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1. INTRODUCTION  

A parasite is an organism living on and/or within another organism for gaining access to 

nutrients and energy from parasitized hosts in order to fulfill its lifecycle. Impacts of ecto- 

and endoparasites on their hosts range from miniscule to lethal effects, and known to be an 

important driving force in shaping host populations in evolution (Minchella and Scott, 1991). 

Farther, parasite species which can cause disease in humans, domestic animals, wildlife and 

invertebrates, are mainly classified into three systematic groups [i. e. protozoa, helminths 

(nematodes, cestodes, trematodes, acanthocephalans, pentastomids) and arthropods (mites, 

crustaceans, and insects)] and worldwide distributed in terrestrial as well as marine 

ecosystems (Hermosilla et al., 2015; Kleinertz et al., 2014).  

Many protozoan parasites are of veterinary importance, and protozoan infections in terrestrial 

and marine mammals are responsible not only for causing significant losses of animal 

production due to severe morbidity and mortality but also for having impact on wildlife 

animal health population (Hermosilla et al., 2018; Patra et al., 2017; Villagra-Blanco et al., 

2019). Parasitic protozoa are unicellular, eukaryotic, microorganisms which possess typical 

cellular structures (e. g. nucleus, mitochondrium, Golgi) and some other specialized 

subcellular organelles such as a flagellum and/or cilia which can lead to independent motility 

(Chávez-Munguía et al., 2007; Kaur; Peck, 1977; Santoro et al., 2007; Weise et al., 2000). 

Protozoa are among the most common parasitic organisms distributed worldwide present in 

terrestrial as well as aquatic environments, and are getting increasing attention as human and 

animal pathogens, or potential vehicles (Shanan et al., 2015).  

Based on the mode of locomotion, protozoa are mainly divided into four subphyla: Sarcodina 

(amoebae), Ciliophora (ciliates), Zoomastigophora (flagellates) and the Apicomplexa 

(sporozoa) (Imam, 2009). The Apicomplexa are spore-forming unicellular parasites, and are 

characterized by lacking obvious locomotory structures and presence of an apical complex in 

their infective life cycle stages (Siński and Behnke, 2004). The apicomplexan subphylum 

contains a large group of obligate intracellular protozoan organisms with more than 6000 

named and probably more than one million unnamed species (Seeber and Steinfelder, 2016), 

many of which are of significant medical and economic importance. There are numerous 

apicomplexan genera highly pathogenic to their hosts causing severe diseases, such as 

Plasmodium, Babesia, Cryptosporidium, Cystoisospora, Sarcocystis, Neospora, Frenkiella, 

Eimeria, Besnoitia and Toxoplasma (Votýpka et al., 2017). Besides, recently the genus 
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Besnoitia which causes besnoitiosis in different animal species are drawing more and more 

attention from researchers in the field of parasitology due to increased number of clinical 

cases of besnoitiosis and rapid geographic expansion into non-endemic geographic areas 

(Álvarez-García et al., 2013a; Basso et al., 2013; Jacquiet et al., 2010; Ryan et al., 2016).  

Although clinical besnoitiosis is frequently reported in intermediate hosts (e. g. cattle) in 

literature, very little knowledge is available on final host spectrum and complete life cycle, 

and thus still being a great challenge for scientific community. Nonetheless, advances in 

molecular biology, immunology, pathogenesis, and genetics will most likely provide 

promising breakthroughs in the field of Besnoitia-related research. 
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1.1 Genus Besnoitia  

Besnoitia spp. are cyst-forming apicomplexan protozoan parasites, and besnoitiosis caused by 

these species is distributed worldwide in both domestic and wild animals, such as cattle, 

donkeys, horses, goats, sheep, reindeer, caribou, zebras, rodents, rabbits, and lizards (Dubey 

and Yabsley, 2010). Until now 10 species of Besnoitia have been discovered including B. 

akadoni (Dubey et al., 2003a), B. bennetti (Bennett, 1927), B. besnoiti (Franco and Borges, 

1916), B. caprae (Bwangamoi, 1967), B. darlingi (SCHNEIDER, 1967), B. jellisoni (Ernst et 

al., 1968), B. neotomofelis (Frenkel and Lunde, 1953), B. oryctofelisi (Dubey and Lindsay, 

2003), B. tarandi (Hadwen, 1922), and B. wallacei (Ng’ang’a et al., 1994). It is suspected 

that all Besnoitia species have a heteroxenous (two-host) life cycle, in which there is a 

predator acting as final host and a prey species acting as intermediate host species (Olias et 

al., 2011). However, limited knowledge is known on their complete life cycle except for B. 

darlingi [cats (final hosts); opossums and lizards (intermediate hosts)], B. wallacei [cats 

(final hosts); rodents (intermediate host)] and B. oryctofelisi [cats (final hosts); rabbits 

(intermediate hosts)] (Dubey and Lindsay, 2003).  

As already stated above, the intermediate host spectrum contains diverse animals, such as 

horses, donkeys (Els et al., 1993), cattle (Njagi et al., 1998), goats (Cheema and Toofanian, 

1979), reindeer (Ayroud et al., 1995), rabbits (Basson et al., 1970), opossums and mice 

(Shkap et al., 1987a). Initially both domestic and wild cats were thought to be definitive hosts 

for all Besnoitia spp. (Dubey, 1977; Rommel, 1978; Wallace and Frenkel, 1975), but this 

conclusion was doubted by other researchers due to irreproducible observations (Basso et al., 

2011; Diesing et al., 1988).  

1.2 Besnoitia besnoiti 

The species Besnoitia besnoiti (phylum Alveolata, subphylum Apicomlexa, family 

Sarcocystidae) is the causative agent of the disease known as bovine besnoitiosis (Álvarez-

García et al., 2013a; Cortes et al., 2003; Cortes et al., 2014; Ryan et al., 2016). B. besnoiti 

infections can lead to reduced fertility and productivity in cattle thereby causing high 

economic losses, not only in Europe, but also in Asia, Africa and South America (Bigalke et 

al., 2004; Cortes et al., 2014; Vogelsang and Gallo, 1941). Mild to severe clinical signs, such 

as anasarca, oedema, orchitis, vulvovaginitis, hyperkeratosis, characteristic skin, and mucosal 

cysts, are due to B. besnoiti tachyzoite and bradyzoite replication in diverse intermediate host 
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vessels, tissues and organs. Until now, there are neither commercially available effective 

drugs nor vaccines against this parasite species (Cervantes-Valencia et al., 2019). 

1.2.1 Background 

In the past, the occurrence of bovine besnoitiosis was studied in Portugal between 1885 and 

1915 (Franco and Borges, 1915), but then little attention was paid on this disease. 

Consistently, until the 1990s, bovine besnoitiosis was reported exclusively from 

Mediterranean European countries such as Portugal (Cortes et al., 2003), Spain (Juste et al., 

1990), and France (Bourdeau et al., 2004). Continuous successive case reports in literature on 

bovine besnoitiosis from Portugal (Cortes et al., 2006), Spain (Fernández-García et al., 2009), 

France (Jacquiet et al., 2010), Germany (Schares et al., 2009), Italy (Gollnick et al., 2010; 

Rinaldi et al., 2013, 201), Switzerland (Basso et al., 2013), and Hungary (Hornok et al., 2014) 

clearly indicated a re-emergence and widespread of this disease in middle Europe (Álvarez-

García et al., 2013b). Based on the increased number of cases and geographic expansion of 

bovine besnoitiosis in Europe, the European Food Safety Authority (EFSA) classified this 

disease as an emerging disease within EU in 2010 (European Food Safety Authority, 2010).   

1.2.2 Morphology 

B. besnoiti is a tissue cyst-forming apicomplexan protozoan parasite which has two stages in 

bovine intermediate host: tachyzoites and bradyzoites. The morphology of both B. besnoiti 

stages can be described as crescent-shaped- or ‘banana’-shaped-forms and containing 

common apicomplexan organelles such as the apical complex composed of a polar ring and a 

conoid, apicoplast, rhoptries, micronemes, exonemes and dense granules (please refer to Fig. 

1).  



5 
 

 

Fig. 1. Scheme of a Besnoitia besnoiti-tachyzoite/bradyzoite stage. Shown are the cytoskeleton 

elements (microtubules and centrocone), the apical complex (micronemes, rhoptries, conoid and 

apical polar ring), the pellicle (inner membrane complex and plasma membrane), the secretory 

organelles (exonemes, dense granules, micronemes and rhoptries), the non-secretory intracellular 

organelles (mitochondrion, apicoplast, nucleus, endoplasmic reticulum and Golgi) and the basal 

complex. Note that not all members of the phylum contain the full repertoire shown in the scheme 

(adapted from Santos JM et al., 2009). 

In vivo large-sized tissue cysts of B. besnoiti clearly differ morphological/morphometric from 

other cyst-forming coccidian parasites, i. e. T. gondii, N. caninum, Hammondia spp. and 

Sarcocystis spp. (Dubey et al., 2013), thereby consisting of a thick three-layered cyst wall 

(Basso et al., 2013; Cortes et al., 2006; Fernández-García et al., 2009; Gollnick et al., 2010; 

Schares et al., 2009). This complex three-layered B. besnoiti-cyst wall consists of the 

following layers: i) outermost layer with connective tissue, ii) middle layer containing host 

cell nuclei, and iii) internal parasitophorous vacuole membrane (PVM) containing thousands 

of bradyzoites (please refer to Fig. 2). The host cell nuclei enclosed in the tissue cyst is an 

additional common feature of Besnoitia-cysts, which is distinct from other tissue cyst-

forming coccidia (Dubey et al., 2013; Fernández-García et al., 2009). 
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Fig. 2. Visualization of a subcutaneous connective large-sized tissue cyst of Besnoitia besnoiti with its 

characteristic thick three-layered wall in the subdermis of a naturally infected heifer from France 

(Giemsa staining 20 ×). 

1.2.3 Life cycle 

Currently only four species of Besnoitia (i. e. B. darlingi, B. wallacei, B. oryctofelisi and B. 

neotomofelis) are completely known regarding their heteroxenous life cycles, and for all these 

species domestic cats (Felis silvestris catus) acting as definitive hosts, are known (Dubey and 

Yabsley, 2010; Dubey et al., 2003b; Frenkel, 1977; Smith and Frenkel, 1977). Thus, it has 

been suspected that B. besnoiti has also a two-host life cycle like other cyst-forming 

coccidian parasites of the Sarcocystidae family in which cattle and wild cervids (i. e. roe 

deers, deers) act as intermediate hosts, and a carnivore host being the definitive host (Basso et 

al., 2011). However, the complete life cycle of B. besnoiti still remains obscure (Fig. 3). 

Early studies suggested that domestic- and wild cats were acting as definitive hosts for B. 

besnoiti since they shed oocysts after oral ingestion of cyst-containing tissues (Peteshev et al., 

1974). Nonetheless, former study have not been reproduced by others, and thus biology 
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remaining unsolved until now (Basso et al., 2011; Diesing et al., 1988). In the intermediate 

host, this parasite develops two infective asexual stages: fast replicating tachyzoite stages and 

slower replicating bradyzoite stages (Fig. 3). 

 

Fig. 3. Life cycle and transmission routes of Besnoitia besnoiti in cattle and cervids. It is suspected 

that B. besnoiti has a heteroxenous life cycle. Two infective asexual stages of B. besnoiti develop 

within intermediate hosts (bovids, cervids): fast-replicating tachyzoites and slower-dividing 

bradyzoites, which gather into macroscopic cysts located inside cells of the subcutaneous connective 

tissue. The complete life cycle of the parasite remains unknown, although epidemiological data 

suggest an important role for horizontal transmission by either direct contact, through natural mating, 

or mechanical transmission by blood-sucking arthropods. Domestic cats (F. silvestris catus) have 

been suggested as final host and to shed environmentally resistant oocysts in their faeces after 

ingestion of meat containing tissue cysts, as it occurs for other Besnoitia species. Sporulated B. 

besnoiti-oocysts are suspected to be formed after sexual replication of the parasite in the intestine of 

final host and to be similar to oocysts described for other members of subfamily Toxoplasmatinae (e. 

g., Toxoplasma gondii and Neospora caninum). The role of wild ruminants and rodents as putative 

hosts of the parasite remains to be elucidated (adapted from Álvarez-García et al., 2013). 
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1.2.4 Transmission of Besnoitia besnoiti 

So far, mechanical indirect transmission (see Fig. 3) among cattle is the only experimentally 

confirmed mode of transmission of B. besnoiti via hypodermic needles or blood-sucking 

insects such as tsetse flies and tabanids (Bigalke, 1968; Pols, 1960). Since B. besnoiti 

survives only for a short time in insects and whose activities are dependent on seasonal 

fluctuations (Álvarez-García et al., 2013a; Liénard et al., 2011), bovine besnoitiosis is 

endemic where these blood-sucking insects have the chance to be constantly exposed to cattle 

with epidermal B. besnoiti cyst formation (Gentile et al., 2012).  

In addition, a direct transmission route (see Fig. 3) from cattle to cattle (e. g. through mating, 

wounds or lacerations) was speculated to be possible since bradyzoites might be able to cross 

mucous membranes after mechanical tissue cyst rupture and infect other host cells (Cortes et 

al., 2014). However, this mode of transmission has not been confirmed yet. Moreover, 

ingestion of oocysts shed in faeces of definitive hosts and most probably found on oocyst-

contaminated pastures or premises, was also proposed to be a way of B. besnoiti infection for 

cattle (Peteshev et al., 1974). 

Besides these transmission routes, national as well as international cattle trade might in 

addition contribute to the introducing B. besnoiti-infected animals into a naïve herd or a 

previously non-endemic area throughout European countries (Alvarez-Garcia et al., 2013, 

2014). Some reports in literature agree with this hypothesis in which subclinical and 

undiagnosed cases of bovine besnoitiosis may act as reservoirs for infection and spread of the 

disease within a herd (Alvarez-Garcia et al., 2014). 

1.2.5 Geographical distribution of bovine besnoitiosis 

Bovine besnoitiosis occurs in many European countries, such as Spain, Portugal, France, 

Italy, Germany, Switzerland, and Hungary (Hornok et al., 2014), Africa (Bigalke et al., 2004), 

Asia (Cortes et al., 2014) and South America (Vogelsang and Gallo, 1941). It has been 

considered as an emerging disease in Europe by EFSA since 2010, and clinical cases of 

besnoitiosis are still increasing and its expansion has reached new European countries such as 

Ireland, Belgium, and Croatia (Beck et al., 2013; Ryan et al., 2016; Vanhoudt et al., 2015).  

The first case in Germany was observed in a cattle farm allocated in Bavaria and was 

confirmed by morphological studies of B. besnoiti-infected skin samples (Mehlhorn et al., 
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2009). Shortly after, another study showed natural occurring cases of bovine besnoitiosis in a 

herd closely located to the previous Bavarian farm (Mehlhorn et al., 2009), and thereafter 

confirmed by B. besnoiti-specific serology and by polymerase chain reaction (PCR) 

(Rostaher et al., 2010). It was suggested that this outbreak of bovine besnoitiosis in Germany 

occurred due to the importation of cattle from enzootic regions of France (Gollnick et al., 

2009; Majzoub et al., 2010). 

In  Africa, this disease has been widely distributed in many tropical/subtropical countries 

such as South Africa, Swaziland, Mozambique, Zimbabwe, Angola, Congo, Kenya, 

Cameroon and Nigeria (Shanan et al., 2015), and Asia (Lee et al., 1970; Peteshev et al., 1974; 

Wang and Liu, 1987). In America, it has also been reported in Venezuela and Colombia 

(Trujillo and Benavides, 2011; Vogelsang and Gallo, 1941) but no data exist in literature on 

the occurrence of cattle besnoitiosis neither from Central American- nor from North 

American countries.  

Several reports suggest that there is an enzootic occurrence in Nigeria, Uzbekistan, 

Kazakhstan, China and South Korea, but no information is currently available from these 

countries (Olias et al., 2011). Alongside, a more recent seroprevalence survey showed no 

presence of antibodies against B. besnoiti in South Australian cattle (Nasir et al., 2012) but 

additional large-scale epidemiological studies are urgently needed to confirm/assess the free-

status of bovine besnoitiosis for Australia (Nasir et al., 2012). 

1.2.6 Clinical signs of bovine besnoitiosis 

Typically, cattle affected by bovine besnoitiosis have an acute and a chronic phase of disease 

resulting in different clinical signs. In the acute phase of disease, B. besnoiti-tachyzoites 

replicate rapidly in monocytes, polymorphonuclear neutrophils (PMN), macrophages, 

fibroblasts and host endothelial cells of vessels and infected animals show pyrexia, intensive 

respiratory disorder, increased heart rates, subcutaneous oedema, swollen joints, 

conjunctivitis, nasal discharge, photophobia, reduced milk yield and orchitis in bulls 

(Álvarez-García et al., 2013b; Bigalke, 1981; Cortes et al., 2014). Abortion can also occur in 

this stage of diseases in pregnant cattle (Cortes et al., 2014). Besides, B. besnoiti-infected 

animals with nephrotic syndrome may die due to severe hypoalbuminaemia, hyperproteinuria 

and mild leukocytosis (Dubey et al., 2013). 
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One to 2 weeks later, B. besnoiti-bradyzoites proliferate slowly to form cysts in subcutaneous 

connective tissue, and infected animals show dramatic thickening, hardening and folding or 

wrinkling of affected skin, hair loss, dermatitis and the presence of characteristic 

macroscopic subcutaneous thick-walled tissue cysts, a gradual deterioration of body 

condition, and weight loss (Pols, 1960). Macroscopic B. besnoiti-cysts in scleral conjunctiva, 

vestibule and vulvae are usually visible via close visual inspection (Cortes et al., 2014). 

Affected bulls show irreversible testicular lesions (atrophy, sclerosis and necrosis) leading to 

chronic epididymitis and orchitis which result in infertility or even sterility (Kumi-Diaka et 

al., 1981). 

1.2.7 Diagnosis 

Only based on the clinical signs of infected animal, bovine besnoitiosis may frequently be 

misdiagnosed from other diseases, such as fungal dermal infections, bacterial dermal 

infections, parasitic mange (i. e. Sarcoptes, Chorioptes, Psoroptes, Psorergates, Demodex), 

pediculosis (e. g. Bovicola, Haematopinus, Lignognathus, Solenopotes), mineral deficiency, 

photosensitivity or even blue tongue virus infection (Cortes et al., 2014). When B. besnoiti-

infected animals develop the chronic phase of disease, bovine besnoitiosis can be diagnosed 

by a combination of apparent clinical manifestations and histological examination of skin 

samples. Manifested alopecia, hard, thick, and wrinkled skin, and macroscopically visible 

cysts in sclera conjunctiva and vulvae (Fernandez-Garcia et al., 2009) can be included to 

diagnose this parasitic disease. Moreover, the detection of B. besnoiti-DNA in tissue samples 

by parasite-specific PCR (Schares et al., 2011) and detection of antibodies against B. besnoiti 

using an avidity enzyme-linked immunosorbent assay (ELISA) (Schares et al., 2013) have 

been regarded as appropriate diagnostic techniques in the acute phase of clinical bovine 

besnoitiosis. 

However, only few infected animals develop clinical signs, whereas most of infected animals 

remain seropositive but asymptomatic (Bigalke, 1981; Goldman and Pipano, 1983; 

Janitschke et al., 1984; Neuman, 1972). Therefore, highly sensitive and specific diagnostic 

methods (i. e. PCR and serology tests) are needed not only for diagnosis of bovine 

besnoitiosis in subclinical cattle herds but also for large-scale epidemiological studies on 

disease spreading. Consistently, a conventional and a real-time fluorescent ITS1 rDNA PCR 

has been developed (Cortes et al., 2007), and successfully used to detect B. besnoiti in skin 

biopsies of chronic infected animals, but has not been adapted to detect tachyzoites in the 
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blood circulation during the early phase of infection (Jacquiet et al., 2010). Other serological 

techniques, including IFAT and Western blots, have also been reported for the detection of B. 

besnoiti infections (Cortes et al., 2006; Fernandez-Garcia et al., 2009; García-Lunar et al., 

2013, 2). Specificity and sensitivity have been shown to be high in Western blot (96.4% and 

91%) and in ELISA (96% and 87%), respectively. As such, ELISA tests complemented with 

parasite-specific Western blots have been suggested to reliable methods to diagnose both 

disease forms, namely the symptomatic- as well as the asymptomatic bovine besnoitiosis 

(Cortes et al., 2006).  

1.2.8 Treatment and control 

Currently there is no effective treatment for animals suffering bovine besnoitiosis (Cervantes-

Valencia et al., 2019). Treatments with the administration of pentamidine, aureomycin, 

formalin, sodium iodide, sulfamerazine, mycostatin and terramycin failed to cure besnoitiosis 

in rabbits (Pols, 1960). Drugs including oxytetracycline, sulfonamides, trimethoprim, 

halofuginone, diminazene aceturate, and pentamidine were also tested to treat experimentally 

Besnoitia spp.-infected gerbils or rabbits, but oxytetracycline showed some effect in gerbils 

only when it was administered concurrently with the parasite (Shkap et al., 1987b). Moreover, 

the nitro-thiazolide nitazoxanide, a range of bromo-derivatives and a new-generation of 

pentamidine derivatives were found to exert significant activity against B. besnoiti 

tachyzoites, but studies in vivo have not been performed yet (Cortes et al., 2011). More 

recently, also antiparasitic efficacy of curcumin against B. besnoiti tachyzoites in vitro was 

demonstrated (Cervantes-Valencia et al., 2019). Curcumin, a polyphenolic compound derived 

from Curcuma longa rhizomes is well-known for its anti-parasitic protozoan effects and 

functional inhibition assays revealed that curcumin treatments reduced tachyzoite viability 

and inducing lethal effects in up to 57% of exposed tachyzoites with an IC50 in 5.93 µM in 

vitro (Cervantes-Valencia et al., 2019). 

