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Abstract

We examine the N -vortex problem on general domains Ω ⊂ R2 concerning the existence
of nonstationary collision-free periodic solutions. The problem in question is a �rst order
Hamiltonian system of the form

Γk Ûzk = J∇zkH (z1, . . . , zN ), k = 1, . . . ,N ,

where Γk ∈ R \ {0} is the strength of the kth vortex at position zk (t) ∈ Ω, J ∈ R2×2 is the
standard symplectic matrix and

H (z1, . . . , zN ) = −
1

2π

N∑
k, j=1
k,j

ΓjΓk log |zk − zj | −
N∑

k, j=1
ΓjΓkд(zk , zj )

with some regular and symmetric, but not explicitely known function д : Ω × Ω → R.
We present two types of periodic solutions that can be found in general domains. The

�rst one is based on the idea to superpose a stationary solution of a system of less than
N vortices and several clusters of vortices that are close to rigidly rotating con�gurations
of the whole-plane system. The second type consists of choreographic solutions following
approximately a boundary component of the domain. The proofs in both cases rely on a
suitable rescaling of the problem, investigation of the limiting system and implicit-function-
like methods for a local continuation of existing solutions. Moreover, the modi�cation of a
S1-equivariant degree theory allows us to prove that the continuation occurs globally.
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Notation

Miscellaneous

Let U ,V be subsets of a Banachspace X . Then U = clos(U ), U ◦ = int(U ), ∂U denote the
closure, the interior and the boundary ofU and dist(U ,V ) = inf { ‖u −v ‖X : u ∈ U ,v ∈ V }.
An inner product onX is usually denoted by 〈·, ·〉X . In the context of �uid dynamics we also
use the notation x · y = x1y1 + x2y2 for the euclidian scalar product 〈x ,y〉R2 . The transpose
of a matrix A ∈ Rm×n is written AT . Commonly used matrices are the n × n identity matrix
idRn , as well as

J =

(
0 1
−1 0

)
,

the rotation by −π2 on R2 and the 2N × 2N block matrices

JN =
©­­«
J
. . .

J

ª®®¬ , MΓ =
©­­«
Γ1 idR2

. . .

ΓN idR2

ª®®¬ ,
where Γ1, . . . , ΓN ∈ R \ {0} denote the vorticities of the point vortices.

Derivatives

Partial derivatives are written like ∂tω(x , t), ∂1ω(x , t) = ∂x1ω(x , t) or ∂r F (r ,u), DuF (r ,u).
As usual ∇Φ denotes the gradient of a real valued function Φ de�ned on a Hilbertspace X
and ∇2Φ the Hessian matrix or more general the linear and continuous map X → X , such
that

〈
∇2Φ(x)u,v

〉
X = D2Φ(x)[u,v]. Higher order derivatives are for example written like

Dk
uF (r ,u), ∇kFr (u) or F (k )r (u), and for derivatives with respect to time we use Ûu(t) or d

dtu(t).
Concerning classical di�erential operators we have divergence divv = ∇·v = ∂1v1+∂2v2,

Laplace ∆u = div(∇u) and rotation curlv = ∂1v2 − ∂2v1, if v is a two-dimensional vector
�eld.

For a smooth function G : R2 × R2 → R, (x ,y) 7→ G(x ,y) we write ∇1G, ∇2
1G for the

gradient and Hessian with respect to x and

∇2∇1G =

(
∂y1∂x1G ∂y2∂x1G
∂y1∂x2G ∂y2∂x2G

)
.

In a similar way one has to understand ∇2G, ∇2
2G and ∇1∇2G. Note that if G is symmetric,

i.e. G(x ,y) = G(y,x), then

∇2∇1G(x ,y) =
(
∇2∇1G(y,x)

)T
. (0.1)

In the context of �uid dynamics we use ∇⊥Φ = J∇Φ and ∇⊥G(x ,y) = J∇1G(x ,y).
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Spaces

L2
T square integrable functions u : R/TZ→ R2N ,

〈u,v〉L2
T
=

∫ T
0 〈u(t),v(t)〉R2N dt

H s
T Sobolev space H s (R/TZ,R2N ) of T -periodic functions,

for s = 1: 〈u,v〉H 1
T
= 〈u,v〉L2

T
+ 〈 Ûu, Ûv〉L2

T

C0
T ; CkT ; C∞T continuous; k-times continuously di�erentiable; smooth T -periodic

functions u : R→ R2N , ‖u‖CkT = sup
{ ��u(j)(t)�� : 0 ≤ j ≤ k, t ∈ R

}
L2, H s , Ck = L2

2π , = H s
2π , = Ck2π

L(X ,Y ) linear and continuous operators between two Banach spaces X ,Y ,
‖L‖L(X ,Y ) = sup { ‖Lx ‖Y : ‖x ‖X ≤ 1 }

L(X ) = L(X ,X )

Ck (U ,Y ) k-times continuously di�erentiable functions from U ⊂ X into Y

Ck,α (U ,Y ) Ck (U ,Y ) with kth derivative being α-Hölder continuous

Topological degrees

deg Brouwer degree or Leray-Schauder degree
S1-deg, dk S1-equivariant degree by Dylawerski, Gęba, Jodel, Marzantowicz, see 2.3.1
S1-deg⊥, d⊥k degree for S1-orthogonal maps by Rybicki, see 2.3.2
S1-deg∇, d∇k modi�cation of S1-deg⊥ to S1-equivariant gradients, see 2.1.2
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Chapter 1

Introduction

1.1 The N -vortex problem

In order to describe an incompressible �uid contained in a domain Ω one uses partial di�er-
ential equations like the Navier-Stokes equation or in the nonviscous case the Euler equation{

∂tv + (v · ∇)v = −∇p,

divv = 0
(1.1)

as most sophisticated models. Here v(x , t) denotes the velocity of the �uid and p(x , t) the
pressure at the point x ∈ Ω and at time t ∈ R. Since in general the Navier-Stokes and Euler
equation are quite complicated to deal with – we just like to mention [33] – simpli�ed models
based on these equations are used in the hope of gaining information about the original
equations and/or to describe phenomena in applications in a precise enough manner. One
of these simpli�ed models is the so called N -vortex problem.

Here as a �rst simpli�cation one considers a two-dimensional �uid, i.e. Ω ⊂ R2 and
v : Ω × R → R2. The restriction of the �uid to two dimensions is a reasonable approx-
imation when one of the dimensions is comparably small in relation to the other two, or
more generally when the three-dimensional �ow is con�ned to two-dimensional layers due
to strati�cation or rotation. Assuming the two-dimensional �uid to be nonviscous and con-
tained in a smooth domain with an impenetrable boundary, it is described by the Euler
equations (1.1) and an additional boundary condition that requires the �uid to be tangential
to ∂Ω. A solution v of this boundary value problem can be found by solving the 2D-Euler
equations in vorticity-stream formulation, i.e. �nding scalar functions ω(x , t), Ψ(x , t) satis-
fying 

∂tω + ∇
⊥Ψ · ∇ω = 0, in Ω

−∆Ψ = ω, in Ω

Ψ = 0, on ∂Ω
(1.2)

and setting v = ∇⊥Ψ, see Section C.1. One next assumes that the whole velocity �eld
v(·, t) at any time t is solely determined by the position of �nitely many vortices. Speaking
in terms of vorticity this means that ω(·, t) is highly concentrated in �nitely many points
z1(t), . . . , zN (t) ∈ Ω. Let Γj ∈ R \ {0} be the amount of vorticity located around zj (t). The
corresponding formal ansatzω(x , t) =

∑
j Γjδ (x−zj (t)) for (1.2) leads to a system of ordinary

di�erential equations describing the motion of the vortex positions in time. This so called
N -vortex system is of the form

Γj Ûzj (t) = J∇zjHΩ(z1(t), . . . , zN (t)), j = 1, . . . ,N , (1.3)

where J : R2 → R2 denotes rotation around the origin by −π2 , and HΩ de�ned on an open
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subset of ΩN is a real valued function determined by the stated singular ansatz for the vor-
ticity pro�le. The derivation of the N -vortex problem has its origin in the 19th century and
is, depending on the considered case, due to Kirchho� [47], Routh [68] and Lin [53, 54], but
can also be found in more modern books, e.g. [34, 56, 57, 64]. An historic overview of the
derivation of the point vortex system together with advanced models can be found in [55].
In appendix C we present the localization theorem of Marchioro and Pulvirenti [59] as a
rigorous justi�cation for the point vortex system.

The simpli�cation of the dynamics of a �uid to the motion of �nitely many point vortices
has a wide range of applications. In Geophysics system (1.3) serves as a simple model for the
interaction of ocean eddies with coastlines, see [21, 24, 73], or for an explanation of vortex
con�gurations in the eye of hurricane Isabel (2003), see [48] and chapter 3 of [9]. Point vortex
models, typically with a high number of vortices, are also used in numerical simulations of
liquids and gases of various kinds, for example to simulate the locomotion of a �sh or insect
[30] or to create computer animations in video games [41].

Furthermore, the N -vortex problem does not only occur as a singular limit of the Eu-
ler equations, but also as a limit of other partial di�erential equations from mathematical
physics. If for example the initial data uε0 = uε (·, 0) : Ω → C of the Gross-Pitaevskii (also
called Ginzburg-Landau-Schrödinger) equation{

i∂tu
ε − ∆uε = ε−2 (

1 − |uε |2
)
uε , in Ω

uε (·, t) = f , on ∂Ω,
(1.4)

f : ∂Ω → C some prescribed function and t ∈ R, has independent of ε > 0 only isolated
zeroes, say a1, . . . ,aN ∈ Ω, with local Brouwer indices having modulus 1, then as ε → 0
the corresponding solution uε (·, t) has zeroes zε1(t), . . . , zεN (t) following the solution of (1.3)
with initial data zεj (0) = aj , j = 1, . . . ,N . So the zeroes of the solution of (1.4) behave in
the limit like point vortices. The corresponding vorticities Γj are here given by the local
Brouwer degrees deg

(
uε0 ,Bρ (aj )

)
∈ { ±1 }, ρ > 0 su�ciently small. Details concerning this

motivation for point vortex dynamics can be found in [22, 45] and the references therein.
Another equation giving rise to point vortex like dynamics is the Landau-Lifshitz-Gilbert
equation, for which we just like to refer to [51].

1.2 Central question and related results

The N -vortex problem (1.3) is a �rst order Hamiltonian system with Hamilton function

HΩ(z1, . . . , zN ) = −
1

2π

N∑
k, j=1
k,j

ΓjΓk log
��zj − zk �� − N∑

k, j=1
ΓjΓk дΩ(zj , zk ).

Since the �rst term, which models direct vortex-vortex interactions, becomes singular when
zj = zk , j , k , HΩ is only de�ned on

FN (Ω) =
{
z = (z1, . . . , zN ) ∈ Ω

N : zj , zk , j , k
}
.

Besides these logarithmic singularities, a second main di�culty of the Hamiltonian lies in
the fact that the function дΩ : Ω × Ω → R contained in the seond term and modelling
vortex-boundary interactions is, except for a few special cases, not explicitly known. More
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Figure 1.1: Relative equilibria solutions on Ω = R2: Vortices with Γj < 0 are
blue, vortices with Γj > 0 are red, all con�gurations rotate in counterclock-

wise direction.

precisely дΩ(·,y) satis�es for every y ∈ Ω the boundary value problem{
∆xдΩ(x ,y) = 0, x ∈ Ω

дΩ(x ,y) = −
1

2π log |x − y | , x ∈ ∂Ω,

such that
GΩ(x ,y) = −

1
2π log |x − y | − дΩ(x ,y)

is the Green’s function of the Dirichlet-Laplace operator. Contrary to the singular part ofGΩ

the evaluation of дΩ at the same point is allowed. The function de�ned by this evaluation
hΩ : Ω → R,

hΩ(x) = дΩ(x ,x)

is called Robin function and determines the motion of a single vortex inside the domain Ω.
Due to hΩ(x) → ∞ as x → ∂Ω singularities of HΩ not only occur when di�erent vortices
collide, but also when vortices approach the boundary of Ω. A summary concerning fur-
ther properties of the Green’s function and the Robin function can be found in Appendix
B. In particular Section B.4 treats so called hydrodynamic Green’s functions, which appear
naturally in point vortex dynamics as a generalization of the Dirichlet Green’s function.

In this thesis we will investigate the N -vortex problem in general domains with respect
to a classic aspect of Hamiltonian dynamics: Periodic solutions. We will mainly focus on
the question of existence of periodics, but also elaborate a little on their structure as a set
of solutions. The discussion of natural related questions like stability is currently work in
progress and not included in the thesis. The periodic solutions investigated here are all
nontrivial, i.e. have a positive minimal period, nonetheless an overview about stationary
solutions can be found in section 3.1.1.

There is a vast amount of literature concerning periodic solutions of the N -vortex prob-
lem, dating back to the 19th century when Thomson investigated in [75] regular polygon
con�gurations of identical vortices. Nevertheless, almost all of those publications treat spe-
cial cases, in which the Green’s function and hence the Hamiltonian HΩ is explicitly known.
This is for example the case for Ω being the whole plane R2, the upper half-plane R2

+ or
the unit disc B1(0). Most of these solutions form relative equilibrium solutions, also called
vortex crystals, which are vortex con�gurations that rigidly rotate around a central point.
Examples on the whole plane include vortex pairs, equilateral triangles, Thomson’s regular
N -Gons and straight line con�gurations, see �gure 1.1 for now and more detailed section
3.1.2. Even more complicated nested con�gurations can be found on R2 or B1(0) due to the
fact that the Green’s function is explicit and invariant with respect to rotations. We refer to
[4, 5, 64] for the illustrated examples and a general overview.

Contrary to these cases both advantages are lost when one is interested in the dynamics
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in an arbitrary domain Ω ⊂ R2. Moreover, in general the HamiltonianHΩ is unbounded from
both sides, not integrable and has non compact, not metrically complete energy surfaces
which makes the search for periodic solutions di�cult. An exception is given by the two
following cases, in which the de�nite asymptotic behaviour HΩ(z) → −∞ as z → ∂FN (Ω)
implies the compactness of energy levels:

• Ω bounded, N = 1, Γ1 , 0: Almost all solutions of the 1-vortex system are periodic,
see section 15.5 in [34],

• Ω bounded, N = 2, Γ1Γ2 < 0: Almost all non empty level sets H−1
Ω (c) contain a periodic

solution, [74].

The �rst result going beyond these two cases is due to Bartsch and Dai [11] and treats the
case of arbitrarily many identical vortices located near a topological stable critical point of
the Robin function hΩ . A critical point of hΩ , which is nothing but an equilibrium of the 1-
vortex system, can be found in every bounded domain. Moreover, at least after an arbitrarily
small deformation of the domain it is nondegenerate and hence topological stable, see [15].
The theorem in a formulation not including all details then reads:

Theorem 1.1 (Bartsch, Dai [11]). Let Γ1 = . . . = ΓN , 0, a ∈ Ω be a topological stable critical
point of hΩ . Then there exists a family

(
z(r )

)
, 0 < r < r0 of periodic solutions of (1.3) with

the following properties: For any r ∈ (0, r0) all N vortices z(r )1 (t), . . . , z
(r )
N (t) follow the same

curve, i.e. the solutions form a choreography. In the limit r → 0 the minimal period Tr tends
to 0 and all vortices converge towards the critical point a, whereas the geometrical shape of the
con�guration approaches a scaled version of Thomson’s N -Gon con�guration.

This result can be interpreted as the superposition of a stationary solution of the 1-vortex
system on Ω and the N -Gon solution on R2. A natural question arises if similar solutions
can be found when the stationary solution a is replaced by a nontrivial periodic trajectory
a(t) of the 1-vortex system. For two vortices Bartsch and Sacchet could prove the following
result, which we will here again formulate only in a rough way:

Theorem 1.2 (Bartsch, Sacchet [18]). Let N = 2, Γ1, Γ2 , 0 with Γ1 + Γ2 = 0 and a(t) be a T -
periodic solution of the 1-vortex system on Ω. Under a geometric condition on a(t) and nearby
periodic trajectories of the 1-vortex system, the 2-vortex system on Ω has in�nitely many T -
periodic solutions, in which the two vortices rotate around their center of vorticity while the
center itself approximately follows the trajectory a(t).

Contrary to the methods used in [11] and the methods that will be used in this thesis,
Theorem 1.2 requires a somewhat di�erent approach due to the time-dependent trajectory
a(t). In fact it relies on a generalized Poincaré-Birkho� theorem [36].

1.3 Outline of the thesis

In chapter 3 we continue the search for periodic solutions via a superposition of two kinds
of solutions. In particular, we generalize Theorem 1.1 in three aspects. First of all, we show
that the Thomson N -Gons are not the only relative equilibrium solutions of the whole plane
system that give rise to a family of periodic solutions

(
z(r )

)
r ∈(0,r0)

near a critical point of the
Robin function hΩ . This way also con�gurations with di�erent vorticities are shown to in-
duce periodic solutions of (1.3). Next using an appropriate equivariant degree theory, which
is based on the degree by Rybicki [69] and which represents in chapter 2 besides the periodic
solutions the second main part of this thesis, we show that these families of solutions are not
only local families but also part of a global connected set of periodic solutions. Moreover,



Chapter 1. Introduction 5

+ + =

Figure 1.2: The 2-vortex problem in the unit disc admits a stationary solu-
tion with Γ1 = −Γ2, cf. Example 3.2. Combining this solution with rigidly
rotating vortex pairs we obtain a periodic solution of the 4-vortex system
in the disc, where each pair of vortices moves along a deformed circle. The
shown trajectory is the actual numerically computed trajectory of the 4-

vortex problem in the unit disc.

Figure 1.3: Four identical vortices in a Neumann oval domain following the
red curve in a counterclockwise orientation. The numerical computation is

based on code by Tom Ashbee [6].

by replacing the stationary solution a ∈ Ω of the 1-vortex system by a stationary solution of
a system of m ∈ N vortices and placing a rigidly rotating con�guration of the whole plane
system near each of them point vortices, we obtain periodic solutions consisting ofm clus-
ters. Figure 1.2 shows this idea in the easiest case of m = 2 clusters, each consisting of two
identical vortices and Ω being the unit disc. This way we obtain periodic solutions in the
unit disc, in which the vortices are not rotating rigidly around the center of the disc. The
precise statement of the described results is given in Theorems 3.1, 3.8 and 3.9.

The existence of the presented solutions so far is based on the fact that vortex-vortex
interactions dominate the dynamics when vortices come close together. Contrary to that we
will exploit vortex-boundary interactions in Chapter 4 in order to obtain periodic solutions
for an arbitrary number of identical vortices in a simply connected domain. Here the vortices
move separated by time shifts along the same curve close to the domain boundary, i.e. the
solutions are also choreographies. As an illustration, the trajectory of 4 identical vortices
close to the boundary of a Neumann oval domain is presented in �gure 1.3. The rigorous
result can be found in Theorem 4.3.
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Both types of results are obtained by continuation of existing periodic solutions. Let

MΓ =
©­­«
Γ1 idR2

. . .

ΓN idR2

ª®®¬ ∈ R2N×2N , JN =
©­­«
J
. . .

J

ª®®¬ ∈ R2N×2N ,

such that the N -vortex system (1.3) can be written in the more compact way

MΓ Ûz = JN∇HΩ(z), (1.5)

where z = (z1(t), . . . , zN (t)) ∈ FN (Ω). Depending on the situation a suitable rescaling shows
that (1.5) is equivalent to

MΓ Ûu = JN∇Hr (u) (1.6)

with a parameter dependent family (Hr )r ∈(0,r0) of Hamiltonians. In particular a 2π -periodic
solution of (1.6) corresponds to a periodic solution of (1.5) with period T = T (r ) depending
on the introduced parameter r . So the here presented existence results rely on the investi-
gation of the limiting problem r → 0, for which 2π -periodic solutions are known or shown
to exist, as well as appropriate continuation methods. More precisely we will �nd for r > 0
critical points of the associated action functional

Φr (u) =
1
2

∫ 2π

0
〈MΓ Ûu, JNu〉R2N dt −

∫ 2π

0
Hr (u) dt

emanating from a critical manifold of Φ0 by applying implicit-function-like theorems, e.g.
Theorem 2.7 and/or degree arguments, see Theorem 2.3 and Corollary 2.9, to the gradi-
ent ∇Φr . Although we do not use variational methods based for example on Morse-theory
or a Linking structure, which seem quite hard to apply due to the inde�nite behaviour
of HΩ(z) when z → ∂FN (Ω), the proofs rely on the existence of a variational structure
associated to (1.6). The functional Φr will be de�ned on an open subset of the Sobolev
space H 1(R/2πZ,R2N ) consisting of 2π -periodic functions having a square-integrable weak
derivative. Since the natural domain of the quadratic form

u 7→
1
2

∫ 2π

0
〈MΓ Ûu, JNu〉R2N dt

is the space of 2π -periodic H 1/2 functions, the choice of H 1 as underlying function space
will cause some technical di�culties, in particular when it comes to the task of �nding an
applicable degree theory for the gradient ∇Φr , cf. the discussion in Section 2.3. But on the
other hand the Hamiltonian Hr is only de�ned for functions u(t) satisfying among other
conditions uj (t) , uk (t) for all j , k . These conditions do not de�ne an open subset of
H 1/2 due to the fact that H 1/2 does not embed into the space of continuous, 2π -periodic
functions. So it is unclear how to work with Φr on H 1/2. Contrary to that, the space H 1

embeds continuously into the space of continuous functions. More details on the variational
structure of Hamiltonian systems and the needed Sobolev spaces are given in section 2.2 and
appendix A.

1.4 Further comments

This is a declaration about which parts of the thesis have been published with whom before
and which parts are new:
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• Chapter 2: The construction of the S1-equivariant degree for the action functional of
Hamiltonian systems and the proof of the abstract global continuation theorem (Thm.
2.3) is done as in the joint paper with T. Bartsch, [13]. For the construction a little
more details have been added. The formula for the computation of the degree for a
nondegenerate solution (Thm. 2.24) is new. In [13] we only needed and used that the
degree is nonzero, provided the solution is contained in one of the �nite-dimensional
subspaces Xn . As a consequence now Corollary 2.9 is available for a general nonde-
generate periodic solution of a Hamiltonian system like the ones obtained in Theorem
4.3.

• Chapter 3: This chapter has so far not been published. Up to minor changes it can be
found in the preprint [38].

• Chapter 4: The local part of the result itself (Thm. 4.3 except (4)) is joint work with T.
Bartsch and Q. Dai, [12]. The here presented proof however, di�ers from the original
one in the sense that a symplectic transformation onto the unit disc is used. Due to this
transformation the result here is formulated for a C4 boundary component contrary
to a C3 component in the original formulation, cf. Remark 4.4 d). The global aspect,
i.e. property (4) of Thm. 4.3, is new and possible due to Theorem 2.24.

• Chapter 5: This chapter contains a discussion of the obtained results with the aid of
known solutions in the unit disc, as well as some open questions. In [12] the regularN -
Gon in the unit disc has already served as an illustration of the choreographic solutions
near the boundary.

• Appendix A: This is just a collection of known facts about Hamiltonian systems and
the associated action functional.

• Appendix B: Corollary B.2, Lemma B.3 and Lemma B.4 concerning the boundary be-
haviour of Green’s and Robin function have been taken from [12]. For the remaining
facts references are given.

• Appendix C: References are given as well.
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Chapter 2

An S1-equivariant degree for
Hamiltonian systems

This chapter provides an S1-equivariant degree theory for the H 1-gradient of the action
functional of a �rst order Hamiltonian system. The �rst section 2.1 introduces the notation
and summarizes the properties of the degree in an abstract setting of potential operators
on a Hilbert space, while section 2.2 with Corollary 2.9 as the central statement addresses
the application of it to Hamiltonian systems. After that we discuss in section 2.3 other ex-
isting equivariant degree theories. In particular we introduce the degrees by Dylawerski,
Gęba, Jodel, Marzantowicz (=DGJM) [29] and by Rybicki [69], on which our modi�cation,
carried out in section 2.4, is based. Finally section 2.5 is devoted to the proof of the global
continuation theorem and section 2.6 to the calculation of the degree in a nondegenerate
case.

2.1 Summary of results

2.1.1 Notation

Let (X , 〈·, ·〉) be a Hilbert space and ρ : S1 → L(X ) be an orthogonal S1-action, i.e. ρ is a
continuous homomorphism between S1 and the group of bounded linear operators L(X ),
such that every ρ(eiθ ) preserves the inner product 〈·, ·〉. Instead of ρ(eiθ )u, eiθ ∈ S1, u ∈ X
we just write θ ∗u and θ ∈ S1 using the identi�cation S1 = R/2πZ. For the orthogonality of
the action this means 〈θ ∗ u1,θ ∗ u2〉 = 〈u1,u2〉 for every u1,u2 ∈ X , θ ∈ S1.

A S1-invariant subset of X is a set, that whenever it contains a point u, it also contains
the whole orbit S1 ∗ u. A map f : X1 → X2 between two S1-representations is called S1-
equivariant provided f (θ ∗ u) = θ ∗ f (u) for all θ ∈ S1, u ∈ X1. Furthermore, f is called
invariant, if f is constant along each orbit.

An example of an orthogonal S1-action or in other words a S1-representation is given by
X = R2, ρm : S1 → SO(2),m ∈ N0,

ρm(θ ) =

(
cos(mθ ) − sin(mθ )
sin(mθ ) cos(mθ )

)
.

We denote by R[k,m], k ∈ N, m ∈ N0 the direct sum of k copies of the representation
(R2, ρm).

Two representations X1, X2 are said to be equivalent, if there exists an equivariant iso-
morphism T : X1 → X2. In this situation we write X1 � X2. For �nite-dimensional repre-
sentations the following classi�cation theorem is available:
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Theorem 2.1 (see [1]). If V is a �nite-dimensional representation of S1, then

V �
r⊕
i=1

R[ki ,mi ]

with unique numbers r ∈ N, ki ∈ N,mi ∈ N0, i = 1, . . . , r satisfyingm1 < m2 < . . . < mr .

Given a subset U ⊂ X and a closed subgroup K ≤ S1, i.e. K ∈
{
S1,Z1,Z2, . . .

}
with Zk

being the group of the kth roots of unity, the set of �xed points under K is denoted by

U K = {u ∈ U : θ ∗ u = u for all θ ∈ K } .

For the isotropy group of u ∈ X we write

Iu =
{
θ ∈ S1 : θ ∗ u = u

}
.

Whenever the following limit exists the tangent vector to the orbit S1 ∗u at u ∈ X is de�ned
by

E(u) = lim
θ→0

1
θ
(θ ∗ u − u) =

d

dθ |θ=0
(θ ∗ u).

If X is in�nite-dimensional, then E(u) might not exist for all u ∈ X , cf. X being the Sobolev
space H 1 in Section 2.2.1, but in the �nite-dimensional case the classi�cation Theorem 2.1
guarantees that E(u) is well-de�ned for all u ∈ X . Moreover, the de�nition shows that in
that case the vector �eld E : X → X is linear and S1-equivariant, i.e. E(θ ∗ u) = θ ∗ E(u) for
all θ ∈ S1 and u ∈ X .

The degree theories we are looking at have values in
⊕∞

i=0 Z. For α , β ∈
⊕∞

i=0 Z we
de�ne a multiplication by

α ? β = (α0β0,α0β1 + β0α1,α0β2 + β0α2,α0β3 + β0α3, . . .)

= α0 · β + β0 · α − (α0β0, 0, 0, . . .).

2.1.2 Degree setting

Now let X be in�nite-dimensional, but admitting a Hilbert space decomposition

X = clos
(⊕
k ∈N0

Ek

)
, Ej ⊥ Ek for j , k .

consisting of �nite-dimensional subspaces. For n ∈ N0 we set Xn :=
⊕n

k=0 Ek and write
Pn : X → Xn for the orthogonal projection, so that Pnu → u as n →∞ for every u ∈ X . We
consider S1-equivariant maps

L − Ψ : Λ→ X

de�ned on an open and S1-invariant subset Λ ⊂ X , such that the decomposition of X and
the maps L and Ψ satisfy

(A1) Ek is a �nite-dimensional, S1-invariant linear subspace of X , and the isotropy group
of u ∈ Ek \ {0} is Zk for k ∈ N.

(A2) L ∈ L(X ) is a bounded, self-adjoint, equivariant operator with Kern(L) = E0 and
L(Ek ) = Ek for k , 0.

(A3) The map L + P0 de�nes an isomorphism X → Y onto a Banach space Y that embeds
continuously into X .
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(A4) Ψ : Λ→ X is the gradient of an S1-invariant C1-function K : Λ→ R.

(A5) The image of Ψ is contained in Y and for any bounded, invariant set O with O ⊂ Λ
the restriction Ψ : O → Y is a compact map.

Note that in (A1) there is no restriction on the isotropy groups of the elements in E0, but
X S1
⊂ E0. The condition says that Ek is the isotypical component of E⊥0 corresponding to

the representation (R2, ρk ).
Given X together with a decomposition into subspaces Ek satisfying condition (A1), we

write f ∈ C0
∇
(O), if f = L−Ψ : Λ→ X satis�es (A2)–(A5), O is an open, bounded, invariant

set with closure contained in Λ and f (∂O) ⊂ X \ {0}.

Theorem 2.2. For f ∈ C0
∇
(O) there exists a degree

S1-deg∇(f ,O) =
(
d∇k (f ,O)

)
k ∈N0

∈

∞⊕
k=0
Z

with the following properties:

(D1) (Existence) If d∇k (f ,O) , 0 for some k ∈ N0, then there exists u ∈ OK with f (u) = 0
where K = S1 if k = 0, resp. K = Zk if k ≥ 1.

(D2) (Excision and additivity) If f −1(0) ∩ O ⊂ O1 ∪ O2 for two disjoint open S1-invariant
subsets O1,O2 ⊂ O then

S1-deg∇(f ,O) = S1-deg∇(f ,O1) + S
1-deg∇(f ,O2).

(D3) (Homotopy) LetU ⊂ [0, 1]×X be open and bounded, and leth : (U, ∂U) → (X ,X \{0})
be continuous. Ifht = h(t , ·) : Ut = {u ∈ X : (t ,u) ∈ U } → X , t ∈ [0, 1] lies in C0

∇
(Ut )

for each t ∈ [0, 1], then S1-deg∇(ht ,Ut ) is independent of t ∈ [0, 1].

(D4) (Multiplicativity) If fi : (Oi , ∂Oi ) → (Xi ,Xi \ {0}), i = 1, 2, are in C0
∇
(Oi ), then so is

f1 × f2 ∈ C
0
∇
(O1 × O2) and

S1-deg∇(f1 × f2,O1 × O2) = S1-deg∇(f1,O1)? S
1-deg∇(f2,O2).

The proof will be delayed until section 2.4.

2.1.3 Global continuation

Having a degree theory with the typical properties at hand one can prove the existence of
connected sets of solutions for parameter dependent equations, see for example the classic
continuation theorems by Leray and Schauder [52] or Rabinowitz [66]. We will formulate
now a version that will suit the continuation of periodic solutions in our application. Con-
sider a family of equations of the form

Lu − Ψ(r ,u) = 0, (r ,u) ∈ D ⊂ R+ × X . (2.1)

Here S1 acts trivially on R and X , L satisfy (A1)–(A3). Concerning the nonlinear map Ψ we
replace (A4),(A5) by corresponding parameter dependent assumptions:

(A6) Ψ : D → X is de�ned on an open and invariant subset D ⊂ R+ ×X , it is continuous,
equivariant, and Ψ(r , ·) is the gradient of K(r , ·), where K : D → R is S1-invariant,
continuous and di�erentiable with respect to the u component.



Chapter 2. An S1-equivariant degree for Hamiltonian systems 11

(A7) The image of Ψ is contained in Y . If B ⊂ R × X is bounded, closed, and B ⊂ D, then
the set Ψ(B) is relatively compact in Y .

The set of solutions of (2.1) will be denoted by S = { (r ,u) ∈ D : Lu − Ψ(r ,u) = 0 }.
Observe that if B ⊂ R × X is S1-invariant, closed, bounded and satis�es B ⊂ D then S ∩ B
is compact. This follows easily from (A7). For M ⊂ R+ × X and r ∈ R+ we use the notation
Mr = {u ∈ X : (r ,u) ∈ M}.

Theorem 2.3. Suppose (A1)-(A3), (A6), (A7) hold, and suppose there exist r0 > 0 and a rela-
tively open, S1-invariant subsetU ⊂ (0, r0] × X such that:

(i) For every r ∈ (0, r0]: Ur , ∅, bounded,Ur ⊂ Dr .

(ii) S ∩ ∂U = ∅ where ∂U is the relative boundary ofU in (0, r0] × X .

If S1-deg∇(L − Ψ(r0, ·),Ur0) , 0 then there exists a connected component C ⊂ S with the
following properties:

a) (C ∩ U)r , ∅ for every r ∈ (0, r0],

b) C \ U is not contained in a compact subset of D.

Of course, if needed, we can here replace the interval (0, r0] by an interval (r1, r0] with
0 < r1 < r0.

2.1.4 Nontrivial degree for nondegenerate solutions

Theorem 2.3 clearly relies on a nontrivial degree S1-deg∇(L − Ψ(r0, ·),Ur0) for some param-
eter value r0. As for the classical Brouwer degree we will obtain in 2.6 a formula for the
degree in the nondegenerate case. Admittedly this formula will be not very handy for the
actual computation, but it allows us to conclude S1-deg∇(L − Ψ(r0, ·),Ur0) , 0.

So consider again a map L − Ψ : Λ → X satisfying (A1)–(A5) and additionally the
following two assumptions:

(A8) Ψ : Λ→ Y is C1.

