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Summary 

The DNA mismatch repair system (MMR) plays a crucial role in maintaining genomic stability. 

It is capable of detection and correction of errors that arise during replication, for example base 

substitution mismatches or insertion-deletion loops. Hereditary nonpolyposis colon cancer is the 

most frequent form of hereditary colon cancer in humans and is caused by mutations of proteins 

in the MMR. Despite intensive investigations of several laboratories, there is still uncertainty 

about the composition of protein and DNA complexes and the role of the conformational 

changes involved. Therefore, the aim of this thesis was to establish fluorescence-based assays 

which allow the analysis of initial sub-steps in MMR. As the MMR is highly conserved and 

well-studied in Escherichia coli, these assays were developed for the Escherichia coli system. 

To observe complex formations in MMR the phenomenon of Förster Resonance Energy 

Transfer was used. By labeling one component of the MMR with a donor and another one with 

an acceptor fluorophore, it was possible to observe a complex formation between those two 

components. A similar setup was used to determine conformational changes of one MMR 

component that carried both, the donor and acceptor fluorophore. Both reactions could be 

followed by spectroscopic detection of the fluorescence signals. Several assays of this thesis 

required the generation and testing of suitable DNA constructs and fluorescence modification of 

different protein variants. For the fluorescent dye labeling of proteins, single-cysteine variants 

were selected from a set of variants which were originally generated for crosslinking studies. A 

possible disturbance of the protein activity by the fluorophores was excluded as the selected 

protein variants (MutS R449C D835R, MutL H297C, and MutH S85C) were not influenced in 

activity after fluorescent dye labeling. 

Changes in fluorescence intensity as well as FRET efficiency were monitored during each assay 

to visualize involved conformational changes and complex formations. Fluorescence spectra 

were always recorded as a quality control to ensure that the observed intensity changes were due 

to FRET. The analyzed processes in MMR were MutS mismatch recognition, MutS bending 

DNA, MutS sliding clamp formation, MutS-MutL complex formation, MutL interaction with 

DNA, MutL-MutH complex formation, and MutH forming and leaving the incision complex. 

Kinetic data sets for selected sub-steps were collected and used for the development of a kinetic 

model for the whole MMR system in frame of the European FP7 project mismatch2model. With 

this collection of fluorescence assays it is now possible to gain new insights into the sub-steps 

of MMR which helps to understand the intricate MMR process in detail. Currently, the fully 

active, fluorescent dye labeled proteins which were generated in frame of this thesis are used in 

single-molecule studies of the MMR, for example in a magnetic tweezers setup combined with 

fluorescence detection. 
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Zusammenfassung 

Das DNA-mismatch-Reparatursystem (MMR) spielt eine zentrale Rolle bei der Aufrecht-

erhaltung der Stabilität des Genoms. Es ist in der Lage Replikationsfehler zu erkennen und zu 

korrigieren. Zu diesen Fehlern gehören Basenfehlpaarungen und Insertions-Deletions-Schleifen. 

Hereditäres nicht-polypöses kolorektales Karzinom ist die häufigste vererbbare Darmkrebs-

erkrankung beim Menschen und wird durch Mutationen in Proteinen des MMRs ausgelöst. 

Trotz intensiver Forschungsarbeiten verschiedenster Labore bestehen immer noch Unklarheiten 

über die Zusammensetzung von Protein- und DNA-Komplexen und die Rolle der beteiligten 

Konformationsumwandlungen. Aus diesem Grund war das Ziel der vorliegenden Arbeit die 

Entwicklung und Etablierung fluoreszenzbasierter Analyseansätze, die eine Untersuchung der 

ersten Teilschritte des MMRs ermöglichen. Da das MMR hoch konserviert und in Escherichia 

coli gut untersucht ist, wurden diese Analyseansätze für das Escherichia coli-System entwickelt. 

Um Komplexbildungen im MMR beobachten zu können, wurde das Phänomen des Förster-

Resonanz-Energietransfers (FRET) ausgenutzt. Die Markierung einer Komponente des MMRs 

mit einem Donor- und einer anderen mit einem Akzeptorfluorophor ermöglichte die 

Beobachtung von Komplexbildungen zwischen diesen beiden Komponenten. Ein ähnlicher 

Versuchsaufbau wurde für die Untersuchung von Konformationsumwandlungen verwendet. In 

dem Fall trug eine Komponente des MMRs beide Fluorophore, den Donor und den Akzeptor. 

Beide Reaktionen konnten mittels spektroskopischer Detektion der Fluoreszenzsignale verfolgt 

werden. Einige Analyseansätze dieser Arbeit setzten die Herstellung und Überprüfung von 

passenden DNA-Substraten und die Fluoreszenzmarkierung verschiedener Proteinvarianten 

voraus. Für die Fluoreszenzmarkierung von Proteinen wurden Einzelcysteinvarianten aus einer 

Reihe von Varianten ausgewählt, die ursprünglich für crosslinking-Studien generiert wurden. 

Eine mögliche Störung der Proteinaktivität durch die Fluorophore konnte ausgeschlossen 

werden, da die verwendeten Proteinvarianten (MutS R449C D835R, MutL H297C und MutH 

S85C) nach der Fluoreszenzmarkierung keine Beeinträchtigung in ihrer Aktivität zeigten. 

Änderungen der Fluoreszenzintensität sowie der FRET-Effizienz wurden während allen 

Analyseansätzen aufgezeichnet und visualisierten die beteiligten Komplexbildungen und 

Konformationsumwandlungen. Bei jedem Analyseansatz wurden zusätzlich Fluoreszenz-

spektren aufgezeichnet, um sicherzustellen, dass die beobachteten Effekte auf FRET basierten. 

Die untersuchten Prozesse des MMRs umfassten die MutS mismatch-Erkennung, MutS 

induzierte Biegung der DNA, MutS sliding clamp-Bildung, MutS-MutL Komplexbildung, 

MutL Interaktion mit DNA, MutL-MutH Komplexbildung und die Bildung des incision 

complex durch MutH. Es wurden kinetische Datensätze aus einigen Analyseansätzen 

ausgewählt und für die Erstellung eines kinetischen Modells des gesamten MMRs im Rahmen 

des europäischen FP7 Projektes mismatch2model verwendet. Mit dieser Sammlung von 



  Zusammenfassung 

  XII 

fluoreszenzbasierten Analyseansätzen ist es nun möglich neue Einblicke in die Teilschritte des 

MMRs zu erhalten, die dabei helfen können die komplexen Abläufe besser zu verstehen. Die 

voll funktionstüchtigen, fluoreszenzmarkierten Proteine, welche im Rahmen dieser Arbeit 

generiert wurden, werden derzeit in Einzelmolekül-FRET-Studien zur Untersuchung des MMRs 

verwendet, zum Beispiel in einer fluoreszenzgekoppelten magnetic tweezers-Apparatur.  
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1. Introduction 

DNA is the carrier of the genetic information of every organism. Its stability is constantly 

threatened by intrinsic and extrinsic factors. Environmental agents like the ultraviolet (UV) 

component of sunlight, ionizing radiation or genotoxic chemicals can cause alterations in DNA 

structure. Reactive oxygen species arising as by-products of normal cellular metabolism are a 

permanent enemy to DNA integrity [1]. Replication errors produced by the DNA polymerase 

may lead to miscoding or mutations, if unrepaired [2]. To ensure genomic stability, every 

organism possesses a variety of repair processes, each addressing different DNA damages. The 

most common DNA damages, with their source and possible repair pathway are summarized in 

Figure 1.1. 

 

 

 

 

Figure 1.1: Common DNA damages and repair mechanisms 

DNA damaging agents (top); examples of resulting DNA lesions (middle); and repair pathways to 

remove each lesion (bottom). The figure was adapted from Hoeijmakers, 2001 [1]. 
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1.1 DNA mismatch repair 

One of the systems that respond to DNA damages is the DNA mismatch repair system (MMR). 

It is capable of detection and correction of errors that arise during replication, for example base 

substitution mismatches or insertion-deletion loops (IDLs) [3] [4]. The MMR also affects the 

cellular processes of meiotic and mitotic recombination, DNA-damage signaling, apoptosis, 

immunoglobulin class switching, somatic hypermutation and triplet-repeat expansion [5]. The 

MMR system is highly conserved and mechanistically similar in prokaryotes and eukaryotes 

[6]. Inactivation of MMR leads to an increased mutability of 50-1000 fold [7]. In humans an 

inactive DNA mismatch repair system is the cause of hereditary nonpolyposis colon cancer 

(HNPCC) [8] [9]. 

 

1.2 DNA mismatch repair in Escherichia coli 

In Escherichia coli (E. coli) the initiation of the MMR starts with the recognition of a mismatch 

or IDL by the protein MutS. After mismatch recognition MutS undergoes nucleotide dependent 

conformational changes and transforms into a sliding clamp [10] [11] [12]. This activated form 

of MutS is able to recruit the next key protein in MMR which is MutL [13]. The homodimeric 

MutL is also able to adopt different conformations coupled to different nucleotide bound states 

of the subunits [14]. In E. coli, MutL couples the mismatch recognition of MutS with the strand 

discrimination factor MutH [15] [16]. The MMR system is active shortly after replication when 

GATC sites remain transiently hemimethylated [17]. This hemimethylated DNA allows strand 

discrimination by endonuclease MutH as the protein is only able to cleave the newly 

synthesized, unmethylated DNA strand which harbors the error [18]. In downstream repair 

reactions, the nicked DNA is unwound by the helicase UvrD and stabilized by single-strand 

binding proteins. Exonucleases are able to digest the erroneous DNA strand beyond the 

misincorporated base and DNA polymerase III resynthesizes the gapping DNA part. The 

remaining nick is sealed by ligases [7]. Reactions of the MMR system are shown in Figure 1.2. 
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Figure 1.2: DNA mismatch repair in Escherichia coli 

MutS (green) recognizes a mismatch and recruits MutL (blue). MutL enables endonuclease MutH 

(globular magenta) to bind and cleave its target site in the erroneous DNA strand. MutH is replaced 

by helicase UvrD (elliptical magenta) which unwinds the DNA to allow exonucleases the partially 

digestion of the erroneous DNA strand. The digested DNA is resynthesized and ligated. The figure 

was adapted from Lebbink, 2010 [19]. 
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1.3 Coupling of mismatch recognition and strand discrimination 

Despite intensive investigations of various groups, the coupling of mismatch recognition with 

the strand discrimination signal in MMR remains controversy [7] [20] [17]. There are different 

models proposing different mechanisms for the reaction. These models can be separated in 

models describing a cis or a trans activation of downstream factors like MutH. Cis activation is 

characterized by sliding [21] [22], polymerization [23], accumulation [24] or translocation [11] 

[25] of MutS and / or MutL along the DNA helix. Whereby trans activation is characterized by 

overcoming the distance between the mismatch and the strand discrimination signal via bending 

or looping of the DNA [26] [27]. A further separation can be performed by dividing these 

models in stationary models in which MutS and MutL remain bound to the mismatch or remain 

in the vicinity of the mismatch and mobile models which suggest a movement along the DNA. 

Three popular models are illustrated in Figure 1.3 (modified after Larrea et al., 2010 [6]). 

 

 
MutS          MutL        MutH 

          

Figure 1.3: Models for coupling the mismatch recognition with strand discrimination 

1 MutS is able to form DNA loops. Some models describe that this looping enables MutS to reach the 

GATC site and activate other components of the MMR. 2 MutS and MutL are able to facilitate 

conformational changes which are coupled to nucleotide exchanges. Some models describe that MutS 

transforms into a sliding clamp after mismatch recognition and verification and thus becomes 

competent to diffuse along the DNA helix and activate other components of the MMR. 3 MutS bends 

the DNA upon mismatch binding. Some models describe that this bending may help to bridge the 

distance between the mismatch and strand discrimination signal and thus enables activation of 

downstream MMR factors as MutH. The picture was modified after Larrea et al., 2010 [6].  
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1.4 MutS 

MutS acts as a mismatch sensor and recognizes heteroduplex DNA [28] [29]. An ADP-bound, 

dimeric MutS is able to intercalate phenylalanine 36 into DNA upon mismatch binding and 

stabilizes the DNA-MutS complex [28] [29]. Following conformational changes coupled to 

nucleotide exchange in the subunits of MutS activate downstream repair factors like MutL [30]. 

The MMR-relevant form of MutS exists as a dimer as well as a tetramer, whereby the dimeric 

form alone is already able to facilitate the MMR reaction [31] [32]. The mutation D835R, used 

by Manelyte et al., leads to a disturbance in the tetramerization interface at the C-terminal 

domain. Proteins carrying this mutation cannot form tetramers anymore. In this thesis, all MutS 

variants used also contained the D835R mutation because it reflects a simplification of the 

MMR system as the biological function of the tetrameric form of MutS still remains elusive. 

The MutS variants used here were cysteine-free variants, in which all native cysteines had been 

mutated to serine, alanine or valine [33]. With an additional mutation, the arginine at position 

449 was mutated to cysteine (R449C) [34] enabling fluorescent-dye labeling of MutS via a 

maleimide crosslinker [35]. The position 449 was chosen because an attached fluorophore was 

unlikely to disturb DNA binding or MutL-recruitment [36]. For investigations of the MutS-

MutL-binding interface, the variant D246C was used in exchange for the R449C variant. The 

latter allowed a comparison of FRET efficiencies between different fluorophore positions in 

MutS in combination with a fixed fluorophore position in MutL [37]. Position 246 is nearby the 

DNA-mismatch-binding domain of MutS and a fluorophore attached to this position generates a 

high FRET signal to a MutL fluorescence labeled within the N-terminus. 

 

 

Figure 1.4: MutS dimer bound to DNA containing a G:T mismatch 

PyMOL-modified cartoon view of the crystal structure of MutS dimer (green) with highlighted 

positions 449 (red spheres), where a cysteine enables fluorescent dye labeling via maleimide 

crosslinking. DNA (blue and orange). A truncated version of MutS had been used to allow the 

crystallization (residues 1-800). Modified after pdb code 1e3m [28]. 
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1.5 MutL 

MutL couples mismatch recognition by MutS with the strand discrimination of MutH [16]. In E. 

coli, MutL is a homodimer consisting of a N-terminal domain which is connected via a long, 

flexible linker to the C-terminal domain. A dimer is able to bind two nucleotides. MutL 

undergoes large conformational changes driven by an ATPase cycle [14] and can adopt open or 

condensed conformations [38]. As for MutS, MutL variants used in this thesis did not possess 

any native cysteine anymore [39]. Histidine at position 297 was mutated to cysteine (H297C) 

[34] to enable fluorescent dye labeling of MutL at the N-terminal domain [35] (Figure 1.5).  

 

 

Figure 1.5: MutL dimer 

PyMOL-modified cartoon view of the crystal structure of MutL. Top: N-terminal domains of a MutL 

dimer (light and dark blue) with highlighted positions 297 (green spheres) which carry the cysteine 

for later fluorescent dye labeling. Bottom: C-terminal domains of a MutL dimer (light and dark blue). 

Linker connecting N- and C-terminal domains are not shown. Modified after pdb code 1b63 [14] and 

1x9z [40]. 
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1.6 MutH 

The endonuclease MutH of E. coli is a monomer and binds and cleaves hemimethylated and 

unmethylated GATC sequences [41]. In E. coli, newly synthesized DNA strands remain 

transiently unmethylated at GATC sequences until Dam-methyltransferase methylates the 

contained adenine [42]. The transiently hemimethylated status of the DNA serves as a strand 

discrimination signal as the newly synthesized and yet unmethylated DNA strand is cleaved by 

MutH [41]. The DNA binding ability of MutH at physiological relevant ionic strength (100 - 

160 mM) [43] is so low that it needs to be recruited to DNA in a MutS, MutL, and mismatch 

dependent manner [44]. However, at low ionic strength MutH is able to cleave DNA without the 

assistance of MutS and MutL. 

The only native cysteine in MutH was mutated to serine to create a cysteine free variant [45]. 

Serine at position 85 was mutated to cysteine (S85C) [46], which is placed in a loop structure of 

MutH, where a later attached fluorophore most likely is not disturbing the activity or 

interactions of MutH. The mutation of glutamic acid to alanine at position 77 in MutH leads to a 

catalytically inactive protein, which is still able to bind DNA [47] [48]. This variant of MutH 

was used to analyze MutH binding to DNA without cleaving the DNA. 

 

 

Figure 1.6: MutH  

Modified cartoon view of the crystal structure of MutH in PyMOL. An introduced cysteine in a loop 

region at position 85 is highlighted (red spheres). This position enables later fluorescent-dye labeling 

of the protein via maleimide crosslinking. Modified after pdb code 1azo [49]. 
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1.7 Aim: Visualization of sub-steps in MMR 

The MMR was heavily studied for decades but the composition of protein and DNA complexes 

and the role of involved conformational changes remains still elusive. To understand the 

intricate MMR in detail it was essential to take a closer look at the individual sub-steps 

involved. Therefore, the aim of this thesis was to develop fluorescence-based assays that allow a 

visualization and analysis of these sub-steps, beginning with the mismatch recognition by MutS 

and ending with the formation and dissociation of the incision complex by MutH. 

To enable the observation of complex formations and conformational changes the phenomenon 

of FRET was used. Different components of the MMR needed to be labeled with a donor and/or 

an acceptor fluorophore for this purpose. Therefore, the first objective was to find suitable 

positions in the MMR proteins for a possible attachment of a fluorophore and to test the activity 

of these variants after fluorescence dye labeling. The second objective was the generation of 

suitable DNA substrates which were required for the formation of certain sub-steps in MMR. As 

some of the analyzed complex formations were highly dynamic, a circular DNA needed to be 

generated which also contained a mismatch to initiate the MMR reaction. To monitor a MutS- 

and MutL-dependent recruitment of MutH and therefore the formation of the incision complex, 

another DNA was required which additionally possessed a fluorophore. Finally, the generated 

DNA constructs and the fluorescence labeled protein variants needed to be selected and 

combined within a suitable fluorescence setup for each individual FRET assay to allow the 

observation of conformational changes and complex formations. 
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2. Experimental Procedures 

All standardized molecular biological procedures had been performed after Current Protocols in 

Molecular Biology [50]. Schematic views of reactions in chapter 3 were drawn with the 

software Adobe Illustrator. Statistical and mathematical calculations were performed with the 

software Microsoft Excel, OriginPro 8.5 and GraphPad QuickCals. 

