10 L 

plastic containers, each container with eight plants. The caryopses were soaked in an 

aerated 1 mM CaSO4 solution for 24 h. Germination took place in the dark at 25°C in 

sandwich culture. The caryopses were placed between two layers of filter paper moistened 

with 0.5 mM CaSO4 solution. On day 4, plants were exposed to the light. On day 7, eight 

seedlings were transferred to each container with 10 L of a one-fourth concentrated 

nutrient solution. The composition of the full-strength nutrient solution was as described 

by Pitann et al. (2009): 2.0 mM Ca(NO3)2, 0.2 mM KH2PO4, 1.0 mM K2SO4, 0.5 mM 

MgSO4, 2.0 mM CaCl2, 1 mM NaCl, 1.0 µM H3BO4, 2.0 µM MnSO4, 0.5 µM ZnSO4, 0.3 

µM CuSO4, 0.01 µM (NH4)6Mo7O24, 200 µM Fe–EDTA. On day 9 and 11, the 

concentration of nutrient solution was increased to half and full strength, respectively. The 

salt treatment started on day 14 with 25 mM NaCl. It was increased daily with 25 mM 

NaCl increments till a concentration of 100 mM NaCl was reached on day 17 and 

maintained till harvest on day 23. The nutrient solution was changed on day 17, 19 and 21. 

The control treatment was maintained with 1 mM NaCl from day 14 till harvest. The plants 

were grown with 200 W m
-2 

(Philips Master HP1-T Plus) light intensity at 26°C for 16 h 

and 18°C for 8 h. The relative humidity was 70%. 

2.2.2 Harvesting technique 

Plants were harvested on day 23 after 6 d application of 100 mM NaCl to ensure that the 

plants were in the first phase of salt stress at harvest. Shoot fresh mass was recorded on the 
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day of harvest. The shoot was divided into upper shoot (cut below the blade of 4th leaf) 

and the lower shoot (below the 4th leaf) (Fig. 2-4). However, the 4th leaf, which had 

already expanded, was excluded from the analysis to focus more on the expanding tissues. 

Then the basal 10 cm of the upper shoot (5th and above leaf blades) were separated as the 

youngest shoot and the rest part of the upper shoot without the basal 10 cm segment was 

designated as the young shoot. After chopping with scissors, shoot material was immersed 

in liquid nitrogen for a short time to stop any enzymatic activity. Afterwards the samples 

were stored at -80°C till further use.  

 

Figure 2-4: Schematic presentation of shoot separation. The whole shoot was divided into upper 

shoot (above 4th leaf) and the lower shoot. The 4th leaf, which was already expanded, was 

excluded from the analysis to focus more on the expanding tissues. Thus the basal 10 cm of the 

upper shoot were separated  as the youngest shoot and the remaining part of the upper shoot was 

designated as young shoot. 

2.2.3 Extraction of cell wall 

Extraction of cell wall was done following the optimized standard method described in the 

Experiment 1 in section 2.1.2.  Cell wall of the 250-405 µm fraction was analyzed for the 

chemical composition. 



Material and methods 
 

39 

 

2.2.4 Analyses of cellulose, neutral sugars, total uronic acid and degree of methylation 

of uronic acid 

Cellulose, neutral sugars, total uronic acid and degree of methylation of uronic acid were 

analyzed following the optimized standard method described in the experiment in section 

2.1.3, 2.1.4, 2.1.5 and 2.1.6, respectively. 

2.2.5 Analysis of cell-wall phenolics 

2.2.5.1 Extraction of phenolics from cell wall 

The method used in the Experiment 1 (section 2.1.8.3) was modified to a single-step 

extraction (Jung and Shalita-Jones 1990). In brief, 10 mg cell-wall materials were taken in 

an Eppendorf tube and then 600 µL of 2 M anaerobic (degassed with N2) NaOH were 

added. After addition of trans-cinnamic acid as an internal standard, the liquid was covered 

with N2 gas and then the lid closed tightly. Afterwards all tubes were placed in a water bath 

for 24 h at 39
o
C (Jung and Shalita-Jones 1990) with continuous shaking in darkness. The 

tubes were centrifuged at 36000 g for 10 min and afterwards the supernatant was carefully 

collected in a new tube with a micropipette. The solution was acidified with HCl to a pH < 

2 and the phenols in acidified supernatant were extracted with three volumes of acetic 

ethyl-ester. After extraction, acetic ethyl-ester was removed in a vacuum evaporator and 

the remaining solid was dissolved in 300 µL of 50% (v/v) aqueous methanol for 

subsequent analysis in HPLC. 

2.2.5.2 Analysis of phenols by HPLC 

This method was also slightly modified from that described in the Experiment 1 (section 

2.1.8).The standards of various monomeric phenols (vanillin and vanillic acid were from 

Fluka; trans-ferulic acid, trans-p-coumaric acid, trans-cinnamic acid, p-OH-benzoic acid 

and p-OH-benzaldehyde were from Sigma-Aldrich) and differnt diferulates (a kind gift 
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from Prof. Dr. Mirko Bunzel, Department of Food Science and Nutrition, University of 

Minnesota, USA) were dissolved in 50% (v/v) aqueous methanol; trans-cinnamic acid was 

added to the mixtures as an internal standard. An aliquot of 17 µL was injected by the 

autosampler (Dionex A550) and analyzed on a RP-HPLC column (LiChrospher ®100 RP-

18 end capped 5 µm column (250 mm × 4.6 mm), Techlab, Erkerode, Germany). The 

gradient profile developed by Waldron et al. (1996) for the separation of cell-wall 

esterified phenolic monomers and dimers was used with modification: initially 90% 

Solvent A (10% (v/v) aqueous acetonitrile plus TFA to 1 mM), 5% Solvent B (80% (v/v) 

aqueous methanol plus TFA to 1 mM) and 5% Solvent C (80% (v/v) aqueous acetonitrile 

plus TFA to 1 mM); linear gradient over 25 min to 26% A, 37% B and 37% C. Linear 

gradient over 5 min to 0% A, 50% B and 50% C; this composition of eluent was kept for 

further 5 min. Linear gradient over 15 min to 90% A, 5% B and 5%  C; this composition of 

eluent was kept for further10 min. Phenolic monomers and dimers were identified through 

analysis at 210, 265, 280 and 325 nm. Quantitation was based on peak areas at 280 nm. For 

the quantification of monomeric phenols except cis-ferulic acid, a two-point calibration 

curve was used with the standard substances. An attempt to produce cis-ferulic acid by 

exposing trans-ferulic acid solution (in a diluted ammonia) to UV radiation was 

unsuccessful possibly due to the destruction of the structure of trans-ferulic acid at low 

wave UV (280 nm) radiation. Thus a different procedure was followed to determine cis 

isomer of ferulic acid using the following two formulae: 

 

(ii) cis-FA (µg g-1 cell wall) =   

(i) trans-FA equivalent of cis-FA (µg g-1 cell wall) =   

Area of trans-FA 

trans-FA equivalent of cis-FA × RF of trans-FA according to Waldron et al. (1996) 

RF of cis-FA according to Waldron et al. (1996) 

Here, FA = trans-ferulic acid; RF = response factor 

 

Peak area of cis-FA at 280 nm × amount of trans-FA (µg g-1) on that particular run 

trans-FA equivalent of cis-FA × 0.36 

0.32 
=   
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Seven different diferulic acids namely 8-8´-DFA (aryltetralin form), 8-8´-DFA, 8-5´-DFA, 

5-5´-DFA, 8-0-4´-DFA, 8-5´-DFA (benzofuran form) and 8-5´-DFA (decarboxylated form) 

from the maize cell-wall were detected and quantified (Fig. B-13 and B-14). Except 8-8´-

DFA (decarboxylated form), other six diferulates were quantified in the same way as for 

cis-ferulic acid using following formulae (Waldron et al. 1996): 

 

As the response factor (RF) of decarboxylated 8-5´-DFA was not reported by Waldron et 

al. (1996) the correction factor (CF) of this compound (Dobberstein and Bunzel 2010) was 

used to calculate a modified response factor for quantification. The formulae for 

quantitation are given below: 

 
 

(i) RF of decarboxylated 8-5´-DFA =  

CF of 8-0-4´-DFA (Dobberstein and Bunzel 2010) × RF of 8-0-4´-DFA (Waldron et al. 1996) 

CF of decarboxylated 8-5´-DFA (Dobberstein and Bunzel 2010) 

= 
0.845 × 0.14 

1.341 
= 0.088 

trans-FA equivalent of 8-5´-DFA (decarboxylated form) × 0.36 

0.088 

(ii) 8-5´-DFA (decarboxylated form) (µg g-1 cell wall) =  

(ii) 8-5´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 8-5´-DFA × 0.36  

                             0.18 

(iv) 5-5´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 5-5´-DFA × 0.36  

                             0.21 

(v) 8-0-4´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 8-0-4´-DFA × 0.36  

                             0.14 

(vi) 8-5´-DFA (benzofuran form) (µg g-1 cell wall) =     
trans-FA equivalent of 8-5´-DFA (benzofuran form) × 0.36  

                             0.12 

Here, FA = trans-ferulic acid; DFA = diferulic acid; RF = response factor 

 

(ii) 8-8´-DFA (µg g-1 cell wall) =    
trans-FA equivalent of 8-8´-DFA × 0.36  

                             0.17 

(i) 8-8´-DFA (aryltetralin form) (µg g-1 cell wall) =    
trans-FA equivalent of 8-8´-DFA (aryltetralin form) × 0.36  

                             0.04 
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2.2.6 Analysis of cell-wall lignin 

Analysis of lignin was performed following the method described in Experiment 1 (section 

2.1.7) with a little modification. Use of perchloric acid was avoided as perchloric acid may 

degrade xylan that gives absorption at 280 nm (Hatfield et al. 1999). The modified method 

is described here. Exactly 20 mg freeze-dried cell wall were taken in a  glass vial and 1 mL 

of pyrrolidine : pyridine (1 : 1, v/v) was poured to it. Then all vials were closed with the 

teflon-lined cap and were placed in a water bath at 80°C for 18 h. The reaction mixture was 

transferred to a 15 mL centrifuge tube with the help of 5 mL methanol. After centrifuging 

at 350 g for 20 min, the solution was pipetted off and the residue was washed with 

methanol and recentrifuged for further five times each with 4 mL methanol.  After 

discarding the methanol, 4 mL of water were added to cell-wall residues. All tubes were 

then placed in a water bath at 70°C for 3 h by putting a glass marble on top of each tube.  

All tubes were then recentrifuged as before and the supernatants were discarded. The pellet 

was washed with cold water and finally with methanol followed by centrifugation. Then 

the resultant pellets were transferred into the screw-capped tubes and were placed in an 

oven to dry the pellets at 50°C overnight. 

Individual samples were removed from the oven, 2.5 mL of freshly prepared acetyl 

bromide reagent (acetyl bromide : glacial acetic acid = 1 : 3, v/v) were added. The tubes 

were capped immediately with PTFE-coated silicone cap and heated in water bath at 50°C 

for 4 h with occasional shaking. Then the sample was quantitatively transferred to a 50 mL 

volumetric flask with a reagent mixture containing 10 mL of 2 M NaOH and 12 mL of 

acetic acid.  Exactly 1750 µL of 0.5 M hydroxylamine were added to each flask, and 

samples were diluted to 50 mL with glacial acetic acid. The absorption of the final solution 
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was measured at 280 nm. Finally the lignin concentration was determined using the 

following two formulae (Morrison 1972):  

 

 

 

2.2.7 Statistical analysis 

Values are given as arithmetic means of four replicates with standard error of means (SE). 

To determine significant differences between treatments or parameters, Student´s t-test was 

performed at a level of P ≤ 5% (*), P ≤ 1% (**), and P ≤ 0.1% (***) using Microsoft 

Office Excel (Windows version 2007). 

 

(i) Absorbance value =  
Absorbance of sample – Absorbance of blank 

Concentration of sample (g L
-1

) 

(ii) Lignin concentration (mg g
-1

 cell wall) = (33.6 × Absorbance value) – 11.1  
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3 Results  

3.1 Results of Experiment 1 

3.1.1 Shoot fresh mass production   

 

Figure 3-1: Effect of salt stress on shoot fresh mass production of 21 d old maize cv. Amadeo. 

