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Abstract: European groundwater reservoirs are frequently subject to reactive nitrogen pollution (Ny)
owing to the intensive use of nitrogen (N) fertilizer and animal manure in agriculture. Besides its
risk on human health, groundwater N, loading also affects the carbon (C) and N cycle of associated
ecosystems. For a temperate grassland in Germany, the long-term (12 years) annual average exports
of N; in form of harvest exceeded N, inputs via fertilization and deposition by more than 50 kgN ha~!.
We hypothesize that the resulting deficit in the N budget of the plant-soil system could be closed
by N, input via the groundwater. To test this hypothesis, the ecosystem model LandscapeDNDC
was used to simulate the C and N cycle of the respective grassland under different model setups, i.e.,
with and without additional N, inputs via groundwater transport. Simulated plant nitrate uptake
compensated the measured N deficit for 2 of 3 plots and lead to substantial improvements regarding
the match between simulated and observed plant biomass and CO, emission. This suggests that the
C and N cycle of the investigated grassland were influenced by N, inputs via groundwater transport.
We also found that inputs of nitrate-rich groundwater increased the modelled nitrous oxide (N,O)
emissions, while soil water content was not affected.

Keywords: biogeochemical ecosystem model; sensitivity analysis; uncertainty assessment;
soil moisture; biomass production

1. Introduction

Carbon dioxide (CO,) and nitrous oxide (N,O) are two potent greenhouse gases (GHGs) whose
atmospheric concentrations are on the rise involving fundamental adaptations of global biogeochemical
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cycles [1]. In 2011, average atmospheric concentrations of CO, and N,O were approx. 391 ppm
and 324 ppb, representing a relative increase of 40% and 20% compared to preindustrial times [2].
In addition to being radiatively active, N,O is the single most important depleting substance of
stratospheric ozone [3], constituting an additional threat for life on earth. Globally, agricultural soils
are with about 60% the strongest contributors to total anthropogenic N,O emissions [4].

While N,O production has always been associated with nitrogen (N) turnover, e.g., nitrification
and denitrification, [5] intensification of agriculture during recent decades has considerably increased
soil NpO production and emissions [1]. This is mainly attributable to profuse or improper N fertilizer
application for crop yield improvements. A further consequence of the enhanced use of N fertilizer
is that nitrate (NO3 ™) accumulates in the soil and subsequently leaches into groundwater bodies
leading to groundwater pollution and eutrophication of nearby surface water bodies. Erisman et al. [6]
reported that from 2000 to 2003 almost half of the European groundwater and surface water monitoring
stations exceeded average NO3~ concentrations of 25 mg NO3;~ L~1. At groundwater fed riparian
zones, the lateral inflow of N-rich water creates a high N availability and variable oxic states in the soil.
They are then becoming potential hotspots for denitrification [7], where incomplete NO3; ™~ reduction
leads to intense pulses of N,O emissions.

With the incentive of optimizing plant N uptake and avoiding N losses through N,O outgassing
and NO;~ leaching, several studies [8-14] assessed N turnover in the plant-soil system. Efforts to
quantify N,O emissions from grasslands have led to the application of model simulations [15,16]
based on environmental variables that were known to affect soil N,O production (e.g., soil moisture,
soil temperature). Further development aimed to improve model predictions by establishing a closer
connection between the cycles of N, carbon (C) and water within the model structure. Combining
these cycles in both model development and analysis is still rarely achieved [17,18], while even then
lateral influences of groundwater and N transport are most often neglected. Exceptions are, e.g., the
hydro-ecological model RHESSys [19], or the coupled hydro-biogeochemical models of the DNDC
model family (Wetland-DNDC and MIKE SHE [20], CMF and LandscapeDNDC [21,22]). A substantial
advancement in modelling the coupled hydro-biogeochemical interaction on the field scale has recently
been reported [23].

Comprehensive process-based models are needed for a holistic investigation and understanding
of the relevant processes contributing to GHG emissions and N transport. However, the complexity of
the involved processes leads to a large number of equations considered in these models to describe
them. A plethora of process parameters is used to parameterize these equations, which are often not
known and cannot be measured directly. Moreover, the large number of parameters and insufficient
computing capacities usually prevent a comprehensive calibration of the complete parameter space.

Frequently, many of these parameters are not crucial for model performance [24]. They can be
identified by sensitivity analyses [25,26] and neglected during the calibration process. Subsequent
calibration may be performed by optimizing for a single parameter set or for a range of acceptable
parameter sets. Choosing range calibration may be favored, if the implicit assumption of a perfect
model design or the existence of a single “best” simulation needs to be avoided, so that parameter
uncertainty is accounted for right from the beginning [27]. This approach can be implemented by the
Generalized Likelihood Uncertainty Estimation (GLUE, [28]) which also allows calibrating for several
important target values (multi-objective resp. multi-variable calibration). Such calibration provides the
advantage that the models ability to simulate several target values can be accurately assessed without
aggregating the simulation performances of each target value into one objective function.

For this study, we aimed to investigate the effect of the inclusion of groundwater transport of
dissolved NO3~ in a grassland ecosystem simulation. We utilized long-term data from temperate,
groundwater influenced permanent grassland to calibrate the process-based ecosystem model
LandscapeDNDC [29]. The model considers the C and N cycle of a vertically discretized soil profile
and was further developed in this study to include groundwater influence on vadose zone processes
on plot scale. Calibration targeted harvested biomass, soil moisture and emissions of CO, and N,O.
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A GLUE-like calibration technique was applied to assess model performance individually for each
target value as well as collectively based on the number of accepted simulations.

2. Materials and Methods

2.1. Field Site

The investigated temperate, permanent grassland is part of the “Environmental Monitoring
and Climate Impact Research Station Linden” near Giessen, Germany (50°32' N, 8°41.3' E, 172 m
a.s.l.). Local climatic conditions are characterized by annual precipitation of 579 mm and average
air temperature of 9.7 °C for the period 1995-2009. The grassland has been cultivated while the
soil remained undisturbed for over 100 years and was not irrigated during the investigated period.
The vegetation has been described as an Arrhenatheretum elatioris Br.-Bl. Filipendula ulmaria
sub-community on a stagnofluvic gleysol on loamy-sandy sediments over clay [30]. The grassland
research area was established in 1993 /94, followed by a Free Air Carbon dioxide Enrichment (FACE)
experiment in 1997 to investigate the effects of rising atmospheric CO; concentrations [31]. For this
study, only data from plots with ambient CO, concentrations were used.

We used data from the three plots Al, A2 and A3 with different hydrological characterizations.
According to their respective average groundwater levels (agl), the plots can be classified as dry (A1,
agl = —1.00 m), moderately wet (A3, agl = —0.75 m) and wet (A2, agl = —0.65 m). Groundwater
is generally shallow and highly variable in this area, rising close to the surface for several times
during the year. A slight South-North slope (ca. 2%) indicates potential lateral inflow of groundwater
from the upslope croplands. Groundwater levels were measured several times per week during the
investigation period, while measurements of groundwater NO3; ™~ concentration have been started in
March 2015. Relevant measurement data can be found at http:/ /www.face2face.center.

