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Abstract

We examine the N-vortex problem on general domains Q C R? concerning the existence
of nonstationary collision-free periodic solutions. The problem in question is a first order
Hamiltonian system of the form

Teze :]VzkH(Zl,...,ZN), k=1,...,N,

where Ty € R\ {0} is the strength of the kth vortex at position z;(t) € Q, J] € R¥? is the
standard symplectic matrix and

N N
H(zy,...,zN) = —% Z [Ty log |zk — zj] — Z [iTkg(zk, zj)
k,j=1 k,j=1
k#j
with some regular and symmetric, but not explicitely known functiong: Q X Q — R.

We present two types of periodic solutions that can be found in general domains. The
first one is based on the idea to superpose a stationary solution of a system of less than
N vortices and several clusters of vortices that are close to rigidly rotating configurations
of the whole-plane system. The second type consists of choreographic solutions following
approximately a boundary component of the domain. The proofs in both cases rely on a
suitable rescaling of the problem, investigation of the limiting system and implicit-function-
like methods for a local continuation of existing solutions. Moreover, the modification of a
S!-equivariant degree theory allows us to prove that the continuation occurs globally.
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Notation

Miscellaneous

Let U,V be subsets of a Banachspace X. Then U = clos(U), U° = int(U), U denote the
closure, the interior and the boundary of U and dist(U, V) = inf { |[u —v||xy :u € U,v € V }.
An inner product on X is usually denoted by (-, -) .. In the context of fluid dynamics we also
use the notation x - y = x;y; + x2y, for the euclidian scalar product (x, y)z.. The transpose
of a matrix A € R™<" is written AT. Commonly used matrices are the n X n identity matrix

idgn, as well as
0 1

the rotation by —% on R? and the 2N x 2N block matrices

7 T idge
]N = T . > MF = T . ’
J Ty idpe

where Iy, ..., Iy € R\ {0} denote the vorticities of the point vortices.

Derivatives

Partial derivatives are written like d;w(x,t), 01w(x,t) = Oy, w(x,t) or 0,F(r,u), D,F(r,u).
As usual V@ denotes the gradient of a real valued function ® defined on a Hilbertspace X
and V2® the Hessian matrix or more general the linear and continuous map X — X, such
that <V2CI>(x)u, ’U> x = D*®(x)[u,v]. Higher order derivatives are for example written like
DXF(r,u), VKF,(u) or Fﬁk)(u), and for derivatives with respect to time we use #(t) or %u(t).

Concerning classical differential operators we have divergence diveo = V-v = 0,01 +0,v3,
Laplace Au = div(Vu) and rotation curlv = d;v, — 0,04, if v is a two-dimensional vector
field.

For a smooth function G : R* X R? — R, (x,y) — G(x,y) we write V,G, V3G for the
gradient and Hessian with respect to x and

0y,0x,G  0y,0x,G

V,ViG = :
2 0y, 05,G 3y, 05,G

In a similar way one has to understand V,G, VgG and V1V,G. Note that if G is symmetric,
i.e. G(x,y) = G(y, x), then

V2V1G(x,y) = (V2ViG(y. x)) " (0.1)

In the context of fluid dynamics we use V*® = JV® and V*-G(x,y) = JV;G(x, y).
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Spaces
L2 square integrable functions u : R/TZ — RN,
T
o)z = [ () o(O)gn dt
H3. Sobolev space H*(R/TZ, R?N) of T-periodic functions,
for s = 1: (u, Z))H; = (u,v)LzT + (u, z))LzT
Cg; C}‘; C;  continuous; k-times continuously differentiable; smooth T-periodic
functions u : R — RV, ””“C}‘ = sup { |u0)(t)| :0<j<k, te R}
k — — — rk
L%, HS, C =1 ,=H; ,=Cy,
L(X,Y) linear and continuous operators between two Banach spaces X, Y,
LIl £x, vy = sup { [[Lx]ly : [Ix]lx <1}
LX) = L(X,X)
ckU,Y) k-times continuously differentiable functions from U C X into Y
Crk*(U,Y)  CK(U,Y) with kth derivative being a-Hoélder continuous
Topological degrees
deg Brouwer degree or Leray-Schauder degree
Sl—deg, dg Sl-equivariant degree by Dylawerski, Geba, Jodel, Marzantowicz, see 2.3.1
S'-deg*,di  degree for S'-orthogonal maps by Rybicki, see 2.3.2