(A9) For any u ∈ Y the tangent vector E(u) ∈ X is de�ned and E : Y → X is a bounded
linear operator.

Assumption (A8) implies K is C2 with 〈DΨ(u)v,w〉 = D2K(u)[v,w] = 〈v,DΨ(u)w〉. The
notion of a nondegenerate solution u0 ∈ Λ of L −Ψ = 0 has to be adapted to the equivariant
setting, since every element of the orbit S1 ∗ u0 is a solution as well.

De�nition 2.4. A solution u0 ∈ Λ of Lu − Ψ(u) = 0 is called nondegenerate provided u0 ∈ Y
and Kern(L − DΨ(u0)) = RE(u0), i.e. the kernel of the derivative at u0 is as small as possible.

Theorem 2.5. Let u0 ∈ Λ be a nondegenerate solution of L − Ψ = 0 with Iu0 = Zk . Then there
exists an invariant neighborhood O of S1 ∗ u0 such that (L − Ψ)−1(0) ∩ O = S1 ∗ u0 and

d∇k (L − Ψ,O) ∈ {±1}.

Similar if Iu0 = S1, then d∇0 (L − Ψ,O) ∈ {±1}.

The detailed formula can be found in Theorem 2.24.
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2.2 Application to Hamiltonian systems

Here we will check that �rst order Hamiltonian systems give rise to the setting presented in
section 2.1 via the associated action functional. In order to not get lost in all the details we
have moved parts of the elaboration that are considered to be well known into appendix A.

2.2.1 The basic degree setting

Let R2N be equipped with a symplectic form ω : R2N × R2N → R, U ⊂ R2N open and
H : U → R be a C2 Hamilton function. Imagine that we are interested in a 2π -periodic
solution of the Hamiltonian system

Ûz = XH (z). (2.2)

Here XH is the associated Hamiltonian vector �eld, i.e. ω(XH (z), ·) = DH (z). By Lemma
A.1 there exists a skew-symmetric, regular matrix A that allows us to rewrite (2.2) in the
equivalent way:

AÛz = ∇H (z).

For example we have for the N -vortex system (1.5) H = HΩ , U = FN (Ω), A = −JNMΓ and
ω(v,w) = 〈v,MΓ JNw〉R2N .

Next we turn to the functional setting. A square-integrable function u : R/2πZ→ R2N

can be written (with respect to L2-norm) in terms of its Fourier series

u(t) =
∑
k ∈Z

e−JN ktαk , αk ∈ R
2N .

We abbreviate Bk (t) = e−JN kt ∈ R2N×2N and de�ne for s ∈ [0,∞) the Sobolev spaces

H s =

{ ∑
k ∈Z

Bkαk ∈ L
2 :

∑
k ∈Z

|k |2s |αk |
2 < ∞

}
.

In particular we need X = H 1, which is equipped with the usual scalar product

〈u,v〉X =

∫ 2π

0
〈u,v〉R2N + 〈 Ûu, Ûv〉R2N dt = 2π

∑
k ∈Z

(1 + k2) 〈αk , βk 〉R2N

for u =
∑
Bkαk , v =

∑
Bkβk . The group S1 acts on X via time shifts, i.e.

θ ∗ u = u(· + θ ) =
∑
k ∈Z

BkBk (θ )αk , θ ∈ S1, u =
∑
k ∈Z

Bkαk .

For k ∈ N0 let
Ek =

{
Bkαk + B−kα−k : αk ,α−k ∈ R2N }

.

Then Ej ⊥ Ek for j , k andX = clos
(⊕

k ∈N0
Ek

)
. Moreover, each Ek is a �nite-dimensional,

S1-invariant subspace with elements having isotropy group Zk for k ≥ 1 as desired by (A1).
Furthermore, we need

Xn =

n⊕
k=0

Ek =


∑
|k | ≤n

Bkαk : αk ∈ R2N


and the orthogonal projections Pn : X → Xn .
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The linear map L : X → X is de�ned by Lu = (id−∆)−1A Ûu, where (id−∆) : H s+2 → H s

is the isomorphism
u =

∑
k ∈Z

Bkαk 7→ u − Üu =
∑
k ∈Z

(1 + k2)Bkαk ,

such that for u ∈ H 1 = X , v ∈ H 0 = L2 the relation〈
u, (id−∆)−1v

〉
X =

∫ 2π

0
〈u,v〉R2N dt = 〈u,v〉L2

holds true. Then clearly L is a bounded, S1-equivariant operator with Kern(L) = E0 and
L(Ek ) = Ek for k , 0. Moreover, the skew-symmetry of A implies

〈Lu,v〉X = 〈A Ûu,v〉L2 = 〈u,A Ûv〉L2 = 〈u,Lv〉X ,

so L is self-adjoint and thus assumption (A2) holds.
For (A3) observe that L+P0 is an isomorphism betweenX and the Banach space Y = H 2,

which is equipped with the usual H 2-norm, and clearly H 2 ↪→ H 1 in a continuous way.
So we can turn to the nonlinear part. Since H 1 contrary to H 1/2 embeds into the space

of continuous 2π -periodic functions, the set Λ = {u ∈ X : u(t) ∈ U for all t ∈ R } de�nes an
open subset of X . Let K : Λ→ R,

K(u) =

∫ 2π

0
H (u(t)) dt .

Then H ∈ C2(U ,R) implies that K is of class C2 as well. Additionally both Λ and K are
invariant with respect to the S1-action on X . So the gradient Ψ : Λ→ X ,

Ψ(u) = ∇K(u) = (id−∆)−1∇H (u)

is S1-equivariant and satis�es (A4).
In order to see that (A5) is valid observe that Ψ splits

X ⊃ Λ
∇H
−−−→ X = H 1 (id−∆)

−1

−−−−−−→ H 3 ↪→ H 2 = Y .

where∇H : Λ→ X maps bounded subsets with closure contained inΛ into bounded subsets,
sinceH is C2. Therefore the compactness of the embeddingH 3 ↪→ H 2 shows that (A5) holds.
We’d like to recall that – if needed – more details and references are given in appendix A.

So far we can conclude that the equivariant degree of section 2.1 can be applied to the
H 1-gradient of the action functional Φ : Λ→ R,

Φ(u) =
1
2

∫ 2π

0
〈A Ûu,u〉R2N dt −

∫ 2π

0
H (u) dt =

1
2 〈Lu,u〉X − K(u).

2.2.2 Nondegenerate solutions and nontrivial degree

Critical points of Φ, i.e. solutions of ∇Φ = L − Ψ = 0, are 2π -periodic solutions of (2.2)
in the classical sense. Hence Lu0 − Ψ(u0) = 0 automatically implies u0 ∈ Y . In order to
be able to obtain by Theorem 2.5 a nontrivial degree for a solution u0 we need to convince
ourselves that (A8) and (A9) are satis�ed. Indeed ∇H ∈ C1(Λ,L2) clearly gives Ψ ∈ C1(Λ,Y )
as required in (A8) and the tangent vector �eld E : Y → X is just given by u 7→ Ûu. Thus (A9)
holds.

Let now u0 ∈ Y be a solution of L − Ψ = 0. By De�nition 2.4 in the abstract setting,
u0 is called nondegenerate, if Lv − DΨ(u0)v = 0 implies v ∈ RE(u0). Translated to the
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Hamiltonian setting this means that Ûu0 is up to scalar multiples the only 2π -periodic solution
of the linearization of (2.2) along u0(t), i.e. of

A Ûv = ∇2H (u0(t))v . (2.3)

So for Hamiltonian systems we do not have to verify the nondegenerateness condition of
Theorem 2.5 by investigating Kern(L − DΨ(u0)) in the Hilbert space setting, rather we can
use equation (2.3) and especially spectral properties of the associated monodromy operator.
The monodromy operator is the matrix M(2π ), where M : R→ R2N×2N solves{

A ÛM = ∇2H (u0(t))M

M(0) = idR2N .

Its eigenvalues are called Floquet multipliers of the solution u0. Of course 1 is always a
multiplier, but note also that, since we are dealing with Hamiltonian systems, the algebraic
multiplicity of 1 is at least 2, see for example [61].

By Theorem 2.5 and our discussion we can summarize:

Proposition 2.6. Whenever u0 is a 2π -periodic solution of (2.2), such that the Floquet multi-
plier 1 has geometric multiplicity one, then the associated local degree S1-deg∇(L − Ψ,Bε (u0)),
ε > 0 su�ciently small is nontrivial.

The considerations above of course remain valid, if the period 2π is replaced by T > 0
and spaces and maps are adapted to this period.

2.2.3 Continuation of periodic solutions

Consider now on (R2N ,ω) a family of Hamiltonian systems

Ûz = XHr (z), (2.4)

where H : D → R, (r , z) 7→ Hr (z) is de�ned on an open subset D of R+ × R2N , twice
di�erentiable with respect to z and H itself is continuous as well as the derivatives DzH ,
D2
zH are. We will obtain such families by a suitable rescaling of the N -vortex Hamiltonian

HΩ . Suppose we know that (2.4) has a 2π -periodic solution ur ∗ for some parameter value
r ∗. It is then natural to ask if there are periodic solutions for other parameter values r , r ∗

emanating from ur ∗?
This question can be answered be means of the global continuation theorem 2.3. LetX ,Y

and L be de�ned as before and set

D =
{
(r ,u) ∈ R+ × X : (r ,u(t)) ∈ D for all t ∈ R

}
.

Then one can see as in the discussion before that Ψ : D → X de�ned as the gradient ∇uK
of K : D → R,

K(r ,u) =

∫ 2π

0
Hr (u) dt

satis�es (A6) and (A7). So the equations L − Ψ(r , ·) = 0 are accessible for Theorem 2.3.
Before we investigate the global aspect we �rst prove a local continuation Theorem.

Theorem 2.7. Let H , D and D be as just described and suppose that ur ∗ is a 2π -periodic
solution of (2.4) with r = r ∗, such that the Floquet multiplier 1 has geometric multpilicity one.
Then there exists a continuous map I 3 r 7→ u(r ) ∈ X with I ⊂ R+ being an interval around r ∗,
u(r

∗) = ur ∗ ,
〈
u(r ), Ûur ∗

〉
X = 0, Ûu(r ) = XHr

(
u(r )

)
and the Floquet multiplier 1 ofu(r ) has geometric
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multiplicity one. Moreover, if (r , z) 7→ DHr (z) is of class C1, then the maps I 3 r 7→ u(r ) ∈ X
and I ×R 3 (r , t) 7→ u(r )(t) ∈ R2N are C1 as well. Also the second order derivatives ∂r ∂tu(r )(t),
∂t ∂ru

(r )(t) exist, are equal and continuous.

Proof. Clearly u is a 2π -periodic solution of (2.4), if and only if (r ,u) is a zero of the map
L − Ψ : D → X , i.e. i� Lu − Ψ(r ,u) = (id−∆)−1 (A Ûu − ∇Hr (u)) = 0. Recall also that ur ∗ is
contained in Y as a solution of (2.4).

By our assumption we now that Kern (L − DuΨ(r
∗,ur ∗)) = R Ûur ∗ . Hence if we consider

f : { (r ,u) ∈ D : 〈u, Ûur ∗〉X = 0 } → {u ∈ Y : 〈u, Ûur ∗〉X = 0 },

f (r ,u) = Lu − Ψ(r ,u) −
〈Lu − Ψ(r ,u), Ûur ∗〉X

‖ Ûur ∗ ‖
2
L2

(id−∆)−1 Ûur ∗ ,

where the domain is equipped with ‖·‖X and the range with ‖·‖Y , thenur ∗ is indeed orthog-
onal to Ûur ∗ , f (r ∗,ur ∗) = 0 and KernDu f (r

∗,ur ∗) = {0}. The latter uses that L−DuΨ (r
∗,ur ∗)

is as a second derivative selfadjoint and therefore Du f (r
∗,ur ∗) [v] = Lv − DuΨ(r

∗,ur ∗)[v].
But Du f (r

∗,ur ∗) is also onto, since by (A5) L −DuΨ(r
∗,ur ∗) : X → Y is an index 0 Fredholm

operator. Thus the derivative Du f (r
∗,ur ∗) is an isomorphism.

The implicit function theorem implies the existence of a continuous local family
(
u(r )

)
r ∈I

contained in the X -orthogonal complement of Ûur ∗ satisfying u(r
∗) = ur ∗ and the equation

Lu(r ) = Ψ
(
r ,u(r )

)
+ λr (id−∆)−1 Ûur ∗ ∈ H

3 for some λr ∈ R. Hence u(r ) ∈ Y .
By shrinking I if necessary we can assume that

〈
Ûur ∗ , Ûu

(r )
〉
L2 , 0 for r ∈ I . The invariance

of the action functional under time translations then implies

0 =
〈
Lu(r ) − Ψ

(
r ,u(r )

)
, Ûu(r )

〉
X〈

Ûur ∗ , Ûu(r )
〉
L2

= λr

and therefore Lu(r ) − Ψ
(
r ,u(r )

)
= 0 as desired.

By continuity we have KernDu f
(
r ,u(r )

)
= {0} for r close to r ∗. So if we suppose that

w is linear independent to Ûu(r ) and satis�es Lw − DuΨ
(
r ,u(r )

)
w = 0, then a suitable lin-

ear combination w⊥ = αw + β Ûu(r ) is orthogonal to Ûur ∗ and satis�es Du f
(
r ,u(r )

)
w⊥ = 0.

It follows w⊥ = 0, which contradicts the linear independence of w and Ûu(r ). Therefore
Kern

(
L − DuΨ

(
r ,u(r )

) )
= R Ûu(r ), which is equivalent to saying that 1 is a geometrically sim-

ple Floquet multiplier of u(r ).
The regularity of the map I × R 3 (r , t) 7→ u(r )(t) ∈ R2N follows from the regularity of

I 3 r 7→ u(r ) ∈ X , which implies the same regularity for I 3 r 7→ u(r )(0) ∈ R2N , and the
smooth parameter dependence of the �ow associated to (2.4), see Thm. 9.2 of [3]. �

In general the question of continuation of a periodic solution arises also for a �xed,
parameter independent Hamiltonian system as in (2.2) and of course also for arbitrary ODEs.
In the Hamiltonian setting we can apply Theorem 2.7 to give an answer to this question.
Indeed if H ∈ C2(U ,R) is a �xed Hamiltonian, we introduce the period as a parameter via
Ĥ : R+ × U → R, Ĥ (r , z) = rH (z). Clearly Ĥ is C2 and if u is a 2π -periodic solution of
the system Ûu = XĤr

(u), then u(·/r ) is a 2πr -periodic solution of the original equation (2.2).
This relation also holds in the other direction. So Theorem 2.7 applies if z∗(t) = u0(t/r0) is a
2πr0-periodic solution of (2.2) with geometrically simple Floquet multiplier 1.

Of course local continuation results for parameter dependent and independent systems
can be found in the literature. With the �ow φ(t , z) of the �xed system Ûz = XH (z), such a
Theorem for example reads:

Theorem 2.8 (Prop. 9.1.1 of [61] or Thm. 2.4 of [63]). Let u0(t) = φ(t , z0) be a T0-periodic
solution of (2.2), such that the Floquet multiplier 1 has algebraic multiplicity 2. Then there
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exist C1 maps T : (−ε0, ε0) → R, z : (−ε0, ε0) → R
2N with T (0) = T0 and z(0) = z0, such that

uε (t) = φ(t , z(ε)) is aT (ε)-periodic solution of (2.2) contained in the same energy surface as u0.

Recall that φ is C1, since H is C2. The proof relies on the application of the implicit
function theorem to a symplectic Poincaré section associated to u0, see section 2.1 of [63]
for a sophisticated discussion of these type of continuation theorems. The advantage of the
access via a Poincaré section is that it not only applies to Hamiltonian systems, but also to
ODEs, and that if �rst integrals like the Hamiltonian exist, the continuation happens to be
in the same level sets of the integrals.

On the other hand in the more abstract point of view we have additionally the degree
theory with Theorem 2.3 at hand allowing us to obtain even global continua of periodic
solutions. Recall that Λ = {u ∈ X : u(t) ∈ U for all t ∈ R }.

Corollary 2.9. Let 0 ≤ r1 < r2 and (r1, r2) 3 r 7→ u(r ) ∈ Λ be C1 and such that every u(r )(·/r )
is a 2πr -periodic solution of (2.2) with Floquet multiplier 1 having geometric multiplicity 1.
De�ne Cl =

{ (
r ,θ ∗ u(r )

)
: r ∈ (r1, r2), θ ∈ S

1 }
. Then there exists an equivariant, connected

set C ⊂ R+ × Λ with

(i) Cl ⊂ C,

(ii) (r ,u) ∈ C ⇒ u(·/r ) is a 2πr -periodic solution of (2.2),

(iii) Cд = (C \ Cl ) ∩ ((r1,∞) × X ) satis�es at least one of the following properties:

a) Cд is unbounded,

b) dist(Cд, ∂Λ) = 0,
c) inf

{
r : (r ,u) ∈ Cд

}
= r1.

Proof. Let f : R+×Λ→ X , f (r ,u) = Lu−rΨ(u)with L, Ψ as in section 2.2.1 and S = f −1(0).
We know that Cl ⊂ S. Let C ⊂ S denote the connected component of Cl . Then (i) and (ii)
are trivially satis�ed. De�ne Cд = (C \ Cl ) ∩ ((r1,∞)×X ) and assume that the three options
a), b) and c) of (iii) are wrong. Thus we can choose r1 < r0 < inf

{
r : (r ,u) ∈ Cд

}
. The

implicit function theorem, cf. proof of Theorem 2.7, provides ε > 0 and δ > 0 such that the
closure ofU = (r0 − δ , r0] ×

(
S1 ∗ Bε (u

(r0))
)

is contained in (r1,∞) × Λ and

f −1(0) ∩ U =
{
θ ∗ u(r ) : r ∈ [r0 − δ , r0], θ ∈ S

1
}
.

By Proposition 2.6 we also have S1-deg∇(L − r0Ψ,Ur0) , 0. Thus Cд is not contained in a
compact subset of D = (r0 − δ ,∞) × Λ by Theorem 2.3. But since (A5) is satis�ed by Ψ this
contradicts our assumption that a), b) and c) are wrong. �

Typically this Corollary will be applied to a local family of periodic solutions having
arbitrarily small periods, i.e. r1 = 0.

Remark 2.10. In the situation of Corollary 2.9 let Eд =
{
u(·/r ) : (r ,u) ∈ Cд

}
denote the set of

the actual solutions of (2.2). The options a) − c) say that at least one of the following properties
is true:

a) The periods of the solutions are unbounded, sup
{

period of z : z ∈ Eд
}
= ∞, for exam-

ple the solutions might merge into a heteroclinic orbit or a stationary solution, which is
nothing but a periodic solution having any period. Another option here is that the solu-
tions are unbounded in space, i.e. sup

{
|z(t)| : z ∈ Eд, t ∈ R

}
= ∞, or in terms of their

velocity, sup { | Ûz(t)| : z ∈ E, t ∈ R } = ∞.
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b) The solutions approach the boundary ∂U of the domain of the Hamiltonian H , that is
inf

{
dist(z(R), ∂U ) : z ∈ Eд

}
= 0.

c) For every r ∈ (r1, r2) there exists a 2πr -periodic solution z ∈ Eд of (2.2). Together with
the solutions induced by the local graph El =

{
u(·/r ) : (r ,u) ∈ Cд

}
we then have at

least two distinct periodic orbits for every period in (2πr1, 2πr2).

An illustration of a part of such a global set of solutions can be seen in Figures 5.2, 5.3.
De�nition 2.11. We say that a family of periodic solutions

(
z(s)

)
s ∈(s1,s2)

of (2.2) having periods
(T (s))s ∈(s1,s2) gives rise to a global continuum of periodic solutions, if there exists a connected
set C ⊂ R+ × Λ as in Corollary 2.9 containing the set

Cl =

{ (
T (s)

2π ,θ ∗ z
(s)

(
T (s)

2π ·
))

: s ∈ (s1, s2), θ ∈ S
1
}
⊂ R+ × Λ.

Note that by the combination of Theorem 2.7 and Corollary 2.9 already a single periodic
solution with geometrically simple Floquet multiplier 1 gives rise to a global continuum.

2.2.4 Choreographic setting

Here we will discuss the application of our degree to periodic solutions with a special sym-
metry – so called choreographic solutions. Of course this requires a certain symmetry of
the Hamiltonian H : D ⊂ R2N → R and the symplectic form. Let N = dl with d, l ≥ 1 and
consider R2N as the product R2N =

(
R2d ) l . For the N -vortex case we have d = 1, l = N .

As another example d = 3, l ∈ N can be used for the classical l-body problem of celestial
mechanics.

The permutation group Σl of l symbols acts orthogonally on (R2d )l via

σ ∗ z =
(
zσ −1(1), . . . , zσ −1(l )

)
, z = (z1, . . . , zl ) ∈ (R

2d )l , σ ∈ Σl .

We assume that H and the skew-symmetric matrix A associated to ω are equivariant with
respect to a certain permutation σ0 ∈ Σl , i.e. we assume σ0 ∗ D ⊂ D, H (σ0 ∗ z) = H (z) and
A(σ0 ∗ z) = σ0 ∗ (Az) for any z ∈ D.
De�nition 2.12. A T -periodic solution z(t) ∈ D of AÛz = ∇H (z) is called σ0-choreographic or
just choreographic, if there exists θ0 ∈ R such that σ0∗z(t+θ0) = z(t) for every t ∈ R. Moreover,
z(t) is called σ0-nondegenerate provided R Ûz are the onlyT -periodic, σ0-choreographic solutions
of the linearization A Ûv = ∇2H (z)v .

If ord(σ0) denotes the order of the permutation of σ0, then ord(σ0)θ0 is necessarily a
multiple of the minimal period of z. Note also that the notion of σ0-nondegenerateness of a
solution will be adapted, if additional symmetries are present, see De�nition 3.6 and Example
3.7.

Let us assume that we are again interested in 2π -periodic solutions. By our symmetry
assumption the action functional Φ : Λ→ R,

Φ(u) =
1
2

∫ 2π

0
〈A Ûu,u〉R2N dt −

∫ 2π

0
H (u) dt

is invariant under the action of σ0 induced onX = H 1, i.e. (σ0 ∗u)(t) := σ0 ∗ (u(t)), σ0 ∗Λ ⊂ Λ
and Φ(σ0 ∗ u) = Φ(u) for any u ∈ Λ. Combining this with the invariance with respect to
time translations, we get Φ((σ0 ∗ u)(· + θ0)) = Φ(u) for any u ∈ Λ. Di�erentiation therefore
implies the equivariance

(σ0 ∗ ∇Φ(u))(· + θ0) = ∇Φ((σ0 ∗ u)(· + θ0)).
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Hence, if we de�ne

Xchor =
{
u ∈ H 1 : (σ0 ∗ u)(· + θ0) = u

}
, Λchor = Λ ∩ Xchor,

then ∇Φ(Λchor) ⊂ Xchor. This shows that every critical point of the restriction Φ |Λchor is also
a critical point of Φ and therefore a 2π -periodic solution of AÛz = ∇H (z) which in addition is
σ0-choreographic.

The requirements of the abstract degree setting are induced in a canonical way: The
space Xchor is a complete subspace of X , decomposition into �nite-dimensional subspaces
is given by Echor

k = Ek ∩ Xchor and instead of Y = H 2 we of course have to take the space
Ychor :=

{
u ∈ H 2 : (σ0 ∗ u)(· + θ0) = u

}
. By the equivariance of A, Lchor := L |Xchor maps

Xchor into Ychor. So the gradient ∇Φchor of the restriction Φchor = Φ |Λchor satis�es conditions
(A1)–(A5) and (A8),(A9).

In analogy to Proposition 2.6 we have

Proposition 2.13. Whenever u0 is a 2π -periodic, σ0-nondegenerate solution of AÛz = ∇H (z),
then the associated local degree S1-deg∇(∇Φchor,Bε (u0)), ε > 0 su�ciently small is nontrivial.

Moreover, conditions (A6) and (A7) for the global continuation remain true if we consider
a continuous family H : D ⊂ R+ × R2N → R of Hamiltonians with the same regularity
assumptions as in 2.2.3 and additionally Hr (σ0 ∗ z) = Hr (z) for any (r , z) ∈ D.

Remark 2.14. The local and global continuation theorems 2.7, 2.9 and De�nition 2.11 have to
be adapted to the choreographic context in the following way:

• A 2π -periodic, σ0-nondegenerate solution ofAÛz = ∇Hr ∗(z) gives rise to a continuous local
family I 3 r 7→ u(r ) ∈ Xchor consisting of σ0-nondegenerate solutions of AÛz = ∇Hr (z)
and satisfying the remaining properties of Theorem 2.7.

Now we consider a �xed Hamiltonian system AÛz = ∇H (z):

• Let (r1, r2) 3 r 7→ u(r ) ∈ Λchor be C1 and such that every u(r )(·/r ) is a 2πr -periodic, σ0-
nondegenerate solution. Then there exists an equivariant, connected set C ⊂ R+ × Λchor
of solutions satisfying the properties of Corollary 2.9.

• A family
(
z(r )

)
r ∈(r1,r2)

of choreographic solutions is said to give rise to a global continuum
of choreographic solutions, if there exists a connected set C ⊂ R+ × Λchor satisfying the
properties of Corollary 2.9.

Summarizing we can say that a choreographic solution, which is nondegenerate in the
choreographic sense, gives rise to a local graph and a global continuum of periodic solutions
sharing the same choreographic pattern.

2.3 Equivariant degree theories and their application to ODEs

There exists a vast amount of equivariant degree theories that have been used to study
di�erential equations. In this section we brie�y introduce some of them. In particular we
provide in 2.3.1, 2.3.2 the degree theories needed for our modi�cation. For a better overview
we refer to the books [7, 44].

First of all we would like to demonstrate that the usual Leray-Schauder degree is of
limited help in the equivariant setting. Consider L − Ψ : Λ → X as in Section 2.1.4, let
u0 ∈ Λ be a nondegenerate solution of L − Ψ = 0 with E(u0) , 0 and suppose that U ⊂ Λ
is a bounded, open and S1-invariant neighborhood of u0, such that ∂U contains no solution
of L − Ψ = 0 and such that the �xed point set U S1 is empty. By assumption (A5) the map
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idX −K := (L + P0)
−1 ◦ (L − Ψ) : Λ → X is a compact perturbation of identity and thus

accessible for the Leray-Schauder degree. But since idX −K is equivariant, Thm. 2 of [14]
implies

deg(idX −K ,U ) = deg(idX S1 −KS1
,U S1
) = deg(idX S1 −KS1

, ∅) = 0,

where KS1
= K

|X S1 : ΛS1
→ X S1 . Thus the Leray-Schauder degree only detects solutions

with isotropy group S1, i.e. solutions that correspond in the Hamiltonian setting to stationary
solutions.

So one has to use a degree theory that takes the S1-symmetry into account. Doing this
in the case of Hamiltonian systems one possibility is the application of such an equivariant
degree after a �nite-dimensional reduction – the so called Amann-Zehnder saddle point
reduction. This has been done for example by Dancer [27] with the degree theory developed
in the same paper or by Rybicki [71] with the degree presented below. But this reduction
relies on the boundedness of the second derivative of the Hamiltonian and thus in general
can not be done globally. An example with a global �nite-dimensional reduction can be
found in [37]. In this paper García-Azpeitia and Ize actually study the N -vortex problem
on the whole plane in a rotating coordinate frame. In particular they prove the existence of
global continua of periodic solutions bifurcating from the N + 1-Gon con�guration.

In order to avoid �nite-dimensional reductions Rybicki develops in [70] a degree for
S1-equivariant strongly inde�nite functionals. This degree applies to the gradient of a S1-
invariant functional

∇F : H → H , ∇F (u) = Au + K(u),

whereH is a Hilbert space equipped with a suitable approximation scheme, A a self-adjoint
equivariant Fredholm operator andK a compact map. The situation above arises when look-
ing at the action functional of a Hamiltonian system de�ned on the spaceH 1

2 , i.e. the gradient
of F : H 1

2 → R,

F (u) =
1
2

∫ 2π

0
〈 Ûu, JNu〉R2N dt −

∫ 2π

0
H (u) dt

with a suitable Hamiltonian H ∈ C1(R2N ,R). But as already mentioned before in the case
of the N -vortex Hamiltonian HΩ , which is de�ned on the open subset FN (Ω) it is not clear
how to work on H

1
2 , since H 1

2 does not embed into the space of continuous functions. While
working in the space H 1, where this problem does not occur, we have seen that the gradient
of the action functional Φ has the form ∇Φ = L − Ψ. But the linear map L is no longer
Fredholm, because L maps H 1 into H 2. Hence we can not use the degree from [70].

Neither we can use the in�nite-dimensional version of the S1-orthogonal degree, cf. Sec-
tion 2.3.2, which requires ∇Φ to be a compact perturbation of identity. On the other hand if
we instead pass to (L + P0)

−1 ◦ (L − Ψ) = id−K , we loose the orthogonality condition stated
in (2.5) below.

Also the degree theory introduced by Dylawerski et al., cf. Section 2.3.1, has been applied
to periodic solutions of ordinary di�erential equations, but the notion of an “elementary
periodic point” in Thm. 7.3 of [29] is never satis�ed in the case of Hamiltonian systems.

The modi�cation of the degree for S1-orthogonal maps (Theorem 2.2) allows us to handle
the action functional of a �rst order Hamiltonian system on the space H 1.

2.3.1 The degree of Dylawerski et al.

Let V = (Rn , ρ) be a �nite dimensional, orthogonal representation of S1, i.e. ρ : S1 → SO(n)
is a continuous homomorphism. We usually do not distinguish betweenV and Rn and write
as before θ ∗v instead of ρ(eiθ )v .
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Add toV a trivial representation of S1, i.e. we consider (Rn ⊕ R, ρ ⊕ idR), and denote for
any closed subgroup K ≤ S1 and any subsetU ⊂ V ⊕ R the corresponding �xedpoint set by
U K = { x ∈ U : K ∗ x = x }. Note again that K ≤ S1 closed implies K = S1 or K � Zk .

Theorem2.15 (Thm. 1.2 of [29]). LetΩ run through the family of all open, bounded, invariant
subsets ofV ⊕ R, f : Ω → V through S1-equivariant, continuous maps with f (∂Ω) ⊂ V \ {0}.
Then there exists a function

S1-deg(f ,Ω) =
(
d0(f ,Ω), (dk (f ,Ω))∞k=1

)
∈ Z2 × Z

N,

called the S1-degree, satisfying the following conditions:

(a) If dk (f ,Ω) , 0 then f −1(0) ∩ ΩK , ∅ with K = S1 if k = 0, K = Zk if k > 0.

(b) If Ω1,Ω2 ⊂ Ω are open, invariant with Ω1 ∩ Ω2 = ∅ and f −1(0) ⊂ Ω1 ∪ Ω2 then
S1-deg(f ,Ω) = S1-deg(f ,Ω1) + S

1-deg(f ,Ω2).

(c) If h : ([0, 1] × Ω, [0, 1] × ∂Ω) → (V ,V \ {0}) is a S1-equivariant homotopy then
S1-deg(h0,Ω) = S1-deg(h1,Ω).

(d) Suppose W is another representation of S1 and let U be an open, bounded, invariant
subset ofW such that 0 ∈ U . De�ne F : U × Ω →W ⊕ V by F (w,x) = (w, f (x)). Then
S1-deg(F ,U × Ω) = S1-deg(f ,Ω).

The next theorem tells us how to calculate the S1-degree in a special case. Let Ω ⊂ V ⊕R
be as in Theorem 2.15. Suppose f : (Ω, ∂Ω) → (V ,V \{0}) is S1-equivariant and continuously
di�erentiable, such that 0 is a regular value with f −1(0) = S1 ∗ x0. Suppose further that the
isotropy group K of x0 is �nite, i.e. K = Zk for a k ∈ N. As in the in�nite-dimensional case
let E(x0) =

d
dθ |θ=0(θ ∗ x0), which is a tangent vector to the submanifold S1 ∗ x0 at x0.

The derivative A = Df (x0) : V ⊕ R→ V is K-equivariant and splits into

A = AK +A⊥ : (V K ⊕ R) ⊕ (V K )⊥ → V K ⊕ (V K )⊥.

We choose an arbitrary linear functional a : V K ⊕ R → R satisfying a(E(x0)) = 1 and
de�ne A : V K ⊕ R → V K ⊕ R, x 7→ (AK (x),a(x)). The map A is an isomorphism, since
E(x0) ∈ KernAK and 0 is a regular value of f .

Theorem 2.16 (Thm. 4.1 of [29]). (i) If detA⊥ > 0 then

dj (f ,Ω) =
{

sign detA if j = k
0 else.

(ii) If detA⊥ < 0 then k is even and

dj (f ,Ω) =


sgn detA if j = k
−sgn detA if j = k/2
0 else.