2.2. Data Implementation

Model driving data include information regarding soil properties, weather, N deposition, field
management and ambient atmospheric CO, concentrations. All relevant soil information is presented
in Table Al. Weather data has been measured on a daily time resolution including global radiation, air
temperature, relative humidity and precipitation. Soil properties include texture, bulk density, pH
as well as organic C and N content [31,32]. A general soil water profile was derived from soil water
retention characteristics that had been measured for several soil depths for different points of the
field site, but independent of the plot locations. The remaining measurements encompass soil water
content (SWC, at soil depth 0-15 cm), harvested plant biomass and GHG emissions. Harvested plant
biomass is total aboveground biomass that was manually clipped at 4 cm height. Plant N content
has been measured together with biomass. GHG emissions, i.e., NyO emissions (since 1997) and CO,
emissions (since 1998), were measured at dusk, a period which corresponds best to the daily average
flux (personal communication). GHG measurements were performed with opaque static chambers
placed on the grassland soil. Since this impedes photosynthetic activity and at least reduces plant
growth, we consider the measured CO, emissions to be total ecosystem respiration minus growth
respiration (which defines how simulated CO, emissions are calculated). N,O emissions have been
aggregated to monthly mean values due their variable times of measurement and highly variable
emission rates.

All measured data that have been used for model simulations are implemented according to
4 different categories: model initialization, driver data, parameters and calibration data. Initialization
uses data that determine the initial conditions of model variables at the beginning of the simulation.
They include the initial values of organic C and N content of the soil. Driver data are determining
boundary conditions (forcing) of the simulation. They include management events (cutting, fertilizer
application), weather data, N deposition and groundwater levels (interpolated to daily time resolution).
Parameters are fixed ecosystem properties including soil properties (except for organic C and N
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content), plant C-N ratio as well as concentrations of atmospheric CO, and groundwater NO3; ™~ (both
set to be constant on average values due to missing information of temporal variability during the
simulation period). Calibration data are measured data against which simulation outcome is tested.
They include harvested plant biomass, soil water content and emissions of CO, and N;O.

The data were collected at the three grassland plots Al, A2 and A3, showing no relevant
(concerning vegetation) or quantifiable (concerning soil properties) differences except for groundwater
levels and soil hydraulic properties between the plots. Soil hydraulic properties (wilting point, field
capacity, hydraulic conductivity) were estimated using water retention curves and used either as fixed
parameters or as ranges for calibration (see Section 2.5).

2.3. N Balance

Balancing the measured N fluxes on the field sites resulted in a deficiency in the N budget, i.e.,
the balance of measured N input against N output (see Figure 1). Measured N input consists of
fertilizer and atmospheric deposition. These inputs have been calculated to be considerably lower than
the measured N outputs, i.e., NoO emissions and N harvest. Average N balance has been calculated
from these measured N fluxes for the period 1997-2009 (see Table 1). The resulting deficit may be
further enlarged since N losses by leaching or other gaseous N emissions (NH3, NO, Nj) have not
been measured. N input by biological fixation of atmospheric N, was also not measured and therefore
neglected. We assume N input by Nj-fixation to be small compared to the other N inputs since N
fixing bacteria are usually associated to legumes which cover only about 2% at the field site [31].
Other N related processes—especially N turnover processes in the soil (mineralization, denitrification,
etc.)—are not (directly) represented in the N balance because they do not constitute any additional N
inputs or outputs. Thus, establishing a complete overview of all N fluxes is presently not possible for
our field site, which is why we can only calculate a minimum for the N deficit. Soil N pools show no
indication of change, as average organic N for the uppermost 7.5 cm increased only from 0.44% in 1998
to 0.45% in 2013. Thus, the minimum required N uptake from the groundwater has been calculated
to be as large as the measured surplus of N output minus N input (N harvest + N,O emissions —
N fertilization — N deposition). We assume that most of this groundwater-borne N is NO3 ™~ and not in
form of organic N compound, which can play an important role in agricultural systems [33].

Figure 1. N fluxes of the investigated grassland. Green arrows correspond to measured quantities, red
arrows represent unmeasured fluxes.
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Table 1. Long-term average (1997-2009) and balance of measured N fluxes for the Linden

FACE experiment.
Average N Fluxes in kgN ha—!
Name

Al A2 A3

Atmospheric N deposition 14 14 14

N fertilizer application 40 40 40

N>O emission -1 -1 -1
N removal by harvest —106 —123 —129
N balance —53 -70 -76

2.4. LandscapeDNDC: Model Setup

LandscapeDNDC [29] is an ecosystem model framework that provides an exchangeable
pool of submodels for the description of various compartments (e.g., hydrology, vegetation
and biogeochemistry) of forest [25,34,35], rainforests [36], grassland [17,37] as well as cropland
ecosystems [38,39]. In this study the LandscapeDNDC submodel setup consists of four different
submodels: grasslandDNDC (grDNDC, [39]) for plant physiology, soilchemistryDNDC (scDNDC,
based on DNDC, [40]) for soil biogeochemistry, watercycleDNDC (wcDNDC, [41]) for hydrology
as well as canopyECM [42] for microclimate. All submodels run consecutively with a daily time
resolution. Generally, LandscapeDNDC considers an ecosystem to be homogenous in lateral direction.
Vertically, the soil profile can be flexibly discretized. In this study, the vertical resolution was set to
50 mm for the upper soil layers, increasing to 150200 mm for the lower layers. While the layers
are different in respect of their respective soil properties, each layer is divided into several sublayers
sharing the same characteristics. Sublayer thickness ranges from 10 mm for the upper layers to 50 mm
for the lower layers. In order to test the influence of lateral groundwater flow and related transport of
N (i.e., NO3 ™) on the overall N balance, the framework of LandscapeDNDC was technically enhanced
by new simulation driving sources, i.e., daily information regarding groundwater table depth and
mean nutrient concentration in the groundwater (cx g). The two submodels wcDNDC and scDNDC
were adapted in order to account for the newly available information. For all soil layers z above the
groundwater table zg, wcDNDC calculates water flow vy by the tipping bucket approach [41]. For all
soil layers within the groundwater the water flow is set equal (1) to the last calculated water flow
above the groundwater table vy, *:

Vw(z < zg) = Vy¥, 1)

The submodel scDNDC calculates the transport of all mobile N based on the simulated water
flow of wcDNDC. N compounds that have passed the last soil layer are considered to be leached out
of the simulation domain and no more available for further process calculations. For N compounds
whose mean groundwater concentration is explicitly given as ¢y g, the adapted scDNDC calculates an
additional N exchange rate Ty (2) between the actual N concentration cy after water flow transport and
the mean N concentration in the groundwater cx g by

Tx = K(Cx,g - ), 2)

where K stands for a process parameter that determines the speed of the N exchange.

To trace the changes resulting from the contribution of groundwater in our model setup,
all simulations have been run both with and without the groundwater module. Opposed to
those simulations performed with no groundwater influence and no additional NO;~ (noGW),
the simulation with groundwater (withGW) provides plants and soil with an additional N source
which is both specific to the plots and time dependent.