In South Africa, live-attenuated vaccines based on B. besnoiti-tachyzoites isolated from blue 

wildebeest (Connochaetes taurinus) were developed in vitro and used to control bovine 

besnoitiosis (Bigalke et al., 1974). Although sub-clinical infection could not completely be 

prevented, cattle were protected from clinical infection for up to four years (Bigalke et al., 

2004), and these live-attenuated vaccines were recommended for use in weaners and older 

animals. However, their use is geographically limited, as live-attenuated vaccines pose the 

risk of introducing the parasite into non-endemic areas and inducing carriers among 
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vaccinated cattle, which is of particular concern due to very limited knowledge on 

pathogenesis, immunity, transmission routes and life cycle (Cortes et al., 2014). 

As already stated, chemotherapy is unsatisfactory and attenuated live vaccines are not 

authorized in most of European countries (Jacquiet et al., 2010). Therefore, the control of 

bovine besnoitiosis mainly relies on management measures coupled with diagnosis. These 

approaches can be carried out by two steps: i) avoiding introduction of parasites into a naïve 

herd by rigorous testing of all new animal entering the herd, ii) and/or avoiding the spread of 

disease by gradually decreasing its prevalence within herds, which is a long-term step-by-step, 

selective culling strategy together with biosecurity measurements as postulated elsewhere 

(Álvarez-García et al., 2013a). Besides, associated risk factors with this disease including 

sharing pastures and natural mating with shared bulls should be avoided in endemic areas of 

bovine besnoitiosis (Álvarez-García et al., 2013b, Cortes et al., 2014).  

1.3 Innate immune system and its effector cells 

The host immune system (please refer to Fig. 4) against any invading pathogen has been 

traditionally divided into innate and adaptive immunity. The first level of protection is 

provided by anatomic and physiologic barriers, such as intact skin, mucous membranes, low 

stomach pH, and bacteriolytic lysozyme in tears, saliva, milk and are all components of the 

innate immune system (Turvey and Broide, 2010; Villagra-Blanco et al., 2019). Once 

invasive pathogens pass through these anatomic/physiologic barriers, innate immune effector 

cells, commonly known as leukocytes are recruited to the site of infection, become 

immediately activated and provide a rapid non-specific host innate immune response which 

acts efficiently against a broad range of different pathogens such as virus, bacteria, fungi and 

protozoan/metazoan parasites (Hermosilla et al., 2014; Villagra-Blanco et al., 2019). 

Moreover, leukocytes of innate immunity play a crucial role in initiating the subsequent 

adaptive cellular immune response, and are also associated with the removal of invading 

pathogens in adaptive immunity (Janeway et al., 2001).  
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Fig. 4. Integrated mammalian immune system. The mammalian microbial defense system can be 

simplistically viewed as consisting of three levels: i) anatomic and physiologic barriers; ii) innate 

immunity system; and iii) adaptive immunity system. In common with many classification systems, 

some elements are difficult to categorize. For example, NK T cells and dendritic cells (DCs) can be 

classified as being on the cusp of innate and adaptive immunity rather than being firmly in one camp 

(adapted from Turvey et al., 2010) 

There are three recognition strategies used by the host innate immune system to fight against 

invading pathogens. Firstly, a number of receptors on the surface of phagocytic leukocytes 

are able to recognize so-called pathogen associated molecular patterns (PAMPs) such as 

bacterial components, which are highly conserved structures, expressed by numerous 

microorganisms. Moreover, the host innate immune system detects the danger in form of 

damage associated molecular patterns (DAMPs) such as high mobility group box 1 (HMGB 1) 

protein and/or other endogenous molecules such as alarmins, heat shock proteins (HSPs), 

ATP and uric acid which are released during tissue damage in inflammation processes (Foell 

et al., 2007; Krysko et al., 2011; Srikrishna and Freeze, 2009; Turvey and Broide, 2010; 

Zheng et al., 2011). Furthermore, innate immune recognition can also be undertaken by 

detecting molecules which are expressed by infected host cells (Turvey and Broide, 2010).  

The host innate immune system contains a number of professional phagocytes with 

specialized functions, such as basophils, eosinophils, polymorphonuclear neutrophils (PMN), 
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DCs, Langerhans cells, mast cells, NK cells, monocytes and macrophages (Silva et al., 2016; 

Villagra-Blanco et al., 2019).  

1.3.1 Characteristics of mammalian PMN  

PMN are the most abundant leukocytes in the blood of terrestrial and marine mammalians 

and being produced daily by bone marrow in large numbers, and which are known to possess 

a short life nonetheless playing an essential role in host innate immunity (Hermosilla et al., 

2014; Selders et al., 2017; Silva et al., 2016; Villagra-Blanco et al., 2019). Three main 

antimicrobial functions (Fig. 5) of PMN are recognized: phagocytosis, degranulation, and the 

release of neutrophil extracellular traps (NETs).  

 

Fig. 5. Antimicrobial defense mechanisms of activated mammalian PMN. When PMN recognize 

microbial pathogens through pathogen recognition receptors (PRRs), they deploy different functions 

to destroy invasive microbial agents. Phagocytosis involves the ingestion of the microorganism into a 

phagocytic vacuole which upon maturation becomes a phagolysosome. In this new organelle, the 

microorganism is destroyed by the action of low pH, and degradation through enzymes contained in 

PMN granules. Alternatively, PMN also degranulate to their exogenous environment the content of 
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their granules containing important antimicrobial peptides and proteases (neutrophil elastase, 

myeloperoxidase). PMN can also cast neutrophil extracellular traps (NETs) formed by DNA fibers 

decorated with nuclear histones and proteins from the granules (adapted from Rosales, 2018). 

Phagocytosis is a process in which these professional phagocytes including PMN engulf and 

destroy invading microorganisms. This process can be divided into four main steps: (i) 

recognition of the target particles including microorganisms and apoptotic cells, (ii) particle 

internalization, (iii) phagosome formation, and (iv) phagolysosome maturation (Rosales and 

Uribe-Querol, 2017). Briefly, the target particles are recognized by the PRRs on the surface 

of cell membrane, surrounded by pseudopodia in a zipper-like mechanism (Griffin et al., 

1975; Griffin et al., 1976), and then a vesicle called phagosome including the particles is 

formed by the fusion of cell membrane. Phagosome matures via a series of membrane fusion 

and fission events to become a phagolysosome that is an acidic, hydrolytic compartment to 

degrade the ingested particles (Aderem, 2003). Microorganisms within a phagolysosome are 

destroyed by many factors including oxygen radicals, nitric oxide, anti-microbial proteins, 

anti-microbial peptides, binding proteins and hydrogen ion transport (Uribe-Querol and 

Rosales, 2017).  

Moreover, PMN contain a large number of granules full of various compounds and exert their 

antimicrobial properties through degranulation (Segal, 2005). There are three types of 

granules present in mammalian PMN: azurophilic granules, specific granules and gelatinase 

granules. Azurophilic granules also named primary granules are the first formed particles 

during PMN maturation. These granules may contain many antimicrobial molecules, such as 

bactericidal/permeability-increasing protein, phospholipase A2, myeloperoxidase (MPO), 

defensins, cathepsin G, lysozyme, acid hydrolases, proteoglycans and some serine proteases 

including neutrophil elastase (NE), proteinase 3 (Faurschou and Borregaard, 2003; Korkmaz 

et al., 2010; Villagra-Blanco et al., 2019), and have been regarded as the microbicidal 

vesicles  mobilized  during phagocytosis (Mollinedo, 2003). In addition, azurophil granule 

degranulation is confined mainly to internalized phagocytic vacuoles (Leffell and Spitznagel, 

1975). Specific granules named secondary granules are the second type of PMN granules 

produced during PMN development, and they also contain some antimicrobial molecules 

such as unsaturated lactoferrin, calprotectin, lysozyme, human cathelicidin, and neutrophil 

gelatinase-associated lipocalin (Bullen and Armstrong, 1979; Teng et al., 2017). Gelatinase 

granules known as tertiary granules have few antimicrobial compounds, but are rich in matrix 

metalloproteases (MMPs), such as gelatinase and leukolysin (Teng et al., 2017). PMN 
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granules are mobilized to the cell membrane and degranulate for secretion of their contents 

once the receptors [e. g. Toll-like receptors (TLRs)] expressed on the PMN plasma 

membrane or phagosomal membrane signal to the cytoplasm (Lacy, 2006; Villagra-Blanco et 

al., 2019). 

In addition, NETosis is a late discovered cell death process of activated PMN (Brinkmann 

and Zychlinsky, 2012a; Fuchs et al., 2007), resulting in the release of a meshwork of sticky 

extracellular DNA fibers decorated with antimicrobial peptides and enzymes such as histones 

(H1, H2A/H2B, H3, H4), NE, lactoferrin, pentraxin and MPO among others (Brinkmann and 

Zychlinski, 2012; Silva et al., 2016; Villagra-Blanco et al., 2019). Over the past fifteen years, 

NETosis has become the most studied areas of PMN function, and it has been nowadays 

considered as a novel, ancient and conserved effector mechanism of mammalian PMN to 

fight against invading pathogens (Brinkmann et al., 2004; Papayannopoulos and Zychlinsky, 

2009; Pilsczek et al., 2010). More details about NETosis are discussed in Chapter 1.4. 

1.3.2 Other innate immune cells 

Besides PMN, there are also some other professional phagocytes such as monocytes, 

macrophages, DCs and mast cells that ingest and degrade foreign pathogens and/or dead cells 

by phagocytosis (Hermosilla et al., 2014).  

Macrophages literally ‘big eaters’ derived from circulating monocytes and are a type of large 

white blood cells that are found in both the bloodstream and in tissues. Macrophages live for 

months patrolling our body and keeping it clean from invasive pathogens (Taubert et al., 

2009). They are able to locate and destroy particles such as bacteria, viruses, fungi, and 

parasites (Lauvau and Hohl, 2015). Moreover, monocytes and macrophages produce pro-

inflammatory molecules and can activate other immune responses thereby offering a bridge 

between the innate and adaptive immune systems (Hirayama et al., 2017; Taubert and Zahner, 

2001; Taubert et al., 2009).  

DCs are the most potent professional antigen-presenting cells, which are responsible for 

capture, processing, and presentation of antigens on their surface to T helper (h) cells linking 

innate and adaptive immune responses (Chistiakov et al., 2015). DCs must be present with 

the appropriate major histocompatiblity complex (MHC) expressed on the cell membrane 

surface since antigens alone cannot activate Th cells. During the development of an adaptive 

immune response, the phenotype and function of DCs play an extremely crucial role in the 
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initiation of tolerance, memory, and some polarised Th cell differentiation (Gaurav and 

Agrawal, 2013).  

Mast cells are found in most tissues close to the external environment such as skin, airways, 

and intestine (Marshall and Bienenstock, 1994), and can actively participate in the early 

recognition of pathogens and mediate allergic responses by releasing pro-inflammatory 

chemicals such as cytokines and chemokines (Marquardt and Wasserman, 1982; Urb and 

Sheppard, 2012). Moreover, mast cells can not only kill invading pathogens by phagocytosis 

and ROS production, but also send signals to other tissues to modulate both innate immune 

responses via releasing a variety of mediators (Abraham and John, 2010; Dawicki and 

Marshall, 2007). In addition, mast cells also play a key role on host defense against parasitic 

protozoan infections (Lu and Huang, 2017).  

NK cells are a type of cytotoxic lymphocytes of the host innate immune system, and have 

many biological functions such as tumor cell surveillance and killing pathogen-infected host 

cells.  NK cells contain granules filled with perforin and granzymes. When NK cells meet its 

target they bind to it and release perforin and granzymes to puncture holes into the membrane 

of the target resulting in cell rupture or apoptosis induction (Paust and Von Andrian, 2011). 

Unlike other lymphocytes (for example, Th cells) that are limited to recognize only targets 

which conjugate with their surface receptors, NK cells use the CD16 receptor on the surface 

of cell membrane to recognize and bind to any tumor cells or virally-infected host cells (Paust 

and Von Andrian, 2011). Recently, NK cells have been shown to possess the characteristics 

of adaptive immunity and can acquire immunological memory similar to that of Th and B 

cells (O’Sullivan et al., 2015; Paust and Von Andrian, 2011). 

Besides, eosinophils are involved in allergic responses and host defense against parasitic 

infections (Klion and Nutman, 2004; Weller, 1997). Basophils are closely related to mast 

cells that are found in tissues only (Galli et al., 1991), and basophils are also involved in 

allergic reactions and capable of releasing histamine which helps to trigger inflammation, and 

heparin which prevents blood from clotting in some innate immune reactions (Crivellato, 

2013). 

1.4 Neutrophil extracellular traps (NETs) 

NETs were first described to kill bacteria in 2004, and they are large, extracellular, web-like 

structures composed of mainly DNA, histones, various cytoplasmic proteins, and many 
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granule proteins such as NE, cathepsin G, MPO, lactoferrin, and gelatinase (Brinkmann et al., 

2004). Over fifteen years, NETs have been found to have a potent antimicrobial activity and 

also involved in many inflammatory and autoimmune disorders (Brinkmann and Zychlinsky, 

2012b; Vorobjeva and Pinegin, 2014). NETs can be released by activated PMN mainly 

through two pathways: suicidal NETosis and vital NETosis (Fig. 6). 

 
 

Fig. 6. Suicidal- and vital NETosis. The nuclear enzyme PAD4 citrullinates histones in activated 

PMN, and thereby promotes weakening of the electrostatic binding between histones and DNA within 

nucleosomes. After breakdown of the nuclear and granule membrane, NE translocates into the 

nucleus to drive further unfolding of chromatin by processing histones. Decondensed DNA with 

citrullinated histones and granule proteins meet within the PMN cytosol. NETosis ends when NETs-

chromatin with associated proteins are expelled from disrupted PMN. The outcome of this PMN cell 

death is known as suicidal NETosis. In contrast, without compromising cell integrity, vital NETosis 

involves the secreted expulsion of mitochondrial or nuclear chromatin via vesicles. The PMN surface 

membrane reseals and results in a viable anuclear/amitochondrial PMN which continues performing 

other functions such as phagocytosis, crawling activities, degranulation and chemotaxis (adapted from 

van Avondt and Hartl, 2018). 
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Suicidal NETosis was initially described as a NADPH oxidase (NOX)-dependent cellular 

effector mechanism, which induces the extrusion of nuclear-derived DNA and cytoplasmic 

granule enzymes leading to formation of DNA-rich networks being decorated with histones 

and various potent antimicrobial granular effector molecules, such as NE, MPO, lactoferrin, 

pentraxin, peptidoglycan recognition proteins or calprotectin (Brinkmann and Zychlinsky, 

2012a; Fuchs et al., 2007; Hahn et al., 2013; Parker and Winterbourn, 2013). A variety of 

invasive pathogens such as bacteria, virus, fungi, protozoan and metazoan parasites, might 

either be immobilized within released sticky NET structures or being killed via local high 

concentration of antimicrobial histones, peptides, and proteases (Behrendt et al., 2010; 

Muñoz-Caro et al., 2018; Nathan, 2006; Silva et al., 2016). Classical suicidal NETosis is 

signaled via Raf-MEK-ERK-dependent pathways (Fuchs et al., 2007; Hakkim et al., 2011; 

Villagra-Blanco et al., 2017b; Wartha and Henriques-Normark, 2008). Alongside NOX-

dependent NETosis, also NOX-independent NETosis has been reported to exist and seem to 

be linked to a substantial reduction of ERK1/2 activation and weak Akt activation, whilst p38 

MAPK activation appears similar in both types of NETosis (Douda et al., 2015; Khan and 

Palaniyar, 2017; Villagra-Blanco et al., 2017a, b).  

In addition to suicidal NETosis, PMN have also been shown to undergo vital NETosis 

without cell lysis, thus remaining viable and functional including migration, degranulation 

and the capability of active bacteria phagocytosis (Yipp et al., 2012). Vital NETosis was 

demonstrated to rapidly occur via nuclear envelope blebbing and vesicular exportation in an 

oxidant-independent manner (Pilsczek et al., 2010). This vital rapid NETosis (within 30 min 

after PMN activation) is induced by Gram-positive bacteria mediated by TLR2 and 

complement (Yipp et al., 2012), and by Candida albicans dependent on fibronectin and 

complement factors (Byrd et al., 2013). So far, vital NETosis has not been described in 

response parasites but some hints of vital NETosis against apicomplexan parasites have been 

documented. As such, isolated harbour seal (Phoca vitulina)-derived PMN exposed to T. 

gondii tachyzoites rapidly (within 10 min) released a “chameleon tongue-like” structure 

towards tachyzoites thereby maintaining PMN cellular integrity (Reichel et al., 2015). The 

same is true for recent live cell imaging analysis of bovine PMN acting against highly motile 

trypomastigote stages of Trypanosoma brucei where a similar “chameleon tongue-like” 

phenomenon was reported (Daniela Grob, unpublished data). Furthermore, PMN seem able 

to release small-sized mitochondria-derived NETs without suffering cell death (Yousefi et al., 

2009).  
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Suicidal NETosis was reported to be triggered by different protozoan parasites in vitro and in 

vivo, including Plasmodium falciparum (Baker et al., 2008), Leishmania spp. (Denkers and 

Abi Abdallah, 2012; Guimarães-Costa et al., 2009; Guimarães-Costa et al., 2014), Eimeria 

bovis (Behrendt et al., 2010; Muñoz-Caro et al., 2015a), Eimeria arloingi (Silva et al., 2014a), 

T. gondii (Abdallah et al., 2012; Reichel et al., 2015; Yildiz et al., 2017), Cryptosporidium 

parvum (Muñoz-Caro et al., 2015b), N. caninum (Villagra-Blanco et al., 2017a; Villagra-

Blanco et al., 2017b; Wei et al., 2016), Trypanosoma cruzi (de Buhr et al., 2018; Sousa-

Rocha et al., 2015), Entamoeba histolytica (Ventura‐Juarez J. et al., 2016) and B. besnoiti 

(Muñoz-Caro et al., 2014; Maksimov et al., 2016).  

Moreover, a vast number of molecules have been identified as NETosis stimuli such as 

ionomycin (Francis et al., 2014), nicotine (Hosseinzadeh et al., 2016), PMA (Brinkmann et 

al., 2004; Brinkmann et al., 2010; Desai et al., 2016), LPS (Yousefi et al., 2009), IL-8 (Gupta 

et al., 2005), TNF-α (Keshari et al., 2012), zymosan (Caro et al., 2014; Silva et al., 2014a), 

hydrogen peroxide (Fuchs et al., 2007), platelet activating factor (Caudrillier et al., 2012; 

Clark et al., 2007), thapsigargin (Gupta et al., 2010), chemotactic complement-derived 

peptide complement factor 5 (C5a)  (Di Martinelly and Artiba, 2004), Fc receptors (Urban et 

al., 2006), IFN-γ (Yousefi et al., 2008), lipophosphoglycans (LPG) of Leishmania spp. 

promastigote stages (Guimarães-Costa et al., 2009), Staphylococcus epidermidis δ-toxin 

(Cogen et al., 2010), and antimicrobial peptide LL-37 (Neumann et al., 2014a; Neumann et 

al., 2014b). 

Besides PMN, extracellular traps (ETs) are also released by other leukocytes against invasive 

pathogens such as macrophages (Braian et al., 2013), monocytes (Chow et al., 2010), mast 

cells (Köckritz-Blickwede et al., 2008), eosinophils (Yousefi et al., 2008; Muñoz-Caro et al., 

2016), and basophils (von Köckritz-Blickwede and Nizet, 2009) of mammals including 

human (Wong and Jacobs Jr, 2013), cattle (Muñoz-Caro et al., 2014; Wei et al., 2018), goats 

(Yang et al., 2018), dogs (de Buhr et al., 2018), rats (Delbosc et al., 2011), mice (Boe et al., 

2015) and harbour seals (Reichel et al., 2015).  

1.5 Metabolism during NETosis 

1.5.1 Metabolism 

Metabolism is a general cellular biochemical process that is defined to describe all chemical 

reactions occurring in living cells and organisms, and which are usually divided into two 
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metabolic pathways: i) catabolism which consumes energy to assemble small molecules 

(blocking units) into larger ones, and ii) anabolism which disassembles large molecules into 

smaller ones to produce energy.  

