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Abstract:

We consider a theoretical model of co-evolution of networks and strategies whose com-
ponents are exclusively supported by experimental observations. We can show that a
particular kind of sophisticated behavior (anticipatory better reply) will result in stable
population states which are most frequently visited in co-evolution experiments.

1. Introduction

The steadily increasing interest in the problem of the co-evolution of networks
and strategies is inspired by two different strands of research. In traditional evo-
lutionary game theory the focus was on the evolution of strategy configurations
in populations of players interacting bilaterally with the whole population via
simple two-person games. Moreover, coordination games were often utilized as
instances of such two-person base games. The question then was whether pop-
ulation members would eventually coordinate on one particular equilibrium of
the one-shot game when randomly matched! with each other sufficiently many
times. The uniform and stable choice of an equilibrium that evolves over time
in the symmetric two-person coordination game is often interpreted as the evo-
lution of a convention (see e.g. Berninghaus 2003).

Models on the evolution of conventions in large populations were soon ex-
tended to include populations endowed with a social network structure (see
Berninghaus and Schwalbe 1996a; 1996b; Berninghaus and Vogt 2006). It is
a basic assumption in such models that population members will exclusively be
matched with members of their reference (or neighborhood) group and not with
any other members of the population. However, reference groups are usually
assumed to be overlapping.? The main emphasis in this strand of research was
on determining which conditions would guarantee either that one convention
would eventually be uniformly spread across the population or that several con-
ventions would coexist indefinitely.

1 See e.g. Young 1993; Amir and Berninghaus 1996.

2 Consequently, an agent may belong to several reference groups. Non-overlapping reference groups
would not add a really new aspect because they can simply be regarded as sub-populations without
a network structure.
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A major drawback of this type of model is that the network structure is ex-
ogenously imposed (by the model maker) rather than allowed to evolve from
individually made decisions. Since the results of strategy choice in networks
crucially depend on the particular network structure, the choice of a network
structure (like a ‘circular’ or ‘rectangular’ network structure) is by no means
trivial. But who can say which network shape is the ‘correct’ one to use in our
models?

In another strand of literature, network structures are introduced as en-
dogenous variables resulting from a strategy choice of an appropriately formu-
lated non-cooperative (network) game (see e.g. Bala and Goyal 2000; Haller and
Saranghi 2003; Jackson and Wolinsky 1996). However, models of strategic net-
work formation often lack of a satisfactory motivation for the individual payoffs.
In this literature, network games are commonly interpreted as information ex-
change games in which the players’ payoffs are generated by extracting valuable
information from the members with whom an agent is connected.

Obviously, both approaches are flawed. Hybrid models addressing the co-
evolution of both strategies and networks have proven to be superior (see e.g.
Skyrms and Pemantle 2001; Berninghaus and Vogt 2006; Bramoulier et al.
2004). In most of these models the co-evolution problem was posed as a static
Nash problem in an appropriately defined non-cooperative game framework in
which players simultaneously choose network partners and the strategies they
will employ against these partners in a two-person game.

In a recent experimental study (Berninghaus et al. 2008) it was found that
the static Nash concept does not play a major role in the co-evolution problem;
during the course of the experiment Nash configurations were almost never ob-
served. But subjects engaged in another type of regular behavior which placed
them into another type of stable strategy configuration that differs significantly
from Nash-type configurations. In this paper, we formulate a simple, stylized
dynamic strategy adaptation process whose elements are exclusively taken from
observed behavior. From a formal point of view this adaptation process can be
interpreted as an instance of a Stochastic Learning System (General Random
System with Complete Connections = GRSCC).

A unique feature of our design is that the 2 x 2 base game is an anti-coordina-
tion game (of the Hawk-Dove type). A ‘convention’ generated by this game is
a ‘regularity in behavior’ whereby the players take opposite strategy choices
when they are matched with each other. The overwhelming part of the litera-
ture on the co-evolution process is devoted to pure coordination games as base
games. We justify our choice of anti-coordination games as base games in the
co-evolution process elsewhere (Berninghaus et al. 2008).
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2. The Model

2.1 The Base Game

We consider a set I ={1,...,n} of n agents who are engaged in playing the same
2 x 2 game with each of their direct neighbors in the network.? If two players i
and j are linked, they play the symmetric 2 x 2 normal form game G = (%, 7(-))
with strategy set X := {H, D} and payoff function 7(-): £ x £ — R characterized by
the following payoff table witha > b >c¢>d >0.