The simulation period started in April 1995 and ended in December 2009. The first two years were
reserved for model spin-up, the calibration period started in 1997 (1998 for CO, emissions) and ended
in 2009. Since the aim of the study is to investigate the explanatory and not the predictive capability of
the model, no extra validation was necessary.
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2.5. Sensitivity Analysis and Calibration

While field site properties, as they are represented in the model setup, can be fixed by using
observations (see Section 2.2), uncertainty remains for the parameters determining processes in the
modelled ecosystem. The plant physiology and the biogeochemical models comprise >100 uncertain
process parameters (grDNDC: 12, scDNDC: 104) whose value can initially (i.e., before calibration) only
be restricted to a predefined uncertainty range. In addition, the initialization of the model includes
a variety of input parameters depending on the soil profile discretization. All soil input parameter
values are derived from literature except for soil hydraulic properties, i.e., hydraulic conductivity, field
capacity and wilting point, which have been measured. However, these bear some uncertainty, as they
are difficult to quantify. The large number of process and input parameters prevents global calibration
of all parameters due to insufficient computational capacities. Therefore, calibration was performed
for the most sensitive parameters (see Table A2) only, which had been determined before via separate
sensitivity analyses for each model setup. Uncertainty ranges for process parameters were provided
beforehand. Uncertainty ranges for soil hydraulic properties have been estimated for the uppermost
and lowermost soil layers by water retention curves [32] and expert knowledge about the field site.
Values for intermediate soil layers were derived by interpolation.

In the following, all objective functions for sensitivity analysis and calibration are based on Root
Mean Squared Error (RMSE). We calculated RMSE for each target value (N,O, CO,, biomass and SWC)
as well as for each field site plots (A1, A2, A3), resulting in 12 objective functions. The free open source
software SPOTPY (Statistical Parameter Optimization Tool for Python [43]) was used for all sensitivity
analyses and calibration runs.

2.5.1. Sensitivity Analysis

Sensitivity analyses were based on 122 unknown parameters consisting of 6 soil hydraulic input
parameters, 12 process parameters belonging to grDNDC and 104 to the scDNDC module (including
one parameter belonging to the groundwater module, regulating the groundwater NO3 ™ access rate).
The Fourier Amplitude Sensitivity Test (FAST, see [44,45]) was used for all sensitivity analyses. FAST is
a variance based sensitivity analysis, providing reliable sensitivity estimates also for nonlinear models
and is therefore suited for our complex biogeochemical model. The final set of sensitive parameters
for subsequent calibration was derived by individual sensitivity analyses for the two different model
setups regarding groundwater (noGW and withGW). By assessing the parameter sensitivities with
FAST, we combined our 12 objective functions to come up with not more than 25 parameters to be
considered most sensitive (see Figure A1). For the withGW sensitivity analysis, we used groundwater
levels from the moderately wet plot A3 and applied the selected sensitive parameters for calibration of
Al, A2 and A3.

2.5.2. Calibration

All sensitive parameters were calibrated based on Latin Hypercube sampling [46]. For each
calibration, the chosen LHS interval resolution resulted in four populations P; (i = noGW, A1, A2,
A3) with 600,000 parameter sets each. All P; were individually evaluated (RMSE) with respect to the
target values SWC, plant biomass, N,O and CO, emissions. In order to quantify parameter-induced
model uncertainty, a method similar to the Generalized Likelihood Uncertainty Estimation (GLUE,
see [28,47,48]) was applied. In conformity with GLUE, we define the 25th percentile best performing
parameter sets (and their corresponding simulations) as behavioural. According to four target values
j =SWC, Biom, N,O, CO,, this creates four subpopulations of behavioral parameter sets with each
population P;: P; swc, Pi Biom, PiN2o, Picoz. Subsequently, a set Pg ; of global behavioral parameter sets
for each population P; was derived as the full intersection (see Figure 2) of all subpopulations P;;. While
it is theoretically not guaranteed that the number of elements—which we will call intersection size—of
each Pg; is non-zero, we avoided this problem through the choice of the threshold for behaviural
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parameter sets. Pair-wise partial intersections, which are intersections of two P;j, have also been
investigated, so that each target value can be analyzed according to its intersection with each of the
other target values.

Full intersection: __ |

Partial intersections:

—
P; = set of sets of behavioural
behavioural parameters common
parameters for some, but not all

common for all
target values

target values

|:| = total population of parameter sets

O

Figure 2. Multi-variable parameter calibration represented by intersections of behavioral parameter

subpopulation of behavioural parameter sets for one target value

sets. The number of behavioral parameters common to several target values can give indication of
model coherency.

The intersection sizes provide an indication of the models ability to simulate several target values
at the same time. This ability, which we will call model coherency from now on, is quantifiable through
the intersection sizes and shows how well the different subsystems are integrated within the model.
This is most relevant since calibration of a single target value may diminish the performance of other
target values. Therefore, the behavioral simulations for one target value may be entirely different to
that of another target value, so that an intersection may be small or non-existent. The intersection sizes
of the model setups noGW and withGW were compared to assess how the inclusion of the groundwater
affects the model coherency. Additionally, intersection sizes are compared to a theoretical reference
value that is derived from a hypothetical model that simulates four independent target values with the
same threshold and the same number of iterations. Based on a population of 600,000 parameter sets
and four independent subpopulations containing one quarter of these parameter sets, the expected
number of behavioral simulations is 600,000 x 0.25% = 2343.75 (rounded to 2344).

For the noGW model setup, the three plots A1, A2, and A3 were considered to be indistinguishable,
since in this case the only difference between the plots is given by their hydraulic properties, which
are either calibrated or, in case of low sensitivity, approximated as equal among the plots. This means
that for noGW, the behavioral parameter sets for the three plots have been drawn from the same
population Pp,ogw. In contrast, for the model setup withGW, each plot was calibrated by its individual
LHS-populations (Pa1, Pa2, Pas).

3. Results

We begin with identification of the most sensitive parameters for each model setup and the
intersection sizes for each model setup and plot. The intersection sizes show the number of simulations
that form the basis of the plot-dependent uncertainty ranges of the annual NO3; ™~ uptake and the four
target values in the following sections. These uncertainty ranges were aggregated into confidence
intervals with a confidence coefficient of 95%.

3.1. Sensitive Parameters and Intersection Sizes

Out of the 122 unknown parameters, we identified 23 parameters to be the most sensitive for the
noGW model setup and 21 parameters to be the most sensitive for withGW (14 parameters were most
sensitive for both model setups (see Table A2).
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The intersection sizes of full intersections, i.e., the number of parameter sets that are globally
behavioural, varied between 50 and 500 (see Table 2), which is considerably lower than the reference
value of 2344. The intersection sizes were slightly lower for withGW than for noGW. They strongly
varied among the plots Al, A2 and A3: the largest intersections were found for Al, the lowest
for A2. Sizes of the pair-wise partial intersections (see Table A5) showed the highest size of about
53,000 parameter sets for the intersection between Pgjon and Pnpo. Ppiom and Pcop showed the lowest
pair-wise partial intersection size of approximately 8200 parameter sets which is about 3 to 7 times
smaller than any other pair-wise intersections.

