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V. SUMMARY 

In human joints phospholipids (PLs) are produced and released by fibroblast-like 

synoviocytes (FLS). However, the regulatory mechanism of these processes remains poorly 

understood. Elevated levels of cytokines and growth factors as well as of PLs were found in 

synovial fluid (SF) during osteoarthritis (OA). Therefore, we hypothesized that PL 

metabolism in FLS is regulated by various agents being present in OA SF. This study aimed 

to develop two in vitro models to study the biosynthesis and release of PLs in order to 

evaluate the effects of cytokines, growth factors and drugs on PL metabolism. 

To measure the biosynthesis of PLs, FLS were cultured in DMEM containing 5% 

lipoprotein deficient serum in the presence of stable isotope-labelled precursors of PLs and 

various agents. To study the release of PLs, FLS were cultured in DMEM containing 10% 

FBS in the presence of radiolabelled precursors of PLs. Cells were starved and the release of 

radiolabelled PLs was determined in DMEM containing 2% FBS in the presence of agents to 

be tested. Lipids were extracted from cellular lysates and media, and then quantified using 

electrospray ionization tandem mass spectrometry in the biosynthesis model or liquid 

scintillation counting in the release model. 

The results of our lipidomic study provide for the first time a detailed overview of PLs 

being synthesized and released from human FLS. We were able to demonstrate that IL-1β 

induced the biosynthesis of phosphatidylethanolamine (PE) and PE-based plasmalogens (PE 

P), whereas TNFα induced only the biosynthesis of PE. Also, BMPs induced the biosynthesis 

of several PE and PE P species. In vivo PE P could protect against cartilage destruction 

mediated by ROS, whereas elevated PE could induce apoptosis of hypertrophic FLS and 

osteophytes. Furthermore, growth factors such as TGF-β1, IGF-1, and BMP-2 upregulated the 

biosynthesis of phosphatidylcholine (PC) which in vivo could be responsible for joint 

lubrication as well as mediation of the signal transduction. Additionally, dexamethasone was 

found to decrease the biosynthesis of PE. Moreover, we demonstrated that the release of 

radiolabelled PLs is a time-dependent process. However, tested agents did not influence the 

release of PLs using our in vitro model. Thus, the mechanism controlling PL release needs to 

be further investigated. 

In conclusion, our results indicate that cytokines and growth factors regulate PL 

biosynthesis and may contribute to the altered PL composition in OA SF. Moreover, our data 

suggest that FLS undergo PL alterations to adapt to the new diseased environment. 

Understanding intra- and extracellular functions of elevated PLs within human articular joints 

is a new challenge for lipidomic studies. 
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VI. ZUSAMMENFASSUNG 

In menschlichen Gelenken werden Phospholipide (PLs) durch Fibroblasten-ähnliche 

Synoviozyten (FLS) produziert und freigesetzt. Der regulatorische Mechanismus dieser 

Prozesse bleibt jedoch schlecht verstanden. Erhöhte Konzentrationen von Zytokinen und 

Wachstumsfaktoren sowie PLs wurden in Synovialflüssigkeit (SF) bei Osteoarthritis (OA) 

gefunden. Daher haben wir vermutet, dass der PL-Metabolismus in FLS durch verschiedene 

Substanzen reguliert wird, die in der pathologischen SF vorhanden sind. Diese Studie zielte 

darauf ab, zwei in vitro-Modelle zu entwickeln, um die Biosynthese und Freisetzung von PLs 

zu untersuchen, um die Auswirkungen von Zytokinen, Wachstumsfaktoren und 

Medikamenten auf PL-Metabolismus zu bewerten. 

Um die Biosynthese von PLs zu messen, wurden FLS in DMEM, das 5% Lipoprotein-

defizientes Serum enthielt, in Gegenwart von stabilen isotopenmarkierten Vorläufern von PLs 

und mit verschiedenen Substanzen kultiviert. Um die Freisetzung von PLs zu untersuchen, 

wurden FLS in DMEM mit 10% FBS, in Gegenwart von radioaktiv markierten Vorläufern 

von PLs kultiviert. Die Zellen wurden ausgehungert und die Freisetzung von radioaktiv 

markierten PLs wurde in DMEM mit 2% FBS, in Gegenwart von zu testenden Substanzen 

bestimmt. Die Lipide wurden aus zellulären Lysaten und Medien extrahiert und dann unter 

Verwendung von Elektrospray-Ionisations-Tandem-Massenspektrometrie im Biosynthese-

Modell oder einer Flüssigkeitsszintillationszählung im Freisetzungsmodell quantifiziert. 

Die Ergebnisse unserer lipidomischen Studie liefern erstmals einen detaillierten 

Überblick über PLs, die synthetisiert und aus humanem FLS freigesetzt werden. Wir konnten 

nachweisen, dass IL-1β die Biosynthese von Phosphatidylethanolamin (PE) und PE-basierten 

Plasmalogenen (PE P) induzierte, während TNFα nur die Biosynthese von PE induzierte. 

Auch BMPs induzierten die Biosynthese von mehreren PE- und PE P-Spezies. In vivo könnte 

PE P gegen die durch ROS vermittelte Knorpelzerstörung schützen, während erhöhte PE eine 

Apoptose von hypertrophischen FLS und Osteophyten induzieren könnte. Darüber hinaus 

haben Wachstumsfaktoren wie TGF-β1, IGF-1 und BMP-2 die Biosynthese von 

Phosphatidylcholin (PC), die in vivo für die Gelenkschmierung sowie die Vermittlung der 

Signaltransduktion verantwortlich sein könnten, hochreguliert. Zusätzlich konnte gezeigt 

werden, dass Dexamethason die Biosynthese von PE verringert. Darüber hinaus haben wir 

gezeigt, dass die Freisetzung von radioaktiv markierten PLs ein zeitabhängiges Verfahren ist. 

Allerdings beeinflussten die getesteten Wirkstoffe die Freisetzung von PLs nicht in unserem 

in vitro Modell. Somit muss der Mechanismus, der die PL-Freigabe steuert, weiter untersucht 

werden. 
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Abschließend zeigen unsere Ergebnisse, dass Zytokine und Wachstumsfaktoren die 

PL-Biosynthese regulieren und zu der veränderten PL-Zusammensetzung in OA SF beitragen 

können. Darüber hinaus deuten unsere Daten darauf hin, dass FLS PL Änderungen 

vornehmen, um sich an die neue, beeinflusste Umgebung anzupassen. Das Verständnis der 

intra- und extrazellulären Funktionen von erhöhten PLs innerhalb menschlicher 

Gelenkverbindungen ist eine neue Herausforderung für lipidomische Studien. 
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1. INTRODUCTION 

 

1.1. Osteoarthritis 

 Osteoarthritis (OA) is the most common form of joint disorder worldwide, and it 

occurs mostly in developed countries (1-3). This degenerative joint disease affects millions of 

people and according to World Health Organisation the prevalence of OA is expected to 

increase. OA is associated with significant morbidity, physical disability, and increased health 

care expenses in elderly individuals. Interestingly, the prevalence of rheumatoid arthritis (RA) 

is lower, but until now public attention focused mostly on RA issue (2). OA affects joint 

tissues before middle age, however it can not be diagnosed until it becomes symptomatic 

years later. The mechanisms responsible for OA progression are complex, multifactorial and 

poorly understood. Unfortunately, so far mostly symptomatic treatment is available which 

gives patients pain relief but does not stop progression of the disease. Finally, the affected 

joint needs to be replaced by an endoprosthetic surgery (4, 5). Therefore, understanding the 

pathophysiology of OA is an important scientific goal.   

 

1.1.1. Disease 

 The clinical symptoms of OA are pain and functional impairment that includes joint 

stiffness and dysfunction which lead to limited daily life activities. In 80% of OA patients 

movement is limited to some degree (2). The major morphological characteristic of OA is 

cartilage breakdown with only episodic synovitis. Moreover, changes occur in the bone, 

synovium and muscle (2). Radiographic signs of the disease include joint space narrowing, 

synovial thickening, bone resorption, and the presence of osteophytes (6). OA may also 

damage ligaments, menisci and muscles (7). OA can occur in any joint, but is most common 

in large joint such as knee, hip, hand and ankle (3). The risk factors of OA include age, 

overweight, gender, excessive mechanical loading, joint injury and genetic predisposition (1, 

3, 8). Secondary OA can result from injury or might be caused by specific job-related 

activities (1).  
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1.1.2. Tissue involved in OA 

 OA is generally the result of an imbalance between applied mechanical stress and the 

biochemical ability of the articular cartilage to resist this stress (4). However, the disease 

affects the whole joint as an organ, not only the articular cartilage (2). All articular tissues and 

the crosstalk between them contribute to OA progression. In normal joints, articular cartilage 

acts as a smooth structure gliding between bones. The cartilage consists of chondrocytes and 

extracellular matrix including proteoglycans, from which aggrecan is the most abundant, as 

well as collagen fibres (9). During OA multiple biological agents, including pro-inflammatory 

cytokines and chemokines, as well as proteolytic enzymes and biomechanical stress induce 

and propagate cartilage lesions, so that the cartilage surface becomes rougher. Aggrecanases 

such as ADAMTS-4 and -5 are responsible for aggrecan degradation, while collagens and 

aggrecan fragments are cleaved by matrix metalloproteinases (MMPs) (10). Already low pre-

inflamed OA joints produce cyclooxygenases (COX) enzyme products for instance 

prostaglandin E2 (PGE2) which can lead to enhanced production of MMPs as well as 

inhibition of proteoglycan synthesis (9). With disease progression chondrocytes undergo cell 

death or phenotypical changes, and express enzymes responsible for matrix degradation. 

When the disease is advanced, cartilage undergoes endochondral ossification, accompanied 

by invading blood vessels within the osteochondral area.  

As the cartilage breaks down, changes occur in the underlying bone. The subchondral 

bone thickens and becomes irregular. In later stages of disease, severe bone remodelling 

processes take place, in particular bone sclerosis and necrosis, as well as osteophyte formation 

and their vascularization (2). The underlying mechanism of this process is not fully 

understood, but increased load on the subarticular bone as well as action of cytokines and 

growth factors seem to be responsible.  

An imbalance of cytokines and growth factors promotes thickening and fibrosis of the 

capsule, so that movement of the joint becomes restricted. Finally, the synovium develops 

inflammation as a result of cartilage breakdown products also called detritus (11). Activated 

synoviocytes can proliferate and lead to synovial hyperplasia. Several studies have shown that 

enhanced synovitis can further accelerate cartilage damage. Moreover, a reduced viscosity of 

OA synovial fluid was observed. During disease the weakness of ligaments, tendons, and 

muscles also occur (2, 7).  
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1.1.3. Role of cytokines and growth factors in OA 

 OA was traditionally described as non-inflammatory disease in contrast to RA. 

However, since decades it is known that inflammation contributes to the symptoms and 

progression of OA (12, 13). In 2002 Attur et al. already reported that cartilage behaves like 

inflamed tissue based on inflammatory molecules being expressed (13). It is believed that the 

overproduction of cytokines and growth factors by the inflamed synovium and activated 

chondrocytes is a key phenomenon during OA pathophysiology (14). 

The pro-inflammatory cytokines affect the majority of cells present in synovial joint 

via intracellular signal transduction pathways. They stimulate production of cytokines, 

enzymes, and other inflammatory compounds. Among this group the most important are IL-

1β, TNFα, IL-6, IL-15, IL-17, and IL-18 (15). Patients with OA display elevated levels of 

these cytokines in synovial fluid and serum (16-19). IL-1β and TNFα stimulate their own 

production and induce expression of IL-6, IL-8, and CCL5 in fibroblast-like synoviocytes 

(FLS), chondrocytes, macrophages, and osteoblasts (12, 15). They also block chondrocytes to 

produce extracellular matrix components such as collagen type II and aggrecan, but stimulate 

these cells to produce catabolic enzymes like MMP-1, -3, -13, and ADAMTS (15, 20). 

Moreover, they induce production of NO, COX-2, and thus PGE2. During OA progression, 

IL-1β stimulates the synthesis of reactive oxygen species (ROS), which leads to cartilage 

damage (21, 22). It is worth to mention that NO and ROS which are present in OA cartilage 

can induce apoptosis and senescence of chondrocytes (23). Remarkably, the expression of IL-

R1 receptor and TNF-R2 is also increased in FLS and chondrocytes from patients with OA 

(15).  

IL-6 is produced in chondrocytes, osteoblast, FLS, macrophages, and adipocytes in 

response to IL-1β and TNFα. IL-6 is a cytokine which strongly enhances inflammatory 

response, although some of its effects might be anti-inflammatory. IL-6 is considered to be a 

key cytokine responsible for promoting osteoclast formation and thus subchondral bone 

resorption (24).  

IL-15 was found to stimulate the differentiation and proliferation of T cells and NK 

cells. Also, it has been noted that IL-15 can induce secretion of MMPs (15). IL-17 is 

produced by T cells and mast cells that infiltrate synovium. FLS and chondrocytes are mostly 

affected by this cytokine. It has been shown that IL-17 inhibits proteoglycan synthesis and 

promotes MMPs production. Moreover, IL-17 stimulates secretion of VEGF by chondrocytes 
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and FLS, and thus favours vascularisation of the joint tissue (25, 26). In addition, 

chondrocytes, osteoblast, FLS, and macrophages produce IL-18 which acts similar to other 

cytokines by the stimulation of MMPs synthesis and inhibition of proteoglycan and aggrecan 

production (15).  

Also anti-inflammatory cytokines are involved in the pathogenesis of OA such as IL-

4, IL-10, and IL-13 (12, 15, 27). T cells infiltrating the synovium produce IL-4. The increased 

IL-4 concentration was observed in synovial fluid of OA patients. IL-4 was reported to inhibit 

the degradation of proteoglycans, decrease the secretion of pro-inflammatory cytokines as 

well as other mediators of inflammation such as NO and PGE2, and expression of COX-2 

enzyme (28-30). IL-10 produced by chondrocytes is involved in stimulating the synthesis of 

type II collagen and aggrecan. IL-10 also induces the expression of BMP-2 and BMP-6, and 

reduces the effect TNFα (15). It has been reported that IL-13 inhibits production and secretion 

of the inflammatory cytokines such as IL-1β and TNFα from FLS of OA patients (29, 31).  

Current research focus also on the anabolic growth factors in rheumatic disorders (32). 

It has been found that TGF-β superfamily members participate in the development of OA (33-

35). TGF-β isoforms are expressed in cartilage, bone and synovium. However, TGFβ 

signalling play quite different role in these tissues. TGF-β stimulates chondrocytes to 

proliferate and inhibits their hypertrophy and maturation, promotes osteoblast maturation, and 

induces synovial tissue fibrosis (35). Recently, elevated TGF-β levels have been found in sera 

of OA patients (36). Also, TGF-β levels were increased in human OA osteoblasts when 

compared to normal (37). TGF-β1 has been reported to stimulate synoviocytes proliferation 

and fibrosis in murine knee joint (38). Furthermore, blocking of TGF-β with antibodies 

resulted in a decreased thickness of calcified cartilage, reduced proteoglycan loss, and slowed 

degeneration of cartilage in ACLT-induced OA murine model (39).  

Several studies highlighted the contribution of BMPs to the pathogenesis of OA (40, 

41). The level of BMP-2 was found to be higher in OA cartilage compared to normal (42). 

Overexpression of BMP-2 in murine knee joint stimulated proteoglycan synthesis and also 

increased degradation of aggrecan (43). BMP-7 levels in plasma and synovial fluid have been 

correlated with OA severity (44). Moreover, BMP-7 stimulates the synthesis of extracellular 

matrix proteins by chondrocytes and blocks the expression of matrix metalloproteinases 

involved in cartilage destruction (45, 46).  
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The role of IGF-1 has been also intensively studied. Changes in IGF-1 levels in 

rheumatic disorders remain controversial (47). Similar to other growth factors, IGF-1 induces 

anabolic effects and decreases catabolic responses in articular cartilage. Also IGF-1 was 

found to have protective effects on synovium resulting in decreased thickening and decreased 

evidence of inflammation (34, 48). Moreover, the combination of IGF-1 and BMP-7 

treatment resulted in improved cartilage repair than agents alone (49). The members of FGF 

family also participate in OA changes within joint. FGF-2 was found to decrease 

aggrecanases activity in chondrocytes and induce synovial proliferation. FGF-18 increased 

chondrocyte proliferation as well as induced synovial thickening (34).  

Since OA is a complex disease, cytokines and growth factors are just one part of the 

OA pathogenesis including progression. Many other factors such as lipids, epigenetics, 

adipokines, hormones, autophagy, aging, and exercises are in the scope of current research 

(32, 47, 50, 51).  

 

1.2. Synovial joint 

 Synovial joints are the most common type of joints in human body, which allow wear-

resistant movement between opposing surfaces (52). In these joints, articular surfaces are 

covered with avascular, non-nervous and elastic cartilage. Between the articular surfaces there 

is a joint cavity filled with synovial fluid (SF). The cavity can be partially or completely 

subdivided by meniscus. The joint is surrounded by an articular capsule lined by synovial 

membrane (4). 

 

1.2.1. Synovial fluid 

 SF is essentially an ultarfiltrate of plasma with the addition of constitutes that are 

synthesized locally by the synovial tissue cells and then secreted into SF. Therefore, it is a 

clear, straw-coloured, viscous, and relatively acellular liquid. The main functions of SF are 

lubrication of surfaces, nutrition and the removal of metabolic waste products, load bearing, 

and shock absorption in the joint (52). SF contains molecules which play a key role in 

boundary lubrication such as lubricin, hyaluronic acid (HA), and surface-active phospholipids 

(PLs). The concentrations of mentioned lubricants depend on the health status of joint, and 
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they are altered in SF of patients with OA and RA (53, 54). SF also contains morphogens, 

growth factors, and cytokines which mediate communication between cells in the joint (52).  

 

1.2.2. Synovial membrane 

 The synovium encapsulates the joint. Its main functions are to provide structural 

support, lubricate the surfaces, provide nutrients to cartilage as well as remove metabolites 

and degradation products from the synovial space (55). The synovium is a delicate membrane 

~ 50 µm lining composed of two types of cell named type A and type B synoviocytes. The 

synovial membrane is a loose association of cells embedded in an extracellular matrix 

interspersed with collagen, proteoglycans, hyaluronan, and other matrix proteins (56). This 

kind of organization allows diffusion of the nutrients in serum to the avascular cartilage. In 

diseases such as OA and RA synovium thickening, hyperplasia, and inflammation occurs 

(11). In joint injury and disease, alterations in the synovial membrane result in pathological 

SF (52). 

 

1.2.2.1. Macrophage-like synoviocytes 

 Type A synoviocytes, also called macrophage-like, derive from bone marrow and 

display hematopoietic origin. They migrate to the synovium and become resident cells. 

Macrophage-like synoviocytes express CD16, CD45, CD14, CD68, and CD11b. Type A cells 

are terminally differentiated with little capacity to proliferate. The presence of vacuoles 

suggests their phagocytic activity (55).  

 

1.2.2.2. Fibroblast-like synoviocytes 

 Type B synovial cells, also named fibroblast-like synoviocytes (FLS) are 

mesenchymal cells that display many characteristics of fibroblast. They express type IV and 

V collagen, vimentin, CD90 (Thy-1), CD55, CD106, and cadherin-11 (55). Moreover, FLS 

have an ability to synthesize and secrete hyaluronan and lubricin (57, 58). They also 

contribute to local production of cytokines, mediators of inflammation, and proteolytic 

enzymes that degrade extracellular matrix (55). It has been reported that lamellar bodies, 
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which are responsible for phospholipid synthesis, are present within the rough endoplasmic 

reticulum of FLS (59). 

 

1.3. Lubrication of articular joints 

 Lubrication reduces friction of the surfaces which slide past each other to low levels. 

In the absence of lubricants, the articular surfaces are smooth but possess strong surface 

energy. It is believed that low coefficient of friction in the boundary lubrication of articular 

cartilage is conditioned by surface layers of specialized molecules in SF adhered to the 

cartilage surface such as HA, lubricin, and surface-active PLs (60).  

Understanding the nature and mechanism of boundary lubrication was intensively 

studied. In the past, two main theories concerning boundary lubrication have been proposed. 

First theory assumed that hydrophobic proteoglycans or glycoproteins contribute to water 

binding on the surface of cartilage thereby providing low friction liquid film. The second 

theory postulated that PL layer lubricate the surface of the articular cartilage (60). According 

to current knowledge, all three mentioned components seem to act together. Lubricin in the 

outer superficial zone and at the articular cartilage surface interacts with and immobilized 

hyaluronan at the cartilage surface, which in turn complexes with PLs to provide lubrication 

at the exposed PL groups via the hydration lubrication mechanism (Figure 1). Bilayers of PLs, 

especially phosphatidylcholine (PC), exposing their head groups in aqueous medium provide 

extremely efficient lubricating elements (61).  

The integrity of the whole lubricant net plays a role in maintaining the good 

lubricating properties. Pathological condition of the joint such as OA begins with damage of 

cartilage leading to a disruption of lubrication, which in turn causes further damage of the 

cartilage.  

 

1.3.1. Hyaluronan 

 Hyaluronan also called hyaluronic acid (HA) is a high-molecular-weight polymer of 

disaccharides, composed of D-glucuronic acid and D-N-acetylglucosamine. The concentration 

of hyaluronan in SF is around 3 mg/ml (54). HA forms long chains that considerably 

influence the viscosity of SF (60). High viscosity enhances hydrodynamic lubrication. HA 
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concentration in SF in pathological diseases such OA is decreased (54). Nevertheless, the 

friction coefficient measured directly reveals that HA is rather a poor boundary lubricant (61). 

However, HA has been often used as an intra-articular injected supplement to alleviate OA 

symptoms (61).  

 

 

Figure 1. Schematic representation of the cartilage boundary lubricant layer. [Picture obtained 
with permission from: S. Jahn et al. Annu. Rev. Biomed. Eng. 2016]. 

 

1.3.2. Lubricin 

 Lubricin also known as superficial zone protein (SZP) or PRG4 is a glycoprotein 

found in SF with a concentration of around 350 µg/ml (54). The central part of the molecule is 

similar to mucin in structure, which provides a considerable water-holding capacity with a 

negative charge. The end domains of lubricin are globular with a positive charge. The 

peripheral parts of the molecule are attached to the negatively charged cartilage matrix, while 

the mucin-like region with water sheets is looped towards the surface (60). Highly hydrophilic 

mucin-like region at the cartilage surface contribute to water binding to the surface thereby 

contributing to a low friction liquid film. Direct measurements of friction between lubricin 

layers reveal that lubricin is not an especially efficient boundary lubricant (61). Nevertheless, 

the levels of lubricin in OA SF were found to be decreased (54). 
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1.3.3. Phospholipids  

 Surface-active phospholipids (PLs) have been proposed to adsorb to the articular 

surface, providing its hydrophobic character (62-64). PLs are highly present in the SF, 

especially PC (53, 54). The PL structure consists of hydrophilic head groups and hydrophobic 

fatty acid chains. The positively charged head groups can adsorb to the negatively charged 

extracellular cartilage matrix composed of HA and proteoglycans (60). Also, other 

monolayers of surfactants can be adsorbed to the hydrophobic surfaces of fatty acid chains. 

Experiments proved that multilayers of PLs result in a lower friction coefficient (61). Our 

previous analysis showed that the concentrations of specific PLs in OA SF are elevated (53). 

 

1.4. Phospholipids – structure, occurrence and biosynthesis 

 PLs are the class of lipids that contain two fatty acid molecules esterified at the sn-1 

and sn-2 positions of glycerol, and which contain a head group linked by a phosphate residue 

at the sn-3 position. The head group forms a hydrophilic region and determines the type of 

phospholipids. The fatty acid chains are hydrophobic. 

In animal tissues, the PL composition is rather constant with PC as the most abundant 

class (65). However, the levels of PLs may vary between organs, tissues, and cell types as 

well as pathological conditions. PLs have many functions in eukaryotic cells. For instance 

they are constituents of cell membranes and lipoproteins, they are also signalling molecules, 

lung surfactants, joint lubricants, some of them have anti- or pro- inflammatory properties, 

they are also intermediate metabolites, and some of them are antioxidants (66). Moreover, 

many studies have connected PLs with diseases such as osteoarthritis and respiratory 

disorders, heart failure, Alzheimer’s disease, Down syndrome, fatty liver disease, metabolic 

disease, or cancer (53, 54, 67-69). For this reason PLs have become an important research 

target.  

PL synthesis is highly dependent on the availability of fatty acids (FA) and 

phosphatidic acid (PA). The source of FA is serum and their uptake is mediated by FA 

binding proteins. PA is synthesized from glucose or glycogen within the mitochondria, 

endoplasmic reticulum, and peroxisomes. The conversion of PA into diacylglycerol (DAG) is 

essential for the PL synthesis.  
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1.4.1. Choline-based phospholipids 

  Choline must be obtained from dietary sources in mammals. Around 95% of choline 

is used to synthesize phosphatidylcholine (PC). The rest is used for sphingomyelin (SM), 

phosphatidylcholine-based plasmalogens (PC P), and lysophosphatidylcholine (LPC) 

production. Choline is also oxidized to betaine in the mitochondria of kidney and liver and 

converted to acetylcholine in the nervous system (70, 71). 

Choline and choline metabolites can be regenerated by breakdown of phospholipids 

containing choline. For instance PC can be hydrolysed by phospholipase D to produce choline 

and PA, as well as by phospholipase A to produce free FAs and glycerol-phosphocholine 

(70).  

 

1.4.1.1. Phosphatidylcholine  

Phosphatidylcholine (PC) is a class of PLs containing choline as a head group. PC is 

the most abundant PL class within eukaryotic cells, accounting 50% of total PLs. In 

particular, PC is present in the outer leaflet of the plasma membranes. It is also the principal 

PL circulating in the plasma. It is believed that PC is the main surface-active component 

produced by alveolar cells as well as within SF. It is also the precursor for other lipids, and 

their intermediate metabolites are involved in signal transduction pathways (70, 72). PC also 

plays a role in bile secretion and lipoprotein formation, and thus contributes to the 

maintenance of liver homeostasis (73). The median concentration of PC in healthy human SF 

is around 135 nmol/ml of SF, while in early OA SF 372 nmol/ml, and in late OA SF 737 

nmol/ml PC was quantified (53). 

All mammalian cells make PC via CDP-choline pathway, also known as the Kennedy 

pathway (70, 71, 74). This pathway consists of three enzymatic steps (Figure 2). First, 

extracellular choline is imported into cell through choline transporters and phosphorylated to 

phosphocholine (P-choline) by cytosolic enzyme choline kinases (CK). Then, the 

CTP:phosphocholine cytidylyltransferase (CCT) uses cytidine triphosphate (CTP) to convert 

generated products from previous step into cytidine-diphosphocholine (CPD-choline). The 

final step of the synthesis is catalysed by cholinephosphotransferase (CPT) by the transfer of 

phosphocholine from CDP-choline to DAG with production of PC. Several studies have 

shown that the first enzymatic reaction catalysed by CK is not a rate-limiting step of PC 
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biosynthesis, but still changes in CK activity were found to influence the rate of PC synthesis. 

Under most conditions, production of CDP-choline is the rate-limiting reaction for the 

biosynthesis of PC.  

In an alternative pathway for PC biosynthesis (Figure 2), phosphatidylethanolamine 

(PE) is converted to PC by three methylation reactions catalysed by PE N-methyltransferase 

(PEMT). Around 30% of PC produced in hepatocytes comes mostly from this reaction (75). 

PC can be also formed via acylation of LPC by lysophosphatidylcholine acyltransferase 

(LPCAT). Remodelling of PC includes hydrolysis and re-acylation which introduce 

polyunsaturated FAs.  

 

1.4.1.2. Lysophosphatidylcholine 

 Lysophosphatidylcholine (LPC) consists of one fatty acid chain and one choline head 

group attached to the glycerol backbone. It is a major plasma lipid. LPC possess both 

surfactant- and detergent-like properties. LPC has also pro-inflammatory properties. 

Moreover, it has been recognized to be an important cell signalling molecule (76). The 

median concentration of LPC in healthy human SF is around 16 nmol/ml which increases up 

to 55 nmol/ml during early OA respectively 82 nmol/ml during late OA (53).  

LPC derives from PC of lipoproteins or from cell membrane-derived PC as a result of 

phospholipase A2 activity (Figure 2). The reverse reaction also occurs and is catalysed by 

lysophosphatidylcholine acyltransferase (LPCAT) (72). 

 

1.4.2. Ethanolamine-based phospholipids 

Animals cannot synthesize ethanolamine and must therefore obtain it from food. 

Conversion of serine to ethanolamine may occur in mammalian cells, also some amount of 

ethanolamine can be generated from sphingolipids (70). Ethanolamine is used for 

phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), and PE-based 

plasmalogens production. 
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Figure 2. Schematic representation of the main PL classes biosynthesis.  
CCT = CTP:phosphocholine cytidylyltransferase; CDP-Choline = cytidine-diphosphocholine; CDP-
Ethanolamine = cytidine-diphosphoethanolamine; Cer = ceramide; CK = choline kinase; CPT = 
cholinephosphotransferase; DAG = diacylglycerol; ECT = CTP:phosphoethanolamine 
cytidylyltransferase; EK = ethanolamine kinase; EPT = ethanolaminephosphotransferase; LPC = 
lysophosphatidylcholine; LPCAT = lysophosphatidylcholine acyltransferase; LPEAT = 
lysophosphatidylethanolamine acyltransferase;  LPE = lysophosphatidylethanolamine; PC = 
phosphatidylcholine; P-Choline = phosphocholine; PC P = phosphatidylcholine-based plasmalogen; 
PE = phosphatidylethanolamine; P-ethanolamine = phosphoethanolamine; PEMT = 
phosphatidylethanolamine N-methyltransferase; PE P = phosphatidylethanolamine-based 
plasmalogen; PLA = phospholipase A; PS = phosphatidylserine; PSD = phosphatidylserine 
decarboxylase; PSS = phosphatidylserine synthase; SM = sphingomyelin; SMase = sphingomyelinase; 
SMS = sphingomyelin synthase. 
 

1.4.2.1. Phosphatidylethanolamine 

 Phosphatidylethanolamine (PE) contains ethanolamine as a head group. PE is the 

second most abundant PL class in eukaryotic cells. Mostly, it is concentrated in the inner 

leaflet of the plasma membrane. It is involved in membrane fusion and dynamics. It seems to 

be required for actin filament disassembly at the final stage of cytokinesis. Finally, PE is the 

precursor of many biologically active molecules, which modulate pain perception, 

inflammation, autophagy, and apoptosis (70, 72, 77). PE is also involved in glucose 
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metabolism and oxidative phosphorylation in murine hepatocytes (73, 75). The median 

concentration of PE in healthy human SF is around 2 nmol/ml of SF, and increases up to 4 

nmol/ml during early OA and 6 nmol/ml during late OA (53).  

PE is made in mammalian cells by two main biosynthetic pathways (Figure 2) (70, 74, 

78). First, PE is formed via a separate branch of the Kennedy pathway, also called CDP-

ethanolamine pathway, and occurs in endoplasmic reticulum membranes. Similar to PC 

synthesis, ethanolamine is first imported into cells and phosphorylated to 

phosphoethanolamine (P-ethanolamine) by ethanolamine kinase (EK). Then, the 

CTP:phosphoethanolamine cytidylyltransferase (ECT) uses CTP to convert generated 

products from previous step into cytidine-diphosphoethanolamine (CDP-ethanolamine). The 

final step of the synthesis is catalysed by ethanolaminephosphotransferases (EPT) by the 

transfer of ethanolamine from CDP-ethanolamine to DAG with the production of PE. 

Investigation of the rate-limiting reaction of the PE synthesis generated conflicting results. 

Under most conditions, the step catalysed by ECT is essential in PE biosynthesis (70, 79). 

However, another study reported that overexpression of EK in mammalian cells resulted in 

acceleration of the rate of [3H]-ethanolamine incorporation into PE (80).  

The other pathway utilizes phosphatidylserine decarboxylase (PSD), an enzyme that is 

restricted to mitochondrial inner membranes and decarboxylates phosphatidylserine (PS) to 

PE. Moreover, PE can be also formed via acylation of lysophosphatidylethanolamine (LPE) 

and calcium-dependent head group exchange with existing PLs (73). The remodelling 

processes including hydrolysis and re-acylation often lead to the final FA composition. 

 

1.4.2.2. Phosphatidylethanolamine-based plasmalogen 

 Phosphatidylethanolamine-based plasmalogens (PE P) are characterized by a vinyl-

ether linkage at the sn-1 position and ester linkage at the sn-2 position. Plasmalogens make up 

approximately 18% of the PL mass in humans, but their content in individual tissues or cell 

types vary. Besides the maintenance of membrane dynamics and FA composition, 

plasmalogens participate in intracellular signalling. Importantly, they can act as antioxidants 

and protect against ROS (67). The median concentration of PE-based plasmalogen in healthy 

human SF is around 6 nmol/ml of SF, and increases up to 10 nmol/ml during early OA and 17 

nmol/ml during late OA (53).  
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The biosynthesis of PE-based plasmalogens begins with the esterification of the 

hydroxyl group of dihydroxyacetone phosphate with a molecule of long chain acyl CoA 

catalysed by dihydroxyacetone phosphate acyltransferase (67). The activity of this enzyme is 

rate-limiting for plasmalogen biosynthesis. The enzyme named alkyl-dihydroxyacetone 

phosphate synthase then catalyses the replacement of the sn-1 fatty acid with a long chain 

fatty alcohol, which results in the formation of the ether bond. In the third step of the 

plasmalogen biosynthesis, an enzyme called acyl/alkyl-dihydroxyacetone phosphate reductase 

generates ether linkage at the sn-2 position. The next three reactions are catalysed by enzyme 

systems of acyltransferases to form an ester linkage at the sn-2 position. Phosphatidate 

phosphohydrolase then removes the phosphate group from the molecule, and the 

ethanolaminephosphotransferase (EPT) catalyses the attachment of the phosphoethanolamine 

(P-ethanolamine) head group to the molecule. Finally, plasmanylethanolamine desaturase 

catalyses the formation of a double bound between C1 and C2 also named vinyl-ether linkage, 

which is characteristic for plasmalogens.  

Further, cholinephosphotransferase can catalyse simple exchange of ethanolamine 

head group to choline forming PC-based plasmalogen (PC P; Figure 2). However, this 

mechanism is not fully understood.  

 

1.4.3. Phosphatidylserine 

 Phosphatidylserine (PS) contains serine as a head group. It is located on the inner 

monolayer surface of the plasma membrane. PS is involved in blood coagulation processes 

and regulation of apoptosis. Moreover, PS is an essential cofactor that binds to protein kinase 

C, a key enzyme in signal transduction (72, 78). The median concentration of PS in human SF 

is at low level, accounting 0.4 nmol/ml for heathy SF, 0.07 nmol/ml for early OA SF, and 0.3 

nmol/ml for late OA SF (53).   

PS is synthesized in mammalian cells by two distinct PS synthases, PS synthase-1 

(PSS-1) and PS synthase-2 (PSS-2) in endoplasmic reticulum as well as mitochondria-

associated membranes (Figure 2). These synthases catalyse a base-exchange reaction in which 

serine replaces the choline or ethanolamine head group of PC (by PSS-1) or PE (by PSS-2) 

(78).  PS also undergoes the process of remodelling. 
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1.4.4. Phosphatidylinositol 

 Phosphatidylinositol (PI) is characterized by the presence of inositol as a head group. 

PI is especially abundant in brain tissue, but is present in all cell types. It is a membrane 

constituent and main source of signalling molecules (72). PI is involved in organization of 

cytoskeleton, vesicles trafficking, as well as autophagosome formation (81). So far PI was not 

detected within human SF, so its concentration must be at low level, below the detection limit.   

PI is synthesized via the formation of CDP-diacylglycerol (CDP-DAG) from PA and 

cytidine triphosphate (CTP) catalysed by endoplasmic reticulum-associated CDP-

diacylglycerol synthase (CDS). The second step utilizes myo-inositol and CDP-DAG in 

reaction catalysed by PI synthase or CDP-diacylgylcerol:inositol-3-phosphatidyltransferase 

(72). Moreover, PI undergoes the remodelling process.  

 

1.4.5. Phosphatidylglycerol 

 Phosphatidylglycerol (PG) is a PL with a glycerol as a head group. PG plays an 

important role in regulating innate immunity and viral infection. It is also the second most 

abundant lung surfactant (72). The median concentration of PG in healthy human SF is low, 

accounting 0.1-5.0 pmol/ml of SF and it increases 3.5-fold during OA (82).  

PG is synthesized from CDP-DAG produced from PA, and then converted by 

glycerophosphate phosphatidyltransferease to phosphatidylglycerolphosphate followed by its 

dephosphorylation to PG catalysed by phosphatidylglycerophosphatase (72). The final FA 

composition of PG is attained by the process of remodelling. 