 

2.1 Materials 

 

Table 2.1: protein and DNA markers 

Marker Manufacturer 

Page ruler unstained protein ladder Thermo Scientific 

pUC8 Mix Marker Thermo Scientific 

GeneRuler 1 kb DNA ladder Thermo Scientific 

GeneRuler Ultra low range DNA ladder Thermo Scientific 

 

Table 2.2: DNA and protein purification kits 

Kit Manufacturer 

Wizzard Plus SV Minipreps Promega 

Wizzard Plus SV Midipreps Promega 

Wizzard SV Gel and PCR clean-up system Promega 

Zeba Desalting spin columns 0.5 ml Pierce 

Zeba Desalting spin columns 5 ml Pierce 

 

Table 2.3: Proteins 

Protein Manufacturer 

BSA New England Biolabs 

BamH1 Thermo Scientific 

ExonucleaseI Thermo Scientific 

ExonucleaseIII  New England Biolabs 

Lambda Exonuclease New England Biolabs 

MutS / MutL / MutH (own production) 

Nb.BtsI New England Biolabs 

Nt.BspQI New England Biolabs 

Pfu-Polymerase (own production) 

Pfusion-Polymerase Thermo Scientific 

Proteinase K Thermo Scientific 

RecJF New England Biolabs 

TaqI-Methyltransferase New England Biolabs 

T4 Ligase Thermo Scientific 

T4 DNA Polymerase Thermo Scientific 
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Table 2.4: Reagents 

Reagent Manufacturer 

Acetic acid Roth 

Acrylamide/Bis-acrylamide 40%, 29:1 AppliChem 

Adenosine-5´-diphosphate Sigma 

Adenosine-5´-triphosphate Sigma 

Alexa FluorR-maleimide Invitrogen 

Aluminium sulfate AppliChem 

Agarose (Ultra PURETM) AppliChem 

Ammonium persulfate Merck 

Ampicillin AppliChem 

Benzamidine Sigma 

Bromphenolblue Merck 

Coomassie brilliant blue (G250) AppliChem 

Coomassie InstantBlue Expedeon 

Dimethyl sulfoxide Merck 

Dithiothreitol AppliChem 

dNTPs Roth 

Ethanol Roth 

Ethidiumbromide Merck 

Ethylenediaminetetraacetic acid Roche 

Glycerol AppliChem 

Glycine Roth 

HEPES AppliChem 

Hydrochloric acid AppliChem 

Imidazole AppliChem 

InstantBlue Coomassie Expedeon 

Isopropyl-β-D-1-thiogalactopyranoside AppliChem 

Magnesium chloride Merck 

2-Mercaptoethanol Merck 

Ni-NTA-Agarose Qiagen 

Oligodeoxyribonucleotides IBA, Eurogentec and Purimex 

Phenylmethanesulfonyl fluoride AppliChem 

Phosphoric acid Roth 

Potassium chloride Roth 

Potassium hydroxide Merck 

Sodium chloride AppliChem 

Sodium dodecyl sulfate Roth 

Sucrose Merck 

Tetracycline AppliChem 

Tetramethylethylenediamine Merck 

Tris AppliChem 

Tris-(2-carboxyethyl)-phosphine Merck 

Tween 20 Merck 
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Table 2.5: Buffers 

The pH was adjusted at RT. 

MutS/L binding buffer (pH 7.9)  MutH binding buffer (pH 7.9) 

Tris-HCl  20 mM   Tris-HCl      20 mM 

NaCl  1 M   NaCl      1 M 

Imidazole  5 mM   Imidazole     5 mM 

Glycerol  10 % (v/v)    

 

MutS/L washing buffer (pH 7.9)  MutH washing buffer (pH 7.9) 

Tris-HCl  20 mM   Tris-HCl      20 mM 

NaCl  1 M   NaCl      1 M 

Imidazole  20 mM   Imidazole     20 mM 

Glycerol  10 % (v/v)    

 

MutS/L elution buffer (pH 7.9)  MutH elution buffer (pH 7.9) 

Tris-HCl  20 mM   Tris-HCl      20 mM 

NaCl  1 M   NaCl      1 M 

Imidazole  200 mM   Imidazole     200 mM 

Glycerol  10 % (v/v)    

 

MutS/L HPLC buffer (pH 8.0)  MutH HPLC buffer (pH 8.0) 

HEPES-KOH 10 mM   HEPES-KOH     10 mM 

EDTA  1 mM   EDTA      1 mM 

KCl  200 mM   KCl      500 mM 

Glycerol  10 % (v/v)    

 

Fluorescence buffer FB125 (pH 7.5)  Fluorescence buffer FB000 (pH 7.5) 

HEPES-KOH 25 mM   HEPES-KOH     25 mM 

KCl  125 mM   MgCl2      5 mM 

MgCl2  5 mM   Tween 20      0.05 % (w/v) 

Tween 20  0.05 % (w/v) 

 

Fluorescence buffer FB000-MgCl2 (pH 7.5) STE buffer (pH 8.0) 

HEPES-KOH 25 mM   Tris-HCl      10 mM 

Tween 20  0.05 % (w/v)  NaCl      100 mM 

      EDTA      0.1 mM 

 

TPE buffer (pH 8.2)    SDS electrophoresis buffer (pH 8.3) 

Tris-H3PO4  100 mM   Tris      25 mM 

EDTA  2 mM   Glycine       190 mM 

      SDS       0.1 % (w/v) 

 

AAP (5x) Agarose loading buffer (pH 8.0) AAP (5x) without dye (pH 8.0) 

EDTA  250 mM   EDTA      250 mM 

Sucrose   25 % (w/v)  Sucrose       25 % (w/v) 

SDS  1.2 % (w/v)  SDS      1.2 % (w/v) 

Bromphenolblue 0.1 % (w/v) 

 

SDS loading buffer (5x) (pH 6.8)  Coomassie staining solution 

Tris-HCl  160 mM   Coomassie G250     0.1 % (w/v) 

SDS  2 % (w/v)  Phosphoric acid      2 % (v/v) 

Glycerol  40 % (v/v)  Aluminium sulfate      5 % (w/v) 

2-Mercaptoethanol 5 % (v/v)   Ethanol       10 % (v/v) 

Bromphenolblue 0.1 % (w/v) 
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Buffer yellow (pH7.5)   Deposition buffer (pH 7.5) 

Tris-HCl  10 mM   HEPES-KOH     10 mM 

MgCl2  10 mM   MgCl2      10 mM  

BSA  0.1 mg/ml 

 

T4 DNA Ligase buffer (pH 7.5) (NEB)  ExoI buffer (pH 7.5) (Thermo Sci.) 

Tris-HCl  50 mM   Tris-HCl      50 mM 

MgCl2  10 mM   KCl      50 mM 

Dithiothreitol 10 mM   EDTA      1 mM 

ATP  1 mM   Triton X-100     0.05 % (v/v) 

 

NEBuffer 2 (pH 7.9) (NEB)   NEBuffer 4 (pH 7.9) (NEB) 

Tris-HCl  10 mM   Tris-HCl      20 mM 

NaCl  50 mM   Potassium acetate     50 mM 

MgCl2  10 mM   Magnesium acetate     10 mM 

Dithiothreitol 1 mM   Dithiothreitol     1 mM 
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Table 2.6: Oligonucleotides 

Oligonucleotides were purchased from the companies IBA, Purimex, and Eurogentec. 

Name Length [nt] Sequence Modifications 

BBseq B111 19 TCA TCC TCG GCA CCG TCA C  

BBseq B111-P 19 TCA TCC TCG GCA CCG TCA C 5´-Phosphate 

BBseq A302 21 ATC TTC CCC ATC GGT GAT GTC  

BBseq A302-P 21 ATC TTC CCC ATC GGT GAT GTC 5´-Phosphate 

A-H-Nb.BtsI-

F40236 
35 

CTC AAG CTT CAC TGC ATC GCA GAA ATC AAA 

GCT AA 
- 

A-X-Nb.BtsI-

F40236 
35 

CTC GAG CTT CAC TGC ATC GCA GAA ATC AAA 

GCT AA 
- 

A2-X-Nb.BtsI-

R41146 
35 

AAG CTC GAG CAC TGC TTG CTC CAT TAG CCA 

GAG CA 
- 

MutH GATC12 

Beacon 
36 

TGC GGA TCC GGC TTT TTT TTT TTT GCC GGA 

TCC GCA 

5´-HEX 

3´-Black Hole 

Quencher1 

G-XhoI 42 
TAT TAA TTT CGC GGG CTC GAG AGC TTC ATC 

CTC TAC GCC GGA 
- 

G-XhoI-A594_T9 42 
TAT TAA TTX CGC GGG CTC GAG AGC TTC ATC 

CTC TAC GCC GGA 

X = position 9 

Alexa594 coupled 

to T 

T-HindIII 42 
TCC GGC GTA GAG GAT GAA GCT TTC GAG CCC 

GCG AAA TTA ATA 
- 

T-HindIII-A488_T 42 
TCC GGC GXA GAG GAT GAA GCT TTC GAG CCC 

GCG AAA TTA ATA 

X = position 8 

Alexa488 coupled 

to T 

GATC45_oben 45 
CCT TTC GGG CTT TGT TAG CTG AGG GAT CCT 

CGA GCA TAT GGC TCA 
- 

GATC46_unten-

A647+T 
46 

TGA GCC ATA TGC XCG AGG ATC CCT CAT GCT 

AAC AAA GCC CGA AAG G 

X = position 13 

Alexa647 coupled 

to T 

GATC46_oben 46 
CCT TTC GGG CTT TGT TAG CAT GAG GGA TCC 

TCG AGC ATA TGG CTC A 
- 

untenZirkel+10 48 
CAG ATT ACG CGC GGA AAA AAA GGA TCT CAA 

GAA CAX CCT TTC ATC TTT 

5´-Phosphate 

X = position 36 

Alexa647 coupled 

to T 

obenZirkel 48 
AAA GAT GAA AGG ATG TTC TTG AGX TCC TTT 

TTT TCT GCG CGT AAT CTG 

X = position 24 

modified with N6-

Methyl-dA 

untenZirkel-5 49 
CAG ATT ACG CGC GGA AAA XAA AGG ATC TCA 

AGA ACA TCC TTT CAT CTT T 

5´-Phosphate 

X = position 19 

Alexa647 coupled 

to T 
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Table 2.7: Fluorophores 

Fluorophores were purchased from the companies Invitrogen, Sigma-Aldrich, and IBA. Spectra of 

Alexa Fluor dyes, SYBR Green I and HEX were obtained from the Invitrogen homepage. Structures 

of Alexa Fluor dyes were also obtained from the Invitrogen homepage except for Alexa Fluor 647 

which was adapted from [51]. The SYBR Green I structure was adapted from [52]. Structures and 

spectra of Atto dyes were obtained from the Atto-tec homepage. 

 

Alexa Fluor 350 C5-maleimide 

Structure:      Excitation and emission spectrum: 

 

  
 

Absorption maximum  346 nm 

Emission maximum  442 nm 

Extinction coefficient  19,000 cm-1 M-1 

Correction factor 260 nm 0.25 

Correction factor 280 nm 0.19 

 

 

Alexa Fluor 488 C5-maleimide 

Structure:      Excitation and emission spectrum: 

 

  

 

 

 

 

 

 

Absorption maximum  495 nm 

Emission maximum  519 nm 

Extinction coefficient  71,000 cm-1 M-1 

Correction factor 260 nm 0.30 

Correction factor 280 nm 0.11 

 

 

Alexa Fluor 594 C5-maleimide 

Structure:      Excitation and emission spectrum: 

 

 

  

 

 

 

 

 

Absorption maximum  590 nm 

Emission maximum  617 nm 

Extinction coefficient  73,000 cm-1 M-1 

Correction factor 260 nm 0.43 

Correction factor 280 nm 0.56 
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Alexa Fluor 647 C2-maleimide 

Structure showing C5-maleimide:   Excitation and emission spectrum: 

 

  

 

 

 

 

 

 

Absorption maximum  650 nm 

Emission maximum  668 nm 

Extinction coefficient  239,000 cm-1 M-1 

Correction factor 260 nm 0.00 

Correction factor 280 nm 0.03 

 

 

Atto 390 C2-maleimide 

Structure showing carboxy derivative without maleimide: Excitation and emission spectrum: 

 

 

 

 

 

 

 

 

Absorption maximum  390 nm 

Emission maximum  479 nm 

Extinction coefficient  24,000 cm-1 M-1 

Correction factor 260 nm 0.52 

Correction factor 280 nm 0.08 

 

 

Atto 488 C2-maleimide 

Structure showing carboxy derivative without maleimide: Excitation and emission spectrum: 

 

 

  

 

 

 

 

 

Absorption maximum  501 nm 

Emission maximum  523 nm 

Extinction coefficient  90,000 cm-1 M-1 

Correction factor 260 nm 0.25 

Correction factor 280 nm 0.10 
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SYBR Green I 

Structure: Excitation and emission spectrum of dsDNA-

bound SYBR Green I: 

 

  

 

 

 

 

 

 

Absorption maximum  497 nm 

Emission maximum  520 nm 

Extinction coefficient  73,000 cm-1 M-1 

Correction factor 260 nm 0.23 

Correction factor 280 nm 0.16 

 

 

5´-Hexachlorofluorescein (HEX) 

Structure:  Excitation and emission spectrum: 

 

 

 

 

 

 

 

 

 

Absorption maximum  535 nm 

Emission maximum  555 nm 

Extinction coefficient  96,000 cm-1 M-1 

Correction factor 260 nm ND 

Correction factor 280 nm ND 

 

 

  

 

 

Structure not available 
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2.2 Nomenclature of fluorescence measurements 

In this thesis, the nomenclature of Berney [53] and Gordon et al. [54] is used to describe 

varying fluorescence set-ups. 

 

2.2.1 Channels 

The term channel describes the fluorescence filter combinations for excitation and emission. 

 Donor channel D: excitation of the donor and detection of the donor emission 

 Acceptor channel A: excitation of the acceptor and detection of the acceptor emission  

 FRET channel F: excitation of the donor and detection of the acceptor emission 

 

2.2.2 Samples 

The term sample describes the fluorescent dyes which are present in a sample during a 

measurement. 

 Sample d: donor only 

 Sample a: acceptor only 

 Sample b: both dyes are present 

An attachment of fluorescent dyes to proteins or DNA is indicated by square brackets after the 

name of the protein or DNA. 

 Protein[d]: donor attached to the protein 

 Protein[a]: acceptor attached to the protein 

 Protein[b]: both dyes are attached to the protein 

 

2.2.3 Signals 

Signals are the combination of samples measured in a certain channel and therefore consist of a 

two letter code. The capital letter describes the channel while the small letter describes the dyes 

which are present in the sample. This nomenclature allows the occurrence of nine different 

cases: Dd, Da, Db, Ad, Aa, Ab, Fd, Fa and Fb. 
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2.3 Determination of concentrations and the degree of labeling (DOL) 

The concentration of fluorophores and proteins was determined via the Lambert-Beer law 

(equation 1), where c resembles the concentration, A the absorbance at the absorbance 

maximum, l the path length, and ε the extinction coefficient. 

 

c = A / ε · l                equation 1 

 

To determine the fluorophore concentration equation 1 can be directly applied (equation 2). 

 

cfluorophore = Afluorophore / εfluorophore · l              equation 2 

 

Equation 1 can also be used to determine the protein concentration but requires a correction if a 

fluorophore is present in the sample (equation 3). In this case, the absorption of a fluorophore at 

280 nm is subtracted from the protein absorption by the term - (Afluorophore · cf280), where cf280 is 

the correction factor (cf) describing the absorbance efficiency of the fluorophore at 280 nm 

compared to its maximal absorbance. The correction factors used in this thesis were calculated 

manually or if available after the supplier’s description. 

 

cprotein = A280 - (Afluorophore · cf280) / εprotein · l             equation 3 

 

Certain proteins used in this thesis were labeled with a fluorescent dye (chapter 2.6.3). The 

procedure ended with a majority of proteins in a sample being labeled. To describe the ratio of 

unlabeled to labeled proteins the term degree of labeling (DOL) is used. To determine the DOL, 

the concentration of proteins was compared to the concentration of fluorophores (equation 4). 

 

DOL = cfluorophore / cprotein               equation 4 
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The DOL was also determined for DNA carrying fluorescent dyes. In this case, A280 is replaced 

by A260, for the fluorophore cf260 was used instead of cf280, and the extinction coefficient for the 

DNA was used. 

 

2.4 Förster Resonance Energy Transfer (FRET) 

Förster Resonance Energy Transfer (FRET) describes the phenomenon of a radiation free 

transfer of energy from an exited donor fluorophore to an acceptor fluorophore. Excitation of 

the donor results from absorbance of a photon and the subsequent FRET is enabled by dipole-

dipole interactions between the donor and acceptor [55]. A detailed description of FRET 

parameters is given by Lakowicz [55]: “The rate of energy transfer depends upon the extent of 

spectral overlap of the emission spectrum of the donor with the absorption spectrum of the 

acceptor, the quantum yield of the donor, the relative orientation of the donor and acceptor 

transition dipoles, and the distance between the donor and acceptor molecules. […] The distance 

at which RET is 50 % efficient is called the Förster distance, which is typically in the range of 

20 to 60 Å. The rate of energy transfer from a donor to an acceptor kT(r) is given by” equation 5, 

in which τD represents the lifetime of the donor in the absence of an acceptor, R0 the Förster 

distance, and r the mean distance between donor and acceptor fluorophore. 

 

kT(r) = 1 / τD (R0 / r)
6
               equation 5 

 

The strong distance dependence of FRET (proportional to r
-6

) allows observation of relative 

distance changes and was used in this thesis to visualize complex formations between 

components of the MMR. 

 

 

Figure 2.1: Distance dependence of FRET 

An excited donor fluorophore (green) can transfer energy to an acceptor fluorophore (red) without 

radiation (orange arrow). This process is called FRET and depends strongly on the distance between 

donor and acceptor fluorophore. The picture was drawn with the software Adobe Illustrator. 
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2.5 Fluorescence anisotropy 

A vivid explanation of fluorescence anisotropy (r) is given by Lakowicz [55]: “Anisotropy 

measurements reveal the average angular displacement of the fluorophore that occurs between 

absorption and subsequent emission of a photon. This angular displacement is dependent upon 

the rate and extent of rotational diffusion during the lifetime of the excited state. The rate of 

rotational diffusion depends on the viscosity of the solvent and the size and shape of the rotating 

molecule. […] For most experiments the sample is excited with vertically polarized light. The 

electric vector of the excitation light is oriented parallel to the vertical or z-axis. The intensity of 

the emission is measured through a polarizer. When the emission polarizer is oriented parallel 

(II) to the direction of the polarized excitation the observed intensity is called III. Likewise, when 

the polarizer is perpendicular (┴) to the excitation the intensity is called I┴ . These intensity 

values are used to calculate the anisotropy:” 

 

r = (III – I┴) / (III + 2I┴)               equation 6 

 

“The anisotropy is a dimensionless quantity that is independent of the total intensity of the 

sample. This is because the difference (III – I┴) is normalized by the total intensity, which is 

IT = III + 2I┴ . The anisotropy is an intensity ratio-metric measurement. In the absence of 

artifacts the anisotropy is independent of the fluorophore concentration.” 
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2.6 Expression, purification and fluorescent dye labeling of proteins 

2.6.1 Expression 

MutS and MutL proteins were expressed in E. coli HMS174(DE3) cell strains while MutH 

proteins were expressed in E. coli XL1-Blue cell strains. The HMS174(DE3) cells contained a 

derivate of the plasmid pET-15b encoding an N-terminal his-tag and either the mutS or mutL 

gene under control of a T7 promoter. The XL1-Blue cells contained a derivate of the plasmid 

pBAD18 encoding for the mutH gene under an arabinose-inducible promoter. An ampicillin 

resistance gene was encoded within the plasmids. 100 ml LB medium containing ampicillin was 

inoculated with the cells and incubated over night at 37 °C. 15 - 25 ml were taken from the 

overnight culture and given into four times 500 ml LB medium also containing ampicillin. The 

cells were grown at 37 °C until they reached an OD600 of 1.0 - 1.2. A 1 ml aliquot was taken 

from each culture. 5 ml 0.1 M IPTG was used for MutS and MutL cultures and 25g/1 arabinose 

for MutH cultures to induce protein expression. The temperature was decreased to 28 °C. After 

4 h, another 1 ml aliquot was taken and the cultures were transferred into centrifuge tubes, 

thereby pooling two cultures together in one tube. The cultures were centrifuged for 15 min at 

4200 rpm in a Beckman J6-HC centrifuge, supernatant removed and the pellet frozen at -20 °C 

for later protein purification steps. 

