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Abstract. The accuracy of breeding values strongly depends on the population and herd structure, i.e., the num-
ber of animals considered in genetic evaluations and the size of contemporary groups (CGs). Local breeds are
usually kept in small-sized family farms under alternative husbandry conditions. For such herd structure, con-
sideration of classical herd or herd-test-day effects in CG modeling approaches implies only a few records per
effect level. In consequence, the present study aimed on methodological evaluations of different herd clustering
strategies, considering social–ecological and herd characteristics. In this regard, we considered 19 herds keeping
cows from the small local population of German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind;
DSN), 10 herds keeping Holstein Friesian (HF) cows and one mixed herd with HF and DSN cows. Herds were
characterized for 106 variables, reflecting farm conditions, husbandry practices, feeding regime, herd manage-
ment, herd fertility status, herd health status and breeding strategies as well as social–ecological descriptors.
The variables were input data for different clustering approaches including agglomerative hierarchical cluster-
ing (AHC), partition around medoids (PAM), fuzzy clustering (FZC) and a clustering of variables combined
with agglomerative hierarchical clustering (CoVAHC). The evaluation criterion was the average silhouette width
(ASW), suggesting a CoVAHC application and consideration of four herd clusters (HCs) for herd allocation
(ASW of 0.510). HC1 comprised the larger, half organic and half conventional DSN family farms, which gen-
erate their main income from milk production. HC2 consisted of small organic DSN family farms where cows
are kept in tie stables. HC3 included the DSN sub-population from former East Germany, reflecting the large-
scale farm types. The specialized HF herds were well separated and allocated to HC4. Generalized linear mixed
models with appropriate link functions were applied to compare test-day and female fertility traits of 5538 cows
(2341 DSN and 3197 HF) from the first three lactations among the four HCs. Least squares means for milk,
fat and protein yield (Mkg, Fkg and Pkg) significantly differed between HC. The significant differences among
the four HCs clearly indicate the influence of varying herd conditions on cow traits. The similarities of herds
within HC suggested the application of HCs in statistical models for genetic evaluations for DSN. In this regard,
we found an increase of accuracies of estimated breeding values of cows and sires and of heritabilities for milk
yield when applying models with herd-cluster-test-day or herd-cluster-test-month effects compared to classical
herd-test-day models. The identified increase for the number of cows and cow records in CG due to HC effects
may be the major explanation for the identified superiority.

Published by Copernicus Publications on behalf of the Leibniz Institute for Farm Animal Biology (FBN).



188 J. Herold et al.: Herd clustering strategies and corresponding genetic evaluations

1 Introduction

Local cattle breeds contribute to genetic diversity and may
carry favorable alleles with relevance for future produc-
tion systems and market requirements, justifying efforts
for the implementation of preservation programs (Ajmone-
Marsan et al., 2010; Toro et al., 2011). Numerous studies
(Toro et al., 2011; Fernández et al., 2011; Biscarini et al.,
2015; Mastrangelo et al., 2016; Cervantes et al., 2016) fo-
cused on strategies to maintain genetic variability in en-
dangered breeds and especially focused on the minimiza-
tion of inbreeding and genetic drift. A major feature of lo-
cal endangered cattle breeds is their ability for adaptation
to harsh environments (Fernández et al., 2011; Cervantes et
al., 2016). In consequence, local cattle breeds are mostly
kept in alternative production systems, reflecting a broad
pattern of challenges such as limited food resources or cli-
matic stress (Halli et al., 2020). In Germany, the local dual-
purpose cattle breed German Black Pied cattle (Deutsches
Schwarzbuntes Niederungsrind; DSN) is used for dairy cattle
farming mainly in small-sized organic herds reflecting harsh
environments. The DSN breeding goal considers both milk
and meat production, and it focuses on genetic improvements
for longevity and female fertility. The current DSN popula-
tion size comprises about 3500 registered cows (Jaeger et al.,
2018).

Accurate genetic evaluations in DSN are imperative, be-
cause several German breeding organizations sell semen
from DSN sires worldwide. DSN and Holstein Friesian (HF)
cattle are considered simultaneously in genetic evaluations,
but their genetic connectedness is quite low, implying bi-
ased estimated breeding values (EBVs) when ignoring fur-
ther genetic model improvements. In such context, Jaeger et
al. (2019) suggested improved genetic evaluations for DSN
through a widened population size, i.e., considering DSN
cows from the Netherlands and from Poland.