 

1.4.6 Sphingolipids 

Sphingolipids are characterized by the presence of sphingoid based backbone being O-

linked to the head group. This family includes sphingomyelin (SM), ceramide (Cer), 

sphingosine (Sph), Sph-1-phosphate (S1P), and Cer-1-phosphate (C1P) (68). These bioactive 

molecules were found to play a role in regulation of signal transduction pathways, direction of 

protein sorting, and mediation of cell-to-cell interaction.  
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Cer can be synthesized through de novo pathway or by hydrolysis of SM. The de novo 

synthesis begins with the condensation of serine and palmitoyl-CoA by serine palmityol 

transferase to form 3-keto-dihydrosphingosine (KdhSph). KdhSph is subsequently reduced to 

dihydrosphingosine (dhSph), which is N-acetylated by Cer synthases to produce dhCer or 

Cer. Cer was found to be involved in cell growth, differentiation, necrosis, proliferation, and 

apoptosis. It may also regulate protein kinase C and raf-1 (68, 83). The median Cer 

concentration in healthy human SF is around 1.4 nmol/ml of SF, and increases up to 2.8 

nmol/ml during early OA and 5.5 nmol/ml during late OA (82). 

SM is the most abundant sphingolipid. SM is synthesized from two precursors - Cer 

and PC that are made in endoplasmic reticulum and transported to the Golgi (68, 72). The 

majority of SM is made by SM synthase-1 (SMS-1) in the Golgi apparatus but some of them 

are also made by SM Synthase-2 (SMS-2) in plasma membranes. SM is a component of 

cellular membranes and lipid rafts. It has been also reported to play important roles in cellular 

signalling, cell growth, proliferation, differentiation, and survival (84). The median 

concentration of SM in healthy human SF is around 39 nmol/ml of SF, and increases up to 92 

nmol/ml during early OA and 172 nmol/ml during late OA (82). 

Furthermore, Cer can be phosphorylated to C1P. It can be also metabolized by 

ceramidases to form Sph, which can be further available for phosphorylation by Sph kinases 

to form S1P (68). C1P plays a role in inflammation and vesicular trafficking (85). Sph was 

reported to be associated with cell cycle arrest, apoptosis, regulation of cytoskeleton, and 

endocytosis (68). S1P regulates cell proliferation, growth, survival, migration, inflammation, 

and angiogenesis (86). Several studies have shown that S1P can counteract the effect of IL-1β 

in chondrocytes (87, 88). Moreover, Cer and Sph were reported to act as tumor-suppressor 

lipids (68). The concentrations of Sph, S1P, and C1P are at low levels in human SF and 

therefore are often below the detection limit of 6 pmol/ml of SF (82). 

In conclusion, PLs are one of the components of SF being responsible for lubrication 

of articular joints. Previous studies reported that concentrations of PLs in SF are related to the 

health status of the joint. During OA, the levels of PC, LPC, PE-based plasmalogens, PS, SM, 

and Cer were significantly elevated. FLS are thought to be cells of synovial membrane which 

produce and release PLs into SF. Nevertheless, there is still not much known how the 

biosynthesis and release of PLs is controlled. Apart lubricating properties, PLs are involved in 

many other biological process. Taken together, certain PLs in SF were altered during OA. 

However, the cause of these changes still remains unknown. Also, the concentrations of 
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cytokines and growth factors in OA SF were found to be increased, which might suggest their 

role in the regulation of PL metabolism. Therefore, evaluation of the effects of these agents 

on PL biosynthesis and release could enhance our knowledge, providing novel targets to treat 

OA.  
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2. AIM OF THE STUDY 

Surface-active phospholipids (PLs) together with hyaluronan and lubricin were 

reported to provide boundary lubrication within human articular joints. Considering altered 

levels of PLs in synovial fluid during OA when compared to normal (53, 54, 82), we 

hypothesized that (a) PLs are partly derived from FLS, and that (b) biosynthesis and release of 

PLs during OA is regulated by cytokines and growth factors.  

The overall goal of this study was to investigate the effect of cytokines, growth factors 

as well as pharmacological agents on the biosynthesis of PLs and their release into cell culture 

media. 

The specific aims of this study were:   

1. Development of an in vitro model of FLS to study de novo biosynthesis of PL species 

using stable isotopes and ESI-MS/MS. 

 

2. Development of an in vitro model of FLS to study the release of PLs using radioactive 

isotopes. 

 

3. Evaluation of the effects of cytokines, growth factors and dexamethasone on the 

biosynthesis and release of PLs from FLS. 

 

4. Determination of the mechanisms of action of agents found to influence PL 

biosynthesis and release.  
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3. MATERIALS AND METHODS 

3.1. Materials 

 

3.1.1. Technical equipment 

Name      Company 

Autoclave, model 3850 EL   Tuttnauer Europe B.V., Breda, Netherlands 

Balance, model 770-12  Kern & Sohn GmbH, Balingen-Frommern, 
Germany 

Balance, model EG2200-2NM   Kern & Sohn GmbH, Balingen-Frommern, 

Germany 

Biological Safety Cabinet, Microflow®  Thermo Scientific Inc., Rockford, USA 

Cell culture CO2 incubator, HeraCell™ 150i Thermo Scientific Inc., Rockford, USA 

Countess®II Automated Cell Counter Invitrogen, Thermo Fisher Scientific GmbH, 
Waltham, MA, USA  

Drying oven, model 700  Memmert GmbH & Co. KG, Schwabach, 
Germany 

Electrophoresis chamber horizontal,   Bio-Rad Laboratories GmbH, Munich, Germany 
Wide Min-SUB® Cell GT 

BD FACS Canto™ II flow cytometer Becton Dickinson GmbH, Hilderberg, Germany 

Freezer -20°C, model KGE 34422   Bosch GmbH, Gerlingen-Schillerhoehe, Germany 

Freezer -86°C, model HFU 486 Top  Thermo Electron GmbH, Langenselbold, 
Germany 

Gel iX Imager INTAS®  Intas Science Imaging Instruments GmbH, 
Goettingen, Germany  

Horizontal shaker, Polymax 1040  Heidolph Instruments GmbH & Co. KG, 
Schwabach, Germany 

Laboshake, RO 500 C. Gerhardt GmbH & Co. KG, Koenigswinter, 
Germany   

Light microscope, Axiovert® 40 CFL  Carl Zeiss, Goettingen, Germany 
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Magnetic stirrer, model MR 3002  Heidolph Instruments GmbH & Co. KG, 
Schwabach, Germany 

Mass Spectrometer,     Micromass, Manchester, United Kingdom 
Quattro Ultima Triple™ Quadrupole 

Microcentrifuge, model 5415D   Eppendorf AG, Hamburg, Germany 

Microplate absorbance reader, Sunrise™  Tecan Group Ltd., Maennedorf, Switzerland 

Microplate luminescence reader,  Tecan Group Ltd., Maennedorf, Switzerland 
Infinite® 200 PRO 

Microplate shaker, model LD-45  Kisker Biotech GmbH & Co. KG, Steinfurt, 
Germany 

Microwave, model VFD60M105IIE  LG Electronics, Englewood, NY, USA 

Multichannel pipette 12-channels   Eppendorf AG, Hamburg, Germany 

Multi-Purpose Scintillation Counter,  Beckman Coulter Inc., Fullerton, CA, USA  
LS 6500 

PCR-Mastercycler®, Personal   Eppendorf AG, Hamburg, Germany 

pH-meter digital, handylab 1   Schott Glaswerke, Mainz, Germany 

Pipetboy, Easypet®     Eppendorf AG, Hamburg, Germany 

Pipette, single channel:    Eppendorf AG, Hamburg, Germany 
0.5-10 μl, 10-100 μl, 100-10000 μl 

Pipetting Robot Genesis, RSP 150  Tecan Group Ltd., Maennedorf, Switzerland 

Power Supply, PowerPac™ HC   Bio-Rad Laboratories GmbH, Munich, Germany 

Pump, model 16612     Sartorius, Goettingen, Germany 

Real Time PCR System, 7500 Fast Applied Biosystems, Thermo Fisher Scientific 
GmbH, Waltham, MA, USA 

Refrigerator +4 °C, model KGU66920  Bosch GmbH, Gerlingen-Schillerhoehe, Germany 

Sonopuls, model UW 2010 Bandelin electronic GmbH & Co. KG, Berlin, 
Germany  

Spectrophotometer, NanoDrop™ 1000 Thermo Fisher Scientific GmbH, Waltham, MA, 
USA  

Thermomixer, Comfort    Eppendorf AG, Hamburg, Germany 
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Universal centrifuge, model 320R   Hettich GmbH & Co. KG, Tuttlingen, Germany 

Vacuum concentrator, Christ RVC   Wolf Laboratories Limited, York, UK 

Vortex mixer, Vortex-Genie®2   Scientific Industries Inc., Bohemia, NY, USA 

Water bath, AQUAline AL5    DJB Labcare Ltd., Buckinghamshire, UK 

 

3.1.2. Consumables 

Name      Company 

Bottle Top Filter, 0.22 µm EMD Millipore, Merck Chemicals GmbH, 
Darmstadt, Germany  

Cell culture Petri dish, 94 mm x 16 mm  Greiner bio-one GmbH, Frickenhausen, Germany 

Cell culture T-75 flask   Greiner bio-one GmbH, Frickenhausen, Germany 

Cell culture multiwell plates,   Greiner bio-one GmbH, Frickenhausen, Germany 
6 well, 96 well 

Cell scraper, 25 cm    Greiner bio-one GmbH, Frickenhausen, Germany 

Cell strainer, 70 μm, sterile    Becton Dickinson GmbH, Heidelberg, Germany 

Centrifuge tubes, 18 mm, screw cap  Brand GmbH & Co. KG, Wertheim, Germany  

Centrifuge tubes, Pyrex®, screw cap  Corning B.V., Amsterdam, Netherlands  

Conical tubes, 15 ml    Becton Dickinson GmbH, Heidelberg, Germany 

Conical tubes, 50 ml     Greiner bio-one GmbH, Frickenhausen, Germany 

Countess™ cell counting chamber slides Invitrogen, Thermo Fisher Scientific GmbH, 
Waltham, MA, USA  

CryoPure tubes, 1.8 ml   Sarstedt AG & Co., Nuembrecht, Germany 

Filter Tips: 10 μl, 100 μl, 1000 μl   Nerbe plus GmbH, Winsen, Germany 

Freezing container    Carl Roth GmbH & Co. KG, Karlsruhe, Germany   

Glass bottles: 250 ml, 500 ml   Simax Inc., Sázava, Czech Republic  
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Hollow needles, 18G    Becton Dickinson GmbH, Heidelberg, Germany 

Hollow needles, 22G    Terumo GmbH, Hamburg, Germany 

Measuring cylinders: 100 ml, 500 ml Duran group GmbH, Wertheim, Germany 

MicroAmp™ Fast 96-well plate Applied Biosystems, Thermo Fisher Scientific 
GmbH, Waltham, MA, USA 

Microplate, 96 well    Greiner bio-one GmbH, Frickenhausen, Germany 

Pasteur Pipettes, glass, 230 mm  VWR International GmbH, Darmstadt, Germany 

PCR tubes: 0.2 ml     Nerbe plus GmbH, Winsen, Germany 

Pincette, 12.5 cm, sterile   Seidel Medizin GmbH, Buchendorf, Germany 

Pipette tip:      Sarstedt AG & Co., Nuembrecht, Germany 
10 μl, 200 μl, 300 μl, 1000 μl 

Plastic tubes, 5 ml     Sarstedt AG & Co., Nuembrecht, Germany 

Plastic tubes, 5ml for flow cytometry Sarstedt AG & Co., Nuembrecht, Germany 

Polyethylene vials, 20 ml PerkinElmer, Thermo Fisher Scientific GmbH, 
Waltham, MA, USA 

Reaction tubes: 1.5 ml, 2 ml    Sarstedt AG & Co., Nuembrecht, Germany 

Seal sheets, adhesive Thermo Fisher, Thermo Fisher Scientific GmbH, 
Waltham, MA, USA   

Serological pipettes:     Greiner bio-one GmbH, Frickenhausen, Germany 
5 ml, 10 ml, 25 ml 

Sterile scalpel Nr. 21     Feather Safety Razor Co. Ltd., Osaka, Japan 

Sterile syringe: 2 ml, 5 ml, 10ml   B. Braun Melsungen AG, Melsungen, Germany 

Super Polyethylene vials, 6ml  Packard Bioscience S.V., Groningen, Netherlands  

Syringe filters, 0.22 μm, 0.45 µm  Merck Millipore GmbH, Darmstadt, Germany  

Syringe filters, 0.2 µm   PALL GmbH, Dreieich, Germany  
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3.1.3. Reagents 

Name      Company 

Acetic acid, ReagentPlus®, ≥99% Sigma-Aldrich GmbH, Steinheim, Germany  
(#A6283) 

Agarose, analytical grade  Promega Corporation, Madison, WI, USA 
(#3121) 

Antibody-free serum, (AB serum)   provided by Prof. Dr. H. Hackstein, Giessen, 

Germany 

Aqua B. Braun     B. Braun Melsungen AG, Melsungen, Germany  
      (#75/12604052/0503) 

APC anti-human CD90 (thy1),  BioLegend, London, UK (#328113) 
Clone 5E10   

APC Mouse IgG1, κ isotype Ctrl (FC), BioLegend, London, UK (#400121) 
Clone MOPC-21 

Apolipoprotein A-I, human plasma,   EMD Millipore, Merck Chemicals GmbH,  
HDL (Apo A-I)    Darmstadt, Germany (#178452)  

β-Nicotinamide mononucleotide (NAM) Sigma-Aldrich GmbH, Steinheim, Germany 
(#N3501)  

Blue/Orange 6x Loading Dye Promega Corporation, Maddison, WI, USA 
(#G190A) 

Carbachol  Sigma-Aldrich GmbH, Strasbourg, France  
(#Y0000113) 

Chloroform, HiPerSolv, for HPLC  VWR International GmbH, Darmstadt, Germany 
(#UN1888) 

Choline chloride, [methyl-3H]- PerkinElmer, Thermo Fisher Scientific GmbH, 
Waltham, MA, USA (#NET109001MC) 

Choline chloride, trimethyl-D9, 98% Cambridge Isotope Laboratories, Andover, MA, 
USA (#DLM-549-1) 

Choline Kinase-α inhibitor (CK37)  EMD Millipore, Merck Chemicals GmbH, 
Darmstadt, Germany (#229103)  

Citric Acid, ≥99.5%    Carl Roth GmbH, Karlsruhe, Germany (#6490.3) 

D-(+)-Trehalose dehydrate  Sigma-Aldrich GmbH, Steinheim, Germany  
(#T0167)  

Dexamethasone, BioReagent, ≥ 97% Sigma-Aldrich GmbH, Steinheim, Germany    
(#D4902) 
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Dimethyl sulphoxide (DMSO), sterile  Sigma-Aldrich GmbH, Steinheim, Germany 
(#2650) 

Dispase II  PAN Biotech GmbH, Aidenbach, Germany  
(#P10-032100) 

DMEM medium PAN Biotech GmbH, Aidenbach, Germany 
(#P04-01550) 

DMEM w/o phenol red,   PAN Biotech GmbH, Aidenbach, Germany  
w/o L-serine and w/o choline chloride  (#P04-01550S2) 

DNA Ladder, 100 bp  Promega Corporation, Madison, WI, USA 
(#G210A) 

Dulbecco’s phosphate buffered saline PAN Biotech GmbH, Aidenbach, Germany  
(1x PBS)      (#P04-36500) 

Epinephrine hydrochloride  Sigma-Aldrich GmbH, Steinheim, Germany  
(E4642) 

Ethanol absolute, ≥ 99.8% Sigma-Aldrich GmbH, Steinheim, Germany 
(#32205) 

Ethanolamine, D4, 98% Cambridge Isotope Laboratories, Andover, MA, 
USA (#DLM-552-1) 

Ethanolamine hydrochloride, [1, 2-14C]- Hartmann Analytic, Braunschweig, Germany 
(#MC407H) 

Ethidium bromide, 1%   Carl Roth GmbH, Karlsruhe, Germany (#2218.1) 

Ethylendinitrilo-N, N, N’, N’, -   Sigma-Aldrich GmbH, Steinheim, Germany  
tetra-acetic-acid (EDTA)   (#E5513) 

Emulsifier-Safe™    PerkinElmer, Waltham, MA, USA (#6013389) 

ERK inhibitor SCH772984    Selleckchem, Munich, Germany (#S7101)  

Fetal bovine serum (FBS)  Sigma-Aldrich GmbH, Steinheim, Germany 
(#F7524) 

Folic acid Sigma-Aldrich GmbH, Steinheim, Germany  
(#F8785) 

Gelatin EIA grade reagent Bio Rad Laboratories GmbH, Arnsberg, Germany  
(#170-6537) 

Glucocorticoid receptor antagonist  Selleckchem, Munich, Germany (#S2606)  
RU 486, Mifeprostone 

Hemicholinium-3 Sigma-Aldrich GmbH, Steinheim, Germany  
(#H108-100MG) 
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2-(4-2-hydroxyethyl)-piperazinyl-   Gibco, Thermo Fisher Scientific GmbH, 
1-ethansulfonate (HEPES), 1M   Waltham, MA, USA (#15630080)  

JNK inhibitor SP600125    Selleckchem, Munich, Germany (#S1460) 

Lipoprotein deficient serum (LPDS) provided by Dr. A. Sigruener, Regensburg, 
Germany  

L-Serine Sigma-Aldrich GmbH, Steinheim, Germany  
(#S4311) 

Methanol, for HPLC, ≥ 99.9%   Sigma-Aldrich GmbH, Steinheim, Germany 
      (#34860) 

NF-kB inhibitor QNZ    Selleckchem, Munich, Germany (#S4902) 

Nuclease-Free Water Promega Corporation, Madison, WI, USA  
(#P119C) 

Quinacrine dihydrochloride  Sigma-Aldrich GmbH, Steinheim, Germany 
(#Q3251) 

P38 inhibitor SB203580    Selleckchem, Munich, Germany (#S1076) 

PE anti-human CD45, clone 2D1   BioLegend, London, UK (#368509) 

PE Mouse IgG1, κ isotype Ctrl (FC), BioLegend, London, UK (#400113)  
clone MOPC-21 

Penicillin-Streptomycin (100x),   PAN Biotech GmbH, Aidenbach, Germany 
Penicillin 1000 U/ml,    (#P06-07100)  
Streptomycin 10 mg/ml 
 
PeqGOLD TriFast™     Peqlab Biotechnologie GmbH, Erlangen, 
                                                                       Germany (#12-6834-00) 

PI3K inhibitor LY294002    Selleckchem, Munich, Germany (#S1105) 

Pilocarpine hydrochloride  Sigma-Aldrich GmbH, Strasbourg, France  
(#P1650000) 

2-Propanol, Rotisolv®, ≥ 99.9%  Carl Roth GmbH, Karlsruhe, Germany (#T910.1) 

Recombinant human Apolipoprotein E4 Peprotech GmbH, Hamburg, Germany (350-04) 
(Apo E4) 

Recombinant human BMP-2   Peprotech GmbH, Hamburg, Germany (#120-02)  

Recombinant human BMP-4 Peprotech GmbH, Hamburg, Germany  
(#120-05ET) 

Recombinant human BMP-7   Peprotech GmbH, Hamburg, Germany (#120-03) 
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Recombinant human IGF-1    Peprotech GmbH, Hamburg, Germany (# 100-11) 

Recombinant human IL-1β R&D Systems GmbH, Wiesbaden, Germany  
(# 201-LB-005) 

Recombinant human IL-6  Life Technologies, Eugene, OR, USA  
(#10395-HNAE) 

Recombinant human TGF-β1   Peprotech GmbH, Hamburg, Germany (#100-21) 

Recombinant human TNF-α  Peprotech GmbH, Hamburg, Germany  
(#300-01A) 

Sirtinol, 10mM/1ml in DMSO  Selleckchem, Munich, Germany (#S2804) 

Sirtuin-Inhibitor EX 527, Selisistat   Selleckchem, Munich, Germany (#S1541) 

Sodium chloride, 0.9% solution  B. Braun Melsungen AG, Melsungen, Germany 
(#2350748) 

Sodium dodecyl sulfate (SDS)  Carl Roth GmbH, Karlsruhe, Germany (#2326.1) 

Staurosporine Calbiochem, Merck Millipore, Darmstadt, 
Germany (#569397) 

Sytox® Blue Dead Cell Stain   Life Technologies, Eugene, OR, USA (#S34857) 

Terbutaline hemisulfate salt  Sigma-Aldrich GmbH, Steinheim, Germany  
(#T2528) 

TGF-β type I receptor activin   Selleckchem, Munich, Germany (#S1067)  
receptor-like kinase inhibitor SB431542 

Tris, pufferan ® ≥ 99%    Carl Roth GmbH, Karlsruhe, Germany (#5429.3) 

Trypan blue stain 0.4%   Life Technologies, Eugene, OR, USA (#T10282) 

Trypsin/EDTA 0.5% in PBS (10x) PAN Biotech GmbH, Aidenbach, Germany  
(#P10-02410) 

 

3.1.4. Reagent kits 

Name      Company 

Caspase-Glo® 3/7 Assay Promega Corporation, Madison, WI, USA 
(#G8091) 

Cell Titer 96®Non-Radioactive  Promega Corporation, Madison, WI, USA 
Cell Proliferation Assay    (#G4001)  
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QuantiTect® Primer Assay,   Qiagen, Hilden, Germany (# QT00088935)  
B2M: Hs_B2M_1SG  

QuantiTect® Primer Assay,   Qiagen, Hilden, Germany (#QT01680476)  
βactin: Hs_ACTB_2_SG 

QuantiTect® Primer Assay,   Qiagen, Hilden, Germany (#QT01192646) 
GAPDH: Hs_GAPDH_2_SG 

QuantiTect® Reverse Transcription Kit Qiagen, Hilden, Germany (#205313) 

QuantiFast® SYBR® Green PCR Kit Qiagen, Hilden, Germany (#204057) 

PCR Mycoplasma Test Kit I/C  PromoKine, PromoCell GmbH, Heidelberg, 
Germany (#PK-CA91-1024) 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific GmbH, Waltham, MA, 
USA (#23227) 

 

 

3.1.5. Buffers and solutions  

0.2% SDS solution 

0.2 g of SDS was dissolved in 100 ml of aqua B. Braun and stored at RT up to 6 months. 

1.4% agarose gel with ethidium bromide  

1.68 g of agarose was dissolved in 120 ml of 1x TAE buffer. Then 8µl of ethidium bromide 

was added. 

50x TAE buffer 
Component   Total volume 1000 ml  Final concentration 

Tris    242 g     2 M  

Acetic acid   57.1 ml    1 M 

EDTA, 0.5 M   100 ml     0.05 M 

Aqua B. Braun  900 ml 

The pH was adjusted to 8.3. Solution was stored at RT up to 3 years. 

1x TAE buffer 

50x TAE buffer was diluted 1:50 in aqua B. Braun.  
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1x Trypsin/EDTA 

10x Trypsin/EDTA solution was diluted 1:10 in 1x PBS and then sterile filtered through a 

0.22 µm filter. Aliquots were stored at -20°C up to 24 months.  

Apolipoprotein A-I stock solution 

250 µl of 2 mg/ml Apolipoprotein A-I was diluted with 250 µl of trehalose solution under 

sterile conditions, mixed by shaking, aliquoted and stored at -20°C up to 3 months. 

Apolipoprotein E4 stock solution 

500 µg of Apo E4 was reconstituted in 0.5 ml of trehalose solution under sterile conditions, 

mixed by shaking, aliquoted and stored at -20°C up to 3 months. 

β-Nicotinamide mononucleotide (NAM) 50 mM stock solution 

250 mg of NAM was dissolved in 1.5 ml of trehalose solution, vortexed, allowed to dissolve 

30 min, vortexed, filtered through a 0.45 µm filter and aliquoted. Aliquots were stored at -

20°C up to 6 months. 

BMP-2, -4 and -7 and TNFα stock solutions 

10 µg of each BMP and 10 µg of TNFα were dissolved in 2 ml trehalose solution under sterile 

conditions, mixed by shaking, aliquoted and stored at -20°C up to 12 months. 

Carbachol, epinephrine, hemicholinium-3, quinacrine, pilocarpine and terbutaline stock 

solutions 

Carbachol (1.8269 mg, 1 mM), epinephrine (2.1967 mg, 1 mM), hemicholinium-3 (5.7435 

mg, 1mM), quinacrine (4.728 mg, 1 mM), pilocarpine (5 mg, 1 mM) and terbutaline (2.7432 

mg, 1 mM) were dissolved in 10 ml of aqua B. Braun, vortexed, allowed to dissolve 30 min, 

vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up to 12 months. 

Cell culture “Complete DMEM medium” 
Component   Total volume 500 ml  Final concentration 

FBS (heat-inactivated) 50 ml    10% (v/v) 

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 
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DMEM medium  440 ml  

Media were stored at 4°C up to 2 weeks. 

 

Cell culture “LPDS medium” 
Component   Total volume 500 ml  Final concentration 

LPDS    25 ml    5% (v/v)  

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 

Folic acid   2 mg    4 mg/l 

L-serine   21 mg    42 mg/l 

DMEM medium  440 ml  

w/o phenol red, w/o L-serine and w/o choline chloride 

Media were stored at 4°C up to 2 weeks. 

 

Cell culture “LPDS medium w/o L-serine” 
Component   Total volume 500 ml  Final concentration 

LPDS    25 ml    5% (v/v)  

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 

Folic acid   2 mg    4 mg/l 

DMEM medium  440 ml  

w/o phenol red, w/o L-serine and w/o choline chloride 

Media were stored at 4°C up to 2 weeks. 

 

Cell culture “radioactive labelling medium”  
Component   Total volume 500 ml  Final concentration 

FBS (heat-inactivated) 50 ml    10% (v/v) 

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 
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DMEM medium  440 ml  

w/o phenol red, w/o L-serine and w/o choline chloride 

Media were stored at 4°C up to 2 weeks. 

 

Cell culture “2% starvation medium” 
Component   Total volume 500 ml  Final concentration 

FBS (heat-inactivated) 10 ml    2% (v/v)  

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 

DMEM medium  480 ml  

Media were stored at 4°C up to 2 weeks. 

 

Cell culture “5% starvation medium” 
Component   Total volume 500 ml  Final concentration 

FBS (heat-inactivated) 25 ml    5% (v/v)  

HEPES buffer , 1M  5 ml    10 mM 

Penicillin/Streptomycin  5 ml    10 U/ml penicillin  
                                                                                               0.1 mg/ml streptomycin 

DMEM medium  465 ml  

Media were stored at 4°C up to 2 weeks. 

 

Choline Kinase-α inhibitor (CK37) 1 mM stock solution 

5 mg of CK37 inhibitor was dissolved in 13.5 ml of DMSO, vortexed, allowed to dissolve 30 

min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up to 3 months. 

Citric acid 10 mM solution 

1.9213 g of citric acid was dissolved in 990 ml of aqua B. Braun, then filled up to 1 l. pH was 

adjusted to 3.0. Solution was sterile filtered through a 0.22 µm filter and stored at RT up to 6 

months.  
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[D4]-ethanolamine stock solution 

10 µl of [D4]-ethanolamine was dissolved in 990 µl of LPDS medium, filtered through a 0.45 

µm filter, aliquoted and stored at 4°C up to 1 week. 

[D9]-choline chloride stock solution 

10 mg of [D9]-choline chloride was dissolved in 1ml of LPDS medium, filtered through a 

0.45 µm filter, aliquoted and stored at 4°C up to 1 week. 

Dexamethasone stock solutions 

Dexamethasone (3.9246 mg, 1 mM and 7.8492 mg, 2 mM) was dissolved in 10 ml of 95% 

ethanol, vortexed, allowed to dissolve 30 min, vortexed, filtered through a 0.45 µm filter, 

aliquoted and stored at -20°C up to 24 months. 

EDTA 0.5 M solution 

186.1 g of EDTA was dissolved in 1000 ml of aqua B. Braun. The pH was adjusted to 8.0. 

Solution was stored at 4°C up to 4 months. 

ERK inhibitor SCH772984 0.5 mM stock solution 

5 mg of SCH772984 inhibitor was dissolved in 17 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 

Gelatin-PBS solution 

20 mg of gelatin was dissolved in 20 ml of 1x PBS under slight heating (max. 50°C), then 

cooled down and sterile filtered through a 0.45 µm filter. Aliquots were stored at -20°C up to 

6 months. 

Glucocorticoid receptor antagonist RU 486 0.5 mM stock solution 

5 mg of SCH772984 inhibitor was dissolved in 23.278 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 
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Heat-inactivation of FBS 

The heating process inactivates proteins of the complement cascade. This process is 

recommended in immunological studies and the culture of embryonic stem cells, insect cells 

and smooth muscle cells. 500 ml of completely thawed FBS was incubated in water bath at 

56ºC. When fluid temperature reached 56ºC, FBS was heat-inactivated for 30 min. Aliquots 

were stored at -20°C up to given expiration date.  

IGF-1 stock solution 

100 µg of IGF-1 was dissolved in 20 ml trehalose solution under sterile conditions, mixed by 

shaking, aliquoted and stored at -20°C up to 12 months. 

IL-1β stock solution 

5 µg of IL-1β was dissolved in 10 ml of gelatin-PBS solution under sterile conditions, mixed 

by shaking, aliquoted and stored at -20°C up to 3 months. 

IL-6 stock solution 

5 µg of Il-6 was dissolved in 10 ml of trehalose solution under sterile conditions, mixed by 

shaking, aliquoted and stored at -20°C up to 12 months. 

JNK inhibitor SP600125 5 mM stock solution 

5 mg of SP600125 inhibitor was dissolved in 4.541 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 

NF-kB inhibitor QNZ 5 mM stock solution 

5 mg of QNZ inhibitor was dissolved in 2.649 ml of DMSO, vortexed, allowed to dissolve 30 

min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up to 6 months. 

P38 inhibitor SB203580 5 mM stock solution 

5 mg of SB203580 inhibitor was dissolved in 2.806 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 
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PI3K inhibitor LY294002 5 mM stock solution 

5 mg of LY294002 inhibitor was dissolved in 3.254 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 

Sirtuin-Inhibitor EX 527 stock solutions 

5 mg of EX 527 inhibitor (40 mM) was dissolved in 0.5 ml DMSO, vortexed, allowed to 

dissolve 30 min, vortexed and aliquoted.  To prepare 25 mM solution, 0.25 ml of 40 mM EX 

527 stock solution was diluted with 0.15 ml of DMSO, vortexed, filtered through a 0.45 µm 

filter and aliquoted. To prepare 0.5 mM solution, 10 µl of 40 mM EX 527 stock solution was 

diluted with 0.790 ml of DMSO, vortexed, filtered through a 0.45 µm filter and aliquoted.  

Aliquots were stored at -20°C up to 6 months. 

Staurosporine 1mM solution 

100 µg of staurosporine was dissolved in 0.22 ml DMSO, vortexed, allowed to dissolve 30 

min, vortexed, aliquoted and stored at -80°C up to 6 months. 

TGF-β receptor inhibitor SB431542 5 mM stock solution 

5 mg of SB431542 inhibitor was dissolved in 2.602 ml of DMSO, vortexed, allowed to 

dissolve 30 min, vortexed, filtered through a 0.45 µm filter, aliquoted and stored at -20°C up 

to 6 months. 

TGF-β1 stock solution 

2 µg of TGF-β1 was dissolved in 20 µl 10 mM citric acid (pH 3.0) under sterile conditions, 

then 3.980 ml trehalose solution was added, solution was mixed by shaking, aliquoted and 

stored at -20°C up to 12 months. 

Trehalose solution 

2.5 g of trehalose was dissolved in 50 ml of aqua B. Braun, then sterile filtered using a 0.22 

µm filter. Aliquots were stored at -20°C up to 12 months. 
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3.1.6. Human FLS  

The study was approved by the Ethical review Committee of Faculty of Medicine 

(Justus Liebig University, Giessen, Germany). All patients provided written consent to donor 

samples for research. FLS were obtained from patients undergoing total knee replacement 

surgery and fulfilling the following inclusion criteria: diagnosed OA, both genders, age 50-85 

years, BMI between 20 and 35, all CRP values. FLS were excluded due to (a) a joint disease 

other than OA such as RA, infection, gout, trauma, (b) knee joint surgery within the last 6 

months, (c) severe diseases including HIV, tumor near to joint, severe liver and kidney 

diseases, drug abuse and (d) intake of immunosuppressive drugs, corticosteroids or HA within 

last 6 months. In case of preliminary experiments patients fulfilled inclusion/exclusion with 

few exceptions in terms of BMI. Inclusion/exclusion criteria were strongly followed during 

screening and main experiments. Table 1 and 2 present characterization of patients used for 

the experiments.  

 

 

Main Experiment  
– Screening-  
(see 3.4.1.)  

Main Experiment 
- Mechanism - 

(see 3.4.2.) 

N 6 5 

Age (years) mean ± SD 73.5±7.1 80.2±6.2 

Gender                      ♂ 2 3 
                                                            

                ♀ 4 2 

BMI mean ± SD 29.1±3.5 28.6±2.4 

CD90+ (%) 87.4±7.6 96.4±3.5 

Diagnosis OA OA 

Other diseases Cardiovascular diseases (5x) Cardiovascular diseases (3x) 

Hypertension (4x) Hypertension (5x) 

Hyperlipidemia (2x) Hyperlipidemia (2x) 

Hypothyroidism (1x) Hypothyroidism (1x) 

Obesity (1x) Obesity (2x) 

Chronic obstructive 
pulmonary disease (1x) 

Diabetes mellitus (2x) 

 
Kidney disease (2x) 

 
Constipation (1x) 

Table 1. Characterization of the patients used for the biosynthesis experiments. 
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Main Experiment  
– Screening-  
(see 3.4.3.)  

Main Experiment 
- Mechanism - 

(see 3.4.4.) 

N 5 6 

Age (years) mean ± SD 75.2±9.0 81.8±5.5 

Gender                   ♂ 2 4 
                                               

              ♀ 3 2 

BMI mean ± SD 28.4±3.0 29.4±3.0 

CD90+ (%) 77.4±18.4 97.4±1.5 

Diagnosis OA OA 

Other diseases Cardiovascular diseases (1x) Cardiovascular diseases (3x) 

Hypertension (3x) Hypertension (6x) 

Hyperlipidemia (1x) Hyperlipidemia (2x) 

Diabetes mellitus (1x) Hypokalemia (3x) 

Obesity (1x) Diabetes mellitus (2x) 

Gastritis (1x) Obesity (1x) 

Gallstone (1x)  Hypothyroidism (2x) 

 
Kidney diseases (2x) 

Table 2. Characterization of the patients used for the release experiments. 

3.1.7. Analysis Software 

Name      Company 

7500 Fast System Software Applied Biosystems, Thermo Fisher Scientific, 
GmbH, Waltham, MA, USA 

Excel Macros  provided by Dr. G. Liebisch, Regensburg, 
Germany 

FACSDiva software, version 6.1.3  Becton Dickinson GmbH, Hilderberg, Germany 

Graph Pad Prism 5.2     Graphpad Software Inc., La Jolla, CA, USA 

i-control™, microplate reader software Tecan Group Ltd., Maennedorf, Switzerland 

Intas® GDS  Intas Science Imaging Instruments GmbH, 
Goettingen, Germany 

Magellan™, microplate reader software  Tecan Group Ltd., Maennedorf, Switzerland 

Microsoft Office Excel 2007   Microsoft, Redmond, WA, USA 

NanoDrop™ 1000 Operating Software, Thermo Fisher Scientific GmbH, Waltham, MA, 
version 3.8.1      USA 
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3.2. Methods 

3.2.1. FLS isolation 

FLS isolation is based on a mechanical and enzymatic disaggregation using a bacterial 

protease dispase II. This proteolytic enzyme cleaves fibronectin, collagen IV, and to a lesser 

extent collagen I, thereby destroying cell-cell adhesion.  

 FLS isolation was performed under sterile conditions according to a method 

previously described (89). In brief, synovial tissue was rinsed with cold, sterile 1x PBS and 

separated using a scalpel from blood vessels, fatty cells and connective tissue (Figure 3). 

Required synovial tissue was chopped into less than 1 mm3 pieces. Those small pieces were 

digested for 1 hour at RT in 1x PBS containing 1% dispase II. The cell suspension was 

filtered through a 70 μm cell strainer, centrifuged at 300 x g for 10 min, resuspended in 15 ml 

of complete DMEM medium, and plated into cell culture T-75 flasks. FLS were maintained in 

a humidified incubator at 37°C and 10% CO2.  

 

Figure 3. Synovial membrane during isolation.  

 

3.2.2. FLS culture 

 FLS were cultured in complete DMEM medium in a humidified atmosphere at 37°C 

and 10% CO2. Media were changed three times a week, on Mondays, Wednesdays and 

Fridays. Confluent FLS were washed with 1x PBS and trypsinized with 1x Trypsin/EDTA. 

Reaction of trypsin was stopped with complete DMEM medium. Cells were centrifuged at 
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300 x g for 10 min and then passaged into new T-75 flasks. In case of freezing FLS were 

trypsinized and frozen in FBS containing 10% of DMSO using a freezing container filled up 

with isopropanol to achieve -1°C/min rate of cooling, and stored at -86°C. When needed, FLS 

were thawed, centrifuged 300 x g for 10 min and resuspended in complete DMEM medium. 

All experiments were carried out with FLS from passage 4 to 5 to ensure stable phenotype 

and genotype of FLS (89).  

 

3.2.3. Mycoplasma detection 

Mycoplasma contamination in cell culture is a problem that can cause non-

reproducible, questionable results in research. The presence of contaminative mycoplasma 

species can be easily and sensitively detected using a PCR-based test which displays the 

bands of amplified DNA fragments after gel electrophoresis. 