2.3.2 The degree of Rybicki

Let V still be a �nite dimensional orthogonal S1-representation. Rybicki uses in [69] the
degree of DGJM to construct a degree theory for S1-orthogonal maps. These are continuous
equivariant maps f : V → V satisfying

〈f (v),E(v)〉V = 0 (2.5)
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for everyv ∈ V , where E(v) = d
dθ |θ=0(θ ∗v) as before. A subclass of S1-orthogonal maps form

gradients of S1-invariant functionals on V . For the de�nition of Rybicki’s degree assume
that f : (Ω, ∂Ω) → (V ,V \ {0}) is S1-orthogonal and that there exists ν > 0 such that
v = v0 + v⊥ ∈

(
V S1
⊕ (V S1

)⊥
)
∩ Ω, |v⊥ | ≤ ν implies f (v) − v ∈ V S1 . A map satisfying

this condition is called S1-normal. Now let Uν := {v = v0 +v⊥ ∈ Ω : |v⊥ | > ν } × (−1, 1) ,
f̂ : Uν → V , f̂ (v, λ) = f (v) + λE(v) and de�ne

S1-deg⊥(f ,Ω) = (d⊥k (f ,Ω))
∞
k=0 ∈ Z

N0

via

d⊥k (f ,Ω) =
{

deg
(
f
|ΩS1 ,ΩS1 ) if k = 0,

dk ( f̂ ,Uν ) else.

Here deg denotes the classical Brouwer degree. Note that f̂ is indeed admissible for Uν due
to the S1-normality of f . For a general S1-orthogonal map д, Rybicki shows the existence of
an admissible homotopy connecting д with a S1-normal map f .

The de�nition S1-deg⊥(д,Ω) := S1-deg⊥(f ,Ω) turns out to be indeed well-de�ned and
the degree de�ned in that way has the usual properties:

Theorem 2.17 (Thm. 3.9 of [69]). Let Ω ⊂ V be an open, bounded and S1-invariant subset and
f : (Ω, ∂Ω) → (V ,V \ {0}) be S1-orthogonal. The degree S1-deg⊥ has the following properties:

a) if d⊥k (f ,Ω) , 0 for some k ∈ N0, then there exists v ∈ ΩK with f (v) = 0 where K = S1

if k = 0, resp. K = Zk if k ≥ 1.

b) if Ω0 ⊂ Ω is an open, S1-invariant subset such that f −1(0) ∩ Ω ⊂ Ω0, then

S1-deg⊥(f ,Ω) = S1-deg⊥(f ,Ω0)

c) if Ω1 and Ω2 are open S1-invariant subsets of Ω such that Ω1 ∩ Ω2 = ∅ and f −1(0) ∩ Ω
is contained in the union Ω1 ∪ Ω2, then

S1-deg⊥(f ,Ω) = S1-deg⊥(f ,Ω1) + S
1-deg⊥(f ,Ω2).

d) if h : (Ω × [0, 1], ∂Ω × [0, 1]) → (V ,V \ {0}) is a S1-orthogonal homotopy, then

S1-deg⊥(h(·, 0),Ω) = S1-deg⊥(h(·, 1),Ω)

e) letW be another representation of the group S1 and letU ⊂W be an open, bounded and
S1-invariant subset such that 0 ∈ U . De�ne a map F : U × Ω →W ⊕ V by the formula
F (w,v) = (w, f (v)). Then

S1-deg⊥(F ,U × Ω) = S1-deg⊥(f ,Ω).

Moreover, restricted to the class of gradients he could in Thm. 2.11 of [72] also prove the
following multiplication rule.

Theorem 2.18 (Thm. 2.11 of [72]). Let Ωi ⊂ Vi , i = 1, 2 be open, invariant and bounded
subsets of S1-representations Vi . If fi : (Ωi , ∂Ωi ) → (Vi ,Vi \ {0}) are gradients of S1-invariant
functionals, then

S1-deg⊥(f1 × f2,Ω1 × Ω2) = S1-deg⊥(f1,Ω1)? S
1-deg⊥(f2,Ω2).
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A formula for the computation of Rybicki’s degree can also be found in [69]. We will
here state it only in the case of a linear isomorphism, which will be needed for our modi�-
cation. Suppose that the �nite-dimensional representation V is given in terms of the classi-
�cation Theorem 2.1, i.e. V =

⊕r
i=1Vmi with Vmi � R[ki ,mi ], and consider an equivariant,

symmetric isomorphism T : V → V . By Schur’s Lemma, see 3.22 in [1], each restriction
Tmi = T |Vmi

is an isomorphism Vmi → Vmi . Let µmi denote the Morse index of Tmi . Due
to the equivariance of T , the indices µmi are even for mi , 0. Indeed if v is an eigenvec-
tor, so is E(v). It follows that sign detT = 1, if mi , 0 for all i = 1, . . . , r , and otherwise
sign detT = sign detT0. For equivariant isomorphisms we let

S1-deg⊥(T ,V ) := S1-deg⊥(T ,B1(0)).

Proposition 2.19 (Cor. 4.3 of [69]). The orthogonal degree S1-deg⊥(T ,V ) of an equivariant,
symmetric isomorphism T : V → V is given by

d⊥j (T ,V ) =


sign detT if j = 0,
1
2µmi sign detT if j =mi ,

0 else.

2.4 Construction of the degree

Here we will extend the �nite-dimensional degree of Rybicki to our in�nite-dimensional
setting. We consider the S1-equivariant map L − Ψ : Λ → X de�ned on an open, invariant
subset Λ of an in�nite-dimensional, orthogonal S1-representation X as in section 2.1.2. Let
O ⊂ X be open, invariant, bounded with O ⊂ Λ and such that Lu −Ψ(u) = 0 has no solution
on ∂O. By the assumptions (A1)–(A5) the set of solutions S = (L − Ψ)−1(0) ∩ O is compact.

Lemma 2.20. There exists n0 ∈ N and an invariant neighborhood Bε (S) ⊂ O such that for
everym,n ≥ n0 and every t ∈ [0, 1] the following holds true

a) u ∈ Bε (S) implies (Pm + t(Pn − Pm)) ∈ O,

b) Lu − (Pm + t(Pn − Pm))Ψ (((Pm + t(Pn − Pm))u) = 0 has no solution on ∂Bε (S),

c) Lu − PnΨ(u) = 0 has no solution in O \ Bε (S).

Proof. We prove the properties step-by-step. If the �rst one is wrong, we can �nd sequences
mk ,nk ≥ k , tk ∈ [0, 1] and uk ∈ B 1

k
(S) satisfying pk :=

(
Pmk + tk (Pnk − Pmk )

)
uk < O. It

follows the existence of a solution wk ∈ S satisfying ‖uk −wk ‖X ≤
1
k . By the compactness

of S we can assume wk → w , as well as tk → t , for some w ∈ S, t ∈ [0, 1]. It follows
uk → w and then X \ O 3 pk → w ∈ S, which contradicts dist(∂O,S) > 0.

Now we �x Bε (S) and an index n1 ∈ N, such that a) is true for any m,n ≥ n1 and
t ∈ [0, 1]. As a consequence Ψ ((Pm + t(Pn − Pm))u) is well-de�ned for such m,n, t and
u ∈ Bε (S). Next we assume b) to be wrong and �nd sequences mk ,nk ≥ k ≥ n1, tk ∈ [0, 1],
uk ∈ ∂Bε (S) such that

Luk −Qk (uk ) := Luk −
(
Pmk + tk (Pnk − Pmk )

)
Ψ

( (
Pmk + tk (Pnk − Pmk )

)
uk

)
= 0

for all k ≥ n1. By (A3) this equation can be rewritten as

uk − (L + P0)
−1 [P0uk +Qk (uk )] = 0.
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Since X0 = E0 is �nite-dimensional and since (L+P0)
−1 commutes with the projections Pmk ,

Pnk , we may by (A5) assume that tk → t ∈ [0, 1], P0uk → v and (L + P0)
−1[Qk (uk )] → w .

Thus uk ∈ ∂Bε (S) converges to u := v +w ∈ ∂Bε (S) with Lu − Ψ(u) = 0, a contradiction.
Property c) follows with a similar, easier indirect argument, because L − Ψ = 0 has no

solution in the closed set O \ Bε (S). �

We abbreviate the Brouwer degree of L − Ψ restricted to the �xed point set OS1 by

d0 = deg(L − Ψ,OS1
) = d⊥0 (L − Ψ,O).

Note that PnΨ : Λ ∩ Xn → Xn is the gradient of K |Λ∩Xn and hence a S1-orthogonal map.

Lemma 2.21. Let O and n0 be as in Lemma 2.20. Then the di�erence

S1-deg⊥(L − PnΨ,O ∩ Xn) − d0 · S
1-deg⊥(L + P0,Xn)

is independent of n ≥ n0.

Proof. By Lemma 2.20 b) and c) we can make an excision, followed by the use of the homo-
topy invariance and another excision to get

S1-deg⊥(L − PnΨ,O ∩ Xn) = S1-deg⊥(L − PnΨ,Bε (S) ∩ Xn)

= S1-deg⊥(L − Pn0Ψ(Pn0 ·),Bε (S) ∩ Xn).

Note here that the homotopy ht : Bε (S) ∩Xn → Xn , ht = L−∇
(
K |Λ∩Xn ◦ (Pn + t(Pn0 − Pn))

)
is indeed well-de�ned by 2.20 a), S1-orthogonal and admissible by 2.20 b).

Next observe that S0 = (L − Pn0 ◦Ψ ◦ Pn0)
−1(0) ∩ Bε (S) is contained in Xn0 and compact

by 2.20 b). We therefore split Xn into Xn = Xn0 ⊕ (Xn ∩ X⊥n0) and �nd open and invariant
neighborhoods U1 ⊂ Xn of S0 and U2 ⊂ Xn ∩ X⊥n0 of 0, such that the product U1 × U2 is
contained in Bε (S) ∩ Xn . Several excisions and the multiplication formula 2.18 show

S1-deg⊥(L − Pn0Ψ(Pn0 ·),Bε (S) ∩ Xn) = S1-deg⊥(L − Pn0Ψ(Pn0 ·),U1 ×U2)

= S1-deg⊥(L − Pn0Ψ,O ∩ Xn0)? S
1-deg⊥(L,Xn ∩ X

⊥
n0).

Now d⊥0 (L,Xn ∩ X
⊥
n0) = 1 by 2.19 and d⊥0 (L − Pn0Ψ,O ∩ Xn0) = d0 yield

S1-deg⊥(L − PnΨ,O ∩ Xn) + (d0, 0, 0, . . .) =
S1-deg⊥(L − Pn0Ψ,O ∩ Xn0) + d0 · S

1-deg⊥(L,Xn ∩ X
⊥
n0).

Combining this equation with

S1-deg⊥(L + P0,Xn) = S1-deg⊥(L + P0,Xn0)? S
1-deg⊥(L,Xn ∩ X

⊥
n0)

= S1-deg⊥(L + P0,Xn0) + S
1-deg⊥(L,Xn ∩ X

⊥
n0) − (1, 0, 0, . . .)

�nally shows that

S1-deg⊥(L − PnΨ,O ∩ Xn) − d0 · S
1-deg⊥(L + P0,Xn)

does not depend on n ≥ n0. �

Having Lemma 2.21 at hand we are ready to de�ne the degree for S1-equivariant gradient
maps.
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De�nition 2.22. For L−Ψ : Λ→ X satisfying (A1)–(A5) and bounded, invariant, open subsets
O ⊂ X with O ⊂ Λ and (L − Ψ)−1(0) ∩ ∂O = ∅ we de�ne

S1-deg∇(L − Ψ,O) =
(
d∇k (L − Ψ,O)

)
k ∈N0

∈

∞⊕
k=0
Z,

where d∇0 (L − Ψ,O) = deg(L − Ψ,OS1
) and for k , 0:

d∇k (L − Ψ,O) = lim
n→∞

(
d⊥k (L − PnΨ,O ∩ Xn) − deg(L − Ψ,OS1

) · d⊥k (L + P0,Xn)

)
.

It remains to prove that the degree has the stated properties (D1)–(D4).

Proof of Thm. 2.2. (D1) (Existence): Let d∇k (L − Ψ,O) , 0. If k = 0, we �nd a solution
u ∈ OS

1 of L − Ψ = 0 by the corresponding property of the Brouwer degree. If k , 0, by our
de�nition we can �nd n0 ∈ N such that for all n ≥ n0 there holds d⊥k (L−PnΨ,O∩Xn) , 0 or
deg(L − Ψ,OS1

) , 0. In the latter case we are done, since OS1
⊂ OZk . Otherwise we �nd for

any n ≥ n0 an element un ∈ OZk ∩ Xn solving L − PnΨ = 0. By our compactness condition
(A5) we can conclude that along a subsequence un → u∗ ∈ OZk with Lu∗ − Ψ(u∗) = 0.

(D2) (Excision and additivity): Replacing ∂O by O \ (O1 ∪ O2) in the proof of Lemma
2.20 and using t = 1 shows that L−PnΨ = 0 does not have a solution in O \ (O1 ∪O2) for all
n large enough. Therefore (D2) follows from the corresponding properties of the Brouwer
degree and Theorem 2.17 b),c).

(D4) (Multiplicativity): This is a straightforward calculation based on the multiplication
properties of the degree theories of Brouwer and Rybicki 2.18.

(D3) (Homotopy): First of all we can extend the homotopy invariance stated in Theorem
2.17 d), i.e. we consider a continuous family of S1-gradient maps Lt − Ψt : Λ→ X , t ∈ [0, 1]
and a �xed open, invariant and bounded set O ⊂ X with O ⊂ Λ and (Lt −Ψt )(∂O) ⊂ X \ {0}
for all t ∈ [0, 1]. As in Lemma 2.20 one can see that there exists n0 ∈ N such that the �nite-
dimensional equation Lt − PnΨt = 0 has no solution on ∂O ∩ Xn for all n ≥ n0, t ∈ [0, 1].
Thus by Theorem 2.17 d), the homotopy invariance of the Brouwer degree and since every
Lt + P0 : Xn → Xn is an isomorphism we obtain that S1-deg∇(Lt − Ψt ,O) is independent of
t ∈ [0, 1].

It remains to prove the generalized homotopy invariance. So let Lt − Ψt : Λ → X
be as before and consider U ⊂ [0, 1] × X (rel.) open, bounded, such that every section
Ut = {u ∈ X : (t ,u) ∈ U } is invariant and Ut ⊂ Λ, (Lt − Ψt )

−1(0) ∩ ∂Ut = ∅. We extend
Lt − Ψt by L0 − Ψ0 for t < 0 and by L1 − Ψ1 for t > 1. Furthermore, let t0 ∈ [0, 1], X̃ = R ⊕ X
with trivial S1-action on R, Λ̃ = R × Λ ⊂ X̃ and de�ne L̃ ∈ L(X̃ ), Ψ̃ : Λ̃→ X̃ by

L̃(t ,u) = (0,Ltu), Ψ̃(t ,u) = (t0 − t ,Ψt (u)).

With canonical modi�cations like Ẽ0 = R ⊕ E0 it is easy to see that X̃ , L̃ and Ψ̃ satisfy (A1)–
(A5). Next we extendU to an open subset of X̃ via

Ũ = U ∪ (−1, 0] × U0 ∪ [1, 2) × U1.

Then Ũ is also invariant, bounded and its closure is contained in Λ̃. Clearly the homotopy
h̃ : [0, 1] × Λ̃→ X̃ ,

h̃λ(t ,u) = (t − t0, λ(Lt0 − Ψt0)(u) + (1 − λ)(Lt − Ψt )(u))

is admissible with respect to Ũ. So we can use the homotopy invariance just shown together
with a suitable excision around {t0} × ((Lt0 − Ψt0)

−1(0) ∩ Ut0) and the mutliplicativity (D4)
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to conclude

S1-deg∇(L̃ − Ψ̃, Ũ) = S1-deg∇(h̃0,U) = S1-deg∇(h̃1,U)

= S1-deg∇(· − t0, (t0 − ε, t0 + ε))? S1-deg∇(Lt0 − Ψt0 ,Ut0)

= S1-deg∇(Lt0 − Ψt0 ,Ut0).

Now if we do the same construction with another parameter value t1 ∈ [0, 1], say we de�ne
Φ̃(t ,u) = (t1 − t ,Ψt (u)), then we can clearly connect L̃ − Ψ̃ and L̃ − Φ̃ with an Ũ-admissible
homotopy. Therefore

S1-deg∇(Lt0 −Ψt0 ,Ut0) = S1-deg∇(L̃− Ψ̃, Ũ) = S1-deg∇(L̃− Φ̃, Ũ) = S1-deg∇(Lt1 −Ψt1 ,Ut1).

�

2.5 The global continuation theorem

The proof of Theorem 2.3 uses a re�nement of Whyburn’s lemma. Recall that a topological
space S is normal provided every two disjoint closed subsets of S have disjoint open neigh-
borhoods. Two subsets A,B ⊂ S are separated in S , if there exist U ,V ⊂ S disjoint, open,
nonempty satisfying S = U ∪V and A ⊂ U , B ⊂ V .

Proposition 2.23 (Prop. 5 of [2]). Let S be a compact, normal topological space. If A ⊂ S and
B ⊂ S are closed and not separated, then there exists a connected set C ⊂ S \ (A ∪ B) such that
C ∩A , ∅, C ∩ B , ∅.

We consider now the family of equations

Lu − Ψ(r ,u) = 0, (r ,u) ∈ D ⊂ R+ × X ,

where X , L satisfy (A1)–(A3) and Ψ satis�es (A6),(A7). Recall that we de�ned S as the set of
solutions

S = { (r ,u) ∈ D : Lu − Ψ(r ,u) = 0 }

and that we write Mr = {u ∈ X : (r ,u) ∈ M } for M ⊂ R+ × X , r ∈ R+.

Proof of Theorem 2.3. We �rst add two points at in�nity to the set D \ ∂U:

D∗ = (D \ ∂U) ∪ {∞1,∞2 } .

In order to de�ne the topology of D∗ we set for 0 < ε < 1:

D(ε) =
{
(r ,u) ∈ D : r ∈ [ε, ε−1], dist(u, ∂Dr ) ≥ ε, ‖u‖X ≤ ε

−1 }
.

A neighborhood basis of ∞1 is given by the family ({∞1} ∪ U) \ D(1/n), n ∈ N, and a
neighborhood basis of ∞2 is given by ({∞2} ∪ (D \ U)) \ D(1/n), n ∈ N. Then D∗ is a
normal topological space and S∗ := S ∪ {∞1,∞2} is a compact subspace of D∗. We need to
prove that there exists a connected set C ⊂ S such that ∞1,∞2 ∈ C ⊂ D

∗. According to
Proposition 2.23 it is su�cient to show that∞1 and∞2 are not separated in S∗. Arguing by
contradiction suppose that there exist two open subsets V1,V2 ⊂ D

∗ such that V1 ∩V2 = ∅,
∞1 ∈ V1,∞2 ∈ V2, and S∗ ⊂ V1 ∪V2. Then

V1 ⊂ {∞1} ∪ U ∪ D(ε)
◦ and V2 ⊂ {∞2} ∪ D \ U \ D(ε)
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for some 0 < ε < min{1, r0}. Since S and U are S1-invariant, we can without restriction
also assume that Vj \ {∞j } ⊂ D, j = 1, 2 are invariant. By (D2),(D3) it follows that

S1-deg(L − Ψ(r0, ·), (V1 ∩U)r0) + S
1-deg(L − Ψ(r0, ·), (V1 \ U)r0)

= S1-deg(L − Ψ(r0, ·), (V1)r0) = S1-deg(L − Ψ(1/ε, ·), (V1)1/ε ) = 0

and
S1-deg(L − Ψ(r0, ·), (V1 \ U)r0) = S1-deg(L − Ψ(ε, ·), (V1 \ U)ε ) = 0,

hence
S1-deg(L − Ψ(r0, ·), (V1 ∩U)r0) = 0.

Moreover, we have

S1-deg(L − Ψ(r0, ·), (V2 ∩U)r0) = S1-deg(L − Ψ(ε, ·), (V2 ∩U)ε ) = 0.

This leads to the contradiction

0 , S1-deg(L − Ψ(r0, ·),Ur0)

= S1-deg(L − Ψ(r0, ·), (V1 ∩U)r0) + S
1-deg(L − Ψ(r0, ·), (V2 ∩U)r0) = 0.

�

2.6 Calculation of the degree

The degree of a nondegenerate solution will be expressed in terms of signs of compact linear
perturbations of identity. Let X̃ be an arbitrary Banachspace and Q : X̃ → X̃ compact linear
with spectrum σ (Q). For λ ∈ σ (Q) \ {0} denote byGλ =

⋃
k Kern(Q − λ id)k the generalized

eigenspace. The sign of id−Q is de�ned by

sign(id−Q) = (−1)m− , with m− = dim
⊕

λ∈σ (K )∩(1,∞)
Gλ .

This is of course possible due to the spectral theorem of Riesz-Schauder.
Let now L−Ψ : Λ→ X satisfy (A1)–(A5) and assume that (A8),(A9) hold true as well. In

this situation we use the (nonlinear) compact map K : Λ→ X ,

K(u) = P0u + (L + P0)
−1Ψ(u),

such that (L + P0)
−1 ◦ (L − Ψ) = id−K .

We consider a nondegenerate solution u0 ∈ Λ of L − Ψ = 0 having �nite isotropy group
Iu0 = Zk . The derivative id−DK(u0) is Zk -equivariant and maps XZk into itself. The same is
true for (XZk )⊥, since id−DK(u0) is up to the isomorphism (L + P0)

−1 the second derivative
of a functional.

Recall that by (A9) and the de�nition of a nondegenerate solution in 2.4 u0 ∈ Y and
E(u0) ∈ X – in fact E(u0) ∈ X

Zk – and Kern(id−DK(u0)) = RE(u0).
In order to formulate our theorem we de�ne the linear map Q ∈ L(X ),

Qu =
〈u,E(u0)〉X

‖E(u0)‖X ‖(L + P0)E(u0)‖X
(L + P0)E(u0)
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and the following two signs:

s⊥ := sign
(
id−DK(u0) : (XZk )⊥ → (XZk )⊥

)
,

s0 := sign
(
id−DK(u0) +Q : XZk → XZk

)
.

Theorem 2.24. Let u0 ∈ Λ be a nondegenerate solution of Lu − Ψ(u) = 0 with isotropy group
Iu0 = Zk . There exists an invariant neighborhoodO of S1∗u0 such that (L−Ψ)−1(0)∩O = S1∗u0
and

(i) if s⊥ = 1, then

d∇j (L − Ψ,O) =
{
−s0 if j = k,
0 otherwise

(ii) if s⊥ = −1, then k is even and

d∇j (L − Ψ,O) =


−s0 if j = k
s0 if j = k/2
0 otherwise.

Remark 2.25. Theorem 2.5 directly follows from Theorem 2.24 in the case Iu0 = Zk and by the
analogous property of the Brouwer degree if Iu0 = S1.

Lemma 2.26. In the situation of Theorem 2.24 there exists an invariant neighborhood O of
S1 ∗ u0 with O ∩ X S1

= ∅, as well as an index n0 ∈ N and a sequence (un)n≥n0 ⊂ O such that
for all n ≥ n0:

(L − Ψ)−1(0) ∩ O = S1 ∗ u0, (L − PnΨ)
−1(0) ∩ O = S1 ∗ un , Iun = Zk ,

Kern(L − PnDΨ(un)) = RE(un), un → u0,
E(un)

‖E(un)‖X
→

E(u0)

‖E(u0)‖X
.

Proof. Let Nu0 = {u ∈ X : 〈u,E(u0)〉 = 0 }, N ε
u0 = Nu0 ∩ Bε (u0) and observe that E(u0) , 0,

u0 ∈ Nu0 and Bε (S
1 ∗ u0) = S1 ∗ N ε

u0 for any ε > 0. The orthogonal projection onto Nu0

is denoted by PNu0
: X → Nu0 . We abbreviate E? := (L + P0)E(u0) and denote by N?

u0 its
orthogonal complement and by PN?

u0
the corresponding projection.

Claim 2.26.1. There exists an invariant, bounded neighborhood O1 of S1 ∗ u0 with O1 ⊂ Λ,
O1 ∩ X

S1
= ∅ and (L − Ψ)−1(0) ∩ O1 = S1 ∗ u0.

Proof. Clearly L − Ψ = 0 if and only if id−K = 0. The derivative id−DK(u0) is a compact
perturbation of identity on X and therefore an index 0 Fredholm-operator, i.e.

codim Range(id−DK(u0)) = dim Kern(id−DK(u0)) = 1.

Moreover, we have, since L −DΨ(u0) is as the second derivative of a functional self-adjoint,
the inclusion Range(id−DK(u0)) ⊂ N?

u0 . Thus by comparing dimensions equality holds and
therefore id−DK(u0) : Nu0 → N?

u0 is an isomorphism. Hence the inverse function theorem
implies the existence of ε0 > 0 such that PN?

u0
◦ (id−K) : N ε0

u0 → N?
u0 is a di�eomorphism

onto its image. We set O1 := S1 ∗ N ε0
u0 . Then u ∈ O1, Lu − Ψ(u) = 0 implies θ ∗ u ∈ N ε0

u0 for
some θ ∈ S1 and PN?

u0
(θ ∗ u − K(θ ∗ u)) = 0. Therefore θ ∗ u = u0. Due to Iu0 = Zk we can

without restriction also assume that O1 ∩ X
S1
= ∅. �
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Next we want to show that there exists an invariant subset O ⊂ O1 such that for all
n ∈ N big enough (L − PnΨ)

−1(0) ∩ O ∩ Xn contains exactly one nondegenerate orbit. In
order to do this we de�ne дn : N ε0

u0 → N?
u0 ,

дn(u) = PN?
u0
(u − PnK(u)) .

Claim 2.26.2. There exists ε1 ∈ (0, ε0) and n0 ∈ N such that for any n ≥ n0 one can �nd in
N ε1
u0 a unique zero un of дn . Moreover, un → u0 as n → ∞ and the derivative Dдn(un) has

trivial kernel.

Proof. Clearly u ∈ N ε0
u0 is a zero of дn if and only if u is a �xpoint of Tn : N ε0

u0 → Nu0 ,

Tn(u) = u − (id−DK(u0))
−1[дn(u)].

Let c0 :=


(id−DK(u0))

−1


L(N?

u0,Nu0 )
and choose ε1 ∈ (0, ε0) such that

‖DK(u) − DK(u0)‖L(X ) ≤
1

4c0
for all u ∈ N ε1

u0 .

Then choose n0 ∈ N with

‖u0 − Pnu0‖X ≤
ε1
2c0

and ‖DK(u0) − PnDK(u0)‖L(X ) ≤
1

4c0
for all n ≥ n0.

The latter is possible since DK(u0) is compact. With these choices we have for u,v ∈ N ε1
u0

and n ≥ n0

‖Tn(u) −Tn(v)‖X =



u −v − (id−DK(u0))

−1 ◦ PN?
u0

[
u −v − Pn(K(u) − K(v))

]



X

≤ c0




(id−DK(u0))[u −v] − PN?
u0

[
u −v − Pn(K(u) − K(v))

]



X

≤ c0 ‖Pn(K(u) − K(v)) − DK(u0)[u −v]‖X

≤ c0 ‖K(u) − K(v) − DK(u0)[u −v]‖X

+ c0 ‖(DK(u0) − PnDK(u0))[u −v]‖X

≤ c0

∫ 1

0
‖DK(u0) − DK(su + (1 − s)v)‖L(X ) ds ‖u −v ‖X +

1
4 ‖u −v ‖X

≤
1
2 ‖u −v ‖X ,

as well as

‖Tn(u) − u0‖X ≤ ‖Tn(u0) − u0‖X +
1
2 ‖u − u0‖X

≤ c0 ‖u0 − Pnu0‖X +
1
2ε1 ≤ ε1.

SoTn : N ε1
u0 → N ε1

u0 , n ≥ n0 is a contraction and thus has a unique �xpoint, which we call un .
Next

‖un − u0‖X = ‖Tn(un) − u0‖X ≤ c0 ‖u0 − Pnu0‖X +
1
2 ‖un − u0‖X

impliesun → u0 asn →∞. Furthermore, observe thatv ∈ KernDдn(un) givesDTn(un)v = v
and therefore v = 0, since Tn is a contraction. �
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In a next step we need to get rid of the projection PN?
u0

in дn .
Claim 2.26.3. There exists n1 ≥ n0 such that un − PnK(un) = 0 for every n ≥ n1.

Proof. Since we already have дn(un) = 0, it is enough to �nd a direction vn ∈ X \ N?
u0 with

〈un − PnK(un),vn〉 = 0. Using дn(un) = 0 we can write un as

un = PnK(un) +
〈un − PnK(un),E?〉X

‖E?‖
2
X

E? =: yn + λnE?,

where yn ∈ Xn ⊂ Y , λn ∈ R and E? = (L + P0)E(u0) ∈ Y . So un ∈ Y and E(un) ∈ X exists by
(A9). We abbreviate E?(un) := (L + P0)E(un), use the identity

〈un − K(un),E?(un)〉X = 〈Lun − Ψ(un),E(un)〉X = 0

and obtain

〈un − PnK(un),E?(un)〉X = 〈(id−Pn)K(un),E?(un)〉X
= 〈(id−Pn)K(un), (L + P0)E(yn) + λn(L + P0)E(E?)〉X
= λn 〈K(un), (id−Pn)(L + P0)E(E?)〉X =: λnβn .

Thus with vn := ‖E?‖2X E?(un) − βnE? there holds

〈un − PnK(un),vn〉X = ‖E?‖
2
X λnβn − βnλn ‖E?‖

2
X = 0.

By (A3),(A9) E?(un) = (L+P0)E(un) = E((L+P0)un) → E? as n →∞ and βn → 0. Therefore
we can �nd n1 ≥ n0, such that vn < N?

u0 for n ≥ n1. �

So far we have found with O := S1 ∗ N ε1
u0 an invariant, bounded neighborhood of S1 ∗u0

satisfying (L − PnΨ)
−1(0) ∩ O = S1 ∗ un ⊂ Xn . By Claim 2.26.2 and the equivariance of

L − PnΨ, Kern(L − PnDΨ(un)) = RE(un) holds. We also know un → u0.
Claim 2.26.4. The isotropy group Iun of un satis�es Iun = Zk for all n big enough.

Proof. We �rst show that Zk = Iu0 is a subgroup of every Iun . Therefore observe that Zk
leaves N ε1

u0 invariant. So by the uniqueness of the solution of L − PnΨ = 0 in N ε1
u0 it follows

θ ∗ un = un for every θ ∈ Zk . Thus Zk ≤ Iun .
For the other inclusion recall that Ej denotes the isotypical component of E⊥0 correspond-

ing to (R2, ρ j ). De�ne Ẽj ≤ E0 ⊕ Ej to be the full isotypical component of X and PẼj to be
the orthogonal projection X → Ẽj . Note that PẼju0 , 0 implies j ∈ kN0, because Iu0 = Zk .
We de�ne A to be the set of all indices l ∈ N satisfying PẼlku0 , 0. Then Iu0 = Zk implies⋂

l ∈A

(
1
l
Z ∩ [0, 1)

)
= { 0 } .

We can replace A by a �nite subset Ã ⊂ A such that the equation above still remains valid.
Since un → u0, we �nd an index n2 ≥ n1 with PẼlkun , 0 for every l ∈ Ã, n ≥ n2. This yields

Iun ≤
⋂
l ∈Ã

(
2π
lk
Z ∩ [0, 2π )

)
=

{
0, 2π

k
, . . . ,

(k − 1)2π
k

}
= Zk .

�

It remains to prove
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Claim 2.26.5. The normed tangent vectors e(un) := E(un )
‖E(un ) ‖X

converge in X towards the
normed tangent vector e(u0) := E(u0)

‖E(u0)‖X
.

Proof. This would be clear, if un → u0 in Y , but we only know un → u0 in X . Since DK(u0)
is compact one has ‖PnDK(un) − DK(u0)‖L(X ) → 0. By

e(un) = PnDK(un)e(un) = DK(u0)e(un) + o(1),

the convergence (along a subsequence) of e(un) to an element in the kernel of id−DK(u0)
with length 1 follows. Hence e(un) → ±e(u0). The correct sign is obtained by using the fact
that (L + P0)un → (L + P0)u0 in Y and therefore (L + P0)E(un) → (L + P0)E(u0) in X . �

With that we have shown all properties of the Lemma. �

Proof of Theorem 2.24. Take everything as in Lemma 2.26. The fact that O∩X S1
= ∅ implies

d∇0 (L − Ψ,O) = 0 and

d∇j (L − Ψ,O) = lim
n→∞

d⊥j (L − PnΨ,O ∩ Xn)

for j ≥ 1. So we need to calculate the degree S1-deg⊥(L − PnΨ,O ∩ Xn) for n su�ciently
large. Luckily the map L−PnΨ : O∩Xn → Xn is already S1-normal, since O∩X S1

= ∅, such
that the de�nition of Rybicki’s degree (cf. section 2.3.2) directly transfers us to the degree of
DGMJ, i.e.

d∇j (L − Ψ,O) = lim
n→∞

dj ( f̂n ,Un),

where Un := (O ∩ Xn) × (−1, 1), f̂n : Un → Xn , f̂n(v, λ) = Lv − PnΨ(v) + λE(v). Due to
the orthogonality of L − PnΨ and E, the orbit S1 ∗ (un , 0) is the only orbit of zeroes of f̂n .
Moreover, Lemma 2.26 implies

KernD f̂n(un , 0) = R(E(un), 0),

so we can apply Theorem 2.16. In order to use this Theorem we de�ne the needed linear
maps A⊥n : (XZkn )⊥ → (XZkn )⊥, An : XZkn ⊕ R→ XZkn ⊕ R,

A⊥nv = D f̂n(un , 0)(v, 0) = Lv − PnDΨ(un)v

An(v, µ) =

(
Lv − PnDΨ(un)v + µE(un),

〈v,E(un)〉X

‖E(un)‖
2
X

)
.

Then according to 2.16 it remains to show sign detA⊥n → s⊥ and sign detAn → −s0. And
indeed due to the equivariance of L + P0 one has

sign detA⊥n = sign det(L + P0) · sign det
(
id−PnDK(un) : (XZkn )⊥ → (XZkn )⊥

)
= 1 · sign

(
id−PnDK(un) : (XZk )⊥ → (XZk )⊥

)
→ s⊥.

