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1 Introduction

1 Introduction

”Die Energie kann als Ursache für alle Veränderungen in der Welt
angesehen werden.” [1]

In the year 2009 the world supply of primary energy was 509EJ (=̂12150 million
tons of oil equivalent (Mtoe)) [2]. The total consumption of final energy for
this year was 350EJ (=̂8353 Mtoe). The difference between theses numbers is
due to the losses that occur during the transformation from primary energy to
final energy, whereas the most losses originate in the production of electricity.
The final energy consists of 17.3% electricity 79.4% fossile fuel and 3.3% of
other forms. A huge part of the final energy is used in transportation. 90EJ
are consumed in this sector. Even though electric mobility is a big issue these
days, still 99% of the final energy used in transportation are fossil fuels. Since
the requirements with respect to weight, costs, and dimensions are rather high
for engines used in transportation, the efficiency of those engines is limited
and therefore far away from the thermodynamic Carnot limit. In conclusion
these numbers show that a huge amount of waste heat is produced. One
big part arises in the conversion from primary energy to final energy and
another big part arises when final energy is not used efficiently. Since there
is such a large amount of waste heat, it would be worth to convert this waste
heat into final energy again, even if only a small fraction could be converted.
Devices which can be considered for these conversions need to fulfill specific
demands. The most important demands are that the device itself should be
economical and ecological. Also the devices should be scalable, maintenance
free, and reliable. One class of devices that fulfill most of these demands are
thermoelectric generators (TEG). In a TEG the Seebeck effect is utilized to
generate electric power out of a temperature difference. The Seebeck effect
was first discovered by Thomas Johann Seebeck in 1821. Seebeck showed that
a temperature difference leads to a so called Seebeck voltage. The Seebeck
voltage VS is proportional to the temperature difference ∆T and the Seebeck
coefficient is defined as S = VS

∆T
. The main principle of a TEG is demonstrated

in Fig. 1.1.
The first applications of TEGs arise in the 1920’s, where TEGs are used

for electricity generation in kerosene lamps [3]. In the 1960’s TEGs become
important for spacecraft applications, since they are an important component
of a radioisotope thermoelectric generators(RTG). In a RTG a TEG trans-
forms heat that is obtained from radioactive decay in electricity. During these
spacecraft applications TEGs demonstrated their reliability, where TEGs op-
erated failure free and maintenance free for over 30 years [4]. Today TEGs
are employed in various fields. Besides in spacecraft applications, TEGs are
used in automobiles [5], wood stoves [6], wireless remote applications [7] and
Peltier coolers. In automobiles waste heat from the engine or from the exhaust
is used to unload the alternator, which safes fuel. In wood stoves TEGs are
used to run a fan, which regulates the air supply and therefore increases the
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1 Introduction

Figure 1.1: Schematic sketch of a TEG. In general a TEG consists of two dif-
ferent leg types n-type and p-type. The n-type leg has as negative
Seebeck coefficient the p-type leg a positive Seebeck coefficient.
The legs are thermally connected parallel and electrically connect
in series. There are in principle two different modes in which a
TEG can be used. A TEG can be used as a generator (left). In
this case a temperature gradient leads to a current in the n-leg of
electrons from the hot to the cold side and simultaneously in the p-
leg a current of holes from the hot to the cold side. These currents
lead to a voltage difference between both cold or hot ends of the
different legs. This voltage can be used to perform work. Another
mode of a TEG is shown right. In this case an external voltage is
applied, which leads to a current in the n-leg of hot electrons from
one side to another. Therefore, one side is heated and the other
one is cooled. In the p-leg cold holes are traveling from one side to
the other and increase this effect.
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1 Introduction

efficiency and reduced the emission of carbon monoxide. It is also possible to
generate electricity from the heat of the stove. TEGs can be also very useful
as a power supply for remote applications like sensors to avoid an additional
wire or regular maintenance. If a voltage is imposed on a TEG the TEG can
also function as a heat pump. The effect that is utilized in this case is called
Peltier effect. The Peltier effect is in principle the reversed Seebeck effect,
where a charge current creates a temperature gradient. A TEG that operates
as a heat pump is also called Peltier element or Peltier cooler, since they are
often used for cooling application like portable refrigerators. The main prin-
ciple of a TEG, operated as a Peltier element, is demonstrated in Fig. 1.1.
Despite the versatile applicability of the TEGs, a mass market for TEGs has
not yet been established. The main reason for this is the rather low efficiency
of TEGs. The ideal maximum achievable efficiency of a TEG is linked to the
material parameters by the so called figure of merit zT [8]

zT =
σS2T

κ
. (1.1)

σ : electric conductivity

S : Seebeck coefficient

κ : thermal conductivity

T : Temperature

In this equation one can identify the most important characteristics of a good
thermoelectric material. Besides a high Seebeck coefficient the material must
be a good electron conductor and simultaneously a bad heat conductor. There
is in principle heat conduction due to electrons and due to phonons. Hence the
thermal conductivity can be divided into two parts κe and κp. κe is the electric
contribution to thermal conductivity and κp the phonon part of the thermal
conductivity. κp is sometimes also referred to as the lattice part of the thermal
conductivity since phonons are the excitations of the lattice vibrations. Since
electrons carry charge and heat it is difficult to alter κe and σ independently. A
rough estimation of the relation between κe and σ is given by the Wiedeman-
Franz-law [9], which states that κe is proportional to σ. The Wiedeman-Franz-
law holds for highly doped semiconductors and metals. The basic demands on
a thermoelectric material can be summarized by ”a good thermoelectric is a
crystal for electrons and a glass for phonons”.

The figure of merit zT is linked to the total efficiency by [8]

η = 100 · Th − Tc
Th

·
√

1 + zT − 1√
1 + zT + Tc

Th

. (1.2)

Tc and Th are the temperatures of the cold and hot side, respectively. In Fig.1.2
the total efficiency η is shown for different zT and temperatures. For zT→∞
the efficiency equals the Carnot limit.
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Figure 1.2: Left: Total efficiency for different values of zT against Th for Tc =
300K. Right: Total efficiency for different Th against zT for Tc =
300K.

Today there are several materials that are used for thermoelectric applications.
Each material has a certain temperature at which the material exhibits a high
figure of merit. Typically good thermoelectric materials are highly doped semi-
conductors, since metals exhibit a too small Seebeck coefficient. Fig.1.3 shows
the figure of merit against the temperature for the most common thermo-
electric materials. The actual efficiency of the overall TEG is in general lower
because of losses at the contacts and the broad temperature range in the TEG.
The best TEGS today can achieve a zT value of approximately 0.7 [10]. To be
competitive with established technologies like steam engines or thermal solar
engines zT has to be at least 4 [10]. Nevertheless, if a power output lower than
70W is required the established engines become quite insufficient because of
their poor scaling behavior. In this case a TEG could be favorable even with
a zT value of 0.7.

Figure 1.3: Left: Figure of merit zT for typical n-type (Left) and p-type
(Right) thermoelectric materials [8].

Despite 50 years of research the materials shown in Fig.1.3 are the best
thermoelectric material found so far and they fairly achieve a figure of merit
of 1. In the early 1990’s a new concept to increase efficiency arises in the
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1 Introduction

literature. Instead of searching for new materials the strategy is to improve
the efficiency of known good thermoelectric materials due to nanostructuring.
There are in principle two promising effects that are expected to rise due to
nanostructuring. One effect that occurs is additional phonon scattering, which
reduced the thermal conductivity. Venkatasubramanian demonstrated this
effect in Sb2Te3/Bi2Te3 multilayers [11]. The other effect is an enhancement
of the Seebeck coefficient. An enhancement of the Seebeck coefficient can be
achieved by structures that lead to energy filtering [12, 13, 14, 15, 16] or by
structures of low dimensions [17, 18].

A field that is neglected in thermoelectric is the research of so called Green
thermoelectrics. The best thermoelectric material today are either toxic and
pollute the environment (PbTe, Bi2Te3) or they are expensive and rare (SiGe)
[19]. In contrast Green thermoelectrics are materials that are environmen-
tally friendly and available in masses. One promising candidate for such a
Green thermoelectric is nanostructured ZnO. ZnO has been in the focus of
research for several years, since it is also a promising candidate for optoelec-
tronic devices due to the large band gap of 3.4eV [20]. Bulk ZnO is not a good
thermoelectric material because of the rather high thermal lattice conductivity
of about 60Wm−1K−1 [21]. A decrease in the lattice conductivity compared
to the bulk value is expected for polycrystalline ZnO because of the additional
scattering mechanism at the grain boundaries. Also additional energy filtering
effects can occur at the grain boundary. A rather high zT value of 0.65 at
1247K is reported by Ohtaki et al. [22]. In conjunction with ZnS the efficiency
of ZnO could also be enhanced. The idea in ZnO/ZnS based systems is, that
a high phonon scattering occurs because of the different masses of oxygen and
sulfur. On the other hand the electric system should not be effected that much
since oxygen and sulfur belong to the same main group in the periodic table.
Some fundamental research on this field was done by Homm et al. [23, 24, 25],
where they investigated the effect of ZnO/ZnS superlattices on the Seebeck co-
efficient, as well as the dependency of the doping concentration on the Seebeck
coefficient in aluminum doped ZnO. Despite the great progress of research in
this material the main principle mechanism of transport across ZnO/ZnO and
ZnO/ZnS are not fully understood. Therefore in this work the main focus will
be the investigation of the impact on the thermoelectric parameters of such
interfaces.
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2 Theory

In this chapter the fundamentals of thermoelectrics are derived. In the first sec-
tion of this chapter the Onsager-de Groot-Callen model is briefly discussed and
the well known Onsager expressions are derived. Also the connection between
the kinetic coefficients and the thermoelectric coefficients are shown. From
the Onsager expressions the classical laws of Ohm and Fourier are derived. At
the end of the first section the connection between the three thermoelectric
effects which are the Seebeck, Peltier and Thomson-effect are discussed. In the
second section of this chapter two microscopic transport models are presented,
which can be related to the kinetic coefficients. A frequently used model is
the Boltzman transport equation (BTE)[26]. The central quantity in the BTE
is the relaxation time. The BTE is often used to describe diffusive transport.
The other model presented in this work is the Landauer formalism [27, 28].
The Landauer formalism is preferentially used to describe coherent transport.
In the third section of the chapter the basics of solid state physics with focus
on the electronic structure and the lattice vibrations are presented. Also in
this section techniques are introduced to calculate such structures. These tech-
niques are the density functional theory (DFT) [29] and the Green’s function
formalism. An extension of the Green’s function formalism to non equilibrium
Green’s function formalism (NEGF) is shown [27, 28]. The NEGF is suitable
in connection with the Landauer formalism to calculate electron and phonon
transport[30, 31, 32]. In the fourth section a model to describe grain boundary
transport is introduced. In this model the effect of grain boundaries on the
transport are taken into account due to double Schottky barriers.
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2.1 The Onsager equations

2.1 The Onsager equations

In this chapter a brief introduction of the Onsager-de Groot-Callen Model
is given. A more comprehensive and detailed description can be found in
reference [33].

The conservation of energy and matter as well as the first law of thermody-
namics lead to the following expression for the total energy flux JE per unit
area

JE = JQ + µJN . (2.3)

JQ is the heat flux per unit area and JN is the particle flux per unit area. For
each of these fluxes a force can be defined that causes these fluxes. In analogy
to classical mechanics a potential for each of these fluxes can be defined. The
corresponding potentials for the energy flux JE and for the particle flux JN
are 1

T
and − µ

T
[33]. This leads to the kinetic coefficient matrix[

JN
JE

]
=

[
LNN LNE
LEN LEE

] [
−∇ µ

T

∇ 1
T

]
. (2.4)

In a steady state non-equilibrium process the principle of minimal entropy con-
ditions holds. This principle requires that the matrix in equation (2.4) is sym-
metric which means LNE=LEN . From a microscopic point of view this means
that the underlying processes have time reversal symmetry. In thermoelectrics
the heat and charge currents JQ and JC are the conventional quantities. The
charge and particle current are linked by JC = eJN , whereas the link between
the heat current JQ, particle current JN and JE is given in equation (2.3).
Using ∇ 1

T
= − 1

T 2∇T equation (2.4) can be rewritten as[
JC
JQ

]
=

[
L11 L12

L21 L22

] [
−∇µ

e

−∇T

]
(2.5)

with

L11 =
e2

T
LNN (2.6a)

L12 =
e

T 2
(LNE − µLNN) (2.6b)

L21 =
e

T
(LNE − µLNN) (2.6c)

L22 =
1

T 2
(LEE + µ2LNN − µLNE − µLEN). (2.6d)

In equation (2.5) the fluxes are not written as a function of their corresponding
thermodynamic potentials 1

T
and −µ

T
. Therefore, the coefficient matrix in (2.5)

does not have to be symmetric. In fact the off diagonal elements are linked
by L12T = L21. From equation (2.5) the connection between the Lnm and the
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2.1 The Onsager equations

thermodynamic quantities σ, S and κ can be extracted. The electric field E
and the chemical potential µ are linked by −∇µ

e
= E. For ∇T = 0 equation

(2.5) yields

JC = L11E (2.7a)

JQ = L21E. (2.7b)

Equation (2.7a) is Ohm’s law with L11 = σ. Equation (2.7a) and (2.7b) can
be combined to get

JQ =
L21

L11

JC . (2.8)

This equation describes the Peltier effect with L21

L11
= Π, where Π is the

Peltier coefficient. For JC = 0 equation (2.5) becomes

0 = L11E + L12(−∇T ) (2.9a)

JQ =

(
L22 −

L12L21

L11

)
(−∇T ). (2.9b)

The Seebeck coefficient is defined as E
∇T = L12

L11
. Equation (2.9b) shows

Fourier’s law with κ = L22 − L12L21

L11
. The relations between the Lnm and the

thermoelectric coefficients are summarized in the following:

σ = L11, (2.10a)

S =
L12

L11

, (2.10b)

Π =
L21

L11

, (2.10c)

κ = L22 −
L12L21

L11

, (2.10d)

κ0 = L22. (2.10e)

Thereby, the convention is used to rename L22 to κ0. Using these relations
equation (2.5) becomes[

JC
JQ

]
=

[
σ σS
σΠ κ0

] [
E

−∇T

]
. (2.11)

Since L12T = L21, there is a direct relation between the Seebeck coefficient
and the Peltier coefficient

S · T = Π, (2.12)
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2.1 The Onsager equations

which is known as the Kelvin relation. An interpretation of these effects can be
obtained by looking at equation (2.12) and (2.8). Obviously, the Peltier coeffi-
cient is the average heat per charge carrier, whereas the Seebeck coefficient is
the average entropy per charge, since entropy is heat divided by temperature.

In equation (2.11) only the different currents are defined, but no statement
is made about the sources and sinks of these currents. For the charge current
the law of charge conservation holds, which means ∇JC = 0. For the heat
current the law of energy conservation together with equation (2.3) yields

∇JE = 0, (2.13a)

∇JQ = EJC , (2.13b)

∇JQ =
J2
C

σ
+ JCS∇T. (2.13c)

Besides the Seebeck effect and the Peltier effect the Thomson effect is the
third thermoelectric effect. The Thomson effect describes the heat produced in
a homogeneous conductor which has a current density JC . The heat production
per volume q is the heat emitted to the surroundings. In this case the energy
conservation yields

q = EJC −∇JQ. (2.14)

Using equation (2.11) q can be rewritten to

q = EJC −∇JQ, (2.15a)

= EJC −∇(σΠE − κ0∇T ), (2.15b)

=
J2
C

σ
+ JCS∇T −∇(JCΠ) +∇((κ0 − σΠS)∇T ). (2.15c)

From the relations in (2.10) the equation κ0−σSΠ = κ can be directly derived.
Therefore equation (2.15c) becomes

q =
J2
C

σ
+ JCS∇T −∇(JCΠ) +∇(κ∇T ). (2.16)

For a homogeneous material the spatial dependency of S is only due to the
temperature dependency of S. Hence equation 2.16 yields

q =
J2
C

σ
− JCT

dS

dT
∇T +∇(κ∇T ). (2.17)

Further, equation (2.17) can then be rewritten to

q =
J2
C

σ
− JCµT∇T +∇(κ∇T ). (2.18)
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2.1 The Onsager equations

with

µT = T
dS

dT
. (2.19)

µT is called the Thomson coefficient. Neglecting the term with higher order
derivatives equation (2.19) yields

q =
J2
C

σ
− JCµT∇T. (2.20)

The first term in equation (2.20) is the Joule heating, which is always posi-
tive. The second term is the Thomson heating. The Thomson heating can be
positive or negative and describes the reversibly released heat.

Equations (2.11) together with equations (2.13) build the basic relations
for classical thermoelectric transport. To illustrate the connection between
these equations and applications, Bi2Te3 as a typical thermoelectric material
is considered. P-type Bi2Te3 has the following thermoelectric parameters [34]:
σ = 6.5 · 104Ω−1m−1, S = 210µV/K, and κ = 1.35W/mK. For simplification
the n-type values are chosen to be the same as the p-type values except for
the Seebeck coefficient which is chosen to be S = −210µV/K. The length of
the legs is chosen to be L = 0.5cm and the temperature of one side is fixed
to 300K. In Fig.2.4 the considered system and the spatial distribution of the
Seebeck coefficient is shown. The spatial distribution is chosen such, that the
Seebeck coefficient smoothly changes between the bulk value and zero. The
Seebeck coefficient is zero at the point, where the N-leg and P-leg are connected
by a metallic contact. In the following considerations the sign convention is
defined in Fig.2.4. In Fig.2.5 the JC − U characteristics for different T2 can
be seen. U is the voltage between the leg and JC is the current density. For
T2 = 300K the JC − U characteristics are in principle the one of a normal
resistor that follows Ohm’s law. If T2 6= 300K the TEG can be used as a
generator. For T2 > 300K the TEG produced power if JC < 0 and U > 0.
For T2 < 300K the TEG produced power if JC > 0 and U < 0. The absolute
maximum voltage that can be achieved is given by ∆T · 2 · 210µV/K. The
TEG has the maximum power output at the point where the value U · JC has
its maximum. If U and JC have the same sign the TEG is used as a heat
pump. For JC > 0 heat is pumped to increase the temperature T2, if JC < 0
T2 is decreased. In Fig.2.5 the spatial temperature distribution for different
JC is shown. Decreasing JC leads to a decreasing temperature at x = 0.5cm
till JC = −0.6A/mm2. Decreasing JC furthermore increases the temperature
at x = 0.5cm. The reason for this behavior is, that the heat transport of the
current is proportional to JC , but the heat produced due to the joule term is
proportional to the square of JC . Therefore, an optimum value for JC exists
at which the temperature at x = 0.5cm has its minimum. This value for the
current is in general not the value for the current at which the cooling is most
efficient.