To ensure that FLS culture is myoplasma-free, PCR Mycoplasma Test Kit I/C was 

used according to the instructions provided by the manufacturer. Briefly, 10 µl of 

amplification products were mixed with 2 µl of Blue/Orange 6x Loading Dye and separated 

on ethidium bromide stained 1.4% agarose gel in 1x TAE buffer. The DNA bands were 

visualized and documented by the Gel iX Imager. All experiments were carried out with 

mycoplasma negative FLS. 

 

3.2.4. FACS analysis 

 Flow cytometry measures optical and fluorescence characteristics of single cells. 

Antibodies conjugated to fluorescent dyes can bind to specific cellular antigens. When 

labelled cells are passed by a light source, the fluorescent molecules are excited to a higher 

energy state. Upon returning to their resting states, the fluorochromes emit light energy at 

higher wavelengths. During analysis fluorescent character of each cell is measured.  

 To ensure purity of isolated FLS, cells were characterized by positive staining for 

fibroblast-specific antigen CD90 and negative stained for macrophage-specific antigen CD45 

using fluorescence-activated cell sorting (FACS). Antigens were detected as follows (Table 

3): 
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Antigen      Antibody Fluorescent dye Excitation Emission 

CD45          Anti-human CD45 Phycoerythrin (PE) 496 nm 578 nm 

CD90          Anti-human CD90 Allophycocyanin (APC) 650 nm 660 nm 

Table 3. Detection of cell-surface antigens of FLS. 

To prepare FLS for analysis, cells were trypsinized or thawed, centrifuged at 300 x g 

for 10 min in RT and resuspended in 200 µl of 1x PBS at a concentration of 100,000 cells per 

100 µl of 1x PBS. The cell suspension was divided into CD90/CD40 sample and isotype 

control, 100 µl each. Non-specific interactions were blocked with 10 µl of antibody free 

serum (AB serum) which is a serum of AB type blood. Surface antigens were stained for 45 

min at RT as follows (Table 4):  

Sample Antibody Volume 

CD90/CD45 sample PE anti-human CD45 

APC anti-human CD90 

2.5 µl (undiluted) 

2.5 µl (undiluted) 

Isotype control PE Mouse IgG1, κ Isotype Ctrl 

APC Mouse IgG1, κ Isotype Ctrl 

0.5 µl (undiluted) 

0.5 µl (undiluted) 

Table 4. List of antibodies used for detection of cell-surface antigens of FLS. 

Then samples were washed with 1 ml of 1x PBS, vortexed and centrifuged at 1200 rpm for 10 

min at 4°C. 950 µl of 1x PBS was removed, then samples were transferred into FACS tubes, 

vortexed and stained with 1 µl of Sytox® Dye dead cell stain. Afterwards samples were 

analysed in BD FACS Canto II flow cytometer (Figure 4). CD90 positive cells were presented 

as a percentage of total cells. 

In case of preliminary and screening experiments frozen FLS were used for FACS analysis, 

which caused problems with staining. Thus, for the main experiments fresh FLS of passage 5 

at 100% confluency were analysed and at least 90% were CD90 positive (Figure 4).  

 

3.2.5. Cell counting and viability assay 

 Trypan blue solution is routinely used as a cell stain to assess cell viability using the 

dye exclusion test. It is based on the principle that live cells possess intact cell membranes 

that exclude dyes such as trypan blue, whereas dead cells do not.  
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Figure 4. Characterization of FLS. Representative FACS analysis. Upper panel presents gates for 
total cells and living cells. Lower panel shows CD90 positive FLS.  

 

 In order to determine cell number and viability, FLS were trypsinized and centrifuged 

at 300 x g for 10 min and then resuspended in 1 ml or 0.5 ml of complete DMEM medium. 10 

µl of sample was mixed with 10 µl of 0.4% trypan blue solution and pipetted into a disposable 

Countess™ chamber slide. Measurement was performed in Countess™ II Automated Cell 

Counter which uses trypan blue staining combined with an autofocus optical system and 

sophisticated image analysis algorithm to obtain accurate cell and viability counts.  

 

3.2.6. Mitochondrial activity assay 

 The MTT assay is a colorimetric assay for assessing cell metabolic activity. Living 

cells possess mitochondrial reductases which are capable to reduce the yellow tetrazolium dye 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to insoluble formazan, 

which has a purple colour. After solubilisation of formazan, the absorbance of coloured 
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solution can be quantified at 560 nm. Cells with a low metabolism produce very little 

formazan, whereas highly active cells exhibit huge MTT reduction.  

To describe the mitochondrial activity of FLS in our both in vitro models, the MTT 

assay was performed using Cell Titer 96®Non-Radioactive cell Proliferation assay according 

to manufacturer protocol. Briefly, FLS from 3 patients were seeded into 6 well plates at 

density 80,000 cells per well and were cultured according to the method used in the 

biosynthesis (see chapter 3.3.1.) or release model (see chapter 3.3.2.) including various 

labelling respectively release steps. The labelling steps in the biosynthesis model lasted 8, 16 

and 24 hours. The release steps in the release model lasted 12, 24 and 36 hours. 

Absorbance of each sample was measured at 560 nm in the Sunrise ™ microplate absorbance 

reader. Data were normalized to 100,000 viable cells, averaged, and compared with the 

control condition (complete DMEM medium).   

 

3.2.7. Apoptosis assay 

 Activation of apoptotic caspases e.g. caspase-3, and -7 results in activation of a 

cascade of signalling events permitting the controlled demolition of cellular components. The 

Caspase-Glo® 3/7 Assay is a luminescent assay that measures caspase-3 and -7 activities in 

cultures of adherent cells. The assay provides a proluminescent caspase-3/7 substrate, which 

contains the tetrapeptide sequence DEVD. This substrate is cleaved by caspase-3/7 to release 

aminoluciferin, a substrate of luciferase used in the production of light.  

Due to decreased mitochondrial activity of FLS in our biosynthesis model, apoptosis 

was evaluated using the Caspase-Glo® 3/7 Assay according to the instructions provided by 

the manufacturer. In brief, FLS from 3 patients were seeded into 96 well plates at density 

15,000 cells per well and cultured according to the method used in the biosynthesis model 

(see chapter 3.3.1.) and the duration of labelling steps lasting 8, 16 and 24 hours.  

1 µM of staurosporine was used as a positive control for the activation of apoptosis. 

Luminescence was measured in Infinite® 200 PRO microplate luminescence reader. Data 

were averaged and compared with those of the control condition (complete DMEM medium) 

as well as with those of the positive control (1 µM of staurosporine).  
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3.2.8. Analysis of reference genes 

 Reference genes, also called housekeeping genes are involved in basic cell 

maintenance, and are therefore expected to maintain constant expression levels in all cells and 

conditions.  

To check whether the expression of housekeeping genes in our both in vitro models of 

FLS are stable, RNA was isolated from FLS and used to synthesize cDNA, which was further 

analysed by quantitative real-time PCR. Briefly, FLS from 3 patients were seeded into 6 well 

plates at a density of 80,000 cells per well and cultured according to the method used in the 

biosynthesis (see chapter 3.3.1.) or release model (see chapter 3.3.2.) including various 

labelling (8, 16, 24 hours) respectively release (12, 24, 36 hours) steps.  

RNase-free equipment was used during handling with RNA and cDNA. Also work was 

performed under RNase-free conditions.  

 

3.2.8.1. RNA isolation 

 Isolation of RNA with peqGOLD TriFast™ is based on the acid guanidinium 

thiocyanate-phenol-chloroform extraction (90). This method relies on phase separation by 

centrifugation of a mixture of the aqueous sample and a solution containing phenol and 

chloroform, resulting in an upper aqueous phase containing RNA, the interphase containing 

DNA, and a lower organic phase in which the proteins are present. 

Total RNA was isolated from FLS according to the manufacturer’s instruction. 

Concentration and purity of obtained RNA was determined spectrophotometrically at 260 nm 

and 280 nm wavelengths using NanoDrop™ 1000. The 260/280 ratio was calculated. Only 

samples containing pure RNA with 260/280 ratio between 1.8 and 2.0 were used for further 

analysis.  

 

3.2.8.2. Reverse transcription 

 Reverse transcription is the synthesis of single-stranded complementary DNA (cDNA) 

using single-stranded RNA as a template, mediated by the enzyme reverse transcriptase (RT). 

The cDNA can be used as a template for amplification by PCR. 
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To perform reverse transcription QuantiTect® Reverse Transcription Kit was used 

according to manufacturer protocol. The obtained cDNA was used for real-time PCR. 

 

3.2.8.3. Quantitative real-time PCR 

SYBR Green is a commonly used fluorescent dye that binds double-stranded DNA 

molecules by intercalating between the DNA bases. It is used in quantitative PCR because the 

fluorescence can be measured at the end of each amplification cycle to determine, relatively 

or absolutely, how much DNA was amplified.  

In order to investigate the expression of housekeeping genes, QuantiFast® SYBR® 

Green PCR Kit was used according to manufacturer protocol. Briefly, cDNA samples 

obtained from reverse transcription were diluted 1:4 with RNase-free water and 2 µl of each 

sample was mixed with SYBR Green Master Mix and primers. For amplification of specific 

products of the genes of interest established by Qiagen the following QuantiTect® Primer 

Assays were used (Table 5):  

 

Gene Name Specific product 

Beta-2-microglobulin B2M: Hs_B2M_1SG NM_004048 (987 bp) 

Beta-actin βactin: Hs_ACTB_2_SG NM_001101 (1852 bp) 

Glyceraldehyde 3-

phosphate dehydrogenase 

GAPDH Hs_GAPDH_2_SG NM_002046 (1421 bp) 

Table 5. List of real-time PCR primers obtained from Qiagen. 

PCR amplification of specific transcripts was carried out in Real Time PCR System 7500 

Fast. The threshold cycles (Ct) were determined for all samples and used for calculation of the 

ratios of levels of expression of the reference genes of FLS cultured in 5% LPDS versus 10% 

FBS as well as 2% FBS versus 10% FBS and 5% FBS versus 10% FBS.  
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3.2.9. Protein quantification 

The bicinchoninic acid assay (BCA assay) is a biochemical assay to determine the 

total protein concentration in a solution (91). The first step of reaction is the chelation of 

copper with protein in an alkaline environment. In the second step bicinchoninic acid (BCA) 

reacts with the reduced cuprous cation that was formed in step one resulting in an intense 

purple-coloured reaction. The BCA/copper complex is water-soluble and exhibits a strong 

linear absorbance at 562 nm with increasing protein concentrations. 

To determine protein concentrations within 0.1% SDS cell lysates, Pierce™ BCA 

Protein Assay Kit with bovine albumin as a standard was used according to manufacturer 

protocol. The standard curve was prepared and used for the determination of the protein 

concentration of each unknown sample. 

 

3.2.10. Lipid extraction 

 The extraction of lipids in a solution relies on a phase separation by centrifugation 

(92). Originally, the tissue homogenate is mixed with chloroform and methanol in such 

proportions that a miscible system is formed with the water in the tissue. Dilution with 

chloroform and water separates the homogenate into two layers, the lower chloroform layer 

contains all lipids and the upper methanolic layer contains all non-lipids. A purified lipid 

extract is obtained by isolating the chloroform layer. 

 

3.2.10.1. Lipid extraction of stable isotope-labelled samples 

Extraction of PLs from stable isotope-labelled cell lysates was performed according to 

the method of Bligh and Dyer in the presence of non-naturally occurring lipid species which 

served as internal standards. The following lipid species were added as internal standards: PC 

14:0/14:0, PC 22:0/22:0, PE 14:0/14:0, PE 20:0/20:0, PS 14:0/14:0, PS 20:0/20:0, PG 

14:0/14:0, PG 20:0/20:0, LPC 13:0, LPC 19:0, Cer 14:0, Cer 17:0, D7-FC, CE 17:0, and CE 

22:0. Mixture of 300 µl of cellular extract and 500 µl of water was used as starting material. 

PLs were isolated by adding 3 ml of methanol/chloroform (2:1, v/v) followed by 1 hour 

incubation at RT. Separation of phases was performed by adding 1 ml of chloroform and 1 ml 

of water. Subsequently, samples were centrifuged at 4000 rpm for 10 min at RT. 1.2 ml of the 
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chloroform phases containing PLs was collected using a Pipetting Robot Genesis and dried in 

a vacuum centrifuge for 1 hour. For further ESI-MS/MS analysis, dried samples were 

dissolved in 1 ml methanol/chloroform solution (3:1, v/v) containing 7.5 mM ammonium 

acetate. 

 

3.2.10.2. Lipid extraction of radioactive isotope-labelled samples  

Extraction of PLs from radioactive isotope-labelled cell lysates and experimental 

media was performed according to the method of Bligh and Dyer. The volumes of reagents 

were added to samples as follow (Table 6):  

Table 6. The volumes of reagents added to radiolabelled samples during lipid extraction according to 

Bligh and Dyer. 

First, samples were incubated with methanol/chloroform solution (2:1, v/v) and incubated for 

1 hour at RT. Separation of phases was performed by the addition of chloroform and water. 

Subsequently, samples were centrifuged at 4000 rpm for 10 min at RT. The chloroform phase 

was collected: 1 ml in case of media or 200 µl in case of cell lysate extract and further 

analysed by liquid scintillation counting. 

 

3.2.11. Mass spectrometry ESI-MS/MS 

Mass spectrometry analysis is based on the mass and charge differences of the 

molecules. With this powerful method both unlabelled and labelled lipid species can be 

analysed at the same time. During electrospray ionization tandem mass spectrometry (ESI-

MS/MS) a spray of solvent and solute expands from a narrow orifice held at a high electrical 

potential resulting in charged droplets which subsequently explodes, forming smaller droplets, 

which are directed to the mass analyser optics. MS/MS spectrometer has two mass analysers 

linked in tandem, separated by a collision cell. The first analyser measures the mass of 

ionized molecules. In the collision cell ionized molecules undergo fragmentation. The second 

Sample Methanol/chloroform Chloroform  Water 

Cell lysate: 500 µl 1.875 ml 0.625 ml 0.625 ml 

Medium: 100 µl 0.375 ml 0.125 ml 0.125 ml 



MATERIALS AND METHODS 
 

45 

 

analyser measures the ion fragments generated in the previous step. Molecules of smaller 

mass reach the detector first.  

Lipid species of stable isotope-labelled samples were quantified by ESI-MS/MS using 

the mass spectrometer Quattro Ultima™ Triple Quadruple and analytical setup and strategy 

described by PD Dr. rer. nat. G. Liebisch of the Institute for Clinical Chemistry and 

Laboratory Medicine, University Hospital of Regensburg, Germany. In brief, precursor ion 

scan of mass/charge (m/z) 184 specific was used for phosphatidylcholine (PC), sphingomyelin 

(SM), and lysophosphatidylcholine (LPC) detection (93). [D9]-choline-labelled lipids were 

analysed by precursor ion scan of 193. Neutral loss scans of 141 and 185 were used for 

detection of phosphatidylethanolamine (PE) and phosphatidylserine (PS), respectively (94). 

[D4]-ethanolamine-labelled lipids were analysed by neutral loss scan of 145.  PE-based 

plasmalogen (PE P) was analysed according to method described by Zemski et al. (95). 

Briefly, fragment ions of m/z 364, 380 and 382 were used for detection PE P-16:0, PE P-18:1, 

and PE P-18:0, respectively. Ammonium adductions of phosphatidylglycerol (PG) and 

phosphatidylinositol (PI) were determined by neutral loss scans of 189 and 277, respectively 

(96). Ceramides (Cer) were measured using a product ion of m/z 264 (97). Internal standards 

added to samples during lipid extraction were used to quantity corresponding lipid classes. 

Besides this, PC internal standards were used also for SM determination and PE internal 

standards were used for PE P determination. Correction of isotopic overlap of lipid species 

was performed by self-programmed Excel Macros for all lipids (93).  

The quantitative values of all PL species were normalized to determined protein 

content and are expressed as nmol/mg protein. Only PL species with a level higher than 1% of 

the corresponding PL class were considered. Moreover, only values which were three times 

higher than the internal standard blank were taken to account. Lipid species were annotated 

according to the “Shorthand notation of lipid structures that are derived from mass 

spectrometry” (98). For each PL class and species the percentage of labelled PL was 

calculated using the following equation: 

% labelled PL =
labelled PL (

nmol
mg protein

)

labelled PL (
nmol

mg protein
) +  unlabelled PL (

nmol
mg protein

)
 x 100 

Data for individual PL species were related to corresponding control equal 1.0, averaged and 

presented as x-fold change of % labelled PL compared to control. 
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3.2.12. Liquid scintillation counting 

Liquid scintillation counting (LSC) is the standard laboratory method to quantify the 

radioactivity of low energy radioactive isotopes, mostly β-emitting and α-emitting isotopes. 

The LSC detection method requires specific cocktails to absorb the energy emitted by 

radioisotopes. Liquid scintillator cocktails contain two basic components, the solvent and the 

scintillator. The solvent carries out the bulk of the energy absorption, while scintillator 

converts the absorbed energy into light. The intensity of the light is proportional to the β 

particle’s initial energy. Blue light flashes hit the photo cathode and then amplitude of the 

electrical pulse is converted into digital value.  

Lipids of radioactive isotope-labelled samples were quantified using LSC. Briefly, the 

chloroform phases taken from lipid extraction were mixed with Emulsifier-Safe™ cocktail: 1 

ml of medium extract with 15 ml of cocktail and 200 µl from cell lysate extract with 4 ml of 

cocktail. Samples were shaken overnight on the rocker and measured in [3H]- and [14C]- 

channels in the Multi-Purpose Scintillation Counter LS 6500. The quantitative values of all 

lipids were normalized to the cellular protein content and are expressed as dpm/mg cellular 

protein. The percentages of released [3H]-choline- and [14C]-ethanolamine-labelled PLs were 

calculated using the following equation: 

% released PLs =
total media counts (

dpm
mg protein)

total media counts (
dpm

mg protein
) +  total cellular counts (

dpm
mg protein

)
 x 100 

 

3.2.13. Statistical analysis of data 

All data are expressed as mean ± SD. We have assumed normally distribution of data. 

Grubb’s test was chosen to eliminate significant outliers from the data.  

For establishing experimental models different tests were used. Statistical comparison 

of the effect of single and double labelling and the effect of different concentrations of 

isotopes were tested by 2-way ANOVA. The paired t-tests were applied to analyse the effect 

of increasing concentrations of radioactive isotopes on radiolabelled PLs. Correlation between 

the time of labelling and PL labelling as well as time of release and PL release were 

calculated using the Spearman’s rank correlation. The impacts of the addition of L-serine to 

the cell culture on the labelling of PL as well as on the caspase 3/7 activity were tested using 
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the paired t-test. Significant differences between experimental (LPDS medium, 2 and 5% 

starvation medium) and control conditions (complete DMEM medium) in terms of cell 

viability, MTT and expression of housekeeping genes values related to control conditions 

were calculated and then evaluated by 1-way ANOVA. 

The effects of various treatments on PL biosynthesis (% labelled PL, x-fold change of 

% labelled PL compared to control, and % released PLs) were determined by the t-tests. 

Bonferroni correction for multiple testing was applied for screening the effect of various 

cytokines on the biosynthesis and release of PLs.  

P-values < 0.05 (*), < 0.01 (**) and < 0.001 (***) were considered statistically 

significant. Significance is shown in the respective figures.  

The statistical analysis was performed using Graph Pad Prism 5.2. 

 

3.3. Preliminary experiments 

 

3.3.1. An in vitro model to study the biosynthesis of PLs 

 To investigate the biosynthesis of PLs, the stable isotopes [D9]-choline and [D4]-

ethanolamine were used. Choline and ethanolamine are precursors which are incorporated 

into PLs during de novo synthesis. ESI-MS/MS measures both, labelled and unlabelled PL 

species, so that newly synthesized PLs can be distinguished.   

Experiments were performed in medium containing 5% lipoprotein deficient serum (LPDS). 

Using LPDS medium avoided binding of lipids to lipoproteins. Moreover, this medium 

introduced less external PLs to cells then complete DMEM, containing 10% FBS, so that cells 

are stimulated to synthesize lipids. Addition of folic acid to culture media accelerated cell 

metabolism. To enhance uptake of the stable isotope [D9]-choline, DMEM medium w/o 

phenol red, w/o L-serine and w/o choline chloride was used. Depletion of phenol red ensured 

no interference such as quenching of the phenol during ESI-MS/MS analysis. Starvation 

period helped to synchronize FLS.  

The final biosynthesis model was designed as presented in Figure 5. 
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Figure 5. Schematic representation of the biosynthesis model. 

 

FLS were seeded into 6-well-plates at a density of 80,000 cells per well. FLS were cultured 

using complete DMEM medium in humidified 10% CO2 atmosphere at 37°C. At a confluence 

of 100%, cells were prewashed with phenol red-free DMEM and then 2 ml per well of LPDS 

medium w/o L-serine was added. Cells were starved for 24 hours. Media were changed to the 

LPDS medium w/o L-serine and 225 µg/ml of [D9]-choline and 25 µg/ml of [D4]-

ethanolamine were added. Experiments were terminated after 16 hours. Cells were washed 

twice with 1x PBS and lysed by the addition of 0.5 ml of 0.2% SDS. Lysed wells were 

washed with 0.5 ml of aqua B. Braun, combined extracts were ultrasonicated for 6 sec, 3 x 

10% pulse, with 40-50% power. Protein concentration within lysates was evaluated using 

BCA assay. Lipids were extracted according to Bligh and Dyer, and analysed by ESI-MS/MS. 

 

3.3.2. Optimization of an in vitro model to study the biosynthesis of PLs 

 Before the final biosynthesis model was established, several parameters needed to be 

optimized. 

 

3.3.2.1. PL background of the experimental media 

 To investigate the PL background of experimental media, 2 ml of complete DMEM 

medium, 2 ml of LPDS medium w/o L-serine and 2 ml of LPDS medium (containing L-

serine) were incubated in humidified 10% CO2 atmosphere at 37°C for 24 hours, then frozen. 

Lipids were extracted according to Bligh and Dyer, and then samples were evaluated by ESI-

MS/MS. 
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3.3.2.2. Effect of single versus double labelling on the incorporation of precursors into 

PLs 

 To investigate the effect of single and double labelling on the incorporation of isotope-

labelled precursor into two main PL classes PC and PE, FLS from 3 patients were seeded into 

culture dishes at a density of 480,000 cells per dish. FLS were cultured in LPDS medium w/o 

L-serine until 80% confluency and labelled with 100 µl/ml of [D9]-choline and/or 100 µl/ml 

of [D4]-ethanolamine for a duration of 24, 48 and 72 hours.  

 

3.3.2.3. Identification of cell number needed to study the biosynthesis of PLs 

 To find optimal cell number to study the biosynthesis of PLs, FLS from 3 patients 

were seeded into culture dishes at a density of 480,000 cells per dish, 6 wells in 6-well-plate 

at a density of 80,000 cells per well, and 4 wells in 6-well-plate at a density of 80,000 cells 

per well. FLS were cultured in LPDS medium w/o L-serine until 80% confluency. Cells were 

labelled with 100 µl of [D9]-choline and 100 µl/ml of [D4]-ethanolamine for a duration of 24 

hours.  

 

3.3.2.4. Concentration-dependent effect on the incorporation of stable isotope-labelled 

precursors into PLs 

 The physiological concentration of choline in human blood is 9 times higher than 

ethanolamine. Thus we checked the concentrations of isotopes in this proportion. To 

investigate whether increasing concentrations of isotopes resulted in enhanced labelled PLs, 

FLS from 3 patients were seeded into culture dishes at a density of 480,000 cells per dish and 

cultured in LPDS medium w/o L-serine until 80% confluency. FLS were labelled with: 

▪ 225 µl/ml of [D9]-choline and 25 µl/ml of [D4]-ethanolamine 

▪ 450 µl/ml of [D9]-choline and 50 µl/ml of [D4]-ethanolamine 

▪ 900 µl/ml of [D9]-choline and 100 µl/ml of [D4]-ethanolamine, or 

▪ 1800 µl/ml of [D9]-choline and 200 µl/ml of [D4]-ethanolamine 

for a duration of 24, 48 and 72 hours.  
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3.3.2.5. Effect of cell confluency on the biosynthesis of PLs 

 To investigate the impact of cell confluency on the biosynthesis of PLs, FLS from 3 

patients were seeded in culture dishes until 80% confluency. Cells were labelled with 200 

µg/ml of [D9]-choline and 200 µl/ml of [D4]-ethanolamine for a duration of 4, 8, 12 and 24 

hours. 

 

3.3.2.6. Effect of the time of labelling on the incorporation of stable isotope-labelled 

precursors into PLs 

 To investigate whether increasing the time of labelling enhances the amount of 

incorporated precursors into PLs, FLS from 3 patients were seeded into 4 wells in 6-well-

plates at a density of 80,000 cells per well. FLS were cultured in LPDS medium w/o L-serine 

until 100% confluency, and were labelled with 225 µl/ml of [D9]-choline and 25 µl/ml of 

[D4]-ethanolamine for a duration of 8, 16 and 36 hours.  

 

3.3.2.7. Effect of L-serine on the incorporation of stable isotope-labelled precursors into 

PLs 

 In our main experiments, we used LPDS medium containing L-serine to ensure access 

of all amino acids to enzymes and proteins. To investigate whether the presence of L-serine in 

culture medium has an impact on the incorporation of precursors into PLs, FLS from 6 

patients were seeded into 3 wells of 6-well-plates at a density of 80,000 cells per well. FLS 

were cultured in LPDS medium w/o L-serine or LPDS medium (containing 42 mg/l of L-

serine) until 100% confluency, and were then labelled with 225 µl/ml of [D9]-choline and 25 

µl/ml of [D4]-ethanolamine for a duration of 16 hours. 

 

3.3.3. An in vitro model to study the release of PLs  

 To investigate the release of PLs, the radioactive isotopes [3H]-choline and [14C]-

ethanolamine were used. The release of radiolabelled PLs into the cell culture media from 

FLS was measured using LSC. Data from both, cellular extracts and media allowed us to 
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calculate the rate of PL release. Release of choline-based PLs in [3H]-labelled fraction and 

ethanolamine-based PLs in [14C]-labelled fraction were quantified.  

The FLS of our in vitro model were labelled with radioactive isotopes, and then washed until 

no radioactivity was detected in culture medium. To enhance uptake of [3H]-choline, choline- 

and serine-depleted DMEM was used. Experiments were carried out in media with decreasing 

serum content to synchronize cells. Adaptation steps reduced cell stress caused by starvation. 

Experiments were performed in media containing 2% of FBS, to stimulate cells to release PLs 

into media and to reduce import of external lipids. Phenol red used in DMEM did not 

interfere with LSC measurements.  

The final release model was designed as presented in Figure 6. 

 

Figure 6. Schematic representation of the release model. 

 

FLS were seeded into 6-well-plates at a density of 80,000 cells per well. FLS were cultured 

using complete DMEM medium in humidified 10% CO2 atmosphere at 37°C. At 100% 

confluency media were changed to 2 ml of labelling medium, and 5 µCi/ml of [3H]-choline 

and 1 µCi/ml of [14C]-ethanolamine were added. Radiolabelling lasted 24 hours. 0.1 ml of 

media was measured in scintillation counter, and then cells were washed 5 times with 2 ml of 

5% starvation medium until dpm values were below 5,000 counts. 0.1 ml of the last wash was 

also measured in scintillation counter to ensure that all unincorporated isotopes are not 
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present in the medium. 2 ml of 5% starvation medium was added to cells for a duration of 24 

hours. After that 0.1 ml of media was measured in scintillation counter. Media were changed 

to 2% starvation medium for next 24 hours. 0.1 ml of media was measured in scintillation 

counter, and media were changed to new 2% starvation medium.  

After 24 hours in the presence or absence of agents media were collected, volume of samples 

were determined, and media were centrifuged 400 x g for 10 min, filtered through the 0.2 µm 

pore size filter. 2 ml of media were split into 0.1ml, which was measured in scintillation 

counter, and 1.9 ml, which was stored at 4°C and used for lipids extraction. Cells were 

washed at least twice with 2 ml of 1x PBS until dpm values were below 1,000. Cells were 

subsequently lysed by the addition of 0.2 ml 0.2% SDS, scraped and harvested. Wells were 

washed with 0.2 ml of aqua B. Braun, combined extracts were ultrasonicated for 6 sec, 3 x 

10% pulse, with 40-50% power. 0.4 ml of extracts were split as follow 75 µl was used for the 

determination of protein concentration using BCA assay, 25 µl was measured in scintillation 

counter, and 0.3 ml was snap-frozen in liquid nitrogen, then stored in -86°C and later used for 

lipids extraction. Radioactivity within lipids samples extracted according to Bligh and Dyer 

were measured by LSC.  

 

3.3.4. Optimization of our in vitro model to study PL release  

 Before the final release model was established, several parameters needed to be 

optimized. 

 

3.3.4.1. PL background of the experimental media 

 To investigate the PL background of experimental media, 2 ml of complete DMEM 

medium and 2 ml of 2% starvation medium were incubated in humidified 10% CO2 

atmosphere at 37°C for 24 hours, then frozen. Lipids were extracted according to Bligh and 

Dyer, and then samples were evaluated by ESI-MS/MS. 

 



MATERIALS AND METHODS 
 

53 

 

3.3.4.2 Concentration-dependent effect on the incorporation of radiolabelled precursors 

into PLs 

 To investigate whether increasing concentrations of radioisotopes resulted in enhanced 

labelled PLs, FLS from 3 patients were seeded into 1 well of 6-well-plates and cultured until 

100% confluency. FLS were labelled with: 

▪ 1 µCi/ml of [3H]-choline and 1 µCi/ml of [14C]-ethanolamine 

▪ 5 µCi/ml of [3H]-choline and 5 µCi/ml of [14C]-ethanolamine 

▪ 10 µCi/ml of [3H]-choline and 10 µCi/ml of [14C]-ethanolamine 

in the labelling medium for a duration of 48 hours. Cells were then adapted in 5% starvation 

medium for 24 hours, followed by adaptation in 2% starvation medium for the next 24 hours. 

The entire release experiment lasting 24 hours was performed in 2% starvation medium. 

 

3.3.4.3. Effect of the time of labelling on the incorporation of radiolabelled precursors 

into PLs 

 To investigate whether increasing time of labelling enhances the amount of 

incorporated precursors into PLs, FLS from 3 patients were seeded into 6-well-plates, 

cultured until 100% confluency, and were labelled with 5 µCi/ml of [3H]-choline and 1 

µCi/ml of [14C]-ethanolamine for a duration of 6, 12, 24, 36 and 48 hours. Cells were then 

adapted in 5% starvation medium for 24 hours, followed by adaptation in 2% starvation 

medium for the next 24 hours. The entire release experiment lasting 24 hours was performed 

in 5% or 2% starvation media. 

 

3.3.4.4. Effect of the time of release on the delivery of PLs from FLS into media 

 To investigate the correlation between time of release and amount of PLs being 

releases, FLS from 3 patients were seeded into 6-well-plates. FLS were cultured until 100% 

confluency, and were labelled with 5 µCi/ml of [3H]-choline and 1 µCi/ml of [14C]-

ethanolamine for a duration of 12 or 24 hours. Cells were then adapted in 5% starvation 

medium for 24 hours, followed by adaptation in 2% starvation medium for the next 24 hours. 

The entire release experiments lasting 12, 24 and 36 hours were performed in 10%, 5% or 2% 

starvation media. 
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3.4. Main experiments 

 

3.4.1. Screening the effects of agents on the biosynthesis of PLs 

 To screen the effects of cytokines, growth factors, pharmacological agents and specific 

inhibitors on the biosynthesis of PLs, FLS from 6 patients were cultured according to our 

established biosynthesis model (see chapter 3.3.1. and 4.3.). During labelling step cells were 

stimulated as follow:  

▪ 10 ng/ml of IL-1β  

▪ 100 ng/ml of TNFα 

▪ 10 ng/ml of IL-6 

▪ 5 µM of quinacrine (phospholipase A2 inhibitor) 

▪ 10 µM/ 5 µM/ 1 µM of CK37 (choline kinase inhibitor) 

▪ 10 ng/ml of TGF-β1 

▪ 100 ng/ml of IGF-1 

▪ 10 µM of dexamethasone 

▪ 10 µM of terbutaline 

▪ 10 µM of epinephrine  

▪ 10 µM of carbachol 

▪ 10 µM of pilocarpine 

▪ 50 µM of hemicholinium-3  

▪ 10 µM/1 µM of sirtinol (sirtuin inhibitor) 

 

3.4.2. The mechanism of action of selected agents on the biosynthesis of PLs 

 Data from our screening experiment lead us to focus on the effects of IL-1β, TGF-β1, 

IGF-1 and dexamethasone. Especially, we wanted to investigate whether inhibition of specific 

signalling pathways or receptors abolish the effects of these agents on the biosynthesis of PLs. 

Due to the strong effect of growth factors on the biosynthesis of PLs, the impact of various 

BMPs was also investigated. Moreover, the effect of a more potent sirtuin inhibitor EX 537 

was investigated. FLS from 5 patients were cultured according to our established biosynthesis 

model (see chapter 3.3.1. and 4.3.) with the modification that the LPDS medium contained 42 
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mg/l L-serine, to provide access of all amino acids to enzymes and proteins. During the 

labelling step cells were treated as follow: 

▪ 10 ng/ml of IL-1β 

▪ 10 ng/ml of IL-1β + 10 µM of QNZ (NF-κB inhibiotr) 

▪ 10 ng/ml of IL-1β + 10 µM of SB203580 (p38 inhibitor) 

▪ 10 ng/ml of IL-1β + 10 µM of SP600125 (JNK inhibitor) 

▪ 10 ng/ml of TGF-β1 

▪ 10 ng/ml of TGF-β1 + 10 µM of SB431542 (TGF-β receptor I kinase inhibitor) 

 

▪ 100 ng/ml of IGF-1  

▪ 100 ng/ml of IGF-1 + 10 µM of LY294002 (PI3K inhibitor) 

▪ 100 ng/ml of IGF-1 + 1 µM of SCH772984 (ERK inhibitor) 

 

▪ 100 ng/ml of BMP-2 

▪ 100 ng/ml of BMP-4 

▪ 100 ng/ml of BMP-7 

 

▪ 10 µM of dexamethasone 

▪ 10 µM of dexamethasone + 1 µM of RU 486 (glucocorticoid receptor inhibitor)  

 

▪ 1 µM of EX 527 (SIRT1 inhibitor)  

▪ 50 µM of EX 527 + 10 mM NAM (all sirtuins inhibitor) 

Cells were first pretreated for 30 min with inhibitors and then stimulated with cytokines, 

growth factors or drugs. 

 

3.4.3. Screening of the effects of agents on the release of PLs 

 To screen the effect of cytokines, growth factors, pharmacological agents and specific 

inhibitors on the release of PLs, FLS from 5 patients were cultured according to our 

established release model (see chapter 3.3.3. and 4.4.). During the entire release period of 24 

hours, cells were treated as follow: 

▪ 10 ng/ml of IL-1β  
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▪ 100 ng/ml of TNFα 

▪ 10 ng/ml of IL-6 

▪ 5 µM of quinacrine (phospholipase A2 inhibitor) 

▪ 10 ng/ml of TGF-β1 

▪ 100 ng/ml of IGF-1 

▪ 10 µM of dexamethasone 

▪ 10 µM of terbutaline 

▪ 10 µM of epinephrine  

▪ 10 µM of carbachol 

▪ 10 µM of pilocarpine 

▪ 50 µM of hemicholinium-3  

▪ 1 µM of sirtinol (sirtuin inhibitor) 

 

3.4.4. The mechanism of action of selected agents on the release of PLs 

 Data from our screening experiment lead us to focus on the effect of IL-1β. However, 

due to the altered cell morphology during treatment with IL-1β, the release model was 

modified. The concentration of FBS in culture media was increased and the period of 

adaptation was decreased. After labelling with radioactive isotopes, cells were incubated in 

5% starvation medium or complete DMEM medium for 24 hours, and then the release 

experiment was performed in the same fresh media. Subsequently, media were collected after 

24 hours. FLS from 3-6 patients were used. This experiment investigated the effect of 

different concentrations of IL-1β and inhibition of specific signalling pathways on the release 

of PLs. The impact of the sirtuin inhibitor EX 537 and different apolipoproteins on the release 

of PLs was also determined.  

During the entire release period of 24 hours, cells were treated as follow: 

5% starvation medium 

▪ 5 ng/ml of IL-1β 

▪ 5 ng/ml of IL-1β + 10 µM of SB203580 (p38 inhibitor) 

▪ 1 µM of EX 527 (SIRT1 inhibitor)                           

▪ 10 µg/ml of Apo A-I 

▪ 10 µg/ml of Apo E4 
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Complete DMEM medium 

▪ 2 ng/ml of IL-1β 

▪ 5 ng/ml of IL-1β 

▪ 10 ng/ml of IL-1β 

▪ 5 ng/ml of IL-1β + 10 µM of QNZ (NF-κB inhibiotr) 

▪ 5 ng/ml of IL-1β + 10 µM of SB203580 (p38 inhibitor) 

Cells were first pretreated for 30 min with inhibitors and then stimulated with IL-1β. 
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4. RESULTS 

 

4.1. Optimization of an in vitro model to study the biosynthesis of PLs 

In order to study the biosynthesis of PLs by FLS, an in vitro model was developed 

using the stable isotopes [D9]-choline and [D4]-ethanolamine. Before the final biosynthesis 

model was established, several aspects were optimized. 