ForAn we need some auxiliary maps. We abbreviate in a similar way as before the tangent
vectors En = E(un), E?n = (L + P0)E(un) and the orthogonal projection PN?

un
: XZkn → E⊥?n .

Observe that v − DK(un)v ∈ E⊥?n for every v ∈ Xn . Therefore, if we de�ne the maps
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In ,Qn : XZkn ⊕ R→ XZkn ⊕ R,

In(v, µ) =

(
PN?

un
v + µ

‖E?n ‖X
‖En ‖X

(L + P0)
−1En ,

〈v,E?n〉X
‖En ‖X ‖E?n ‖X

)
,

Qn(v, µ) =

(
v − PnDK(un)v +

〈
v,

En
‖En ‖X

〉
X

E?n
‖E?n ‖X

, µ
‖En ‖X
‖E?n ‖X

)
,

there holds

(L + P0, idR) ◦ In ◦Qn(v, µ) =

(
(L + P0) (v − PnDK(un)v) + µEn ,

〈v,En〉X

‖En ‖
2
X

)
= An(v, µ).

Again by the equivariance of L + P0 we have sign det(L + P0, idR) = 1 and by Lemma 2.26
there holds sign detQn → s0. So it remains to show that In is not orientation preserving.
To see this decompose XZkn into E⊥?n ⊕ RE?n and write according to this decomposition
v = v⊥ + α E?n

‖E?n ‖X
, such that in blockmatrix form

In(v
⊥,α , µ) =

©­­­­­­«

0 ∗

idE⊥?n
...

...

0 ∗

0 · · · 0 0 ‖En ‖X
0 · · · 0 1

‖En ‖X
0

ª®®®®®®¬
©­«
v⊥

α
µ

ª®¬ .
Therefore det In = −1 and the proof of theorem 2.24 is �nished. �
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Chapter 3

Periodic solutions consisting of
clusters

In this chapter we will establish the existence of periodic solutions for the N -vortex system
consisting of several vortex clusters located at the points of an equilibrium solution of an
m-vortex system, m < N . Each of the clusters is in its shape close to a rigidliy rotating
con�guration of the whole-plane system.

We would like to mention that the general idea of grouping vortices into di�erent clusters
plays a role in establishing the existence of quasi-periodic solutions via KAM theory, see [46,
58].

3.1 Statement of results

Let Ω ⊂ R2 be a domain and �x a symmetric C2 function д : Ω × Ω → R, for example
the regular part of the Dirichlet (or more generally a hydrodynamic) Green’s function of
Ω. We will investigate a point vortex like system similar to (1.3), which is induced by the
generalized Green’s and Robin functions

G(x ,y) = −
1

2π log |x − y | − д(x ,y), h(x) = д(x ,x).

At �rst we consider on the domain Ω a system of m ∈ N vortices with vorticities
Γ1, . . . , Γm ∈ R \ {0} and Hamiltonian

H(a) =
m∑

k,k ′=1
k,k′

ΓkΓk
′

G(ak ,ak
′

) −

m∑
k=1

ΓkΓkh(ak )

de�ned on Fm(Ω) =
{
a = (a1, . . . ,am) ∈ Ωm : ak , ak

′ for all k , k ′
}
. We require that the

corresponding m-vortex system admits a stationary solution, cf. section 3.1.1. To be more
precise we assume

(A1) H has a nondegenerate critical point α ∈ Fm(Ω).

Next we �x a number l ∈ { 1, . . . ,m }, which will be the number of vortices that are
splitted into con�gurations consisting of more than a single vortex. Without restriction we
take the �rst l vortices. I.e. for k = 1, . . . , l choose Nk ≥ 2 vorticities Γk1 , . . . , ΓkNk

∈ R \ {0},
such that

(A2)
∑Nk

j=1 Γ
k
j = Γk .
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We then de�ne the Hamiltonian Hk
R2 : FNk (R

2) → R,

Hk
R2(z) = −

1
2π

Nk∑
j, j′=1
j,j′

Γkj Γ
k
j′ log

��zj − zj′ ��
inducing the Nk -vortex system

Γkj Ûzj = J∇zjH
k
R2(z), j = 1, . . . ,Nk (3.1)

on R2.
As mentioned in the introduction a Ñ -vortex system on R2 allows rigidly rotating so-

lutions, also called relative equilibria, of the form Z (t) = eω JÑ tz, ω , 0, cf. section 3.1.2
for examples. Here JÑ = diag(J , J , . . . , J ) ∈ R2Ñ×2Ñ . Due to scaling Z (t) → λZ (t/λ2),
λ > 0, we can assume ω = ±1. The corresponding 2π -periodic relative equilibrium is called
nondegenerate, if the linearized equation

Γj Ûw j = J (∇
2HR2(Z (t))w)j , j = 1, . . . , Ñ (3.2)

has only 3 linear independent 2π -periodic solutions. This is the minimal possible number
due to the invariance under rotations and translations. Our third requirement is:

(A3) For k ∈ { 1, . . . , l } there exists a 2π -periodic nondegenerate relative equilibrium
solution Zk (t) = e±JNk tzk of (3.1).

Note that condition (A2) can always be achieved by a change of time scale provided one
has a relative equilibrium solution of (3.1) with

∑
j Γ

k
j , 0.

The remainingm−l vortices – which may be none – are not splitted into con�gurations.
I.e. for k = l + 1, . . . ,m we let Nk = 1, Γk1 = Γk , Hk

R2 : R2 → R, Hk
R2 ≡ 0 and Zk : R → R2,

Zk (t) ≡ 0.
The system under investigation is the generalized N :=

∑m
k=1 Nk -vortex system

Γkj Ûz
k
j = J∇zkj

H (z), k = 1, . . . ,m, j = 1, . . . ,Nk , (3.3)

with Hamiltonian

H (z) =
∑

(k, j),(k ′, j′)

Γkj Γ
k ′
j′ G(z

k
j , z

k ′
j′ ) −

∑
(k, j)

Γkj Γ
k
j h(z

k
j ).

Here z = (z1
1, . . . , z

1
N1
, . . . , zm1 , . . . , z

m
Nm
) ∈ FN (Ω) and the indices of the sums run through

{ (k, j) : 1 ≤ k ≤ m, 1 ≤ j ≤ Nk }. We equivalently write for (3.3)

MΓ Ûz = JN∇H (z)

with MΓ = diag
(
Γ1

1 , Γ
1
1 , . . . , Γ

1
N1
, Γ1

N1
, . . . , Γm1 , Γ

m
1 , . . . , Γ

m
Nm
, ΓmNm

)
∈ R2N×2N and the symplec-

tic matrix JN = diag
(
J , . . . , J

)
∈ R2N×2N .

As described before we will use the Sobolev spaces H 1
T = H 1(R/TZ,R2N ), T > 0 of

continuousT -periodic functions with square-integrable derivative, equipped with the scalar
product

〈u,v〉H 1
T
=

∫ T

0
〈u,v〉R2N dt +

∫ T

0
〈 Ûu, Ûv〉R2N dt
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and induced norm ‖·‖H 1
T

. For Z 1, . . . ,Zm as de�ned before let

M =
{ (
Z 1(· + θ1), . . . ,Z

m(· + θm)
)

: θ1, . . . ,θm ∈ R
}
⊂ H 1

2π , (3.4)

which is a l-dimensional submanifold, since Z l+1 = . . . = Zm = 0. And for an element
a = (a1, . . . ,am) ∈ R2m we de�ne

â = (a1, . . . ,a1,a2, . . . ,a2, . . . ,am , . . . ,am) ∈ R2N1 × . . . × R2Nm = R2N .

Now we are ready to formulate a �rst version of our theorem.

Theorem 3.1. Under the assumptions (A1)–(A3) there exists T0 > 0 such that for every
T ∈ (0,T0) the N -vortex type system (3.3) has l distinct T -periodic solutions that are in the
following sense close to α and (Z 1, . . . ,Zm): Let (zn)n∈N be a sequence consisting of these pe-
riodic solutions with periods Tn → 0 as n → ∞, then the kth components [zn]kj , j = 1, . . . ,Nk

converge to αk as n →∞, k = 1, . . . ,m. Moreover, if we rescale zn , such that

zn(t) = rnun

(
t

r 2
n

)
+ α̂ , rn =

√
Tn
2π , un ∈ H

1
2π ,

then dist(un ,M) → 0 with respect to ‖·‖H 1
2π

as n →∞.

So roughly speaking we can split vortices of a stationary solution into suitable rigidly
rotating con�gurations and obtain periodic solutions. For �xedT ∈ (0,T0) the multiplicity of
theT -periodic solutions is based on the relative orientation of the l nontrivial con�gurations
to each other.

Note that the conditions (A1), (A3) are only related to each other in the sense that the
vorticities need to add up as stated in (A2). Also the speci�c relative equilibrium solutions
can be choosen independently of each other. Under an additional technical assumption,
that couples the critical point of H and the relative equilibria Zk , one could improve the
multiplicity from l to 2l−1 T -periodic solutions, cf. Section 3.4.1. This would also lead to
global continua of solutions as in Theorem 3.9 below.

Next we will discuss and improve assumptions (A1), (A3) with respect to their applicabil-
ity to the classical N -vortex system (1.3). Whenever we provide a function with an index Ω,
likeHΩ , we refer to the corresponding function induced by the regular part of the Dirichlet
Green’s function.

3.1.1 Critical points ofHΩ

The search for stationary solutions in general domains itself is not an easy task. Of course
there is one trivial case: Ifm = 1 the 1-vortex HamiltonianHΩ coincides up to a factor with
the Robin function hΩ , which always has a minimum in bounded domains.

Concerning more vortices only in the last years some results on the existence of critical
points of the N -vortex – in our casem-vortex – Hamiltonian for bounded domains could be
achieved, examples include:

• m ∈ N, Γ1 = . . . = Γm , 0 and Ω not simply connected [28] or dumbell shaped [31],

• m ∈ { 2, 3, 4 }, conditions on Γk , e.g. m = 2 and Γ1Γ2 < 0, Ω arbitrary [16],

• m ∈ N, conditions on Γk (di�erent from the ones in [16]) for Ω arbitrary and for Ω
not simply connected [49],

• m ∈ N, Γk = (−1)k+1Γ1, Ω symmetric with respect to re�ection at a line [17] or the
action of a dihedral group [50].
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None of the mentioned results addresses the question of nondegeneracy of the critical points,
on which our proof relies. Indeed condition (A1) is for these solutions hard to check, since
the Hamiltonian HΩ and the critical point α are not explicitely known. However, a recent
result of Bartsch, Micheletti and Pistoia [15] shows thatHΩ has only nondegenerate critical
points for a generic bounded domain Ω.

So if the vorticities Γ1, . . . , Γm allow the existence of a critical point ofHΩ , as for example
in one of the listed cases, then condition (A1) is satis�ed at least after an arbitrarily small
deformation of the domain.

In some cases also explicit stationary con�gurations are known, for example if Ω = R2

or Ω = B1(0). But these are all degenerate due to the symmetries of the domain, i.e. if
α ∈ Fm(B1(0)) is a critical point ofHB1(0), then every eλJmα , λ ∈ R is a critical point as well.
Thus Jmα ∈ Kern∇2HB1(0)(α) and condition (A1) is violated. But we will see that degeneracy
induced by symmetries can still be handled, i.e. we may replace assumption (A1) by

(A1′) H has a critical point α ∈ Fm(Ω) and one of the following properties holds:
(i) α is nondegenerate,

(ii) Ω and д are radial
(
eλJΩ = Ω, д

(
eλJx , eλJy

)
= д(x ,y) for every λ ∈ R,

x ,y ∈ Ω
)

and dim Kern∇2H(α) = 1,
(iii) Ω and д are in one direction translational invariant

(
there exists ν ∈ R2 \ {0}

with λν + Ω = Ω, д(x + λν ,y + λν ) = д(x ,y) for every λ ∈ R, x ,y ∈ Ω
)

and
dim Kern∇2H(α) = 1,

(iv) Ω = R2, д(x ,y) = д̃(|x − y |) and dim Kern∇2H(α) = 3.

Note that in the classical case д = дΩ always inherits the symmetries of the domain.

Example 3.2. Let Ω be the unit disc B1(0) and д = дB1(0) be the regular part of the Dirichlet
Green’s function of B1(0), which is given by

д(x ,y) = дB1(0)(x ,y) = −
1

4π log
(
|x |2 |y |2 − 2 〈x ,y〉R2 + 1

)
.

The 2-vortex Hamiltonian HB1(0) with vorticities Γ1 = 1, Γ2 = −1 satis�es (A1′) with a de-

generate critical point α =
(
(µ, 0), (−µ, 0)

)
, where µ =

√√
5 − 2. This will be shown in section

3.6.

Remark 3.3. If Ω = R2, д = дR2 ≡ 0 then critical points of HR2 exist depending on the
vorticities Γ1, . . . , Γm . In the easiest case m = 3 vortices with strengths Γ1, Γ2, Γ3 satisfying
Γ1Γ2 + Γ1Γ3 + Γ2Γ3 = 0 are stationary when placed at certain distances along a �xed line,
see Theorem 2.2.1 in [64]. More on stationary con�gurations can also be found in [5]. How-
ever, for every critical point α of HR2 the inequality dim Kern∇2HR2(α) ≥ 4 holds true. Here
3 dimensions of the kernel are induced by translations and rotations of the critical point α .
A fourth dimension by scaling, since di�erentiation of λ 7→ HR2(λα) at λ = 1 shows that∑

k,k ′ Γ
kΓk

′

= 0 is a necessary condition for the existence of critical points. Therefore we have
HR2(λα) = HR2(α) and

Kern∇2HR2(α) ⊃
{
(a, . . . ,a) ∈ R2m }

⊕ RJmα ⊕ Rα .

This means that (A1′) never holds for critical points of the classicalm-vortex HamiltonianHR2 ,
cf. Remark 3.14.

Remark 3.4. Another idea for the existence of periodic solutions is the Weinstein-Moser Theo-
rem [10, 62, 77] to obtain periodics for the HamiltonianHΩ itself via bifurcation from the critical
point α . But here one encounters the di�culties that α and HΩ are not explicitely known as
well.
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3.1.2 Relative equilibria on R2

For the N -vortex problem on Ω = R2 quite a lot of rigidly rotating vortex con�gurations
are known, see [4, 5] for an overview. Checking the nondegeneracy condition of such a
con�guration is, after writing (3.2) in a rotating coordinate frame, a matter of calculating
the spectrum of a 2N × 2N matrix. The spectral properties of this matrix are also of interest
in the investigation of the linear stability of the con�guration as a periodic solution. So in
section 3.5 we will use results of Roberts, [67] to verify the nondegeneracy.

Example 3.5. The following relative equilibrium solutions are nondegenerate after normal-
ization (scaling and translation):

• N = 2, Γ1 + Γ2 , 0, Z (0) ∈ F2(R
2) arbitrary, cf. Example 3.21,

• N = 3, Γ1 + Γ2 + Γ3 , 0, 0 , Γ1Γ2 + Γ1Γ3 + Γ2Γ3 , Γ2
1 + Γ

2
2 + Γ

2
3 , Z1(0),Z2(0),Z3(0) forming

an equilateral triangle, cf. Example 3.22,

• N ≥ 3, Γ1 = . . . = ΓN , Z j (0) = (xk , 0), j = 1, . . . ,N with x1, . . . ,xN being the roots of
the N th Hermitian polynomial, see Example 3.23.

Observe that the condition for the equilateral triangle con�guration excludes the special
case Γ1 = Γ2 = Γ3. Nonetheless with a second re�nement we can also treat this case leading
to solutions for (3.3) in which the vortices of a subgroup may form choreographies.

The permutation group ΣN of N symbols acts orthogonally on R2N via permutation of
components, i.e.

σ ∗ z =
(
zσ −1(1), . . . , zσ −1(N )

)
, σ ∈ ΣN , z ∈ R

2N .

De�nition 3.6. A relative equilibrium solution Z (t) of the whole plane system is called σ -
nondegenerate, provided σ ∗Z (·+2π ) = Z and (3.2) has only three linear independent solutions
satisfying σ ∗w(· + 2π ) = w .

Note that every nondegenerate relative equilibrium is σ -nondegenerate with σ = idΣN .
As a nontrivial example we have

Example 3.7. N ∈ N identical vortices placed at the vertices of a regular N -Gon form a
rigidly rotating con�guration, called Thomson’s N -Gon con�guration. It is (after scaling) a
σ -nondegenerate relative equilibrium solution with σ = (1 2 . . . N ) ∈ ΣN , see Lemma 4.1 in
[12].

Concerning our situation we weaken assumption (A3) to

(A3′) For each k ∈ { 1, . . . , l } there exists σk ∈ ΣNk with Γkj = Γk
σ −1
k (j)

, j = 1, . . . ,Nk , as

well as a σk -nondegenerate relative equilibrium Zk (t) = exp
(
± JNk t/ord(σk )

)
zk

solving (3.1). For consistency in notation let Zk ≡ 0 and σk = idΣ1 in the case
k ∈ { l + 1, . . . ,m }.

3.1.3 Statement of results part 2

For
(
σk ,Z

k )m
k=1 as in assumption (A3′) let τ = 2π ord(σ ), where ord(σ ) denotes the order

of σ = (σ1, . . . ,σm) ∈
∏

k ΣNk , further on let σ ∗ z = (σ1 ∗ z
1, . . . ,σm ∗ z

m) for a vector
z = (z1, . . . , zm) ∈ R2N . Observe thatM as de�ned in (3.4) is now contained in H 1

τ . We have
the following generalization of Theorem 3.1.
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Theorem 3.8. Assume that (A1 ′), (A2) and (A3 ′) hold. Then there exists T0 > 0 such that
(3.3) has l distinctT -periodic orbits for everyT ∈ (0,T0). Similar to Theorem 3.1 if we rescale a
sequence (zn)n∈N of these solutions with periods Tn → 0 by

zn(t) = rnun

(
t

r 2
n

)
+ α̂ , rn =

√
Tn
τ
, un ∈ H

1
τ ,

then dist(un ,M) → 0 in H 1
τ . Additionally the kth subgroup, k = 1, . . . ,m consisting of the Nk

vortices zk (t) = (zk1 (t), . . . , z
k
Nk
(t)) of one of theT -periodic solutions z(t) inherits the symmetry

of the relative equilibrium Zk (t), i.e.

σ ∗ z(t +T /ord(σ )) = z(t).

In the case that only the �rst vortex is splitted up into a con�guration with at least two
vortices, i.e. when l = 1, we can slightly improve Theorem 3.8.

Theorem 3.9. Let l = 1, д ∈ Ck (Ω × Ω,R) with k ≥ 2. If (A1 ′)-(A3 ′) hold, then there exists
r1 > 0 and a Ck−2 map u : [0, r1) → H 1

τ , r 7→ u(r ) with u(0) = Z = (Z 1, 0, . . . , 0) ∈ H 1
τ ,

σ ∗ u(r )(· + 2π ) = u(r ) and such that

z(r )(t) = ru(r )
( t
r 2

)
+ α̂

is a τr 2-periodic solution of (3.3) for every r ∈ (0, r1). If k ≥ 3, then

∂ru
(0) ∈

{
â : a ∈ R2m }

⊂ H 1
τ .

Moreover, if in (A1 ′) (i) or (iii) is true, the family (z(r ))r ∈(0,r1) gives rise to a global continuum
C(α ,Z ) of periodic (choreographic) solutions of (3.3) in the sense of De�nition 2.11 (or Remark
2.14).

Remark 3.10. a) In the cases (A1 ′) (ii) or (iv) a global continuum of solutions is likely to
exist as well, but this seems to require a further development of the degree theory, cf.
Remark 3.19.

b) Ifm = l = 1 it is possible to obtain a global continuum of periodic solutions also under
the weaker assumption that α ∈ Ω is only a topological stable critical point of the Robin
function h, i.e. under the condition deg(∇h,Bε (α)) , 0 instead of det∇2h(α) , 0. But in
that situation the local part is not guaranteed to be a graph, see Thm. 2.1 in [13].

c) By our de�nition the global continuum C(α ,Z ) ⊂ R+ × H 1 contains the set{ (
τr 2

2π , ru
(r )

( τ
2π ·

)
+ α̂

)
: r ∈ (0, r1)

}
.

3.2 Ansatz and preliminaries

Fix α , Zk , σk , k = 1, . . . ,m according to (A1′), (A3′) and let σ = (σ1, . . . ,σm). We are looking
for a solution z : R→ FN (Ω) where each subgroup of vortices (zk1 (t), . . . , zkNk

(t)) is located
near αk and forms a con�guration close to a scaled version of the relative equilibrium Zk (t).

In order to reformulate the problem we de�ne

F (z) =
m∑

k,k ′=1
k,k′

Nk∑
j=1

Nk′∑
j′=1

Γkj Γ
k ′
j′ G(z

k
j + α

k , zk
′

j′ + α
k ′) −

m∑
k=1

Nk∑
j, j′=1

Γkj Γ
k
j′д(z

k
j + α

k , zkj′ + α
k )



Chapter 3. Periodic solutions consisting of clusters 38

together with the following Hamiltonians H0 : O0 := FN1(R
2) × . . . × FNm (R

2) → R,

H0(u) =
m∑
k=1

Hk
R2(u

k
1 , . . . ,u

k
Nk
)

and for r > 0, Hr : Or :=
{
u ∈ R2N : ru + α̂ ∈ FN (Ω)

}
→ R,

Hr (u) = H0(u) + F (ru) − H(α).

Observe that F is de�ned on an open subset of R2N containing 0.

Lemma 3.11. Let I be an open intervall and r > 0. Then z(t) = ru(t/r 2) + α̂ solves (3.3) on I
if and only if u solves

MΓ Ûu = JN∇Hr (u) (3.5)

on r 2I .

Proof. Clearly z(t) as above is a solution of (3.3) if and only if

MΓ Ûu = r JN∇H (ru + α̂)

and

H (ru + α̂) = H0(u) + F (ru) −
1

2π

m∑
k=1

Nk∑
j, j′=1
j,j′

Γkj Γ
k
j′ log r .

�

Lemma 3.12. The set O :=
⋃

r ≥0{r } × Or is open in [0,∞) ×R2N and the family of Hamilto-
nians H : O → R, (r ,u) 7→ Hr (u) de�nes a C2 function, especially F (0) = H(α). Furthermore,

Γk∇zkj
F (0) = Γkj ∇akH(α) = 0,

Γk
(
∇2F (0)â

)k
j = Γkj

(
∇2H(α)a

)k (3.6)

for any (k, j) and a ∈ R2m .

Proof. Openess and smoothness are easy to check, since by (A2) indeed

F (0) =
m∑

k,k ′=1
k,k′

ΓkΓk
′

G(αk ,αk
′

) −

m∑
k=1

ΓkΓkд(αk ,αk ) = H(α).

For the derivative of F with respect to zkj we have

∇zkj
F (z) = 2

m∑
k ′=1
k′,k

Nk′∑
j′=1

Γkj Γ
k ′
j′ ∇1G(z

k
j + α

k , zk
′

j′ + α
k ′) − 2

Nk∑
j′=1

Γkj Γ
k
j′∇1д(z

k
j + α

k , zkj′ + α
k )

and therefore

Γk∇zkj
F (0) = Γkj Γ

k
©­­«2

m∑
k ′=1
k′,k

Γk
′

∇1G(α
k ,αk

′

) − Γk∇h(αk )
ª®®¬ = Γkj ∇akH(α) = 0
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by (A1 ′). Now let a ∈ R2m . The (k, j)th component of ∇2F (0)â is given by

(
∇2F (0)â

)k
j =

m∑
k ′=1

(Nk′∑
j′=1
∇zk′j′
∇zkj

F (0)
)
ak
′

= 2Γkj
m∑
k ′=1
k′,k

Γk
′ (
∇2

1G(α
k ,αk

′

)ak + ∇2∇1G(α
k ,αk

′

)ak
′ )

− Γkj Γ
k (2∇2

1д(α
k ,αk ) + 2∇2∇1д(α

k ,αk )︸                                   ︷︷                                   ︸
=∇2h(αk )

)ak

=
Γkj

Γk

m∑
k ′=1
∇ak′∇akH(α)a

k ′ =
Γkj

Γk
(
∇2H(α)a

)k
.

�

Next we turn to the functional setting. Let τ := 2π ord(σ ). In order to �nd T -periodic
solutions of (3.3) with T > 0 small, we use the variational structure of (3.5) to look for τ -
periodic solutions of (3.5) with r > 0 small. We work on the Sobolev space H 1

τ as stated in
section 3.1 and will also need the corresponding spaces L2

τ and H 2
τ . The action functional

associated to (3.5) is given by

Φr (u) =
1
2

∫ τ

0
〈MΓ Ûu, JNu〉R2N dt −

∫ τ

0
Hr (u) dt = Φ0(u) −

∫ τ

0
F (ru) dt + τH(α).

Let Φ : Λ′→ R, (r ,u) 7→ Φr (u), where

Λ′ :=
{
(r ,u) ∈ [0,∞) × H 1

τ : (r ,u(t)) ∈ O for all t ∈ R
}
.

Then Λ′ is open in [0,∞) × H 1
τ , since H 1

τ embeds into C0
τ , Φ ∈ C2(Λ′,R) due to Lemma 3.12

and we have to solve ∇Φr (u) = 0 for (r ,u) ∈ Λ′ with r > 0.
The action σ ∗ z = (σ1 ∗ z

1, . . . ,σm ∗ z
m) on R2N , induces an action on H 1

τ . Let

X =
{
u ∈ H 1

τ : σ ∗ u(· + 2π ) = u
}
, Λ = Λ′ ∩ (R × X ), Λr = {u : (r ,u) ∈ Λ } .

Then X is a complete subspace of H 1
τ and (A3 ′) implies ∇Φr (u) ∈ X for (r ,u) ∈ Λ, since

indeed Hr (σ ∗ z) = Hr (z), MΓ(σ ∗ z) = σ ∗ (MΓz) yield Φr (σ ∗ u(· + 2π )) = Φr (u) for any
(r ,u) ∈ Λ′. So it is enough to �nd a critical point of the restriction Φr |Λr : Λr → R. We
denote the restriction Φ |Λ again by Φ. As stated in 2.2.1 one has

∇Φr (u) = ∇Φ0(u) − (id−∆)−1r∇F (ru) = (id−∆)−1 (−JNMΓ Ûu − ∇H0(u) − r∇F (ru)) ,

where ∆ : H 2
τ → L2

τ , u 7→ Üu, such that for v ∈ H 1
τ , w ∈ L2

τ the relation〈
v, (id−∆)−1w

〉
H 1
τ
=

∫ τ

0
〈v,w〉R2N dt = 〈v,w〉L2

τ

holds true. Note that actually ∇Φ ∈ C1(Λ,H 2
τ ∩X ), where H 2

τ ∩X is equipped with the norm
‖·‖H 2

τ
.
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3.3 Proof of Theorem 3.8

For r → 0 the limiting equation of (3.5) is the decoupled system

Γkj Ûu
k
j = J∇ukj

Hk
R2(u

k
1 , . . . ,u

k
Nk
), j = 1, . . . ,Nk , k = 1, . . . ,m.

So by (A3′), Z (t) := (Z 1(t), . . . ,Zm(t)) ∈ X is a critical point of Φ0, which of course is
not isolated due to the symmetries of H0. Let D =

{
â : a ∈ R2m }

⊂ X and for a tuple
θ = (θ1, . . . ,θm) ∈ (R/τZ)

m = Tm , u ∈ X de�ne the shifted version

θ ∗ u ∈ X by
(
θ ∗ u

)k
j = u

k
j (· + θk ).

Then Φ0(u + â) = Φ0(u) = Φ0(θ ∗ u) for any u ∈ Λ0, â ∈ D, θ ∈ Tm indeed implies that{
θ ∗ Z + â : θ ∈ Tm ,a ∈ R2m }

is a (l+2m)-dimensional critical manifold ofΦ0. Since everyZk , k = 1, . . . , l is by assumption
(A3′) a σk -nondegenerate solution of (3.1), we have

Kern∇2Φ0(Z ) = span
{
ÛZ 1, . . . , ÛZ l

}
⊕ D. (3.7)

Here ÛZk is meant to be the element (0, . . . , 0, ÛZk , 0, . . . , 0) ∈ X . Whereas this degeneracy
is natural for the limiting case r = 0, the functionals Φr with r > 0 are in general neither
invariant with respect to translations by elements of D nor under the action of Tm - except
for synchronous time shifts θ = (θ1, . . . ,θ1) ∈ T

m . We would like to mention here that this
loss of symmetry for r > 0 prevents us from simply using continuation theorems like Thm.
2.4 of [63].

To deal with the degeneracy of the limiting problem we modify our equation∇Φr (u) = 0.
For a subspace Y ⊂ X we denote by PY : X → Y the orthogonal projection onto Y and by
Y⊥ the orthogonal complement of Y in X . Let

M = Tm ∗ Z , Y =
{
â : a ∈ Kern∇2H(α)

}⊥
⊂ X .

Here the space Y is not to be confused with the space Y = H 2
τ in the degree theoretic setting.

Lemma 3.13. There exist constants r0, ρ > 0 with [0, r0) × Bρ (M) ⊂ Λ, such that the map
ψ : U := [0, r0) ×

(
Bρ (M) ∩ Y

)
→ Y ,

ψr (u) =

{
(id−PD )∇Φr (u) +

1
r 2PD∩Y∇Φr (u), r > 0,

∇Φ0(u) − PD∩Y∇
2F (0)u, r = 0

is continuous, C1 on U ∩ ((0, r0) × X ) with Duψ continuous up to r = 0 and satis�es for
(r ,u) ∈ U, r > 0:

∇Φr (u) = 0 ⇔ ψr (u) = 0.

Moreover,M is a nondegenerate l-dimensional manifold of zeroes of ψ0. I.e. for any v ∈ M
there holds

ψ0(v) = 0, KernDψ0(v) = TvM = span
{
Ûv1, . . . , Ûvl

}
.
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Proof. As a �rst step observe that for positive r , ψ̄r : Λr → X ,

ψ̄r (u) = (id−PD )∇Φr (u) +
1
r 2PD∇Φr (u)

= ∇Φ0(u) − (id−PD )(id−∆)−1r∇F (ru) −
1
r
PD∇F (ru)

(3.8)

has the same zeroes as ∇Φr . In the second equation we used that ∇Φ0 maps into D⊥, since
Φ0 is invariant with respect to translations. Clearly ψ̄ is C1 as long as r > 0. Since F is C2

and ∇F (0) = 0, ψ̄r extends as r → 0 continuously to ψ̄0 : Λ0 → R,

ψ̄0(u) = ∇Φ0(u) − PD∇
2F (0)u .

The partial derivative Duψ̄ : Λ → L(X ) is continuous as well and the regularity of ψ̄ will
carry over toψ once we have de�ned it.

Now let v ∈ M. Since Zk (t) = exp
(
± JNk t/ord(σk )

)
zk or Zk (t) ≡ 0 due to (A3′) , we

see that ∇2F (0)v ∈ D⊥ ⊂ Y . Hence ψ̄0(v) = 0. Next

KernDψ̄0(v) =
(3.7)

(
span

{
Ûv1, . . . , Ûvl

}
⊕ D

)
∩ Kern PD∇

2F (0)

and

PD∇
2F (0)

[∑
k

λk Ûv
k + â

]
= PD∇

2F (0)â.

By Lemma 3.12, ∇2F (0)â = MΓb̂ with bk = 1
Γk

(
∇2H(α)a

)k , which projected onto D gives
PDMΓb̂ = ĉ with ck = Γk

Nk
bk . Hence we see that

∑
k λk Ûv

k + â is an element of the kernel of
Dψ̄0(v) if and only if a ∈ Kern∇2H(α), which means â ∈ Y⊥. So if we restrict ψ̄ to ψ as
stated in the Lemma, especially Dψ0(v) = PYDψ̄0(v) : Y → Y , we get

KernDψ0(v) = span
{
Ûv1, . . . , Ûvl

}
= TvM .

It remains to prove thatψr (u) = 0 for r > 0 small, u ∈ Y close toM implies ∇Φr (u) = 0.
Note that ψr (u) = 0 if and only if PY∇Φr (u) = 0. If α ∈ Fm(Ω) is a nondegenerate critical
point of H as in (A1′)(i), we have Y = X and are done. Otherwise by (A1′), Ω, д and hence
also G and h are invariant with respect to translations and/or rotations.

Assume �rst that (iii) of (A1′) holds, i.e. λν + Ω = Ω, д(x + λν ,y + λν ) = д(x ,y) for any
x ,y ∈ Ω, λ ∈ R and some ν ∈ R2 \{0}. ThenH(α +λν̌ ) = H(α), where ν̌ = (ν , . . . ,ν ) ∈ R2m ,
and Φr (u + λ ˆ̌ν ) = Φr (u) show that ˆ̌ν ∈ Y⊥ and

〈
∇Φr (u), ˆ̌ν

〉
= 0 for any u ∈ Λr . So if ν is

the only direction, in which д is invariant, then X = Y ⊕ R ˆ̌ν by (A1′) and PY∇Φr (u) = 0
automatically gives ∇Φr (u) = 0.