S'-deg", dY

modification of S!-deg™ to S'-equivariant gradients, see 2.1.2



Chapter 1

Introduction

1.1 The N-vortex problem

In order to describe an incompressible fluid contained in a domain Q one uses partial differ-
ential equations like the Navier-Stokes equation or in the nonviscous case the Euler equation
0;v+ (v-V)v=-Vp,
{ w+ (@ V)o=-Vp )

divo =0

as most sophisticated models. Here v(x, t) denotes the velocity of the fluid and p(x, t) the
pressure at the point x € Q and at time ¢ € R. Since in general the Navier-Stokes and Euler
equation are quite complicated to deal with — we just like to mention [33] - simplified models
based on these equations are used in the hope of gaining information about the original
equations and/or to describe phenomena in applications in a precise enough manner. One
of these simplified models is the so called N-vortex problem.
Here as a first simplification one considers a two-dimensional fluid, ie. Q c R? and

v : Q X R — R2 The restriction of the fluid to two dimensions is a reasonable approx-
imation when one of the dimensions is comparably small in relation to the other two, or
more generally when the three-dimensional flow is confined to two-dimensional layers due
to stratification or rotation. Assuming the two-dimensional fluid to be nonviscous and con-
tained in a smooth domain with an impenetrable boundary, it is described by the Euler
equations (1.1) and an additional boundary condition that requires the fluid to be tangential
to Q. A solution v of this boundary value problem can be found by solving the 2D-Euler
equations in vorticity-stream formulation, i.e. finding scalar functions w(x, t), ¥(x, t) satis-
fying

0,0+ V¥ - Vo =0, inQ

-AY = o, in Q (1.2)

¥ =0, on 0Q

and setting v = V1Y, see Section C.1. One next assumes that the whole velocity field
v(-, t) at any time ¢ is solely determined by the position of finitely many vortices. Speaking
in terms of vorticity this means that w(-, t) is highly concentrated in finitely many points
z1(t),...,zn(t) € Q. LetIj € R\ {0} be the amount of vorticity located around z;(t). The
corresponding formal ansatz w(x, t) = 3; [;6(x —z;(t)) for (1.2) leads to a system of ordinary
differential equations describing the motion of the vortex positions in time. This so called
N-vortex system is of the form

T2(t) = JV.,Ho(z1(t), ..., 2n(t), j=1,...,N, (1.3)

where J : R* — R? denotes rotation around the origin by —%, and Hq defined on an open
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subset of QY is a real valued function determined by the stated singular ansatz for the vor-
ticity profile. The derivation of the N-vortex problem has its origin in the 19th century and
is, depending on the considered case, due to Kirchhoff [47], Routh [68] and Lin [53, 54], but
can also be found in more modern books, e.g. [34, 56, 57, 64]. An historic overview of the
derivation of the point vortex system together with advanced models can be found in [55].
In appendix C we present the localization theorem of Marchioro and Pulvirenti [59] as a
rigorous justification for the point vortex system.

The simplification of the dynamics of a fluid to the motion of finitely many point vortices
has a wide range of applications. In Geophysics system (1.3) serves as a simple model for the
interaction of ocean eddies with coastlines, see [21, 24, 73], or for an explanation of vortex
configurations in the eye of hurricane Isabel (2003), see [48] and chapter 3 of [9]. Point vortex
models, typically with a high number of vortices, are also used in numerical simulations of
liquids and gases of various kinds, for example to simulate the locomotion of a fish or insect
[30] or to create computer animations in video games [41].

Furthermore, the N-vortex problem does not only occur as a singular limit of the Eu-
ler equations, but also as a limit of other partial differential equations from mathematical
physics. If for example the initial data uj = u(-,0) : Q — C of the Gross-Pitaevskii (also
called Ginzburg-Landau-Schrédinger) equation

i0uf — Auf = ¢e7? (1 - |u€|2) ué, inQ (1.4)
ut(,t)=f, on 0Q, ’

f : 0Q — C some prescribed function and t € R, has independent of ¢ > 0 only isolated
zeroes, say di,...,ay € Q, with local Brouwer indices having modulus 1, then as ¢ — 0
the corresponding solution u*(-, t) has zeroes z{(t), . . ., z},(¢) following the solution of (1.3)
with initial data ng.(O) = aj, j = 1,...,N. So the zeroes of the solution of (1.4) behave in
the limit like point vortices. The corresponding vorticities I are here given by the local
Brouwer degrees deg (u$, B,(a;)) € {£1}, p > 0 sufficiently small. Details concerning this
motivation for point vortex dynamics can be found in [22, 45] and the references therein.
Another equation giving rise to point vortex like dynamics is the Landau-Lifshitz-Gilbert
equation, for which we just like to refer to [51].