 

4.1.1. PL background of the experimental media 

Since serum contains a high lipid content, we searched for an alternative introducing 

less external lipids to cells. Therefore, we compared the PL background of the experimental 

media “complete DMEM medium” (containing 10% FBS) with “LPDS medium” w/o or with 

L-serine (containing 5% LPDS). The concentrations of PLs present in experimental media 

were measured by ESI-MS/MS. The level of PLs were markedly higher in medium containing 

10% FBS than 5% LPDS (Figure 7, Appendix Table 1). For example, the concentrations of 

PC and PE were in the range of 14.6±0.3 nmol/ml medium and 0.40±0.0 nmol/ml medium for 

10% FBS medium and 1.11±0.0 nmol/ml medium and 0.08±0.0 nmol/ml medium for 5% 

LPDS medium, respectively. Moreover, “LPDS media” w/o and with L-serine gave similar 

results, except the PS and PI levels. Our result indicates that media containing LPDS import 

much less PLs and appear to be suitable for the analysis of PL biosynthesis.  

 

4.1.2. Effect of single versus double labelling on the incorporation of precursors into PLs 

In order to investigate whether the presence of two stable isotope-labelled precursors 

modulate the incorporation of any of them into PLs, 80% confluent FLS from 3 patients were 

labelled with [D9]-choline and/or [D4]-ethanolamine for a duration of 24-72 hours. The 

presence of [D4]-ethanolamine did not change the percentage of [D9]-choline incorporation 

into PC (Figure 8A). However, [D9]-choline slightly decreased the percentage of [D4]-

ethanolamine incorporated into PE (Figure 8B). Nevertheless, the labelling of PE was more 

efficient then PC, and displayed high values lying in the range of 38-64% of labelled PC or 

PE from total (labelled and unlabelled) PC or PE, respectively. Thus, the two precursors were 
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used simultaneously in further experiments. Moreover, Figure 8 A, B shows that the 

incorporation of precursors into PLs increases with time (2-way ANOVA; P < 0.0001). 

 

 

Figure 7. PL background of the experimental media in the biosynthesis model. Lipids were 
extracted from complete DMEM medium containing 10% FBS, 5% LPDS medium w/o or with L-
serine, quantified by ESI-MS/MS and expressed as nmol PL/ml medium. Data are presented as means 
± SDs (n = 3). PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine; Cer = ceramide; PS = phosphatidylserine; PI = phosphatidylinositol; PG = 
phosphatidylglycerol. 

 

 

 

Figure 8. Effect of single versus double labelling on the incorporation of precursors into PC (A) 
and PE (B). FLS were labelled with 100 µg/ml [D9]-choline and/or 100 µg/ml [D4]-ethanolamine for 
a duration of 24, 48 and 72 hours. Lipids were extracted and quantified by ESI-MS/MS. Data are 
expressed as means ± SDs (n = 3). The significance was tested using 2-way ANOVA. ** = P ≤ 0.01. 
PC = phosphatidylcholine; PE = phosphatidylethanolamine. 
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4.1.3. Identification of cell number needed to study the biosynthesis of PLs 

In order to obtain high and well measurable values, the number of FLS needed for our 

experiments was determined. FLS from 3 patients were seeded into culture dishes (1,000,000 

cells), 6 wells (480,000 cells), or 4 wells (320,000 cells) of 6-well-plates. FLS were cultured 

until 80% confluency, and then labelled with [D9]-choline and [D4]-ethanolamine for a 

duration of 24 hours. Increasing the number of FLS significantly increased the concentrations 

of newly synthesized PC and PE per mg cellular protein (Figure 9A). However, the 

percentage of newly synthesized PC remained constant, whereas the percentage of newly 

synthesized PE decreased with higher cell numbers (Figure 9B). Based on these data, we 

concluded that cells seeded even into 3 wells will be enough to measure PL biosynthesis. 

 

Figure 9. Identification of cell number needed to study the biosynthesis of PLs. (A) The 
concentrations of total PL per mg cellular protein, and (B) the percentages of labelled PLs from total 
corresponding labelled and unlabeled class are shown. FLS were seeded into culture dishes (1,000,000 
cells), 6 wells (480,000 cells) or 4 wells (320,000 cells) of 6-well-plates. FLS were cultured until 80% 
confluency, and then labelled with 100 µg/ml [D9]-choline and 100 µg/ml [D4]-ethanolamine for a 
duration of 24 hours. Lipids were extracted and quantified by ESI-MS/MS. Data are expressed as 
means ± SDs (n = 3). The significance was tested using 1-way ANOVA. ** = P ≤ 0.01; *** = P ≤ 
0.001. PC = phosphatidylcholine; PE = phosphatidylethanolamine. 

 

4.1.4. Concentration-dependent effect on the incorporation of stable isotope-labelled 

precursors into PLs 

We have investigated the impact of the concentration of precursors on their 

incorporation into PLs. 80% confluent FLS from 3 patients were labelled with 225-1800 

µg/ml [D9]-choline and 25-200 µg/ml [D4]-ethanolamine for a duration of 24, 48 and 72 
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hours. The isotopes were used at a physiological ratio of choline to ethanolamine as found in 

human blood to be equal 9:1. Analysis showed that increasing the concentration of precursors 

resulted in an enhanced incorporation of precursors into PC (2-way ANOVA; P = 0.0036; 

Figure 10A) and PE (2-way ANOVA; P < 0.001; Figure 10B). Nevertheless, using high 

concentrations of precursors may disturb the balance of phospholipid precursors. To avoid 

that and to obtain well measurable levels of labelled PLs, 225 µg/ml [D9]-choline and 25 

µg/ml ethanolamine were used in further experiments. Here again we could observe that the 

incorporation of stable isotope-labelled precursors into PLs correlated with the time of 

labelling (2-way ANOVA; P < 0.0001; Figure 10A, B).  

 

Figure 10. Concentration-dependent effect on the incorporation of stable isotope-labelled 
precursors into PLs. The percentages of labelled PC (A) and PE (B) as dependent on concentration 
of precursors. FLS were labelled with 225-1800 µg/ml [D9]-choline and 25-200 µg/ml [D4]-
ethanolamine for a duration of 24, 48 and 72 hours. Lipids were extracted and quantified by ESI-
MS/MS. Data are expressed as means ± SDs (n = 3). The significance was tested using 2-way 
ANOVA. PC = phosphatidylcholine; PE = phosphatidylethanolamine. 

 

4.1.5. Effect of the time of labelling and cell confluency on the incorporation of stable 

isotope-labelled precursors into PLs 

Since dividing cells generate cell membranes which are highly enriched with PLs, the 

impact of cell confluency on the PL biosynthesis was studied. Moreover, we investigated 

again whether increasing the time of labelling enhances the amount of incorporated precursors 

into PLs. 100% or 80% confluent FLS from 3 patients were labelled with 225 or 200 µg/ml 
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[D9]-choline and 25 or 200 µg/ml [D4]-ethanolamine from 4 to 36 hours. Incorporation of 

[D9]-choline into PC, SM and LPC was correlated with time (r = 1; Figure 11A). 

Incorporation of [D4]-ethanolamine into PE and PE-based plasmalogens was also correlated 

with time (r = 1, Figure 11B). To compromise between sufficiently labelled PLs, degradation 

of synthesized PLs and re-uptake of precursors, a 16 hours period of labelling was used in 

further experiments. Importantly, we observed that 80% confluent cells incorporated more 

precursors into PLs reflecting increased synthesis of cell membranes.   

 

Figure 11. Effect of the time of labelling and cell confluency on the incorporation of stable 
isotope-labelled precursors into PLs. Effect of time of labelling on [D9]-choline (A) and [D4]-
ethanolamine (B) incorporation into PL. 100% confluent FLS were labelled with 225 µg/ml [D9]-
choline and 25 µg/ml [D4]-ethanolamine for 8-36 hours. 80% confluent FLS were labeled with 200 
µg/ml [D9]-choline and 200 µg/ml [D4]-ethanolamine for 2-24 hours. Lipids were extracted and 
quantified by ESI-MS/MS. Data are expressed as means ± SDs (n = 3). Spearman’s coefficients were 
calculated to evaluate correlations. PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine. 
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4.1.6. Effect of L-serine on the incorporation of stable isotope-labelled precursors into 

PLs 

To investigate whether the presence of L-serine in culture medium has an impact on 

the incorporation of precursors into PLs, FLS from 6 patients were labelled with 225 µg/ml 

[D9]-choline chloride and 25 µg/ml [D4]-ethanolamine for 16 hours in LPDS medium 

without or with L-serine. The paired t-test analysis revealed that presence of L-serine has no 

impact on the newly synthesized PC or PE, neither on the nmol/mg protein values nor 

percentages of labelled PL classes (data not shown). These data are in agreement with our 

finding reported previously (see chapter 4.1.1.).  

 

4.2. Optimization of an in vitro model to study PL release 

In order to study the release of PLs from FLS into culture media, an in vitro model 

was developed using the radioactive isotopes [3H]-choline and [14C]-ethanolamine. Before the 

final release model was established, several parameters needed to be optimized. 

 

4.2.1. PL background of the experimental media  

To stimulate FLS to release PLs into media, we used media containing a lower amount 

of PLs. Therefore, we looked at the PL background of the experimental media “complete 

DMEM medium” (containing 10% FBS) and “2% starvation medium” (containing 2% FBS). 

Figure 12 shows that the concentrations of PLs were markedly higher in medium containing 

10% then 2% FBS. For instance, the levels of PC and PE were in the range of 14.6±0.3 

nmol/ml medium and 0.40±0.0 nmol/ml medium for 10% FBS and 2.56±0.1 nmol/ml medium 

and 0.25±0.0 nmol/ml medium for 2% FBS, respectively (Appendix Table 1). This result 

indicates that medium containing 2% FBS is suitable for the analysis of PL release.  

 

4.2.2. Concentration-dependent effect on the incorporation of radiolabelled precursors 

into PLs 

In order to ensure high incorporation of radioactive precursors into PLs of FLS, we 

determined their optimal concentrations. 100% confluent FLS from 3 patients were labelled 
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with 1-10 µCi/ml [3H]-choline and [14C]-ethanolamine for a duration of 48 hours in medium 

containing 10% FBS. Further, cells were incubated in medium containing 2% FBS according 

to the method used in the release model (see chapter 3.3.3.). Increasing the concentration of 

[3H]-choline significantly increased the incorporation of radioactive precursor into PLs of 

FLS, whereas increasing the concentration of [14C]-ethanolamine from 1 to 5 µCi/ml had no 

impact (P = 0.41; Figure 13). The concentration 10 µCi/ml of [14C]-ethanolamine was toxic 

for cells. Thus, the concentrations of 5 µCi/ml of [3H]-choline and 1 µCi/ml of [14C]-

ethanolamine were used in further experiments. 

 

 

Figure 12. PL background of the experimental media in the release model. Lipids were extracted 
from “complete DMEM medium” and “2% starvation medium”, quantified by ESI-MS/MS and 
expressed as nmol/ml medium. Data are presented as means ± SDs (n =3). PC = phosphatidylcholine; 
PE = phosphatidylethanolamine; PE P = phosphatidylethanolamine-based plasmalogens; SM = 
sphingomyelin; LPC = lysophosphatidylcholine; Cer = ceramide; PS = phosphatidylserine; PI = 
phosphatidylinositol; PG = phosphatidylglycerol. 

 

4.2.3. Effect of the time of labelling on the incorporation of radiolabelled precursors into 

PLs 

The effect of the time of labelling on the incorporation of radioactive isotopes into 

FLS in various cell culture media was investigated. 100% confluent FLS from 3 patients were 

labelled with 5 µCi/ml [3H]-choline and 1 µCi/ml [14C]-ethanolamine for 6-48 hours in 

medium containing 10% FBS. Further, cells were incubated in medium containing 5 or 2% 

FBS according to the method used in the release model (see chapter 3.3.3.). Analyses revealed 

that labelling of PLs with 5 µCi/ml [3H]-choline and 1 µCi/ml [14C]-ethanolamine and 
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investigation of the release in DMEM containing 5% FBS was correlated with time (r = 1). 

Labelling of PLs with 5 µCi/ml [3H]-choline and investigation of release in DMEM 

containing 2% FBS also increased with time (r = 0.9). However, labelling of PLs with 1 

µCi/ml [14C]-ethanolamine and investigation of release in DMEM containing 2% FBS from 

24 to 48 hours was not correlated with time (r = -1) (Figure 14). In order to sufficiently label 

PLs with less degradation, a 24 hours period of labelling was used in further experiments.  

 

Figure 13. Concentration-dependent effect on the incorporation of radiolabelled precursors into 
PLs. FLS were labelled with 1, 5, and 10 µCi/ml [3H]-choline as well as 1 or 5 µCi/ml [14C]-
ethanolamine for duration of 48 hours. Lipids were extracted and quantified by LSC. Data are 
expressed as means ± SDs (n = 3). Significant differences of the concentrations of radiolabelled 
precursors compared to 1 [µCi/ml] as determined by paired t-test: * = P < 0.05. 

 

 

Figure 14. Effect of the time of labelling on the incorporation of radiolabelled precursors into 
PLs. FLS were labelled with 5 µCi/ml [3H]-choline and 1 µCi/ml [14C]-ethanolamine for 6-48 hours. 
Lipids were extracted and quantified by LSC. Data are expressed as means ± SDs (n = 3). Spearman’s 
coefficients were calculated to evaluate correlations. 
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4.2.4. Effect of the time of release on the delivery of PLs from FLS into media 

The time course of radiolabelled PLs being released from FLS into media was 

evaluated. 100% confluent FLS from 3 patients were labelled with 5 µCi/ml [3H]-choline and 

1 µCi/ml [14C]-ethanolamine for 12 and/or 24 hours. The release of PLs was measured after 

12, 24 and 36 hours. The release of [3H]-choline-labelled (Figure 15A) and [14C]-

ethanolamine-labelled PL (Figure 15B) into DMEM containing 2% FBS correlated with time 

(r = 1). To minimize reuptake of labelled PLs, the release during 24 hour period was 

determined in further experiments.  

 

Figure 15. Effect of the time of release on the efflux of PLs from FLS into media. The percentage 
of released [3H]-choline-labelled PLs (A) and [14C]-ethanolamine-labelled PLs (B) from total 
radiolabeled PLs detected in media and FLS were calculated. FLS were labelled with 5 µCi/ml [3H]-
choline and 1 µCi/ml [14C]-ethanolamine for 12 and/or 24 hours. The release of PL was investigated 
during 12-36 hours in media containing various amounts of FBS. Lipids were extracted and quantified 
by LSC. Data are presented as means ± SDs (n = 3). Spearman’s coefficients were calculated to 
evaluate correlations. 
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4.3. Final description of the biosynthesis model being used 

The following in vitro model to study PL biosynthesis was established: FLS were 

seeded at a density of 80,000 cells per well into 3 wells of 6-well-plate, cultured until 100% 

confluency, labelled with 225 µg/ml [D9]-choline and 25 µg/ml [D4]-ethanolamine for 16 

hours in the presence or absence of agents to be tested. Afterwards, cells were washed twice 

with 1x PBS and lysed with 0.5 ml of 0.2% SDS. Lysed wells were washed with 0.5 ml of 

aqua B. Braun, and combined extracts were ultrasonicated for 6 sec, 3 x 10% pulse, with 40-

50% power. Protein concentration within lysates was evaluated using BCA assay. Lipids were 

extracted according to Bligh and Dyer, and analysed by ESI-MS/MS. 

 

4.3.1. Lipid composition of human FLS 

To determine the concentrations of PL classes in FLS, lipids were isolated from cells 

from 6 patients and evaluated using ESI-MS/MS. Nine PL classes were determined: PC, PE, 

PE-based plasmalogens, SM, LPC, Cer, PS, PI, and PG. The most abundant lipid class was 

PC, accounting 32.9±0.8% of all phospholipids (79.1±3.4 nmol/mg protein), followed by PE-

based plasmalogens (18.1±1.0%; 43.5±3.4 nmol/mg protein), PS (15.5%; 37.2 nmol/mg 

protein), SM (10.5±1.4%; 25.2±2.4 nmol/mg protein), PE and PI (9.3±1.1%; 22.3±2.9 

nmol/mg protein and 9.3±0.7%; 22.3±2.0 nmol/mg protein, respectively). Cer, LPC, and PG 

were detected at low concentrations (0.16-9.5 nmol/mg protein) and constituted 0.1-3.9% of 

the analysed phospholipid classes (Figure 16A, B).  

 

4.3.2. Composition of newly synthesized PL classes and species in human FLS 

To determine de novo biosynthesis of PLs, FLS from 5 patients were labelled with 225 

µg/ml [D9]-choline and 25 µg/ml [D4]-ethanolamine for 16 hours. Lipids were extracted and 

evaluated using ESI-MS/MS.  

Using stable isotope-labelled precursors of PLs we were able to detect newly 

synthesized PC, SM LPC, PE, and PE-based plasmalogens. Due to the added precursors, we 

measured de novo synthesis via the Kennedy pathway only for PC and PE. Other classes were 

labelled indirectly because of the links between PL synthesis pathways. The concentration of 

newly synthesized PC was 4.6±1.6 nmol/mg protein, which constituted 5.9±2.1% of total PC. 
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The concentration of newly synthesized PE was 3.0±0.6 nmol/mg protein, which formed 

13.9±1.8% of total PE. The concentration of newly synthesized PE-based plasmalogens was 

2.4±0.3 nmol/mg protein, which composed 5.5±0.5% of total PE P. Finally, the concentration 

of newly synthesized SM was 0.10±0.03 nmol/mg protein, which formed 0.40±0.12% of total 

SM, while the concentration of newly synthesized LPC was 0.02±0.0 nmol/mg protein, which 

made 2.1±0.5% of total LPC (Figure 17A, B).  

 

Figure 16. Lipids composition of human FLS. Concentrations (A) and percentages of total PL 
classes (labelled plus unlabelled PLs) from total analyzed PLs representing 100% (B) after 16 hours of 
culture. Lipids were extracted and quantified by ESI-MS/MS.  Data are presented as means ± SDs (n = 
6). PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = phosphatidylethanolamine-
based plasmalogens; SM = sphingomyelin; LPC = lysophosphatidylcholine; Cer = ceramide; PS = 
phosphatidylserine; PI = phosphatidylinositol; PG = phosphatidylglycerol.  

 

Nineteen newly synthesized PC species and ten newly synthesized ether PC (PC O) 

species were identified within FLS (Table 7). The major PC species was PC 34:1. The 

concentrations of newly synthesized PC species varied between 33±8 pmol/mg protein (PC 

34:3) and 780±208 pmol/mg protein (PC 34:1). The concentrations of newly synthesized PC 

O were low and varied between 5 and 65 pmol/mg protein. Furthermore, newly synthesized 
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PC existed mainly in unsaturated form (87.4±0.7%) and their lengths of FA chains according 

to carbon atoms were mostly ≤ 36 (72.7±5.6%).  

Moreover, ten newly synthesized SM species were detected (Table 8). The major SM 

species was SM 34:1 at the concentrations of 50±18 pmol/mg protein. The concentrations of 

other species were low. Newly synthesized SM existed mainly in unsaturated form (96.6%).  

Additionally, only three newly synthesized LPC species were above the limit of 

detection: LPC 16:0, LPC 18:0 and LPC 18:1 (Table 9). All of them were present at low 

concentrations of around 8 pmol/mg protein.  

 

Figure 17. Newly synthesized PL classes of human FLS. Concentrations (A) and percentages of 
newly synthesized PL classes (B). FLS were labelled with 225 µg/ml [D9]-choline and 25 µg/ml [D4]-
ethanolamine for 16 hours. Lipids were extracted and quantified by ESI-MS/MS. Data are presented as 
means ± SDs (n = 5). PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine.  
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Besides, thirteen newly synthesized PE species were determined (Table 10). The 

major PE species was PE 38:4. The concentrations of newly synthesized PE species varied 

between 31±13 pmol/mg protein (PE 34:2) and 765±176 pmol/mg protein (PE 38:4). 

Moreover, newly synthesized PE existed only in unsaturated form. The lengths of FA chains 

according to carbon atoms were mostly > 36 (84.4±4.5%).  

 

Specie pmol/mg protein % labelled 

[D9]-PC 30:0 41±11 3.8±1.1 
[D9]-PC 32:0 408±142 5.2±1.4 
[D9]-PC 34:0 58±29 5.3±1.9 
[D9]-PC 32:1 131±29 4.7±1.4 
[D9]-PC 34:1 780±208 5.3±1.9 
[D9]-PC 36:1 330±115 5.5±2.5 
[D9]-PC 34:2 305±84 7.8±2.5 
[D9]-PC 36:2 322±96 5.9±2.3 
[D9]-PC 34:3 33±8 9.4±2.6 
[D9]-PC 36:3 184±59 6.9±2.5 
[D9]-PC 38:3 131±58 7.7±3.5 
[D9]-PC 36:4 352±156 6.2±1.8 
[D9]-PC 38:4 624±322 6.6±2.5 
[D9]-PC 40:4 72±41 12.7±6.4 
[D9]-PC 36:5 44±17 7.1±2.0 
[D9]-PC 38:5 280±119 7.0±2.0 
[D9]-PC 40:5 99±54 10.6±5.0 
[D9]-PC 38:6 61±23 6.1±1.6 
[D9]-PC 40:6 50±25 7.4±2.8 
[D9]-PC O 30:0 5±2 3.8±1.3 
[D9]-PC O 32:0 41±14 3.5±1.1 
[D9]-PC O 34:0 31±9 4.3±1.2 
[D9]-PC O 32:1 13±4 3.0±1.0 
[D9]-PC O 34:1 65±18 3.9±1.3 
[D9]-PC O 36:1 38±11 3.7±1.4 
[D9]-PC O 34:2 20±5 4.8±1.6 
[D9]-PC O 36:2 24±6 4.7±1.9 
[D9]-PC O 36:4 17±7 3.5±1.2 
[D9]-PC O 36:5 49±19 5.5±1.0 

Table 7. Concentrations and percentages of newly synthesized PC species. The quantitative values 
obtained for each stable isotope-labelled PL species were normalized to cellular protein content and 
are expressed as pmol/mg protein. For each PL specie the percentage of stable isotope-labelled PL 
from total labelled and unlabelled PL was calculated. Data are presented as means ± SDs (n = 5). PC = 
phosphatidylcholine; PC O = ether PC. 
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Additionally, nineteen newly synthesized PE-based plasmalogens species were 

detected within FLS (Table 11). The major species was PE P 18:1/20:4. The concentrations of 

newly synthesized PE P species varied between 30±5 pmol/mg protein (PE P 18:0/18:1) and 

556±87 pmol/mg protein (PE P 18:1/20:4). The lengths of FA chains according to carbon 

atoms were mostly > 36 (78.0±2.4%).  

Specie pmol/mg protein % labelled 

[D9]-SM 34:0 3±1 0.4±0.2 
[D9]-SM 32:1 5±1 1.2±0.4 
[D9]-SM 33:1 4±1 0.7±0.1 
[D9]-SM 34:1 50±18 0.3±0.1 
[D9]-SM 36:1 5±3 0.3±0.2 
[D9]-SM 42:1 8±3 0.3±0.1 
[D9]-SM 34:2 4±1 1.2±0.4 
[D9]-SM 35:2 8±2 1.0±0.2 
[D9]-SM 36:2 3±1 1.6±0.3 
[D9]-SM 42:2 10±6 0.4±0.2 

Table 8. Concentrations and percentages of newly synthesized SM species. The quantitative values 
obtained for each stable isotope-labelled PL species were normalized to cellular protein content and 
are expressed as pmol/mg protein. For each PL specie the percentage of stable isotope-labelled PL 
from total labelled and unlabelled PL was calculated. Data are presented as means ± SDs (n = 5). SM 
= sphingomyelin. 

Specie pmol/mg protein % labelled 

[D9]-LPC 16:0 8±2 1.4±0.3 
[D9]-LPC 18:0 8±3 3.8±1.8 
[D9]-LPC 18:1 8±1 2.0±0.4 

Table 9. Concentrations and percentages of newly synthesized LPC species. The quantitative 
values obtained for each stable isotope-labelled PL species were normalized to cellular protein content 
and are expressed as pmol/mg protein. For each PL specie the percentage of stable isotope-labelled PL 
from total labelled and unlabelled PL was calculated. Data are presented as means ± SDs (n = 5). LPC 
= lysophosphatidylcholine. 

 

4.3.3. FLS viability and mitochondrial activity  

In our in vitro model to study PL biosynthesis, FLS were starved for 24 hours and then 

labelled with stable isotope-labelled precursors in medium containing 5% LPDS. To ensure 

the metabolic stability of FLS in our culture condition of the biosynthesis model, viability and 

mitochondrial activity of cells were evaluated. FLS displayed stable mitochondrial activity 

and viability over time in medium containing 5% LPDS (Figure 18A, B). Nevertheless, 

mitochondrial activity was significantly decreased when compared to control containing 10% 

FBS (P = 0.007).   



RESULTS 
 

72 

 

Specie pmol/mg protein % labelled 

[D4]-PE 34:1 132±54 11.9±1.8 
[D4]-PE 36:1 154±73 10.0±1.9 
[D4]-PE 34:2 31±13 13.9±2.4 
[D4]-PE 36:2 100±39 11.4±2.3 
[D4]-PE 36:3 36±11 16.4±3.2 
[D4]-PE 38:3 206±38 15.1±2.4 
[D4]-PE 36:4 41±11 13.1±2.6 
[D4]-PE 38:4 765±176 9.2±1.4 
[D4]-PE 40:4 338±65 18.8±3.0 
[D4]-PE 38:5 258±65 11.9±1.9 
[D4]-PE 40:5 323±78 18.9±3.4 
[D4]-PE 38:6 187±57 24.9±4.2 
[D4]-PE 40:6 383±84 23.5±3.4 

Table 10. Concentrations and percentages of newly synthesized PE species. The quantitative 
values obtained for each stable isotope-labelled PL species were normalized to cellular protein content 
and are expressed as pmol/mg protein. For each PL specie the percentage of stable isotope-labelled PL 
from total labelled and unlabelled PL was calculated. Data are presented as means ± SDs (n = 5). PE = 
phosphatidylethanolamine. 

 

Specie pmol/mg protein % labelled 

[D4]-PE P 16:0/18:1 44±17 2.8±0.3 
[D4]-PE P 16:0/20:4 308±75 3.4±0.3 
[D4]-PE P 16:0/22:4 139±31 7.5±1.0 
[D4]-PE P 16:0/22:5 119±29 7.2±1.2 
[D4]-PE P 16:0/22:6 90±22 5.7±0.9 
[D4]-PE P 18:1/16:0 51±9 6.4±1.4 
[D4]-PE P 18:1/18:1 55±14 7.9±0.5 
[D4]-PE P 18:1/20:4 556±87 10.6±1.1 
[D4]-PE P 18:1/20:5 59±15 15.0±1.5 
[D4]-PE P 18:1/22:4 91±8 15.4±2.8 
[D4]-PE P 18:1/22:5 79±19 14.8±2.5 
[D4]-PE P 18:1/22:6 95±4 12.5±2.4 
[D4]-PE P 18:0/16:0 41±4 11.5±2.4 
[D4]-PE P 18:0/18:1 30±5 3.7±1.5 
[D4]-PE P 18:0/20:4 367±70 3.1±0.5 
[D4]-PE P 18:0/20:5 51±5 5.8±0.8 
[D4]-PE P 18:0/22:4 67±5 5.0±0.6 
[D4]-PE P 18:0/22:5 76±17 5.5±1.1 
[D4]-PE P 18:0/22:6 66±17 4.0±0.8 

Table 11. Concentrations and percentages of newly synthesized PE P species. The quantitative 
values obtained for each stable isotope-labelled PL species were normalized to cellular protein content 
and are expressed as pmol/mg protein. For each PL specie the percentage of stable isotope-labelled PL 
from total labelled and unlabelled PL was calculated. Data are presented as means ± SDs (n = 5). PE P 
= phosphatidylethanolamine-based plasmalogens. 
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Figure 18. Viability and mitochondrial activity of the biosynthesis model of FLS. FLS were 
cultured according to the method used in the biosynthesis model. After 8, 16, and 24 hours 
mitochondrial activity assay or viability assay were performed. Obtained data for FLS cultured in 5% 
LPDS were related to control FLS cultured in 10% FBS medium (=1). Data are presented as means ± 
SDs (n = 3). The significance was tested using 1-way ANOVA. 

 

4.3.4. Apoptosis of FLS 

Due to significantly decreased mitochondrial activity of FLS in the biosynthesis 

model, we have evaluated their apoptosis using caspase 3/7 assay. The mean caspase 3/7 

activity of FLS cultured in medium containing 5% LPDS was significantly higher (P = 0.03) 

than in FLS cultured in “complete DMEM medium” containing 10% FBS. However, it was 

also 10 times lower than FLS treated with 1 µM staurosporine which was used as a positive 

control to induce apoptosis (Figure 19). Our data suggest that FLS displayed basic level of 

caspase 3/7 activity in medium containing 5% LPDS, and are not apoptotic.  

 

4.3.5. Expression of reference genes of FLS 

To check whether the expression of reference genes in our biosynthesis model of FLS 

is stable, quantitative real-time PCR was performed. Measured Ct data were related to control 

condition – “complete DMEM medium” (containing 10% FBS). FLS displayed stable 

expression of ACTB, B2M and GAPDH over time in medium containing 5% LPDS (Figure 

20A-C, Appendix Table 2).  
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Figure 19. Apoptosis of FLS in the biosynthesis model. FLS were cultured according to the method 
used in the biosynthesis model. After 4 or 16 hours caspase 3/7 assay was performed. 1 µM of 
staurosporine was used as a positive control for induction of apoptosis. Data are presented as means ± 
SDs (n = 3). The significance was tested using t-test.  

 

4.4. Final description of the release model being used 

The following in vitro model to study PL release was established: 80,000 FLS were 

seeded into 1 well of 6-well-plates, cultured until 100% confluency, labelled with 5 µCi/ml 

[3H]-choline and 1 µCi/ml [14C]-ethanolamine for 24 hours. Then FLS were adapted in “5% 

starvation medium” for 24 hours, next in “2% starvation medium” for 24 hours, and the 

release lasting 24 hours was determined in “2% starvation medium” in the presence or 

absence of agents to be tested. Cells were washed twice with 1x PBS to remove radiolabelled 

precursors of PLs and lysed with 0.2 ml of 0.2% SDS. Lysed wells were washed with 0.2 ml 

of aqua B. Braun, and combined extracts were ultarsonificated for 6 sec, 3 x 10% pulse, with 

40-50% power. Protein concentration within lysates was evaluated using BCA assay. Lipids 

were extracted from media as well as cell lysates according to Bligh and Dyer, and analysed 

by LSC. Bligh and Dyer extraction was a further method to remove radiolabelled precursors 

of PLs. The percentage of PLs released into media was calculated from total lipid extracts of 

media plus cell lysates (= 100%).   

 

4.4.1. PL release  

Using radioactive isotope-labelled precursors we were able to detect two fractions of 

released PLs: [3H]-choline-labelled PLs and [14C]-ethanolamine-labelled PLs. Figure 21 
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shows that 5.0±0.8% of [3H]-choline-labelled PLs from total cell lysates plus media as well as 

1.8±0.3% of [14C]-ethanolamine-labelled PLs from total cell lysates plus media were released 

into cell culture media.  

 

Figure 20. Expression of reference genes from the biosynthesis model of FLS. FLS were cultured 
according to the method used in the biosynthesis model. After 8, 16, and 24 hours RNA isolation was 
performed. Expression of ACTB, B2M and GAPDH was determined by quantitative real time PCR.  
Obtained data for FLS cultured in 5% LPDS were related to control FLS cultured in 10% FBS 
medium (=1). Data are presented as means ± SDs (n = 3). The significance was tested using 1-way 
ANOVA. 

 

4.4.2. FLS viability and mitochondrial activity 

In our in vitro model to study release of PLs, FLS were labelled with radiolabelled 

precursors, and then incubated up to 3 days in DMEM with decreasing amount of FBS. To 

confirm metabolic stability of cell culture conditions, viability and mitochondrial activity of 

cells were evaluated. Culture media (containing 5% and 2% FBS) as being used in our 

experiments were tested. Measured mitochondrial activity at 560 nm were normalized to 
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100,000 living cells, averaged and related to control condition – “complete DMEM medium” 

(containing 10% FBS). Calculated viability was also related to control condition. FLS 

displayed stable mitochondrial activity and viability over time in media containing both, 2% 

and 5% FBS (Figure 22A, B).  

 

Figure 21. The release of PLs from FLS.  FLS were labelled with 5 µCi/ml [3H]-choline and 1 
µCi/ml [14C]-ethanolamine for 24 hours. The release of PLs was investigated after 24 hours in media 
containing 2% FBS. Lipids were extracted and quantified by LSC. Data are presented as means ± SDs 
(n = 5).  

 

 

 

Figure 22. Viability and mitochondrial activity of the release model of FLS. FLS were cultured 
according to the method applied in the release model. After 12, 24, and 36 hours mitochondrial 
activity assay or viability assay were performed. Obtained data for FLS cultured in 2 or 5% FBS were 
related to control FLS cultured in 10% FBS medium (=1). Data are presented as means ± SDs (n =3). 
The significance was tested using 1-way ANOVA. 
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4.4.3. Expression of reference genes of FLS 

To check whether the expression of reference genes of FLS in our release model is 

stable, quantitative real-time PCR was performed. We have tested culture media (containing 

5% and 2% of FBS) as being used for our experiments. The measured Ct data were related to 

control condition – “complete DMEM medium” (containing 10% FBS). ACTB, B2M and 

GAPDH were stable expressed over time in media containing both, 2% and 5% FBS (Figure 

23A-F, Appendix Table 2).  

 

Figure 23. Expression of reference genes from the release model of FLS. FLS were cultured 
according to the method used in the release model. After 12, 24, and 36 hours RNA isolation was 
performed. mRNA expression of ACTB, B2M and GAPDH was determined by quantitative real-time 
PCR. Obtained data for FLS cultured in 2 or 5% FBS were related to control FLS cultured in 10% 
FBS medium (=1). Data are presented as means ± SDs (n = 3). The significance was tested using 1-
way ANOVA. 
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4.5. The effect of agents on de novo synthesis of PLs by FLS 

We have used our established biosynthesis model to investigate the effect of various 

agents on the PL biosynthesis. 

 

4.5.1. Screening of the action of agents on the biosynthesis of PLs 

Since there is not much known how the biosynthesis of PLs is regulated, we have 

decided to screen the effect of cytokines, growth factors, drugs and specific inhibitors (Table 

12, Appendix Table 3).  The morphology of FLS cultured in medium containing 5% LPDS 

was not affected by any of agents. 

We focused on IL-1β, TNFα and IL-6 which are known to be involved in the 

pathogenesis of OA (12, 15). IL-1β significantly increased 1.29-fold the biosynthesis of PE 

(31.1±2.2%) when compared to untreated controls (24.0±2.8%). Also the level of PE-based 

plasmalogens was elevated 1.32-fold (11.6±1.5%) when compared to untreated controls 

(8.8±1.9%). However, IL-1β did not have any impact on the biosynthesis of PC, SM and 

LPC. TNFα significantly increased only the biosynthesis of PE by 1.3-fold (31.4±2.0%) when 

compared to untreated controls (24.0±2.8%), whereas IL-6 did not modulate the biosynthesis 

of any PL class. 

Members of TGF-β superfamily were found to play a role in the progression of OA 

(35, 40). Thus, we investigated the effect of TGF-β1, BMP-2, BMP-4, and BMP-7. TGF-β1 

enhanced the synthesis of the PC class, but this did not reach statistical significance during 

our screening experiment, probably due to the applied Bonferroni correction. BMP-2 

increased the synthesis of PC (5.0±1.0%) by 1.13-fold as well as of SM (0.34±0.03%) by 

1.15-fold when compared to untreated controls (4.5±0.9% and 0.30±0.02%, respectively). SM 

derives from PC, so the ratios of newly synthesized SM to newly synthesized PC were 

calculated. Our analysis revealed that this ratio did not change upon BMP-2 treatment which 

indicates a non-specific effect on the biosynthesis of SM. Besides, BMP-7 increased by 1.10-

fold synthesis of PE-based plasmalogens (5.8±0.6%) when compared to untreated control 

(5.3±0.5%), whereas BMP-4 had no impact on the PL biosynthesis. Nevertheless, BMPs 

significantly increased the biosynthesis of some PC, PE and PE-based plasmalogen species 

(Appendix Table 12-14).  
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We also investigated the effect of IGF-1, which was found to have a protective effect 

on synovium (34). IGF-1 significantly increased the biosynthesis of PC (16.5±3.2%) by 1.29-

fold, of PE (26.9±1.7%) by 1.12-fold, as well as of SM (1.6±0.3%) by 1.70-fold, and of LPC 

(5.2±1.7%) by 1.20-fold when compared to untreated controls. Since PC is a precursor of SM 

and LPC biosynthesis, the ratios of newly synthesized SM or LPC to newly synthesized PC 

were calculated. Analysis revealed some slightly increased ratio of SM/PC for IGF-1 

treatment (0.10±0.02) when compared to untreated control (0.08±0.02). LPC/PC ratio did not 

change upon IGF-1 treatment which indicates that the effect of IGF-1 on the LPC 

biosynthesis was not agent specific.  