In addition to the small DSN population size, accuracy
of selection and genetic evaluations is hampered due to the
small-sized herd structures. Classically, genetic evaluation
models consider a herd effect, because the herd usually repre-
sents same management, feeding or husbandry conditions for
all cows from the same herd. However, genetic (co)variance
components and EBVs might be biased when creating spe-
cific management groups within herds or when applying
preferential treatment for specific cow groups (König et al.,
2005). Accordingly, Kennedy and Trus (1993) stretched the
topic of contemporary groups (CGs) in genetic evaluations,
which should represent the microenvironment as detailed as
possible. The influence of the herd effect when modeling
CGs is not constant throughout the year, implying consid-
eration of a further time-dependent explanatory variable, i.e.,
via herd-year-season or herd-test-day modeling (Emmerling,
2000). However, such modeling approaches might be prob-
lematic in the case of small herd sizes, implying only a few
cow records per CG, with detrimental impact on selection

accuracy (Strabel et al., 2005; Pereira et al., 2018). Further-
more, human–animal relationships reflecting social charac-
teristics determine herd effects. Social characteristics plus
classical environmental conditions (e.g., climate, feeding re-
sources) were considered when defining social–ecological
systems for livestock classifications (Martin-Collado et al.,
2014). In small-sized DSN family farms, Ebinghaus (2018)
identified impact of the individual farm management and
human–animal interactions on variations of disease inci-
dences and production levels across herds (Ebinghaus, 2018).

Alternative modeling strategies to create CG were intro-
duced by Strabel et al. (2005) and Vasconcelos et al. (2008).
They grouped herds according to herd size or average milk
yield per herd. Grouping herds according to herd, environ-
mental or social characteristics points to the application of
herd clustering strategies. Table 1 gives an overview of the
clustering methods as applied in cattle populations. Key fac-
tors to allocate herds to herd clusters (HCs) were the over-
all production system (conventional or organic), herd size,
breed, country or region (Blanco-Penedo et al., 2019; Ive-
meyer et al., 2017). Tremblay et al. (2016) recommended
that clustering approaches should consider variables reflect-
ing herd particularities.

The objective of this study was to evaluate different HC
strategies including a sample of DSN herds and some HF
herds, with the aim of defining appropriate CGs in genetic
evaluations. Created clusters will be described based on de-
scriptive statistics for HC variables, as well as on detailed
analyses for cow traits in respective HCs using mixed model
applications. In a last step, we evaluated the impact of HC
modeling on genetic parameter estimates and on accuracies
of genetic evaluations.

2 Materials and methods

2.1 Herd characterization

Herd data were collected via face-to-face interviews and farm
characterizations between September 2017 and March 2018,
considering 19 DSN herds, 10 HF herds and one mixed herd
keeping both breeds. The 19 DSN herds reflected “pure”
DSN herds with DSN gene percentages larger than 87.5 %,
considering the algorithm for gene percentage calculations
as developed by Jaeger et al. (2018). Also the DSN cows
in the mixed herd were pure DSN. The HF herds were cho-
sen to consider a genetically related breed, but with oppo-
site breeding goals, production levels and farming systems.
The participating herds were located in three major geo-
graphic regions from Germany: (1) intensive grazing systems
on coastal marshlands, (2) large-scale farms (indoor system)
in one region of former East Germany and (3) small-scale
family farms in the middle of Germany (semi-intensive graz-
ing systems with maximal 5 h grazing per day). The alti-
tudes of farms in the three regions were 14.68, 84.00 and
200.47 m, respectively, and the latitudes were 53◦28′, 51◦67′
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Table 1. Overview for applied herd clustering approaches.

Author Method∗ Number of Number of variables Number of

herds Collected Used for grouping herd clusters

Blanco-Penedo et al. (2019) AHC 192 114 16 3
Ivemeyer et al. (2017) Two-step cluster analysis 204 90 4 4
Brotzman et al. (2015) AHC 557 22 16 6

Köbrich et al. (2003)
AHC 67 7 5
AHC 72 40 8 5

Savoia et al. (2019) AHC 115 4 6
Guiomar et al. (2018) PAM 916 22 5 8
Gorgulu (2010) FZC 136 7 7 4
Kuentz-Simonet et al. (2015) CoVAHC 544 67 9 7
Tremblay et al. (2016) Mixed latent-class model-based clustering 529 20 18 6
Salasya and Stoorvogel (2010) FZC 296 11 11 3
Weigel and Rekaya (1999) k-means 45.936 13 9 5

∗ AHC is agglomerative hierarchical clustering, PAM is the partition around medoids, FZC is fuzzy clustering, CoVAHC is the clustering of variables combined with agglomerative
hierarchical clustering, and k-means clustering is the nearest centroid method.

and 51◦12′, respectively. The median herd size for all herds
comprised 95 milking cows, ranging from 3 to 800 cows (me-
dian 35.5) for DSN and from 60 to 780 cows (median 156.5)
for HF.

The farm visits for structured interviews and herd charac-
terizations comprised 45 to 90 min per farm. The survey and
visual herd observations included quantitative and qualitative
information with regard to general herd characteristics, the
feeding regime, the housing system, the husbandry practices,
the herd and pasture management, herd fertility and health
status as well as the management of calves, heifers and dry
cows. Social components addressed, e.g., the herd manager’s
education, the expenditure of time used for dairy cattle farm-
ing, the family status, the number and age of the children and
the number of farm employees. In total, the herd characteri-
zation comprised 117 variables (26 quantitative and 91 qual-
itative variables) as indicated in the Supplement (Table S1).
Answers were possible via multiple choice but also included
open questions and required specific numeric values in some
cases (Supplement Table S1). Quantitative variables were
scaled by a z transformation, implying a mean of 0 and a
variance of 1 (Gagaoua et al., 2018). The data collection was
carried out by the same interviewer, so that a misinterpreta-
tion of questions by the farmer can be excluded.