1.2 Central question and related results

The N-vortex problem (1.3) is a first order Hamiltonian system with Hamilton function

N N
1
Ho(z1,...,2N) = r Z I;Ty log |z — zi| - Z LTk ga(z;, zk).

k,j=1 k.j=1
K#j

Since the first term, which models direct vortex-vortex interactions, becomes singular when
Zj = zk, j # k, Hg is only defined on

TN(Q)z{z=(zl,...,zN)€QN:zjizk,jik}.

Besides these logarithmic singularities, a second main difficulty of the Hamiltonian lies in
the fact that the function go : Q X Q — R contained in the seond term and modelling
vortex-boundary interactions is, except for a few special cases, not explicitly known. More
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FIGURE 1.1: Relative equilibria solutions on Q = R?: Vortices with I; < 0 are
blue, vortices with I; > 0 are red, all configurations rotate in counterclock-
wise direction.

precisely go(-, y) satisfies for every y € Q the boundary value problem

Axga(x,y) =0, x€Q
galx,y) = —ﬁlog lx—y|, xe€dQ,

such that .
Ga(x,y) = “om log [x — y| — ga(x,y)

is the Green’s function of the Dirichlet-Laplace operator. Contrary to the singular part of Gg
the evaluation of gq at the same point is allowed. The function defined by this evaluation
hQ :Q — R,

ha(x) = ga(x, x)

is called Robin function and determines the motion of a single vortex inside the domain Q.
Due to hg(x) — oo as x — 9Q singularities of Hg not only occur when different vortices
collide, but also when vortices approach the boundary of Q. A summary concerning fur-
ther properties of the Green’s function and the Robin function can be found in Appendix
B. In particular Section B.4 treats so called hydrodynamic Green’s functions, which appear
naturally in point vortex dynamics as a generalization of the Dirichlet Green’s function.

In this thesis we will investigate the N-vortex problem in general domains with respect
to a classic aspect of Hamiltonian dynamics: Periodic solutions. We will mainly focus on
the question of existence of periodics, but also elaborate a little on their structure as a set
of solutions. The discussion of natural related questions like stability is currently work in
progress and not included in the thesis. The periodic solutions investigated here are all
nontrivial, i.e. have a positive minimal period, nonetheless an overview about stationary
solutions can be found in section 3.1.1.

There is a vast amount of literature concerning periodic solutions of the N-vortex prob-
lem, dating back to the 19th century when Thomson investigated in [75] regular polygon
configurations of identical vortices. Nevertheless, almost all of those publications treat spe-
cial cases, in which the Green’s function and hence the Hamiltonian Hg, is explicitly known.
This is for example the case for Q being the whole plane R?, the upper half-plane R? or
the unit disc B;(0). Most of these solutions form relative equilibrium solutions, also called
vortex crystals, which are vortex configurations that rigidly rotate around a central point.
Examples on the whole plane include vortex pairs, equilateral triangles, Thomson’s regular
N-Gons and straight line configurations, see figure 1.1 for now and more detailed section
3.1.2. Even more complicated nested configurations can be found on R? or B;(0) due to the
fact that the Green’s function is explicit and invariant with respect to rotations. We refer to
[4, 5, 64] for the illustrated examples and a general overview.

Contrary to these cases both advantages are lost when one is interested in the dynamics
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in an arbitrary domain Q c R?. Moreover, in general the Hamiltonian H, is unbounded from
both sides, not integrable and has non compact, not metrically complete energy surfaces
which makes the search for periodic solutions difficult. An exception is given by the two
following cases, in which the definite asymptotic behaviour Ho(z) — —co0 as z — dFn(Q)
implies the compactness of energy levels:

« Q bounded, N = 1, I] # 0: Almost all solutions of the 1-vortex system are periodic,
see section 15.5 in [34],

«+ Qbounded, N = 2, TIiT; < 0: Almost all non empty level sets H;'(c) contain a periodic
solution, [74].