 

2.6.2 Purification 

The cell pellets were thawed on ice and 30 ml MutS/L binding buffer containing PMSF and 

benzamidine added. The mixture was resuspended until the pellet was completely dissolved. 

Sonification was performed 12 times for 30 s with 30 s pause for each cell pellet. The 

suspension was given into centrifuge tubes and centrifuged for 30 min at 20000 rpm and 4 °C in 

a Beckman J2-HS centrifuge. During centrifugation, two 50 ml falcon tubes had been filled with 

35 ml MutS/L binding buffer and 750 ml Ni-NTA agarose bead suspension, resuspended and 

incubated for 30 min in the cold room on a rolling table. The Ni-NTA suspension was 

centrifuged for 5 min at 800 rpm and at 4 °C afterwards and supernatant was removed. After 

centrifugation of the sonificated cells, the supernatant was transferred into the falcon tubes 

containing Ni-NTA. The tubes were inverted a few times and incubated for 1 h in the cold room 

on the rolling table. The suspension was centrifuged for 5 min at 800 rpm and at 4 °C in a 

Beckman J6-HC centrifuge. 1 ml aliquot was taken and the supernatant removed. The pellets 

were washed with 35 ml MutS/L washing buffer, inverted a few times, and centrifuged for        

5 min at 800 rpm and at 4 °C. Another 1 ml aliquot was taken and the supernatant removed. 

This washing and centrifuging was repeated two additional times. After the last washing and 

centrifugation step, 5 ml of Ni-NTA suspension and supernatant was kept and transferred into a 
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BioRad column in the cold room. After the Ni-NTA agarose beads settled down, the washing 

buffer was removed letting it run out of the column. A 1 ml aliquot of this washing buffer was 

kept. 500 µl MutS/L elution buffer was added and the beads were again allowed to settle down. 

Afterwards the fraction was collected in an Eppendorf tube and 500 µl elution buffer was added 

again to the Ni-NTA beads on the column. The elution step was repeated two additional times 

and in total three protein fractions were collected. Protein concentration of each fraction was 

determined and the fractions were either snap-frozen in liquid nitrogen for temporal storage at   

-80 °C and later purification or directly prepared for size exclusion chromatography. 10 mM 

DTT were added to the fractions, incubated for 20 min, and centrifuged at 13000 rpm in the 

cold room. Supernatant was applied to a size exclusion column coupled to a HPLC setup 

(LaChrom Elite from VWR-Hitachi). The running buffer for the HPLC was MutS/L HPLC 

buffer and the flow rate 0.5 ml per min. Fractions were collected corresponding to the protein 

and the protein concentration was determined. Afterwards the protein fractions were snap-

frozen or prepared for the following fluorescence labeling. 

 

2.6.3 Fluorescent dye labeling of proteins 

Single cysteine variants of proteins were site-specifically labeled with a fluorescent dye. The 

reaction is illustrated in Figure 2.2. 

 

 

 

Figure 2.2: Coupling fluorescent dyes with proteins 

Maleimide groups attached to fluorophores react with thiol groups of cysteines in proteins. A covalent 

bond is formed (drawn with the software ChemDraw Ultra 12.0). 

 

The protein was incubated with 10 mM DTT for 20 min and purified via size-exclusion 

chromatography. Concentration of the fractions was determined. The amount of dye needed to 

label the protein was calculated (four times excess dye over protein) and appropriate 

fluorophore stocks were prepared by dissolving them in DMSO. Protein and fluorophore were 

incubated for 30 min on ice. Meanwhile Pierce Zeba 5 ml spin columns were prepared, 

equilibrating them with storage buffer: washing three times with 2.5 ml buffer and centrifuging 

each time for 2 min at 1600 rpm (1000 x g). Two columns were used for each protein fraction. 
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The protein was loaded on the first column and centrifuged as before. Flow-through was loaded 

on the second column and centrifuged again. Flow-through of the second column was 

transferred into an Eppendorf tube and centrifuged at 13000 rpm for 10 min (15000 x g). The 

supernatant was transferred into a new Eppendorf tube and snap-frozen in liquid nitrogen 

(storage in -80 °C). 

 

2.6.4 Influence of fluorescent dye labeling on protein activity 

Kinetics comparing unlabeled proteins with fluorescence labeled proteins had been performed 

with the GT932 DNA substrate. Generation of the substrate is described in 2.7.2. Two master 

mixes were prepared for the MMR reaction. One master mix contained 12.5 nM GT932 and  

125 nM MutS in 1 x FB125 buffer. The other mix contained 5 mM ATP, 1 µM MutL, and     

250 nM MutH in 1 x FB125 buffer. Both mixes were pre-incubated for 3 min at 37 °C. The 

reaction was started by pipetting 24 µl of the ATP-MutL-MutH mix into 96 µl of the DNA-

MutS mix. Final reaction conditions were therefore 10 nM GT932, 100 nM MutS, 100 nM 

MutL, 50 nM MutH, 1 mM ATP, and 1 x FB125 buffer. The experiment using single cysteine, 

fluorescence labeled proteins was prepared as described for the unlabeled proteins and 

contained MutS variant R449C labeled with Alexa 647, MutL variant H297C labeled with 

Alexa 488, and MutH variant S85C labeled with Alexa 488. The DOL for all labeled proteins 

was higher than 95 %. After different time points, 10 µl of the reaction were removed and 

transferred into 2.5 µl of 5 x AAP buffer which stopped the reaction by denaturing the involved 

proteins. 0.1 U of Proteinase K were added to each time point sample afterwards and incubated 

for 10 min at 37 °C. The mixture of the time point samples was loaded onto a 2 % agarose gel 

prestained with ethidium bromide. The gel was prepared by adding 20 µg ethidium bromide to 

50 ml of heated agarose. 

After the run, the gel was illuminated at 302 nm and photographed with a BioDocAnalyze setup 

from Biometra. Intensities of bands were determined with the software GelAnalyzer. Intensities 

of closed circles (cc) were normalized by setting the intensity in fraction 0 min to 100 %. The 

experiment was performed three times with unlabeled proteins and three times with 

fluorescence labeled proteins. Reduction of uncleaved cc over time (k1) was fitted with Origin 

software using the function ExpDec1. 
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2.7 Modified DNA substrates for DNA mismatch repair 

2.7.1 Linear DNA substrates 

For some of the complex formation assays, a linear DNA substrate was sufficient to enable the 

reaction. The linear DNA substrates used in this thesis are listed in Table 2.8. 

 

Table 2.8: Linear DNA substrates 

Linear DNA was generated by annealing single-stranded oligonucleotides (from Table 2.6) 

DNA Oligonucleotide 1 Oligonucleotide 2 

Molecular beacon MutH-GATC12_Beacon - 

GT42 G-XhoI T-HindIII 

GT42[d] G-XhoI T-HindIII-A488_T 

GT42[b] G-XhoI-A594_T9 T-HindIII-A488_T 

+T46[a] GATC45_oben GATC46_unten-A647+T 

AT46[a] GATC46_oben GATC46_unten-A647+T 

GATC-5 oligo untenZirkel-5 obenZirkel 

GATC+10 oligo untenZirkel+10 obenZirkel 

GT100 G100_GATC T100_GATC 

 

The generation of GT484 was different as it originates from two separate PCR fragments. Both 

fragments possessed one 5´-phosphorylated DNA strand which was digested by lambda 

exonuclease. The two resulting single-stranded DNAs were complementary except for one 

position. Annealing those two single-stranded DNAs generated a 484 bp duplex DNA 

containing a G:T mismatch [56] [37]. 

 

2.7.2 Generation of DNA circles (GT932) 

A standard circular DNA substrate with 932 bp length was generated to analyze nicking 

activities of modified and unmodified protein variants. This substrate was also used to enable 

DNA-dependent protein-protein complex formation. It is known that MutS has the capability to 

move along the DNA and may fall off DNA ends [57]. To stabilize formed protein complexes 

the DNA substrate needed to be circular. An additional requirement to investigate sub-steps in 

MMR was the integration of a mismatch into this DNA circle to enable MutS binding. The 

generation process of the substrate was developed by our group [58]. 
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2.7.2.1 Nicking and cleavage of GT932 by the MMR 

Nicking of GT932 leads to open circles. A second nick in the opposite DNA strand linearizes 

the circles. In this thesis, only the nicking activity was addressed. The reaction is comparable to 

the reaction described in 2.2.1.4, but other protein and DNA concentrations were used and the 

reaction was started by addition of only MutH. A 50 µl master mix was prepared containing  

400 nM DNA, 500 nM MutS, 250 nM MutL, 1 x buffer yellow, and 150 mM KCl. The mix was 

pre-incubated at 37 °C for 3 min and started by addition of 500 nM MutH. The reaction was 

stopped at different time points by transferring 10 µl into 2.5 µl of 5 x AAP buffer. Analysis of 

bands in the gel was identical to the procedure in 2.2.1.4. 

 

2.7.2.2 Visualizing GT932 with scanning force microscopy (SFM) 

A solution of GT932 was diluted in 20 µl deposition buffer and transferred onto a mica surface. 

After 1 min the mica was moistened with distilled water and dried with air afterwards. Imaging 

was performed with a Nanoscope III (Digital Instruments, Santa Barbara, CA, USA) in tapping 

mode. The scan size was 2.000 µm, scan rate 1.969 Hz and the data scale 3.000 nm. 

 

2.7.3 Generation of fluorescent-dye labeled DNA circles (1GATC[a]) 

Generation of the DNA is based on a protocol from Baerenfaller et al. [59] and was modified to 

enable integration of a fluorescent dye into the DNA circle (Nicolaas Hermans, unpublished 

data). The protocol was further modified in this thesis and the DNA single-strand production via 

phages was replaced by enzymatic reactions. The template to generate a single-stranded circular 

DNA is a derivate of the plasmid pGEM and was kindly provided by Nicolaas Hermans. It is 

3197 bp long and is called 1GATC[a] as it contains one GATC site and was expressed in E. coli 

HMS174(DE3) cells. For cell cultivation, LB medium containing ampicillin was used as an 

ampicillin resistance gene is encoded on the plasmid. The plasmid was purified with the 

PureYield Plasmid Midiprep System from Promega. To incorporate an IDL and a fluorophore 

into the circle a five-step reaction was performed. The reaction started with nicking the plasmid 

in the bottom strand (Table 2.9). 

 

Table 2.9: Reaction mix for the nicking of 1GATC plasmids 

component stock concentration final concentration volume 

1GATC plasmid  290 µg  

Nt.BspQI 10 U/µl 2.5 U/µg DNA 72.5 µl 

NEBuffer 3 10 x 1 x 145 µl 

water add to a volume of 1450 µl 
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The reaction mix was incubated for 1 h at 50 °C and inactivated with 20 min at 80 °C. In the 

following step, Exonuclease III was used to digest the bottom strand (Table 2.10). The reaction 

mix was split and given into two Eppendorf tubes, each containing 725 µl. 

 

Table 2.10: Reaction mix for Exonuclease III digestion 

component stock concentration final concentration volume 

reaction mix   725 µl 

ExoIII 100 U/µl 17 U/µg DNA 25 µl 

NEBuffer 1 10 x 1 x 145 µl 

water add to a volume of 1450 µl 

 

Incubation time was 15 min at 30 °C and inactivation was 10 min at 70 °C. After inactivation 

the ss-plasmid-DNA was purified with the Wizard® SV Gel and PCR Clean-Up System from 

Promega. In the next step a complementary oligonucleotide was annealed to the remaining top 

strand (Table 2.11). This oligonucleotide carried a fluorophore and possessed an additional 

thymine in the sequence which generated the IDL after annealing. 

 

Table 2.11: Reaction mix for annealing 

component stock concentration final concentration volume 

ss-plasmid-DNA needs to be determined all approx. 250 µl 

Oligo (-5) 100 U/µl 0.075 µl/µg DNA  

NEBuffer 2 10 x 1 x 50 µl 

water add to a volume of 500 µl 

 

Annealing started on a heating block which was set to 95 °C for 5 min and then switched off. 

When the block cooled down to 40 °C the temperature was kept stable at 40 °C. The next step 

was a primer extension and ligation reaction which led to a double-stranded closed circle (Table 

2.12). The reaction mix was split and given into two Eppendorf tubes, each containing 250 µl. 
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Table 2.12: Reaction mix for primer extension and ligation 

component stock concentration final concentration volume 

reaction mix   250 µl 

BSA 100 x 1 x 5 µl 

dNTPs 2 mM 0.2 mM 50 µl 

NEBuffer 2 10 x 0.5 x 25 µl 

ATP 110 mM 1 mM 4.6 µl 

T4 Pol (Fermentas) 5 U/µl 1 U/µg DNA  

T4 Ligase 400 U/µl 30 U/µg DNA  

water add to a volume of 500 µl  

 

Incubation was for 1.5 h at 37 °C and inactivation for 10 min at 75 °C. Finally an exonuclease 

mixture of Exonuclease I, Exonuclease III, and RecJF digested remaining oligonucleotides 

which had been used in excess to the top strand of the circle in the annealing step (Table 2.13). 

 

Table 2.13: Reaction mix for ExoI/III, RecJF digestion 

component stock concentration final concentration volume 

reaction mix   500 µl 

ExoI 20 U/µl 4 U/µg DNA  

ExoIII 100 U/µl 10 U/µg DNA  

RecJF 30 U/µl 6 U/µg DNA  

 

Incubation was for 15 min at 30 °C and inactivation for 10 min at 80 °C. Afterwards the 

fluorescent dye labeled 1GATC[a] circle was purified two times with the Wizard SV Gel and 

PCR Clean-Up System from Promega. In a vacuum centrifuge, remaining ethanol was removed 

by centrifuging 45 min at 55 °C. The concentration of GT932 was determined and the purity 

analysed on a 1.25 % agarose gel. Before the gel was stained with ethidium bromide, 

fluorescence of the 1GATC[a] circles was observed by exposing the gel to monochromatic light 

at wavelength 630 nm in a fluorescence imaging setup called VersaDoc. 
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2.8 Visualizing complex formation in MMR 

All FRET assays and anisotropy measurements had been performed with the Fluoromax 4 

spectral photometer manufactured by Horiba. The reactions were kept thermostatically stable at    

20 °C. Calculations were done with the software Microsoft Excel and Origin by OriginLab 

Corporation. Fluorescence emission spectra were normalized to let the highest value be 1. 

 

2.8.1 MutS binding DNA 

Visualization of MutS binding DNA was achieved in two different assays which are described 

below. Both assays were established in cooperation with Michele Cristovao [36]. 

 

2.8.1.1 Site-specific DNA binding of MutS 

An acceptor fluorophore labeled MutS will give a FRET signal upon binding to a donor labeled 

oligonucleotide containing a mismatch. In this case, the acceptor was Alexa 594 which was 

coupled via maleimide crosslinking to a cysteine residue at position 449 in MutS. The DNA 

substrate was generated by annealing the oligonucleotides T-HindIII and G_XhoI-A594_T9. 

The annealed DNA called GT42[d] contained a G:T mismatch and 12 bp away the donor 

fluorophore Alexa 488 coupled to a thymine in DNA. Reaction was started with 50 nM GT42[d] 

and 1 mM ADP in the 1x buffer FB125 at 20 °C. Excitation of the donor fluorophore was at  

470 nM and the emission spectrum was measured from 490 - 800 nm. Addition of 100 nM 

MutS[a] was the second step and addition of 2 µM competitor DNA the final step. After step 2 

and 3 the emission spectra had been measured as in step 1 and additionally the acceptor 

emission had been measured by exciting at 575 nm and measuring from 595 - 800 nm. 

 

2.8.1.2 MutS bending DNA 

This assay is similar to the site-specific binding of MutS but here two fluorophores on the DNA 

had been used to analyze the binding orientation of MutS. The setup for the assay was 

established before [36] [60]. Again Alexa 488 was used as acceptor and Alexa 594 as donor. 

The DNA substrate was therefore called GT42[b]. It also contained a mismatch and was 

generated by annealing the oligonucleotides T-HindIII-A488_T and G_XhoI-A594_T9. Step 1 

in the assay started with 50 nM of GT42[b] and 1 mM ADP in the 1x buffer FB125. Step 2 was 

the addition of 200 nM MutS variant R449C D835R. And step 3 was the competition for MutS 

with addition of 2 µM of the unlabeled DNA GT42. In each step the emission spectra were 
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recorded for the donor and acceptor fluorophore as performed in the site-specific DNA 

binding of MutS assay (2.8.1.1). 

 

2.8.1.3 Determination of MutS binding orientation at mismatches 

The DNA-bending assay was additionally used to determine the MutS binding orientation at 

different mismatches. MutS was titrated to 10 nM donor labeled DNA (GT[d]). This reaction 

was repeated with double labeled DNA (GT42[b]). The reaction started with 10 nM DNA,        

1 mM ATP, and 1 x FB125 buffer. In the next step, 1000 nM MutS variant R449C D835R was 

added. Half of this reaction mix was discarded and replaced by an equal volume of the starting 

reaction mix not containing MutS. With the MutS dilution steps, it was possible to vary MutS 

concentrations from 1000 nM to 1 nM. After each step, anisotropy of the fluorophores was 

determined, exciting Alexa 488 at 470 nm and Alexa 594 at 575 nm. Emission was recorded at 

517 nm and 617 nm. The experiment was repeated three times for each DNA containing G:T, 

T:G or G:G mismatches or G:C homoduplex DNA. Recorded emission maxima as well as 

anisotropy values were averaged afterwards. 

 

2.8.2 Monitoring MutS sliding clamp formation 

MutS can be transformed into a sliding clamp on DNA which is ATP- and mismatch-dependent. 