2.2 Herd clustering approaches

The previously applied HC approaches (as summarized in
Table 1) focused on one specific method. In the present
study, we compared four different HC methods, especially
from the perspective of HC consideration in genetic evalua-
tions. The following four different HC methods were applied:
(i) agglomerative hierarchical clustering (AHC), (ii) parti-
tion around medoids (PAM), (iii) fuzzy clustering (FZC) and
(iv) a clustering of variables combined with agglomerative
hierarchical clustering (CoVAHC). All clustering analyses

were conducted in R version 4.0.2 (R Core Team, 2020) and
applying the packages “cluster” (Maechler et al., 2018) and
“ClustOfVar” (Chavent et al., 2017). According to Pimenta
et al. (2017), herd variables indicating limited variation or
strong correlations with other variables, were deleted. Af-
ter herd variable editing, 106 variables (23 quantitative and
83 qualitative variables) remained for the ongoing cluster
analyses. Based on the mixed data types (nominal, ordinal,
(a)symmetric binary, metric), the Gower distance (Gower,
1971) modified by Struyf et al. (1996), was used to calcu-
late the dissimilarity matrix. The overall average silhouette
width (ASW) as defined by Rousseeuw (1987) was used to
evaluate the clustering approaches and to identify the optimal
number of HCs. The silhouette width ranges between−1 and
1, whereby a good cluster separation is characterized by a
high intra-homogeneity and inter-heterogeneity with values
close to 1 (Rousseeuw, 1987; Lletí et al., 2004; Gagaoua et
al., 2018). For all clustering approaches, we calculated the
ASW for each number of HCs (evaluated range: 2–10; ac-
cording to the studies as listed in Table 1).

Agglomerative hierarchical clustering (AHC): The aim of
this algorithm is to identify a hierarchical clustering of ele-
ments based on similarities or dissimilarities. Initially, each
element is considered as a single cluster. Afterwards, these
clusters are merged stepwise until the complete data set be-
comes a cluster (Struyf et al., 1996; Köbrich et al., 2003). The
approach recommended by Ward (1963) was used to create
homogeneous clusters by fusion. This approach is based on
a classical sum-square criterion and produces clusters that
minimize variation within the group at each merging step
(Murtagh and Legendre, 2014). The dissimilarities can be
used to visualize each merging steps in a dendrogram with
horizontal lines indicating a combination of herds or HCs.

Partition around medoids (PAM): This method is an up-
grade of the popular k-means algorithm, which is fast, effi-
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cient and simple. k-means clustering only handles numeric
values, but PAM also works with ordinarily scaled variables
(Maione et al., 2019). PAM is more robust to outliers than
k-means clustering, because it minimizes the sum of non-
squared dissimilarities instead of the sum of squared Eu-
clidean distances (Kaufman and Rousseeuw, 1990; Struyf
et al., 1996). PAM searches for k medoids (the representa-
tive elements) within the data set (Kaufman and Rousseeuw,
1990) and minimizes the total dissimilarity of each element
to its nearest medoid.

Fuzzy clustering (FZC): In contrast to AHC and PAM,
where each element belongs exactly to one cluster, FZC is
a so-called soft clustering algorithm. This means that an el-
ement can be assigned to varying clusters. Each element re-
ceives a membership value that indicates how strongly the el-
ement belongs to any cluster (Struyf et al., 1996; Salasya and
Stoorvogel, 2010). The membership exponent r [1→∞] de-
scribes the degree of fuzziness, where r = 1 is comparable to
a strict clustering such as AHC or PAM, and r =∞ is the
highest degree of fuzziness (Salasya and Stoorvogel, 2010).

We varied r in the range from 1.0 to 4.0. The best HC
differentiation was realized for r = 1.1. Hence, all of the fol-
lowing presented results are based on r = 1.1.

Clustering of variables combined with agglomerative hier-
archical clustering (CoVAHC): CoVAHC is a combination of
“clustering of variables” (herd information) followed by an
AHC (see above) of the resulting “synthetic variables”. The
aim of the “clustering of variables” (CoV) is to find a parti-
tion (one that contains similar information) in a mixed data
set, in which variables are arranged in homogeneous groups
by means of a hierarchical algorithm. This algorithm forms
a set of p partitions of variables according to the following
scheme:

1. Start partition: each variable is one start cluster.

2. Two clusters will be merged to a new partition when the
dissimilarity is the smallest, so that the loss of homo-
geneity of the new cluster is minimal. This merging step
is repeated until each variable is grouped with another
variable or partition.

3. End partition: all start clusters form one complete clus-
ter.

The CoV focuses on two aspects. The first is merging closely
related variables by grouping them into partitions that maxi-
mize the homogeneity criterion, which is defined by the sum
of squared Pearson correlations for quantitative variables and
correlation ratios for qualitative variables. If all quantitative
variables and all qualitative variables in a cluster are corre-
lated (or anti-correlated) or the correlation ratios are equal to
1, the homogeneity criterion is maximized. The second as-
pect focuses on the definition of a synthetic variable of each
cluster by a principal component approach for mixed data.
Afterwards, the values of the synthetic variables are used via

AHC to cluster the herds (Chavent et al., 2012; Brida et al.,
2014).