All living organisms and cells covert their food (nutrient) energy supply to a form that 

organisms or cells can use them via diverse metabolic pathways (Fig. 7). Firstly, the major 

constituents of foods, i. e. carbohydrates, lipids, and proteins, are broken down into smaller 

subunits such as amino acids, monosaccharides, and fatty acids via digestion (El Bacha et al., 

2010). Molecules such as glucose, fatty acids, glycerols, and amino acids, followed by being 

transported throughout the body via the circulating system or within cells are essential and 

being dependent (aerobic/oxidative metabolism) or independent of oxygen (anaerobic 

metabolism). Secondly, these subunits are converted into a few metabolites via several 

chemical reactions included in differing metabolic pathways such as glycolysis. In the end, 

the metabolites are converted into carbon dioxide (CO2) and water, and a large number of 

energy in the form of adenosine triphosphate (ATP) are produced via the oxygen-dependent 

reactions of the tricarboxylic acid (TCA) cycle and electron transport chain (El Bacha et al., 

2010).  
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Fig. 7. Schematic representation of energy extraction in oxidative metabolism. The body breaks down 

food into amino acids, monosaccharides, and fatty acids, and then cells degrade these molecules to a 

few simple metabolites. At the end, the oxygen-dependent reactions of the tricarboxylic acid (TCA) 

cycle and electron transport chain liberate large amounts of energy in the form of ATP (adapted from 

El Bacha et al., 2010) 

 

Carbohydrates including both simple and complex sugars are the major source of energy for 

living cells (Moore and Hatfield, 1994), and monosaccharide glucose is the pivotal molecule 

in carbohydrate metabolism. Energy from carbohydrates is extracted by living cells mainly 

via four pathways: glycolysis, conversion of pyruvate to acetyl CoA, the TCA cycle, and the 

electron transport chain. Glycolysis is a series of ten enzyme-catalyzed reactions occurring in 

the cytosol, at the end of which two ATP, two NADH, and two pyruvate molecules are 

finally produced (Moore and Hatfield, 1994). When oxygen is absent or mitochondria are 

limited, pyruvate is converted into lactate along with the regeneration of NAD+ that is 

needed by glycolysis. If oxygen is readily available, each pyruvate molecule yields one acetyl 

CoA, one CO2, and one NADH in the mitochondria. Subsequently, acetyl CoA is converted 

to oxaloacetate, which enters the TCA cycle. TCA cycle is a circular pathway composed of a 
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sequence of reactions in the mitochondria, through which each acetyl CoA generates one 

GTP, three NADH, and one FADH2. In the end, NADH and FADH deliver pairs of high-

energy electrons to the electron transport chain located in the inner mitochondrial membrane, 

and a large number of ATP are released via oxidative phosphorylation. Totally, 36 net ATP 

are produced from one glucose molecule (Lopaschuk and Saddik, 1992).  

Fats and oils are both triglyceride molecules, which play an important role in storing energy. 

To extract energy from triglycerides, they are firstly degraded into glycerol and fatty acids. 

Fatty acids contain almost all the energy in triglycerides, and can be transferred by carnitine 

into mitochondria where they are disassembled via beta-oxidation and a group of acetyl CoA 

are produced. As mentioned above, one acetyl CoA can generate numerous ATP via TCA 

cycle and electron transport. Therefore, a triglyceride molecule containing three fatty acids 

produces more than ten times ATP than a glucose molecule after a complete metabolic 

breakdown process (Vander Heiden et al., 2009).  

Proteins are not used as primary sources of energy (Hoffman and Falvo, 2004), since they 

have a variety of vital structural and functional roles in different forms of blocking units such 

as enzymes, signaling receptors, structural members, intracellular trafficking components, ion 

pumps, and ion channels (Alberts et al., 2002). However, if carbohydrates and fats are not 

available amino acids degraded from proteins can be used as an alternative energy source. 

Firstly, amino acids are converted into carbon skeletons via deamination. These carbon 

skeletons from different types of amino acids form different products such as pyruvate, 

acetyl-CoA, acetoacetyl-CoA, α-ketoglutarate, suc-CoA, fumarate, and oxaloacetate (Berg et 

al., 2002), and enter different catabolic pathways. Therefore, the amount of ATP produced 

from one amino acid depends upon which catabolic pathway it enters (Alberts et al., 2002; 

Berg et al., 2002). 

1.5.2 Metabolism of PMN 

All cells in mammalian species need energy to maintain their basic functions. Unlike other 

immune cells such as lymphocytes and macrophages, PMN have relatively few mitochondria 

and which are less active (Fossati et al., 2003; Maianski et al., 2004), and thus PMN obtain 

their energy mainly from the glycolysis pathway (Borregaard and Herlin, 1982; Van Raam et 

al., 2008). As for other host cells, ATP is the fundamental energy carrier to fuel cellular 

functions of PMN such as phagocytosis and degranulation. Thus, it was reported that ATP 
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required for diverse critical PMN-derived NOX activities resulting in reaction oxygen species 

(ROS) production (Zhang et al., 1996), degranulation (Kannan, 2001), and phagocytosis 

(Borregaard and Herlin, 1982), are mainly produced through glucose catabolism resulting in 

lactate production (Beck and Valentine, 1952). Only 2-3 % glucose is involved in the 

oxidation via the TCA cycle in PMN (Beck, 1958). In the absence of glucose, the rate of ATP 

generation in PMN is enhanced via glycogenolysis during phagocytosis, and the content of 

intracellular ATP is significantly decreased (Borregaard and Herlin, 1982). Conversely, in 

presence of glucose, ATP concentration has a quick reduction in order to perform 

phagocytosis, but the rate of ATP generation from glucose to lactate is not increased 

(Borregaard and Herlin, 1982).  

In contrast to PMN-derived metabolic requirements for oxidative burst-, degranulation- and 

phagocytic activities, only two reports exist on PMN metabolic pathways being associated 

with NETosis. Recently, Menegazzo et al. (2015) reported that NETosis was dependent on 

glucose molecules. As such, high glucose concentrations increased PMN undergoing 

NETosis as well as their NETs release (Menegazzo et al., 2015; Rodríguez‐Espinosa et al., 

2015). Moreover, inhibition assays of glycolysis and ATP synthase revealed that glycolysis 

played a crucial role during NETosis, and seeming that oxidative phosphorylation was not so 

important as expected (Rodríguez‐Espinosa et al., 2015).  

In addition, the amino acid glutamine has been reported to be helpful for the increasing 

ability of PMN to display proper antimicrobial defense mechanisms. Studies showed that 

glutamine enhanced the bactericidal ability (Ogle et al., 1994) and improved phagocytosis of 

PMN (Furukawa et al., 2000), indicating that glutaminolysis also plays an important role in 

PMN metabolism. 

1.6 Autophagy during NETosis 

Autophagy is an intracellular programmed degradation system, which recycles unnecessary 

or damaged components including proteins and organelles, and is essential in cellular 

response to different stress factors such as hypoxia, inflammation and oxidative burst 

(Skendros et al., 2018). Autophagy (or macroautophagy) is a dynamic multi-step process 

which is mainly divided into four stages controlled by autophagy-related (Atg) proteins 

(please refer to Fig. 8): i) induction and initiation of autophagy, ii) expansion and completion 

of phagophore, iii) autophagosome maturation and fusion with lysosome, iv) and degradation 
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of engulfed components (You et al., 2016). Autophagosome as a landmark of autophagy is a 

double-membraned organelle, and formed by the elongation of a unique isolation membrane 

(phagophore), which sequesters unnecessary cytoplasmic contents. At the end, 

autophagosomes fuse with lysosomes to degrade and recycle the cargo inside (Bernard and 

Klionsky, 2013). LC3 is a small soluble protein that is distributed ubiquitously in mammalian 

tissues and cultured cells which is a well-known protein to form a stable association with the 

autophagosome membrane (Tanida et al., 2008; Bernard and Kionsky, 2013). Once activation, 

LC3-I (a cytosolic form of LC3) is conjugated to phosphatidylethanolamine to form LC3-II, 

which is then recruited to autophagosomal membranes (Tanida et al., 2008). Thus, LC3 is 

widely used as a marker for microscopic detection of autophagosomes.  

 

Fig. 8. Schematic model of autophagy process. Autophagy is a multi-step process involving at least 

four main phases, which is controlled by more than 30 autophagy-related (Atg) proteins and mediated 

by two ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8/LC3: including the initiation, 

vesicle expansion and completion, maturation and fusion, and ultimate degradation of the membrane 

and its contents within the lysosomes (according to You et al., 2017). 

The intracellular process of autophagy has been shown to be involved in various cellular 

functions including proliferation, differentiation, homeostasis and cell survival (Levine and 

Kroemer, 2008; Mizushima, 2007), and playing a crucial role during diverse diseases such as 

neurodegenerative disorders [e. g. Alzheimer’s syndrome, transmissible spongiform 

encephalopathies (TSE), Parkinson- and Huntington syndrome] (Rubinsztein et al., 2007; 

Williams et al., 2006), liver diseases (Rautou et al., 2010), muscle diseases (Sandri, 2010), 
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heart diseases (Gustafsson and Gottlieb, 2009; Kirshenbaum, 2012; Wang et al., 2015) and 

even in cancer progression (Mathew et al., 2007). Besides, autophagy is also implicated in a 

variety of inflammatory and autoimmune diseases such as systemic lupus erythematosus 

(Zhang et al., 2015), Zika virus infection (Chiramel and Best, 2018) and Crohn's disease 

(Hooper et al., 2016).   

Accumulating studies have also demonstrated the role of autophagy in host innate immune 

defence against different kinds of pathogens including bacteria, protozoa, and viruses 

(Deretic, 2005; Levine and Deretic, 2007; Schmid and Münz, 2007). Autophagy contributes 

in the elimination of invading microorganisms such as Mycobacterium tuberculosis 

(Gutierrez et al., 2004; Watson et al., 2015), Shigella spp. (Krokowski et al., 2018; Ogawa et 

al., 2005), and Streptococcus spp. (Nakagawa et al., 2004; Ogawa et al., 2018). In the early 

recognition of invading microorganisms, host innate immune system senses the presence of 

microbes via PRRs, which contain Toll-like receptors (TLRs), C-type lectin receptors (CLRs), 

NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) (Takeuchi and Akira, 2010). It 

has been revealed that autophagy is activated by the stimulation of a group of TLRs and 

thereafter able to eliminate intracellular pathogens (Delgado et al., 2008; Franco et al., 2017; 

Sanjuan et al., 2007; Vural et al., 2015; Xu et al., 2007). Lipopolysaccharide (LPS) known as 

a TLR4 ligand is capable of inducing autophagosome formation in murine RAW264.7 

macrophage-like cells (RAW), which is dependent on TLR4, TRIF, RIP, and p38 MAPK (Xu 

et al., 2007). Two TLR7 ligands, i. e. single-stranded RNA and imiquimod, induced LC3 

puncta formation in RAW and J774 macrophage-like cells, and the formation of LC3 puncta 

depended on TLR7, Beclin 1, and MyD88 (Delgado et al., 2008).  

Consistently to these findings, autophagy has been described to occur in PMN derived from 

diverse mammalian species, including mice and humans (Mitroulis et al., 2010), and further 

occurring in a phagocytosis-independent and phagocytosis-dependent manner (Huang et al., 

2009; Mitroulis et al., 2010). These autophagy findings in PMN are similar to data 

demonstrated in the past for macrophage active phagocytosis (Deretic, 2006; Shi and Kehrl, 

2008, 88; Xu et al., 2007). Recently, first evidence suggested that in addition to PMN 

phagocytosis, autophagy was also necessary to adequately prime PMN to undergo NETosis 

(Park et al., 2017; Remijsen et al., 2011; Skendros et al., 2018). Besides Atg proteins, 

autophagy is regulated by the metabolic sensor molecule AMP-activated kinase α (AMPKα) 

and by the mechanistic target of rapamycin (mTOR) (Laplante and Sabatini, 2013). Processes 

of PMN-autophagy resulting in NETosis appear to be mainly linked to PMA-activated PMN 
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and furthermore in sterile inflammation (Mitroulis et al., 2010) by a mechanism which seems 

dependent on mTOR activation (Itakura and McCarty, 2013).  A recent study showed that 

mTOR signaling regulated extrusion of NETosis via induction of hypoxia-inducible factor 1 

α (HIF-1α) protein expression. In this context, it was demonstrated that PMN expression of 

HIF-1α and NETosis were significantly reduced via the blockage of mTOR activity with 

rapamycin (McInturff et al., 2012), which is contrary to another study which revealed 

enhancement of NETosis by inhibition of mTOR signaling (Itakura and McCarty, 2013). In 

this doctoral thesis, we intend to investigate for the first time the role of autophagy in B. 

besnoiti induced NETosis. Furthermore, different signaling pathways of NETosis, NETosis 

phenotypes [i. e. spread-, diffuse-, aggregated-NETs (Muñoz-Caro et al., 2018); ‘cell free’- 

and ‘anchored’-NETs (Tanaka et al., 2014)], and metabolic requirements in B. besnoiti-

triggered suicidal NETosis will be here investigated. Last but not least, both parasitic stages 

to be found during bovine besnoitiosis in vivo, namely tachyzoites and bradyzoites, will be 

used and compared concerning their capabilities in NETosis induction and impact on primary 

bovine endothelium. 
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Abstract 

Besnoitia besnoiti is the causative agent of bovine besnoitiosis, a disease affecting both, 

animal welfare and cattle productivity. NETosis represents an important and early host innate 

effector mechanism of polymorphonuclear neutrophils (PMN) that also acts against B. 

besnoiti tachyzoites. So far, no data are available on metabolic requirements of B. besnoiti 

tachyzoite-triggered NETosis. Therefore, here we analyzed metabolic signatures of 

tachyzoite-exposed PMN and determined the relevance of distinct PMN-derived metabolic 

pathways via pharmacological inhibition experiments. Overall, tachyzoite exposure induced a 

significant increase in glucose and serine consumption as well as glutamate production in 

PMN. Moreover, tachyzoite-induced cell-free NETs were significantly diminished via PMN 

pretreatments with oxamate and dichloroacetate which both induce inhibition of lactate 

release as well as oxythiamine, which inhibits pyruvate dehydrogenase, α-ketoglutarate 

dehydrogenase, and transketolase, thereby indicating a key role of pyruvate- and lactate-

mediated metabolic pathways for proper tachyzoite-mediated NETosis. Furthermore, 

NETosis was increased by enhanced pH conditions, however, inhibitors of MCT-lactate 

transporters (AR-C141900, AR-C151858) failed to influence NET formation. Moreover, a 

significant reduction of tachyzoite-induced NET formation was also achieved by treatments 

with oligomycin A (inhibitor of ATP synthase) and NF449 (purinergic receptor P2X1 

antagonist) thereby suggesting a pivotal role of ATP availability for tachyzoite-mediated 

NETosis. In summary, the current data provide first evidence on carbohydrate-related 

metabolic pathways and energy supply to be involved in B. besnoiti tachyzoites-induced 

NETosis. 

Keywords: Besnotia besnoiti, PMN, NETosis, metabolic signatures, glycolysis, ATP 
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1. Introduction 

Besnoitia besnoiti is an obligate intracellular apicomplexan protozoan which was first 

described in 1912 (Besnoit and Robin, 1912). Bovine besnoitiosis is an endemic disease in 

several countries of Europe as well as in the Middle East, Asia, South America and Africa 

(Bigalke et al., 2004; Cortes et al., 2014) causing significant economic losses in cattle 

industry (Jacquiet et al., 2010; Maqbool et al., 2012). Based on increased cases and 

geographic expansion, the European Food Safety Authority (EFSA) graded bovine 

besnoitiosis as an emerging disease in Europe (European Food Safety Authority, 2010). 

Meanwhile, numerous reports elaborated clinical signs and histopathological alterations in 

infected cattle, but limited data are available on early interactions of innate immune cells with 

B. besnoiti stages, despite the fact that these leukocytes are the first line of defence and also 

the first ones to be recruited to infection sites (Maksimov et al., 2016; Muñoz Caro et al., 

2014). Among these leukocytes, polymorphonuclear neutrophils (PMN) are the most 

abundant granulocytes in blood acting rapidly against invading pathogens, including 

apicomplexan parasites (Baker et al., 2008; Behrendt et al., 2010; Villagra-Blanco et al., 2017, 

2019). Besides phagocytosis and degranulation (Behrendt et al., 2008; Lacy, 2006), PMN 

also efficiently combat and eventually kill invading pathogens by undergoing NETosis 

(Brinkmann, 2018; Fuchs et al., 2007). NETosis comprises the release of nuclear or 

mitochondrial DNA being adorned with histones and various antimicrobial molecules, such 

as neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G, lactoferrin, pentraxin, and 

gelatinase (Brinkmann et al., 2004; Delgado-Rizo et al., 2017; Hahn et al., 2013; Parker and 

Winterbourn, 2013). A variety of pathogens including bacteria, virus, fungi and parasites 

might either be immobilized within released sticky NET structures or be killed via a high 

local concentration of antimicrobial histones, peptides and proteases (Behrendt et al., 2010; 

Muñoz-Caro et al., 2018; Nathan, 2006; Silva et al., 2016; Villagra-Blanco et al., 2019).  

So far, few reports are available on B. besnoiti-triggered ETosis which include two types of 

leukocytes, PMN, and monocytes (Muñoz Caro et al., 2014; Muñoz-Caro et al., 2014). Both 

leukocyte populations were shown to rapidly release ETs in response to B. besnoiti 

tachyzoites (Maksimov et al., 2016; Muñoz Caro et al., 2014) thereby hampering these stages 

from host cell invasion (Muñoz-Caro et al., 2014). B. besnoiti tachyzoite-induced ETosis was  
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shown to be reduced by NADPH oxidase (NOX)-, NE- and MPO inhibitors (Muñoz Caro et 

al., 2014) thereby indicating the pivotal role of these enzymes for parasite-induced ETosis, 

which is consistent to other ETosis-related investigations (Metzler et al., 2011; 

Papayannopoulos et al., 2010; Rada et al., 2013). Parasite entrapment assays revealed that 

one third of B. besnoiti tachyzoites were efficiently immobilized by NETosis (Muñoz Caro et 

al., 2014), implying that this effector mechanism may play a crucial role during acute phase 

of cattle besnoitiosis (Muñoz-Caro et al., 2014). Interestingly, in a physiological flow 

condition-related experimental setting, Maksimov et al. (2016) showed that bovine PMN not 

only adhere to B. besnoiti-infected primary host endothelium but also undergo NETosis at 

this interface.  

Basic information on metabolic requirements of PMN or other immune cells during parasite-

triggered ETosis is scarce. In general, extracellular ATP disposability and activation of P2 

receptor-mediated purinergic signaling pathways seem essential for early host innate immune 

responses of PMN (Wang and Chen, 2018). As such, P2-mediated purinergic signaling is 

involved in regulating other essential PMN functions, such as chemotaxis, phagocytosis, 

oxidative burst and degranulation (Wang and Chen, 2018). This pathway also seems essential 

for NET formation since Neospora caninum-mediated NETosis was significantly blocked by 

a P2Y2 receptor inhibitor (Villagra-Blanco et al., 2017). Thus, we here aimed to explore the 

impact of key metabolic pathways as well as the role of the purinergic receptor P2X1 and of 

monocarboxylate transporter 1 (MCT1) in B. besnoiti-triggered bovine NETosis. In this 

connection, the metabolic signatures of B. besnoiti tachyzoite-exposed PMN were determined 

by assessing the metabolic conversion rates of glycolysis (glucose, pyruvate, and lactate) in 

addition to the amino acids glutamine, glutamate, alanine, serine and aspartate in cell culture 

supernatants (Mazurek et al., 1997; Taubert et al., 2016). Furthermore, the relevance of the 

corresponding pathways as well as the role of the purinergic receptor P2X1 in B. besnoiti-

induced NETosis was analyzed via functional inhibition assays. Given that enhanced lactate 

and glutamate production may lead to PMN acidification, we also studied the role of pH in 

parasite-induced NETosis via pH-adjusted media and pharmacological inhibition of MCT1 

which transports lactic acid across biological membranes. 

2. Materials and Methods 
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2.1 Ethic statement 

This study was performed in accordance to the Justus Liebig University Giessen Animal Care 

Committee Guidelines. Protocols were approved by the Ethic Commission for Experimental 

Animal Studies of the Federal State of Hesse (Regierungspräsidium Giessen; A9/2012; JLU-

No. 521_AZ), and in accordance to prevalent European Animal Welfare Legislation: 

ART13TFEU and current applicable German Animal Protection Laws. 

2.2 Besnoitia besnoiti tachyzoite maintenance and collection 

All NETosis-related experiments were performed with B. besnoiti tachyzoites of strain Bb 

Evora04 which was initially isolated from the field in Portugal. The permanent Madin-Darby 

bovine kidney (MDBK) cell line was used for B. besnoiti tachyzoite production in vitro. 

Briefly, MDBK were cultured in 75 cm2 plastic tissue culture flasks (Greiner, Frickenhausen, 

Germany) at 37 °C and 5% CO2 atmosphere until confluency using RPMI 1640 (Sigma-

Aldrich, R0883, Steinheim, Germany) cell culture medium supplemented with 2% fetal 

bovine serum (FBS, Biochrom AG, S0115, Berlin, Germany), 1% penicillin (500 U/ml) and 

streptomycin (500 mg/ml) (Sigma-Aldrich, P4333, Steinheim, Germany). Confluent MDBK 

layers were infected with 2 × 106 vital B. besnoiti tachyzoites. Free-liberated viable 

tachyzoites were collected from cell culture supernatants, filtered through a 5-µm syringe 

filter (Merck Millipore, Darmstadt, Germany), washed in sterile PBS and pelleted (400 × g, 

12 min). Tachyzoites were re-suspended in cell culture medium RPMI 1640 (Sigma-Aldrich, 

R7509, Steinheim, Germany) supplemented with 1% penicillin (500 U/ml) and streptomycin 

(500 mg/ml), counted in a Neubauer chamber and placed at 37 °C and 5% CO2 atmosphere 

for further experimental use. 