Salt stress (100 mM NaCl) caused a 51% reduction in shoot fresh mass of maize cv. 

Amadeo compared to the control (1 mM NaCl) treatment (Fig. 3-1).  

3.1.2 Isolation of cell walls 

 
Figure 3-2: Freeze-dried cell wall of maize cv. Amadeo. Cell wall collected from 405 µm mesh 

sieve was termed “> 405 µm cell-wall fraction” and that collected from 250 µm mesh sieve was 

termed “250-405 µm cell-wall fraction”. 

Cell walls were isolated from the 21 d old shoots of maize cv. Amadeo following the 

procedures described in the section 2.1.2 It was found that that 12 min crushing of maize 
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shoots in the blender could effectively break tissues thus allowing them to be bathed with 

the hypertonic sucrose solution. After final washing with 0.1% (v/v) aqueous Triton X100, 

the crushed cell walls were cleaned with distilled water through two sieves (mesh size of 

405 and 250 µm, respectively)  stacked on each other. Thus the cell wall isolated from 405 

µm sieve was termed “> 405 µm cell-wall fraction” and that collected from 250 µm  was 

termed “250-405 µm cell wall fraction” (Fig. 3-2).  

 

Figure 3-3: A color test for the presence of starch in isolated cell-walls. Image (a) shows light 

green-colored iodine reagent, while (b) and (c) show the > 405 µm and 250-405 µm cell-wall 

fractions, respectively. Images (d) and (e) show the > 405 µm and 250-405 µm cell-wall fractions, 

respectively, after the reaction with iodine reagent. Both the cell wall fractions show no change in 

color with iodine reagent. On the contrary, image (f) shows dark coloration of macerated whole 

leaf with the iodine reagent. Image (e) and (f) demonstrate the typical iodine reaction (dark 

coloration) with pure starch and starch-rich potato tuber, respectively. 

Iodine test was done to test whether the isolated cell-wall fractions contained starch or not. 

There was no change in color of both the cell-wall fractions after the addition of iodine 

reagent (Fig. 3-3). Light microscopy was performed for both the cell-wall fractions and it 

was found that both the fractions contained clean cell-wall (Fig. 3-4). No chloroplast was 

found in the isolated cell-walls. These two cell-wall fractions were quite different in tissue 

(a)    (b) (c) (d) (e) 

(h) (g) (f) 
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composition (Fig. 3-4 b). The 250-405 µm fraction was dominated by the mesophyll and 

epidermal tissues, whereas > 405 µm fraction was dominated by vascular and fiber tissues.  

   

(a) (b) (c) 

 

  

 

(d) (e)  

Figure 3-4: Light microscopic observation of isolated cell wall from the 21 d old shoot of 

maize cv. Amadeo. Image (a) represents extracted hypocotyl cell walls (Goldberg 1985). 

Image (b) and (c) represent cell walls of the 250-405 µm fraction that consists of mesophyll 

and epidermal tissues, respectively. On the contrary, image (d) highlights the extracted tissue 

of the > 405 µm fraction which is dominated by fibers and vascular tissues. Image (e) shows 

the un-extracted maize leaf-tissues. 

3.1.3 Cellulose concentration 

 

 

Figure 3-5: Calibration curve for determining cellulose concentration.  
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An absorbance of 0.373 was recorded from 20 µg mL
-1

 cellulose standard, and it was in the 

expected range of 0.34-0.37 reported by Updegraff (1969). The coefficient of 

determination (R
2
) of the standard curve for the determination of cellulose was 99.9% (Fig. 

3-5). Thus 99.9% variation of the dependent variable (absorbance) is explained by the 

independent variable (concentration).  

 

The regression equation of the standard curve (Fig. 3-5) was as follows: 

y = 0.0157x + 0.0178 

or, x = (0.0178 – y) ÷ 0157 

where, 

x =  Concentration of cellulose in mg L
-1

 

y = Corrected absorbance value 

 

Figure 3-6: Cellulose concentrations in two different fractions of cell wall (250-405 µm and > 405 

µm  fractions).  Error bars represent ± SE of three replicates. 

Cellulose from the cell wall of both control and salt-treated plants was analyzed (Fig. 3-6). 

Cellulose declined by 18%  in the  250-405 µm cell-wall fraction due to the salt treatment. 

On the other hand, salt stress caused only 3% reduction of cellulose in  the > 405 µm cell-

wall fraction. 
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3.1.4 Concentrations of neutral sugars  

3.1.4.1 Optimum eluent (NaOH) concentration for separation of neutral sugars 

 

Figure 3-7: HPAEC-PAD elution profiles during method development for the separation of neutral 

sugar-standards using CarboPac PA-10 column (analytical column 2 mm × 250 mm and guard 

column 2 mm × 50 mm) coupled with a pulsed amperometric detector (Dionex ED 50 gold 

electrode). Explanation for peak identification: 1, L-arabinose; 2, L-rhamnose; 3, D-galactose; 4, 

D-glucose; 5, D-xylose; 6, D-mannose. As an eluent, a range of different concentrations of NaOH 

was tested to find out the optimum separation profile of cell-wall neutral sugars. 
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To find out the optimum separation of cell-wall neutral sugars (glucose, xylose, arabinose, 

galactose, mannose and rhamnose), different concentrations of NaOH ranging from  1 to 

60 mM were run as eluent (Fig. 3-7). At a concentration of 15 mM NaOH, there were only 

three peaks (Fig. 3-7 d) for six different sugars. Any further higher concentration of NaOH 

above 15 mM also could not produce better separation of these six sugars. However, 5 mM 

and lower concentrations of NaOH yielded satisfactory separation of sugars. 2 mM NaOH 

was optimum for the satisfactory separation of all six neutral sugars in the cell-wall 

hydrolysates. For the detection of minor sugars, mannose and rhamnose, a higher 

concentration of cell-wall hydrolysate may be required. However, this high concentration 

of cell wall produced overloaded-peak for major cell-wall neutral sugars such as glucose 

and xylose. Thus a relatively diluted cell-wall hydrolysate (50 mg L
-1

) may be required for 

their separation and determination (Fig. 3-8). 

 

Figure 3-8: Separation of neutral sugars from the cell-wall hydrolysates in HPAEC-PAD system. 

Except rhamnose and mannose, other sugars can be separated and detected at 50 mg L
-1

 cell-wall 

digest. However, these two sugars can be detected at higher concentration (e.g. 500 mg L
-1

 cell-

wall digest).  

 

 

 

(a) (b) 
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3.1.4.2 Reproducibility of HPAEC-PAD and cell-wall hydrolysate for determining the 

neutral sugars 

  
                                             (a)                                   (b) 

Figure 3-9: Reproducibility of HPAEC-PAD in determining neutral sugars namely arabinose 

(Ara), rhamnose (Rha), Galactose (Gal), Glucose (Glu), Xylose (Xyl) and mannose (Man) from the 

cell-wall hydrolysates. Error bars represent standard error of means (n = 3).  

 

Figure 3-10: An exemplary three-point calibration curve with L-arabinose for the determination of 

this sugar in the HPAEC-PAD system.  
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Table 3-1: Six sugar standards showing their chromatogram characteristics in a three-point 

calibration curve of HPAEC-PAD analysis. 

Peak name Retention time Calculation type Points Correlation 

coefficient (%) 

Arabinose  11.3 Linear 3 100.00 

Rhamnose  12.2 Linear 3 99.99 

Galactose  13.6 Linear 3 99.99 

Glucose 16.1 Linear 3 99.87 

Xylose  19.0 Linear 3 99.88 

Mannose  20.6 Linear 3 99.78 

   Average  = 99.92 

Reproducibility of the HPAEC-PAD system was checked reading the same hydrolysate but 

in three different times (Fig. 3-9 a). Three-point (3, 6 and 9 mg L
-1

) calibration curves with 

standard sugars showed a perfect correlation coefficient (~100%) for each of the six cell-

wall neutral sugars analyzed (Fig. 3-10, Table 3-1). It was found that the standard 

deviation for mannose was 9%. All other sugars showed less than 4% standard deviation.  

Reproducibility of digestion was checked with three independent hydrolysates of the same 

cell-wall sample (Fig. 3-9 b). The standard deviation for the amount of individual neutral 

sugars (three determinations) was less than 2% for the major sugars glucose, xylose and 

arabinose. Minor sugars such as rhamnose, mannose and galactose showed much higher 

standard deviation (3-17%). 
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3.1.4.3 Cell-wall neutral sugars as influenced by salt stress 

Table 3-2: Influence of salt stress on the concentrations  of various neutral sugars in two 

different cell-wall fractions of maize (cv. Amadeo) shoot. Optimized HPAEC-PAD was 

used for the separation and detections of sugars. 

 
 Concentration in 250-405 µm cell-wall 

fraction (mg g
-1

 cell wall) 

Concentration in > 405 µm cell-wall 

fraction (mg g
-1

 cell wall) 

Neutral 

sugars 

1 mM NaCl 100 mM NaCl Relative 

change (%) 

1 mM NaCl 100 mM NaCl Relative  

change (%) 

Arabinose 18.7 23.9 + 28% 16.0 18.9 + 18% 

Rhamnose 0.8 1.0 + 26% 0.6 0.7 + 19% 

Galactose 4.1 5.2 + 28% 3.0 3.7 + 22% 

Glucose 240.5 291.0 + 21% 317.7 278.6 - 12% 

Xylose 87.8 117.7 + 34% 126.0 116.5 - 8% 

Mannnose 0.6 0.9 + 44% 0.5 0.5 - 6% 

Sum 352.6 439.7 + 25% 463.8 418.8 - 10% 

Higher concentrations of neutral sugars were detected in cell walls of salt-stressed  plants 

compared to the control plants (Table 3-2). Glucose, xylose and arabinose were the most 

abundant sugars followed by galactose, rhamnose and mannose in both the cell-wall 

fractions and in both control and salt treatment. The relative increase of these sugars in 

salt-treated plants was in range of 21-44% in 250-405 µm cell-wall fraction. On the other 

hand, > 400 µm cell-wall fraction showed little variation in neutral sugars due to the salt 

treatment. Arabinose, rhamnose and galactose increased by 18, 19 and 22% in > 405 µm 

cell-wall fraction of salt-treated plants. On the other hand this higher cell-wall fraction 

showed a decrease of glucose, xylose and mannose by 12, 8 and 6%, respectively, under 

salt treatment.  
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3.1.5 Total uronic acids  

In the standard curve with D-galacturonic acid, the coefficient of determination (R
2
) was 

≈100% (Fig. 3-11). Thus the total variation observed in the dependent variable 

(absorbance) is fully explained by the independent variable (concentration). 

 

Figure 3-11: Calibration curve with D-galacturonic acid for the determination of total uronic acid 

from the cell wall of maize shoot.  

The regression equation of the standard curve (Fig. 3-11) with the D-galacturonic acid was 

as follows: 

y = 0.0092x + 0.0009 

or, x = (0.0009 – y) ÷ 0.0092 

where, 

x =  Concentration of D-galacturonic acid in µg/400 µL 

y = Corrected absorbance value 

Salt stress reduced the concentrations of total uronic acid by 18%  in the 250-405 µm  cell-

wall fraction. On the other hand, the > 405 µm cell-wall fraction showed only 5% decline 

of total uronic acid under salt stress (Fig. 3-12).   
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Figure 3-12: Total uronic acid concentrations in two different fractions of cell wall (250-405 µm 

and > 405 µm  fractions) of maize cv. Amadeo.  Each data point represents the mean ± SE of three 

replicates. 

3.1.6 Methylation of uronic acids 

 

Figure 3-13: Calibration curve with methanol for the determination of degree of methylation of 

uronic acid in the cell wall of maize shoot. 