2.3 Comparison of herd clusters for cow traits

In this regard, due to the largest ASW, we considered the
four HCs to be created by the CoVAHC application (de-
tails are presented in Sect. 3.1). Cow traits were from the
recording years 2017 and 2018. The number of cows per
HC was as follows: HC1 of 1091 cows, HC2 of 64 cows,
HC3 of 1059 cows and HC4 of 3324 cows. Production data
considered 55 181 repeated test-day records from 5538 cows
(19 964 records from 1947 DSN cows and 35 217 records
from 3591 HF cows) for milk yield (Mkg), protein yield
(Pkg), fat yield (Fkg) protein percentage (P%), fat percentage
(F%), somatic cell sore (SCS) and fat-to-protein (FPR) ratio
from the first to the third lactations. Female fertility traits in-
cluded the interval from calving to first insemination (CFI)
and the success of a first insemination (SFI). In this regard,
we considered 6100 observations for CFI from 4562 cows
(2548 records form 1871 DSN cows, and 3552 records from
2691 HF cows) and 7333 first inseminations for SFI from
5119 cows (3119 records form 2096 DSN cows, and 4214
records from 3023 HF cows). The udder health indicator so-
matic cell count (SCC) was log transformed into SCS= log2
(SCC / 100 000 cells)+ 3 (Ali and Shook, 1980).

Linear mixed models were applied to assess the effect of
defined HC on the cow test-day traits: Mkg, Pkg, Fkg, P%,
F%, SCS and FPR. All calculations were performed with R
version 4.0.2 (R Core Team, 2020) and applied the package
“emmeans” (Lenth, 2020). This package was also used to
calculate least squares means (LSMs) for traits within HCs
and to test for corresponding significant differences. The re-
spective model (model 1) was defined as follows:

yijklmno = µ+Bi +YSj +Lk +HCl +DIMm+CAn
+Ao+ eijklmno, (1)

whereµ is the overall mean effect, and the fixed effects are as
follows: B is the breed (DSN or HF), YS is the year season
of calving (December–February, March–May, June–August
or September–November), L is the lactation number (1, 2 or
3), HC is the herd cluster (HC1, HC2, HC3 or HC4), DIM is
the fixed regression on days in milk (Legendre polynomials
of third order), and CA is the calving age as covariate (linear
regression), A is the animal as a random effect, and e is the
random residual effect.

A linear mixed model was applied to CFI, and a general-
ized linear mixed model with a logit-link function was ap-
plied to SFI. Effects in the respective model (model 2) were
the same for both female fertility traits and defined as fol-
lows:

yijklmnop = µ+Bi +MIj +Lk +HCl +SEm+CAn
+Ao+ Sp + eijklmnop, (2)
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where µ is the overall mean effect, and the fixed effects are
as follows: B is the breed (DSN or HF), MI is the month of
insemination (January–December), L is the lactation num-
ber, HC is the herd cluster, SE is the type of semen (fresh
semen, deep frozen semen, natural mating), and CA is the
age at insemination as covariate (linear regression); as ran-
dom effects, A is the animal and S is the service sire, and e
is the random residual effect.

2.4 Genetic evaluation models

Genetic evaluations for test-day milk yield considered phe-
notypic data from calving years 2012 to 2018 from the 5538
cows with 55 181 test-day records (35 217 records from DSN
and 19 964 records from HF) from the first three lactations.
The estimation of genetic parameters and breeding values
was carried out for a test-day model (model 3) with a herd-
test-day (HTD) or herd-cluster-test-day (HCTD) effect and
for an alternative test-month model (model 4) with a herd-
test-month (HTM) or herd-cluster-test-month (HCTM) ef-
fect. Again, we considered the four HCs from the CoVAHC
approach. For the genetic parameter estimations with the
DMU software package (Madsen and Jensen, 2013), the fol-
lowing linear animal models were defined:

yijklmnop = µ+Bi+YSj +LAk +HTDl or

HCTDl +DIMm+CAn+Ano+PEp + eijklmnop (3)

yijklmnop = µ+Bi +YSj +LAk +HTMl or

HCTMl +DIMm+CAn+Ano+PEp + eijklmnop, (4)

where yijklmnop is the test-day milk yield, µ is the overall
mean; Bi is the fixed breed effect; YSj is the fixed year sea-
son of calving effect (1–27); LAk is the fixed lactation effect
(1, 2, 3); HTDl or HCTDl is the fixed effect of herd test day
or herd-cluster test day; HTMl or HCTMl is the fixed effect
of herd test month or herd-cluster test month; DIMm is the
fixed regression on days in milk using Legendre polynomials
of third order; CAn is the calving age as covariate (linear re-
gression); Ano is the random additive genetic effect; PEp is
the random permanent environmental effect; eijklmnop is the
random residual effect.

