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1. Introduction

Since the rise of integrated circuits, the number of transistors per chip has roughly
doubled every two years. This observation was coined by Moore [1] in 1975, revising
his even more optimistic prediction expressed ten years earlier [2]. It is exactly
this exponential behavior that has driven the tremendous advance of all kinds of
electronic devices in our everyday lives, as this miniaturization process does not
only increase the performance, but simultaneously reduces the power consumption of
computer chipsE] Modern central processing units (CPUs) nowadays rely on a 14 nm
technologyE] and extrapolating the history of transistor shrinkageﬂ it is reasonable to
assume that another innovation may lead to even smaller devices.

Besides miniaturization, the capabilities of modern electronic devices have been
even further improved by the exploitation of previously neglected degrees of free-
dom, most notably the electronic spin. A very intriguing feature displayed by
ferromagnet /insulator magnetic tunnel junctions (MTJs) is the so-called tunnel
magnetoresistance (TMR) [315]: Depending on whether the magnetic moments in
the ferromagnetic electrodes are aligned parallel (p) or antiparallel (ap), the MTJ
exhibits very different conductances Gy, /p,, which may be interpreted as the values
0 and 1 answering to one bit of data. Consequently, such MTJs lend themselves
for interesting applications like read/write heads of modern hard drives or magnetic
random access memories (MRAMSs) [6, 7]. For high efficiencies of such devices it
proves essential that the TMR ratio

(;p __(;ﬂp

TMR =
Gap

(1.1)

is as high as possible, and hence Fe/MgO (double barrier) MTJs have been of great
interest [7-9].

In order to assist the ongoing endeavor to improve electronic and spintronic
appliances, the main objective of this work is to implement a numerical scheme
making theoretical, predictive nanoscale device modeling affordable. This goal is
quite challenging, because the aforementioned tendency toward miniaturization
requires a quantum-mechanical treatment to account for tunneling and quantum
interference effects. Realistic devices do, however, produce waste heat, which induces
counteracting phase-breaking scattering events. Most importantly, electrons interact

"https://www.intel.com/content/www/us/en/silicon-innovations/intel-14nm-technology.
html?wapkw=intel+14nm+technology

2See footnote 1.

Shttps://www.intel.com/content/www/us/en/silicon-innovations/
standards-22-nanometers-technology-backgrounder.html
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with temperature-induced harmonic lattice vibrations, so-called phonons, which leads
to a plethora of physical phenomena ranging from electrical over thermal resistivity
to superconductivity |10, [11]. At even higher temperatures, anharmonic lattice
vibrations introduce thermal expansion [12]. Finally, being predictive requires the
use of parameter-free ab initio calculations. To paraphrase, we aim for a quantum-
mechanical ab initio method suited to describe phase-breaking scattering events in
complex transport systems.

Various efforts to describe electronic transport including the effects of lattice
vibrations have been made in the past. However, most of those reported methods do
fall short of at least one of the aforementioned requirements. While, e.g., the Holstein
transport equation provides a quantum-mechanics-based calculation scheme capable
of accounting for electron-phonon interactions since the early 1960s, its applications
have been restricted to rather simplistic situations [13, |14]. In the studies of more
realistic systems, the semi-classical Boltzmann formalism is extensively used, which
is essentially because it shows quite good results for simple metals, especially if ab
initio phonon calculations are used to model the vibrational degrees of freedom [10,
15H17]. The reason for this success may be based on the observation that if the one-
phonon approximation to the self-energy is used in conjunction with the quasiparticle
approximation to the spectral function, then the Kadanoff-Baym formalism may
be related to the results proposed by Holstein [13], which, in the DC limit, further
reduces to the Boltzmann transport equation [18].

To overcome such restrictions and to meet the expressed requirements, the most
promising approach is to extend a purely quantum-mechanical method capable of
handling realistic systems by the ability to account for phase-breaking scattering
events. At the time of writing, density-functional theory (DFT) has emerged as
the de facto standard for complex ab initio solid state calculations [19]. Among the
various formulations of this theory, two important “philosophical schools” may be
identified: Either the eigensolutions of the Kohn-Sham Hamiltonian are obtained
directly [20, [21], or the corresponding Green’s function is calculated [22, 23]. Both
formulations may further be categorized by the applied basis set. Although plane
waves are an overwhelmingly popular basis set [24-26], a physically very appealing
notion is to consider a solid as the superposition of isolated atoms and to use multiple
scattering theory to solve for the full system. This is exactly the idea of the Korringa-
Kohn-Rostoker (KKR) method, and the natural choice of basis is given by an angular
momentum expansion (23, 27].

From a technical point of view, however, DF'T does not lend itself to a straight-
forward extension to finite temperatures, because its mathematical derivation only
allows for the evaluation of the electronic ground-state density [19, 21, 28]. Even
though there is no rigorous justification, experience nevertheless proves this theory
to be a valid starting point to treat a multitude of different scattering mechanisms.
Hence, one possibility to extend DFT is to model any phase-breaking scattering
events as an effective chemical disorder. Within this so-called alloy analogy it proves
very important to average over many different possible configurations [14]. In case
of electron-phonon interactions, these different configurations are possible lattice



displacements, and the averaging could therefore be done either using supercell
methods [29], or, alternatively, the so-called coherent potential approximation (CPA)
[14, 130-32].

Another extremely powerful approach to introduce phase-breaking scattering,
which, simultaneously, focuses on the description of electronic transport, is the
previously mentioned Kadanoff-Baym or Keldysh formulation of the non-equilibrium
Green’s function formalism (NEGF). The effective transmission may be calculated in
the Landauer-Biittiker framework, where the electron-phonon interaction is modeled
by means of fictitious terminals — so-called Biittiker probes — giving rise to additional
self-energies [33-35]. Not only is this method numerically more stable in comparison
to linear-response formulations [36], it further allows for the self-consistent calculation
of transport under applied bias voltage [37], which is an outstanding feature.

Regardless of the particular choice, all previously discussed methods must of
course rely on an accurate description of the vibrational degrees of freedom if the
phase-breaking scattering shall model the electron-phonon coupling. A physically
appealing calculation technique is given by the frozen-phonon approach [38-40]: For
every wave vector g of interest, the corresponding phonon displacement patterns
are imposed on suitable supercells. Based thereupon, the change in the effective
potential and eigenenergies is calculated self-consistently. While this method might
in principle account for anharmonic effects in the lattice vibrations, the wavelength
and hence the necessary supercells become forbiddingly large for small HQH An
accurate sampling of the Brillouin zone near the I' point is hence computationally
very demanding. With the advent of density-functional perturbation theory (DFPT),
however, this issue was overcome, because any changes in the effective potential may
now be calculated as the response to atomic-displacement-induced perturbations of
the lattice |20, |41} 42].

Although the monochromatic nature of DFPT allows for a trivial parallelization
algorithm, still a fully self-consistent calculation is necessary per phonon mode. The
computational effort thus severely limits the achievable accuracy of wave-vector-
integrated quantities like e.g. the imaginary part of the electron-phonon self-energy
, because the corresponding integrands often contain energy-conserving delta
distributions. Pending further theoretical progress or access to improved computa-
tional facilities, interpolation techniques exploiting the localization of both electronic
wave function and phonon perturbation to date depict the physically most sound
remedy |17} 43} 44]. As maximally localized Wannier functions (MLWFs) [45, |46]
fulfill these desired properties by construction, they are the basis of choice in the
employed third party code EPW |17} 43].

Given these considerations, in order to fulfill the projected main objectives, the
outline of this work is as follows: In chapter 2] and — in case of in-detail discussions of
selected theoretical issues — appendix [A] an as of yet missing thorough mathematical
and physical discussion of the possibilities to incorporate phase-breaking scattering
events by means of suitable self-energies in the NEGF formalism as implemented in
the Gielen KKR code is provided. This is, to the best of our knowledge, the first
implementation of the Biittiker probe technique within a KKR Green’s function code.



We further introduce a calculational scheme to obtain the necessary self-energies by
means of a wave-vector averaging of results obtained using well established third
party codes in the case of nonmagnetic metals. Additionally, the quasi-harmonic
approximation and the Debye-Griineisen theory to account for thermal expansion
are discussed. The chapter [3]is devoted to the verification of the implementation
and the physical validity of the proposed method by first studying the bulk-like
nonmagnetic metallic test systems copper and aluminum in comparison to Boltzmann
results. Subsequently, after providing an in-depth description of the relevant transport
mechanisms accountable for the resonant behavior of Fe/MgO double barrier magnetic
tunnel junctions, we advance a fitting procedure to obtain a suitable self-energy
approximation in case of magnetic metals from spin-resolved ab initio resistivity
data. These results allow to analyze the at the time of writing barely investigated
effects of temperature on the resonant electronic transport and yield the foundations
for additional studies regarding the dependence of TMR and other spin caloritronic
properties on electron-phonon scatteringﬁ Finally, we summarize in chapter |4 the
main results of this work and give an outlook on future work.

4Please note, that although all technicalities are solved within this work, the necessary calculations
with antiparallel aligned magnetic moments in the electrodes will double the computational cost.
This subsequent step is hence beyond the scope of this work, but work in progress.



2. Theory

One of the main tasks of modern condensed matter theory is to describe the statics
and dynamics of both the electrons and the nuclei constituting a solid. Neglecting any
relativistic effects or external perturbations, this requires solving for the eigenstates
and -energies of the Hamiltonian [47]

- Ne 2 Nn 1 2 Ne e NTL

H=-3V2 -3 V% +
i:Zl . ;Mn J1||r—r ZZMZlHT_RH .
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T TRy~ Rl

composed of the kinetic energies of both species as well as their mutual interactions
governed by Coulomb’s law. In this equation N, and N, denote the number of
electrons and nuclei, respectively. Similarly, {r} and {R} are the corresponding
spatial degrees of freedom, and {Z} the charge numbers. Here and in the following
Rydberg atomic units, i.e., h =1, m, = %, e =12, and ¢ = 47T, have been used to
simplify the notation.

Although the Hamiltonian seems elementary, it describes a differential equa-
tion in both electronic and ionic degrees of freedom, which proves to be an exquisite
problem to solve. However, given that the ratio of electron to nucleus mass ﬁ <1074
is rather small, the kinetic energy term of the nuclei may — in lowest order perturba-
tion theory — be neglected. This idea is commonly referred to as Born-Oppenheimer
approximation [20} 47-49] and promotes the following solution strategy: In a first
step, the electronic system with fized nuclei positions

Je o Nn/ Zan
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is solved for the electronic eigenstates and eigenenergies

B 160 ({R})) = Ea({R}) |$a({R})) (2.3)

Then, exploiting that these states form a complete and orthonormal set for each
choice of {R}, the wave function of the general condensed matter Hamiltonian
is expanded in terms of these solutions. Inserting this expression in the stationary
Schrédinger equation of the full wave function H |i)) = & [t) yields a system of
coupled differential equations for the expansion coefficients x({R}) [47]

Np,
(— > ]\;TLV%H + Ea({R})> Xa({B})+_ Aas({RNxs({R}) = Exa({R}), (24)

n=1 B



i.e., for the wave functions of the nuclei. The Born-Oppenheimer approximation
is now to neglect the transition matrix elements A, g({R}) depicting the interac-
tions of electrons and nuclei [47, |49], thus leaving the ions to move in an effective
potential E,({R}), the so-called Born-Oppenheimer energy surface [20], given by the
eigenenergies of the electronic system.

While the analysis of the thereby artificially decoupled electronic structure —
discussed in more detail in the next section — often provides reasonably ac-
curate results in the low-temperature regime, it failes to reproduce the correct
temperature dependence of various material properties |11, [12]. A rather prominent
example is the electrical resistivity of metallic systems, which is strongly influenced
or even dominated by additional phase-breaking interactions of the electrons with
the temperature-induced vibrations of the nuclei [10, |11, |14} 16]. As this particular
work is mainly concerned with transport phenomena (see section for a theoretical
treatment), the renormalization of the electronic structure due to vibrations must
therefore be taken into account. A systematic way to do so is the perturbative
quantum-field-theoretical approach to electron-phonon coupling in the Keldysh for-
mulation of the non-equilibrium Green’s function formalism [50, [51] as illustrated
in section [2.3] However, even in the simplest metallic systems it is not sufficient
to regard the ionic movement in the Born-Oppenheimer energy surface E,({R}) as
perfectly harmonic, especially if one is interested in an accurate description of the
temperature dependence of the resistivity above room temperature |10, [16]. As a
preliminary remedy, we will propose in section to treat such effects in the so-
called quasi-harmonic approximation, i.e., we will assume that the effective potential
E({R}) may still be considered harmonic if the centers { R} of the series expansion
are chosen to mimic the thermal expansion of the system.

2.1. Electronic Structure

As discussed above, the first step in the approximate solution of the Hamiltonian
is to obtain the eigensolutions of the Born-Oppenheimer Hamiltonian (2.2)).
Although already a simplified problem, the motion of an electron is still coupled to
the dynamics of all other electrons by means of the Coulomb interaction. Hence, the
electronic many-particle wave function will depend on roughly 10?® three-dimensional
coordinates in a non-trivial way, and therefore cannot be evaluated in general.

The remedy is called density-functional theory (DFT) and consists of two major
insights: First, Hohenberg and Kohn [28] showed that the (non-degenerate) ground-
state density uniquelyE] determines the external potential. Additionally, this density
minimizes the total energy functional |19, 20, 28]

Bln] = Flnl + [dr n(@V @), (25)

where the functional F' is independent of the external potential, but otherwise not
explicitly known. If, however, the electron-electron interaction vanishes, then F'

T.e., up to a constant value.



describes the ground-state kinetic energy Tq of a system of non-interacting particles,
which motivates the ansatz |[19}-21]

Fln] = To[n] + / d3r / a3’ ”’(r)(/) + Exe[n]. (2.6)

r—r/|

In this equation, the second term describes the classical self-interaction, and any
unknown portions of F' are gathered in the yet again unknown “exchange-correlation
functional” Fy.. Variation of the total energy functional with respect to the
density while ensuring the constraint of a fixed electron count by means of Lagrange
multipliers yields the second major insight of DFT: The ground-state density of
the interacting system coincides with the ground-state density of non-interacting
“Kohn-Sham quasiparticles” moving in the effective potential [19H21]

) | 0Exc[n]
r— 1 +° (o) 2.7)

ViR ) = VR ) 2 ot E
i.e., instead of solving the Born-Oppenheimer Hamiltonian one could equally well
obtain the ground-state density corresponding to the Kohn-Sham Hamiltonian [20]

Hi = - ZV2 +Z Vi (1)) (2.8)

if the exchange-correlation potential were known. In practice, there exist multiple
kinds of approximations which often depict the physics of the system under considera-
tion sufficiently well. Given that the effective potential depends on the density as well
as determining this quantity via Poisson’s equation, the solution of the eigenvalue
problem has to be performed iteratively until convergence is achieved [21].

There are at least two possible ways to solve the Kohn-Sham Hamiltonian in each
step of the iteration: Either the eigenstates or “Kohn-Sham orbitals” are expanded in
a suitable basis set (e.g., plane waves |20} [21]), or the eigenvalue problem is rewritten
in terms of Green’s functions. While the first approach is used in the evaluation
of the electron-phonon self-energy as described in section [2.3] all other calculations
presented in this work are performed in the latter framework discussed in the next
section. In order to reflect the general applicability of the Green’s function technique,
the notations 7—[{ b and Vé{f}fj} are replaced by H and V), respectively.

2.1.1. Green’s Functions

From a mathematical point of view, the definition of the Green’s operator — in the
following colloquially called Green’s function — arises naturally from the study of
inhomogeneous differential equations

Lly) =11, (2.9)



where £ denotes a linear differential operator on a suitable function space [52]. If
the (left) inverse operator G of L exists, the solution |y) may be formally obtained
by multiplying with this inverse from the left, i.e.,

ly) =GLy) =G|f). (2.10)

Hence, if G is known, then the differential equation (2.9) may be solved for arbitrary
inhomogeneities |f), presuming G | f) exists and can be computed.

In the context of density-functional theory, the differential equation under consider-
ation is usually the (stationary) Schrodinger equation of a Kohn-Sham quasiparticle.
The parametric dependence on the quasiparticle energy E may be accounted for by
the definition of an energy-dependent differential operator L(FE):

HP(E) = E|Y(E)) < (E1-H)[4(E) = 0_. (2.11)
=L(E) =f)

Given that equation is the eigenvalue problem of a Hamiltonian H the kernel
of L(F) is non-trivial at the corresponding eigenenergies, and therefore the associated
Green’s function G(E) = £L71(E) will be singular at these energy values.

Many physical observableﬂ may be evaluated by integrating the Green’s function in
the energy domain. Hence, singularities constitute severe challenges both analytically,
as the existence of such integrals has to be ensured, and numerically, because very
dense meshes would be required to accurately sample the highly structured integrands.
Such issues may be circumvented by studying the Green’s function [22]

G(z)=(z1—-H)', z2=E+in, E,neR, (2.12)

in complex energy space: Firstly, complex analysis provides puissant theoretical
results to deal with singularities, and secondly the poles of the Green’s function
will be broadened to Lorentz distributions for nonvanishing imaginary partsﬂ thus
drastically reducing the necessary sampling in numerical calculations.

Lippmann-Schwinger Equation and Dyson’s Equation

One of the biggest advantages of Green’s functions is the possibility to exactly relate
a system characterized by a Hamiltonian H = H + AV to a “reference” system H by
means of the “reference Green’s function” G(z) = (21 — 7:[)_1 and the corresponding
difference in potentials AV: Starting from the stationary Schrédinger equation for
the Hamiltonian ‘H we may proveE| the Lippmann-Schwinger equation, an integral
equation for the corresponding eigenfunctions, i.e.,

(1 -H) (=) = AV[R(z) & [(2)) = [0(2)) + G()AV](2),  (213)

2A prominent example in DFT calculations constitutes the charge density, see equation .

3This may be seen by analyzing the spectral representation for complex energy arguments
z = E + in in the vicinity of an eigenenergy E,.

4A detailed discussion of the necessary considerations in case of possibly complex, energy-dependent
potentials or “self-energies” is given in appendix @




where [¢)(2)) € ker (21 — #) is an arbitrary solution of the reference Hamiltonian.
For example, in real space representation — assuming the potential difference is
diagonal in its spacial variables — this relation would reduce to a Fredholm equation
of the second kind

W(r, z) = <r ’ w(z)> + /d?’r’/d?’r" <r ‘ G(z) r’> (" [AV [ (r" [ 9(2))

= 1/01@7 z) + /d?’r'Go(f,z’,z)AV(z’)w(f,z).

(2.14)

Besides the eigenstates it is also possible to calculate the Green’s function of the
new system from the reference Green’s function and the potential difference [22]:
Rearranging the defining equation (2.12))

(zﬂ—?—ol—AV) G(z)=1

) (2.15)
& (z]l - H) G(z) =14 AVG(z)
and multiplying with G (z) from the left yields Dyson’s equation
G(2) = G(2) + G(2)AVG(2), (2.16)
which may be formally solved as
. ~1
G(z) = (1-G(2)AV)  G(2). (2.17)

To paraphrase, if we have access to any Green’s function G (z) and if the inverse of
(1 —G(2)AV) exists and can be evaluated, then it is possible to calculate the Green’s
function of the new system. Hence, in the next section we will derive the real space
representation of the Green’s function of a free particle.

Reference Green’s Function

A powerful tool for working with Green’s functions is the so-called spectral represen-
tation, which will be discussed preliminarily to deriving the free Green’s function.
Let {|a)} be the eigenbasis of a Hamiltonian H, i.e., H |o) = E, |a). Starting once
again from the defining equation it is seen that

(21 -=H)G(2) =1
= [da” (a| (1= H)|a") (" G(2) | ) = (a|a')

<:>/do// (2= Ep)d(a—a") (" |G(2)]| ) = 6(a — ) (2.18)
S (a|G(z)|d) = (S(Q__EO:), 2 # E,.



These conversions make use of the fact that the eigenvectors of the Hamiltonian form
a Hilbert basis, i.e., they constitute a complete and orthonormal set:

/da o) (o] =1, and (a|a’)=d(a—da). (2.19)

In summary, the Green’s function is a diagonal operator when expressed in the
eigenbasis of the corresponding Hamiltonian. This is to be expected, because H is
diagonal in its eigenbasis, so is z1 — H, and as the inverse of a diagonal matrix is
again diagonal consisting of the inverse diagonal elements the observation follows.
Employing once more the completeness of the eigenbasis, we arrive at the spectral
representation of the Green’s function [22]

G(2) = /da/do/ ) (a| G(2) | ) o] = /da [ o] (2.20)
2= Lg
Considering the Hamiltonian L = —V? of a free electron it is well known that

the plane waves (r | k) = 2T form a complete orthogonal set of eigenfunctions, and
therefore we may write the free Green’s function in real space as

. , ABEk etk (1)

G(r,r',2) = <r

Here and in the following we have chosen Rydberg atomic units, i.e., A =1, me = %,

and therefore E(k) = k2. Using spherical coordinates as well as Cauchy’s residue
theorem, this integral may readily be evaluated as [53, A1.3]

1 eWzlr—r'|
S (2.22)

Cdm -]

As expected from a physical point of view, the Green’s function of a free particle is
not dependent on both spacial variables r and ', but only on their difference:

G(r,r',2) =G(r—r',2). (2.23)

Density Operator

It is known from courses on basic quantum mechanics, that the expectation value of
any observable O of a system in thermal equilibrium may be calculated from the
density operator n(E) as [54]

(O(E)) = Tr [O(E)n(E)]. (2.24)

Taking a closer look at the spectral representation (2.20) it is seen that the Green’s
function does not only contain information about the eigenvalues of the system, but
also of the eigenstates. Thus, it should be possible to relate the density operator

10
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Figure 2.1.: Path used in the complex-energy contour integration of the charge
density. If a separate solver for the core density is used, Eg is chosen as
a lower bound for the conduction band, otherwise as an energy below all
electronic states. Er denotes the Fermi energy, and the crosses indicate
the location of the Matsubara poles .

to the Green’s function, which may be achieved by exploiting its different limiting
behavior for vanishing imaginary parts of the energy argument [55]

lim (Q(z) _gT(Z)> — lim [ de <\a) (o o) (e )

Im 20 Im z/0 z—F, z¢x—F,

(2.25)
= lim/da |a>< ! - ! ) (o
nl0 E+in—E, FE—in—E, '
With the SokhotskifPlemelﬂ theorem [56]
hm/da —_—t = :Fiﬂ/da la) §(E — Eq) (o +7D/da ) { (2.26)
E— E i n E—
we see that the density operator may be written as [56]
i _gt
/da @) 6(F ~ Ba) o] = 5 Iim (6(2) - 6'(=). (2.27)

Hence, if the Green’s function of a system is known, it is possible to calculate any
quantity of interest, e.g. the charge density of a particle having charge ¢ [56]

EF EF‘ q EF
p(r)= [dE p(r,E)= [dE q(r|n(E)|r)=—= [dE ImG(r,r, E). (2.28)
—00 —00 T J—0c0
Revisiting that the definition of the Green’s function for complex energies ([2.12))
was motivated by the poles at its eigenenergies, it is obvious that the numerical
evaluation of equation (2.28|) would be inefficient. Instead, a contour integration
along the complex energy path depicted in figure may be used: [55, [57]

p(r) = —% Im /dz G(r,r,z)f(z, Er,T) — 2qkT Re E G(r,r, zj). (2.29)
c -
J

5In physics, this relation is better known as the so-called Dirac identity.

11



Note that the introduction of the Fermi-Dirac distribution

flz,u,T) = (exp [;B' l}] + 1)_1 (2.30)

is justified by finite-temperature density-functional theory [58], which further gives
rise to a second addend necessary to correct for any so-called Matsubara poles

zj = FEp + im(2j — kT, j€N, (2.31)

of the Fermi-Dirac distribution enclosed by the energy contour C. In these formulae,
FEr denotes the Fermi energy, and kp is Boltzmann’s constant. Due to the Lorentzian
broadening of the poles it is usually sufficient to sample the Green’s function on 30
points along contour C, whereas the energy integration along the real axis would
require several thousands of points for a similar accuracy [57} 59].

2.1.2. Korringa-Kohn-Rostoker Formalism

Except for any explicit real space projections and the spectral representation of the
Green’s function, everything stated in the previous subsection [2.1.1]is independent of a
special choice of basis set and hence to be considered a general property of the Green’s
operator. These relations therefore constitute the essence of most non-time-resolved
Green’s function methods.

In accordance with its origins, i.e., multiple scattering theory [60], the specialty of
the Korringa-Kohn-Rostoker (KKR) formalism is the use of an angular momentum
basis, which arises naturally when employing the so-called muffin-tin approximation:
It is assumed that all atoms are centered at positions R,,, and that the atomic
potentials V7, (r) are confined to Spheresﬁ Vitp ={reR:|r— R,|| < RYy} of
the muffin-tin radii Ry;p. Further, within these spheres the potentials are supposed
to be spherically symmetric and hence a function of » = ||r|| only. The total potential
of the whole system is then given by the superposition [22, 53]

Vie) =Y V™), V'r)= { aiom(r) 17 < By (2.32)

Vo if r > Ry

where V) is a constant carefully chosen to minimize any discontinuities at the muffin-
tin boundariesm These assumptions justify a product ansatz

Yr(r,z) = Ry(r,2) - Yo.(7), L= (l,m), (2.33)

for the solutions of the stationary Schrodinger equation in regions of constant
potential, leading to a differential equation for the radial part

e+ 1)> w(r,z) =0, Ry(r,z)=

r2

(aﬁ - w(r,2) (2.34)

r

SFollowing a widespread habit of the KKR community, we use “sphere” in the meaning of “ball”.

TOf course it is then possible to shift the total potential V' downwards by this very constant Vo,
thus forcing the potential to vanish outside of the muffin-tin spheres [23]. This gauge is assumed
within the remainder of this section.
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The solutions are well known: The spherical Bessel functions j;(y/zr) are regular at
the origin, while the spherical Neumann functions n;(y/zr) diverge [53].

Instead of following Korringa [27], i.e., writing the incoming and outgoing waves in
terms of these regular and irregular solutions and relating them by means of multiple
scattering theory, we will build upon the work of Kohn and Rostoker [23] and expand
the Green’s function. For this purpose we introduce the concise yet powerful vector
notation [22]

i(Z,Z)E(f(o,o)(BZ) fa,—n(r,2) fao(r,2) ) (2.35)

with the components

fo(r,2) = fi(Ver) - Yo(#), fi € g, hEY,  hif = ji£iny, (2.36)

as well as its column vector counterpart

f(0,0) (r,2)*

r2)X = f(l,—l)(z7z)><
Hr,2)” = f(l,o)(ﬁaz)X ’ (2:37)

where we have defined
fo(r, 2) = fiV/zr) - Yo ()" (2.38)
Reference Green’s Function

According to reference [22] the spherical Bessel functions form an orthogonal set of
eigenfunctions of the Hamiltonian. Thus, the spectral representation (2.20]) yields

(r,7’, 2) /dEZ VE ji(r, E)‘]LE(; E) (2.39)

This integral may be solved by first substituting k = v/E, transforming to spherical
coordinates and employing Cauchy’s residue theorem on suitable contours (see ref.
[22, p. 19] for details) as

§(£> ﬂla Z) = _i\/gi(A(£> ﬂl)a Z)ﬁ—'—(\/(ﬂ, ﬂl)? Z)X ) (2'40)

where A(r,r’) denotes the vector having the smaller norm; V(r,r’) analogous.