 

The regression equation of the standard curve with methanol was as follows (Fig. 3-13): 

y = 0.0221x - 0.0015 

where, 

y = Corrected absorbance value 

x =  Concentration of methanol in µg mL
-1
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The degree of methylation was calculated using the following formula: 

Degree of methylation (%)  
                                                           

                                                    
  × 100 

 

Figure 3-14: Concentrations of non-methylated and methylated uronic acids in 250-405 µm cell-

wall fraction of maize cv. Amadeo. Error bars represent ± SE of three replicates. 

The calibration curve showed a perfect coefficient of determination (R
2
 = 100%) for 

determining the degree of methylation of uronic acid in the cell wall of maize shoot (Fig. 

3-13). Methylation of uronic acid was determined only for 250-405 µm  cell-wall fraction 

(Fig. 3-14). It was found that salt stress accounted for lowering the concentration of non-

methylated uronic acid by 27% in maize cv. Amadeo. Conversely, salt stress augmented 

methylated uronic acid by 10% due to salt treatment. 

3.1.7 Lignin 

 

Figure 3-15: Effect of salt stress on cell-wall lignin concentration in 250-405 µm sized cell-wall 

fraction of maize cv. Amadeo. Due to lack of cell-wall, lignin was determined from only one 

sample. 
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Lignin concentration was determined only from 250-405 µm cell-wall fraction. Salt stress 

caused a 57% increase of lignin in 250-405 µm sized cell-wall fraction (Fig. 3-15). 

3.1.8 Phenolics 

Methanol and acetonitrile aided separation of all the major phenolic monomers and dimers 

from each other (Fig. 3-16, 3-17). Phenolic monomers were identified using standard 

substances, while peak assignment for diferulates was performed using the detector 

response values at 210, 265, 280 and 325 nm according Waldron et al. (1996). Spectral 

data were very useful to discriminate between the peaks which aided identification of 

various diferulates.  

In this experiment, various monomeric phenols (p-OH-benzoic acid, vanillic acid, p-OH-

benzaldehyde, vanillin, trans-p-coumaric acid and trans-ferulic acid) from the 250-405 µm 

cell-wall fraction of maize cv. Amadeo (Fig. 3-18) were determined. Salt stress decreased 

the concentrations of cell wall-bound p-OH-benzaldehyde and trans-p-coumaric acid (Fig. 

3-18). In contrast, a slight (6%) increase of trans-ferulic acid was observed under salt 

treatment.  

Beside monomeric phenols, four different diferulic acids (DFA) namely 8-5´-DFA, 5-5´-

DFA, 8-0-4´-DFA and 8-5´-DFA (benzofuran form) were quantified (Fig. 3-19). In this 

study, there was no major influence of salt stress on diferulic acids.  
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Figure 3-16: RP-HPLC elution profile of monomeric phenol standards and cell wall-bound 

phenols from maize cv. Amadeo with detection at 280 nm. A RP-HPLC column (LiChrospher
®
100 

RP-18 endcapped 5 µm column (250 mm × 4.6 mm), Techlab, Erkerode, Germany) was used for 

the separation of monomeric phenols. A gradient elution system was used which increased the 

relative proportion of methanol and acetonitrile in aqueous 1 mM trifluoroacetic acid (Waldron et 

al. 1996). 

 

Figure 3-17: An exemplary chromatogram showing phenolics from maize cv. Amadeo extracted 

with 2 M NaOH using a RP-HPLC column (LiChrospher
®
100 RP-18 endcapped 5 µm column (250 

mm × 4.6 mm), Techlab, Erkerode). Trans-cinnamic acid was used as a internal standard. At higher 

concentration of NaOH (2 M), mostly trans-p-coumaric acid was released. 
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Figure 3-18: Effect of salt stress on monomeric phenolics composition from 250-405 µm  cell-wall 

fraction of maize cv. Amadeo. Error bars represent ± SE of three replicates. 

 

Figure 3-19: Diferulates (DFA) detected from the 250-405 µm cell-wall fraction of maize shoot 

cv. Amadeo in the first phase of salt stress. Error bars represent ± SE of three replicates. 
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3.1.9 Enzymatic production of diferulates 

 

Figure 3-20: RP-HPLC chromatogram showing the products after reaction of 0.3 µM trans-ferulic 

acid with 1 µM horse radish peroxidase in presence of 100 µM H2O2.  

An experiment was conducted to prepare the diferulates using trans-ferulic acid as a 

substrate, hydrogen peroxide and horse radish peroxidase as catalysts. Trans-ferulic acid 

with the concentration of 0.3 mM seemed to be better for the reaction. There were only two 

peaks of diferulates (Fig. 3-20), as their chromatogram characteristics (retention time and 

change in peak area in 4 different wave lengths viz. 210, 265, 280, and 325 nm) were quite 

similar to that reported by Waldron et al.1996. 
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3.2 Results of Experiment 2 

3.2.1 Growth reduction in two maize genotypes during the first phase of salt stress  

Salt stress (100 mM NaCl) caused a reduction of plant height over time compared to the 

control treatment (1 mM NaCl) in both the salt-sensitive (Pioneer 3906) and the salt-

resistant (SR 12) maize genotype (Fig. 3-21) 

 
 

Figure 3-21: Trend of plant heights of the two maize genotypes Pioneer 3906 and SR 12 under salt 

stress. On day 14, plant height was measured before starting 25 mM NaCl treatment. Salt-treated 

plants were supplied 100 mM NaCl on day 17, and this level of NaCl was maintained till harvest 

on day 23. Error bars are the standard error of means of 4 replicates.  ***, ** and * = significantly 

different compared to control with P ≤ 0.1%, P ≤ 1.0% and P ≤ 5.0%, respectively. 
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The trend of plant height reduction under salt treatment was different for the two 

genotypes. Pioneer 3906 started to show a significant decline in plant height from day 17 

after receiving 75 mM NaCl compared to control. On the other hand SR 12 showed 

significant reduction in plant height from day 19, when it had received already 100 mM 

NaCl for two days. From day 20, the trend of plant height reduction was quite similar for 

both the genotypes in response to 100 mM NaCl compared to the control. 

Younger leaf was identified as the youngest leaf whose height could be measured by ruler, 

and older leaf was the leaf that gave the maximum height of the plant.  The elongation rate 

of younger leaves had significantly been influenced by salt stress, while for  older leaves it 

remained unaltered (Fig. 3-22). The elongation rates of younger leaves declined by 45% in 

Pioneer 3906 due to salt treatment (100 mM NaCl), whereas the younger leaves of SR 12 

showed a 40% repression of elongation rate under the same condition. Salt treatment did 

not produce genotypic difference on leaf elongation rates. 

 

Figure 3-22: Effect of salt stress on average elongation rates of younger and older leaves of two 

maize genotypes Pioneer 3906 and SR 12 during days 21-22. The values are means of four 

replicates ± SE. *** means significantly different compared to control with P ≤ 0.1%. 
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Salt stress severely reduced shoot and root fresh mass of both maize genotypes compared 

to control (Fig. 3-23 and 3-24).  

 

Figure 3-23: Effect of salt stress (100 mM NaCl) on the habits of the salt-sensitive (Pioneer 3906) 

and the salt-resistant (SR 12)  genotpye on day 23 before harvest.  

 

Figure 3-24. Effect of salt stress on relative reduction of shoot and root fresh-mass on day 23 of 

maize genotypes Pioneer 3906 and SR 12. The values are means of four replicates ± SE. ** = 

significantly different between genotypes with P ≤ 1.0%. 
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Shoot fresh mass was reduced by 51 and 42% in Pioneer 3906 and SR 12, respectively 

(Fig. 3-24). The decrease in shoot growth was significantly smaller in salt-resistant SR 12 

compared to salt-sensitive Pioneer 3906 under salt treatment. However, salt stress 

accounted for the reduction of root fresh weights by 30 and 34% in Pioneer 3906 and SR 

12, respectively. Genotypes did not differ in root fresh mass due to the salt treatment. 

3.2.2 Ratio of cell-wall dry mass to shoot fresh-mass as influenced by salt treatment  

The ratio between cell-wall dry mass and shoot fresh-mass was increased after the addition 

of 100 mM NaCl to the root medium for the two genotypes (Fig. 3.25). In this experiment, 

the upper shoot (5th and above leaf blades) was divided into youngest (the basal 10 cm) 

and young (the rest above the basal 10 cm of 5th and above order leaf blades) shoot parts 

and studied them separately.  

 

Figure 3-25. Ratio between cell-wall dry mass and shoot fresh mass of 250-405 µm cell-wall 

fraction as influenced by the salt stress in youngest (basal 10 cm of 5th and above order leaf blades) 

and young shoot (5th and above-order leaf blades without basal 10 cm segment) of Pioneer 3906 

and SR 12. The values are means of four replicates ± SE. ** and * = significantly different 

compared to control with P ≤ 1.0% and P ≤ 5.0%, respectively. 
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Relative to the control treatment, the ratios between cell-wall dry mass and shoot fresh 

mass increased by 45 and 46% in youngest and young shoot of Pioneer 3906, respectively. 

On the other hand, these ratios were increased by 35 and 40% for the youngest and young 

shoot of SR 12, respectively, when plants were exposed to 100 mM NaCl. 

3.2.3 Cellulose concentration in cell wall during the first phase of salt stress 

In both genotypes, the salt treatment accounted for lower cellulose concentrations in cell 

wall of youngest and young shoots (Fig. 3-26). The results revealed that the concentration 

of cellulose declined by 19% in youngest shoot of Pioneer 3906, whilst this reduction in 

younger shoot was only 12%. On the other hand, salt stress accounted for a decrease in 

cellulose concentrations in youngest and young shoot of SR 12 by 13 and 14%, 

respectively. Genotypes differed with respect to their cellulose concentrations both in 

youngest and younger shoot cell-wall. Nonetheless, salt stress-induced reductions of 

cellulose concentration were similar in the sensitive (Pioneer 3906) and resistant (SR 12) 

genotype.  

 

Figure 3-26. Concentrations of cellulose as affected by salt treatment in cell wall of youngest 

(basal 10 cm of 5th and above-order leaf blades) and young shoot (5th and above order leaf blades 

without basal 10 cm segment)  shoot of Pioneer 3906 and SR 12. The values are means of four 

replicates ± SE. * = significantly different compared to control with P ≤ 5.0%. 
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3.2.4 Uronic acid and its degree of methylation during the first phase of salt stress 

The total concentration of uronic acid serves as a measure of the concentration of pectic 

polysaccharides. There was a strong increase in total uronic acid concentration by 112% in 

youngest shoot of Pioneer 3906 in contrast to 27% increase in the youngest shoot of SR 12 

(Fig. 3-27 a). However, the young shoot of Pioneer 3906 showed a small increase of total 

uronic acid concentration (29%) in contrast to the large increase of total uronic acid 

concentration (69%) in young shoot of SR 12. 

 

 

Figure 3-27: Concentrations of (a) total uronic acid and (b) degree of methylation of uronic acid as 

affected by salt treatment (100 mM NaCl) in cell wall of youngest (basal 10 cm of 5th and above-

order leaf blades) and young (5th and above order leaf blades without basal 10 cm segment) shoot. 

The values are means of four replicates ± SE. ** and * = significantly different compared to control 

with P ≤ 1.0% and P ≤ 5.0%, respectively.  
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Results showed that the degree of methylation of uronic acid in youngest shoot of Pioneer 

3906 and SR 12 significantly decreased due to the salt stress (Fig. 3-27 b). Under control 

conditions, methylation also decreased with increasing tissue age for Pioneer 3906, but not 

for SR 12.  

 

 

 
 
Figure 3-28: Concentrations of (a) non-methylated uronic acid, and (b) relative change in non-

methylated uronic acid due to salt treatment (100 mM NaCl) in cell wall of youngest (basal 10 cm 

of 5th and above-order leaf blades) and young shoot (5th and above order leaf blades without basal 

10 cm segment). The values are means of four replicates ± SE. ***, ** and * = significantly 

different between two genotypes with P ≤ 0.1%, P ≤ 1.0% and P ≤ 5.0%, respectively.  
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Results of the experiment revealed that the concentrations of non-methylated uronic acid in 

youngest and young shoot cell-wall of both Pioneer 3906 and SR 12 increased 

significantly, but to a different extent (Fig. 3-28 a). In youngest shoot, the increase was 

more pronounced in Pioneer 3906 (146%) compared to SR 12 (39%). On the contrary, the 

young shoot showed a smaller increase of non-methylated uronic acid concentration in 

Pioneer 3906 (25%) than in SR 12 (94%). Our findings show that genotypes differed 

significantly in their response of the total non-methylated uronic acid concentration under 

salt stress  (Fig. 3-28 b). The treatment with 100 mM NaCl caused a significantly higher 

relative change of non-methylated uronic acid in youngest shoot of Pioneer 3906 compared 

to SR 12. The young shoot, however, showed a higher relative change in non-methylated 

uronic acid of SR 12 compared to Pioneer 3906.   