The first result going beyond these two cases is due to Bartsch and Dai [11] and treats the
case of arbitrarily many identical vortices located near a topological stable critical point of
the Robin function hq. A critical point of hq, which is nothing but an equilibrium of the 1-
vortex system, can be found in every bounded domain. Moreover, at least after an arbitrarily
small deformation of the domain it is nondegenerate and hence topological stable, see [15].
The theorem in a formulation not including all details then reads:

Theorem 1.1 (Bartsch, Dai [11]). LetI} = ... =TIy # 0, a € Q be a topological stable critical
point of hg. Then there exists a family (z(r)), 0 < r < ry of periodic solutions of (1.3) with
the following properties: For any r € (0,r) all N vortices z(lr)(t), . zg\rl)(t) follow the same
curve, i.e. the solutions form a choreography. In the limit r — 0 the minimal period T, tends
to 0 and all vortices converge towards the critical point a, whereas the geometrical shape of the
configuration approaches a scaled version of Thomson’s N-Gon configuration.

This result can be interpreted as the superposition of a stationary solution of the 1-vortex
system on Q and the N-Gon solution on R?. A natural question arises if similar solutions
can be found when the stationary solution a is replaced by a nontrivial periodic trajectory
a(t) of the 1-vortex system. For two vortices Bartsch and Sacchet could prove the following
result, which we will here again formulate only in a rough way:

Theorem 1.2 (Bartsch, Sacchet [18]). Let N = 2, I},I, # 0 withI} + I, = 0 and a(t) be a T-
periodic solution of the 1-vortex system on Q. Under a geometric condition on a(t) and nearby
periodic trajectories of the 1-vortex system, the 2-vortex system on Q has infinitely many T-
periodic solutions, in which the two vortices rotate around their center of vorticity while the
center itself approximately follows the trajectory a(t).

Contrary to the methods used in [11] and the methods that will be used in this thesis,
Theorem 1.2 requires a somewhat different approach due to the time-dependent trajectory
a(t). In fact it relies on a generalized Poincaré-Birkhoff theorem [36].

1.3 Outline of the thesis

In chapter 3 we continue the search for periodic solutions via a superposition of two kinds
of solutions. In particular, we generalize Theorem 1.1 in three aspects. First of all, we show
that the Thomson N-Gons are not the only relative equilibrium solutions of the whole plane
system that give rise to a family of periodic solutions (z(’)) re(0,r,) D€Ar A critical point of the
Robin function hg. This way also configurations with different vorticities are shown to in-
duce periodic solutions of (1.3). Next using an appropriate equivariant degree theory, which
is based on the degree by Rybicki [69] and which represents in chapter 2 besides the periodic
solutions the second main part of this thesis, we show that these families of solutions are not
only local families but also part of a global connected set of periodic solutions. Moreover,
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+©+©:

FIGURE 1.2: The 2-vortex problem in the unit disc admits a stationary solu-

tion with I} = I}, cf. Example 3.2. Combining this solution with rigidly

rotating vortex pairs we obtain a periodic solution of the 4-vortex system

in the disc, where each pair of vortices moves along a deformed circle. The

shown trajectory is the actual numerically computed trajectory of the 4-
vortex problem in the unit disc.

F1GURE 1.3: Four identical vortices in a Neumann oval domain following the
red curve in a counterclockwise orientation. The numerical computation is
based on code by Tom Ashbee [6].

by replacing the stationary solution a € Q of the 1-vortex system by a stationary solution of
a system of m € N vortices and placing a rigidly rotating configuration of the whole plane
system near each of the m point vortices, we obtain periodic solutions consisting of m clus-
ters. Figure 1.2 shows this idea in the easiest case of m = 2 clusters, each consisting of two
identical vortices and Q being the unit disc. This way we obtain periodic solutions in the
unit disc, in which the vortices are not rotating rigidly around the center of the disc. The
precise statement of the described results is given in Theorems 3.1, 3.8 and 3.9.