In case r and r’ represent positions in different muffin-tin spheres it is possible
to further rewrite the above representation using the transformation to so-called
cell-centered coordinates f(/ ) — f(’ ) 4+ R, o:

é(£+Ena£, +Bn’7z) - Got(f_ﬂ/)En’ _Enaz)

2.41
—iEr - O (B - By,
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Here, the first equality is a result of the translational invariance of the free Green’s
function (2.23) and the latter of ||r — r'|| < |R,y — R,|| for n # n/. With the sum

rule (for a proof see appendix |A.1])

jo(r—r1',2) =4mi™t 3 i O (r 2) i (), 2) (2.42)
LIL//

this relation may be written as [22]
G(r+ Ry, ' + Ry, 2) = j(1,2)G™ (2)j(1, 2)%, n#n, (2.43)
where we have defined the so-called structure constants of the free Green’s function

S (2) = —idr /2 (L = Sp) DT CE L (R — Ry, 2)” (2.44)
LII

as well as the Gaunt coefficients
Ly = / 4 Yi,(F)* Yo (F)Yi (7). (2.45)

In summary, the Green’s function of the free particle in angular momentum repre-
sentation reads

G(r+ Ryt + Ry, 2) = Snglr, 1, 2) + j (1, 2)G™ (2)4 (1, 2) <. (2.46)

Dyson’s Equation

In order to calculate the Green’s function of a system described by the Hamiltonian
H =H+V, the ansatz [53]

G(r+ Ry, v + Ry, 2) = Opg™ (1,1, 2) + R (1, 2)G™ (2)R™ (1, )< (2.47)

is made, i.e., instead of an expansion in terms of the spherical Bessel and Hankel
functions, the regular solutions

R'(r,2) = j(r, 2) + /&iffv 9(r, 2, 2)V" (z) R (2, 2) (2.48)

MT

of the isolated muffin-tin potential V™ are used. Inserting this ansatz as well as the
free Green’s function (2.46)) in Dyson’s equation (2.16)) yields the relation [53]

S g (1,17, 2) + § (1, 2)G™™ (2) R (', 2)*

=bn/ (é(rﬂ’/,Z) + /d3x §(r, z, Z)V"(x)g”(ﬂzr/,Z))
Vi
o / , (2.49)

+j(r, 2)G™ (2) (j(T’aZ)X + [Pz j(z,2)* V" (2)g" (90,7“',2)>

n
VIVI T

+4(r,2) Y G (M ()G ()R (', 2)%,

m
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where the Lippmann-Schwinger equation ([2.48)) was utilized to simplify the left hand
side and the angular momentum representation of the transition operator [53|

t"(z) = [d’x j(z,2)* V" (2)R" (2, 2) (2.50)

= n_ =
VI\/I T

has been introduced. Employing rather elaborate mathematical results concerning
Fredholm integral equations [61-63] it is possible to prove that

g"(r,1',2) = —ivVzR"(A(r, 1), 2) H" (V(r, 1), 2) %, (2.51)

H™ denoting the irregular scattering solutions of the isolated muffin-tin potential V"
relatable to the spherical Hankel functions A, solves the integral equation

g (r, 7, 2) = §(r,1’, 2) + Bz §(r, z, )V (2)g" (2,7, 2). (2.52)

n
VM T

Assuming muffin-tin potentials of the kind (2.32)) one may further exploit the semi-
separability of g" to show the validity of the Lippmann-Schwinger-like equation

En(fa Z)X = Z(ﬂ; Z)X + d3$ l(@, Z)Xvn(g)gn(£7 r, Z)? (2'53)
it
and hence ansatz (2.47)) solves Dyson’s equation if the structure constants fulfill the

so-called algebraic Dyson’s equation [53]

GM(2) = G () + LG () (2). (2:54)

Although the transition operator t"(z) could be obtained from its defining equation
(2.50) by means of numerical integration, in practice it is evaluated asﬁ

tn(z) = i (LP(R) = Yrg) i (VERYr) + V7 i (VERYr) (2.55)

Vz (LP(2) = YRgn) b (VZRYr) + V2 ' (VZRYr)
i.e., in a first step the regular scattering solutions Rj'(r,z) are calculated using

elaborate numerical methods to solve the ordinate differential equation (2.11f). This
procedure yields the necessary logarithmic derivatives [22]

Ln(z) — aTR?(RnMT’Z)
: R} (Rt 2)

as a by-product, and therefore the transition operator is completely determined by
the unbound eigensolutions of the muffin-tin Hamiltonian.

Revisiting the prerequisites of these results it can be seen that we may iterate
the procedure, i.e., we might regard the Green’s function corresponding to
the Hamiltonian H = 7 + V as a reference Green’s function and calculate the

(2.56)

8See appendix for a brief derivation in case of (possibly complex) muffin-tin potentials.
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Creen’s function G(z) of the system H = L+ V = H + AV by the very same means,
presupposed that V(r) — and therefore AV (r) — is a superposition of muffin-tin
potentials as described in equation . This observation yields the foundation
of the so-called screened KKR [22], where in a first step the Green’s function of a
highly repulsive reference potential Vet is calculated from the free Green’s function.
This may be done rather quick, because this Green’s function G is exponentially
decaying in real space, and hence the calculation of the structure constants may be
restricted to a comparatively small “cluster.” Subsequently, the Green’s function of
the system is evaluated based on this reference.

If the system under study shows translational invariance one may further exploit
that in this case the structure constants must depend on n — n/ only, and therefore
equation may be lattice Fourier-transformed [22, 53]

Gk z) = G(k,2) + Gk, 2)t(2)G(k, 2) (2.57)

and solved by matrix inversion for each wave vector k separatelyﬂ The real space
representation necessary for the calculation of, e.g., the charge density (2.29) is then
restored by means of a Brillouin zone integration [53]

an’(z) _ Q Bk eiE(En*En/)Q(E, Z), (258)
= (2m)3 JBz -

where ) denotes the unit cell volume.

2.2. Electronic Transport

A main objective of this work is to study the effects of the coupling of electrons and
phonons on transport properties in nanostructures. It is hence necessary to treat
both entities as well as their mutual interactions on an equal and fully quantum-
mechanical footing. The theoretical framework of choice is the (steady-state) Keldysh
formulation of the non-equilibrium Green’s function formalism (NEGF): It not only
allows for the incorporation of phase-breaking scattering but additionally lends itself
to a variety of other generalizations, most notably the possibility to account for
any applied bias voltages in a self-consistent manner [37]. We start by introducing
the general ideas in an idealized setup, proceed by the inclusion of scattering and
complete by discussing some theoretical subtleties regarding the implementation in
the KKR formalism.

2.2.1. Non-equilibrium Green’s Function Formalism

The partitioning approach [32, |34, 36] certainly is one of the key ideas of the non-
equilibrium Green’s function formalism: Consider a “typical” transport geometry, i.e.,

9In case of the below discussed transport geometries the translational invariance is broken in
transport direction only, and therefore an in-plane lattice Fourier transform is still possible.

Please see ([2.96) for details.
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a device — or, in general terms, a middle region M — connected to two semi-infinite
leads L (for left) and R (right). In order to find a suitable way to calculate the
transmission probability Trr from the left to the right lead, the underlying Hilbert
space is formally separated into disjointly connected subsystems corresponding to
the beforementioned entities. Assuming that there is no direct interaction between
the leads, the original “coupled” transport system may be related to the “decoupled
system” Hg. by means of the following “coupling potential” V. [32, 36]

H, O 0 0 Vim O
Hac=| 0 Hm 0|, Ve=|Vur 0 Vur|, Hc=Hdc+Ve. (2.59)
0 0 Hr 0 Vem O

By rearranging the defining equation Gg(z) = (21 — Hc)fl in matrix notation
0 21 —Hr,  —Vim 0 Grr(z) Grm(z) Grr(z)
0l=| —Vur 21—-Hm —Vur |-|9uc(z) Gum(z) Gur(z)| (2.60)
1 0 —Vrm 21 —Hp Gri(2) Grm(2) Grr(?)

we obtain a system of linear equations for the middle region’s Green’s function of
the coupled system Grar(z):

o O
o = o

0=(21—-Hr)Grm(2) = VrmGrnm(2) (2.61a)
1=—-VYurGrm(z)+ (21 — Har)Gum (2) — ViurrGrm (2) (2.61Db)
0= *VRMQMM(Z) + (Z]l — /HR)gRM(Z) (2.61(3)

Presuming the existence of the Green’s functions G /p(2) = (21 — HL/R)_I cor-

responding to the isolated leads, equations (2.61a)) and (2.61c) may be solved for
Gra(z) and Grar(z), respectively, and inserting these representations into equation

(2.61b)) yields [32, 36, (64]

gMM(Z) = (Z]l —Hy — Z]leads(z»_l (262)
where the so-called self-energy (32, 36]
Yteads(2) = Xr(2) + Xr(2) = V9o (2)Vim + VurGr(2)Vrm (2.63)

has been defined. Thus, the effects of the leads on the device may be modeled by
additional complex and energy-dependent “potentials,” particularly one self-energy
addend per lead. This important feature is readily transfered to the density operator
of the connected device: From equation we find [64]

% (gMM(Z) - gMM(Z)T)

=5 G (2) (QJTV[M(Z)_I - gMM(Z)_l) g;r\/[M(Z)

o
27
1

= o O Tieae ()G () + — Tm(2) - Garne ()G (),

nMM(z) =

(2.64)
< Grar(2) (—i2Tm(2) + Dieads (2) = Shoags(2)) Glias (2)
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where this time the so-called broadening functions
Deads(2) = [0(2) + Tr(2), Tx=i(Sx-3%), X e{L R}, (2.65)

have been introduced, which may be interpreted as the sum of particle in- and
out-fluxes [34]. Dropping the index M M, as within the scope of this work Gasas(2) is
the only relevant component of G.(z), and performing the limit towards real energies,
we confirm that the density operator does in fact split up in addends corresponding
to the individual leads:
n(E) =ng(E)+ngr(E), nx(F)= lim ig(z)FX(z)gT(z). (2.66)
Im 2|0 27

From a phenomenological point of view it is now obvious that the transmission
probability Trr of a charge carrier from the left to the right lead is proportional to
the expectation value of the net particle out-flux into the right lead I'r of all
the charge carriers originating from the left lead (having density nr):

Tiw(E) = lim Tx [Tr(2)G(2)TL ()61 (2)] ~ T [Cr(E)nr(E)]. (2.67)
For a thorough mathematical discussion we refer to the literature |34, [65].

The relation between transmission probability and current density@ from one
terminal L into another R is commonly attributed to Rolf Landauer [34) 66]: The
electric current per energy is assumed to be proportional to the charge g of the
transmitted charge carriers, their respective transmission probability Trr(E) as well
as the difference of their distribution functions f7,(E) in the leads. Therefore, the
total current density jrr per spin degree of freedom is given by

JLR = %/]R?E TLr(E)(fL(E) — fr(E)). (2.68)

In case of a non-vanishing external bias voltage drop, the energy distributions of
the charge carriers in the device will not be equal to their equilibrium value, i.e.,
they are generally unknown. Postulating a continuous change with respect to the
spatial variables, this would be true for fr, r(E) in the leads as well. To circumvent
this issue, the leads are considered to be perfect conductors, infinitely long and,
simultaneously, connected to a charge carrier reservoir in thermodynamic equilibrium.
Then, deep within the lead, fx(F) = f(E, ux,Tx) will be Fermi-Dirac distributions
, where pux and Tx, X € {L, R}, denote the electrochemical potential and the
temperature of the reservoir, respectively [34HE|

10Please note that the current density is considered instead of the current: To allow for an in-plane
lattice Fourier transform, translational invariance is assumed orthogonal to the transport direction
in all the calculations presented within this work. Hence, to avoid infinitely high values, the
evaluated transmission probability T7r(F) is in fact normalized to the projection A of the unit
cell area into this orthogonal subspace.

' Alternatively, one may assume the contacts to be “reflectionless,” i.e., the charge carriers may
enter the leads with vanishing probability of reflection. In this case the charge carriers in the
leads will be Fermi-Dirac distributed everywhere, and hence one is not bound to measure the
conductance between two planes deep within the leads [34].
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From this, the electrical resistance Ry gr per spin degree of a device having cross-
section A is readily obtained as

AV, 2 (up —
Rpp= - = s = i) (2.69)

jre- A Go JpdE Tip(B)(fL(E) — fr(E)) - A’

where it was further assumed that the only contribution to the current is due to
electrons, and hence ¢ = —e = —/2. Gy is the conductance quantum. Even though
the device is considered free of scattering, this resistance will not be equal to zero,
because the electrons are scattered at the interfaces connecting the device to the
leads. Thus, this value is usually referred to as “contact resistance” [34].

Finally, note that — in the limit of vanishing bias voltage AV r — equation
may be shown to reduce to

2

Rip = ,
LR = Gy TLr(Ep) - A

(2.70)

which is of course the widely known Landauer formula [66] rewritten from conduc-
tances to resistances and hence equivalent to the linear response formalism discussed
by Datta [34]. However, a careful examination of the proof given in appendix
reveals that the transmission function T7r(FE) does not have to be “approximately
constant over the energy range where transport occurs” [34, p. 89]. Instead, a small
“curvature” in the sense of appendix is a sufficient condition for equation
to be valid. This result will be exploited in sections and as it allows to
restrict all necessary calculations to the Fermi energy Er only.

2.2.2. Phase-breaking Scattering Events

Charge carrier transport in condensed matter is usually not ballistic, i.e., free of
scattering, as was assumed in the preceding chapter. In the case of paramagnetic
metals, on which the exploratory focus of this work lies upon, important scattering
mechanisms would be the mutual interactions of the electrons with each otherB the
scattering on impurities and defects as well as the scattering on lattice vibrations or
phonons [67, |68]. Besides a transition from the initial electronic state |nk) to a new
state |mk’), possibly accompanied by a change in energy (the inelastic case) or not
(elastic scattering), they usually induce a randomization of the phase relations of the
electrons. Therefore, the electrons lose their ability to interfere, and hence one may
consider the scattered electron to be unrelated to its unscattered ancestor.

It was Biittiker [33] who noted that such a phase-breaking scattering event may be
regarded equivalent to the combined process of a charge carrier in state |nk) leaving
the device through a possibly virtual, i.e., fictitious, terminal, and, simultaneously,
another electron having state |mk’) entering the system by means of this very same

20n the DFT level, both the classical self-interaction of the electrons as well as the quantum-
mechanical exchange-correlation contribution are contained in the effective one-particle potential
(2.7) of the non-interacting Kohn-Sham particles. Hence, we do not have to explicitly consider
this effect in the following.
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terminal. This idea of modeling phase-breaking scattering events using these so-
called Biittiker probes has successfully been employed by several authors [34], |35,
and references therein] and is particularly well suited to be implemented in the
previously presented NEGF scheme, as all terminals — whether real or virtual — may
be incorporated on equal footingE

Notably, the charge carrier transmission between terminals remains (except for
interface effects) purely ballistic in this picture, because all state transitions and
hence scattering events occur within the Biittiker probes, not the device. It is thus
possible to adapt the former result to the new situation: Let G(z) be the
Green’s function of the device region coupled to both leads and Biittiker probes, then

Txy(B) = lim Tr Ty (2)G(:)Tx ()57 (2)] (2.71)

yields the probability of a charge carrier to leave terminal X and enter terminal Y.

Although this relation is valid for real terminals as well as fictitious ones, in
the latter case a problem arises: Given that the virtual terminals are a perfectly
hypothetical construct, there is a priori no facility to compute the decoupled Green’s
functions G, (z) for any a € S, where S denotes the set of all Biittiker probes or
“scatterers” in the device. Therefore, the scattering self-energy obtained by means of
the partitioning approach@

Tscat(2) = Z Ya(z) = Z VMaGa(2)Vam (2.72)

a€EeS a€eS

may not be evaluated, and, subsequently, the necessary broadening functions
Ta(2) =i (Za(2) = Zu(2)f), a€s, (2.73)

are left undefined. This is to be expected, because the effects of the phase-breaking
scattering events on the charge carrier fluctuations as modeled by the self-energy must
depend on the scattering mechanism under consideration, and hence are problem
specific. Further, the actual coupling strength will usually be influenced by the
energy distribution of the charge carriers in the device, which means that the Green’s
function G(z) of the device should enter instead of the fictitious decoupled one. In
summary, an additional way to obtain the scattering self-energy particularly suited for
the problem at hand is necessary. The important case of electron-phonon interaction
will be discussed in sections to 234

The transmission probabilities between the various terminals now merely
are constituents of the “effective transmission,” an auxiliary construct which is used
to quantify the charge carrier transition from one (real) lead into another. As is
consistent with the origins of the KKR formalism, its value is computed by means of

3For a more thorough discussion on how this may be achieved we refer to appendix
14The very same reasoning also applies to the method of decoupling potentials presented in the
subsection on the lead self-energy of section @
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multiple scattering theory: A charge carrier may traverse the device without being
scattered at all, or being scattered once, or twice, and so forth |35, |124]:

B#a
e TLOz Tur(2) Tra(2)Tap(2)TsR(2)
T$h(2) = Tym(z) + > L el 5t S (Z)BS (sz o (2.74)
a€S a,BES o B
In this equation, the denominator

B#a
Sa(2) = Tar(2) + Tar(z) + Y Tap(z), a €S, (2.75)

pes

can be thought of as a renormalization of the probability measure ensuring charge
carrier and energy conservationE

While representation could in principle be used to study the typical scattering
orders in various material systems, it is “uncomfortable” in case one is only interested
in the real physical situation, i.e., the limit of infinitely many allowed scattering
events. Then, it is favorable to transform this equation to the equivalenﬂ matrix
representation

TEh(2) = Tur(2) + Tp(2) (1= 1(2)) Tr(=) (2.76)

with the row vector Tp = {Trq},cg, the column vector T = {T‘*R/Su}ze& as well
as the matrix T'= {Ts/s.}, 5c5. A similar analysis would also yield the formula

[OC), 1= aes, @)

[(z)= (1-1()) <

for the unknown distribution functions in the virtual terminals.

Given the effective transmission, the necessary relations for jrr and Rpg in the
case of phase-breaking scattering events in the device region are now obtained by
substituting Tff}fz for Ty r in all formulae derived at the end of section @ which
is true because equation (|A.40)) is structurally equivalent to equation @D To
accentuate this point and for future reference this is exemplified by

= 2 (NL - ,U«R) .
Rpp = Go Jg dE TS%(E) (fL(E) — fr(E)) - A (2.78a)
s : (2.78D)

w(11) 0 Go - T§h(Ep) - A’

where the “curvature” k of T’ E%(E) is yet again used in the sense of appendix

15Qee appendix for a more detailed discussion.
16Please note that Tha(z) = 0,a € S, has been chosen to simplify notation. For a more detailed

derivation of equation (2.76) see the closing part of appendix
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2.2.3. KKR Representation

Similarly to the approach used in section [2.1] on the electronic structure, the introduc-
tion to the NEGF formalism given in the subsections and [2:2.2] is independent
of a special choice of basis set. In the following, the peculiarities appearing whilst
implementing these equations in an angular momentum representation, specifically
into a KKR Green’s function code, are discussed.

Lead Self-energy

In contrast to other methods it is, within the KKR formalism, possible to solve the
Green’s function of the coupled Hamiltonian . by means of the so-called decimation
technique [22]. A problem, on the other hand, pose the isolated subsystems, because
the previously defined coupling potentials V. are in fact not accessible [32, 36, |64} (69].
Instead, “decoupling potentials” in the sense of references [70] and [71], i.e., strongly
repulsive localized potentials, are introduced:

Vi, 0 0
Vdc = 0 V]u 0 . (279)
0 0 Vg

Assuming there exists a Vy. such that Hge = Hc + Ve, then a Dyson’s equation
Ge = Gae — GacVdcGe is valid, and with Gac(z) = (21 — Hdc)fl this yield

G Grm YR Gr—GLVLGrLr —GLViGLm —GiLVLGLR
Gur Gum Gur| = | —GuVMmGur Gum — GuVumGum  —GuVuGur |- (2.80)
Grr GrM GORR —GRrRVRGRL —GrVRGRM Gr — GrRVRORR

Obviously, for arbitrary Green’s functions G.(z) there is no such Vy, but as long as
only the correct Garar(z) is necessary for the calculations, as in the present case, the
only condition on Vjy. is to fulfill Dyson’s equation

Gum(2) = Gum(2) — G (2)VmGmm (2)
= Gm(2) = G (2)VuGum (2) + G (2) VG (2) VG (2) (2.81)
= Gm(2) + Gu(2)(EL(2) + Er(2))Gune (2),
where the second equation is obtained by iterating once, and the third is a consequence
of equation (2.62)). Particularly, V; and Vg remain arbitrary in the sense that they

do not affect Garar(2) at all. Now, if Vi = Vi, + Vg, is chosen in such a manner
that it exhibits the properties (written schematically) [69)

D 1< VuGum(2), (2.82a)
(II) Y, G Vs + Vg GV, < Vv, GV, + Vg Gm Vg, (2.82D)

then Dyson’s equation (2.81)) is valid with the self-energy definition
Ex(z) = VMXQM(Z)VMX, X e {L,R}. (2.83)

For the sake of readability, the parametric energy dependence has been dropped here.
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Vdc
AVier M —

Figure 2.2.: Partitioning of the system in middle region M as well as left and right
leads L and R, respectively. The artificial separation is realized by using
the difference to the reference potential AVier as a decoupling potential
in the self-energy regions Mx, X € {L, R}.

The physical reasoning behind these assumptions is to make sure that there are
no direct interactions between the leads, which means that the self-energies are
additive. While inequality (I) is certainly granted if the decoupling potentials are
chosen appropriately high, the second condition may be guaranteed if the overlap of
Vo, and Vi, is negligible and, in addition, both are wide enough [32, [69].

Notably, the difference AV,et of the device potential to the repulsive reference
potential used in the screened KKR formalism is a valid decoupling potential if the
transport geometry is divided as depicted in figure 2.2} Given that the structure
constants of the reference Green’s function G.¢(z) decay exponentially in space, it is
sufficient to restrict both M, and Mg to a rather small amount of boundary layers.
To simplify notation the lead subsystems L and R are in the following redefined to
coincide with these device regions. Thus, within this work the lead self-energies are
assumed to be

Sx(2) = AVretGret (2)AVset - Ly, X € {L, R}. (2.84)

While the above equations are concerned with the decoupling a system M free of
scattering, the same procedure is valid in the case of phase-breaking interactions in
the device as well. Following the closing remarks of appendix the system would
be separated in the disjoint subsystems L, R and M, and one would assume that
there exists a decoupling potential analogous to such that Hae = He + f/dc,
where

5 Vi O 0 B Hr 0 0
Vac=10 Vi 0], Hac=| 0 Hy 0 [ (2.85)
0 0 Vg 0 0 Hr

Proceeding similarly to the previous case and comparing the analog of equation
(2.81) with (A.34b|) demonstrates that the self-energy once again takes the shape of
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. However, care must be taken to ensure that the scattering region S C M is
well separated from X = My. This is true because (a subset of) the charge moments
in X are perpetuated to yield the charge moments in the leads, and given that the
leads are considered to be free of scattering, these entities should not contain any
effects of the Biittiker probes connected to the device.

Green’s Function Including Phase-breaking Scattering Events

As discussed in section [2.2.2] if phase-breaking scattering events shall be considered in
the transport calculations, then the coupled Green’s function of the device has to take
the effects of scattering into account. It is elucidated in appendix [A75]| that this may
be done by an additional scattering self-energy Ygat(z), formally originating from
the virtual Biittiker probes. Now it will be shown why, even though the traditional
KKR formalism was concerned with real atomic potentials only, the beforementioned
calculational scheme is suited to (approximately) handle such self-energies.
Obviously, both the free Green’s function as well as the screened reference Green’s
function may be calculated regardless of the self-energy, as these systems are to be
considered free of scattering. In accordance with the origins of the KKR formalism,
i.e., multiple scattering theory, every atom is reckoned to be a scattering center for all
phase-breaking scattering events under consideration, and hence each atom n € § in
the scattering region is “connected” to exactly one Biittiker probe associated with the
self-energy X, (z). Assuming further that this self-energy is not only site-diagonal
but constant within a muffin-tin sphere, it is possible to relate the scattering-free
isolated muffin-tin Hamiltonian to its “full” counterpart by H"(z) = H" 4+ X2, (2)

in a particularly simple manner, because then the corresponding eigenvalue problem
reads

H* [0 (2)) = (21 = Sar(2)) 197 (2)) - (2.86)

Comparing this to the eigenvalue problem of the unperturbed system H™ thus reveals
that the scattering solutions including phase-breaking scattering events exist and
may be calculated by a complex energy shift [124]

X {X (2 =S(2)) Hnes, o v (R, H}. (2.87)

X"(r,z) = .
X" (r,2) otherwise
The remaining task is to ensure the validity of the algebraic and single-site Dyson’s

equations (2.54)) and (2.52)), respectively. Studying the proof of the latter reveals no
restrictions to purely real potentials [124]. Hence,

§"(r,1',2) = —i/ZR " (N(r, 1), 2) H"(V(r,7'), 2)*. (2.88)

The validity of the algebraic Dyson’s equation is granted by noting that

1. the Lippmann-Schwinger equation for the isolated muffin-tin potential (2.48|)
is a special case of the general Lippmann-Schwinger equation discussed in
appendix which is valid for self-energies as above, and that
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2. the proof of the Lippmann-Schwinger-like equation ([2.53) only requires the
semi-separability of g™ as well as a spherically symmetric potential@

Finally, the formula for the transition operator components (2.55) is valid if the
logarithmic derivatives of the “full” scattering solutions are used. Therefore, the
coupled Green’s function of the device including phase-breaking scattering |124]

G(r+ Ry, v’ + Ry, 2) = 8" (1,17, 2) + B (1, 2)G™ (2)R™ (', 2)* (2.89)

may be calculated in the usual manner.

Please note, that the described procedure is a so-called “one-shot approximation:”
To accurately mimic the physical situation, the coupled Green’s function containing
phase-breaking scattering would have to be calculated self-consistently with the
scattering self-energy, because the scattering processes will lead to a renormalization
of the electronic structure, which in turn will influence the mutual interactions of
the particles [34} |72} |73]. This effect was, however, not considered in the calculations
reported within this work, i.e., the self-consistency was performed in an equilibrium
situation using supercells without any scattering self-energy contribution. This path
was taken for several reasons:

First, the calculations presented within this work address the electron-phonon cou-
pling as Sol@ phase-breaking scattering event. Given that the phonon eigenenergies
are of the order of several 10 meV and hence much smaller than the corresponding
electronic eigenenergies, the renormalization is assumed to be rather small. In fact,
Migdal’s theorem [72, 74] proves that the renormalization is of the order M —'2 with
M being the ion mass.

Second, although it is possible to calculate the Green’s function including a self-
energy, the charge density necessary for the self-consistent DFT cycle is generally
not calculable using equation : As the Hamiltonian fails to be hermitian, the
eigenenergies won’t be purely real, and hence the Cauchy principal value will not
cancel in equation . In contrast, the non-equilibrium density formula
would still be valid if all additional terms corresponding to the scattering self-energy
were added. Given, on the other hand, that this relation is only valid in the limit of
real energy arguments, a very dense mesh would be necessary to accurately sample
the highly structured integrand in the energy integration for the charge density@
Considering that the renormalization is small this computationally demanding task
is assumed dispensable.

Last, the electron-phonon self-energy used in the presented calculations is not
calculated within the KKR code itself, but employing third party codes. Hence,
there is no mechanism to update the self-energy using the “full” Green’s function

8For hints on whether it is possible to generalize to “full-potential” calculations, please see the
discussion in the outlook (chapter .

¥The electron-electron interaction is treated on the DFT level, i.e., we are considering the “Kohn-
Sham-quasiparticle-phonon coupling,” actually. Further, the scattering at the device boundaries
is contained in the lead self-energies and is hence not considered, either.

20Gee equation as well as the discussion regarding the benefits of equation .
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G (z), which would introduce another inconsistency in the self-consistency cycle. As
there is no obvious reason why this approximation should be superior to completely
neglecting the phonon renormalizations, we refrain from doing so.