Dexamethasone induces production of pulmonary surfactants (99). Also, intra-articular 

injections of glucocorticoids during OA were also suggested to induce PL biosynthesis (100). 

In our experiment dexamethasone significantly reduced synthesis of PC (11.4±3.5%) by 0.84-

fold, of PE (21.3±2.3%) by 0.82-fold, of PE-based plasmalogens (8.2±1.2%) by 0.87-fold and 

of SM (0.64±0.22%) by 0.64-fold when compared to untreated controls (13.6±4.9%, 

26.7±2.7%, 9.4±1.3% and 1.0±0.3%, respectively). Since SM derives from PC, the ratios of 

newly synthesized SM to its precursor newly synthesized PC were calculated. The analysis 

revealed some slightly decreased ratio for dexamethasone treatment (0.06±0.02) when 

compared to untreated control (0.08±0.02). 

Because B2-adrenergic receptor antagonist and muscarinic receptor antagonists 

promotes pulmonary surfactants secretion (101), their effect on the PL biosynthesis was 

investigated. Adrenergic receptor antagonist – terbutaline and epinephrine as well as 

muscarinic receptor antagonist – carbachol and pilocarpine were tested. However, none of 

these agents influenced the PL biosynthesis, except terbutaline which increased the 

biosynthesis of LPC (5.0±1.3%) by 1.26-fold when compared to untreated control 

(3.9±1.2%). Since LPC derives from PC, the ratios of newly synthesized LPC to newly 

synthesized PC were calculated. Our findings revealed that ratios did not change upon 

terbutaline treatment which indicates a non-specific effect on LPC biosynthesis.  

We also investigated whether inhibition of phospholipase A2 with quinacrine prevents 

the hydrolysis of PC and PE (102). Our data shows that quinacrine significantly inhibited PL 

hydrolysis, since the synthesis of PC (16.0±4.5%) was increased by 1.36-fold, and that of PE 

(26.8±2.2%) by 1.18-fold, of SM (1.2±0.3%) by 1.40-fold, and of LPC (9.0±4.00%) by 2.28-

fold when compared to untreated controls (11.8±3.2%, 23.4±2.8%, 0.88±0.21%, and 

3.9±1.2%, respectively). Since PC is a precursor of SM and LPC biosynthesis, the ratios of 
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newly synthesized SM or LPC to newly synthesized PC were calculated. Analysis revealed 

that SM/PC ratio remained unchanged upon quiancrine treatment which suggests a non- 

specific effect on the SM biosynthesis. However, LPC/PC ratio was increased (0.55±0.10) 

when compared to untreated control (0.33±0.02) which indicates an agent specific effect on 

the LPC biosynthesis. 

Moreover, inhibition of choline kinase with specific inhibitor CK 37 displayed no 

effect on the PL biosynthesis. Only a high concentration of CK 37 (10 µM) increased the rate 

of synthesis of PC (16.0±4.2%) by 1.15-fold, of SM (1.3±0.3%) by 1.23-fold, and of PE-

based plasmalogens (11.9±1.6%) by 1.11-fold when compared to untreated controls 

(14.0±3.2%, 1.1±0.3% and 10.7±1.9%, respectively). Here again, the ratio of newly 

synthesized SM to newly synthesized PC did not change which indicates a non-specific effect 

of CK 37 on the SM biosynthesis. 

Sirtuins are known to be also associated with pathogenesis of OA (50, 103). Therefore, 

we investigated the effect of two different sirtuin inhibitors: Sirtinol and EX 527. Using 1 µM 

sirtinol, which blocks SIRT1 and SIRT2, slightly increased the biosynthesis of PE 

(25.4±2.8%) by 1.07-fold and of LPC (5.25±1.9%) by 1.30-fold when compared to untreated 

controls (23.7±2.7% and 4.0±1.3%). At a higher concentration of 10 µM Sirtinol increased 

the biosynthesis of PC (14.3±3.8%) by 1.14-fold, of PE (28.1±2.5%) by 1.18-fold, of PE-

based plasmalogens (11.2±2.77%) by 1.29-fold, and of LPC (5.58±1.62%) by 1.38-fold when 

compared to untreated controls (12.6±3.6%, 23.7±2.7, 8.7±1.77%, and 4.0±1.3%, 

respectively). Since LPC derives from PC, the ratios of newly synthesized LPC to newly 

synthesized PC were calculated. Our analysis revealed that LPC/PC ratio was changed upon 

sirtinol treatment at the concentration of 1 µM, but not 10 µM, which indicates that only 

sirtinol at the concentration of 1 µM significantly affected LPC biosynthesis. Inhibition of 

SIRT1 with 1 µM of EX 527 had no impact on the PL biosynthesis, whereas inhibition of all 

sirtuins with 50 µM of EX 527 together with 10 µM of NAM decreased the biosynthesis of 

PC (4.5±1.3%) by 0.86-fold when compared to untreated control (5.3±1.1%).  

Since the PC biosynthesis starts with the uptake of choline which is mediated by 

choline transporters, we have investigated the effect of the choline transporter inhibitor 

hemicholinium-3 on PL biosynthesis. Hemicholinium-3 did not affect the synthesis of PL 

based on choline, but unexpectedly increased the biosynthesis of PE (25.6±2.0%) by 1.13-fold 

and of PE-based plasmalogens (0.97±0.27%) by 1.22-fold when compared to untreated 

controls (23.4±3.0% and 0.82±0.17%, respectively).  
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Treatment [D9]-PC [D4]-PE [D4]-PE P 

n = 6 % labelled P values % labelled P values % labelled P values 

control + 40 µl  
            5% trehalose 

12.8±3.93 - 24.0±2.84 - 8.80±1.93 - 

IL-1β (10 ng/ml) 12.7±4.80 NS 31.1±2.18 ** 11.6±1.54 *** 

TNFα (100 ng/ml) 15.6±4.97 NS 31.4±1.99 *** 9.87±1.73 NS 

IL-6 (10 ng/ml) 12.8±5.13 NS 23.5±2.03 NS 8.35±1.22 NS 

TGF-β1 (10 ng/ml) 16.5±4.10 NS 26.4±2.50 NS 9.38±1.94 NS 

IGF-1 (100 ng/ml) 16.5±3.17 ** 26.9±1.73 ** 9.90±2.23 NS 

control + 20 µl 95% ethanol 13.6±4.89 - 25.8±2.71 - 9.37±1.31 - 

Dexamethasone (10 µM) 11.4±3.47 * 21.3±2.31 ** 8.15±1.21 * 

control + 20 µl H2O 11.8±3.18 - 22.6±2.87 - 8.02±1.87 - 

Terbutaline (10 µM) 12.5±4.05 NS 23.8±1.75 NS 8.37±1.10 NS 

Epinephrine (10 µM) 12.8±4.86 NS 24.2±2.29 NS 8.78±1.32 NS 

Carbachol (10 µM) 12.5±4.81 NS 24.1±2.75 NS 8.50±1.91 NS 

Pilocarpine (10 µM) 12.8±5.42 NS 24.5±2.73 NS 8.54±1.71 NS 

Quinacrine (5 µM) 16.0±4.46 ** 26.8±2.16 ** 8.08±1.53 NS 

control + 20 µl DMSO 14.0±3.17 - 26.3±2.83 - 10.7±1.93 - 

CK37 (10 µM) 16.0±4.21 * 25.8±2.15 NS 11.9±1.60 ** 

CK 37 (5 µM) 14.1±3.96 NS 24.2±1.32 NS 9.56±1.29 NS 

control + 2 µl DMSO 12.6±3.60 - 23.7±2.71 - 8.68±1.73 - 

CK37 (1 µM) 12.4±3.67 NS 22.5±2.03 NS 8.44±1.79 NS 

Sirtinol (1 µM) 13.6±4.61 NS 25.4±2.77 NS 9.37±2.25 NS 

Sirtinol (10 µM) 14.3±3.77 ** 28.1±2.50 ** 11.2±2.77 ** 

control + 100 µl H2O 11.5±3.07 - 22.5±3.04 - 7.98±1.67 - 

Hemicholinium-3 (50 µM) 13.4±4.69 NS 25.6±1.96 ** 9.72±1.70 ** 

Treatment [D9]-PC [D4]-PE [D4]-PE P 

n = 5 % labelled P values % labelled P values % labelled P values 

control + 40 µl  
   5% trehalose + 4 µl DMSO 

5.3±1.07 - 12.8±1.92 - 6.56±0.91 - 

EX 527 (1 µM) 5.6±0.91 NS 13.8±1.67 NS 6.43±0.66 NS 

EX 527 (50 µM) +  
             NAM (10 mM) 

 
4.5±1.34 

* 12.7±0.74 NS 6.37±0.37 NS 

control + 40 µl  
            5% trehalose 

4.5±0.93 - 9.83±1.88 - 5.25±0.53 - 

BMP-2 (100 ng/ml) 5.0±1.02 * 11.0±2.48 NS 5.78±0.89 NS 

BMP-4 (100 ng/ml) 4.9±1.17 NS 10.6±1.80 NS 5.44±0.54 NS 

BMP-7 (100 ng/ml) 5.3±0.94 NS 11.5±1.93 NS 5.78±0.56 ** 

Table 12. The effects of agents on the percentage of newly synthesized PL classes. 
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Treatment [D9]-SM [D9]-LPC 

n = 6 % labelled P values % labelled P values 

control + 40 µl  
            5% trehalose 

0.93±0.22 - 4.32±1.65 - 

IL-1β (10 ng/ml) 0.98±0.22 NS 4.88±2.65 NS 

TNFα (100 ng/ml) 1.12±0.12 NS 5.55±2.32 NS 

IL-6 (10 ng/ml) 0.88±0.25 NS 3.95±1.70 NS 

TGF-β1 (10 ng/ml) 1.28±0.41 NS 5.45±1.39 NS 

IGF-1 (100 ng/ml) 1.58±0.26 *** 5.20±1.70 ** 

control + 20 µl 95% ethanol 1.00±0.25 - 4.47±1.61 - 

Dexamethasone (10 µM) 0.64±0.22 ** 4.33±1.07 NS 

control + 20 µl H2O 0.88±0.21 - 3.93±1.19 - 

Terbutaline (10 µM) 0.83±0.20 NS 4.97±1.25 ** 

Epinephrine (10 µM) 0.88±0.24 NS 5.40±1.59 NS 

Carbachol (10 µM) 0.90±0.28 NS 4.65±1.67 NS 

Pilocarpine (10 µM) 0.90±0.29 NS 5.30±1.99 NS 

Quinacrine (5 µM) 1.23±0.33 ** 8.95±3.96 ** 

control + 20 µl DMSO 1.08±0.26 - 4.17±0.59 - 

CK37 (10 µM) 1.33±0.32 * 5.37±1.05 NS 

CK 37 (5 µM) 1.12±0.27 NS 4.88±1.76 NS 

control + 2 µl DMSO 0.93±0.19 - 4.03±1.26 - 

CK37 (1 µM) 0.92±0.27 NS 4.16±1.23 NS 

Sirtinol (1 µM) 1.03±0.28 NS 5.25±1.86 * 

Sirtinol (10 µM) 1.14±0.26 NS 5.58±1.62 ** 

control + 100 µl H2O 0.82±0.17 - 3.87±0.62 - 

Hemicholinium-3 (50 µM) 0.97±0.27 NS 4.93±1.02 * 

Treatment [D9]-SM [D9]-LPC 

n = 5 % labelled P values % labelled P values 

control + 40 µl  
   5% trehalose + 4 µl DMSO 

0.42±0.02 - 1.75±0.27 - 

EX 527 (1 µM) 0.43±0.05 NS 1.92±0.21 NS 

EX 527 (50 µM) +  
             NAM (10 mM) 

0.38±0.07 NS 2.24±0.46 NS 

control + 40 µl  
            5% trehalose 

0.30±0.02 - 1.65±0.20 - 

BMP-2 (100 ng/ml) 0.34±0.03 ** 1.56±0.18 NS 

BMP-4 (100 ng/ml) 0.33±0.03 NS 1.87±0.48 NS 

BMP-7 (100 ng/ml) 0.36±0.06 NS 1.78±0.26 NS 

Continuation of Table 12. The effects of agents on the percentage of newly synthesized PL 
classes. The quantitative values obtained for each stable isotope-labelled PL class were normalized to 
cellular protein content and are expressed as nmol/mg protein. For each PL class the percentage of 
stable isotope-labelled PL from total labelled and unlabelled PL was calculated. Data are presented as 
means ± SDs (n = 5-6). The significance was tested using t-tests and further Bonferroni correction for 
multiple testing was applied. * = P < 0.05; ** = P ≤ 0.01; *** = P ≤ 0.001. PC = phosphatidylcholine; 
PE = phosphatidylethanolamine; PE P = phosphatidylethanolamine-based plasmalogens; SM = 
sphingomyelin; LPC = lysophosphatidylcholine; NS = not significant.  
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4.5.2. Specific effects of IL-1β  

Because IL-1β strongly influenced PL biosynthesis our further analysis focused on the 

possible mechanism of action. FLS from 5 patients were labelled with precursors, pretreated 

for 30 min with specific signalling pathways inhibitors QNZ for NF-κB, SB203580 for p38 

MAPK and SP600125 for JNK, and were then treated with IL-1β. In this experiment, “LPDS 

medium” was enriched with L-serine to ensure access of all amino acid to enzymes. None of 

these treatments affected the morphology of FLS cultured in medium containing 5% LPDS. 

IL-1β again significantly increased 1.37-fold the biosynthesis of PE (16.8±1.3%; 

3.84±0.36 nmol/mg protein) when compared to untreated control (12.3±1.3%; 2.66±0.34 

nmol/mg protein) as well as of PE-based plasmalogens (7.8±0.7%; 3.29±0.36 nmol/mg 

protein) by 1.25-fold when compared to untreated control (6.3±0.5%; 2.62±0.30 nmol/mg 

protein) (Figure 24A, B, Appendix Table 4). Also, the biosynthesis of SM (0.4±0.1%; 

0.10±0.02 nmol/mg protein) was increased by 1.28-fold when compared to untreated control 

(0.3±0.1%; 0.08±0.02 nmol/mg protein). Inhibition of the intracellular signalling pathways of 

NF-κB with QNZ inhibitor, JNK with SP600125 inhibitor, and p38 MAPK with SB203580 

abolished the stimulatory effect of IL-1β on the biosynthesis of PE and PE-based 

plasmalogens. However, inhibition of p38 MAPK enhanced IL-1β-induced biosynthesis of PC 

by 1.7-fold, SM by 2.0-fold, and LPC by 1.3-fold when compared to sole IL-1β treatment. 

Since PC is the biosynthetic precursor of SM and LPC, the ratios of these newly synthesized 

classes to their newly synthesized precursor PC were calculated. Our analysis revealed no 

altered ratios upon treatments suggesting no specific but precursor-dependent stimulatory 

effect on SM biosynthesis. 

ESI-MS/MS allowed us a detailed analysis of individual PL species being newly 

synthesized. To determine changes in the synthesis rate of PL species, the x-folds of change 

of % labelled PL related to untreated control, which equals 1.0, were calculated. Nineteen 

newly synthesized PC and ten PC O species were identified in human FLS. The 

concentrations of newly synthesized PC species varied between 35±10 pmol/mg protein (PC 

40:6) and 677±151 pmol/mg protein (PC 34:1) for untreated control and between 30±9 

pmol/mg protein (PC 40:6) and 757±168 pmol/mg protein (PC 34:1) for treatment with IL-1β 

(Appendix Table 5). IL-1β significantly enhanced the synthesis of only four PC species 

compared to control: PC 32:0 by 1.13-fold, PC 34:0 by 1.41-fold, PC 32:1 by 1.20-fold, and 

PC 36:1 by 1.26-fold. However, the biosynthesis of PC 40:6 was decreased by 0.89-fold. 
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Inhibition of NF-κB with QNZ abolished the effect of IL-1β on the synthesis of three PC 

species, whereas inhibition of JNK with SP600125 did not modulate the IL-1β effect. 

 

Figure 24. Effect of IL-1β on the biosynthesis of PL classes as modulated by inhibitors of cell 
signalling pathways. The percentages of labelled PL classes from total corresponding labelled and 
unlabelled PL class are presented. FLS were treated with 10 ng/ml IL-1β alone or with the inhibitors 
of signalling pathways QNZ (10 µM, NF-κB), SB203580 (10 µM, p38) and SP600125 (10 µM, JNK) 
for 16 hours. Data are presented as means ± SDs (n = 5). The significance was tested using t-tests. a = 
P ≤ 0.05, control versus IL-1β; b = P ≤ 0.05, IL-1β versus IL-1β + QNZ; c = P ≤ 0.05, IL-1β versus 
IL-1β + SB203580; d = P ≤ 0.05, IL-1β versus IL-1β + SP600125. PC = phosphatidylcholine; PE = 
phosphatidylethanolamine; PE P = phosphatidylethanolamine-based plasmalogens; SM = 
sphingomyelin; LPC = lysophosphatidylcholine. 

 

Ten newly synthesized SM species were identified in human FLS and their 

concentrations varied between 2±1 pmol/mg protein (SM 36:2) and 39±11 pmol/mg protein 

(SM 34:1) for untreated control and 3±1 pmol/mg protein (SM 36:2) and 52±13 pmol/mg 

protein (SM 34:1) for IL-1β treatment (Appendix Table 5). The biosynthesis of four SM 

species namely SM 34:1 (1.38-fold), SM 35:2 (1.21-fold), SM 36:2 (1.36-fold), and SM 42:2 

(1.45-fold) were stimulated by IL-1β. However, inhibition of NF-κB or JNK had no 

significant impact on SM biosynthesis.  
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Moreover, only three newly synthesized LPC species were detected, and these were 

only found at low levels. Their concentrations in the untreated controls were 8±2 pmol/mg 

protein for LPC 16:0, 5±1 pmol/mg protein for LPC 18:0, and 6±2 pmol/mg protein for LPC 

18:1, and in cells treated with IL-1β 8±3 pmol/mg protein for LPC 16:0, 5±1 pmol/mg protein 

for LPC 18:0, and 6±1 pmol/mg protein for LPC 18:1. 

 

Figure 25. Effect of IL-1β on the biosynthesis of PE-based plasmalogens species as modulated by 
inhibitors of cell signalling pathways. PE P biosynthesis was monitored with ESI-MS/MS in the 
presence of IL-1β (red bars) with or without the addition of the JNK inhibitor SP600125 (hatched 
bars), NF-κB activation inhibitor QNZ (white bars) or the p38 MAPK inhibitor SB203580 (blue bars) 
for 16 hours. The percentages of stable isotope-labelled PE P species were calculated as a ratio of the 
corresponding untreated control and are expressed as x-fold change of % labelled PE P species 
compared to untreated control (=1). Data are presented as means + SDs (n = 5). The significance was 
tested using t-tests. a = P ≤ 0.05, control versus IL-1β; b = P ≤ 0.05, IL-1β versus IL-1β + QNZ; c = P 
≤ 0.05, IL-1β versus IL-1β + SB203580; d = P ≤ 0.05, IL-1β versus IL-1β + SP600125. PE P = 
phosphatidylethanolamine-based plasmalogens.  

Nineteen newly synthesized PE-based plasmalogen species of FLS were identified 

(Figure 25A, B). Their concentrations varied between 36±8 pmol/mg protein (PE P 18:0/18:1) 
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and 577±77 pmol/mg protein (PE P 18:1/20:4) for untreated controls and 38±7 pmol/mg 

protein (PE P 18:0/18:1) and 640±66 pmol/mg protein (PE P 18:1/20:4) for IL-1β treated FLS 

(Appendix Table 5). IL-1β increased the biosynthesis of eight PE-based plasmalogen species 

from 1.15-fold (PE P 18:1/20:4) up to 1.53- fold (PE P 18:0/22:4). Inhibition of signalling 

pathways partly abolished the IL-1β effect on the biosynthesis of these species. Inhibition of 

NF-κB significantly abolished the biosynthesis of six species, of JNK five species, and of p38 

MAPK only four species. 

 

Figure 26. Effect of IL-1β on the biosynthesis of PE species as modulated by inhibitors of cell 
signalling pathways. PE biosynthesis was monitored with ESI-MS/MS in the presence of IL-1β (red 
bars) with or without the addition of the JNK inhibitor SP600125 (hatched bars), NF-κB activation 
inhibitor QNZ (white bars) or the p38 MAPK inhibitor SB203580 (blue bars) for 16 hours. The 
percentages of stable isotope-labelled PE species were calculated as a ratio of the corresponding 
untreated control and are expressed as x-fold change of % labelled PE species compared to untreated 
control (=1). Data are presented as means + SDs (n = 5). The significance was tested using t-tests. a = 
P ≤ 0.05, control versus IL-1β; b = P ≤ 0.05, IL-1β versus IL-1β + QNZ; c = P ≤ 0.05, IL-1β versus 
IL-1β + SB203580; d = P ≤ 0.05, IL-1β versus IL-1β + SP600125. PE = phosphatidylethanolamine. 

 

Thirteen newly synthesized PE species were identified in human FLS (Figure 26A, B). 

Their concentrations varied between 35±9 pmol/mg protein (PE 36:4) and 656±97 pmol/mg 
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protein (PE 38:4) for untreated control and 56±9 pmol/mg protein (PE 36:4) and 871±83 

pmol/mg protein (PE 38:4) (Appendix Table 5). IL-1β significantly increased the biosynthesis 

of all PE species from 1.31-fold (PE 40:5) up to 1.49-fold (PE 36:4). Inhibition of all three 

signalling pathways abolished the IL-1β effect. QNZ significantly inhibited IL-1β-induced 

synthesis of twelve PE species, SB203580 of seven PE species, and SP600125 of ten PE 

species. 

 

4.5.3. Specific effects of TGF-β1  

In order to further investigate the effect of TGF-β1 on the PL biosynthesis, FLS from 5 

patients were labelled as described previously, pretreated for 30 min with TGF-β type I 

receptor activin receptor-like kinase ALK5 inhibitor SB432542, and then treated with TGF-

β1. In this experiment, “LPDS medium” was enriched with L-serine to ensure access of all 

amino acid to enzymes. None of these treatments affected the morphology of FLS cultured in 

medium containing 5% LPDS. 

TGF-β1 significantly increased 1.46-fold the biosynthesis of PC (7.65±1.63%; 

5.86±1.16 nmol/mg protein) when compared to untreated control (5.25±1.07%; 4.31±0.84 

nmol/mg protein) as well as of SM (0.54±0.08%; 0.13±0.02 nmol/mg protein) by 1.29-fold 

when compared to untreated control (0.42±0.02%; 0.11±0.02 nmol/mg protein). Since SM 

derives from PC, the ratio of newly synthesized SM to newly synthesized PC was calculated. 

The analysis shown that SM/PC ratio was decreased (0.07±0.02) when compared to untreated 

control (0.08±0.02) which suggests that observed effect came only from the increased PC 

synthesis. Interestingly, the biosynthesis of PE-based plasmalogens decreased (6.12±0.80%; 

2.47±0.50 nmol/mg protein) by 0.93-fold when compared to untreated control (6.56±0.91%; 

2.78±0.53 nmol/mg protein). Furthermore, inhibition of TGF-β receptor I kinase abolished the 

TGF-β1 effect on the biosynthesis of PC to untreated control level. Additionally, using 

SB432542 inhibitor even more decreased the biosynthesis of PE-based plasmalogens by 0.88-

fold when compared to sole TGF-β1 treatment (Figure 27A, B, Appendix Table 4).  

The concentrations of nineteen newly synthesized PC species varied between 35±12 

pmol/mg protein (PC 40:4) and 812±142 pmol/mg protein (PC 34:1) for untreated control and 

between 39±12 pmol/mg protein (PC 40:4) and 1189±205 pmol/mg protein (PC 34:1) for 

treatment with TGF-β1 (Appendix Table 6). TGF-β1 significantly enhanced the biosynthesis 

of all PC species from 1.3-fold up to 1.8-fold when compared to untreated control. Inhibition 
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of TGF-β receptor I kinase significantly abolished the effect of TGF-β1 on the synthesis of 

sixteen PC species: PC 30:0, PC 32:0, PC 34:0, PC 32:1, PC 34:1, PC 36:1, PC 34:2, PC 36:2, 

PC 34:3, PC 36:3, PC 38:4, PC 36:5, PC 38:5, PC 40:5, PC 38:6, and PC 40:6 (Figure 28A, 

B).  

Moreover, ten newly synthesized SM species were identified and their concentrations 

varied between 3±1 pmol/mg protein (SM 36:2) and 54±10 pmol/mg protein (SM 34:1) for 

untreated control and 4±1 pmol/mg protein (SM 36:2) and 69±17 pmol/mg protein (SM 34:1) 

for treatment with TGF-β1 (Appendix Table 6). TGF-β1 significantly increased the 

biosynthesis only one species SM 36:2 by 1.3-fold. This effect was abolished by the 

SB432542 inhibitor (Figure 28C).  

 

Figure 27. Effect of TGF-β1 on the biosynthesis of PL classes as modulated by TGFβ receptor 
type I kinase inhibitor. The percentages of labelled PL classes from total corresponding labelled and 
unlabelled PL class are presented. FLS were treated with 10 ng/ml TGF-β1 alone or with the inhibitor 
of TGFβ receptor I kinase (10 µM, SB432542) for 16 hours. Data are presented as mean s± SDs (n = 
5).  The significance was tested using t-tests. a = P ≤ 0.05, control versus TGF-β1; b = P ≤ 0.05, TGF-
β1 versus TGF-β1 + SB432542. PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine. 
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Figure 28. Effect of TGF-β1 on the biosynthesis of PC (A-B) and SM (C) species as modulated by 
TGFβ receptor I kinase inhibitor. PL biosynthesis was monitored with ESI-MS/MS in the presence 
of TGF-β1 (red bars) with or without the addition of the TGFβ receptor type I kinase inhibitor 
SB432542 (white bars) for 16 hours. The percentages of stable isotope-labelled PL species were 
calculated as a ratio of the corresponding untreated control and are expressed as x-fold change of % 
labelled PL species compared to untreated control (=1). Data are presented as means + SDs (n = 5). 
The significance was tested using t-tests. a = P ≤ 0.05, control versus TGF-β1; b = P ≤ 0.05, TGF-β1 
versus TGF-β1 + SB432542. PC = phosphatidylcholine; SM = sphingomyelin. 

 

Also, nineteen newly synthesized PE-based plasmalogens species were identified in 

FLS. Their concentrations varied between 40±14 pmol/mg protein (PE P 18:0/18:1) and 

575±105 pmol/mg protein (PE P 18:1/20:4) for untreated control and 37±8 (PE P 18:0/18:1) 
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and 515±94 pmol/mg protein (PE P 18:1/20:4) for treatment with TGF-β1 (Appendix Table 

6). TGF-β1 significantly increased the biosynthesis of only PE P 18:1/20:4 by 1.1-fold and 

decreased the biosynthesis of PE P 18:0/22:6 specie by 0.9-fold. Inhibition of TGF-β receptor 

I kinase significantly decreased synthesis of PE P 18:0/22:6 (Figure 29A, B). 

Moreover, the biosynthesis of individual PE species was barely affected by TGF-β1. 

Only the biosynthesis of one specie PE 36:3 was increased by 1.24-fold when compared to 

untreated control (data not shown). 

 

Figure 29. Effect of TGF-β1 on the biosynthesis of PE P species as modulated by TGFβ receptor 
I kinase inhibitor. PE P biosynthesis was monitored with ESI-MS/MS in the presence of TGF-β1 (red 
bars) with or without the addition of the TGFβ receptor type I kinase inhibitor SB432542 (white bars) 
for 16 hours. The percentages of stable isotope-labelled PE P species were calculated as a ratio of the 
corresponding untreated control and are expressed as x-fold change of % labelled PE P species 
compared to untreated control (=1). Data are presented as means + SDs (n = 5). The significance was 
tested using t-tests. a = P ≤ 0.05, control versus TGF-β1; b = P ≤ 0.05, TGF-β1 versus TGF-β1 + 
SB432542. PE P = phosphatidylethanolamine-based plasmalogens. 
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4.5.4. Specific effects of IGF-1 

Data from our screening experiment lead us to focus on the effect of IGF-1. FLS from 

5 patients were labelled as described previously, pretreated for 30 min with signalling 

pathways inhibitors LY294002 (PI3K) and SCH772984 (ERK), and then treated with IGF-1. 

In this experiment, “LPDS medium” was enriched with L-serine to ensure access of all amino 

acid to enzymes. None of these treatments affected the morphology of FLS cultured in 

medium containing 5% LPDS. 

IGF-1 significantly increased 1.28-fold the biosynthesis of PC (6.71±1.53%; 

5.06±1.06 nmol/mg protein) when compared to untreated control (5.25±1.07%; 4.31±0.84 

nmol/mg protein) as well as of SM (0.59±0.09%; 0.14±0.03 nmol/mg protein) by 1.41-fold 

when compared to untreated control (0.42±0.02%; 0.11±0.02 nmol/mg protein). However the 

ratio of newly synthesized SM to newly synthesized PC did not changed, which indicates that 

the observed effect was not IGF-1 specific. We could determine only a small inhibitory effect 

of the specific PI3K inhibitor LY294002 on the biosynthesis of PE and SM. Unexpectedly, 

inhibition of ERK with SCH772984 inhibitor further stimulated the biosynthesis of PC by 

1.56-fold, of SM by 1.88-fold, and of LPC by 1.59-fold (Figure 30A, B, Appendix Table 4). 

Here again, observed effects were not agent specific due to the constant ratio of newly 

synthesized SM and LPC to newly synthesized PC. 

Our analysis allowed us to determine nineteen newly synthesized PC species. Their 

concentrations varied between 35±12 pmol/mg protein (PC 40:4) and 812±142 pmol/mg 

protein (PC 34:1) for untreated controls and between 33±9 pmol/mg protein (PC 40:4) and 

1036±120 pmol/mg protein (PC 34:1) for treatment with IGF-1 (Appendix Table 7). IGF-1 

significantly enhanced the biosynthesis of sixteen PC species from 1.2-fold up to 1.4-fold. 

Inhibition of PI3K significantly abolished the effect of IGF-1 on the synthesis of four PC 

species namely PC 32:1, PC 34:1, PC 36:3, and PC 36:4 but increased the synthesis of PC 

40:5 (Figure 31A, B). 

The concentrations of newly synthesized SM species varied between 3±1 pmol/mg 

protein (SM 36:2) and 54±10 pmol/mg protein (SM 34:1) for untreated controls and 3±1 

pmol/mg protein (SM 36:2) and 70±17 pmol/mg protein (SM 34:1) for treatment with IGF-1 

(Appendix Table 7). IGF-1 significantly increased the biosynthesis of SM 34:1 by 1.4-fold, 

SM 42:1 by 1.7-fold, SM 35:2 by 1.5-fold, and SM 42:2 by 1.9-fold. Inhibition of PI3K 
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significantly abolished the effect of IGF-1 on the synthesis of SM 34:1 and SM 35:2 (Figure 

31C).  

Additionally, IGF-1 did not affect the biosynthesis of any PE-based plasmalogen 

species. However, this growth factor increased the biosynthesis of specie PE 36:3 by 1.09-

fold and decreased the biosynthesis of PE 40.4 by 0.88-fold when compared to untreated 

control (data not shown). 

 

 

Figure 30. Effect of IGF-1 on the biosynthesis of PL classes as modulated by cell signalling 
pathways inhibitors. The percentages of labelled PL classes from total corresponding labelled and 
unlabelled PL class are presented. FLS were treated with 100 ng/ml IGF-1 alone or with the cell 
signalling pathways inhibitors LY294002 (10 µM, PI3K) and SCH772984 (1µM, ERK) for 16 hours. 
Data are presented as means ± SDs (n = 5). The significance was tested using t-tests. a = P ≤ 0.05, 
control versus IGF-1; b = P ≤ 0.05, IGF-1 versus IGF1 + LY294002; c = P ≤ 0.05, IGF-1 versus IGF-
1 + SCH772984. PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine. 
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Figure 31. Effect of IGF-1 on the biosynthesis of PC (A-B) and SM (C) species as modulated by 
signalling pathways inhibitors. PL biosynthesis was monitored with ESI-MS/MS in the presence of 
IGF-1 (red bars) with or without the addition of the cell signalling pathways inhibitors LY294002 
(white bars) and SCH772984 (blue bars) for 16 hours. The percentages of stable isotope-labelled PL 
species were calculated as a ratio of the corresponding untreated control and are expressed as x-fold 
change of % labelled PL species compared to untreated control (=1). Data are presented as means + 
SDs (n = 5). The significance was tested using t-tests. a = P ≤ 0.05, control versus IGF-1; b = P ≤ 0.05, 
IGF-1 versus IGF1 + LY294002; c = P ≤ 0.05, IGF-1 versus IGF-1 + SCH772984. PC = 
phosphatidylcholine; SM = sphingomyelin. 
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4.5.5. Specific effects of dexamethasone 

Our screening experiment revealed that dexamethasone is the only agent which 

decreased the PL biosynthesis. Thus, we further investigated its effects. FLS from 5 patients 

were labelled as described previously, pretreated for 30 min with glucocorticoid receptor 

inhibitor RU 485, and then treated with dexamethasone. In this experiment, “LPDS medium” 

was enriched with L-serine to ensure access of all amino acid to enzymes. Dexamethasone did 

not affect the morphology of FLS cultured in medium containing 5% LPDS. 

Dexamethasone significantly decreased 0.79-fold the biosynthesis of PE 

(11.27±1.30%; 2.06±0.29 nmol/mg protein) when compared to untreated control 

(14.26±1.46%; 3.06±0.54 nmol/mg protein) as well as of SM (0.34±0.01%; 0.08±0.02 

nmol/mg protein) by 0.74-fold when compared to untreated control (0.46±0.04%; 0.10±0.01 

nmol/mg protein). PC and PE-based plasmalogen biosynthesis was slightly decreased which 

did not reach statistical significance. Furthermore, blocking the glucocorticoid receptor with 

RU 486 abolished the dexamethasone effect on the biosynthesis of SM (Figure 32A, B, 

Appendix Table 4). Since SM derives from PC, the ratios of these newly synthesized SM to 

its newly synthesized precursor PC were calculated. Our analysis revealed no altered ratios 

upon treatments suggesting no specific but precursor-dependent stimulatory effect on SM 

biosynthesis. 

Our detailed ESI-MS/MS analysis allowed us to determine nineteen newly synthesized 

PC species. Their concentrations varied between 39±5 pmol/mg protein (PC 34:3) and 

861±90 pmol/mg protein (PC 34:1) for untreated controls and between 28±8 pmol/mg protein 

(PC 34:3) and 726±206 pmol/mg protein (PC 34:1) for treatment with dexamethasone 

(Appendix Table 8). Dexamethasone significantly decreased the biosynthesis of only PC 30:3 

by 0.77-fold. Moreover, blocking the glucocorticoid receptor with RU 486 abolished this 

effect (Figure 33A, B). 

Moreover, ten newly synthesized SM species were identified and their concentrations 

varied between 3±1 pmol/mg protein (SM 36:2) and 54±8 pmol/mg protein (SM 34:1) for 

untreated controls and 2±0 pmol/mg protein (SM 36:2) and 37±11 pmol/mg protein (SM 

34:1) for treatment with dexamethasone (Appendix Table 8). Dexamethasone significantly 

decreased the biosynthesis of four SM species namely SM 33:1 by 0.88-fold, SM 42:1 by 

0.65-fold, SM 36:2 by 0.78-fold, and SM 42:2 by 0.53-fold. Blocking the glucocorticoid 
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receptor with RU 486 significantly abolished the dexamethasone effect on the synthesis of 

SM 34:1 (Figure 33C).  

 

Figure 32. Effect of dexamethasone on the biosynthesis of PL classes as modulated by a 
glucocorticoid receptor inhibitor. The percentages of labelled PL classes from total corresponding 
labelled and unlabelled PL class are presented. FLS were treated with dexamethasone (10 µM) alone 
or with the glucocorticoid receptor inhibitor RU 486 (1 µM) for 16 hours. Data are presented as means 
± SDs (n = 5). The significance was tested using t-tests. a = P ≤ 0.05, control versus Dex; b = P ≤ 0.05, 
Dex versus Dex + RU 486. PC = phosphatidylcholine; PE = phosphatidylethanolamine; PE P = 
phosphatidylethanolamine-based plasmalogens; SM = sphingomyelin; LPC = 
lysophosphatidylcholine; Dex = dexamethasone.  

 

In addition, thirteen newly synthesized PE species were identified and their 

concentrations varied between 37±16 pmol/mg protein (PE 34:2) and 722±134 pmol/mg 

protein (PE 38:4) for untreated controls and 18±8 pmol/mg protein (PE 34:2) and 558±125 

pmol/mg protein (PE 38:4) for dexamethasone (Appendix Table 8). Dexamethasone 

significantly decreased the biosynthesis of eleven PE species from 0.67-fold (PE 34:1) down 

to 0.85-fold (PE 40:5). Blocking the glucocorticoid receptor with RU 486 significantly 

abolished the dexamethasone effect on the synthesis of five PE species: PE 34:1, PE 36:1, PE 

38:3, PE 40:4, and PE 40:6 (Figure 34A, B). 
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Additionally, dexamethasone did not significantly affect the biosynthesis of any of 

detected nineteen PE-based plasmalogen species (data not shown). 