H D
H d,d a,c
D c,a b,b

Table 1: Hawk-Dove game

The game in Table 1 is a generalized Hawk-Dove game, also known as a Chicken
game. Action H is called a ‘hawk’ action while D is called a ‘dove’ action.* Typi-
cally, in Hawk-Dove games dove players are better off when matched with other
doves rather than with hawks, although playing dove against dove does not con-
stitute an equilibrium of G.

As mentioned before, it is quite unusual to study the co-evolution problem
with an anti-coordination game as the base game. We use this scenario in our
theoretical model in order to stay as close as possible to the experimental setup.®

2.2 The Strategic Network Game

We do not impose a fixed interaction structure on the population of players but
instead assume that networks can be built up from individual decisions. We
assume that all players participate in a network game, which in this case is a
simple normal form game. An individual strategy of player i in the network
game is supposed to be a vector of ones and zeros, v; € {0,1}*. We say that
player i establishes a link to player j if v;; = 1; otherwise, it is equal to zero.
A link between two players allows both players to play the Hawk-Dove game
G. As a player cannot play the game alone, we assume v;; =0 foralliel. A
connection between two players is assumed to exist bilaterally if at least one
player expresses interest in opening one.®

Each strategy configuration v = (vy,...,v,) in the network game generates
a directed graph denoted by 7,, where the vertices represent players and a di-
rected edge between i and j, i.e., v;; = 1, indicates that i opens a link with j. The

3
4
5

To avoid trivialities, we assume n = 3.

In the following, strategies in the 2 x 2 Hawk-Dove game will be called ‘actions’.

In these kinds of experiments, one cannot exclude the possibility that the subjects’ behavior would
change completely if another base game was used instead. Consequently, our behavioral assump-
tions in section 3.1, which are taken from experiments with Hawk-Dove games, would soon become
obsolete.

Based on Bala and Goyal 2000, this assumption simplifies modeling non-cooperative network
formation games considerably.
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set of i’s neighbors, given a network 7, is defined to be the set of all players with
whom i opens a link (neighbors connected via an ‘active link’ of i, v;; = 1) and
the set of all players who open a link with i (neighbors to whom i is connected
via a ‘passive link’ vj; = 1). Therefore, we define the set of all neighbors of i by
the set

N;(7,)=1{j| max{vij,vji} =1}.

The set of neighbors reached via an active link depends solely on i’s network
strategy vector v;. It is defined by

N?(Ui) = {J | Uij = 1}.

The cardinality of this set is denoted by the natural number n‘l?‘(vi) = INf(vi)I.

Opening a link with another player is not costless. For the sake of simplicity,
we assume that connection costs & (> 0) are constant per connection and do not
vary among the players. Player i’s total payoff in the network game consists of
the aggregate payoff that she can extract from playing with her neighbors minus
the costs of establishing her active links.

2.3 The Extended Network Game

Combining the two non-cooperative games described in the previous subsections
2.1 and 2.2, we model the strategic situation of a player as a non-cooperative
game in which an individual strategy choice is composed of the simultaneous
choice of neighbors via links v; € {0,1}" in the network game and actions o; €
{H,D} in the Hawk-Dove game. We denote this extended network game by

G=(S1,...,8,;P1(),...,Pu(+),

with strategy sets S; :={0,1}" x {H,D} and payoff functions P; : S1 x...x S, = R
where

0, ifN,W)=9
Pi(si,s-i):=4 70, H)Y jen;;,) Lo;=my + (05, D)L jeN,3,) Lio;=D)
—kn‘i‘(vi),else.

The vectors s_; and o_; denote the strategies s; € {0,1}" x {H,D} and the actions
oj € {H,D} chosen by each player j # i. G is a normal form game. A strategy
configuration s =(s1,...,s,) =((01,v1),...,(0,,Vy)) induces a social network rep-
resented by a directed graph 7, and a vector of actions in the Hawk-Dove game’s
action set {H,D}. An important consequence of our particular payoff definition
is that player i may benefit from a connection to j even though she does not have
to pay for it (i.e., if v;; = 0 but vj; = 1 holds).

A natural benchmark solution of the extended network game G is the Nash
equilibrium, which in our context is defined as follows:
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Definition 1 B
The strategy configuration s* = ((67,v7),...,(0,,v,)) is @ Nash equilibrium of G
if

forall iel: Pi(s;,s*;)=P(s;,s*;) forall s;€S,.