The existence of the presented solutions so far is based on the fact that vortex-vortex
interactions dominate the dynamics when vortices come close together. Contrary to that we
will exploit vortex-boundary interactions in Chapter 4 in order to obtain periodic solutions
for an arbitrary number of identical vortices in a simply connected domain. Here the vortices
move separated by time shifts along the same curve close to the domain boundary, i.e. the
solutions are also choreographies. As an illustration, the trajectory of 4 identical vortices
close to the boundary of a Neumann oval domain is presented in figure 1.3. The rigorous
result can be found in Theorem 4.3.
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Both types of results are obtained by continuation of existing periodic solutions. Let

I} idge J
Ml“: ER2NX2N, ]N: GRZNXZN,

Iy idge J
such that the N-vortex system (1.3) can be written in the more compact way
Mrz = JNVHq(2), (1.5)

where z = (z1(t), ..., zn(t)) € FN(Q). Depending on the situation a suitable rescaling shows
that (1.5) is equivalent to
Mra = JnVH,(u) (1.6)

with a parameter dependent family (H;),¢(o,,) of Hamiltonians. In particular a 27-periodic
solution of (1.6) corresponds to a periodic solution of (1.5) with period T = T(r) depending
on the introduced parameter r. So the here presented existence results rely on the investi-
gation of the limiting problem r — 0, for which 27-periodic solutions are known or shown
to exist, as well as appropriate continuation methods. More precisely we will find for r > 0
critical points of the associated action functional

2w

21
®, (u) = % / (M, Jnweon dt — [ Hy(u)dt

0 0
emanating from a critical manifold of ®, by applying implicit-function-like theorems, e.g.
Theorem 2.7 and/or degree arguments, see Theorem 2.3 and Corollary 2.9, to the gradi-
ent VO,. Although we do not use variational methods based for example on Morse-theory
or a Linking structure, which seem quite hard to apply due to the indefinite behaviour
of Hg(z) when z — 0Fn(Q), the proofs rely on the existence of a variational structure
associated to (1.6). The functional ®, will be defined on an open subset of the Sobolev
space H'(R/27Z, R?N) consisting of 27-periodic functions having a square-integrable weak
derivative. Since the natural domain of the quadratic form

1 2
u— 5/ <Ml"'l:l,]NU>R2N dt
0

is the space of 27-periodic H'/? functions, the choice of H! as underlying function space
will cause some technical difficulties, in particular when it comes to the task of finding an
applicable degree theory for the gradient V®,, cf. the discussion in Section 2.3. But on the
other hand the Hamiltonian H, is only defined for functions u(t) satisfying among other
conditions u;(t) # uk(t) for all j # k. These conditions do not define an open subset of
H'? due to the fact that H'/? does not embed into the space of continuous, 27-periodic
functions. So it is unclear how to work with ®, on H'/2. Contrary to that, the space H'
embeds continuously into the space of continuous functions. More details on the variational
structure of Hamiltonian systems and the needed Sobolev spaces are given in section 2.2 and
appendix A.

1.4 Further comments

This is a declaration about which parts of the thesis have been published with whom before
and which parts are new:
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« Chapter 2: The construction of the S!-equivariant degree for the action functional of
Hamiltonian systems and the proof of the abstract global continuation theorem (Thm.
2.3) is done as in the joint paper with T. Bartsch, [13]. For the construction a little
more details have been added. The formula for the computation of the degree for a
nondegenerate solution (Thm. 2.24) is new. In [13] we only needed and used that the
degree is nonzero, provided the solution is contained in one of the finite-dimensional
subspaces X,,. As a consequence now Corollary 2.9 is available for a general nonde-
generate periodic solution of a Hamiltonian system like the ones obtained in Theorem
4.3.

« Chapter 3: This chapter has so far not been published. Up to minor changes it can be
found in the preprint [38].

« Chapter 4: The local part of the result itself (Thm. 4.3 except (4)) is joint work with T.
Bartsch and Q. Dai, [12]. The here presented proof however, differs from the original
one in the sense that a symplectic transformation onto the unit disc is used. Due to this
transformation the result here is formulated for a C* boundary component contrary
to a C® component in the original formulation, cf. Remark 4.4 d). The global aspect,
i.e. property (4) of Thm. 4.3, is new and possible due to Theorem 2.24.

« Chapter 5: This chapter contains a discussion of the obtained results with the aid of
known solutions in the unit disc, as well as some open questions. In [12] the regular N-
Gon in the unit disc has already served as an illustration of the choreographic solutions
near the boundary.

« Appendix A: This is just a collection of known facts about Hamiltonian systems and
the associated action functional.

+ Appendix B: Corollary B.2, Lemma B.3 and Lemma B.4 concerning the boundary be-
haviour of Green’s and Robin function have been taken from [12]. For the remaining
facts references are given.

« Appendix C: References are given as well.