 

Figure 33. Effect of dexamethasone on the biosynthesis of PC (A-B) and SM (C) species as 
modulated by a glucocorticoid receptor inhibitor. PL biosynthesis was monitored with ESI-MS/MS 
in the presence of dexamethasone (red bars) with or without the addition of the glucocorticoid receptor 
inhibitor RU 486 (white bars) for 16 hours. The percentages of stable isotope-labelled PL species were 
calculated as a ratio of the corresponding untreated control and are expressed as x-fold change of % 
labelled PL species compared to untreated control (=1). Data are presented as means + SDs (n = 5). 
The significance was tested using t-tests. a = P ≤ 0.05, control versus Dex; b = P ≤ 0.05, Dex versus 
Dex + RU 486. PC = phosphatidylcholine; SM = sphingomyelin; Dex = dexamethasone. 
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Figure 34. Effect of dexamethasone on the biosynthesis of PE species as modulated by a 
glucocorticoid receptor inhibitor. PE biosynthesis was monitored with ESI-MS/MS in the presence 
of dexamethasone (red bars) with or without the addition of the glucocorticoid receptor inhibitor RU 
486 (white bars) for 16 hours. The percentages of stable isotope-labelled PE species were calculated as 
a ratio of the corresponding untreated control and are expressed as x-fold change of % labelled PE 
species compared to untreated control (=1). Data are presented as means + SDs (n = 5). The 
significance was tested using t-tests. a = P ≤ 0.05, control versus Dex; b = P ≤ 0.05, Dex versus Dex + 
RU 486. PE = phosphatidylethanolamine; Dex = dexamethasone. 

 

4.6. The effects of agents on the release of PLs from FLS 

We have used our established release model to investigate the effects of various agents 

on the PL release from FLS into culture media. 

 

4.6.1. Screening the effects of agents on the release of PLs 

Because current knowledge about PL release of FLS is limited, we screened the effects 

of various agents known to be associated with the pathogenesis of OA (Table 13).  Similar to 

the biosynthesis model we have investigated the effect of cytokines, growth factors, 
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corticosteroids, β-adrenergic agonists, muscarinic receptor agonists, inhibitor of 

phospholipase A2, inhibitor of choline transporter, and inhibitors of sirtuins. Moreover, we 

wanted to enhance the release of PLs from FLS using apolipoproteins, since they transport 

cholesterol and PLs (104). 

In general, the release of [3H]-choline-labelled PLs was 2.3-fold higher than [14C]-

ethanolamine-labelled PLs. From all tested agents only IL-1β and TNFα enhanced the release 

of [3H]-choline-labelled PLs into DMEM containing 2% FBS. However, FLS treated with IL-

1β and TNFα displayed more rounded morphology of spindle-shaped cells. Other treatments 

did not affected the morphology of FLS cultured in medium containing 2% or 5% FBS. 

Nevertheless, all other agents had no impact on the release of PLs. 

 

4.6.2. Specific effect of IL-1β  

Data from the screening experiment lead us to focus on the effect of IL-1β. Due to the 

altered cell morphology during treatment of FLS with 10 ng/ml IL-1β we reduced finally the 

concentration to 2 ng/ml. Simultaneously, the serum content of nutrient media was increased 

up to 10%. In order to identify the mechanism of action of IL-1β on PL release, inhibitors of 

specific signalling pathway were used (Table 14).  

Despite improvements in this experiment, FLS still displayed some altered 

morphology upon IL-1β treatment. Only cells treated with 5 ng/ml IL-1β and 10 µM 

SB203580 had normal spindled-shaped cell morphology. IL-1β did not stimulate PL release 

in DMEM containing 5% or 10% FBS. Additionally, we could not observe any concentration-

dependent effect. Inhibition of signalling pathways did not influence the effect of IL-1β. 

However, an increased release of [14C]-ethanolamine-labelled PLs into DMEM containing 5% 

FBS was determined after blocking the p38 MAPK signalling pathway with SB203580 

(2.4±0.4%) when compared to IL-1β (1.8±0.7%). 
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Treatment 
[3H]-choline-labelled PLs [14C]-ethanolamine-labelled PLs 

% released PLs P-values % released PLs  P-values 

2% FBS n= 5 n = 5 

control + 40 µl 5% trehalose 4.7±0.9 - 2.0±0.5 - 

IL-1β (10 ng/ml) 5.9±1.1 ** 1.7±0.5 NS 

TNFα (100 ng/ml) 5.7±1.2 ** 2.2±0.5 NS 

IL-6 (10 ng/ml) 5.3±1.5 NS 2.2±0.6 NS 

TGF-β1 (10 ng/ml) 5.6±2.2 NS - - 

IGF-1 (100 ng/ml) 5.0±1.3 NS - - 

control + 20 µl 95% ethanol 5.0±1.0 - 2.2±0.7 - 

Dexamethasone (10 µM) 4.8±1.4 NS 2.1±0.7 NS 

control + 20 µl H2O 5.0±0.8 - 1.8±0.3 - 

Terbutaline (10 µM) 5.0±1.2 NS 2.1±0.6 NS 

Epinephrine (10 µM) 5.1±1.2 NS - - 

Carbachol (10 µM) 4.7±1.2 NS 2.1±0.7 NS 

Pilocarpine (10 µM) 5.2±1.6 NS - - 

Quinacrine (5 µM) 4.1±0.7 NS - - 

control + 2 µl DMSO 5.4±1.5 - 2.1±0.5 - 

Sirtinol (1 µM) 5.2±1.6 NS 3.1±1.0 NS 

control + 100 µl H2O 6.9±2.8 - - - 

Hemicholinium-3 (50 µM) 5.1±1.2 NS - - 

Treatment 
[3H]-choline-labelled PLs [14C]-ethanolamine-labelled PLs 

% released PLs P-values % released PLs  P-values 

5% FBS n = 6 n = 6 

control + 40 µl 5% trehalose 
                             + 4 µl DMSO 

5.7±0.8 - 2.2±0.4 - 

EX 527 (1 µM) 5.5±1.1 NS 2.1±0.5 NS 

control + 8 µl gelatin-PBS + 
                 20 µl 5% terhalose 

6.9±2.1 - 2.6±0.9 - 

Apo A-I (10 µg/ml) 6.5±0.9 NS 2.5±0.8 NS 

Apo E4 (10 µg/ml) 6.2±0.9 NS 2.0±0.4 NS 

Table 13. The effects of agents on the release of PLs from FLS. Our in vitro model to study the 
efflux of PLs from FLS was applied. The release of radiolabelled PLs from confluent FLS into media 
during a 24 hours period was monitored in the presence of agents at the final concentration indicated 
in the table. The quantitative dpm values were normalized to the cellular protein content. Data 
presented are the percentages of radiolabelled PLs being released from total radiolabelled PLs found in 
media and cellular lysates (=100%) which were calculated separately for [3H]- as well as [14C]-labelled 
PLs. ** = P ≤ 0.01. Data are presented as means ± SDs (n = 5-6). The significance was tested using t-
tests and further Bonferroni correction for multiple testing was applied. NS = not significant. 
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Treatment 
[3H]-choline-labelled PLs [14C]-ethanolamine-labelled PLs 

% released PLs P-values % released PLs P-values 

5% FBS n = 6 n = 6 

control 6.2±1.0 - 2.3±0.6 - 

IL-1β (5 ng/ml) 6.9±1.8 NS 1.8±0.7 NS 

IL-1β (5 ng/ml) + 
 SB203580 (10 µM) 

7.3±1.1 NS 2.4±0.4 # 

Treatment 
[3H]-choline-labelled PLs [14C]-ethanolamine-labelled PLs 

% released PLs P-values % released PLs P-values 

10% FBS n = 3 n = 2 

control 6.8±0.5 - - - 

IL-1β (2 ng/ml) 10.8±3.7 NS - - 

control 7.1±1.5 - 2.0±0.1 - 

IL-1β (5 ng/ml) 7.7±1.5 NS 1.9±0.2 NS 

IL-1β (5 ng/ml) + 
 SB203580 (10 µM) 

7.9±1.6 NS 3.1±1.9 NS 

IL-1β (5 ng/ml) +  
           QNZ (10 µM) 

7.8±1.8 NS 2.3±0.0 NS 

control 7.4±0.6 - - - 

IL-1β (10 ng/ml) 9.2±2.1 NS - - 

Table 14. The effect of IL-1β on the release of PLs from FLS. Our in vitro model to study the 
efflux of PLs from FLS was applied. The release of radiolabelled PLs from confluent FLS into media 
during a 24 hours period was monitored in the presence of agents at the final concentration indicated 
in the table. The quantitative dpm values were normalized to the cellular protein content. Data 
presented are the percentages of radiolabelled PLs being released from total radiolabelled PLs found in 
media and cellular lysates (=100%) which were calculated separately for [3H]- as well as [14C]-labelled 
PLs. # = P ≤ 0.05, IL-1β versus IL-1β + SB203580.  Data are presented as means ± SDs (n = 2-6). The 
significance was tested using t-tests. NS = not significant.  
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5. DISCUSSION 

The main goal of this study was to determine the effects of cytokines, growth factors 

as well as pharmacological agents on the biosynthesis and release of PL classes and species 

from human FLS and further elucidate the underlying cell transduction mechanism. This 

study provides the first detailed overview of PLs being synthesized and released from human 

FLS using two newly developed in vitro models. Furthermore, our data indicate that cytokines 

and growth factors differently regulate PL metabolism. The obtained results suggest that PL 

biosynthesis and release is regulated by some cytokines and growth factors being present at 

the elevated levels in the synovial fluid of osteoarthritic articular joints.  

 

5.1. Comparison of PLs from SF and FLS  

PLs together with HA and lubricin were reported to provide boundary lubrication 

within human articular joints (52, 54, 61, 62, 105). Recent studies have shown that lubricin 

interacts with HA complexed with PLs, which can slide past similar groups from opposing 

surfaces with low friction via boundary lubrication mechanism (106, 107).  The lipid profile 

of SF is well described and related to the health status of the joint. Our previous studies have 

reported that SF from patients with OA and RA displayed higher levels of PLs compared to 

healthy controls, whereas the concentrations of HA and lubricin were reduced in these 

diseases (53, 54, 82). The balance between these three compounds is necessary for proper 

lubrication. Moreover, PLs are involved in many other processes in human body including 

membrane constitutes, cell signalling, inflammation, and anti-oxidative processes (67, 68, 70, 

78).  

Our analysis showed for the first time the composition of PLs in human OA FLS. 

Using ESI-MS/MS we were able to determine nine PL classes. PC was found to be a major 

PL class constituting 33% of all PLs. We previously reported that in human SF 67% of total 

PLs is PC, and that 94% of all PLs contain choline. Interestingly, in our study PE-based 

plasmalogen was the second major class constituting 18% of all PLs, whereas in SF this class 

constituted only 2.5% of all PLs (53). PC is considered to be a major lipid class playing a role 

in joint lubrication. Within cells PLs are membrane components and they are also involved in 

many processes such as cell signalling and inflammation, which may explain their greater 

diversity.  
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In a lipidomic study by Kosinska et al. 23 PC, 21 PE species, and 24 PE-based 

plasmalogen were found in human SF from healthy donors (53). In this study, we 

demonstrated that untreated FLS synthesized 19 PC, 13 PE species, and 17 PE-based 

plasmalogen from those species being present in SF. We could observe similarities between 

SF and FLS in individual species composition. PC 34:2, PC 34:1 and PC 36:2 are the major 

species being present in SF, while PC 34:1, PC 32:0 and PC 38:4 are in untreated FLS. The 

most abundant PE species for both SF and untreated FLS is PE 38:4. Also, the main PE-based 

plasmalogen species are the same for SF and untreated FLS, which are PE P 16:0/20:4, PE P 

18:1/20:4, and PE P 18:0/20:4. This indicates that at least part of PLs being present in SF may 

derive from FLS.  

Furthermore, human knee joint contains about 0.5-4 ml of SF. The concentrations of 

PLs being present in SF are at high levels and are expressed as nmol/ml of SF. In our study, 

the concentrations of PLs are much lower and are expressed as nmol/mg cellular protein. 

According to our experiments one million of FLS produce approximately 0.14±0.03 µg 

protein. The whole synovial membrane contains 1-2 layers of FLS. In order to be the sole 

source of the most abundant PC species in SF, namely PC 34:2 (26.1 nmol/ml), 

approximately 600 billions of cultured FLS are needed. This calculation is based on the 

assumption that the same rate of synthesis and degradation is present in vivo and in vitro. 

Therefore, it seems unlikely that all PLs present in SF derive from FLS.  

 

5.2. Biosynthesis of PLs 

PLs were reported to be synthesized and stored in lamellar bodies of FLS (59, 108-

110). These cells can also secrete hyaluronan and lubricin, molecules which contribute to 

lubrication of articular joints (58, 111). They also produce and release cytokines, mediators of 

inflammations and matrix metalloproteinases (55). 

Our data confirm that non-proliferating, confluent FLS indeed synthesize PLs. The 

application of stable isotope-labelled precursors of PLs combined with ESI-MS/MS 

technology allowed us to analyse a great variety of individual lipid species. Using our newly 

developed model to study the biosynthesis of PLs, we were able to determine 74 newly 

synthesized PL species belonging to five PL classes. However, using stable isotope-labelled 

precursors of choline and ethanolamine limited our investigation about the de novo synthesis 

of PLs to only PC and PE synthesis via the Kennedy pathway. Other newly synthesized lipids 
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such as PE-based plasmalogens, SM, and LPC were generated in our study only from their 

precursors PC and PE, which must be taken into account when interpreting our data. The 

biosynthesis of PL is highly correlated with time. After 16 hours of labelling, we found more 

PE than PC being labelled with their stable isotope-labelled precursors. Our data suggest that 

synthesis and remodelling of PC require more time than synthesis of PE. Since in our 

experiments we used 100% confluent FLS and a starvation period, we assume that the 

observed effect on the biosynthesis of PLs does not derive from lipids produced for cell 

membranes of dividing cells.  

Several studies have suggested that the fatty acid chain length and saturation have an 

impact on the lubricating properties of PC. It is believed that the most important surfactant in 

the lung is saturated dipalmityol-phosphatidylcholine (DPPC) (64). However, DPPC was 

found only in small amounts on the surface of articular cartilage (112, 113). Moreover, 

Kosinska et al. reported elevated levels of polyunsaturated PC species such as PC 34:1, PC 

36:1, PC 34:2, PC 36:2, PC 36:3, PC 36:4, PC 38:4, and PC 38:5 within human SF (53). 

Similarly, our data indicate that FLS mostly produce the same unsaturated PC species. We 

assume that these polyunsaturated species might be involved in boundary lubrication. Here 

we showed that newly synthesized PC species exist mostly in unsaturated form and their FA 

chains contain equal or less than 36 carbon atoms, which might derive from the FAs such as 

palmitic, palmitoleic, stearic and oleic acids being present in the culture media. Also, the 

preferred synthesized PE species were polyunsaturated and contained more than 36 carbon 

atoms in their FA chains.  

 

5.2.1. Effect of cytokines on the biosynthesis of PLs 

IL-1β, TNFα and IL-6 are thought to be key pro-inflammatory cytokines involved in 

the pathogenesis of OA, and elevated levels of these cytokines were found in SF and sera of 

OA patients (11, 12, 15). We therefore tested the effect of these cytokines on the biosynthesis 

of PLs. Kronqvist et al. (114) focused on IL-1β using human skin fibroblasts to show that this 

cytokine inhibits the synthesis of SM class but not PC class. Angel et al. (102) reported that 

IL-1β induced the degradation of PC, PE, and PI through the activation of phospholipase A2 

and release of arachidonic acid using human FLS. We did not observe this effect in our study. 

Here, IL-1β stimulated PE biosynthesis and did not reduce levels of PC species, even of those 

PC species that might contain arachidonic acid such as PC 36:4 and PC 38:4. Our results 
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show that IL-1β enhanced the synthesis of PE and PE-based plasmalogen when compared to 

untreated control. Interestingly, it only slightly influenced the synthesis of PLs containing 

choline. Moreover, we have shown that TNFα only slightly contributes to changes in the 

biosynthesis of PLs, whereas IL-6 has no impact. Also, our data are partly in contrast to those 

obtained by Kronqvist et al. (114), a difference which might have been due to methodological 

differences. We used a shorter time period to determine the de novo synthesis of PLs in order 

to avoid any degradation and reuptake of newly synthesized lipids. Also, our study used 

highly differentiated human FLS which are cells known to secrete many factors including 

lubricants. Furthermore, Kronqvist et al. (34) used a culture medium supplemented with 12% 

FBS which contains LDL and cholesterol, whereas we used lipoprotein deficient serum. It is 

known that less SM is found wherever increased levels of cholesterol esters are seen (115) 

and this interaction might be one of the reasons for the divergence.  

During this study we could notice the advantage of ESI-MS/MS, because we were able 

to see the differences on the individual species levels, which was sometimes not visible when 

only looking at the overall effect on the corresponding PL class. Here we could demonstrate 

e.g. for PC that a marked stimulation of individual PC species does not necessarily result in an 

elevated level of the corresponding PL class. A detailed view of PL species being regulated 

individually might be important for future experiments designed to elucidate their individual 

roles.  

IL-1β can stimulate the production of ROS which leads to damage of articular 

cartilage (21, 22, 116). In our study, IL-1β markedly elevated the levels of PE and PE-based 

plasmalogens which can act as an antioxidant (67). Moreover, our previous study reported 

elevated levels of PE-based plasmalogen in human OA SF (53). Our data support the concept 

of a protective role of PE-based plasmalogen against ROS-induced damage by equilibrating 

the IL-1β effect on ROS.  

To further understand the role of IL-1β in PL synthesis, we searched for the molecular 

mechanism underlying its effect. We focused on the signalling pathways such as NF-κB, p38 

MAPK, and JNK known to be involved in IL-1β cellular signalling. Our results demonstrate 

that IL-1β enhance the biosynthesis of PE and PE-based plasmalogen via NF-κB, p38 MAPK, 

and JNK pathways without any preference. However, inhibition of p38 MAPK unexpectedly 

enhanced the biosynthesis of PLs containing choline during treatment with IL-1β. There are 

two explanations of this: First, p38 MAPK signalling pathway is negatively involved in the 

biosynthesis of PLs. Second, that an agent specific effect was determined. Further analyses 
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containing proper control and inhibitor alone are required to explain the role of p38 MAPK 

signalling in the biosynthesis of PLs containing choline.  

We compared species found to be altered in early OA SF (53) with IL-1β treated FLS. 

The concentrations of 19 PC species were elevated during early OA, from which the 

biosynthesis of only PC 34:0 and PC 36:1 was also found to be enhanced after IL-1β 

treatment (Appendix Table 9). Moreover, 10 PE species were elevated in early OA SF. The 

biosynthesis of 9 of them was found to be enhanced by treatment with IL-1β (Appendix Table 

10). In addition, 8 PE-based plasmalogen species were found to be elevated in both early OA 

SF and FLS, but only 3 of them were common, which were PE P 16:0/22:6, PE P 18:0/20:4, 

and PE P 18:0/22:6 (Appendix Table 11). Taken together our data indicate that the effect of 

IL-1β on PL biosynthesis in FLS partly parallels those of the PL alterations seen in SF during 

early OA (53). Moreover, the observed effect might be due to the adaptation of FLS to 

elevated levels of IL-1β in OA SF (12, 15).  

IL-1β and TNFα significantly enhanced the biosynthesis of PLs containing 

ethanolamine in cultured FLS. IL-1β increased the biosynthesis of PE, PE-based 

plasmalogens as well as SM, whereas TNFα elevated only the synthesis of PE. A main 

biological function of PE and PE-based plasmalogen is the maintenance of the cell membrane 

dynamic (70). Since in our study non-proliferating, confluent FLS were used, we can assume 

that changes in PLs levels did not derive from PLs constituting cell membranes. Also, PLs 

take part in many other biological processes. For instance, PE is the precursor of molecules 

which modulate pain perception (e.g. anandamide, N-arachidonylethanolamine), 

inflammation (e.g. N-palmitoylethanolamine), autophagy (e.g. PE-modified microtubule-

associated protein light-chain 3), and apoptosis (e.g. N-stearoylethanolamine, 

diarachidonoylphosphoethanolamine) (70, 117-120). PE-based plasmalogens can act as 

antioxidants during oxidative stress (67, 121). Furthermore, PE and PE-based plasmalogens 

are source of DAGs which are intracellular messengers and play a role in intracellular 

signalling involving protein kinase C (67, 117, 122). SM species and their metabolites such as 

ceramides (e.g. C1P, C2-, C6-ceramides) and sphingosine (e.g. S1P) play also important roles 

in cell signalling involving protein kinase C, phospholipase D, and MAPK, as well as in cell 

differentiation, survival, and apoptosis (84, 123).  

In conclusion, our data indicate that elevated levels of PE, PE-based plasmalogens, 

and SM induced by elevated levels of IL-1β could turn on defence or survival mechanisms 

against the harmful effect of this cytokine. For instance elevated levels of PE-based 
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plasmalogens might protect against cartilage destruction by scavenging ROS (67, 121). PE 

containing arachidonic and stearic acid (e.g. PE 36:4, PE 38:4) and SM metabolites could 

induce the apoptosis either of FLS to reduce synovial hyperplasia, or of osteophytes by 

altering mitochondria function and inducing caspase activation. Our study showed that the 

biosynthesis of PE and PE-based plasmalogen is mediated via NF-κB, p38 MAPK, and JNK 

signalling pathways. Moreover, these cell transduction pathways are involved in the response 

to cellular stress, cytokines, and free radicals and were also found to be activated in other cells 

of OA synovial joint (124-126). This suggests that PLs could also activate pathways which 

could transfer the signal from FLS further to other cells within the joint. However, additional 

studies are required to confirm these possible effects.  

 

5.2.2. Effect of growth factors on the biosynthesis of PLs 

Current research also focus on the anabolic growth factors in rheumatic disorders (32). 

Since elevated levels of TGF-β1, IGF-1, BMP-2, and BMP-7 were found in OA SF (44, 127-

129), we tested the effect of these growth factors on PL biosynthesis in FLS. The growth 

factors investigated in this study significantly increased the biosynthesis of PC and SM in 

human FLS. Our analysis focused mainly on the PC as a major PL class being synthesized de 

novo via the Kennedy pathway. In this section we do not focus on the SM, because we were 

able to measure its synthesis only indirectly and individual species were at low 

concentrations. The highest stimulation of PC occurred with TGF-β1 treatment, resulting in 

the increased synthesis of 19 PC species. We have also shown that the TGF-β1 effect was 

mediated by TGFβ receptor type I. The second most stimulating growth factor was IGF-1, 

which increased the biosynthesis of 16 PC species. The least effective factor was BMP-2, 

stimulating the biosynthesis of 13 species (Appendix Table 12). BMP-4 and BMP-7 

stimulated synthesis of some individual PC species which had no impact on the overall 

synthesis rate of the PC class. Our data indicate that various growth factors affect differently 

the PL biosynthesis of FLS.  

We could observe some differences of the effects of TGF-β1 between experiments. In 

our screening experiment TGF-β1 increased the biosynthesis of PLs, however the values did 

not reach statistical significance. In our main experiment TGF-β1 was found to strongly 

influence PC biosynthesis. The differences might be due to the Bonferroni correction used in 

the statistical analysis of the screening experiment.  



DISCUSSION 
 

107 

 

Due to the increased biosynthesis of PC upon IGF-1 treatment, we searched for a 

possible mechanism underlying this effect. We have focused on the canonical signalling 

pathways being activated by IGF-1 which were PI3K and ERK. Inhibition of PI3K abolished 

the effect of IGF-1 only on the biosynthesis of four PC species which suggest a small 

contribution of this signalling pathway to PC biosynthesis. Unexpectedly, the inhibition of 

ERK enhanced the biosynthesis of 17 PC species. Similar to the p38 MAPK inhibition, this 

signalling pathway might be negatively involved in PL biosynthesis or we observed an agent 

specific effect. However, IGF-1 can also act through other non-canonical signalling pathways, 

and further analyses are needed to better understand its mechanism of action. 

According to our study, BMPs are not as potent as TGF-β1 or IGF-1. Nevertheless, we 

could observe some specific effect on the biosynthesis of PLs. BMP-2, the most effective 

factor, enhanced the biosynthesis of 13 PC, 3 PE and 6 PE-based plasmalogen species. BMP-

7 induced the biosynthesis of 10 PC, 6 PE and 3 PE-based plasmalogen species, whereas 

BMP-4 affected the biosynthesis of 9 PC, 4 PE and 2 PE-based plasmalogen species 

(Appendix Tables 12-14).  

The accumulation of lubricin has been intensively studied (130-132). Both TGF-β1 

and IGF-1 were found to increase the accumulation of lubricin in bovine chondrocytes and 

FLS. Niikura et al. have shown that FLS were more sensitive to BMP family members than 

chondrocytes (132). It is well known that lubricin plays an important role in lubrication. Also, 

it has been shown that TGF-β upregulates synthesis of HA in human FLS (133, 134). In our 

study of human FLS, we focused on the effect of growth factors on the biosynthesis of 

another lubricant. Our data showed that TGF-β1 and IGF-1 upregulates the biosynthesis of PC 

in non-proliferating, confluent FLS. Moreover, in our study FLS rather poorly responded to 

BMPs. Since PC is considered as a main PL participating in lubrication (112), the effect of 

growth factors speaks for their beneficial effect on lubricating properties within synovial 

joints.  

Furthermore, we compared PC species found to be altered in early and late OA SF 

(53) and found them to be similar to those of FLS treated with growth factors. 19 PC species 

were elevated during early OA, and 18 among them were even more increased during late 

OA. Remarkably, the biosynthesis of 16 from those 19 PC species was also stimulated by 

TGF-β1 in FLS. Moreover, IGF-1 stimulated the biosynthesis of 14 from those 19 PC species 

being elevated in OA SF (Appendix Table 9). In addition, increased levels of 10, 9, and 10 PC 

species were found in OA SF as well as upon BMP-2, BMP-4, and BMP-7 treatment, 
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respectively (Appendix Table 12). Interestingly, five PC species (PC 34:0, PC 34:1, PC 36:2, 

PC 36:3 and PC 36:4) were commonly upregulated by all growth factors and also found to be 

elevated in SF during early and late OA. Taken into account that growth factors being present 

in SF are elevated during OA, our results suggest that PL alterations observed in diseased SF 

might derive from FLS influenced by those factors. However, all growth factors did not 

modulate the release of PLs from cultured FLS into nutrient media. Further culture parameters 

need to be tested to confirm these preliminary results. 

Interestingly, TGF-β1 acts differently on the surfactant production within the 

pulmonary system. Beers et al. have shown that TGF-β1 inhibits surfactant proteins and fatty 

acid synthetase expression as well as phospholipid production in human fetal lung explants 

(135). The rate of [3H]-choline incorporation into PC was significantly decreased. Moreover, 

epithelial cells treated with TGF-β1 did not display lamellar bodies responsible for lipid 

secretion. This indicates that the response to TGF-β1 is dependent on the cell type and that the 

surfactant system of the lung is differently regulated than the lubricating system within 

articular joints. 

Growth factors investigated in this study significantly increased the biosynthesis of 19 

PC species. TGF-β1 and IGF-1 also enhanced the biosynthesis of SM and LPC. Additionally, 

BMPs enhanced the biosynthesis of some PE and PE-based plasmalogen species. Since, non-

proliferating, confluent cells were used we can exclude the membrane building function of 

these newly produced PC. However, some PC species produced by FLS could be responsible 

for lubricating properties, especially polyunsaturated PC species, which are highly present 

within human SF. The remaining PC species and metabolites such as PA and DAGs 

participate in cell signalling involving protein kinase C and G-proteins, or can be used as a 

precursor of other lipids (70, 136, 137). LPC species are also important molecules in cell 

signalling pathways such as ERK, MAPK, PI3K, and Rho, and have some pro-inflammatory 

properties including increasing the IL-1β production and activation of macrophages (76).  

In conclusion, our data indicate that the enhanced production of polyunsaturated PC 

species stimulated by elevated levels of growth factors could improve lubrication of the 

articular joint. In our study we showed that activation of TGF-β/BMP signalling was involved 

in the biosynthesis of PC. These signalling pathways are also activated in articular cartilage 

and subchondral bone during OA (138). Second messengers such as DAGs, PA, and 

arachidonic acid can be also generated from PC, thus elevated PC species might be involved 

in downstream signalling. Moreover, DAGs and PAs might also passage from one tissue to 
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another, affecting metabolic homeostasis of the neighbour tissue. Also individual PC species 

can act as signalling molecules, for instance palmitoyl-oleoyl-phosphatidylcholine (PC 34:1) 

was recently found to be a ligand for peroxisome proliferator-activated receptors (PPARs) 

which regulate expression of many genes that govern lipid metabolism including triglyceride 

turnover, as well as uptake, activation, and oxidation of fatty acids (139, 140). This suggests 

that PC 34:1 species, which is a major PC species being present in both FLS and SF, can 

affect the final composition of PL being present within the synovial joint. Furthermore, 

elevated LPC species could activate macrophage-like synoviocytes within the synovial 

membrane leading to production and secretion of cytokines and chemokines. Moreover, PE 

and PE-based plasmalogen species induced by BMPs could also take part in defence 

mechanism in response to diseased joint environment. For instance PE-based plasmalogens 

can protect cartilage against ROS by scavenging free radicals (67, 121) or PE can induce 

caspase activity leading to apoptosis of hypertrophic FLS and inhibition of osteophyte 

formation (119, 120). Further studies are needed to confirm these possible functions.  

 

5.2.3. Effect of dexamethasone on the biosynthesis of PLs 

 Intra-articular injections of dexamethasone are commonly used in OA and RA 

treatment (100, 141). Several studies have shown that dexamethasone inhibits the induction of 

MMPs, prostaglandins, inflammatory cytokines, and oxygen-derived radicals (142-145). 

Moreover, it has been reported that glucocorticoids stimulate synthesis and secretion of 

pulmonary surfactants (99, 146). PLs are part of the lubricating system in synovial joints, 

however not much is known about the impact of dexamethasone on PL metabolism. Hills et 

al. demonstrated that administration of glucocorticosteroids into the equine joint increases the 

quantity of PLs in SF (147) and proposed that improvement in joint mobility may be derived 

from improved lubrication. However, Hills et al. used DPPC as a standard for surfactant 

levels measurements. We have already mentioned that DPPC was found in human SF in small 

amounts (53). Our study aimed to investigate the effect of dexamethasone on the biosynthesis 

of various PLs.  

 Dexamethasone significantly decreased the biosynthesis of 11 PE species. Even 

though dexamethasone slightly decreased the biosynthesis of other PL classes, this did not 

reach statistical significance. However, in our screening experiment dexamethasone was 

found to be a more potent inhibitor in PL biosynthesis indicating interindividual differences 
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between results. Nevertheless, the observed trend was similar in both cases. We also have 

shown that the dexamethasone action was at least partly mediated through the glucocorticoid 

receptor. Blocking of the glucocorticoid receptor abolished dexamethasone effect on the 

biosynthesis of 1 PC specie and 4 PE species. According to current knowledge 

glucocorticoids act through two types of nuclear receptors: glucocorticoid receptor (GR, 

NR3C1) as well as mineralocorticoid receptor (MR, NR3C2) (148). Further analysis is needed 

to verify whether dexamethasone might also bind to MR in FLS to modulate PL biosynthesis.  

Moreover, within human fetal lungs, dexamethasone significantly increased [3H]-

choline incorporation into PC (135). In our study of human FLS, dexamethasone decreased 

PL synthesis. This data indicate different effects of dexamethasone on PL synthesis 

depending on the cell type.  

 Dexamethasone inhibits synovial inflammation (149, 150). We have shown that IL-1β 

increases the biosynthesis of PE and PE-based plasmalogens. Here, we demonstrated that 

dexamethasone could abolish this effect. The biosynthesis of the same 11 PE species was 

upregulated by IL-1β and downregulated by dexamethasone (Appendix Table 9). This effect 

might be due to the cross-talk of dexamethasone and IL-1β in signalling transduction pathway 

NF-κB in synovium (150). In our experiments, we used relatively short time to study the 

effect of agents on the biosynthesis of PLs, however in vivo higher inhibitory effect of 

dexamethasone could be observed. Further studies are necessary to confirm this effect. 

Moreover, it has been reported that IGF-1 and dexamethasone together have greater beneficial 

effect than alone in preventing cytokine-induced cartilage degradation in human and bovine 

cartilage (151).  It would be worth to investigate the combined effect of these agents on the 

PL biosynthesis. 

We also compared PL species found to be altered in early OA SF (53) and found them 

to be opposite to those of FLS treated with dexamethasone. The biosynthesis of 9 PE species 

which were elevated during early OA was decreased by dexamethasone treatment (Appendix 

Table 10). This suggests a possible therapeutic use of dexamethasone in OA in order to 

balance PL composition. 

In this study dexamethasone was found to be an inhibitor of PE and SM biosynthesis. 

PE is a precursor of molecules such as anandamide, N-palmitoylethanolamine, N-

stearoylethanolamine, and DAG, which modulate pain perception, inflammation, autophagy, 
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and apoptosis (70, 117-120), while SM species and their metabolites such as ceramides and 

sphingosine play roles in cell signalling, apoptosis, and survival (84, 123).  

In conclusion, decreased levels of PE and SM in FLS could prevent turning on NF-κB 

signalling transduction pathway (150), which is involved in the pathogenesis of OA and 

transcription of genes encoding pro-inflammatory mediators. Low levels of PE species could 

suppress the inflammation by inhibition of the expression of pro-inflammatory cytokines 

within synovial joint. Low levels of SM could prevent induction of apoptosis of chondrocytes 

in order to reduce cartilage loss. This could speak for the beneficial effect of dexamethasone 

on altered lipid metabolism during diseases such as OA. Additional experiments are required 

to confirm these effects.   

 

5.2.4. Effect of adrenergic and cholinergic agonists on the biosynthesis of PLs  

 The pulmonary surfactant system has been intensively studied (101) but there is still 

not much known about the synovial joint lubricating system, especially surface-active PLs. 

Adrenergic and cholinergic agonists have been found to stimulate pulmonary surfactant 

production and release from alveolar type II cells (146, 152-155). In our study of FLS, we 

investigated the effect of adrenergic agonists such as terbutaline and epinephrine as well as 

cholinergic agonists such as carbachol and pilocarpine on the biosynthesis of PLs. Our data 

revealed that tested agents did not influence the biosynthesis of PLs by FLS. However, in the 

pulmonary surfactant system adrenergic agonists act directly on alveolar type II cells, which 

are responsible for the production and secretion of surfactants, as well as interstitial 

fibroblasts. Cholinergic agonists act indirectly on the lung surfactant synthesis and release by 

stimulation of the release of epinephrine by adrenal glands or by contraction of smooth 

muscle cells which in turn stimulate surfactant secretion (146). Taken together, we can 

conclude that the effects of adrenergic and cholinergic agonists are dependent on the cell type 

and, therefore, different mechanisms are involved in the biosynthesis of PLs within synovial 

joints and the lung. 

 

5.2.5. Effect of inhibition of phospholipase A2 on the biosynthesis of PLs 

The enzyme phospholipase hydrolyse PLs to liberate FAs (156). Angel et al. reported 

that blocking of phospholipase A2 activation with quinacrine abolished the IL-1β-induced 



DISCUSSION 
 

112 

 

hydrolysis of PC and PE in synovial cells (102). Our data show that quinacrine increased the 

biosynthesis of PLs. We assume that inhibition of endogenous phospholipase A2 activity 

prevented the hydrolysis of PLs resulting in elevated percentage of labelled PC and PE. Thus, 

our data are consistent with those of the literature (102).  

 

5.2.6. Effect of inhibition of choline kinase on the biosynthesis of PLs 

In our study, we also investigated the effect of choline kinase (CK) inhibition on the 

biosynthesis of PLs. CK is an enzyme which can use both choline and ethanolamine as 

substrates in the first step of the Kennedy pathway. Several studies have shown that choline 

kinase can influence the rate of PC synthesis (70, 71). Another group reported that this 

enzyme is expressed in human RA synovial tissue, and that its inhibition decreases the 

severity of inflammation in arthritic mice (157). Our data revealed that choline kinase does 

not affect the rate of synthesis of any PL class. Therefore, we share the opinion with Gibellini 

et al. (70) and Fagone et al. (71) that choline kinase is not a rate-limiting step in the 

biosynthesis of PLs.  

 

5.2.7. Effect of inhibition of choline transporter on the biosynthesis of PLs 

 The biosynthesis of PC begins from the uptake of extracellular choline into the cell, 

which is mediated by choline transporters (71). Thus, we investigated whether the inhibition 

of the high-affinity choline transporter 1 (CHT1) has an impact on the biosynthesis of PLs 

containing choline. Inhibition of CHT1 with hemicholinium-3 did not influence the 

biosynthesis of choline-based PLs, but unexpectedly increased the biosynthesis of 

ethanolamine-based PLs. Probably other choline transporters took over the complete choline 

uptake. Recently, Seki et al. reported about the expression of choline transporter-like protein 

1 (CTL1) in RA FLS and choline uptake by this transporter (158). As expected, they observed 

an inhibition of choline uptake by hemicholinium-3. The increase in ethanolamine-based PLs 

synthesis in our cultured FLS might be caused by a switch of the cell metabolism to PE 

synthesis due to a disturbances in the choline uptake.  
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5.2.8. Effect of inhibition of sirtuins on the biosynthesis of PLs 

Recently, several studies have investigated the role of sirtuins in OA (50, 103, 159). 