On oligonucleotides, this sliding clamp falls off at the ends. To analyze kinetics of the sliding 

clamp formation, the following assay was developed. To enable a stable FRET between MutS as 

a sliding clamp and DNA, circular DNA was used. The circular DNA (GT932) contained a 

single G:T mismatch and its generation process was described before [61] [58]. SYBR Green I 

(SG) is a fluorescent dye which associates with double-stranded DNA. The fluorescence 

emission of SG is dramatically increased upon binding to double-stranded DNA. In this assay 

SG was associated with GT932 and acted as fluorescence donor. Alexa 647 coupled to MutS 

variant R449C D835R acted as acceptor MutS[a]. A FRET was generated when the labeled 

MutS[a] bound to the labeled DNA[d]. It started with 100 nM SG and 1 µM ADP in the 1x 

buffer FB125. Following steps were the stepwise addition of 100 nM MutS[a], 10 nM GT932,  

1 mM ATP, and 1 µM of unlabeled MutS as competitor for the labeled MutS[a]. Time traces of 

the kinetics were observed during the reaction by exciting the donor fluorophore SYBR Green I 

at 470 nm and recording emission of the acceptor Alexa 647 at 670 nm. For determination of 

kinetic rate constants, the time traces had been analyzed with the software Origin and each 

phase was fitted separately with the equitation ExpDec1. The reaction was performed two times 

and determined kinetic rate constants were averaged. 
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2.8.3 MutS-MutL complex formation 

To visualize and analyze the interaction between MutS and MutL, a FRET assay was developed. 

For this, the fluorophores Alexa 488 and Alexa 594 had been chosen as FRET pair. One 

fluorophore was covalently attached to the single cysteine MutS (variant D835R R449C or 

D835R D246C) and the other to the single cysteine variant of MutL H297C. When those two 

labeled proteins formed a complex, a FRET arose. The complex formation and dissociation of 

MutS and MutL was observed in fluorescence spectra of Alexa 488 and Alexa 594 where the 

fluorescence donor Alexa 488 was excited while the emission of the fluorescence acceptor 

Alexa 594 was measured. To analyze the dissociation reaction of the MutS-MutL complex, an 

excess of an unlabeled MutL variant H297C was used to compete for the binding of MutS. The 

resulting decrease in FRET was observed in the fluorescence spectra. Further conditions for the 

reaction were described before [37]. 

 

2.8.4 MutL binding DNA at low ionic strength 

MutL possesses a weak ability to bind directly to DNA. At physiological salt conditions one 

cannot observe an interaction without the help of MutS. By lowering the salt concentration it is 

possible to record a FRET signal between an Alexa 488 labeled MutL variant 297 (MutL[d]) 

and a 46 bp long oligonucleotide containing Alexa 647 as acceptor fluorophore (DNA[a]). To 

investigate the influence of heteroduplex DNA on the binding of MutL, the reaction was 

performed with heteroduplex DNA created by a missing adenine in the bottom strand leaving an 

unpaired thymine in the top strand (0T46[a]) and compared to homoduplex DNA (AT46[a]). 

The reaction started with 400 nM MutL[d] and 1 mM ATP in 1x buffer FB000. Step 2 was the 

addition of 400 nM DNA[a]. And the final step was an increase in salt concentration to 200 mM 

by adding KCl. Fluorescence emission spectra for Alexa 488 and Alexa 647 were observed for 

each step the same way as described in 2.8.1.3. Calculation of FRET effects were performed by 

dividing maximal acceptor emission through maximal donor emission of not normalized 

spectra. Acceptor emission which derived from direct excitation of the acceptor fluorophore by 

excitation light for the donor fluorophore (signal Fd) was subtracted from the spectra of 

+DNA[a] and +KCl. Emission maxima of three independent experiments with 0T46[a] and 

three experiments with AT46[a] were averaged. MutL binding to DNA visualized by anisotropy 

was performed slightly different compared to the FRET-based assay. The reaction was started 

with 1 mM ATP, 1 x FB000 buffer, and 50 nM DNA (0T46[a]) labeled with Atto 488. 300 nM 

of unlabeled MutL was added followed by an increase in KCl concentration to 200 mM. 

Anisotropy was recorded during each phase of three independent experiments by using 

excitation at 470 nm and emission at 517 nm. Anisotropy values were averaged afterwards. 
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2.8.5 MutH binding DNA without MutS and MutL at low ionic strength 

MutH possesses a weak ability to bind DNA which is inhibited at physiological salt conditions. 

To enable analysis of direct DNA binding by MutH the low salt buffer FB000 was used. The 

catalytically inactive MutH variant E77A allowed observation of a stable FRET by avoiding the 

MutH cleavage of its DNA substrate. The assay was started with 100 nM 1GATC-5[a] double-

stranded oligonucleotide in 1 x FB000 buffer. Addition of 400 nM MutH[d] allowed complex 

formation between MutH[d] and DNA[a] which was reversed by addition of 125 mM KCl. 

Fluorescence emission spectra of Alexa 488 and Alexa 647 were recorded after each step. The 

spectra were normalized for the donor to be 1. As there was no donor within the first reaction 

step, the emission in this step was divided through the same normalization factor as used for 

step 2. Acceptor fluorescence of not normalized emission spectra was determined for all three 

reaction steps. A control with donor only was used to subtract overlapping donor fluorescence 

from the acceptor emission in step 2 and 3. 

 

2.8.6 MutH cleaving DNA without MutS and MutL at low ionic strength 

The experiment was performed with 50 nM of a molecular beacon in low salt buffer 1x FB000 

in a fluorescence plate reader (Infinite F200 Pro from Tecan) with the software i-control. The 

Hex fluorophore was excited at 535 nm and its emission detected at 590 nm. Reaction was 

started by addition of 1 µM MutH variant C96S S85C. The experiment was repeated three times 

and the fluorescence normalized to be 1 at its maximum. For each measurement the MutH 

nicking rate (initial slope) was determined, averaged and fitted with the software Origin (using 

the function ExpDec1). 

 

2.8.7 MutH recruitment to DNA at high ionic strength (incision complex) 

First step in the reaction was a pre-incubation of 5 nM 1GATC-5[a] circle with 1µM ADP,    

200 nM MutS, 200 nM MutL, and 100 nM of the catalytically inactive variant E77A of 

MutH[d] in 1 x FB125 buffer. The reaction was started by the addition of 1 mM ATP. Addition 

of 500 nM unlabeled and also catalytically inactive MutH resulted in a competition in the 

reaction. Fluorescence emission spectra of Alexa 488 and Alexa 647 were recorded after each 

step. After addition of MutH competitor, fluorescence kinetics were recorded by exciting   

Alexa 488 at 470 nm and measuring Alexa 647 emission at 670 nm. The donor was normalized 

to be 1 in the emission spectra. Maximal acceptor fluorescence during the reaction steps was 

determined at 670 nm. Changes in acceptor fluorescence were used for the quantitative analysis.  
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3. Results 

3.1 Expression, purification and fluorescent dye labeling of proteins 

3.1.1 Protein expression 

In this thesis, the analysis of complex formations in MMR was monitored by FRET. A 

requirement for most of the FRET-based assays, described in this thesis, were fluorescent dye 

labeled proteins. Protein expression, purification, and fluorescent dye labeling are depicted in 

Figures 3.1-3.4. The procedure is illustrated here for MutL and was performed similarly with 

different variants of MutS and MutH. 

Addition of IPTG to E. coli cultures lead to an induction of the lac operon. The mutL gene in the 

used E. coli strains was encoded on a plasmid under the control of a lac promoter. With 

induction of the lac operon the expression of MutL proteins was upregulated. MutL expression 

is demonstrated in Figure 3.1. 

 

 

Figure 3.1: Expression of MutL in E. coli 

Cell lysate of E. coli cultures before induction of MutL expression (lane 2 and 4) was compared to 

cell lysate after induction (lane 3 and 5). The fractions were analyzed on a 8% SDS-PAGE stained 

with Coomassie brilliant blue and the marker is PageRuler unstained protein ladder. 

 

A strong band arrised after induction (lane 3 and 5). The molecular mass of approximately       

70 kDa correlates with the molecular mass of MutL. 
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3.1.2 Protein purification 

The expressed MutL protein was purified via affinity chromatography followed by size 

exclusion chromatography. Increasing MutL purity at different purification steps is visualized in 

Figure 3.2. 

 

 

Figure 3.2: Purification of MutL 

MutL was purified from cell lysate via Ni-NTA affinity chromatography (lane 2-9) and size exclusion 

chromatography (lane 10 and 11). Cell lysate can be seen in lane 2 and the supernatant after 

centrifugation of two different preparations in lane 3 and 4. Supernatants after each centrifugation in 

three following washing steps are indicated in lane 5-7. Fraction 1 and 2 of the elution step during the 

affinity purification are in lane 8 and 9. These elution fractions were pooled and further purified via 

size exclusion chromatography. Lane 10 and 11 show the 22 min and 23 min fractions of MutL after 

size exclusion chromatography. The samples were loaded on a 8% SDS-PAGE stained with 

Coomassie brilliant blue and the marker is PageRuler unstained protein ladder. 

 

Lanes 2-4 demonstrate the presence of different proteins in the cell lysate before purification. A 

prominent band at approximately 70 kDa represents MutL which has a molecular mass of        

70 kDa. Lanes 5-7 indicate that no MutL was eluted during washing steps and remained bound 

to the Ni-NTA agarose beads. The elution steps of the affinity purification (Figure 3.2, lane 8 

and 9) show the purified MutL which still contained some other protein bands. To increase the 

purity of the samples, a size exclusion chromatography was performed which further increased 

the purity of the protein preparation (Figure 3.2, lane 10 and 11). The chromatogram is shown in 

Figure 3.3. The elution profile of MutL (red line) shows a major fraction of intact MutL which 

elutes at 23 min. Another fraction eluting at 28 min corresponds to degraded MutL (data not 

shown). 
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Figure 3.3: MutL purified by size exclusion chromatography 

Eluates of the affinity purification were supplied to a size exclusion column coupled to a HPLC setup 

(LaChrom Elite from VWR-Hitachi) for further purification of MutL. MutS/L HPLC buffer was used 

with a flow rate of 0.5 ml / min. The protein elution profile was measured by absorption at 280 nm 

(red line) and its intensity in mAU reflects the amount of protein in each eluting fraction. The peak at 

23 min corresponds to intact MutL while later eluting proteins resemble degraded MutL and other 

proteins.  

 

3.1.3 Fluorescent dye labeling of proteins 

The purified MutL was labeled with an Alexa or Atto fluorophore. This reaction was enabled by 

a maleimide group which was attached to the fluorophore. Maleimide reacted with the 

sulfhydryl group of a cysteine exposed on the protein surface which resulted in the formation of 

a stable carbon-sulfur bond [62]. 

 

 

Figure 3.4: Fluorescence labeling of MutL 

A MutL before fluorescence labeling (lane 2) and after labeling with Alexa 488 (lane 3) on an 

unstained 8% SDS-PAGE illuminated at 302 nm in a BioDocAnalyze setup from Biometra. 2 µg of 

protein were loaded for each sample. B The same gel after staining with InstantBlue Coomassie. The 

marker is PageRuler unstained protein ladder. 

A B 

23   28 min 
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Success of the fluorescence labeling reaction of MutL can be seen in the comparison of the 

protein gel before and after staining (Figure 3.4). The unlabeled MutL (A, lane 2) does not show 

any fluorescence under illumination at 302 nm while a clear band arose after labeling MutL 

with Alexa 488 (A, lane 3). Gel staining with Coomassie brilliant blue revealed that the 

observed band has a molecular mass of approximately 70 kDa (B Lane 3) which correlates to 

the molecular mass of MutL. The degree of labeling was determined as described in 2.3. 

 

3.1.4 Influence of fluorescent dye labeling on protein activity 

Most assays in this thesis analyzing the complex formation of components of the MMR are 

based on FRET effects. To exclude the possibility that the fluorescent dyes at the proteins 

disturb interactions or reactions of the MMR system, enzyme kinetics had been performed to 

compare DNA nicking reactions of unlabeled proteins with kinetics of labeled proteins. 

Unmethylated DNA circles (GT932) served as a substrate in these reactions. Generation of 

GT932 is demonstrated in chapter 3.2.1. The conversion from closed circles (cc) to open circles 

(oc) and finally to linear products is explained and schematically illustrated in Figure 3.5 and 

Figure 3.10, A. A representative gel showing the nicking activity of MMR proteins is shown in 

Figure 3.5. 

 

          

Figure 3.5: DNA nicking reaction showing activity of MMR proteins 

DNA circles (GT932) were nicked and cleaved by MMR proteins at 37 °C. The reaction was stopped 

at different time points and analyzed on a 2% agarose gel prestained with ethidium bromide. MMR 

activity led to a conversion from closed circles (cc) to open circles (oc) and linear products (L). cc 

bands are less intense compared to oc and L because of a reduced incorporation of ethidium bromide 

into closed circles. The marker is pUC8 Mix Marker. 

 

Intensities of uncleaved cc at different time points were determined with GelAnalyzer software 

and a single exponential function was used to fit the data with Origin software. Data points and 

the corresponding fit for unlabeled MMR protein activity can be seen in Figure 3.5, A, while 
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data points and the fit for fluorescent dye labeled MMR protein activity can be seen in       

Figure 3.5, B. 

 

A      B 

 
Figure 3.6: DNA nicking activity of unlabeled and fluorescent dye labeled MMR proteins 

Activity of A unlabeled and B fluorescent dye labeled MMR proteins. Reduction of closed circles 

(cc) over time was determined to address the activity of MMR proteins. Intensities of bands were 

determined with GelAnalyzer software and a single exponential function was used to fit the data with 

Origin software. Data points for each step were averaged and are symbolized by black squares and the 

fit is indicated by a red line. Error bars are the standard deviation from n = 3 independent 

experiments. Proteins used in the experiment were single cysteine variants of MutS variant R449C 

D835R, MutL variant H297C, and MutH variant S85C. MutS carried the fluorescent dye Alexa 647, 

MutL and MutH the dye Alexa 488. The DOL for all labeled proteins was higher than 95 %. 

 

Fitting of the cc reduction over time (Figure 3.6) allowed determination of MMR nicking rates 

(k1). Nicking rates of unlabeled and fluorescent dye labeled MMR proteins are compared in 

Table 3.1. 

 

Table 3.1: DNA nicking rates of unlabeled compared to fluorescent dye labeled proteins 

The reduction of uncleaved cc during the MMR reaction was fitted and nicking rates were determined 

according to the unlabeled and fluorescent dye labeled MMR proteins. The error derived from n = 3 

independent experiments. 

protein modification t1/2 k1 

Unlabeled 150 ± 25 s 0.007 ± 0.001 s-1 

Labeled 130 ± 5 s 0.008 ± 0.0003 s-1 

 

There is no significant difference (p = 0.25, unpaired t-test) between the DNA nicking rates of 

unlabeled and fluorescence labeled MMR proteins (0.007 ± 0.001 s
-1

 and 0.008 ± 0.0003 s
-1

). 

This reveals that the fluorophores at the selected positions on the proteins do not disturb the 

MMR system.  



  Results 

49 

 

3.2 Modified DNA substrates for DNA mismatch repair 

Analysis of MutS sliding clamp formation, the complex formation of MutS and MutL and other 

sub-steps in DNA mismatch repair requires suitable DNA substrates. For some sub-steps it is 

sufficient to use linear DNA derived from annealing of oligonucleotides or PCR fragments. To 

enable observation of site-specific DNA binding of proteins in these reactions, the DNA can 

carry a fluorophore close to the binding site of a protein. Other sub-steps in MMR require 

circular DNA substrates to avoid complex dissociation at DNA ends. Those circular substrates 

are called GT932 and their generation is demonstrated in 3.2.1. For observation of site-specific 

DNA binding on circular DNA, a third category of DNA substrates was generated, the 

1GATC[a] circles. The generation of 1GATC[a] circles is shown in 3.2.2. 

 

3.2.1 Generation of DNA circles (GT932) 

DNA circles (GT932) were generated using a protocol we developed [58]. GT932 possessed a 

single GATC site, can be produced in high amounts, and can contain a single mismatch. 

Furthermore, the circular structure enables a more stable complex formation of MMR proteins 

as end-dependent dissociation of the proteins is not possible. Combined with a SYBR Green I 

(SG)-based FRET assay, it is possible to analyze protein binding events at any place of the 

circle (chapter 3.3.2.). The generation process included a PCR reaction, nicking, ligation, and a 

purification step with either exonuclease digestion or gel extraction (Figure 3.7). 
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Figure 3.7: Schematic view of the generation of GT932 

Linear DNA was nicked 5´ to a CACTGC sequence with Nb.BtsI to create 3´-overhangs. These 

complementary, 9 bp overhangs  enabled the formation of open circles via self-annealing. Ligation 

generated closed circular DNA and exonucleases digested side products. Using varying primers for 

the synthesis of the linear top- and linear bottom-strand allowed the formation of a G:T mismatch 

within the final circle (indicated in red). 

 

The natural DNA substrate within the incision step in E. coli MMR reaction is a hemi-

methylated GATC site. A newly synthesized DNA strand containing an error remains 

unmethylated for some time and is therefore incised by MutH. To achieve a hemimethylated 

situation for the single GATC site in GT932, the DNA circles had been methylated by TaqI-

Methyltransferase. GT932 contained a hybrid sequence of the recognition sites for TaqI-

Methyltransferase and MutH. Both sites shared an adenine in one DNA strand while the other 

strand contained two distinct adenines for the recognition sites. Methylation of the TaqI site led 

to a methylated adenine in the GATC sequence of one DNA strand. The adenine in the GATC 

site of the opposite DNA strand remained unaffected, hence a hemimethylated GATC site was 

generated (Figure 3.8). 
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Figure 3.8: Generation of a hemimethylated GATC site 

A methylated TaqI site (top left) together with a GATC site (top right) allows the formation of a 

hemimethylated GATC site in a hybrid sequence of both (bottom). 

 

The generation process of GT932 is depicted in Figure 3.9. Products of the sub-steps migrated 

differently in an ethidium bromide prestained agarose gel. Linear PCR fragments are shown in 

lane 2. The nicking step, which led to 3´-overhangs, is indicated in lane 3. These overhangs 

were complementary except for a single mismatch and allowed formation of open circles which 

migrated slower in the gel. As these annealed overhangs were short and unstable, there was a 

mixture of fragments still in the linear form and some that already formed open circles. Ligation 

led to closure of open circles (lane 4). Therefore, the open circular band disappeared and a new 

faster migrating band appeared together with oligomers which migrated slower. ExoI / III 

treatment digested side products that contained nicks or DNA ends (lane 5) and only closed 

circles remained, indicated by a single band in this lane. Methylation of the TaqI site did not 

change the migration behavior of the circles (lane 6). 
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Figure 3.9: Generation of GT932 (DNA circles) 

Different sub-steps of the circle-generation are visualized in a 2% agarose gel prestained with 

ethidium bromide. PCR A linear PCR fragment (L). Nicked Nicking of the linear PCR fragment led 

to the formation of open circles (oc). Ligated Open circles were transformed to closed circles (cc) via 

ligation. ExoI / III Closed circles were separated from side products via exonuclease digestion. TaqI-

methylated Methylation of a TaqI site in the closed circle generated a hemimethylated GATC site. 

The marker is pUC8 Mix Marker. 

 

The status of methylation in a GATC sequence is crucial for the MMR reaction. A fully 

methylated site cannot be cleaved by MutH. A hemimethylated site allows more efficient 

cleavage of one DNA strand by stabilizing the binding pocket of MutH with the methyl group in 

the uncleaved DNA strand [63] [41] [64]. Cleavage of unmethylated GATC sequences by MutH 

depends on the sequence context and leads in a two-step reaction to double-strand cleavage. 