2.3 Bovine PMN isolation 

Healthy adult dairy cows (n = 4) served as blood donors. Animals were bled by puncture of 

the jugular vein and 30 ml peripheral blood was collected in 12 ml heparinized sterile plastic 

tubes (Kabe Labortechnik, Nümbrecht-Elsenroth, Germany). Approximately 20 ml of 

heparinized blood was re-suspended in 20 ml sterile PBS with 0.02% EDTA (Roth, Karlsruhe, 

Germany), slowly layered on top of 12 ml Biocoll® separating solution (density = 1.077 g/l; 

Biochrom AG, Berlin, Germany) and centrifuged (800 × g, 45 min).  
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After extraction of plasma and peripheral mononuclear blood cells, the cell pellet was re-

suspended in 25 ml distilled water and gently shaken during 40 s to lyse erythrocytes. 

Osmolarity was rapidly restored by Hank’s balanced salt solution (4 ml, HBSS 10 ×; Sigma-

Aldrich, Steinheim, Germany). To complete erythrocyte lysis, this step was repeated twice 

and PMN were re-suspended in sterile RPMI 1640 medium (Sigma-Aldrich, R7509, 

Steinheim, Germany). Finally, freshly isolated bovine PMN were allowed to rest at 37 °C and 

5% CO2 atmosphere for 30 min until further use (Behrendt et al., 2010; Muñoz-Caro et al., 

2014).  

2.4 Scanning electron microscopy (SEM) 

Bovine PMN were co-cultured with B. besnoiti tachyzoites (ratio 1:4) for 60 min (37 °C, 5% 

CO2) on coverslips (15 mm diameter, Thermo Fisher Scientific, Braunschweig, Germany) 

pre-coated with 0.01% poly-L-lysine (Sigma-Aldrich). After incubation, cells were fixed in 

2.5% glutaraldehyde (Merck, Darmstadt, Germany), post-fixed in 1% osmium tetroxide 

(Merck, Darmstadt, Germany), washed in distilled water, dehydrated, critical point dried by 

CO2-treatment and sputtered with gold. Finally, all samples were visualized via a Philips 

XL30 scanning electron microscope at the Institute of Anatomy and Cell Biology, Justus 

Liebig University Giessen, Germany. 

2.5 Visualization of B. besnoiti-triggered NETosis by immunofluorescence microscopy  

Bovine PMN were co-cultured with B. besnoiti tachyzoites (ratio 1:4) for 3 h (37 °C, 5% CO2 

atmosphere) on 0.01% poly-L-lysine pre-treated coverslips (15 mm diameter, Thermo Fisher 

Scientific, Braunschweig, Germany), fixed in paraformaldehyde (4%, Merck, Darmstadt, 

Germany) and stored at 4 °C until further use.  

For NET visualization, Sytox Orange (Life Technologies, S11368, Eugene, USA) was used to 

stain DNA and anti-histone (clone H11-4, 1:1,000; Merck Millipore #MAB3422, Darmstadt, 

Germany), anti-NE (AB68672, 1:1,000, Abcam, Cambridge, UK) or anti-MPO (orb11073, 

1:1,000, Byorbit, Cambridge, UK) antibodies were used to stain respective proteins on ET 

structures. Therefore, fixed samples were washed thrice with PBS, blocked with 1% bovine 

serum albumin (BSA, Sigma-Aldrich, Steinheim, Germany, 30 min, RT) and incubated with 

corresponding primary antibody solutions (1 h, RT). After three times of washing in PBS, 

samples were incubated in secondary antibody solutions (Alexa Fluor 488 goat anti-mouse  
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IgG or Alexa Fluor 488 goat anti-rabbit IgG, both Life Technologies, Eugene, USA, 60 min, 

1:1,000, RT). Finally, samples were washed thrice in PBS and mounted in anti-fading buffer 

(ProLong Gold Antifade Mountant; Thermo Fisher Scientific, Carlsbad, USA). Visualization 

was achieved using an inverted IX81 fluorescence microscope equipped with an XM 10 

digital camera (Olympus). 

2.6 Quantification of ‘cell-free’ and ‘anchored’ NETs 

Bovine PMN (in cell culture medium RPMI 1640 lacking phenol red and serum) were 

confronted with B. besnoiti tachyzoites at a PMN:tachyzoites ratio of 1:4 (2 × 105 PMN : 8 × 

105 tachyzoites, 96-well format) for 3 hours. After incubation, ‘cell-free NET’ quantification 

was performed according to Tanaka et al. (2014). Briefly, after centrifugation (300 × g, 5 min) 

resulting supernatants were transferred into a new 96-well plate to measure ‘cell free NETs’ 

and remaining cell pellet samples were used for ‘anchored NETs’ estimation (Tanaka et al., 

2014). Therefore, Pico Green® (Invitrogen, Eugene, USA, 1:200 dilution in 10 mM Tris base 

buffered with 1 mM EDTA, 50 µl/well) was added to each supernatant and pellet sample. 

Extracellular DNA was detected and quantified by PicoGreen®-derived fluorescence 

intensities using an automated multiplate reader (Varioskan, Thermo Scientific, Vantaa, 

Finland) at 484 nm excitation/520 nm emission as described elsewhere (Muñoz Caro et al., 

2014; Villagra-Blanco et al., 2017). 

2.7 Estimation of metabolic conversion rates in cell culture supernatants 

For metabolic conversion rate experiments, bovine PMN were pre-treated with cytochalasin 

D to block active tachyzoite phagocytosis (10 µg/ml, 10 min, Sigma, C8273, 15 min), then 

confronted with heat-inactivated B. besnoiti tachyzoites (60 °C, 30 min) or plain medium 

(RPMI 1640 with 1.5 mM glucose) at MOIs of 3:1 and 6:1 (9 × 106 or 18 × 106  

tachyzoites/3× 106 PMN) for 6 hours (37 °C, 5% CO2 atmosphere). Thereafter, the cells were 

pelleted (400 × g, 10 min, 4 °C) and supernatants were collected, immediately frozen in 

liquid nitrogen and stored at -80 °C for further analysis. For measuring metabolite 

concentrations, the samples were heated for 15 min at 95 °C and centrifuged (8000 × g for 10 

min). In the supernatants, glucose, pyruvate, lactate, glutamine, glutamate, alanine, serine, 

and aspartate were measured using a bench top random access clinical chemistry analyzer as 

described previously (Mazurek et al., 1997; Taubert et al., 2016). The conversion rates of the  
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corresponding metabolites were calculated in nanomoles per (h × 106 cells) in relation to 

plain medium samples which were incubated in parallel at identical conditions for reference 

purposes. 

2.8 Pharmacological inhibition assays and pH-related experiments 

For inhibition assays, bovine PMN were pretreated with inhibitors for 30 min and then co-

cultured with B. besnoiti tachyzoites (1:4 PMN:tachyzoites ratio, 3 h, 37 °C, 5% CO2). The 

following inhibitors were here used: 2-fluor-2-deoxy-D-glucose (FDG, 2 mM, Sigma-Aldrich; 

glucose analogue which cannot be further degraded after phosphorylation by glycolytic 

hexokinase and therefore inhibits glycolysis), sodium dichloroacetate (DCA, 8 mM, Sigma-

Aldrich; inhibitor of pyruvate dehydrogenase kinase), oxythiamine (OT, 50 µM, Sigma-

Aldrich; inhibitor of pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and 

transketolase), sodium oxamate (OXA, 50 mM, Sigma-Aldrich; structural analog of pyruvate, 

inhibitor of lactate dehydrogenase), oligomycin A (5 µM, Sigma-Aldrich; inhibitor of ATP-

Synthase in mitochondrial respiration), theobromine (100 µM, Sigma-Aldrich; inhibitor of 

P1A1-mediated purinergic signaling), NF449 (100 µM, Tocris; purinergic receptor antagonist 

with high specificity for P2X1), AR-C 141990 (1 µM, Tocris; MCT1 inhibitor) and AR-C 

155858 (1 µM, Tocris; inhibitor of MCT1 and MCT2). All inhibitor concentrations were 

selected based on previous studies (Aronsen et al., 2014; Rodríguez‐Espinosa et al., 2015; 

Seliger et al., 2013; Taubert et al., 2016; Villagra-Blanco et al., 2017; Wang et al., 2013).  

For pH-related experiments, RPMI 1640 medium was adjusted to different pH values of 6.6, 

7.0, 7.4, and 7.8 by HCL or NaOH (both Merck, Darmstadt, Germany) supplementation as 

previously described (Naffah de Souza et al., 2018). Bovine PMN were suspended in RPMI 

1640 medium at diverse pH values and exposed to tachyzoites. Experiments were performed 

as follows: 2 × 105 PMN were seeded in duplicates into 96-well plates and co-cultured with 8 

× 105 B. besnoiti tachyzoites or incubated in plain pH-adjusted medium (controls) for 3 h 

(37 °C, 5% CO2 atmosphere). 

2.9 Statistical analysis 

Data were illustrated as means ± SEM of at least three biological replicates and two technical 

replicates. One-way analysis of variance and Dunnett’s multiple comparison tests were here  
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performed by using GraphPad Prism 7®. Differences were considered as significant at a level 

of p ≤ 0.05. 

3. Results 

3.1 B. besnoiti tachyzoites triggered NET formation 

To confirm the NET-related functional capability of B. besnoiti tachyzoites in the current 

experimental setting, NET formation in response to these parasitic stages were here 

demonstrated by SEM and immunofluorescence analysis (Fig. 1). As illustrated by SEM, 

bovine PMN indeed released NET-like structures when co-cultured with B. besnoiti 

tachyzoites and numerous tachyzoites were found trapped by these filaments (Fig. 1A-C). To 

verify classical characteristics of NETosis, co-localization of extracellular DNA with H1-H4, 

and NE (Fig. 1D-I) in parasite-entrapping structures was here confirmed. 

3.2 B. besnoiti tachyzoite exposure altered metabolic conversion rates in PMN 

Metabolic signatures of tachyzoite-exposed PMN were analysed by the estimation of 

metabolite conversion rates in the cell cultivation supernatants of the cells. It has to be noted 

that the sometimes strong individual variance of non-syngene blood donors (cows) often 

hampers a significant outcome of PMN-related experiments. To exclusively monitor 

NETosis-driven responses and to block reactions driven by phagocytosis or active parasite 

infection, PMN were pre-treated with cytochalasin D and exposed to heat-inactivated parasite 

stages. Biochemical analyses of supernatants from PMN and tachyzoite co-cultures revealed 

a significant [PMN + tachyzoites (1:6) vs medium control: p < 0.05] increase in PMN-

derived glucose consumption (Fig. 2). Since tachyzoites had been heat-inactivated prior to 

PMN exposure, these reactions could only be attributed to PMN. The glucose carbons can 

either be channeled into synthetic pathways debranching from glycolytic intermediates or can 

be degraded to pyruvate with regeneration of energy. Pyruvate can be released into the 

medium or it can be introduced in various metabolic pathways: reduction to lactate by lactate 

dehydrogenase and release into the medium, amination to alanine by transaminases and 

release into the medium, oxidative decarboxylation to acetyl-CoA by pyruvate dehydrogenase 

and channeling into the citric acid, respectively. In line, pyruvate, lactate and alanine release 

increased in PMN:tachyzoite co-cultures. However, none of the three metabolites reached  
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significant levels (Fig. 2). Co-cultivation with tachyzoites was also accompanied by a 

significant decrease in glutamine production [PMN + tachyzoites (1:3) vs medium control: p 

< 0.05] (Fig. 2) Like glutamine, glutamate was released into the medium by plain PMN. 

Tachyzoite exposure induced a significant increase in glutamate release [PMN + tachyzoites 

(1:6) vs medium control: p < 0.001] (Fig. 2). Taken together, the glutamine and glutamate 

data argue against glutaminolysis (= energy regenerating glutamine degradation) as an 

important metabolic pathway for parasite-driven NETosis. The decrease in glutamine release 

may be caused by an inhibition of ATP-dependent glutamine synthetase. A source for 

glutamate production is aspartate which provides the amino group for amination of α-

ketoglutarate to glutamate catalyzed by aspartate aminotransferase. Measurement of aspartate 

conversion rates revealed a trend towards increase in aspartate consumption in PMN 

tachyzoite co-cultures which, however, this increase was not significant. A part of the 

pyruvate and lactate released from tachyzoite exposed PMN may also derive from serine, 

whose consumption rate significantly increased [PMN + tachyzoites (1:3) vs medium control: 

p < 0.01] (Fig. 2). Overall, the current data indicate that differential metabolic pathway 

activation is indeed required for tachyzoite-driven NETosis.  

3.3 B. besnoiti-induced ‘cell-free’ NETosis was blocked via inhibition of specific 

metabolic pathways 

We next investigated the relevance of PMN metabolism during NETosis via the presence of 

selected metabolic inhibitors which interfere with glycolysis and ATP regeneration (see also 

metabolic scheme in Fig. 3). Concretely, we studied the impact of PMN pre-treatments with 

chemical compounds acting on the glucose-lactate and citric acid cycle-axis (FDG: blocks 

glycolysis at hexokinase level; oxamate: inhibits lactate formation by blocking lactate 

dehydrogenase; oxythiamine: blocks pyruvate conversion to acetyl-CoA via pyruvate 

dehydrogenase inhibition, succinyl-Co-A production by inhibition of α-ketoglutarate 

dehydrogenase as well as the non-oxidative pentose phosphate pathway by inhibiting 

transketolase; DCA: activates the conversion of pyruvate to acetyl-CoA by inhibiting 

pyruvate dehydrogenase kinase) and on mitochondrial ATP regeneration by inhibiting ATP-

synthase within the mitochondrial respiration chain (oligomycin). 

Overall, quantification of ‘anchored’ and ‘cell-free’ NETs confirmed that tachyzoites trigger  
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bovine PMN to release either form of NETs (Fig. 4). Functional inhibition experiments 

revealed that this process was independent of glucose consumption since 2 mM FDG did not 

influence NET formation (Fig. 4). In contrast, a significant decrease of ‘cell-free’ NET 

formation was observed in case of DCA, oxythiamine, oxamate and oligomycin A treatments 

(treated PMN + tachyzoites vs non-treated PMN + tachyzoites: DCA: p < 0.05, oxythiamine: 

p < 0.01, oxamate: p < 0.01, oligomycin A: p < 0.001) (Fig. 4), implying that efficient B. 

besnoiti tachyzoite-induced ‘cell free’ NET formation depended in some way on the products 

and pathways of the corresponding enzymes (pyruvate dehydrogenase kinase-, pyruvate 

dehydrogenase, α-ketoglutarate dehydrogenase, transketolas-, lactate dehydrogenase and 

mitochondrial ATP synthase). Interestingly, these findings only applied to ‘cell-free’ NETs 

whilst the formation of ‘anchored’ NETs was not affected by these inhibitors. 

3.4 B. besnoiti-induced NETosis depended on P2X1-mediated ATP binding 

Here we investigated the relevance of purinergic signaling pathways in B. besnoiti 

tachyzoite-induced NETosis. Therefore, PMN were pre-treated with two specific inhibitors: 

theobromine which inhibits P1A1-mediated purinergic signaling and NF449 which blocks 

P2X1-mediated purinergic signaling. As an interesting finding we here show that NF449 

pretreatment almost entirely abolished parasite-triggered NET formation when compared to 

non-treated controls (treated PMN + tachyzoites vs non-treated PMN + tachyzoites: p < 

0.0001) whilst theobromine treatments had no effect (Fig. 5). These data indicated that 

tachyzoite-induced NETosis selectively depends on P2X1-mediated ATP binding but is 

independent of P1A1-mediated purinergic signaling. 

3.5 B. besnoiti-induced NETosis increased with raising pH values but is not influenced 

by MCT inhibition 

Several studies demonstrated that PMN show reduced chemotaxis, respiratory activity and 

bactericidal capacity at acidic pH (Cao et al., 2015; Lardner, 2001) which is consistently 

reported in terms of inflammation (Lardner, 2001; Riemann et al., 2015). Here we 

investigated the effects of varying extracellular pH conditions (pH of 6.6, 7.0, 7.4. and 7.8) 

on parasite triggered NETosis. Interestingly, NETosis was already triggered in plain PMN 

when the pH was raised to 7.8 thus indicating that alkalization of the extracellular 

compartment led to PMN activation and subsequent NET formation (Fig. 6). However, this  
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only applied for ‘anchored’ NETs and not for ‘cell-free’ NETs. In tachyzoite-exposed PMN 

the same tendency was observed for both NET forms since elevated pH conditions led to 

enhanced NETosis (Fig. 6). Thus, significantly more NETs were formed in response to 

parasite stages when pH was raised to pH 7.8 thereby indicating a dependence of NET 

formation on alkaline pH. Interestingly, a lowering of pH below neutral led to diminished 

‘anchored’ NET formation (‘anchored’ NETs: pH 7.4 vs. pH 6.6: p < 0.05 and pH 7.0 vs. pH 

6.6: p < 0.05) (Fig. 6) thereby indicating that NET formation might be impaired in acidic 

conditions of inflammation. 

Monocarboxylate transporters (MCTs) are important cellular pH regulators (Pinheiro et al., 

2010), which control proton-linked transport of monocarboxylates, such as L-lactate, 

pyruvate, and ketone bodies, across the plasma membrane (Halestrap, 2012). As visualized in 

Fig. 7, B. besnoiti tachyzoite-induced NETosis was neither significantly altered via 

pretreatments with an inhibitor of MCT1 (AR-C 155858) nor by a blocker of MCT1 and 

MCT2 (AR-C 141990) thereby implying that these transporters were irrelevant for parasite-

triggered NET formation. 

4. Discussion 

In the present study, we aimed to investigate the relevance of selective metabolic pathways in 

bovine PMN for B. besnoiti-induced NETosis. Metabolic signatures of PMN that were 

blocked in their phagocytotic activity and then exposed to invasion-defective (heat-

inactivated) tachyzoites revealed a significant increase in glucose and serine consumption, an 

increase in glutamate release as well as a decrease in glutamine release during NETosis. 

Lactate, pyruvate and alanine release as well as aspartate consumption also indicated an 

increase during NETosis. However, the latter increase did not reach a significance level for 

any of the metabolites. Taken together, these data point at an increased energy regenerating 

conversion of glucose and serine to pyruvate and lactate. Besides reduction to lactate, 

pyruvate itself may be released into the medium. In addition, intracellular pyruvate may be 

converted into alanine or infiltrated into the citric acid cycle. The current experimental setting 

did not indicate glutamine as an energy source in the cells since it was produced in untreated 

PMN. However, the decrease in glutamine release during NETosis may be due to the 

enhanced glutamate release (Figure 3). 
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Even though an increase in glucose consumption was observed, pharmacological inhibition 

of glycolysis by 2-Fluor-2-desoxy-D-Glucose did not result in a significant reduction of 

parasite-triggered NETosis. This result is in contrast to Rodríguez‐Espinosa et al. (2015) who 

showed that treatments with the closely related compound 2-desoxy-glucose led to a 

significant reduction of PMA-induced NETosis. Whether these differences rely on the mode 

of NET stimulation or host-derived differences (Rodríguez‐Espinosa et al. stimulated human 

PMN with the potent inducer PMA, which does hardly function in the bovine system) 

remains unclear. Nevertheless, pharmacological interference with the glucose-pyruvate-

lactate-axis indeed confirmed the importance of lactate and pyruvate generation during 

NETosis since treatments with both, oxamate and dichloroacetate efficiently blocked B. 

besnoiti-induced formation of ‘cell-free’ NETs and induced NET diminishment to control 

level (plain PMN). Oxamate inhibits lactate dehydrogenase thereby reducing lactate release 

and regeneration of NAD+ (Ratter et al., 2018) which both may have an impact on NETosis. 

An inhibition of NAD+ recycling leads to a blockage of glycolytic glyceraldehyde 3-P 

dehydrogenase thereby inhibiting glycolysis. Dichloroacetate (DCA) inhibits pyruvate 

dehydrogenase kinase thereby activating the conversion of pyruvate to acetyl CoA by 

pyruvate dehydrogenase and inhibiting the conversion of pyruvate to lactate by lactate 

dehydrogenase (Nayak et al., 2018; Wu et al., 2018). Interestingly, on the other hand, 

treatments with oxythiamine which is an antagonist of thiamin-PP and inhibits pyruvate 

dehydrogenase (Tylicki et al., 2005) did also induce a significant reduction of parasite-

triggered NET formation. However, besides pyruvate dehydrogenase, oxythiamine is also a 

cosubstrate of α-ketoglutarate dehydrogenase within the citric acid cycle and transketolase 

within the non-oxidative pentose phosphate pathway. Further metabolic characterization has 

to show which enzymes are mainly responsible for the inhibition of NETosis by oxythiamine.  

The current data additionally point at an important role of ATP regeneration during NETosis. 