If Ω and д are rotational invariant, i.e. eλJΩ = Ω, д(eλJx , eλJy) = д(x ,y) for any λ ∈ R,
x ,y ∈ Ω, we obtain Jmα ∈ Kern∇2H(α), since H(eλJmα) = H(α) for any λ ∈ R. For Φr
there holds

Φr

(
eλJN

(
u +

1
r
α̂
)
−

1
r
α̂

)
= Φr (u)

and therefore 〈∇Φr (u), JN (ru + α̂)〉 = 0 for any u ∈ Λr . Assuming that Ω, д have no other
symmetry properties leads to the fact that PY∇Φr (u) = 0 implies ∇Φr (u) = 0 as long as
X = Y ⊕ RJN (ru + α̂). Due to JN α̂ ∈ Y

⊥ we can �nd a subset [0, r0) × Bρ (M) ⊂ Λ on which
this condition holds. This settles case (A1′)(ii).
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In the remaining case (A1′)(iv), where Ω = R2 we have to choose the neighbourhood of
{0} ×M such that

X = Y ⊕ span
{ ˆ̌e1, ˆ̌e2, JN (ru + α̂)

}
.

�

Remark 3.14. If α is a critical point ofH not satisfying (A1′), then Lemma 3.13 remains true
with the exception thatψr (u) = 0 only implies PY∇Φr (u) = 0.

So far we have reduced the degeneracy of the limiting problem by 2m = dimD dimen-
sions. To overcome the remaining degeneracy induced by the l independent time shifts of
Z 1, . . . ,Z l we perform a Lyapunov-Schmidt reduction.

For v ∈ M denote by Pv : X → TvM ⊂ Y the orthogonal projection onto TvM.
Moreover, de�ne ψ̃ : Ũ := [0, r0) ×M × (Bρ (0) ∩ Y ) → Y ,

ψ̃ (r ,v,w) = (id−Pv )ψr (v +w) + Pvw .

SinceM 3 v 7→ Pv ∈ L(X ) is C1, we have ψ̃ ∈ C1 where r > 0, as well as continuity of ψ̃ ,
Dvψ̃ , Dwψ̃ on all of Ũ. For (r ,v,w) ∈ Ũ there holds

ψr (v +w) = 0, w ⊥ TvM ⇐⇒

{
Pvψr (v +w) = 0,
ψ̃ (r ,v,w) = 0.

Lemma 3.15. Shrinking both r0 > 0 and ρ > 0 if necessary, we �nd a continuous map
W : [0, r0) ×M → Bρ (0) ∩ Y satisfyingW (r ,v) ⊥ TvM for any (r ,v) ∈ [0, r0) ×M and

ψ̃ (r ,v,w) = 0 ⇐⇒ w =W (r ,v)

on Ũ. Moreover, eachW (r , ·) :M → Bρ (0) is equivariant with respect to the orthogonal action
of { θ ∈ Tm : θ1 = . . . = θm } � S1 on X . Concerning regularity we haveW ∈ C1((0, r0) ×M),
and DvW is asW itself continuous up to r = 0.

Proof. Let v ∈ M. One has ψ̃ (0,v, 0) = 0 and

T := Dwψ̃ (0,v, 0) = (id−Pv )Dψ0(v) + Pv = Dψ0(v) + Pv

has trivial kernel by Lemma 3.13. But note that Range(T ) , Y , in fact T is an isomorphism
betweenY andH 2

τ∩Y , which, similar to the proof of Theorem 2.7, can be seen in the following
way:

Let P0 : H 1
τ → R

2N be the orthogonal projection onto the space of constant functions
and L : H s

τ → H s+1
τ , u 7→ (id−∆)−1(−JNMΓ Ûu) + P0u. Then L is an isomorphism, also when

viewed as a mapping from Y → H 2
τ ∩Y . Sincev is smooth, L−1ψ̃ (0,v, ·) − id : Bρ (0)∩Y → Y

is continuously di�erentiable and maps bounded subsets onto relatively compact subsets.
Hence L−1T : Y → Y is an index 0 Fredholm operator with trivial kernel. Therefore also
T : Y → LY = H 2

τ ∩ Y is an isomorphism.
Note also that ψ̃ viewed as a map into H 2

τ ∩ Y with ‖·‖H 2
τ

instead of Y has the same
regularity as the original ψ̃ . So the implicit function theorem yields local mapsWv solving
the stated equation on [0, rv ) ×Uv × Bρv (0), whereUv ⊂ M is an open neighbourhood of v .

However, the compactness ofM and the uniqueness of the solution allow us to construct
a global map W : [0, r0) × M → Bρ (0) ∩ Y as requested by the Lemma. The equivariance
of every W (r , ·) with respect to synchronuous time shifts follows from the corresponding
equivariance of ψ̃ , i.e. ψ̃ (r ,θ ∗v,θ ∗w) = θ ∗ ψ̃ (r ,v,w). �
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For r ∈ (0, r0), v ∈ M it now remains to solve

Pvψr (v +W (r ,v)) = 0.

Therefore let φ : [0, r0) ×M → R,

φ(r ,v) = φr (v) = Φr (v +W (r ,v)). (3.9)

Lemma 3.16. There exists r1 ∈ (0, r0) such that r ∈ (0, r1), v ∈ M with Dφr (v) = 0 imply
Pvψr (v +W (r ,v)) = 0.

Proof. Di�erentiation of PvW (0,v) = 0 shows that PvDvW (0,v) = 0. We therefore have
PvDvW (r ,v) = o(1) uniformly in v ∈ M as r → 0 and thus can choose r1 ∈ (0, r0) such that
‖PvDvW (r ,v)‖L(TvM) ≤

1
2 for every (r ,v) ∈ (0, r1) ×M.

Assume Dφr (v) = 0 for some 0 < r < r1, v ∈ M. Using Pv ◦ PD = 0 one sees that
ψ̃ (r ,v,W (r ,v)) = 0 implies

(id−Pv )PY∇Φr (v +W (r ,v)) = 0. (3.10)

Thus we obtain for v ′ ∈ TvM

0 = Dφr (v)v
′ = 〈∇Φr (v +W (r ,v)), (id+DvW (r ,v))v ′〉
= 〈PY∇Φr (v +W (r ,v)), PY (id+DvW (r ,v))v ′〉
= 〈PvPY∇Φr (v +W (r ,v)), (id+PvDvW (r ,v))v ′〉

(3.11)

and conclude Pvψr (v +W (r ,v)) = PvPY∇Φr (v +W (r ,v)) = 0, since by our choice of r1 the
map id+PvDvW (r ,v) : TvM → TvM is an isomorphism. �

Now it remains to investigate critical points of φr for r ∈ (0, r1).

Proof of Theorem 3.8. Let r ∈ (0, r1). The reduced functional φr is invariant with respect to
the action of { θ ∈ Tm : θ1 = . . . = θm }, which is smooth onM. So every critical point of
φr belongs to a whole orbit of critical points. If l = 1, we are done. Otherwise we can �nd
on each of the critical orbits a point of the form (v1, . . . ,vl−1,Z l , 0, . . . , 0) ∈ M. There-
fore the number of critical orbits is given by the number of critical points of Tl−1 → R,
θ 7→ φr

(
(θ1, . . . ,θl−1, 0, . . . , 0) ∗ Z

)
, for which the Lusternik-Schnirelmann category of Tl−1

provides l as a minimal bound, see for example [23].
This way we have found for every r ∈ (0, r1) l critical points of Φr lying on distinct

orbits. Let u = v +W (r ,v) ∈ Y be one of them. Then z(t) = ru(t/r 2) + α̂ is by construction
a T (r ) = τr 2 = 2π ord(σ )r 2-periodic solution of (3.3), for which the properties of Theorem
3.8 hold. �

3.4 Additional information and the case l = 1
For now we just continue our investigation with l ∈ { 1, . . . ,m } arbitrary.

Lemma 3.17. Let r ∈ (0, r1), v̄ ∈ M be a critical point of φr , which means ∇Φr (ū) = 0 with
ū = v̄ +W (r , v̄). Then

Kern∇2Φr (ū) ∩ Y = (id+DvW (r , v̄))KernD2φr (v̄).

Proof. With the modi�ed function ψ from 3.13 we have KernDψr (ū) = Kern∇2Φr (ū) ∩ Y .
Now (id−Pv̄ )Dψr (ū) + Pv̄ = Dwψ̃ (r , v̄,W (r , v̄)) : Y → Y ∩ H 2

τ is an isomorphism for every
r > 0 small enough and (id−Pv̄ )Dψr (ū) : Y → Y∩H 2

τ is a Fredholm operator with index 0, cf.
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proof of Lemma 3.15. Thus by shrinking r1 if necessary we get dim Kern(id−Pv̄ )Dψr (ū) = l .
On the other hand we know from Lemma 3.15, that (id−Pv )ψr (v +W (r ,v)) = 0 for every
v ∈ M, and hence

(id−Pv̄ )Dψr (ū)(id+DvW (r , v̄))v ′ = 0

for v ′ ∈ Tv̄M. So

Kern∇2Φr (ū) ∩ Y = {v
′ + DvW (r , v̄)v

′ : v ′ ∈ Tv̄M } ∩ Kern Pv̄Dψr (ū).

Next (3.11) shows that v ′ ∈ KernD2φr (v̄) i� Pv̄PY∇
2Φr (ū)(id+DvW (r , v̄))v ′ = 0 and we

conclude the statement since Pv̄PY∇2Φr (ū) |Y = Pv̄Dψr (ū). �

Lemma 3.18. Let д ∈ Ck (Ω × Ω,R) with k ≥ 2. The mapW : [0, r0) × M → H 1
τ is of class

Ck−2. Furthermore, if k ≥ 3, ∂rW (0,v) ∈ D for any v ∈ M.

Proof. SinceM 3 v 7→ Pv ∈ L(X ) is C∞ and since W is implicitly de�ned, the regularity
of W is induced by ψ . With д ∈ Ck we also have F ∈ Ck and hence Φ ∈ Ck . Then
by the de�nition of ψ in 3.13 one sees that ψ is indeed of class Ck−2 provided the map
κ : U → L2(R/τZ,R2N ),

κ(r ,u) =

{
1
r ∇F (ru), r > 0,
∇2F (0)u, r = 0

is Ck−2. In order to proove this observe that κ is Ck as long as r > 0. The continuity up to
r = 0 follows as in the proof of Lemma 3.13 from the fact that F is C2 and that ∇F (0) = 0.
Also the partial dervivatives that include at least one di�erentiation of κ with respect to u
are easily seen to extend in a continuous way as r → 0. So we have to look at the partial
derivative

∂k−2
r κ(r ,u) =

k−2∑
j=0

(k − 2)!
j! (−1)k−j 1

rk−1−j F
(j+1)(ru)[u]j ,

where (r ,u) ∈ U with r > 0. Now a (pointwise) expansion of F (j+1) gives

F (j+1)(ru)[u]j =

k−2−j∑
l=0

r l

l ! F
(j+1+l )(0)[u]j+l + rk−1−j

(k − 1 − j)!F
(k )(ξu)[u]k−1

for some ξ = ξ (j,u, t) ∈ (0, r ). But as r → 0 we obtain for the remainder

F (k )(ξu)[u]k−1 = F (k )(0)[u]k−1 + o(1)
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with respect to ‖·‖L2
τ

and uniformly in u ∈ Bρ (M). Thus

∂k−2
r κ(r ,u) =

k−2∑
j=0

k−2−j∑
l=0

(k − 2)!(−1)k−j
j!l !

1
rk−1−l−j F

(j+1+l )(0)[u]j+l

+

k−2∑
j=0

(k − 2)!(−1)k−j
j!(k − 1 − j)! F (k )(0)[u]k−1 + o(1)

=

k−2∑
n=0

(
(k − 2)!(−1)k

n!rk−1−n F (n+1)(0)[u]n
n∑
j=0

n!(−1)j
j!(n − j)!

)
+ F (k )(0)[u]k−1

∫ 1

0
(1 − s)k−2 ds + o(1)

=
1

k − 1F
(k )(0)[u]k−1 + o(1).

So the partial derivatives ∂jrκ, j = 1, . . . ,k − 2 exist and are continuous on all ofU.
For the second part assume that д ∈ C3. NowW is C1 on all of [0, r0) ×M and we know

by Lemma 3.15 that

(id−Pv )PY∇Φr (v +W (r ,v)) = 0, PvW (r ,v) = 0

for r > 0 small, cf. equation (3.10). Di�erentiation of both equations with respect to r at
r = 0 and the use of ∂r∇Φ0(v) = 0 as well as (id−Pv )PY∇2Φ0(v) = ∇

2Φ0(v) shows

∂rW (0,v) ∈ Kern∇2Φ0(v) ∩ (TvM)
⊥ = D.

�

Proof of Theorem 3.9. Let now l = 1. In that case the reduced map φr is in fact constant.
Hence the demanded solutions of ∇Φr (u) = 0 can be parameterized by u : [0, r1) → H 1

τ ,
r 7→ u(r ) = Z +W (r ,Z ), where r1 > 0 is taken from Lemma 3.16 and Z = (Z 1, 0 . . . , 0) ∈ M.
By Lemma 3.18 this parametrization is indeed Ck−2 provided д ∈ Ck , k ≥ 2 and ∂ru(0) ∈ D
when k ≥ 3.

It remains to prove the part concerning the global continuum. Assume that (A1′) (i)
holds. Then X = Y and by Lemma 3.17

Kern∇2Φr
(
u(r )

)
= (id+DvW (r ,Z ))KernD2φr (Z ) = (id+DvW (r ,Z ))R ÛZ = R Ûu(r ),

where the last equality holds due to the equivariance of W . By Theorem 2.5 and Theorem
2.3 the local family

(
u(r )

)
r implies the existence of a global connected set C̃ ⊂ Λ, such that

ru(t/r 2) + α̂ is a τr 2-periodic solution of (3.3) for every (r ,u) ∈ C̃. Via the rescaling

C =

{ (
τr 2

2π , ru
( τ
2π ·

)
+ α̂

)
: (r ,u) ∈ C̃

}
,

such that (s,v) ∈ C implies v(·/s) is a 2πs-periodic solution of 3.3, we translate this con-
tinuum into a continuum C ⊂ R+ × H 1

2π satisfying the properties of Corollary 2.9 and/or
Remark 2.14.

If (A1′) (iii) holds, then the orbits S1 ∗ u(r ) are not isolated critical orbits of Φr . But we
still can argue in the same way as before with the di�erence that we now have to work on
the space Y =

{
u ∈ X :

〈
u, ˆ̌ν

〉
X

}
instead of X . For this reasoning it is important that ∇Φ

maps Λ ∩ Y into Y . �
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Remark 3.19. In the cases (A1 ′) (ii) or (iv) the orbits S1∗u(r ) are also not isolated. Additionally,
since the symmetry group of rotations is now nonlinear, Λ ∩ Y is not mapped into Y by ∇Φ,
which prevents us from using the degree. One could try to factor out the rotational symmetry
and establish the degree theory in the quotient manifold setting, but this has not been done.

3.4.1 The case l > 1
For the case l > 1 a corresponding result would be true provided one knows that φr for
every r > 0 small is a Morse function except for synchronuous time shifts. This would not
only imply that the solution set of ∇Φr (u) = 0 close to {0} × M is a union of graphs and
that these graphs induce global continua of solutions, but also increase for �xed r > 0 the
number of existing solutions to 2l−1, which is the bound given by Morse theory.

However, a veri�cation of the Morse property seems quite di�cult. Suppose for simplic-
ity that д is C∞, such that φ : [0, r1) ×M → R, φr (v) = Φr (v +W (r ,v)) is also of class C∞.
Obviously φ0(v) = Φ0(v) is independent of v ∈ M. So we will expand φ with respect to r .
By (3.10) and sinceW (r ,v) ∈ Y ∩ (TvM)⊥ we have〈
∇Φr (v +W (r ,v)), ∂

k
rW (r ,v)

〉
H 1
τ
=

〈
(id−Pv )PY∇Φr (v +W (r ,v)), ∂

k
rW (r ,v)

〉
H 1
τ
= 0.

(3.12)
Thus ∂rφr (v) = ∂rΦr (v+W (r ,v)) and especially ∂rφ0(v) = 0. Di�erentiation of (3.12) shows
that the second derivative can be expressed by

∂2
rφr (v) = ∂

2
rΦr (v +W (r ,v)) −

〈
∇2Φr (v +W (r ,v))∂rW (r ,v), ∂rW (r ,v)

〉
H 1
τ
.

In particular, since ∂rW (0,v) ∈ D,

∂2
rφ0(v) = ∂

2
rΦ0(v) = −

∫ τ

0

〈
∇2F (0)v,v

〉
R2N dt .

We will show that this function is in fact also independent of v ∈ M. Recall that

F (z) =
m∑

k,k ′=1
k,k′

Nk∑
j=1

Nk′∑
j′=1

Γkj Γ
k ′
j′ G(z

k
j + α

k , zk
′

j′ + α
k ′) −

m∑
k=1

Nk∑
j, j′=1

Γkj Γ
k
j′д(z

k
j + α

k , zkj′ + α
k )

=: F0(z) −
m∑
k=1

Fk (z).

For k = 1, . . . ,m the map Fk (z) does only depend on the components zk . Thus if we write
v = θ ∗ Z ∈ M, θ = (θ1, . . . ,θm) ∈ T

m and substitute t̃ = t + θk , we see that∫ τ

0

〈
∇2Fk (0)v,v

〉
R2N dt = ∂2

ε |ε=0

∫ τ

0
Fk (εv) dt

does only depend on Zk and not on θ resp. v . With the same argument we obtain for some
constant c ∈ R∫ τ

0

〈
∇2F0(0)v,v

〉
R2N dt = c + 2

∑
k,k ′

∑
j

∑
j′

Γkj Γ
k ′
j′

∫ τ

0

〈
∇2∇1G(α

k ,αk
′

)vk
′

j′ ,v
k
j

〉
R2

dt

= c + 2
∑
k,k ′

∫ τ

0

〈
∇2∇1G(α

k ,αk
′

)ck ′, ck

〉
R2

dt ,
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where ck denotes the center of vorticity of the whole plane solution vk , i.e.

ck =

Nk∑
j=1

Γkj v
k
j .

In general the center of vorticity is preserved along solutions of the whole plane systems, see
for example [64]. In our case we have ck = 0, since vk (t) is a relative equilibrium solution
rigidly rotating around the origin. Thus also the second derivative ∂2

rφ0(v) is independent
of v .

One step further one can also show that the third derivative

∂3
rφ0(v) = ∂

3
rΦr (v +W (r ,v)) = −

∫ τ

0
F (3)(0)[v]3 dt

does not depend onv ∈ M. Only the fourth order expansion ofφr at r = 0 has a chance to be
a Morse function, since it involves among other, less explicit terms containing ∂2

rW (0,v) the
term

∫ τ
0 F (4)(0)[v]4 dt . At least the latter seems not to be constant, since we can not recover

the center of vorticity in “biquadratic” terms like∑
j

∑
j′

ΓjΓj′D
2
1D

2
2G(α

k ,αk
′

)[vkj ,v
k
j ,v

k ′
j′ ,v

k ′
j′ ].

That the critical points of ∂4
rφ0(v) are indeed nondegenerate (up to synchronuous time shifts)

has not been investigated further.

3.5 Examples of nondegenerate relative equilibria

Let Z (t) = e−ω JN tz, z ∈ R2N �x, be a rigidly rotating solution of the whole plane system

MΓ Ûz = JN∇HR2(z). (3.13)

We de�ne the so called stability matrix

A = JN (M
−1
Γ ∇

2HR2(z) + ω · id) ∈ R2N×2N .

If we rewrite (3.13) in a rotating coordinate frame w(t) = e−ω JN tz(t), then Z is a nondegen-
erate relative equilibrium if and only if

Ûw = Aw (3.14)

has only 3 linear independent 2π
|ω | -periodic solutions.

In order to check this for concrete examples we shall use results of Roberts [67], who
studied the linear stability of relative equilibria and therefore investigated the spectrum of
A. For the convenience of the reader we recall Lemma 2.4 and some consequences from [67].
For v ∈ R2N we use the notation Ev := span {v, JNv } ⊂ R2N .
Lemma 3.20. a) Let ê1, ê2 ∈ D be the standard basis of D ⊂ R2N . The spaces Ez and D

are invariant subspaces of A. The representation of A in the basis (z, JN z, ê1, JN ê2) of the
direct sum Ez ⊕ D is given by

A =
©­­­«

0 0 0 0
2ω 0 0 0
0 0 0 −ω
0 0 ω 0

ª®®®¬ .
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b) Supposev is a real eigenvector ofM−1
Γ ∇

2H0(z)with eigenvalue µ. Then Ev is an invariant
subspace of A, on which A is represented by(

0 µ − ω
µ + ω 0

)
.

c) Supposev = v1+iv2 is a complex eigenvector ofM−1
Γ ∇

2H0(z) with eigenvalue µ = ξ +iη.
Then span {v1,v2, JNv1, JNv2 } ⊂ R

2N is a real invariant subspace of A, on which A is
represented by ©­­­«

0 0 ξ − ω η
0 0 −η ξ − ω

ξ + ω η 0 0
−η ξ + ω 0 0

ª®®®¬ .
Note that the Hamiltonian in [67] di�ers by a factor of π−1 from HR2 but the correspond-

ing stability matrices coincide, when translating the solution of one system to the other.

Example 3.21. Let N = 2 and Γ1, Γ2 , 0 with Γ := Γ1+Γ2 , 0. Any initial position z1, z2 of the
two point vortices gives a relative equilibrium solution of (3.13) (see e.g. [64]). Via translation
we can assume that they rotate rigidly around the origin with frequencyω = Γ

π |z1−z2 |2
, 0. Due

to Lemma 3.20 the stability matrix A ∈ R4×4 of any such solution is given (in a suitable basis)
by

A =
©­­­«

0 0 0 0
2ω 0 0 0
0 0 0 −ω
0 0 ω 0

ª®®®¬ .
The linear system (3.14) then possesses exactly 3 linearly independent 2π

|ω | -periodic solutions.

Example 3.22. Now we consider N = 3 vortices with vortex strengths, Γ1, Γ2, Γ3 , 0, and such
that Γ := Γ1 + Γ2 + Γ3 , 0. Then every equilateral triangle con�guration z1, z2, z3 is a relative
equilibrium solution of the 3-vortex problem (3.13) (see Section 2.2 in [64]). Let Z (t) = e−ω J3tz
be an equilateral triangle con�guration rotating around the origin. The corresponding stability
matrix A is a 6 × 6 matrix. In [67] Roberts computed its eigenvalues explicitly in the case when
ω = Γ/3 – this can always be achieved by a suitable scaling. He showed that in addition to the
eigenvalues 0, 0,±iω of the block in 3.20 a) there are two more eigenvalues given by ±

√
−L/3,

where L = Γ1Γ2+Γ1Γ3+Γ2Γ3 is the total vortex angularmomentum. Hence the linear system (3.14)
has more than 3 linearly independent 2π

|ω | -periodic solutions if L > 0 and
√
L/3 ∈ ωZ = Γ

3Z,
hence if there exists k ∈ Z with

3L = k2Γ2 = k2 (
Γ2

1 + Γ2
2 + Γ2

3 + 2L
)
.

This is only possible if k2 = 1 and L = Γ2
1 + Γ

2
2 + Γ

2
3 . Therefore the equilateral triangle con�gu-

ration is nondegenerate provided Γ , 0, L , 0 and L , Γ2
1 + Γ2

2 + Γ2
3 .

Example 3.23. Let N ∈ N be arbitrary and Γ1 = . . . = ΓN , 0. If one places all point
vortices on a line, say zk = (xk , 0) and such that x1, . . . ,xN are the roots of the N th Hermitian
polynomial, then the line of vortices rotates rigidly around the origin, see page 2172 of [4]. From
Corollary 3.3 in [67] we can conclude that this con�guration is nondegenerate for any N ≥ 3.

So far we have shown all the examples stated in 3.5. We would like to mention that [67]
provides with rhombus con�gurations and the trapezoidal con�gurations two more speci�c
examples consisting of 4 vortices that could be considered for condition (A3).
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3.6 An explicit stationary solution

With Examples 3.5 and 3.7 we have already seen some relative equilibrium solutions that are
σ -nondegenerate or just nondegenerate and therefore can be choosen in (A3′) for theorem
3.8. Independent of the relative equilibrium solutions we also need for (A1′) a nondegener-
ate or not too degenerate critical point of the m-vortex HamiltonianH . We will verify this
for Example 3.2. I.e. we look at the 2-vortex system in the unit disc Ω = B1(0) with vor-
ticities Γ1 = 1, Γ2 = −1. By combining for example a Thomson N1-Gon con�guration with
vorticities Γ1

j =
1
N1

, j = 1, . . . ,N1 and a collinear con�guration of N2 vortices of strengths
Γ2
j = −

1
N2

, j = 1, . . . ,N2 or another Thomson con�guration we obtain therefore periodic
solutions of (3.3) in the unit disc for an arbitrary number of N = N1 + N2 ≥ 3 vortices that
are not rigidly rotating around the center of the disc.

The regular part of the Dirichlet Green’s function in B1(0) is given by

д(x ,y) = дB1(0)(x ,y) = −
1

4π log
(
|x |2 |y |2 − 2 〈x ,y〉R2 + 1

)
and

h(x) = hB1(0)(x) = −
1

2π log(1 − |x |2),

such that the Hamiltonian de�ned on F2(B1(0)) is given by

H(a1,a2) =
1
π

(
log

��a1 − a2�� − 1
2 log

(��a1��2 ��a2��2 − 2
〈
a1,a2〉

R2 + 1
))

+
1

2π

(
log

(
1 −

��a1��2 )
+ log

(
1 −

��a2��2 ) )
.

Let R(y) = y
|y |2

be the re�ection at the unit circle, then

π∇1H(a
1,a2) =

a1 − a2

|a1 − a2 |2
−

a1 − R(a2)

|a1 − R(a2)|2
−

a1

1 − |a1 |2
,

π∇2H(a
1,a2) =

a2 − a1

|a2 − a1 |2
−

a2 − R(a1)

|a2 − R(a1)|2
−

a2

1 − |a2 |2
.

The ansatz α1 = (µ, 0), α2 = (−µ, 0) with µ > 0 shows that α = (α1,α2) is a critical point of
H if and only if

µ4 = 1 − 4µ2, (3.15)

which means µ =
√√

5 − 2. For the second derivatives at the critical point α = (µ, 0,−µ, 0)
we get with a repeated use of (3.15)

π∇2
1H(α) =

(
1

4µ2 −
1

(µ + 1
µ )

2

) (
−1 0
0 1

)
−

1
(1 − µ)2

(
1 + µ2 0

0 1 − µ2

)
=

1
26µ2 − 6

(
−6µ2 + 1 0

0 4µ2 − 1

)
,

π∇2∇1H(α) =
1

4µ2

(
−1 0
0 1

)
+

1
(1 + µ2)2

(
1 0
0 1

)
,

=
1

20µ2 − 4

(
µ2 + 1 0

0 3µ2 − 1

)
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and ∇2
2H(α) = ∇

2
1H(α), ∇1∇2H(α) = ∇2∇1H(α). So the Hessian ofH is given by

π∇2H(α) =

©­­­­­­«

−6µ2+1
26µ2−6 0 µ2+1

20µ2−4 0
0 4µ2−1

26µ2−6 0 3µ2−1
20µ2−4

µ2+1
20µ2−4 0 −6µ2+1

26µ2−6 0
0 3µ2−1

20µ2−4 0 4µ2−1
26µ2−6

ª®®®®®®¬
.

Using (3.15) one can verify that the second and the fourth column are identical. This corre-
sponds to the degeneracy induced by the rotational invariance, which means that the vector
J2α = (0,−µ, 0, µ) is contained in Kern∇2H(α). On the other hand one easily sees that the
�rst three columns are linearly independent. This shows that α is a critical point of the 2
vortex HamiltonianH satisfying condition (A2′)(ii) as it has been stated in Example 3.2.
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Chapter 4

Periodic solutions near ∂Ω

In the previous chapter we have obtained periodic solutions by viewing the in�uence of the
boundary ∂Ω as a perturbation of several whole-plane systems. Contrary to that we will now
exploit vortex-boundary interactions in order to prove the existence of periodic solutions
close to ∂Ω. The proof again relies on a suitable singular limit scaling and the continuation of
an existing periodic solution of the limiting problem. This time we will also use a symplectic
change of coordinates transferring a neighborhood of a boundary component to the unit disc.

4.1 Statement of results

Let Ω ⊂ R2 be a domain with nonempty boundary ∂Ω, and let C ⊂ ∂Ω be a compact
connected component of the boundary of class C4. Clearly C is di�eomorphic to S1. Let
ν : C → R2 denote the exterior unit normal and κ : C → R the curvature of C with respect
to ν . Set d(x) = dist(x ,C) and �x δ > 0 su�ciently small such that the orthogonal projection

p : { x ∈ Ω : d(x) ≤ δ } → C

is well de�ned.
Instead of an actual Green’s function we consider as before a general symmetric C3

function д : Ω × Ω → R, and set

G(x ,y) = −
1

2π log |x − y | − д(x ,y) for x ,y ∈ Ω, x , y.

We also need the corresponding generalized Robin function h : Ω → R de�ned as usual by
h(x) = д(x ,x) and the generalized harmonic radius ρ : Ω → R,

ρ(x) = exp(−2πh(x)).

See appendix B.3 for the de�nition and some properties of the classical harmonic radius.
Contrary to chapter 3 we consider the case of N identical point vortices, i.e. without

limitation Γ1 = . . . = ΓN = 1, such that the Hamiltonian H : FN (Ω) → R is given by

H (z1, . . . , zN ) =
N∑

j,k=1
j,k

G(zj , zk ) −
N∑
k=1

h(zk ).

Therefore the system under investigation simply reads

Ûz = JN∇H (z). (4.1)
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Assumption 4.1 contains the required asymptotic behavior of the functions induced by
д near C . For y ∈ Ω with d(y) ≤ δ let Qy : R2 → Rν (p(y)) denote the orthogonal projection
onto the normalspace Np(y)C , i.e. Qyv = 〈ν (p(y)),v〉R2 ν (p(y)).

Assumption 4.1. ρ can be extended to a C3 function on Ω ∪C by setting ρ(x) := 0 for x ∈ C ,
thus from now on ρ : Ω ∪C → R. Moreover, ∇ρ(x) = −2ν (x), and ∇2ρ(x) = −2κ(x) · idR2 for
every x ∈ C . For every ε > 0 the function G satis�es

|∇1G(x ,y)| +
��∇2

1G(x ,y)
�� = O(d(y)) and ∇2∇1G(x ,y) = O(1)Qy +O(d(y))

as d(y) → 0 uniformly on the set
{
(x ,y) ∈ Ω × Ωδ : |x − y | ≥ ε

}
.

The termsO(1) andO(d(y)) = d(y) ·O(1) in the second equation in 4.1 are matrix valued.
It follows from Assumption 4.1 that

ρ(x) = 2d(x) − κ(p(x))d(x)2 + o(d(x)2)

as d(x) → 0, and h(x) → ∞ as d(x) → 0.

Proposition 4.2. Assumption 4.1 holds for д = дΩ being the regular part of the Green function
of the Dirichlet Laplace operator in the cases when

a) Ω is a simply connected bounded domain with C3,α boundary.

b) Ω is an annulus
{
x ∈ R2 : a < |x | < b

}
, 0 < a < b.

Proof. See Corollary B.2, Lemma B.3 and Lemma B.4 in Appendix B. �

For more general multiply connected domains it might be possible to prove Assumption
4.1 using analytical formulae for the Green’s function based on the Schottky-Klein prime
function, see [25].

Theorem 4.3. Let L denote the length ofC and suppose that д : Ω×Ω → R satis�es Assump-
tion 4.1. Then there exists r̄ > 0 and a C1 map

(0, r̄ ) × R 3 (r , t) 7→ z(r )(t) ∈ FN (Ω),

having also continuous mixed derivatives ∂r ∂tz(r )(t) = ∂t ∂rz(r )(t) and such that z(r ) is a pe-
riodic solution of (4.1) with minimal period Lr for each r ∈ (0, r̄ ). Moreover, these periodic
solutions possess the following properties:

(1) z(r )k (t) = z(r )1

(
t + (k−1)Lr

N

)
for every k = 1, . . . ,N .

(2) The rescaled function v(r )(t) := z(r )1 (rt) converges in the space of L-periodic C1 functions
towards a parametrization γ of C according to arc-length and with J Ûγ = ν ◦ γ . More
precisely there holds

v(r ) = γ −
r

2π ν ◦ γ + o(r ),

Ûv(r ) =
(
1 − r

2π κ ◦ γ
)
Ûγ + o(r )

uniformly in t as r → 0.

(3) The distance d
(
v(r )(t)

)
satis�es

d
(
v(r )

)
=

r

2π +
r 2

8π 2κ ◦ γ + o(r
2)
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as r → 0 uniformly in t ∈ R.

(4) The family
(
z(r )

)
r induces a global continuum of choreographic solutions in the sense of

De�nition 2.11 and Remark 2.14.