3 Results and discussion

3.1 Evaluation of herd clustering approaches

The first step was to determine the optimal number of HCs.
Figure 1 shows the ASW for the four clustering methods,
indicating a wide range from 0.015 (FZC with 10 HC) to
0.510 (CoVAHC with four HCs). Such huge variation for
ASW displays the differences in separation efficiency of the
different approaches. The ASW was highest (0.510) when
creating four HCs and applying CoVAHC clustering. Such
desired value for ASW for selected clustering procedures is
in agreement with Gorgulu (2010), Ivemeyer et al. (2017)

Figure 1. Average silhouette width for the different numbers
of herd clusters considering the following clustering approaches:
agglomerative hierarchical clustering (AHC), partition around
medoids (PAM), fuzzy clustering (FZC), clustering of variables
combined with agglomerative hierarchical clustering (CoVAHC);
dotted lines are smoothed conditional means; the vertical dotted line
indicates the chosen number of herd clusters for ongoing studies.

and Guiomar et al. (2018). For the remaining clustering ap-
proaches AHC, PAM and FZC, the ASW was quite stable in
dependency of HC variations, but generally, ASW obviously
declined for more than four HCs (Fig. 1).

In the Supplement (Fig. S1), ASWs for individual herds
are shown. The different herd numbers as presented on the
y axis are consistent for all clustering approaches and fol-
lowed the herd numbering from the CoVAHC approach. The
same design and pattern of bars represent the best overlap of
herds in relation to the HCs as created by CoVAHC. Nev-
ertheless, differences in herd separation accuracy among the
clustering methods are very obvious. The CoVAHC applica-
tion implied the largest silhouette width for all herds apart
from herd 2, due to the missing contemporary herds in HC3.
Individual herds displaying a negative silhouette do not re-
flect the characteristics of the remaining herds from the same
HC, indicating misclassifications. Such misclassifications are
very obvious for AHC, with negative silhouettes for the en-
tire HC3 and herd 25. PAM displayed fewer misclassifica-
tions (only for herds 1, 11 and 12). With regard to FZC, only
herd 12 indicated an incorrect HC assignment. Nevertheless,
the ASW from the FZC approach indicated herd allocation
inferiority compared to CoVAHC.

The evaluations of HCs in the present study focused on as-
pects with relevance for data recording and for genetic eval-
uations. The collected herd characteristics in this study rep-
resented different types of data, i.e., qualitative or quantita-
tive. In order to overcome such obstacles, previous studies
(Toro-Mujica et al., 2012; Riveiro et al., 2013; Ivemeyer et
al., 2017; Blanco-Penedo et al., 2019) applied principal com-
ponent analysis (PCA) to translate the categorical data struc-
ture indirectly into quantitative variables. These studies sug-
gested a PCA due to the pronounced variation as identified
among the most important principal components. To prevent
possible biases through indirect transformations, Struyf et
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Figure 2. Dendrogram of the herds merged to herd clusters by clus-
tering of variables combined with agglomerative hierarchical clus-
tering (CoVAHC). Each block with specific pattern represents one
HC.

al. (1996) suggested a modified Gower distance. As a further
method for handling mixed data types, Chavent et al. (2012)
applied CoVAHC. They favored this approach over PCA,
because more information can be taken into account when
clustering the elements (herds). Furthermore, in contrast to
PCA, orthogonality of the principal components is not re-
quired (Kuentz-Simonet et al., 2017).

3.2 Description of herd clusters for the optimal
clustering approach (CoVAHC)

The four HCs formed by CoVAHC, which are shown in
Fig. 2, differ in multiple farm characteristics (Table 2), which
in turn were used to describe the HC. The two breeds (DSN
and HF) were clearly separated, meaning that HF herds only
appeared in HC4. Overall, 91 % of herds from HC4 repre-
sented HF, and only 9 % were DSN herds. The percentage of
DSN herds in HC1, HC2 and HC3 was 100 %. Such herd al-
location based on herd characteristics indicates that the evo-
lutionarily closely related DSN and HF breeds (Biedermann
et al., 2005) are kept in different production systems repre-
senting a different herd management. The DSN are mostly
kept in low input or grassland systems (Jaeger et al., 2018),
but HF mostly in free-stall farms applying all available mod-
ern management instruments especially with regard to feed-
ing strategies (e.g., feeding of total mixed rations) (König et
al., 2005). Accordingly, Ivemeyer et al. (2017) clearly sepa-
rated HF from local breeds with small population size such
as original Angler cattle or DSN. Tremblay et al. (2016) only
considered herds in automatic milking systems. Despite the
same milking technology, they identified obvious differences
in production pattern, feeding and management character-
istics between small (Jersey, Guernsey, Ayrshire) and large
populations (HF, brown Swiss).