In an equilibrium, no player has an incentive to unilaterally change either her
link choice or her action choice o € {H,D} or both. The Nash equilibria s* for
the static game G were characterized completely by Bramoulier et al. (2004) and
by Berninghaus and Vogt (2006). A Nash equilibrium of the extended network
game G is characterized both by a network structure and a distribution of H and
D players denoted by ng and np (ng +np =n).

The existence and the characterization of Nash configurations s* crucially
depends on the base game’s payoffs a,b,c,d and the connection costs & (for a
detailed analysis see Berninghaus and Vogt 2006). We will not go into all details
of characterizing the static Nash solution. In the sections below we will provide
more information on this solution as needed.

Our theoretical analysis is based on the experimental results about the co-
evolution of networks and strategies conducted by Berninghaus et al. (2008).
We derive our theoretical assumptions directly from experimental observations
on strategy choice. The experimental results show that Nash configurations do
not play a significant role in the co-evolution process. Subjects instead seem to
anticipate the remaining players’ responses to their own strategy changes and
take these responses into account when formulating their own strategy choices.
This behavior can render some Nash constellations unstable or stabilize some
non-Nash constellations. This behavior pushes the population close to strategy
configurations which are called one step ahead stable states (see Berninghaus et
al. 2008). We will expand upon this concept in the following sections.

3. Dynamics

Let us consider the extended network game G. Studying the co-evolution of net-
works and strategies is equivalent to studying the temporal evolution of {s;};.
From {s;}; we will proceed to derive additional stochastic processes in the hopes
of providing more insight into the co-evolution process.

3.1 Action and Link Adaption

Our dynamic model is mainly based on two important observations’ (in a styl-
ized form) from our experimental results. We formulate these observations as
an assumption:

7 Our experiments were conducted in continuous time, i.e., subjects could switch actions or network
strategies at any moment during the experiment (30 minutes). Assumption 1 in some sense
mimics this particular design.
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Assumption 1

(1) We subdivide the co-evolution process {s:}; into two types of rounds:

¢ In rounds of type A one player is randomly selected to switch actions.

* In rounds of type B one player is randomly selected to build or sever
one link.

* After a type A round there follow only type B rounds until a Nash net-
work is reached in the network game (given the action configuration
prevailing in the last type A round).

(2) When adapting links (in type B rounds), agents employ a myopic better
reply rule, i.e., they randomly choose a link which may result in a payoff
increase; otherwise, they keep the status quo link.

(3) When adapting actions (in type A rounds), agents employ a better reply
rule by anticipating the network induced by their action change, i.e., they
randomly switch their action, which may result in an anticipated payoff
increase; otherwise, they keep the status quo action.

Typically, in our experiment, we observed many more link changes than action
changes.® After switching from hawk to dove or vice versa, the remaining play-
ers usually adapted the links that had become detrimental after the last action
change.

In the following we make a simplifying technical assumption:®

Assumption 2
For the payoffs of the base game and the connection costs, the following inequality
holds:

a>b>k>c>d.

Two consequences immediately follow from Assumption 2:

Result 1

a) Given a particular action configuration o = (01,...,0,), only the following
networks are compatible with Nash networks: One-way connections® from
each hawk player to all dove players and one-way connections among all
dove players.!1

b) Given an arbitrary action configuration o € {H,D}" and a link configura-
tion v = (v1,...,Up), the result is a Nash network associated to o. If one
player switches actions and that results in a new action configuration o #

8 A tentative explanation of this feature goes as follows: In action changes all players connected

with the deviating player are concerned, while link changes concern only one player. A player

with a limited computation capacity may prefer link changes since she then has to deal with one

reaction only.

In the experiment we assumed three different levels of connection costs k& to analyze the impact

of connection costs on linking behavior. To keep this exposition short, we focus on one particular

constellation, i.e. that between payoffs and the level of connection costs.

10 Since connections are not costless and both partners benefit from a connection, two-way connec-
tions cannot be part of a Nash configuration.

11 Note that the connections among dove players are not determined uniquely. In an equilibrium
network, it is even possible that only one dove player will end up keeping all active connections
with the remaining doves.
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o, then a possibly newly established Nash network v’ reached from v is
unique.