SIRT1 has a positive effect in maintaining cartilage homeostasis during OA. On the other 

hand, study on RA FLS showed that elevated SIRT1 contribute to chronic inflammation 

(160). Since sirtuins were found to regulate lipid metabolism (161), our research focus on 

their role in the biosynthesis of PLs by OA FLS. Treatment with sirtinol, which inhibits SIRT 

1 and 2, at low concentration slightly increased the biosynthesis of PE and LPC, while at 

higher concentration the biosynthesis of more PL classes was enhanced. Interestingly, another 

sirtuin inhibitor, EX 527 combined with NAM, which blocks all sirtuins, caused a decrease in 

PC biosynthesis. However, EX 527 alone did not have an impact on the PL biosynthesis. Here 

we showed that different sirtuins inhibitors display different specificity. Sirtinol, which blocks 

SIRT1 and SIRT 2, enhanced the biosynthesis of PLs, while more potent inhibitor EX 527, 

which blocks all sirtuins, reduced the biosynthesis of PC. However, additional experiments 

are required to better understand the role of individual sirtuins on PL biosynthesis in human 

articular joints. Nevertheless, our data indicate that sirtuins are involved in the biosynthesis of 

PLs.  

 

5.3. Release of PLs 

 PLs in SF are thought to derive from FLS and from blood by diffusion. However, 

there is not much known how the release of PLs into synovial joint cavity is controlled. 

Dobbie et al. provided an evidence of FLS activity in secreting PLs (109). Also, treatment 

with glucocorticosteroids has been reported to enhance the release of PLs into equine SF 

(147). One of the aims of this study was to investigate the release of PLs from FLS into the 

cell culture media. 

 We have developed a new in vitro model to study the release of PLs. Using radioactive 

isotope-labelled precursors of PLs allowed us to determine the release of two lipid fractions: 

choline-labelled PLs including PC, LPC, and SM and ethanolamine-labelled PLs including 

PE and PE-based plasmalogens. We have demonstrated that the release of both PL fractions is 

time-dependent. Moreover, the release of choline-labelled PLs is higher than ethanolamine-

labelled PLs. This finding implicates that higher efflux of PLs based on choline can explain 

the high amount of PC found within human SF (53). However, the lipid secretion mechanism 

of FLS was not further investigated in our study.  
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The newly developed model already enabled us to show that tested agents seem to not 

stimulate the release of PLs into cell culture media. In our study we used a relatively short 

time to investigate the release of PLs. Further experiments are needed to show whether 

transporters or enzymes must be first activated to enhance the release of PLs. Kronqvist et al. 

(114) reported that IL-1β markedly increased efflux of SM and PC to lipid-free Apo A-I in 

human skin fibroblast. In our study, IL-1β and TNFα treatments in combination with low 

serum content and radioactive isotopes were found to be toxic for FLS. Even FLS cultured in 

medium containing higher amount of FBS displayed a changed rounded morphology. All 

other treatments did not change the morphology of cells. Apolipoprotein have been reported 

to induce PL efflux (162, 163), but in our study even the addition of apolipoprotein A-I and 

E4 did not enhance the release of PLs. Moreover IL-6, IGF-1 and TGF-β1 did not affect the 

release of PLs. In the pulmonary surfactant system, dexamethasone as well as cholinergic and 

adrenergic agonists have stimulated secretion of surfactant from alveolar type II cells (99, 

101, 146). In our experiment using cultured FLS, none of these agents had an effect on PL 

release. Also, our results differ from those obtained in vivo by Hills et al. (147). In our study 

dexamethasone did not enhance the release of PLs into nutrient media. The divergence might 

be due to the species differences as well as applied methodology. Hills et al. used DPPC, 

which was found in small amounts in human SF, as a standard for surfactant levels 

measurements in equine SF. We investigated the release of [3H]-choline-labelled PLs fraction 

from cultured human FLS which includes PC, LPC, and SM.  

 

5.4. Limitations 

 The great diversity of lipid structures and their characteristics is a challenge of any 

lipidomic study. In the last few years, the methods of lipid analysis were improved. ESI-

MS/MS allows to identify and quantify hundreds of lipid molecules from a single biological 

sample (66). Stable isotope labelling is commonly used to investigate lipid metabolism (164). 

In our study, we have used only two stable isotopes namely [D9]-choline and [D4]-

ethanolamine, which narrows the PL biosynthesis investigation to de novo synthesis of PC 

and PE, produced via the Kennedy pathway. Other PL classes such as SM, LPC, and PE-

based plasmalogens were labelled indirectly, because they origin in our study from newly 

synthesized PC and PE. There are many cross-talks between the PL biosynthesis pathways. 

Thus, the interpretation of these data is difficult. For instance, PC can be also synthesized 

from PE, and PE can be also synthesized from PS. So, we do not know the amounts of PE and 
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PC generated from other PL classes. The addition of third and fourth stable isotopes, [D3]-

serine and [D6]-myo-inositol, to the cell culture would allow us to measure also newly 

synthesized PS and PI, respectively. In our study, we did not focus on PL remodelling. This 

could be done by using stable isotope-labelled FAs. However, this approach would need to be 

established first. Nevertheless, our method allowed us to quantify over 40 newly synthesized 

PC and PE species, which is still a lot. 

 During the investigation of mechanisms underlying specific effects of IL-1β and IGF-

1 on the biosynthesis of PLs, we have obtained unexpected results. Inhibition of p38 MAPK 

during IL-1β treatment enhanced PL biosynthesis. A similar effect was observed after 

inhibition of ERK during IGF-1 treatment. We can not make any final conclusions from these 

data, since the signalling pathways might be involved in the IL-1β- or IGF-1-induced PL 

synthesis or are just inhibitor specific effects. To verify that additional experiments containing 

proper controls as well as inhibitors alone are required.  

We could also observe differences in PL detection between experiments. Especially 

during the screening biosynthesis experiment, the concentrations of labelled and unlabelled 

lipids were higher. This might be due to differences between patients as well as PL standards 

and conditions used during ESI-MS/MS measurements. To avoid misinterpretation, the most 

appropriate approach would be to compare data only within the same bench of samples. 

Nevertheless, data from different experiments display the same tendency.  

In our release model, we have used two radioactive isotopes namely [3H]-choline and 

[14C]-ethanolamine, which allowed us to study the release of the PLs containing only choline 

or ethanolamine. Therefore, within the fraction containing choline-based PLs we were 

actually measuring [3H]-labelled PC, SM, and LPC, while within fraction containing 

ethanolamine-based PLs we were measuring [14C]-labelled PE and PE-based plasmalogens. 

TLC or HPLC techniques could be applied to separate individual PL classes from each 

sample. Also, using radioactive isotopes is laborious and hazardous. Therefore, we have 

undertaken an attempt to investigate the release of stable isotope-labelled PLs, but lipids 

found in the media were at low concentrations, far under the detection limit of ESI-MS/MS. 

Maybe in a few years this technology improves and will enable us to investigate the release of 

even PL species. 

Our in vitro model of release may still need some optimization to measure release of 

PLs as modulated by cytokines like improvement of cell culture conditions. In the release 
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experiments IL-1β and TNFα were found to be toxic for cells, since we observed a more 

rounded morphology of originally spindle-shaped cells. Interestingly, IL-1β and TNFα did not 

influence the morphology of cells in our experiments using the biosynthesis model. However, 

it seems that these cytokines combined with low serum content and the presence of 

radioactive isotopes affected cells using the release model. Nevertheless, the increase of 

serum content in our release model only slightly improved altered morphology upon IL-1β 

and TNFα treatments, and most of the cells were still rounded. Therefore, the conditions in 

the release model for treatment with IL-1β and TNFα still need to be optimized. Also, the 

impact of IL-1β and TNFα on FLS viability and apoptosis in these conditions should be 

verified.  

 

5.5. Summary  

1. In this study, we have identified nine PL classes being present within FLS. The same 

classes were found in SF. PC is a major PL class for both FLS and SF. However, the 

diversity of PLs in FLS is greater. 

 

2. We confirmed that non-proliferating, confluent FLS indeed synthesise PLs. We were 

able to measure the biosynthesis of 74 PL species belonging to five PL classes. The 

biosynthesis of PLs is highly correlated with time. Moreover, the PC biosynthesis and 

remodelling requires more time than PE biosynthesis. We assume that at least part of 

PL being present in SF derives from FLS. 

 

3. Cytokines affect differently the biosynthesis of PLs. IL-1β induces the biosynthesis of 

PE and PE-based plasmalogen via NF-κB, p38 MAPK, and JNK pathways. Elevated 

levels of PE-based plasmalogen were also found in OA SF which might result in a 

protective effect of plasmalogens against cartilage damage. TNFα slightly induces the 

biosynthesis of PE, whereas IL-6 has no impact on the PL biosynthesis and release. 

 

4. Growth factors affect differently the biosynthesis of PLs, mostly inducing the 

biosynthesis of PC, which indicates their beneficial effect on synovial joint 

lubrication. TGF-β1 and IGF-1 are more potent than BMPs. However, growth factors 

were found not to influence the release of PLs using our in vitro model.   
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5. Dexamethasone decreases the biosynthesis of PE and partly acts through the 

glucocorticoid receptor. We assume that, dexamethasone could inhibit the effect of IL-

1β on PE biosynthesis. Moreover, dexamethasone does not influence PL release using 

our in vitro model.  

 
6. Adrenergic and cholinergic agonists influence neither the biosynthesis nor release of 

PLs from FLS. This indicates that pulmonary surfactant system differs from the 

synovial joint lubricating system.   

 
7. Inhibition of phospholipase A2 activity causes an increase of PL biosynthesis. We 

assume that blocking of phospholipase A2 activity could prevent the hydrolysis of PLs 

and thus results in a seemingly increased rate of PL synthesis.  

 

8. Inhibition of high-affinity choline transporter CHT1 does not block the uptake of 

extracellular choline into the cell. We assume that other choline transporters took over 

the complete uptake of choline. Moreover, the activity of the choline kinase (CK) 

appears to be not a rate-limiting step in the PL biosynthesis via the Kennedy pathway.  

 
9. We showed that sirtuins are involved in PL biosynthesis. Inhibition of SIRT1 and 

SIRT2 increases PL biosynthesis, whereas inhibition of all sirtuins decreases the 

biosynthesis of PC. Further studies are required to identify the roles of individual 

sirtuins in the biosynthesis of PLs in OA FLS.  

 
10. The release of PLs is a time-dependent process. More PLs containing choline are 

released from FLS than PLs containing ethanolamine, which might partly explain the 

high amount of PC being found within human SF. Using our in vitro model to study 

PL release, we were not able to demonstrate that cytokines, growth factors, and 

pharmacological agents associated with OA influence the release of PLs from FLS. 

Further studies may be needed to optimize this model for studying PL release as 

modulated by cytokines.  

 

5.6. Future perspectives 

In this study, we investigated the PL biosynthesis and release of human FLS from OA 

patients. Our study revealed that biosynthesis of PLs is regulated by some cytokines such IL-
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1β, as well as growth factors such as TGF-β1, IGF-1, and BMPs, which are present at 

elevated levels in OA SF. Nevertheless, more research on this topic need to be undertaken 

before we will fully understand the complex lipid metabolism within OA synovial joint.  

 First of all, further investigation should focus on the function of certain PL classes or 

even species. It is known that PC possess lubricating properties, and plasmalogens can act as 

antioxidants. Nevertheless, the functions of many lipids remain unknown. They can also act 

differently in various tissues. The synovial joint is a complex organ, thus we should not focus 

only on FLS. The function of PLs in other cell types such as chondrocytes, osteoblast, and 

macrophages should be also investigated. This knowledge could provide us with new targets 

and treatments for OA. 

Also, we have only partly focused on the signalling pathways through which tested 

agents could act. This opens another important area of cell signalling research. Since we have 

obtained unexpected results after inhibition of p38 MAPK and ERK, the role of these 

signalling pathways in the biosynthesis of PLs should be determined. In our study, we showed 

the role of TGFβ receptor type I in the PC biosynthesis. Further investigations could focus on 

the activation of receptor-regulated SMAD proteins (SMAD2 and 3) and genes which are 

afterwards upregulated. This could give us a more detailed overview on TGF-β signalling in 

PL biosynthesis of FLS. Besides that, the non-canonical signalling pathways of IGF-1 

signalling need to be also investigated.  

 In our study, we could observe some specific effects on the biosynthesis of PLs, 

especially during IL-1β, TGF-β1, IGF-1, and dexamethasone treatments. Since FLS are 

exposed to a mixture of cytokines and growth factors present within SF of articular joint, it 

would be worth to investigate the combined effects of these agents. For instance, growth 

factor or dexamethasone could reverse or block the effect of IL-1β. Additionally, Loeser et al. 

have shown that the combination of IGF-1 and BMP-7 resulted in a greater cartilage repair 

(49). 

 Finally, we still do not know how the release of PLs is regulated. One way to improve 

our in vitro release model would be to preload cells with labelled lipids or cholesterol. Several 

studies have investigated apolipoprotein-mediated efflux of PLs in lipid enriched cells (162, 

163). The other idea would be to upregulate the lipid transporters. Maybe if they would be 

present in larger amounts, the efflux of PLs would be enhanced, and then we would be able to 

observe differences and thus investigate the effect of various agents on the release of PLs. The 
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last possibility would be the addition of other lipid transfer proteins such as phospholipid 

transfer protein (PLTP) or other apolipoproteins (for instance Apo B, C) to the cell culture. In 

the near future, also the ESI-MS/MS technology will be more advanced and maybe at that 

time we will be able to measure the release of even newly synthesized PL species into media.  

 Taken together, this study reported for the first time the composition of PLs being 

synthesized and released from human OA FLS using two newly developed in vitro models. 

Moreover, we showed that cytokines, growth factors and dexamethasone differently regulate 

the biosynthesis of PLs. Furthermore, similar PL species were elevated in OA SF as well as in 

OA FLS treated with IL-1β, TGF-β1, IGF-1, and BMPs. Our findings suggest that PL 

alterations of OA SF might derive at least partly from FLS influenced by mentioned factors, 

which are present at elevated levels in OA SF. Further studies concerning the effect of 

cytokines and growth factors on PL metabolism in human articular joints could help us to 

better understand the mechanism of OA pathogenesis and to find novel targets to treat OA. 

Also, our newly developed in vitro models can be further used to investigate the effects of 

other agents on the PL metabolism as well as to test possible new treatments for OA. The 

challenge of OA research includes the recognition of functions of individual PLs in humans, 

investigation of the signal transduction mechanism in PL metabolism, as well as finding novel 

targets to treat lipid-related disease mechanisms. Thus, lipidomics brings new perspectives to 

scientific research on OA.    



APPENDIX 
 

120 

 

6. APPENDIX 

Appendix Table 1. PL background of the experimental media.  
         (see chapter 4.1.1. and 4.2.1.) 

 

PL class   

10% FBS 
medium 

5% LPDS medium 
w/o L-serine 

2% FBS 
medium 

[nmol/ml medium] 

PC 14.56±0.31 1.11±0.01 2.56±0.07 

PE 0.40±0.02 0.07±0.00 0.25±0.01 

PE P 0.62±0.06 0.14±0.00 0.41±0.02 

SM 5.64±0.06 0.16±0.00 1.04±0.04 

LPC 5.05±0.02 3.66±0.02 0.77±0.03 

Cer 0.12±0.00 0.01±0.00 0.05±0.00 

PS 2.49±0.70 0.23±0.03 0.89±0.13 

PI 1.16±0.14 0.39±0.01 0.37±0.11 

PG 0.00±0.00 0.00±0.00 0.00±0.00 
The quantitative values obtained for PL class were normalized to the volume of cell culture media and 
are expressed as nmol/ml of medium.  
Data are presented as means ± SDs (n = 3). 
 

 

Appendix Table 2. Time-dependent expression of reference genes from cultured FLS.  
         (see chapter 4.3.5. and 4.4.3.) 

 

    10% FBS 5% LPDS   10% FBS 2% FBS 10% FBS 5% FBS 

ACTB      
Ct value 

8 h 21.0±0.4 20.2±0.6 12 h 20.1±0.3 20.8±0.4 26.1±0.5 25.6±1.9 

16 h  20.2±0.7 21.2±1.1 24 h  21.1±0.1 21.7±1.2 27.1±2.4 29.9±3.4 

24 h 21.1±0.1 21.6±0.8 36 h 20.4±1.3 21.1±1.1 26.3±0.9 30.5±2.4 

B2M         
Ct value 

8 h 22.8±0.4 22.1±0.9 12 h 21.9±0.8 22.2±0.6 29.0±0.7 27.8±2.3 

16 h  21.8±0.5 22.1±0.8 24 h  22.3±0.4 22.4±1.0 28.4±3.4 30.8±4.0 

24 h 22.3±0.4 22.7±0.6 36 h 22.2±0.08 22.3±1.0 27.3±1.0 31.0±2.5 

GAPDH 
Ct value 

8 h 27.3±0.5 26.8±1.4 12 h 26.2±0.5 26.8±0.9 35.2±0.8 33.4±2.8 

16 h  25.5±1.5 26.6±0.3 24 h  26.1±0.8 27.4±1.3 24.8±6.3 34.3±4.7 

24 h 26.1±0.8 27.0±1.0 36 h 26.4±1.0 26.8±0.8 32.5±2.9 37.5±1.8 

The Ct values of reference genes of FLS cultured according to the methods used in the biosynthesis 
and release models were obtained from quantitative real-time PCR.  
Data are presented as means ± SDs (n = 3). 
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Appendix Table 3. The concentrations of newly synthesized PL classes of FLS treated 
         with various agents.  
         (see chapter 3.4.1. and 4.5.1.) 

Treatment [D9]-PC [D4]-PE [D4]-PE P [D9]-SM [D9]-LPC 

(n = 6) [nmol/mg]  [nmol/mg]  [nmol/mg]  [nmol/mg]  [nmol/mg]  

control + 40 µl 5% 
        trehalose 

13.3±6.10 8.16±2.32 2.25±0.52 0.25±0.09 0.07±0.04 

IL-1β (10 ng/ml) 12.6±5.34 10.6±2.14 2.80±0.42 0.24±0.09 0.06±0.03 

TNFα (100 ng/ml) 15.1±5.06 10.8±1.92 2.29±0.35 0.26±0.06 0.06±0.03 

IL-6 (10 ng/ml) 11.9±4.36 7.51±1.86 2.02±0.18 0.22±0.08 0.06±0.02 

TGF-β1 (10 ng/ml) 15.4±5.88 8.82±3.77 2.20±0.67 0.30±0.11 0.08±0.03 

IGF-I (100 ng/ml) 13.9±2.86 8.27±2.09 2.18±0.61 0.36±0.07 0.07±0.02 

control + 20 µl 95% ethanol 12.8±4.71 8.18±1.58 2.24±0.17 0.25±0.07 0.06±0.02 

Dexamethasone (10 µM) 10.7±3.07 6.56±2.43 2.10±0.42 0.16±0.06 0.08±0.03 

control + 20 µl H2O 11.9±3.88 7.58±2.62 2.07±0.40 0.22±0.06 0.06±0.02 

Terbutaline (10 µM) 11.5±4.65 7.12±1.22 1.96±0.26 0.20±0.07 0.07±0.02 

Epinephrine (10 µM) 11.3±4.26 7.16±1.35 1.99±0.11 0.20±0.06 0.08±0.03 

Carbachol (10 µM) 12.1±5.74 7.72±2.76 2.06±0.60 0.22±0.09 0.08±0.04 

Pilocarpine (10 µM) 12.5±4.91 8.41±3.66 2.15±0.71 0.24±0.09 0.09±0.04 

Quinacrine (5 µM) 16.7±4.51 9.43±2.18 2.02±0.45 0.30±0.06 0.19±0.09 

control + 20 µl DMSO 15.6±4.27 9.21±1.95 2.87±0.33 0.29±0.06 0.07±0.02 

CK37 (10 µM) 16.0±5.09 7.55±2.25 2.81±0.46 0.31±0.09 0.08±0.03 

CK 37 (5 µM) 14.1±4.64 7.81±2.62 2.32±0.50 0.28±0.08 0.07±0.03 

control + 2 µl DMSO 13.1±5.17 8.06±1.94 2.21±0.25 0.25±0.08 0.06±0.03 

CK37 (1 µM) 12.4±5.18 7.20±1.32 2.03±0.17 0.23±0.08 0.06±0.02 

Sirtinol (1 µM) 14.2±4.08 9.02±3.19 2.48±0.55 0.27±0.07 0.09±0.03 

Sirtinol (10 µM) 13.9±3.63 9.36±3.04 2.65±0.69 0.28±0.07 0.09±0.02 

control + 100 µl H2O 10.5±3.41 6.67±1.32 1.84±0.25 0.19±0.04 0.05±0.01 

Hemicholinium-3 (50 µM) 12.3±4.92 7.72±2.26 2.30±0.52 0.23±0.08 0.08±0.03 

Treatment [D9]-PC [D4]-PE [D4]-PE P [D9]-SM [D9]-LPC 

(n = 5) [nmol/mg]  [nmol/mg]  [nmol/mg]  [nmol/mg]  [nmol/mg]  

control + 40 µl 5% 
         trehalose + 4 µl DMSO 

4.3±0.84 2.74±0.50 2.79±0.53 0.11±0.02 0.02±0.00 

EX 527 (1 µM) 4.4±0.73 3.02±0.54 2.59±0.29 0.10±0.01 0.02±0.00 

EX 527 (50 µM) +  
      NAM (10 mM) 

3.6±1.34 2.85±0.75 2.48±0.34 0.09±0.03 0.02±0.01 

control + 40 µl 5% 
        trehalose 

3.5±0.72 2.07±0.47 2.28±0.46 0.08±0.01 0.02±0.00 

BMP-2 (100 ng/ml) 3.9±0.72 2.25±0.69 2.36±0.41 0.08±0.01 0.02±0.00 

BMP-4 (100 ng/ml) 3.8±0.97 2.21±0.51 2.29±0.32 0.08±0.02 0.02±0.01 

BMP-7 (100 ng/ml) 4.2±0.77 2.38±0.58 2.47±0.39 0.09±0.01 0.02±0.00 

The quantitative values obtained for each stable isotope-labelled PL class were normalized to cellular 
protein content and are expressed as nmol/mg protein. Data are presented as means ± SDs (n = 5-6). 

 



APPENDIX 
 

122 

 

Appendix Table 4. The concentrations of newly synthesized PL classes of FLS treated 
         with  various agents.  
         (see chapter 3.4.2. and 4.5.2-5.) 

Treatment 
[D9]-PC  [D4]-PE  [D4]-PE P  [D9]-SM  [D9]-LPC  

[nmol/mg] [nmol/mg] [nmol/mg] [nmol/mg] [nmol/mg] 

control  3.74±1.05 2.66±0.34 2.62±0.30 0.08±0.02 0.02±0.00 

IL-1β (10 ng/ml) 4.19±1.14 3.84±0.36 3.29±0.36 0.10±0.02 0.02±0.00 

IL-1β (10 ng/ml) + 
             QNZ  (10 µM) 

3.56±1.06 2.93±0.23 2.33±0.21 0.09±0.02 0.02±0.01 

IL-1β  (10 ng/ml) + 
    SB203580 (10 µM)  

6.70±1.82 3.39±0.60 2.49±0.38 0.20±0.05 0.03±0.01 

IL-1β (10 ng/ml) + 
    SP600125 (10 µM) 

3.87±1.15 2.99±0.34 2.56±0.51 0.09±0.03 0.02±0.00 

control 4.31±0.84 2.74±0.50 2.78±0.53 0.11±0.02 0.02±0.01 

TGF-1 (10 ng/ml) 5.86±1.16 3.02±0.55 2.47±0.50 0.13±0.02 0.02±0.00 
TGF-1 (10 ng/ml) + 
   SB432542 (10 µM) 

4.19±0.82 2.56±0.46 2.15±0.34 0.12±0.02 0.02±0.00 

IGF-1 (100 ng/ml) 5.06±1.06 2.84±0.50 2.39±0.34 0.14±0.03 0.02±0.00 
IGF-1 (100 ng/ml) + 
   LY294002 (10 µM) 

5.28±1.25 2.63±0.45 2.68±0.31 0.12±0.02 0.02±0.01 

IGF-1 (100 ng/ml) + 
  SCH772984 (1 µM) 

6.07±1.51 3.01±0.54 2.35±0.34 0.19±0.06 0.03±0.01 

control  4.57±0.82 2.90±0.55 2.76±0.32 0.10±0.01 0.02±0.00 

Dex (10 µM) 3.96±1.40 2.06±0.29 2.68±0.41 0.08±0.02 0.02±0.01 
Dex (10 µM) +  
         RU 486 (1 µM) 

4.54±1.37 2.26±0.42 3.00±0.39 0.09±0.02 0.03±0.01 

The quantitative values obtained for each stable isotope-labelled PL class were normalized to cellular 
protein content and are expressed as nmol/mg protein. Data are presented as means ± SDs (n = 5). 
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Appendix Table 5. Effect of IL-1β on newly synthesized PL species. 
            (see chapter 3.4.2. and 4.5.2.) 

Species 

control IL-1β 
IL-1β + 
QNZ 

IL-1β + 
SB203580 

IL-1β + 
SP600125 

[pmol/mg] % lab. PL 
Fold of 
change 

[pmol/mg] % lab. PL 
Fold of 
change 

Fold of 
change 

Fold of 
change 

Fold of 
change 

PC 30:0 41±13 3.7±1.1 1.0 50±14 4.1±1.2 1.1±0.1 1.2±0.1 2.2±0.3 1.2±0.1 

PC 32:0 431±145 5.4±1.5 1.0 565±193 6.1±1.7 1.1±0.1 1.0±0.1 1.7±0.2 1.1±0.1 

PC 34:0 54±21 4.8±1.5 1.0 95±42 6.7±2.1 1.4±0.2 1.1±0.1 2.6±0.2 1.5±0.2 

PC 32:1 135±34 4.7±1.4 1.0 165±40 5.6±1.7 1.2±0.1 1.1±0.1 1.9±0.2 1.2±0.1 

PC 34:1 677±151 4.6±1.5 1.0 757±168 4.9±1.7 1.1±0.1 1.0±0.1 1.9±0.1 1.1±0.1 

PC 36:1 170±29 2.9±1.0 1.0 211±40 3.6±1.3 1.3±0.2 1.1±0.0 1.9±0.2 1.2±0.1 

PC 34:2 309±74 7.4±2.0 1.0 386±97 7.7±2.1 1.0±0.0 1.0±0.1 1.9±0.2 1.1±0.1 

PC 36:2 250±48 4.3±1.4 1.0 300±64 4.6±1.5 1.1±0.2 1.0±0.1 2.0±0.2 1.1±0.1 

PC 34:3 36±05 9.7±2.1 1.0 44±9 10.7±2.7 1.1±0.1 1.1±0.1 1.7±0.2 1.1±0.1 

PC 36:3 170±54 5.6±1.9 1.0 200±56 5.7±1.8 1.0±0.1 1.0±0.1 2.2±0.2 1.1±0.1 

PC 38:3 66±22 3.9±1.2 1.0 77±23 4.7±1.5 1.2±0.2 1.0±0.2 1.8±0.2 1.2±0.2 

PC 36:4 301±127 4.9±1.1 1.0 291±121 4.4±1.0 0.9±0.1 0.9±0.1 2.1±0.2 0.9±0.1 

PC 38:4 376±172 4.1±1.1 1.0 330±137 4.2±1.1 1.0±0.2 0.9±0.1 1.9±0.3 1.0±0.1 

PC 40:4 32±12 6.5±2.3 1.0 33±11 7.3±2.3 1.1±0.2 1.0±0.1 1.7±0.3 1.3±0.2 

PC 36:5 42±14 5.9±1.3 1.0 39±13 5.1±1.0 0.9±0.1 0.9±0.0 2.1±0.3 0.9±0.1 

PC 38:5 226±100 5.3±1.5 1.0 194±69 5.1±1.2 1.0±0.2 0.9±0.1 1.9±0.2 1.0±0.2 

PC 40:5 47±15 5.8±1.7 1.0 47±16 6.6±2.2 1.1±0.1 0.9±0.1 1.5±0.2 1.1±0.1 

PC 38:6 59±19 4.3±1.0 1.0 58±21 3.7±1.1 0.9±0.1 0.8±0.1 1.8±0.2 0.8±0.2 

PC 40:6 35±10 5.2±1.2 1.0 30±9 4.6±1.2 0.9±0.1 0.9±0.2 1.5±0.1 0.9±0.1 

SM 34:0 3±1 0.4±0.1 1.0 4±2 0.5±0.3 1.2±0.6 3.4±2.3 3.8±2.7 1.8±0.8 

SM 32:1 5±1 1.2±0.2 1.0 5±1 1.2±0.2 1.0±0.1 1.0±0.1 1.6±0.1 1.1±0.1 

SM 33:1 4±1 0.7±0.1 1.0 5±1 0.8±0.1 1.2±0.3 1.1±0.2 1.6±0.2 1.1±0.2 

SM 34:1 39±11 0.3±0.1 1.0 52±13 0.4±0.1 1.4±0.2 1.0±0.1 2.6±0.4 1.3±0.1 

SM 36:1 3±2 0.3±0.2 1.0 5±2 0.3±0.1 0.9±0.6 0.8±0.6 2.1±1.8 0.8±0.6 

SM 42:1 5±2 0.2±0.1 1.0 6±1 0.3±0.1 1.5±0.7 1.5±0.5 3.2±1.7 1.3±0.7 

SM 34:2 4±1 1.2±0.4 1.0 4±1 1.1±0.3 1.0±0.2 1.0±0.2 1.8±0.5 1.1±0.2 

SM 35:2 6±1 0.8±0.1 1.0 7±1 1.0±0.1 1.2±0.1 1.1±0.2 1.5±0.2 1.2±0.2 

SM 36:2 2±1 1.5±0.4 1.0 3±1 1.9±0.2 1.4±0.3 1.1±0.5 2.5±0.9 1.5±0.5 

SM 42:2 7±3 0.3±0.1 1.0 9±2 0.4±0.0 1.5±0.3 1.5±0.5 3.4±1.2 1.2±0.4 

PE 34:1 122±2 11.2±1.8 1.0 182±44 16.0±1.3 1.5±0.2 1.2±0.1 1.4±0.1 1.2±0.1 

PE 36:1 99±47 6.7±1.4 1.0 147±63 9.5±1.4 1.4±0.2 1.1±0.1 1.5±0.2 1.3±0.2 

PE 34:2 38±15 15.7±2.4 1.0 64±17 22.1±1.4 1.4±0.1 1.1±0.1 1.3±0.1 1.2±0.1 

PE 36:2 93±31 10.3±1.8 1.0 143±32 15.0±0.7 1.5±0.2 1.2±0.1 1.3±0.1 1.2±0.1 

PE 36:3 40±10 16.1±3.1 1.0 63±7 22.1±2.3 1.4±0.2 1.2±0.1 1.3±0.2 1.2±0.1 

PE 38:3 171±13 13.2±1.3 1.0 234±23 17.6±2.0 1.3±0.1 1.0±0.1 1.1±0.2 1.2±0.1 

PE 36:4 35±9 11.6±1.9 1.0 56±9 17.2±2.5 1.5±0.2 1.2±0.1 1.2±0.2 1.2±0.2 

PE 38:4 656±97 8.1±1.1 1.0 871±83 10.6±1.2 1.3±0.2 1.0±0.1 1.1±0.1 1.1±0.1 

PE 40:4 270±23 16.5±2.0 1.0 382±44 21.6±2.6 1.3±0.1 1.0±0.1 1.2±0.1 1.2±0.1 
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Continuation of Appendix Table 5. Effect of IL-1β on newly synthesized PL species. 

       (see chapter 3.4.2. and 4.5.2.) 

Species 

control IL-1β 
IL-1β + 
QNZ 

IL-1β + 
SB203580 

IL-1β + 
SP600125 

[pmol/mg] % lab. PL 
Fold of 
change 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

Fold of 
change 

Fold of 
change 

Fold of 
change 

PE 38:5 276±42 12.7±1.5 1.0 374±41 17.2±1.8 1.4±0.2 1.0±0.1 1.0±0.2 1.1±0.1 

PE 40:5 297±52 18.1±2.1 1.0 415±96 23.5±3.2 1.3±0.3 1.0±0.1 1.3±0.1 1.1±0.1 

PE 38:6 234±63 25.8±4.7 1.0 412±66 35.5±2.4 1.4±0.2 1.2±0.1 1.1±0.1 1.2±0.2 

PE 40:6 326±53 20.8±3.1 1.0 499±91 27.2±2.4 1.3±0.1 1.1±0.1 1.2±0.1 1.2±0.1 

PE P 
16:0/18:1 
PE P 
16:0/20:4 

44±16 
 

364±78 

2.9±0.4 
 

4.2±0.4 

1.0 
 

1.0 

60±121 
 

477±105 

4.0±0.6 
 

5.5±1.1 

1.4±0.2 
 

1.3±0.3 

1.0±0.4 
 

0.9±0.1 

1.2±0.2 
 

0.8±0.2 

1.2±0.3 
 

1.0±0.1 

PE P 
16:0/22:4 

147±21 8.4±1.0 1.0 205±16 11.5±1.5 1.4±0.3 1.1±0.1 1.2±0.2 1.2±0.1 

PE P 
16:0/22:5 

134±26 8.8±1.1 1.0 192±66 11.7±1.9 1.4±0.3 1.0±0.1 1.0±0.2 1.1±0.1 

PE P 
16:0/22:6 

128±23 8.0±0.9 1.0 187±16 11.2±0.4 1.4±0.1 1.0±0.1 0.9±0.1 1.2±0.2 

PE P 
18:1/16:0 

70±12 8.5±2.2 1.0 91±6 11.0±0.7 1.4±0.4 1.0±0.2 1.1±0.3 1.2±0.1 

PE P 
18:1/18:1 

55±13 7.8±1.4 1.0 55±12 8.4±1.5 1.1±0.2 1.0±0.1 1.1±0.2 1.1±0.3 

PE P 
18:1/20:4 

577±77 11.2±0.7 1.0 640±66 12.9±0.5 1.2±0.1 1.0±0.0 0.9±0.1 1.0±0.1 

PE P 
18:1/20:5 

58±14 14.6±0.8 1.0 72±15 17.7±2.7 1.2±0.2 1.0±0.2 1.1±0.1 1.2±0.2 

PE P 
18:1/22:4 

87±14 16.2±4.0 1.0 91±10 16.3±1.9 1.1±0.3 0.9±0.1 1.1±0.3 1.0±0.2 

PE P 
18:1/22:5 

83±23 16.1±2.1 1.0 97±19 18.1±2.0 1.1±0.2 1.0±0.1 1.1±0.2 0.9±0.1 

PE P 
18:1/22:6 

89±12 12.3±1.4 1.0 113±12 14.4±1.8 1.2±0.2 1.1±0.1 1.0±0.1 1.1±0.1 

PE P 
18:0/16:0 

44±6 13.0±2.1 1.0 73±7 19.0±3.8 1.5±0.3 0.9±0.1 1.3±0.2 1.1±0.1 

PE P 
18:0/18:1 

36±8 4.1±0.4 1.0 38±7 4.6±0.7 1.1±0.1 1.1±0.2 0.9±0.2 1.0±0.1 

PE P 
18:0/20:4 

398±85 3.5±0.7 1.0 488±95 4.3±0.9 1.2±0.1 0.9±0.1 0.8±0.1 1.0±0.1 

PE P 
18:0/20:5 

48±14 5.6±0.8 1.0 56±13 6.2±0.7 1.1±0.2 1.0±0.2 0.8±0.2 1.1±0.2 

PE P 
18:0/22:4 

76±15 6.0±1.4 1.0 116±12 8.9±1.7 1.5±0.3 1.1±0.3 1.3±0.3 1.2±0.2 

PE P 
18:0/22:5 

98±19 7.2±1.8 1.0 119±39 8.5±1.7 1.2±0.3 0.9±0.2 1.0±0.3 1.0±0.3 

PE P 
18:0/22:6 

84±11 5.3±1.1 1.0 118±15 7.0±1.5 1.3±0.2 1.1±0.2 1.0±0.2 1.1±0.3 

The quantitative values obtained for each stable isotope-labelled PL species were normalized to 
cellular protein content and are expressed as pmol/mg protein. For each PL specie the percentage of 
stable isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of 
stable isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Bold data represent significantly altered x-fold of changes with P ≤ 0.05. Data are presented as means 
± SDs of these ratios (n = 5). 
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Appendix Table 6. Effect of TGF-β1 on newly synthesized PL species. 
            (see chapter 3.4.2. and 4.5.3.) 