3.2.5 Cell-wall neutral sugars as affected during the first phase of salt stress 

Neutral sugars were determined using HPAEC-PAD analysis (Fig. 3-29, Table 3-3). Since  

glucose was included in the neutral sugars, under the given conditions part of the cellulose 

may be hydrolyzed along with the hemicellulosic glucose (Martens and Loeffelmann 

2002). The relative change in galactose concentration in salt-stressed youngest and young 

shoots of Pioneer 3906 was similar (+ 42%). However, in salt-stressed youngest and young 

shoots of SR 12, the concentrations of galactose increased by 40 and 85%, respectively. 

The young shoot of SR 12 showed a significant increase (21%) of glucose due to the salt 

treatment. The arabinose showed marked changes due to salt stress. Arabinose 

concentrations increased in youngest and young shoot of Pioneer 3906 by 27 and 22%, 

respectively. On the contrary, SR 12 showed a 17% increase in arabinose concentration in 

youngest shoot due to salt stress, and, surprisingly, this increase was 53% for the young 

shoot of SR 12. For SR 12 the arabinose increase observed in the first experiment proved 

to be less pronounced in the expanding youngest tissue. 
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Figure 3-29: (a) A HPAEC-PAD chromatogram of detecting cell-wall neutral sugars, and (b) 

showing linearity of the three-point calibration curve with arabinose as example. 

Table 3-3. Influence of salt stress (100 mM NaCl) on concentrations of neutral sugars in cell wall 

from youngest (basal 10 cm of 5th and above order leaf blades) and young shoot (5th and above 

order leaf blades without basal 10 cm segment) of Pioneer 3906 and SR 12. The values are means 

of four replicates ± SE. Significant differences (p ≤ 5%) between treatments are indicated by 

different letters. Arabinoxylan concentration was calculated as the sum of xylose and arabinose 

concentrations (Hossain et al. 2006; Christensen et al. 2010). ND stands for not detected. 

 
 Concentration in youngest shoot 

(mg g
-1

 cell-wall dry mass) 

Concentration in young shoot      

(mg g
-1

 cell-wall dry mass) 

Neutral sugars Genotypes  1 mM  NaCl   100 mM 

NaCl 

  Relative 

change 

(%) 

1 mM 

NaCl 

  100 mM 

NaCl 

  Relative 

change 

(%) 

Xylose 

 

Pioneer 3906 

SR 12 

164.4 ± 21.2  

204.3 ± 9.3  

A 

a 

 186.0 ± 8.5  

228.5 ± 4.9  

A 

a 

 + 13.2 

+ 11.9 

98.4 ± 5.2  

127.1 ± 4.8  

A 

a 

 98.7 ± 9.0  

140.4 ± 6.6  

A 

a 

 + 0.4 

+ 10.4 

Arabinose 

 

Pioneer 3906 

SR 12 

22.2 ± 2.0  

24.4 ± 0.7  

A 

a 

 28.1 ± 1.0   

28.5 ± 0.4   

B 

b 

 + 26.5 

+ 16.8 

23.5 ± 1.0  

21.8 ± 0.7  

A 

a 

 28.6 ± 2.5  

33.3 ± 2.0  

A 

b 

 + 21.7 

+ 52.8 

Arabinoxylan 
 

Pioneer 3906 

SR 12 

186.6 ± 23.0  

228.7 ± 9.9  

A 

b 

 214.1 ± 9.3  

257.5 ± 4.9  

A 

a 

 + 14.8 

+ 12.4 

121.9 ± 6.1  

148.9 ± 5.0  

A 

a 

 127.3 ± 11.4  

173.7 ± 08.4  

A 

b 

 + 5.0 

+ 16.7 

Glucose Pioneer 3906 

SR 12 

441.0 ± 51.7  

424.8 ± 9.4 

A 

a 

 478.4 ± 18.4  

395.6 ± 13.7 

A 

a 

 + 8.4 

- 6.9 

380.3 ± 14 

326.3 ± 11 

A 

a 

 397.4 ± 27.6  

395.9 ± 24 

A 

b 

 + 4.5 

+ 21.3 

Galactose 

 

Pioneer 3906 

SR 12 

4.3 ± 0.5  

4.7 ± 0.2  

A 

a 

 6.2 ± 0.5  

6.5 ± 0.3  

A 

b 

 + 42.1 

+ 39.6 

5.1 ± 0.1  

4.6 ± 0.1  

A 

a 

 7.2 ± 0.05  

8.5 ± 0.10  

B 

b 

 + 41.9 

+ 85.0 

Rhamnose 

 

Pioneer 3906 

SR 12 

0.5 ± 0.1  

0.4 ± 0.1  

A 

a 

 0.9 ± 0.2  

0.8 ± 0.1  

A 

b 

 + 90.0 

+ 84.5 

ND 

ND 

  ND 

ND 

   - 

 - 

Mannnose 

 

Pioneer 3906 

SR 12 

0.7 ± 0.1  

0.7 ± 0.0  

A 

a 

 0.8 ± 0.2  

0.8±0.1  

A 

a 

 + 12.8 

+ 9.6 

ND 

ND 

  ND 

ND 

   - 

 - 
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The arabinoxylan concentration increased slightly but yet significantly due to salt stress in 

both youngest and young shoots of SR 12. On the contrary, no significant change was 

observed in arabinoxylan for Pioneer 3906 under salt treatment though a slight increase 

(14%) was recorded in the youngest shoot of Pioneer 3906 due to the first phase of salt 

stress. Salt resistant hybrid SR 12 showed significantly higher concentrations in total non-

cellulosic neutral sugars (as the sum of β-D-xylose, α-L-arabinose, α-D galactose, α-L-

rhamnose and β-D-mannose) in cell-walls of both youngest and young shoots, while 

Pioneer 3906 did not show any change in total non-cellulosic neutral sugars due to the salt 

treatment (Fig. 3-30). 

 

Figure 3-30: Concentrations of total hemicellulosic sugars (the sum of β-D-xylose, α-L-arabinose, 

α-D galactose, α-L-rhamnose and β-D-mannose) as affected by salt treatment in cell wall of 

youngest (basal 10 cm of 5th and above-order leaf blades) and young shoot (5th and above order 

leaf blades without basal 10 cm segment)  shoot of Pioneer 3906 and SR 12. The values are means 

of four replicates ± SE. * = significantly different compared to control with P ≤ 5.0%. 
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3.2.6 Phenolics in maize cell-walls as influenced during the first phase of salt stress 

 

Methanol and acetonitrile aided separation of all the major monomer and dimer standards 

from each other (Fig. 3-31 and 3-33). Phenolic monomers and dimers compounds were 

identified through analysis at 210, 265, 280 and 325 nm.  

Table 3-4: Spectral data of cis-ferulic acid and some diferulates. Detector responses for 

peak height were recorded at 210, 265, 280 and 325 nm wave length. 

Chemical compounds 

 Peak height (mAU)  

 210 nm 265 nm 280 nm 325 nm 

cis-Ferulic acid  103 35 49 63 

8-8´-DFA (aryltetralin)  33 10 9 23 

8-8´-DFA  20 8 11 24 

8-5´-DFA (benzofuran form)  5 3 5 7 

Closest left peak of 8-5´-DFA 

(benzofuran form) (Fig. 3-33, peak 

no. 1) 

 25 2 4 2 

8-5´-DFA (decarboxylated form)  42 17 19 59 

Closest left peak of 8-5´-DFA 

(decarboxylated form) (Fig. 3-33, 

peak no. 2) 

 48 15 10 22 
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Figure 3-31: RP-HPLC elution profile of some monomeric phenol standards and cell wall-bound 

monomeric phenols with detection at 280 nm. RP column (LiChrospher
®
100 RP-18 endcapped 5 

µm column (250 mm × 4.6 mm), Techlab, Erkerode, Germany) was used for the separation of 

monomeric phenols. A gradient elution system was done which increased the relative proportion of 

methanol and acetonitrile in aqueous 1 mM trifluoroacetic acid (Waldron et al. 1996). 

In this study, it was investigated whether application of 100 mM NaCl in the nutrient 

medium could affect various monomeric phenols (p-OH-benzoic acid, vanillic acid, p-OH-

benzaldehyde, vanillin, trans-p-coumaric acid, trans-ferulic acid and cis-ferulic acid) of 

maize leaf cell-wall (Fig. 3-31 and 3-32). Salt stress significantly increased the 

concentrations of cell wall-bound trans-ferulic acid, trans-p-coumaric acid and vanillin in 

Pioneer 3906, but not in SR 12 (Fig. 3-32).  
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Figure 3-32: Effect of salt stress on various cell-wall monomeric phenols from the youngest (basal 

10 cm of 5th and above order leaves) and young (excluding basal 10 cm of 5th and above order 

leaves) shoots of two maize genotypes Pioneer 3906 and SR 12. Each data point is the mean ± SE 

of four replicates. Due to a large variation in concentration of various monomeric phenols, data are 

presented in two scales in the graph. (a) shows the changes in trans-p-coumaric acid and trans-

ferulic acid, while (b) represents the changes in other minor monomeric phenols due to the salt 

treatment. ** and * = significantly different compared to control with P ≤ 1.0% and P ≤ 5.0%, 

respectively. 

In contrast, young shoot of SR 12 showed significantly higher concentrations of vanillic 

acid, vanillin and cis-ferulic due to the salt treatment. The trans-ferulic acid and trans-p-

coumaric acid were the most dominant hydroxycinnamic acids in both genotypes and in 

both youngest and young shoot cell-walls. The increase of trans-p-coumaric acid and 

trans-ferulic acid was around 41% and 44% in youngest shoot of Pioneer 3906. Salt stress 
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caused a increase in cis-ferulic acid by 83 and 16% in youngest shoot of Pioneer 3906 and 

SR 12, respectively. On the other hand, young shoots of Pioneer 3906 and SR 12 showed 

62 and 69% increase in cis-ferulic acid due to salt stress. The concentrations of cis-ferulic 

acid in young shoot of both Pioneer 3906 and SR 12 were 3-5 fold to that of youngest 

shoot.  

 

Figure 3-33: RP-HPLC elution profile of some diferulate (DFA) standards and cell wall-bound 

diferulates (DFA) with detection at 280 nm. RP column (LiChrospher
®
100 RP-18 endcapped 5 µm 

column (250 mm × 4.6 mm), Merck, Darmstadt, Germany) was used for the separation of 

monomeric phenols. A gradient elution system was used which increased the relative proportion of 

methanol and acetonitrile in aqueous 1 mM trifluoroacetic acid (Waldron et al. 1996). Standards of 

various diferulates were a gift from Prof. Mirko Bunzel, Department of Food Science and 

Nutrition, University of Minnesota, USA. 
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Figure 3-34: Influence of salt stress on various cell-wall diferulic acids (DFA) from the youngest 

(basal 10 cm of 5th and above order leaves) and young (excluding basal 10 cm of 5th and above 

order leaves) shoots of two maize genotypes Pioneer 3906 and SR 12. Each data point is the mean 

± SE of four replicates. 