Part a) follows easily from Assumption 2. Hawks earn (@ — k) > 0 from an active
connection with a dove, while doves extract negative payoffs (¢ — k) < 0 from
active connections with hawks. Because (b — ¢) > 0, active connections between
doves are profitable. Therefore, to each action configuration we can associate
several Nash networks differing only with respect to the distributions of active
dove connections.

Part b) shows that the multiplicity of Nash networks disappears if the pop-
ulation starts from a given Nash network in reaction to a changed action con-
figuration. For if a player changes her actions, then some links may become
unprofitable or it may become profitable to open new links. Irrespective of the
different sequences of players involved in the link adaptation, the new network
v is unique.

3.2 A Stochastic Strategy Adaptation Model

Having made some preparatory remarks about our stylized dynamic strategy
adaptation process, we will now discuss the formal structure of the stochas-
tic co-evolution model in more detail. We formulate a general stochastic pro-
cess containing the essentials of the strategy adaptation process as described
in Assumption 1. We interpret this process as an instance of a more general
Stochastic Learning Model called a Generalized Random System with Complete
Connections (GRSCC).

Definition 2

A GRSCC is characterized by a tuple (W, #),(X,%),I',P) where
W, %) and (X,Z’) are measurable spaces,
I':WxX ~» W is a transition probability,
P :W ~~ X is a transition probability.

A GRSCC describes a stochastic learning system with state space W and param-
eter space X. A learning system which starts in state w generates a conditional
probability distribution P(:lw) on (X,%’). State variable and realized parame-
ter constellations x determine the probability of the next period state via the
conditional probability I'(:|w,x). The drawing in Figure 1 may illustrate how the
elements of a GRSCC interact.
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Figure 1: Sketch of a GRSCC

In learning applications of a GRSCC, the set of states W describes the internal
states of a learning system which that will be adapted from one period to the
next depending on the occurrence of some external events interpreted to be el-
ements of X. In our co-evolution model we simply define W :=% and X :=V.
The GRSCC in this paper thus describes a stochastic process of the evolution of
action configurations {0;}; and networks {v;}; in a highly stylized way.

If we start from a (historically) given action configuration o, then the stochas-
tic network adaptation process in type B periods (see Assumption 1) will almost
surely end up in an equilibrium network v with probability P(v|o). Given v in
the following type A round, a randomly selected player will eventually choose
a different action such that a new action configuration o will occur with prob-
ability [(c'|o,v). It can easily be shown that the resulting state process of the
GRSCC {o;} is a Markov process on Z with transition probabilities

Q(Alo),

for each measurable A c Z (see Herkenrath 1976 for details). By composing
a type A round action configuration o, with a resulting equilibrium network,
denoted by v;, the stochastic process {o;,v;}; is a Markov chain.12

The network adaptation process: Given action and network configuration
(o,v) in type A period ¢, in each following type B period ¢+ % a randomly selected
agent randomly chooses one link.!3 If this link improves her payoff, the status
quo link will be substituted; otherwise, the status quo choice will be kept for
another period (better reply). Obviously, this behavior generates a Markov
process {v;+1}z of networks. The long-run behavior of this process is described
by a lemma in Friedman and Mezetti (2000). To apply this result we only have to
show that the separate network game (given a particular action configuration)
fulfills the so-called weak finite improvement property (weak FIP).

12 Note our different usage of the time index: We use 7 as an index of action configurations associated
with the resulting equilibrium networks, while ¢ denotes the real time time period. Therefore,
st = (0¢,vt) denotes the action and network configurations actually prevailing in each period ¢.

13 All alternatives are supposed to be selected with equal probability.
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Definition 3

The network game fulfills the weak FIP if from each network profile v € V there
exists a finite sequence of single player payoff improvements that end in a pure
Nash equilibrium, where a configuration ((T,U_i,v;) is a single player payoff im-
provement (over (o,v_;,v;)) iffPi(o,v_i,v;.) > P;(o,v).

The following lemma shows that our separate network adaptation model satis-
fies the weak FIP.

Lemma 1

Given a particular fixed action configuration o in which agents can only switch
links, the result is a separate network game. This separate network game satisfies
the weak FIP.

According to Assumption 1, in a Nash network v* all hawks have active connec-
tions to all doves and each dove is connected with the remaining doves by means
of either an active or a passive connection.'* A network is not Nash if at least
one link in v* is severed. It is easy to see that starting from an arbitrary link
configuration v # v* for a Nash network v*, one can build a finite sequence of
networks v ending up in v*, which demonstrates the weak FIP.