Remark 4.4. a) The theorem shows that for T > 0 small enough, the system (4.1) has a
T -periodic solution with all vortices moving on the same trajectory. At �rst order the
trajectory has distance r/2π = T /2πL from C . The second order term in (3) tells us that
the trajectory of the vortices comes closer toC in regions whereC has negative curvature,
and the vortices speed up by (2). On the other hand, near positively curved parts ofC the
trajectory increases the distance toC and the vortices slow down. In any case the vortices
try to use shortcuts near curved parts of the boundary, cf. Figure 1.3.

b) The expansions in (2) and (3) are independent of N .

c) The boundary component C splits R2 into a bounded component BC and an unbounded
component UC , i.e. R2 is the disjoint union BC ∪ C ∪UC . Let σ (C) = 1, if Ω ∩ BC , ∅

and σ (C) = −1, if Ω ∩UC , ∅. With the use of (2) we obtain the following expansion of
the H 1

L-norm


v(r )


2

H 1
L

= ‖γ ‖2H 1
L
−

r

π

(∫ L

0
〈γ , J Ûγ 〉R2 dt +

∫ L

0
κ ◦ γ dt

)
+ o(r )

= ‖γ ‖2H 1
L
−

2σ (C)r
π

(
vol2(BC ) + π

)
+ o(r ).

d) The theorem holds also for a boundary component of class C3 instead of C4, cf. the paper
with Q. Dai and T. Bartsch [12]. However, the proof shown here requires the curvature κ
to be of class C2. One might recover the original theorem by an approximation procedure
with C4 boundary curves and a careful control of the maximal parameter value r̄ , but
this has not been examined closer.

4.2 Scaling of the domain

Here we will just prove that it is su�cient to consider the case of a boundary component C
with length 2π .

Lemma 4.5. Suppose that Theorem 4.3 holds under the additional condition that L = 2π . Then
it in fact holds for any length L of C .

Proof. Let Ω ⊂ R2 be a domain, C a bounded boundary component of class C4 with length
L and let д : Ω × Ω → R be such that the induced functions G and ρ satisfy the conditions
in Assumption 4.1.

De�ne λ = 2π
L , such that the boundary component λC of λΩ has length 2π . On λΩ

consider дλ : λΩ × λΩ → R,

дλ(x ,y) = д(x/λ,y/λ) −
1

2π log λ

and the induced functions

ρλ(z) = e−2πдλ (z,z) = λρ(z/λ),

Gλ(x ,y) = −
1

2π log |x − y | − дλ(x ,y) = G(x/λ,y/λ).
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Since the curvatures κλ of λC and κ of C are related via κλ(λp) = λ−1κ(p), p ∈ C , we can
verify that ρλ , Gλ satisfy Assumption 4.1.

Thus we obtain a family of 2πr̃ -periodic solutions z̃(r̃ ), r̃ ∈ (0, r̃1) of the generalized N -
vortex system on λΩ induced by дλ instead of д satisfying the properties of Theorem 4.3.
For r ∈ (0, λ−1r̃1) we de�ne

z(r )(t) =
1
λ
z̃(λr )(λ2t).

Then each z(r ) is indeed a Lr -periodic solution of the N -vortex system on Ω induced by д
and (r , t) 7→ z(r )(t) has the regularity required by Theorem 4.3. Concerning the expansions
we write γλ : [0, 2π ] → λC for the parametrization of λC in arclength appearing in Theorem
4.3 and set γ : [0,L] → C , γ (t) = λ−1γλ(λt), which is a parametrization ofC in arclength. We
then have

z(r )1 (rt) =
1
λ
z̃(λr )1 (λr · λt) =

1
λ

(
γλ(λt) −

λr

2π J Ûγλ(λt) + o(λr )
)

= γ (t) −
r

2π J Ûγ (t) + o(r ),

d

dt

(
z(r )1 (rt)

)
=

d

ds |s=λt

(
z̃(λr )1 (λr · s)

)
=

(
1 − λr

2π κλ(γλ(λt))
)
Ûγλ(λt) + o(λr )

=
(
1 − r

2π κ(t)
)
Ûγ (t) + o(r ),

d
(
z(r )1 (rt)

)
=

1
λ

dist
(
z̃(λr )1 (λr · λt), λC

)
=

1
λ

(
λr

2π +
λ2r 2

8π 2 κλ(γλ(λt)) + o(λ
2r 2)

)
=

r

2π +
r 2

8π 2κ(γ (t)) + o(r
2).

Of course also the choreographic property of the solutions is not lost:

z(r )k (t) =
1
λ
z̃(λr )1

(
λ2t +

(k − 1)2πλr
N

)
=

1
λ
z̃(λr )1

(
λ2

(
t +
(k − 1)2πr

λN

))
= z(r )1

(
t +
(k − 1)Lr

N

)
.

Concerning the global continuum we translate the induced set of periodic solutions

C̃ ⊂ R+ ×
{
u ∈ H 1

chor : u(t) ∈ λFN (Ω) for all t ∈ R
}

containing the local graph
{ (
r̃ , z̃(r̃ )(r̃ ·)

)
: r̃ ∈ (0, r̃1)

}
viaC :=

{
(r/λ,u/λ) : (r ,u) ∈ C̃

}
. Then

C ⊂ R+ ×
{
u ∈ H 1

chor : u(t) ∈ Ω, t ∈ R
}

is a global connected set of periodic solutions as in
Corollary 2.9 with C ⊃

{ (
r , z(r )

( Lr
2π ·

) )
: r ∈ (0, λ−1r̃1)

}
. �

4.3 Symplectic boundary coordinates and scaling

We will introduce a very useful change of coordinates in a neighbourhood of C . By the
previous section we can assume that the length of the boundary componentC is exactly 2π .
Let γ : R→ C be a C4 2π -periodic covering of C , such that J Ûγ (s) = ν (γ (s)) for every s ∈ R,
in particular | Ûγ | ≡ 1. Then the curvature κ depending on the parameter s can be expressed
by

κ(s) := κ(γ (s)) = 〈J Üγ (s), Ûγ (s)〉R2 .
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Furthermore, we de�ne U1 =
{
(s,q) ∈ R2 : |κ(s)q | < 1

2
}
, α : U1 → R, φ : U1 → R

2,

α(s,q) =

{
1

κ(s)

(
1 −

√
1 − 2κ(s)q

)
, κ(s) , 0,

q, κ(s) = 0,
φ(s,q) = γ (s) − α(s,q)J Ûγ (s).

Example 4.6. If Ω is the unit disc B1(0), then the transformation is given by

φB1(0)(s,q) =
√

1 − 2q
(
cos(s)
sin(s)

)
, s ∈ R, −

1
2 < q <

1
2 .

In general we have d(φ(s,q)) = α(s,q) as well as p(φ(s,q)) = γ (s) for all q ≥ 0 small
enough, since ∂Ω satis�es the double sided ball condition. The reason for de�ning α as
above is that the harmonic radius composed with φ now satis�es uniformly in s ∈ R and as
0 < q → 0 the expansion

ρ(φ(s,q)) = 2α(s,q) − κ(s)α(s,q)2 + o(α(s,q)2) = 2q + o(q2)

= ρR2
+
(s,q) + o(q2),

(4.2)

where ρR2
+
(s,q) = 2q is the actual harmonic radius of the Green’s function in the upper half-

plane R2
+ =

{
x ∈ R2 : x2 > 0

}
, see Section B.2.2. So one could say φ �attens the boundary

of Ω up to second order.
The standard symplectic form on R2 is given by ωR2(v,w) = 〈v, Jw〉R2 = v1w2 −v2w1.

Lemma 4.7. φ is of class C2 and symplectic, i.e. ωR2(Dφ(u)v,Dφ(u)w) = ωR2(v,w) for all
u = (s,q) ∈ U1, v,w ∈ R2.

Proof. The expansion
α(s,q) = q +

1
2κ(s)q

2 + . . . (4.3)

shows that α is as smooth as κ. Therefore φ is C2. In dimension 2 a map is symplectic if and
only if its derivative has determinant 1 everywhere. One has

Dφ(s,q) =
(
Ûγ (s) − ∂sα(s,q)J Ûγ (s) − α(s,q)J Üγ (s),−∂qα(s,q)J Ûγ (s)

)
∈ R2×2.

So we calculate

detDφ(s,q) = ωR2
(
Ûγ (s) − ∂sα(s,q)J Ûγ (s) − α(s,q)J Üγ (s),−∂qα(s,q)J Ûγ (s)

)
= ∂qα(s,q) − ∂qα(s,q)α(s,q) 〈J Üγ (s), Ûγ (s)〉R2

= ∂qα(s,q)(1 − κ(s)α(s,q)) = 1.

�

By the inverse function theorem and the compactness of C we obtain a small number
r0 > 0 such that for any r ∈ (0, r0) the map φ is locally a di�eomorphism between the stripe
R× (0, r ) ⊂ U1 and the image Ω2r := φ(R× (0, r )) ⊂ Ω with the property φ(s1,q1) = φ(s2,q2)
if and only if q1 = q2 and s1 − s2 ∈ 2πZ.

We prefer to avoid working on the quotient manifold (R/2πZ) × (0, r0) and therefore
compose φ with a scaled version of the “inverse” of φB1(0). Let B∗ := B1(0) \ {0} and for
r ∈ [0, r0) de�ne

ψr : B∗ → Ωr , ψr (x) = φ

(
ι(x), r

1 − |x |2

2

)
,
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where ι : R2 \ {0} → [0, 2π ) is the argument function.

Lemma 4.8. For r ∈ (0, r0) the mapψr is a C2 di�eomorphism and

ωR2(Dψr (x)v,Dψr (x)w) = rωR2(v,w) for all x ∈ B∗,v,w ∈ R2,

i.e. ψr is symplectic with multiplier r . Moreover, [0, r0) × B∗ 3 (r ,x) 7→ ψr (x) ∈ R
2 is of class

C2.

Proof. Of course ι is not continuous, but the composition with γ de�nes a di�eomorphism
between S1 and C ⊂ ∂Ω. Observe also that the following diagram commutes

B∗
ψr // Ωr

R ×
(
0, 1

2
) Ar //

φB1(0)

OO

R ×
(
0, r2

)φ

OO ,

where Ar : R2 → R2, (s,q) 7→ (s, rq). Since Ar is symplectic with multiplier r , the statement
follows. �

In order to treat N -vortices we de�ne Ψr : BN
∗ → ΩN

r ,

Ψr (x1, . . . ,xN ) = (ψr (x1), . . . ,ψr (xN )) .

Recall that the symplectic form associated to the N -vortex Hamiltonian system (4.1) is given
by ω(v,w) =

∑N
j=1ωR2(vj ,w j ). Therefore Ψ : BN

∗ → ΩN
r is a C2 di�eomorphism and sym-

plectic with multiplier r . With a look at Lemma A.2, if needed, we can therefore conclude

Proposition 4.9. Let r ∈ (0, r0). A function u : I → FN (B∗) de�ned on an interval I ⊂ R
solves

Ûu = JN∇(H ◦ Ψr )(u), (4.4)

if and only if z : rI → FN (Ωr ), z(t) = (Ψr ◦ u)(t/r ) is a solution of the N -vortex system (4.1).

4.4 A single vortex

We start the investigation of (4.4) in the case of having only a single vortex in the domain,
i.e. we consider (H ◦ Ψr )(u) = −h(ψr (u)), u ∈ B∗. The single vortex case will already cover a
major part of the work to do in the multiple vortex case.

Lemma 4.10. Let K ⊂ B∗ be compact. As r → 0 the following asymptotics hold in C2(K ,R):

h(ψr (u)) +
1

2π log r = hB1(0)(u) + o(1),

where hB1(0)(u) = −
1

2π log(1 − |u |2) is the Robin function of the unit disc, cf. (B.3). Moreover,

lim
r→0
∂r∇(h ◦ψr )(u) = 0 (4.5)

uniformly on K .

Proof. Recall that −2πh(z) = log ρ(z). Since the logarithm and its derivatives are uniformly
continuous on compact subsets of (0,∞), it is enough to prove that

r−1ρ(ψr (u))
r→0
−−−→ ρB1(0)(u) = 1 − |u |2
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in C2(K ,R).
By Assumption 4.1 we can expand ρ and its derivatives uniformly on a neighborhood of

C:

ρ(z) = 2d(z) − κ(p(z))d(z)2 + o(d(z)2),

∇ρ(z) =
(
− 2 + 2κ(p(z))d(z)

)
ν (p(z)) +

1
2d(z)

2∇3ρ(p(z))[ν (p(z)),ν (p(z))] + o(d(z)2),

∇2ρ(z) = −2κ(p(z)) idR2 +d(z)∇3ρ(p(z))[−ν (p(z))] + o(d(z))

as d(z) → 0. Evaluating these expansions atψr (u) shows that

ρ(ψr (u)) = r (1 − |u |2) + o(r 2),

∇ρ(ψr (u)) =
(
−2 + rκ(ι(u))(1 − |u |2)

)
J Ûγ (ι(u))

+ r 2 (1 − |u |2)2
8 ∇3ρ(γ (ι(u)))[J Ûγ (ι(u)), J Ûγ (ι(u))] + o(r 2),

∇2ρ(ψr (u)) = −2κ(ι(u)) idR2 +r
1 − |u |2

2 ∇3ρ(γ (ι(u)))[−J Ûγ (ι(u))] + o(r )

(4.6)

as r → 0 and uniformly in u ∈ K , cf. (4.2), (4.3). Therefore we can directly conclude the
convergence of r−1ρ(ψr (u)) → ρB1(0)(u) in C0(K ,R).

The derivatives of the stated limit function are given by

∇ρB1(0)(u) = −2u, ∇2ρB1(0)(u) = −2 idR2 .

For the convergence of the derivatives of r−1ρ ◦ ψr we will need also some expansions of
ψr (u) and its derivatives. By the expression of α in the power series (4.3) we have

f (ε,θ ) := ψr
(
(1 + ε)e−J θu

)
= γ (ι(u) + θ )

− J Ûγ (ι(u) + θ )

(
r

1 − (1 + ε)2 |u |2

2 + r 2κ(ι(u) + θ )
(1 − (1 + ε)2 |u |2)2

8 +O(r 3)

)
,

withO(r 3) being the reminder of the power series. Thus we obtain again uniformly inu ∈ K
as r → 0:

Dψr (u)[u] = ∂ε f (0, 0) =
(
r |u |2 + r 2κ(ι(u))

(1 − |u |2)
2 |u |2

)
J Ûγ (ι(u)) + o(r 2),

Dψr (u)[−Ju] = ∂θ f (0, 0) = Ûγ (ι(u)) −
(
r

1 − |u |2

2 + r 2κ(ι(u))
(1 − |u |2)2

8

)
J Üγ (ι(u))

− r 2 Ûκ(ι(u))
(1 − |u |2)2

8 J Ûγ (ι(u)) + o(r 2),

D2ψr (u)[u,u] = ∂
2
ε f (0, 0) = r |u |2 J Ûγ (ι(u)) + o(r ),

D2ψr (u)[u,−Ju] = ∂θ ∂ε f (0, 0) − Dψr (u)[−Ju]

= −Ûγ (ι(u)) + r
1 + |u |2

2 J Üγ (ι(u)) + o(r ),

D2ψr (u)[−Ju,−Ju] = ∂
2
θ f (0, 0) + Dψr (u)[u]

= Üγ (ι(u)) − r
1 − |u |2

2 Jγ (3)(ι(u)) + r |u |2 J Ûγ (ι(u)) + o(r ),

(4.7)
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with γ (3) being the third derivative of the parametrization γ . Combining now (4.6), (4.7) and
| Ûγ | ≡ 1 shows

〈∇(ρ ◦ψr )(u),u〉R2 = 〈∇ρ(ψr (u)),Dψr (u)[u]〉R2 = −2r |u |2 + o(r )
= r

〈
∇ρB1(0)(u),u

〉
R2 + o(r ),

〈∇(ρ ◦ψr )(u),−Ju〉R2 = 〈O(1)J Ûγ (ι(u)) + o(r ), Ûγ (ι(u)) +O(1)J Üγ (ι(u)) + o(r )〉R2 = o(r )

= r
〈
∇ρB1(0)(u),−Ju

〉
R2 + o(r )

uniformly. So we can conclude the convergence in C1(K ,R).
In the same straightforward way one can check that

∇2(ρ ◦ψr )(u)[u,u] = −2r |u |2 + o(r ), ∇2(ρ ◦ψr )(u)[u,−Ju] = o(r ).

Only ∇2(ρ ◦ψr )(u)[−Ju,−Ju] is a little trickier. Here we need the �rst order expansion

∇2ρ(ψr (u))[ Ûγ (ι(u)), Ûγ (ι(u))] + 2κ(ι(u))

= r
1 − |u |2

2 ∇3ρ(γ (ι(u))[−J Ûγ (ι(u)), Ûγ (ι(u)), Ûγ (ι(u))] + o(r )

= r
1 − |u |2

2
d

dε |ε=0
∇2ρ(γ (ι(u) + ε))[−J Ûγ (ι(u)), Ûγ (ι(u))] + o(r ) = o(r ).

This together with 〈
Ûγ (ι(u)),γ (3)(ι(u))

〉
R2
= − | Üγ (ι(u))|2 = −κ(ι(u))2,

which is a consequence of | Ûγ | ≡ 1, shows

∇2(ρ ◦ψr )(u)[−Ju,−Ju] =
〈
∇2ρ(ψr (u))Dψr (u)[−Ju],Dψr (u)[−Ju]

〉
R2

+
〈
∇ρ(ψr (u)),D

2ψr (u)[−Ju,−Ju]
〉
R2

= −2κ(ι(u))
���� Ûγ (ι(u)) − r 1 − |u |2

2 J Üγ (ι(u))

����2
+

〈(
−2 + rκ(ι(u))(1 − |u |2)

)
J Ûγ (ι(u)), Üγ (ι(u))

〉
R2

+

〈
−2J Ûγ (ι(u)),−r 1 − |u |2

2 Jγ (3)(ι(u)) + r |u |2 J Ûγ (ι(u))

〉
R2
+ o(r )

= −2r |u |2 + o(r ).

Therefore r−1ρ ◦ψr → ρB1(0) in C2(K ,R).
It remains to prove that ∂r∇(h ◦ ψr ) = o(1) in C0(K ,Rn). By the expansion in (4.6)

and since (r ,u) 7→ ρ(ψr (u)) is in C2([0, r0) × B∗,R), there holds ∂r
(
r−1ρ(ψr (u))

)
= o(1) in

C0(K ,R). Suppose for a moment that we also know ∂r
(
r−1∇(ρ ◦ψr )

)
= o(1) in C0(K ,R2),

then

−2π∂r∇(h ◦ψr )(u) = ∂r
(

r

ρ(ψr (u))

∇(ρ ◦ψr )(u)

r

)
= −

r 2

ρ(ψr (u))2
∂r

(
ρ(ψr (u))

r

)
O(1) +O(1)∂r

(
∇(ρ ◦ψr )(u)

r

)
= o(1).
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Thus we use the second order expansion of Dψr (u)[u] in (4.7) to improve the previous ex-
pansion to 〈∇(ρ ◦ψr )(u),u〉R2 = −2r |u |2 + o(r 2). In a similar way the identity

∇3ρ(γ (ι(u)))[J Ûγ (ι(u)), J Ûγ (ι(u)), Ûγ (ι(u))] = −2 Ûκ(ι(u))

shows that 〈∇(ρ ◦ψr )(u),−Ju〉R2 = o(r 2). Since (r ,u) 7→ ∇(ρ ◦ψr )(u) is in C2([0, r0)×B∗,R
2)

we get the desired asymptotics ∂r
(
r−1∇(ρ ◦ψr )

)
= o(1) in C0(K ,Rn).

This �nishes the proof of the Lemma. �

So we have shown that the scaled and transformed 1-vortex system on B∗

Ûu = −J∇(h ◦ψr )(u) (4.8)

is in the limit r → 0 a perturbation of the actual 1-vortex system in the unit disc

Ûu = −J∇hB1(0)(u) = −
Ju

π (1 − |u |2)
, (4.9)

which for the initial condition u0 ∈ B∗ has the solution

u(t) = exp
(
−

1
π (1 − |u0 |

2)
Jt

)
u0.

From these solutions we pick out one that is 2π -periodic, e.g. we �x

u∗(t) =
√

1 − π−1
(
cos(t)
sin(t)

)
. (4.10)

Lemma 4.11. The space of 2π -periodic solutions of the linearization

Ûv = −J∇2hB1(0)(u
∗(t))v (4.11)

is R Ûu∗.

Proof. By the invariance of hB1(0) under rotations we can use a rotating coordinate frame
v(t) = e−J tw(t), such that equation (4.11) is equivalent to

Ûw = Jw − J∇2hB1(0)

(√
1 − π−1e1

)
w .

The explicit formula of the Hessian

∇2hB1(0)(z) =
1

π (1 − |z |2)
idR2 +

2zzT

π (1 − |z |2)2
,

cf. B.3, therefore gives

Ûw =

(
0 0

2π − 2 0

)
w .

This system clearly has only the stationary points Re2 as 2π -periodic solutions and hence
any 2π -periodic solution v of (4.11) satis�es v ∈ R Ûu∗. �

Proof of Theorem 4.3 in the case N = 1. Combining Lemma 4.10, Lemma 4.11 and Theorem
2.7 we obtain a C1-family

(
u(r )

)
r ∈[0,r1)

⊂ X = H 1 of 2π -periodic solutions of (4.8) having 1
as geometrically simple Floquet multiplier and with u(0) = u∗,

〈
u(r ), Ûu∗

〉
X = 0. By Theorem
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2.7 we also are allowed to di�erentiate

Ûu(r )(t) = −J∇(h ◦ψr )
(
u(r )(t)

)
with respect to r at r = 0, which by (4.5) leads to

∂t

(
∂ru
(0)(t)

)
= −J∇2(h ◦ψr )(u

∗(t))
[
∂ru
(0)(t)

]
.

So ∂ru(0) is a 2π -periodic solution of (4.11) and therefore Lemma 4.11 implies ∂ru(0) = λ Ûu∗
for some λ ∈ R. On the the other hand di�erentiation of

〈
u(r ), Ûu∗

〉
X = 0 shows λ = 0 and

thus
∂ru
(0) = 0. (4.12)

By Proposition 4.9 we obtain a family z(r ) = ψr
(
u(r )(·/r )

)
, r ∈ (0, r1) of 2πr -periodic solutions

of the original 1-vortex system on Ω. Moreover, (0, r1) × R 3 (r , t) 7→ z(r )(t) ∈ Ω is C1 and
the mixed partial derivatives ∂r ∂tz(r )(t), ∂t ∂rz(r )(t) exist, are equal and continuous. If we
rescale the solutions to z(r )(r ·) = ψr ◦ u

(r ), the same regularity holds now up to r = 0. So
by (4.7),(4.12) and u∗(t) =

√
1 − π−1e−J te1 the following expansions hold uniformly in t as

r → 0:

z(r )(rt) = ψ0(u
∗(t)) + r∂rψ0(u

∗(t)) + o(r )

= γ (ι(u∗(t))) − r
1 − |u∗(t)|2

2 J Ûγ (ι(u∗(t))) + o(r )

= γ (t) −
r

2π J Ûγ (t) + o(r ),

d

dt

(
z(r )(rt)

)
= Dψ0(u

∗(t))[ Ûu∗(t)] + r∂rDψ0(u
∗(t))[ Ûu∗(t)] + o(r )

= Ûγ (t) −
r

2π J Üγ (t) + o(r )

=
(
1 − r

2π κ(t)
)
Ûγ (t) + o(r ).

(4.13)

For the distance to the boundary component C we have by (4.3)

d
(
z(r )(rt)

)
= α

(
ι
(
u(r )(t)

)
, r

1 −
��u(r )(t)��2

2

)
=

r

2π +
r 2

8π 2κ(t) + o(r
2).

(4.14)

So far we have proven the local properties of Theorem 4.3 in the case of a single vortex.
For the global part we need to show that the Floquet multiplier 1 of z(r ) is geometrically

simple. Letv be a Floquet solution for z(r ) to the multiplier 1, i.e. v is a 2πr -periodic solution
of the linearization Ûv = −J∇2H

(
z(r )(t)

)
v . By Lemma A.2 v corresponds to a 2π -periodic

solution w(t) = Dψr
(
u(r )(t)

)−1
v(rt) of Ûw = −J∇2 (h ◦ψr )

(
u(r )(t)

)
w . But since u(r ) has 1 as

a geometrically simple multiplier, we have w ∈ R Ûu(r ). It follows v ∈ R Ûz(r ) and Corollary 2.9
implies the existence of a global continuum of periodic solutions of the generalized 1-vortex
system on Ω. �

4.5 Choreographic solutions with N ≥ 2 vortices

We now turn to the case of N ≥ 2 vortices. Consider again a boundary component C of
length 2π and recall that by Proposition 4.9 it is our goal to �nd for r > 0 small 2π -periodic
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solutions u(t) ∈ FN (B∗) of
Ûu = JN∇(H ◦ Ψr )(u).

In order to achieve this we consider as usual the action functional

Φr (u) =
1
2

∫ 2π

0
〈 Ûu, JNu〉R2N dt −

∫ 2π

0
H (Ψr (u)) dt .

As in the previous chapter we restrict ourselves to the the subspace of choreographic
functions. Let σ = (1 2 3 . . . N ) be the cyclic permutation of N symbols and for an element
z = (z1, . . . , zN ) ∈ R

2N or a functionu(t) = (u1(t), . . . ,uN (t)) letσ∗z = (zN , z1, z2, . . . , zN−1),
(σ ∗ u)(t) = σ ∗ (u(t)). Since all the vorticities are equal, the functional Φ satis�es

Φr
(
(σ ∗ u)(· + 2π/N )

)
= Φr (u)

for any r > 0 and u ∈ H 1 with u(t) ∈ FN (B∗). This implies

∇Φr
(
(σ ∗ u)(· + 2π/N )

)
=

(
σ ∗ ∇Φr (u)

)
(· + 2π/N ).

So especially for u ∈ X̃ =
{
u ∈ H 1 : (σ ∗ u)(· + 2π/N ) = u

}
we see that ∇Φr (u) ∈ X̃ .

Contrary to Chapter 3 we will not work on X̃ but prefer to use this time the isomorphism
j : X = H 1(R/2πZ,R2) → X̃ given by

j(u) =
(
u,u(· + 2π/N ),u(· + 4π/N ), . . . ,u(· + (N − 1)2π/N )

)
.

The inverse clearly is j−1(u1, . . . ,uN ) = u1. Let Λ∗ = {u ∈ X : (j(u))(R) ⊂ FN (B∗) } and
observe that our solution u∗(t) of the 1-vortex problem in B1(0), see (4.10), is contained in
Λ∗. We abbreviate θk = k2π/N for k = 1, . . . ,N .

Lemma 4.12. Let r1 ∈ (0, r0). There exist ε > 0, a compact intervall K ⊂ (0, 1) and an open
neighborhood O ⊂ Λ∗ of u∗, such that (r ,u) ∈ [0, r1] × O implies |u(t)| ∈ K and

|ψr (u(t + θk )) −ψr (u(t + θl ))| ≥ ε

for every t ∈ R and k, l ∈ { 1, . . . ,N } with k , l .

Proof. Recall that |u∗(t)| =
√

1 − π−1 =: b0. Clearly there exists a constant c > 0 depending
only on N with inf t,k,l |u∗(t + θk ) − u∗(t + θl )| ≥ 2c . Since X continuously embeds into
the space of 2π -periodic continuous functions, we can �nd δ > 0 – without restriction we
assume 2δ < c and K := [b0 − δ ,b0 + δ ] ⊂ (0, 1) – and an open neighborhood O ⊂ Λ∗ of u∗
such that u ∈ O implies |u(t)| ∈ K and

inf
t,k,l
|u(t + θk ) − u(t + θl )| ≥ c .

For u ∈ O, t ∈ R, j,k ∈ { 1, . . . ,N }, k , j we therefore obtain

|ψr (u(t + θk )) −ψr (u(t + θl ))|

≥ inf
{
|ψr (a) −ψr (b)| : r ∈ [0, r1], a,b ∈ R

2, |a | , |b | ∈ K , |a − b | ≥ c
}
=: ε .

If ε would be 0, the continuity of (r ,x) 7→ ψr (x) shows the existence of a,b ∈ R2, |a | , |b | ∈ K ,
|a − b | ≥ c and r ∈ [0, r1] withψr (a) = ψr (b). This is impossible for r > 0, since eachψr is a
di�eomorphism. So ε = 0 implies γ (ι(a)) = ψ0(a) = ψ0(b) = γ (ι(b)). But then

c ≤ |a − b | = | |a | − |b | | ≤ b0 + δ − (b0 − δ ) = 2δ < c
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is a contradiction. Hence ε > 0. �

From now on we �x r1 ∈ (0, r0) and O, K , ε according to Lemma 4.12.

Lemma 4.13. The map F : [0, r1] × O → X ,

F (r ,u) =

{
(j−1 ◦ ∇Φr ◦ j)(u), r > 0,
(id−∆)−1 (

−J Ûu + ∇hB1(0)(u)
)
, r = 0

is of class C1 with derivatives ∂r F (0,u) = 0 and

DuF (0,u)[w] = (id−∆)−1 (
−J Ûw + ∇2hB1(0)(u)w

)
.

Proof. Since ∇Φr (j(u)) ∈ X̃ , the map F is indeed well-de�ned. For positive r we have

F (r ,u) = (id−∆)−1 (−J Ûu − ∇1(H ◦ Ψr )(j(u)))

= (id−∆)−1

(
−J Ûu + F0(r ,u) − 2

N−1∑
k=1

Fk (r ,u)

)
,

where F0(r ,u) = ∇(h ◦ ψr )(u) and Fk (r ,u) = Dψr (u)
T∇1G

(
ψr (u),ψr (u(· + θk ))

)
for every

k = 1, . . . ,N − 1. We interpret these maps as maps between [0, r1] × O and L2(R/2πZ,R2).
Now if u ∈ O, t ∈ R, then u(t) is by Lemma 4.12 contained in the compact annulus

{ z ∈ B∗ : |z | ∈ K }. Thus we know by Lemma 4.10

F0(r ,u) → ∇hB1(0)(u), DuF0(r ,u) → ∇
2hB1(0)(u), ∂r F0(r ,u) → 0

with respect to ‖·‖L2 and uniformly in u ∈ O as r → 0. It therefore remains to show that
Fk (r , ·) → 0 in C1(O,L2) and ∂r Fk (r , ·) → 0 in C0(O,L2), k = 1, . . . ,N − 1.

To do this we use that u ∈ O not only implies |u(t)| ∈ K , but also

|ψr (u(t)) −ψr (u(t + θk ))| ≥ ε,

such that Assumption 4.1 gives

|Fk (r ,u)(t)| = O
(
d(ψr (u(t + θk )))

)
= O

(
α(ι(u(t + θk )), r (1 − |u(t + θk )|2)/2)

)
= O(r )

uniformly in u ∈ O and t ∈ R as r → 0.
For the derivative we similar have

DuFk (r ,u)(t) = O(r ) + Dψr (u(t))
T∇2∇1G(ψr (u(t)),ψr (u(t + θk )))Dψr (u(t + θk ))

= O(r ) +O(1)Qψr (u(t+θk ))Dψr (u(t + θk ))

uniformly in u ∈ O and t ∈ R. Now recall thatQy is the orthogonal projection onto the nor-
mal space JTp(y)C . In our case y = ψr (u(t +θk )) and p(y) = γ (ι(u(t +θk ))), hence Qψr (u(t+θk ))
is the orthogonal projection onto RJ Ûγ (ι(u(t + θk ))). On the other hand by (4.7) we have
Dψr (u(t + θk ))[w] = λ Ûγ (ι(u(t + θk ))) +O(r ) for w ∈ R2 and with some λ = λ(w) ∈ R. This
shows

DuFk (r ,u)(t) = O(r )

uniformly in u ∈ O, t ∈ R.
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It remains to look at the partial derivative

∂r Fk (r ,u)(t) = O(r ) + Dψr (u(t))
T∇2∇1G(ψr (u(t)),ψr (u(t + θk )))∂rψr (u(t + θk ))

=
(0.1)

O(r ) +
[
∇2∇1G(ψr (u(t + θk )),ψr (u(t)))Dψr (u(t))

]T
∂rψr (u(t + θk ))

= O(r ),

which holds again uniformly in u ∈ O and t ∈ R. �

Proof of Theorem 4.3 for N ≥ 2. We still consider a boundary component C of length 2π .
Since u∗ is a solution of the 1-vortex system on B1(0), we have F (0,u∗) = 0. Furthermore,
KernDuF (0,u∗) = R Ûu∗ by Lemma 4.11. As in the proof of Theorem 2.7 we obtain a C1-map
[0, r2) 3 r 7→ u(r ) ∈ O with

〈
u(r ), Ûu∗

〉
X = 0, F

(
r ,u(r )

)
= 0 and KernDuF

(
r ,u(r )

)
= R Ûu(r ). By

the equivariance of ∇Φr it follows that ∇Φr
(
j
(
u(r )

) )
= 0 and hence by Proposition 4.9

z(r )(t) = Ψr
(
j
(
u(r )

) ( t
r

))
is a 2πr -periodic solution of the generalized N -vortex system (4.1). From Theorem 2.7 we
also know that (0, r2) × R 3 (r , t) 7→ z(r )(t) ∈ FN (Ω) is of class C1 and has the continuous
mixed derivatives ∂r ∂tz(r )(t) = ∂t ∂rz(r )(t).

The construction of z(r ) shows

z(r )k (t) = ψr
(
u(r )

( t
r
+ θk−1

))
= ψr

(
u(r )

(
t + (k − 1)2πr/N

r

))
= z(r )1

(
t +
(k − 1)2πr

N

)
.

The expansions of v(r )(t) := z(r )1 (rt) = ψr (u
(r )(t)) follow in exactly the same way as in the

single vortex case, since ∂r F (0,u∗) = 0 from Lemma 4.13 and
〈
u(r ), Ûu∗

〉
X = 0 imply ∂ru(0) = 0.