13



2.1 The Onsager equations

Figure 2.4: Left: Sketch of a TEG with N- and P- leg. Right: Spatial distri-
bution of the Seebeck coefficient.

Figure 2.5: Left: JC − U characteristics for different values of T2. Right:
Temperature profile for different current densities JC .
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2.2 Microscopic transport models

2.2 Microscopic transport models

2.2.1 The Landauer formalism

The Landauer formalism is often used to calculate ballistic heat or charge cur-
rent of a system that is out of equilibrium. Despite the Landauer formalism
is usually used to consider ballistic transport, it can also be used to calculate
diffusive transport. In the Landauer formalism we consider two contacts which
are connected via a conduction channel. Each contact is in equilibrium with
a different reservoir. The two reservoirs can differ in their thermodynamic
parameters such as temperature or chemical potential. The channel is charac-
terized by a transmission function. The transmission function depends on the
energy and the quantum numbers of the particles that carry the current. The
contacts are reflection free, this means particles can enter the contacts from
the channel without being backscattered. In the following the quantum states
of these systems are labeled by kx, ky and kz. The particle current density per
energy can be deduced from jN(E) = n(E)v(E), where n(E) is the particle
density and v(E) is the velocity in transport direction. The particle density
n(E) can be related to the density of states in the channel. Therefore

n(E) =
1

(LxLyLz)

∑
k

δ(E − E(k)) · f(E), (2.21)

where f(E) is the occupation function. A corresponding expression can be
found for v(E),

v(E) =

∑
k vzkδ(E − E(k))∑
k δ(E − E(k))

. (2.22)

vzk is the velocity of state k in z direction and can be expressed as a derivative
of the energy vzk = 1

~
∂E
∂kz
|k. jN(E) can then be expressed as follows

jN(E) =
1

(LxLyLz)

∑
k

1

~
∂E

∂kz
|kδ(E − E(k))f(E). (2.23)

The sum over kz can be converted into an integral kz −→ Lz
2π

∫
dkz. Then

(2.23) can be rewritten to obtain

jN(E) =
1

(LxLyh)

∑
kx,ky

∫
dkz

∂E

∂kz
|kδ(E − E(k))f(E). (2.24)

It is useful to divide the particle current into a part that is moving in positive z
direction j+ and a part that is moving in negative z direction j−. Considering
in equation (2.24) the particles with positive velocity in z direction and using
the properties of the Dirac function leads to

j+(E) =
1

(LxLyh)
f+

∑
kp

∑
kz+(kp,E)

. (2.25)
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2.2 Microscopic transport models

Here kx and ky are summarized to kp. f+ is the occupation function for the
particles that are moving in positive z direction.

∑
kz+(kp,E) is the number of

positive solutions of E(kp, kz)− E = 0. This quantity is called the number of
modes or the number of bands M(kp, E).

Considering again the system which consists of the two contacts and the
channel, but now with a scatterer within the channel, which is shown in Fig.2.6.
The left contact injects particles into the channel that are moving in z direction
j+, whereas the right contact injects particles into the channel that are moving
in negative z direction j−. The channel is described through a transmission
function t(E, kp). The transmission function depends on kp and E and gives
the fraction of the current per mode that passes the channel. Hence, the
transmission function can take values between 0 and 1. Therefore, the current
from left to right jl→r(E) is given by

jl→r(E) =
1

(LxLyh)
fl(E)

∑
kp

M(kp, E)tl→r(E, kp). (2.26)

Figure 2.6: Sketch of the particle fluxes in the Landauer picture. The left
contact injects a particle flux j+ into the channel. A fraction of
this current j+(1 − t) is reflected, whereas the rest j+t = jl→r is
transmitted. The same holds for the current which is injected from
the right contacts. The net current from contact left to contact
right is given by the difference between jr→l and jl→r

.

Since the particles that are moving in positive z direction are injected from the
left contact, the occupation function f+ is given by the occupation function
of the left contact fl. Therefore f+ can be replaced by fl. The time reversal
symmetry requires tl→r(E, kp) = tr→l(E, kp). With these relations the particle
current density jN = jl→r − jr→l is given by
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2.2 Microscopic transport models

jN(E) =
1

(LxLyh)
(fl(E)− fr(E))t(E), (2.27)

with

t(E) =
∑
kp

M(kp, E)tl→r(kp, E). (2.28)

t(E) is the total transmission function of the system. The total transmission
function is written as

t(E) = M(E) · t(E), (2.29)

where

M(E) =
∑
kp

M(kp, E), (2.30)

are the total number of modes per energy and

t(E) =

∑
kp
M(kp, E)tl→r(kp, E)

M(E)
, (2.31)

is the average transmission probability at energy E.
The total particle current JN is the integral of equation (2.27)

JN =

∫
1

(LxLyh)
t(E)(fl(E)− fr(E))dE. (2.32)

Equation (2.32) is a generalized form of the well know Landauer formula which
states that one mode with spin degeneracy can carry a current of 2e

h
. The

quantity 2e
h

is called quantum conductance. The Landauer formula itself is
formulated for the charge current JC of one mode

JC =

∫
2e

(h)
t(E)(fl(E)− fr(E))dE. (2.33)

Now the expressions for σ, S, and κe are derived from equation (2.32). The
particle and charge currents are connected by jC = e · jN , whereas the particle
and heat currents jh are connected by jh = jn(E − µ).

Since in thermoelectrics the gradients that arise are rather small the Lan-
dauer formalism in thermoelectrics is often used in the linear response regime.
However it is worth to notice that the Landauer formalism is not restricted
to small gradients. In the linear response regime the Fermi function f can be
expanded around an equilibrium µ and T

fi(E, µi, Ti) = f(E, µ, T )−∂Ef(E, µ, T )(µ−µi)− (E−µ)∂Ef(E, µ, T )
T − Ti
T

,

(2.34)
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2.2 Microscopic transport models

with i ∈ l,r. Inserting equation (2.34) in equation (2.32) leads to the following
expression for the charge current

JC =
Lz
LxLy

2e2

h

∫
t(E)(−∂Ef(E, µ, T ))dE

(µr − µl)
eLz

+

Lz
LxLy

2e

hT

∫
t(E)(E − µ)(−∂Ef(E, µ, T ))dE

(Tr − Tl)
Lz

(2.35)

and heat current

JH =
Lz
LxLy

2e

h

∫
t(E)(E − µ)(−∂Ef(E, µ, T ))dE

(µr − µl)
eLz

+

Lz
LxLy

2

hT

∫
t(E)(E − µ)2(−∂Ef(E, µ, T ))dE

(Tr − Tl)
Lz

.

(2.36)

Comparing equations (2.35) and (2.36) with equation (2.5) one can obtain the
coefficients Lnm in the Landauer formalism

L11 = e2L0, (2.37a)

L12 = L21
1

T
=
e

T
L1, (2.37b)

L22 =
1

T
L2, (2.37c)

with

Ln =
Lz
LxLy

2

h

∫
t(E)(E − µ)n(−∂Ef(E, µ, T ))dE. (2.38)

Using the link between the Lnm and the thermoelectric parameters (2.10) one
can obtain the expression of the thermoelectric coefficients in the Landauer
formalism

σ = e2L0, (2.39a)

S = − 1

eT

L1

L0

, (2.39b)

κe =
1

T

(
L2 −

L2
1

L0

)
. (2.39c)

Besides σ, S, and κE there is one other important thermoelectric parameter
κp. κp is the phonon contribution to the heat conductance. κp can be derived
in the Landauer formalism in a similar way to κe. Since phonons are bosons
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2.2 Microscopic transport models

there is no chemical potential, therefore the expansion of the Bose-Einstein
distribution is only carried out around an equilibrium T

fi(E, Ti) = f(E, T )− ∂Tf(E, T )(T − Ti). (2.40)

The energy of a phonon is ~ω. Using equation (2.27) the phonon heat current
density is given by

Jhp =
Lz
LxLy

1

2π

∫
~ωT (~ω)(−∂ωf(~ω, T ))dω

(Tr − Tl)
Lz

. (2.41)

Since κp is defined as
Jhp
∆T
Lz

, κp is given by

κp =
Lz
LxLy

1

2π

∫
~ωT (~ω)(−∂ωf(~ω, T ))dω. (2.42)

2.2.2 The Boltzman transport equation (BTE)

Another common approach to calculate the thermoelectric parameters is the
Boltzman transport equation (BTE). In the BTE particles are treated semi
classically. This means on the one hand the particles have sharp coordinates
in space and momentum and show no interference effects, but on the other
hand the particles obey the Pauli’s principle and their transition probabilities
are calculated using quantum mechanics. The central quantity in the BTE is
the distribution function f(x, p), where x and p are the position in real space
and momentum space. f(x, p) is the probability that a state at position x and
momentum p is occupied. The total derivative of f(x, p) with respect to time
is

df

dt
= v∇f + F∇pf + ∂tf, (2.43)

where v is the velocity and F = ∂tp is the force. df
dt

is the total derivative
and can be only unequal zero if scattering mechanism are present. A common
approach to describe scattering is the Stoßzahl ansatz. In this approach only
two particle interactions on the same place are taken into account. The total
derivative in this approach is given by

df

dt
=

∫ [
dp
′
S(p

′
, p)f(x, p

′
, t)(1− f(x, p, t))− S(p, p

′
)f(x, p, t)(1− f(x, p

′
, t))
]
.

(2.44)
S(p, p

′
) is the transition matrix element between state p and p

′
. The first term

of the integrand in equation (2.44) counts all in-scattering particles in state
p, while the second term of the integrand counts all out-scattering particles
from state p. The whole integral is called the collision integral. One common
approach for the collision integral is the relaxation time approximation(RTA).
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2.2 Microscopic transport models

In this appoach f is divided into an part that is symmetric in momentum
space fs and part that is asymmetric in momentum space fa. The system
is assumed to be near equilibrium, therefore fs ≈ f0 and fs >> fa, where
f0 is the equilibrium distribution function. Furthermore, it is assumed that
(1− f(x, p, t)) ≈ 1. The collision integral can then be written as

df

dt
=

∫
dp
′
S(p

′
, p)f(x, p

′
, t)− f(x, p, t)

∫
dp
′
S(p, p

′
). (2.45)

For the next simplification one assumes that the in-scattering is only governed
by the equilibrium part of the distribution function and can be written as∫

dp
′
S(p

′
, p)f(x, p

′
, t) =

f0

τ
, (2.46)

whereras 1
τ

=
∫
dp
′
S(p, p

′
) is the scattering rate. With this simplifications the

BTE in the RTA reads

df

dt
=
f0(x, p, t)

τ
− f(x, p, t)

τ
= −fa

τ
. (2.47)

To get the thermoelectric coefficients in the BTE again the BTE in the RTA
is considered

df

dt
= v∇f + F∇pf = −fa

τ
. (2.48)

Since no external forces are considered F = 0 holds. An electronic system is
considered, which means that for the distribution function f the Fermi function
is used. If the spatial dependence of f is only due to the chemical potential
and temperature fa can be written as

fa = τ(∂Ef(E(p), µ(r), T (r)))v

(
(−∇µ)− (E − µ)

1

T
∇T

)
. (2.49)

From now on instead of p the particles are labeled with k, where k is the
quantum mechanical wave number. The relation between k and p is p = ~k.
The net particle current in z direction can be calculated by adding up all
particles and weight them with the velocity in z direction vzk, which leads to

JN =
2

LxLyLz

∑
k

vzkfa(k). (2.50)

Here only the asymmetric part is considered since
∑

k vzkfs(k) = 0. The factor
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2.2 Microscopic transport models

2 occurs because of the spin. The charge and heat currents are then given by

JC =
2

LxLyLz

∑
k

evzkfa(k) (2.51a)

JH =
2

LxLyLz

∑
k

(E(k)− µ)vzkfa(k). (2.51b)

Inserting fa from equation (2.49) in equation (2.51) yields

JC =
2

LxLyLz

(∑
k

e2(−∂Ef)τkvz
2
k

∇µ
e

+
∑
k

e

T
(−∂Ef)τkvz

2
k(E(k)− µ)∇T

)
(2.52a)

JH =
2

LxLyLz
(
∑
k

e(E(k)− µ)(−∂Ef)τkvz
2
k

∇µ
e

+
∑
k

1

T
(−∂Ef)τkvz

2
k(E(k)− µ)2∇T ). (2.52b)

Comparing equations (2.52) with equation (2.5) one can obtain the coefficients
Lnm in the BTE.

L11 = e2h0 (2.53a)

L12 = L21
1

T
=
e

T
h1 (2.53b)

L22 =
1

T
h2 (2.53c)

with

hn =
2

LxLyLz

∑
k

τkvz
2
k(E(k)− µ)n(−∂Ef(k, µ, T )). (2.54)

It is often convenient to replace the summation over the k states with an
integral over energy, using the definition of the density of states, hn can be
written as

hn =
2

LxLyLz

∫ ∑
k

τkvz
2
k(E − µ)n(−∂Ef(E, µ, T ))δ(E − E(k))dE. (2.55)

Introducing the transport distribution function Σ(E) = h
L2
z

∑
k vz

2
kτkδ(E −

E(k)) equation (2.55) reads

hn =
2Lz
hLxLy

∫
Σ(E)(E − µ)n(−∂Ef(E, µ, T ))dE. (2.56)
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2.2.3 Landauer vs BTE

Equation (2.38) and equation (2.56) have the same formal structure. The only
difference are the quantities Σ and t. Σ can be rewritten to

Σ =
h

L2
z

〈vz2τk〉
〈|vz|〉

∑
k

|vzk|δ(E − E(k)) (2.57)

with

〈|vz|〉 =

∑
k |vzk|δ(E − E(k))∑

k δ(E − E(k))
(2.58)

and

〈
vz2τ

〉
=

∑
k vz

2
kτkδ(E − E(k))∑
k δ(E − E(k))

. (2.59)

Since Σ corresponds to t = M(E)t(E) the following expression for the numbers
of modes can be found [35]

M(E) =
h

2Lz

∑
k

|vzk|δ(E − E(k)). (2.60)

The transmission function t(E) can be related to

t(E) = 2
〈vz2τ〉
〈|vz|〉Lz

. (2.61)

In the diffusive limit the transmission function and the mean free path for
backscattering are linked by [28]

t(E) =
λ

Lz
. (2.62)

If the following definition for the mean free path for backscattering is choosen

λ(E) = 2
〈vz2τ〉
〈|vz|〉

, (2.63)

the results from Landauer formalism agree with the results obtained from the
BTE [35].
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2.3 Electronic structure and lattice vibrations

2.3 Electronic structure and lattice vibrations

Starting point is the Hamilton operator of a solid [36]

H = TK + Te + VK−K + Ve−e + VeK (2.64)

where

• TK is the kinetic energy of the ions,

• Te is the kinetic energy of the electrons,

• Ve−e is the electron-electron interaction,

• VK−K is the ion-ion interaction, and

• Ve−K is the electron-ion interaction .

The kinetic energy term of the ions TK scales with the factor of me/Mk com-
pared to the kinetic energy term Te for the electrons, in which me is the
electron mass and MK is the mass of the ions. In a solid the factor me/Mk

is approximately 10−4 − 10−5. Therefore it is reasonable to perform a calcu-
lation of perturbation, where the kinetic energy of the ions are treated as a
perturbation of the electronic system. The overall Hamilton operator is then
decomposed in

H = H0 + TK . (2.65)

H0 is Hamilton operator of the electronic system. H0 has the form

H0 = Te + VK−K(~R) + Ve−e(~r) + Ve−K(~r, ~R), (2.66)

where ~r are the coordinates of the electrons and ~R are the coordinates for the
ions. For the pure electronic system φα(~r, ~R) and εα(~R) are the wave functions
and eigenenergies, respectively. The Schrödinger equation for the electronic
system is given by

H0φα(~r, ~R) = εα(~R)φα(~r, ~R). (2.67)

The coordinates of the ions enter this equation only as a parameter, because
in H0 the term for the kinetic energy of the ions is missing. Since the φα(~r, ~R)
are a complete set of eigenfunctions, the solution of the overall Hamiltonian
can be expanded in terms of the φα(~r, ~R). The overall wave function can then
be written as

ψ(~r, ~R) =
∑
α

χα(~R)φα(~r, ~R). (2.68)

Inserting this in the Schrödinger equation of the solid
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2.3 Electronic structure and lattice vibrations

Hψ(~r, ~R) = Eψ(~r, ~R) (2.69)

yields ∑
α

(
εα(~R) + TK − E

)
χα(~R)φα(~r, ~R) = 0. (2.70)

Multiplying with φ∗α and integration over r yields(
TK + εβ(~R)

)
χβ(~R) +

∑
α

Aβ,α(~R)χα(R) = Eχβ(~R) (2.71)

with

Aβ,α(~R) =

−
∑
l

~2

2Ml

∫
d~r

[
φ∗β(~r, ~R)

∂2

∂ ~Rl

2φα(~r, ~R) + 2φ∗β(~r, ~R)

(
∂

∂ ~Rl

φα(~r, ~R)

)
∂

∂ ~Rl

]
.

(2.72)

The Aβ,α(~R) describing transitions between different electronic states. Ne-
glecting these terms yields a Schrödinger-equation for the phonons(

TK + εβ(~R)
)
χβ(~R) = Eχβ(~R). (2.73)

The equation (2.71) has no approximations. Neglecting the Aβ,α(~R) is called
the Born-Oppenheimer approximation. It can be shown, that the error made

by these approximation scales with
(
me
Mk

)1/4

[36]. The Born-Oppenheimer ap-

proximation decouples the electron and phonon interaction. There are several
methods to reintroduced the electron-phonon-interaction.

Considering equation (2.73) we can identify the εβ as the potential of the
phonons. In principle there is a potential for the phonons for each electronic
state εβ. In this work only the potential of the phonons for the electronic
ground state ε0 is considered. From now on the phonon potential of the elec-
tronic ground state will be denoted as V .

2.3.1 The phonon structure

The potential of the phonons V depends on all ionic coordinates, which are
labeled with ~R = R1, ..., RN . Expanding V (R1, ..., RN) around the equilibrium

positions ~R0 = (R0
1, ..., R

0
N), which are also the positions at which the potential

has a minimum, yields

V (R1, ..., RN) = V ( ~R0) +
∑
kα

∂V

∂Rkα

| ~R0
· ukα +

1

2

∑
kαlβ

∂2V

∂Rkα∂Rlβ

| ~R0
· ukαulβ + ...