Cleavage of hemimethylated GT932 was compared to cleavage of unmethylated GT932 (Table 

3.2). Each reaction was repeated 3 times and the nicking rates were averaged. The reaction 

process is schematically illustrated in Figure 3.10, A and a representative gel is shown in Figure 

3.10, B. 
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Figure 3.10: Cleavage of un- and hemimethylated GT932 by MMR proteins 

A schematic view of the reaction. The covalently closed DNA circle (cc) was first nicked by MMR 

proteins (k1). The resulting open circles (oc) could also be nicked in the second DNA strand if the 

GT932 was unmethylated (k2). This second nicking step linearized the circle (L). In this work, the 

linearization activity was not addressed. B Conversion from cc to oc was analyzed in a 2% agarose 

gel prestained with ethidium bromide. Unmethylated (left) and hemimethylated (right) GT932 were 

incubated with MMR proteins. Decrease of cc reflected nicking and therefore protein activity (k1). 

GT932 nicked by Nb.BtsI (nicked) was a control to visualize running of oc in the gel. The marker is 

pUC8 Mix Marker. 

 

Averaged nicking rates (k1) in Table 3.2 revealed a 4-fold faster nicking of hemimethylated 

GT932 compared to unmethylated ones which is statistically significant (p < 0.05, unpaired      

t-test). This is in agreement with a previously reported 3-fold enhancement in a mismatch-

provoked MutH endonuclease assay [64]. While some linearization occurred within the reaction 

of unmethylated DNA circles (e.g. Figure 3.10, lane 6) gels containing the hemimethylated 

circle did not show any linear constructs (e.g. Figure 3.10, lane 11). These results cannot be 

compared to nicking rates observed in 3.1.4 as other reaction conditions were used. 

 

Table 3.2: Nicking rates of the MMR for un- and hemimethylated DNA substrates 

The reduction of uncleaved cc during the MMR reaction was fitted and nicking rates were determined 

according to the un- and hemimethylated DNA substrates. The error derived from n = 3 independent 

experiments. 

DNA t1/2 k1 

unmethylated GT932 250 ± 100 s 0.004 ± 0.002 s-1 

hemimethylated GT932 60 ± 4 s 0.017 ± 0.001 s-1 

 

k2 A 

B 

k1 OC 
 

  L 

 
 

CC 
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Purified GT932 DNA circles were visualized by scanning force microscopy (SFM) (Figure 

3.11). SFM is able to detect objects on silica by an increase in height which is illustrated by a 

change in color. 

 

 

Figure 3.11: GT932 visualized by scanning force microscopy (SFM) 

Hemimethylated GT932 DNA circles were immobilized on a mica surface (see experimental 

procedures 2.7.2.2). GT932 are visible as yellow rings while the background is orange. Imaging was 

performed with a Nanoscope III (Digital Instruments, Santa Barbara, CA, USA) in tapping mode. The 

scan size was 2.000 µm, scan rate 1.969 Hz and the data scale 3.000 nm. (M. Cristovao, unpublished 

data) 

 

The immobilized GT932 can be seen as rings (yellow) in Figure 3.11. They caused an increase 

in height compared to the background (orange). 

  

    GT932 
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3.2.2 Generation of fluorescent dye labeled DNA circles (1GATC[a]) 

In order to observe site-specific binding of proteins to a DNA, it was necessary to generate 

DNA substrates that optionally possess a mismatch and a fluorophore. Those circles were called 

1GATC[a] as they only contain a single GATC site and the generation process was performed 

after a protocol from Baerenfaller et al. [59]. The protocol was modified (Nicolaas Hermans, 

unpublished data) to enable incorporation of a fluorophore. Further modifications of the 

protocol were performed in this thesis to replace the usage of phages for the production of 

single-stranded DNA by enzymatic reactions. 1GATC[a] circles enable the observation of DNA 

binding characteristics of fluorescence labeled MutH proteins. The generation of the substrate 

required five sub-steps which are schematically illustrated in Figure 3.12. 

 

 
Figure 3.12: Schematic view of the generation of 1GATC[a] fluorescent DNA circles 
Nicking One DNA strand in the 1GATC plasmid was nicked with Nt.BspQI in two positions. 

Digestion The nicked DNA strand was digested with Exonuclease III leaving a single-stranded DNA 

circle. Annealing A fluorescence labeled oligonucleotide could be annealed to the newly formed 

single-stranded DNA circle which also allowed the introduction of a mismatch. Primer extension 

and Ligation Primer extension and ligation generated the double-stranded 1GATC[a] circle. 

Exonuclease treatment digested residual oligonucleotides which were used in the annealing step (not 

shown). The fluorophore is indicated by a red circle, the mismatch by a red diamond, and the GATC 

site is framed by black boxes. 
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Intermediates in 1GATC[a] generation were nicked 1GATC plasmids and a single-stranded 

DNA circle (ss) after exonuclease digestion. Both can be seen in Figure 3.13 (lane 3 and 4). 

 

 

Figure 3.13: Generation of single-stranded DNA circles 

A stepwise generation of single-stranded DNA is demonstrated on a 1.25% agarose gel stained with 

ethidium bromide. The process started with 1GATC plasmid DNA (lane 1). By nicking the bottom 

strand with Nb.BstQI the plasmid was transferred into an open circular form (lane 2). Addition of 

ExonucleaseIII led to digestion of the bottom strand. Therefore a single-stranded DNA circle was 

generated which ran faster in the agarose gel compared to plasmid-DNA (lane 3). The marker is 

GeneRuler 1 kb DNA ladder. 

 

Further processing of ssDNA circles led to double-stranded, closed DNA circles containing a 

fluorescent dye. The final 1GATC[a] circle is shown in Figure 3.14, A, lane 5 and its 

fluorescence in Figure 3.14, B, lane 5. 
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Figure 3.14: Introducing modifications into circular DNA by annealing modified 

oligonucleotides to single-stranded DNA circles 

The conversion of a single-stranded circular DNA (from Figure 3.13) to a closed circle containing a 

fluorophore is visualized in a 1.25% agarose gel. A A single-stranded DNA circle (lane 3). Annealing 

of a fluorescent dye attached oligonucleotide, followed by a primer extension and ligation reaction led 

to the formation of a closed DNA circle (lane 5). B The unstained gel was analyzed in a VersaDoc 

system and shows the fluorescence of the closed DNA circle, the final 1GATC[a] circle. The marker 

is GeneRuler 1 kb DNA ladder. 

 

The faster-migrating band (in Figure 3.14, A, lane 3) at 1300 bp marker length represents the 

ssDNA circle and disappeared after primer extension and purification (Figure 3.14, A, lane 5). 

Successful conversion to the final 1GATC[a] circle is visible in Figure 3.14, A, lane 5 as this 

band migrates slower in the gel, at the expected length of the final circle. Fluorescence labeled 

primers which were used for the primer extension were used in excess to the ssDNA circles. 

Digestion of unused primers and purification of the 1GATC[a] circles was complete. This can 

be seen in the VersaDoc fluorescence setup (Figure 3.14, B, lane 5) in which residual primers 

would be visible as a faster-migrating fluorescence band. 

 

 

  

A B 
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3.3 Visualizing complex formation in MMR 

During this thesis, different assays were followed to visualize sub-steps in MMR. The assays are 

described in the following chapters, starting with MutS binding the mismatch and ending with 

MutH forming the incision complex. An overview of the assays is shown in Figure 3.15. 

Different fluorophore combinations were used in varying fluorescence setups. The 

nomenclature in experimental procedures 2.2 describes the abbreviations used for the 

fluorescence signals in the following chapters. 

 

 

Figure 3.15: Overview of FRET assays to visualize sub-steps in MMR 

The top line indicates the complex formation of two components of the MMR which was visualized 

by FRET. Sequences and modifications of the DNA can be seen in Table 2.6 and 2.8 (experimental 

procedures). Detailed information about a certain sub-step can be found in the corresponding chapter 

and additional assays are shown in the Appendix. 
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3.3.1 MutS binding DNA 

The initial step in MMR is the recognition of the mismatch by MutS. To visualize and analyze 

this event two assays were developed. The first assay used a fluorescence labeled MutS and a 

DNA which carried a fluorophore next to a G:T mismatch (3.3.1.1). Binding of the labeled 

MutS to the mismatch generated a FRET. The second assay was based on a double fluorescence 

labeled DNA wherein one fluorophore was positioned at each side of the mismatch (3.3.1.2). 

Binding of MutS to the mismatch caused bending of the DNA and thus decreased the distance 

between the fluorophores. This decrease in distance led to an increase in FRET. Changes in 

anisotropy of the fluorophores during the DNA-bending assay were used to determine MutS 

binding orientations at different mismatches in DNA (3.3.1.3). 

 

3.3.1.1 Site-specific DNA binding of MutS 

A fluorophore close to a G:T mismatch acted as a FRET donor in combination with an acceptor 

fluorophore on MutS[a]. A FRET arose during binding of the mismatch by MutS[a]. With 

MutS[a] leaving the mismatch the FRET vanished. 

 

 

Figure 3.16: Schematic view of events during site-specific DNA binding of MutS 

Excitation of donor labeled DNA resulted in fluorescence emission of the donor fluorophore (green 

dot) coupled to a 42 bp long oligonucleotide containing a G:T mismatch (red diamond). After 

addition of acceptor labeled MutS (MutS[a]), MutS[a] bound to the mismatch on the DNA and 

brought the acceptor fluorophore in proximity to the donor which generated a FRET (orange arrow). 

Excess of unlabeled 42 bp oligonucleotide containing a mismatch (GT42) acted as a competitor in the 

reaction. Most labeled MutS[a] did bind to the unlabeled GT42 and was therefore no longer available 

as a FRET partner. 
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Figure 3.17: Site-specific DNA binding of MutS visualized by FRET 

Excitation of donor labeled oligonucleotide GT42[d] led to a fluorescence signal which reflected 

donor emission (blue line). Addition of acceptor labeled MutS[a] generated FRET by binding the 

DNA (red line). Addition of unlabeled GT42 oligonucleotide competed within the reaction, as it was 

also a substrate for MutS. The FRET decreased (green line). Fluorescence spectra were normalized 

for the donor fluorescence to be 1 at its maximum 517 nm. FRET effects were observed in the 

strength of acceptor fluorescence at 617 nm. In this reaction, Alexa 488 served as a donor and      

Alexa 594 as an acceptor fluorophore. 50 nM of GT42[d], 100 nM MutS[a] variant R449C-D835R, 

and 2 µM of GT42 were used together with 1 mM ADP. KD for DNA binding of MutS in this system 

was at 20 nM MutS (data not shown). 

 

Fluorescence spectra obtained during the reaction visualized the binding of MutS by an increase 

in FRET. The blue graph shows the donor emission which was normalized to 1. Addition of 

MutS[a] resulted in a FRET which can be seen in the high accepter fluorescence emission at    

617 nm. Addition of excess unlabeled GT42 DNA acted as a competitor in the reaction as the 

majority of MutS[d] did bind to it and there was not much MutS[a] available anymore to 

generate a FRET with GT42[d]. Quantitative analysis of the reaction (Figure 3.18) confirmed 

the occurrence of FRET in the assay. 
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Figure 3.18: Quantitative analysis of FRET changes during site-specific DNA binding of MutS 

Columns represent intensity ratios between acceptor and donor fluorescence. Changes in these ratios 

were caused by FRET effects during the assay and were calculated by dividing maximal acceptor 

emission through maximal donor emission. The reaction was repeated three times and observed ratios 

were averaged. The height of the columns represents the intensity ratio in each phase of the assay. 

Error bars indicate the standard deviation of n = 3 independent experiments. 1) ratio of 0.04 2) ratio of 

0.29 3) ratio of 0.08. 

 

The ratio between acceptor and donor fluorescence emission started with a value of 0.04 which 

represents only the fluorescence donor at GT42[d] (signal Fd). With addition of MutS[a] the 

ratio reached a value of 0.29 caused by FRET and dropped to 0.08 upon addition of competitor 

DNA. The final ratio of 0.08 lay above the initial ratio of 0.04 in the experiment and resulted 

from spectral crosstalk as the acceptor fluorophore Alexa 594 was partially directly excited by 

the exciting light (signal Fb). Furthermore, some MutS[a] may have remained bound to GT[d] 

after competition which would have additionally increased the intensity ratio. 

 

3.3.1.2 MutS bending DNA 

A hallmark of DNA mismatch recognition is the bending/kinking of the DNA by MutS which 

has been observed for both, bacterial and eukaryotic MutS proteins at all mismatches 

investigated [28] [29] [65] [66]. DNA-bending can be monitored as a change in distance and 

hence by using FRET. In this assay, a double fluorescence labeled DNA was used. The FRET 

donor was attached to the DNA close to the mismatch while the acceptor was attached to the 

DNA beyond the mismatch.  
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Figure 3.19: Schematic view of events during DNA-bending assay 

A linear DNA containing a G:T mismatch (red diamond) was bound and bent by MutS. A donor 

fluorophore on one side of the mismatch (green dot) would come closer to an accepter fluorophore on 

the other side (magenta dot) during the bending process. The excited donor fluorophore therefore 

could transfer more energy to the acceptor (orange arrow). Addition of unlabeled GT42 acted as 

competitor in the reaction. 

 

 

Figure 3.20: DNA-bending assay 

Excitation of the donor fluorophore within the GT[b] led to a weak FRET signal, indicated by low 

acceptor fluorescence at 617 nm (blue line). Addition of MutS led to DNA-bending and an increase in 

FRET (red line). This was observed in the high acceptor fluorescence. Addition of unlabeled GT42 as 

competitor inhibited MutS from bending the GT[b] which led to a decrease in FRET (green line). 

Fluorescence spectra had been normalized for the donor fluorescence to be 1 at 517 nm. FRET effects 

were observed in the strength of acceptor fluorescence at 617 nm. In this reaction, Alexa 488 served 

as donor and Alexa 594 as acceptor fluorophore. 50 nM of GT42[b], 200 nM MutS variant R449C-

D835R, and 2 µM of GT42 were used together with 1 mM ADP. KD for DNA binding of MutS in this 

system was at 20 nM MutS (data not shown). 

 

A quantitative analysis of the reaction is shown in Figure 3.21. Calculation of FRET effects 

were performed by dividing maximal acceptor emission through maximal donor emission. 
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Figure 3.21: Quantitative analysis of the DNA-bending assay 

Columns represent intensity ratios between acceptor and donor fluorescence. Changes in these ratios 

were caused by FRET effects during the DNA-bending assay and were calculated by dividing 

maximal acceptor emission through maximal donor emission. The height of the columns represents 

the intensity ratio in each phase of the assay. Error bars derived from the standard deviation of n = 3 

independent experiments. 1) ratio of 0.18 2) ratio of 0.39 3) ratio of 0.21. 

 

MutS bending GT[b] was indicated by an increased intensity ratio (from 0.18 to 0.39) between 

acceptor and donor fluorescence which derived from FRET effects. Addition of competitor 

DNA GT42 caused a decrease in FRET and was observed in a drop of the ratio to 0.21. The 

final value of 0.22 lies above the initial value of 0.19 in the experiment, as it was already 

observed in 3.3.1.1. Here the slightly higher final level of intensity ratio only originates from 

residual MutS remaining bound to GT[b] as the acceptor fluorophore was already present in the 

first experimental step (signal Fb), in contrast to the experiment in 3.3.1.1 (signal Fd). 

 

3.3.1.3 Directional MutS binding to mismatched bases in DNA 

MutS crystal structures [28] [66] revealed that a phenylalanine at position 36 of MutS subunit A 

intercalates into DNA during mismatch recognition which generates an asymmetry in the MutS 

homodimer. With the intercalation, the phenylalanine stacks on one of the mismatched bases 

being either in the top or bottom strand. Thereby, MutS can bind a mismatch in two possible 

orientations (Figure 3.22). In the crystal structures, MutS only stacked on thymine in the bottom 

strand within a G:T mismatch and on guanine in the bottom strand within a G:G mismatch. To 

address the question if MutS shows the same strand preference in solution, the DNA-bending 

assay (Figure 3.19) was used to analyze the orientation of MutS during binding a mismatched 

DNA. In parallel, single-molecule multiparameter fluorescence detection (smMFD) 

measurements were performed by our group to address the same question on the single-

molecule level [36] [60]. 
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                     orientation 1         orientation 2 

                 

Figure 3.22: MutS binding in different orientations to DNA 

Subunit A (blue) of MutS dimer intercalates into DNA and determines MutS binding orientation. 

MutS binding is illustrated here for a donor and acceptor fluorophore labeled DNA. The binding 

orientation was observed by changes in fluorescence anisotropy of the fluorophores. In orientation 1, 

MutS is in contact with the acceptor fluorophore [A] on the DNA, thereby increasing the fluorophores 

anisotropy. In orientation 2, MutS is in contact with the donor fluorophore [D]. 

 

To visualize the asymmetric DNA binding behavior of MutS the fluorescence anisotropy of the 

donor and acceptor fluorophore in a double labeled DNA was measured during MutS binding of 

a mismatched DNA. Additional experiments were performed using only a donor or acceptor 

labeled DNA. The DNA constructs are illustrated in Figure 3.23, A and B. Anisotropy changes 

of the fluorophores were observed for DNAs containing either the mismatches G:T, T:G, G:G, 

or the homoduplex G:C (Figure 3.23, C-E). For the T:G mismatch, strong changes in anisotropy 

of the donor fluorophore were observed which was not the case for the G:T construct and only 

small changes were observed with the homoduplex G:C. So for the T:G DNA it appears that 

MutS binds in an orientation which is in close proximity to the donor fluorophore. The acceptor 

anisotropy showed a strong increase for the G:T construct while there were only minor changes 

in acceptor anisotropy using the T:G mismatch DNA. Therefore MutS seems to be in proximity 

to the acceptor fluorophore upon binding the G:T mismatch. These results are in agreement with 

the crystal structure [28] and indicate phenylalanine stacking of MutS on thymine in the top 

strand with T:G DNA and stacking on the thymine in the bottom strand with G:T DNA. The 

smMFD measurements confirmed the observations of the ensemble measurements [60]. 
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Figure 3.23: Mismatch dependence of MutS binding orientation [60] (modified) 

A Sequences of the labeled DNA substrates used in the experiments. X:Y represents the varied 

mismatched base pair or homoduplex and can either be G:C, G:T, T:G or G:G. The T bases labeled 

with acceptor (top strand) and the donor dye (bottom strand) are shown in white. B Schematic view of 

the different DNA substrates. C-E Steady-state fluorescence anisotropy of 42 bp DNA labeled with 

donor and/or acceptor dyes in the presence of MutS. C XA:YD labeled DNAs (10 nM), containing 

G:T, T:G or no mismatch (G:C) were incubated with MutS (250 nM) and ADP (1 mM), and changes 

in fluorescence anisotropy (Δr) were measured for both the donor (ΔrD, white bars) and acceptor 

(ΔrA, gray bars) dyes (the error bars are standard deviations from at least three independent 

experiments). D Changes in donor and E acceptor fluorescence anisotropy of DNA labeled with 

either donor (X:YD) or acceptor dye (XA:Y) and the indicated mismatches. 