Table 2. Intersection sizes: The number of global behavioural runs calculated for the plots Al, A2 and
A3 and the model setups with and without groundwater influence (withGW and noGW). The reference
value represents the expected value derived from a hypothetical model which simulates 4 uncoupled
target values.

Model Setups Al A2 A3

noGW 471 73 427

withGW 469 58 395
reference value 2344

3.2. NO3~ Uptake

The minimum required N uptake or N deficit (see Section 2.3) has been calculated from
measurements to be 53 kgN ha~!, 70 N kg ha~! and 76 kgN ha~! for the plots Al, A2 and A3,
respectively, averaged over the period from 1997-2009 (atmospheric N fixation, N leaching and
non-N»O emissions not included, see Table 1). For withGW simulations, annual NO3 ™ uptake from
groundwater show strong variations between the plots (Figure 3). Maximum NO;3;~ uptake (i.e.,
the upper limit of the confidence intervals in Figure 3) is about twice as much for A2 (wet) than
for Al (dry). Simulated NO3 ™ uptake for Al is lower than the minimum required NO3 ™~ uptake to
compensate the N deficit most of the time (green line close to or above the upper end of the blue area).
NO; ™ uptake for A2 and A3 shows similar underestimation in the second half of the simulation period
(2003-2004 for A2, 2003-2006 for A3), but is generally higher and within the confidence intervals for
these wetter plots.

200 T T T T T T
150 . . . . . .
100

50

Al(dry) .

NO; inkgN ha™!

1996 1998 2000 2002 2004 2006 2008

200 T
u . . . . A2 (wet) .
150 S E eSS S SRR ettt = e

100 o
50

NO; inkgN ha™!

1996 1998 2000 2002 2004 2006 2008

200
150
100

50

NO; inkgN ha!

1996 1998 2000 2002 2004 2006 2008
Years

Figure 3. Confidence intervals (blue area) for the simulated annual NO3 ™ uptake from groundwater
for the plots Al, A2 and A3 (from top). Colored solid lines depict the minimum required NO3 ~ uptake,
which is necessary to close the deficit in the measured N budget. Additional information can be found
in Tables A3 and A4.
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3.3. Biomass

The biomass simulations (Figure 4) without groundwater (noGW) considerably underestimated
the measured biomass harvest. The respective confidence intervals were lower than nearly all of the
measurements. In contrast, for simulations with groundwater (withGW) most of the measured data
points lie within the confidence intervals. The confidence intervals are larger for A2 (wet) and A3
(moderately wet) than for Al (dry) which often tended to underestimate observations, especially at
spring harvest. This is reflected RMSE values (Table 3) which are lower in withGW compared to noGW,
with biomass simulations showing most improvement in the wetter plots A2 and A3. Measured spring
harvests tend to be higher than summer harvests except for 2007. Here, measured spring harvest
is lower than the summer harvest, whereby spring harvests is underestimated by the respective
confidence intervals of A2 and A3, but not Al.

[—o e ol v e viaie | P | AP Lo J e eeined Leinioned | R loioianse | P Lioioooedonsodanese
e i : : : : : ' A (dfv)

SR ) | Ry - RPN PO

kg DW ha!

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

kg DW ha!

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

I | | | - | I | I | I | | | S R
6000 : ' ' ' : : : : : : n A3 (medlum wet)
. (R | S S S b

ciiahin

Jﬂ;,\ﬁgﬁ

kg DW ha!

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Years

Figure 4. Measured data and simulated confidence intervals for the harvested biomass for the plots
Al, A2 and A3 (from top). Confidence intervals for noGW simulations are shaded in light blue,
withGW simulations are in light green and overlap between noGW and withGW in darker blue-green.
Black triangles depict the spring harvests, black squares depict the late summer harvests. Additional
information can be found in Tables A3 and A4.

Table 3. RMSE for behavioural simulation runs of harvested biomass.

Minimum RMSE Mean RMSE Maximum RMSE Measurements
Target Value Plot - - - (Mean)
noGW withGW noGW withGW noGW withGW
Biomass Al 1308 660 1572 1081 1952 1780 3040
kg ha—1] A2 1822 810 2002 1233 2226 1830 3585
A3 1815 796 2088 1294 2434 2069 3348

3.4. N,O Emissions

Measured N,O emissions were mostly within the confidence intervals of both noGW and withGW
(Figure 5), with the exception of multiple emission peaks. This is especially true for A1 where noGW
and withGW confidence intervals are nearly identical but miss a series of emission peaks during 1998
to 1999. For A2, withGW confidence interval shows a higher upper limit than noGW that covers many
of the peak emissions that are underestimated by noGW simulations (e.g., for the winter season of
2003/2004). Higher N,O emissions at withGW simulations increased overestimation compared to
noGW simulations, so that maximum RMSE values (Table 4) increased strongly at the wetter plots A2
and A3 for withGW simulations. In contrast, mean and minimum RMSE are mostly similar between
noGW and withGW.
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Figure 5. Measured data (black circles) and simulated confidence intervals for the monthly averaged
N,O emissions (calculated as N,O-N) for the plots A1, A2 and A3 (from top). Confidence intervals
for noGW simulations are shaded in light blue, withGW simulations are in light green and overlap
between noGW and withGW in darker blue-green. Black lines depict the median for withGW (solid
line) and noGW (dashed line) simulations. Additional information can be found in Tables A3 and A4.

Table 4. RMSE for behavioural simulation runs of N,O emission.

Minimum RMSE Mean RMSE Maximum RMSE

Measurements
Target Value Plot
noGW withGW noGW withGW noGW withGW (Mean)
N»O emissions Al 13.47 13.55 15.76 15.78 18.21 18.20 9.33
[ 2 Nm—2h-1] A2 19.86 19.43 21.33 22.90 22.60 38.35 11.16
HE A3 14.13 14.31 16.03 17.10 17.58 50.38 10.20

3.5. CO, Emissions

Observed CO, emissions were underestimated by the simulations, for noGW more so than for
withGW. This is corroborated by minimum and mean RMSE values (Table 5) which are lower for
withGW simulations than for noGW (even though maximum RMSE are slightly higher for withGW).

Table 5. RMSE for behavioural simulation runs of CO, emission.

Minimum RMSE Mean RMSE Maximum RMSE Measurements
Target Value Plot ; . .
noGW withGW noGW withGW noGW withGW (Mean)
CO, emissions Al 264.6 214.5 318.0 296.5 353.5 356.5 382.2
[m. 2 m—2h-1] A2 291.7 201.8 327.5 265.4 362.1 380.5 398.2
8 A3 241.6 176.4 288.3 252.3 325.2 337.0 363.9

The mismatch between observations and simulations is particularly pronounced during summer
periods where CO, emissions reach their maxima (Figure 6). The only exception is the dry summer
season of 2003 where measured CO, emissions were low and withGW confidence intervals simulations
where relatively high for the wetter plots A2 and A3. For winter seasons, agreement is considerably
better for both noGW and withGW. Overall, withGW simulations clearly reduced minimum and mean
RMSE while maxima of RMSE slightly increased (Table 5).
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Figure 6. Measured data (black dots) and simulated confidence intervals for the CO, emissions for the
plots A1, A2 and A3 (from top). Confidence intervals for n oGW simulations are shaded in light blue,
withGW simulations are in light green and overlap between noGW and withGW in darker blue-green.
Black lines depict the median for withGW (solid line) and noGW (dashed line) simulations. Additional
information can be found in Tables A3 and A4.