Transmission Formulae

The KKR representation of the general transmission formula (2.71]) is obtained in
great similarity to what is described by Franz, Czerner, and Heiliger [32] in the case
of coherent transport: Projecting the operator identity to real space yield

TXY /d37"1 /d37“2 /d37"3 /d T4 FY 7“1,7"2, )é(£27f37z)'

X(r3’ 7Z)G(T17T47 ) )

(2.90)

where X = Mx in the sense of the subsection on the lead self-energy of section
denotes the domain defined by I'x () being nonzero upon; Y analogously. Segmenting
the spatial degrees of freedom in muffin-tin spheres Vjt and inserting the coupled
Green’s function of the device including phase-breaking scattering leads to

Txy (2 Z /d37“1 d3r2/d37’3/d37“4 L™ (11,19, 2 )R (ra, )Gnm()
I\IT I\IT
mm GX

: Em(f?ﬂ z)xrg(nm’ (£37 T4, Z)En(flﬂ Z)*Qnm, (Z)*Eml (£47 Z)X*‘

(2.91)

Here it was exploited that X NY = &, i.e., that the overlap of both domains vanishes,
which allows for the neglect of the “single-scattering contribution” 8, 3" (r,1’, 2)
to the Green’s function. For the domains L and R of the real leads broadening
functions this is true by construction of the corresponding self-energies , in the
case of Biittiker probes this condition will be enforced by a suitable choice of the
scattering region § C M. Note, however, that this assumption explicitly rules out
the incorporation of scattering events in the leads.

One of the most prominent features of the “multi-scattering contribution” to the
Green’s function, namely that the spatial variables are separated, allows to further
simplify this relation: With the definition of the broadening matrix of the first kind

Ty)nn/ — d3 d3 /RTL FTLTL/ / RTLI / — 2 92
=X (Z): v nT (T Z) X ([,[,Z)i (fvz) ) ( : )
MT
where the superscript notation — = x * T = x{ was introduced, it is seen tha@
Do) = 3 [ [ e R (e G )
Lo (2.93)
R ()G (2) R (11, 2)'.

21To simplify the notation, the limit towards real energy arguments has been temporarily omitted.
22The last three factors of this matrix-vector product have been substituted by their transposed
equivalent in order to use this definition.
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Finally, because of a - M - QT =Tr {QTQ - M } for arbitrary vectors a, b and matrices M
having suitable dimensions, we find for the transmission probability from terminal
X to Y that

. Snn’ “mimy\ ~mm! ~Smm/ o N\ T
Tey(B) = Jim 3 T [ @ M@ I (@ (2 (290
ey
mm/'eX

with the broadening matrix of the second kind

<’Wml(z) = [d3r [d3 R"(r z)TF"",(r r’ Z)Rn/(T/ 2) (2.95)
=X - vn i = \= X —)r = == Ly . .

n
MT VM T

The coherent part of the transmission, i.e., the probability of a charge carrier to
transmit from the left lead to the right lead without being scattered, may now be
obtained using equation after the broadening matrices and have
been calculated. Revisiting that the domains L and R must not contain any Biittiker
probes for equation to be valid, it is seen from that the corresponding
scattering solutions R reduce to their “free” counterpart R, and hence these matrices
are exactly the same as those defined in reference [32]. Therefore, all considerations
regarding an efficient evaluation of these quantities given there apply.
Nevertheless, the transmission probability is reduced compared to the case free
of scattering, because the structure constants gml(z) containing the effects of the

Bittiker probes enter in the calculations instead of g”"l(z). The physical analog
to this mathematical reasoning is the intuitive expectation, that the probability of
an electron to remain unscattered while transmitting from left to right becomes
smaller if either device length or scattering rate (or both) increase. The coherent
contribution to the effective transmision will consequently be important especially in
short systems at low temperatures.

As all systems considered within this work show translational invariance orthogonal
to the transport direction, this is true for the broadening matrices as well as the
structure constants. To exploit this feature in the calculations, the multi-index n
numerating the muffin-tin volumes Vi is split into an in-plane component, yet again
denoted n, and an out-of-plane index v. Then, a lattice Fourier transform

() = /Sd2k (BB () ) (2.96)

(2m)? JsBz

of equation ([2.94]) with respect to the in-plane difference n — n’ yields

= ~ 1 — ~
Tir(E) = lim [d®k > Tr {7”’ (k, 2)GY F(k, 2) V" (k, )G (k, 2)T| . (2.97)
Im =10 /SBZ v/ ER - o -t o

pu'€L

The incoherent part of the transmission consists of all those charge carrier tran-
sitions that were subject to phase-breaking scattering events in the device, and
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according to equation this contribution is the weighted sum of all those scat-
tering paths originating in the left lead and terminating in the right which were
taking a detour over at least one virtual terminal. To calculate these transmission
probabilities, the broadening matrices of all Biittiker probes o € S must be evaluated
first, and in conformance with the considerations in the subsection on the Green’s
function including phase-breaking scattering events of section [2.2.3] we will assume
that the corresponding self-energy takes the formlﬂ

Egcat r, ', 2) Z E (r,r',2) = Z S O O(1 — 1) 0pa X8nt (2). (2.98)
a€S a€eS

The broadening functions as defined by (2.73)) may then be inserted in the general
definitions (2.92) and ([2.95), respectively, thus proving that both kinds of broadening

matrices are equal for self-energies constan@ in a muffin-tin sphere:

) = [atr [0 B ) iz 100l (DR ()
Vl\’//IT I\VIT
= 8O O [T Ea(z, z)TFS%at( )Ea(z, 2)
Vitr (2.99)
= 8O O [T Ea(z, 2) T8 (2 )Eo‘(z, z)”
Vitr

_>.
- li’{'(z)-

Given that the self-energy as defined above preserves the in-plane translational
invariance of the system under consideration, the net current flow will be in transport
direction only. This quasi-one-dimensional transmission situation may therefore be
modeled by gathering all virtual terminals in each plane in a kind of “super-terminal,”
and subsequently calculating the transmission probabilities between these planes. As
for the coherent contribution, this idea is formally equivalent to perform an in-plane
lattice Fourier transform. Hence, for all super-terminals «, 5 € S we find

Tro(E) = lim [d’k Y Tr Lm )G (k, 2)7““ (k, 2)G (k, 2) } (2.100a)

Imz]0 JsBz ui'el

Tur(E) = Jim (& 50 T |15/ (k )G (20 (G (0,20 |, (2:1000)
Im 20 JsBz vW/'ER B

Taﬂ(E) = Irlr}Iinl,O SC]132Zk Tr [lfcat( )Gﬂa(k 2) scat( )gﬁa(k7 Z)T} ’ (2100C)

23Notably, the transport formalism would allow for an r-dependent self-energy (in particular, the
lead self-energies are dependent on both r and '), but in this case the relation would not
be valid, and hence the scattering solutions including the self-energy contribution would have to
be solved otherwise. For simplicity, we will specialize here to the case relevant for the presented
calculations.

24Glightly more general, a purely radial dependence on the spatial variable is sufficient.
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where the broadening matrix

. . - 2
L) = [ B ) TR 9) = {0t BRI} (2200
Vatr L
has been defined. After these quantities have been evaluated, the effective transmis-
sion is readily obtained by means of equation ([2.76]).

2.3. Electron-phonon Coupling

In order to employ the theoretical results of the last section, the electron-phonon self-
energy has to be obtained in the purely energy-dependent representation
suitable to incorporate in the proposed KKR implementation. After a preliminary
discussion of lattice dynamics, the derivation and evaluation of the self-energy formula
are elucidated. Finally, a way to average this quantity over all contributing states to
arrive at the desired representation is exemplified.

2.3.1. Lattice Dynamics

As discussed in the introduction to this chapter, after having solved equation
for the eigenenergies E,({R}) of the electronic system with fixed atom positions,
the movement of the nuclei in Born-Oppenheimer approximation is given by the
stationary Schrodinger-like equation [compare equation ]

Nn
(‘ > ]\; Vi, + E({R})> Xo({R}) = Exa({R}), (2.102)

n=1"""

where the effective potential F({R}) is taken to be the ground-state energy of the
electronic subsystem in practice [20, [49]. In general this Born-Oppenheimer energy
surface will depend on the atomic positions in a complicated manner. Nevertheless,
if the system under consideration is stable, i.e., has a positive binding energy, there
exists a set of equilibrium positions {R°} such that F({R"}) is minimal, and hence
for small displacements {u} a harmonic approximation

1
BUR’ +u}) = BURY) + 5 2w+ (Va, Vi BURD)| Loy e (210)
nn/ -
is valid. The vanishing of the gradient F,, = Vg F ({R"}) at the critical point is,
from a physical point of view, just the notion that in equilibrium all forces on the
nuclei must be zero |20, 49]. Using Newton’s second law F,, = M,a,, therefore yields

the equation of motion [47]

Myii, = =Vy E{R’ +u}) == (VE,LVLE({E}))‘

n/

oy e (2104)

This is the reason that the components of the Hessian matrix of the Born-Oppenheimer
energy surface E({R"}) are often termed “harmonic force constants” [20, 47, 49].
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If further translational invariance with respect to some lattice vectors RY may be
assumed, it is beneficial to rewrite the positions of the nuclei as [20]

where 7,. is the basis vector of the k-th atom in the unit cell. Then the ansatz [47]

(1) = = enl) - (0502 (2.106)

produces the phonon eigenvalue equation [47, |49)

> Diawar (@) €fa () = wéyeza (9) (2.107)

2
gl/
mode v having wave vector ¢. In this relation the lattice Fourier transform of the

mass-scaled harmonic force constants [20] [47], [49]

for the squared eigenfrequencies w;,, and polarization vectors e (g) of a phonon

1 82E({R}) _: (PO _po
Dyarrer (@) = = e ia(B—Bo), 2.108
' (g) V MHMK]/ 1 aRlnaaROn/a’ {EO} ( )

i.e., the elements of the so-called dynamical matrix, emerges. The dimensions of the
dynamical matrix depend only@ on the number of basis atoms and are, in particular,
independent of the macroscopic system size. Hence, equation is a convenient
way to obtain the phonon dispersion of a periodic solid necessary for the evaluation
of the electron-phonon self-energy (2.139)) derived in the next section.

2.3.2. Self-energy Formulae

In the following an expression for the scattering self-energy formally originating
from the Biittiker probes will be derived in the case of electron-phonon interactions.
A systematic way to perform this task is the perturbative approach based on the
Keldysh formulation of the non-equilibrium Green’s function formalism in the context
of quantum field theory [50, 51]. Hence, in a first step, an appropriate approximation
to the non-relativistic condensed matter Hamiltonian in second quantization is
established, which will subsequently be used to state the non-equilibrium electron-
phonon problem in terms of a contour-ordered Green’s function. This quantity lends
itself to an expansion in terms of the non-interacting electron and phonon Green’s
functions, leading to a Dyson’s equation with a suitable self-energy approximation.
Finally, the contour-time is transformed to energy domain, bringing forth a self-energy
formula suitable to be evaluated using, e.g., (pseudopotential) plane-wave codes.

25Tt is assumed that the system and hence any displacement vector u is three-dimensional.
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Condensed Matter Hamiltonian in Second Quantization

In accordance with the considerations of Born and Oppenheimer [4§] it is assumed
that the electronic system with fized equilibrium nuclei positions {R"} has been
self-consistently solved in the framework of DFT, i.e., the effective potential

VAR Z — RY) (2.109)

of the Kohn-Sham Hamiltonian has been obtained as a superposition of the
screened nuclei potentials [47, 75]. Now, if the lattice vibrations may be modeled as
phonons, i.e., for small displacements {u} from the equilibrium positions {R’}, the
effective potential with displaced nuclei may be written as [47} 75|

VAR 0y &y ) ZVT (r— RO -y, (2.110)

Within these two approximations, the Hamiltonian of the electronic system accounting
for electron-phonon coupling hence becomes [47]

Ne

~ 0

Ho=HE +3 Hopn(ry). (2.111)
=1

Let cglz be the creation (annihilation) operator of a Kohn-Sham quasi-particle in
state |nk) of the phonon-free system, then the first term is diagonal. Hepp, on the
other hand, has non-diagonal elements describing scattering between statesFE] 147, 75

Ho = ZenECLkCnE + Z Z (mk' | Heph | k) c:fnk,cnﬁ, (2.112)
nk - nm gk’ -

where the matrix element in real-space representation may be expressed with the
Kohn-Sham orbitals ¢,;(r) as [47]

(| Hepn k) = = [ &5 07,0 (0) YV Vi~ B uduale).  (2113)

(1)

Using the phonon creation (annihilation) operators by a generic displacement w,,
may be written as a superposition of all possible phonon states, and in case of
Born-von-Kérman boundary conditions in a system of N cells this leads to [47} 49,
75]

W, = Z s (bgy + 01, ) € (g) et 2. (2.114)

nqz/

26Please note that in the electronic subsystem, the summation over spin indices was omitted.
Neglecting the relativistic spin-orbit coupling, there is no coupling of the phonon system with
the electron spin for metallic systems in normal-state [16]. For the sake of physical rigor one
could, however, consider the spin-index o included in the wave vector k.
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Hence, by inserting this representation in equation (2.113]), one arrives at [47, 49, |75
(k! | Hepn | k) \ﬁ > g (b + 014, (2.115)
with the definition of the electron-phonon vertex [47, |49, 75|

(mk! | 05"V

mk’ nk — Z 2M W 7> (2116)

and the first order variation of the effective potential of the k-th nucleus with respect
to the phonon mode v having wave vector ¢ [20, [49, 75]

STV (r) = —ZVT (r — RY))e? (q)e'd B (2.117)

It can be shown that the electron-phonon vertex is only non-zero if ¥’ = k+q,
which of course ensures the conservation of momentum in the interaction of electrons
and phonons [47]. Therefore, within the DFT approximation to the electron-electron
interaction in conjunction with the harmonic approximation to the lattice vibrations
the total Hamiltonian of the system in second quantization is given by the sum of the
electric Hamiltonian and the energy contribution Hpy, of the “bare” phonons
as 47, |75]

H = Z E”ECLEC"E T 7= Z Z gmk+q nk (qu + b—qu) CI,ZE_A,_QCTLE

nk qv nmk

1
+ ngu (ququ + 2) .
gl/

(2.118)

Steady-state Non-equilibrium Problem

Given that the electron-phonon interaction may be considered a small perturbation,
we will now describe a possible way to obtain a representation of the problem suitable
for a perturbation expansion. Thus, prior to a for now arbitrary time ¢y, the system
is assumed to be in thermodynamic equilibrium with a reservoir having temperature
T described by the Hamiltonian H = H{R } + Hph, i.e., the system contains both
electrons and phonons, but these species do not yet interact [see equation ]
Then, the corresponding statistical operator reads [50, |51]

e PH 1

" men P T

(2.119)
where the trace is running over both electronic and phononic States@ At times t > tg
the coupling between the electrons and phonons is “switched on,” and thereafter the
system is represented by the full Hamiltonian H = H + Heph-

27Please note the temperature dependence of the statistical operator, which is always present in the
remainder of this section. However, due to the rather concise notation, it is usually not stated
explicitly.
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a) 2 b)
. - >—> i — > 1
to b t=1

Figure 2.3.: a) Closed-time contour ¢ = ¢+ c and b) Schwinger-Keldysh contour K.
Even though the forward and backward parts of the contours are drawn
as if they were shifted into the complex time plane, they actually run on
the real time axis.

Analogous to equation (2.24)), the average value of an observable O in the Heisen-
berg picture with respect to the Hamiltonian H is given by [50, |51]

(O(t)) = Tr [nO4(t)] . (2.120)

Although a valid choice, in the following it is beneficial to use the interaction picture
or, more precisely, the Heisenberg picture regarding H, which may be related to the
previously used Heisenberg picture as [50, [51]

et —
O (t) = Ut (t, to) On (DU (1, 1g), Ut 1) = T e Jur 4 Heonn (D), (2.121)
where 7 is the conventional time-ordering operator. Considering further that [51]

Uttty = T [ AT Hephy (D) _ Te*iftt 4 Hopngy (0) (2.122)

with 7~ denoting the anti-time-ordering operator, it is seen that equation (2.121]) may
equally be stated as |50 [51]

O4(t) = Te <eifc an Hep“H(”)(’)H(t)> , (2.123)

where the closed-time contour ¢ = ¢ + ¢ depicted in figure as well as the
corresponding contour-ordering operator 7. have been introduced.

Using the composition of two such contours ¢ and ¢’ extending to t and ', re-
spectively, it is further seen that this procedure may readily be generalized to
averages over two operators. Because of the unitarity of the evolution operator, i.e.,
Ut(t1,t0)U(t1,t0) = 1, the last part of the first contour cancels the beginning of the
second, and hence this composition is equivalent to employing a contour extending
to tym = max(t,t’). Of course, the same argument allows for choosing ¢,, — +o0.
Finally, as in this work we are not interested in any transient phenomena but in
the steady-state only, it is further convenient to assume the initial time ¢g to reside
infinitely in the past. Hence, in the following we will study the contour-ordered
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Green’s function] [51]
Cr(7a7') = —i <TK {e—"fx dr, Heph<T1>cnk(T)c;k(T’)}> (2.124)

where K is the so-called Schwinger-Keldysh contour given in figure 2.3 Please note
that here and in the following, the explicit subscript H indicating that the time
evolution is treated in the interaction picture was dropped.

The contour-ordered Green’s function as defined in equation proves to be a
particularly good starting point for handling steady-state non-equilibrium phenomena
in a perturbative approach: First of all, if 7 < 7/ in the contour sense, then G reduces
to the so-called lesser Green’s function G< whose diagonal elements are proportional
to the density of the interacting system. Hence it contains all necessary information
on the system, and therefore is a quantity worth to obtain [51].

Second, the treatment of the time evolution in the interaction picture in conjunc-
tion with the closed contour-ordering conveniently separates the Hamiltonian Hepn
describing the mutual coupling of both species in one single exponential operator.
This feature allows for a systematic expansion in orders of the perturbation by means
of the known series of the exponential function [51].

Third, this kind of expansion generates sums of averages over strings of field
operators weighted with respect to the interaction-free statistical operator n. These
products may be split up in additional sums of products of averages over tuples,
which will turn out to correspond to the known Green’s functions G and D of the
isolated electrons and bare phonons [50, |51]. This procedure will be described in
some detail in the next section and permits the definition of a self-energy determined
by the free particles and their coupling vertex.

Finally, the use of the Schwinger-Keldysh contour will, after “analytical contin-
uation,” produce a real-time Dyson’s equation whose integrals are taken over the
whole real axis. This in combination with the fact that the system is considered to
be in steady-state will make a Fourier transform to the energy domain used in the
previous sections [2.1] and [2.2] possible.

Perturbation Expansion and Self-Energy

In zero-th order perturbation theory the contour-ordered Green’s function ([2.124))
reduces to [51]

G 7"y = =i (Tic {ean()l ()} (2.125)

which clearly is not the retarded Kohn-Sham Green’s function, i.e., definition ([2.12))
in the limit Im z | 0. It may, however, be related to this quantity: Assume 7 and 7/

28Please note that this is already an (extremely common) approximation. As seen from equation
, the electron-phonon Hamiltonian introduces scattering between Kohn-Sham states, and
hence it is not obvious why the full Green’s function should be diagonal in {|nk)}. While this
property may be seen for the wave vector k due to the periodicity of the lattice, interband matrix
elements remain in fact possible. Hence, in the general case one is bound to study G,/ k(T 7',
leading to very similar self-energy expressions [75].
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to reside on the backward branch of the Schwinger-Keldysh contour. Then
©) /) Tt <Cn@(t)01@(t’)> ift>¢  [(Grtt) ift>t
nk (t,¢) =—i Ty . r
— (e (Fens(t)) ift <t

If the contour times are on the forward path, the roles are skipped, meaning that
we have access to both greater and lesser Green’s function at all times. Employing
further that the time evolution of the Kohn-Sham creation and annihilation operators
is readily obtained from the Heisenberg equation of motion yields [72]

Gryp(t,t') = —ie = (1 — fp), (2.127a)
Gt ) = +ie ==t f ) (2.127)

G (2.126)

G (t,t) ift <t

where f,,, = <CILkCnE > as well as the anti-commutation relation was used. Therefore,
the Fourier transform of the difference for ¢ > ¢’ [72]

Jim fd(z—¢) Gt — 1) [Gry(t — t) — Gyt 1)
R (2.128)
= lim = lim (nk|G(z)|nk)
Imz|0 2 — Enk Im 20

to energy domain turns out to be the diagonal matrix element of the retarded
Kohn-Sham Green’s function in its eigenbasis. A powerful generalization of this
procedure, the Langreth theorem, will be used in the next section to perform the
analytical continuation of Dyson’s equation. Nevertheless, we will exploit this result
and simply write Gy, instead of Gglok) in the following higher order expansions.

The expansion of the evolution operator to first order is given by

~(1 . (—’L)l 1 q.v1
Gq(m)(ﬂ ) = —i <TK { 1 /I((iﬂ JN Z Z g”ilkl+gl,mE1AQ1”l (11)

glVl n1m1E1

(2.129)

X ij@ﬁgl (T1)Cnsky (71)eni ()l (7) } > ;
which is zero because <Agl,(7')> = <bgl,(7') + b]L_q,/(T)> = 0 [51]. Similarly, all odd
orders of the perturbation expansion must vanish, and hence the second order of the
perturbation expansion yields in fact the first order electron-phonon interaction: [51]

-\ 2
~(2) N (1) i 4,71
G(r, 7)) =—i <TK { 51 /}({17’1 /}C{lTQquz:VI nl%;klgmlkﬁql,mkl
9,V2 nomok,
a,v2 t
X gn§2ﬁ2+g27n2E2Aglyl(Tl)AQQVQ(Tg)chEﬁgQ (12) (2.130)

X Cnyk, (7_2)6177,1@14,@1 (Tl)cnlkl (Tl)an(T)CLk (T/) } > :
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Figure 2.4.: Feynman diagram of the Fock-like and the Hartree-like self-energy con-
tribution. The “wiggly” line corresponds to the bare phonon Green’s
function D, the solid line denotes the Kohn-Sham Green’s function G of
the electrons. The filled circles represent the electron-phonon vertices g.

The trace over the phonon states is non-zero only if |g,v1) = |—g,v0). Further,
because the averaging () = Tr[ne] is with respect to the non-interacting system by
construction, the Wick-Matsubara theorem states that the statistical average of this
time-ordered product of Kohn-Sham field operators is equivalent to the sum of the
averages of all possible pairs, where the sign has to reflect the necessary operator
interchange count [50, 51, |72} 76]. Additionally, all disconnectedlﬂ terms of this sum
must vanish because of the contour time integration, which drastically reduces their
number. All remaining terms must exist twice because of the possible interchange
of the dummy integration variables, canceling the factor & originating from the

21
expansion of the exponential [51]. In summary,

- —qu
G'EIE) (T 7- = Z Ink, mk+qgmk+q nk /dTl /d7-2 D_ qu 7-17 7_2)
quz

X Gk (7, 71) Grgrg (11, 72) Grg (T2, 7')

i Ov Ov
N D Gy, /dTl /dT2 Doy (71, 72)

mkyv

(2.131)

X G’VLE(Ty Tl)GnE(Tlv T,)GmEQ (7—2’ 7-2)7

where Dy, (1,7') = —i <’7'K {Agy (T)A:SV (7 )}> denotes the contour-ordered phonon
Green’s function [51} |72]. B
Although it is now possible to systematically expand the contour-ordered Green’s

function ) to even higher orders, we will refrain from doing so and instead
define the so- called Hartree- and Fock- hke{ﬂ self-energy contributions [72]

EF Z ’gmk—&-q nk’ ql/(Ta T/)Gmk+g(7_a T/) (2.132&)

mqu

1 v v
Sne(r, ) = = 35800 =) Y g /;3 Do, (7,7) Te [G(r, g% (2.132D)

29«Disconnected” refers to the corresponding Feynman diagram. In the simple case of the second-
order expansion these are all those addends containing the Green’s function Gy (7, 7).

30The connection between both electron-phonon vertices is established by exploiting that Hepn is its
own Hermitian adjoint. Further, the bare phonon Green’s functions Dg, (7, 7') and D_q.(7,7")
coincide if wg, = w_gq,. This symmetry relation for the phonon frequencies follows for stable
materials from the dynamical matrix [75).
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2

7(1,2 = Egk + EEE, the full Green’s function may

depicted in figure Then, with ¥
be approximated as

énk(T, ) & Gi(T, ) + /dTl /dTQ G (T, 7'1)27(12,3 (Tl,TQ)GnE(TQ,T/)
K K

| y (2.133)
= GnE(T; T/) + /d7'1 /dTQ GnE(T, Tl)ZnE(Tl,TQ)GnE(TQ,T/).
K K

From topological arguments it can be seen that if one defines the self-energy as the
sum of all “one-particle irreducible” terms, then Dyson’s equation in contour-time is
valid [51]. Hence, comparison yields that Ezk and Egk are a subset of all self-energy
contributions, and experience proves them to be the most important ones, too. The
neglect of all other contributions to the self-energy is commonly known as “First
Born Approximation” and is, especially in the context of metals, also known as
Migdal approximation [43| 72].

If the system under consideration further exhibits translational invariance it can
be shown that the Hartree-like self-energy contribution vanishes [72]. While this is
certainly true in the presented calculations on the pure metals copper and aluminum
in sections [3.1] and [3:2] respectively, the premise will not be fulfilled in the case
of Fe/MgO double barrier structures. Given, however, that the evaluation of the
self-energy relies on third party codes not yet capable of calculating the Hartree-like
part, within this work the approximation

Sok(T, ) =25 (1, 7) (2.134)

n,

to the electron-phonon self-energy is used. The ramifications in the case of Fe/MgO
double barriers will be discussed to some extend in section

Analytical Continuation and Transformation to Energy Domain

Now that the self-energy approximation has been obtained by means of the pertur-
bative approach, the contour-time formalism has outlived its utility. Instead, the
transmission formulae derived in section [2.2.3] rely on energy-dependent quantities.
The necessary transformation process consists of two steps: First, the “analytical
continuation” to conventional time arguments will be discussed. Subsequently, a
Fourier transformation will yield the transition to energy domain.

Iteratively using the Langreth’s theorem for the retarded operator [50, [72]

R
CR(t, 1) = [ /dﬁ A(t,ﬁ)B(ﬁ,t')} - /dt1 ARGt 1) BR (1, 1) (2.135)
K R
on equation ([2.133)) yields the real-time Dyson’s equation

Gt t) = Gl (t.t) + /lgtl /ﬂgh Gy (t, 1) S (t1, t2) Gy (B2, 1). (2.136)
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The self-energy contains a product of phonon and electron Green’s function being
of the kind A(7,7")B(7,7"). This is not covered by theorem (2.135), but may be
evaluated as |50, [72]

CR(t,1) = [ASBY + ARB< + ARBR| (1,1) = [ARB< + 4> B"| (t,¢), (2.137)

where the second equality is derived using the representation of the retarded Green’s
function in terms of the greater and lesser ones introduced in equation (2.128]).
Finally, because both electronic and phononic Green’s function depend as correlation
functions describing isolated systems not on ¢ and ¢’ but only on their difference, a
Fourier transformation from time to energy domain allows to obtain Dyson’s equation
(2.16) with the electron-phonon self-energy as potential difference

R 7 qu 2 dE,
mqv R

x (D (B = EGryy f(B) + D (B =BGl y(E))).

(2.138)

While this expression is convenientlﬂ for the evaluation using a Green’s function
formalism code, it may be reduced to a representation more suitable for a (pseudopo-
tential) plane-wave code by substituting the known analytical expressions for both
types of Green’s functions. The integral may then be evaluated as [17, |49

d3q v

R 4

Yok(E,T) = Z / (2m)3 Imicta s
myBZ

y ngy(T) +1-— fm&—&-g(T) n ngy(T) -+ fm&-i‘g(T)
E—emptq—Wa +in  E—engig+we +in )’

‘ 2

(2.139)

where the sum over all possible phonon wave vectors was transformed into a Brillouin
zone integration and, additionally, the temperature dependence governed by the
statistical operator (2.119) has been reintroduced. In this equation [47]

ng(T) = (b, b)) = <exp { :;H - 1)1 (2.140)

denotes the Bose-Einstein distribution.

As was already discussed in the context of equation , in the limit of vanishing
external bias voltage it is often sufficient to restrict the transmission calculations
to the Fermi energy only. In this case it is sufficient to calculate the imaginary
part of the self-energy, the negative of the so-called electron linewidth@ because in

311t is, actually, not convenient at all, because not only the Green’s function at the energy of interest
FE enters, but also all those at the energies E’ lying within the range F + hwmax, where wmax
is a carefully chosen frequency cut-off determined by the phonon dispersion. This makes an
evaluation of the self-energy computationally very demanding.