 

For the G:G mismatch intermediate anisotropy changes were observed for both donor and 

acceptor fluorophore which indicates that MutS can bind a G:G mismatch in both orientations 

which was also observed in the smMFD setup [60]. These findings were not consistent with the 

crystal structure in which only one orientation was observed [66]. Further analysis performed by 

Michele Cristovao demonstrated a stacking of MutS phenylalanine on adenine within the top 

strand of an A:C mismatch and the adenine within the bottom strand of a C:A mismatch. 

Thereby, the possible influence of sequence context was also ruled out by inverting the central 

sequence around the mismatch which had no effect.  
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3.3.2 Monitoring MutS sliding clamp formation 

A key step in MMR is the conversion of MutS into a sliding clamp after mismatch binding on 

DNA [12]. The following assay was designed to observe kinetics of this MutS sliding clamp 

formation. Incorporation of SYBR Green I (SG) into double-stranded DNA leads to a 

significant increase in SG fluorescence [52]. In a FRET setup SG can be used as a donor 

fluorophore [67]. In this assay, an acceptor fluorophore was attached to MutS (MutS[a]). With 

MutS[a] binding the DNA - SYBR Green I complex, a FRET signal was generated and could be 

detected in the FRET channel (Fb). This setup allowed analysis of MutS binding to any place on 

DNA molecules without being limited to a visualization of mismatch-specific binding. As       

10 nM of a 932 bp long DNA and 100 nM SG were used in the assay, there was a dye per base 

pair ratio of approximately 1 dye per 93 bp. MutS can adopt a mobile conformation on DNA in 

an ATP-dependent manner. To avoid MutS from dissociating from DNA ends, a circular DNA 

containing a single G:T mismatch was used. This circular DNA was called GT932 and its 

generation is described in chapter 3.2.1. The reaction in the assay was started with a low 

concentration of ADP (1 µM), which allowed MutS[a] to bind the mismatch and thereby 

generate a FRET signal. As the ADP-bound MutS[a] was not able to form a sliding clamp and 

leave the mismatch, there was only one MutS dimer at one DNA circle (with the exception of a 

minor fraction of homoduplex-bound MutS[a]). With addition of excess ATP (1 mM) over ADP 

MutS[a] was binding ATP and transformed into a sliding clamp which enabled it to travel along 

the DNA. As the mismatch was no longer occupied by the initial MutS[a] dimer additional 

MutS[a] could bind to the DNA undergoing the same process as the initial MutS[a]. This 

process is called multiple loading [12] [68]. The additional MutS[a] on the DNA generated a 

higher FRET as there were more acceptor fluorophores close to the donor fluorophores (SG) in 

the DNA. The increase in FRET over time reflected the kinetics of MutS sliding clamp 

formation and multiple loading. A schematic view of the reaction is shown in Figure 3.24 and 

an exemplary time trace in Figure 3.25. Fluorescence spectra corresponding to the time trace are 

depicted in Figure 3.26. Kinetic rate constants determined in three independent experiments are 

listed in Table 3.3. Emission spectra recorded during the experiments were used for quantitative 

analysis of FRET effects in the assay (Figure 3.27). 
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Figure 3.24: Schematic view of events during the MutS sliding clamp formation assay 

SG alone (green dots) possessed a weak fluorescence. Upon incorporation into dsDNA (GT932) SG 

emitted a strong fluorescence. Binding of MutS[a] to the mismatch (red diamond) in an ADP-bound 

state generated a FRET (orange arrow) with nearby SG molecules. Binding of ATP enabled MutS[a] 

to transform into a sliding clamp and move along the DNA. Several MutS[a] dimers could now bind 

one DNA and therefore generated more FRET. Addition of excess unlabeled MutS competed the 

reaction by binding the DNA and therefore hindering MutS[a] from binding to DNA. The FRET 

vanished. k1-4 rates describe how fast the FRET intensity changed between two phases. 

 

In the representative time trace which was normalized to the maximum signal (Figure 3.25), SG 

fluorescence itself generated a low signal of 0.01 in the FRET channel (Fd) and reflected the 

spectral crosstalk as no acceptor was present in the sample. Addition of DNA led to an 

enhanced SG fluorescence as SG incorporated into DNA. The enhanced SG fluorescence 

increased the signal to 0.22 which also derived from spectral crosstalk. Binding kinetics of SG 

to DNA (k1) was too fast for detection in this setup. Addition of MutS[a] allowed one MutS 

dimer to bind the DNA at the mismatch which increased the signal (FRET) to 0.54 (k2). 

Initiation of MutS sliding clamp formation was achieved by addition of ATP which further 

increased the signal to 1 (k3). During competition of the reaction with 1 µM unlabeled MutS, the 

MutS[a] dissociation process led to a decreasing FRET (k4). This decrease did nearly reach a 

plateau level of 0.62 at the end of the measurement at 1200 s. Increasing competitor 

concentration to 2 µM further decreased the signal to 0.40 (data not shown). 

 

k1 k2 

k3

1 

k4

1 
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Figure 3.25: Kinetics of MutS sliding clamp formation 

MutS generated a FRET upon binding a SG labeled DNA circle which was measured in the FRET 

channel (Fb). k1-4 rates describe how fast the FRET intensity changed between two phases.                

k1 resembles the rate of 100 nM SG incorporation into 10 nM DNA (GT932) with 1 µM ADP present. 

k2 binding of 100 nM MutS[a] variant R449C D835R labeled with Alexa 647 to the mismatch.         

k3 after addition of 1 mM ATP MutS[a] transformed into a sliding clamp which allowed more 

MutS[a] to bind the same DNA. k4 1 µM of unlabeled MutS variant R449C D835R competed by 

hindering MutS[a] from rebinding DNA after dissociation. 

 

Kinetic rate constants determined in the experiment are listed in Table 3.3. 

 

Table 3.3: Kinetic rate constants of MutS sliding clamp formation assay 

Kinetic rate constants for each experiment were determined and averaged. The error represents the 

standard deviation of n = 3 independent experiments. 

kinetic rate process t1/2 k 

k1 SG incorporation into DNA ND ND 

k2 MutS[a] binding DNA 4.8 ± 0.7 s 0.21 ± 0.03 s-1 

k3 MutS sliding clamp formation 12.4 ± 1.6 s 0.08 ± 0.01 s-1 

k4 MutS sliding clamp dissociation 54.3 ± 22.5 s 0.02 ± 0.01 s-1 

 

After each phase in the reaction, the measurement was paused and fluorescence emission 

spectra were determined. Representative spectra are shown in Figure 3.26 and a quantitative 

analysis in Figure 3.27. 

k1 

k2 

k3 
k4 
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Figure 3.26: Emission spectra of MutS sliding clamp formation assay 

The donor was normalized to 1 in each phase, except for 1) in which the normalization factor for 2) 

was used to demonstrate the difference in SG fluorescence without and with DNA. 1) 100 nM SG 

with 1 µM ADP and without DNA. 2) SG bound to circular DNA (GT932) after addition of 10 nM 

GT932. 3) MutS[a] bound to the mismatch generated an intermediate FRET after addition of 100 nM 

MutS[a]. 4) Multiple MutS[a] in a sliding clamp conformation bound to circular DNA generated a 

high FRET after addition of 1 mM ATP. 5) Addition of 1 µM unlabeled MutS competed for DNA 

binding with MutS[a] and the FRET decreased. 

 

 

Figure 3.27: Quantitative analysis of MutS sliding clamp formation assay 

Acceptor fluorescence was divided through donor fluorescence observed in the fluorescence spectra 

to visualize FRET effects in the assay. Ratios of three independent experiments were averaged. 1) As 

SG fluorescence was hardly detectable without DNA, the acceptor / donor ratio could not be 

determined. 2) Ratio of 0.03. 3) Ratio of 0.06. 4) Ratio of 0.11. 5) Ratio of 0.07. Increasing 

competitor concentration to 2 µM further decreased the acceptor / donor ratio to 0.05 (data not 

shown). Error bars derived from the standard deviation of n = 3 independent experiments. 
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Taken together, this assay allowed a determination of kinetic rate constants and an observation 

of MutS binding to a mismatch on DNA and the following transformation of MutS into a sliding 

clamp. Dissociation rates of the MutS sliding clamps from DNA could be addressed as well. 

 

3.3.3 MutS-MutL complex formation 

The activated form of MutS on DNA is able to recruit MutL, the second principal component of 

MMR. Ternary complex formation between MutS, MutL, and DNA is addressed in this chapter. 

Structural information about MutS-MutL complexes were already gained in former studies by 

crosslinking experiments of different MutS and MutL variants [37] [35]. These crosslink 

experiments suggested that in the MutS-MutL complex the ATPase domain of MutL is in 

proximity to the mismatch binding domain and the connector domain of MutS. The data is 

consistent with data obtained by other groups [69]. 

To obtain further information about the structure of the MutS-MutL complex and the ternary 

complex formation, a MutS variant was labeled with an acceptor fluorophore in the connector 

domain (D246C) and a MutL variant was labeled with a donor fluorophore in the ATPase 

domain (H297C). Upon complex formation, these variants generated a high FRET (Figure 3.29, 

B). Another MutS variant (R449C) was labeled with an acceptor fluorophore in the clamp 

domain (R449C) and served as control. This variant generated a low FRET in combination with 

the labeled MutL (Figure 3.29, A) which was expected as the clamp domain of MutS and the 

ATPase domain of MutL were supposed to be further separated compared to the connector 

domain of MutS and the ATPase domain of MutL. The reaction of MutL[d] binding to MutS[a] 

is schematically illustrated in Figure 3.28 for a 484 bp linear DNA, containing a G:T mismatch 

(GT484). Normalized fluorescence emission spectra are shown in Figure 3.29. 

 

 

Figure 3.28: Schematic view of events during MutS-MutL complex formation on linear DNA 

MutL[d] and MutS[a] were only able to form a complex after addition of mismatched DNA to the 

reaction (GT484). The mismatch is indicated by a red diamond, the fluorescence donor by green dots 

and acceptor by magenta dots. The complex formation generated a FRET (orange arrow). Increasing 

KCl concentration from physiological conditions of 125 mM to higher concentrations of 300 mM 

inhibited the complex formation and the FRET vanished. 
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A             B 

MutS[a] R449C and MutL[d] H297C          MutS[a] D246C and MutL[d] H297C 

 

Figure 3.29: Comparing FRET intensities in the MutS-MutL complex varying the fluorophore 

position at MutS 

Normalized emission spectra of donor and acceptor fluorophore are shown as curves. FRET effects 

can be seen only in acceptor fluorescence (maximum emission at 517 nm) as the donor was 

normalized to be 1. FRET intensities during interaction of fluorescence labeled MutS[a] and MutL[d] 

are indicated in the histogram. A/D is the ratio between acceptor and donor fluorescence and 

resembles the FRET intensity. In this reaction, Alexa 488 was used as fluorescence donor and Alexa 

594 as acceptor. The reaction included 200 nM MutL[d] in the presence of 1 mM ATP (blue curves), 

addition of 200 nM MutS[a] green curves, addition of 50 nM GT484 (grey curves) and an increase in 

KCl concentration to 300 mM (black dashed curve). Averages and standard deviations (error bars) 

derived from n = 2 independent experiments and are plotted in the histogram. A MutS[a] variant 

R449C D835R and MutL[d] variant H297C. B MutS[a] variant D246C D835R and MutL[d] variant 

H297C. 

 

A 484 bp long DNA was sufficient to enable MutS-MutL complex formation as FRET signals 

were observed. MutS variant D246C[a] generated a FRET signal of 0.38 with MutL[d] variant 

H297C while the R449C[a] variant of MutS generated a lower FRET signal of 0.18 (Figure 

3.29, A and B). This suggests a longer distance between position 449 in MutS and position 297 

in MutL compared to the distance between position 246 in MutS and position 297 in MutL. 
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3.3.4 MutL binding DNA 

MutL can bind to both single-stranded and double-stranded DNA [70]. This effect had been 

observed before and its role and function is still under heavy debate. DNA binding is strongly 

modulated by the ionic strength and is almost absent at 125 mM KCl. The current chapter 

presents an assay to visualize the MutL-interaction with DNA. The assay allows measuring of 

the DNA binding ability of MutL in the absence of MutS either by FRET effects (Figure 3.31) 

or changes in anisotropy (Figure 3.32). The FRET assay was used to compare MutL binding to 

heteroduplex (Figure 3.31, B) with MutL binding to homoduplex DNA (Figure 3.31, A) and 

was performed at low ionic strength. The heteroduplex originates from deletion of an adenine in 

one strand generating an unpaired thymine (+T46) in the other strand after oligonucleotide 

annealing. The binding reaction is schematically illustrated in Figure 3.30 and fluorescence 

spectra are shown in Figure 3.31. 

 

 

Figure 3.30: Schematic view of MutL binding linear DNA at low ionic strength 

A 46 bp long linear DNA containing an acceptor fluorophore could be bound by MutL at low ionic 

strength. MutL carrying a donor fluorophore [d] was excited and transferred energy to the acceptor on 

the DNA, a FRET occurred (orange arrow). Addition of 200 mM KCl inhibited the DNA binding 

ability of MutL, it dissociated from DNA and the FRET effect vanished. 
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Figure 3.31: MutL binding linear DNA at low ionic strength 

In the fluorescence spectra, the donor was normalized to be 1 at 517 nm. FRET effects can thereby be 

seen in the acceptor emission at 670 nm. In this reaction, Alexa 488 served as donor and Alexa 647 as 

acceptor fluorophore. 400 nM MutL[d] variant H297C and 400 nM DNA[a] were used in the 

presence of 1 mM ATP and low ionic strength. To inhibit MutL from binding DNA, the ionic strength 

was increased from 20 mM to 200 mM. Error bars indicate the standard deviation of n = 3 

independent experiments. A MutL[d] binding to homoduplex DNA (AT46[a]). B MutL[d] binding to 

heteroduplex DNA containing an unpaired thymine (+T46[a]). C Comparison between homoduplex 

and heteroduplex binding of MutL[d]. FRET efficiencies were calculated by dividing acceptor 

fluorescence through donor fluorescence at the end of each phase. Homoduplex and heteroduplex 

acceptor to donor ratios were nearly equal and showed both in 1) a ratio of 0.01, in 2) a ratio of 0.16, 

and in 3) a ratio of 0.02. 

 

Normalized fluorescence spectra for both reactions (homoduplex and heteroduplex DNA[a] 

bound by MutL[d]) showed a high increase in FRET after MutL[d] addition (Figure 3.31, A and 

B). The FRET effect was reversed by addition of KCl. These changes in FRET reflected the 

interaction between MutL and DNA and demonstrated that it was possible to observe the 

interaction with this setup. Quantitative analysis of the comparison between MutL[d] either 

binding a homoduplex DNA[a] or a heteroduplex DNA[a] (Figure 3.31, C) did not show a 

significant difference (p = 0.98, unpaired t-test). It therefore revealed that a heteroduplex did not 
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influence the binding ability of MutL[d] under the conditions used. Binding of MutL to DNA 

could also be observed in the anisotropy of the fluorophore attached to DNA (Figure 3.32). This 

experiment contained the fluorophore Atto 488 attached to DNA and did not require a 

fluorophore at MutL. 

 

 

Figure 3.32: MutL binding DNA visualized by anisotropy changes (at low ionic strength) 

Acceptor fluorescence was divided through donor fluorescence observed in the fluorescence spectra 

to visualize FRET effects. 1) Anisotropy of Atto 488 attached to DNA (50 nM) was determined in the 

absence of MutL and with 1 mM ATP present. It showed a value of 0.08. 2) After 300 nM of 

unlabeled MutL variant H297C were added to the reaction, it bound the DNA and thereby increased 

the anisotropy of the fluorophore at the DNA to a value of 0.16. 3) Raising ionic strength from         

20 mM to 200 mM by addition of KCl inhibited MutL from binding DNA and anisotropy decreased 

to a value of 0.08. Error bars indicate the standard deviation of n = 3 independent experiments. 

 

MutL bound at low ionic strength to DNA and increased anisotropy of the fluorophore attached 

to the DNA from 0.08 to 0.16 (Figure 3.32, 2). Increasing the KCl concentration inhibited MutL 

from binding DNA and the anisotropy decreased to 0.08 (Figure 3.32, 3). Observation of these 

changes in anisotropy showed comparable effects to the FRET setup (Figure 3.31). Therefore, 

both assays were suitable to measure the DNA binding ability of MutL to short 

oligonucleotides. 
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3.3.5 MutH binding DNA 

MutH possesses a weak ability to bind DNA which is inhibited at high ionic strength (125 mM 

KCl). The first part of this chapter (3.3.5.1 and 3.3.5.2) addresses direct DNA binding and 

cleavage by MutH at low ionic strength to enable the reaction. MutH did not require the active 

recruitment of MutS and MutL under those conditions. The second part (3.3.5.3) addresses the 

formation of the incision complex which is believed to be composed of DNA, MutS, MutL, and 

MutH [17]. This assay was performed at high ionic strength wherein MutH needs to be recruited 

by MutS and MutL to bind DNA. 

 

3.3.5.1 MutH binding DNA without MutS and MutL at low ionic strength 

To address DNA binding of MutH, a catalytically inactive variant was used to avoid cleavage of 

the DNA substrate and to generate a stable FRET. With this additional mutation (E77A), the 

DNA cleavage activity of MutH is disabled while its DNA binding ability is retained [47]. At 

low ionic strength, MutH[d] could bind a GATC site on a linear DNA[a]. A FRET signal was 

generated during this reaction. Increasing KCl concentration to 125 mM led to dissociation of 

MutH[d] and the FRET vanished. The reaction is schematically illustrated in Figure 3.33, A and 

representative fluorescence emission spectra are shown in Figure 3.33, B. Two different DNA 

constructs were used to address the influence of acceptor fluorophore positioning on DNA. In 

the first construct, the acceptor was located five base pairs upstream of the GATC site (1GATC-

5[a]) while it was located ten base pairs downstream in the second construct (1GATC+10[a]). 

FRET effects represented by the ratio of acceptor to donor fluorescence are depicted in Figure 

3.34 for both DNA constructs. 
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      A 

 

 

      B 

 

Figure 3.33: MutH binding DNA at low ionic strength 

A Schematic view of MutH[d] binding a GATC site with an acceptor [a] nearby. DNA[a] was bound 

by MutH[d] which enabled a FRET (orange arrow) between an acceptor fluorophore [a] near the 

GATC site (red dot) and a donor fluorophore [d] attached to MutH (green dot). Addition of KCl 

inhibited the reaction as MutH[d] was unable to bind DNA at high ionic strength (125 mM KCl).      

B Normalized fluorescence spectra of an exemplary reaction of MutH[d] binding DNA[a]. Spectra of 

step 2) and 3) were normalized for the donor fluorescence to be 1 at its maximum 517 nm. As no 

donor was present in step 1) the donor value of step 3) was used for the normalization. FRET effects 

can be observed in the strength of acceptor fluorescence at 670 nm. In this reaction, Alexa 488 served 

as donor and Alexa 647 as acceptor fluorophore. 100 nM of 1GATC-5[a] oligonucleotide and 400 nM 

MutH[d] variant E77A S85C C96S were used and ionic strength was increased from 20 mM to      

125 mM. 