Seven different diferulic acids namely 8-8´-DFA (aryltetralin form), 8-8´-DFA , 8-5´-DFA, 

5-5´-DFA, 8-0-4´-DFA, 8-5´-DFA (benzofuran form) and 8-5´-DFA (decarboxylated form) 

from the maize cell-wall were quantified (Fig. 3-33 and 3-34). Except 8-8´-DFA 

(aryltetralin form) and 8-5´-DFA (decarboxylated form), the concentrations of all other 

diferulates increased significantly due to the salt treatment in the youngest shoot cell-wall 
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of salt-sensitive genotype Pioneer 3906. The diferulates namely 8-8´-DFA, 8-5´-DFA, 5-

5´-DFA, 8-0-4´-DFA, 8-5´-DFA (benzofuran form) were increased in youngest shoot of 

Pioneer 3906 by 38, 26, 32, 33 and 67%, respectively. On the other hand, the youngest 

shoot cell-wall of SR 12 showed an increased concentration of 8-8´-DFA (aryltetralin form 

by 58%) and 8-5´-DFA (decarboxylated form by 145%) under salt treatment, while other 

forms of diferulates essentially remained unaffected. In the young shoot of both genotypes, 

there was no significant change in the diferulates concentration except a significant decline 

of 8-5´-DFA (decarboxylated form) in the young shoot cell-wall of SR 12. In all cases, 8-

0-4´-DFA was the most dominant followed by 8-8´-DFA (aryltetralin form) and/or 8-5´-

DFA.  

 

 

Figure 3-35: Effect of salt stress on the concentrations of total monophenol and diferulic acid in 

youngest (basal 10 cm of 5th and above order leaves) and young shoot (excluding basal 10 cm of 

5th and above order leaves) of Pioneer 3906 and SR 12. Each data point is the mean ± SE of four 

replicates. * = significantly different compared to control with P ≤ 5.0%. 

Total monomeric phenols and diferulic acids were determined as the sum of all quantified 

monomeric phenols and diferulic acids, respectively (Fig. 3-35). Compared to the control 

plants, the cell wall isolated from the youngest shoot of Pioneer 3906 showed a significant 
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increase (43%) in total monomeric phenols concentration. However, the concentrations of 

total monomeric phenols in youngest shoot of SR 12 and in young shoot of both the 

genotypes were not significantly affected by salt stress compared to control treatment. 

Accordingly, the concentration of total diferulic acids increased significantly (33%), but 

only in the cell wall from youngest shoot of Pioneer 3906 compared to the control (Fig. 3-

35). However, there were no significant changes in the total diferulic acid concentrations 

from the cell wall of youngest and young shoots of SR 12 and young shoot of Pioneer 

3906. The concentrations of total monomeric phenols were 2-4 times higher than the total 

diferulic acid concentrations. 

 

Figure 3-36: Effect of salt stress on lignin concentration in youngest (basal 10 cm of 5th and above 

order leaves) and young shoot (excluding basal 10 cm of 5th and above order leaves) of Pioneer 

3906 and SR 12. Each data point is the mean ± SE of four replicates. 

Overall, salt stress had no significant influence on acetyl-bromide-soluble lignin 

concentration in youngest and young shoots of both Pioneer 3906 and SR 12 (Fig. 3-36). 

Though it was insignificant, yet there was a decrease in lignin concentration by 28% in 

salt-treated young shoot of SR 12 compared to the control treatment. Genotypes did not 

differ in lignin concentration at their youngest as well as in young shoot.  
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4 Discussion  

4.1 Discussion of Experiment 1 

4.1.1 Optimization of cell-wall isolation from maize shoot 

Before determining the chemical composition of cell wall, it must first be isolated from the 

plant cells and separated from the intracellular content. To achieve that aim a simpler 

method should be used to disrupt the plant tissues and wash away the inner contents of 

cells, leaving the cell walls chemically unchanged. A relatively simple method (by 

Goldberg 1985) was used to isolate the cell wall that can be used routinely in the 

laboratory to analyze the cell-wall components. It is evident from the observation (Fig. 3-

4) that 12 min crushing of shoot in the blender was sufficient to disrupt the tissues. It 

allowed the broken tissues to come in contact with different extractant solutions such as 

0.4, 0.6 and 1.0 M sucrose solution and 0.1% (v/v) Triton X100. In this way, both 250-405 

µm and > 405 µm cell–wall fractions could discharge their protoplasmic contents to the 

hypertonic solution. Thus both these two fractions showed clean cell wall (Fig. 3-3 and 3-

4).  

Elimination of starch has been done with cleaning the Triton-X100-treated cell wall with 

continuous flow of water instead of using any reagent/enzyme such as DMSO or amylase 

(Goldberg 1985). It was found that this method effectively eliminated the membranous 

components along with starch particles. Absence of starch was confirmed by a negative 

test of isolated cell-wall fractions with iodine reagent (Fig. 3-3). Amylase can also be used 

to eliminate starch from the cell-wall fraction. However, there are some reports that 

commercial amylase may contain glucanase that may modify the cell wall (Huber and 

Nevins 1977; Basic and Stone 1980). 
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On the other hand with light microscopy, it was not found any chlorophyll-containing 

chloroplast in both the cell-wall fractions. Chlorophyll is located in the thylakoid 

membrane. Thus, effective elimination of chlorophylls depends on the solubilization of 

other membranes viz. plasma membrane, outer and inner membrane of chloroplast. Triton 

X100 came effectively in contact with the thylakoid membranes and dissolved it properly. 

So, absence of chloroplast in the cell-wall fractions can be considered as one indicator for 

the absence of membranous contaminants.  

The tissue composition of both 250-405 µm and > 405 µm cell-wall fractions were quite 

different. The 250-405 µm fraction was dominated by mesophyll and epidermal tissues, 

whereas > 405 µm cell-wall fraction was dominated by vascular and fiber tissues. Thus, 

these two fractions were totally different from the physiological point of interest. The 250-

405 µm fraction was chosen for studying the chemical composition, because it contained 

cell-wall from the major two tissues (mesophyll and epidermis). 

4.1.2 Cell-wall chemical analyses 

4.1.2.1 Analysis of uronic acid and its degree of methylation  

During colorimetric determination of uronic acid concentration, pink color develops within 

5-10 min after the addition of m-hydroxydiphenyl reagent which is stable for ~1 h and 

fades afterwards (Melton and Smith 2001). It was mentioned in an another report that  the 

color is unstable, so the reading should be done in a timely manner 

(http://cellwall.genomics.purdue.edu/). The same result was found in the present study that 

the color was quite unstable, hence absorbance was read in a timely manner e.g. counting 

10 min time starting from first vortex after the addition of m-hydroxydiphenyl till the 

measurement of absorbance.  The effect of salt stress on uronic acid was different for the 

two cell-wall fractions. Like cellulose and hemicellulosic sugars, total uronic acid also 

http://cellwall.genomics.purdue.edu/techniques/6.html
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showed more variation in the 250-405 µm cell-wall fraction due to the salt treatment. Thus 

for pectin determination, 250-405 µm cell-wall fraction may be of choice. 

During analysis of methylation of uronic acid, any traces of unreduced KMnO4 may 

interfere significantly in the reaction (Wood and Siddiqui 1971), and thus extra care was 

taken to ensure that no drops of KMnO4 remain on the walls of the test tube when pentane-

2,4-dione reagent was added. The spectrophotometer reading can be taken within 1 h of 

final reaction as no significant fading was noted within 1 h after the final reaction.  

4.1.2.2 Optimizing the method for cell-wall neutral sugars analysis 

After acid hydrolysis, the cell-wall hydrolysates were cooled and filtered through 0.45 µm  

PET membrane filter (membraPure GmbH, Germany). Willför et al. (2009) used 0.45 µm 

GHP filters for filtering acid hydrolysates. There was no change in the sugar chromatogram 

due to the use of PET membrane filter instead to GHP filters in filtering acid hydrolysates 

(≈ 88 mM). However, the exposure time of acid hydrolysates with the PET membrane 

filters was less than 15 s. Thus apparently there was no risk in using low-cost PET 

membrane filters instead of a high-cost GHP filters. In the method, there was a major 

change in the NaOH concentration used to equilibrate the system for the separation of 

neutral sugars. After injecting the sample, 2 mM NaOH were used instead of 15 mM 

NaOH suggested by Willför et al. (2009). With trial and error method it was found that 2 

mM NaOH was optimum for the separation of six sugar moieties present in the cell-wall 

hydrolysates (Fig. 3-7).  

The standardized HPAEC-PAD method seemed satisfactory for the separation of cell-wall 

neutral sugars. Less than 2% standard deviation for the major sugars namely glucose, 

xylose and arabinose confirmed the results reported by Willför et al. (2009) who 

determined the standard deviation for the major sugars as less than 5%. Minor sugars such 
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as rhamnose, mannose and galactose showed a bit higher standard deviation (3-17%). 

However, this range of standard deviation for the minor sugars was also corroborated with 

the results reported by Willför et al. (2009). Thus this HPAEC-PAD method can be a quite 

convenient  for regular inspection of cell-wall neutral sugars. 

It seemed from the analysis that the 250-405 µm cell-wall fraction arose more interest to 

monitor  the salt-stress induced changes in the cell-wall neutral sugars (Table 3-2). Salt-

treated plants from this fraction showed higher relative  increase in neutral sugars (21-

44%). On the other hand, the > 400 µm cell-wall fraction produced less difference in 

neutral sugars due to the salt treatment. Thus the 250-405 µm cell-wall fraction may be the 

physiologically more interesting fraction to investigate the salt-induced changes in neutral-

sugar composition. 

4.1.2.3 Phenolic analysis 

Phenolics were analyzed following the method of Waldron et al. (1996). The method of 

extraction (Hartley and Morrison 1991) was optimized in a way that can be handled in a 2 

mL Eppendorf vial. The filtration step of the alkaline hydrolysates through GHP filter was 

found inconvenient for the small volume of hydrolysates. Thus this step was successfully 

replaced by the high-speed micro centrifugation (36000 g). Four-step alkaline hydrolysis 

released various monomeric phenols (p-OH-benzoic acid, vanillic acid, p-OH-

benzaldehyde, vanillin, trans-p-coumaric acid and trans-ferulic acid) and diferulic acids 

from the cell wall. Among the monomeric phenols, trans-ferulic acid was the most 

dominant one followed by trans-p-coumaric acid (Fig. 3-18). Due to lack of DFA 

standards  it was not possible to assign peaks for all the diferulates/oligoferulates in the 

chromatogram (Fig. 3-16). Peak names for four distinct diferulates were assigned based on 
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their detector response at 210, 265, 280 and 325 nm (Waldron et al. 1996). Then these 

diferulates were quantified using the response factor according to Waldron et al. (1996), 

and thus the method is semi-quantitative in nature. It is evident from the result (Fig. 3-19) 

that salt stress had no significant influence on various diferulates. However, a precise 

conclusion from this experiment was not possible because, DFA standards were not 

available. Also in this experiment, the whole shoot was  harvested that contains mostly 

older tissues without growth. 

4.1.3 Production of diferulates 

Possibilities were tested to produce various diferulates using trans-ferulic acid, horse 

radish peroxidase and H2O2. It seemed that 0.3 mM trans-ferulic acid was better for the 

enzymatic conversion of trans-ferulic acid to oligoferulates compared to 0.1 and 1.2 mM 

trans-ferulic acid. Two peaks were assigned to diferulates (Fig. 3-20), as their 

chromatogram characteristics (retention time and change in peak area in 4 different wave 

lengths viz. 210, 265, 280, and 325 nm) were quite similar to those reported by Waldron et 

al. (1996). However, there were some other prominent peaks in the chromatogram which 

could not be identified according to the method of Waldron et al. (1996). On the other 

hand, many important diferulates (such as 5-5´-DFA and 8-8´-types of DFAs) were missed 

in the chromatogram. So, this experiment was partially successful for the preparation of 

various diferulates. Furthermore, methods such as the procedures of Ward et al. (2001) to 

produce DFA neglect that enzymatic cross-linking of free ferulic acid is accompanied by 

decarboxylation. It yields coupling products different from those present in the cell wall 

(Dr. Stefan Hanstein, Institute of Plant Nutrition, Justus Liebig University, Giessen, 

according to personal communication with Mirko Bunzel, Department of Food Science and 

Nutrition, University of Minnesota, USA). 
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4.2 Discussion of Experiment 2 

Dark-green plants with reduced shoot biomass having no toxicity symptoms in the foliage 

represent the phenotype during the first phase of salt stress (Fig. 3-23). According to the 

two-phase growth model of Munns (1993) growth in the first phase of salt stress is mainly 

reduced by the osmotic component of salinity. In the original model growth reduction in 

the first phase is identical in salt-sensitive and salt-resistant genotypes. Later on, Schubert 

et al. (2009) have shown that newly developed salt-resistant maize hybrids (SR hybrids) 

may partially prevent the growth reduction in the first phase of salt stress compared to the 

salt-sensitive genotypes.  