(2.74)
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Here k and l are labeling the different ions and α and β are labeling the
Cartesian coordinates x,y and z. In (2.74) the first term on the right side is a
constant and therefore has no influence on the dynamics of the system. The
second term on the right side is zero since V is expanded around a minimum.
Truncating the series in (2.74) after the quadratic term is called the harmonic
crystal approximation. The quantities

∂2V

∂Rkα∂Rlβ

= Φkαlβ (2.75)

are called inter atomic force constants (ifcs). In the harmonic crystal approxi-
mation the ifcs are enough to describe completely the lattice dynamics. There
are several models and procedures to describe the interatomic potential V
ranging from purely empirical to ab initio methods. A famous example for an
empirical model is the Lennard-Jones-Potential

V (R1, ..., RN) = 4ε
∑
i<j

(
σ12

Rij

− σ6

Rij

)
. (2.76)

Rij is the Vector Ri − Rj. ε and σ are usually fitted to experiments. The
Lennard-Jones-Potential is used to describe van-der-Waals-interactions.

For ion bondings with binding length a, a potential based on the coulomb
interaction is often used

V (R1, ..., RN) =

(
λeZ

−R12
σ − αQ

2

a

)
. (2.77)

α =
∑

j 6=i
sign(QiQj)

Rij/a
is the Madelung constant and Z is the number of next

neighbours. The first term in equation (2.77) describes the repulsive part of
the bonding, which in this model only appears between next neighbours. The
last term in equation (2.77) describes the coulomb interaction of the ions.

Also a common model for the atomic bonding is the spring model. In this
model one describes the bonds between the atoms as springs

V (R1, ..., RN) =
∑
i 6=j

1

2
KijR

2
ij. (2.78)

Kij is the spring constant between atom i and atom j. In a one dimensional
treatment the spring model coincidence with the harmonic crystal approxi-
mation of the spring model. If more dimensions are considered the harmonic
crystal approximation of the spring model is an approximation of the spring
model.

Up to now the presented models require experimental data since all of them
rely on fit parameters. A method to calculate the interatomic potential V
from ab inito is based on the density functional theory (DFT). The main idea
to calculate the interatomic potential is to compute the total energy under
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variation of the atomic positions. There are some more or less sophisticated
techniques to obtain the ifcs, which are explained in section 2.3.2.

Once the potential is obtained there are in principle two ways to handle
to lattice vibrations. One can use a classic approach, in which the equations
of motion for the ions are solved using Newtons laws. The second approach
is a quantum mechanical approach, where the Schroedinger equation for the
phonons (2.73) is solved. In both approaches one can obtain the correct disper-
sion relation, but only in the quantum mechanical approach the quantization
of the lattice vibration arise. Since the quantum mechanical treatment is more
complicated and computational more demanding, a common way to handle
the lattice vibrations is to calculate the dispersion relation in the classical ap-
proach and introduce the quantization by definition. In this work the classical
approach is employed, but for the sake of completeness the quantum mechan-
ical approach is presented for the example of a linear chain.

2.3.1.1 Quantum mechanical treatment of lattice vibrations
In the quantum mechanical treatment of the lattice vibrations the Schroedinger
equation for the phonons (2.73) is solved. A linear chain with N particles of
mass M and periodic boundary conditions is considered. For the potential
a simple spring model is used. Consequently, the Hamiltonian of the system
becomes

H =
n∑
s=1

(
1

2M
p2
s +

1

2
K(qs+1 − qs)2

)
. (2.79)

K is the spring constant, ps is the momentum of particle s, and qs is the
displacement of particle s out of equilibrium. The coordinates can be decoupled
using the Fourier transformations

qs =
1√
N

∑
k

Qke
iksa (2.80)

and

ps =
1√
N

∑
k

Pke
−iksa. (2.81)

k can take the values k = 2πn
Na

, n = 0,±1,±2, ....1
2
N . a is the spacing of the

particles in equilibrium positions. With these transformations equation (2.79)
reads

H =
∑
k

(
1

2M
PkP−k +

1

2
Mω2

kQkQ−k

)
(2.82)

with
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ωk =

√
2K

M
(1− cos ka)

1
2 . (2.83)

From the commutation relation of qs and ps [qr, qs] = i~δ(r, s) the commutation
relation for Qk and Pk′ follows

[Qk, Pk′ ] = i~δ(k, k′). (2.84)

The Hamilton operator in equation (2.82) describes n independent oscillators.
In analogy to a the quantum mechanical treatment of a single oscillator the

Hamiltonian (2.82) can be expressed in terms of creation a†k and annihilation
ak operators

a†k =

√
1

2~

[
(Mωk)

1
2Q−k − i(Mωk)

− 1
2Pk

]
(2.85)

ak =

√
1

2~

[
(Mωk)

1
2Qk + i(Mωk)

− 1
2P−k

]
. (2.86)

Using these transformations the Hamiltonian (2.82) becomes

H =
∑
k

~ωk
(
a†kak +

1

2

)
. (2.87)

Using the commutation relation (2.84) one can obtain the commutation rela-
tion for a†k and ak′

[ak′ , a
†
k] = δ(k, k′). (2.88)

Equation (2.87) describes a set of harmonic oscillator with different frequencies
ωk. Therefore, the interpretation of a single harmonic oscillator can be used
to describe the quantum mechanical system. The operator a†kak is the particle
number operator nk and counts the number of particles with quantum number
k. The possible energies for each k state are therefore quantized and obey

Ek =

(
nk +

1

2

)
~ωk. (2.89)

One can see, that the dispersion relation ωk from equation (2.83) coincidence
with the dispersion relation of a linear chain in a classical treatment. For al-
most all quantities which are related to lattice vibration like heat capacity or
thermal conductance the most important function is the dispersion relation.
The dispersion relation together with the relation (2.89) and the correct oc-
cupation function is therefore enough to calculate all the relevant quantities.
Thus, it is convenient to calculate the dispersion relation with classical physics
and use equation (2.89) to get the link between the frequency ω and energy E.
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2.3.1.2 Classical treatment of lattice vibrations
In this section the dispersion relation for lattice vibrations are derived from
classical mechanics. A lattice is considered with lattice vectors Rn0 and with r
atoms in the basis. The position of the µ’s atom in unit cell n can be designated
with Rnµ. The position vector Rnµ can be decomposed in

Rnµ = Rn0 +Rµ + unµ, (2.90)

where Rn0 is the vector to the origin of cell n, see Fig. 2.7. Rµ is the equilibrium
position vector of atom µ in the cell and unµ is the displacement vector of
atom µ in cell n. A potential in the harmonic crystal approximation (2.74) is
considered. Then the equations of motion are

Mµünµα = − ∂V

∂unµα
= −

∑
n′µ′α′

Φnµα,n′µ′α′un′µ′α′ . (2.91)

Φnµαn′µ′α′ is the interatomic force constant between atom µ in cell n and atom
µ′ in cell n′. The index α and α′ labeling the three different Cartesian coor-
dinates x,y and z. Thus the force constant between two atoms is in general a
3x3 matrix. The physical interpretation of the force constant can be derived
from equation (2.91). Φnµαn′µ′α′ is the force in α-direction on the µth atom
in cell n, when the µ′th atom in cell n′ is displaced in α′-direction. Because
of the translation invariance of the lattice, Φnµαn′µ′α′ can only depend on the
relative distance vector Rn0 −Rn′0. Thus Φnµαn′µ′α′ can be written as

Φnµαn′µ′α′ = Φµαµ′α′(Rn0 −Rn′0). (2.92)

Figure 2.7: Sketch of a two atomic lattice with lattice vector R60, equilibrium
positions of the atoms RA, RB and displacement vectors of the
atoms u6A, u6B.

Then equation (2.91) reads

Mµünµα = −
∑
n′µ′α′

Φµαµ′α′(Rn0 −Rn′0)un′µ′α′ . (2.93)
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To solve this equation the following ansatz is used

unµα(t) =
1√
Mµ

νnµαe
i(qRn0−ωt). (2.94)

Then equation (2.93) becomes

ω2νµα =
∑
n′

∑
µ′α′

Dµα,µ′α′(Rn0 −Rn′0)eiq(Rn′0−Rn0)νµ′α′ (2.95)

with

D(R) =
1√

MµMµ′
Φ(R). (2.96)

Because of the translation invariance of the system equation (2.95) can not
depend on n since the dynamics of the system can not depend on the actual
cell. Thus equation (2.95) can be simplified to

ω2νµα =
∑
R

∑
µ′α′

Dµα,µ′α′(R)e−iqRνµ′α′ , (2.97)

where R = Rn0 −Rn′0.
The Fourier transform of the Dµα,µ′α′ is called the dynamical matrix

D(q) =
∑
µ′α′

Dµα,µ′α′(R)e−i(qR). (2.98)

Using the dynamical matrix, equation (2.98) becomes an eigenvalue equation

ω2νµα =
∑
µ′α′

Dµα,µ′α′(q)νµ′α′ . (2.99)

The benefit of the transformation from equation (2.91) to equation (2.99) is
a reduction in complexity. Equation (2.91) describes the coupling between
n · r · 3 equations. In equation (2.97) there are only r · 3 equations, which
depend on q. Since the number of degrees of freedom must be fixed there must
be n different q values. The q values depend on the boundary conditions. A
common approach to model the boundary conditions is the use of periodic
boundary conditions, which will be discussed in the next paragraph.

2.3.1.3 Periodic boundary conditions
From the periodic boundary conditions the equation

f(r) = f(r +Nαaα) (2.100)

must be fulfilled for all physical quantities. aα is the primitive translation of
the system and Nα is the number of cells both in α-direction. From equation
(2.98) the dynamical matrix in real space D(R) can be expressed as

29



2.3 Electronic structure and lattice vibrations

D(R) =
1

N

∑
µ′α′

Dµα,µ′α′(q)e
i(qR). (2.101)

From equation (2.100) and (2.101) the conditions for the q vectors is

Nαaα · q = 2πqαNα = 2πlα, (2.102)

where lα is an integer number and q =
∑3

α=1 qαbα. The bα are the reciprocal
lattice vectors. Therefore the qα can take only the discrete values

qα =
lα
Nα

. (2.103)

In principle, there are infinite allowed q vectors, but it is enough to take only
q-values in the first Brillouin zone into account

lα ∈
{
−Nα

2
, ...,

Nα

2
− 1

}
. (2.104)

the reason is that if a reciprocal lattice vector is added to q the physics do not
change. This is illustrated in Fig.2.8.

Figure 2.8: The same crystal vibration described by two different q. The red
dots indicated the displacement A of the atoms.

Many calculations involve a summation over the Brillouin zone. Since in
real systems the number of unit cells N is very large and therefore the q points
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in the first Brillouin zone dense, the summation can be substituted by the
integral ∑

q∈1.Bz

=
V

(2π)3

∫
d3q. (2.105)

The dispersion relation can be obtained by calculating the eigenvalues of
Dµα,µ′α′(q) for different q. The dimension of the matrix Dµα,µ′α′(q) is r · 3.
Thus there are r · 3 eigenvalues for each q point. The number r · 3 is called
number of modes M . The modes are split in 3 acoustic modes and (r − 1)3
optical modes. For q → 0 the acoustic modes are zero. From the dispersion
relation the phonon density of states can be obtained, which is defined by

nph(ω) =
∑
j

∑
q∈1.Bz

δ(ω − ωj(q)), (2.106)

where j labels the different modes.
As an example in Fig.2.9 the dispersion relation and phonon density of states

of silicon is shown. There are 6 modes since Silicon has two atoms in the unit
cell. One feature of the acoustic modes can be seen; for small q die dispersion
relation is linear. The acoustic modes are named that way, because the slope
of the acoustic modes for low q is the velocity of sound in the corresponding
solid. Since for low q the dispersion relation is linear, the density of states for
low q has always a quadratic ω dependence, which is derived in the following:

nph(ω) =
∑
j

∑
q∈1.Bz

δ(ω − ωj(q)) = 3
V

8π3

∫
sin(θ)dθ

∫
dφ

∫
dqq2δ(ω − ω(q))

= 3
V

8π3
· 2π · 2

∫
dqq2δ(q − ω

v
)
1

v

=
3V

2π3

ω2

v3
(2.107)

Here the same linear dispersion relation was assumed for all directions ω(q) =
v ·q, where v is the speed of sound. The same calculation in 2 dimensions leads
to a linear behavior and for 1 dimension to a constant behavior of the phonon
density of states for small w.

2.3.2 Ab initio determination of the interatomic force constants

The interatomic force constants (ifcs) are the second derivative of V (R)

∂2V

∂Rkα∂Rlβ

= Φkαlβ, (2.108)

where V (R) is the energy of the electronic system, which is the potential
landscape of the atoms. The ifcs are linked to the force acting on the atoms
by
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Figure 2.9: Dispersion relation and phonon density of states of Silicon

Φkαlβ = −∂Fkα
∂Rlβ

, (2.109)

where Fkα is the force of atom k in direction α. Based on a DFT calculation
there are in principle several methods to calculate the ifcs. The most intuitive
approach is the small displacement method, which involves supercell calcula-
tions that leads to periodic boundary conditions for the phonons [37, 38]. In
this method atom l is displaced in direction β from the equilibrium position.
The force on atom k in direction α is calculated. For small displacements of
atom l the force acting on atom k is linear with the magnitude of the displace-
ment. The ifcs are then obtained by using equation (2.109) and replacing the
derivatives by finite differences to obtain

Φkαlβ = − Fkα
∆Rlβ

, (2.110)

where ∆Rlβ is the magnitude of the displacement. The ifcs obtained with this
method are not exact because of periodic boundary effects. The error made
with this technique increases with decreases with the size of the supercell.
Therefore, this method requires large supercell calculations. In principle, the
supercell has to be large enough that the impact on atom k from atoms l′ can
be neglected. The atoms l′ are the atoms that correspond to the atom l in the
other supercells. Hence, this method is not suitable for long range ifcs.

A method to avoid periodic boundary conditions and therefore also supercell
calculations is the density-functional perturbation theory (DFPT) [39, 40].
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The DFPT is based on the Hellmann-Feynman theorem that links the forces
to the electron-ion interaction UR(r) and the energy that originates from the
ion-ion interaction EN({R}) = −

∑
i 6=j = 1

2πε0

ZIZJ
|RI−RJ |

:

Fkα = −
∫
dr n{R}(r)

∂U{R}(r)

∂Rkα

− ∂EN({R})
∂Rkα

. (2.111)

Using equation (2.109) an expression for the ifcs can be obtained

Φkαlβ =

∫
dr
∂n{R}(r)

∂Rkα

∂U{R}(r)

∂Rlβ

+

∫
dr nR(r)

∂2U{R}(r)

∂Rkα∂Rlβ

+
∂2EN({R})
∂Rkα∂Rlβ

.

(2.112)
The derivative of the density can be translated to a derivative of the wave
function [40]. Hence, the second order derivative of the energy can be related
to the first order derivative of the wave function. In fact it is possible to get
also the third order derivative of the total energy from the first order derivative
of the wave function. This is stated in the 2n+1 theorem [41]. The derivative
of the wave function can be obtained by first-order perturbation theory [42].
The implementation of the DFPT in the ABINIT code package is explained
in references [42, 39].
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2.4 Non equilibrium Green’s function formalism (NEGF)

2.4.1 Basics

One purpose of the introduction of Green’s functions in solid state physics
is to solve the physical problem, which is defined by the time independent
Schrödinger equation

Hψ = Eψ. (2.113)

The Green’s function G’ belonging to the Hamiltonian H is defined by

(E −H)G′ = I. (2.114)

where I is the identity operator. Since H is hermitian there is a completeness
set of eigenfunction φn with corresponding real eigenvalues λn. With this the
Green’s function in the spectral representation can be obtained by

G′ =
1

E −H
I =

∑
n

1

E − λn
|φn >< φn| =

∑
n

|φn >< φn|
E − λn

. (2.115)

In real space representation G′ can be written by

G′(r, r′, E) =
∑
n

φn(r)φ∗n(r′)

E − λn
. (2.116)

G′(E, r, r′) is an analytic function for E 6= λn. For E = λn G
′(E, r, r′) has

poles, which means the poles of G′(E, r, r′) are the eigenvalues of H. To
evaluate expression (2.116) further, two new Green’s function are defined by

G+(r, r′, E) = limε→0+G′(r, r′, E + iε) (2.117)

and

G−(r, r′, E) = limε→0+G′(r, r′, E − iε). (2.118)

Using the Dirac identity

limε→0+ = P
1

x
± iπδ(y), (2.119)

the Green’s functions G± can be rewritten to

G±(r, r′, E) = P
∑
n

φ(r)φ∗(r′)

E − λn
∓ π

∑
n

δ(E − λn)φn(r)φ∗n(r′). (2.120)
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The integration over r yields for the diagonal elements

∫
drG±(r, r, E) ≡ Tr(G±(E)) = P

∑
n

1

E − λn
∓ iπ

∑
n

δ(E − λn). (2.121)

The density of states is defined by nel =
∑

n δ(E − λn). Thus, the density of
states and the Green’s function are linked by

nel = ∓ 1

π
Im[Tr(G±)]. (2.122)

2.4.2 Finite difference method

A common method to solve differential equations like (2.113) is the finite dif-
ference method (FDM). The FDM translates a differential equation in a set
of linear equations, which can be solved numerically. The basic idea of the
FDM is that the differential equation is solved on a discretized net. In the
FDM representation operators become matrices and wave functions become
vectors. Here we will introduce the FDM for the example of equation (2.113).
The Hamilton operator for a one particle system with a potential V has in real
space representation the following form

(− ~2

2m

d2

dx
+ V (x))φ(x) = Eφ(x). (2.123)

To translate this equation in FDM a FDM representation for the squared
momentum operator P 2 = − ~2

2m
d2

dx
and the potential operator V has to be

derived. First the variable for the real space x is discretized, which means the
continuous variable x is replaced by an index i ∈ N. Therefore, the function
φ(x) becomes a vector φ(i). The operator V (x) becomes a diagonal matrix
V (i, i). The representation of P 2 is not ambiguous. In this work we use a
common representation that can be used if the first derivative does not appear
the differential equation. Even though the index i can only take integer values,
interstitial points are considered for the derivation of the representation of P 2

as sketch in Fig. 2.10. The first derivative at point i is then

φ′(i) =
φ(i+ 1

2
)− φ(i− 1

2
)

a
. (2.124)

The second derivative at point i

φ′′(i) =
φ′(i+ 1

2
)− φ′(i− 1

2
)

a
(2.125)

can be expressed using equation (2.124) as

φ′′(i) =
φ(i+ 1) + φ(i− 1)− 2φ(i)

a2
. (2.126)
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Hence, P 2 in matrix representation has the following form

P 2 =


... −t 0 0
−t 2t −t 0
0 −t 2t −t
0 0 −t ...