3.6. Soil Water Content

Match between SWC simulations and observations is small due to their very dissimilar overall
variability, which is much higher for the observations (varying between 10 and 65% SWC, either
relatively dry or moist for most data points) than for simulations (almost all values between 30 and
50% SWC). Soil water content (SWC) simulations are nearly identical between noGW and withGW,
as can be seen in Figure 7. The dry spell in summer 2003, for example, is indicated by somewhat longer
conditions of especially low measured SWC, but found no similar reaction in the simulations. Neither
are the generally strong seasonal dynamics of SWC matched by any of the simulations for A1, A2 and
A3. While for A1l (dry plot) the upper bounds of observations were captured reasonably well, this was
less clear for A3 (medium wet) and not apparent for A2 (wet) at all. All model runs had particularly
difficulties to simulate low SWC, specifically for A2 where the confidence interval for simulations
was very small. Consequently all RMSE are nearly identical when comparing noGW and withGW
simulations (Table 6).

SWCin %

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

SWCin %

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

SWCin %

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Years

Figure 7. Measured data (black dots) and simulated confidence intervals for the soil water content
at 0-15 cm for the plots Al, A2 and A3 (from top). Confidence intervals for noGW simulations are
shaded in light blue, withGW simulations are in light green and overlap between noGW and withGW
in darker blue-green. Black lines depict the median for withGW (solid line) and noGW (dashed line)
simulations. Additional information can be found in Tables A3 and A4.
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Table 6. RMSE for behavioural simulation runs of SWC.

Minimum RMSE Mean RMSE Maximum RMSE

Measurements
Target Value Plot
noGW  withGW  noGW  withGW  noGW  withGW (Means)
Al 9.66 10.05 13.42 13.46 14.67 14.80 34.86
SWC [%] A2 11.28 11.54 12.07 12.01 12.73 12.59 43.62
A3 10.75 11.39 12.82 13.18 13.75 14.00 37.55

4. Discussion

4.1. N Balance and Groundwater NO3 ™~

The long-term N balance of the observed temperate grassland showed that N output, mainly
harvest, exceeded N input by atmospheric deposition and fertilizer application by more than
50 kgN ha~! per year (see Table 1). This deficit cannot be explained by measurement uncertainties
or mineralization of organic N from the soil. It might be even larger, as several fluxes, like N, and
NO emissions as well as NO3~ leaching, are not included in the balance. Consequently, biomass
calculated by LandscapeDNDC showed a severe underestimation of the observations (see Figure 4) if
only measured N inputs are taken into account (noGW).

N budgets on ecosystem level are rarely investigated [49-51], especially in connection with deficits
of this magnitude. Paustian et al. [52] found already in 1990 a surplus of N in harvest biomass and
attributed it to an enhanced mineralization of the soil N storage due to plant roots. However, our
findings are based on a long-term experiment that showed no change in the soil N storage over
the course of 15 years (see Section 2.3), while the N deficit resulting from the balance calculated in
Table 1 would have resulted in a depletion of soil N of at least 700 kg ha~! in the period of 1997-2009
(53 kg ha=! year~! x 13 years = 689 kg ha~!). This goes in line with the noGW simulations that
showed limited biomass production due to the N deficit, which increases with the gradual depletion
of the soil N storage. LandscapeDNDC calculates the mineralization of the soil storage via bulk soil
organic matter decomposition based on soil N content, SWC, soil temperature and acidity that does
not differentiate between root, microbial and animal induced mineralization.

A different explanation for an N deficit is given by Watson et al. [53], who found that soil N
accumulation in a grazed grassland exceeded N input and suggested N redistribution by upward water
movement as a possible cause. For our study, the N deficit and periodically high groundwater levels
drew attention to the influence of groundwater with the dissolved NO3 ™ on the grassland ecosystem.
N fertilizer application at adjacent croplands is a likely source for the long-term NO3~ supply through
shallow groundwater. Piezometer observations of soil water NO3~ concentrations, which have recently
(March 2015) been started as a consequence of the simulations, showed highest NO3 ™ concentrations
several weeks before fertilizer was applied at the grassland site. Furthermore, observations showed
that the N deficit was less pronounced for the dry plot A1 (53 kg ha~!, lowest groundwater levels)
than for two wetter plots (A2: 70 kg ha—!, A3: 76 kg ha~!). Thus, lower groundwater levels at Al
are lowering the N deficit by either increasing drought stress due to reduced water availability or
by reducing the NO3;~ supply from the groundwater. We assume the latter possibility to be more
likely because groundwater levels are generally shallow at all plots, thus preventing extended drought
periods. Though there are no studies to date linking the overall N budget to the groundwater at this
site, previous investigations in our study area showed that most of the N,O emissions can be traced
back to denitrification processes in the soil layers below 20 cm [54], and are related to the groundwater
level and soil depth [55].

4.2. Impact of Groundwater-Borne NO3~ on Simulated Ecosystem Behaviour

LandscapeDNDC simulations focussed on harvested biomass, NoO and CO, emissions as well as
SWC because these target values are dependent on groundwater level and/or groundwater NO3 ™~
concentration. Integration of a simple groundwater module in LandscapeDNDC improved simulated
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versus observed biomass production and CO, emissions by reducing the RMSE (see Tables 3 and 5).
Biomass simulations severely underestimated observations at the noGW setup and could be evened
out for plots A2 and A3 at withGW (Figure 4). Similar to biomass, simulated CO, emissions increased
as a result of introducing groundwater NO3~ (Figure 6), even though a (smaller) deficit due to
underestimation of measured CO; emissions remained. This deficit of CO, emissions is largest for Al,
so N limitation for this plot is still likely. Luo et al. [56] found that N fertilization can increase grassland
CO, emissions due to enhanced soil respiration and reasoned that NO3; ~ addition might have mitigated
the N limitation of root biomass and soil microbial biomass. In contrast to CO, emissions, RMSE of
simulated N,O emissions (Table 4) did not improve due to groundwater N supply, even though N,O
emissions have also increased (Figure 5). The reason for this may be that N,O production and release
is highly dynamic, if not erratic, and rather related to “hot moments’ [7] like fertilizer application [8]
and rainfall events [57] than on long-term N availability. Observed emission peaks are more frequent
within the withGW confidence intervals than for noGW (Figure 5), which makes correct capture of
sudden N, O emission pulses more likely if groundwater NO3 ™ is incorporated. Nevertheless, this has
not led to an overall better agreement with measured N,O emissions because we also calculated much
higher maximum RMSE for withGW simulations at the ‘wetter” plots A2 and A3.