Previous studies revealed that only SR 03 can maintain plasmalemma H
+
-ATPase-

mediated acidification of the apoplast while SR 12 and Pioneer 3906 cannot maintain wall 

acidification under salt stress (Pitann et al. 2009; Hatzig et al. 2010). Therefore, apoplastic 

acidification cannot explain the better growth during the first phase of salt stress of SR 12 

(Hatzig et al. 2010). So additional factors must support growth during salt stress in this 

genotype. Thus information regarding the influence of salt stress on cell-wall components 

is very important for understanding the cell-wall elongation behavior in the first phase of 

salt stress. 

4.2.1 Growth of maize genotypes is suppressed during first phase of salt stress 

There was a strong growth inhibition of maize shoot during the first phase of salt stress 

(100 mM NaCl) in both the salt-sensitive (Pioneer 3906) and the salt-resistant (SR 12) 

maize genotype (Fig. 3-24). The newly developed salt-resistant (SR) maize hybrid SR 12 

grew relatively better than salt-sensitive genotype Pioneer 3906 under salt stress. 

Experimental results showed a significant advantage in shoot growth of salt-resistant SR 

12 compared to the salt-sensitive Pioneer 3906 under salt treatment. Trend of plant height 

under salt stress (Fig. 3-21 ) revealed that the onset of salt stress was somehow delayed in 
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the salt-resistant genotype SR 12 than the salt-sensitive Pioneer 3906. These results (Fig. 

3-24) are in agreement with other studies (Pitann et al. 2009; Schubert et al. 2009; Hatzig 

et al. 2010) that demonstrated relatively better growth of the salt-resistant SR hybrids 

compared to salt-sensitive Pioneer 3906 under salt stress. 

4.2.2 Cell-wall dry mass increases during first phase of salt stress 

In the present study, it was found that the ratio between cell-wall dry mass and shoot fresh 

mass was increased by salt treatment in salt-resistant SR 12 hybrid as well as in salt-

sensitive Pioneer 3906 (Fig. 3-25). This increment in cell-wall dry mass in the first phase 

of salt stress can be considered as an indicator for reduced cell elongation resulting in a 

decrease of the individual cell size and/or partitioning of relatively more dry mass in cell 

wall without elongation. Eitenmüller (2011) and Leubner (2011) also observed an increase 

of  the ratio between cell-wall dry mass and shoot fresh mass  by 41 and 36% in the young 

shoots (4th and above order leaves) of Pioneer 3906 and SR 12, respectively, under salt 

stress. The inhibition of elongation growth of Cicer arietinum epicotyl grown in PEG also 

led to an increase in the ratio between wall dry mass and epicotyls fresh mass due to the 

inhibition of elongation growth of cells (Muñoz et al. 1993). Partitioning of relatively more 

dry mass in cell wall without elongation occurred during differentiation of xylem 

parenchyma cells in maize roots (Yeo et al. 1977). It was also reported that PEG or NaCl-

induced osmotic stress exhibited a drastically altered growth character in tobacco cultured 

tissues with volume only one-fifth to one-eighth of unstressed cells (Binzel et al. 1985, 

1987, 1988). Halophytes as well have been reported to synthesize higher amount of cell-

wall dry mass under saline environment (Binet 1985). 
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4.2.3 Cellulose concentration decreases during the first phase of salt stress  

Cellulose plays a major role in determining the strength and structural basis of the cell 

wall. Shoot cell-wall from salt-stressed plants of both Pioneer 3906 and SR 12 showed a 

reduced concentration in cellulose (Fig. 3-26). Leubner (2011) could show a NaCl-induced 

reduction of cellulose by 14 and 19% in the young shoots of Pioneer 3906 and SR 03, 

respectively. On the other hand, Eitenmüller (2011) found a decrease of cellulose by 36% 

in the salt-treated SR 12 compared to control. Osmotic stress-induced inhibition of 

cellulose concentration has long been reported for cotton roots (Zhong and Läuchli 1993), 

tobacco culture cells (Iraki et al. 1989), in expanding grape leaves (Sweet et al. 1990) and 

in elongating wheat coleoptiles (Wakabayashi et al. 1997c). It was reported (Zhong and 

Läuchli 1993) that salinity caused a decrease in the cellulose concentration in cell wall of 

cotton seedlings. It was found that supplemental Ca
2+

 prevented these changes in cellulose 

concentrations (Zhong and Läuchli 1993). In the present study, maize genotypes were 

grown under conditions where Ca
2+

 was not limiting in the nutrient medium, as the full 

strength nutrient solution contained sufficient Ca in control as well as in salt treatment [2.0 

mM Ca(NO3)2 and 2.0 mM CaCl2]. Nonetheless, there was a significant reduction (12-

19%) in cellulose concentrations in the growing shoot from salt-treated plants with a 

concomitant decrease in shoot fresh mass (Fig. 3-24 and 3-26). 

One can expect that high concentration of cellulose may contribute to the cell wall-

tightening processes. It is believed that the hemicelluloses form a strong non-covalent H-

bond with cellulose microfibrils, thus forming a tight cellulose-hemicellulose interacting 

complex (Carpita 1983; Carpita and Gibeaut 1993). Thus, it is apparent that cell-wall 

tightening by cellulose was not the cause for the reduction of cell-wall extensibility of 

maize genotypes during first phase of salt stress. So far it is not clear how the structure and 

function of the cellulose-synthesizing complex, that is located in the plasma membrane, are 
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influenced by salt stress. Piro et al. (2003) concluded that under drought stress simulated 

by PEG the reduction in the newly synthesized cellulose was due to alterations in the 

environment of the cellulose-synthesizing complex located in the plasma membrane.  

4.2.4 Uronic acid and its de-esterification are greatly affected in the first phase of salt 

stress 

The NaCl-induced impairment of cellulose concentration partially coincided with the 

higher concentration of uronic acid (pectin) (Fig. 3-27). Pectins are generally confined to 

primary cell-wall and lacking in non-extendable secondary cell wall which suggests their 

possible function in cell expansion (Willats et al. 2001; Knox 2002; Evert 2006). The 

pectic polysaccharides form a matrix surrounding and interacting with cellulose and 

hemicellulose and affect a broad range of functions including cell adhesion, cell extension, 

cell-wall assembly, cell-wall porosity and mechanical properties of cell wall (Talboys et al. 

2011). Gibeaut et al. (2005) found that during the elongation phase of barley coleoptile 

tissue, pectic polymers declined. De-esterification of uronic acid, leading to pectin gels, 

was coupled with growth cessation in both grasses and dicotyledons (Kim and Carpita 

1992; McCann et al. 1994; Liberman et al. 1999; Cosgrove 2005; Al-Ghazi et al. 2009).  

Therefore, any change in pectins may be crucial for explaining growth reduction in the first 

phase of salt stress. Our results of increased concentrations of total uronic acid in maize 

genotypes Pioneer 3906 and SR 12 under high salt treatment are in agreement with the 

report of Zhong and Läuchli (1993) who demonstrated that salt stress increased the total 

uronic acid concentration in cotton root tips. Also, Leubner (2011) demonstrated that salt 

stress augmented uronic acid in the upper-shoot (4th and above order leaf blades) cell wall 

of Pioneer 3906. This increase in the uronic acid concentrations in Pioneer 3906 and SR 12 

which is in parallel with the inhibition of shoot fresh mass in the 100 mM NaCl treatment, 

could be a result of reduced degradation of polyuronides or increased synthesis of 
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polyuronides (Zhong and Läuchli 1993). Also, it has been reported that expanding grape 

leaves showed an increase in total uronic acid concentration under drought stress (Sweet et 

al. 1990). Metabolic flexibility may allow plants to bridge cellulose and uronic acid. UDP-

glucose, which is a substrate for both cellulose and uronic acid synthesis, may form UDP-

glucuronic acid after oxidation with UDP-glucose-dehydrogenase (Seitz et al. 2000). 

Galacturonic acid can be formed from the UDP-glucuronic acid after epimerization 

reaction. Accumulation of uronic acid-enriched polymers was observed in Arabidopsis 

mutants which showed impairment of cellulose synthesis (Burton et al. 2000; Sato et al. 

2001; Manfield et al. 2004; Hamann et al. 2009). It thus seems that the pectic 

polysaccharides compensate the reduction of cellulose in cell walls of both Pioneer 3906 

and SR 12 under salt stress. However, genotype SR 03 did not show any change in uronic 

acid although cellulose was decreased (Leubner 2011).  

The specific functions of pectins in distinct parts of cell wall or plant tissues are strongly 

influenced by the amount and nature of the pectic molecules present. The results here (Fig. 

3-27 b) indicate that salt stress alters the quality of pectin which can be concluded from the 

decrease of the degree of methylation of uronic acid in cell wall from the youngest shoot of 

both Pioneer 3906 and SR 12. The percentage of esterification of pectin increased 

concomitantly with the rate of elongation of maize coleoptiles (Kim and Carpita 1992). 

Surprisingly, the growing shoot of SR 03 showed a slightly higher degree of methylation 

under salt treatment (Leubner 2011). This indicates that the relatively salt-resistant 

genotype SR 03 maintains a higher degree of methylation of uronic acid in cell walls of 

elongating shoots under salt stress which may have allowed this genotype to grow 

relatively better than the salt-sensitive Pioneer 3906 (Pitann et al. 2009). 
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Figure 4-1: A schematic “egg-box” model showing calcium cross-links in the pectin of cell wall 

(modified after Morris et al. 1982).  Around 15-20 uninterrupted non-methylated galacturonic acids 

can form a stable Ca
2+

-pectate complex. In addition, pectin can be cross-linked with lignin via 

benzyl-uronate (Grabber and Hatfield 2005). 

For Pioneer 3906, the increase in concentration of non-methylated uronic acid during the 

first phase of salt stress was higher in the youngest shoot segments compared to the young 

shoots (Fig. 3-28) indicating that the elongation growth of the youngest shoot of Pioneer 

3906 was more suppressed due to the higher accumulation of non-methylated uronic acid. 

On the contrary, the accumulation of non-methylated uronic acid in SR 12 was higher in 

young shoots than in youngest shoots indicating that the elongation growth of youngest 

shoot of SR 12 was favored due to the lower increase in non-methylated uronic acid. 

Leubner (2011) found a slight decrease of non-methylated uronic acid in the growing shoot 

of SR 03 in the first phase of salt stress. This is another physiological advantage of SR 03 

under saline condition. 

Grass cell-wall has two major polysaccharides that contribute to total uronic acid, the 

galacturonic acid-rich pectins and the hemicellulosic GAX (Kim and Carpita 1992). In 
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maize, however, the relative contribution of galacturonic acid to the total uronic acid is 

much higher than that of glucuronic acid from GAX (Kim and Carpita 1992). There was a 

large increase in the concentration of total uronic acid (Fig. 3-27 a) in salt-treated cell 

walls, while only minor changes occurred in the xylose concentration (Table 3-3). This 

provides evidence that the observed uronic acid increase was due to polygalacturonic acid 

(PGA) in junction zones (Fig. 4-1).  