 (2.127)

with t = ~2

2ma2 . There are two simple ways to include boundary conditions. If
the matrix P 2 is finite and is cut off at point 1 and point n, the wave function at
the boundaries is zero φ(0) = φ(n+1) = 0. If the matrix P 2 is finite and is cut
off at point 1 and point n and additionally the P 2(1, N) and P 2(N, 1) are set
to −t the wave function has periodic boundary conditions φ(1) = φ(n). There
are also other boundary conditions possible. The slope of φ at the boundaries
can be specified as well as the values of φ at the boundaries.

In Fig. 2.11 solutions of the one dimensional infinite deep potential well
obtained with FDM are shown. The width of the well is L = 10nm and the
number of points is 20. Hence a = 0.5nm. The eigenfunctions that belong to
the low energy eigenvalues map the analytic solutions well. With increasing
the energy the oscillations of the analytic solutions increase and the numeric
solution can not image the analytic solutions anymore. Also the eigenenergies
and the analytic eigenvalues agree well for low energy and start to deviate with
increasing the energy as shown in Fig. 2.11. The accuracy of the numeric solu-
tions can be estimated by comparing the energy E with the coupling parameter
t. As a rule of thumb one can say, that the numerical solution obtained with
the FDM is accurate as long as E − V << t. Nevertheless, for all calculations
convergence tests have to be done with respect to the parameter a.

Figure 2.10: Sketch to illustrate the second derivative at point i

2.4.3 Open boundaries/infinite leads

In the last section it was shown that there are three different possible bound-
ary conditions. The slope of φ can be given at the boundaries, the value of
φ can be given at the boundary or periodic boundary conditions can be cho-
sen. Since in this work open systems that are not necessarily periodic are
considered, additional boundary conditions are needed. The systems under
consideration have all a similar form, which is shown in Fig. 2.12. The system
consists of two semi infinite leads that are connected to the system described

36



2.4 Non equilibrium Green’s function formalism (NEGF)

Figure 2.11: Left: Numerical eigensolutions of the infinite high potential well
(blue: ground state, red: first exited state, yellow: fifth exited
state). Right: Analytic and numerical eigenvalues of the infinite
high potential well.

by the Hamiltonian H. Since an infinite lead requires in the FDM infinite ma-
trices, which are numerically not manageable, the concept of the so called self
energies are introduced. Roughly speaking these self energies simulate these
semi infinite leads by injecting or absorbing particles in or from the system in
the same way an infinite lead would inject or absorb particles. The advantage
is, that the self energies in FDM representation are finite quantities.

Figure 2.12: Sketch of systems under consideration. Two semi infinite leads
(green) are connected to the main region (blue). For each lead a
different temperature T and chemical potential µ can be defined.
The effect of the leads on the main region are simulated through
self energies Σ. The Γ’s are deduced from the Σ’s and are used in
transport calculations.

The self energies for the left and right lead are indicated with Σl and Σr

respectively. To derive an expression for Σl,r a system that consist of one
lead connected to the main region described by H is considered. The overall
Green’s function can be partitioned in

G =

(
Gl GlH

GHl GH

)
≡
(
E −Hl τl
τ †l E −H

)−1

, (2.128)
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where τl is the coupling matrix between the lead and the main region and Hl

is the Hamilton operator of the lead. Using(
Gl GlH

GHl GH

)(
E −Hl τl
τ †l E −H

)
=

(
1 0
0 1

)
(2.129)

leads to four equations from which the following two are used:

(E −H)GlH + τlGH = 0 (2.130)

and

(E −Hl) + τ †l GH = 1. (2.131)

To obtain the Green’s function of the main region connected to a lead

GH = (E −H − τ †l Glτl)
−1, (2.132)

where Gl = (E −Hl)
−1 is the Green’s function of the lead. Hence, for the self

energy of the lead one obtains

Σ = τ †l Glτl. (2.133)

One might think that the problem of the infinite matrix representation has
not change since the quantity gl also involves an infinite matrix Hl. Hl however
should describe an constant infinite lead, which means Hl has a translation
symmetry. The Green’s function of a infinite or semi infinite system with
translation symmetry can be calculated using the decimation technique [43].
The details of the decimation technique will be not described in this work but
can be found in the literature [43].

2.4.4 Calculation of the transmission function

The purpose of this section is to derive an expression for the transmission
function of a system that is connected to two infinite leads, which is described
by the Green’s function G

G = (E −H − Σr + Σl). (2.134)

Before the transmission function is derived a few new quantities are intro-
duced. With these quantities the equation of the current per lead can be
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motivated. From the equation of the current per lead the transmission func-
tion is deduced. The first quantity that is introduced is a generalized density
of states A, which is motivated from equation (2.122)

A ≡ i(G−G†). (2.135)

By noticing that

(G†)−1 −G−1 = Σ− Σ†, (2.136)

G(G†)−1G† −GG−1G† = G(Σ− Σ†)G†, (2.137)

i(G−G†) = Gi(Σ− Σ†)G†, (2.138)

the generalized density of states A can be written as

A = GΓG†, (2.139)

with Σ = Σl + Σr and Γ = i(Σ− Σ†). An interpretation of Γ can be found by
looking at equation (2.133) and equation (2.135). Γ can be expressed as

Γl,r = τ †l,rAl,rτl,r. (2.140)

Hence, Γl,r describes the coupling of the density of states in the leads, Al,r,
to the rest of the system. Besides A and Γ a generalized particle density Gn

and hole density Gp are introduced, which are defined by

Gn = A · f, (2.141)

and

Gp = A · (1− f), (2.142)

where f is the occupation function of the leads. equation (2.139) can only be
used in equilibrium when the occupation functions of both leads are identical.
For non equilibrium problems one can use the feature of A that A can be
decomposed into Al + Ar with Al,r = GΓl,rG

†. With this also Gn can be
decoupled into

Gn = Alfl + Arfr (2.143)

which can be rewritten to
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Gn = GΣinG†, (2.144)

where Σin = Σin
l + Σin

r = Γlfl + Γrfr. Σin is called the inscattering matrix.
The inscattering matrix describes the available particles in the lead, which can
scatter into the main region. With this a phenomenological explanation for
the inscattering can be presented. The inscattering current jini from lead i into
the main region is proportional to the particles that are available in the lead
times the number of states available in the main region. Hence,

jinl,r =
1

h
Tr[Σin

l,rA]. (2.145)

The explanation of the outscattering current jout is similar. The number of
particles that are leaving the main region are proportional to the number of
particles available in the main region times the number of states in the lead.
Hence,

joutl,r =
1

h
Tr[Γl,rG

n]. (2.146)

Therefore, the total current is

jl,r =
1

h
(Tr[Σin

l,rA]− Tr[Γl,rGn]). (2.147)

This formula is valid even if scattering is implemented, which is explained in
the next section. If no scattering is implemented and the current from one
lead to another lead through the main region should be calculated, equation
(2.147) can be simplified to

jl =
1

h
Tr[Σin

l A]− Tr[ΓlGn]

=
1

h
Tr[flΓl(Al + Ar)− Γl(flAl + frAr)]

=
1

h
Tr[flΓlAr − ΓlfrAr]

=
1

h
(fl − fr)Tr[ΓlAr]

=
1

h
(fl − fr)Tr[ΓlGΓrG

†]. (2.148)

In the same way one can show that
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jr =
1

h
(fr − fl)Tr[ΓrGΓlG

†]. (2.149)

Since

Tr[ΓrGΓlG
†] = Tr[ΓrGΓlG

†], (2.150)

the current from the left to the right lead jl→r and the current from the right
to the left lead jr→l are linked by

jl→r = −jr→l =
1

h
t · (fl − fr) (2.151)

where

t = Tr[ΓrGΓlG
†] (2.152)

is the transmission function. Equation (2.151) shows that particle conservation
is fulfilled.

2.4.5 Incorporation of scattering

In the last section transport from one lead to another lead through the main
region was described. In the main region the particles could only be scattered
coherently on a static potential. This model will be extended to include inco-
herent scattering. Although incoherent scattering is mostly inelastic, it can be
useful to model incoherent scattering with elastic processes. Therefore, there
are two different ways to describe incoherent scattering, elastic and inelastic.
In both ways the scattering is described by the so called Büttiker probes. A
Büttiker probe is conceptual the same as a lead (see last section). A Büttiker
probe simulates the injection or absorption of particles in or from the main
region. Büttiker probes are determined by their self energies Σs, inscattering
matrices Σin

s and coupling matrices Γs. According to equation (2.145) the total
current of the Büttiker probe i can be calculated by

ji = Tr[Σin
i A]− Tr[ΓiGn]. (2.153)

A direct physical meaning of Σs is given by [28]

Σs = − i~
2τs

, (2.154)
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where τs is the life time of the electrons. In this equation the real part of Σs

is neglected. Equation 2.153 can be used to define the physics of a system by
choosing the corresponding Σs to reproduce the desired scattering rates. Σs

can be energy and space dependent. Another approach to define scattering is
to model the scattering process directly. For example the equation for Σin

s and
Γs for a general inelastic process can be written by [28]

Σin
s =

∫
d(~ω)

2π

(
Dem(~ω) ·Gn(E + ~ω) +Dab(~ω) ·Gn(E − ~ω)

)
(2.155)

and

Γs =

∫
d(~ω)

2π
(Dem(~ω)[Gp(E − ~ω) +Gn(E + ~ω)]+

Dab(~ω)[Gn(E − ~ω) +Gp(E + ~ω)]).

(2.156)

Dem(~ω) and Dab(~ω) characterizes the emission and absorption of electrons
caused by the scattering process. The imaginary part of Σs is given through
Γs, whereas the real part of Σs can by calculated by a Hilbert transformation
of Γs [28].

In this work only the model of elastic scattering is used. Elastic scattering
means, that the total current for each Büttiker probe has to be zero for all
energies. Hence,

Tr[Σin
i (E)A(E)] = Tr[Γi(E)Gn(E)]. (2.157)

This condition is stronger than the normal particle conservation. In general if
inelastic scattering is present the condition for particle conservation is

∫
dE Tr[Σ(E)ini A(E)] =

∫
dE Tr[Γi(E)Gn(E)]. (2.158)

There are two interpretations of condition (2.157). The first one is that a
particle enters a Büttiker probe with energy E and leaves the Büttiker probe at
energy E with a different phase and/or direction. This interpretation seldom
describes the physics since in most scatter mechanisms a change in phase
and/or momentum also involves a change in energy. The second interpretation
avoids this problem. The second interpretation is that for each particle that
enters a Büttiker probe at energy E another particle from another energy E ′

is scattered into energy E.
As already mentioned, there are two different ways to define the physics

of the scattering. If the scattering time is given then the self energies given
by equation (2.154). If the concrete scattering mechanism should be modeled
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then equations (2.155) and (2.156) are used. Independently which approach
is used there are two common ways to calculate the transmission function for
the elastic model. In the first approach the condition (2.157) is incorporated
in the quantities Σin

s and Γs. In the second approach the condition (2.157)
is directly imposed into the calculation of the transmission function. Since
the first approach involves nearly all introduced quantities, these quantities
are summarized here and already simplified within the elastic model (Dem =
Dab = D) [28]:

G = (E −H − Σ)−1 (2.159)

A = i(G−G†) (2.160)

Γ = i(Σ− Σ†) (2.161)

Σ = Σl + Σr + Σs (2.162)

Σin = Σin
l + Σin

r + Σin
s (2.163)

Σin
l,r = Γl,r · fl,r (2.164)

Σin
s = DGn (2.165)

Γs = DA (2.166)

Σs = DG (2.167)

Gn = GΣinG†. (2.168)

In this model the calculation of the Green’s function is determined by

G = (E −H − Σl − Σr −DG)−1, (2.169)

which can be solved within a self consistent calculation. Once the Green’s
function is determined Gn can be calculated using

Gn = G(Σin
l + Σin

r +DGn)G†. (2.170)

In general this equation has to be solved by using a self consistent calculation.
D is for physical problems a diagonal matrix. If furthermore the scattering
process is constant in space, which means that D is a constant times the
identity matrix, equation (2.170) can be solved analytically for the diagonal
elements

Gn = G(Σin
l + Σin

r +DGn)G†, (2.171)

diag[Gn] = (1−DGG∗)−1diag[G(Σin
l + Σin

r )G†]. (2.172)

diag[x] is a vector consisting of the diagonal elements of x. Since D is diagonal
only the diagonal elements of Gn are needed. The definition of the transmission
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function t in the elastic scattering model is motivated by equation (2.148).
Hence, the transmission function in the elastic model is

t = jl/(fl − fr) = jr/(fr − fl). (2.173)

For inelastic scattering the definition of a transmission function makes no
sense. Using equation (2.147) equation (2.173) can be rewritten to

t = tr[ΓlGΓrG
†] +

1

fr − fl
tr[Γinl As − ΓlG

n
s ] (2.174)

with

As = GΓsG
† (2.175)

Gn
s = GΣin

s G
†. (2.176)

If the scattering process is constant in space equation (2.172) can be used to
simplify equation (2.174) to

t = tr[ΓlGΓrG
†] + tr[ΓlGΓsrG

†] (2.177)

with

Γsl,r = DdiagM [(1−DGG∗)−1diag[GΓl,rG
†]]. (2.178)

diagM [x] is a diagonal matrix, where the diagonal elements consisting of the
elements of vector x.

The second approach to calculate the transmission function is the elastic
scattering model which is presented now. In this approach the condition of
current conservation at each Büttiker probe for each energy is directly imposed
on the calculation of the transmission function. Since the Büttiker probes do
not conceptually differ from the leads equation (2.151) can be generalized to

jα→β = −jβ→α =
1

h
t · (fα − fβ), (2.179)

where jα→β is the current from Büttiker probe α to Büttiker probe β and fα,β
are the distribution functions of the Büttiker probes. The total current in
Büttiker probe α is therefore

jα =
1

h

∑
k 6=α

tαk(fα − fk). (2.180)
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2.4 Non equilibrium Green’s function formalism (NEGF)

The index k inhibits all Büttiker probes as well as the two leads. Since in the
elastic model jα = 0, an equation for fa can be derived

fα =
∑
k 6=α

tαkfk
Sα

(2.181)

with

Sα =
∑
k 6=α

tαk. (2.182)

Using equations (2.179) and (2.180) the total currents at the leads are

j(l,r) =
∑
k 6=(l,r)

t(l,r)k(f(l,r) − fk), (2.183)

j(l,r) = t(f(l,r) − f(r,l)) (2.184)

with

t = tlr +
∑

k 6=(lr)
tlktkr
Sk

+
∑

k 6=(lr)

∑
j 6=(lrk)

tlktkjtjr
SkSj

+∑
k 6=(lr)

∑
j 6=(lrk)

∑
i 6=(jlrk)

tlktkjtjitir
SkSjSi

+ . . . . (2.185)

The transmission functions tij can be obtained by applying equation (2.152)
to the Büttiker probes to obtain

tij = Tr[ΓiGΓjG
†]. (2.186)

Equation 2.185 divides the transmission function t in orders of scattering
events. The first term tlr can be seen as the transmission probability that a
particle passes the main region without being scattered, which must not be
mistaken with the coherent case when scattering is absent. The second term∑

k 6=(lr)
tlktkr
Sk

then is the probability that a particle is scattered once and so on.
Fig. 2.13 shows the transmission function of a 1 dimensional electronic system
with a length of 10nm. The scattering strength D is constant in space and
proportional to the square root of the energy D(E) ∝

√
E, which leads to a

nearly constant Σs and therefore to a nearly constant scattering time τ . The
proportional factor in D(E) is 0.02eV

3
2 and the mass of the electron is me =

m0. Fig. 2.13 left shows the transmission function obtained with equation
(2.177) (blue) and the transmission functions obtained with equation (2.185),
at which the sum is taken to the order n with n = 0 (violet), n ≤ 4 (yellow) and
n ≤ 10 (green). For n ≤ ∞ the transmission function obtained with equation
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2.4 Non equilibrium Green’s function formalism (NEGF)

(2.186) converges against the transmission function obtained with equation
2.177. How fast the sum in equation 2.186 converges depends mainly on the
length of the system, the scattering strength, and the energy. In Fig. 2.13
right the transmission probability against the scattering order for two different
energies are shown. At 60meV the probability that an electron is scattered
three times before it passes the main region is the most likely case. With
increasing the number of scattering events the probability decreases rapidly.
For lower energies the probability is shifted towards higher scattering orders.
The physical interpretation of this behavior is simple. Since the scattering
strength is chosen such that a constant scattering time is achieved, the electrons
with high energies have a higher velocity and hence a higher mean free path,
which leads to less scattering events per unit length compared to the low energy
electrons.

Figure 2.13: Left: Transmission function with several scattering orders n in-
cluded. Right: transmission probability vs scattering order for
two different energies.

2.4.6 Combining different scattering mechanisms

Considering a system which is determined by different scattering mechanisms
i ∈ 1, 2, 3.... Therefore, for each scattering mechanism a transmission function
can be defined t1, t2, t3.... If there is no fixed phased relationship between the
scatters, the transmission function can be combined classically. The classical
combination of two scatterers can be obtained by summing up over all paths
a particle can travel to pass both scatterers.

t = t1t2 + t1t2(1− t1)(1− t2) + t1t2(1− t1)(1− t2)2 + . . .

=
t1t2

t1 + t2 − t1t2
(2.187)

1

t
=

1

t1
+

1

t2
− 1 (2.188)

The transmission function for n scatters can be obtained by using (2.188)
recursively to obtain
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1

t
=

1

t1
+

1

t2
+

1

t3
+ . . .− (n− 1). (2.189)

Fig. 2.14 left shows the transmission function of a single barrier tb and
the transmission function of elastic scatterers ts. Fig. 2.14 right shows the
transmission function of elastic scatters in series with a single barrier tbs and
the combined transmission function using equation (2.189). Fig. 2.14 shows
that equation (2.189) is a good approximation to combine different scattering
mechanisms if phase braking scattering in the system is strong enough.

Figure 2.14: Left: Transmission function of a single barrier tb and the transmis-
sion function of elastic scatterers ts. Right: Transmission function
of elastic scatters in series with a single barrier tbs and the com-
bined transmission function using equation (2.189)

.