Chapter 2

An S'-equivariant degree for
Hamiltonian systems

This chapter provides an S'-equivariant degree theory for the H!-gradient of the action
functional of a first order Hamiltonian system. The first section 2.1 introduces the notation
and summarizes the properties of the degree in an abstract setting of potential operators
on a Hilbert space, while section 2.2 with Corollary 2.9 as the central statement addresses
the application of it to Hamiltonian systems. After that we discuss in section 2.3 other ex-
isting equivariant degree theories. In particular we introduce the degrees by Dylawerski,
Geba, Jodel, Marzantowicz (=DGJM) [29] and by Rybicki [69], on which our modification,
carried out in section 2.4, is based. Finally section 2.5 is devoted to the proof of the global
continuation theorem and section 2.6 to the calculation of the degree in a nondegenerate
case.

2.1 Summary of results

2.1.1 Notation

Let (X, (-, -)) be a Hilbert space and p : S — L(X) be an orthogonal S!-action, i.e. p is a
continuous homomorphism between S' and the group of bounded linear operators £(X),
such that every p(e’?) preserves the inner product (-, -). Instead of p(e’?)u, e’ € S', u € X
we just write 0 = u and 0 € S! using the identification S! = R/2x7Z. For the orthogonality of
the action this means (6 * uy, 0 * uy) = (uy, uy) for every uj,u, € X, 6 € S*.

A Sl-invariant subset of X is a set, that whenever it contains a point u, it also contains
the whole orbit S! + u. A map f : X; — X, between two S!-representations is called S!-
equivariant provided f(0 * u) = 6 = f(u) for all 0 € S', u € X;. Furthermore, f is called
invariant, if f is constant along each orbit.

An example of an orthogonal S'-action or in other words a S!-representation is given by
X =R2, p™:S! — SO(2), m € Ny,

myp _ [cos(m8)  —sin(m8)
prO) = sin(mf)  cos(mf) |-

We denote by R[k,m], k € N, m € Nj the direct sum of k copies of the representation
(R?, p™).

Two representations Xj, X, are said to be equivalent, if there exists an equivariant iso-
morphism T : X; — X;. In this situation we write X; = X,. For finite-dimensional repre-
sentations the following classification theorem is available:
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Theorem 2.1 (see [1]). IfV is a finite-dimensional representation of S?, then

Ve @R[ki, mi]
i=1

with unique numbersr € N, k; e N,m; € Ny, i = 1,...,r satisfyingmy < mp < ... < m,.

Given a subset U C X and a closed subgroup K < Sl ie. K € {Sl,Zl, Za, ... } with Zj
being the group of the kth roots of unity, the set of fixed points under K is denoted by

UK ={ueU:0xu=uforall@ eK}.
For the isotropy group of u € X we write
Iu={9651:0*u=u}.

Whenever the following limit exists the tangent vector to the orbit S!  u at u € X is defined
by
1 _d
E(u) = élir%) 5(9 *U—U)= @|9=0(9 *U).

If X is infinite-dimensional, then E(u) might not exist for all u € X, cf. X being the Sobolev
space H! in Section 2.2.1, but in the finite-dimensional case the classification Theorem 2.1
guarantees that E(u) is well-defined for all u € X. Moreover, the definition shows that in
that case the vector field E : X — X is linear and S'-equivariant, i.e. E(§ * u) = 0 * E(u) for
alld € S'and u € X.

The degree theories we are looking at have values in B.Z. For a, f € P, Z we
define a multiplication by

a * B = (aofo, aof1 + Poar, aofe + Poaz, aoPfs + Poas, . . .)
= 'ﬂ+130 '(Z—(O{OIB(),O,O,. )

2.1.2 Degree setting

Now let X be infinite-dimensional, but admitting a Hilbert space decomposition

X=clos(€BEk), E; L Ey forj # k.
kENO

consisting of finite-dimensional subspaces. For n € Ny we set X, := €P}_, Ex and write
P, : X — X, for the orthogonal projection, so that P,u — u as n — oo for every u € X. We
consider S!-equivariant maps

L-VY:A—>X

defined on an open and S!-invariant subset A C X, such that the decomposition of X and
the maps L and ¥ satisfy

(A1) Ey is a finite-dimensional, S'-invariant linear subspace of X, and the isotropy group
of u € E \ {0} is Zy for k € N.

(A2) L € L(X) is a bounded, self-adjoint, equivariant operator with Kern(L) = E, and
L(Ey) = Ei for k # 0.

(A3) The map L + P, defines an isomorphism X — Y onto a Banach space Y that embeds
continuously into X.
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(A4) ¥ : A — X is the gradient of an S'-invariant C!-function & : A — R.