It is interesting to note that both the HC1 and HC2 clus-
ters included a mixture of conventional and organic herds,
despite the substantial differences in legal regulations for

both farming types. The organic farms from the present study
base their feeding, breeding and management strategies on
the guidelines for organic farming as defined by the Euro-
pean Union which are less strict than national German or-
ganic programs. Some particularities are defined in the ba-
sic principles for organic farming (IFOAM, 2020), especially
addressing the breeding focus on longevity. Nevertheless, the
allocation of organic as well as conventional herds to HC1
and HC2 suggests that there is an overlap of environmental
conditions such as climatic impact between these two main
classes (organic and conventional) affecting livestock pro-
duction. Sorge et al. (2016) investigated herd management
practices in organic and conventional dairy herds in Min-
nesota. They made similar conclusions, i.e., indicating that
management decisions are diverse and herd specific, and do
not strongly depend on the overall farming type organic or
conventional. All of the HF herds as allocated to HC4 were
conventional herds.

The majority of cows are kept in cubicle stables (HC1:
77 % of the herds, HC3: 100 % of the herds, HC4: 100 %
of the herds) (Table 2). HC2 includes all herds with tie sta-
bles (16.7 % of all herds or 1.8 % of the cows), which usu-
ally have less than 20 cows. As identified for HC1, all cows
in HC2 have access to pasture. In contrast, only one-third of
the high-yielding herds (HC3 and HC4) reflect grazing sys-
tems. Accordingly, Müller-Lindenlauf et al. (2010) reported
that herd productivity decreases with increasing length of the
grazing period.

The cluster process (CoVAHC) separated the more tradi-
tional herds (herds in HC1 and HC2) from the more mod-
ern dairy herds (herds in HC3 and HC4). The level of dig-
itization in animal housing, especially in dairy cattle farms,
was defined as a major factor explaining herd and cow trait
differences (Büscher, 2019). Herds allocated to HC2 did not
use modern digital infrastructure (Table 2). Also, in HC1, the
proportion of herds using a herd management software was
comparatively low with 31 %. With regard to feeding strate-
gies, herds from HC1 and HC2 use a very simple feed ra-
tion with only a few components, and they do not consider
systematic feed analyses. In contrast, all herds in HC3 and
HC4 base their management decisions on digital supporting
systems. Also, the feeding rations are optimized considering
scientific aspects and the needs of the cows. In total, 64 % of
the herds from HC4 feed on a ration with a broad variety of
ingredients.

The percentage of herds using natural service sires sub-
stantially differed among the HC (Table 2). The proportion
was highest in HC1 with 77 %, followed by HC2 with 60 %
but was quite low in HC4 (18 %). Herds from HC3 only con-
sidered artificial insemination. From a breeding perspective,
Yin et al. (2014) identified utilization of natural service sires
as a major characteristic when comparing organic with con-
ventional farm types or DSN with HF herds.

With regard to social characteristics, mainly young farm-
ers are responsible for the herd management in large-scale
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Table 2. Percentages and values of main herd characteristics displaying significant1 herd cluster differences.

Variable Answer option Herd Herd Herd Herd Signi-
cluster 1 cluster 2 cluster 3 cluster 4 ficance
(n= 13) (n= 5) (n= 1) (n= 11)

Breed DSN 100 % 100 % 100 % 9 % ∗∗∗

HF 0 % 0 % 0 % 91 %

Herd size median 51 15 800 145 ∗∗∗

Housing cubicle stable 77 % 0 % 100 % 73 % ∗∗∗

compost systems 15 % 0 % 0 % 9 %
mixed systems 8 % 0 % 0 % 18 %
tie stable 0 % 100 % 0 % 0 %

Pasture yes 100 % 100 % 0 % 36 % ∗∗∗

no 0 % 0 % 100 % 64 %

Herd management program yes 31 % 0 % 100 % 100 % ∗∗∗

no 69 % 100 % 0 % 0 %

Treatment manual 85 % 100 % 0 % 0 % ∗∗∗

documentation herd management program 0 % 0 % 100 % 36 %
health project 15 % 0 % 0 % 64 %

Feeding ration maize focus 0 % 0 % 0 % 45 % ∗∗∗

grass focus 85 % 80 % 100 % 9 %
50 / 50 (maize–grass) 15 % 0 % 0 % 45 %
crude fiber 0 % 20 0 % 0 %

Concentrated feed mean (in kg) 3.50 1.30 8.50 6.10 ∗∗

Feed analyses yes 31 % 20 % 100 % 82 % ∗

no 69 % 80 % 0 % 18 %

Dry-off with antibiotics yes 69 % 40 % 100 % 100 % ∗

no 31 % 60 % 0 % 0 %

Natural service sire bull: yes 77 % 60 % 0 % 18 % ∗∗∗

bull: no 23 % 40 % 100 % 82 %

Artificial insemination by farm personal 0 % 0 % 0 % 73 % ∗∗∗

inseminator 15 % 0 % 0 % 9 %
veterinarian 54 % 40 % 100 % 18 %
combined with bull 31 % 60 % 0 % 0 %

Age of herd manager mean (in years) 54.6 51.8 62.0 37.0 ∗

Agricultural experience mean (in years) 35.0 37.2 50.0 19.9 ∗

1 Fisher’s exact test was used for quality variables and Kruskal–Wallis test for quantitative variables to test for significant differences among the herd clusters
(∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001).

herds. Such a finding is in agreement with a comprehensive
study across European dairy cattle herds (Blanco-Penedo et
al., 2019). In HC4, the average age of herd managers was
37 years (Table 2). Nevertheless, the quite young farmers had
substantial 20 years’ experience in managing large-scale cow
herds. The older farmers (average: 51.8 years with 37.2 years
of agricultural experience) mainly managed the smaller herds
(median: 15 cows) with tie stables (i.e., the herds from HC2).