2.4.7 Atomistic Green’s function method

The atomistic Green’s function method (AGF) is in principle the same method
as the NEGF. Therefore, the equations obtained for the NEGF in the chapters
2.4.1-2.4.6 also hold for the AGF with the exception of some minor differences,
which will be discussed later in this section. There is just one conceptual
difference between both methods. In the NEGF the underlying physics are
described by differential equation like the Schrödinger equation (2.113). The
differential equation is then transformed to a system of linear equations using
the FDM. However in the AGF the underlying physics are directly described
by a system of linear equations, which means that there is no need for an addi-
tional transformation. The NEGF is usually employed to calculate electronic
properties, whereas the AGF is used to calculate phononic properties from a
classical approach. The equations derived in the chapters 2.4.1-2.4.6 describe
the physics of an electronic system, but if a variable transformation from E
in the electronic system to the variable ω2 is used, these equations can also
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2.4 Non equilibrium Green’s function formalism (NEGF)

be used for a phononic system. This leads to a change in the equation for the
density of states. To get the correct density of states for the phononic system
equation (2.121) is considered and E is substituted by ω2

Tr(G(E)±) = P
∑
n

1

E − λn
∓ π

∑
n

δ(ω2 − λn). (2.190)

For λn > 0 and ω > 0 this can be rewritten to

Tr(G(E)) = P
∑
n

1

E − λn
∓ iπ

∑
n

1

2ω
δ(ω −

√
λn), (2.191)

which leads to a phonon density of states nph of

nph(ω) = ±2ω

π
Im[TrG∓]. (2.192)

Also the equation that links the self energy with the life time (2.154) changes
for the phonon calculation to [44]

Σsph = −i2ω
τs
. (2.193)

2.4.8 AGF method with periodic boundary conditions in two dimensions

In this section a detailed description of the AGF method with periodic bound-
ary conditions in the two directions perpendicular to the transport direction
is given. In the following the system shown in Fig.2.12 is considered. It is
assumed that the system is periodic perpendicular to the transport direction.
The system can be divided into layers of atoms that are perpendicular to the
transport directions. Hence, it is possible to distinguish between interlayer
and intralayer interactions. Since the system is periodic perpendicular to the
transport direction the single layers inhibits also the same periodicity. Conse-
quently, a Fourier transformation of the interlayer and intralayer interactions
perpendicular to the transport direction can be performed. The periodicity
in-plane is described by a 2-dimensional lattice with the lattice vectors ~Rp.
The Fourier transform of the interlayer and intralayer interactions are given
by

Hg(~qp) =
∑
~Rp

H̃g(~Rp)e
−i~qp ~Rp (intralayer), (2.194)

Tgḡ(~qp) =
∑
~Ro

H̃gḡ(~Ro)e
−i~qp ~Ro (interlayer). (2.195)
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~Ro are the vectors that connect cells of layers g and ḡ. ~qp is a 2-dimensional

vector that belongs to the 2-dimensional Brillouin zone of the lattice ~Rp. H̃g

is the Hamiltonian of layer g and consists of the ifcs that describe the inter-
actions between atoms in the layer. H̃gḡ consists of the ifcs that describe the
interactions between the atoms of layer g and ḡ.

The overall matrix describing the system has then the form

H(~qp) =


... Tg−1,g 0 0

Tg,g−1 Hg Tg,g+1 0
0 Tg+1,g Hg+1 Tg+1,g+2

0 0 Tg+2,g+1 ...

 . (2.196)

Hg is the Fourier transformed intralayer interaction of layer g. Tg,g+1 is the
Fourier transformed interlayer interaction of layer g with g+1. Of course it is
also possible to take more than one layer interactions into account. The matrix
in equation (2.196) is infinite, but can be reduced to a finite matrix by using
the concept of self energies ΣR,L(~qp), which is explained in section (2.4.3). The
Green’s function of the system is then

G(ω, ~qp) = (ω2I −H(~qp)− ΣL(~qp)− ΣR(~qp))
−1. (2.197)

By using equation (2.152) the transmission function at ~qp is given by

t(ω, qp) = Tr[ΓL(~qp)G(~qp)ΓR(~qp)G
†(~qp)]. (2.198)

The average transmission function per unit cell is given by an integral over
the 2-dimensional Brillouin zone

t(ω) =
1

(2π)2

∫
BZ

t(ω, qp)d~qp, (2.199)

t(ω) =
1

A

1∑
~qp

∑
~qp

t(ω, qp), (2.200)

where A is the cross area of the unit cell.
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2.5 Grain boundary model for electronic transport

In this chapter a model is developed that can describe electronic transport in
nanograined materials. The model is based on the Landauer theory, which
means that all scattering mechanisms are described in terms of transmission
functions. To describe the electronic structure only one band with parabolic
dispersion relation is considered. The scattering between the grains is de-
scribed either by a step like transmission function or by a transmission func-
tion of a double Schottky barrier. The scattering in the grains are taken into
account by a phenomenological power law.

2.5.1 Modeling of electrostatic barriers

The model of the grain boundary in this work is based on the model established
by Seto [45]. A schematic sketch of the band structure in real space is shown
in Fig. 2.15. The grains are characterized by their length lg, the length of the
interface region li, the density of the surface states NT , the energy levels of
the trapping states ET , donor concentration ND, and the energy levels of the
donors ED.

The basic idea of the model is, that the electrons in the donor states pass
over into the deep surface states, which arise in the grain boundary. This
leads to a negative charge accumulation in the grain boundaries and a positive
charge accumulation adjacent to the grain boundaries. The resulting space
charge distribution then creates a so called double Schottky barrier. In the
following the steps are described to get a quantitative description of the double
Schottky barrier.

First lg , li, NT and ND have to be chosen. Then two cases can occur.
In the first case, lg · ND ≤ li · NT , all donor states in the grains are empty
and all electrons are trapped in the grain boundary. The total negative space
charge density in the boundary region ni is then ND·lg

li
. The positive space

charge density in the rest of the grain in this case is ND. In the second case,
lg · ND > li · NT , the negative space charge density in the boundary region is
NT . The positive space charge density is ND and the length of the positive
space charge region, which is called screening length lscr, is chosen in such a
way, that the total charge in the grain is zero: lscr = li·NT

ND
. Once the space

charge density n(x) is obtained, the Poisson equation can be used to get the
potential profile V (x)

∇(εr(x)∇V (x)) =
e · n(x)

ε0
. (2.201)

εr(x) is the dielectric constant, which is assumed to be constant throughout the
whole grain. In Fig. 2.16 the space charge distribution and the resulting double
Schottky barrier is shown. The length of the interface is 0.5 nm. The density
of the surface states is 1 · 1020cm−3. The donor concentration is 1 · 1019cm−3.
Double Schottky barriers for different donor concentrations are shown in Fig.
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2.16. The height and the width of the barriers decrease strongly with increasing
the donor concentration. Fig. 2.17 shows the barrier height for different doping
concentrations. For low doping concentrations all electrons are trapped in
the grain interface and with increasing the doping concentration the barrier
height increases linearly until all trapping states are full. Increasing the doping
concentration further the barrier height decreases, because the screening of the
potential increases with higher doping concentrations.

Figure 2.15: Schematic band diagram in real space before (top) and after (bot-
tom) the generation of the double Schottky barrier. Ec is the en-
ergy at the bottom of the conduction band, ED is the donor level,
ET is the energy of the trapping states and Ev is the top of the
valence band. (reference E3)

2.5.2 Determination of the chemical potential

A common way to link the chemical potential to a given doping concentration
n and temperature T in a parabolic one band model is given by [46, 15, 14]

n =
4√
π

(
2πmkb
h2

)(3/2) ∫ ∞
0

√
Ef(E, T, µ). (2.202)

In this equation only the doping concentration n appears, but for the grain
boundary model a link between the donor concentration ND and the chemical
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Figure 2.16: Left: Space charge distribution (red) and the corresponding po-
tential profile (blue) around the interface. Right: double Schottky
barrier for different donor concentrations. (reference E3)

Figure 2.17: Barrier height vs doping concentration for a double Schottky bar-
rier.
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potential µ is needed. Thus a more sophisticated model is employed, which is
presented in the following.

For the determination of the chemical potential three kinds of states are
considered. The deepest states are in the boundary. There are NT · li total
states per grain of this kind at energy ET . The energetic next higher states are
the donor states. There are ND · lg total donor states per grain at energy ED.
For the remaining states the density of states of a single band with a parabolic
dispersion is chosen. The energy scale is chosen such, that the bottom of the
band is at energy 0. The value of the chemical potential is determined at a
given temperature T by imposing charge neutrality. So the chemical potential
ensures that the number of ionized donors equals the numbers of electrons
trapped in the boundary region plus the number of electrons in the conduction
band. Thus, the chemical potential can be obtained by solving

∫
(2 ·meff )

3/2

2 · π2 · ~3

√
E·f(E, µ, T )dE+li·NT ·f(ET , µ, T ) = ND·lg·(1−f(ED, µ, T )).

(2.203)

Fig. 2.18 left shows the dependence of the chemical potential on the donor
concentration for three different temperatures. For low donor concentrations
all electrons are trapped. Therefore, the chemical potential is located around
the energy of the trapping states ET = −0.5 eV. When the donor concentration
reaches a value where all trapping states are filled the chemical potential jumps
to the binding energy of the donors ED = −0.02 eV. Further increase of the
donor concentration leads to a moderate increase of the chemical potential.
For higher temperatures this behavior is smoother. Fig. 2.18 right shows
the dependence of the chemical potential on the temperature for two different
doping concentrations. For high doping concentrations the chemical potential
increases with increasing temperature, whereas for low doping concentrations
the chemical potential decreases with increasing the temperature.

Figure 2.18: Left: Chemical potential µ vs doping concentration ND for differ-
ent temperatures T . Right: Chemical potential µ vs temperature
T for different doping concentrations ND.
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2.5.3 Modeling the transport from grain to sample

In this section the modeling of the electron transport is described. There
are several transmission functions in this section. Each transmission function
describes a different scattering mechanism and/or a different length scale of
transport. Fig. 2.19 shows the evolution of the different transmission functions
from functions that describe scattering on the nanoscale tbar/tBulk to the overall
macroscopic transmission function tSolid.

Figure 2.19: Flowchart of the evolution and composition of the different trans-
mission functions. t1D(kz) is the average transmission probability
across the barrier as a function of the momentum in transport
direction. tBar(E) is the average transmission probability across
the barrier as a function of the energy. tBulk(E) is the average
transmission probability through a bulk system. tGrain(E) is the
average transmission probability through one grain. tSolid(E) is
the average transmission probability through a macroscopic sam-
ple.

The number of modes M(E) can be obtained from equation (2.30). Since
only one band is considered the number of modes per kp is 1. Hence,

M(E) =
∑
kp

=
LxLy
(2π)2

∫ kp=

√
2meffE

~2

0

2πkpdkp =
LxLy
2π~2

meffE. (2.204)

In this model it is assumed that the transmission probability through the
barrier depends only on the energy that is related to the momentum in trans-
port direction kz, which in this case is the z direction. Therefore, the total
transmission function of the barrier tBar can be obtained by using equation
(2.28)
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tBar =
∑
kp

t1D(E −
~2k2

p

2meff

) (2.205)

=
LxLy
(2π)2

∫ kp=

√
2meffE

~2

0

2πkp · t1D(E −
~2k2

p

2meff

)dkp. (2.206)

where t1D( ~2k2
z

2meff
)) is the probability that an electron with momentum kz passes

the barrier. Making the substitution x =
√

1− k2

2mE
equation (2.206) can be

simplified to

tBar =
LxLy
2π~2

meffE
1

2

∫ 1

0

t1D(E · x2)dx. (2.207)

Comparing equation (2.207) with (2.204) and using equation (2.29) the average
transmission function of the barrier tBar is given by

tBar =
1

2

∫ 1

0

t1D(E · x2)dx. (2.208)

At this point it is worth to stress the differences between the functions tBar
and t1D. tBar is the average transmission probability of an electron as a function
of the total energy of the electron, whereas t1D is the transmission probabil-
ity as a function of kz. According to references [28, 35] different scattering
mechanism of electrons in a bulk material can be described by transmission
functions of the form

tBulk =
λ

lz + λ
, (2.209)

where lz is the length in transport direction and

λ = λ0(
E

kbT
)r. (2.210)

r specifies the kind of scattering mechanism. To overcome a grain an electron
has to travel through the whole grain, which is assumed to be bulk like, and has
to overcome the barrier between two grains. Hence, the transmission function
for one grain tGrain can be obtained by combining the transmission function
of one barrier and the transmission of the bulk. The length lz in equation
2.208 is then the length of the grain lg. The combination of several scattering
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mechanisms can be done by employing equation (2.189). The transmission
function for one grain tGrain is then

tGrain =
1

1
tBar

+ 1
tBulk

− 1
. (2.211)

If the solid consist of n grains in transport direction the transmission function
for the solid tsolid can be obtained, by using again equation (2.189)

tSolid =
1

n

tGrain
1− tGrain + tGrain

n

. (2.212)

If Lz is the length of the solid in transport direction and lg is the length of the
grains then the number of grains is n = Lz

lg
. Therefore, equation (2.213) can

be rewritten to

tSolid =
lg

Lz

tGrain

1− tGrain + tGrainlg
Lz

. (2.213)

In this equation the term tGrainlg
L

describes the contact resistance. For tGrain <
1 and lg << Lz this term can be neglected. The total transmission function
tSolid can be obtained by

tSolid = tSolid ·M. (2.214)

The overall electric parameters can be obtained by using the total transmission
function tSolid in equations (2.38) and (2.39).
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3 Material Systems

In this chapter the epitaxial structures of the materials investigated in this
work are discussed. These materials are zinc oxide (ZnO), zinc sulfide (ZnS),
and silicon (Si). A comprehensive review of ZnO can be found in reference
[20].

3.1 Zinc Oxide (ZnO)

ZnO is a II-VI semiconductor. The main interest in ZnO results from its
prospects in optoelectronic devices due to a direct band gap of 3.3 eV at room
temperature. In principle ZnO can occur in three different structures, which
are wurtzite-, zincblende- and rocksalt structure. Under normal conditions
ZnO has wurtzite structure. Zincblende structure can be observed, if ZnO is
grown on cubic substrates[47], whereas the rocksalt structure occurs only at
high pressure above 8GPa [48]. A scheme of the three different structures is
shown in Fig. 3.20.

The lattice constants and structural parameters of these different structures
are presented in table 3.1. The results obtained in this work agree with the
results obtain in reference [49], which is not surprising since the authors in
reference [49] use the same method and similar numerical parameters.

Figure 3.20: Top row: Primitive unit cell. Bottom row: Supercell structure.
Left: Wurtzite structure for ZnO and ZnS. Middle: Zincblende
structure ZnO and ZnS. Right: Rocksalt structure ZnO and ZnS.



3.2 Zinc Sulfide (ZnS)

a(Å) c(Å) c/a u V(Å3)
ZnO Wurtzite

Theo.∗ 3.198 5.167 1.615 0.379 22.882
Theo.[49] 3.198 5.167 1.615 0.379 22.882
Theo.[50] 3.290 5.241 1.593 0.3856 24.570
Theo.[51] 3.199 5.163 1.6138 0.381 22.874
Exp.[48] 3.2496(6) 5.2042(20) 1.6018(7) 0.3819(1) 23.796(11)
Exp.[52] 3.2498(3) 5.2066(3) 1.6021(3) 0.3832(2) 23.810(6)

ZnO Zincblende
Theo.[49] 4.504 - - - 22.841
Theo.[50] 4.614 - - - 24.551
Theo.[51] 4.508 - - - 22.914
Exp.[53] 4.62 - - - 24.65

ZnO Rock Salt
Theo.[49] 4.225 - - - 18.856
Theo.[50] 4.294 - - - 19.799
Theo.[51] 4.229 - - - 18.904
Exp.[48] 4.271(2) - - - 19.484(11)
Exp.[52] 4.283(1) - - - 19.60(6)

Table 3.1: Lattice constants of ZnO: experimental and theoretical values.
∗ indicates own results.

In wurtzite structure ZnO has 4 atoms in the primitive unit cell. This means
the phonon dispersion consists of 12 modes. At the Brillouin-zone center these
12 split up into 2A1+2B1+2E1+2E2 modes. The E1 and E2 modes are double
degenerated. The three acoustic modes are one of the E1(double degenerated)
modes and one of the A1 modes. Since the 2 B1 modes are Raman inactive,
there are only 7 Raman modes left. These modes are A1+E1+2E2. Without
LO-TO splitting there would be 4 different frequencies in the Raman spectra
of wurtzite ZnO, but since the A1 and the E1 splits at the Γ point, there are
6 frequencies in a Raman spectra of ZnO wurtzite. The phonon frequencies at
the Γ point are shown in table 3.2.

3.2 Zinc Sulfide (ZnS)

Besides ZnO, ZnS is also an interesting semiconductor that belongs to II-VI
group. ZnS has a direct band gap of 3.8eV and is a promising material for
applications in electroluminescent devices, infrared windows, optoelectronic
device sensors, and lasers [54, 55]. Like ZnO, ZnS can in principle occur in
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3.3 Si

Mode ωTheo(cm
−1) ωExp(cm

−1)

Elow
2 91 100

Blow
1 261 -

ATO1 391 380
ETO

1 409 410

Ehigh
2 440 438

Bhigh
1 552 -

ALO1 560 584
ELO

1 556 595

Table 3.2: Phonon frequencies of wurtzite ZnO at the Γ point. Values are
taken from reference [49].

a(Å) c(Å) c/a u V(Å3)
ZnS Wurtzite

Theo.* 3.755 6.168 1.64 0.374 37.598
Theo.[57] 3.81 6.2484 1.64 - 39.2753
Exp.[58] 3.8227 6.2607 1.6378 0.3748 39.6154

ZnS Zincblende
Theo.* 5.32 37.642
Theo.[57] 5.4 39.366
Exp.[59] 5.4109 39.6049

Table 3.3: Lattice constants of ZnS: experimental and theoretical values.
∗ indicates own results.

three different structures, which are the wurtzite structure, the zincblende
structure, and the rocksalt structure. In nature ZnS has mostly zincblende
structure, but can also be found in wurtzite structure, whereas the rocksalt
structure only occur at a pressure above 15 GPa [56]. A scheme of the three
different structures is shown in Fig. 3.20.

The lattice constants and structural parameters of ZnS in wurtzite and
zincblende structure are presented in table 3.3. The lattice constants obtained
in this work are slightly smaller than the values reported by other groups,
which is a consequence of the LDA approximation used to derive the results
presented in this work.

The Raman active modes for ZnS in wurtzite and zincblende structure are
shown in table 3.4.