It follows from a lemma by Friedman and Mezetti (Lemma 1, 2000) that the
Markov process will almost surely end in a Nash network configuration v* as an
absorbing state and that the set of absorbing states in the Markov process will
coincide with the set of Nash configurations in the separate network game. This
defines our conditional probability P(v|o) of the GRSCC. From part b) of Result
1 we derive further properties of the probability measure P(: | -):

Result 2
a) Given an action configuration o1, the support of P(-| 01) is the set of Nash
networks.
b) For 1t =2 P(:|lo;) is a degenerate probability measure concentrated at the
unique Nash network reachable from the previously obtained Nash net-
work.

Part a) immediately follows from Lemma 1 in Friedman and Mezzetti. Part b)
follows from Result 1 b) and part a) since in period 7 = 1 an equilibrium Nash
network is reached. From that time on the result of the network formation pro-
cess is uniquely determined by the prevailing action configurations. Although
the particular equilibrium network v; (for 7 = 2) reached is determined uniquely,
the number of type B periods until the equilibrium is reached is not determined.

The action adaptation process: We consider an equilibrium network v}_;
and an action configuration o;_1 which (without loss of generality) is assumed
to have generated v;_; uniquely. Then a new type A period starts, i.e. a ran-
domly selected player checks whether selecting a randomly generated action
will make it profitable for her to switch actions. Let us denote by o, the action

14 The direction of the links is ambiguous for dove players. Therefore, there exist multiple Nash
networks.
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configuration that results if the randomly selected player deviates. How will
this player decide what to do? According to Assumption 1, each player is able to
anticipate the support of the distribution P('|(I;.), i.e. the Nash network induced
by O'/T. The selected player i will only change her action if her (anticipated) payoff
is improved, i.e., if ) ,

Pi(o,,f(0;,v:-1)) > Pi(07-1,07_1), 1)

where f denotes a mapping which associates to each Nash network v;_; and
action configuration o, the resulting Nash network f(o,,v;-1)€V.

The probability F(U/T|O'T_1,UT_1) is equal to the probability that a randomly se-
lected player’s randomly selected action will exhibit an anticipated better re-
ply as defined in inequality 1. From the theory of GRSCC we know that the
process {o;}; is a Markov chain. Now we can argue that the weak FIP of the
action adaptation process is satisfied in the same way as before. By consider-
ing type A periods only it is easy to see that from each action configuration o a
strategy configuration s* can be reached in a finite number of steps by a single-
player anticipated payoff improvement. We call such states anticipatory
Nash states.

Definition 4
A strategy configuration s* is called an anticipatory Nash state if for each player
i the following inequality holds:

Pi(c*,v*)=Pi(d’,f(d',v"))
i1
Essentially, anticipatory Nash states are equivalent to so-called one step ahead
stable states, which were introduced in Berninghaus et al. (2008). The exper-
imental results show that the population of players mostly remains close to one
step ahead stable states. Although anticipatory Nash states seem to have a for-
mal structure similar to pure Nash states, there exist non-negligible differences.
There are states which are Nash but not anticipatory Nash and vice versa (for
more details see Berninghaus et al. 2008).

Result 3
Given Assumptions 1 and 2, the co-evolution process will almost surely end up in
an anticipatory Nash state.

I _ * ! * 3k
foreach o' =(0{,...,07_1,0,,07, 1,...,0,).

Our arguments show that o satisfy the weak FIP (extended by the anticipated
payoff improvement concept). Applying Lemma 1 from Friedman and Mezzetti
again, we conclude that the only absorbing states of this Markov process are
action configurations that are immune to anticipated payoff improvements.

4. Concluding Remarks

The co-evolution of networks and strategies involves individual strategic deci-
sion problems that are not easy to model. At the same time, it is certainly not
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reasonable to model the co-evolution process without referring to any empiri-
cal results. We therefore modeled our co-evolution process on our experimental
findings.

However, our results have to be interpreted quite carefully. We believe that
the particular experimental results which guided our theoretical model were
mainly driven by our particular base game (Hawk-Dove) along with the ‘con-
tinuous time’ design. It is therefore not clear if our theoretical model would be
equally successful in co-evolution experiments utilizing different base games or
other design schemas. To test how robust our theoretical model really is, we
certainly need to conduct additional experiments with varying designs.
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