32Please note that this term is not used consistently throughout literature: While many authors
call —Im Xepn the electron linewidth, others prefer —2Im Xepn, or simply Im Xepn. Of course, a
“width” should not be negative, and the sign is hence implied. Therefore, we will several times
refer to equation as “electron linewidth equation,” intending to calculate [Im Xepn|.
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accordance with Luttinger’s theorem stating that the volume enclosed by the Fermi
surface is not influenced by any|§| electron-electron interaction, the real part of the
self-energy is known to be exactly zero at the Fermi energy [68, |75, 77]. Taking the
limit n | 0 and employing once again the Dirac identity yields [17, |43]
3 . 9
Im Yepn(nk, E,T) = — 71'2 /(;177(53 g%LE+g,nE’
ml/BZ

< [0 (T) + 1= g (T)S(E — sy — ) (2.141)

+ (”QV(T) + meJrg(T))(s(E — Emk+q T ng/)} .

This is the self-energy formula employed throughout this work. Details on how this
expression is evaluated will be given in the next section.

2.3.3. Evaluation from First Principles

To evaluate equation , both the electronic and vibrational system must be
solved. Because of the g integration over the whole Brillouin zone both calculations
are coupled in the sense that for each wave vector ¢ the electronic eigenstates and
eigenenergies at k + ¢ must be known. It is hence convenient to choose both meshes
“commensurate” [43|, i.e., to ensure that for any two points k and g of the symmetry
expanded mesh one finds another mesh point k' and possibly a reciprocal lattice
vector G such that k +¢+ G = K.

The necessary eigenenergies €1+, and, for the electron-phonon vertices ,
the eigenstates |mk + ¢) are obtained by solving the eigenvalue problem of the
Kohn-Sham Hamiltonian at the equilibrium positions {R’}. The electronic
distribution functions fy,x44(7) are then given by equation . Within this work,
this task is performed using the pw.x code of the QUANTUM ESPRESSO suite [24].

Besides the electronic system, the phonon eigenfrequencies wy, and, yet again

for the electron-phonon vertices , the polarization vectors ey, (g) must be
calculated. Similar to the previous case this is, within this work, done by employing
the QuaANTUM ESPRESSO suite, particularly the ph.x code [24]: For each wave
vector ¢ of the symmetry-reduced equidistant grid the dynamical matrix is
calculated in the framework of density-functional perturbation theory (DFPT) by
evaluating the variations in both the self-consistent effective potential and
the electron density induced by several irreducible atomic displacement patterns
{R® + u(q)} [20, 49, |75]. The dynamical matrix is then diagonalized to solve the
phonon eigenvalue problem , yielding the sought-after eigenfrequencies and
polarization vectors. The phonon distribution functions are then given by .

Based thereupon, the electron-phonon vertices and, subsequently, the
imaginary part of the self-energy could in principle be calculated. Nevertheless,
this direct solution procedure is unfavorable for the following reasons.

33The scattering of Kohn-Sham quasiparticles by phonons mediates of course an effective electron-
electron interaction.
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First, as seen from the delta distributions in equation , the integrand proves
to be extremely structured, and thus requires a very dense sampling of the Brillouin
zone for the phonon wave vectors to ensure an accurate quadrature [43]. Given,
however, that in the framework of DFPT several self-consistent DFT calculations
are necessary to obtain the dynamical matrix at one g point, such meshes tend to be
forbiddingly demanding from a computational point of v1ew@

Second, the electronic states contributing to the charge carrier transport are usually
not distributed homogeneously in the whole Brillouin zone, but are confined to the
vicinity of the Fermi energy [34]. Therefore, a dense and equidistant k sampling as
proposed for reasons of commensurability with the phonon mesh is physically not
very sound.

The solution to both issues as proposed by Giustino, Cohen, and Louie [43] is
to calculate all necessary quantities on a coarse equidistant grid by first-principles
methods, and then employ a generalized Fourier interpolation to very dense meshes for
the evaluation of the self-energy formula . In order to have fast transformations
the intermediate basis set should be chosen in such a manner that the accuracy
of the inverse Fourier transform depends on a very limited number of elements,
only. A promising candidate are the so-called maximally localized Wannier functions
(MLWFs) [43, 45, |46]

ImR0) = Ze—%kReUnm (k) [nk), |nk) = ZeMO k) |mRY), (2.142)

eme

where N, denotes the number of cells in the periodic boundary conditions imposed
on the electronic calculations. In this scheme the arbitrary unitary matrices U(k)
are obtained by iteratively minimizing the spread functional [46]

Q=3 ((mmh|# |msp) — (m || me)") (2143)

which ensures a small overlap of all those Wannier functions that are centered on
different sites RY. Substituting relation (2.142) into definition (2.116) yields [43]

g (k.q) = {ggﬁq,n&} o

72 kR0+qR0 g k+q <ZQ RO RO u(q)> QT(E),

e le B
where analogous to (2.116) and (2.114)) the electron-phonon vertex in Wannier
representation and the phonon displacement have been defined as

g, (B RBY) = {(mBY | ~V"Vii(r - B)) | nR2)} (2.1452)

v h v iqg-10
ui(9) =\ [ 5ap o en(@)e ™ (2.145b)
K gll

34This issue may cease with the advance of accessible high-performance computing facilities, as the
monochromatic nature of DFPT allows for a trivial parallelization over phonon perturbations
|20].

(2.144)
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It can be shown that the first order change in the potentials — VTV (r — RY. ) exhibits
a spatial decay similar to the interatomic force constants, which are typically short-
ranged at least in metals due to the efficient screening [43]. Hence, by construction of
the electronic Wannier functions, the matrix element in will vanish whenever
the distance between any of the positions RY, RY and R? is big, and therefore relatively
few addends will enter the generalized inverse Fourier transform as desired
[43]. The evaluation of the electron linewidth by means of equation with a

very dense ¢ sampling is now possible [43]:
1. As described above, calculate the electronic eigenstates |nk) and eigenenergies
enk as well as the phonon polarizations e} (q ) eigenfrequencies wg, and first

order variations of the effective potential 5 Vﬁ on coarse, equidistant and
commensurate k£ and ¢ meshes using QUANTUM ESPRESSO.
On the basis of these prerequisites, EPW performs the following tasks [43]:

2. Obtain maximally localized Wannier functions ([2.142)) of the electronic system
using wannier90, thereby getting hold of the unitary matrices U(k) on the
coarse grid.

3. Evaluate the electron-phonon vertex (2.116f) in Bloch representation on the
coarse (k,q) mesh.

4. Invert the generalized Fourier transform ([2.144)) to calculate the electron-phonon
vertex ([2.145af) in Wannier representation.

5. Transform the Kohn-Sham Hamiltonian H; { } k) = {5mn€nk} from Bloch
to Wannier representation using the relatlons 2.142) [43]
& (R Ze BB () H{R NE)U (k). (2.146)

6. Similarly, transform the dynamical matrix to Wannier representation.

7. Iterate over every wave vector k' at which the value of the electron linewidth
shall be evaluated and every ¢’ in the Brillouin zone.

a) Diagonalize the Fourier-interpolated Kohn-Sham Hamiltonian [43]
1 /
B () = U®) (N S ek B gl %R&RS)) Utw)  (2147)
€ e
to obtain UT (') and U(K' + ¢') as well as the eigenenergies Emp/+q and
distribution functions f,,z/4 . (T). -
b) Similarly, diagonalize the Fourier-interpolated dynamical matrix to get

hold of €/(¢') as well as the eigenfrequencies wg'y and the distribution
functions ng, (7).

c) Use equation (2.144) to interpolate the electron-phonon vertex g” (K, q)
in Bloch representation. B

8. Calculate the electron linewidth as the negative of equation ([2.141]).
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2.3.4. Wave-vector Averaging

Another issue to solve is based on the fact that the implementation as described in
section [2.2.3on the calculation of the full Green’s function in the KKR representation
heavily relies on solving Dyson’s equation by means of multiple-scattering theory. In
particular, one must be able to calculate the scattering solutions of the muffin-tin
potential given by equation to make use of the ansatz . As seen from the
derivation of the transmission formulae and , any dependence of the
transmission on the wave vector k is due to the lattice Fourier transform and
hence a remnant of the in-plane periodicity of the system. The scattering solutions
entering in the KKR representation of the Green’s function are, however, those
of the isolated muffin-tin potential by construction, and therefore those of a non-
periodic system. Thus, a straightforward generalization using k-dependent scattering
solutions seems not possible. Even if this conceptual problem may be circumvented,
the wave vector k entering in equation is an element of the three-dimensional
Brillouin zone, while the corresponding quantity in the transmission formulae is
an element of the surface Brillouin zone arising from the in-plane periodicity. In
summary, a suitable way to average over all those wave vectors contributing to the
charge carrier transport is necessary in any case.

The solution proposed in this work makes use of the observation that, at least
in the case of vanishing external bias voltage, the electronic states contributing
to the charge carrier transport are those within the equi-energy surfacﬂ S(E,T)
of energy FE and temperature 1. More precisely we may restrict ourselves to the
subset ST(E,T) C S(E,T) of the states having a positive wave vector component
k. [34]. Thus, the toolkit fermint has been developed, which is able to obtain both
those states as well as their corresponding integration weights. The procedure of
wave-vector-averaging the electronic self-energy is as follows.

In a first step, the eigenenergies of the electronic system are evaluated on an
equidistant grid in reciprocal space using any first-principles calculation or interpo-
lation method@ For each individual electronic band these mesh points are then
interpreted as the corners of cubes as depicted in figure where + and — indicate
that the eigenenergy e,; at this k-point is bigger or smaller than the reference
energy F, respectively. Based on these energy values, the crossings A to G of the
equi-energy surface with the cube edges are then approximated by means of a linear
interpolationm Depending on the arrangement of crossings and edges, the connecting
surfaces — here the triangle ABC' and the quadrangle DEFG — may be deduced
from topological arguments. In order to obtain the integrations weights, all polygons
having more than three vertices are further split into suitable triangles. As of now,

35Tn case of E = Er this is the so-called Fermi surface.

36 As of now, only the results of QUANTUM ESPRESSO and wannier90 calculations can be used,
but the code may readily be expanded to e.g. KKR calculations by implementing a suitable
subclass of AbstractDispersionReader.

37 As will be discussed in section the accuracy of this interpolation step may be crucial for the
validity of the averaged result. Therefore, a higher-order interpolation scheme specifically suited
for electronic structure calculations may reduce the necessary mesh sizes to a great extend.
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Figure 2.5.: Schematic representation of the triangulation process as implemented in
fermint. While the polygons ABC and DEF G are found by a topological
intra-cell analysis, the polygon BDGC' is only seen to be part of the
equi-energy surface through multi-cell analysis. The vertices S and S
are approximated as the centroids of the quadrangles.

this task is performed by simply calculating the centroid@ S of the polygon as well
as the areas of all triangles P;SP;, where P;/; are neighboring vertices of the polygon
under study, and then distributing these areas to the adjacent points. In the example
at hand, the area corresponding to the vertex E is thus given by %ESD + %F SE,
plus all the contributions from the other cubes containing F.

If six or more crossings of the equi-energy surface with the cube edges are present,
it may be insufficient to exclusively analyze each cube on its own: In figure [2.5] it
is at first uncertain whether the polygon BDGC should be considered part of the
equi-energy surface or not. In this case a multi-cell analysis is performedﬂ checking
whether the line segments BD and C'D are contained in any of the polygons of the
neighboring cube. This kind of analysis provides the information that BD is an

38Instead of calculating the geometric mean, it would be reasonable to use the crossings of the
equi-energy surface with the cube diagonals, as this would allow for a description of the curvature
of the surface. However, as the diagonals have the length v/3a, with a being the edge length, the
linear interpolation scheme would perform rather bad. Hence, this issue should be addressed
after the higher-order interpolation scheme mentioned in footnote [37] has been implemented.

39 As of now, the multi-cell analysis was only implemented for the case of 6 crossings, which proved
to be sufficient for the Fermi surfaces presented in this work.
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edge of the triangle BX D of the neighboring cell, and hence BDGC is part of the
equi-energy surface.

Once the triangulation of the equi-energy surface has been obtained, the imaginary
part of the electron-phonon self-energy is calculated at al]@ wave vectors
k € ST(E,T). The wave-vector-averaged self-energy is subsequently given by [124]

Anp(E,T)

Im Zeph(EyT) = m

nkeS+(E,T)

-Im Eepn(nk, E,T), (2.148)

where A, denotes the area corresponding to each vertex, and Ag+ is the area of the
part of the equi-energy surface having a positive k, component. If, on the other hand,
the wave vector dependence shall be preserved, a projection of ST to the surface
Brillouin zone may be performed [71]

2.4. Thermal Expansion

With increasing temperature the atomic displacements {u} may become sufficiently
large for the harmonic approximation to fail. The higher-order contributions
to the effective potential will then induce a shift of the center of the atomic
oscillations in such a manner that the average distance between the moving nuclei
increases, i.e., the solid will display thermal expansion [78]. Given that the systematic
inclusion of anharmonic lattice vibrations in first-principles calculations is rather
elaborate, we will settle in this work for what is commonly called “quasi-harmonic
approximation” [79]: It will be assumed that anharmonicity is restricted to thermal
expansion and that the oscillations hence remain harmonic. The frequencies are,
however, assumed to be volume-dependent, which may conveniently be encapsulated
in the so-called Griineisen parameter 7 as described below. To employ this approxi-
mation one must find a means to calculate the lattice constant a(7') at any given
temperature 7. The phonon eigenfrequencies and polarization vectors may then be
obtained in the usual manner by diagonalizing the dynamical matrix (2.108)).

2.4.1. Equation of State

In order to theoretically describe the thermal expansion of a solid, a suitable equation
of state must first be derived from thermodynamics. As described above, this thermal
expansion is attributed to the volume dependence of the eigenstates of the lattice
vibrations. Hence, assuming no further inner degrees of freedom, the internal energy
U of a solid consists of the two contributions (80, |81]

U(V,T) = Uyn(T) + Ua(V), (2.149)

i.e., the temperature-dependent vibrational energy U, as well as the volume-
dependent elastic energy Ug. According to the first law of thermodynamics the

407t is, in fact, possible to reduce the necessary computational burden by exploiting symmetries.
4Please note that this is not (yet) implemented in fermint.
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change in internal energy dU is given by the sum of heat Q) consumed by the system
and the work W done by the surroundings on this very system [81]

dU = 6Q + W =0Q + > _ Fidg;, (2.150)

where, as known from any course on analytical mechanics, the work may be conve-
niently written in terms of the generalized coordinates ¢; and generalized forces F;.
In the analysis of thermal expansion it is reasonable to assume the absence of any
external circumstances hindering the enlargement of the system, and therefore the
solid will only have to perform work against the external pressure, leading to the sole
generalized coordinates F' = —p and dg = dV' [81]. Further, this process is deemed to
be reversible, and hence employing the second law of thermodynamics yields [80, [81]

AU +pdV

ds T

(2.151)

Of course, lattice vibrations in solids may be described by quantum-mechanical
oscillators whose eigenenergies are quantized in units of hw. Even though the oscillator
frequency will not be uniform for any vibrational state, this w is assumed to be a
suitably chosen mean value. Further, in accordance with the considerations given in
the introduction of this section on thermal expansion, it will depend on the volume.
With this in mind one may define the dimensionless quantity [80]

UWv,T)

X(V,T) = (V) (2.152)
Then, from equation ([2.151)) it is seen that [80]
1 oS dSox dS 1
7= (50) = v or = o (2.1532)
P 85) dsox ds 1 ( , 1 (%J)
p_ (95 _dS50X dS 1 W) 2.153b
T (av dX oV~ dX hw(V) a(V) = UV, )w(V) oV (2.153b)

and therefore — by eliminating % — the sought-after equation of state |12} 80]
pV +G(V)=~V)U(V,T) (2.154)

is proven. To arrive at this expression, the function G and the Griineisen parameter
~ have been defined as |79

G(V) = —VUL(V), and *y(V)E—wZ/V)S;;. (2.155)

To paraphrase this result, the Griineisen parameter explicitly describes the volume
dependence of the eigenfrequencies of the lattice vibrations.
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2.4.2. True Coefficient of Thermal Expansion

Let V(T') denote the volume the solid actually takes at temperature 7" in case the
external pressure is negligible. Under this and all previous assumptions, the equation

of state reads [12]
G(V(T)) =U(T), (2.156)

where the additional approximation v(T) = v(V(T)) =~ const. is justified by experi-
ence |12, 79]. The system is considered stable, and hence there exists a volume Vj
characterized by

Ua(Vo) =0, (2.157)

or more precisely, the elastic energy U, has a minimum determined by the equilibrium
positions { R} of the nuclei. Thus it is seen from the definition (2.155)) that G (Vp) = 0,
and expanding the function to second order therefore yields [12]

G"(V,
G(V(T)) = (V(T) = W) (G’(Vo) + 2(, 0) (V(T) - Vo)> : (2.158)
Inserting this result in the specialized equation of state (2.156)) allows to write [12]
~FU(T u(r
V(T) = Vo = — G,,(VS) ) e C(; ()Vo) , (2159
G (VO) + T(V(T) - VO) ~ + 2G/(VO)U(T)

the last approximation being motivated by the knowledge that the change in the
volume due to thermal effects is some percent in magnitude and hence quite small.
With the definitions [12]

_ WG(W) VoG (V)

d g=———+—++ 2.160
Qo ~ and g 26/ (Vo) ( )
one finally arrives at [12]
V() -V U(T)
= , 2.161
Vo Qo —gU(T) (2161)

i.e., an equation directly relating the relative change in the volume to the internal
energy and some material-dependent constants. Using the definition of the tru@
coefficient of thermal expansion [78, 79, [81]

B(T) = V(lT) (8‘(;(TT))p (2.162)

and its relation 5(7") = 3a(T') to the true linear coefficient of thermal expansion, we
may obtain [83]

Cy(T)

3Qo [1 - 9%

a(T)

T
i U(T) :/Odt Cy (1), (2.163)

“2Especially experimental data tends to be normalized by /v (1,) instead of 1/v (1) [82]. For the
sake of clarity, we will explicitly state which kind of coefficient of thermal expansion is meant.
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by differentiating equation (2.161)) with respect to the temperature, where the heat
capacity at constant volume is given by [81]

Oy (T) = <f§>v _ (jg)v _ ‘wng(T). (2.164)

Please note that according to the definition of both coeflicients of thermal expansion,
the differentiation of the internal energy U would actually have to be performed
ensuring the constraint of constant pressure — in fact, p = 0 as above — rather
than constant volume. However, a theoretical quantification of Cy,(T") is much more
elaborate than an appropriate relation for Cy (7)) as described in the next section.
Rationalizing once again that the change in volume will be small we settle for the
approximation C,(T') ~ Cy(T).

2.4.3. Evaluation in the Debye Model

Once the true linear coefficient of thermal expansion (2.163]) as been obtained, it is
possible to calculate the lattice constant a(7") at arbitrary temperatures 1" as

T
a(T) = ag exp ( Tdt a(t)), (2.165)

where the reference lattice constant ag = a(Tp) at any temperature Ty serves as
initial value to the corresponding differential equation. It is, however, quite nontrivial
to evaluate this quantity: While the vibrational energy Uy, and therefore Cy, may
in principle be extracted as the average value of the phonon Hamiltonian [47]

Usin(T) = (Mpn) = Y waw (nq,,(T) + ;) , (2.166)
qv
where ng, (T is the Bose-Einstein distribution (2.140)), the necessary values of g and
Qo as defined by require the knowledge of the elastic contribution Uy to the
internal energy, the latter further the knowledge of the volume dependence of the
phonon dispersion in terms of the Griineisen parameter . The path to circumvent
this issue pursued by Griineisen was to study model potentials of the kind [12]

A B

Ug(V) =~yn +W7

(2.167)
which allows to derive analytic expressions for the beforementioned quantities. Nev-
ertheless, as he admits himself [12], the thermal expansion of solids is only correctly
described if the value of g is chosen empirically. Hence, within this work, the values
of g and )y are determined by fitting the relation to experimental data for
the true linear coefficient of thermal expansion as proposed by Nix and MacNair
[83]. Further, to reduce the computational burden of this optimization process, the
vibrational energy was not obtained from the Brillouin zone integration , but
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in the Debye model: Assuming the phonon dispersion is linear in the whole Brillouin
zone, the heat capacity at constant volume is analytically given by [47, [83] 84]

N T\? [0p/T gzie®
D — 9 - [
C,(T,0p) = 9VkB <9D> /OdZL‘ (-1 (2.168)

The unknown Debye temperature 6p is yet again treated as a parameter in the fitting
procedure.
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3. Calculations

Based on the thorough discussion of the theoretical preliminaries in chapter [2], this
part aims to demonstrate both the correctness of the implementations in the various
computer codes as well as the physical validity of the multitude of approximations
necessarily made to transform the intricate problem of electron-phonon interaction
into a computationally feasible numerical procedure for calculating electronic trans-
port properties. Although the physical motivations behind these approximations
have already been discussed in as general a manner as possible, the overall quality of
the results may not be appraised a priori.

Thus, in the first section a detailed discussion of our calculations on the
electron-phonon-induced temperature-dependent resistivity of copper is given as a
convincing test regarding the implementations of the wave-vector-averaging of the
self-energy in fermint and the Landauer-Biittiker formalism in the Gieflen KKR
code: On the one hand, the comparatively simple Fermi surface yields a valuable test
system for the employed triangulation algorithms, on the other hand the resistivity
of this particular metal is well studied and hence careful comparisons to experimental
and theoretical data possible. This analysis, which is heavily based upon [124], will
shed some light on the accuracies necessary for a valid treatment of all the different
subsystems, and additionally will provide some information on whether it is sufficient
to impose thermal expansion on the system to approximately account for the effects
of anharmonic lattice vibrations in electronic transport calculations.

As an additional test system, aluminum is used in section to double-check any
conclusions drawn from the case of copper. Especially the strong dependence of the
resistivity on the phonon structure will be further studied by contrasting a local
with a generalized-gradient approximation to the exchange-correlation functional.
A closing comparison to values obtained using Ziman’s resistivity formula might
serve as a rough “guesstimate” on the validity of a wave-vector-averaged self-energy
despite aluminum having a more complicated Fermi surface.

Being convinced that the proposed calculational scheme yields a reasonable de-
scription of electron-phonon interactions in simple metallic bulk-like systems, the
generalizability to iron-based magnetic tunnel junctions is investigated in section
Particularly Fe/MgO single barrier devices have been of great interest, as
these systems exhibit a high tunnel magnetoresistance (TMR) ratio and hence are
interesting candidates for applications such as read/write heads of modern hard
disk drives (HDDs) and magnetic random access memories (MRAMSs) [7-9]. Even
higher TMR ratios that are, simultaneously, less dependent on the applied bias
voltage may be observed in double barrier structures [6l |8]. Such devices are further
believed to provide a simple tuning mechanism by exploiting the dependence of the
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quantum well eigenenergies on the intermediate iron layer count [8, [85]. Due to
limitations in one of the utilized third party codes, the display of magnetism will,
however, make a different approach to the evaluation of the self-energy necessary.
Therefore, after giving some introductory details of the interface structure as well as
the physics in Fe/MgO single and double barriers, we discuss the approximate calcu-
lation technique of the self-energy. The chapter is then finalized by considering the
effects of temperature-induced electron-phonon scattering on the resonant behavior
of the electronic transport in Fe/MgO double barrier structures, thus providing first
theoretical insights to this as of yet barely studied phenomenon.

3.1. Resistivity of Copper

Given that the intention of this section is to verify both theory and implementation,
its structure obviously will mirror the organization of the previous chapter. The
ordering is, however, slightly different: After modeling the thermal expansion of the
solid using a Debye-Griineisen curve, we proceed by analyzing the electronic and
vibrational degrees of freedom. Subsequently, these results are combined to evaluate
the electron-phonon induced electron linewidth. Based thereupon, we calculate the
effective transmission probability and verify some expected physical properties of the
temperature-dependent electrical resistivity.

3.1.1. Thermal Expansion

Although the available studies by Nix and MacNair [83] and Adenstedt [86] on fitting
Debye-Griineisen curves to experimental data for the true coefficient of thermal
expansion of copper agree rather well on the parameters @)y and g [see equation
and the definitions ], they differ in the Debye temperature 0p used
in the evaluation of the heat capacity . Hence, in order to make sure the
thermal expansion is well described, we perform the necessary optimization based
on the data given in reference [87]. The optimal set of parameters is found to be
Op ~ 322.37TK, Qo ~ 119.59 x 103 cal/mol, and g ~ 2.96 [124], which, except for g,
coincides quite well with the corresponding values proposed by Nix and MacNair
[83]. These values further prove to be insensitive with respect to the employed
starting guess, hence strengthening the assumption that the optimization process
was performed successfully.

A comparison of the fitted curve with the experimental data is given in figure
and shows excellent agreement [124]. For a quantitative analysis, the previously
described parameterization is used to calculate the linear coefficients of expansion as
reported in the references [83) 86l 88] and [89]. The relative deviations are below
2% in the temperature range —185.5°C to 500.1°C and therefore once more in
very good agreement with our Debye-Griineisen model [124]. In these calculations,
the reference lattice constant is chosen equal to the value agsoc = 3.61491 A taken
from reference [89]. Finally, in excellent agreement with [90], we predict the lattice
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Figure 3.1.: True coefficient of thermal expansion of copper against temperature. The
experimental data is taken from reference [87], the Debye-Griineisen curve
employs the parameters 6p ~ 322.37K, Qo ~ 119.59 x 103 cal/mol, and
g =~ 2.96 [124].

constant of copper at absolute zero to be agx = 3.60290 A [124]. Other calculated
lattice constants at various temperatures are given in table

Based on these results and considering that the true coefficient of thermal expansion
shows a near linear behavior for temperatures above room temperature it is justified
to conclude that the Debye-Griineisen curve may be used to extrapolate to values
as high as 900K, i.e., it correctly describes the thermal expansion of copper in the
whole aspired temperature regime |124].

3.1.2. Electronic Structure

To accurately mimic the electron-phonon interaction, both electron and phonon struc-
ture must be described in sufficient detail. Hence, first the temperature dependence
of the band structure is analyzed. As the electron-phonon vertices (2.116)) are calcu-
lated by a generalized Fourier interpolation , the construction of a suitable
set of maximally localized Wannier functions is discussed subsequently. Finally, the
possibility of employing these Wannier functions to improve the equi-energy surface

T[K] | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900
a [A] || 3.604 | 3.609 | 3.615 | 3.621 | 3.628 | 3.634 | 3.642 | 3.649 | 3.656

Table 3.1.: Lattice constants of copper at various temperatures as calculated by
means of the proposed Debye-Griineisen model.
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Figure 3.2.: Band structure of copper for three different temperatures (i.e., three
different lattice constants) with aligned Fermi energies (each taken to
be zero). With increasing temperature, the band structure is slightly

contracted .

triangulations necessary for the wave-vector-averaging of the self-energy (2.148)) are
demonstrated.

Band Structure

The electronic structure calculations are performed using the third party code QUAN-
TuM ESPRESSO [24]. Considering that 30-40meV constitute the maximum order
of typical phonon energies, it is reasonable to assume that very precise electronic
structure calculations are necessary, the more so as the intermediate Wannier inter-
polation will most certainly introduce further deviations. We will therefore attempt
to ensure a precision goal of 1 meV .

This may be achieved for all lattice constants in the range of 0 K to 900 K by using
an energy cut-off of 80 Ry for the plane wave expansion of the pseudo wave function,
corresponding to a cut-off of 320 Ry for the density. The exchange-correlation energy
is treated in generalized-gradient approximation employing the parameterization
of Perdew, Burke, and Ernzerhof [91]. Due to limitations of the EPW code, the
calculations are performed using a norm-conserving pseudopotential of Troullier-
Martins type . The Brillouin zone integration is performed with a sampling of
280 k points in the irreducible wedge in conjunction with 20 mRy metallic occupation
broadening in the model of Marzari-Vanderbilt .