3.3 Si

Silicon is a common material. It is widely used in industry for electronics
and solar cells [60]. Silicon is also used together with germanium in silicon
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3.3 Si

Mode ωTheo(cm
−1) ωCalc(cm

−1)

Wurtzite structure
Elow

2 72 76
ATO1 275 287
ETO

1 279 288

Ehigh
2 285 296

ALO1 353 347
ELO

1 353 350

Zincblende structure
T TO2 278 277
TLO2 351 340

Table 3.4: Raman active modes of wurtzite ZnS and zincblende ZnS. Values
are taken from [57].

germanium based thermoelectric generators [61]. Despite silicon exhibits good
electric properties for thermoelectric, the figure of merit for pure silicon de-
vices is rather low, because of the high lattice conductivity of silicon, which
is approximately 156W/mK at 300K [62]. To avoid the expensive and rare
germanium there are different approaches under investigation. One approach
is to go from bulk silicon to nanostructures like silicon nanowires [63]. Another
approach is to create superlattices of different silicon isotopes. There are three
stable isotopes of silicon 28Si, 29Si and 30Si. Silicon crystallizes in diamond
structure with a lattice constant of 5.429Å[64, 65]. The Raman mode of sili-
con is 520cm−1[66]. Since there is only one type of atom, no LO-TO splitting
can be observed. Fig. 3.21 shows the structure of Si in a primitive cell (left)
and in the common crystallographic cell (right).

Figure 3.21: Left: primitive cell of Si. Right: Si in the common crystallo-
graphic cell.
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4 Results and Discussion

In this chapter three different problems are investigated. In the first section
of this chapter the atomistic Green’s function (AGF) method is employed to
calculate coherent phonon scattering in ZnO/ZnS based systems. The focus in
this section is set on ZnO/ZnS interfaces and how these interfaces affects the
thermal conductance. Furthermore, coherent phonon scattering in ZnOxS1−x
alloys is investigated by calculating coherent phonon scattering in ZnO on
sulfur impurities and in ZnS on oxygen impurities.

In the second section of this chapter the electronic properties of nanograined
semiconductors are investigated. Especially the effect of energy filtering on the
thermoelectric efficiency is considered and under which conditions the energy
filtering can enhance the thermoelectric efficiency.

In the third section the AGF method is used to calculate the conductance
of Si isotope superlattices.
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4.1 Phonon scattering on ZnO/ZnS interfaces

In this section the phonon structures of ZnO and ZnS are investigated as well
as the phonon transport properties of these structures. The thermal lattice
conductance is obtained by using equation (2.42). The transmission func-
tion is calculated within the AGF method as described in section 2.4.8. The
interface resistance is calculated using the so-called diffuse mismatch model
(DMM)[67]. In principle, the AGF method is capable of calculating the cor-
rect interface conductance, but to do so the interatomic force constants of the
correct interface has to be known. Since the lattice parameters of ZnO and
ZnS show a huge mismatch, see table 3.1 and table. 3.3, the corresponding
DFT calculations would require a huge supercell with hundreds of atoms. The
calculation of the ifcs of such big supercells takes several months on hundreds
of cores, which is much higher than the available computation power for this
project . Hence, the DMM is employed to estimate the interface resistance.
In the DMM phonons that hit the interface between material a and material
b undergo a scattering event. During this scattering event the phonons lose
memory of their original state and are either scattered in material a or material
b. The corresponding probability is proportional to the transmission function
of the bulk materials. The transmission function is normalized such that for
an interface between the same material the overall transmission is 1/2 of the
bulk transmission. The corresponding interface transmission tab is given by

tab(ω) =
ta(ω)tb(ω)

ta(ω) + tb(ω)
. (4.215)

ta(ω) and tb(ω) are the bulk transmission functions. A derivative of equation
(4.215) is given in Appendix B. The ifcs are obtained for the corresponding
bulk systems by using the technique described in section 2.3.2.

Before the corresponding materials are considered the impact of the tem-
perature on the lattice conductance is investigated. Since the transmission
function is based on ab initio calculations, which are performed at 0K and
since anharmonic effects are neglected, the transmission function does not de-
pend on the temperature. The only temperature dependency arises due to the
occupation function. To estimate the effect of the temperature, the integrand
of equation (2.42) is plotted in Fig. 4.22 for different temperatures for the
transmission function of ZnO in c-direction. The area under the curves are
proportional to the conductance. For low temperatures of 100K only the low
energy phonons contribute. Increasing the temperature to 300K leads to a
moderate increase of the low energy phonons and to a strong increase in the
high energy phonons. Increasing the temperature further keeps the contribu-
tion of the low energy phonons nearly constant and leads to a small increase
of the contribution of the high energy phonons.
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4.1 Phonon scattering on ZnO/ZnS interfaces

Figure 4.22: Transmission times phonon energy times derivative of the occupa-
tion function for different temperatures. Note that corresponding
to equation (2.42) the areas of the curves give the thermal phonon
conductance κph.

4.1.1 ZnO phonon bulk properties

All ZnO bulk calculations are performed with an cutoff radius of 60 Hartree
and a kpoint mesh of 6x6x3. This parameter set is sufficient to converge the
results based on these calculations within 1%. First the ZnO cell is relaxed.
The relaxed lattice constants are 3.198Å for the a-parameter, 5.167Å for the
c-parameter and 0.379 for the u parameter. The lattice constants for ZnO
wurtzite are about 1.6% smaller than the measured ones (see table 3.1). The
volume is about 3.9% too small. The overestimation of the binding is a well
known feature of LDA approximation.

Fig. (4.23) shows the density of states and the dispersion relation of ZnO.
ZnO has 4 atoms in the unit cell, hence there are 12 phonon modes. The first
six modes are separated by an energy gap of 17meV from the last six modes.
The maximum energy of the ZnO phonon density of state is at 70meV. The
highest energy is also called the cutoff energy or if the frequency is considered
cutoff frequency.

Fig. 4.24 (left) shows the transmission function of ZnO in different transport
directions. A small anisotropy between the transport in c-direction and a-
and m-direction can be observed. From the transmission function of the bulk
system the maximum thermal conductance can be obtained using equation
(2.42). The bulk conductance is shown in Fig. 4.24 (right).
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Figure 4.23: Dispersion relation and phonon density of states of ZnO in
wurtzite structure. (reference [E1])

Figure 4.24: Transmission function of ZnO in different transport directions
(left) and corresponding thermal conductivities (right). (refer-
ence [E1])
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4.1 Phonon scattering on ZnO/ZnS interfaces

The thermal conductance shows also an anisotropy between the c-direction
and a- and m-direction. The thermal conductance in c-direction is about 20%
higher than the conductance in the other two directions. Experimentally an
anisotropy in the thermal conductivity can be also observed, but here the
thermal conductivity in a-direction is 20% higher than the conductivity in
c-direction [68].

The temperature dependence of the conductance for all directions is similar.
The conductance shows a strong increase with temperature for lower tem-
peratures of 300K. Above 300K the increase with temperature flattens. This
behavior can be explained as follows. At low temperatures with increasing the
temperature more and more modes get occupied and can contribute to the
conductance. For higher temperatures all modes are already occupied and an
increase in the temperature leads only to a slightly higher occupation number
which results in a minor increase of the conductance.

Since scattering is neglected the contact conductance shown here is the high-
est possible lattice conductance that can be achieved for the corresponding
material. Experimentally these conductances can only be measured at low
temperatures or at very short length scales. Experimental values for ZnO
from 30K to 300K are shown in Fig. 4.25. To compare the experimental val-
ues with the theoretical ones, one has to keep in mind that the theoretical
conductance is independent of the length of the sample and has therefore the
unit of an interface conductance. To get an idea at which length scales the
theoretical conductance shown in Fig. 4.24 is comparable to the conductivity
shown in Fig. 4.25 a sample with a length of 300nm at 100K is considered.
Using the experimental bulk conductivity one obtain a bulk conductance for
this sample of 0.7 · 109 W

m2K
, which is in the same order of magnitude of the

theoretical contact conductance in Fig. 4.25. At 300K the bulk conductance
became comparable to the contact conductance at 27nm.

4.1.2 ZnS phonon bulk properties

The bulk calculations for ZnS in wurtzite structure are performed with a cutoff
radius of 60 Hartree and a kpoint mesh of 6x6x3. The bulk calculations for ZnS
in zincblende structure are performed with a cutoff radius of 60 Hartree and
a kpoint mesh of 4x4x4. These parameter sets are sufficient to converge the
results based on these calculations within 1%. The relaxed lattice parameters
for ZnS in wurtzite structure are 3.755Å for the a-parameter, 6.168 Å for the
c-parameter and 0.374 for the u-parameter. In zincblende structure the lattice
parameter is 5.32Å(see table 3.3). Fig. 4.26 shows the phonon density of states
and dispersion relation for ZnS in wurtzite structure (left) and zincblende
structure (right). In wurtzite structure there are 12 modes, whereas the lower
six modes are seperated by the upper six modes by an energy gap of 11.5meV.
Since in the zincblende structure the unit cell has only two atoms there are only
6 modes. The lower three modes are seperated by the upper three modes by
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4.1 Phonon scattering on ZnO/ZnS interfaces

Figure 4.25: Experimental values for the thermal conductivity of wurtzite ZnO
and zincblende ZnS. Values are taken from reference [68].

an energy gap of 9meV. Although the phonon densisty of states of zincblende
structure and wurtzite structure are different, the maximum energy as well as
the gap occur at nearly the same energies.

Figure 4.26: Dispersion relation and phonon density of states of ZnS in
wurtzite structure (left) and zincblende structure (right) for dif-
ferent directions. (reference [E1])

Fig. 4.27 shows the transmission functions of ZnS in wurtzite structure (left)
and zincblende structure (right). The transmission functions in zincblende
structure show nearly no anisotropy. In wurtzite structure there is a small
anisotropy. The transmission function in c-direction is slightly higher at low
energies and slightly lower for high energies than in the a- and m-direction.
The corresponding conductances for ZnS are shown in Fig. 4.28. For wurtzite
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structure the small anisotropy observed in the transmission functions does not
lead to a significant anisotropy in the conductance since the area under the
different transmission functions are nearly the same for all temperatures. The
conductance in zincblende structure shows a very small anisotropy. The con-
ductance in 111-direction is 2.5% higher than the in the other two directions.
Since the transmission functions in zinblende structure have a very similar
form this small anisotropy can be hardly seen just from the transmission func-
tions. The temperature dependence in both cases is similar to the ZnO case.
For low temperatures between 100K and 300K the conductance increases. At
low temperatures only a small number of modes are occupied, by increasing
the temperature more and more modes can contribute to the transport. When
all modes are occupied an increase in temperature results only in a small in-
crease in the conductance. The slopes at low temperatures are slightly stronger
than in the ZnO case. This is because in ZnS the energy states are lower and
narrower in energy. Nevertheless, it is remarkable that the conductance in
ZnO is approximately a factor of two higher than in ZnS. The experimental
conductivities show a similar ratio [68].

Figure 4.27: Transmission function of ZnS in wurtzite structure (left) and
zincblende structure (right) for different directions. (reference
[E1])

4.1.3 Interface conductance using the diffusive mismatch model

To estimate the interface conductance between ZnO and ZnS the DMM is used.
Before the focus is set to the specific interfaces, again the density of states of
ZnO and ZnS are considered. In Fig. 4.29 the density of states of ZnO and
ZnS are shown. It can be seen that there is no overlap between the phonon
states in ZnO and ZnS above 28meV regardless of the structure of ZnS. This
is a promising result since it shows that all phonons with energies higher than
28meV are blocked at ZnO/ZnS interfaces. To get a quantitative estimation
of the interface conductance the interface conductance is calculated for several
interfaces within the DMM.
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4.1 Phonon scattering on ZnO/ZnS interfaces

Figure 4.28: Thermal conductance for ZnS wurtzite structure (left) and
zincblende structure (right). (reference [E1])

Figure 4.29: Phonon density of states of ZnO and ZnS.
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4.1 Phonon scattering on ZnO/ZnS interfaces

In this work six different interfaces are considered. Three interfaces are
between ZnO wurtzite and ZnS wurtzite structure, where both structures are
oriented in the same direction. These interfaces are marked with ZnOC/ZnSC,
ZnOA/ZnSA and ZnOM/ZnSM. The other three interfaces under considera-
tion are between ZnO in wurtzite structure and ZnS in zincblende structure.
Since the transmission functions in the zincblende structure show only a very
small anisotropy between the different directions it is enough to consider only
one direction. The three interfaces between these structures are therefore in-
dicated with ZnOC/ZnS100, ZnOA/ZnS100 and ZnOM/ZnS100. Fig. 4.30
shows the corresponding transmission function in the DMM between ZnO
wurtzite structure and ZnS wurtzite structure (left) and ZnO wurtzite struc-
ture and ZnS zincblende structure (right). It can be seen, that for all interface
transmission functions the transmission function is zero for all energies above
28meV. The reason for the cutting of the transmission function above 28meV
is discussed in the last paragraph. The corresponding interface conductances
are shown in Fig. 4.31. These interface conductances are approximately one
order of magnitude higher than typical interfaces conductances reported in the
literature [69, 70], which can be explained by the rough assumptions that enter
the DMM.

The impact of such interfaces on the figure of merit can be estimated by
computing the total conductance per m2 of a sample with ZnO/ZnS interfaces.
The total conductance per m2 is calculated using

G =

[
(
κZnO
L/2

)−1 + (
κZnS
L/2

)−1 + n · (κInt)−1

]−1

. (4.216)

Figure 4.30: Left: Interface conductance between ZnO wurtzite and ZnS
zincblende interfaces. Right: Interface conductance between ZnO
wurtzite and ZnS wurtzite interfaces. (reference [E1])

L is the length of the structure and n is the number of interfaces. κZnO and
κZnS are the bulk conductivities and κInt is the interface conductance. Using
this formula implies that the interfaces are independent, which means that
the scattering of the phonons between two interfaces is strong enough to lose
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Figure 4.31: Left: Interface conductance between ZnO wurtzite and ZnS
zincblende interfaces. Right: Interface conductance between ZnO
wurtzite and ZnS wurtzite interfaces. (reference [E1])

Figure 4.32: Left: Sketch of some samples under consideration. Right: Figure
of merit ZT as a function of the number of interfaces normalized
to the ZT value without an interface. (reference [E1])
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Parameter Value
κZnO[68] 54W/mK
κZnS[68] 27W/mK
κZnO/ZnSw 0.21·109 W/m2K
κZnO/ZnSzb 0.19·109 W/m2K
L 1.0 · 10−6m

Table 4.5: Parameters and references used for Fig. 4.32. The interface con-
ductance κZnO/ZnSw and κZnO/ZnSzb are the average values of the
different interfaces shown in Fig. 4.31. The values are taken at a
temperature of 300K. κZnO is the ZnO bulk thermal conductivity
at 300K averaged over the different directions [68]. κZnS is the ZnS
zincblende bulk thermal conductivity at 300K averaged over the
different directions [68].

the phase information. Fig. 4.32 shows the figure of merit with different in-
terfaces divided by the figure of merit without interfaces. In this calculation
only the impact on the phonon thermal conductance is taken into account.
Thus, the ratio of (ZT )int with interfaces and by ZT without interfaces is
given by κZT/κZTint . For σInt an average value of the interface conductance
of ZnO/ZnS/wurtzite and ZnO/ZnS/zincblende is used. The bulk conduc-
tivities were taken from [68]. All parameters used for this plot are listed in
Table 4.5. It can be seen that the figure of merit increases linearly with the
number of interfaces. The slope of this curve is given by the inverse of the in-
terface conductance. Consequently, superlattice structures of ZnO/ZnS could
be promising for a substantial increase of the figure of merit in thermoelectric
devices. However, one should keep in mind that only thermal contribution
were taken into account.

4.1.4 ZnOxS1−x alloys

Besides the approach of using ZnO/ZnS interfaces to increase the figure of
merit, another idea is to incorporate sulfur atoms in ZnO and oxygen atoms
in ZnS. In such ZnOxS1−x alloys it is also expected that the phonon scattering
is reduced due to the disordering of the atoms. To confirm this assumption
the AGF method is used to calculate coherent phonon scattering in wurtzite
ZnO on sulfur impurities and in wurtzite ZnS on oxygen impurities. Here, two
different geometries and transport directions are considered. Since not only
the bulk ifcs are needed, additional supercell calculations have to be performed
to get the ifcs of the impurities and its surroundings. In Fig. 4.33 the geometry
of the transport calculation and the connection to the ifcs is sketched. The
ifcs of the impurity layer (yellow) and the ifcs of the neighboring layers (blue)
are obtained within a supercell calculation. The ifcs for the bulks layers (dark
green) and the ifcs used in the semi infinite leads (green) are obtained from a
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bulk calculation. For the coupling between the atoms in the adjacent region
of the impurity layer (blue region) and the bulk layers (dark green) also the
bulk ifcs are used. This is of course an approximation, but for large enough
supercells the error due to this approximation tends to zero.

Fig. 4.34 shows a sketch of the corresponding geometries and supercells.
In the first geometry (Fig. 4.34 left), the crystal in c-direction is considered
with one oxygen/sulfur monolayer replaced by a sulfur/oxygen monolayer re-
spectively. This supercell consists of 16 atoms. In the second geometry (Fig.
4.34 right), transport in a-direction is considered. Here the supercell consists
of 4 monolayers, where each monolayer has two oxygen/sulfur atoms and two
zinc atoms. In one of those layers one oxygen/sulfur atom is replaced by a
sulfur/oxygen atom. As mentioned earlier an error is introduced by using the
bulk ifcs to connect the region adjacent to the impurity layer with the bulk
layers. This error decreases with the size of the supercell in transport direction.
The presented geometries consists of 16 monolayers for transport in c-direction
and 4 monolayers for transport in a-direction. Especially the transport results
in a-direction will therefore be only a rough estimation.

Figure 4.33: Atomistic picture of the system and the corresponding ifcs. (ref-
erence [E2])

4.1.4.1 Transport in c-direction with an impurity layer Fig. 4.35 shows the
phonon density of states of the supercell shown in Fig. 4.34 left for ZnO with a
sulfur monolayer (left panel) and ZnS with an oxygen monolayer (right panel)
in comparison to the corresponding bulk material. Due to the introduction of
the impurity monolayer new phonon states arise in the gaps of ZnO and ZnS.
In addition, in ZnS new states exists at higher energies that are connected to
a local oxygen mode.