Generally, the minimum required N input could be simulated well for the plots A2 and A3 by
groundwater supply (Figure 3) in this study. Lower groundwater levels at plot A1l (see Section 2.1)
likely reduced the N uptake from groundwater and impeded a complete balancing of the measured
N deficit, even though the deficit was lower for Al than for A2 and A3 (see Table 1). Reasons might
be that LandscapeDNDC had to draw on average NO3 ™~ concentrations for calculating N uptake
from groundwater or because other pathways of N input like atmospheric N, fixation or organic N
supply via the groundwater have been mostly neglected in the model setups. Another issue is the
large uncertainty of NO3; ™~ uptake, so that, even for plots A2 and A3, several behavioural simulations
showed a low NO3; ™~ uptake from groundwater and did not even come close to balance the N deficit.

4.3. Groundwater, SWC and N,O Emissions

LandscapeDNDC simulated SWC nearly identical for the model setups noGW and withGW
(Figure 7), indicating that incorporating groundwater had no relevant effect on the simulated water
balance. However, this cannot be proven since we did not investigate the partitioning of soil moisture
due to precipitation versus groundwater. Given that the water balance remained largely unchanged,
most differences between the simulations of noGW and withGW can be attributed to the function of
groundwater as a transport medium for dissolved NO3 ™. Since SWC measurements show considerable
differences between the plots, likely the consequence of different groundwater levels, this explains
why our SWC simulations lack the high variability that can be found in the measurements. Similar
problems were shown by Krobel et al. [58] who applied watercycleDNDC to a floodplain in North
China. Especially periods of high soil moisture are not well simulated by watercycleDNDC at our field
site. Such periods occur due to water logging which is linked to the presence of pseudogley in the
field soil. Up to a certain point, periods of water logging can be beneficial for NO3 ™ uptake if high
soil moisture alleviates plant drought stress during hot and dry summer periods. Nevertheless, we
don’t assume a strong connection between high soil moisture and NO3; ™~ uptake at our field site as it
normally doesn’t experience extended drought periods. Concerning the simulations, the simplicity of
the applied tipping bucking approach might contribute to the overall lack of representation of high
soil moisture periods as it is largely insensitive to capillary rise induced by high groundwater tables
(the tipping bucket approach describes a simple infiltration routine, allowing the water to flow from
one soil-layer into the other, if the capacity limit was reached).

The simulated soil hydrology is also an important factor of both simulated N,O and CO,
emissions through NO;3; ™ transport and SWC variability. Periods of high soil moisture, for example,
affect the share of anaerobic microsites in the soil, resulting in an increase of N,O production by
denitrification [13]. Therefore, SWC and N,O emissions are often simulated in combination such as in
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the study by Saggar et al. [37] who applied NZ-DNDC (i.e., a version of DNDC tailored for applications
in New Zealand) on grazed grassland. Similar to our results, they faced problems with capturing
events of peak N,O emissions even though they achieved better agreement of simulations with
highly variable SWC measurements than we did. To date, only few simulation studies [20,22,23,59]
addressed the issue of establishing a comprehensive connection between the cycles of water and N,
and even less are able to show the effect of changing groundwater levels on N,O emissions while
including groundwater-borne N supply. For our grassland site, it is probable that measurements (and
consequently also simulations) of N,O emissions and SWC share only a weak connection. This is
because we had to utilize SWC measurements from the uppermost 15 cm of soil, while most of the
N;O emissions originate from the deeper soil layers (see Section 4.1) where the impact of groundwater
on SWC and N,O production is especially strong.

4.4. CO, Emissions and SWC

Simulated and measured CO; emissions (Figure 6) showed a good correlation concerning the
timing of the seasonal cycling. Moreover, we found a good match for the dry summer of 2003, even
though simulated CO, emissions underestimated observations during the remaining summer seasons
of the investigation period. Therefore, it seems reasonable for the plots A2 and A3 that insufficient SWC
simulations (Figure 7) of high SWC impede our CO, emission simulations during the vegetation period.
Xiang et al. [60], for example, showed that frequent cycles of drying and rewetting increase respiration
in grassland soil and assumed that the increase is amplified for undisturbed deeper soil layers.
Such respiration pulses due to rewetting are in line with our observed CO, emissions peaks during
summer, and may be better simulated if simulated SWC is improved. Sdndor et al. [61] performed
multi-variable simulations of grasslands, and argued that problems with SWC simulations are partly
responsible for insufficient results when simulating the C cycle. Zhang et al. [62] also modelled effects
of soil moisture on simulated soil C turnover and tended to underestimate soil respiration pulses in
summer, but this was alleviated by incorporation of additional soil C pools. This provides an example
that the reasons for an underestimation of CO, emissions may be not because of simulation of SWC
and NO3~ supply alone, but also due to the way the C cycle is implemented in the model structure.
Respiration because of photosynthetic activity was entirely excluded from our CO, emission simulation
since measurements were performed with dark chambers. This may have led to underestimation in
the simulation since it remains elusive how many growth-related processes requiring respiration are
affected after photosynthesis is shut down due to occlusion from sunlight [63]. Moreover, potential
sources of error are the mismatch of diurnal cycles of both CO, and N;O emissions and the one-time
sampling of GHG emissions in practice. To reduce differences between observed and simulated fluxes,
the timing of measurement was approximated to represent the average daily flux. However, this is
difficult in practice and theory due to the inherent variability of the diurnal emissions cycles [64—66].

4.5. Intersection Sizes and Model Coherency

Indication for a possible N limitation of respiration can be found in the pair-wise partial
intersections (see Table A5). The intersection between simulated biomass and CO, emissions (between
Pgiom and Pcop) showed by far the smallest partial pair-wise intersection size. Our interpretation is that
a correct simulation of both biomass and CO, emissions is difficult within the current model setups.
Reason for this may be that LandscapeDNDC forces the modelled ecosystem to increase both plant
growth and respiration to approximate measured data of biomass and CO, emissions. If N limitation
(as it was mentioned in Section 4.2) and the fixed C-N ratio leads to C limitation, the model tends to
underestimate harvested biomass and/or CO; emissions as it is unable to allocate enough organic
matter needed for growth and respiration. Simulating more aboveground biomass, for example,
reduces exudation, root litter production and microbial biomass, all essential for soil respiration.
This compromises model coherency since simulations tend to underestimate measurements in general
and peak values (spring harvests for biomass and summer peaks for CO, emissions, see Figures 4
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and 6) in particular. Such N limitation is more evident for the plot A1 where lowest NO3 ™ uptake
(Figure 3) coincides with lowest biomass and CO, emissions. Generally, this exemplifies an interesting
characteristic of multi-variable calibration that choosing parameter sets (and thus, simulations) with
emphasis to improve match with measurements for one target value is likely to impair match with
(at least) one other target value [67-69]. For our revised model setup model withGW, this issue of N
and C limitation remained even after groundwater implementation since the sizes of the intersections
(both pair-wise and full) are similar for withGW and noGW simulations (see Section 3.1 and Table A5).
This gives a different view than RMSE values only, that showed an improved match of biomass and
CO; emissions with measured data for withGW simulations (see Tables 3 and 5). An analysis based
solely on RMSE might mask functional feedback mechanisms between the C, N and water cycle.