(A5) The image of ¥ is contained in Y and for any bounded, invariant set O with OcCA
the restriction ¥ : O — Y is a compact map.

Note that in (A1) there is no restriction on the isotropy groups of the elements in Ey, but
X' ¢ E,. The condition says that Ej is the isotypical component of E;- corresponding to
the representation (R?, p¥).

Given X together with a decomposition into subspaces Ey. satisfying condition (A1), we
write f € C%(O), if f=L-Y¥:A — X satisfies (A2)-(A5), O is an open, bounded, invariant
set with closure contained in A and f(00) c X \ {0}.

Theorem 2.2. For f € Cy(O) there exists a degree

S'-deg"(f,0) = (dZ(f, 0))k€N E éz
k=0

with the following properties:

(D1) (Existence) Ide(f, O) # 0 for some k € Ny, then there existsu € OX with f(u) = 0
where K = S ifk = 0, resp. K = Zy. ifk > 1.

(D2) (Excision and additivity) If f~1(0) N O C O, U O, for two disjoint open S'-invariant
subsets 01,0, C O then

S'-degV(f,0) = S'-deg" (f,0,) + S'-deg" (f, Os).

(D3) (Homotopy)Let U C [0, 1]XX be open and bounded, and leth : (U, 0U) — (X, X\{0})
be continuous. Ifhy = h(t,-) : Uy ={u e X : (t,u) e U} — X, t € [0,1] liesin Cg((l/lt)
for each t € [0, 1], then S'-deg" (h;, U;) is independent of t € [0, 1].

(D4) (Multiplicativity) If f; : (0;,00;) = (Xi,X; \ {0}), i = 1,2, are in Cg(Oi), then so is
f1 X f2 € Cg(Ol X 02) and

S'-deg" (fi X fo, 01 X O3) = S'-deg" (f,01) x S'-deg" (f3, Os).
The proof will be delayed until section 2.4.

2.1.3 Global continuation

Having a degree theory with the typical properties at hand one can prove the existence of
connected sets of solutions for parameter dependent equations, see for example the classic
continuation theorems by Leray and Schauder [52] or Rabinowitz [66]. We will formulate
now a version that will suit the continuation of periodic solutions in our application. Con-
sider a family of equations of the form

Lu—Y¥(r,u)=0, (r,u)e D CR"xX. (2.1)

Here S! acts trivially on R and X, L satisfy (A1)—-(A3). Concerning the nonlinear map ¥ we
replace (A4),(A5) by corresponding parameter dependent assumptions:

(A6) ¥ : D — X is defined on an open and invariant subset D C R* x X, it is continuous,
equivariant, and ¥(r, -) is the gradient of K(r, -), where & : D — R is S'-invariant,
continuous and differentiable with respect to the u component.
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(A7) The image of ¥ is contained in Y. If B C R X X is bounded, closed, and B ¢ D, then
the set W(B) is relatively compact in Y.

The set of solutions of (2.1) will be denoted by S = {(r,u) € D : Lu—¥(r,u) =0}.
Observe that if B ¢ R x X is S!-invariant, closed, bounded and satisfies B ¢ D then S N B
is compact. This follows easily from (A7). For M c R* X X and r € R* we use the notation
M, ={ueX:(r,u) € M}.

Theorem 2.3. Suppose (A1)-(A3), (A6), (A7) hold, and suppose there exist ry > 0 and a rela-
tively open, S'-invariant subset U C (0,ro] X X such that:

(i) Foreveryr € (0,ry]: U, # 0, bounded, U, c D,.
(i) S N OU = O where OU is the relative boundary of U in (0,ry] X X.

If S'-degV (L — ¥(ro,-), U,,) # O then there exists a connected component C C S with the
following properties:

a) (CNU), + 0 foreveryr € (0,r],
b) C\ U is not contained in a compact subset of D.

Of course, if needed, we can here replace the interval (0, 9] by an interval (rq, rp] with
0<r <rp.

2.1.4 Nontrivial degree for nondegenerate solutions

Theorem 2.3 clearly relies on a nontrivial degree S'-deg" (L — ¥(ry, ), U,,) for some param-
eter value ry. As for the classical Brouwer degree we will obtain in 2.6 a formula for the
degree in the nondegenerate case. Admittedly this formula will be not very handy for the
actual computation, but it allows us to conclude S'-deg"(L — ¥(ry, -), Uy,) # 0.