Thus, treatments with oligomycin, an inhibitor of mitochondrial ATP synthase, entirely 

abolished tachyzoite-induced ‘cell-free’ NET formation and led to NET values even lower 

than those in plain PMN controls, which is in line to findings on oligomycin treatments in 

PMA-induced NETosis (Rodríguez‐Espinosa et al., 2015). ATP as an energy source is 

produced either by glycolysis or by mitochondrial respiration. However, PMN comprise only 

few mitochondria (Fossati et al., 2003; Maianski et al., 2004) and, in contrast to current 
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findings, older reports suggested that these organelles do not play a key role in PMN-related 

energy metabolism (Borregaard and Herlin, 1982). Consequently, glycolysis should represent 

the main pathway for energy disposal. In line, PMA stimulation led to increased glucose 

uptake in human PMN and PMA-induced NET formation revealed as glucose-dependent 

(Rodríguez‐Espinosa et al., 2015). A dependency of NETosis on glycolytic ATP production 

was also described in a mouse model by Amini et al., (2018). Interestingly, in mice glycolytic 

ATP production was shown to depend upon optic atrophy 1 molecules (Amini et al., 2018), 

which are of mitochondrial origin and reduce the activity of mitochondrial electron transport 

complex I in neutrophils thereby linking both metabolic pathways to another. Accordingly, 

blockage of mitochondrial ATP synthesis via oligomycin in the current study showed 

effective inhibition effects on parasite-triggered NET formation thereby confirming the 

relevance of mitochondrial ATP production for proper NETosis function. Notably, 

oligomycin treatments also impaired chemotaxis and respiratory burst in human PMN 

(Fossati et al., 2003), the latter of which is linked to NETosis process. Interestingly, a recent 

study reported that mitochondrial ATP is required for human PMN activation and that 

inhibition of mitochondrial ATP synthesis had minor effects on intracellular ATP levels, but 

inhibited the release of ATP into the extracellular space in human PMN (Bao et al., 2014). In 

turn, extracellular ATP acts as a messenger molecule and promotes communication between 

adjacent cells. Furthermore, it drives purinergic signaling-dependent mechanisms via various 

purinergic receptors. Consistently, hydrolysis of extracellular ATP inhibited the ATP-

dependent process of PMN migration, and inhibition of purinergic signaling blocked PMN 

activation and impaired innate host responses to bacterial infection (Chen et al., 2010). 

Furthermore, purinergic receptors are involved in PMN chemotaxis (Tweedy et al., 2016), 

phagocytosis (Wang et al., 2017), oxidative burst (Chen et al., 2010), apoptosis (Vaughan et 

al., 2007) and degranulation (Grassi, 2010). There are two main families of purine receptors: 

P1 and P2 receptors. So far, nineteen different purinergic receptor subtypes for extracellular 

ATP and adenosine were recorded, including eight P2Y, seven P2X and four P1 (adenosine) 

receptor subtypes (Burnstock, 2007; Ralevic and Burnstock). It has been reported that 

extracellular ATP regulates PMN chemotaxis via P2Y2 receptors (Chen et al., 2006) and that 

P2Y receptors are involved in PMN adhesion to endothelium (DiStasi and Ley, 2009; 

Jacobson et al., 2009). Interestingly, PMN-derived P2X and P2X7R surface receptors are 

required for NLRP3-mediated inflammasome activation and bacterial killing (Karmakar et al.,  
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2016). In the current study, we found that P2X1 receptors play a crucial role in B. besnoiti 

tachyzoite-induced NETosis since pharmacological inhibition of this receptor by NF449 

treatments totally abolished the formation of both, ‘anchored’ and ‘cell-free’ NETs upon 

parasite exposure. In line, receptors of the P2 family were recently recorded as important 

players in NET formation. Thus, P2Y2 receptor blockage significantly diminished N. 

caninum tachyzoite-triggered NETosis (Villagra-Blanco et al., 2017) and inhibition of P2Y6 

receptor subtype led to blockage of neutrophil activation and aggregated NET formation 

induced by gout-associated monosodium urate crystals (Sil et al., 2017). 

Distinct cell types, such as leukocytes, skeletal muscle cells, and most tumor cells, mainly 

produce ATP via glycolysis and need to export lactic acid to avoid cytoplasmic acidosis 

(Merezhinskaya et al., 2004). Lactic acid transport across cell membranes is mediated by 

MCTs. The MCT family contains 14 members, amongst which MCT1-4 represent the 

predominant transporters for lactate uptake and efflux (Halestrap and Meredith, 2004, 16, 

Dhup et al., 2012; Halestrap, 2013). However, the current data on MCT1/2 inhibition denied 

any influence of these receptors on B. besnoiti-induced NETosis. MCT1 typically imports 

lactate in oxidative cells, whilst MCT4 rather exports lactate derived from glycolysis. As 

such, other transporters than MCT1 may be involved in parasite-driven NETosis. As 

mentioned before, energy for neutrophil functions is mainly derived from glycolysis and 

therefore, MCT4-related lactate transport may be more important in bovine NETosis. 

Nevertheless, since NETosis was associated with increased lactate and glutamate release of 

the PMN which both induce an acidification of the medium we here also studied the effect of 

extracellular pH on B. besnoiti tachyzoite-triggered NETosis. It is well-known that 

extracellular pH modulates the functions of immune cells (Kellum et al., 2004; Lardner, 

2001), including PMN (Trevani et al., 1999), macrophages (Malayev and Nelson, 1995) and 

lymphocytes (Nakagawa et al., 2015). Extracellular acidosis is the most common condition 

related to various pathological situations and most studies rather focused on acidification than 

alkalinization effects. Referring to PMN, older studies documented that acidic extracellular 

pH-induced PMN migration (Nahas et al., 1971; Rabinovich et al., 1980; Zigmond and 

Hargrove, 1981) and respiratory burst (Ahlin et al., 1995; Gabig et al., 1979; Leblebicioglu et 

al., 1996; Simchowitz, 1985). A more recent study revealed that extracellular acidification 

caused delayed human PMN-derived apoptosis, enhanced endocytosis and inhibited bacterial  
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killing (Cao et al., 2015). Likewise, intracellular killing mechanisms of bovine PMN were 

also inhibited by extracellular acidification (Craven et al., 1986). Recently, it was reported 

that extracellular acidification inhibited ROS-dependent NET formation (Behnen et al., 2017). 

In line, we here documented hat acidification (pH 6.6) led to a decrease of NET formation 

when compared to neutral pH (pH 7.4.). Thus, acidification commonly found in conditions of 

inflammation may impair proper NETosis in the in vivo situation. Additionally, the current 

data indicated that extracellular alkalization led to enhanced B. besnoiti tachyzoite-induced 

NETosis, which is in accordance to NET-related reports in the human system (Maueröder et 

al., 2016; Naffah de Souza et al., 2018). Given that intracellular alkalinization induces 

cytosolic calcium flux (Li et al., 2012) and elevated levels of calcium are required for PAD4-

mediated citrullination of histone H3 and subsequent NETosis (Naffah de Souza et al., 2018; 

Villagra-Blanco et al., 2017), enhancement of B. besnoiti-induced NETosis with raising 

extracellular pH might be based on altered calcium fluxes. 

In summary, this study provides a better understanding on the relevance of metabolic 

pathways, purinergic signaling and pH conditions involved in B. besnoiti tachyzoite-induced 

NETosis.  
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Fig. 1 Besnoitia besnoiti tachyzoite-induced NETosis in bovine PMN. Co-cultures of 

bovine PMN and B. besnoiti tachyzoites were fixed and analyzed by scanning electron 

microscopy analysis (A-C). NETs, defined as chromatin extracellular structures forming a 

meshwork in contact with tachyzoites, were confirmed and visualized via immunostaining. 

(D) Phase contrast image; (E) DNA staining; Sytox Orange; (F) histone (H1-H4) staining; (G) 

neutrophil elastase staining; (H) Merged image of E, F, and G; (I) Merged image of all 

channels. 

 

Fig. 2 Metabolic conversion rates in bovine PMN exposed to B. besnoiti tachyzoites. 

Bovine PMN were pre-treated with cytochalasin D for 15 min, then confronted for 6 h with 

heat-inactivated B. besnoiti tachyzoites or plain medium at MOIs of 3:1 and 6:1. Metabolites 

present in cell culture supernatants were measured using a bench top random access clinical 

chemistry analyzer and the conversion rates of these metabolites were calculated in 

nanomoles (nM) per (hour × 10
6
 cells) in relation to plain medium samples which were  
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incubated in parallel for reference purpose. Values are presented as mean ± SEM (n = 8) in 

the graphs and p values of <0.05 were considered statistically significant. 
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Fig. 3 Metabolic scheme and overview on molecules analyzed in the current study. 

Molecules in blue letters were analyzed in PMN supernatants, molecules in red letters 

represent the inhibitors used in the current study. FDG = fluoro 2-deoxy-D glucose, DCA = 

dichloroacetate, OT = oxythiamine, OXA = oxamate 

 

Fig. 4 Effects of FDG, DCA, OT, OXA and oligomycin D treatments on parasite-

triggered NETosis. Bovine PMN (n = 3) were pre-treated for 30 min with FDG (2 mM), 

DON (4 µM), DCA (8 mM), OT (50 µM), OXA (50 mM) and oligomycin (5 µM) and then 

exposed to B. besnoiti tachyzoites for 3 h. Cell culture supernatants were collected for ‘cell-

free’ NET measurement, and the pellets were used for ‘anchored’ NET estimation. 

Extracellular DNA was quantified by PicoGreen®-derived fluorescence intensities using an 

automated multi-plate reader (Varioskan, Thermo Scientific). Values are presented as mean ± 

SEM in the graphs and p values of <0.05 were considered statistically significant. 
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Fig. 5 Effects of purinergic signaling inhibition on B. besnoiti-induced bovine NETosis. 

Bovine PMN (n = 3) were pre-treated for 30 min with NF449 (100 µM, inhibitor of P2X1 

receptor) or theobromine (100 µM, inhibitor of P1A1 receptor), followed by the exposure to 

B. besnoiti (ratio 1:4) for 3 h. Cell supernatants were collected for ‘cell-free’ NET 

measurement, and the pellets were used for ‘anchored’ NET estimation. Extracellular DNA 

was detected and quantified by PicoGreen®-derived fluorescence intensities using an 

automated multi-plate reader (Varioskan, Thermo Scientific). Values are presented as mean ± 

SEM in the graphs and p values of <0.05 were considered statistically significant. 
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Fig. 6 Effects of extracellular pH on B. besnoiti-mediated bovine NETosis. Bovine PMN 

(n = 3) were suspended in RPMI 1640 media adjusted to different pH values (6.6, 7.0, 7.4 

and 7.8), and then exposed to tachyzoites (ratio 1:4) for 3 h. Cell supernatants were collected 

for ‘cell-free’ NET measurement, and the pellets were used for ‘anchored’ NET estimation. 

Extracellular DNA was detected and quantified by PicoGreen®-derived fluorescence 

intensities using an automated multi-plate reader (Varioskan, Thermo Scientific). Values are 

presented as mean ± SEM in the graphs and p values of <0.05 were considered statistically 

significant. 

 

 

Fig. 7 Effects of monocarboxylate transporter (MCT) inhibition on B. besnoiti 

tachyzoite- induced bovine NETs. Bovine PMN (n=3) were pre-treated for 30 min with AR-

C141990 (1 µM, MCT1 inhibitor) or AR-C155858 (1 µM, inhibitor of MCT1 and MCT2), 

followed by the exposure to B. besnoiti tachyzoites (ratio 1:4). Cell supernatants were 

collected for ‘cell-free’ NET measurement, and the pellets were used for ‘anchored’ NET 

estimation. Extracellular DNA was detected and quantified by PicoGreen®-derived 

fluorescence intensities using an automated multi-plate reader (Varioskan, Thermo Scientific). 

Values are presented as mean ± SEM in the graphs and p values of <0.05 were considered 

statistically significant. 
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2.4. Besnoitia besnoiti bradyzoite stages induce suicidal- and rapid vital-NETosis being 

correlated with autophagy 
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Abstract  

Besnoitia besnoiti is an obligate intracellular apicomplexan protozoan parasite, which causes 

bovine besnoitiosis. Recent increased emergence within Europe was responsible for 

significant economic losses in cattle industry due to significant reduction of productivity. 

However, still limited knowledge exists on interactions between B. besnoiti and host innate 

immune system. Here, B. besnoiti bradyzoites were successfully isolated from tissue cysts 

located in skin biopsies of a naturally infected animal, and we aimed to investigate for the 

first time reactions of polymorphonuclear neutrophils (PMN) exposed to these vital 

bradyzoites. Freshly isolated bovine PMN were confronted to B. besnoiti bradyzoites. 

Scanning electron microscopy (SEM)- and immunofluorescence microscopy-analyses 

demonstrated fine extracellular networks released by exposed bovine PMN resembling 

suicidal NETosis. Classical NETosis components were confirmed via co-localization of 

extracellular DNA decorated with histone 3 (H3) and neutrophil elastase (NE). Live cell 

imaging by 3D holotomographic microscopy (Nanolive®) unveiled rapid vital NETosis 

against this parasite. A significant increase of autophagosomes visualized by specific-LC3B 

antibodies and confocal microscopy was observed in B. besnoiti-stimulated bovine PMN 

when compared to non-stimulated group. As such, a significant positive correlation (p = 

0.042) was found between B. besnoiti-triggered suicidal NETosis and autophagy. These 

findings suggest that vital- as well as suicidal-NETosis might play a role in early innate host 

defense mechanisms against released B. besnoiti bradyzoites from tissue cysts, and possibly 

hampering further parasitic replication. Our data generate first hints on autophagy being 

associated with B. besnoiti bradyzoite-induced suicidal NETosis and highlighting for first 

time occurrence of parasite-mediated vital NETosis. 

Keywords: Besnoitia besnoiti, bradyzoites, bovine PMN, autophagy, vital NETosis 
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1. Introduction 

Besnoitia besnoiti, an obligate intracellular apicomplexan parasite, was firstly described in 

1912 (Besnoit and Robin, 1912). Several reports on bovine besnoitiosis [i. e. Portugal (Cortes 

et al., 2006), Spain (Fernández-García et al., 2009), France (Jacquiet et al., 2010a), Germany 

(Schares et al., 2009), Italy (Gollnick et al., 2010; Rinaldi et al., 2013), Switzerland (Basso et 

al., 2013) and Hungary (Hornok et al., 2014)] clearly indicate the spread of this disease 

within Europe (Álvarez-García et al., 2013). Based on increased number of cattle besnoitiosis 

cases and its geographic expansion into previous non-endemic countries, the European Food 

Safety Authority (EFSA) classified bovine besnoitiosis as an emerging disease within EU in 

2010 (EFSA, 2010). Besides Europe, bovine besnoitiosis is also a vastly endemic disease in 

the Middle East, Asia, South America (Trujillo and Benavides; Vogelsang and Gallo, 1941) 

and Africa (Bigalke et al., 2004; Cortes et al., 2014) causing significant economic losses in 

cattle industry due to significant reduction of productivity (Jacquiet et al., 2010a; Maqbool et 

al., 2012).  

Typically, bovine besnoitiosis is characterized by an acute and a chronic phase with different 

clinical signs. In the acute phase, B. besnoiti-infected cattle present pyrexia, intensive 

respiratory disorders, increased heart rates, subcutaneous oedema, anasarca, swollen joints, 

conjunctivitis, nasal discharge, photophobia, reduced milk yield and orchitis associated with 

permanent infertility in bulls (Álvarez-García et al., 2013; Bigalke, 1981; Cortes et al., 2014). 

During the chronic phase of disease, B. besnoiti bradyzoites proliferate slowly within the 

epidermis, subcutaneous tissues, mucous membranes and/or sclera, and form characteristic 

cysts within mesenchymal host cells, related to dramatic thickening, hardening, folding, 

wrinkling of the skin (also termed “elephant skin”), alopecia, and gradual deterioration of 

body condition and weight loss (Pols, 1960). Until now, the complete life cycle of B. besnoiti 

is not entirely known and final host species are unidentified carnivores. Nevertheless, direct 

contact between infected and non-infected animals (e. g. natural mating, nasopharyngeal 

route) and insect-mediated transmission through biting flies [i. e. tabanids (Tabanus spp.), 

stable flies (Stomoxys calcitrans)] have been suggested as suitable transmission routes 

(Gollnick et al., 2015; Gutiérrez-Expósito et al., 2017; Tainchum et al., 2018) and of 

epidemiological relevance (Sharif et al., 2019).  
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So far, very limited knowledge exists on early interactions between circulating 

polymorphonuclear neutrophils (PMN) of host innate immune system with B. besnoiti, 

although these cells are the first ones to be recruited to infection sites. As such, PMN are the 

most abundant granulocytes in the blood and being the first line of defence against invading 

pathogens including parasites (Weissmann et al., 1980; Behrendt et al., 2010, Villagra-

Blanco et al., 2017). Upon activation, and in addition to phagocytosis (Behrendt et al., 2008) 

and degranulation (Lacy, 2006), PMN also combat efficiently invading pathogens by 

releasing NETs (Brinkmann, 2018; Brinkmann and Zychlinsky, 2012; Fuchs et al., 2007). 

These NETs are composed of nuclear DNA decorated with different histones (H1, H2A/H2B, 

H3, H4) and various antimicrobial granular effector molecules and commonly released via a 

novel cell death process known as suicidal NETosis. Suicidal NETosis is characterized by 

nuclear and cell membrane rupture and the loss of main PMN functions such as chemotaxis, 

degranulation, and phagocytosis (Fuchs et al., 2007; Remijsen et al., 2011b; Yipp and Kubes, 

2013). In contrast, vital NETosis can also occur by not affecting the continuation of 

mentioned PMN functions (Yipp and Kubes, 2013). Vital NETosis has been demonstrated in 

response to bacteria (Pilsczek et al., 2010), fungi (Byrd et al., 2013) and LPS-activated 

platelets (Clark et al., 2007). A landmark of vital NETosis is its rapid induction, normally 

within 30 min after PMN stimulation (Yipp and Kubes, 2013). In previous studies, it was 

shown that suicidal NETosis was able to efficiently trap B. besnoiti tachyzoites in vitro and 

that released suicidal NETosis was capable of hampering tachyzoites from active host cell 

invasion (Muñoz Caro et al., 2014). Furthermore, also bovine monocyte-derived extracellular 

traps (METosis) occurred when these phagocytes have been exposed to vital and motile B. 

besnoiti tachyzoites (Muñoz-Caro et al., 2014a), thereby expanding the spectrum of 

leukocytes undergoing ETosis (Villagra-Blanco et al., 2019).  

Conversely, no data are available so far neither on interactions of bovine PMN with B. 

besnoiti bradyzoites nor the role of autophagy in parasite-induced NETosis. Autophagy has 

recently been indicated to play a crucial role not only influencing classical PMN-mediated 

effector mechanisms (e. g. phagocytosis) (Mitroulis et al., 2010; Skendros et al., 2018) but 

also actively regulating NETosis (Skendros et al., 2018). Thus, in the present study we 

intended firstly to investigate rapid vital- as well as suicidal-NETosis in bovine PMN  
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exposed to freshly isolated bradyzoites of B. besnoiti from subdermal tissue cysts and further 

to analyse the possible correlation of autophagy in B. besnoiti bradyzoite-mediated NETosis. 

2. Materials and methods 

2.1 Ethic statement 

This work was performed in accordance to the Justus Liebig University Giessen Animal Care 

Committee Guidelines. Protocols were approved by the Ethic Commission for Experimental 

Animal Studies of the Federal State of Hesse (Regierungspräsidium Giessen; A9/2012; JLU-

No.521_AZ), and in accordance to prevalent European Animal Welfare Legislation 

(ART13TFEU) and current applicable German Animal Protection Laws. 

2.2 Animal data 

In early 2018, a 4-year-old Limousine heifer (502 kg BW) from South France presented 

inappetence, limb oedema with desquamation and emaciation. Natural B. besnoiti infection 

was confirmed by PCR investigation. For animal treatment, flunixine meglumine (2.2 mg/kg; 

Finadyne®) and sulfamethoxine (40 mg/kg; Sulfaron®) were given. Three months later, the 

same animal was admitted to the Ecole Nationale Veterinaire Toulouse (ENVT) because of 

weakness, hyperkeratosis, and multifocal alopecia, and presence of multiple visible cysts 

within the sclera. One week later, the animal was euthanized due to severe emaciation. At 

necropsy, bovine besnoitiosis in the scleroderma phase was here diagnosed: multiple whitish 

punctuated cysts were observed in sclera and in mucous-cutaneous junctions of mouth and 

anus. Moreover, the skin of neck, shoulders, base of tail, hocks, and pasterns presented 

marked hyperkeratosis with crusty appearance. No other relevant clinical alterations were 

further noticed. Skin samples of affected areas have been collected, stored in sterile saline 

solution (4 ºC) and later on processed for histopathological evaluation as well as for parasite 

isolation. 

2.3 Isolation of vital Besnoitia besnoiti bradyzoites 

Skin biopsies were placed in a sterile Petri dish (Nunc) containing a small volume of sterile 

RPMI 1640 cell culture medium without phenol red (Sigma-Aldrich) supplemented with 2%  



104 
 

Besnoitia besnoiti bradyzoite stages induce suicidal- and rapid vital-NETosis being 

correlated with autophagy 

penicillin-streptomycin (Sigma-Aldrich). A sterile tweezer was used to hold the skin and with 

a sterile scalpel the skin surface was carefully scraped in order to release vital bradyzoites 

from these cysts. As soon as the RPMI 1640 cell culture medium became turbid, it was 

collected and filtered through a sterile gauze swab in a sieve into a 50-mL Falcon tube 

followed by centrifugation at 200 × g for 1 min at room temperature (RT). Then the 

supernatant was collected and transferred into a new 50-mL Falcon tube, centrifuged (400 × g, 

12 min), and the pellet was washed again with RPMI 1640 medium to collect released 

bradyzoites. All supernatants were collected and centrifuged at 1500 × g for 10 min, and then 

the supernatant was discarded and pellet containing bradyzoites was resuspended in sterile 

RPMI 1640 cell medium. Vital and extremely motile B. besnoiti bradyzoites were isolated 

and afterwards counted in a Neubauer haemocytometer chamber (Supplementary data video 

1). Isolated B. besnoiti bradyzoites were firstly stored for 30 min at 4 ºC and afterwards at -80 

ºC in RPMI 1640 cell medium supplemented with 10% DMSO (Merck). 