Finally by Corollary 2.9 and especially Remark 2.14 for the choreographic version we
need to show that R Ûz(r ) are the only 2πr -periodic solutions of Ûv = JN∇2H

(
z(r )(t)

)
v , which

satisfy (σ ∗ v)(t + 2πr/N ) = v(t). And indeed if v is a 2πr -periodic function with these
properties, the r -symplectic transformation Ψr shows that

DΨr
(
ju(r )(t)

)−1
v(rt) = j

(
Dψr

(
u(r )(t)

)−1
v1(rt)

)
∈ Kern∇2Φr

(
ju(r )

)
.

Hence Dψr
(
u(r )(t)

)−1
v1(rt) is an element of the kernel KernDuF

(
r ,u(r )

)
= R Ûu(r ). It follows

v ∈ R Ûz(r ) and hence we obtain a global continuum of choreographic solutions. �
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Chapter 5

Conclusion and open questions

We have seen that we can combine existing solutions, i.e. stationary solutions of anm-vortex
problem on a domain Ω and relative equilibria of the whole plane system, to get new periodic
solutions on Ω. The easiest example is given in 3.2 and illustrated in Figure 1.2. We have
also seen that choreographic solutions with an arbitrary number of identical vortices can be
found near the boundary of the domain, and that both types of solutions (at least if m = 1)
give rise to a global connected set of periodic solutions. In this last chapter we investigate
the N -Gon family in the unit disc as a concrete example for a global set of solutions, and we
also discuss some open questions.

5.1 The N -Gon in the unit disc

Let Ω = B1(0) and д(x ,y) = дB1(0)(x ,y) = −
1

4π log
(
|x |2 |y |2 − 2 〈x ,y〉R2 + 1

)
. The Hamilto-

nian for N identical vortices of unit strength then reads

HB1(0)(z) = −
1

2π
∑
k,j

log
��zk − zj �� + 1

4π
∑
k, j

log
(
|zk |

2 ��zj ��2 − 2
〈
zk , zj

〉
R2 + 1

)
.

It is known that the point vortex system Ûz = JN∇HB1(0)(z) has a family of choreographic
solutions zN ,s (t) = (z1(t), . . . , zN (t)) given by the points

zk (t) = s
©­«
cos

(
ωN (s)t +

2π (k−1)
N

)
sin

(
ωN (s)t +

2π (k−1)
N

) ª®¬

Figure 5.1: Rigidly rotating pentagon in the disc
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at the radius s ∈ (0, 1) and with uniform angular velocity

ωN (s) =
1
πs2

(
N

1 − s2N −
N + 1

2

)
,

see Figure 5.1. The detailled calculation can be found for example in the thesis by Qianhui
Dai, [26]. Note that the Hamiltonian there di�ers by a factor 2 with the one used here.

5.1.1 Local aspects

The solutions can be seen in the following two ways: They are emanating from the boundary
where s = 1, i.e. they serve as an example of Theorem 4.3, and they are emanating from the
critical point of the Robin function hB1(0) at the origin where s = 0, which gives an example
of Theorem 3.9 withm = 1.

In the �rst point of view we consider s ≈ 1 and observe that zN ,s is 2πr -periodic if
rωN (s) = 1, i.e. if

r =
2πs2(1 − s2N )

N − 1 + (N + 1)s2N .

Close to s = 1 and r = 0 this equation can be inverted to write s = s(r ), such that the
functions z(r ) := zN ,s(r ) form the local r -dependent family of Theorem 4.3. An expansion of
the implicitly de�ned function s(r ) shows that

d
(
z(r )1

)
= 1 − s(r ) = r

2π +
r 2

8π 2 + o(r
2),

as r → 0. This coincides with property (3) of Theorem 4.3.
Similar we can view the family in the context of Theorem 3.9. Consider s ≈ 0 and

τ = 2πN . The solution zN ,s is τr 2-periodic if r 2NωN (s) = 1, i.e. if

r 2 =
2πs2(1 − s2N )

N (N − 1 + (N + 1)s2N )
.

Again we can locally solve this equation to write s = s(r ). Then z(r ) := zN ,s(r ) is the τr 2-
periodic solution of Theorem 3.9. In complex notation we get for the rescaled τ -periodic
function u(r ) = r−1z(r )(r 2·) the following expansion

u(r )k (t) =
s(r )

r
eiωN (s(r ))r 2tei2π (k−1)/N =

√
N (N − 1)

2π ei(t+2π (k−1))/N + o(1).

One can then check that the limiting function u(0)(t) is indeed the 2πN -periodic Thomson
N -Gon con�guration of the whole plane system.

5.1.2 Global aspects

To discuss the global extension of the solutions we normalize the period of the solutions to
2π by introducing an additional parameter as in section 2.2.3, i.e. we consider for r > 0 the
family

Ûz = r JN∇HB1(0)(z). (5.1)

If u is a 2π periodic solution of this equation, then u(·/r ) is a 2πr -periodic solution of the
original N -vortex system on the unit disc. Let Λ =

{
u ∈ H 1 : u(t) ∈ FN (B1(0)) for all t ∈ R

}
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and S = { (r ,u) ∈ R+ × Λ : u solves (5.1) }. We denote by

CN -Gon =

{ (
1

ωN (s)
, zN ,s (·/ωN (s))

)
: s ∈ (0, 1)

}
⊂ S

the known regular N -Gon family, by Cchor
N the connected component of CN -Gon with re-

spect to choreographic solutions S ∩ { (r ,u) : uk = u1(· + 2π (k − 1)/N ) } and by CN the full
connected component of CN -Gon in S. In general we have

CN -Gon ⊂ C
chor
N ⊂ CN . (5.2)

In the easiest case of a single vortex we know all possible solutions of the system on
B1(0). As the radius s tends to 0 the periodic solutions z1,s merge at the parameter value
lims→0ω1(s)

−1 = π , which corresponds to a limiting period of 2π 2, into the stationary solu-
tion at the origin, see Figure 5.2. We can therefore conclude C1 = C1-Gon ∪ R

+ × {0}.
Figure 5.3 shows the set CN -Gon in terms of ‖·‖H 1 for some N > 1. In that case a full

characterization of CN is not available, especially it is not clear if for some N the inclusions
in (5.2) can be replaced by equalities. In fact Bolsinov, Borisov and Mamaev show in [19]
that bifurcations from the equilateral triangle into other relative equilibrium con�gurations
occur. This means C3-Gon ⊂ C

chor
3 , C3. In general it would be interesting to know, if

bifurcations from CN -Gon into other choreographic solutions can be detected with the help
of the equivariant degree S1-deg∇. For this purpose one would need to actually compute the
degree with the formula of Theorem 2.24 or by other means. So far we have only used this
formula to conclude that a nondegenerate solution has a nontrivial degree.

5.2 The general case

In the case of a general domain Ω ⊂ R2 the structure of the set of periodic solutions is
of course even less clear. Suppose that Ω is bounded, simply connected and has a smooth
boundary of length 2π . Suppose further that the Robin functionhΩ has l nondegenerate crit-
ical points a1, . . . ,al and recall that l ≥ 1 for a generic bounded domain. For the vorticities
we assume Γ1 = . . . = ΓN = 1 and denote by Z (t) the Thomson N -Gon con�guration of the
whole plane system. Then for each critical point ai Theorem 3.9 provides the existence of a
global connected set of choreographies C(ai ,Z ). Another continuum C(∂Ω) emanates from
the boundary by Theorem 4.3.

If we try to illustrate these continua in terms of a r vs. ‖u‖H 1 plot as in Figures 5.2, 5.3,
we only can say something for the local parts that are given as a graph. For example for the
local part of C(∂Ω) corresponding to the solutions close to ∂Ω we know by Remark 4.4 c)
that

‖u‖2H 1 = N

(
‖γ ‖2H 1 −

2r
π

(
vol2(Ω) + π

) )
+ o(r ).

This provides the initial height and the initial slope of the curve in terms of the domain Ω.
A similar �rst order expansion can be obtained for the local parts of C(ai ,Z ). This time in
terms of ai and Z .

Beyond these local expansions much more is so far not known. For example in the unit
disc we have C(∂B1(0)) = C(0,Z ), but even in a di�erent convex domain this is not clear
anymore. The general open question is what happens at the “other end(s)” of the continua?
When do some of the sets C(∂Ω), C(ai ,Z ), or even C(ai , Z̃ ) for some other relative equilib-
rium Z̃ , actually coincide? When do they merge into stationary or heteroclinic solutions?
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Figure 5.2: This shows the structure of all periodic solutions (r ,u) ∈ C1-Gon
in terms of r at the x-axis vs. the norm ‖u‖H 1 at the y-axis. The solutions
start at the boundary of the disc with arbitrarily small period and H 1-norm
2
√
π . With shrinking radius they merge at r = ω1(0)−1 = π into the station-

ary solution. In terms of Remark 2.10 we see that options a) and c) are valid
for the global continuum induced by the solutions near ∂B1(0).

Figure 5.3: Similar to the N = 1 case we illustrate the set CN -Gon via the
plot of r vs. N −1 ‖u‖H 1 . One sees that the periodic solutions emanating
from the boundary (upper end of the lines) are connected with the solutions
emanating from the critical point of the Robin function (lower end of the
lines). On both ends the solutions approach ∂FN (B1(0)) with periods going
to 0. So for CN ⊃ CN -Gon at least options b) and c) of Remark 2.10 are valid.

5.3 Further remarks

As already mentioned before, an actual computation of the degree S1-deg∇ in the case of a
nondegenerate periodic solution has not been carried out. It would also be nice to know,
how the degree behaves under a symplectic transformation of the Hamiltonian system.

It seems likely that the solutions of Theorem 3.8 consisting of m ≥ 2 clusters also give
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rise to global continua, but this has not been veri�ed for a concrete example, cf. Section
3.4.1.

Concerning solutions near the boundary of a domain, one could try to scale more than
one vortex towards the same (time dependent) boundary point in order to �nd more com-
plicated con�gurations chasing along the boundary.

As explained in section 1.1 the N -vortex system arises as some sort of singular limit of
more sophisticated models given by partial di�erential equations. A natural and interesting
question is therefore what kind of conclusions one can draw for these PDEs from solutions
of the point vortex system.

By constructing appropriate stream functions it is for example possible to desingularize
stationary solutions of the N -vortex problem to stationary solutions of the 2D Euler equa-
tions (1.2), see [20] and references therein. A similar result for the Euler equations and peri-
odic solutions is so far not available. Concerning the Gross-Pitaevskii equation (1.4) Venka-
traman has shown in [76] that rigidly rotating solutions of (1.3) in the unit disc Ω = B1(0)
give rise to corresponding periodic solutions of (1.4). The same is true for rigidly rotating
con�gurations on the sphere S2, see [39]. Apart from that the desingularization of general
periodic solutions like the ones discussed in this thesis is also for the Gross-Pitaevskii equa-
tion an open problem.
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Appendix A

Hamiltonian systems and their
variational structure

We collect here some facts about �rst order Hamiltonian systems and the associated action
functional. The elaboration is getting only to a point su�cient for this thesis. For further
properties we refer to the books [43, 60, 61].

A.1 Hamiltonian systems on R2N and symplectic transforma-
tions

A symplectic form on the vectorspace R2N is a bilinear map ω : R2N × R2N → R, which is
nondegenerate and skew-symmetric, i.e. ω(v,w) = 0 for every w ∈ R2N implies v = 0 and
ω(v,w) = −ω(w,v) for all v,w ∈ R2N .

Let now ω be such a symplectic form, U ⊂ R2N open and H : U → R be a C2 function.
By the nondegenerateness ofω there exists a unique C1 vector�eldXH : U → R2N satisfying
for all z ∈ U , w ∈ R2N

ω(XH (z),w) = DH (z)w .

The Hamiltonian system associated to ω and H is then the �rst order di�erential equation

Ûz = XH (z). (A.1)

Lemma A.1. There exists a skew-symmetric, regular matrixA depending only on ω, such that
(A.1) is equivalent to

AÛz = ∇H (z).

Proof. Let e1, . . . , e2N be the usual basis ofR2N consisting of unit vectors and S be the 2N×2N
matrix with entries si j = ω(ei , ej ). Since ω is nondegenerate, S is regular and the skew-
symmetry of ω implies ST = −S . Moreover, for v =

∑
i viei , w =

∑
j w jej there holds

ω(v,w) =
∑
i, j

viw jω(ei , ej ) = 〈v, Sw〉R2N .

Thus with A := ST = −S follows

〈AXH (z),w〉R2N = ω(XH (z),w) = DH (z)w

for any z ∈ U , w ∈ R2N and hence AXH (z) = ∇H (z). �

Let now Ũ ⊂ R2N be another open subset of R2N and assume that we have a C2 dif-
feomorphism φ : U → Ũ . It is called symplectic with multiplier r , 0 or r -symplectic,
if

ω(Dφ(z)v,Dφ(z)w) = rω(v,w)
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for any z ∈ U , v,w ∈ R2N . If r = 1, then φ is just called symplectic.

Lemma A.2. Let φ ∈ C2(U , Ũ ) be a r -symplectic di�eomorphism, r , 0 and H ∈ C2(Ũ ,R).
Then z(t) is a solution of Ûz = XH (z) on Ũ , if and only if u(t) := φ−1(z(rt)) solves Ûu = XH◦φ (u)
on U . Moreover, we have a similar equivalence between the linearizations, i.e. v(t) solves
Ûv(t) = DXH (z(t))v(t), if and only if y(t) := Dφ(u(t))−1v(rt) solves the corresponding equation
Ûy(t) = DXH◦φ (u(t))y(t).

Proof. The function z(t) = φ(u(t/r )) solves Ûz = XH (z), if and only if for every w ∈ R2N

1
r
ω

(
Dφ(u(t)) Ûu(t),w

)
= ω( Ûz(rt),w) = DH (z(rt))w = DH (φ(u(t)))w .

Since every Dφ(u(t)) is an isomorphism, we may replace w in this equation by Dφ(u(t))w̃
with w̃ ∈ R2N and obtain this way ω( Ûu(t), w̃) = D(H ◦ φ)(u(t))w̃ for every w̃ ∈ R2N , i.e.
Ûu = XH◦φ (u). This shows the �rst part.

For the linearized equations we have thatv(t) = Dφ(u(t/r ))y(t/r ) solves Ûv = DXH (z(t))v ,
if and only if

1
r
ω

(
D2φ(u(t))[ Ûu(t),y(t)] + Dφ(u(t)) Ûy(t),w

)
= ω( Ûv(rt),w) = D2H (z(rt))[v(rt),w] = D2H (φ(u(t)))[Dφ(u(t))y(t),w]

for every w ∈ R2N . Replacing again w by Dφ(u(t))w̃ , w̃ ∈ R2N we see that

ω( Ûy(t), w̃) = D2(H ◦ φ)(u(t))[y(t), w̃]

holds true provided

1
r
ω

(
D2φ(u(t))[ Ûu(t),y(t)],Dφ(u(t))w̃

)
= −DH (φ(u(t))D2φ(u(t))[y(t), w̃],

but this identity is a consequence of

0 = d

dε |ε=0
ω( Ûu(t), w̃) =

1
r

d

dε |ε=0
ω

(
Dφ(u(t) + εy(t)) Ûu(t),Dφ(u(t) + εy(t))w̃

)
=

1
r
ω

(
D2φ(u(t))[ Ûu(t),y(t)],Dφ(u(t))w̃

)
+ ω

(
Ûz(rt),D2φ(u(t))[y(t), w̃]

)
.

�

A.2 The Sobolev spaces H s

This summary of facts is taken from Section 3.3 of [43].
Let u : R/2πZ → R2N be a square-integrable function with L2-Fourier-series represen-

tation
u(t) =

∑
k ∈Z

e−JN ktαk .

For s ∈ [0,∞) the Sobolev space H s is de�ned by saying that u ∈ H s , if and only if the
Fourier-coe�cients αk ∈ R2N satisfy∑

k ∈Z

|k |2s |αk |
2 < ∞.
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The vector space H s equipped with the inner product

〈u,v〉s = 〈α0, β0〉R2N + 2π
∑
k ∈Z

|k |2s 〈αk , βk 〉R2N

for u =
∑

k e
−JN ktαk , v =

∑
k e
−JN kt βk and induced norm ‖u‖2s = 〈u,u〉s is a Hilbert space.

We will especially use the space H 1 and like to point out that we use instead of 〈u,v〉1 the
inner product

〈u,v〉H 1 =

∫ 2π

0
〈u(t),v(t)〉R2N + 〈 Ûu(t), Ûv(t)〉R2N dt = 2π

∑
k ∈Z

(1 + k2) 〈αk , βk 〉R2N ,

but this causes no problems, since the induced norm ‖·‖2H 1 = 〈·, ·〉H 1 is equivalent to ‖·‖1.
We have the following continuous embeddings (Prop. 3 and 4 of [43]):

• H t ↪→ H s compactly for t > s ,

• H s ↪→ Ck (R/2πZ,R2N ) for s > k + 1
2 , k ∈ N0.

In particular for H 1 we can �nd a constant c , such that

‖u‖C0 = sup
t ∈[0,2π ]

|u(t)| ≤ c ‖u‖H 1

for every u ∈ H 1. In fact one can prove that H 1-functions are 1
2 -Hölder continuous and that

the embedding H 1 ↪→ C0 is compact and as a consequence completely continuous, cf. [60].

A.3 The action functional on H 1

On the space H 1 we will now set up the action functional Φ associated to a Hamiltonian sys-
tem (A.1), prove its regularity and the correspondence between critical points and periodic
solutions.

Since we need it in our application, we directly consider a family of Hamiltonian systems
on the symplectic space (R2N ,ω). I.e. let D ⊂ R × R2N open, H : D → R, (r , z) 7→ Hr (z)
with each Hr being of class C2 and H , DzH , D2

zH continuous.
Let D =

{
(r ,u) ∈ R × H 1 : (r ,u(t)) ∈ D for all t ∈ R

}
and Dr =

{
u ∈ H 1 : (r ,u) ∈ D

}
and observe that these sets are open subsets of R ×H 1 and H 1 by the embedding H 1 ↪→ C0.

The action functional associated to the family of Hamiltonian systems

Ûz = XHr (z) (A.2)

is de�ned by Φ : D → R,

Φr (u) =
1
2

∫ 2π

0
〈A Ûu,u〉R2N dt −

∫ 2π

0
Hr (u) dt ,

where A is the skew-symmetric matrix of Lemma A.1.
Let (id−∆) : H s+2 → H s , s ≥ 0 denote the isomorphism

u =
∑
k ∈Z

Bkαk 7→ u − Üu =
∑
k ∈Z

(1 + k2)Bkαk ,
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such that for u ∈ H 1, v ∈ L2 there holds〈
u, (id−∆)−1v

〉
H 1 =

∫ 2π

0
〈u,v〉R2N dt = 〈u,v〉L2 .

Thus if we de�ne L : H 1 → H 1, Lu = (id−∆)−1A Ûu, then L is self-adjoint and we can write
the quadratic form of Φr as

Q(u) =
1
2

∫ 2π

0
〈A Ûu,u〉R2N dt =

1
2 〈Lu,u〉H 1 .

Clearly Q is de�ned on all of H 1 and smooth with ∇Q(u) = Lu.
We now turn to the nonlinear part. Let K : D → R,

Kr (u) =

∫ 2π

0
Hr (u) dt .

Lemma A.3. a) The functionalK is as smooth asH , i.e. eachKr ∈ C2(Dr ,R)with gradient
∇Kr (u) = (id−∆)−1∇Hr (u), ∇2Kr (u) = (id−∆)−1∇2Hr (u) and the maps K, ∇K, ∇2K are
continuous.

b) For each r we even have ∇Kr ∈ C1(Dr ,H
2) and if B ⊂ D is closed in R × H 1 and

bounded, then ∇K(B) is relatively compact in H 2.

c) More generally, if H ∈ Ck (D,R) for k ≥ 1, then K ∈ Ck (D,R) and

∂
j
rD

l
uKr (u)[v

1, . . . ,vl ] =

∫ 2π

0
∂
j
rD

l
uHr (u(t))[v

1(t), . . . ,vl (t)] dt

for all 0 ≤ j, l with j + l ≤ k and v1, . . . ,vl ∈ H 1.

Proof. a) The proof of these properties will rely mainly on the fact that if a sequenceun → u
inH 1, thenun → u inC0. Henceun(t), t ∈ R is forn large enough in a compact neighborhood
of the orbit u(R), on which Hr and its derivatives are bounded and therefore serve as an
integrable majorant. Alternatively one can also argue that Hr restricted to the orbit u(R) is
uniformly continuous and hence Hr ◦ un → Hr ◦ u uniformly.

To get started consider (r ,u) ∈ D and sequences rn → r in R, un → u in H 1. Then��Kr (u) − Krn (un)�� ≤ ∫ 2π

0

��Hr (u(t)) − Hrn (un(t))
�� dt = o(1),

since the integrand converges pointwise to 0 and H is bounded on a compact neighborhood
of {r } × u(R). Thus K is continuous.

Next we have for ‖v ‖H 1 → 0:����Kr (u +v) − Kr (u) − ∫ 2π

0
〈∇Hr (u),v〉R2N dt

����
=

����∫ 2π

0

〈∫ 1

0
∇Hr (u + λv) dλ − ∇Hr (u),v

〉
R2N

dt

���� ≤ o(1) · ‖v ‖L2 ≤ o(‖v ‖H 1).

Hence each Kr is di�erentiable with ∇Kr (u) = (id−∆)−1∇Hr (u).
Since (id−∆)−1 : L2 → H 2 is an isomorphism, it is su�cient to prove that the map

D 3 (r ,u) 7→ ∇Hr (u) ∈ L
2 is continuous in order to conclude the continuity of ∇K. But the

continuity of this map follows in the same way as shown before for K itself.
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In a similar way as above we obtain

∇Kr (u +v) − ∇Kr (u) − (id−∆)−1∇2Hr (u)v



H 1 ≤



∇Hr (u +v) − ∇Hr (u) − ∇
2Hr (u)v




L2

= o(‖v ‖H 1),

which shows that each Kr is twice-di�erentiable. Again as before we get the continuity of
D 3 (r ,u) 7→ ∇2Kr (u) = (id−∆)−1∇2Hr (u) ∈ L(H

1). This shows Kr ∈ C2(Dr ,R) for every
r and K, ∇K, ∇2K are continuous.

b) That ∇Kr ∈ C1(Dr ,H
2) is a consequence of ∇Hr ∈ C

1(Dr ,L
2) and that the map

(id−∆)−1 : L2 → H 2 is an isomorphism. Next we will show that ∇H actually maps continu-
ously into H 1 and that the image of a bounded closed subset B ⊂ D under ∇H is bounded
in H 1.

Let (r ,u) ∈ D and �x a compact neighborhood O ⊂ D of the orbit { (r ,u(t)) : t ∈ R }, on
which ∇H and ∇2H are bounded by a constant c > 0. Then



∇2Hr (u)[ Ûu]



L2 ≤ c ‖ Ûu‖L2 and

by an approximation of u with 2π -periodic C1 functions we can conclude that ∇2Hr (u)[ Ûu] is
indeed the weak derivative of ∇Hr (u). Thus ∇Hr (u) ∈ H

1.
For the continuity of∇H : D → H 1 it remains to show that∇2Hrn (un)[ Ûun] → ∇

2Hr (u)[ Ûu]
in L2, when un → u in H 1, rn → r in R. Checking this gives us∫ 2π

0

��∇2Hrn (un)[ Ûun] − ∇
2Hr (u)[ Ûu]

��2 dt ≤ c̃ ‖ Ûun − Ûu‖
2
L2

+

∫ 2π

0



∇2Hrn (un) − ∇
2Hr (u)



2
L(R2N ) | Ûu(t)|

2 dt → 0.

Let now B ⊂ D be bounded and closed in R × H 1. As a consequence of the compact
embedding H 1 ↪→ C0, the set B = { (r ,u(t)) : (r ,u) ∈ B } is a compact subset of R × R2N .
Therefore

sup
(r,u)∈B

‖∇Hr (u)‖
2
H 1 ≤ 2π sup

B
|∇H |2 + sup

B
‖∇2H ‖2

L(R2N )
· sup
(r,u)∈B

‖ Ûu‖2L2 < ∞.

So ∇H (B) is bounded in H 1. Applying the isomorphism (id−∆)−1 : H 1 → H 3 and the
compact embedding H 3 ↪→ H 2 we �nally see that ∇K(B) is relatively compact in H 2.

c) For k = 1 we have already seen that DuKr (u)[v] =
∫ 2π

0 DuHr (u(t))[v(t)] dt and that
∇K, hence also DuK, is continuous. For the partial derivative with respect to r one easily
gets

Kr0+r (u) − Kr0(u) − r

∫ 2π

0
∂rHr0(u) dt = o(r ),

as well as the continuity of ∂rKr (u) =
∫ 2π

0 ∂rHr (u) dt .
For k > 1 the statement follows by induction. �

Lemma A.4. A 2π -periodic function u is a solution of (A.2), if and only if u ∈ Dr is a
critical point of Φr . Similar v ∈ Kern∇2Φr (u), if and only if v is a 2π -periodic solution of the
linearization Ûv = DXHr (u(t))v .

Proof. If u ∈ Dr is a critical point of Φr , then∫ 2π

0
〈A Ûu − ∇Hr (u),v〉R2N dt = 0

for anyv ∈ H 1. The fundamental lemma of calculus of variations impliesA Ûu−∇Hr (u) = 0 al-
most everywhere. But since ∇Hr (u) ∈ H

1, this means that Ûu has a continuous representation
and hence A Ûu − ∇Hr (u) = 0 holds everywhere.
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In a similar way v ∈ Kern∇2Φr (u) implies A Ûv − ∇2Hr (u)v = 0, which is equivalent to
Ûv = DXHr (u)v .

The other directions are obvious. �
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Appendix B

Green’s and Robin function

The N -vortex Hamiltonian arising in �uid dynamics is classically determined by the Dirich-
let - or more generally a hydrodynamic - Green’s function of the domain. We present here
some properties of the Dirichlet Green’s function, that are needed for our existence results
on periodic solutions. For some words on the more general hydrodynamic version skip to
section B.4.

B.1 Basic properties

First we recall some basic facts of the Green’s function for the Dirichlet-Laplace operator,
which can be found for example in [32, 40]. Let Ω ⊂ R2 be a bounded or unbounded domain
with non empty boundary. A Dirichlet Green’s function GΩ for Ω is a real-valued function,
de�ned on (Ω × Ω) \ { (z, z) : z ∈ Ω } and satisfying for every y ∈ Ω{

−∆GΩ(·,y) = δy , in Ω,

GΩ(·,y) = 0, on ∂Ω
(B.1)

in the sense that ∆xGΩ(x ,y) = 0 for x ∈ Ω \ {y} and∫
Ω
GΩ(x ,y)∆φ(x) dx = −φ(y)

for every real valued C∞ function φ compactly supported in Ω.
In the case Ω = R2 one takes the fundamental solution of −∆ as the Green’s function

GR2(x ,y) = −
1

2π log |x − y | .

Since −∆GR2(·,y) = δy for any y ∈ R2, the ansatz

GΩ(x ,y) = GR2(x ,y) − дΩ(x ,y)

shows that a Green’s function for Ω exists, provided one can solve for every y ∈ Ω the
boundary value problem {

∆дΩ(·,y) = 0, in Ω,

дΩ(·,y) = −
1

2π log |· − y | , on ∂Ω.

Hence Perron’s method, section 2.8 in [40], guarantees the existence of a Green’s function
for a bounded domain, if all way-components of the complement of the domain consist
of more than a single point. Moreover, in the case of a bounded domain, the maximum
principle implies the uniqueness ofGΩ and also the positivityGΩ(x ,y) > 0 for any x ,y ∈ Ω,
x , y. In general GΩ is symmetric, which means GΩ(x ,y) = GΩ(y,x), whenever GΩ(x ,y)
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is de�ned. The function дΩ is therefore symmetric as well. It is called the regular part of
GΩ and smooth on all of Ω × Ω. The evaluation of дΩ at the same point de�nes the Robin
function hΩ : Ω → R,

hΩ(z) = дΩ(z, z),

and ρΩ : Ω → R satisfying h(z) = − 1
2π log ρΩ(z) is called harmonic radius.

Before we state some explicit examples, we mention a consequence of the positivity of
GΩ and Hopf’s Lemma, see [32]. Let Ω be bounded, y ∈ Ω, p ∈ ∂Ω, such that the interior
ball condition at p is satis�ed with some ball B, then

∂νGΩ(p,y) < 0, (B.2)

where ν is the exterior unit normal of B at p. If ∂Ω ∈ C2, then the interior ball condition is
satis�ed at every boundary point and ν is just the exterior unit normal for ∂Ω.

B.2 Explicit cases

This section collects formulas of three important cases, in which the Green’s function is
explicitly known. These are the whole plane R2, the upper halfplane R2

+ and the unit disc
B1(0).

B.2.1 The wohle plane

On R2 the Green’s function is just the fundamental solution of −∆, thus

GR2(x ,y) = −
1

2π log |x − y | , дR2(x ,y) = 0, hR2(z) = 0,

∇1GR2(x ,y) = −
1

2π
x − y

|x − y |2
, ∇2GR2(x ,y) = ∇1GR2(y,x) = −∇1GR2(x ,y),

∇2
1GR2(x ,y) = −

1
2π

(
1

|x − y |2
· idR2 −2 (x − y)(x − y)

T

|x − y |4

)
,

∇2∇1GR2(x ,y) = −∇2
1GR2(x ,y) = −∇2

1GR2(y,x).

B.2.2 The upper halfplane

For the upper halfplane R2
+ =

{
(z1, z2) ∈ R

2 : z2 > 0
}

the Green’s function can be con-
structed by the method of images, i.e. with the re�ection at the x-axis τ : R2 → R2,
z = (z1, z2) 7→ (z1,−z2) = z̄ holds

дR2
+
(x ,y) = −

1
2π log |x − ȳ | = GR2(x , ȳ), hR2

+
(z) = −

1
2π log(2z2),

∇k1GR2
+
(x ,y) = ∇k1GR2(x ,y) − ∇k1GR2(x , ȳ), k = 0, 1, 2

∇2∇1GR2
+
(x ,y) = ∇2∇1GR2(x ,y) − ∇2∇1GR2(x , ȳ) ◦ τ

= −∇2
1GR2

+
(x ,y) − ∇2

1GR2(x , ȳ) ◦ (idR2 −τ ),

∇hR2
+
(z) = −

1
2πz2

(
0
1

)
, ∇2hR2

+
(z) =

1
2πz2

2

(
0 0
0 1

)
.

Note that the Green’s function for the upper halfplane is not unique. For example
G̃(x ,y) = GR2

+
(x ,y) + x2y2 satis�es (B.1) as well. But GR2

+
induces a velocity �eld that tends

to zero for points far away from the source.
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B.2.3 The unit disc

Denote by R : R2 \ {0} → R2 \ {0}, R(z) = z
|z |2

the re�ection at the unit circle. For y, z , 0,
the Green’s and Robin function of the disc B1(0) and their derivatives can then be written as

дB1(0)(x ,y) = −
1

4π log
(
|x |2 |y |2 − 2 〈x ,y〉R2 + 1

)
= GR2(x ,R(y)) −

1
2π log |y | ,

GB1(0)(x ,y) = GR2(x ,y) −GR2(x ,R(y)) +
1

2π log |y | ,

∇k1GB1(0)(x ,y) = ∇
k
1GR2(x ,y) − ∇k1GR2(x ,R(y)), k = 1, 2,

∇2∇1GB1(0)(x ,y) = ∇2∇1GR2(x ,y) − ∇2∇1GR2(x ,R(y))DR(y)

= −∇2
1GB1(0)(x ,y) − ∇

2
1GR2(x ,R(y))(idR2 −DR(y)),

hB1(0)(z) = −
1

2π log
(
1 − |z |2

)
, ∇hB1(0)(z) =

z

π (1 − |z |2)
,

∇2hB1(0)(z) =
1

π (1 − |z |2)
idR2 +

2zzT

π (1 − |z |2)2
.

(B.3)

B.3 Boundary behaviour

For the periodic solutions of Chapter 4 emanating from the boundary of a domain we need
a sound asymptotic behaviour of the Green’s and Robin function, when pushing several
vortices towards the boundary. Starting with the Robin function, recall thathΩ is determined
by the harmonic radius ρΩ via hΩ(z) = −

1
2π log ρΩ(z). The maximum principle implies a

monotonicity property for the harmonic radius, ρΩ′ ≤ ρΩ if Ω′ ⊂ Ω. Hence if p ∈ ∂Ω is
a boundary point at which the double sided ball condition is satis�ed, a comparison of ρΩ
with the harmonic radius of the interior ball and of the complement of the exterior ball leads
to the expansion

ρΩ(p − dν ) = 2d + o(d), (B.4)

where ν denotes the exterior unit normal of the interior ball at p. For details see [8] or [34].
It turns out that this �rst order expansion is not su�cient for our application. Luckily it can
be improved in the simply connected case.

B.3.1 The harmonic radius in simply connected domains

Let now Ω ⊂ R2 be a simply connected bounded domain, such that a conformal equivalence
in terms of a Riemann mapping f : Ω → B1(0) exists. Since the Green’s function (in dimen-
sion 2) is invariant under conformal transformations, see e.g. [34], we can writeGΩ in terms
of f and the explicitly known Green’s function for the unit disc:

GΩ(x ,y) = GB1(0)(f (x), f (y)). (B.5)

Also the harmonic radius – in the simply connected case called conformal radius – can be
expressed in terms of the Riemann map, which allows an improvement of expansion (B.4).
We interpret here f as a holomorphic map de�ned on Ω ⊂ C and write f ′ and f (k ) for the
�rst and kth complex derivative of f .