 

The representative reaction in Figure 3.33 shows a high FRET effect as the acceptor 

fluorescence increased upon MutH[d] binding DNA[a] (red line at 670 nm). The effect vanished 

after addition of KCl (green line at 670 nm). To compare FRET effects of the reaction with 

either 1GATC-5[a] DNA or 1GATC+10[a], the ratio between acceptor and donor fluorescence 

was analyzed during the different steps in the reaction (Figure 3.34). 
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Figure 3.34: FRET effects during MutH binding linear 1GATC[a] DNA at low ionic strength 

Two different DNA[a] constructs were compared regarding their FRET effects upon MutH[d] 

binding. The FRET effects are indicated by the ratio of acceptor to donor fluorescence intensity. In 

the 1GATC-5[a] DNA an acceptor fluorophore was positioned 5 base pairs upstream of the GATC 

sequence (blue columns) while in the 1GATC+10 DNA the acceptor was 10 base pairs downstream 

(red columns). FRET effects during different steps in the reaction are represented by the ratio of 

acceptor to donor fluorescence (height of the columns). Averaged ratios and error bars representing 

the standard deviation derived from n = 3 independent experiments. As no donor was present in step 

1) the donor value of step 3) was used for the ratio calculation. 1) A ratio of 0.01 for both constructs.    

2) A ratio of 0.16 for 1GATC-5[a] and 0.19 for 1GATC+10[a]. 3) A ratio of 0.01 for both constructs. 

 

Ratio of acceptor to donor fluorescence recorded during donor excitation represented FRET 

effects (signal Fb). In the reaction containing the 1GATC-5[a] DNA construct, the ratio raised 

from an initial value of 0.01 to 0.16 (Figure 3.34, blue columns). These effects were reversed by 

addition of KCl and reached a final level of 0.01. The reaction with the 1GATC+10[a] construct 

resulted in similar FRET values (Figure 3.34, red columns), although the acceptor to donor ratio 

reached a slightly higher value of 0.19. Comparison of the ratios during both reactions revealed 

that both DNA-constructs allowed binding of MutH[d] and generation of a high FRET. 

Therefore, both DNA-constructs were suitable for the generation of fluorescence labeled 

1GATC circles (chapter 3.2.2) which were required for a visualization of the incision complex 

(chapter 3.3.5.3). 
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3.3.5.2 MutH cleaving DNA without MutS and MutL at low ionic strength 

To observe DNA nicking activities, a catalytically active variant of MutH was incubated with a 

molecular beacon. The molecular beacon consisted of a short single-stranded DNA with a poly-

thymine sequence in the middle region, a Hex fluorophore at the 5´-end, and a black hole 

quencher at the 3´-end. A partial duplex DNA was formed by the complementary ends and 

generated a GATC site next to the fluorophore and quencher. Nicking of the GATC site by 

MutH occurred either in the bottom or top strand and therefore the Hex fluorophore or the 

quencher did dissociate from the rest. Dividing the quencher and Hex fluorophore led to an 

increase in Hex fluorescence. The reaction is schematically illustrated in Figure 3.35, A and an 

exemplary time trace is shown in Figure 3.35, B. 

 

          A 

 

          B 

 
Figure 3.35: MutH nicking a molecular beacon at low ionic strength 

A Schematic view illustrating the MutH nicking reaction. In a molecular beacon fluorescence of a 

Hex fluorophore was quenched by a black hole quencher. Low ionic strength enabled MutH binding 

and cleavage of a nearby GATC site which resulted in release of the fluorophore or quencher. Both 

cases led to a disruption of the quenching effect and an increase in Hex fluorescence (k1). B The 

reaction started with addition of MutH (red arrow). Hex was excited at 535 nm and its fluorescence 

detected at 590 nm and recorded over time. 50 nM of the molecular beacon and 1 µM of MutH[d] 

variant S85C C96S were used at low ionic strength of 20 mM. 

 

k1 

k1 
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The Hex fluorescence remained stable at a low background level until MutH was added to the 

reaction (Figure 3.35, B). Increasing Hex fluorescence indicated nicking of the molecular 

beacon and therefore reflected MutH activity (k1). The reaction was repeated three times. 

Nicking rates were determined for each experiment. The averaged nicking rate is shown in 

Table 3.4. 

 

Table 3.4: Averaged nicking rate of MutH at low ionic strength 

Nicking rates were determined with Origin software. Averaged nicking rate and the indicated 

standard deviation derived from n = 3 independent experiments. 

kinetic rate process t1/2 k 

k1 MutH nicking DNA 150 ± 20 s 0.007 ± 0.001 s-1 

 

 

3.3.5.3 MutH recruitment to DNA at high ionic strength (incision complex) 

The incision complex is a key complex in DNA mismatch repair and is believed to consist of 

DNA, MutS, MutL, and MutH. It incises the newly synthesized, erroneous DNA strand and 

enables partial exonuclease digestion and resynthesis. Despite decades of studies in MMR, there 

is only little evidence for the formation of the MutS-MutL-MutH ternary complex. First 

evidence was provided by co-purification of MutH with MutL and a MutS affinity column [71]. 

Further evidence was provided by the possibility to trap the ternary complex with chemical 

crosslinking (Ines Winkler, unpublished data). Another heavy discussed process in MMR is the 

coupling of mismatch recognition by MutS with the strand discrimination of MutH (chapter 

1.3). It remains controversy when MutH enters and leaves the MutS-MutL-DNA complex in 

time and space. Therefore, the aim of this assay was to visualize formation and dissociation of 

the incision complex. To achieve this, MutH[d] recruitment to DNA[a] in a MutS- and MutL-

dependent manner was followed. A circular DNA, containing a mismatch and a fluorophore 

near a GATC site was generated (1GATC[a]). The generation process of the DNA is shown in 

chapter 3.2.2. Two possible fluorophore positions in this DNA were analyzed regarding their 

FRET efficiency upon binding of a fluorescence labeled MutH at low ionic strength in chapter 

3.3.5.1. The catalytically inactive E77A variant of MutH[d], which was already used in chapter 

3.3.5.1, suppresses DNA cleavage of MutH[d] and therefore may stabilize a formed incision 

complex. Incision complex formation at high ionic strength (125 mM KCl) requires a MutS- 

and MutL-dependent recruitment of MutH[d] to DNA[a]. MutS, MutL, MutH[d] and DNA[a] 

were pre-incubated before ATP was added to the reaction. Without ATP, the incision complex 

could not be formed. Therefore, the complex formation could be triggered by addition of ATP. 

As the complex was formed, MutH[d] bound the GATC site and came in proximity to the 
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acceptor fluorophore attached to the DNA[a]. A FRET was generated. Addition of unlabeled 

MutH acted as competitor in the reaction as it displaced MutH[d] in the complex. With this 

competition the dynamics of complex dissociation could be followed. A schematic illustration 

of the reaction can be seen in Figure 3.36. Fluorescence spectra and FRET kinetics following 

complex association and dissociation are shown in Figure 3.37. 

 

 

 

Figure 3.36: Schematic view of events during incision complex formation 

1) Without ATP, the MMR proteins could not form protein complexes and MutS (green) remained 

bound to a mismatch (red diamond) on the DNA[a]. 2) Upon addition of ATP, MutL (blue) and 

MutH[d] (magenta) were recruited to MutS on the DNA[a]. With MutH[d] binding the GATC site 

(black boxes) a FRET was generated (orange arrow) with a nearby acceptor fluorophore on the 

DNA[a] (red dot). 3) Addition of excess of unlabeled MutH replaced MutH[d] in the incision 

complex and the FRET vanished. 

 

The normalized fluorescence spectra (Figure 3.37, A) revealed binding of MutH[d] to the 

GATC site in the DNA[a]. Without ATP, the incision complex could not be formed which is 

indicated by a lack in acceptor fluorescence at 670 nm (blue line) during donor excitation at  

470 nm (signal Fb). Upon addition of ATP, the incision complex was formed which included 

the recruitment of MutH[d] to the DNA[a] by MutS and MutL. This could be seen in the 

increase in acceptor fluorescence, generated by FRET (red line). To follow dissociation of the 

incision complex, unlabeled MutH was added to the reaction (Figure 3.38, B) and the effect 

became visible as a decrease in acceptor fluorescence (green line). Kinetics revealed that the 

dissociation was fast (t1/2 was below 3 s) (Figure 3.38, C). 
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Figure 3.37: Incision complex formation and dissociation 

A Incision complex formation was induced by addition of 1 mM ATP to 5 nM DNA[a] (1GATC[a]), 

1 µM ADP, 200 nM MutS variant R449C D835R, 200 nM MutL variant H297C, and 200 nM of the 

catalytically inactive MutH[d] variant S85C E77A. In this reaction Alexa 488 served as a donor and 

Alexa 647 as an acceptor fluorophore. The donor was normalized to be 1 at its maximum. FRET 

effects can thereby be seen at the acceptor maximum at 670 nm. B Incision complex dissociation was 

induced by addition of 500 nM unlabeled MutH variant S85C E77A as competitor. C Time trace 

visualizing kinetics of incision complex dissociation. 

 

Table 3.5: MutH dissociation from incision complex 

kinetic rate process t1/2 k 

k1 MutH leaving incision complex < 3 s > 0.3 s-1 
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Ratios between acceptor and donor fluorescence during the different steps in the reaction are 

shown in the quantitative analysis (Figure 3.38). The ratio resembles unformed or formed 

incision complexes. 

 

 

Figure 3.38: Quantitative analysis of incision complex formation and dissociation 

FRET effects visualize the formation of the incision complex. Columns represent the acceptor to 

donor ratio during each step in the reaction. There are no error bars indicated as this experiment was 

performed only once. 

 

The acceptor to donor ratio of 0.12 in step 1 corresponds to an unbound state of MutH[d] and 

derived from spectral crosstalk as overlapping donor emission was not subtracted from the 

acceptor emission (signal Fb). Addition of ATP in step 2 led to an increase in acceptor emission 

and to a ratio of 0.16. The increase derived from FRET effects upon MutH[d] recruitment to 

DNA[a] by MutS and MutL. In step 3, the acceptor emission decreased and the acceptor to 

donor ratio reached a value of 0.11. This was slightly lower compared to the starting value of 

0.12 in step 1. Over all, the incision complex formation and dissociation could be observed with 

this assay although the signal changes were low.  
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4. Discussion 

4.1 Influence of fluorescent dye labeling on protein activity 

The first objective of this thesis was to find suitable positions in the MMR proteins for a 

possible attachment of a fluorophore. For this, single cysteine variants of the proteins MutS, 

MutL, and MutH were selected from a set of variants which were originally designed for 

protein-protein crosslinking studies in our group [33] [34] [35] [46]. A prerequisite for any 

FRET-based study is to exclude a possible interference of the system by the fluorophores. 

Fluorophores occupy a certain amount of space and may influence interactions of the proteins 

by steric hindrance or their charge. Therefore, variants were selected that possessed a single 

cysteine in an outer region on the surface of the protein. The variants R449C in MutS, H297C in 

MutL, and S85C in MutH turned out to be suitable for this purpose (chapter 3.1.4). Variant 

R449C of MutS carried an additional mutation (D835R) in the C-terminal domain of MutS to 

avoid a possible tetramerization of MutS. This mutation did not influence the activity of MutS 

in MMR [31] and represents a simplification of the system as MutS exists in a dimer/tetramer 

equilibrium which complicates data analysis. The fluorescence labeled variant of MutS R449C 

D835R was used before [36] and did not show a difference in a mismatch-provoked MutH 

activation assay compared to the unlabeled variant. To additionally exclude the influence of 

fluorophores at the selected positions in MutL and MutH on the activity of the proteins, a 

combination of labeled MutS, MutL, and MutH was used in a mismatch-provoked MutH 

activation assay and compared to unlabeled proteins (chapter 3.1.4). DNA nicking activity was 

addressed and revealed no significant difference in activity (150 ± 25 s for unlabeled and       

130 ± 5 s for labeled proteins). MutS did carry an Alexa 647 fluorophore and MutL and MutH 

an Alexa 488. A DNA cleavage, only resulting from unlabeled proteins in the preparation of 

labeled proteins, can be excluded as the DOL of the labeled proteins was higher than 95 %. 

Therefore the fluorescent dye labeling with the used fluorophores did not influence protein 

activity. 

 

4.2 DNA substrates for complex formation assays 

Another requirement for the observation of certain complex formations e.g. MutS sliding clamp 

formation were circular DNA substrates to avoid a dissociation from DNA ends as MutS 

becomes highly mobile on DNA after turning into a sliding clamp [57] [68]. Therefore the 

GT932 was developed in our group [58] which contained a mismatch to allow MutS binding 

and initiation of the downstream MMR activities (chapter 3.2.1). This substrate furthermore 

possessed one GATC site to observe nicking activities of MutH. A hemimethylated status of the 

GATC site could be achieved via methylation of a nearby TaqI-recognition site. Nicking of 
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hemimethylated GT932 during the MMR reaction was 4-fold faster compared to the reaction 

with unmethylated GT932, which is in agreement with previously reported enhancement of       

3-fold in a mismatch-provoked MutH endonuclease assay [64]. The more efficient cleavage of 

hemimethylated GATC sites results from a stabilization of the DNA binding pocket of MutH by 

the methyl group in one DNA strand [63] [41] [64]. 

Observation of incision complex formation required a circular DNA substrate which contained 

in addition to a mismatch also a fluorophore in vicinity to a GATC site. The DNA substrate is 

called 1GATC[a] in this thesis and originated from a protocol of Baerenfaller [59] which was 

modified to enable an incorporation of fluorescent dyes (Nicolaas Hermans, unpublished data). 

The protocol was adapted in this thesis and further modified by replacing the usage of phages to 

produce single-stranded DNA circles by a combination of nicking enzymes and exonucleases. 

The fluorophore near the GATC site acted as an acceptor fluorophore during the incision 

complex assay and thereby enabled observation of a donor labeled MutH[d] binding and 

dissociating from DNA in a MutS, MutL, and ATP dependent manner. The incorporated    

Alexa 647 dye further enables sensitive detection of these DNA circles in gel electrophoresis. 

1GATC[a] circles were successfully generated and used to enable observation of incision 

complex formation of MutH[d] (chapter 3.3.5.3). 

 

4.3 Visualizing complex formation in MMR 

MutS binding a mismatch on DNA was the first MMR process to be analyzed in this thesis. 

Two assays were developed to allow observation of this process. The first assay combined an 

acceptor fluorophore labeled MutS with a donor fluorophore near the mismatch on a DNA 

oligonucleotide (chapter 3.3.1.1). The second assay used conformational changes in DNA which 

appear after mismatch binding of MutS (chapter 3.3.1.2). A donor and an acceptor fluorophore 

were positioned on either side of a mismatch and a FRET signal between those fluorophores 

was influenced by changes in distance, resulting from MutS bending the DNA. The reversible 

enhancement in FRET can be used as a quick control setup to test the DNA binding activity of 

purified MutS batches or new MutS variants. The setup of this assay was additionally used to 

determine binding orientations of MutS at different mismatches. It was known from MutS 

crystal structures [28] [66] that phenylalanine at position 36 of MutS subunit A stacks on 

thymine in the bottom strand of a G:T mismatch and on guanine in the bottom strand of a G:G 

mismatch. A combination of ensemble measurements (chapter 3.3.1.3) with single-molecule 

experiments now addressed MutS binding orientations at different mismatches in solution [60]. 

MutS showed the same preference for binding a G:T mismatch in an orientation which enables 

stacking on the bottom strand thymine as observed in the crystal structure [28]. For the G:G 

mismatch MutS showed no preference for binding the top or bottom strand, which is in contrast 
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to the crystal structure [66]. Further analysis performed by our group revealed that MutS also 

has a strong preference for binding in solution in an orientation, that allows stacking on adenine 

in A:C mismatches [60]. These findings were consistent with the crystal structure [66]. Taken 

together, the observed MutS binding orientations in solution indicate that MutS has a strong 

strand preference upon binding asymmetric mismatches e.g. G:T or A:C which was not 

observed for symmetric mismatches like G:G. 

The next step in MMR to be monitored was the sliding clamp formation of MutS (chapter 

3.3.2). After mismatch recognition MutS exchanges ADP for ATP which is accompanied by 

large conformational changes of MutS [12]. These changes result in a formation of a sliding 

clamp [72]. The sliding clamp remains no longer bound to the mismatch but diffuses freely 

along the DNA. When this thesis was started, the only assays to visualize the sliding clamp 

formation of MutS were based on surface plasmon resonance spectroscopy [30] and only 

recently several studies were able to capture the process in single-molecule FRET analysis [22] 

[73] [74]. The studies have in common that they all used artificially blocked DNA-ends and 

were performed on surface. As these conditions may influence the activity of a protein, chapter 

3.3.2 in this thesis aimed on the development of an assay to detect the sliding clamp formation 

on a circular DNA in solution. Usage of SYBR Green I as a donor fluorophore bound to circular 

DNA (GT932) allowed a determination of the DNA binding of a MutS labeled with Alexa 647 

as an acceptor fluorophore. In contrast to assays described in chapter 3.3.1, this assay allowed 

detection of MutS molecules which bound anywhere on DNA. The assay was not restricted to 

observe binding events at the mismatch. Preliminary kinetic data were observed in the assay 

(sliding clamp formation 12 s, dissociation 54 s). These data indicate a faster dissociation of 

MutS sliding clamps from DNA, compared to other studies (~ 600 s in Jeong et al., 2011 [22] 

for Taq MutS and 1800 s in Schofield et al., 2001 [26] for Taq and E. coli MutS). Considering 

the transient existence of hemimethylated GATC sites in E. coli cells (about 0.5 – 3.0 min in 

cells growing at 30 °C [75]), the observed dissociation time of about one minute for MutS 

sliding clamps seems to be plausible. Otherwise, a highly stable MutS sliding clamp, for more 

than two minutes, would lead to a state in which a majority of the GATC sites are methylated in 

the cell and activation of downstream repair factors like MutH would not be possible anymore. 

In this case activated MutS molecules would remain trapped on certain DNA areas and thus 

were not available for the initiation of DNA mismatch repair at other places of the genome, e.g. 

the site of replication. Taken together, the sliding clamp formation assay is capable of recording 

the dynamic processes of MutS binding a mismatch, transforming into a sliding clamp and 

finally dissociating from DNA in real-time and in solution. 

The sliding clamp formation assay, presented in this thesis (chapter 3.3.2), can be modified by 

using a fluorescence dye labeled MutL. This allows an observation of a MutS-, ATP- and 

mismatch-dependent interaction of MutL with DNA, (chapter 6.3). A further modification of 
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this assay is the usage of a fluorescence dye labeled MutH, which allows the observation of a 

MutS-, MutL-, ATP-, and mismatch-dependent interaction of MutH with DNA and reflects the 

formation of the incision complex (data not shown). Kinetic data sets of both these modified 

assays are currently obtained in frame of a Diploma thesis.  