2.4 Histopathological examination 

After successful bradyzoites isolation, parts of skin samples (5 × 5 mm) were stored in 10% 

phosphate-buffered formalin for histopathological examinations. Shortly, formalin-fixed 

samples were dehydrated using an ascending ethanol series, embedded in paraffin wax at 

56 °C and finally sectioned at 3 μm tissue samples at the Institute of Veterinary Pathology, 

Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany. Histological 

tissue samples have been stained using haematoxylin and eosin (HE), periodic acid-Schiff 

(PAS) and Giemsa staining according to routine protocols and pathological findings/changes 

of B. besnoiti-infected skin samples were then evaluated under a light microscope (Nikon 

Eclipse 80i) equipped with a DS-Fi1 digital camera (Nikon). 

2.5 Isolation of bovine PMN 

Healthy adult dairy cows (n = 3) served as blood donors. Animals were bled by puncture of 

jugular vein and 30 ml peripheral blood was collected in 12 ml heparinized sterile plastic 

tubes (Kabe Labortechnik). Approximately 20 ml of heparinized blood was re-suspended in 

20 ml sterile PBS with 0.02% EDTA (Sigma-Aldrich), slowly layered on top of 12 ml 

Biocoll® separating solution (density = 1.077 g/L; Biochrom AG), and centrifuged (800 × g,  
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45 min). After extraction of plasma and peripheral mononuclear blood cells (PBMC), the 

pellet was washed in 25 ml distilled water and gently shaken during 40 s in order to lyse 

erythrocytes. Osmolarity was rapidly restored by Hank’s balanced salt solution (4 ml, HBSS 

10x; Biochrom AG). To complete erythrocyte lysis, this step was repeated twice and PMN 

were later re-suspended in sterile RPMI 1640 medium (Gibco). Finally, freshly isolated 

bovine PMN were allowed to rest at 37 °C and 5% CO2 atmosphere for 30 min until further 

use (Behrendt et al., 2010).  

2.6 Scanning electron microscopy (SEM) analysis 

Bovine PMN were co-cultured with vital B. besnoiti bradyzoites (ratio 1:4) for 3 h on 

coverslips (10 mm diameter; Nunc) pre-coated with 0.01% poly-L-lysine (Sigma-Aldrich) in 

an incubator at 37 °C and 5% CO2 atmosphere. After incubation, cells were fixed in 2.5% 

glutaraldehyde (Merck), post-fixed in 1% osmium tetroxide (Merck), washed in distilled 

water, dehydrated, critical point dried by CO2-treatment and sputtered with gold. Finally, all 

samples were visualized via a Philips® XL30 scanning electron microscope at the Institute of 

Anatomy and Cell Biology, Justus Liebig University Giessen, Germany. 

2.7 Immunofluorescence microscopy analyses for visualization of B. besnoiti bradyzoite-

triggered NETosis 

Freshly isolated bovine PMN were co-cultured on 0.01% poly-L-lysine pre-treated coverslips 

(15 mm diameter) with B. besnoiti bradyzoites (ratio 1:4) for 3 h (37 °C and 5% CO2 

atmosphere), then fixed by adding 4% paraformaldehyde (Merck) for 15 min and stored at 

4 °C until further epifluorescence microscopy experiments.  

For visualization of suicidal NETosis-related structures, Sytox Orange® (Life Technologies) 

was used to stain extracellular DNA, anti-histone 3 (H3; clone H11-4, 1:1,000; Merck 

Millipore) and anti-neutrophil elastase (NE) antibodies (AB68672, 1:1,000, Abcam) were 

used to label H3 and NE on NETosis structures. In brief, fixed samples were washed thrice 

with sterile PBS, then blocked with 1% bovine serum albumin (BSA; Sigma-Aldrich) at RT 

for 15 min, incubated with corresponding primary antibodies (1 h; RT), and then incubated 

with secondary antibodies (Alexa Fluor 488 goat anti-mouse IgG or Alexa Fluor 488 goat  
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anti-rabbit IgG, both Life Technologies, 60 min, 1:1,000, RT), and finally incubated for 15 

min with Sytox Orange® (Life Technologies). After incubation, samples were carefully 

mounted with anti-fading solution (ProLong Gold® anti-fading buffer; Thermo Fisher 

Scientific), and thereafter visualized using an inverted IX81® epifluorescence microscope 

(Olympus) equipped with a digital camera XM10® (Olympus). 

2.8 Live cell interactions between bovine PMN and B. besnoiti bradyzoites investigated 

by live cell 3D holotomographic microscopy 

Isolated PMN (1 × 106) were centrifuged at 300 × g for 10 min at RT, supernatant was 

carefully discarded and cells were suspended in 2 ml of pre-warmed RPMI 1640 cell medium. 

One ml of this PMN solution was placed in an Ibidi® cell plate 35 mm low profile, and the 

plate was incubated in an Ibidi® chamber at 5% CO2 and 37 °C. PMN were allowed to settle 

down (30 min) to bottom of a plate and then 2 × 106 B. besnoiti bradyzoites were added to the 

center of the plate. Acquisition was set for refractive index (RI; 3D tomography) for a time 

lapse of 155 min every 30 s in a Nanolive Fluo-3D Cell Explorer® (Nanolive) microscope. At 

the end of the experiment, images were exported using Steve software v.2.6® (Nanolive). 

Using Image J software (Fiji version 1.7, NIH), every frame was exported using z-projection, 

maximum intensity algorithm and the video movie was constructed using 1 frame per 5 s of 

speed. For zoomed video, the region of interest was cropped and the same procedure 

described above was applied. Digital staining and 3D rendering of activated PMN was 

performed by using Steve software v.2.6® (Nanolive). 

2.9 Autophagosome detection by immunofluorescence analysis 

LC3 has been used as a classical marker for autophagosomes (Karim et al., 2007), being 

LC3-I cytosolic and LC3-II membrane-bound and enriched in the autophagic vacuole. 

Therefore, we tested whether LC3 expression might be present during B. besnoiti bradyzoite-

induced NETosis as described elsewhere (Zhou et al., 2019). Briefly, bovine PMN (n = 3) 

were added on 0.01% poly-L-lysine pre-coated coverslips (15 mm diameter; Nunc), then 

stimulated by B. besnoiti bradyzoites for 1 h at RT. After incubation, cells were fixed with 

4% paraformaldehyde for 10 min, permeabilized with cold methanol (Merck) for 3 min, and 

blocked by using the following blocking buffer [5% BSA (Sigma-Aldrich), 0.1% Triton X- 
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100 (Sigma-Aldrich) in sterile PBS] for 60 min at RT. After removing blocking buffer, cells 

were incubated overnight at 4 °C with rabbit anti-LC3B antibodies (Cat#2775, 1:200, Cell 

Signaling Technology) diluted in blocking buffer, washed three times with PBS, incubated 

with goat anti-rabbit IgG conjugated with Alexa Fluor 488 (Invitrogen) for 1h in the dark at 

RT. After being washed three times with PBS, coverslips were mounted by prolonged anti-

fading reagent with DAPI (Invitrogen) on glass slides (Nunc), and images were taken using 

an inverted epifluorescence microscope IX 81® (Olympus) and/or by using confocal 

microscopy analysis (LSM 710®; Zeiss). 

2.10 Statistical analysis 

Results are illustrated as means ± SEM of at least three independent experimental settings. 

One-way analysis of variance and Dunnett’s multiple comparison test and Spearman 

correlation test were here performed and by using GraphPad Prism 7®. Differences were 

considered as significant at a level of p ≤ 0.05. 

3. Results 

3.1 Histopathological examination of B. besnoiti-infected skin 

Histopathological examination revealed multifocal large-sized round to ovoid B. besnoiti-

cysts present in the dermis, panniculus and underlying muscle layer (Fig. 1A). Early tissue 

cysts were small, approximately 10-20 µm and contained a parasitophorous vacuole (PV) 

with few banana-shaped 3-5 µm structures (bradyzoites). Mature B. besnoti-cysts were huge 

(up to 400 µm) and the parasitophorous vacuole contained thousands of bradyzoite stages 

(please see Fig. 1B and C). Mature cysts containing numerous typical banana-shaped B. 

besnoiti bradyzoites had a three-layered cyst wall (10-30 μm of thickness): i) the outer wall 

composed of compressed collagen type I fibers, ii) the middle wall layer representing a thick 

hyaline capsule composed of extracellular matrix, and iii) the inner wall layer composed of a 

small rim of host cell cytoplasm with often multiple flattened nuclei containing the PV (Fig. 

1C). The outer wall of compressed collagen as well as the bradyzoites stained mildly and 

middle hyaline layer was brightly stained with PAS. Using Giemsa staining, the inner rim of 

the middle hyaline layer of mature cysts stained purple, while the outer rim of the hyaline 

layer was translucent and the inner layer containing the host cell cytoplasm as well as the  
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bradyzoites stained blue (Fig. 1C). Surrounding B. besnoiti-tissue cysts there was a mild to 

moderate multifocal to coalescing infiltrate composed of macrophages, PMN, fewer 

lymphocytes, plasma cells, eosinophils, and rare multinucleated giant cells. Few tissue cysts 

were ruptured and surrounded by abundant macrophages including multinucleated giant cells, 

numerous PMN, and eosinophils which were sometimes arranged in clusters as well as fewer 

lymphocytes and plasma cells. There was mild to moderate diffuse epithelial hyperplasia and 

moderate orthokeratotic hyperkeratosis. 

3.2 Besnoitia besnoiti bradyzoite-triggered suicidal NETosis was unveiled via SEM- and 

immunofluorescence microscopy-analyses 

To investigate whether B. besnoiti bradyzoites were capable to induce suicidal NETosis, 

bovine PMN exposed to bradyzoites were analysed by SEM. Fine network structures were 

observed in B. besnoiti bradyzoites-stimulated bovine PMN (Fig. 2), and many bradyzoites 

were trapped by those structures (Fig. 2) visualized in SEM analysis. Alongside, different 

morphologies of bovine PMN were observed around these fine networks. Whilst typical 

smooth rounded PMN have been found in close proximity to bradyzoites indicating a rather 

inactivation status, other exposed PMN showed disrupted cell membrane surfaces and 

thereby releasing extracellular filaments entrapping firmly bradyzoites by cell death. Former 

PMN status corresponded well to previously described suicidal (lytic) NETosis and METosis 

against this apicomplexan protozoan where extracellular fibers mainly derived from dead 

PMN and monocytes (Muñoz Caro et al., 2014a; Muñoz-Caro et al., 2014).  

In order to confirm whether bovine PMN were undergoing suicidal NETosis, main 

components of NETs formation [i. e. DNA, histones (H3) and NE] were visualized via 

immunostaining. In the control group (non-exposed PMN), no NETosis-like structures were 

observed by co-localization of H3 and NE (Fig. 3A-F). In contrast, the classical 

characteristics of suicidal NETosis were demonstrated in bovine PMN exposed to B. besnoiti 

bradyzoites by co-localization of extracellular DNA adorned with H3 and NE (Fig. 3G-L), 

and several bradyzoites being firmly trapped by NETosis as indicated by white arrows in Fig. 

3L. 
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3.3 3D-holotomographic microscopy live cell imaging of B. besnoiti bradyzoite-triggered 

vital NETosis 

Activation of bovine PMN and vital NETosis were additionally analysed by live cell 3D-

holotomographic microscopy technology (Nanolive®). Activation of PMN occurred within 

the first 5 to 30 min of interaction with motile bradyzoites thereby showing pseudopod 

formation and rapid migration and crawling activities of PMN into the vision field showing 

bradyzoites. Noteworthy to mention was the observation of an elongated structure being 

rapidly tossed out from PMN after 30 min of parasite interaction. Due to the time point of 

occurrence and the non-lytic PMN phenotype of this ‘chameleon tongue-like’ reactions we 

interpreted this response as vital NETosis (Fig. 4A-B; please refer to Video S2). The digital 

staining and 3D reconstruction of vital NETosis showed clearly that neither the overall cell 

phenotype nor crawling activities were altered by the protrusion of this elongated structure 

(Video S3; Fig. 4C).   

3.4 Autophagy occurred during B. besnoiti-triggered suicidal NETosis  

Autophagy is a highly conserved intracellular degradation process not only to keep 

homeostasis or energy source of mammalian cells but also pivotal in several host innate 

immune functions (Germic et al., 2019). During autophagy, LC3 (microtubule-associated 

protein 1A/1B-light chain 3) is an important protein being involved in autophagosome 

formation, and it has been used as a classical marker of autophagosomes. As shown in Fig. 5, 

the majority of bovine PMN (see Fig. 5A, B, C, and D) were still round and inactive without 

stimulation of B. besnoiti bradyzoites. In contrast, most of bovine PMN exposed to B. 

besnoiti bradyzoites (see Fig. 5E, F, G, and H) were undergoing autophagy alongside with 

suicidal NETosis resulting in bradyzoite entrapment (Fig. 5F, G, and H), indicating a close 

association of these two cellular processes.  

To investigate in more detail concomitant autophagy while B. besnoiti-induced suicidal 

NETosis, the percentages of ‘NETotic cells’ and LC3B-positive cells were calculated, and 

thereafter a Spearmann correlation test was performed. As seen in Fig. 6A, more cells were 

undergoing suicidal NETosis in B. besnoiti bradyzoite-stimulated bovine PMN when 

compared to non-stimulated PMN. Moreover, a significant positive correlation (r = 0.3735, p  
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= 0.042) was found between suicidal NETosis and autophagy in B. besnoiti bradyzoite-

stimulated bovine PMN (Fig. 6B) compared to negative controls.  

4. Discussion 

Bovine besnoitiosis is caused by the parasite B. besnoiti which is a cyst forming 

apicomplexan parasite closely related to Toxoplasma gondii and Neospora caninum (Ellis et 

al., 2000). Chronic bovine besnoitiosis is characterized by tissue cyst formation, especially in 

the skin and in the mucosa of diverse organs (e. g. eyes, genitals) with associated progressive 

thickening, folding, hardening, wrinkling or lesions of affected skin or mucosa. Characteristic 

large-sized cysts of B. besnoiti containing thousands of bradyzoites were identified in skin 

samples of naturally infected heifer by histopathological examinations in accordance to 

previous reports (Cortes et al., 2005; Frey et al., 2013; Gentile et al., 2012; Jacquiet et al., 

2010b; Rostaher Ana et al., 2010). Affected animal did not benefit from implemented 

treatments and its deteriorated clinical status determined euthanasia. However, even if the 

clinical status of this animal had remained unaltered, culling would have been the better 

control measurement for cattle besnoitiosis in the farm.  

NETosis is an effective defence process of activated PMN to ensnare and eliminate invading 

pathogens by releasing web-like extracellular traps which consist of DNA as a backbone, 

histones (H1, H2A/H2B, H3, H4), and diverse anti-microbial peptides/proteases such as 

cathepsin G, α-defensin, pentraxin, cathelicidin (LL37), lactoferrin, calprotectin and others 

(Amulic and Hayes, 2011; Hermosilla et al., 2014). Recently, more attention has been paid on 

pivotal role of NETosis against protozoan- and metazoan-parasites in various terrestrial and 

marine mammalian species (Behrendt et al., 2010; Muñoz Caro et al., 2014; Reichel et al., 

2015; Silva et al., 2014; Villagra-Blanco et al., 2017b) as well as gastropods (Lange et al., 

2017). Consequently, PMN-derived NETosis and monocyte-derived METosis exerted potent 

entrapment capacities against B. besnoiti tachyzoites indicating that these two leukocyte 

populations might reduce parasite replication during the acute phase of infection as 

previously postulated (Muñoz Caro et al., 2014a, b). Nevertheless, no data in literature are 

still available on early NETosis against B. besnoiti bradyzoites although bradyzoites are 

released from tissue cysts in vivo (Langenmayer et al., 2015). 
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Here, for the first time, we demonstrated that bradyzoites of B. besnoiti were also able to 

induce NETosis in a similar manner as tachyzoites (Muñoz Caro et al., 2014), and thus 

proving that B. besnoiti-triggered NETosis is a rather parasite stage-independent effector 

mechanism. Bradyzoites and tachyzoites of B. besnoiti are known to exhibit different 

antigens (Fernandez-Garcia et al., 2009; Schares et al., 2010), and whether bradyzoite-

specific antigens induced bovine suicidal NETosis could not be here answered (Muñoz-Caro 

et al., 2015; Muñoz-Caro et al., 2018; Silva et al., 2014). In line with these findings, other 

reports have also shown that different apicomplexan parasitic stages of the same species are 

able to induce NETosis (Muñoz-Caro et al., 2015; Silva et al., 2014; Villagra-Blanco et al., 

2017a; Villagra-Blanco et al., 2017b). SEM analysis unveiled the presence of classical web-

like structures released by bovine PMN exposed to B. besnoiti bradyzoites, as previously 

observed for tachyzoites (Maksimov et al., 2016; Muñoz Caro et al., 2014a). Additionally, 

the main components of NETosis [i. e. DNA, histones (H3), NE] were here identified and 

visualized via immunostaining and proving that these web-like structures were mainly 

suicidal NETosis. In addition, live cell imaging by 3D holotomographic microscopy showed 

rapid vital NETosis within the first 30 min without compromising the general structure of 

PMN cell membrane as well as crawling activity. In the past, it has been proposed that PMN 

subpopulations are able to elicit different types of NETosis and that only 20-30% undergo 

suicidal NETosis (Fuchs et al., 2007; Yipp and Kubes, 2013). Interestingly, suicidal NETosis 

seems to be more related to chemical stimuli as PMA, requiring hours to occur, meanwhile 

vital NETosis is more related to biological triggering agents of NETosis such as bacteria or 

fungi (Yipp and Kubes, 2013). To our knowledge, this is the first time that vital NETosis is 

evidenced by 3D live cell imaging as a PMN response to motile parasite stages. 

As stated above, bradyzoites can be released from tissue cysts after either host induced- or 

after mechanical rupture (Langenmayer et al., 2015; Schulz, 1960). Farther, Langenmayer et 

al. (2015) suggested that during chronic bovine besnoitiosis intravascular circulation of 

‘zoites’ might be possible after mechanical rupture of cysts located directly underneath 

vascular endothelium or after reactivation of tissue cysts and stage conversion into tachyzoite 

stages. Irrespective of these in vivo scenarios, released bradyzoites would be immediately in 

close contact to PMN and extruded NETosis might ultimately hamper bradyzoite  
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dissemination. Released bradyzoites might not be immediately identified in the bloodstream 

of infected animals due to pro-inflammatory host innate immune reactions as proposed 

elsewhere (Langenmayer et al., 2015) and in vivo PMN are among the first ones to be 

recruited to inflammation/infection sites (Fuchs et al., 2007; Villagra-Blanco et el., 2019; 

Zhou et al., 2019).  

Our present results demonstrated also that autophagy was associated with bradyzoite-

triggered NETosis. These findings corresponded well to recent data on B. besnoiti tachyzoite-

mediated suicidal NETosis with concomitant autophagy (Zhou et al., 2019). While autophagy 

process has recently been tightly associated with NETosis the exact molecular mechanisms 

and autophagy pathways are still not completely clear (Remijsen et al., 2011a, b; Ullah et al., 

2017; Skendros et al., 2018). Autophagy is an essential intracellular degradation mechanism 

to regulate protein and organelle turnover in many living cells thereby maintaining 

homeostasis and intracellular energy balance (Levine and Kroemer, 2008). During the 

process of autophagy, intracellular autophagosomes ultimately fuse with lysosomes to 

degrade and recycle the inside cargo (Bernard and Klionsky, 2013). LC3 is a small soluble 

protein which is distributed ubiquitously in mammalian tissues and known to form stable 

associations with the membrane of autophagosomes (Tanida et al., 2008). Thus, LC3 is 

widely used as a classical marker for microscopical detection of autophagosomes 

(Koukourakis et al., 2015; Park et al., 2017). Previous studies have revealed that autophagy is 

required for NETosis (Remijsen et al., 2011a, b; Ullah et al., 2017), and that autophagy 

induction significantly increased NETosis (Park et al., 2017). Accordingly, LC3B-stained 

autophagosomes were detected concomitant in PMN extruding suicidal NETosis towards B. 

besnoiti bradyzoites. These findings confirm that autophagy is required in bovine NETosis 

not only against B. besnoiti tachyzoite- (Zhou et al., 2019) but also against bradyzoite-stages 

as Spearmann test revealed a significant positive correlation between these two processes. In 

agreement to our findings, autophagy has also been reported to prime PMN not only for 

increased NETosis but also for increased phagocytosis during sepsis (Park et al., 2017). 