The uronic acid units of polygalacturonic acid are methylated during synthesis and 

secretion to the cell wall, and in this form they have a reduced capacity to form Ca
2+

 

crosslinks (Fig. 4-1) (Knox et al. 1990). Hence, methylation not only prevents premature 

cross-linking with Ca
2+

 during secretion to the wall (Knox 2002) but also maintains growth 

in expanding tissue (Kim and Carpita 1992). Later on, the subsequent action of pectin 

methyl esterases (PMEs) on homogalacturonan in the cell wall can increase the extent of 

non-methylated galacturonic acidic sites of homogalacturonan chains which has the 

capacity to form stiff gels via Ca
2+

-crosslink (Fig. 4-1), and this may lead to cell-wall 

tightening that in turn leads to reduced cell-wall extensibility (Knox 2002; Cosgrove 

2005). Moreover, cell-wall porosity that may restrict access of wall-loosening enzymes, 

such as expansins to its substrates (Cosgrove 2005), thus preventing the role of H
+
 secreted 

by the plasma membrane H
+
-ATPase. Around 15-20 contiguous non-methylated 

galacturonic acids can form a stable concerted Ca
2+

-pectate complex (also known as “egg-

box” linkages), and such frequent egg-box linkages (Fig. 4-1) may form gel-like structures 

in the wall comparable to jam and jelly (Morris et al. 1982; Brett and Waldron 1996).  

 

Non-methylated galacturonans in lignifying tissues hold an enormous potential to form 

cross-links with lignin as benzyl-uronate, and this kind of cross-links cannot be formed 

with  methylated galacturonan (Grabber and Hatfield 2005). So, it is very likely that a part 



Discussion 
 

89 

 

of the enhanced amount of non-methylated uronic acid produced under salt stress in 

growing shoots of Pioneer 3906 and SR 12 may have formed benzyl-uronate cross-links 

since even the primary wall of maize contains lignin though the amount is low (Grabber 

and Hatfield 2005).  

During maturation of grape leaves, the relative proportion of uronic acid increased in cell 

wall (Sweet et al. 1990). Our data also support that the concentration of total uronic acid in 

older tissues is always higher than in younger tissues for maize genotype Pioneer 3906 

(Fig. 3-27 a). Meristematic tissues are characteristically low in Ca
2+

, and the level 

increases as the cells elongate and differentiate (Carpita and Gibeaut 1993). Nakajima et 

al. (1981) demonstrated that during differentiation of pea meristem to epidermal tissue, the 

proportion of Ca
2+ 

increased six-fold indicating extensive Ca
2+

 cross-linking of non-

methylated galacturonans in aged tissues. A relatively higher increase in total uronic acid 

or non-methylated uronic acid in the young shoot (Fig. 3-27, 3-28) of SR 12 compared to 

that in youngest shoot under salt stress suggests that the process of cell-wall maturation is 

somehow delayed in the salt-resistant genotype SR 12 relative to Pioneer 3906 in the first 

phase of salt stress. Additionally, studies on youngest and young shoot under control 

conditions (1 mM NaCl) reveal that the genotype SR 12 eventually shows a delay in 

accumulation of total and non-methylated uronic acid compared to Pioneer 3906 (Fig. 3-

27, 3-28). Thus the process of maturation may be genetically slowed down in SR 12 

compared to Pioneer 3906, and helps SR 12 to grow relatively faster and better than 

Pioneer 3906 under salt stress. 

4.2.5 Cell-wall neutral sugars are altered differentially during first phase of salt stress 

Xylose which together with glucose is an abundant non-cellulosic cell-wall sugar showed 

no major changes in response to 100 mM NaCl (Table 3-3). Tobacco cells grown either in 
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PEG or NaCl showed higher proportions of hemicelluloses (Iraki et al. 1989). However, in 

the growing zone of cotton roots (Zhong and Läuchli 1993) or in expanding grape leaves 

(Sweet et al. 1990) there were no major changes in non-cellulosic sugars due to salt or 

drought stress. So our results are in line with other studies.  

The young shoot of SR 12 showed a significant increase (21%) of glucose (Table 3-3) 

which due to the extraction procedure contains some cellulosic glucose (Martens and 

Loeffelmann 2002 ). Since a significant decrease of cellulose concentration in response to 

salt stress occurred, this increase of glucose fraction may be attributed to the mixed link 

(1→3, 1→4)-β-D-glucan (simply β-glucan). The accumulation of β-glucans coincides with 

the rapid elongation of maize coleoptiles (Kim et al. 2000). As the elongation rate 

decreases, the β-glucan is hydrolyzed by glucanases (Capita et al. 2001).  However, the 

shoot fraction with highest elongation rate is the youngest shoot, for which no salt effect on 

glucose was observed.  

Salt stress clearly increased galactose concentrations in the growing regions of shoots of 

both SR 12 and Pioneer 3906 maize genotypes (Table 3-3) with a decrease in shoot fresh 

mass suggesting a role of galactose in suppression of the shoot elongation process. 

Eitenmüller (2011) also demonstrated a significantly higher concentration of galactose in 

both SR 12 and SR 03 in the first phase of salt stress. It has been reported that during 

normal growth of Cicer arietinum coleoptiles, the total amount of galactose from the pectic 

fractions decreased (Muñoz et al. 1993) and it was interpreted that a decrease  in the 

quantity of galactose may be necessary throughout the growth in order to permit cell-wall 

loosening. Galactose-rich cell-wall showed a decrease in growth ability (Tanimoto 1988) 

and a decline in pectic galactose during the stage of maximum growth has been reported by 

Sakurai et al. (1987a, b). In pea epicotyl, the galactose-poor cell walls showed correlation 

with auxin-induced elongation growth (Tanimoto and Igari 1976). Ordin and Bonner 
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(1957) found that glucose incorporation into cellulose is inhibited by galactose and thereby 

cell-wall growth is retarded (Ordin and Bonner 1957). Lower concentration of cellulose 

during the first phase of salt-stress concomitant with the increase in galactose 

concentration was found for both Pioneer 3906 and SR 12 (Fig. 3-26 and Table 3-3). Thus 

galactose may have a role in cell-wall growth in the first phase of salt stress. 

Under salt stress, there was an increase in arabinose concentrations in the youngest shoots 

of both Pioneer 3906 and SR 12 (Table 3-3). Thus, it is likely that cellulose-hemicellulose 

cross linkage via H-bond (Carpita and Gibeaut 1993) was reduced under salt stress, and 

this may have counteracted the repression of shoot elongation. However, arabinose 

moieties in arabinoxylan can be esterified with ferulic acid and then two feruloylated 

arabinoxylan chains can be linked by peroxidase activity to form diphenyl bonds which 

may then enhance the cell-wall tightening process (Brett and Waldron 1996). Thus the 

higher concentration of arabinose can be advantageous for growth if arabinose is not cross-

linked via diferulates or oligoferulates. 

4.2.6 Analysis of cell-wall phenolics 

4.2.6.1 Separation and identification of very closely eluted phenolics 

Methanol and acetonitrile aided separation of all the major monomer and dimer standards 

from each other (Fig. 3-31, 3-33). Very closely eluted phenolic monomers and dimmers 

compounds were identified based on (i) peak matching with standard run and (ii) their 

detector response at 210, 265, 280 and 325 nm. Spectral data were very useful for precise 

identification of some monomeric phenols and diferulates (Walddron et al. 1996). For 

example, 8-5´-DFA (decarboxylated form) was identified based on RP-HPLC run of 

standard substance (Fig. 3-33). The highest detector response (Table 3-4) was recorded at 

325 nm wave length (Dobberstein and Bunzel, 2010) for the 8-5´-DFA (decarboxylated 
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form) while the very closest left peak gave (Fig. 3-33, peak 2) highest detector response  at 

210 nm wave length.   

4.2.6.2 Changes in monomeric phenols during salt stress 

Salt stress augmented the concentration of total monomeric phenols (sum of all detected 

monomeric phenols) in the youngest shoot of Pioneer 3906, but not of SR 12 (Fig. 3-35). 

This suggests that the shoot elongation of Pioneer 3906 could be affected by phenolics 

under saline condition. Individual phenolics with significantly higher concentration during 

salt stress were trans-ferulic acid and vanillin. The cell-wall extensibility may be declined 

due to the increase in wall-bound ferulic acid (Tan et al. 1992a), which probably interferes 

with the enzymatic breakdown of wall polysaccharides (Fry 1984). Increased concentration 

of feruloylated glucuronoarabinoxylan (FA-GAX) is considered to be very important at the 

later stage of plant development for two reasons. It may serve as a site for nucleation to 

form lignin and linkage of lignin to the xylo-cellulosic fibers by means of xylan-ferulate-

lignin complexes (Iiyama et al. 1994; Jacquet et al. 1995; Bartolomé et al. 1997). 

Isomerization between trans-ferulic acid and cis-ferulic acid alters the structure of the 

molecule and may be part of the phototropic reaction driven by turgor pressure and water 

flux (Towers and Abeysekera 1984). Under control condition, the cis-ferulic acid in 

youngest and young shoots of Pioneer 3906 was 3 and 11% of the total ferulic acid (cis + 

trans forms), while cis-ferulic acid in youngest and young shoot of SR 12 was 2 and 8% of 

total ferulic acid (Fig. 3-32). Thus it is clear that cis-ferulic acid increased in maize leaves 

with increasing tissue age. Locher et al. (1994) suggested that wall-bound cis-ferulic acid 

may be associated with tightening of the root cell-wall restricting the elongation rate in 

dark-grown maize roots.  In the present study, salt treatment caused an increase of cis-

ferulic acid in elongated tissue (young tissue) of SR 12. Thus the observation does not 
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provide evidence for a critical role of cis-ferulic acid during shoot elongation for the 

hypothesis of Locher et al. (1994).   

4.2.6.3 Diferulates are augmented in elongating shoot of salt-sensitive genotype 

during salt stress 

Ferulic acid (FA) is ester-linked to arabinose moieties of glucuronoarabinoxylan (GAX) to 

form FA-GAX. Diferulic acid is produced from the linked ferulic acid by a coupling 

reaction mediated by peroxidase, which cross-links FA-GAX polysaccharides (Fig. 4-2). 

The resultant diferulates (DFA) cross-linking contributes to cell-wall assembly and 

tightening, and is thought to be involved in declining cell-wall extensibility (Fry 1979, 

Carpita and Gibeaut 1993; Hatfield et al. 1999; Fry 2004; Parker et al. 2005). 

 

Figure 4-2: A model of grass glucuronoarabinoxylan (GAX) which are cross-linked via diferulic 

acid (FA-FA). 

The increased concentrations of various diferulates namely 8-8´-DFA, 8-5´-DFA, 5-5´-

DFA, 8-0-4´-DFA and 8-5´-DFA (benzofuran form) in the youngest shoot of salt-sensitive 

genotype Pioneer 3906 during the first phase of salt stress (Fig. 3-34) suggests that they 

may directly contribute to the cell-wall tightening process and thereby to reduction of 

shoot growth (Fig. 3-24). However, 8-5´-coupled diferulates (8-5´-DFA, 8-5´-DFA 
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benzofuran form and 8-5´-DFA decarboxylated form) originate from the same 8-5´-DFA 

during extraction of cell-wall phenolics (Dr. Stefan Hanstein, Institute of Plant Nutrition, 

Justus Liebig University, Giessen, according to personal communication with Mirko 

Bunzel, Department of Food Science and Nutrition, University of Minnesota, USA). Thus 

to see any effect of this 8-5´-type diferulate, it is important to sum up all these three types 

of 8-5´-coupled diferulates. The sum of 8-5´-coupled diferulic acids did not show any 

difference in any genotype due to the salt treatment (results non shown).  

The concentrations of total 8-coupled (all 8-5´- and 8-8´-coupled diferulic acids) DFAs 

were 7-11 times to that of 5-5´-DFA in both Pioneer 3906 and SR 12 and in both youngest 

and young shoot cell-walls. Thus our results also confirm previous results (Grabber et al. 

1995; MacAdam and Grabber 2002; Ralph et al. 1994) that the contribution of 8-type 

diferulates dwarfed that of 5-5´-DFA. Thus 5-5´-DFA alone may be a poor indicator for 

the degree of ferulate dimerization in vivo. For that reason, analysis of all DFAs is required 

to accurately reflect the overall ferulate cross-linking in cell walls. In fact, MacAdam and 

Grabber (2002) demonstrated that elongation of leaf blade of tall fescue (Festuca 

arundinacea Schreb.) decelerated as 8-O-4-, 8-5-, 8-8-, and 5-5-DFA accumulated in cell 

walls. Thus our results of increased concentrations of various DFAs support the hypothesis 

that diferulates are involved in reducing elongation growth during salt stress.  