The second principle factor in MMR is MutL. It is recruited by the activated MutS. Despite the 

fact, that the recruitment of MutL by MutS had been known for decades, the interaction site 

between the two partners remained unknown for a long time. Our group addressed the open 

question about the interaction site with site specific chemical crosslinking and FRET assays 

between MutS and MutL [37]. In this thesis, differences in FRET intensities were addressed 

between variants of MutS either carrying an acceptor fluorophore in the clamp domain 

(R449C[a]) or in the connector domain (D246C[a]) and a MutL carrying a donor fluorophore 

within the ATPase domain (H297C[d]) (chapter 3.3.3). The intensity of the FRET signal 

between the donor fluorophore at position 297 in MutL and the acceptor fluorophore at position 

246 in MutS was high. In contrast to this was the intensity of the FRET signal between the same 

fluorescence labeled MutL and the acceptor fluorophore at position 449 in MutS low. 

Comparison of those intensities revealed, that the connector domain of MutS variant D246C[a] 

lies in proximity to the ATPase domain of MutL, within the ternary complex. Together with the 

site-specific crosslinking studies of Ines Winkler, it was now possible to map a potential area of 

interaction between MutS and MutL [37]. The results were consistent with results obtained by 

other groups [69]. The FRET setup of this assay can be extended to enable studies of dynamics 

of the ternary complex formation of MutS and MutL on DNA. For this purpose a circular DNA 

(GT932) was used to avoid dissociation from DNA ends and the Alexa 594 fluorophore at MutS 

was replaced by Alexa 647 to minimize spectral crosstalk in the FRET channel Fb. Preliminary 

data were collected with this extended setup, including time traces of the ternary complex 

formation and dissociation (chapter 6.1 and 6.2). 

The assay visualizing MutL binding to DNA at low ionic strength turned out to be a new and 

fast setup for testing DNA binding activities of newly purified MutL variants (chapter 3.3.4). 

The FRET setup as well as the anisotropy setup was suitable for this purpose. An advantage of 

the anisotropy-based assay was that it did not require a fluorophore attached to MutL, which 

simplified the reaction. MutL binding did not show any difference between homoduplex DNA 

or a DNA containing an IDL with an extra thymine in one of the DNA strands. Bende et al., 

1991 [70] observed similar results with a 3 nt IDL and homoduplex DNA in gel electrophoretic 

mobility shift assays.  

Before the intricate process of incision complex formation was addressed in this thesis, the 

interaction of MutH with DNA was observed at low ionic strength (20 mM KCl) (chapter 

3.3.5.1 and 3.3.5.2). These conditions allowed MutH to bind and cleave the DNA in a 

mismatch-, MutS- and MutL-independent manner. Two assays, to visualize the interaction of 
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either active MutH (variant S85C) or catalytically inactive MutH (variant E77A) with DNA, 

were demonstrated. The DNA binding assay represents a fast and robust test system for newly 

purified, fluorescence labeled, and catalytically inactive MutH variants. The DNA cleavage 

assay of MutH further represents a reliable test system for catalytically active MutH variants 

and does not require a fluorescence label at MutH. Taken together, both assays allow a fast 

analysis of the DNA binding or cleavage activity of MutH. 

The final assay was the observation of incision complex formation and dissociation at high ionic 

strength of 125 mM KCl (chapter 3.3.5.3). These conditions resembled physiological conditions 

and MutS, MutL, ATP, and a mismatch were required to enable the interaction between MutH 

and DNA. Only little experimental evidences for the formation of the MutS-MutL-MutH ternary 

complex are available in literature. These evidences are mainly based on co-purification of 

MutH with MutL and a MutS affinity column [71]. Further evidences were obtained in our 

group as the complex can be trapped by crosslinking MutS to MutL and MutL to MutH (Ines 

Winkler, unpublished data). To monitor incision complex formation in this thesis, a FRET assay 

was designed, which was dependent on MutS, MutL, and ATP (3.3.5.3). The assay contained a 

catalytically inactive variant of MutH[d] and a circular DNA with a G:T mismatch, a single 

GATC site and an acceptor dye nearby the GATC site (1GATC[a]). Only minor changes of the 

signal in the FRET channel Fb were observed before initiation of incision complex formation. 

ATP dependent appearance of the acceptor peak in this assay indicated the incision complex 

formation. The low acceptor peak observed in the experiment may be explained by a highly 

dynamic incision complex. In this case MutH[d] would be only a short time in vicinity of the 

GATC site and therefore only for a short time in vicinity of the acceptor fluorophore. An 

indicator for a highly dynamic nature of the incision complex is the fast dissociation (t1/2 < 3 s). 

A major issue about this assay was the DNA substrate 1GATC[a], which was only available at 

limited amounts. Recently, the procedure was optimized in frame of a Diploma thesis. 

Taken together, the assays developed in this thesis now allow an observation of the initial sub-

steps in MMR. The new insights will help to understand the intricate MMR process in detail. 

The sub-steps in MMR which can be analyzed by the assays cover the processes of MutS 

mismatch recognition, MutS bending DNA, MutS sliding clamp formation, MutS-MutL 

complex formation, MutL interaction with DNA, MutL-MutH complex formation, and MutH 

forming and leaving the incision complex. These processes, with their according assays, are 

depicted in Figure 4.1. The obtained kinetic data sets were used for the development of a kinetic 

model for the whole MMR system in frame of the European FP7 project mismatch2model. 

Currently, the fully active, fluorescent dye labeled proteins, which were generated in frame of 

this thesis, are used in single-molecule studies of the MMR, e.g. in a magnetic tweezers setup 

combined with fluorescence detection.  
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Figure 4.1: MMR processes that can be visualized by fluorescence-based assays of this thesis 

Sub-steps in MMR (left side) with the according visualization assay developed in this thesis and the 

indication of the chapter (right side). The assays cover MutS mismatch recognition, MutS bending 

DNA, MutS sliding clamp formation, MutS-MutL complex formation, MutL interaction with DNA, 

MutL-MutH complex formation, and MutH forming and leaving the incision complex. Assays at low 

ionic strength were not listed here as they do not resemble the physiological situation in the cell. The 

illustrated MMR processes were modified after Lebbink, [19].  
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6. Appendix 

6.1 Kinetics of MutS-MutL complex formation on circular DNA (GT932) 

The MutS sliding clamp is very mobile on DNA [57] [68]. Therefore, DNA circles (GT932) 

were used in this assay to avoid complex dissociation via DNA ends and to observe a stable 

complex formation between MutS and MutL. This “stabilization” of the complexes allowed 

recording of time traces during complex formation and dissociation and determination of kinetic 

rate constants. The reaction can be divided into five phases which are characterized by the 

stepwise addition of new components to the system. A schematic illustration of the reaction is 

shown in Figure 6.1, A and a representative time trace is shown in Figure 6.1, B. 

MutL[d] generated a weak background signal in the kinetic FRET channel at 0.1 a.u. which was 

further increased to ~ 0.3 a.u. after addition of MutS[a] (Figure 6.1, k1). Without DNA, the 

labeled MutS[a] and labeled MutL[d] did not bind to each other. Addition of DNA led to an 

increase in FRET in a burst phase to 1.0 a.u. which reflected the complex formation of MutS[a] 

and MutL[d] on DNA (Figure 6.1, k2). The burst phase was followed by an unknown process 

which caused a decrease in FRET to ~ 0.8 a.u. (Figure 6.1, k3). Dissociation of the MutS[a] and 

MutL[d] complex was monitored after addition of unlabeled MutL as competitor (Figure 6.1, 

k4). Dissociation of MutL[d] led to a decrease in FRET (to 0.4 a.u.). The FRET did not decrease 

to the initial level of 0.3 a.u. obtained before addition of DNA. The reason for this were residual 

MutL[d] molecules which remained bound to MutS[a] as only ten times excess of competitor 

MutL over labeled MutL[d] was used. Kinetic rate constants of MutS-MutL complex formation 

and dissociation are summarized in Table 6.1. 
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Figure 6.1: MutS-MutL complex formation on circular DNA 

A Schematic view of events in the assay. k1-4 Kinetic rate constants describe how fast the FRET 

intensity changed between two phases. k1 Addition of 100 nM MutS[a] variant D835R R449C to 100 

nM MutL[d] H297C in solution with 1 mM ATP and 1x buffer FB125. k2 A FRET (orange arrows) 

arose during MutS[a] MutL[d] complex formation on DNA induced by addition of 10 nM GT932.    

k3 An unknown process led to a decrease in FRET to a lower plateau. k4 Competition of MutS[a] 

MutL[d] complex by addition of 1 µM unlabeled MutL variant H297C. The fluorescence donor [d] 

was Alexa 488 and was excited at 470 nm while emission of the fluorescence acceptor [a] Alexa 647 

was measured at 670 nm (Fb signal). B Recorded FRET intensity of an exemplary time trace.   

k2 
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k1 

k4 

k2 

k3 
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Table 6.1: Kinetic rate constants of the MutS-MutL complex formation 

Kinetics rate constants of changes in FRET intensity during each phase of the MutS-MutL complex 

formation assay were analyzed with the software Origin and fitted using the function ExpDec1. 

kinetic rate process t1/2 k 

k1 MutS[a] MutL[d] in solution 3 s 0.33 s-1 

k2 MutS[a] MutL[d] complex formation 10 s 0.10 s-1 

k3 unknown 35 s 0.03 s-1 

k4 MutL[d] dissociating from DNA 200 s < 0.01 s-1 

 

 

6.2 Monitoring MutS-MutL complex formation using MutL[d] variant 480C 

For this assay a single-cysteine variant with a native cysteine residue at position 480 in MutL 

was labeled with a fluorophore. Position 480 lies within the C-terminal domain of MutL. 

Position 297 which was used for fluorescence labeling of MutL in other assays lies within the 

N-terminal domain. Not normalized FRET intensities obtained during the MutS-MutL complex 

formation assay using variant 297 of MutL[d] (chapter 6.1) were compared to intensities 

obtained during the same assay now performed with variant 480 of MutL[d]. Differences in 

intensities give information about distances between position 449 in MutS[a] and the different 

positions in MutL[d] representing the N-terminal (position 297) or C-terminal domain (position 

480). 

 

 

Figure 6.2: Comparing FRET intensities in MutS-MutL complex formation using N-terminal or 

C-terminal fluorescence labeled MutL variants  

FRET intensities indicate complex formation between MutS[a] and MutL[d] during different Phases. 

Columns represent MutS[a] complex formation with either N-terminal labeled MutL[d] (blue) or C-

terminal labeled MutL[d] (red). The reaction containing MutL[d] N-terminal was performed three 

times, the values were averaged and the error bars represent the standard deviation. The reaction 

containing MutL[d] C-terminal was only performed once and therefore the representing column does 

not show error bars. 
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A higher FRET signal (signal Fb) of ~ 100,000 a.u. between MutS[a] and MutL[d] 480 variant 

compared to ~ 30,000 a.u. observed with MutL[d] 297 variant indicated a closer distance 

between the C-terminal domain of MutL to position 449 in MutS compared the N-terminal 

domain of MutL (Figure 6.2, +DNA max). The lower final value of ~ 8,000 a.u. for the C-

terminal variant of MutL (Figure 6.2, +comp, red column) resulted from Thrombin cleavage 

which was not used at the end of the MutS-MutL complex formation assay with the labeled N-

terminal domain of MutL (Figure 6.2, +comp, blue column) in which a final value of ~ 12,000 

a.u. was reached. Thrombin led to a cleavage of MutL in the linker region. Remaining MutL[d] 

forming a complex with MutS[a] therefore dissociated and a further decrease in FRET could be 

observed. 
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6.3 Mismatch and MutS dependent recruitment of MutL at high ionic strength 

At high ionic strength MutL does not bind DNA and needs to be recruited by MutS. This assay 

was performed with circular DNA as the MutS sliding clamp is very mobile on DNA [57] [68]. 

 

 

Figure 6.3: Schematic view of events during MutL recruitment to circular DNA at high ionic 

strength (125 mM KCl) 

k1-4 Kinetic rate constants describe how fast the FRET intensity changes between two phases. k1 SG is 

incorporated in GT932 DNA circles and serves as a fluorescence donor in the reaction (green dots). 

MutS in an ADP bound state, remains bound to a mismatch (red diamond) on this DNA. Addition of 

ATP allows recruitment of MutL[a] to MutS sliding clamps on a circular DNA which generates a 

FRET between SG and MutL[a] (orange arrows). k2 Unknown process following the recruitment of 

MutL to the DNA-MutS complex. This process decreases the FRET effect. k3 Unlabeled MutL 

hinders MutL[a] from rebinding the MutS-DNA complex after dissociation. The FRET vanishes.   k4 

Thrombin cleaves MutL[a] and MutL to dispose all residual MutL[a] from DNA. 

 

The assay starts with incubation of MutS, MutL[a], ADP, SG, and GT932 DNA circles. SG will 

be incorporated into DNA and MutS, in the ADP bound state, will bind the mismatch. MutL is 

unable to bind to the ADP bound MutS and remains unbound. Addition of ATP allows the 

transformation of MutS into an ATP bound sliding clamp which is able to recruit MutL[a]. 

MutL[a] is now able to generate a FRET with nearby SG molecules incorporated in DNA. This 

FRET serves as an indicator in the reaction that the fluorescence labeled MutL is bound to the 

k2 

k3 

k1 

k4 
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DNA. Addition of excess unlabeled MutL inhibits the reaction by hindering the MutL[a] from 

rebinding the MutS-DNA complex after dissociating. Therefore the FRET decreases. Thrombin 

acts as a further inhibitor in the reaction as it cleaves MutL in the linker region and residual 

MutL[a] bound to the MutS-DNA complex will dissociate. The reaction is schematically 

illustrated in Figure 6.3. A recorded time trace gives insight into kinetics of MutL-DNA 

complex formations (Figure 6.4). 

 

 

Figure 6.4: Time trace of MutL binding circular DNA at high ionic strength (125 mM KCl) 
k1-4 Kinetic rate constants describe how fast the FRET intensity changes between two phases. For a 

description of the different phases see Figure 6.3 or the text. The reaction began with 100 nM SG,    

10 nM GT932, 100 nM MutS variant R449C D835R, 100 nM MutL variant H297C labeled with 

Alexa 647 (MutL[a]), and 1 µM ADP in 1x buffer FB125. The complex formation was started with 

injection of 1 mM ATP. Addition of 500 nM unlabeled MutL variant H297C acted as a competitor in 

the reaction by displacing the labeled MutL in the complex. Addition of 0.6 U Thrombin led to a 

cleavage of all MutL proteins in the linker connecting the N-terminal and C-terminal domain. MutL 

could not remain bound to the DNA and did fall off. The fluorescence donor [d] was SG and was 

excited at 470 nm while emission of the fluorescence acceptor [a] Alexa 647 was measured at 670 nm 

(Fb signal). 

 

This assay allowed observation of the DNA binding state of MutL[a]. A high FRET state after 

addition of ATP in the reaction indicated that fluorescence labeled MutL (MutL[a]) was bound 

to DNA[d] during this phase. This phase was followed by a decrease in FRET which may 

resulted from dissociation of some MutL[a] from DNA[d] coupled with a delayed rebinding. 

Delayed rebinding could have been caused by a rate limiting step of nucleotide exchange or 

hydrolysis. After addition of unlabeled MutL the FRET decreased further because of a 

k2 

k3 k1 
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replacement of MutL[a] by unlabeled MutL from DNA[d]. Total inhibition of the reaction was 

achieved by Thrombin addition and the FRET signal decreased to a level below the FRET level 

of the first phase which represented a not DNA[d] bound state of MutL[a]. The decrease below 

this starting level was due to dilution effects during the experiment. Kinetic rates are listed in 

Table 6.2. 

 

Table 6.2: Kinetic rate constants of MutL binding circular DNA at high ionic strength 

kinetic rate process t1/2 k 

k1 MutL[a] binding MutS on DNA 13 s 0.08 s-1 

k2 unknown 98 s 0.01 s-1 

k3 MutL[a] dissociation (competition) 63 s 0.02 s-1 

k4 MutL[a] dissociation (Thrombin) 148 s < 0.01 s-1 
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6.4 MutL-MutH complex formation 

A major step in E. coli MMR is the activation of the endonuclease MutH. MutH is required for 

the formation of the incision complex which incises the newly synthesized DNA strand. Several 

lines of evidence suggest that MutH binds to MutL [48]. To demonstrate that it is in principle 

possible to visualize the recruitment of MutH to MutL, the following assay was developed. It is 

based on FRET which is generated between a donor labeled MutL[d] and an acceptor labeled 

MutH[a] and it does not require DNA. The reaction is schematically illustrated in Figure 6.5, A 

and fluorescence emission spectra are shown in Figure 6.5, B. 

 

 A 

 

 

 B 

 

Figure 6.5: MutL and MutH complex formation 

A Schematic view of events during the reaction. Binding of MutH[a] to MutL[d] generates a FRET 

(orange arrow). Addition of excess unlabeled MutH acts as a competitor as it competes with MutH[a] 

for the interaction with MutL[d]. The FRET decreases. B Normalized emission spectra of the reaction 

steps. The donor was normalized to be 1. FRET effects can thereby be seen in the acceptor emission 

at 617 nm. In this reaction Alexa 488 served as a donor and Alexa 594 as an acceptor fluorophore. 

400 nM of MutL[d] variant H297C and 400 nM of MutH[a] variant S85C C96S were used in the 

presence of 1 mM ATP. 2 µM of the unlabeled MutH variant S85C C96S were used as competitor. 
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Figure 6.6: FRET efficiency in MutL-MutH complex formation 

FRET ratios during the reaction steps visualize the complex formation and dissociation. They were 

calculated by dividing acceptor emission through donor emission. Error bars indicate the standard 

deviation of n = 2 independent experiments. 

 

The increase in FRET ratio from 0.04 to 0.40 in step 1 to 2 (in Figure 6.6) and the following 

decrease in step 3 visualize the interaction between MutL and MutH. The FRET ratio decreased 

from 0.40 to 0.24 after competing the reaction with unlabeled MutH. The ratio did not decrease 

further as the acceptor fluorophore used for this assay (Alexa 594) was partially excited by the 

excitation light at 470 nm. It therefore generated a background signal in step 2 and 3. 
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6.5 Determine MutS binding orientation, varying MutS concentrations 

The MutS binding orientation setup (3.3.1.3) was also used with varying MutS concentrations. 

Thereby only changes in anisotropy of the donor fluorophore was addressed for a double labeled 

DNA as well as for a donor only labeled DNA (Figure 6.7). 

 

 

Figure 6.7: Mismatch dependent MutS binding orientation with varying MutS concentrations 

A-D Quenched donor fluorescence ((Fmax-F)/Fmax, black squares) of a donor fluorophore at a double 

labeled DNA and anisotropy changes (gray squares) of the donor at a donor only labeled DNA during 

MutS binding different mismatches or homoduplex DNA (using MutS variant R449C D835R). Error 

bars derived from the standard deviation of n = 3 independent experiments. A G:T mismatch B T:G 

mismatch C G:G mismatch D G:C homoduplex E-G Illustration of MutS binding orientations on 

DNA. Subunit A (blue) of MutS dimer intercalates phenylalanine 36 into DNA and stacks onto 

thymine. E Subunit A binds the bottom strand at a G:T mismatch F Subunit A binds the top strand at 

a G:T mismatch G Subunit A adopts both possible binding orientations at a G:T mismatch. 