The effects of thermal expansion on the band structure are displayed in figure [3.2] for
the three different temperatures 0 K, 500 K, and 900 K. As the temperature increases,
the Fermi energy Er is monotonically decreasing, which is in the figure accounted
for by aligning the electronic structures, i.e., the band energies are measured with
respect to the corresponding Fermi energy, each. While the variations in the vicinity
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of the Fermi energy are minimal, the dispersion relation shows a minor contraction
with increasing temperature [124]. This is to be expected, because due to thermal
expansion a rise in temperature will induce an increase in the lattice constant a. In
the limit @ — oo the coupling of the atoms becomes ultimately negligible, and hence
the electronic structure will tend to that of an isolated atom, i.e., it will show no
dispersion at all.

Wannier Interpolation

In view of the comparatively small dependence of the electronic structure on the
lattice constant, it is possible to use the very same parameters as input for the
construction algorithm of maximally localized Wannier functions at each different
temperature [124]. The proposed interpolation is based on the exhaustive study of
Souza, Marzari, and Vanderbilt [46]: We employ the optimal subset S7(k) containing
five d-like and two tetrahedral-interstitial-centered Wannier functions as initial
projections for the iterative optimization scheme, as this set yields a particularly
good approximation of the sole dispersive s-like band in the vicinity of the Fermi
energy [124]. To account for the missing band gap in metals, the maximum of the
outer disentanglement window is chosen as 25.89 eV with respect to the Fermi energy,
which represents an upper bound to the 12" band. Further, a frozen energy window
with a maximum value of 5.89¢V is introduced [124] to prevent the low-lying states
from being affected by the minimization of certainﬂ parts of the spread functional
(2.143]). The Wannier-interpolated band structure based on an equidistant 103 k
point mesh is displayed in figure It can be seen to be virtually identical to the
ab initio result obtained using QUANTUM ESPRESSO at least within the frozen
energy window [124].

Obviously, the quality of the interpolation will depend on the sampling of the
set of all states, i.e., the Brillouin zone. To test this convergence, the eigenenergies
are calculated on an equidistant 213 k point mesh spanning the whole Brillouin
zone by means of QUANTUM ESPRESSO, and subsequently compared to their
Wannier-interpolated counterparts, where the optimization process is based on a 63
k mesh, an 8k mesh, a 10% k mesh, and a 123 k mesh, respectively. We find the
coarse 103 k mesh to significantly improve over the smaller meshes, but to perform
on par with the 123 k mesh at least with respect to its root-mean-square deviation
(RMSD) of 13.6 meV near the Fermi energy [124]. Even though the deviations are
of the same magnitude as the phonon eigenfrequencies, all following calculations on
copper employ the Wannier interpolation based on the coarse 10? k mesh for two
important reasons:

First, as discussed in section [2.3.3] the coarse meshes used to sample the electronic
and vibrational systems must be commensurate, which drastically limits the set
of computationally feasible meshes. Second, the energy-conserving delta functions
in the electron linewidth equation are evaluated based on the interpolated

!For details, we urge the reader to study reference [46].

93



25 Y  E—/
— ab initio

20| — interpolation

Band energy [eV]

——~

r X W L r K

Figure 3.3.: Comparison of the ab initio band structure calculated at 500 K and the
corresponding Wannier interpolation associated with five d-like and two
two tetrahedral-interstitial-centered Wannier functions as proposed by
Souza, Marzari, and Vanderbilt . The dashed line indicates the frozen
energy window [124].

values, and hence only relative differences determine the validity of the Brillouin
zone integration. Additionally, in our numerical calculations the delta distributions
are subject to Gaussian smearing. On average, this will further reduce the necessary
accuracy of the interpolation |124].

Fermi Surface

It will be seen in section that copper lends itself to the use of equation ,
i.e., it is sufficient to restrict both transmission and self-energy calculations to the
Fermi energy, only. To calculate the energy-resolved electron linewidth in
the next section we must therefore obtain the Fermi surface triangulation, evaluate
the k-resolved self-energy on this surface, and then average this quantity using
appropriate weights.

Based on an equidistant 10 x 10 x 10 mesh calculated using QuANTUM ESPRESSO
as well as Wannier-interpolated 403 and 703 meshes, the Fermi surface of copper at
500K is triangulated as discussed in subsection 2.3.4] and displayed in the left column
of figure Ideally, the band energy at a vertex would equal the Fermi energy,
but as the surface vertices are calculated by means of an interpolation scheme, this
is only approximately the case. The total deviations AEF = E — Ep of the vertex
energy to the Fermi energy are given by the color function and range from —124 meV
to +43 meV for the coarsest mesh .

It is a striking feature that the total deviations of the vertex energies are directly
connected to the curvature of the surface, especially for the 10> mesh: Whenever
the surface has a positive curvature, the vertex energies are below the Fermi energy,

o4



4E mev) 10x10x10 LW meV) 10x10x10

l9

-24

-57
I -91
-124

AE (meV) 40x40x40 LW meV) 40x40x40

AF (meV) 70x70x70 LW meV) 70x70x70

l6

Figure 3.4.: Left column: Calculated Fermi surface triangulations at 500 K based
on an ab initio 10 x 10 x 10 mesh (top) and based on the Wannier-
interpolated 40 x 40 x 40 mesh (middle) and 70 x 70 x 70 mesh (bottom).
The color function yields the total difference of the vertex energies to
the Fermi energy. Ideally, this difference should be zero. Right column:
Electron linewidth at 500 K calculated on the very same Fermi surface
triangulation used in the corresponding figure on the left. The magnitude
is directly connected to the curvature of the surface .
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and the same holds for interchanged signs. This is explained by noting that, as of
now, only a linear interpolation scheme is implemented in fermint, which proves
inadequate to predict values of highly curved dispersion relations [124].

This deficiency may of course temporarily be avoided by reducing the length
scale for the linear interpolation, i.e., by basing the triangulation process on denser
meshesﬂ Consequently, the deviation range of the 40 mesh is reduced to —11 meV
to +20meV, and the deviations of the best mesh are even as small as —4 meV to
+8meV (see figure , left column). The importance of this observation will be
discussed in subsection B.1.4l

3.1.3. Phonon Dispersion

The second “ingredient” for a valid evaluation of the electron-phonon interaction is an
accurate description of the vibrational degrees of freedom. Given that this analysis
is built on the previously discussed electronic structure calculations and performed
as described in subsection [2:3.3] using QuaNTUM ESPRESSO, the convergence
parameters are equal to those given in subsection [3.1.2

Based on a coarse equidistant ¢ mesh spanning the whole Brillouin zone, the
phonon eigenfrequencies at an arbftrary wave vector may be calculated by Fourier
interpolation [20]. We find that the quality of this interpolation is sufficiently good
for all desired temperatures if meshes greater or equal to 6 X 6 x 6 are used. Hence, to
ensure the constraint of commensurate electron and phonon meshes, the dynamical
matrices, displacement patterns and changes in the effective potentials are calculated
on the symmetry-reduced equidistant 10 x 10 x 10 mesh [124]. The interpolated
phonon dispersion is displayed in figure for the lattice constants corresponding to
the three temperatures 0K, 500 K, and 900 K, i.e., the phonons are treated in the
quasi-harmonic approximation (see section .

While the general trend of the dispersion curve is in very good agreement with
the experimental data at 296 K taken from reference [94], the magnitude of the
eigenenergies is generally overestimated. This is most probably a consequence of
using a GGA functional in conjunction with experimental lattice constants [124]: It
was exemplified at least in the case of silicon that the dielectric screening calculated
using a GGA functional is smaller than if an LDA functional is used [95]. According
to Favot and Dal Corso [96] this result is compatible with our assertion in so far as a
reduced capability of the electrons to screen the ion-ion interactions would induce
higher interatomic force constants. It is further seen in figure that an increase
in temperature causes the phonon modes to soften, which may be explained by a
decrease of the interatomic force constants with increasing atomic distances.

We finally note that, in our calculations, the “bare” phonon modes are overestimated

2This approach is severely limited by the necessary count of time-consuming self-energy evaluations:
Exploiting symmetries, about 45 self-energy values have to be calculated for the triangulation
based on the 10® mesh. This number increases to roughly 650 and 2000 vertices for the 40°
and 70% mesh, respectively. Although a parallelization over vertices is possible and done, the
implementation of a superior interpolation scheme is to be preferred.
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Figure 3.5.: Phonon dispersion of copper for 0K, 500K, and 900 K compared to
experimental data at 296 K. With increasing temperature, the
phonon modes become weaker. The general overestimation is attributed
to using a GGA pseudopotential in combination with experimental lattice

constants .

throughout the whole Brillouin zone, but especially at I" . This is demonstrated
in figure (3.6 where the phonon dispersion of copper at 500K is plotted without
imposing the acoustic sum rule during the interpolation process performed using
QuaNTuM ESPRESSO (graph labeled “no”). As pointed out by de Gironcoli [97],
this behavior may yet again be accounted to the use of a GGA exchange-correlation
functional, because the charge density energy cut-off of 320 Ry is in fact too small to
ensure converged phonon frequencies in the Brillouin zone center.

When correcting for this issue with the sum rule algorithm “crystal,” the phonon
frequencies are exclusively mended in the vicinity of I', and hence the general
overestimation is not suppressed. Even worse, an additional unphysical oscillation is
introduced near I'. The algorithm “simple,” on the other hand, shifts the modes down
in the whole Brillouin zone, thereby reducing the deviations to the fully converged
result to less than 1%. Calculating perfectly converged frequencies requires a charge
density energy cut-off of 600 Ry and is therefore computationally rather expensive.
Given that this would change the resistivity by less than 0.25 %, we refrain from
doing so and instead employ the acoustic sum rule algorithm “simple” [124].

3.1.4. Electron Linewidth

Having calculated the electronic and phononic eigensystems on suitable coarse equidis-
tant meshes spanning the Brillouin zone, we now proceed as described in subsection
2:3:3] and employ the generalized Wannier-Fourier interpolation as implemented in
the EPW code to evaluate the self-energy integral on very dense grids
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Figure 3.6.: Phonon dispersion of copper at 500 K calculated while not enforcing the
acoustic sum rule at all (labeled “no”) in comparison to the sum rule
algorithms “simple,” and “crystal.” The latter algorithm leads to a minor
but unphysical oscillation in the vicinity of the I point and otherwise
does not affect the dispersion. In contrast, the sum rule “simple” shifts
all phonon modes down in the whole Brillouin zone .

of supporting ¢ points. Simultaneously, this procedure allows to restrict the linewidth
calculations to the desired equi-energy surface triangulations, and subsequently to
average over the electronic wave vector k.

Although the g point sampling is already very fine, the delta distributions appearing
in the integrand must always be replaced by Gaussian curves of appropriate widths to
allow for negligibly small numerical energy deviations. The less supporting points are
used, the bigger the typical deviations in energy may become, and hence the higher
the necessary smearing (and vice versa). On the other hand, the smearing may not
be chosen too big in order to avoid that many addends will wrongly contribute to the
self-energy, which would result in an overestimation of the rather small linewidths
especially at lower temperatures .

The required accuracy of the phonon wave vector sampling is counteracted by the
averaging over all wave vectors constituting the equi-energy surface in so far as the
more k points are taken into account, the better small numerical fluctuations in the
self-energy values will compensate each other. All things considered, in the case
of copper a valid trade-off is to use a 10meV Gaussian broadening in conjunction
with a 100% ¢ mesh for the Brillouin zone integration at least for the two denser
Fermi surface triangulations . As the symmetry-reduced triangulation based
on the 10 mesh typically consists of less than 50 vertices, the smearing is increased
to 50 meV instead of improving the ¢ point sampling. The effects arising from this
decision towards computational efficiency will be discussed below.
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|III1 EnE(EFvT)‘ [meV]

10 x 10 x 10 40 x 40 x 40 70 x 70 x 70
T [K] min  max avg min  max avg min  max avg
0 1.82 5.30 2.91 0.03 2.12 0.15 0.02 0.41 0.07
10 1.82 5.31 2.92 0.04 2.12 0.16 0.03 0.44 0.07
20 1.83 5.33 2.92 0.05 2.13 0.19 0.04 0.50 0.10
40 1.88 5.46 2.97 0.15 2.23 0.34 0.12 0.81 0.24
60 2.02 5.81 3.13 0.40 2.50 0.66 0.32 1.57 0.55
80 | 228 636 340 | 0.76 295 113 | 0.66 2.62  1.03
100 2.62 7.01 3.76 1.20 3.73 1.71 1.08 3.82 1.62
200 4.74 11.26 6.27 3.76  10.06 5.16 — — —
300 7.21 16.07 9.30 6.41 16.46 8.73 6.42 17.22 8.75
400 9.82 21.16 12.55 9.13 2257 12.28 — — —
500 | 12,55 26.42 15.94 | 1191 28.74 15.88 | 11.79 30.23 15.98
600 | 15.38 31.83 19.45 | 14.88 35.41 19.57 — — —
700 | 18.26 37.38 23.10 | 17.75 41.93 23.42 — — —
800 | 21.13 42.95 26.80 | 20.78 49.35 27.28 — — —
900 | 24.21 48.49 30.60 | 23.75 55.46 31.16 | 23.89 56.84 31.24

Table 3.2.: Minimum and maximum of the absolute value of the imaginary part of
the electron-phonon self-energy on the three considered Fermi surface
triangulations as well as averaged electron linewidth calculated using
equation against temperature. In the low temperature regime,
the almost constant maximum values of about 5.3 meV and 2.1 meV for
the 103 and 403 k mesh, respectively, indicate the systematic failure of
the coarse triangulations.

For the three different considered Fermi surface triangulations, the wave-vector-
resolved electron linewidth of copper at 500K is displayed in the right column of
figure We find that the scattering rates are high whenever the absolute value of
the surface curvature is high, and low otherwise [124]. Especially for the most coarse
triangulations a striking coincidence with the deviations of the vertex energies to the
Fermi energy is obvious, which leads to the assumption that the increased linewidth
might yet again be a deficiency introduced by the linear interpolation scheme used to
calculate the surface vertices. While a comparison by eye for the denser triangulations
in the very same figure is inconclusive, the idea is substantiated by carefully studying
the electron linewidth values presented in table especially in the low temperature
regime: The Fermi surface triangulation based on the 10 x 10 x 10 mesh shows a
near constant maximum value of about 5.3 meV for all temperatures below 40K,
which indicates a systematic error as the electron-phonon scattering rates must of
course tend to zero with decreasing temperature. This incorrect constant maximum
value shrinks to 2.1 meV and 0.4meV with increasing mesh sizes, which were found
to be directly related to smaller energy deviations during the discussion of the Fermi
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Figure 3.7.: Electron linewidth |Im Xepn(AE, ER,T)| of copper at the Fermi energy
for multiple temperatures 1" calculated along parts of the I' — X path
against the difference AE of the band energy E(k) and the Fermi energy.
For T' = 0K, the linewidth has a pronounced dip at the Fermi energy
which is due to energy conservation [17]. This feature dissolves for higher
temperatures. The shading in the background indicates the range of
the energy deviations of the Fermi surface triangulation based on the
10 x 10 x 10 mesh (light), 40 x 40 x 40 mesh (medium), and 70 x 70 x 70
mesh (dark) at absolute zero. The magnitudes are very similar in the
whole temperature range (see, e.g., figure left column).

surface triangulation in section [3.1.2] For higher temperatures, however, no such
systematic change of the electron linewidth values with the triangulation quality is
found.

To study this effect further, we calculate the electron linewidth of copper at various
temperatures along parts of the I' — X path in the Brillouin zone. When following
this path in the vicinity of the Fermi energy, the band energy increases monotonically,
as can be seen in figure [3.2] depicting the band structure. It is therefore possible to
plot the linewidth against the total energy difference AF = E — Ep to the Fermi
energy instead of plotting it against the corresponding k point of the path [124]. The
resulting figure then shows that for small temperatures, the electron linewidth has
a pronounced “dip” near the Fermi energy. According to Poncé et al. [17], this feature
is due to the energy conservation rule, which is enforced by the delta distributions in
the electron linewidth relation . Nevertheless, this dip quickly dissolves with
increasing temperature due to the additional thermal smearing [124].

The assumed connection between bad Fermi surface triangulations and elevated
self-energies may now be understood in greater detail by comparing the total energy
deviations AFE of the vertex energies (indicated as shadings in the background of
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figure with the energy-difference dependence of the electron linewidth: Especially
the deviations of the triangulation based on the 10% mesh are significantly too big to
sample the electron linewidth exclusively in the dip range, and hence its (maximum)
value will be overestimated for small temperatures. The triangulations based on the
403 and 702 meshes do, on the other hand, suffer considerably less from this issue,
and therefore their low-temperature behavior is much better. Finally, the rather
similar performance of all three Fermi surface triangulations at higher temperatures
is readily explained by the vanishing of the dip [124].

Another noticeable feature is the near constant minimum value of the electron
linewidth of about 1.8 meV up to 40 K as predicted by the Fermi surface triangulation
based on the 103 mesh (see table . We mention in the beginning of this section
that the electron linewidth of the coarse triangulation is calculated using a higher
value for the Gaussian smearing in the Brillouin zone integration. In order to verify
that this does in fact explain the error, the self-energy based on the 40% mesh is
recalculated using a smearing of 50meV. As expected, the minimum, maximum,
and average value increase to about 1.60 meV, 3.45 meV, and 2.01 meV, respectively.
Reducing the smearing in the calculations employing the triangulation based on
the 10 mesh to 10meV will, on the other hand, lower the minimum value to
about 0.41meV. Simultaneously, however, the maximum value will increase to
6.07 meV, which increases the average value to 4.27 meV. Hence, the higher smearing
is considered not the cause for the failure of the coarse triangulation, but seen to
correct for convergence issues as previously stated.

In conclusion, we find that an accurate sampling of the Fermi surface is necessary
to correctly evaluate the electron-phonon self-energy in the low temperature regime,
where “accurate” refers to small deviations of the vertex energies to the Fermi energy
rather than a high density of the vertices [124]. For this to be possible, a good
description of the electronic structure up to several meV in both the ab initio and
Wannier interpolation steps is required. The linewidth evaluation itself has to be
performed employing a Gaussian smearing sufficiently small to not interfere with the
corresponding thermal fluctuations. At higher temperatures, the prerequisite of a
valid description of the electronic structure seems less important. The observation
that high Fermi surface curvature is linked to high scattering rates is accordingly not
caused by numerical problems but physically meaningful |124]

3.1.5. Transmission and Resistivity

To verify the implementation of the Landauer-Biittiker formalism in the Gieflen KKR
Green’s function code, we use the previously obtained electron linewidth to evaluate
the temperature-dependent resistivity of copper. Given that, up to now, all numerical
calculations have been performed in the framework of pseudopotential plane wave
codes, this procedure consists of three steps: First, the effective one-particle potential
Ve%} (r) is obtained by solving the Kohn-Sham Hamiltonian in a self-consistent
manner. Subsequently, the Green’s function containing the electron-phonon
self-energy is calculated and used to evaluate the various transmission functions
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and . Based thereupon, the effective transmission and the resistance
are calculated.

The effective Kohn-Sham potentials are obtained with an angular momentum
cut-off of 3 in the expansions of both the Green’s functions of the repulsiveﬂ
reference system as well as the real system. After having solved the algebraic Dyson’s
equation for the screened reference system in real space taking 201 adjacent
atomic sites into account, Dyson’s equation for the Green’s function of the real
system is solved in reciprocal space by means of . The following Brillouin zone
integration uses 1083 supporting points. In minor discrepancy with the electron
linewidth calculations, the exchange-correlation energy Fi. is attributed for in the
revised parameterization PBEsol [98] of the generalized-gradient approximationﬁ

After having solved for the effective potential, the three-dimensional bulk calcu-
lations are transformed into equivalent layer systems suitable to be treated in the
non-equilibrium Green’s function formalism presented in section The domains
M7, /R of the decoupling potentials as introduced in the set of equations are
taken to coincide with the decimation block size of 8 layers, and the two-dimensional
Brillouin zone integration is, in analogy to the bulk calculations, performed
using 1082 k points in the surface Brillouin zone. In the course of this analysis we
will study systems of high lengths, and in order to avoid numerical errors due to the
neglect of the density contribution proportional to Im(z) [see equation (2.64))] the
imaginary part of the energy is reduced to 2 x 1078 Ry. In consequence, Dyson’s
equation for the reference system has to be solved considering 603 neighboring sites
to attain sufficiently converged results [124].

It was already mentioned and exploited that copper allows for restricting the
transmission calculations to the Fermi energy Er, only. To prove this it is — according
to the discussion regarding the validity of equation — sufficient to show that
the “curvature” of the effective transmission is small, where the concept of curvature is
used in the sense of appendix Considering that we want to avoid calculating the
self-energy for multiple energy values, it is however not reasonable to directly verify
this condition. Instead, it is assumed in the following that the energy dependence of
T}jf}f% will be quite similar to that of Tz, which should hold if the self-energy is small
in magnitude or not heavily dependent on the energy by itself. While the first of the
two sufficient conditions is surely met for small temperatures, the latter will hold for
higher temperatures as seen from figure

Thus, in figure the Fermi-Dirac difference function A f as defined in equation
is plotted for the temperatures 100 K, 500K, and 900K in comparison to
the energy-resolved ballistic transmission 77 r. In the displayed energy regime the

3The reference system is chosen to be described by a constant potential of 8 Ry in height.

4Considering that the PBEsol parameterization is specifically crafted to describe the exchange-
correlation energy in a solid, it seems more appropriate for our bulk-like calculations than
the PBE parameterization employed in all preceding calculations. A norm-conserving PBEsol
pseudopotential as necessary for the EPW code is, however, not at hand, and hence we settle for
the rather similar PBE parameterization. Please note that the presented KKR calculations are
in fact rather insensitive to the particular choice of a GGA parameterization.
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Figure 3.8.: Energy-resolved ballistic transmission T g [see equation ; dots,
line is to guide the eye| as well as Fermi-Dirac difference function A f
[see equation (A.27); shading] at 100K (dark), 500K (medium), and
900K (light). The transmission function does have a nonvanishing
curvature but may be, in good approximation, assumed linear in the
regime |AE| < 300meV (indicated by dotted lines) [124].

transmission T r(F) clearly does have a nonvanishing curvature. In the interval
|AFE| < 300meV, on the other hand, it obviously is a valid approximation to assume
the energy dependence linear. As the percentage of the area under the Af curve
outside of this energy range remains small for temperatures up to 900 K, the restriction
of the transmission calculations to the Fermi energy is in fact considered justified for
all aspired temperatures [124].

As was pointed out by Datta [34], in the limit of long device lengths the Landauer-
Bittiker formalism includes Ohm’s law, i.e., it correctly predicts the resistance R of
the device to be a linear function R(l) = Rg+ m - [ of its length [, where Ry is the
contact resistance introduced in equation . In systems of uniform cross section
A the slope m is given in terms of the resistivity p as m = 4. These experimentally
well confirmed features yield another valuable test of our implementation, and hence
the calculated resistance times area product R - A of copper at 500 K as a function of
length is depicted in figure [3.9] It can be seen clearly that Ohm’s law is valid at least
for devices longer than 40 nm, but that the functional dependence is, as expected,
not linear for relatively short conductors (see inset) [124].

The previously described behavior of the R - A curve is consistent over the whole
aspired temperature regime, i.e., even for the lowest considered scattering rates the
resistance depends in good approximation linear on device lengths greater 40 nm.
For higher self-energies, the required length scales are even shorter. This motivates

63



3.0F | O
o, i , | ARA
&0 e AL0 ]
0 + 4 - - - = ) ,
Toof’ > 0 Do Al .
< | ]
o 1.0:— _:

1.0k calculated data -

[ —— linear regression |
0'5' PRI TR SR UTETN B ARSI SE S RIS R
0 10 20 30 40 50 60 70 80

Length 1 [nm]

Figure 3.9.: Resistance times area product of copper as a function of device length
calculated at 500 K. For device length greater 40 nm the dependence is
near linear, and hence Ohm’s law is valid for long devices. The inset
shows the short length regime [124].

a simple yet physically appealing method to calculate the temperature dependence
of the resistivity of simple metals: For each temperature of interest, the R - A
value is sampled at various device length greater 40 nm, and subsequently the slope
p = ARA/AL is extracted from a linear regression analysis [124].

Based on the wave-vector-averaged electron linewidth values given in table [3.2]
the resistivity is calculated by means of the aforementioned method and plotted
as a function of temperature in figure [3.10] for each of the three considered Fermi
surface triangulations. In comparison to experimental data taken from reference
[99] we find very good agreement in all cases at least above room temperature. In
the low temperature regime, however, the resistivities corresponding to the Fermi
surface triangulation based on the 10% mesh fail to reproduce the correct behavior,
i.e., the resistivity does not tend to zero. This is of course a remnant of the strong
overestimation of the electron linewidth induced by the high deviations of the vertex
energies to the Fermi energy as discussed in subsection [3.1.4] The same reasoning
also explains why the resistivities obtained using the triangulation based on the 703
mesh improve over the results corresponding to the 40% mesh (see inset) [124].

Additionally we find [124] that our calculated resistivities corresponding to the
two denser meshes are in better agreement with the experimental data than the
values reported by Savrasov and Savrasov [10], which are obtained in the framework
of the lowest-order variational approximation (LOVA) to the Boltzmann formalism.
This is remarkable insofar as the LOVA is to be considered the de facto standard for
DFT-based resistivity calculations in metallic systems. Furthermore, our predicted
resistivities prove superior to those evaluated employing the alloy analogy [14].
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Figure 3.10.: Calculated resistivity of copper against temperature for the three con-
sidered Fermi surface triangulations in comparison to experimental data
[99], lowest-order variational approximation (LOVA) to the Boltzmann
formalism [10], and the alloy analogy |14]. While the most coarse
triangulation fails in the low temperature regime, all meshes yield good
to very good results for higher temperatures [124].

Studying this relative performance is particularly interesting, as the alloy analogy
is another possibility to account for phase-breaking scattering in the framework of
the Korringa-Kohn-Rostocker method, although this time based on the coherent
potential approximation (CPA).

To study the effects of the imposed thermal expansion, figure [3.11] compares experi-
mental resistivity data to values calculated employing the Fermi surface triangulation
based on the 403 mesh under various assumptions. E.g., in the calculations to the
dashed line (labeled “el. & ph. at 300 K”) any effects of thermal expansion have
been neglected at all, i.e., the lattice constant was kept fixed to its value at 300 K. In
relation to the corresponding calculations taking thermal expansion into account, we
find a minor overestimation of the result in the low-temperature regime, and a major
underestimation for higher temperatures. This is consistent with the behavior of the
true coefficient of thermal expansion (see figure : For small temperatures, the
change in the lattice constant is rather small, and hence the effects on the resistivity
will also be small. However, above room temperature the change in the lattice
constant is not negligible [124].

Revisiting that the electronic structure shows only a minor temperature dependence
(see figure it is reasonable to attribute the observed underestimation of the
resistivity to the atomic vibrations [124], the more so as this is to be expected from
a phenomenological point of view: A smaller lattice constant leads to a increased
ion-ion interaction and hence to higher interatomic force constants. Therefore, the
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Figure 3.11.: Temperature-dependent resistivity of copper resistivity calculated using
the Fermi surface triangulation based on the 40 x 40 x 40 mesh in
comparison to experimental data taken from [99]. The solid curve
assumes the presence of thermal expansion, while the dashed curve
(el. & ph. at 300K) completely neglects this effect. The dash-dotted
line (only ph. at 300 K) considers thermal expansion in the electronic
structure, but not for the calculation of the phonon dispersion. In both
latter cases, the slope is too low especially at higher temperatures [124].

phonon eigenfrequencies harden, as is consistent with the trend depicted in figure [3.5
Consequently, on average higher energy transfers are required in the interactions of
electrons and ions, and hence bigger thermal fluctuations are necessary to induce
scattering. In summary, the electron-phonon scattering rates at a specific temperature
will decrease, which leads to smaller electrical resistances.

In order to verify this phenomenological reasoning, the dash-dotted curve (labeled
“only ph. at 300 K”) in figure is calculated under the assumption that thermal
expansion influences only the electronic structure, i.e., the phonon frequencies wg,
have been fixed to their respective values at 300K [124]. In conformance with
our considerations the curve shows even slightly higher deviations than the graph
obtained by neglecting thermal expansion at all. Therefore, there actually is a small
contribution of the electronic system — this is, however, dominated by the effects of
the (missing) phonon softening [124].