3.3 Cow trait comparisons for the defined herd clusters

The comparison of LSM for test-day traits revealed signifi-
cant differences (P < 0.05; application of the Student’s t test
for pairwise differences) among the four HCs (Table 3).
Hence, the different herd management strategies and farm
characteristics as used for herd allocations simultaneously
contributed to herd stratifications according to cow traits. A
focus on milk production and high productivity was strongly
associated with herd size. These herds were mostly assigned
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to HC3 (i.e., the “untypical DSN herd” with strong breed-
ing focus on milk yield) and HC4 (i.e., the cluster includ-
ing HF herds). Similar associations among herd variables and
cow traits were reported by Müller-Lindenlauf et al. (2010),
Ivemeyer et al. (2017) and Wallenbeck et al. (2018). HC2
represented herds with the lowest production level in Mkg
(15.8 kg) and smallest herd sizes with a median of 15 cows.
The mean production level of cows from HC1 was 21.2 kg
milk, and the average herd size comprised 51 cows. The high-
yielding HC3 and HC4 (HC3: 29.0 kg; HC4: 28.0 kg) repre-
sented the large-scale herds with 800 and 145 milking cows,
respectively.

Cows from HC3 had the highest P% (3.7 %), but the re-
maining HCs did not differ significantly (P > 0.05) for P%
(Table 3). However, Pkg among HC differed significantly,
which is due to the large differences in milk production. Sim-
ilar observations were made for F% and Fkg.

HC2 comprised the herds with the highest SCS (average
SCS: 3.35) (Table 3). In herds from HC2, all cows are housed
in isolated tie stables with quite high air temperature and
humidity. Inadequate hygiene and climate management con-
tributed to impaired immune responses due to toxic gases
(Barkema et al., 1999), resulting in increased SCS. Most of
these herds (60 %) used an alternative dry-off management
without antibiotic treatments. In contrast, the cows from the
remaining HC are predominantly kept in loose housing and
cold stalls, and the dry-off management is mostly based on
antibiotic applications. The optimal climatic husbandry con-
ditions plus preventive veterinary treatments might be an
explanation for lower SCS in HC1 (2.99), HC3 (2.94) and
HC4 (2.77) compared to HC2. Doherr et al. (2007) associ-
ated herd size with an increasing risk for clinical mastitis.
In contrast, we identified lower SCS in HCs representing
the large-scale herds. Doherr et al. (2007) and Ivemeyer et
al. (2011) reported significant breed effects on SCS, indicat-
ing impaired udder health for HF cows. In our study, HC4
comprised all HF herds, and SCS in HC4 was lowest. Thus,
the herd management and climatic conditions might have a
stronger impact on the udder health status than herd size or
breed (Barkema et al., 2015).

A FPR larger than 1.5 is an indicator for subclinical ketosis
(Heuer et al., 1999). Surprisingly, the high productive DSN
herd in HC3 considering large percentages of concentrates
in the feeding ration is characterized by a significantly lower
FPR (1.11) compared to the DSN herds from HC1 (1.21) and
HC2 (1.16). The influence of the breed on FPR as described
by Ivemeyer et al. (2019) was not confirmed in the present
study, because the FPR in the “HF cluster” (HC4) was 1.16.

The LSM for SFI in HC1 (67 %) and HC2 (66 %) was sig-
nificantly higher than in HC3 (53 %) and HC4 (45 %). The
high proportion of natural matings in HC1 and HC2 (77 %
and 60 %, respectively) explains such differences. Andersen-
Ranberg et al. (2005) and Löf et al. (2012) reported a longer
voluntary waiting period for a first insemination after calv-
ing in high-yielding herds. In our study, cows from HC1 and

HC3 displayed the shortest CFI with 78.8 and 76.2 d, respec-
tively, but both HC differed significantly with regard to milk
yield (HC1: 15.8 kg vs. HC3: 29.0 kg).

3.4 Impact of herd clustering on genetic evaluations

Reliabilities of EBVs considering the whole population
(cows and sires) and only for sires are given in Table 4. Sta-
tistical models including a herd-cluster-test-day or a herd-
cluster-test-month effect increased the reliability in the en-
tire population by 3.1 % and 3.5 %, respectively. Regard-
ing sires, the increase was 5.1 % (herd-cluster test day) and
5.7 % (herd-cluster test month). Hence, the detailed consid-
eration of environmental conditions and herd characteristics
contributed to an increase of EBV reliabilities in the range
from 3 % to 6 %, reflecting the postulations by Zwald et
al. (2003) and Osorio-Avalos et al. (2015). The herd cluster
instead of the herd effect for the CG modeling contributed to
increased heritability estimates from 0.23 (herd-test-day ef-
fect and herd-test-month effect, respectively) to 0.36 (herd-
cluster-test-day effect) or to 0.38 (herd-cluster-test-month ef-
fect).