Species 

control TGF-β1 
TGF-β1 + 
SB432542 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

Fold of 
change 

PC 30:0 46±16 4.3±1.4 1.0 73±21 6.6±1.6 1.6±0.5 1.0±0.3 

PC 32:0 426±105 5.7±1.2 1.0 584±200 8.6±2.3 1.5±0.2 0.9±0.1 

PC 34:0 59±22 5.4±1.5 1.0 82±36 8.4±2.4 1.6±0.3 1.1±0.1 

PC 32:1 148±27 5.1±0.9 1.0 267±60 8.8±2.3 1.8±0.4 1.0±0.1 

PC 34:1 812±142 5.3±1.3 1.0 1189±205 8.0±2.3 1.5±0.2 1.0±0.1 

PC 36:1 208±33 3.3±0.7 1.0 255±42 4.3±0.9 1.3±0.1 1.1±0.1 

PC 34:2 332±58 8.0±1.6 1.0 527±101 12.4±2.8 1.5±0.2 1.1±0.1 

PC 36:2 315±27 5.2±1.4 1.0 438±64 7.5±2.1 1.5±0.2 1.1±0.1 

PC 34:3 37±6 10.0±2.3 1.0 74±25 16.6±3.9 1.7±0.4 1.1±0.1 

PC 36:3 210±37 7.0±1.8 1.0 309±67 10.6±2.6 1.5±0.3 1.1±0.0 

PC 38:3 78±25 4.3±1.0 1.0 88±24 5.4±1.1 1.3±0.2 1.1±0.1 

PC 36:4 350±122 5.9±0.7 1.0 435±145 8.3±0.9 1.4±0.1 1.2±0.1 

PC 38:4 448±182 4.6±0.8 1.0 506±194 5.9±0.8 1.3±0.1 1.2±0.1 

PC 40:4 35±12 6.3±1.6 1.0 39±12 8.3±2.0 1.3±0.2 1.1±0.1 

PC 36:5 43±12 6.5±1.1 1.0 60±15 9.8±1.2 1.5±0.2 1.3±0.1 

PC 38:5 282±93 6.5±1.2 1.0 337±105 9.0±1.3 1.4±0.1 1.1±0.1 

PC 40:5 54±15 5.7±1.2 1.0 62±17 7.6±1.4 1.3±0.1 1.1±0.0 

PC 38:6 65±18 5.5±1.1 1.0 83±19 8.5±1.2 1.6±0.4 1.2±0.2 

PC 40:6 42±15 5.6±1.4 1.0 49±12 7.6±1.4 1.4±0.2 1.1±0.2 

SM 34:0 5±2 0.5±0.2 1.0 6±2 0.7±0.2 1.4±0.5 1.1±1.0 

SM 32:1 6±1 1.3±0.2 1.0 6±0 1.5±0.2 1.2±0.2 1.1±0.1 

SM 33:1 5±2 0.8±0.2 1.0 5±1 0.9±0.2 1.2±0.4 1.0±0.3 

SM 34:1 54±10 0.4±0.0 1.0 69±17 0.5±0.1 1.3±0.3 1.2±0.1 

SM 36:1 4±2 0.3±0.1 1.0 6±1 0.4±0.1 1.6±0.7 1.5±0.7 

SM 42:1 8±3 0.3±0.1 1.0 8±2 0.3±0.1 1.1±0.1 1.1±0.3 

SM 34:2 5±1 1.4±0.2 1.0 5±1 1.5±0.3 1.1±0.2 1.0±0.2 

SM 35:2 6±1 0.8±0.1 1.0 7±1 1.0±0.2 1.2±0.2 1.2±0.1 

SM 36:2 3±1 1.8±0.3 1.0 4±1 2.4±0.4 1.3±0.2 0.9±0.2 

SM 42:2 10±4 0.4±0.1 1.0 16±4 0.6±0.2 1.7±1.0 1.3±0.2 

PE P 16:0/18:1 57±26 3.8±0.4 1.0 48±20 3.4±0.3 0.9±0.1 0.8±0.1 

PE P 16:0/20:4 360±97 4.1±0.7 1.0 304±105 3.6±0.9 0.9±0.1 0.7±0.1 

PE P 16:0/22:4 158±34 8.8±1.6 1.0 143±38 8.5±2.0 1.0±0.2 0.9±0.1 

PE P 16:0/22:5 145±47 9.0±1.8 1.0 152±53 9.4±1.7 1.1±0.1 0.8±0.1 

PE P 16:0/22:6 137±34 8.8±1.5 1.0 131±28 8.6±1.1 1.0±0.1 0.7±0.1 

PE P 18:1/16:0 80±9 9.8±1.7 1.0 75±19 9.1±2.7 0.9±0.2 0.7±0.1 

PE P 18:1/18:1 61±20 9.1±1.0 1.0 61±23 9.1±1.5 1.0±0.2 0.9±0.2 

PE P 18:1/20:4 575±105 11.3±1.2 1.0 515±94 10.4±0.9 0.9±0.1 0.9±0.1 

PE P 18:1/20:5 62±22 15.6±3.6 1.0 59±13 15.4±3.6 1.0±0.2 1.0±0.3 

 



APPENDIX 
 

126 

 

Continuation of Appendix Table 6. Effect of TGF-β1 on newly synthesized PL species. 
  (see chapter 3.4.2. and 4.5.3.) 

Specie 

control TGF-β1 
TGF-β1 + 
SB432542 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

Fold of 
change 

PE P 18:1/22:4 86±15 14.8±1.8 1.0 96±12 16.7±1.2 1.1±0.1 1.1±0.1 

PE P 18:1/22:5 89±23 16.6±3.1 1.0 89±25 16.5±1.8 1.0±0.2 1.0±0.1 

PE P 18:1/22:6 108±31 14.3±3.1 1.0 88±10 12.0±1.6 0.9±0.2 0.9±0.1 

PE P 18:0/16:0 45±13 12.7±4.1 1.0 40±10 13.2±4.8 1.1±0.2 1.0±0.2 

PE P 18:0/18:1 40±14 4.9±0.8 1.0 37±8 4.8±1.0 1.0±0.3 0.8±0.1 

PE P 18:0/20:4 438±112 3.7±0.8 1.0 341±84 3.1±0.7 0.9±0.2 0.8±0.1 

PE P 18:0/20:5 61±31 7.2±2.8 1.0 44±11 5.3±0.4 0.8±0.3 0.8±0.2 

PE P 18:0/22:4 96±22 7.0±1.9 1.0 87±16 7.0±1.2 1.0±0.3 0.9±0.2 

PE P 18:0/22:5 94±35 6.5±1.8 1.0 80±19 6.1±1.5 1.0±0.2 0.9±0.1 

PE P 18:0/22:6 94±18 5.8±0.9 1.0 77±10 5.3±1.1 0.9±0.1 0.7±0.1 

PE 34:1 132±63 12.4±2.1 1.0 160±63 13.7±2.6 1.1±0.2 1.0±0.1 

PE 36:1 117±66 7.9±1.3 1.0 120±62 7.9±1.9 1.0±0.2 1.0±0.1 

PE 34:2 33±14 15.1±3.0 1.0 51±22 18.7±3.5 1.3±0.4 1.1±0.1 

PE 36:2 108±48 12.3±2.3 1.0 140±62 14.0±2.7 1.1±0.2 0.9±0.1 

PE 36:3 42±10 17.9±1.6 1.0 69±28 22.2±4.1 1.2±0.3 1.1±0.1 

PE 38:3 180±29 13.6±2.5 1.0 198±36 14.4±2.3 1.1±0.2 1.0±0.1 

PE 36:4 39±13 13.0±3.1 1.0 45±9 14.4±3.4 1.1±0.3 1.0±0.2 

PE 38:4 684±93 8.4±1.6 1.0 755±103 9.0±1.9 1.1±0.21 0.9±0.1 

PE 40:4 301±54 18.3±3.7 1.0 282±40 17.3±3.6 0.9±0.1 0.9±0.1 

PE 38:5 268±67 12.6±2.6 1.0 318±68 14.0±3.2 1.1±0.2 0.9±0.0 

PE 40:5 301±62 18.2±2.2 1.0 324±53 19.0±3.4 1.0±0.1 1.0±0.0 

PE 38:6 189±48 24.3±3.6 1.0 235±49 26.6±4.2 1.1±0.1 0.9±0.1 

PE 40:6 348±43 21.4±3.2 1.0 328±37 20.1±3.2 0.9±0.1 1.0±0.1 

The quantitative values obtained for each stable isotope-labelled PL species were normalized to 
cellular protein content and are expressed as pmol/mg protein. For each PL specie the percentage of 
stable isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of 
stable isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Bold data represent significantly altered x-fold of changes with P ≤ 0.05. Data are presented as means 
± SDs of these ratios (n = 5). 
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Appendix Table 7. Effect of IGF-1 on newly synthesized PL species. 
            (see chapter 3.4.2. and 4.5.4.) 

Species 

control   IGF-1   
IGF-1 + 
LY294002 

IGF-1 + 
SCH772984 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

[pmol/mg] 
% lab. 

PL 
Fold of 
change 

Fold of 
change 

Fold of 
change 

PC 30:0 46±16 4.3±1.4 1.0 56±13 5.3±1.3 1.3±0.3 1.2±0.2 1.6±0.3 

PC 32:0 426±105 5.7±1.2 1.0 477±137 7.0±1.3 1.2±0.2 1.2±0.1 1.4±0.2 

PC 34:0 59±22 5.4±1.5 1.0 65±27 6.6±1.5 1.3±0.1 1.3±0.1 1.6±0.2 

PC 32:1 148±27 5.1±0.9 1.0 193±24 6.8±1.5 1.3±0.1 1.2±0.1 1.7±0.2 

PC 34:1 812±142 5.3±1.3 1.0 1036±120 7.1±2.0 1.3±0.1 1.2±0.1 1.7±0.2 

PC 36:1 208±33 3.3±0.7 1.0 230±26 4.0±1.0 1.2±0.1 1.3±0.1 1.5±0.2 

PC 34:2 332±58 8.0±1.6 1.0 419±67 10.3±2.3 1.3±0.1 1.2±0.1 1.5±0.2 

PC 36:2 315±27 5.2±1.4 1.0 379±52 6.4±1.7 1.2±0.1 1.2±0.1 1.6±0.2 

PC 34:3 37±6 10.0±2.3 1.0 46±7 12.5±2.4 1.3±0.1 1.2±0.1 1.6±0.2 

PC 36:3 210±37 7.0±1.8 1.0 254±72 9.1±2.8 1.3±0.1 1.2±0.0 1.6±0.1 

PC 38:3 78±25 4.3±1.0 1.0 87±22 5.6±1.2 1.3±0.1 1.3±0.2 1.5±0.3 

PC 36:4 350±122 5.9±0.7 1.0 428±167 7.8±1.3 1.3±0.1 1.2±0.1 1.6±0.2 

PC 38:4 448±182 4.6±0.8 1.0 479±190 5.7±0.9 1.2±0.1 1.3±0.1 1.5±0.2 

PC 40:4 35±12 6.3±1.6 1.0 33±9 7.6±1.6 1.2±0.2 1.5±0.1 1.3±0.2 

PC 36:5 43±12 6.5±1.1 1.0 51±16 8.9±1.3 1.4±0.2 1.3±0.1 1.6±0.2 

PC 38:5 282±93 6.5±1.2 1.0 302±105 8.1±1.5 1.2±0.1 1.2±0.1 1.5±0.2 

PC 40:5 54±15 5.7±1.2 1.0 51±15 6.7±1.5 1.2±0.1 1.4±0.1 1.4±0.2 

PC 38:6 65±18 5.5±1.1 1.0 68±24 7.3±1.6 1.3±0.1 1.4±0.2 1.6±0.2 

PC 40:6 42±15 5.6±1.4 1.0 42±13 6.8±1.4 1.2±0.2 1.3±0.2 1.4±0.3 

SM 34:0 5±2 0.5±0.2 1.0 7±3 0.8±0.3 1.5±0.7 1.5±0.6 2.6±1.3 

SM 32:1 6±1 1.3±0.2 1.0 6±1 1.5±0.3 1.2±0.3 1.2±0.3 1.3±0.3 

SM 33:1 5±2 0.8±0.2 1.0 4±1 0.8±0.1 1.1±0.3 1.1±0.3 1.4±0.3 

SM 34:1 54±10 0.4±0.0 1.0 70±17 0.5±0.1 1.4±0.3 1.2±0.2 1.8±0.4 

SM 36:1 4±2 0.3±0.1 1.0 7±2 0.5±0.1 2.2±1.4 1.5±0.9 2.8±1.6 

SM 42:1 8±3 0.3±0.1 1.0 12±2 0.5±0.1 1.7±0.4 1.1±0.4 2.1±0.8 

SM 34:2 5±1 1.4±0.2 1.0 5±1 1.6±0.4 1.2±0.3 1.0±0.2 1.3±0.4 

SM 35:2 6±1 0.8±0.1 1.0 9±2 1.2±0.1 1.5±0.2 1.2±0.1 1.5±0.3 

SM 36:2 3±1 1.8±0.3 1.0 3±1 2.0±0.3 1.1±0.2 1.0±0.2 1.3±0.2 

SM 42:2 10±4 0.4±0.1 1.0 18±6 0.7±0.1 1.9±0.7 1.4±0.5 3.1±1.2 

The quantitative values obtained for each stable isotope-labelled PL species were normalized to 
cellular protein content and are expressed as pmol/mg protein. For each PL specie the percentage of 
stable isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of 
stable isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Bold data represent significantly altered x-fold of changes with P ≤ 0.05. Data are presented as means 
± SDs of these ratios (n = 5). 
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Appendix Table 8. Effect of dexamethasone on newly synthesized PL species. 
         (see chapter 3.4.2. and 4.5.5.) 

Species 

control  Dex Dex + RU 486  

[pmol/mg] % lab. PL 
Fold of 
change 

[pmol/mg] % lab.PL 
Fold of 
change 

Fold of change 

PC 30:0 48±10 4.8±0.7 1.0 35±12 3.7±1.0 0.8±0.1 0.9±0.1 

PC 32:0 438±102 6.4±0.9 1.0 344±135 5.6±1.7 0.9±0.2 1.0±0.1 

PC 34:0 59±11 6.3±1.1 1.0 43±20 5.1±1.8 0.8±0.3 1.0±0.3 

PC 32:1 158±10 5.7±0.8 1.0 119±39 4.6±1.5 0.8±0.2 0.9±0.1 

PC 34:1 861±90 6.0±1.4 1.0 726±206 5.3±2.1 0.9±0.2 0.9±0.1 

PC 36:1 218±23 3.8±0.8 1.0 189±25 3.3±1.2 0.9±0.1 1.0±0.1 

PC 34:2 358±34 9.0±1.7 1.0 275±88 7.6±2.6 0.8±0.2 1.0±0.1 

PC 36:2 332±31 5.8±1.4 1.0 278±65 5.3±1.9 0.9±0.2 1.0±0.1 

PC 34:3 39±5 10.9±1.2 1.0 28±8 9.4±3.0 0.8±0.2 0.9±0.1 

PC 36:3 218±43 7.8±1.8 1.0 173±69 6.9±2.7 0.9±0.2 1.0±0.1 

PC 38:3 84±24 4.9±0.7 1.0 82±31 5.0±1.5 1.0±0.2 1.0±0.2 

PC 36:4 394±133 6.9±0.7 1.0 366±168 6.1±1.3 0.9±0.1 1.0±0.1 

PC 38:4 482±186 5.3±0.7 1.0 474±246 5.1±1.5 1.0±0.2 1.0±0.1 

PC 40:4 40±14 7.7±1.7 1.0 37±17 7.1±2.4 0.9±0.2 1.0±0.2 

PC 36:5 52±17 8.0±1.6 1.0 46±19 7.5±1.4 0.9±0.1 0.9±0.1 

PC 38:5 284±94 7.2±1.0 1.0 267±137 6.8±2.2 0.9±0.2 1.0±0.2 

PC 40:5 60±19 7.0±1.6 1.0 58±29 6.7±2.6 0.9±0.2 1.0±0.2 

PC 38:6 69±21 6.5±1.3 1.0 55±26 5.6±1.8 0.8±0.1 0.9±0.1 

PC 40:6 42±15 6.1±1.3 1.0 39±20 5.7±1.9 0.9±0.1 1.0±0.1 

SM 34:0 3±2 0.3±0.2 1.0 2±2 0.2±0.2 0.7±0.6 1.0±0.3 

SM 32:1 5±1 1.2±0.1 1.0 5±1 1.4±0.2 1.1±0.2 1.0±0.1 

SM 33:1 5±1 0.9±0.2 1.0 4±1 0.8±0.1 0.9±0.1 0.8±0.2 

SM 34:1 54±8 0.4±0.0 1.0 37±11 0.3±0.0 0.7±0.1 0.8±0.1 

SM 36:1 5±2 0.4±0.2 1.0 5±1 0.4±0.1 1.1±0.5 0.8±0.4 

SM 42:1 8±2 0.3±0.0 1.0 7±1 0.3±0.1 0.8±0.2 0.9±0.2 

SM 34:2 4±0 1.3±0.2 1.0 3±1 1.2±0.3 0.9±0.2 0.9±0.1 

SM 35:2 7±1 1.0±0.3 1.0 9±2 1.3±0.7 1.2±0.2 1.0±0.1 

SM 36:2 3±1 2.1±0.6 1.0 2±0 1.5±0.1 0.8±0.1 0.8±0.3 

SM 42:2 12±4 0.5±0.1 1.0 6±2 0.2±0.1 0.5±0.3 0.9±0.2 

PE 34:1 129±54 13.3±1.4 1.0 70±22 8.9±1.8 0.7±0.1 0.8±0.1 

PE 36:1 122±67 8.8±1.3 1.0 83±31 6.8±1.5 0.8±0.1 0.9±0.1 

PE 34:2 37±16 17.4±1.4 1.0 18±8 12.2±4.2 0.7±0.2 0.8±0.1 

PE 36:2 108±42 13.3±1.9 1.0 66±19 9.9±1.8 0.7±0.1 0.8±0.1 

PE 36:3 46±13 20.8±2.8 1.0 26±8 15.5±3.5 0.7±0.1 0.8±0.1 

PE 38:3 208±42 16.1±1.9 1.0 155±19 13.0±1.7 0.8±0.1 0.9±0.1 

PE 36:4 42±9 14.4±1.6 1.0 26±07 10.7±2.0 0.7±0.1 0.8±0.1 

PE 38:4 722±134 9.4±1.4 1.0 558±125 7.7±1.1 0.8±0.1 0.9±0.1 

PE 40:4 303±56 19.2±2.2 1.0 258±16 17.0±2.1 0.9±0.1 1.0±0.1 

PE 38:5 288±67 14.7±2.6 1.0 183±54 10.8±2.3 0.7±0.1 0.8±0.1 

PE 40:5 324±67 20.7±1.5 1.0 249±33 17.5±1.8 0.8±0.1 0.9±0.0 
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Continuation of Appendix Table 8. Effect of dexamethasone on newly synthesized PL 
  species.  

                  (see chapter 3.4.2. and 4.5.5.) 

Species 

control  Dex Dex + RU 486  

[pmol/mg] % lab. PL 
Fold of 
change 

[pmol/mg] % lab.PL 
Fold of 
change 

Fold of change 

PE 38:6 198±44 26.6±3.7 1.0 106±30 19.0±2.8 0.7±0.1 0.8±0.1 

PE 40:6 376±85 23.9±2.7 1.0 263±52 18.9±2.32 0.8±0.1 0.9±0.1 

The quantitative values obtained for each stable isotope-labelled PL species were normalized to 
cellular protein content and are expressed as pmol/mg protein. For each PL specie the percentage of 
stable isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of 
stable isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Bold data represent significantly altered x-fold of changes with P ≤ 0.05. Data are presented as means 
± SDs of these ratios (n = 5). Dex = dexamethasone.  
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Appendix Table 9. Comparison of PC species between SF and treated FLS. 

Specie 
control 

[pmol/mg] 
IL-1β TGF-β1 IGF-1 Dex Specie 

healthy SF 
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D9]-PC 30:0 41±11 NS *↑ NS *↓ PC 30:0 1.21 1.85 
[D9]-PC 32:0 408±142 *↑ **↑ *↑ NS PC 32:0 5.01 12.8 
[D9]-PC 34:0 58±29 *↑ *↑ *↑ NS PC 34:0 0.25 0.74↑ 
[D9]-PC 36:0 ND ND ND ND ND PC 36:0 0.30 0.60↑ 
[D9]-PC 32:1 131±29 **↑ **↑ **↑ NS PC 32:1 2.56 4.48 
[D9]-PC 34:1 780±208 NS **↑ **↑ NS PC 34:1 25.4 56.9↑ 
[D9]-PC 36:1 330±115 *↑ **↑ **↑ NS PC 36:1 4.43 12.4↑ 
[D9]-PC 38:1 ND ND ND ND ND PC 38:1 0.22 0.56↑ 
[D9]-PC 32:2 ND ND ND ND ND PC 32:2 0.21 0.54 
[D9]-PC 34:2 305±84 NS **↑ *↑ NS PC 34:2 26.1 61.0↑ 
[D9]-PC 36:2 322±96 NS **↑ **↑ NS PC 36:2 16.5 43.8↑ 
[D9]-PC 38:2 ND ND ND ND ND PC 38:2 0.48 1.09↑ 
[D9]-PC 34:3 33±8 NS *↑ *↑ NS PC 34:3 0.84 1.95↑ 
[D9]-PC 36:3 184±59 NS *↑ **↑ NS PC 36:3 8.10 20.2↑ 
[D9]-PC 38:3 131±58 NS *↑ **↑ NS PC 38:3 1.88 6.50↑ 
[D9]-PC 36:4 352±156 NS **↑ **↑ NS PC 36:4 10.9 30.9↑ 
[D9]-PC 38:4 624±322 NS **↑ *↑ NS PC 38:4 9.56 24.4↑ 
[D9]-PC 40:4 72±41 NS *↑ NS NS PC 40:4 0.40 1.23↑ 
[D9]-PC 36:5 44±17 NS **↑ **↑ NS PC 36:5 0.85 2.86↑ 
[D9]-PC 38:5 280±119 NS **↑ **↑ NS PC 38:5 3.36 10.4↑ 
[D9]-PC 40:5 99±54 NS **↑ *↑ NS PC 40:5 0.75 2.65↑ 
[D9]-PC 38:6 61±23 NS *↑ **↑ NS PC 38:6 3.17 9.78↑ 
[D9]-PC 40:6 50±25 *↓ **↑ NS NS PC 40:6 1.60 4.51↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PC = phosphatidylcholine; NS = not significant; ND = 
not determined; Dex = dexamethasone.  
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Appendix Table 10. Comparison of PE species between SF and treated FLS. 

Specie 
control 

[pmol/mg] 
IL-1β TGF-β1 IGF-1 Dex Specie 

healthy SF  
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D4]-PE 32:0 ND ND ND ND ND PE 32:0 0.02 0.03 
[D4]-PE 34:0 ND ND ND ND ND PE 34:0 0.03 0.04 
[D4]-PE 32:1 ND ND ND ND ND PE 32:1 0.03 0.03 
[D4]-PE 34:1 132±54 **↑ NS NS **↓ PE 34:1 0.07 0.13 
[D4]-PE 36:1 154±73 *↑ NS NS *↓ PE 36:1 0.07 0.12 
[D4]-PE 38:1 ND ND ND ND ND PE 38:1 0.06 0.07↑ 
[D4]-PE 32:2 ND ND ND ND ND PE 32:2 0.03 0.03 
[D4]-PE 34:2 31±13 **↑ NS NS *↓ PE 34:2 0.09 0.17↑ 
[D4]-PE 36:2 100±39 **↑ NS NS **↓ PE 36:2 0.16 0.38↑ 
[D4]-PE 38:2 ND ND ND ND ND PE38:2 0.06 0.07 
[D4]-PE 34:3 ND ND ND ND ND PE 34:3 0.03 0.03 
[D4]-PE 36:3 36±11 *↑ *↑ *↑ **↓ PE 36:3 0.07 0.12↑ 
[D4]-PE 38:3 206±38 **↑ NS NS NS PE 38:3 0.06 0.11 
[D4]-PE 36:4 41±11 **↑ NS NS **↓ PE 36:4 0.08 0.19↑ 
[D4]-PE 38:4 765±176 *↑ NS NS *↓ PE 38:4 0.32 0.85↑ 
[D4]-PE 40:4 338±65 **↑ NS *↓ NS PE 40:4 0.08 0.10 
[D4]-PE 36:5 ND ND ND ND ND PE 36:5 0.03 0.04 
[D4]-PE 38:5 258±65 **↑ NS NS *↓ PE 38:5 0.13 0.28↑ 
[D4]-PE 40:5 323±78 *↑ NS NS **↓ PE 40:5 0.08 0.14↑ 
[D4]-PE 38:6 187±57 **↑ NS NS **↓ PE 38:6 0.16 0.45↑ 
[D4]-PE 40:6 383±84 **↑ NS NS **↓ PE 40:6 0.10 0.28↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PE = phosphatidylethanolamine; NS = not significant; 
ND = not determined; Dex = dexamethasone.  
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Appendix Table 11. Comparison of PE-based plasmalogen species between SF and 
           treated FLS. 

Specie 
control 

[pmol/mg] 
IL-1β TGF-β1 IGF-1 Dex Specie 

healthy SF 
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D4]-PE P 
16:0/18:1 44±17 *↑ NS NS NS PE P 16:0/18:1 0.26 0.31 

[D4]-PE P 
16:0/18:2 ND ND ND ND ND PE P 16:0/18:2 0.34 0.54 

[D4]-PE P 
16:0/20:3 ND ND ND ND ND PE P 16:0/20:3 0.14 0.22 

[D4]-PE P 
16:0/20:4 308±75 *↑ NS NS NS PE P 16:0/20:4 0.71 1.07 

[D4]-PE P 
16:0/22:4 139±31 NS NS NS NS PE P 16:0/22:4 0.28 0.27 

[D4]-PE P 
16:0/20:5 ND ND ND ND ND PE P 16:0/20:5 0.20 0.25 

[D4]-PE P 
16:0/22:5 119±29 NS NS NS NS PE P 16:0/22:5 0.25 0.42↑ 

[D4]-PE P 
16:0/22:6 90±22 **↑ NS NS NS PE P 16:0/22:6 0.28 0.83↑ 

[D4]-PE P 
18:1/16:0 51±9 NS NS NS NS PE P 18:1/16:0 ND ND 

[D4]-PE P 
18:1/18:1 55±14 NS NS NS NS PE P 18:1/18:1 0.23 0.28 

[D4]-PE P 
18:1/18:2 ND ND ND ND ND PE P 18:1/18:2 0.24 0.30 

[D4]-PE P 
18:1/20:3 ND ND ND ND ND PE P 18:1/20:3 0.14 0.16 

[D4]-PE P 
18:1/20:4 556±87 **↑ NS NS NS PE P 18:1/20:4 0.47 0.84 

[D4]-PE P 
18:1/20:5 59±15 NS NS NS NS PE P 18:1/20:5 0.14 0.19 

[D4]-PE P 
18:1/22:4 91±8 NS *↑ NS NS PE P 18:1/22:4 0.13 0.13 

[D4]-PE P 
18:1/22:5 79±19 NS NS NS NS PE P 18:1/22:5 0.10 0.18 

[D4]-PE P 
18:1/22:6 95±4 NS NS NS NS PE P 18:1/22:6 0.22 0.40↑ 

[D4]-PE P 
18:0/16:0 41±4 *↑ NS NS NS PE P 18:0/16:0 ND ND 

[D4]-PE P 
18:0/18:1 30±5 NS NS NS NS PE P 18:0/18:1 0.22 0.26 

[D4]-PE P 
18:0/18:2 ND ND ND ND ND PE P 18:0/18:2 0.30 0.50↑ 

[D4]-PE P 
18:0/20:3 ND ND ND ND ND PE P 18:0/20:3 0.13 0.20 

[D4]-PE P 
18:0/20:4 367±70 **↑ NS NS NS PE P 18:0/20:4 0.44 1.31↑ 

[D4]-PE P 
18:0/20:5 51±5 NS NS NS NS PE P 18:0/20:5 0.12 0.29↑ 

[D4]-PE P 
18:0/22:4 67±5 *↑ NS NS NS PE P 18:0/22:4 0.14 0.14 

[D4]-PE P 
18:0/22:5 76±17 NS NS NS NS PE P 18:0/22:5 0.12 0.25↑ 

[D4]-PE P 
18:0/22:6 66±17 *↑ *↓ NS NS PE P 18:0/22:6 0.22 0.43↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
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isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PE P = PE-based plasmalogen; NS = not significant; 
ND = not determined; Dex = dexamethasone.  
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Appendix Table 12. Comparison of PC species between SF and FLS treated with BMPs. 

Specie 
control 

[pmol/mg] 
BMP-2 BMP-4 BMP-7 Specie 

healthy SF 
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D9]-PC 30:0 41±11 **↑ NS NS PC 30:0 1.21 1.85 
[D9]-PC 32:0 408±142 **↑ NS NS PC 32:0 5.01 12.8 
[D9]-PC 34:0 58±29 *↑ *↑ *↑ PC 34:0 0.25 0.74↑ 
[D9-]-PC 36:0 ND ND ND ND PC 36:0 0.30 0.60↑ 
[D9]-PC 32:1 131±29 *↑ NS NS PC 32:1 2.56 4.48 
[D9]-PC 34:1 780±208 *↑ *↑ *↑ PC 34:1 25.4 56.9↑ 
[D9]-PC 36:1 330±115 NS NS *↑ PC 36:1 4.43 12.4↑ 
[D9]-PC 38:1 ND ND ND ND PC 38:1 0.22 0.56↑ 
[D9]-PC 32:2 ND ND ND ND PC 32:2 0.21 0.54 
[D9]-PC 34:2 305±84 *↑ *↑ NS PC 34:2 26.1 61.0↑ 
[D9]-PC 36:2 322±96 *↑ *↑ *↑ PC 36:2 16.5 43.8↑ 
[D9]-PC 38:2 ND ND ND ND PC 38:2 0.48 1.09↑ 
[D9]-PC 34:3 33±8 *↑ NS NS PC 34:3 0.84 1.95↑ 
[D9]-PC 36:3 184±59 *↑ *↑ *↑ PC 36:3 8.10 20.2↑ 
[D9]-PC 38:3 131±58 NS NS NS PC 38:3 1.88 6.50↑ 
[D9]-PC 36:4 352±156 **↑ *↑ *↑ PC 36:4 10.9 30.9↑ 
[D9]-PC 38:4 624±322 *↑ *↑ NS PC 38:4 9.56 24.4↑ 
[D9]-PC 40:4 72±41 NS NS NS PC 40:4 0.40 1.23↑ 
[D9]-PC 36:5 44±17 NS *↑ *↑ PC 36:5 0.85 2.86↑ 
[D9]-PC 38:5 280±119 *↑ *↑ NS PC 38:5 3.36 10.4↑ 
[D9]-PC 40:5 99±54 NS NS *↑ PC 40:5 0.75 2.65↑ 
[D9]-PC 38:6 61±23 *↑ NS *↑ PC 38:6 3.17 9.78↑ 
[D9]-PC 40:6 50±25 NS NS **↑ PC 40:6 1.60 4.51↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PC = phosphatidylcholine; NS = not significant; ND = 
not determined.  

 

 

 

 

 

 

 



APPENDIX 
 

135 

 

Appendix Table 13. Comparison of PE species between SF and FLS treated with BMPs. 

Specie 
control 

[pmol/mg] 
BMP-2 BMP-4 BMP-7 Specie 

healthy SF 
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D4]-PE 32:0 ND ND ND ND PE 32:0 0.02 0.03 
[D4]-PE 34:0 ND ND ND ND PE 34:0 0.03 0.04 
[D4]-PE 32:1 ND ND ND ND PE 32:1 0.03 0.03 
[D4]-PE 34:1 132±54 NS *↑ NS PE 34:1 0.07 0.13 
[D4]-PE 36:1 154±73 *↑ *↑ *↑ PE 36:1 0.07 0.12 
[D4]-PE 38:1 ND ND ND ND PE 38:1 0.06 0.07↑ 
[D4]-PE 32:2 ND ND ND ND PE 32:2 0.03 0.03 
[D4]-PE 34:2 31±13 NS NS NS PE 34:2 0.09 0.17↑ 
[D4]-PE 36:2 100±39 NS NS *↑ PE 36:2 0.16 0.38↑ 
[D4]-PE 38:2 ND ND ND ND PE38:2 0.06 0.07 
[D4]-PE 34:3 ND ND ND ND PE 34:3 0.03 0.03 
[D4]-PE 36:3 36±11 NS NS NS PE 36:3 0.07 0.12↑ 
[D4]-PE 38:3 206±38 NS NS *↑ PE 38:3 0.06 0.11 
[D4]-PE 36:4 41±11 NS NS NS PE 36:4 0.08 0.19↑ 
[D4]-PE 38:4 765±176 NS NS NS PE 38:4 0.32 0.85↑ 
[D4]-PE 40:4 338±65 NS NS *↑ PE 40:4 0.08 0.10 
[D4]-PE 36:5 ND ND ND ND PE 36:5 0.03 0.04 
[D4]-PE 38:5 258±65 NS NS *↑ PE 38:5 0.13 0.28↑ 
[D4]-PE 40:5 323±78 **↑ *↑ NS PE 40:5 0.08 0.14↑ 
[D4]-PE 38:6 187±57 NS NS NS PE 38:6 0.16 0.45↑ 
[D4]-PE 40:6 383±84 *↑ *↑ *↑ PE 40:6 0.10 0.28↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PE = phosphatidylethanolamine; NS = not significant; 
ND = not determined.  
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Appendix Table 14. Comparison of PE-based plasmalogen species between SF and FLS 
           treated with BMPs. 

Specie 
control 

[pmol/mg] 
BMP-2 BMP-4 BMP-7 Specie 

healthy SF 
[nmol/ml] 

early OA SF 
[nmol/ml] 

[D4]-PE P 
16:0/18:1 44±17 NS NS *↑ PE P 

16:0/18:1 0.26 0.31 

[D4]-PE P 
16:0/18:2 ND ND ND ND PE P 

16:0/18:2 0.34 0.54 

[D4]-PE P 
16:0/20:3 ND ND ND ND PE P 

16:0/20:3 0.14 0.22 

[D4]-PE P 
16:0/20:4 308±75 *↑ *↑ NS PE P 

16:0/20:4 0.71 1.07 

[D4]-PE P 
16:0/22:4 139±31 NS NS NS PE P 

16:0/22:4 0.28 0.27 

[D4]-PE P 
16:0/20:5 ND ND ND ND PE P 

16:0/20:5 0.20 0.25 

[D4]-PE P 
16:0/22:5 119±29 *↑ NS NS PE P 

16:0/22:5 0.25 0.42↑ 

[D4]-PE P 
16:0/22:6 90±22 NS NS NS PE P 

16:0/22:6 0.28 0.83↑ 

[D4]-PE P 
18:1/16:0 51±9 NS NS NS PE P 

18:1/16:0 ND ND 

[D4]-PE P 
18:1/18:1 55±14 NS NS NS PE P 

18:1/18:1 0.23 0.28 

[D4]-PE P 
18:1/18:2 ND ND ND ND PE P 

18:1/18:2 0.24 0.30 

[D4]-PE P 
18:1/20:3 ND ND ND ND PE P 

18:1/20:3 0.14 0.16 

[D4]-PE P 
18:1/20:4 556±87 NS NS *↑ PE P 

18:1/20:4 0.47 0.84 

[D4]-PE P 
18:1/20:5 59±15 NS NS NS PE P 

18:1/20:5 0.14 0.19 

[D4]-PE P 
18:1/22:4 91±8 NS NS NS PE P 

18:1/22:4 0.13 0.13 

[D4]-PE P 
18:1/22:5 79±19 NS NS NS PE P 

18:1/22:5 0.10 0.18 

[D4]-PE P 
18:1/22:6 95±4 *↑ NS NS PE P 

18:1/22:6 0.22 0.40↑ 

[D4]-PE P 
18:0/16:0 41±4 NS NS NS PE P 

18:0/16:0 ND ND 

[D4]-PE P 
18:0/18:1 30±5 *↑ *↑ NS PE P 

18:0/18:1 0.22 0.26 

[D4]-PE P 
18:0/18:2 ND ND ND ND PE P 

18:0/18:2 0.30 0.50↑ 

[D4]-PE P 
18:0/20:3 ND ND ND ND PE P 

18:0/20:3 0.13 0.20 

[D4]-PE P 
18:0/20:4 367±70 *↑ NS *↑ PE P 

18:0/20:4 0.44 1.31↑ 

[D4]-PE P 
18:0/20:5 51±5 NS NS NS PE P 

18:0/20:5 0.12 0.29↑ 

[D4]-PE P 
18:0/22:4 67±5 NS NS NS PE P 

18:0/22:4 0.14 0.14 

[D4]-PE P 
18:0/22:5 76±17 *↑ NS NS PE P 

18:0/22:5 0.12 0.25↑ 

[D4]-PE P 
18:0/22:6 66±17 NS NS NS PE P 

18:0/22:6 0.22 0.43↑ 

The quantitative values obtained from each stable-isotope-labelled sample were normalized to cellular 
protein content and expressed as pmol/mg protein. For each PL specie the percentage of stable 
isotope-labelled PL from total labelled and unlabelled PL was calculated. The percentages of stable 
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isotope-labelled species were then calculated as a ratio of corresponding untreated control (=1). 
Marked data correspond to the significantly elevated x-fold of changes. Data are presented as means ± 
SDs of these ratios (n = 5). * = P < 0.05; ** = P ≤ 0.01. PL species of SF are expressed as median of 
nmol/ml of SF (healthy, n = 9; early OA, n =17) as described in (53). Marked data correspond to 
elevated concentrations of PL in early OA SF. PE P = PE-based plasmalogen; NS = not significant; 
ND = not determined.  
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