In conclusion, the demonstrated accuracy of restricting the transmission calcula-
tions to the Fermi energy at all considered temperatures in retrospect legitimates to
only evaluate the electron linewidth on the Fermi surface. As expected, the most
coarse triangulation fails in the low temperature regime due to its overestimation of
the magnitude of the electron-phonon self-energy, while the denser triangulations
yield better resistivities than those obtained using established methods. The well
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recognized Ohm’s law is a limiting case of the proposed method for high device
length, and hence both method and implementation are found to be valid at least
in the case of copper. Finally, for a correct evaluation of the electrical resistance at
higher temperatures it is crucial to carefully account for any changes in the phonon
dispersion induced by the anharmonicity of the atomic vibrations. To do so in copper,
it is sufficient to impose thermal expansion on the system.

3.2. Resistivity of Aluminum

Motivated by the impressive accuracy of the proposed method in the case of copper
for temperatures as high as 900 K, this section tries to verify any conclusions drawn
— especially the proposed crucial role of precise phonon calculations — by studying
the temperature-dependent resistivity of aluminum. The analysis therefore proceeds
along the very same lines as in the previous section, but in each step the differences
arising from LDA and GGA exchange-correlation functionals are discussed. Finally,
our findings are underlined by comparing the resistivities obtained within the non-
equilibrium Green’s function framework to those evaluated using Ziman’s formula in
the context of the Boltzmann formalism.

3.2.1. Thermal Expansion

The thermal expansion is once again treated in the Debye-Griineisen model .
Instead of performing the optimization procedure by ourselves, we this time rely
on the parameter set proposed by Nix and MacNair [83], i.e., 0p = 400K, Qp =
83.6 x 103 cal/mol, and g = 2.7.

If we calculate the true coefficient of thermal expansion in the temperature range
15K to 27 K using this parameterization, we find relative deviations in the order of
10 % compared to the values reported by McLean [100]. For even lower temperatures,
the relative errors significantly increase. Given, however, that the true coefficient of
thermal expansion must be small in this region, this is to be expected and — within
the scope of this work — not an issue. In conformance with these results, the lattice
constant of aluminum at absolute zero is estimated to be agx = 4.0241 A, which
is about 0.2 % smaller than the value predicted in reference [90]. Other calculated
lattice constants are virtually identical with those in reference [101], i.e., we find
relative deviations of less than 0.1 %.

In summary, these results confirm the conclusion drawn in the case of copper that
thermal expansion may be modeled in this way. The lattice constants used in the
following analysis may be found in table

3.2.2. Electronic Structure

In the employed plane wave codes, the LDA and GGA exchange-correlation function-
als are introduced by using two different pseudopotentials: For comparability with our
previous results, the generalized-gradient approximation is yet again treated in the
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T[K] || 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900
a[A] || 4.026 | 4.033 | 4.042 | 4.051 | 4.062 | 4.073 | 4.085 | 4.097 | 4.110

Table 3.3.: Lattice constants of aluminum at various temperatures as calculated by
means of the Debye-Griineisen model proposed by Nix and MacNair [83].

parameterization of Perdew, Burke, and Ernzerhof [91] on top of a norm-conserving
pseudopotential of Troullier-Martins type [92]. As local approximation we utilize a
norm-conserving pseudopotential of Goedecker-Hartwigsen-Hutter-Teter type [102,
103] which was generated using the LDA parameterization of Perdew and Zunger
[104].

The convergence parameters are chosen identical for both potentials in order to
facilitate the reasoning that differences in the result are due to the two types of
potentialsﬁ For all considered temperatures a pseudo wave function energy cut-off
of 140 Ry and a corresponding charge density energy cut-off of 560 Ry is sufficient to
reach convergence. The Brillouin zone integration is performed with 408 k points in
the irreducible wedge in conjunction with a Methfessel-Paxton first-order spreading
[105] of 20mRy to account for the metallic occupation broadening.

For both LDA and GGA, the band structure as well as the employed Wannier
interpolation of the GGA results are given in figure [3.12] The two ab initio band
structures prove to be very similar, and hence it is possible to use the same initial
projections for the corresponding optimization procedure of the maximally localized
Wannier functions. However, because of the band crossing in the direct vicinity of
the Fermi energy (see inset of figure , these projections need to be carefully
crafted in order to yield an accurate interpolation.

Based on the results described in reference [106], we find the 9 s-, p- and d-like
atom-centered Wannier functions to be a suitable starting guess for the minimization
of the spread functional . The quality of the Wannier interpolation is strongly
dependent on the successful disentanglement of the band structure, which is account-
ing for the missing band gap in metals. Thus, the result may be further improved by
restricting the ab initio calculations of eigenstates and eigenvalues to 10 bands while
simultaneously setting the outer disentanglement window to the maximum value of
the 10*® band. As the band structure is slightly contracted with increasing lattice
constant, this value is temperature-dependent, but may be automatically determined
by analyzing the electronic structure before starting the optimization process.

To study the necessary sampling of the Brillouin zone, we adapt the test described
in the case of copper, i.e., the eigenvalues on a 213 k point mesh are calculated
using QUANTUM ESPRESSO and subsequently compared to the interpolated values

5Given the rather small number of available pseudopotentials and the elimination of parameteriza-
tions not implemented in the Gieflen KKR code, we have to use different types of norm-conserving
pseudopotentials. Further, different parameterizations of local and generalized-gradient approxi-
mations might perform differently. Although somewhat sloppy, we will not study these effects
within this work, but nevertheless refer to the two pseudopotentials as LDA and GGA.
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Figure 3.12.: Ab initio band structure employing a GGA (solid) and LDA (dotted)
exchange-correlation functional in comparison to the Wannier interpo-
lation based on the GGA calculations. Due to the band crossing in
the vicinity of the Fermi energy (see inset as well as the comment in
footnote @, great care must be taken to ensure a valid interpolation
for the Fermi surface calculation.

based on a 63 k mesh, an 8 mesh, a 10®> mesh, and a 123 mesh. While the 83
mesh significantly improves over the 62 mesh, it performs with similar accuracy
compared to the denser meshes especially for the “higher” bandﬁ The maximum
deviations are below 23 meV and the RMSD is bounded by 7meV, which even excels
the interpolation quality of copper. Hence, all Wannier interpolations used in the
following calculations will be based on an 8 x 8 x 8 k£ mesh.

Because of the band crossing near the Fermi energy, rather dense meshes are
required for a valid triangulation of the Fermi surface. This is true in particular for
the “higher” band, although its contribution to the Fermi surface area is quite small,
and the error caused by this effect should hence be equally smallm For both LDA
and GGA, the RMSD to the Fermi energy of the “lower” band is less than 14 meV for

SInstead of employing symmetry arguments to distinguish “physical” bands, all calculated eigenval-
ues are simply ordered by size, and the position in this sequence is identified with a band index.
Hence, in the following, we denote the eigenvalues corresponding to the upper curve of the inset
in figure[3.12] as “higher” band, and those corresponding to the lower curve of the inset as “lower”
band, although this classification neglects that actually two monotonic curves or bands intersect
one another. Please further note that the “lower” band does not cross the Fermi energy within
the inset region but, e.g., on the I' — X path (see figure .

"Given that we refrain from plotting the energy deviations of the triangulations as done for copper,
we refer the reader to figure The “higher” band consists of the multitude of “patches” at the
borders of the Brillouin zone, and hence has a much smaller area than the “lower” band. When
employing the triangulation based on a 40% mesh (left), these patches are still rather serrated. If,
on the other hand, a 100° mesh is used as a basis for the Fermi surface triangulation (right), the
quality improves by far.
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Figure 3.13.: Phonon dispersion of aluminum for 100 K, 500 K, and 900 K compared
to experimental data at 300K (stars). Both GGA (solid) and
LDA (dotted) do generally underestimate the experimental data. Nev-
ertheless, the GGA pseudopotential shows much smaller deviations to
the experimental results.

the triangulation based on a 40% mesh in the whole temperature range. The “higher”
band is described with energy deviations of less than 40 meV RMSD. In case of the
triangulation based on a 100% mesh, the RMSDs of both bands are below 9meV.
We therefore conclude that by using these triangulations, the electronic structure is
described to similar accuracy as in the previous calculations.

3.2.3. Phonon Dispersion

Similar to the case of copper, the grid size of the equidistant ¢ mesh does not
drastically influence the quality of the Fourier interpolation used to calculate the
phonon dispersion in the whole Brillouin zone. Hence, to ensure a mesh commensurate
to the electronic subsystem as is necessary for the electron linewidth evaluation, an
8 x 8 x 8 mesh is used. In view of the assumed importance of a valid description of
phonons, the convergence parameters given in section are this time carefully
chosen to yield converged eigenfrequencies, particularly at I'. This choice is due to
the fact that although we find that the acoustic sum rule algorithm “simple” suitably
corrects for convergence problems in copper, we do not want to risk that numerical
issues might interfere with our examinations of the differences due to the LDA and
GGA exchange-correlation functionals.

The phonon dispersion at the three different temperatures 100 K, 500 K and 900 K
along several high-symmetry paths in the Brillouin zone is given in figure 3.13
In comparison to experimental data at 300K taken from reference [107], we find
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that the GGA functional slightlyﬁ underestimates the eigenfrequencies, even though
experimental lattice constants are used. This observation seems to conflict with our
findings in the case of copper, but is rectified by noting that the LDA functional
performs even worse, i.e., it considerably underestimates the phonon dispersion.

In view of the minor dependence of the electronic structure on the type of exchange-
correlation functional, to support our conclusions drawn in the previous section one
would expect that the electron linewidth and hence the resistivities will be highly
overestimated if calculated with the LDA functional. In the following, this will be
analyzed in more detail.

3.2.4. Electron Linewidth

Based on the previous results concerning the electronic and vibrational structure of
aluminum, we now turn to evaluate the electron linewidth as explained in subsection
In conformance with our course of action in case of copper, the self-energy will
be calculated at the Fermi energy only. The justification of this approach, i.e., the
proof of the validity of equation , will be postponed to the discussion of the
resistivity curves in subsection [3.2.5]

Considering our findings in subsection that a Gaussian smearing of 50 meV
proved too large for an accurate Brillouin zone integration in equation , the
electron linewidth is yet again calculated using a broadening of 10 meV. Under these
circumstances, 603 supporting q points are sufficient to converge the wave-vector-
averaged self-energy for triangulations based on equidistant meshes consisting of 403
k points and more. This value is considerably lower than the employed Brillouin
zone sampling of 1003 q points in the case of copper, which is most probably an effect
caused by the increased complexity of the Fermi surface: The symmetry-reduced
vertex count of the Fermi surface triangulation of aluminum based on the 40% mesh
is comparable to the respective vertex count of the Fermi surface triangulation of
copper based on a 70 mesh, and therefore the error canceling due to the electronic
wave-vector-averaging is superior.

A comparison of the GGA results to the wave-vector-resolved electron linewidth of
aluminum at 500 K for the two considered Fermi surface triangulations based on the
40% mesh (left) and the 100% mesh (right) is given in ﬁgure The general trend of
the linewidth as calculated using an LDA functional is virtually identical, although
the magnitude of the values is generally higher. At least for the “lower” band we
can confirm that high surface curvature is directly related to elevated self-energy
magnitudes, as was found in case of copper. This feature is slightly more pronounced
in the LDA calculations due to an enlarged range between minimum and maximum
value. For the “higher” band, however, this assumption remains inconclusive.

To allow for a more detailed discussion, the minimum, maximum, and wave-vector-
averaged value of the electron linewidth of both LDA and GGA for the triangulation
based on the 40% mesh as well as the GGA result for the triangulation based on the

8Please note that the coefficient of thermal expansion is small for low temperatures, and hence the
dispersion relations for 100 K and 300 K will be rather similar.
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Figure 3.14.: Electron linewidth of aluminum at 500K for the two considered Fermi
surface triangulations based on an equidistant 40 x 40 x 40 mesh (left)
and on the finer 100 x 100 x 100 mesh (right). Especially the serrated
surface of the “higher” band is much improved in the latter calculations.
For the “lower” band, the magnitude of the linewidth is connected to
the curvature of the surface.
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1003 mesh are given in table at various temperatures. In conformance with our
previous observations, the values obtained using an LDA functional are generally
bigger, and the range between minimum and maximum value is increased in the
whole temperature range. This further substantiates the assumption that the strong
underestimation of the phonon dispersion in case of LDA drastically influences the
electron-phonon scattering rates.

Finally, the near constant maximum value of the electron linewidth for temperatures
below 60 K indicates once more the presence of the energy-conservation-induced
dip in the self-energy near the Fermi energy. Similar to our findings in the case of
copper, the band energies along parts of the I' = X and I' — L paths in the vicinity
of the Fermi energy behave monotonic (see figure , and hence it is possible to
generate the analog of figure For both LDA and GGA we find that the width of
the dip is virtually identical to the one observed for copper. The effect of sampling
the self-energy outside the dip region is, however, more severe, because the electron
linewidths are this time in the order of 15 meV and hence at least two times larger
than the corresponding values in figure

In conclusion, the observed behavior of the electron linewidth is perfectly similar to
the results presented in the case of copper: In the low temperature regime an accurate
triangulation of the Fermi surface is necessary in order to sample the self-energy in
the dip region, i.e., in the vicinity of the Fermi energy, the more so as the magnitude
of the linewidth is much larger in case of aluminum. The increased complexity of
the Fermi surface allows, on the other hand, for the use of a comparatively coarse
q point sampling. For higher temperatures the constraint of precise Fermi surface
triangulations is yet again released. The differences in the LDA and GGA self-
energy calculations are significant and attributed mostly to the discrepancies in the
vibrational degrees of freedom.
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‘Im EnE(EF7 T)| [meV]

LDA GGA
40 x 40 x 40 40 x 40 x 40 100 x 100 x 100
T [K] min  max avg min  max avg | min  max avg

0 0.03 24.20 2.08 0.02 1945 1.38 | 0.02 10.67 0.16
10 0.06 23.94 1.89 0.02 19.34 141 0.02 15.70 0.21
20 0.07 24.33 2.02 0.04 19.30 1.45| 0.04 13.01 0.23
40 0.30 24.46 2.36 0.17  20.82 1771 0.16 12.88 0.51
60 0.93 24.68 3.31 0.59 19.76 245| 059 1544 1.27
80 2.04  25.18 4.86 141  21.53 3.50 | 1.41 13.96 2.38

100 3.34  26.89 6.84 2.64 22.17 5.08 | 2.65 13.00 4.06
200 | 12,54 38.77 2098 | 12.08 31.44 1648|1220 24.60 15.95
273 — — — | 18.26 40.44 26.11 | 18.51 36.81 25.88
300 | 26.29 54.56 37.15| 20.38 44.92 29.68 | 21.04 39.92 29.57
400 | 40.72 7159 53.92 | 29.38 59.77 43.34 | 30.06 57.74 43.54
500 | 55.98 94.78 71.61 | 42.25 74.48 57.60 | 42.28 76.22 57.94
600 | 74.53 116.32 90.37 | 57.60 93.88 72.53|57.21 96.23 72.96
700 | 91.37 145.10 110.31 | 69.18 114.55 88.44 | 69.38 118.08 88.66
800 | 106.73 170.73 131.26 | 84.51 134.70 105.28 | 83.93 140.75 105.56
900 | 127.68 201.68 153.73 | 103.14 158.78 123.39 | 98.91 163.15 123.67

Table 3.4.: Minimum, maximum and wave-vector-averaged value of the electron
linewidth for the Fermi surface triangulation based on the 40 x 40 x 40
mesh using both LDA and GGA, as well as the corresponding values of
the GGA calculations performed for the finer triangulation based on the
100 x 100 x 100 mesh. In the low temperature regime, the near constant
maximum values indicate the presence of the characteristic dip in the
vicinity of the Fermi energy. In general, the LDA pseudopotential predicts
higher scattering rates.

3.2.5. Temperature-dependent Resistivity

As discussed in more detail in subsection we start the analysis by obtaining the
effective one-particle potentials Ve{ﬁfﬂ} (r) as a prerequisite to our transport calculations.
All Green’s functions are calculated using an angular momentum cut-off of 3. After
having solved the algebraic Dyson’s equation for the Green’s function of the constant
8 Ry reference potential on real space clusters consisting of 201 adjacent atomic
sites, the Green’s function of the physical system is evaluated in reciprocal space
using 1203 supporting k points in the subsequent Brillouin zone integration. For
consistency with the pseudopotential plane wave calculations described above the
generalized-gradient approximation is treated in the PBE parameterization [91], and
the LDA parameterization is due to Perdew and Zunger [104].

In the corresponding transport systems, the domains My g of the decoupling
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Figure 3.15.: Temperature-dependent resistivity of aluminum for the two considered
Fermi surface triangulations in comparison to experimental data [99] and
the LOVA to the Boltzmann formalism [10]. Both GGA results (solid)
mirror the experimental data up to 200 K rather well, but overestimate
for higher temperatures. In contrast, the LDA result (dotted) is too
big in the whole temperature regime.

potentials coincide yet again with the decimation block size of 8 layers. It is, however,
sufficient to perform the Brillouin zone integration with 962 sampling points, and
the imaginary part of the energy may be chosen as high as Im(z) = 2 x 10~7 Ry in
order to converge the resistivity calculations to less than 1% for even the smallest
scattering rates. Therefore, the algebraic Dyson’s equation for the Green’s function
of the screened reference system may be solved taking only 459 neighboring sites
into account.

Akin to what was stated in the case of copper, Ohm’s law is valid for device
lengths greater 45 nm in the whole aspired temperature regime. Despite the generally
higher electron linewidth in aluminum, the lower bounds are of similar order, which
is understood by noting that in the low-temperature regime the scattering rates are,
in fact, comparable in size. It is further confirmed that higher scattering rates reduce
the required length scales. Given, however, that the transmission calculations are
computationally rather inexpensive, this is not exploited and the resistance times
area products necessary for the evaluation of the resistivities are obtained using the
very same layer count at all temperatures.

The LDA (dotted) and GGA (solid) resistivity calculations are depicted in figure
in comparison to experimental data taken from reference [99] as well as to
results in the lowest-order variational approximation to the Boltzmann formalism
reported by Savrasov and Savrasov [10]. In case of the GGA exchange-correlation
functional, the values corresponding to both the 40% and 100% mesh show only minor
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Figure 3.16.: Energy-resolved effective transmission (solid line) of aluminum at 900 K
calculated using a linear interpolation of the corresponding electron
linewidth (dashed line). The monochromatic shading in the background
illustrates the behavior of the Fermi-Dirac difference function Af at
this very temperature. The transmission is essentially antisymmetric
in the range |[AE| < 300 meV.

discrepancies to experiment for all temperatures up to 200K, but then start to
systematically overestimate. In conformance to what is seen in the case of copper and
the previous discussions of the electron linewidth results, the resistivities calculated
using the denser mesh prove superior due to the more accurate sampling of the
self-energy in the dip region. In further agreement, both triangulations perform
virtually identical at higher temperatures where the dip has smeared out. As expected
when studying table the LDA results overestimate the resistivities in the whole
temperature regime. However, analogous to the GGA calculations, the differences to
the experimental data grow with increasing temperature.

While this behavior does substantiate to some extent the assumption that the
underestimation of the phonon energies is the main cause of error, there are several
other conceivable reasons for the failure at higher temperatures. In particular, the
observation that the range between the minimum and maximum value of the electron
linewidth grows with temperature (see table might indicate that the proposed
wave-vector-averaging might fail in the high temperature regime. Given, however,
that it is very hard to estimate the magnitude of the introduced deviation without
being able to calculate the k-resolved result, we will postpone the discussion to the
end of this section and first discuss the other more manageable possibilities.

Considering that the overestimation of the resistivity increases with temperature
for both LDA and GGA, the problem could be induced by an erroneous usage of the
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resistance formula : For elevated temperatures, the Fermi-Dirac difference
function Af defined in equation will spread in energy, and hence higher-order
contributions to the transmission function will become more important, i.e., curva-
tures previously considered “small” might actually influence the result significantly.
To verify that this is not the case, we present in figure the energy-resolved
effective transmissionﬂ of aluminum at 900 K (solid line) in comparison to the corre-
sponding weighting function A f. The behavior of Tfi;fz(E) is primarily antisymmetric
with respect to the Fermi energy, and the quadratic contribution hence is negligible in
the important energy range |AF| < 300 meV. Consequently, the resistivity calculated
taking the full energy dependence into account is 11.709 x 1078 Qm, and thus in
fact 0.5% higher than the corresponding value of 11.661 x 108 Qm obtained by
reducing the transmission calculations to the Fermi energy.

Another and quite likely possibility to introduce a temperature-dependent error as
observed would be an overestimation of the phonon softening due to the anharmonic
ion-ion interactions. While it was demonstrated in case of copper that these effects
may be adequately modeled by imposing thermal expansion on the system, this
needs not necessarily be true for aluminum, the more so as the upper bound of the
employed temperature regime is comparatively close to the melting point. Although
we witness in subsection [3.2.] that the Debye-Griineisen model is suited to accurately
describe the thermal expansion of the solid, the phonon densities of states calculated
and measured in reference [108] may serve as allowedly weak evidence that, by using
these lattice constants in both our LDA and GGA calculations, we do not only
underestimate the phonon eigenfrequencies, but simultaneously overestimate the
attenuation thereof. A continuing analysis of this conjecture is definitely in order, but
collapses as we lack detailed, publicly available data on the temperature dependence
of the phonon modes in aluminum.

It may, however, be demonstrated that the overestimation of the resistivity is a
general trend of the employed GGA pseudopotential, and thus not solely caused by
our proposed method. To do so, we show in figure [3.17] the temperature-dependent
resistivity as calculated using the Ziman formula, i.e., in lowest-order variational
approximation to the Boltzmann transport equation. The fact that our result is
significantly larger than the directly comparable values of Savrasov and Savrasov
[10] nicely fortifies the claim that the utilized pseudopotential induces at least a
portion of the error. Further, given our previous discussion, the assumption that this
is most probably due to a misdescription of the phonon structure could in principle
be studied by manually setting the phonon frequencies to their respective value at

“During the analogous discussion in case of copper we studied the transmission 77, r instead of T5%
due to the reasoning that their energy dependence is rather similar. Although this assumption
should still be valid, this time the effective transmission is considered in order to make sure we
do not rely on marginal approximations. Nevertheless, to reduce the number of costly self-energy
evaluations, its values are calculated in 10 mRy steps symmetric to the Fermi energy, thus having
a slightly increased sampling at the maximum of the Af function (see figure . For lack of a
more reasonable interpolation scheme, the electron linewidth is subsequently linearly interpolated
to calculate T¢% on a 2.2 mRy mesh.
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Figure 3.17.: Temperature-dependent resistivity of aluminum calculated employing
the Fermi surface triangulation based on the 403 mesh while neglecting
thermal expansion (“no therm. exp.”) as well as GGA pseudopotential
evaluation of the “Ziman formula” in comparison to “experiment” [99]
and the LOVA result of “Savrasov et al.” |10]. The GGA pseudopo-
tential generally overestimates the result. All calculated results fail to
reproduce the increasing slope at high temperatures.

100 K, as these frequencies coincide rather well with the experimental data at 300 K
(see figure . This is yet to be done.

Having calculated the resistivity with the employed GGA pseudopotential by
exclusively using QUANTUM ESPRESSO and EPW, it is of course tempting to
utilize this calculation as a benchmark for the proposed method as implemented in
the Gieflen KKR code. This is, in fact, interesting and worthwhile if one keeps in
mind that the first method is embedded in the semi-classical Boltzmann formalism,
while the latter is a fully quantum-mechanical non-equilibrium Green’s function
formalism. Quantitative differences should therefore be used as “guesstimates” at
the most, if at all.

This being said, in comparison to the previously explained results obtained in
the Boltzmann formalism we further show in figure the temperature-dependent
resistivity of aluminum calculated in the Gieflen KKR code employing the Fermi
surface triangulation based on the 40% mesh while neglecting thermal expansion, i.e.,
the lattice constant is kept fixed to its value at 300 K. This choice is founded in the
consideration that the Ziman formula does not incorporate the effects of thermal
expansion, and hence the general trend of both curves is quite similar. In particular,
the increasing slope of the experimental data for temperatures above 600 K is not
accurately reflected by any of the two calculations, and is therefore most probably
an indication for anharmonic effects in the ion-ion interaction.
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The Ziman formula does, on the other hand, correctly describe the wave-vector-
dependent scattering strengths in the material. The observation that this method
nevertheless overestimates the experimental data might be interpreted as evidence
that the wave-vector-averaging of the self-energy is potentially not the main cause
of error, even though the Fermi surface of aluminum is slightly more complicated
than that of copper. Although not conclusive, the relative deviation in the order of
7% at 900 K could be considered a vague “guesstimate” of the magnitude of error
introduced by using purely energy-dependent self-energies in bulk-like resistivity
calculations. This should be subject to additional research.

In summary, many of the conclusions drawn in the case of copper can be confirmed.
First, it is yet again possible to restrict any transmission calculations to the Fermi
energy even at very high temperatures. Consistent with our previous findings, accu-
rate Fermi surface triangulations prove to be superior in the low-temperature regime,
but not above room temperature. Additionally, Ohm’s law is valid with comparable
lower length bounds, as the scattering rates are similar for small temperatures.
The presented LDA calculations tend to overestimate both electron linewidth and
resistivity, and it is reasonable — though not certain — that the underestimation of
the phonon modes is the main cause. Both discussed LDA and GGA calculations
yield deviations increasing with temperature, which might indicate that imposing
thermal expansion is, unlike copper, not sufficient to correctly treat phonon anhar-
monicities near the melting point. However, we cannot eliminate the possibility that
the wave-vector-averaging of the self-energy is responsible for a significant part of
the error.

3.3. Temperature Characteristics of Fe/MgQO Double
Barrier Structures

So far, the consideration of noncoherent transport processes in the study of Fe/MgO
tunnel junctions has been limited to some special scattering mechanism, e.g., to
ad hoc level broadening models for disorder [7], to alloy scattering in the metallic
electrodes [9], and to the effects of oxygen vacancies in the insulating barriers [109].
In particular, the impact of the temperature-induced electron-phonon interaction
on the resonant behavior of the electronic transport in Fe/MgO double barrier
structures still lacks a reliable theoretical description. In order to shed some light
onto this rather complex phenomenon, we will in the following examine the validity
of our proposed method in this context. Due to the high level of intricacy, many
additional approximations are made to ensure the feasibility of the calculations. We
are, however, confident that the quality of the description is sufficiently high to yield
valuable insights and starting points for consecutive in-depth studies.

Given that magnetic tunnel junctions are far more elaborate than the previously
considered bulk-like material systems, we start by summarizing relevant physical
properties of the Fe/MgO interface and the corresponding single barrier structure.
Subsequently, the resonant tunneling mechanism in a Fe/MgO double barrier is
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Figure 3.18.: Schematic of the Fe/MgO interface as found in both the single and
double barrier structures considered in this work. Details regarding
the distances of the various species are given in the text. Fe: blue, Mg:
green, O: red.

investigated in some detail. After explaining the necessary approximations to the
electron-phonon self-energy, the section is finalized by studying the effects of elevated
temperatures on the electronic transmission and the current-voltage characteristics
of the device.