Applications of multi-variable calibration ideally improve simulations of natural systems so
that a more realistic representation of one system-relevant target value (like SWC) is prerequisite for
improvement of another target value. However, this is rarely done, particularly not with intrinsically
dependent target values such as GHG emissions, soil moisture and biomass. Houska et al. [70]
achieved good results applying such an approach to a coupled plant growth—hydrological model
to simulate SWC and different kinds of plant dry matter. Sitch et al. [71] achieved good results by
simulating several ecosystem variables, including soil moisture and net ecosystem exchange, on local
to global scales. However, we admit that such an analysis is challenging for target values that are
highly dynamic in space and time. This applies in particular to trace gas emissions, where hot moments
and hot spots are the rule rather than the exception.

5. Conclusions

LandscapeDNDC simulations of biomass and CO, emissions showed generally better agreement
with measurements if groundwater-borne NO3;~ was represented in the calculations (withGW),
wherefore we argue that lateral inflow of NO3; ™ -rich groundwater can have a considerable effect
on the N cycle of the investigated grassland. The credibility of the N balance and biomass simulations
benefitted most from the additional groundwater N source, while CO, and N, O emissions showed less
or no improvement as they are impaired by low quality SWC simulations. Model coherency (quantified
by intersection sizes, see Table 2) has not improved in withGW simulations, perhaps indicating that
the C cycle is still affected by N limitation or deficient soil moisture variability.

To this end, we advocate replacing watercycleDNDC with a more physically-based hydrological
submodel. Krobel et al. [58] applied watercycleDNDC to simulate the water dynamics of a floodplain,
but argued for using the Richard’s equation to calculate water movement and retention in periodically
wet soils. This approach is used in the Catchment Modelling Framework (CMF, see [72]) that has
already been used in combination with LandscapeDNDC for simulations on a virtual hillslope [21]
resp. virtual landscape [22]. Application of the LandscapeDNDC-CMF model coupling to our study
site is ongoing work. Furthermore, we conclude that more data on concentrations of NO3; ™ and organic
N in groundwater, preferably on daily resolution are needed. First measurements in six piezometers
in close vicinity, which we also have used in this study showed a very high variability of NO3~
concentrations in space and time, with a strong decline over the course of the year. Continuous,
area-wide measurements over several years could provide the basis to approximate the seasonal cycle
of the groundwater NO3 ™~ concentrations, thus delivering a more accurate picture of N supply.

Further improvements will be achieved by a thorough balancing of C, N and water cycles in
accordance to the long-term measurements. This starts by including more recent field site data to extend
the simulation period up to present time, allowing better insight into environmental long-term trends
of soil C and N pools. Concerning the model setup, we recommend replacing grasslandDNDC with
the recently published LandscapeDNDC physiology submodel [73] based on the Farquhar model for
photosynthetic CO, assimilation [74], which has been tested so far for paddy rice systems. We assume
that this will provide higher model sensitivity towards changing atmospheric CO; concentrations and
allows for the simulations of grassland plots under CO, enrichment in the Giessen FACE experiment.
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Appendix A

Table A1. Measured data implemented in LandscapeDNDC: FSM = field site measurements (see Section 2.1); WD = weather data [75]; variable = soil moisture, CO,

and N;O emissions measurements ranged from several per week to several per month.

Name Value/Unit Start/End Temporal Resolution Usage Source
Air Temperature (Mean, Min, Max) °C 1995/2009 daily Driver data WD
Global Radiation W m—2 1995/2009 daily Driver data WD
Precipitation mm day ! 1995/2009 daily Driver data WD
Relative Humidity % 1995/2009 daily Driver data WD
Groundwater level m 1995/2009 daily *1 Driver data FSM
Cutting schedule - 1995/2009 2/year Driver data FSM
Fertilizer application (ammonium nitrate) 40 kgN ha~! year—! 1995/2009 yearly Driver data [76]
N deposition 14 kgN ha~! year*1 1993/1995 mean Driver data [77]
Field capacity mmm~! - - Calibrated parameter [32]
Wilting point mmm~! - - Calibrated parameter [32]
Fraction of soil org. N 0.08-0.37% 2001/2002 - Initialization [31]
Fraction of soil org. C 0.69-3.96% 2001/2002 - Initialization [31]
Plant C/N ratio 25.7 1993 /2009 average Fixed parameter FSM
Soil pH 5.4-6.0 - - Fixed parameter [31]
Cutting height 4cm - constant Fixed parameter FSM
Bulk density profile 1.01-1.52 g cm ™3 - - Fixed parameter [32]
Texture (clay, silt, sand) - - constant Fixed parameter [32]
CO; concentration 392.5 ppm 1998 /2009 mean Fixed parameter FSM
Groundwater NO3 ™~ concentration 324mgL~! 2015 mean Fixed parameter FSM
CO; emissions mg CO, m2h! 1998/2009 variable Calibration data FSM
N,O emissions ugN m2h! 1997/2009 variable monthly mean Calibration data FSM
Soil water content % 1997/2009 variable * Calibration data FSM
Biomass kg ha~! year*1 1997/2009 2 cuts/year Calibration data FSM

*1 = groundwater levels have been recorded several times a week; missing values were linearly interpolated to provide daily data for model initialization; *? = soil moisture data have been
recorded several times per week, and removed of values that either (a) have been measured on days with air temperature below 0 °C, including the two subsequent days, or (b) exceeded

the pore volume of the soil.
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Table A2. Most sensitive LandscapeDNDC parameters. From left: internal LandscapeDNDC parameter name, parameters associated module, if the parameter was

found sensitive for noGW /withGW, the lower and upper limits of the parameter range, process-related description.