Whether PMN-derived phagocytosis through autophagy is expected to occur in the chronic 

phase of cattle besnoitiosis in vivo needs further investigations.  
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In summary, we describe for the first time the ability of bovine PMN to cast NETosis against 

motile B. besnoiti bradyzoites evidencing the importance of this ancient and well-conserved 

effector mechanism of early host innate immune system in cattle. Furthermore, LC3B-stained 

autophagosomes were detected in B. besnoiti bradyzoite-exposed PMN casting NETs 

resulting in a significant positive correlation of autophagy and parasite-induced suicidal 

NETosis. However, further autophagy-related investigations should elucidate other molecular 

mechanisms in this cell pathway. Finally, B. besnoiti-mediated vital NETosis resulted in a 

rapid extrusion and retraction of a ‘chameleon tongue-like’ structure, which is the first hint 

for this type of NETosis against apicomplexan parasites. Exact machinery, B. besnoiti-

specific antigens and PMN receptors leading to fast parasite-triggered vital NETosis need 

further investigations.  
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Fig. 1. Histopathological examination of skin biopsy. (A) Characteristic tissue cysts of 

Besnoitia besnoiti were observed by Periodic acid-Schiff (PAS) staining 4×; (B) a large-sized 

cyst of B. besnoiti is illustrated by haematoxylin and eosin (H&E) staining 20×; (C) a huge 

cyst of B. besnoiti with a typical three-layered wall is illustrated by Giemsa staining 20×.  

 

 

 

Fig. 2. Suicidal NETosis of bovine PMN after confrontation with Besnoitia besnoiti 

bradyzoites. Scanning electron microscopy (SEM) analysis revealed NETosis being formed 

by bovine PMN co-cultured with B. besnoiti bradyzoites, and these extracellular structures 

resulted in a fine meshwork containing bradyzoites as indicated by white arrows (A and B). 

 

Fig. 3. Suicidal NETosis was visualized by co-localization of DNA with histones (H3) and 

neutrophil elastase (NE) in B. besnoiti bradyzoite-exposed bovine PMN. After 3 h of 

incubation, co-cultures of bovine PMN and B. besnoiti bradyzoites in a 1:4 ratio were fixed, 

permeabilized, and then suicidal NETosis was visualized via immunostaining. (A-F) PMN 

alone group: (A) phase contrast image (B) DNA staining; Sytox Orange; (C) H3 staining; (D) 

NE staining; (E) merged image without phase contrast image; (F) merged image with phase  
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contrast image. (G-L) PMN+bradyzoites group: (G) phase contrast image (H) DNA staining; 

Sytox Orange; (I) H3 staining; (J) NE staining; (K) merged image without phase contrast 

image; (L) merged image with phase contrast image. 
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Fig. 4. Besnoitia besnoiti bradyzoites induced vital NETosis. Live cell 3D holotomographic 

microscopy (Nanolive®) analysis under controlled temperature and atmosphere conditions 

was performed for 1 h of interactions registering images every 30 s (A). At 31 min of 

incubation a tossing vital NETosis is observed without compromising the overall structure of 

PMN (B). Digital staining and 3D holotomographic reconstruction of tossed vital NETosis 

(C). 
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Fig. 5. Autophagy is occurring in Besnoitia besnoiti-triggered suicidal NETosis. Bovine 

PMN (n = 3) were exposed to B. besnoiti bradyzoites on coverslips for 1 h at 37 °C, 5% CO2. 

Samples were fixed and thereafter permeabilized for LC3B-based immunostaining in order to 

determine autophagosome formation by confocal microscopy analysis. All images are merges 

of LC3B (green), DAPI (blue), phase contrast (grey scale). Images A, B, C, and D are from 

PMN group, images E, F, G, and H are taken from PMN+bradyzoites group. 

 

 



127 
 

Besnoitia besnoiti bradyzoite stages induce suicidal- and rapid vital-NETosis being 

correlated with autophagy 

Fig. 6 Autophagy has a significant correlation with Besnoitia besnoiti bradyzoite-

triggered suicidal NETosis. The number of NETotic (A) and LC3B-positive PMN was 

counted using ImageJ and the percentages over total cells were calculated. A positive 

correlation between B. besnoiti-induced LC3B expression and NETotic cells was analysed by 

Spearman test (B). Results are represented as before-after graph with data derived from 3 

different animals (n = 3). p values of <0.05 were considered as statistically significant. 
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3. DISCUSSION AND OUTLOOK 

Current work focused on bovine PMN-derived effector mechanism of NETosis in response to 

different parasitic stages of B. besnoiti (tachyzoites and bradyzoites) in vitro. Thus, this thesis 

mainly characterized the role of autophagy and glycolytic metabolism in B. besnoiti 

tachyzoite-induced bovine NETosis. Firstly, B. besnoiti tachyzoite-induced NETosis was 

confirmed by scanning electron microscopy (SEM) and immunofluorescence analyses. The 

metabolite conversion of PMN confronted with heat-inactivated B. besnoiti tachyzoites was 

measured by various functional enzymatic assays. Then, the role of diverse metabolic 

pathways in B. besnoiti tachyzoite-induced NETosis was determined via some specific 

metabolic inhibitors (i. e. FDG, DON, DCA, OT, OXA, and oligomycin), and the assessment 

of possible role of purinergic metabolism was tested via functional inhibition of purine 

receptors (i. e. P2X1 and P1A1) expressed on bovine PMN (Zhou et al., 2019b). Moreover, 

we investigated the role of pH in B. besnoiti tachyzoite-induced NETosis via modified media 

with different pH values and/or pharmacological inhibition of monocarboxylate transporter 1 

(MCT1) which carries lactic acid across biological membranes (Zhou et al., 2019b). 

Furthermore, we detected concomitant autophagosome formation during B. besnoiti 

tachyzoite-induced NETosis and assessed the correlation of autophagy and NETosis in B. 

besnoiti stimulated bovine PMN (Zhou et al., 2019a).  

In addition, we obtained B. besnoiti infected tissue samples from a naturally infected heifer 

from France and successfully isolated numerous B. besnoiti bradyzoites, which were here in 

addition investigated regarding their capacities to trigger bovine NETosis. Consequently, we 

showed for the first time, that B. besnoiti bradyzoites also induced NETosis in a similar 

manner to tachyzoites and analyses by SEM- and immunofluorescence microscopy 

corroborated bradyzoite-mediated NETosis (Zhou et al., 2019c). Farther, the correlation of 

autophagy and NETosis in B. besnoiti bradyzoite stimulated bovine PMN was evaluated in 

this thesis showing that both processes occur but independently from each other (Zhou et al., 

2019c).  

Originally most studies focused on associations of NETosis induction by bacteria and fungi, 

including Staphylococcus aureus (Pilsczek et al., 2010), Streptococcus pneumonia (Beiter et 

al., 2006), Haemophilus influenzae (Juneau et al., 2011), Klebsiella pneumonia 

(Papayannopoulos et al., 2010), Listeria monocytogenes (Munafo et al., 2009), 



129 
 

Mycobacterium tuberculosis (Ramos-Kichik et al., 2009), Shigella flexneri (Brinkmann et al., 

2004), Aspergillus nidulans (Bianchi et al., 2011), Aspergillus fumigatus (McCormick et al., 

2010), and Candida albicans (Urban et al., 2006), but less frequently by parasites. 

Nonetheless, increasing attention has been paid to adverse effects of NETosis against 

unicellular and metazoan parasites as part of early host innate immune reactions of various 

mammal species in vitro and in vivo (Hermosilla et al., 2014; Silva et al.,. 2016; Abdallah et 

al., 2012; Villagra-Blanco et al., 2019). So far, a vast number of protozoan species have been 

described as potent NETosis inducers, including apicomplexan parasites such as P. 

falciparum (Baker et al., 2008), E. bovis (Behrendt et al., 2010), N. caninum (Villagra-Blanco 

et al., 2017a), T. gondii (Abdallah et al., 2012), B. besnoiti (Caro et al., 2014), C. parvum 

(Muñoz-Caro et al., 2015b), E. arloingi (Silva et al., 2014a), and the euglenozoan parasites 

Leishmania amazonensis (Guimarães-Costa et al., 2009), L. mexicana (Hurrell et al., 2015), L. 

major , L. infantum (Guimarães-Costa et al., 2014), L. braziliensis (Morgado et al., 2015), L. 

chagasi and L. donovani (Gabriel et al., 2010). Alongside protozoans, NETosis was also 

induced by nematodes such as S. stercoralis (Bonne-Année et al., 2014), the filarial B. malayi 

(McCoy et al., 2017), Dirofilaria immitis (Muñoz-Caro et al., 2018), L. sigmodontis (Pionnier 

et al., 2016), the metastrongylid nematodes A. vasorum , A. abstrusus and T. brevior (Lange 

et al., 2017) and the trematodes Schistosoma japonicum (Chuah et al., 2013) as well as 

Trichobilharzia regenti (Skala et al., 2018).  

Regarding B. besnoiti-induced extracellular traps (ETosis), scare knowledge is so far 

available, and only three reports are published in literature. Consequently, B. besnoiti 

tachyzoite-induced bovine ETosis released by PMN and monocytes were described, and 

classical ETosis structures were corroborated by co-localization of DNA with histones, NE 

and MPO (Muñoz-Caro et al., 2014a, b). Moreover, ETosis formation induced by B. besnoiti 

tachyzoites was reduced by pre-incubation with NOX-, NE- and MPO-inhibitors, indicating 

the important role of these enzymes in B. besnoiti-triggered ETosis extrusion and consistent 

with other publications in the field of ETosis (Metzler et al., 2011; Papayannopoulos et al., 

2010; Rada et al., 2013). Parasite entrapment assays revealed that one third of B. besnoiti 

tachyzoites were efficiently immobilized by NETosis derived from PMN, thereby impeding 

host cell invasion and further replication (Muñoz-Caro et al., 2014a), implying that this 

effector mechanism might also occur during the acute phase of infection and could represent 

a relevant host innate immune reaction in vivo (Muñoz-Caro et al., 2014a).  
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In addition, bovine PMN adhered to B. besnoiti tachyzoite-infected primary bovine umbilical 

vein endothelial cell (BUVEC) layers, and releasing NETosis under physiological flow 

conditions, indicating a possible role of NETosis against parasites in the bloodstream 

(Maksimov et al., 2016). In order to verify this hypothesis posted by Maksimov et al. (2016), 

we additionally here analysed whether pure B. besnoiti tachyzoites- or calcium ionophore 

(A231187)-triggered NETosis would damage endothelial host cells and subsequently 

influence intracellular development and proliferation of B. besnoiti tachyzoites in primary 

bovine endothelium (Conejeros et al., 2019). Thus, endothelium injury triggered by H2A, 

floating PMN and B. besnoiti-induced NETosis preparations (i. e. ‘cell free’- and ‘anchored’-

NETs), was evaluated under physiological flow conditions on endothelial host cell viability.  

Overall, all treatments (NETosis-derived H2A, B. besnoiti-triggered NETosis and floating 

PMN) significantly induced endothelium cell death of B. besnoiti-infected host cells 

(Conejeros et al., 2019). However, though host cell damage led to significantly altered 

intracellular parasite development with respect to parasitophorous vacuole diameter and 

numbers, the total proliferation of the parasite over time was not significantly affected by 

these treatments thereby denying any direct effect of NETosis on intracellular B. besnoiti-

tachyzoite replication in vitro (Conejeros et al., 2019). 

No data are available on metabolic requirements of bovine PMN during NETosis process 

neither for PMN stimulated with B. besnoiti tachyzoites nor bradyzoites. Farther there is no 

report on bovine PMN reactions exposed to vital and highly motile B. besnoiti bradyzoites. In 

this thesis, we reported on NETosis-like structures of bradyzoite-stimulated bovine PMN via 

SEM analysis (Zhou et al., 2019c). Bradyzoite-mediated NETosis was also confirmed by co-

localization of main components: DNA, histones, and NE, which is in line with the other 

mentioned publications above (Zhou et al., 2019a, b; Conejeros et al., 2019). 

To investigate in more depth the role of bovine PMN metabolism in B. besnoiti tachyzoite-

induced NETosis, metabolic turnover rates of isolated PMN confronted with heat-inactivated 

B. besnoiti tachyzoites were measured by enzymatic assays using a bench top random access 

clinical chemistry analyzer as described by Mazurek et al. (1997). Glucose consumption, 

lactate production, glutamate production, serine consumption, aspartate, and alanine 

production was increased in by B. besnoiti tachyzoite-exposed bovine PMN compared to 

untreated bovine PMN, showing an enhancement of glycolysis, glutaminolysis, and serine 

metabolism in bovine PMN stimulated by dead tachyzoites (Zhou et al., 2019b). Furthermore, 

we investigated the effects of different metabolic pathways on B. besnoiti tachyzoite-induced 
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NETosis via appropriate pharmacological inhibition. As such, FDG- and DON-treatments 

resulted in a slight reduction of ‘cell-free’ NETs, and DCA-treatment caused a higher 

decrease in NETosis than FDG and DON, but all these treatments did not lead to a 

statistically significant difference (Zhou et al., 2019b). Interestingly, OT-treatment abolished 

B. besnoiti tachyzoite-induced ‘cell-free’ NETs. Similarly, treatment with OXA significantly 

blocked ‘cell-free’ NETs induced by B. besnoiti tachyzoites. In addition, oligomycin (an 

inhibitor of ATP synthase) treatment completely abolished ‘cell-free’ NETs formation in B. 

besnoiti tachyzoites-exposed bovine PMN, in which NETosis was even lower than of 

untreated PMN. As mentioned before, glycolysis is the first step to extract energy via 

breaking down glucose into pyruvate, and contains ten steps in the serial metabolic process. 

In mammalian PMN, there are very few mitochondria (Fossati et al., 2003; Maianski et al., 

2004), and it has been reported that they do not play a critical role in energy metabolism 

(Borregaard and Herlin, 1982), thus glycolysis seems the main pathway to provide energy for 

PMN functions. PMA stimulation increased glucose uptake in stimulated PMN, and PMA-

induced NETosis was dependent on glucose and glutamine to some extent. Similarly, the 

glycolytic rate in PMN was increased, and NETosis induced by PMA was inhibited by 2-

DOG and oligomycin, indicating that glycolysis and ATP synthase play an important role 

during B. besnoiti-induced NETosis (Zhou et al., 2019b).  

As already stated, energy required for PMN-derived effector mechanisms is mainly obtained 

from intracellular glycolysis pathway instead of mitochondria. However, our results revealed 

that NETosis was significantly decreased through inhibition of mitochondrial ATP synthesis. 

Furthermore, oligomycin treatment led to the inhibition of respiratory burst- and chemotaxis-

activities of treated PMN which is in agreement with a previous report on the same metabolic 

topic (Fossati et al., 2003). These observations showed that mitochondrial ATP synthesis is 

required for some bovine PMN-derived effector mechanisms and demands further research 

approaches on species-specific differences of PMN activities (Zhou et al., 2019b). A recent 

study showed that inhibition of mitochondrial ATP synthesis had a minor effect on 

intracellular ATP levels, but inhibited release of ATP into the extracellular space of 

stimulated human PMN (Bao et al., 2014). Extracellular ATP can act as an extracellular 

messenger molecule for communications between adjacent cells, and driving purinergic-

dependent signaling pathways via various specific receptors expressed on PMN surface. 

Consequently, hydrolysis of extracellular ATP inhibited PMN migration, and inhibition of 

purinergic signaling blocked effectively PMN activation and impaired innate host responses 
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to bacterial infection, implying that they are essential for PMN activation and innate immune 

defence (Chen et al., 2010).  

Purinergic receptors are required for regulation of  main displayed PMN functions, such as 

chemotaxis (Tweedy et al., 2016), phagocytosis (Wang et al., 2017), oxidative burst (Chen et 

al., 2010), apoptosis (Vaughan et al., 2007), and degranulation (Grassi, 2010). There are two 

main families of purine receptors: P1 receptors and P2 receptors. So far, nineteen different 

purinergic receptor subtypes of extracellular ATP and adenosine (ATP breakdown products) 

have been reported, including eight P2Y receptor subtypes, seven P2X receptor subtypes, and 

four P1 (adenosine) receptor subtypes (Burnstock, 2007; Ralevic and Burnstock, 2013). P2Y 

receptors are G protein-coupled receptors, and it has been reported that extracellular ATP 

regulates PMN chemotaxis via P2Y2 receptors (Chen et al., 2006). P2Y are farther involved 

in PMN adhesion onto endothelial cells via binding of ATP and UTP to PMN surface 

(DiStasi and Ley, 2009; Jacobson et al., 2009). P2X receptors are ligand-gated ion channel 

receptors, and P2X7R receptor expression on activated PMN is required for NLRP3-

dependent inflammasome activation and bacterial killing (Karmakar et al., 2016).  

In the present thesis, we found that P2X1 receptors played a crucial role during B. besnoiti 

tachyzoite-induced NETosis in stimulated bovine PMN since pharmacological inhibition of 

P2X1 receptors clearly abolished NETosis (Zhou et al., 2019b). Interestingly, coagulopathies 

have been linked to PMN activation and released intravascular NETosis (Kimball et al., 2016; 

Qi et al., 2017), and in pathogenesis P2X1 receptors expressed on PMN and platelets have 

been found to be involved in the pathogenesis of thrombosis (Darbousset et al., 2014). All 

these results together indicate that P2X1 play a crucial role in NETosis-mediated thrombosis 

(Darbousset et al., 2014; Kimball et al., 2016; Qi et al., 2017). 

Furthermore, we investigated the effect of extracellular pH on B. besnoiti tachyzoites-

exposed bovine PMN as extracellular pH modulates the functions of diverse 

immunocompetent cells (Kellum et al., 2004; Lardner, 2001), including PMN (Trevani et al., 

1999), macrophages (Malayev and Nelson, 1995), and lymphocytes (Nakagawa et al., 2015). 

Extracellular acidosis is among the most common condition related to various physiological, 

pathological and infective situations, and most of studies focused on the effect of 

extracellular acidification in immune response more than on extracellular alkalinization. 

Early studies showed that acidic extracellular pH increased either PMN migration or 

diapedesis (Nahas et al., 1971; Rabinovich et al., 1980; Zigmond and Hargrove, 1981), and 
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activated PMN-mediated respiratory burst activities (Ahlin et al., 1995; Gabig et al., 1979; 

Leblebicioglu et al., 1996; Simchowitz, 1985). Another study revealed that extracellular 

acidification delayed human PMN apoptosis, enhanced endocytosis and inhibited bacteria 

killing (Cao et al., 2015). Likewise, intracellular bacterial killing of bovine PMN was also 

inhibited by extracellular pH acidification (Craven et al., 1986). Recently, it has been 

reported that extracellular acidification inhibited ROS-dependent formation of NETs (Behnen 

et al., 2017). Similarly, we found B. besnoiti tachyzoite-induced NETosis in bovine PMN 

being enhanced along with increasing extracellular pH (Zhou et al., 2019b), which is in 

accordance with other reports (Maueröder et al., 2016; Naffah de Souza et al., 2018). 

Extracellular acidification can rapidly reduce intracellular pH (Austin and Wray, 1993), and 

intracellular pH in PMN was also drastically enhanced with increasing extracellular pH 

(Naffah de Souza et al., 2018). Given that intracellular alkalinization induced cytosolic 

calcium flux (Li et al., 2012), and elevated calcium levels are required for proper PAD4-

mediated citrullination of H3 and casting of NETosis (Naffah de Souza et al., 2018; Villagra-

Blanco et al., 2017a), enhancement of B. besnoiti tachyzoite-induced NETosis under raising 

extracellular pH conditions might be due to calcium flux (Zhou et al., 2019a, b). 

Host cells such as leukocytes, skeletal muscle, and most tumor cells, which all produce ATP 

as energy mainly from glycolysis pathways, must expel lactic acid to avoid intracellular 

acidosis (Merezhinskaya et al., 2004). Transport of lactic acid across PMN membrane is 

mainly mediated by different MCTs transporters. The MCT-family contains 14 members, 

among which only four members (MCT1-4) transport monocarboxylates (Halestrap and 

Meredith, 2004, 16), and MCT1 and MCT4 are the predominant transporters in lactate 

uptake- and efflux pathways in mammalian PMN (Dhup et al., 2012; Halestrap, 2013). 

However, our data revealed that the inhibition of MCT1 did not influence NETosis induced 

by B. besnoiti tachyzoites in stimulated cattle PMN (Zhou et al., 2019b). Given that MCT1 

has high, and MCT4 rather low lactic acid affinity (Vinnakota and Beard, 2011), and being 

capable of lactate import and export, the less specific MCT4, also present in bovine PMN, 

might be involved in B. besnoiti-triggered NETosis. However, MCT1 is typically for lactate 

import in oxidative cells, and MCT4 is suited to export of lactate derived from glycolysis 

because it exhibits a lower affinity for pyruvate, which ensures continuous conversion of 

pyruvate into lactate and regeneration of cytosolic nicotinamide adenine dinucleotide (NAD+) 

(Dimmer et al., 2000; Draoui and Feron, 2011; Fox et al., 2000). As we mentioned before, 

energy for many PMN functions is mainly derived from PMN glycolysis activities. Therefore, 
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MCT4 probably play a more vital role than MCT1 to export lactate in bovine PMN system as 

postulated elsewhere (Zhou et al., 2019b).  