3.3.1. Fe/MgO Interface and Single Barrier Structure

It was pointed out by several authors that a detailed discussion of the Fe/MgO
interface structure is very important, as it tends to have rather drastic effects on
the transport properties ﬂ§|, and references therein]. Thus, the structure
employed within this work is depicted in figure [3.18 It is based on single barrier
calculations performed by Czerner |[112] using a variant of the “ideal structure”
proposed by Heiliger et al. [111], i.e., the metal electrodes are assumed to consist
of iron in bce crystal structure, where the lattice constant is taken to coincide with
its experimental value of ap, = 2.866 A. The [100] direction in Fe is aligned with
the MgO [110] direction, and the in-plane lattice constant of MgO is hence taken to
be v2ap.. Out-of-plane, the experimental value of anMgO = 4.212 A is retained. In
order to account for relaxation effects , the distance between the two Fe layers
adjacent to the interface is increased to 1.69 A, and the Fe-O distance is assumed to
be 2.35 A. Further in accordance to this very reference , the distance between
the two MgO layers abutting the Fe/MgO interface is slightly expanded to 2.15 A.
We begin by considering Cu(10)/Fe(20)/MgO(6)/Fe(20)/Cu(10) to exemplify the
behavior of a single barrier magnetic tunnel junction (MTJ). Here, the numbers in
round brackets denote the corresponding layer counts. Please note, that the Cu(10)
boundary does in fact not consist of copper, but of Cu atoms in bcc structure with
the experimental lattice constant ap, of iron. From a physical point, these layers
could in principle be though of as a means to model the intricate substrate stacks
used in experimental growth processes. More to the point, FeCo alloys instead of
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Figure 3.19.: Left: Layer and spin-resolved (majority: positive sign, minority: neg-
ative sign) density of states of MgO in the vicinity of the Fe/MgO
interface (IF-Layer) and in the center of the barrier (Interior Layer).
The Fermi energy of the system is displayed as a dashed line and seen
to be located slightly below the center of the MgO band gap (dotted
lines). Right: Layer and spin-resolved density of states of iron in the
vicinity of the interface. Please note the surface state in the minority
spin channel, which is rapidly decaying in space.

pure iron are used in realistic tunnel junctions, which may be simulated in the Gieflen
KKR code by means of the coherent potential approximation ﬂgﬂ Accounting for alloy
scattering in the semi-infinite leads employed in transport calculations is, however,
not implemented, and hence a pseudo-material yielding all necessary electronic states
is used [112]. The artificial copper layers are therefore solely kept to facilitate any
generalizations of this study to the more realistic case.

The self-consistent effective one-particle potentials V;%E} (r) are obtained by using
a cut-off of [,,x = 3 in the angular momentum expansions of the Green’s functions.
After having solved the algebraic Dyson’s equation for the Green’s function of the
constant 8 Ry reference potential on real space clusters of 27 to 68 adjacent atomic
sites, the Green’s function of the physical system is evaluated in reciprocal space
using 24 x 24 x 1 supporting k points in the subsequent Brillouin zone integration.
The choice of restricting k, to zero is motivated by the fact that the length of
the device in z-direction is rather long, because this is the transport direction by
construction. As known from previous studies [@, it is sufficient to treat the
exchange-correlation energy Fy. in the parameterization of Vosko, Wilk, and Nusair
to the local-density approximation.

To demonstrate that these convergence parameters lead to reliable effective po-
tentials, the densities of states of Fe and MgO in the vicinity of the interface and
(for the latter) deep in the barrier region are displayed in figure As expected
from the use of an LDA exchange-correlation functional, we find the MgO band gap
of 5.5eV to be severely underestimated in comparison to its experimental value of
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Figure 3.20.: Contour plot of the k-resolved transmission of the considered Fe/MgO
single barrier at the Fermi energy Fr for the majority (1, left) and
minority spin channel (J, right). While the transmission in the spin up
channel is of A; symmetry and hence confined to I, there are several
sharp peaks in the spin down channel.

7.8¢€V, but to coincide with the value reported by Butler et al. [116]. The use of
appropriate “empty spheres’m in addition to the atoms in the “ideal” structure leads
to a gap-centered Fermi energy in the self-consistent calculations, thus making any
renormalizing potential shifts unnecessary.

In the minority spin channel of Fe the well known surface state near the Fermi
energy is seen to be very localized in space [114} 116]. According to Rungger, Mryasov,
and Sanvito [7], this feature leads to a sharp transmission resonance in the parallel
configuration of comparatively thin MgO junctions. It will be discussed later whether
this effect is also observable in the following double barrier calculations. In general,
however, we find our results to be quite similar to those presented in reference [116].
We hence conclude that the electronic structure is well described.

In the corresponding transport system, the domains My g of the decoupling
potentials are chosen to coincide with the decimation block size of 4 layers. Due
to the high device length, the imaginary part of the energy is set to 2 x 1075 Ry,
which requires to solve the algebraic Dyson’s equation on real space clusters of 259
to 599 sites. As for the subsequent discussion we are not only interested in the total
conductance, but in separate wave-vector-resolved transmission values for both spins,
the surface Brillouin zone is sampled on 400% supporting k points.

These spin and wave-vector resolved transmission functions at the Fermi energy
Er for the case of two magnetically parallel aligned Fe electrodes are depicted in
figure It can be clearly seen that the transmission in the majority (1) spin
channel is firmly localized at the center of the surface Brillouin zone, the so-called T’
point, while at the same time the transmission in the minority spin () channel is
characterized by sharp peaks far away from the zone center. The characteristic that
the states contributing to the transport are located in different k regions leads to a

10 Auxiliary muffin-tin spheres (2.32) containing vacuum potentials to improve the space filling.
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strong suppression of the transmission probability in the antiparallel alignment of
the electrodes and hence to a high TMR ratio [9].

The behavior in both spin channels is widely known and explained by two funda-
mentally different mechanisms: The electronic transport through the MgO barriers
is dominated by states of A symmetry, because these decay the most slowly as can
be deduced from complex band structure calculations [116]. Given that in Fe at the
Fermi energy such A; states are present only in the majority spin channel [9], the
transmission in the minority spin channel must be due to another effect. According
to Butler et al. [116], the sharp peaks stem from the coupling of the minority surface
states in the parallel configuration.

In summary, the presented results are in very good agreement with the characteristic
properties of Fe/MgO single barrier structures as known from literature. We may
therefore conclude that the electronic structure is sufficiently well described to base
the following examinations of double barrier magnetic tunnel junctions upon these
preliminary considerations.

3.3.2. Resonant Tunneling in Fe/MgO Double Barriers

The system of choice for the introductory study of Fe/MgO double barrier structures
is Cu(10)/Fe(20)/MgO(6)/Fe(30)/MgO(6)/Fe(20)/Cu(10). After the effective one-
particle potentials are obtained using the very same numerical parameters as given
above in the case of the corresponding single barrier tunnel junction, the densities of
states in the interface and barrier regions are calculated and found to be virtually
unchangedlE in comparison to figure except for a constant shift in energy. In
particular, the Fermi energy shifts from 0.70 Ry to 0.71 Ry.

Similarly, most convergence parameters of the transport calculations coincide with
the values given above. This is also true for the imaginary part of the energy, although
the double barrier structure is in fact much longer than the previously discussed
device. Footnote [I3] will comment on the significance of this choice. Considering,
on the other hand, the very fine structure of the transmission in the minority spin
channel observed in figure as well as the notes in references [7] and [8], great care
is taken to ensure a valid Brillouin zone integration. Thus, in the zero temperature
transmission calculations presented here, a non-equidistant and automatically refined
k mesh is used to adaptively sample the surface Brillouin zone with a final precision
goal of 5% to the total integrated transmission.

In figure [3.21] the wave-vector-integrated energy-resolved transmission at 0K is
given. The most striking feature of the transmission function are strong, asymmetric
peaks that do not reach unity. Both observations regarding peak shape and height
will be extensively discussed later in this subsection. Here we will, however, first focus
on the question whether these peaks really are due to resonant tunneling processes

HLater in this subsection it is argued that quantum well states should be visible in the s components
of the densities of states of the central Fe layers. We do not observe this, which is most probably
due to a comparatively high smearing in the density calculations as well as the fact that the s
component is roughly 100 times smaller than the total density of states.
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Figure 3.21.: Surface-Brillouin-zone-integrated transmission Tyr(E) (labeled “full
SBZ”) of the considered Fe/MgO double barrier structure as a function
of energy in comparison to the transmission value at the zone center
(labeled “T only”). Strong peaks are found in both calculations at very
similar energy values. In the first case, the peaks prove to be rather
asyminetric in energy.

through quantum well states in the Fe intermediate layers as proposed by various
authors ﬂ§|, .

Extrapolating the known properties of the eigenenergies of an idealized quantum
well to the problem at hand, one would assume that the distance in energy of two
“neighboring” eigenstates increases with the main quantum number or, equivalently,
with energy. It can be clearly seen in figure that this is true for the transmission
maxima, especially if the transmission calculations are restricted to its value at T
Using the very same reasoning, the eigenenergy differences of two “neighboring”
states are assumed to decrease if the quantum well broadens in widths. Analogously
to the approach taken in reference , this feature has been verified by varying the
intermediate Fe layer countE In summary, these results constitute strong evidence
that the peaks in the transmission are in fact related to quantum well states formed
in the intermediate metal electrode.

Considering that the electronic transport through MgO barriers is dominated by
states having Ay symmetry, it is reasonable to assume that these states are responsible
for the resonant behavior of the device @, . To study this further, we depict in
figure the transmission of the Fe/MgO double barrier at 0K restricted to the T
point and find strong coincidence with the Brillouin-zone-integrated transmissionE

12Please note that choosing 30 intermediate Fe layers is a result of this test, because the quantum
well was designed to be both sufficiently narrow as well as to provide multiple eigenstates in the
energy integration window corresponding to bias voltages up to 1V.

3The peculiarity that the peaks in the I-restricted calculations do not reach values in the order of
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As in figure the A states where found to be firmly localized at T, this assumption
is hence corroborated. Given the substantial correlation between wave-vector-resolved
local density of states of s-character and k-resolved transmission as demonstrated
by Heiliger, Zahn, and Mertig |[117], this approach is believed to be physically very
similar to the study of Wang et al. [85]. While they demonstrate both existence and
s-character of quantum well states at I in the intermediate Fe layers, we find the
coherent transport to be strongly influenced by these states. The latter is, allowedly,
to be expected if the first is known.

An even more detailed analysis of figure [3.21]| reveals that the peaks of the total
transmission Ty r(E) and the maxima of the transmission restricted to I' do not
perfectly coincide: Even if two peaks are related, the one at I' seems to occur at
slightly lower energies. Further, especially below the Fermi energy, there are additional
oscillations in the total transmission. In order to examine both features, we show in
figure the wave-vector and spin-resolved transmission at selected energy values.
Analogous to the case of Fe/MgO single barriers, we find two competing transport
mechanisms in the vicinity of the Fermi energy: The transmission in the minority spin
channel seems to be determined by resonances on the surface states of the Fe interface
layers, which is found by extrapolating the energy-resolved transmission curves given
by Rungger, Mryasov, and Sanvito [7] to the case of our double barrier structures.
It is exactly those states that introduce the aforementioned additional oscillations.
The other peaks in the total transmission do, however, relate to fluctuations in the
majority spin channel. In accordance with the previous notion that the peaks are
resonances on A; quantum well states, these fluctuations particularly reside at the
surface Brillouin zone center. Now, in order to analyze the assumed shifts in the peak
positions as well as the asymmetry of the peaks, the reason for the peak formation
must first be studied in greater detail by contrasting the one-dimensional with the
three-dimensional case.

In a one-dimensional transport situation, resonant tunneling occurs if the square
of the wave number k2 coincides with the eigenenergy of any quantum well state. In
three dimensions, the resonance criterion depends yet again only on the projection
of the wave vector k onto the transport direction, i.e., k? must coincide with an
eigenenergy of the quantum well. Therefore, contrary to the one-dimensional case,
the resonance condition may still be fulfilled if the energy k* = k2 + kg + k2 of the
electron is higher than the eigenstate energy as long as k, and k, are chosen in such
a way that k? equals said eigenenergy. Assuming a parabolic dispersion relation,
these states would hence form a perfect circle in the surface Brillouin zone, where
the radius is a measure for the energy difference to the quantum well eigenenergy.
The analog is seen in the contour plots of the majority spin channel in figure [3.22 as
a diamond-like pattern veering away from the zone center with increasing energy.

10° is most probably owing to the coarse energy-resolution. It might, however, also be a remnant
of high imaginary parts of the energy, as test calculations on Cu/Vac double barriers indicate
that imaginary parts lower than 2 x 107° Ry are necessary for converged transmission values.
Given that the peaks will be broadened due to thermal fluctuations for temperatures above 0 K
(see subsection , this is not considered an issue within the scope of this work.
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The strong localization of the A; states near the I' point is thus the reason for
the suppression of resonances lower in energy, and consequently responsible for
the formation of peaks in the first place, because the energy-resolved transmission
function would resemble a step function instead of showing oscillatory behavior if
these lower-lying resonance states do not vanish.

In summary, the peak shapes and positions as well as their heights in the total
transmission are now seen to be due to the surface Brillouin zone integration: As the
diamond-like resonance structure moves away from the zone center, there is a critical
“radius” at which the integrated transmission is highest (though not unity)E For
energies above the quantum well eigenenergy the integrated transmission will recede
rather slowly, because the A; states do not vanish abruptly but decay continuously
with the distance to the zone center. For electron energies k? below the eigenenergy,
however, there are no (k,, ky) such that k2 = k2 — k2 — k‘; is equal to said eigenenergy.
Consequently, this results in a sudden rise of the transmission.

Given this thorough discussion of the resonant behavior of Fe/MgO double barrier
junctions, we have strong reason to believe that, as suspected by Wang et al. [85],
the quantum well resonances may be exploited to generate very high TMR ratios at
small bias voltages by suitably choosing the width of the intermediate Fe electrode in
such a way that an eigenenergy is very similar to the Fermi energyE Although, as
pointed out by Franz, Czerner, and Heiliger [9], a high conductance polarization in
the parallel configuration does not necessarily suggest an equally elevated TMR ratio,
we find in figure the conductance in the minority spin channel to be located in k&
regions far away from the zone center. As this feature was related to the Fe surface
states induced by the Fe/MgO interface [116], it should not drastically depend on
the width of the potential well. The proposed tuning method is hence assumed to
yield the desired result.

In conclusion, we find that convergence parameters similar to the study of Fe/MgO
single barrier magnetic tunnel junctions are sufficient for an accurate description
of electronic transport properties in the corresponding double barrier structures.
The problematic k-convergence may conveniently be managed by using adaptive
sampling techniques. In accordance with the pioneering literature [6, 85], most
strong peaks in the energy-resolved transmission are confirmed to relate to resonant
tunneling processes involving quantum well states of A; symmetry in the majority
spin channel of the intermediate iron layers, although additional oscillations due to
Fe surface states are seen in the vicinity of the Fermi energy. Both existence as well
as asymmetry of the resonant transmission peaks are due to the continuous decay
of the Ay states in the surface Brillouin zone. The width of the quantum well is
believed to be a convenient parameter for the tuning of the TMR ratio.

4 Although the presented explanation for the claimed minor shift in the peak positions does make
sense, we do note for the sake of scientific rigor that there may be other or competing reasons.
Additional studies focusing on the effects of the imaginary part of the energy as well as the
required energy resolution are necessary if this effect should prove physically relevant.

15 According to reference [85], the 7th eigenstate in a quantum well consisting of 16 monolayer Fe
should have this property.
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3.3.3. Electron-phonon Self-energy Approximation

During the studies on the temperature-dependent resistivity in the bulk-like test
systems presented in sections and one of the most important “ingredients”
for a valid description of the effects of the electron-phonon scattering proved to be a
suitable approximation to the corresponding self-energy. Unfortunately, the situation
is found to be even more complicated in the case of Fe/MgO double barrier structures
for various reasons.

First, MgO is an insulator and, therefore, does not posses a Fermi surface to
average the wave-vector-resolved electron linewidth upon as proposed previously.
Consequently, and although there is both experimental [109] and theoretical [118§]
evidence for the necessity of considering phase-breaking scattering events in the
barrier material, we are obliged to assume the tunneling process through the MgO
barriers to be free of scattering. Given that the main objective of this study is to
examine the effects of the temperature-induced electron-phonon scattering on the
resonant behavior and hence on the quantum well states in the Fe intermediate layers,
we are confident that the physical picture will not be distorted beyond recognition
by applying this approximation.

Still, the restriction of the phase-breaking scattering to the Fe electrodes is not
sufficient to retain the proposed method for the evaluation of the electron linewidth,
because, as of now, the EPW code is not capable of handling the ferromagnetism
displayed by iron. Instead, in order to obtain an approximate value for the electron-
phonon self-energy, we propose to fit the temperature-dependent resistivity of Fe
bulk to ab initio data presented by Verstraete [16] as follows.

As a preliminary, the spin-resolved resistivity p/t is calculated employing two
arbitrary imaginary parts of the self-energy Im Z;ﬁﬁ spanning (at least parts of)
the assumed self-energy rangeE Further, for every temperature of interest, the

corresponding spin-resolved resistivity value extracted from reference [16] is taken

as reference value ple/fi . The following two steps are then iterated until convergence

is achieved: 1) Based on all previously calculated (self-energy, resistivity) pairs, a
functional dependence Im E;ﬁ (,oT/ i) is established by means of an appropriat
spline interpolation. This function is then used to calculate the required self-energy
guess as Im Elﬁl (pje/fi ). 2) Using this new self-energy guess, the resistivity is calculated
and compared to the desired reference value.

It was found in the previous studies that small temperatures or, more precisely,
small imaginary parts of the electron-phonon self-energy tend to be problematic with
respect to the convergence parameters. Although the calculations in this examination
are restricted to temperatures of 100 K and higher, we nevertheless aim for a valid
description of the resistivity and hence the electron linewidth for temperatures as
low as 20K to 40 K, because there is wellfounded hope that these values might be

16Tn the actual calculations, we set these two values to 0Ry and —1 x 10~* Ry.
First and second order if less than 4 (self-energy, resistivity) pairs are available, cubic spline
interpolation otherwise.
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Figure 3.23.: Energy-resolved ballistic transmission Ty [see equation ; dots,
line is to guide the eye] of bec iron as well as Fermi-Dirac difference
function Af [see equation (A.27)); shading] at 100K (dark), 500K
(medium), and 900 K (light). In reasonable approximation, the energy
dependence may be assumed linear in the regime |[AE| < 300 meV
(indicated by dotted lines), and hence the restriction of the fit to the
Fermi energy is considered justifiable.

interesting and useful on its own. Given that these small temperatures correspond
to electron linewidths in the order of 1 x 107° Ry ~ 0.136 meV, it is necessary to
reduce the imaginary part of the energy to 2 x 108 Ry. Then, the algebraic Dyson’s
equation of the reference system has to be solved using real space clusters of 537
sites. The surface Brillouin zone integration is sufficiently well converged using 1002
sampling points.

To verify that it is possible to restrict any transmission calculations to the Fermi
energy only, in figure the energy-resolved coherent part of the transmission
Trr(FE) is depicted. As discussed in subsection in the case of copper, the
energy dependence of the coherent part should be very similar to that of the effective
transmission T§%(E). Therefore, as Ty r(F) is in good approximation linear in
the energy regime |AE| < 300meV, the restriction is considered justified for all
temperatures up to approximately 900 K.

Given further that the validity of Ohm’s law can be demonstrated for device length
of at least 56 nm even at the smallest considered temperatures, we may use the
resistivity calculation procedure for simple metals employed in the previous studies
on aluminum and copper, which, in summary, allows for the iterative calculation of
the electron linewidth at the Fermi energy as proposed above. The thusly obtained
spin-resolved electron linewidth and resistivity is given in table
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Im Xepn| [meV] p [1078 - Qm]
T [K] spin | spin 1 spin | spin 1
20 0.078 0.104 0.104 0.105
40 0.208 0.243 0.263 0.219
60 0.476 0.487 0.571 0.395
80 0.907 1.090 1.039 0.777
100 1.504 2.038 1.668 1.335
200 6.354 7.804 6.738 4.717
300 11.314 13.179 11.945 7.920
400 16.060 18.431 16.918 11.054
500 20.742 23.582 21.798 14.118
600 | 25.375  28.698 | 26.595  17.147
700 29.962 33.754 31.305 20.124
800 | 34.579 38975 | 36.003  23.181
900 39.216 44.092 40.671 26.309

Table 3.5.: Spin-resolved absolute value of the imaginary part of the electron-phonon
self-energy in iron bulk as well as the corresponding resistivities both as
functions of temperature. The electron linewidth is obtained by fitting
the resistivities to ab initio values reported by Verstraete [16].

Please note that the self-energy obtained in the described way is not to be confused
with the “simple” Fock-like self-energy (12.148)) used in all previous studies. It is a
conglomeration of multiple effects instead — most notably, the thermal expansion is
not considered in any electronic structure calculations, and hence all those effects
are assumed summarized in this self-energy. Moreover, there are multiple additional
issues inherent in the presented approach.

First, the proposed fit procedure of the self-energy only allows to obtain the
electron linewidth Im ¥, (EF) at the Fermi energy, as all transmission and hence
resistivity calculations are restricted to the Fermi energy. In the course of this study
we will assume the imaginary part of the self-energy to be constant as a function of
energy, although this is known not to be the case [17, |43]. If we extrapolate what
is seen in figure [3.16]in the case of aluminum, the “guesstimate” would be a total
deviation of approximately 10 % in the considered energy range.

Second, the electronic transmission in iron bulk is nonvanishing in wide areas of
the surface Brillouin zone, while, as is demonstrated in the previous subsections, in
Fe/MgO double barrier junctions the transmission in the majority spin channel is
due to A states and hence strongly located at I'. The transmission in the minority
spin channel is driven by the Fe surface states and thus even stronger localized.
This suggests that the implicit wave-vector-averaging in the bulk-like case may be
a rather bad approximation to the self-energy in Fe/MgO double barriers. The
magnitude of the self-energy should, however, be sufficiently well described for the
desired qualitative analysis.
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Third, as was shown by Hyldgaard et al. [119], the Hartree-like contribution to the
self-energy proves to be an important addend at least in the one-dimensional case of
resonant tunneling processes. Nevertheless, this contribution is not incorporated in
the proposed treatment.

Finally, the real part of the electron-phonon self-energy is not considered. Given
that this would only introduce a comparatively smal][T_g] shift of the quantum well
states, this is believed not to be an issue in the scope of this work.

In conclusion, similar to what is found in the cases of copper and aluminum, it is
considered justified to restrict the transmission and resistivity calculations in iron
bulk to the Fermi energy. Ohm’s law is valid at slightly higher device lengths than in
the previous cases. It hence proves possible to obtain the electron linewidth of iron
at the Fermi energy by fitting the temperature-dependent resistivity to ab initio data.
This quantity is deemed to be a rather coarse approximation to the electron-phonon
self-energy if applied in the context of Fe/MgO double barrier junctions, particularly
due to both missing energy and wave-vector dependence. The general magnitude is,
however, believed to be sufficiently well described to yield a valid description of the
effects of temperature given in the next subsection.

3.3.4. Effects of Temperature on the Electronic Transport

In the study of temperature effects, we first consider the general influence of electron-
phonon scattering on the electronic transmission, and subsequently expand the
analysis to finite bias voltages.

Temperature Dependence of the Transmission

The convergence parameters for the transport calculations at elevated tempera-
tures coincide once again with those presented in subsection Phase-breaking
scattering does, however, introduce an additional broadening of any features in
the wave-vector-resolved transmission. Hence, the higher the temperature, the less
supporting k points are necessary in the surface Brillouin zone integration, which
is the reason for restricting the studied temperature range to values of 100 K and
higher (besides, of course, the already treated case of absolute zero). More precisely,
we use 400% k points at 100 K, 802 samples at 500 K, and only 40? supporting points
prove sufficient at 900 K.

The energy-resolved transmission at the aforementioned temperatures is given in
figure The higher the temperature, the more the peaks broaden. This feature
has a particularly strong impact at energies in the order of —0.06 Ry with respect to
the Fermi energyF_g] as in this region the peaks are especially close to one another.
Further, all peaks become more symmetric with increasing temperature. From a
phenomenological point of view, both effects are to be expected, as electrons at

¥ The energy difference between the two quantum well states flanking the Fermi energy is approxi-
mately 0.25¢eV and hence about 10 times higher than typical phonon energies.
9Near the bottom of the A; band in the majority spin channel of Fe [9].
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Figure 3.24.: Energy-resolved (effective) transmission T¢L of the Fe/MgO double
barrier at different temperatures. The resonant peaks are “palmed
oft” with increasing temperature. In regions of very dense peaks they
eventually disappear, in higher energy ranges they are only damped.

the quantum well energy may be scattered to higher or lower energies by emitting
or absorbing a phonon, and vice versa@ The higher the temperature, the more
likely such scattering events, and hence the broader the peaks. The asymmetry is
lowered because now an electron having a smaller energy than the quantum well state
eigenenergy might be scattered to a higher energy by absorbing a phonon; hence,
contrary to the case at absolute zero, it may contribute to the resonance. A more
detailed analysis less driven by phenomenology is work in progress.

Current-voltage Characteristics

One of the main reasons for the study of double barrier structures is the display
of highly nonlinear current-voltage characteristics. In limiting cases, even negative
differential resistances 4V/ar have been reported [34]. To elaborate on this effect,
the dependence of the electronic transmission on the bias voltage must obviously be
examined first.

Given that, as of now, the Gielen KKR code does not support the self-consistent
calculation of the effective one-particle potentials in the presence of nonvanishing
external electric ﬁelds@ the voltage drop in the device has to be modeled by hand.

20Please note that the described inelastic scattering processes are not explicitly accounted for by
the implementation in the Gieen KKR code. Instead, the electron-phonon self-energy formula
does average any phonon emission and absorption processes into a quasi-elastic scattering
rate by means of an integration over the energy. This approximation is, however, apparently
sufficient to accurately mimic the actual physical situation.

21The issue is due to the fact that the equilibrium density operator is not valid in the interval
ur < E < pr, and consequently the non-equilibrium density operator must be evaluated
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Figure 3.25.: Schematic of the idealized potential curves in the considered Fe/MgO
double barrier structures in the case of vanishing external bias voltage
(black line) and for finite voltages (red, thick line).

Considering that MgO is an insulator and Fe a metal, it is reasonable to assume that
the voltage drop occurs exclusively in the barrier regions because the resistance of
iron is basically negligible. Further, ignoring any interface effects and because each
MgO layer is structurally equivalen@, the voltage drop is presumed linear. This
idealized potential curve is depicted in figure In comparison to self-consistent
calculations performed by Rungger, Mryasov, and Sanvito [7], it is seen to be a valid
approximation

Evaluating the voltage dependence of the transmission function is computationally
rather expensive, because for each considered bias voltage, a full transmission calcu-
lation has to be performed. Especially for small temperatures this is not feasible.
Given, however, that the main features are resonant tunneling peaks due to A;
quantum well states, one would expect that the qualitative voltage dependence
may be predicted by studying the electronic transmission at I only. To verify this
assumption, we show in figure the I-restricted calculation of the scattering-free
case, i.e., T = 0K, for various bias voltages up to 1V (solid line) in comparison
to the total voltage-dependent transmission at 900 K (dotted line). The latter does
show some voltage-induced effects that are unrelated to the transmission value at
T, but in the vicinity of the (quasi-)Fermi energy the behavior remains determined
by the A; states. This confirms that the voltage dependence of the transmission
function may be determined by solely studying its value at the zone center. In the
following we will use this result to demonstrate that the voltage dependence actually
is in good approximation negligible.

in this energy regime. The latter may, however, not be (trivially?) solved on the complex energy
contour depicted in figure[2.I] and hence a very dense energy sampling is necessary. Nevertheless,
the implementation of this feature is work in progress [120].

22The different distances of the boundary layers discussed in subsection are considered an
interface effect.

23 Actually, a linear voltage drop may not be realized using spherically symmetric potentials. Instead
of generalizing to full-potential calculations, the linear voltage drop is further approximated by
step functions.
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Figure 3.26.: Electronic transmission at T' for various bias voltages at 0 K (solid lines)
as well as voltage-dependent transmission calculations at 900 K (dotted
curves) performed using the full surface Brillouin zone integration. In
both cases any changes due to the application of a non-vanishing bias
voltage are in good approximation negligible at least in the vicinity of
the Fermi energy.

Please note, in a first step, that we consider only positive bias voltages in the
following analysis, because in contrast to Nozaki, Tezuka, and Inomata [6], the
transmission Trr(F, V) and hence the current I(V) is found to be an even function
of the applied bias voltage. This is most probably due to the use of the “ideal”
structure, as in this case there is no pollution of the boundary layers with FeO, which
was assumed to be responsible for the uneven behavior in this very reference.