The transmission functions for the transport geometry given in the left panel
of Fig. 4.35 are shown in Fig. 4.36, left for ZnO and right for ZnS. To
distinguish between the effect of the change in the mass and the effect of the
change in the ifcs, the transmission functions, where only the mass is changed,
are also calculated (Fig. 4.36 red plots). Just the change in the mass causes
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Figure 4.34: Geometries and corresponding supercells under consideration.
White spheres represents zinc atoms, red spheres represents oxy-
gen or sulfur atoms and blue spheres represent the impurities.
Left: Supercell of 16 atoms in c-direction with one impurity mono-
layer. Right: Supercell of 16 atoms in a-direction with impurity
atom. The red arrow indicates which direction is considered as
the transport direction. All cells are in wurtzite structure.

Figure 4.35: Phonon density of states of the supercell shown in the left panel
of Fig. 4.34. Left: ZnO with an impurity sulfur monolayer in
comparison to bulk ZnO. Right: ZnS with a impurity oxygen
monolayer in comparison to bulk ZnS. (reference [E2])
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a strong decrease in the transmission function of the high energy phonons.
This can be explained with the previous mentioned lack of overlapping of the
density of states of ZnO and ZnS at higher energies (see Fig. 4.29). The low
energy phonons on the other hand are hardly influenced by the change of the
mass of one monolayer. Taking into account also the change in the ifcs the
transmission function at low energies is strongly decreased. The explained
behavior is qualitative the same for the ZnO and the ZnS system.

Figure 4.36: Left: Transmission function for pure ZnO in c-direction (blue),
with a change of the mass of one oxygen monolayer to the mass of
sulfur (red) and with the impurity monolayer of sulfur by consider-
ing a change in mass and in the ifcs (green). Right: Transmission
function for pure ZnS in c-direction (blue), with a change of the
mass of one sulfur monolayer to the mass of oxygen (red) and
with the impurity monolayer of oxygen by considering a change
in mass and in the ifcs (green). (reference [E2])

4.1.4.2 Transport in a-direction with impurities Fig. 4.37 shows the phonon
density of states of the supercell shown in Fig. 4.34 right for ZnO with a sulfur
impurity (left panel) and ZnS with an oxygen impurity (right panel) in com-
parison to the corresponding bulk material. Due to the introduction of the
impurity layer new phonon states arise in the gaps of ZnO and ZnS. In addi-
tion, in ZnS new states exist at higher energies that are connected to a local
oxygen mode. This is the same behavior as already observed in the previous
section.

In Fig. 4.38 the transmission functions for transport in a-direction are pre-
sented. Here also the change in the ifcs and the change in the mass are inves-
tigated independently. Compared to the transport calculations in c-direction
the effects are similar. A change in the mass reduces the transmission prob-
ability of the high energy phonons. The effect on the low energy phonons is
very small. Compared to the transport calculation in c-direction the decrease
in the transmission function is less. This is not surprising, since in the case
of transport in c-direction a whole impurity monolayer was assumed, whereas
here only every fourth atom in the monolayer is an impurity. If in addition the
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Figure 4.37: Phonon density of states of the supercell shown in the right panel
of Fig. 4.34 Left: ZnO with sulfur impurities. Right: ZnS with
oxygen impurities. (reference [E2])

change in the ifcs is considered also the low energy phonons are affected. Also
here this effect is weaker then in the case of an impurity monolayer. However,
the reduction is already quite substantial keeping in mind that only one atomic
monolayer is considered where the impurities (every fourth atom) are present.
Therefore, it can be expected that the effect is drastically increased by going
to thicker impurity layers.

Figure 4.38: Left: Transmission function for pure ZnO in a-direction (blue),
with a change of the mass of some oxygen atoms to the mass
of sulfur (red) and with impurity atoms of sulfur by considering
a change in mass and in the ifcs (green). Right: Transmission
function for pure ZnS in a-direction (blue), with a change of the
mass of some sulfur atoms to the mass of oxygen (red) and with
impurity atoms of oxygen by considering a change in mass and in
the ifcs (green). (reference [E2])

4.1.5 Discussion of ZnO/ZnS phonon scattering

The latter sections show that ZnO/ZnS based materials exhibits a strong
phonon scattering. The main reason for that behavior is that the phonon
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density of states of ZnO and ZnS show no overlap at higher energies. Hence,
the phonon scattering is stronger for the high energy phonons. The strong
phonon scattering is observed at ZnO/ZnS interfaces and in ZnOxS1−x alloys.
For thermoelectrics this behavior can be used to increase the efficiency and
therefore the figure of merit ZT.
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4.2 Electron transport in nanograined structures

The model presented in section 2.5 is used to investigate the electronic part of
the thermoelectric properties of nanograined structures. For the 1-dimensional
transmission function two different models are considered. A step transmission
function and the correct transmission functions for double Schottky barriers are
used. The step transmission function has the advantage that this transmission
function leads to an analytic expression for the total transmission function.

4.2.1 Modeling the grain boundary using a step transmission function

Fig. 4.39 shows that the transmission function of a double Schottky barrier can
be roughly approximated by a step like function as long as the transmission
barrier height and width is not too small.

In general a double Schottky barrier and therefore the barrier height UB is
a complicated function of the doping concentration ND, the trapping density
NT , the length of the grain lg, and the thickness of the interface li. Since these
parameters also influence the chemical potential µ, it is in general not possible
to vary the chemical potential µ and the barrier height UB independently.
Nevertheless, in this section the barrier height and the chemical potential are
varied independently to find out under which conditions the thermoelectric
parameters are optimized. Subsequently in the next section it is analyzed
whether these conditions can be fulfilled in real materials. The model 1D
steplike transmission function t1D

t1D(E) =

{
1 E > UB

0 E ≤ UB
(4.217)

leads to an analytic expression for the total transmission function of the solid
tSolid (see equation 2.214)

tSolid(E) =

{
meff
2π~2 · E · λ(E−Ub)lg

Elg+Ub(λ−lg)
E > UB

0 E ≤ UB
. (4.218)

To make general statements, parameters are used that are typical for a
semiconductor. The parameters used in this chapter are listed in table 4.6.
First the bulk values are considered which means that Ub=0. Fig. 4.40 shows
the thermoelectric coefficients without a barrier vs. the chemical potential.

The bulk conductivity shows a nearly linear behavior with the chemical
potential. The magnitude of the Seebeck coefficient shows moderate values
for low chemical potential and decreases rapidly with increasing the chemical
potential. Since an energy independent λ is used, the only energy dependence
in the transmission function is due to the energy dependence of the number of
modes. The bulk power factor shows a maximum at approximately µ=0.015eV.

77



4.2 Electron transport in nanograined structures

Figure 4.39: Left: double Schottky barriers of different height and width.
Right: Corresponding transmission functions.

Figure 4.40: Left: electric conductivity vs. chemical potential. Middle: See-
beck coefficient vs. chemical potential. Right: Power factor σS2

vs. chemical potential. All quantities are calculated without a
barrier Ub=0.
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A certain chemical potential corresponds to a certain free charge carrier
density at a certain temperature. In Fig. 4.41 the free charge carrier density
vs. the chemical potential is shown.

From Fig. 4.41 the charge density at which the bulk power factor has its
maximum can be determined. Since the bulk power factor has its maximum
at µ=0.015eV, the optimum free charge carrier density is 3 · 1018cm−3.

Figure 4.41: Free charge carrier density vs. chemical potential.

Fig. 4.42 shows the thermoelectric coefficients for different barrier heights
and chemical potentials and for different grain sizes. A few general trends
can be seen. The conductivity increases with increasing the chemical potential
and decreases with increasing the barrier height. The Seebeck coefficient shows
the opposite behavior. For a given chemical potential the power factor has a
maximum if the barrier height is around the chemical potential. The power
factor can be increased by increasing the chemical potential and using the
optimum barrier height. This shows that it is possible to increase the power
factor due to a barrier between the grains. This was also shown in reference
[15]. However, it was mentioned before that the barrier height and the chemical
potential can not be varied separately. In the next chapter it is investigated
if it is possible to tune the physical parameters in such a way that the power
factor can be increased.

4.2.2 Modeling the grain boundary using a double Schottky barrier

In this section the real transmission function of a double Schottky barrier is
used. The transmission function is obtained using equation (2.152). Transmis-
sion functions for different barriers are shown in Fig. 4.39. To make quantita-
tive judgments the thermoelectric coefficients for different chemical potentials
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Figure 4.42: Electric conductivity σ, Seebeck coefficient S, and power factor
S2σ vs. chemical potential µ and barrier height Ub for different
grain sizes lg. Top: lg=50nm. Bottom: lg =200nm. Red indicates
high values and blue indicates low values. (reference [E3])

Parameter Symbol Value
Energy of the donor level ED -0.02eV
Energy of the trapping states ET -0.5eV
Length of the interface li 1nm
Effective mass meff 0.25
Scattering constant (equation (2.210)) λ0 20nm
Scattering exponent (equation (2.210)) r 0
Temperature T 300K

Table 4.6: Parameters used in this section
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and different potentials are calculated by altering the densities of the surface
states NT . NT is altered from 0 to 2 ·1020cm−3. Since the interface thickness
is 1nm this corresponds to a total trapped charge density QT of 2 ·1013cm−2.
Hence, the range of NT covers typical values for QT [45]. All parameters used
for these calculations are shown in table 4.6.

In Fig. 4.43 results are shown for the thermoelectric coefficient vs. chemical
potential µ and densities of the surface states NT . Increasing the chemical
potential increases the electric conductivity and reduces the Seebeck coeffi-
cient. Increasing the densities of the surface states leads to an increase of the
barrier height and therefore reduces the electric conductivity and increases the
Seebeck coefficient. The latter behavior can only be observed for low chemical
potentials, because for larger chemical potentials a higher donor concentration
ND is required. A high donor concentration leads to a high effective screening
of the trapped surface charge and therefore reduces the height and the width
of the barrier.

In Fig. 4.44 the power factor for different chemical potentials and grain sizes
are plotted. This means that these plots are basically cuts through the areas
in Fig. 4.43. For low chemical potentials the power factor is reduced with
increasing densities of the surface states. For high chemical potentials there is
no influence on the power factor of the densities of the surface states. The grain
size has only a small effect on the power factor. An appreciable enhancement
of the power factor is not observed for any of the considered grain sizes.

As previously mentioned the quantity that links the material parameters
with the efficiency is the figure of merit ZT and not the power factor. Nev-
ertheless, if the thermal conductivity is dominated by the lattice contribution
the optimization of the power factor also optimizes the figure of merit. To
estimate the order of magnitude of the electric thermal conductivity Fig. 4.45
left shows the electric thermal conductivity for different chemical potentials vs.
the density of surface states NT . For higher chemical potentials, κe is hardly
influenced since a high chemical potential results in a low barrier. For low
chemical potentials κe rapidly decreases with increasing NT , but even without
a barrier the absolute value of κe is much smaller than the smallest lattice
thermal conductivities reported [71].

Fig. 4.45 right shows the Lorenz number for different chemical potentials
as a function of NT . The Lorenz number always increases with increasing NT ,
but for low chemical potentials this effect is stronger. The Lorenz number
increases because with increasing NT the barrier increases as well. An increase
of the barrier leads to a blocking of the cold electrons, which means that hot
electrons are preferred to cross the barrier. Hence, each charged particle carries
on average more heat compared to the case without a barrier.

The figure of merit for three different lattice thermal conductivities κl =
0.1, 1, 10W/(mK) is presented in Fig. 4.46. The values of κl are chosen in a
way to cover typical ranges of thermoelectric materials. The figure of merit
shows in principle the same behavior as the power factor, except that for low κl
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Figure 4.43: Electric conductivity σ, Seebeck coefficient S, and power factor
S2σ vs. chemical potential µ and densities of the surface states NT

for different grain sizes lg. Top: lg=50nm. Bottom: lg =200nm.
(reference [E3])

Figure 4.44: Left: Power factor vs. densities of the surface states NT for differ-
ent chemical potentials and grain size lg=100nm. Right: Power
factor vs. densities of the surface states NT for different grain
sizes and at µ=0.1. (reference [E3])
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the figure of merit decreases earlier with increasing chemical potential µ than
the power factor. The reason is that κe increases and hence reduces the figure
of merit with increasing chemical potential. There is no qualitative difference
between grain sizes of 50nm and 200nm.

Figure 4.45: Left: Thermal conductivity of the electrons κe vs. density of sur-
face states NT for different chemical potentials µ. Right: Lorenz
number L vs. density of surface states NT for different chemical
potentials µ. (reference [E3])

4.2.3 Discussion electron transport in nanograined structures

In the latter section the thermoelectric parameters of nanograined materials
are investigated. In such nanograined materials it is widely believed that an
energy dependent filtering effect [72, 73, 74, 13, 14, 12, 15] can increase the
Seebeck coefficient and therefore also the figure of merit. Such a filtering ef-
fect is reported for indium gallium arsenide superlattice films [75], bulk PbTe
with Pb nanoparticles [76], nanocrystalline PbTe [77, 16, 78], nanostructured
SiGe [79], and ZnO based materials [19, 23, 24]. In this work an energy de-
pendent filtering could be modeled using a double Schottky barrier and simple
step transmission function. In both models the Seebeck coefficient increases
with increasing the barrier height whereas the electric conductivity decreases.
Using the simple model it could be shown that if the chemical potential is
around the barrier height the enhancement of the Seebeck coefficient overcom-
pensates the decrease in the electric conductivity and results in an increase in
the power factor. These results are in agreement with Popescu et al.[15]. In
their work the authors used a rectangular barrier, which they varied in height
and width independently from other parameters. In a more realistic model
like the double Schottky barrier the height and width depends on the chemical
potential. Hence, the chemical potential, the height, and the width can not be
tuned separately. In the last section it was shown that for realistic parameters
an increase in the power factor can not be observed due to the barrier. The
reason is, that with increasing the chemical potential the height and width of
the barrier decreases rapidly. For reasonable chemical potentials the barrier
hardly influences the electronic transport. In summary, the energy filtering
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effect due to double Schottky barriers does not lead to an enhancement of the
efficiency of thermoelectric materials.

Figure 4.46: ZT vs. chemical potential µ and density of surface states NT for
κl=0.1W/(mK) (left), κl=1W/(mK) (middle) and κl=10W/(mK)
(right) for different grain sizes lg. Top: lg=50nm. Bottom:
lg=200nm. (reference [E3])
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4.3 Coherent phonon scattering in isotope Si superlattices

Besides the material system ZnO/ZnS also Si is investigated in this work. Si
especially in combination with Ge is widely used in thermoelectrics. Si inhibits
good thermoelectric characteristics like a high electric conductivity and a high
Seebeck coefficient. The main drawback of Si as a thermoelectric material is
a relatively high thermal conductivity. This is why Si is often used together
with Ge. The incorporation of Ge leads to an enhanced phonon scattering
which reduces the thermal conductivity and increases the efficiency. Unfortu-
nately, Ge is rare and expensive, this is why Si-Ge thermoelectric generators
are only used in spacecraft applications, where the costs are only from minor
interest. To establish Si in thermoelectrics for mass market applications it is
necessary to find a way to reduce the thermal conductivity without using an
expensive and rare material like Ge. To find such materials it is necessary to
fully understand the mechanisms that lead to an enhancement of the phonon
scattering due to the combination of different materials. There are in principle
two reasons that can lead to an enhancement of the phonon scattering, either
the phonons get scattered because the inter atomic force constants (ifcs) are
different in the combined materials or the ifcs get scattered because the mass
of the combined materials differ. Usually both effects occur simultaneously,
which makes it difficult to investigate the effects independently. One approach
the investigate only the influence of the mass change, is the use of 28Si/29Si or
28Si/30Si superlattices.

The conductivity of 28Si/30Si superlattices are investigated in reference [80].
In this paper the authors employ a model for photons to calculated the trans-
mission probability as a function of the number of interfaces. They showed
that within this model the phonon transmission function tend to zero for 70 to
100 interfaces depending on the mass difference between the isotopes. Their
results are quite promising but also questionable, since they employ a photon
model to calculate phonon transport. Hence, in this section also phonon trans-
mission functions of 28Si/29Si or 28Si/30Si superlattices are calculated but this
time the phonon model described in section 2.4.8 is used.

The isotope distribution of Si, found in nature, results in an average mass of
28.085u. To simplify the calculations the isotope distribution, found in nature,
is modeled by using just the average mass for each atom. The ifcs for Si are
independent of the considered isotope. Hence, the ifcs has to be obtained only
once. The ifcs are calculated with a kpoint grid of 10x10x10 and a cutoff-radius
of 60 Hartree. The phonon band structure and phonon density of states, based
on these ifcs, are shown in Fig. 4.47. Si has two atoms in the unit cell which
results in 6 phonon modes. In comparison with ZnO or ZnS there is no gap in
the phonon density of states between zero and the maximum energy of 63meV.

The corresponding transmission function in 111 direction for this system is
shown in Fig. 4.48 left panel. The transmission functions for the different
Si isotopes are shown in Fig. 4.48 right panel. The transmission function is
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Figure 4.47: Dispersion relation and phonon density of states of natural Si.

shifted down to lower energies with increasing the mass, whereas the higher
energies are shifted more strongly than the lower energies. Hence, one can
expect that at an interface between two different Si crystals with different
isotopes the high energy phonons are stronger affected than the low energy
phonons.

To get an idea of the different contributions to the heat conduction of each
energy at different temperatures the integrand of equation (2.42) is shown
in Fig. 4.49. At around 100K mainly the low energy phonons contribute
to the thermal conduction. At 300K nearly all phonons have a significant
contribution to the heat conduction. Increasing the temperature further keeps
the contribution of the low energy phonons nearly constant but still increases
the contribution of the high energy phonons.

Figure 4.48: Left: Transmission function of natural Si. Right: Transmission
functions of the different Si isotopes.
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Figure 4.49: Transmission function times phonon energy times distribution
function for different temperatures. Note that these curves are
the integrand in equation (2.42). Therefore the area under the
curves are corresponding thermal conductivities.

4.3.1 Isotope Superlattices

In this section the thermal conductance of isotope superlattices are investi-
gated. Fig. 4.50 shows the principle setting. Two natural silicon contacts are
connected by an isotope superlattice. In the first setting a periodic arrange-
ment of the layer thickness is considered. One period consists of two layers
with different isotopes. Each of theses layers consists of 76 atomic monolayers,
which correspond to a thickness of approximately 10nm. Therefore the length
of one period is 20nm. In the second setting the length of each layers varies
randomly between 5nm and 15nm, which corresponds to 40 atoms and 112
atoms, respectively. Two different combinations of isotopes are investigated
28Si/29Si and 28Si/30Si.

4.3.2 28Si/29Si

Fig. 4.51 shows the transmission functions for different period numbers with
a periodic arrangement (left panel) and with a random arrangement (right
panel). In both cases the transmission function is reduced due to the super-
lattice, and the effect is the strongest on the high energy phonons. In the case
of the periodic arrangement the effect of the superlattice seems to saturate
with 8 periods. Increasing the number of periods further does not have any
significant effect on the transmission function.