So far, no data is available on early reactions of bovine PMN, including oxidative burst 

activities (i. e. ROS production), phagocytosis and NETosis, after the confrontation with vital 

B. besnoiti bradyzoites neither in vitro nor in vivo. In this doctoral thesis, vital bradyzoites 

were successfully isolated from tissue cysts located in skin biopsies of a naturally infected 

animal presenting characteristic clinical signs of chronic bovine besnoitiosis (Zhou et al., 

2019c). Histopathological examinations showed typical multifocal round to ovoid large-sized 

subdermal cysts within histiocytes, and unveiling a characteristic thick three-layer wall of B. 

besnoiti-cysts, which is in line with previous published reports (Álvarez-García et al., 2013a; 

Hornok et al., 2014; Jacquiet et al., 2010; Rostaher Ana et al., 2010). More importantly, we 

demonstrated for the first time that vital bradyzoites of B. besnoiti were also capable to 

induce strong NETosis in a similar manner to tachyzoites (Muñoz-Caro et al., 2014a), 

although being different parasitic stages and exhibiting very different antigens (Fernandez-

Garcia et al., 2009; Schares et al., 2010). In line with these findings, other parasitic reports 

have also shown that different stages of the same parasite species are able to induce NETosis 

(Hermosilla et al., 2014; Muñoz-Caro et al., 2015a; Silva et al., 2014b; Villagra-Blanco et al., 

2017a; Villagra-Blanco et al., 2017c). SEM analysis unveiled the presence of classical web-

like structures released by PMN exposed to viable B. besnoiti bradyzoites, as previously 

observed for tachyzoites in vitro (Muñoz-Caro et al., 2014a; Maksimov et al., 2017). 

Additionally, the main components of NETosis [histones (H1, H2A/H2B, H3, H4) and NE] 

were here identified adorning extruded DNA filaments via immunostaining and proving that 

these web-like structures were NETs. Bradyzoites were entrapped in these extracellular 

structures, indicating that PMN might play a role in fast bovine innate immune responses 

against B. besnoiti bradyzoites being released actively through mechanical tissue cyst rupture. 

Accordingly, during chronic bovine besnoitiosis in vivo bradyzoites are liberated from tissue 

cysts after mechanical rupture and/or host immune suppression (Langenmayer et al., 2015; 

Schulz, 1960). Therefore, it has been speculated that released bradyzoites might become 

immediately potential targets for circulating PMN in vivo (Muñoz-Caro et al., 2014a; 

Langenmayer et al., 2015; Maksimov et al., 2017). Free-released bradyzoites of B. besnoiti 

might not immediately get into the bloodstream but PMN recruited to the site of bradyzoite 

release might initiate early antiparasitic reactions as postulated elsewhere (Brinkmann and 

Zychlinsky, 2012b; Hermosilla et al., 2014; Silva et al., 2016). During chronic phase of 
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bovine besnoitiosis intravascular circulation of bradyzoites might occur in vivo after 

mechanical rupture of tissue cysts located directly underneath vascular endothelium and/or 

after reactivation of tissue cysts and stage conversion to tachyzoites (Langenmayer et al.,. 

2015). Irrespective of all these scenarios, bradyzoites would be in close contact with PMN in 

vivo and released NETosis could hamper dissemination of bradyzoites into other organs 

(Zhou et al., 2019a, b, c). Moreover, bradyzoites released from tissue cysts in vivo result in 

strong cellular reactions surrounding them and being mainly composed of professional 

phagocytes (Schulz, 1960). In addition, some studies indicated that tissue cysts seemed to be 

degenerated (Basson et al., 1970; Bigalke et al., 1966), and inflammatory cells were 

infiltrating these affected B. besnoiti tissue cysts. Interestingly, a past study on B. jellisoni 

infection in hamsters showed that bradyzoites liberated after spontaneous cyst rupture were 

found to be poorly stained and clearly controlled by PMN phagocytosis (Frenkel, 1955). 

Bradyzoites infections were less severe, and the most successful infections were obtained 

upon immunosuppression treatments with cortisone (Diesing et al., 1988), indicating that 

early host innate immune response has a strong protective effect against this parasitic stage 

(Frenkel, 1955; Basson et al., 1970; Bigalke et al., 1966; Diesing et al., 1988).  

Interestingly, our present results demonstrated that autophagy was associated to both 

tachyzoite- and bradyzoite-triggered bovine NETosis, and recent data on N. caninum 

tachyzoite-mediated NETosis with concomitant autophagy (Zhou et al., manuscript in 

preparation) corresponded well to these results. Cellular autophagy is a highly conserved, an 

essential intracellular degradation mechanism to regulate protein and organelle turnover in 

many living cells thereby maintaining cell homeostasis and intracellular energy balance 

(Levine and Kroemer, 2008). During autophagy, unnecessary cytoplasm and/or damaged 

organelles are engulfed by double-membrane vesicles called autophagosomes which are 

characteristic markers of autophagy. These intracellular autophagosomes ultimately fuse with 

lysosomes to degrade and recycle the inside cargo of autophagosomes (Bernard and Klionsky, 

2013). LC3 is a small soluble protein which is distributed ubiquitously in mammalian tissues 

and cultured cells and known to form stable associations with the membrane of 

autophagosomes (Tanida et al., 2008). As such, LC3-I (a cytosolic form of LC3) is 

conjugated to phosphatidylethanolamine to form LC3-II, which is then recruited to 

autophagosomal membranes (Park et al., 2017). Thus, LC3 is widely used as a classical 

marker for detection of intracellular autophagosomes. The LC3 gene family has three 

members LC3A, LC3B and LC3C, and most autophagy-related investigations used 
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endogenous autophagic marker is LC3B (Koukourakis et al., 2015). Autophagy in human 

PMN was found to be induced in both phagocytosis-dependent and -independent manner, and 

was also found to be involved in other relevant functions of PMN (Skendros et al., 2018). 

Upon phagocytosis of bacteria by macrophages, autophagy induction was shown to be crucial 

in eliminating intracellular pathogens like L. monocytogenes, M. tuberculosis, S. enterica, S. 

flexneri, and S. pyogenes (Dorn et al., 2002). Moreover, recent studies have revealed that 

autophagy is required for proper NETosis extrusion (Remijsen et al., 2011; Ullah et al., 2017) 

and that autophagy itself can result in the induction of NET formation (Park et al., 2017). In 

accordance with these previous studies, autophagy occurred in both tachyzoite- and 

bradyzoite-triggered NETosis observed by confocal analyses, and these two processes had a 

positive correlation by Spearmann test, showing a potential role of autophagy in bovine 

PMN-derived immune responses against B. besnoiti (Zhou et al., 2019a) 

While autophagy process has been tightly associated with NETosis, the exact molecular 

mechanisms and pathways are still not completely clear (Skendros et al., 2018). mTOR, a 

serine/threonine kinase, is a crucial regulator of cell growth and proliferation, and also 

playing a central role in regulating autophagy (Kim and Guan, 2015). Thus, it is also reported 

that autophagy modulated NETosis via mTOR pathway is occurring (Itakura and McCarty, 

2013). Farther, Park et al. (2017) showed that rapamycin pretreatments primed human PMN 

enhancing NETosis in response to PMA using a Sytox Green-related assay for NETosis 

quantification (Park et al., 2017). In this current thesis, rapamycin treatments alone did not 

influence tachyzoite-induced NETosis. Using B. besnoiti tachyzoites instead of PMA, 

rapamycin treatments did not influence the degree of parasite-triggered bovine NETosis when 

using Pico Green-based analyses on total NETs,  “anchored” NETs and ”cell-free” NETs 

(Zhou et al., 2019a). In addition, treatments with the autophagy-inhibitor wortmannin failed 

to affect parasite-triggered NETosis. This observation was complemented with the use of the 

PI3K inhibitor LY294002, observing a non-significant decrease of “anchored”-NETs. Same 

result was observed by the use of NF-κB inhibitor. However, when estimating early NETosis 

via nuclear decondensation [i. e. nuclear area expansion, (NAE)] analysis, we found that 

rapamycin pretreatments indeed primed bovine PMN for enhanced NET formation in 

response to B. besnoiti tachyzoites. The discrepancy between the different methods for 

NETosis detection may explain this by two factors: firstly, autophagy appears to precede 

NETosis being rather linked to early NETosis- than late NETosis, and secondly NAE-based 

assays appeared more sensitive for detection of tachyzoite-triggered NETosis therefore have 
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produced an improved resolution of obtained data. We therefore assume that early tachyzoite-

triggered NETosis is indeed linked to autophagy in bovine PMN (Zhou et al., 2019a). 

In addition, cellular autophagy is generally activated by nutrient deprivation, oxidative stress, 

and ultraviolet radiation, but it is also associated with physiological and pathological 

processes such as development, differentiation, neurodegenerative diseases, stress, infection, 

and cancer (Kesidou et al., 2013; Nikoletopoulou et al., 2015). A vast of cellular stress 

signals converge to mTOR complex 1 (mTORC1) to regulate autophagy upstream of the core 

machinery. mTORC1 is a critical regulator of autophagy induction, with mTORC1 activation 

by Akt and MAPK signaling suppressing autophagy (Dibble and Manning, 2013), and 

mTORC1 inhibition by AMPK and p53 signaling promoting this cell process (Alers et al., 

2012). AMPKα is a key metabolic master regulator in eukaryotes with high impact on several 

important cellular mechanisms. AMPKα activation is initiated by changes in the metabolic 

status which result from inhibition of ATP generation during hypoxia, glucose deprivation 

and increased ATP consumption (Zhao et al., 2008). Previous observations in PMN showed 

that AMPK activation decreased PMA-induced ROS production in human PMN (Alba et al., 

2004), but enhanced PMN chemotaxis, bacterial killing, and phagocytosis (Park et al., 2013). 

Moreover, AMPK promotes autophagy by directly activating Ulk1 which is a mTOR 

downstream enzyme during autophagosome formation (Kim et al., 2011). On the other hand, 

inhibition of AMPK in mice model induced H3 secretion, suggesting that AMPK activation 

contributed to murine NETosis (Jiang et al., 2014). Since autophagy is a complex process and 

it can be initiated via various signaling pathways, we tried to check whether AMPK pathway 

was also involved in B. besnoiti tachyzoite-induced autophagy. Our current data showed that 

confrontation of PMN with B. besnoiti tachyzoites clearly induced AMPKα activation in a 

time-dependent manner. Thus, AMPKα phosphorylation was rapidly induced in exposed 

PMN from the very beginning of parasite-PMN interactions (until 30 min; Zhou et al., 2019a). 

So far, it is unclear if enhanced AMPKα activation is linked either to autophagy or NETosis 

alone or to both concomitantly in tachyzoite-exposed PMN, but this will be a matter for 

further research. 

In summary, this current work provides a better understanding on the relevance of metabolic 

pathways, purinergic signaling and pH conditions involved in B.besnoiti tachyzoite-induced 

NETosis. Moreover, concomitant NETosis and autophagosome formation were found to 

occur simultaneously in tachyzoite-exposed PMN. Autophagy was accompanied by rapid 

phosphorylation of AMPKα in exposed B. besnoiti PMN. In addition, we describe for the 
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first time the ability of bovine PMN to cast NETosis against motile B. besnoiti bradyzoites 

evidencing the importance of this ancient and well-conserved effector mechanism of early 

host innate immune system in cattle. Furthermore, LC3B-stained autophagosomes were 

detected in B. besnoiti bradyzoite-exposed PMN casting NETs resulting in a significant 

positive correlation of autophagy and parasite-induced suicidal NETosis. However, further 

autophagy-related investigations should elucidate whether other molecular mechanisms in 

this cell pathway might occur. Finally, B. besnoiti-mediated vital NETosis resulted in a rapid 

extrusion and retraction of a ‘chameleon tongue-like’ structure, which is the first hint for this 

type of NETosis against apicomplexan parasites. Exact machinery, B. besnoiti-specific 

antigens and PMN receptors leading to fast parasite-triggered vital NETosis need further 

investigations. 
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4. ZUSAMMENFASSUNG 

Besnoitia besnoiti ist der Erreger der Rinderbesnoitiose, einer Erkrankung, die die 

Tierproduktivität beeinträchtigt und auch tierschutz-relevant ist. Die Bildung sogenannter 

‚neutrophile extracellular traps‘ (NETs) stellt einen wichtigen angeborenen 

Effektormechanismus von Neutrophilen dar, der gegen verschiedene Pathogene wirkt. Vor 

kurzem wurde über die Freisetzung von NETs, die auch als NETosis bezeichnet wird, als 

Reaktion auf B. besnoiti-Tachyzoiten berichtet. Über die Rolle von Stoffwechselwegen bei 

durch Parasiten ausgelöster NETosis ist jedoch nur ein begrenztes Wissen verfügbar. In der 

vorliegenden Arbeit wurden Stoffwechselsignaturen von Tachyzoiten-exponierter 

Neutrophilen (PMN) analysiert und Experimente zur funktionellen NETosis-Hemmung 

durchgeführt. Weiterhin wurde die Bedeutung verschiedener PMN-abgeleiteter 

Stoffwechselwege für eine durch B. besnoiti-Tachyzoiten und -Bradyzoiten induzierte 

NETosis untersucht. Insgesamt führte die Exposition gegenüber hitzeinaktivierten 

Tachyzoiten zu einem Anstieg des Glukose- und Serin-Verbrauchs, einem Rückgang des 

Glutamin-Verbrauchs und einer Steigerung der Glutamat- und Alanin-Produktion in 

exponierten Rinder-PMN. Darüber hinaus wurde die Tachyzoiten-induzierte Bildung 

zellfreier NETs durch PMN-Vorbehandlung mit Dichloracetat (Pyruvatdehydrogenase-

Inhibitor), Oxythiamin (Inhibitor der Pyruvatdehydrogenase-Kinase) und Oxamat (Inhibitor 

der Lactatdehydrogenase) signifikant reduziert, was auf eine Schlüsselrolle der Pyruvat- und 

Laktat-vermittelten Stoffwechselwege für die richtige Tachyzoit-vermittelte NETosis 

hinweist. In der Folge wurde die NETosis-Bildung auch durch einen erhöhten pH-Wert 

induziert, jedoch konnten Laktat-Transporter-Blocker (AR-C141900, AR-C151858) die 

NETosis nicht beeinflussen. Eine signifikante Reduktion der Tachyzoiten-induzierten NET-

Bildung wurde auch durch Behandlung mit Oligomycin (Inhibitor der ATP-Synthase) und 

NF449 (purinergischer Rezeptor P2X1-Antagonist) erreicht, was auf eine zentrale Rolle der 

Verfügbarkeit von ATP hindeutet. Im Gegensatz dazu beeinflussten Behandlungen mit 

Inhibitoren der frühen Schritte der Glykolyse oder Glutaminolyse die durch Parasiten 

ausgelöste NETosis nicht. Diese genauen Daten vermitteln ein besseres Verständnis der 

Stoffwechselwege, die an der Bildung von durch B. besnoiti-Tachyzoiten induzierten 

NETosis beteiligt sind. 

Weiterhin induzierten Tachyzoiten von B. besnoiti die Bildung von LC3B-verwandten 

Autophagosomen parallel zur NETosis in Rinder-PMN. Bemerkenswerterweise beeinflusste 

weder eine Rapamycin- noch eine Wortmannin-Behandlung die durch B. besnoiti ausgelöste 



140 
 

NET-Bildung und die Bildung von Autophagosomen. Auch isolierte NETs induzierten keine 

Autophagie, was die Unabhängigkeit zwischen beiden zellulären Prozessen nahelegt. 

Interessanterweise wurde innerhalb der ersten Minuten der Wechselwirkung in Tachyzoiten-

exponierten Rinder-PMN eine verstärkte Phosphorylierung von AMPKα, einem der 

wichtigsten Regulatormoleküle der Autophagie, beobachtet. Dies unterstreicht, dass die 

durch B. besnoiti ausgelöste NET-Bildung tatsächlich parallel zur Autophagie auftritt. 

Außerdem wurden frühe Effektormechanismen von Rinder-PMN, die vitalen, aus  

Hautgewebszysten eines infizierten Tieres isolierten B. besnoiti-Bradyzoiten ausgesetzt 

waren untersucht. Histopathologische Untersuchungen bestätigten das Vorhandensein von 

typischen runden, großformatigen Zysten in Hautbiopsien. Nach PMN:B.besnoiti-

Bradyzoiten Co-Kulturen, Rasterelektronen- und Fluoreszenzmikroskopieanalysen zeigten 

ein feines Netzwerk NETosis-ähnlicher Strukturen, die von PMN von Rindern und 

verstrickten Bradyzoiten freigesetzt wurden. Klassische NETosis-Komponenten wurden in 

diesen Strukturen durch Immunfluoreszenzanalysen an extrazellulärer DNA, Histone (H1-H4) 

und Neutrophilen-Elastase (NE)-Co-Lokalisation, bestätigt. Neben NETosis wurde in 

Bradyzoiten-stimulierten PMN auch eine erhöhte Bildung von Autophagosomen (sichtbar 

durch spezifische LC3B-Färbung) beobachtet. Statistische Analysen zeigten eine signifikante 

positive Korrelation (p = 0,042) zwischen dem NETosis-Auftreten und der Autophagie in 

diesen angeborenen Immunzellen. Diese Ergebnisse legen nahe, dass NETosis eine zentrale 

Rolle bei frühen angeborenen Wirtsreaktionen gegen B. besnoiti-Bradyzoiten spielt und 

liefern darüber hinaus erste Beweise für die Autophagie, die mit der durch B. besnoiti-

Bradyzoiten induzierten NET-Bildung assoziiert ist. 
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5. SUMMARY 

Besnoitia besnoiti is the causative agent of bovine besnoitiosis, a disease that affects both, 

animal welfare and cattle productivity. Neutrophil extracellular trap (NET) formation 

represents an important innate effector mechanism of polymorphonuclear neutrophils (PMN) 

acting against various pathogens. Recently, NETs release was reported in response to B. 

besnoiti tachyzoites. However, limited knowledge is available on the role of metabolic 

pathways during parasite-triggered NET formation, nowadays known as NETosis. By 

analysing metabolic signatures of tachyzoite-exposed PMN and applying functional 

inhibition experiments, we here aimed to investigate the importance of distinct PMN-derived 

metabolic pathways for effective B. besnoiti tachyzoite-induced NETosis. Overall, exposure 

to heat-inactivated tachyzoites induced an increase in glucose and serine consumption, a drop 

in glutamine consumption and an enhancement of glutamate and alanine production in bovine 

PMN. Moreover, tachyzoite-induced formation of cell free NETs was significantly 

diminished via PMN pretreatments with dichloroacetate (pyruvate dehydrogenase inhibitor), 

oxythiamine (inhibitor of pyruvate dehydrogenase kinase) and oxamate (inhibitor of lactate 

dehydrogenase), thereby indicating a key role of pyruvate- and lactate-mediated metabolic 

pathways for proper tachyzoite-mediated NETosis. In line, NET formation was also induced 

by enhanced pH, however, blockers (AR-C141900, AR-C151858) of lactate transporters 

failed to influence NETosis. Moreover, a significant reduction of tachyzoite-induced NET 

formation was also achieved by treatments with oligomycin (inhibitor of ATP synthase) and 

NF449 (purinergic receptor P2X1 antagonist) which suggested a pivotal role of ATP 

availability in this effector mechanism. In contrast, treatments with inhibitors of early steps of 

glycolysis or glutaminolysis did not affect parasite-triggered NETosis. These current data 

will provide a better understanding of metabolic pathways involved in B. besnoiti tachyzoite-

induced NETosis. 

Moreover, tachyzoites of B. besnoiti induced LC3B-related autophagosome formation in 

parallel to NETosis in bovine PMN. Notably, both rapamycin- and wortmannin-treatments 

failed to influence B. besnoiti-triggered NETosis and autophagosome formation. Also, 

isolated NETosis failed to induce autophagy suggesting independence between both cellular 

processes. Interestingly, enhanced phosphorylation of AMPKα, a key regulator molecule of 

autophagy, was observed within the first minutes of interaction in tachyzoite-exposed bovine 
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PMN thereby emphasizing that B. besnoiti-triggered NETosis indeed occurred in parallel to 

autophagy. 

In addition, we investigated early effector mechanisms of bovine PMN being exposed to vital 

B. besnoiti bradyzoite stages, which were isolated from skin tissue cysts of a naturally 

infected animal presenting characteristic symptoms of bovine besnoitiosis. Histopathological 

examinations confirmed the presence of typical roundish, large-sized cysts in subdermal 

biopsies. After PMN:B. besnoiti bradyzoites co-cultures, scanning electron microscopy 

(SEM)- and epifluorescence microscopy-analyses demonstrated a fine network of NET-like 

structures being released by bovine PMN and efficiently ensnaring bradyzoites. Classical 

NETosis-associated components were confirmed in these extracellular structures via 

immunofluorescence analyses on extracellular DNA, histone (H1-H4) and neutrophil elastase 

(NE) colocalization. Besides NETosis, an increased formation of autophagosomes (visualized 

by specific-LC3B staining) was observed in bradyzoite-stimulated PMN. Statistical analyses 

revealed a significant positive correlation (p = 0.042) between the occurrence of NETosis and 

autophagy in these immunocompetent cells. These findings suggest NETosis plays a pivotal 

role in early innate host responses against bradyzoite stages and furthermore deliver first 

evidence on autophagy being associated with B. besnoiti bradyzoite-induced NETosis.  
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7. SUPPLEMENTARY DATA  

7.1 Dirofilaria immitis microfilariae and third-stage larvae induce canine NETosis 

resulting in different types of neutrophil extracellular traps 
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