Parameter Name Module Sensitive in Model Setup Min Max Description
AMAXX scDNDC noGW, withGW 0.6545 1.9635 Microbial death rate
D_N20 scDNDC withGW 0.031 0.093 Reduction constant for N,O diffusion
D_NO scDNDC withGW 0.0365 0.1095 Reduction constant for NO diffusion
DIFF_C scDNDC withGW 0.125 0.375 Diffusion constant for C compounds between aerobic and anaerobic microsites
DIFF_N scDNDC noGW, withGW 0.25 0.75 Diffusion constant for N compounds between aerobic and anaerobic microsites
DNDC_KMM_N_MIC scDNDC noGW 0.00058875 0.00294375 Michaelis-Menten constant for N dependency of microbial growth
EFF_NO2 scDNDC noGW 0.214 0.642 Microbial efficiency for NO, denitrification
EFFAC scDNDC noGW, withGW 0.35 0.95 Fraction of decomposed C that goes to the dissolved organic C pool
FCO2_1 scDNDC noGW 0.605 1.815 Factor for CO; production during humads decomposition process
FCO2_3 scDNDC noGW 1.15 3.45 Like FCO2_1
FCO2_HU scDNDC noGW 0.4 12 Like FCO2_1
FNO3_U scDNDC noGW 0.375 0.9 Factor steering NO3; ™ availability for microbial assimilation
KCHEM scDNDC noGW, withGW 4 12 Reaction rate for chemo-denitrification
KCRB_L scDNDC withGW 0.04625 0.13875 Decomposition constant for labile inactive microbes
KN20 scDNDC noGW, withGW 0.0025 0.0225 Reaction rate for N, O reductase
KNIT scDNDC noGW, withGW 0.5 10 Reaction rate for nitrification
M_FACT_DEC1 scDNDC noGW, withGW 0.2975 0.8925 Factor determining dependency of decomposition on water filled pore space
M_FACT_P1 scDNDC noGW, withGW 0.225 0.675 Factor determining dependency of nitrification on water filled pore space
M_FACT_P6 scDNDC noGW 5 15 Factor determining dependency of microbial activity on water filled pore space
MNO scDNDC noGW 0.0395 0.1185 Microbial maintenance coefficient for denitrification of NO
PERTVL scDNDC withGW 0.005 0.015 Downward transport of very labile litter
PHCRIT_N20 scDNDC noGW, withGW 2.5 7.5 Factor for pH dependency of N, O denitrification
PHCRIT_NO2 scDNDC noGW, withGW 3.05 9.15 Factor for pH dependency of NO, denitrification
TF_DEC1 scDNDC noGW, withGW 177 5.31 Temperature dependency of decomposition
TF_NUP_N202 scDNDC noGW, withGW 4.705 14.115 Temperature dependency of N,O production during nitrification
sks_upper wcDNDC noGW, withGW 0.0007 0.7 Hydraulic conductivity of uppermost layer
wcmax_upper wcDNDC noGW, withGW 450 650 Field capacity of uppermost layer
wemin_upper wcDNDC noGW, withGW 65 375 Wilting point of uppermost layer
ROOT grDNDC withGW 0.3 0.7 Root fraction of plant biomass
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Table A3. Ranges of the statistical characteristics and measured data for noGW simulations during the investigation period. Mean, median and quantiles of the
confidence intervals have been calculated for each time point of the period 1997-2009 (1998-2009 for CO, emissions). The depicted values show the ranges in which
the statistics and measured data varied over time. Square brackets show the physical units of the target values.

Simulations
Target Value Plot - . . Measurements
Mean Median Quantile 2.5% Quantile 97.5%
Al 0.72-25.31 0.46-21.19 0.03-6.15 2.80-68.32 0.36-99.04
N;O emissions [ugN m~2 h—1] A2 0.80-24.35 0.56-21.30 0.13-9.12 2.21-54.15 —2.91-178.86
A3 0.78-22.31 0.53-17.81 0.06-6.06 2.97-62.87 —1.00-104.81
Al 8.51-408.84 2.68-407.55 0.42-311.26 43.94-546.79 27.6-1941.0
CO, emissions [mg m~2 h~1] A2 14.38-384.50 10.97-384.83 1.35-311.37 45.39-477.38 32.4-2409.0
A3 12.38-389.74 5.51-388.12 0.55-295.32 49.07-547.58 18.4-2221.0
A1l 35.11-51.46 35.32-51.39 30.97-51.21 36.57-52.11 9.60-56.28
SWC [%] A2 38.47-53.72 38.58-53.65 35.04-52.83 40.03-54.66 11.68-64.95
A3 35.42-51.49 35.63-51.44 30.87-51.21 36.85-52.12 11.85-64.70
Al 1421-2281 1423-2308 1130-1874 1671-2714 18344833
Biomass [kg ha™1] A2 1470-2341 1463-2348 1306-2100 1654-2614 2068-5630

A3 1461-2301 1458-2329 1164-1951 1733-2871 1744-5511
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Table A4. Ranges of the statistical characteristics and measured data for withGW simulations during the investigation period. Mean, median and quantiles of the
confidence intervals have been calculated for each time point of the period 1997-2009 (1998-2009 for CO, emissions). The depicted values show the ranges in which
the statistics and measured data varied over time. Round brackets show minimum values for the N deficit calculated from measurements, square brackets show the
physical units of the target values.

Simulations
Target Value Plot Measurements
Mean Median Quantile 2.5% Quantile 97.5%
Al 0.69-27.84 0.45-22.56 0.03-5.80 2.36-82.87 0.36-99.04
N2O emissions [ugN m~—2h1] A2 0.89-57.04 0.53-50.52 0.07-9.81 3.31-169.52 —2.91-178.86
A3 1.01-37.40 0.65-30.44 0.05-8.14 3.62-107.79 —1.00-104.81
Al 9.4-474.7 3.4-460.0 0.5-319.7 51.3-708.7 27.6-1941.0
CO; emissions [mg m—2h1] A2 18.9-605.3 14.3-619.8 1.1-325.7 56.7-952.6 32.4-2409.0
A3 19.4-523.8 7.5-504.3 0.6-308.8 89.6-914.6 18.4-2221.0
Al 35.36-51.45 35.51-51.39 30.97-51.20 36.92-52.00 9.60-56.28
SWC [%] A2 30.28-53.63 30.58-53.61 24.97-52.88 34.52-54.64 11.68-64.95
A3 37.02-51.49 37.13-51.47 33.60-51.20 38.39-52.24 11.85-64.70
Al 1828-3272 1836-3328 1280-2162 2248-4426 1834-4833
Biomass [kg ha—1] A2 2499-4931 2468-5080 1561-2783 3154-6342 2068-5630
A3 2323-4167 23564222 1418-2573 3070-5605 1744-5511
Al 3.89-54.41 4.15-57.78 0.33—4.49 6.73-93.97 (24.23-95.13)
NO3 ™ uptake [kgN ha—1] A2 44.95-121.31 56.54-130.57 3.21-6.78 71.53-193.88 (41.49-103.74)

A3 32.26-81.44 33.32-84.14 3.11-6.40 56.98-142.36 (47.19-115.86)
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Table A5. Pair-wise partial intersection sizes for withGW simulations: the number parameter sets that
belong to the best 25% simulations of two target values.

Target Values Al A2 A3
Biomass—CQ; emissions 8157 8252 8180
Biomass—N,O emissions 52963 52948 53328

Biomass—Soil Moisture Content 34114 34324 34117
CO; emissions—N>O emissions 23356 23146 23452
CO, emissions—Soil Moisture Content 38774 38710 38700
N>O emissions—Soil Moisture Content 38582 38608 38561
3 FAST
Simulation 200,000 200,000 200,000
Runs

Sensitivity analysis with
12 objective functions

36 sets | ) lA1-NZO||A2-N20||A3-N20| (A1N,0] (A2-N;0] (A3-N,0 A1-N,0 |A2-N20||A3-N20|
& 20 sensitive (mco ) )

parameters (1-Biom)( )( ) (A1-Biom]( ) ) (A1-Biom]
Esw9 () ) Eswg__ ) )

Union of corresponding
sets across the
objective functions

3sets () 440-60 C]

sensitive parameters

Intersection of sets
across the FAST runs

final set (] of

sensitive parameters
(21-23)

Figure Al. Sensitivity analysis diagram. For the calculation of the most sensitive parameters,
600,000 parameter sets have been sampled in 3 FAST runs. For each run, the 20 most sensitive
parameters have been calculated separately for 12 objective functions (4 target values x 3 plots). After
that, the sensitive parameters for each run have been unified. Finally, an intersection of the unified
parameters was made among the FAST runs, creating the choice of sensitive parameters that was used
for calibration.
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