At this point the transmission functions for the random arrangement shows
a different behavior. Increasing the number of periods leads to a reduction of
the transmission function without showing a saturation.
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Figure 4.50: Sketch of the systems under consideration. Two silicon contacts
with natural Si are connected by a superlattice of 28Si/29Si. Top:
Periodic arrangement. Bottom: Random arrangement.

The corresponding resistance for the periodic and random arrangement are
shown in Fig. 4.52. The resistance for the periodic arrangement saturates at
8 periods and can not be increased further by increasing the number of peri-
ods. The resistance for the random arrangement on the other hand increases
further with increasing the number of periods. For comparison the resistance
obtained with equation (2.189) is also shown. Equation (2.189) requires that
the transmission function at each period is combined completely incoherently.
Hence, the resistance obtained with equation (2.189) compared to the coher-
ent resistance in the periodic and random arrangement shows the difference
between the completely coherent and completely incoherent case. Therefore
the resistance obtained with equation (2.189) is the maximum contribution of
the resistance due to the mass difference if other incoherent scattering effects
are present.

Figure 4.51: Transmission function of 28Si/29Si superlattices for different num-
ber of periods. Left: Periodic arrangement. Right: Random
arrangement.
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Figure 4.52: Thermal phonon resistance vs. number of periods for the periodic
and random arrangement for for 28Si/29Si superlattices at 300K.

4.3.3 28Si/30Si

Fig. 4.53 shows the transmission functions for different period numbers with
a periodic arrangement (left panel) and with a random arrangement (right
panel). For comparison the resistance obtained with equation (2.189) is also
shown. The discussed about the resistance obtained with equation (2.189)
is given in the previous section. In general, the behavior is the same like
in the case of the 28Si/29Si superlattice. The only difference is, that in the
case of the 28Si/30Si lattice the reduction is stronger compared to the 28Si/29Si
superlattice. This is not surprising since the mass differences between 28Si/30Si
is a factor of two higher than the differences in mass between 28Si/29Si. The
resistances for the 28Si/30Si superlattices are shown in Fig. 4.54. Also in
this case for the periodic arrangement the resistance saturates at 8 periods,
whereas in the random arrangement the resistance increases with increasing
the number of periods. Compared to the superlattice 28Si/29Si the resistance
is higher by a factor of approximately 1.3.
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Figure 4.53: Transmission function of 28Si/30Si superlattices for different num-
ber of periods. Top: Periodic arrangement. Bottom: Random
arrangement.

Figure 4.54: Thermal phonon resistance vs. number of periods for the periodic
and random arrangement for 28Si/30Si superlattices at 300K.
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4.3.4 Discussion phonon scattering in isotope Si superlattices

The results obtained here differ from the results presented in reference [80].
For 28Si/30Si the reported transmission probability is 5% for 64 periods. A
transmission propability of 5% means an increase in the resistance of a factor
of 20. The relative increase in the resistance for the random arrangement for
the 28Si/30Si superlattices calculated with the phonon model is only 2.5 at 64
periods. The resistance obtained in the incoherently combined case is a factor
of 20 higher. Hence, the model used in reference [80] describes the effect of
completely incoherently combined interfaces and agree well with our results
obtained with equation (2.189). The results of the periodic arrangement show
a total different behavior compared to the results presented in reference [80].
In reference [80] the transmission probability tend to zero with increasing the
number of periods, which means that the resistance could in principle increase
to infinity, whereas the results presented in this work for a periodic arrange-
ment show a maximum increase of the resistance of 40%. The saturation of
the resistance is quite surprising and can be explained with the existance of
blochstates, which are known from electronic systems in a periodic lattices.
Blochstates are the eigenstates of these periodic lattices and can therefore
pass through the periodic lattice without beeing scattered. Considering again
the setting shown in Fig. 4.50 this means that in the periodic arrangement the
phonons get only scattered when they enter the superlattice from the contanct
and when they leave the superlattice into the other contanct. Hence in the pe-
riodic arrangment there are basically only two effective interfaces at which the
phonons can scatter. The transmission propability is therefore independent of
the number of periods as long as there are enough periods that bloch states
arise. In the particular presented case it was found that 8 periods are enough
to establish this behavior.
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To estimate the thermoelectric usability of a material system one has to de-
termine the thermoelectric parameters of the material system. These material
parameters can be divided into the electronic parameters, which are the See-
beck coefficient S, the electric conductivity σ, and the thermal conductivity of
the electrons κe, and into the lattice parameter, which is the thermal conduc-
tivity of the phonons κp.

In this work methods have been developed to calculate the different thermo-
electric parameters of nanostructured materials. For the electronic parameters
a model has been developed that describes electron transport in nanograined
materials, which models the grain boundary by so called double Schottky bar-
riers. For the lattice parameter a model has been developed that can calculate
coherent phonon transport across different nanostructures.

In chapter 4.2 the electronic parameters of a typical nanograined semicon-
ductor are investigated. It is widely believed that in such structures the elec-
tronic parameters can in principle benefit from an energy filtering effect, which
is caused by a so called double Schottky barrier [15, 74]. It is furthermore be-
lieved that this effect can enhance the thermoelectric efficiency. In chapter
4.2 it was shown that such an energy filtering effect can indeed increase the
thermoelectric efficiency if the barrier height is close to the chemical poten-
tial. However, for the double Schottky barrier model it was found that this
energy filtering effect does not occur at reasonable chemical potentials, since
for reasonable chemical potentials the Schottky barrier becomes too small to
have an effect on the electronic parameters. Since the vanishing of the double
Schottky barrier with increasing the chemical potential is a fundamental mech-
anism, one can conclude that in reasonable thermoelectric materials a double
Schottky barrier has no effect on the thermoelectric properties. Although a
double Schottky barrier can not lead to an energy filtering effect in reasonable
thermoelectric materials, this does not exclude that other energy depended
scattering mechanisms can occur. One approach to investigate such scattering
mechanisms could be to model the grain boundary on an atomistic scale using
an ab initio method or a parameter based method like a tight-binding model.
Based on these models transport calculations can then be performed. The
preferred transport model in this case would be the Landauer formalism.

In chapter 4.1 the thermal conductivity of the phonons κp of ZnO/ZnS-based
systems is investigated. It is found that regardless of the specific structure
ZnO/ZnS-based systems exhibits a strong phonon scattering. Here two differ-
ent methods of combing ZnO and ZnS are considered: ZnOxS1−x alloys and
ZnO/ZnS interfaces. It is shown that if the interfaces are combined incoher-
ently the figure of merit increases with increasing the number of interfaces.
An incoherent combination of the interfaces is justified if the phonon-phonon
scattering between the interfaces is strong enough and if the distance between
the interfaces is on the order of the mean free path of the phonons.

93



5 Summary

To estimate the potential of ZnO/ZnS-based materials for applications Fig.
5.55 shows the thermal conductivity of the phonons for different interface den-
sities for the incoherent case. At an interface density of 50/µm the ther-
mal conductivity has a value of 4W/mK. Such low thermal conductivities are
experimentally observed in ZnAlGaO composites [22], which have a thermal
conductivity of 5W/mK and a zT value exceeding 0.65 at 1247K.

Of course in the latter considerations only the lattice part of the thermal con-
ductivity is taken into account, which is correct as long as the electronic part of
the thermal conductivity is small against the lattice part. An estimation of the
electronic part of the thermal conductivity can be obtained from chapter 4.2.
The electronic contribution to the thermal conductivity for moderate chemical
potentials is about 0.2W/mK at 300K. Hence, the lattice contribution is in-
deed much higher than the electronic contribution. The results concerning the
thermal conductivity in ZnO/ZnS-based materials are quite promising for ther-
moelectric applications. In this work it is shown that the thermal conductivity
in these structures can be in principle reduced compared to the individual bulk
values. The reduction in the thermal conductivity can lead to an increase in
the efficiency if the electronic parameters of ZnO/ZnS-based materials have
also reasonable values. In this work the diffusive mismatch model is employed
to calculate the interface conductance. The diffusive mismatch model gives
an approximation of the real interface conductance. The calculation of the
real interface conductance is in principle also possible with the methods devel-
oped in this work, but requires high computational effort. Because of the high
progress in the computer technology, the investigation of real interfaces will be
possible within a reasonable framework and therefore an interesting task for
the future.

To estimate the differences between a coherent and incoherent treatment
of phonon scattering at interfaces a computational easy handleable material
system is considered in chapter 4.3. In particular, coherent phonon scattering
in an isotope Si superlattice is investigated. The central conclusion of these in-
vestigations is that the resistivity obtained in the coherent treatment is smaller
than in the incoherent treatment. Furthermore, it was shown that the resis-
tivity in the coherent case depends in the actual arrangement of the interfaces.
In the periodic arrangement the resistivity saturates at fairly low numbers of
interfaces, whereas in the random arrangement the resistivity shows a linear
dependence with the number of interfaces. Nevertheless, the slope in the ran-
dom arrangement is much smaller than the slope obtained in the incoherently
combined interfaces. From the presented results it is not possible to estimate
the scattering strength that is necessary to have an incoherent combination
of the interfaces. Also interesting would be the impact of the transmission
function on the actual arrangement of the interfaces and the search for an
optimal arrangement that leads to the highest resistivity. These questions are
interesting problems, which are worth to be investigated in the future.
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Figure 5.55: Thermal conductivity vs. interface density. The bulk conductiv-
ities are taken from chapter 4.1. For the interface conductance
the value 0.2 · 109W/mK is used, which is the average interface
conductance obtained in chapter 4.1.
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6.1 Computational effort: quantum mechanical treatment
vs. classical treatment of phonons

In section 2.3.1.1 it was mentioned that the classical treatment of the phonons
is preferred to the quantum mechanical treatment, because of the higher com-
putational effort that comes along with the quantum mechanical treatment.
This statement will be discussed in this section in detail. Considering again
the Hamilton operator for phonons for N-Atoms in the harmonic approach. If
translation symmetries can not simplify this problem, then the corresponding
SGL has D · NA coupled variables, where NA is the number of atoms and D
is the dimension of the system. In the FDM representation the corresponding
matrices have therefore the dimension ND·NA

P , where NP are the number of
points in real space. In the classical treatment no FDM is needed, since New-
ton’s laws define a set of linear equations that can be described by a matrix of
dimension D ·NA.

As an example for a quantum mechanical solutions a system with two atoms
that is connected to a wall is considered. The corresponding Hamiltonian in
real space representation is

H =
~2

2m

(
d2

dx2
1

+
d2

dx2
2

)
+
k1

2
(x1 − d1)2 +

k2

2
(x1 − x2 − d2)2. (6.219)

Fig. 6.56 shows a sketch of this system and the eigenvalues of the system.
In Fig. 6.57 wave function of the ground state and an exited state are shown.
The parameter used here are m = m0, k1 = 10k2 = 4 · 2500 eV

nm2 , and d1 =
d2 = 1

3
nm. The number of grid points in real space NP is 50. This means

that the results shown here are obtained by calculating the eigensystem of a
matrix with dimension 2500. The computational effort for this calculation is
approximately several minutes on one cpu core.

The classical solution of the problem is given by the eigenvectors of the
matrix (

mω2 + k1 + k2 −k2

−k2 mω2 + k2

)
. (6.220)

The eigenvectors and eigenvalues of this matrix can be obtain within millisec-
onds, which is much fast than in the quantum mechanical case.
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Figure 6.56: Sketch of the system (left) and the first eigenvalues of the system
(right).

Figure 6.57: Ground state wave function (left) and wave function of an exited
state (right).
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6.2 Derivation of the transmission function in the the DMM

Starting point is equation (1) from reference [21] for the interface conductance,

G =
1

2(2π)3

∑
i

∫
k

1

kbT 2
αA→B(k, i) · (~ω(k, i))2

|V (k, i) · n|
exp

(
~ω(k,i))
kbT

)
(

exp
(

~ω(k,i))
kbT

)
− 1
)2dk.

(6.221)

G is the conductance between interface A and B. αA→B(k, i) is the transmis-
sion probability of mode i with vector k from A to B. ~ω(k, i) is the phonon
frequency and V (k, i) · n the group velocity in direction of the normal to the
interface. According to [21] the transmission probability αA→B(k, i) in the
DMM is

αA→B(ω′) =

∆KB

∑
j,k |V (k, j) · n| δω(k,j),ω′

∆KB

∑
j,k |V (k, j) · n| δω(k,j),ω′ + ∆KA

∑
j,k |V (k, j) · n| δω(k,j),ω′

.
(6.222)

∆KA and ∆KB are the volumes of the discretized cells of the corresponding
Brillouin zones. In order to link the bulk transmission functions obtained
from equation (2.42) to the conductance given in equation (6.221) one can set
αA→B(k, i) = 1 and write the conductance as an integral over ω and we obtain

G =
1

2(2π)3

∫
dω′ · ~ω′df(~ω′, T )

dT∑
i

∫
k

|V (k, i) · n| δω(k,i),ω′dk.
(6.223)

Comparing the conductance in equation (2.42) with the conductance in equa-
tion (6.223) one can identify

1

2(2π)2

∑
j

∫
k

|V (k, j) · n| δω(k,j),ω′dk (6.224)

as the bulk transmission function t(ω′) from equation 2.42. Thus equation
(6.222) can be expressed in terms of transmission functions

αA→B(ω) =
tb(ω)

ta(ω) + tb(ω)
, (6.225)
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where ta(ω) and tb(ω) are the bulk transmission functions of material a and b
respectively. Using

df(~ω, T )

dT
=

exp
(

~ω
kbT

)
(

exp
(

~ω
kbT

)
− 1
)2 ·

~ω
kbT 2

(6.226)

equation 6.221 can be rewritten to

G =
1

2(2π)3

∑
i

∫
k

αA→B(ω(k, i)) · ~ω(k, i)

df(~ω(k, i), T )

dT
|V (k, i) · n| dk

(6.227)

This can be written as an integral over ω

G =
1

2(2π)3

∫
dω′αA→B(ω′) · ~ω′df(~ω′, T )

dT∑
i

∫
k

|V (k, i) · n| δω(k,i),ω′dk.
(6.228)

Using again expression (6.224) one obtains for the conductance

G =
1

2π

∫
dω′αA→B(ω′) · ~ω′df(~ω′, T )

dT
ta(ω

′), (6.229)

which can be expressed in the Landauer form

G =
1

2π

∫
dω′ · ~ω′df(~ω′, T )

dT
t(ω′) (6.230)

with

t(ω) =
ta(ω)tb(ω)

ta(ω) + tb(ω)
. (6.231)

ta(ω) and tb(ω) are the bulk transmission functions.
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thermoelectric properties of materials with nanoinclusions. Phys. Rev.
B, 77: 214 304 (Jun 2008). URL http://link.aps.org/doi/10.1103/

PhysRevB.77.214304.

[14] J. Martin, Li Wang, Lidong Chen, G. S. Nolas. Enhanced See-
beck coefficient through energy-barrier scattering in PbTe nanocomposites.
Phys. Rev. B, 79: 115 311 (Mar 2009). URL http://link.aps.org/doi/

10.1103/PhysRevB.79.115311.

[15] A. Popescu, L. M. Woods, J. Martin, G. S. Nolas. Model of trans-
port properties of thermoelectric nanocomposite materials. Phys. Rev.
B, 79: 205 302 (May 2009). URL http://link.aps.org/doi/10.1103/

PhysRevB.79.205302.

[16] Kengo Kishimoto, Tsuyoshi Koyanagi. Preparation of sintered de-
generate n-type PbTe with a small grain size and its thermoelectric prop-
erties. Journal of Applied Physics, 92 (5): 2544–2549 (2002). URL
http://link.aip.org/link/?JAP/92/2544/1.

[17] L. D. Hicks, M. S. Dresselhaus. Effect of quantum-well structures on
the thermoelectric figure of merit. Phys. Rev. B, 47: 12 727–12 731 (May
1993). URL http://link.aps.org/doi/10.1103/PhysRevB.47.12727.

[18] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee,
D.Z. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna. New Directions for
Low-Dimensional Thermoelectric Materials. Advanced Materials, 19 (8):
1043–1053 (2007). ISSN 1521-4095. URL http://dx.doi.org/10.1002/

adma.200600527.

[19] G. Homm, P. J. Klar. Thermoelectric materials Compromising between
high efficiency and materials abundance. physica status solidi (RRL)
Rapid Research Letters, 5 (9): 324–331 (2011). ISSN 1862-6270. URL
http://dx.doi.org/10.1002/pssr.201105084.
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der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter
wissenschaftlicher Praxis, wie sie in der Satzung der Justus-Liebig-Universität
Gießen zur Sicherung guter wissenschaftlicher Praxis niedergelegt sind, einge-
halten.

Michael Bachmann

114


	Introduction
	Theory
	The Onsager equations
	Microscopic transport models
	The Landauer formalism
	The Boltzman transport equation (BTE)
	Landauer vs BTE

	Electronic structure and lattice vibrations
	The phonon structure
	Quantum mechanical treatment of lattice vibrations
	Classical treatment of lattice vibrations
	Periodic boundary conditions

	Ab initio determination of the interatomic force constants

	Non equilibrium Green's function formalism (NEGF)
	Basics
	Finite difference method
	Open boundaries/infinite leads
	Calculation of the transmission function
	Incorporation of scattering
	Combining different scattering mechanisms
	Atomistic Green's function method
	AGF method with periodic boundary conditions in two dimensions

	Grain boundary model for electronic transport
	Modeling of electrostatic barriers
	Determination of the chemical potential
	Modeling the transport from grain to sample


	Material Systems
	Zinc Oxide (ZnO)
	Zinc Sulfide (ZnS)
	Si

	Results and Discussion
	Phonon scattering on ZnO/ZnS interfaces
	ZnO phonon bulk properties
	ZnS phonon bulk properties
	Interface conductance using the diffusive mismatch model
	ZnOxS1-x alloys
	Transport in c-direction with an impurity layer
	Transport in a-direction with impurities

	Discussion of ZnO/ZnS phonon scattering

	Electron transport in nanograined structures
	Modeling the grain boundary using a step transmission function
	Modeling the grain boundary using a double Schottky barrier
	Discussion electron transport in nanograined structures

	Coherent phonon scattering in isotope Si superlattices
	Isotope Superlattices
	28Si/29Si
	28Si/30Si
	Discussion phonon scattering in isotope Si superlattices


	Summary
	Appendix
	Computational effort: quantum mechanical treatment vs. classical treatment of phonons
	Derivation of the transmission function in the the DMM

	References
	List of publications
	Acknowledgements