Lemma B.1 (Bandle, Flucher [8, 34]). The conformal radius can be written as

ρΩ =
1 − | f |2

| f ′ |
. (B.6)
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Furthermore, at every boundary point p ∈ ∂Ω and for d → 0,

ρΩ(p − dν (p)) = 2d − κ(p)d2 + o(d2), (B.7)

provided ∂Ω is of class C2,α , 0 < α < 1.

Note that the approximation is exact for the unit disc and the upper halfplane, since

ρB1(0)(z) = 1 − |z |2 = 2d(z) − d(z)2, ρR2
+
(z) = z − z = 2d(z).

Corollary B.2. If ∂Ω ∈ Ck,α , k ≥ 2, α ∈ (0, 1), the conformal radius ρ = ρΩ extends Ck to Ω
with

ρ(p) = 0, ∇ρ(p) = −2ν (p), ∇2ρ(p) = −2κ(p) · idR2 , p ∈ ∂Ω.

Proof. Since ∂Ω ∈ Ck,α , f extends to f ∈ Ck,α (Ω) by the Kellogg-Warschawski Theorem,
cf. [65]. As a consequence of (B.2) and (B.5) the derivative f ′ can not be 0 on the boundary
∂Ω. In the interior this is clear, since f is a biholomorphic map. For the moment we therefore
obtain ρΩ ∈ C

k−1(Ω) by (B.6).
In order to see ρ ∈ Ck (Ω), derive (B.6) k times in the interior of Ω and observe that the

(k + 1)st derivative of f only appears in one term containing the product ρ f (k+1). But for
z → ∂Ω holds���ρ(z)f (k+1)(z)

��� = ρ(z)

d(z)
·

�����d(z)2πi

∫
|w−z |=d (z)2

f (k )(w) − f (k )(z)

(w − z)2
dw

����� = O(d(z)α ),
due to (B.4).

Now the expansion ρ(p − dν (p)) = 2d − κ(p)d2 + o(d2) of Lemma B.1 shows ρ = 0,
〈∇ρ,ν〉 = −2 and

〈
∇2ρν ,ν

〉
= −2κ onto the boundary. Then clearly 〈∇ρ, Jν〉 = 0, which

gives ∇ρ = −2ν on ∂Ω. Finally, since Dν (p) : Tp∂Ω → Tp∂Ω is given by multiplication with
κ(p), ∇2ρJν = D(−2ν )[Jν ] = −2κJν and therefore ∇2ρ = −2κ · idR2 holds. �

B.3.2 The harmonic radius of an annulus

The following Lemma shows that the second order expansion of ρΩ needed for Assumption
4.1 not only holds in simply connected domains.

Lemma B.3. Let ρA be the harmonic radius of the annulus A =
{
x ∈ R2 : a < |x | < b

}
with

0 < a < b. Then ρA ∈ C3(A) and

ρA(p) = 0, ∇ρA(p) = −2ν (p), ∇2ρA(p) = −2κ(p) · idR2 , p ∈ ∂A.

Proof. We prove this for b = 1, i.e. A =
{
x ∈ R2 : a < |x | < 1

}
. A formula for the Robin

function hA is given by the following series

hA(x) = −
1

2π

(
(log |x |)2

loga −

∞∑
m=1

1
m

|x |2m − 2a2m + a2m |x |−2m

1 − a2m

)
,

see [42], Corollary 2.1. Setting hA(x) = − 1
2π

(
log(2d(x))+φ(x)

)
we have ρA(x) = 2d(x)eφ(x ).

A direct calculation shows that it su�ces to prove φ(x) → 0, 〈∇φ(x), Jν (p(x))〉R2 → 0,
〈∇φ(x),ν (p(x))〉R2 →

1
2κ(p(x)),

��∇2φ
�� is bounded as x → ∂A and limx→∂A D

3φ(x) exists.
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We just consider the outer boundary, i.e. |x | → 1. In this case we have:

φ(x) =
(log |x |)2

loga − log
(
2(1 − |x |)

)
−

∞∑
m=1

1
m

|x |2m − 2a2m + a2m |x |−2m

1 − a2m

=
(log |x |)2

loga − log
(
2(1 − |x |)

)
−

∞∑
m=1

1
m

(
|x |2m +

a2m(|x |m − |x |−m)2

1 − a2m

)
=
(log |x |)2

loga + log 1 + |x |
2 −

∞∑
m=1

(
a

|x |

)2m
(|x |2m − 1)2
m(1 − a2m)

.

Now lim |x |→1 φ(x) = 0 is equivalent to

lim
|x |→1

∞∑
m=1

(
a

|x |

)2m
(|x |2m − 1)2
m(1 − a2m)

= 0.

The latter is true since 0 < a
|x | < 1, ( |x |

2m−1)2
m(1−a2m ) is uniformly bounded, hence the series is

uniformly convergent as |x | → 1. Furthermore,

∇φ(x) =

(
1

1 + |x | +
2 log |x |
|x | loga + 2

∞∑
m=1

(
a

|x |

)2m 1 − |x |4m

(1 − a2m) |x |

)
ν (p(x)),

so 〈∇φ(x), Jν (p(x))〉R2 = 0 and

lim
|x |→1

〈∇φ(x),ν (p(x))〉R2 =
1
2 + 2 lim

|x |→1

∞∑
m=1

(
a

|x |

)2m 1 − |x |4m

(1 − a2m) |x |
=

1
2 =

1
2κ(p(x)).

Continuing di�erentiating, in the same manner one can derive that
��∇2φ(x)

�� is bounded and
that lim |x |→1 D

3φ(x) exists. The situation when x approaches the inner circle is analogous.
�

B.3.3 Green’s function

Now we turn to the part of Assumption 4.1 concerning the Green’s functionGΩ . Recall that
Qy : R2 → Rν (p(y)) is the orthogonal projection onto the normal space Np(y)∂Ω whenever
this is de�ned for y ∈ Ω.

Lemma B.4. Let Ω ⊂ R2 be a domain (not necessarily simply connected) and C ⊂ ∂Ω a
compact connected component of class C3,α . Choose a bounded neighborhood Ω0 ⊂ Ω of C
with ∂Ω0 ∈ C

3,α , such that the orthogonal projection p onto ∂Ω is wellde�ned on Ω0. For every
ε > 0 the function GΩ satis�es

|∇1GΩ(x ,y)| +
��∇2

1GΩ(x ,y)
�� = O(d(y)), ∇2∇1GΩ(x ,y) = O(1)Qy +O(d(y))

as d(y) → 0 uniformly on the set Aε :=
{
(x ,y) ∈ Ω × Ω0 : |x − y | ≥ ε

}
.

Proof. It is well known thatGΩ ∈ C
3,α (

Aε
)
, see [40] Thm. 6.19. SinceGΩ(x ,y) = 0 for x ∈ Ω

and y ∈ C ⊂ ∂Ω, we have ∇1GΩ(x ,y) = 0 and ∇2
1GΩ(x ,y) = 0 for x ∈ Ω and y ∈ C . The

estimate
|∇1GΩ(x ,y)| +

��∇2
1GΩ(x ,y)

�� = O(d(y))
asd(y) → 0, uniformly on the setAε now follows becauseGΩ is of class C3 andAε is compact.



Appendix B. Green’s and Robin function 80

Next observe that ∇1GΩ(x ,y) = 0, x ∈ Ω, y ∈ C implies that Dy
(
∇1GΩ(x ,y)

) ��
TyC
= 0,

i.e. ∇2∇1GΩ(x ,y) = α(x ,y)Qy for x ∈ Ω, y ∈ C and with some α(x ,y) ∈ R2×2. Again the
compactness of Aε and GΩ being of class C3 imply

∇2∇1GΩ(x ,y) = O(1)Qy +O(d(y))

as d(y) → 0 uniformly on Aε . �

B.4 Hydrodynamic Green’s function

Let Ω ⊂ R2 be a bounded domain with boundary ∂Ω =
⋃l

i=0Ci consisting of smooth closed
curves. Usually C0 denotes the exterior curve. For a smooth vector�eld u : Ω → R2 the
circulation around Ci is de�ned by

ci (u) =

∮
Ci
u · ds .

Let ω = curlu = ∂1u2 − ∂2u1 denote the rotation of u. Stokes’ Theorem implies∫
Ω
ω dx = c0(u) −

l∑
i=1

ci (u). (B.8)

Theorem B.5 (Chap. 1, Thm. 2.2 of [57]). Given ω : Ω → R smooth and c1, . . . , cl ∈ R.
There exists a unique vector�eld u : Ω → R2, tangent to ∂Ω and with curlu = ω, divu = 0,
ci (u) = ci for i = 1, . . . , l . (The circulation around C0 is determined by (B.8).)

If Ω is simply connected and u : Ω → R2 a divergence-free vector�eld, tangent to ∂Ω
with compactly supported vorticity ω = curlu, then u can be expressed with the help of the
Dirichlet Green’s function via

u(x) =

∫
Ω
J∇1GΩ(x ,y)ω(y) dy =: (∇⊥GΩ ∗ ω)(x). (B.9)

Indeed the right-hand side has divergence 0 and curl(∇⊥GΩ∗ω) = (−∆GΩ)∗ω = ω. Moreover,
the tangential derivative of ∇⊥GΩ ∗ω at a boundary point is vanishing, sinceGΩ(·,y) |∂Ω = 0.
Therefore Theorem B.5 implies u = ∇⊥GΩ ∗ ω.

In the simply connected case equation (B.9) provides an equivalence between a vec-
tor�eld and its vorticity. The notion of a hydrodynamic Green’s function generalizes this
equivalence to multiply connected domains. The following de�nition and properties can be
found in [34, 35].

Let Ω be a multiply connected domain with boundary curves C0, . . . ,Cl .

De�nition B.6. The hydrodynamic Green’s function with periods γ0, . . . ,γl ∈ R, such that∑
i γi = −1, is de�ned as the solution G(·,y) of the problem

−∆G(·,y) = δy in Ω,

∂J νG(·,y) = 0 on ∂Ω,∫
Ci
∂νG(·,y) = γi for every i = 0, . . . , l ,∫

∂Ω
G(·,y)∂νG(·, z) = 0 for every y, z ∈ Ω.
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The second condition says that G(·,y) is constant on each component Ci and the third
can be rephrased in terms of circulations, i.e. c0(∇

⊥G(·,y)) = −γ0 and ci (∇
⊥G(·,y)) = γi

for i = 1, . . . , l . By (B.8) the hydrodynamic Green’s function only has a chance to exist, if∑l
i=0 γi = −1. The last condition in B.6 is a normalization.

Lemma B.7 (Lem. 15.3 of [34]). Let Ω and γi , i = 0, . . . , l be as before. Then we have:

a) The hydrodynamic Green’s function exists if and only if
∑l

i=0 γi = −1.

b) G is unique, symmetric and

G(x ,y) = GΩ(x ,y) +
l∑

i, j=0
дi jui (x)uj (y),

where GΩ is the Dirichlet Green’s function, [дi j ]i, j=0, ...,l is a symmetric, positive semi
de�nite matrix with one-dimensional kernel spanned by (γ0, . . . ,γl ), anduj is the unique
harmonic function with values uj = 1 on Cj , uj = 0 on Ck for k , j.

c) The hydrodynamic Robin function h(z) := дΩ(z, z) −
∑

i, j д
i jui (z)uj (z) satis�es

h(z) = −
1

2π log(d(z)) +O(1)

uniformly as z → ∂Ω.

In particular if Ω is simply connected, we see that G (with γ0 = −1) is nothing but the
Dirichlet Green’s function GΩ . For the possibly multiply connected case where ∂Ω =

⋃
i Ci

we conclude:

Corollary B.8. If u : Ω → R2 is a smooth divergence-free vector�eld, tangent to ∂Ω and
with compactly supported vorticity ω = curlu satisfying Γ :=

∫
Ω
ω dx , 0. Then there exists

a unique hydrodynamic Green’s function G, such that u = ∇⊥G ∗ ω. The choice of G depends
only on Γ and the circulations ci (u).

Proof. It is easy to see that the convolution ũ = ∇⊥G̃ ∗ ω with an arbitrary hydrodynamic
Green’s function G̃ satis�es div ũ = 0, curl ũ = ω in Ω and 〈ũ,ν〉R2 = 0 on the boundary.
Since

ci (ũ) =

∫
Ω
ci (∇

⊥G̃(·,y))ω(y) dy = Γ ·

{
−γ0, i = 0,
γi , i > 0,

(B.10)

we de�ne γ0 = −
c0(u)
Γ and γi = ci (u)

Γ for i = 1, . . . , l . By (B.8) the numbers γi satisfy the con-
sistence relation

∑l
i=0 γi = −1, and hence the corresponding hydrodynamic Green’s function

G exists. By the de�nition of the periods γi the vector�elds u and ∇⊥G ∗ ω have the same
circulations. Thus Theorem B.5 implies u = ∇⊥G ∗ ω. �

If Γ =
∫
Ω
ω dx = 0, equation (B.10) shows that a representation of u in terms of a

convolution is only possible if all circulations ci (u) are vanishing. If this is the case, then
u = ∇⊥G ∗ ω for any hydrodynamic Green’s function G.
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Appendix C

A derivation of the N -vortex
problem

Here we will see how the 2D-Euler equation gives rise to the N -vortex problem in terms of
a localization result. Roughly speaking we will see that highly concentrated vortex blobs
remain concentrated while their centers follow the corresponding point vortex solution.
This has been shown in [59] by Marchioro and Pulvirenti. The discussion in the �rst section
is based on the books [34] and [57].

C.1 Two representations of the Euler equation

We consider an incompressible nonviscous �uid contained in a two-dimensional bounded
domain Ω surrounded by smooth closed boundary curvesCi , i = 0, . . . , l , which are impen-
etrable for the �uid. The velocity �eld u : Ω × R → R2, (x , t) 7→ u(x , t) and the pressure
p : Ω × R→ R, (x , t) 7→ p(x , t) of the �uid satisfy the Euler equations

∂tu + (u · ∇)u = −∇p in Ω × R, divu = 0 in Ω × R,

u · ν = 0 on ∂Ω × R, u(·, 0) = u0 in Ω.
(C.1)

Here divu = ∂1u1+∂2u2 = 0, where ∂i = ∂xi , corresponds to the incompressibility condition,
the scalar product with the exterior unit normal u · ν = 0 models the impenetrability of ∂Ω,
and u0 is the initial velocity �eld.

Suppose that u,p are smooth solutions of the 2D-Euler equation (C.1). The vorticity
associated to u is given by ω = curlu = ∂1u2 − ∂2u1 and its time evolution is determined by
the scalar equation

∂tω = curl(∂tu) = − curl((u · ∇)u + ∇p) = −u · ∇ω . (C.2)

For x ∈ Ω we denote by Φt,t0(x) the solution of the initial value problem

Ûϕ(t) = u(ϕ(t), t), ϕ(t0) = x ,

i.e. t 7→ Φt,t0(x) describes the trajectory of a particle moving with the �uid starting in x at
time t0. Note that if x is initially located in a boundary curve Ci , then Φt,t0(x) ∈ Ci . This
follows from u · ν = 0 and can for example be seen by locally writingCi ∩ Bε (x) as a regular
level set h−1(0) and considering the Hamiltonian system Ûy = J∇h(y). Since u is tangent
to ∂Ω, the solutions of this Hamiltonian system are a reparameterization of the particle
trajectories Φt,t0(x).

In other words ∂Ω consists of invariant �ow lines and as a consequence Φt,t0(x) is glob-
ally de�ned for all x ∈ Ω, t , t0 ∈ R. Moreover, Φt2,t1 ◦Φt1,t0 = Φt2,t0 for any triple t0, t1, t2 ∈ R.
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This implies that each Φt,t0 : Ω → Ω is a di�eomorphism with inverse Φ−1
t,t0 = Φt0,t . Since

divu = 0, we also know that detDΦt,t0(x) = 1 for any t , t0 ∈ R, x ∈ Ω.
The properties of Φt,t0(x) discussed so far are also valid for an arbitrary divergence-

free vector�eld ũ(x , t), tangent to ∂Ω. For a vector �eld satisfying the Euler equation and
therefore (C.2), we can in addition conclude ω(Φt,t0(x), t) = ω(x , t0), and especially

ω(x , t) = ω(Φ0,t (x), 0). (C.3)

As a consequence we see that the total vorticity is conserved, indeed Φt,0 area-preserving
implies ∫

Ω
ω(x , t) dx =

∫
Φt,0(Ω)

ω(Φ0,t (x), 0) dx =
∫
Ω
ω(x , 0) dx .

By Kelvin’s Theorem the same holds for the circulations: We rewrite (u ·∇)u = 1
2∇ |u |

2−ωJu,
and get

d

dt
ci (u(·, t)) =

∮
Ci
∂tu · ds = −

∮
Ci
∇

(
1
2 |u |

2 + p

)
· ds +

∮
Ci
ωJu · ds = 0.

Suppose that the initially velocity �eld u0 is such that ω(·, 0) ∈ C∞c (Ω) with nonzero total
vorticity Γ =

∫
Ω
ω(·, 0) dx , then Corollary B.8 provides a unique hydrodynamic Green’s

function G, such that

u(·, t) =

∫
Ω
J∇G(·,y)ω(y, t) dy = ∇⊥G ∗ ω(·, t).

Hence the vorticity satis�es in Ω × R the equation

∂tω + (∇
⊥G ∗ ω) · ∇ω = 0. (C.4)

Conversely if we suppose thatω(x , t) satis�es (C.4) with a �xed hydrodynamic Green’s func-
tion G and initial vorticity ω(·, 0) ∈ C∞c (Ω), then u := ∇⊥G ∗ ω and p de�ned as the (up to a
constant unique) solution of the Neumann boundary value problem

∆p = ω2 −
1
2∆ |u |

2 in Ω × R, ∂νp =

(
ωJu −

1
2∇ |u |

2
)
· ν on ∂Ω × R,

solve the 2D-Euler equation (C.1). Indeedu is divergence free, tangent to ∂Ω and curlu = ω.
Thus it remains to show that

ũ := ∂tu + (u · ∇)u + ∇p = ∂tu +
1
2∇ |u |

2 − ωJu + ∇p = 0.

We have curl ũ = 0 by (C.4), as well as div ũ = 0, ũ · ν = 0 by the choice of p. In order to
apply Theorem B.5 we thus need to show that the circulations ci (ũ(·, t)) are vanishing. We
have

ci (ũ(·, t)) = ci (∂tu(·, t)) =
d

dt
ci (u(·, t)) = ±γi

d

dt

∫
Ω
ω(x , t) dx ,

where γi ∈ R, i = 0, . . . , l are the periods of the Green’s functionG, cf. (B.10). To see that the
total vorticity is constant we can argue in the same way as before, i.e. we denote by Φt,t0(x)
the particle-trajectory map associated to u = ∇⊥G ∗ ω, observe that it is an area preserving
di�eomorphism and that (C.4) implies ω(Φt,t0(x), t) = ω(x , t0). It follows ci (ũ(·, t)) = 0.

Our discussion shows that the equations (C.1) and (C.4) are equivalent – at least under
the condition of nonzero total vorticity. Note also that Ψ = G ∗ ω de�nes a stream function
for u, which has been used in the introduction in equation (1.2).
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C.2 The localization of vortex blobs

Following [59] we will now present the localization result. As a step in between we consider
a single vortex blob on the whole plane under the in�uence of an external �eld. For ε > 0,
a ∈ R2N and Γ , 0 we de�ne a set Bε (a, Γ) ⊂ C∞c (R2,R) by saying that ω ∈ Bε (a, Γ) if and
only if

suppω ⊂ Bε (a), ωΓ ≥ 0 on all of R2 and
∫
R2
ω dx = Γ.

So Bε (a, Γ) contains smooth vortex blobs concentrated in the ε-ball around a and with total
vorticity Γ.

For the external �eld we consider a collection (Fε )ε ∈(0,ε1) ⊂ C
∞(R2 × R,R2) of smooth

vector�elds, such that there exists a constant L > 0 independent of ε with

div Fε (x , t) = 0, supp Fε (·, t) ⊂ BL(0), |Fε (x , t)| ≤ L and |Fε (x , t) − Fε (y, t)| ≤ L |x − y |

for all ε ∈ (0, ε1), x ,y ∈ R2, t ∈ R.
For ε ∈ (0, ε1) we suppose that ωε ∈ C∞(R2 × R,R) satis�es

∂tωε + (∇
⊥GR2 ∗ ωε + Fε ) · ∇ωε = 0 (C.5)

with initial vorticity pro�les ωε (·, 0) ∈ Bε (a, Γ) such that |ωε (x , t)| = O(ε−η) for some η < 8
3 .

We de�ne the center of vorticity

cε (t) =
1
Γ

∫
R2
xωε (x , t) dx

and eε (t) as the solution of the initial value problem

Ûeε (t) = Fε (eε (t), t), eε (0) = a.

Theorem C.1 (cf. Thm. 3.1 of [59]). For T > 0 and δ > 0 there exists ε0 = ε0(T ,δ ) > 0, such
that for all ε < ε0 and every t ∈ [0,T ] there holds

suppωε (·, t) ⊂ Bδ (cε (t)).

Moreover, |cε (t) − eε (t)| → 0 uniformly on [0,T ] as ε → 0.

Remark C.2. The Theorem stated above di�ers slightly from the original version in [59]. First
of all we have formulated everything for smoothωε , Fε with compactly supported �elds Fε (·, t).
This is of course way too much. The paper [59] deals with ω(·, t) ∈ L1 ∩ L∞, the weak form of
the Euler equation and a uniformly Lipschitz continuous, uniformly bounded external �eld.

In fact the original formulation considers a single external �eld F instead of a family (Fε )ε ,
but the proof only uses the uniform Lipschitz continuity and the uniform boundedness of F .

A third di�erence is that Thm. 3.1 of [59] considers a blob with vorticity Γ = 1, but the
general case can be reduced to this case by rescaling ω̃ε (x , t) = Γ−1ωε (σx , t/|Γ |), σ = sign(Γ)
and F̃ε (x , t) = Γ−1F (σx , t/|Γ |).

Next we look at the Euler equation in vorticity form on a bounded domain Ω ⊂ R2 with
smooth boundary, i.e. we �x a hydrodynamic Green’s function G(x ,y) = GR2(x ,y) − д(x ,y)
and consider

∂tω + (∇
⊥G ∗ ω) · ∇ω = 0 in Ω × R. (C.6)

In Section C.1 we have already seen that a solution of this equation implies that the vector
�eld u = ∇⊥G ∗ ω and a suitable pressure function p solve the Euler equation (C.1). Let
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(a1, . . . ,aN ) ∈ FN (Ω), Γ1, . . . , ΓN ∈ R \ {0} and denote by ωε : Ω × R → R the solution of
(C.6) with initial condition

ωε (x , 0) =
N∑
i=1

ωi
ε (x , 0),

where ωi
ε (·, 0) ∈ Bε (ai , Γi ) and |ωε (x , t)| = O(ε−η) for some η < 8

3 . Concerning global
existence and uniqueness of solutions of (C.6), the proof with G being the Dirichlet Green’s
function can be found in [57].

For our initial value problem we consider only ε > 0 satisfying 3ε < mini,j
��ai − aj �� and

2ε < mini dist(ai , ∂Ω), such that suppωi
ε (·, 0) ∩ suppω j

ε (·, 0) = ∅ and supp(ωi
ε (·, 0)) ⊂ Ω for

i , j. In view of (C.3) we de�ne

ωi
ε (x , t) := ωi

ε (Φ
ε
0,t (x), 0),

where Φεt,t0(x) is the particle-trajectory map associated to the vector�eld uε := ∇⊥G ∗ωε . In
other words ωi

ε (·, t) tracks the evolution of the vortex blob ωi
ε (·, 0) initially located around

ai . Clearly ωε (x , t) =
∑

i ω
i
ε (x , t) and∫

Ω
ωi
ε (x , t) dx = Γi .

Next we set up the N -vortex Hamiltonian1 H : FN (Ω) → R induced by the hydrody-
namic Green’s function G, i.e.

H (z1, . . . , zN ) =
1
2

(∑
i,j

ΓiΓjG(zi , zj ) −
∑
i, j

ΓiΓjд(zi , zj )

)
,

and denote by z(t) = (z1(t), . . . , zN (t)) the solution of the initial value problem

Γi Ûzi = J∇ziH (z), zi (0) = ai , i = 1, . . . ,N .

Let 0 < T + ≤ ∞ be the upper bound of the existence interval of the solution z(t).

Theorem C.3 (cf. Thm. 2.1 of [59]). For T ∈ (0,T+) and δ > 0 there exists ε0 = ε0(T ,δ ) > 0,
such that for all ε < ε0, t ∈ [0,T ] and i = 1, . . . ,N there holds

suppωi
ε (·, t) ⊂ Bδ (zi (t)).

Moreover, for any f ∈ C0(Ω,R) we have∫
Ω
ωε (x , t)f (x) dx →

N∑
i=1

Γi f (zi (t))

uniformly on [0,T ] as ε → 0. That is ωε (·, t) →
∑

i Γiδzi (t ) weakly in the sense of measures.

Proof. First of all we observe that the identity Φεt,0(Φ
ε
0,t (x)) = x implies

d

dt
Φε0,t (x) = −DΦ

ε
0,t (x)uε (x , t)

1in the other parts of the thesis we neglect the factor 1
2
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and therefore

∂tω
i
ε (x , t) =

d

dt
ωi
ε (Φ

ε
0,t (x), 0) = −∇ωi

ε (Φ
ε
0,t (x), 0) · DΦε0,t (x)uε (x , t)

= −∇ωi
ε (x , t) · uε (x , t).

Thus if we write

uε (x , t) = (∇
⊥G ∗ ωε )(x , t) =

∫
Ω
∇⊥GR2(x ,y)ωi

ε (y, t) dy

+
∑
j,i

∫
Ω
∇⊥G(x ,y)ω j

ε (y, t) dy −

∫
Ω
∇⊥д(x ,y)ωi

ε (y, t) dy

=: (∇⊥GR2 ∗ ωi
ε )(x , t) + F

i (ω1
ε , . . . ,ω

N
ε
)
(x , t),

we see that the functions ωi
ε satisfy the following system of Euler equations

∂tω
i
ε +

(
∇⊥GR2 ∗ ωi

ε + F
i (ω1

ε , . . . ,ω
N
ε
) )
· ∇ωi

ε = 0, in Ω × R, i = 1, . . . ,N . (C.7)

Next we regularize the interaction between di�erent vortex blobs, as well as the interaction
with the boundary by a modi�cation of the convolutions in F i . Let T ∈ (0,T +) and choose
b > 0 such that b ≤

��zi (t) − zj (t)�� and b ≤ dist(zi (t), ∂Ω) for all 1 ≤ i < j ≤ N , t ∈ [0,T ].
Take smooth cuto� functions ξ1, ξ2 : R2 → R with

ξ1(x) = ξ1(|x |) =

{
1, |x | ≥ b

4
0, |x | ≤ b

8
ξ2(x) =

{
1, x ∈ Ω and dist(x , ∂Ω) ≥ b

4
0, x < Ω or dist(x , ∂Ω) ≤ b

8

and de�ne д̃, G̃ : R2 × R2 → R,

д̃(x ,y) = ξ2(x)ξ2(y)д(x ,y), G̃(x ,y) = ξ2(x)ξ2(y)ξ1(x − y)GR2(x ,y) − д̃(x ,y).

Let ω̃i
ε denote the solution of the following system of regularized Euler equations

∂t ω̃
i
ε +

(
∇⊥GR2 ∗ ω̃i

ε + F̃
i (ω̃1

ε , . . . , ω̃
N
ε
) )
· ∇ω̃i

ε = 0, in R2 × R, i = 1, . . . ,N , (C.8)

where ω̃i
ε (·, 0) = ωε (·, 0) and

F̃ i
(
ω̃1
ε , . . . , ω̃

N
ε
)
(x , t) =

∑
j,i

∫
Ω
∇⊥G̃(x ,y)ω̃ j

ε (y, t) dy −

∫
Ω
∇⊥д̃(x ,y)ω̃i

ε (y, t) dy.

This system coincides with (C.7) as long as the distance between di�erent vortex blobs and
towards the boundary are su�ciently large.

The vector �elds f iε (x , t) = F̃ i
(
ω̃1
ε , . . . , ω̃

N
ε
)
(x , t) are smooth, uniformly bounded, uni-

formly Lipschitz continuous and for each ε, t the support supp f iε (·, t) is contained in Ω.
Thus we can apply Theorem C.1, which provides for every δ > 0 a number ε0(T ,δ ) > 0,
such that

supp ω̃i
ε (·, t) ⊂ Bδ (c

i
ε (t)) with ciε (t) := 1

Γi

∫
Ω
xω̃i

ε (x , t) dx , (C.9)

whenever t ∈ [0,T ], i = 1, . . . ,N and ε < ε0. Note that also for the regularized system there
holds

∫
R2 ω̃

i
ε (y, t) dy = Γi for any t . We will now show that ciε (t) → zi (t) uniformly on [0,T ]
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as ε → 0. Let δ > 0 and ε < min(δ , ε0(T ,δ )). At time t = 0 we have��zi (0) − ciε (0)�� = ����ai − 1
Γi

∫
R2
(ai + y)ω̃

i
ε (ai + y, 0) dy

����
≤ ε

∫
Bε (0)

ω̃i
ε (ai + y, 0)

Γi
dy ≤ ε ≤ δ .

For the development in time observe that G(zi , zj ) = G̃(zi , zj ), д(zi , zi ) = д̃(zi , zi ) on [0,T ]
and ∫

R2
(v(x , t) · ∇ω̃i

ε (x , t))x dx = −

∫
R2
v(x , t)ω̃i

ε (x , t) dx

for any smooth divergence-free vector �eld v . Hence

�� Ûzi (t) − Ûciε (t)�� = �����∑
j,i

Γj∇
⊥G(zi , zj ) − Γi∇

⊥д(zi , zi ) −
1
Γi

∫
R2

(
∇⊥GR2 ∗ ω̃i

ε + f iε
)
ω̃i
ε dx

�����
≤

∑
j,i

����Γj∇⊥G̃(zi (t), zj (t)) − 1
Γi

∫
R2

∫
R2
∇⊥G̃(x ,y)ω̃ j

ε (x , t)ω̃
i
ε (y, t) dx dy

����
+

����Γi∇⊥д̃(zi (t), zi (t)) − 1
Γi

∫
R2

∫
R2
∇⊥д̃(x ,y)ω̃i

ε (x , t)ω̃
i
ε (y, t) dx dy

����
+

���� 1
Γi

∫
R2

∫
R2
∇⊥GR2(x ,y)ω̃i

ε (x , t)ω̃
i
ε (y, t) dx dy

���� .
The last term actually is 0 due to the symmetry of GR2 . For the �rst term we estimate���Γj∇⊥G̃(zi (t), zj (t)) − Γj∇⊥G̃(ciε (t), c jε (t))��� ≤ M1

(��zi (t) − ciε (t)�� + ��zj (t) − c jε (t)��)
with a constant M1 > 0 depending on G̃, д̃ and Γ1, . . . , ΓN . On the other hand (with a similar
constant M2)����Γj∇⊥G̃(ciε (t), c jε (t)) − 1

Γi

∫
R2

∫
R2
∇⊥G̃(x ,y)ω̃ j

ε (x , t)ω̃
i
ε (y, t) dx dy

����
=

���� 1
Γi

∫
R2

∫
R2

(
∇⊥G̃(ciε (t), c

j
ε (t)) − ∇

⊥G̃(x ,y)
)
ω̃ j
ε (x , t)ω̃

i
ε (y, t) dx dy

���� ≤ M2δ ,

since supp ω̃i
ε (·, t) ⊂ Bδ (c

i
ε (t)) for i = 1, . . . ,N . The same procedure applied to the term

involving ∇⊥д̃(zi (t), zi (t)) �nally gives us

�� Ûzi (t) − Ûciε (t)�� ≤ M3

N∑
j=1

��zj (t) − c jε (t)�� +M3δ .

Thus
N∑
i=1

��zi (t) − ciε (t)�� ≤ M4δ +M4

∫ t

0

N∑
i=1

��zi (s) − ciε (s)�� ds
and we can apply Gronwall’s lemma to conclude

��zi (t) − ciε (t)�� ≤ M4δe
M4T for t ∈ [0,T ].

This shows
��zi (t) − ciε (t)��→ 0 uniformly as ε → 0.
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By (C.9) we therefore can �nd to every δ > 0 a number ε0(T ,δ ) > 0, such that for every
ε < ε0, t ∈ [0,T ] and i = 1, . . . ,N there holds

supp ω̃i
ε (·, t) ⊂ Bδ (zi (t)).

In particular if δ < b
4 , we can conclude that as long as t ∈ [0,T ] the collection ω̃i

ε , i = 1, . . . ,N
not only is a solution of the regularized system (C.8), but also of the original system (C.7).
Hence ω̃i

ε (·, t) = ω
i
ε (·, t) for t ∈ [0,T ], i = 1, . . . ,N . This shows that the vortex blobs remain

localized around the point vortex solution.
It remains to prove the uniform convergence∫

Ω
f (x)ωε (x , t) dx →

N∑
i=1

Γizi (t)

for f ∈ C0(Ω,R) as ε → 0. Let δ̃ > 0 and take δ > 0 independent of t ∈ [0,T ], such that
| f (x) − f (zi (t))| ≤ δ̃ whenever |x − zi (t)| ≤ δ . For ε < ε0(T ,δ ) we have����∫

Ω
f (x)ωi

ε (x , t) dx − Γi f (zi (t))

���� ≤ ∫
Bδ (zi (t ))

| f (x) − f (zi (t))|
��ωi
ε (x , t)

�� dx ≤ δ̃ |Γi |
and the statement follows. �
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