In general it is seen in figure that (at least at the Fermi energy) neither peak
positions nor peak heights are strongly affected by the applied bias voltage. This
is explained by considering that the main effect of such an electric field is to shift
the electrochemical potentials p7,/ g in the leads as seen in figure @ Further, the
barrier potential is affected. If, as in our case of 6 MgO layers, the barrier potential
is sufficiently wide and high enough, then the intermediate Fe layers will still form a
quantum well of very similar potential. Therefore, the eigenenergies are expected
to show no substantial bias voltage dependence, and in conclusion the peaks in the
transmission will remain unchanged in good approximation.

The most striking feature seen in figure [3.26] is the strong decrease of the trans-
mission at I' in the low energy regime. The energy value at which this drop occurs
increases with the bias voltage, and by extrapolating the results of Rungger, Mryasov,
and Sanvito |7] to our double barrier setup this is presumed to relate to the edge of
the A; band sweeping through the energy regime due to the applied bias. Because
the bottom of the A; band is roughly 1eV below Er [7,|9] the resonance peaks
in the vicinity of the Fermi energy will not vanish due to a voltage-driven band
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Figure 3.27.: Current-voltage characteristics of the Fe/MgO double barrier at various
temperatures neglecting any voltage dependence of the transmission
function (solid lines). The higher the temperature, the more the resonant
behavior in the current is damped. Negative differential conductivity is
absent at any temperature. For comparison, selected current-voltage
pairs calculated at 900 K while taking the full voltage dependence of
the transmission into account are given as stars.

misalignment in the whole considered bias voltage regime. By the same reasoning,
we expect substantial effects for biases of 2V and higher.

In view of the aforementioned results, and although this seems paradoxical, we will
completely neglect any bias voltage dependence of the transmission in the following
analysis of the current-voltage characteristics. Given that the resonance on the Fe
surface states in the minority spin channel is destroyed by very small bias voltages [7],
it is expected that some features in the low bias regime are hence not contained in the
results to be presented. This should be an issue only in the low temperature regime,
as otherwise these oscillations are completely smeared out due to the additional
broadening (see figure . Nevertheless, a careful review of this approximation
should be a guidance for future work.

As mentioned in the introduction, a very interesting feature of double barrier
structures is the possibility to exhibit negative differential resistance. This is true in
particular for semiconductor-based devices, because in these systems the application
of a bias voltage may change the relative alignment of the conduction band and a
quantum well eigenstate within this band in such a way that the eigenstate is pushed
into the band gap, thereby loosing its capability to contribute to the resonant charge
carrier transport [34]. Given, however, that the transmission in Fe/MgO double
barriers is dominated by resonances on A; quantum well states, such behavior is
not expected. The reason is that A; states are present in Fe in the whole energy
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interval EFr 4+ 1€V, and transmission peaks at the Fermi energy may hence not be
annihilated by applying bias voltages smaller than 2V (see above).

For voltages of up to 1V this expectation is confirmed by figure There are
strong nonlinearities in the current-voltage characteristics, but the curves remain
monotonic, i.e., the higher the voltage, the higher the current. Both is caused by
the change in the electrochemical potentials in the electrodes, which leads to an
increased energy integration window in equation (2.68)): Whenever another peak
enters the integration regime, a strong rise in the current is witnessed.

Further, and in accordance with reference [6], we conclude from figure that
the nonlinear features in the I/V curves are smeared out with increasing temperature.
From a theoretical point of view, there are two reasons for this observation: First, the
peaks in the transmission curve are palmed off at higher temperatures. Additionally,
resonant peaks adjacent to the zero temperature integration window are partially
taken into account in the analog of equation due to the temperature broadening
of the Fermi-Dirac distributions.

To double-check whether the approximation of ignoring any influences of the bias
voltage on the transmission is in fact valid at least at higher temperatures, selected
(current, voltage) pairs considering the full voltage dependence of the transmission
function are calculated at 900 K and displayed in figure [3.27] as stars. Revisiting that
there are changes in the transmission far from the Fermi energy, small corrections to
the current are to be expected. Indeed, the main result of this approximation seems
to be an overestimation of the current in the order of 10 %. For the discussion at
hand the presented approach is hence sufficient.

Another observation that seems very curious at first glance is that the inclusion of
phase-breaking scattering in the calculations decreases the resistance. While there
is certainly an increase in the ohmic resistance in the metal electrodes, it is also
conceivable that more states having a rather small transmission probability are
scattered to states of higher probability than the other way round. Therefore, the
electron-phonon coupling could in principle lead to a net increase in the tunneling
probability, and hence to a decrease in resistance.

On the other hand, the decrease in the resistance might be introduced by the
neglect of scattering in the barrier region: According to reference [109], the scattering
on oxygen vacancies in MgO leads to an increase in the resistance. In contrast,
Caroli et al. |118] predict a decrease in the resistance due to electron-phonon scat-
tering in the barriers of metal/insulator junctions. Then again, the same reference
theoretically finds a decrease in conductance due to scattering in the electrodes,
while experimentally an increase is witnessed. Although it hence remains unclear
whether the electron-phonon scattering in MgO would (partially) counteract this
effect, the observed behavior is still physically sound. Nevertheless, the magnitude of
the predicted change as well as the implications of taking scattering in the barriers
into account should be subject to further studies.

In conclusion, the resonant peaks in the energy-resolved transmission are broadened
due to the temperature-induced electron-phonon scattering. This mechanism also
reduces the asymmetry of the peaks, as electrons may now absorb phonons to obtain
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the necessary energy for a resonant tunneling process. In the considered Fe/MgO
double barrier, the voltage dependence of the transmission is found to be negligible
due to two effects: First, the high and wide MgO barrier potentials are only slightly
modified by the applied bias, which leads to only minor changes in the quantum
well eigenenergies. Second, A states are present in Fe in the whole energy interval
Er +1eV, and an applied voltage may thus not annihilate any resonant peaks in the
vicinity of the Fermi energy. Accordingly, the current-voltage characteristics do not
display any negative differential resistance. In agreement with the behavior of the
transmission, the nonlinearities in the I/V curves diminish at elevated temperatures.
The observation that phase-breaking scattering reduces the resistance of the device
might be explained by assuming that the increase in the ohmic resistance of the
electrodes is completely reversed by an increase in the net tunneling probability
induced by the electron-phonon coupling. Additional studies are necessary to confirm
the magnitude of the predicted change. Still, the general trend is in conformance
with experimental data |118], and hence considered an additional hint that the
proposed method yields significant results regarding the temperature characteristics
of Fe/MgO-based double barrier structures.
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4. Summary and Outlook

Within this work, a thorough mathematical and physical discussion of the challenges
in describing phase-breaking scattering events — in particular those induced by the
coupling of electrons and phonons — in ab initio electronic transport calculations
has been given. The resulting method to do so is characterized by the usage of
suitable additional scattering self-energies in the framework of the Keldysh NEGF
formalism, and the corresponding implementation of the NEGF part in the Gielen
KKR Green’s function code was hence generalized to yield all scattering probabilities
necessary to calculate the effective transmission. Further, two methods to obtain the
required electron-phonon self-energies have been developed: In case of nonmagnetic
metals, the implemented fermint toolkit may be used to wave-vector-integrate any
bulk self-energies obtained using the third party codes QuaNTUM ESPRESSO and
EPW. If, on the other hand, spin-resolved resistivities are known, these were shown
to be appropriate reference values for an automated self-energy fitting procedure. In
conjunction, this approach gives very accurate results when applied to both complex
nanostructures as well as devices of macroscopic length scales.

In order to verify the correctness of the implementation and the physical validity
of all the necessary approximations, the bulk-like test systems copper (see section
, aluminum (see section , and, to some extent, iron (see subsection
have been studied. For all three materials it was found that the Landauer formula,
i.e., the restriction of the transmission calculation to the Fermi energy Ep, is a
sufficiently well approximation to evaluate the temperature-dependent resistivity for
temperatures as high as 900 K.

Even though the proposed method is based on the principles of quantum mechanics,
it nevertheless displays the experimentally well confirmed linear dependence of the
resistance on the device length for very long systems. The necessary length scale of
40nm and above for the validity of Ohm’s law is consistent for all three materials,
although slightly higher values are required in the case of iron.

The study of the thermal expansion was restricted to copper and aluminum. It
was found that this effect significantly influences the electric conductivity of these
metals especially for temperatures above room temperature. The main contribution
was traced back to the volume dependence of the phonon dispersion, i.e., the quasi-
harmonic approximation proves to be valid. Further, the Debye-Griineisen theory
used to fit the true coefficient of thermal expansion is found to be very accurate in
these simple metallic systems.

In the low temperature regime, an accurate sampling of the Fermi surface is far
more important for a valid evaluation of the electron-phonon self-energy than any
effects due to thermal expansion. Given that in this sentence “accurate” is meant
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in the sense of small deviations of the equi-energy surface vertex energies to the
reference energy rather than density of these vertices, the necessary computational
effort is believed to significantly reduce by using a suitable higher-order interpolation
scheme. Additionally, it is of essential importance that any smearing accounting
for numerical inaccuracies is much smaller than the corresponding level broadening
induced by the thermal fluctuations.

Especially during the study of aluminum it was found that the GGA pseudopo-
tential yields better resistivities than the local-density approximation. This was yet
again traced back to an improved description of the phonon dispersion. Considering
the rather consistent trend that LDA underestimates the phonon frequencies when
used in conjunction with experimental lattice constants, a generalized-gradient ap-
proximation seems generally more suited for these kinds of calculations. In any case,
great care must be taken to ensure a valid description of the vibrational degrees of
freedom in order to obtain proper results.

As a prerequisite to study the applicability of the proposed method in the context of
complex nanostructures, the understanding of the quantum-mechanical phenomenon
of resonant tunneling in Fe/MgO double barrier junctions was first confirmed and
improved. The strong localization of the A; quantum well states at T’ was found to
mimic the one-dimensional situation, thus leading to the formation of asymmetric
peaks in the energy-resolved transmission. Given the presence of A states in all
of the range Er £ 1€V, small bias voltages were unable to destroy resonant peaks.
Negative differential resistance was hence neither expected nor observed.

Based thereupon, the temperature dependence of the resonant tunneling through
Fe/MgO double barrier structures was confirmed to be well described. As expected
from a phenomenological point of view, the resonant peaks in the energy-resolved
transmission are smeared out and symmetrized with increasing temperature. Con-
sistently, and in conformance with experimental data, the resonant behavior of the
current-voltage characteristics was reduced likewise. The latter is, however, both due
to the increased electron-phonon scattering as well as the Fermi-Dirac broadening
of the energy integration window. Finally, taking phase-breaking scattering in the
metallic leads into account led to a decrease of the resistance of the device. This
trend is also backed by experimental evidence.

In view of these results, the proposed method is hence found to be valid both for
macroscopic and microscopic devices. In the first case it is particularly noteworthy,
that the resistivities of copper reported within this work are in better agreement with
experimental data than those obtained in the LOVA to the Boltzmann formalism.
This is remarkable insofar as the latter is to be considered the de facto standard for
DFT-based resistivity calculations in metallic systems. Our values also prove superior
to other KKR-driven calculations employing the alloy analogy. The significance of
the presented microscopic results may be appreciated by noting that we were not
only able to confirm the validity of the proposed method, but simultaneously to
contribute first theoretical insights regarding the as of yet barely studied effects of
temperature on the resonant behavior of Fe/MgO double barrier structures. They
hence provide the foundations for many interesting in-depth studies.
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It is exactly those studies that should be a guidance for the most pressing future
work. In particular, analyzing both voltage and temperature dependence of the TMR,
and TMS ratio in Fe/MgO double barrier structures is to be considered the next
step: On the one hand these quantities are of great interest as was motivated in
the introduction, on the other hand the calculations presented in this work already
comprise half of the necessary computational cost, i.e., the transmission calculations
simply have to be repeated imposing antiparallel aligned magnetic moments in the
ferromagnetic leads. This is hence work in progress.

Another interesting project will be to confirm the assumption that the TMR ratio
of an Fe/MgO double barrier may in fact be tuned by varying the quantum well
thickness in such a way that either a resonant peak or a valley is located at the
Fermi energy. While in the first case a negative dependence of the TMR ratio on the
temperature is expected, the opposite should happen otherwise. Both assumptions
are of course based on the presented result that the resonance peaks are palmed
out with increasing temperature. Considering further that at 500 K the nonlinear
behavior in the current-voltage characteristics has virtually vanished (see figure ,
the low-temperature regime should be studied in more detail.
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A. Theoretical Supplementary

A.1. Sum Rule for the Spherical Bessel Function

In the common literature on the theory of the KKR formalism|22} [53], the sum rule
is proved for real energies E only, as the derivation relies on the so-called
Bauer’s identity [22]
BT =4 Nl (r, B)* Yy (k), (A1)
L

where k2 = E,k = ||k||, and k = k/k. These three definitions explicitly rule out
complex energy arguments z, and the generalization to arbitrary complex wave

vectors k seems problematic as in this case Y7(k) is undefined. It is, however,
possible and sufficient to retain this identity for vectors of the kind

R sin 0y cos ¢
k=vz-k=+z-|sinfsing, |, z€C, 0, €|0,7], ¢ €[0,27). (A.2)
cos 0y,

To prove that this is in fact possible, we rewrite

otk — e’iﬁrk-r _ eiﬁrcosw (A3)

where = ||r||, r = r - # and cosw = k - # = cos 0}, cos 0, + sin O sin 0, cos(dp — ¢,
denotes the cosine of the angle between the two real-valued unit vectors. Using
equation 10.1.47 of reference [121, p. 440], i.e.,
. 0 1 .
iV Ccosw Z(Ql + 1)e 2175 (/zr) Pi(cos w), (A.4)
=0

in combination with the expansion of the Legendre polynomials

l
Pleosw) = == 3™ Vi (O, 60)Yiia (0. 61) (A5)
—1

20 +1
m

(see |122, p. 63]) yields the claimed relation
VIR — 4 S iy () Vi (7)Y (F) (A.6)
L
for arbitrary z,r € C and real-valued unit vectors k and 7. Please note that — because

of the symmetry of the scalar product — it is possible to interchange k and 7 in the
spherical harmonics.
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The proof of the sum rule now proceeds in the usual manner: Starting from the
addition theorem for the exponential function

VAl ker=r" _ ikt (/2 ) e’ (A7)
and inserting the derived expansion gives

S g — o )Y (k) =4n Y i G 2) g 2) <Y (R)Yiu(k),  (A.8)
L/ L/L//

where we have made use of the fact that j;(—v/zr") = i2j;(v/zr') (see [121} p. 439]).

A

As the last equation is valid for any real-valued unit vector k, we may multiply
with [ dk Yz (k) from the left and obtain the desired sum rule (2.42)) because of the

orthonormality of the complex spherical harmonics.

A.2. Lippmann-Schwinger Equation for Self-Energies

In order to prove the Lippmann-Schwinger equation for (a specific kind of) self-
energies we will make the following assumptions:

1. The possibly energy-dependent Hamiltonian H(z) of the “new” system may be
written as the sum of a “reference” Hamiltonian H and a “potential difference”
AV(z), i.e.,

H(z) = H + AV(2). (A.9)

2. For the given energy z exists an eigenstate of the reference system, i.e.E]

ker (z]l - 7—[) # . (A.10)

3. The “potential difference” AV =V —V is the difference of two physically sound
“potentials”. In particular

o the possibly complex-valued and energy-dependent “potentials” V(r, z)
and V (r, z) are continuous within the muffin-tin sphere Vyr, i.e.,

V(s,2),V(s,z) € C°(Varr, C). (A.11)

e both “potentials” are bounded above, i.e.,

dB <oo: VreVyr: |V(£,z)|,|‘°/(£,z)|<B. (A.12)

ker f denotes the kernel of the operator f : X — Y, i.e., the set {v € X | f(v) = o}, o being the
zero vector in Y.
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In case of assumption (1, the existence of an eigenstate |¢)(2)) to H(z) is equivalent to

() (21— H) [9(2) = AV() [§(2)) (A.13)

It is now necessary to distinguish two cases:
Case I: |¢(2)) e%z]l — 7—[)
Then, statement (A.13]) transforms to
e(z)) : 0=AV(z)[¥(2)), (A.14)
which, when projected to real space, reads

J(z): VreVur: 0=AV(r,2)U(r,z). (A.15)

Whenever ¢(r, z) does not vanish, obviously AV (r, z) has to. Because of assumption
both “potentials” are bounded above, and therefore ¢ (r, z) has isolated roots. Using
again assumption [3| but this time the continuity of the “potentials”, we conclude
that AV(z) = 0. This pathologic case is not considered to be of interest.

Case II: |¢(z)) & ker (z]l - 7—[)
Then (21— H) has an invertible restriction in the vicinity of |¢/(z)). This is especially

true if the Green’s function G(z) = (21 — 7—0[)_1 exists. Hence, statement (A.13)) is
equivalent to

3(2)) s [(2) = [(2)) + G(2)AV(2) [(2)), (A.16)

where [1)(2)) € ker (21 — #) exists because of assumption [2l This concludes the
proof of the Lippmann-Schwinger equation.

A.3. Numerical Evaluation of the Transition Operator

Starting from the Lippmann-Schwinger equation ([2.48]) for the isolated muffin-tin
potential and inserting representation ([2.40)) for the free Green’s function yields in
the case 7| > Ry [123]

R'(r,z) = j(r,z) —ivzh*(r,2) [z j(z,2) V"(2)R"(z, 2) (A.17)

VM

=" (2)

With the definition of the spherical Hankel functions (2.36)) this relation may be

rewritten to

RB(9) = (3(n2) [') 7 - VAL Va9 ) 1) (A1)

=K"(2)"1
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where the reactance matrix K" (z) was defined [22]. Using this relation for the regular
scattering solution in the definition of the logarithmic derivative (2.56) allows for
the derivation of [22]

L} (2) m(vzRfyr) — Or u(VzRiyr)
L (2) 5i(V=Ryyr) — O i (V=Riyr) .

Finally, the two derivatives of the spherical Bessel and Neumann functions may be
equivalently formulated as

Kl'(z) =~z (A.19)

l
Or 7 (VzRyr) = RTxl(\/ger\L/[T) —Vzra(VzRyr), x € {j,m},  (A.20)
MT

employing Rayleigh’s formulas [53| |121]. Therefore, the components of the transition
matrix may be calculated as

() = (Kpe) +ive)
i (L?(Z) - l/R&T) jl(\/ERnMT) + \/EJ'ZH(\/ER’K/IT) (A.21)

Vz (LM2) = YRy b (VZRY ) + VZ b (VERY )

The numerical procedure to obtain the transition matrix is now as follows: First,
some initial values of the regular scattering solutions near the origin are extracted
from a power series expansion. The remaining unknown values are then integrated
with an Adams-Bashforth predictor-corrector scheme. The logarithmic derivatives
L} (z) are thus a mere by-product. After evaluating the spherical Bessel and Hankel
functions at the muffin-tin radius the transition matrix is given by (A.21]).

In case of an additional complex self-energy, the regular scattering solutions

R? (T? Z) = R? (T, Z = Egcat(z)) (A22)

are calculated with the very same numerical integration scheme at the shifted energy
z — X0 (2), giving rise to a different logarithmic derivative L?(z). Otherwise, no
adjustment of the beforementioned procedure is necessary. Please note that this
approach is only valid under the assumption that each muffin-tin potential may be

assigned an explicitly defined site-diagonal and constant self-energy X . (2).

A.4. Resistance in the Limit of Vanishing Bias Voltage

The main steps of the derivation of equation (2.70)), being equivalent to what is
commonly called “linearized Landauer formalism” [34], have been given in reference
[124]. Here, these steps are explained in greater detail: The total transmission

f(EvﬂLaT) B f(E7NR7T)
ML — MR

Ti% (L, ur, T) = /HSE Trr(E, pr, pr, T) (A.23)

104



contains all the voltage dependence of the resistance , and hence will mirror its
behavior for vanishing bias. Using Lebesgue’s theorem of dominated convergence it
is possible to interchange integration and limit, and because both uy and pur will
tend to the Fermi energy Er we find

Ti%(Ep,T) = lim Ti%(pr,pr,T)
Ap—0
(A.24)

E. Epr+ 8L T)_ f(E.Ep — 2 T
:/dETLR(E,EF,T) i LB P+ 1)~ B, Bp = . T)
R Ap—0 A,LL

where it was further assumed that the transmission function 17 g is continuous in
the electrochemical potentials. Substituting A = Ax/2 and employing 1"Hospital’s
rule shows that this is equivalent to

0a(f(B, Br+ AT) - f(B, Br — A,T))

/HSE Tun(E, Br,T) lim, 5 (A.25)
The derivative of the Fermi-Dirac distribution may be evaluated as
OAf(E,Ep + A, T) = 0 (exp [E_EFJFA} + 1) 1
kgT
——<eXp [E—EF:FA} +1>_2-exp {E—EF:FA] . (¥ 1 )
kgT kgT kgT
E,Ep+A,T) (4.26)
_ I ZBT ’ (f(E,EF AT - 1)
f(E,Ep£AT)(1- f(E,Er£A,T))
- kpT ’

and therefore the total transmission in the limit of vanishing bias voltage reads
kpT ’
=Af(E,Ep,T)

T Ep,T) = /RdE Tir(E,Ep,T) (A.27)

Assuming the Taylor series of the transmission function converges, this relation may
further be simplified to

6ETLR EF,T) .

Ti%(Er,T) = Tor(Er, T Z pn (Af, Ep,T), (A.28)

and — because Af is an even function with respect to Fr — all odd moments
tin (Af, Ep,T) = /dE (E— Ep)"- Af (E, Er,T) (A.29)
R

must vanish, i.e., the first correction term to the total transmission is the second
order change in the transmission at the Fermi energy. Hence, in summary, equation
is valid in the limit of vanishing bias even for higher temperatures, as long as
the “curvature” x (Trg) is negligible, which is meant in the more general sense as
that all (even) higher order derivatives shall be small.
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Figure A.1.: Partitioning in the multi-terminal case: The device region M is coupled
to two leads L and R and, additionally, N virtual terminals.

A.5. NEGF in a Multiple Terminal Setup

As discussed in section phase-breaking scattering events in a device are, within
this work, modeled through so-called Biittiker probes, i.e., additional (fictitious)
voltage probes. It is widely known that the NEGF formalism explained in section
m may be expanded to the case of multiple terminals [34} |35]. In this appendix it
is demonstrated how this may be achieved considering the case of a device region M
connected to two leads L and R as well as N virtual terminals o € S, for simplicity
labeled by Arabic numerals (see figure . Employing once again the partitioning
approach (32, 34] 36], it is possible to relate the decoupled system

H, O O --- 0O O 0 0 -~ 0 Viy O
0 H 0O --- 0 O 0 0 -~ 0 Viy O
oo = 0o 0 . .o Y= : : .o : ], (A30)
Ll 4y 00 0 0 -+ 0 Vyu O
0 0 - 0 Huy O Vur Vau - Vun 0 Vur
0 0 --- 0 0 ’HR 0 o --- 0 VRM 0

to the coupled system 7:[c = Hgc + f/C via the coupling potentials f/c, where it was
assumed that there is no direct coupling between the terminals (regardless whether
real or fictitious). Writing, analogous to the case of two terminals , the relation
1 = (21 — Hc)Gc(2) in matrix notation, one may extract those N + 3 subequations
containing the Green’s function of the coupled middle region Gy (2)

0=(21—-%Hy) gaM(Z) — VaMgNMM(Z), a € SU{L,R}, (A.31a)
1= (21— Hn)Gunm(2) = > ViraGan (2)- (A.31Db)
aeSU{L,R}
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Solving the first set of equations for G,as(2) and inserting the results into the last
equation yields

1= (21 —Hy — (ZL(2) + Zr(2) — Zaes Ya(2) )G (2), (A.32)
EElcads(Z) Ezscat(z)
where the self-energies
Ea(z) = VMaga(Z)VaM, a€eSU {L, R}, (A.33)

have been defined, i.e., the coupling to the device is determined by the Green’s
function of the isolated subsystems Go(z) = (21 — Hqo) ™' as well as the coupling
potentials Vo = VQMT.

This result is equivalent to Dyson’s equation

QNMM(Z) = gM(Z) + gM(Z) (Eleads(z) + Escat(z))gNMM(Z) (A34a)
= G (2) + Gar(2) Sieads(2)Garnr (2) (A.34b)

with the Green’s function of the isolated middle region containing scattering M
defined by

Gu(2) = G (2) + Gur(2) Sscat (2) G (2). (A.35)
This second point of view is favorable if the scattering self-energies are to be calculated
by other means and not within the partitioning approach. Please note that this is
actually the common case given that the Biittiker probes are a purely hypothetical

concept and hence the Green’s functions of the isolated probes are not accessible
[124]. Details regarding this idea are discussed in sections and

A.6. Derivation of Effective Transmission Formulae

In this section a detailed derivation of equation taken from reference [35] is given.
In fact, the sole purpose is to shed some light on “some algebraic manipulation|s]”
mentioned in this very work. Subsequently it is shown how to transform this equation
into taking the limit of infinite scattering order into account.

The total current (density) per spin degree of freedom from the left to the right
terminal is given by equation , which gives rise to the definition of its energy-
resolved counterpart

Jr(E) = LTLr(E)(J2(E) = [a(E)). (A.36)

In case of a multiple terminal setup, the total current originating from terminal X is
given by the superposition of the currents from this (possibly virtual) terminal to all
other (possibly virtual) terminals [34, 35]. Denoting the set of all real terminals with
T and of all Biittiker probes (i.e., virtual terminals) with S, this reads

Ix(E) = 3 AT, (B) (fx () = fulE)) + 3 Txa(B)(fx(E) ~ falE). (A37)

neT a€eS
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While the leads T are usually considered to be in thermodynamic equilibrium with
an electron reservoir and therefore having Fermi-Dirac distributed charge carriers
[35], the distribution functions f, of the Biittiker probes are per se unknown. For
reasons of charge and energy conservation it is further convenient to enforce the
sufficient (yet not necessaryﬂ) condition that the current per energy in the virtual
terminals must vanish, i.e., Vo € S:

B#a
0= Z Tan(E)(fa(E) - fn(E)) + Z TaB(E)(fa(E) - fB(E))
N (B) ful(E) + s, 5(E) f5(E) A
ZnETTcm E n 56§ E B E
~ fa(E) = SQ(E)
with the denominator

B#a
= Ton(E)+ ) Tap(E). (A.39)

neT BES

Dropping the energy argument for the sake of readability and using (A.38) iteratively
in equation (A.37) yields

Ba
h . TxaT, TxaTopT
*JX:Z TXnJrz%Jr Z %+m (fx — fa)
q neT a€S o a,BES a”f
—rpeff
=X e (A.40)
TxaT, TxaTopT
# 3 (1o - X Boglen 3 5 Deadn ) g,
a€eS neT a neT BES a”f
EOX
The remaining task is to discuss why Ox = 0. This is true because
p#a m
T T,
ox =y T (S“Z I )
s ~o T S
" " ’e ., (A.41)
o
=y Dxalos S |7 o InDm
- Sooy |07 on S )
o,BeS B neT yeES v

i.e., each scattering order is annihilated by the next higher one. Please note that,
even though it seems obvious from a physical point of view, it is rather nontrivial to
show both convergence and limit of the series

BF, B, TXOéTaIBTB’Y L.

Ox = S0S5Sy - -

=0 (A.42)
a,B,7,...€S

2Tt would be necessary to enforce that the energy-integrated current in each Biittiker probe must
vanish, which would also allow for inelastic scattering events. These are, however, not within the
scope of this work.
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in a mathematically exact manner.
Formula ([2.76]) is now easy to obtain: With the renormalized transmission
(A.43)

T,
gX, acS, XeTUus,

TaX

the effective transmission from left to right may be written as

B#a
T8 =Tor+ Y TraTar+ Y. TraTosTpr+ .. (A.44)
acsS a,BES
acsy 38 well as

Defining further T, = 0 for all o € S, the row vector 17, = {TL.}
then it is seen

the column vector fR = {TQR};Fes and the matrix i = {Taﬁ}a Bes’

that the last equation is equivalent to
off 5 2 7
Tih =T+ Ty (14+ T+ 17 +..) Tp. (A.45)
Egﬂinf
Of course, iinf is the limit of a geometric series and therefore
. N —1
& Lu=0-1) (A.46)

which concludes the proof.
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