In Poaceae, the augmentation of cell-wall bound DFA is highly correlated with a decline in 

cell-wall extensibility (Kamisaka et al. 1990; Tan et al. 1991; Tan et al. 1992 a, b; 

Miyamoto et al. 1994; Parvez et al. 1997). On the other hand, wall extensibility is 

maintained when DFA does not accumulate (Kawamura et al. 2000; Wakabayashi et al. 

1997a, b). The results reported here were obtained after extraction with 2 M NaOH for 24 

h. This treatment does not release the etherified phenolic compounds. The importance of 

this fraction can be derived from the observation that it binds 20% of the non-cellulosic 
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polysaccharides to cellulose (Carpita and Gibeaut 1993). The formation of ether bonds 

between aromatic compounds requires generation of radicals which then couple non-

enzymatically. As our data on ferulic acid and diferulic acids demonstrate enhanced radical 

coupling of esterified ferulic acid occurred in the youngest shoot of Pioneer 3906. It is 

likely that it is mainly the etherified fraction which affects the cell-wall extensibility. 

Ferulic acid increase was followed by DFA increase and this indicates that enzymatic 

systems for cross-linking were not limiting. In fact, Faust (2011) reported that phenolic 

peroxidase activity in SR 12 was not affected by salt stress. Thus the results of the present 

study are in line with previous findings. 
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5 Summaries 

5.1 Summary of Experiment 1 
 

A method of cell-wall isolation was optimized, and cell walls were separated into two 

fractions (250-405 µm fraction and > 405 µm fraction). Both the cell-wall  fractions 

showed negative color test with iodine reagent and thus were free from starch content. 

Cellulose, neutral sugars and uronic acid responses due to the salt treatment were obvious 

from the 250-405 µm cell-wall fraction. On the other hand, the > 405 µm cell-wall  

fraction did not show much variation in results due to the salt treatment. The 250-405 µm 

fraction was dominated by cell wall from mesophyll and epidermal tissues, while the > 405 

µm fraction was dominated by cell wall from vascular and fiber tissues. It was evident 

from the analyses that the 250-405 µm cell-wall  fraction gave the results of interest under 

salt stress. Thus results showed clearly that the 250-405 µm cell-wall fraction may be the 

most important fraction for studying salt-induced changes in cell-wall compositions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summaries 
 

97 

 

5.2 Summary of Experiment 2 

Growth inhibition of crops in the first phase of salt stress is one of the core questions in the 

field of stress physiology and the mechanisms are not yet precisely known. Maize is able to 

maintain shoot turgor pressure during the first phase of salt stress. Assimilate supply to the 

growing tissue under salt stress is not found limiting under salt stress. Additionally, water 

uptake by maize plants from the saline solution did not limit growth. It has been reported 

that the maintenance of apoplastic acidification under saline condition contributes to the 

better performance of the salt-resistant genotype SR 03. Surprisingly, another salt-resistant 

genotype SR 12 cannot maintain apoplastic acidification during the first phase of salt stress 

despite of its better growth compared to Pioneer 3906. Thus apoplastic acidification only 

partly explains the strong growth reduction during the first phase of salt stress. So 

additional factors must be involved in reducing the cell-wall extensibility. It is presumed 

that the chemical composition of the cell wall may be changed during the first phase of salt 

stress, which may play a crucial role to reduce cell-wall extensibility in a differential 

manner in salt-sensitive (e.g. Pioneer 3906) and salt-resistant (e.g. SR 12) genotypes. 

The present study was conducted to examine the hypotheses that (i) cell-wall 

polysaccharides, which result in tightening of cell wall to reduce plant growth, are changed 

in the growing leaves during the first phase of salt stress; (ii) leaf-growth reduction is 

accompanied with changes in leaf cell-wall monomeric phenols and various diferulates 

during the first phase of salt stress; (iii) salt stress-induced changes in cell-wall 

components are different in the salt-sensitive Pioneer 3906 and the salt-resistant SR 12.  
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Following conclusions are supported from this study: 

(i) Salt treatment caused a strong inhibition of shoot growth with a concomitant increase 

in the ratio of cell-wall dry mass and shoot fresh mass, and a decrease in cell-wall 

cellulose concentrations in both Pioneer 3906 and SR 12. NaCl caused a large 

increase in the concentrations of total and non-methylated uronic acid in both salt-

sensitive Pioneer 3906 and salt-resistant SR 12. It is concluded that a low 

accumulation of non-methylated uronic acid in leaf cell-wall may, among other 

mechanisms, contribute to salt resistance in the first phase of salt stress.   

(ii) Salt stress favors cell-wall components participating in oxidative cross-linking in 

elongating shoot tissue of salt-sensitive maize genotype Pioneer 3906. The salt-

sensitive genotype Pioneer 3906 had higher concentrations of ferulic acid (FA) and 

various diferulic acids (DFAs) during salt stress, while in the new hybrid SR 12 these 

parameters were unchanged. Both genotypes showed an increase in arabinose, which 

is the molecule at which FA and DFA are coupled to interlocking 

glucuronoarabinoxylan (GAX) fibers. Results are consistent with the concept that 

accelerated oxidative fixation of shape contributes to growth suppression in the salt-

sensitive genotype during the first phase of salt stress. 

 

(iii) The onset of the accumulation of non-methylated uronic acid was delayed in SR 12, 

which indicates that this may be one reason for the better growth performance of this 

genotype under salt stress compared to Pioneer 3906. Also, salt-sensitive genotype 

Pioneer 3906 showed a significantly higher increase in ferulic acid, total diferulic 

acid and total monomeric phenols in the youngest shoot during the first phase of salt 

stress compared to SR 12. 
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6 Zusammenfassungen 

6.1 Zusammenfassung von Experiment 1  

Das Verfahren zur Zellwandisolierung wurde optimiert und die Zellwände wurden in zwei 

Fraktionen (250-405 µm Fraktion und > 405 µm Fraktion) getrennt. Beide 

Zellwandfraktionen zeigten ein negatives Ergebnis im Iodtest und waren somit frei von 

Stärke. Reaktionen von Cellulose, neutralen Zuckern und Uronsäure waren aufgrund der 

Salzbehandlung in der 250-405 µm Zellwandfraktion offensichtlich. Auf der anderen Seite 

zeigte die > 405 µm Zellwandfraktion nur einen geringen Einfluss der Salzbehandlung. Die 

250-405 µm Fraktion wurde durch Mesophyllzellwand und epidermales Gewebe 

dominiert, während die > 405 µm Fraktion durch Zellwand von Gefäß und Fasergewebe 

dominiert wurde.  Diese Ergebnisse zeigen deutlich, dass die 250-405 µm 

Zellwandfraktion besser geeignet ist, salzinduzierte Veränderungen der 

Zellwandzusammensetzung zu untersuchen.  
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6.2 Zusammenfassung von Experiment 2 

Die Hemmung des Wachstums von Nutzpflanzen in der ersten Phase von Salzstress ist 

eine der zentralen Fragen im Bereich der Stressphysiologie, jedoch sind die Mechanismen 

noch nicht genau bekannt. Mais ist in der Lage, den Sprossturgordruck während der ersten 

Phase von Salzstress aufrecht zu halten. Die Assimilatzufuhr für die wachsenden Gewebe 

unter Salzstress ist nicht der limitiernde Faktor unter Salzstress. Zudem ist die 

Wasseraufnahme aus der Salzlösung nicht begrenzend für das Wachstum der Maispflanze. 

Es wurde gezeigt, dass die Aufrechterhaltung der apoplastischen Ansäuerung unter salinen 

Bedingungen zu der besseren Leistung des salzresistenten Genotyps SR 03 beiträgt. 

Überraschenderweise hält ein weiterer salzresistenter Genotyp SR 12 die apoplastische 

Ansäuerung in der ersten Phase von Salzstress nicht aufrecht, trotz seines besseren 

Wachstums im Vergleich zu Pioneer 3906. Somit erklärt eine verminderte apoplastische 

Ansäuerung nur zum Teil die enorme Wachstumsreduzierung während der ersten Phase 

von Salzstress. Daher müssen zusätzliche Faktoren zur Reduktion der 

Zellwandextensibilität beitragen. Der Dissertation lag die Vermutung zugrunde, dass 

unterchiedliche Veränderungen in der chemischen Zusammensetzung der Zellwand 

während der ersten Phase von Salzstress eine entscheidende Rolle spielen, um die 

Zellwandextensibilität in unterchiedlicher Art und Weise in salzsensitiven (z.B. Pioneer 

3906) und salzresistenten (z.B. SR 12) Genotypen zu reduzieren. 

Die vorliegende Studie wurde durchgeführt, um die folgenden Hypothesen zu untersuchen: 

(i) Zellwand-Polysaccharide, die zur Versteifung der Zellwand führen und damit das 

Pflanzenwachstum reduzieren, verändern sich in den wachsenden Blätter während der 

ersten Phase von Salzstress. (ii) Reduziertes Blattwachstum wird von veränderungen bei 

monomeren Phenolen und verschiedenen Diferulaten in der Blattzellwand während der 

ersten Phase von Salzstress begleitet. (iii) Salzstress-induzierte Veränderungen der 
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Zellwandbestandteile in dem salzsensitiven Genotyp (Pioneer 3906) unterscheiden sich 

von denen des salzresistenten Genotyps. 

Folgende Schlussfolgerungen gehen aus dieser Studie hervor: 

(I) Die Salzbehandlung verursachte eine starke Sprosswachstumshemmung mit einer 

gleichzeitigen Zunahme des Verhältnisses zwischen Zellwandtrockenmasse und 

Sprossfrischmasse und einer Abnahme der Zellwandcellulosekonzentrationen in 

beiden Genotypen (Pioneer 3906 und SR 12). NaCl verursache einen starken Anstieg 

der Konzentrationen von Gesamturonsäure und nicht-methylierter Uronsäure sowohl 

beim salzsensitiven Pioneer 3906 als auch beim salzresistenten SR 12. Der 

Akkumulationsbeginn von nicht-methylierter Uronsäure wurde in SR 12 verzögert. 

Dies ist möglicherweise ein Grund für das bessere Wachstum dieses Genotyps unter 

Salzstress im Vergleich zu Pioneer 3906. Daraus kann gefolgert werden, dass eine 

geringe Akkumulation von nicht-methylierter Uronsäure in der Blattzellwand neben 

anderen Mechanismen zur Salzresistenz in der ersten Phase des Salzstresses beitragen 

kann.  

 

(II) Salzstress begünstigt Zellwandbestandteile, die oxidative Vernetzungen im sich 

ausdehnenden  Sprossgewebe im salzsensitiven Maisgenotyp Pioneer 3906 aufweisen. 

Der salzsensitive Genotyp Pioneer 3906 zeigte höhere Konzentrationen von 

Ferulasäure (FA) und verschiedenen Diferulasäuren (DFA) bei Salzstress, während in 

dem neuen SR-Hybriden SR 12 diese Parameter unverändert bleiben. Beide 

Genotypen zeigten einen Anstieg der Arabinose, wobei Arabinose die Voraussetzung 

dafür ist, dass eine Verknüpfung von Glucuronoarabinoxylanfasern über FA und DFA 

stattfinden kann. Diese Ergebnisse sind konsistent mit der Überlegung, dass eine 
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beschleunigte oxidative Fixierung der Zellform zur Hemmung des Wachstums  beim 

salzsensitiven Genotyp in der ersten Phase von Salzstress beiträgt. 

 

 

(III) Der Akkumulationsbeginn von nicht-methylierter Uronsäure wurde in SR 12 verzögert 

beobachtet. Dies ist möglicherweise ein Grund für das bessere Wachstum dieses 

Genotyps unter Salzstress im Vergleich zu Pioneer 3906. Auch der salzsensitive 

Genotyp Pioneer 3906 zeigte eine signifikant höhere Zunahme der Ferulasäure, der 

Gesamtdiferulasäure und der gesamten Monophenole im Vergleich mit SR 12 im 

wachsenden Sprossgewebe während der ersten Phase von Salzstress. 
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