The creation of herd-test-day effects in genetic evalu-
ations for local breeds with small population size gener-
ally implies a limited number of records or animals in CG.
This, in turn, can lead to biased genetic calculations (Stra-
bel and Szwaczkowski, 1999). As an alternative, HC or HC-
test-month effects were suggested as CG effects in genetic–
statistical modeling approaches (Vasconcelos et al., 2008).
The general aim of CG creation is to depict environmen-
tal conditions influencing cow traits as detailed as possible
(Kuehn et al., 2007; Osorio-Avalos et al., 2015). In this re-
gard, a clear differentiation among HCs is imperative, as re-
alized when applying the CoVAHC clustering approach. Co-
VAHC generated four different HCs with obvious herd sim-
ilarities within HCs, implying 496 different CGs in herd-
cluster-test-day models (model 3). A classical herd-test-day
modeling approach would generate 603 CGs, with only a
few records for some effect levels. A model based on Co-
VAHC HC avoided the problem of weakly occupied effect
levels. The minimal number was three records per CG when
considering the herd-cluster-test-day effect in model 3. Con-
sequently, a genetic evaluation based on CoVAHC HC will
contribute to an increase in the effective number of daugh-
ters (Tosh and Wilton, 1994). In this regard, Schmitz (1990)
addressed the positive impact on breeding value accuracies,
especially for breeds with a small population size.

A final severe issue in genetic evaluations is the compu-
tation time, which is generally time consuming in classical
test-day models with a large number of herd-test-day effects.
In this regard, models 3 and 4 on a HC basis were superior
over classical herd-test-day or herd-test-month models, with
on average 5 %–10 % reductions in computation time.
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Table 3. Least square means and corresponding standard errors of test day and fertility traits in the first three lactations for four herd clusters
created with CoVAHC.

Trait Unit Herd cluster 1 Herd cluster 2 Herd cluster 3 Herd cluster 4
(n= 13) (n= 5) (n= 1) (n= 11)

Production Milk kg 21.16± 0.21b 15.78± 0.76a 29.01± 0.24d 28.04± 0.17c

Protein kg 0.74± 0.01b 0.57± 0.02a 1.05± 0.01d 0.96± 0.01c

% 3.51± 0.01a 3.57± 0.03a 3.7± 0.01b 3.51± 0.01a

Fat kg 0.86± 0.01b 0.62± 0.03a 1.17± 0.01d 1.1± 0.01c

% 4.21± 0.02b 4.11± 0.06ab 4.11± 0.02a 4.05± 0.01a

SCS – 2.99± 0.04bc 3.35± 0.15c 2.94± 0.05ab 2.77± 0.03a

FPR – 1.21± 0c 1.16± 0.01b 1.11± 0a 1.16± 0b

Fertility CFI days 78.8± 6.99a 100.76± 7.67c 76.18± 7.16a 84.66± 7.05b

SFI – 0.67± 0.1c 0.66± 0.11bc 0.53± 0.11ab 0.45± 0.11a

Least square means in the same row with different superscripts a, b, c or d are statistically significant different at p < 0.05, the lowest
least square means value is indicated by a up to the highest value d. SCS is the somatic cell score, FPR is the fat protein ratio, CFI is
the time from calving to first insemination, and SFI is the success of a first insemination.

Table 4. Heritabilities (h2) with standard errors (SE) and reliabilities of estimated breeding values (R2) with standard deviations (SD) for
the test-day model with herd or herd-cluster effects and for the test-month model with herd or herd-cluster effect for the whole population
and for sires with daughter records.

Model effect Genetic Whole population Sires

combined with parameter Herd Herd Herd Herd
cluster cluster

Test-day h2
(SE) 0.253 (0.01) 0.378 (0.01)

R2
(SD) 0.320 (0.28) 0.351 (0.31) 0.655 (0.13) 0.706 (0.13)

Test-month h2
(SE) 0.252 (0.01) 0.391 (0.01)

R2
(SD) 0.320 (0.28) 0.355 (0.31) 0.655 (0.13) 0.712 (0.13)

4 Conclusions

The superiority of the CoVAHC approach over the AHC,
PAM and FZC methods for herd clustering in the local DSN
population could be clearly demonstrated. In this regard,
German DSN herds were clearly allocated to different HCs
based on broad spectra of social–ecological and herd char-
acteristics. Hence, we postulate also correct herd groupings
in other German cattle populations, when considering simi-
lar descriptors for herd characterization and when applying
CoVAHC clustering. Other clustering methods as developed
for other fields of science including AHC, PAM and FZC are
not appropriate (due to the obvious herd misclassifications)
for animal breeding objectives. Utilization of herd clusters
instead of single herds is suggested in genetic evaluations
for breeds with a small population size kept in small-sized
herds with a limited number of contemporaries. The sug-
gestion is based on the observed increased EBV reliabilities
and heritabilities. The clustering approach for herd allocation
with corresponding ongoing genetic evaluations is an alterna-
tive also for large-sized populations, when creating different
feeding or management groups in the same herd.
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