So consider again a map L — ¥ : A — X satisfying (A1)-(A5) and additionally the
following two assumptions:

(A8) ¥: A — YisCL

(A9) For any u € Y the tangent vector E(u) € X is defined and E : Y — X is a bounded
linear operator.

Assumption (A8) implies § is C? with (D¥(u)v, w) = D*&(u)[v, w] = (v, D¥(u)w). The
notion of a nondegenerate solution uy € A of L — ¥ = 0 has to be adapted to the equivariant
setting, since every element of the orbit S!  u is a solution as well.

Definition 2.4. A solution uy € A of Lu — ¥(u) = 0 is called nondegenerate provided uy € Y
and Kern(L — D¥(up)) = RE(uy), i.e. the kernel of the derivative at uy is as small as possible.

Theorem 2.5. Letu, € A be a nondegenerate solution of L — ¥ = 0 with I, = Z. Then there
exists an invariant neighborhood O of S* * ugy such that (L —¥)"1(0) N O = S* x uy and

dY(L-¥,0) € {£1}.
Similar if I, = S, then dy (L — ¥, 0) € {+1}.

The detailed formula can be found in Theorem 2.24.
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2.2 Application to Hamiltonian systems

Here we will check that first order Hamiltonian systems give rise to the setting presented in
section 2.1 via the associated action functional. In order to not get lost in all the details we
have moved parts of the elaboration that are considered to be well known into appendix A.

2.2.1 The basic degree setting

Let R?N be equipped with a symplectic form o : RN x R*N — R, U c R?N open and
H : U — R be a C* Hamilton function. Imagine that we are interested in a 27-periodic
solution of the Hamiltonian system

2= Xu(2). (2.2)

Here Xy is the associated Hamiltonian vector field, i.e. w(Xg(z),-) = DH(z). By Lemma
A.1 there exists a skew-symmetric, regular matrix A that allows us to rewrite (2.2) in the
equivalent way:

Az = VH(z).

For example we have for the N-vortex system (1.5) H = Hg, U = ¥n(Q), A = —JyMr and
w(v,w) = (v, ML JNW)g:N.

Next we turn to the functional setting. A square-integrable function u : R/27Z — RN
can be written (with respect to L-norm) in terms of its Fourier series

u(t) = Z e INkE g e RN,
keZ

We abbreviate By (t) = e /Nk! € R?N*2N and define for s € [0, o) the Sobolev spaces
H® = {ZBkc{k el?: Z |k|2$ |0{k|2 < 00}
keZ keZ
In particular we need X = H!, which is equipped with the usual scalar product
2
(u,vyx = / (U, V)gen + (@, V)gen dt = 271 Z(l + k%) (ks Pr)pen
0 keZ

for u = Y, Brag, v = Y, BxBk. The group S! acts on X via time shifts, i.e.
0*xu= u(- + 9) = Z BkBk(O)ak, 0 e 51, u= ZBkO{k.
kez kezZ

For k € Ny let
Ep = {Bkak +B_jo_y :ap,0_ € RZN } .

Then E; L Ej for j # kand X = clos (@ kN, Ek). Moreover, each Ey is a finite-dimensional,

Sl-invariant subspace with elements having isotropy group Z for k > 1 as desired by (A1).
Furthermore, we need

Xn:éEk: ZBkO{k:akERzN
k=0

lk|<n

and the orthogonal projections P, : X — Xj,.
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The linear map L : X — X is defined by Lu = (id —A)~' Az, where (id -A) : H**? — H*
is the isomorphism

u= ZBkak > u—i= Z(l + kH)Byay,

keZ keZ
such that for u € H! = X, v € H° = L2 the relation

2w
(u, (id —A)_lv>x = '/0 (U, v)gen dt = (U, V)2

holds true. Then clearly L is a bounded, S'-equivariant operator with Kern(L) = E, and
L(Ex) = Ei for k # 0. Moreover, the skew-symmetry of A implies

(Lu,v)x = (A, v) 12 = (u, A0);2 = (u, Lv) x,

so L is self-adjoint and thus assumption (A2) holds.

For (A3) observe that L + P, is an isomorphism between X and the Banach space Y = H?,
which is equipped with the usual H*-norm, and clearly H*> < H! in a continuous way.

So we can turn to the nonlinear part. Since H' contrary to H'/? embeds into the space
of continuous 27z-periodic functions, the set A = {u € X : u(t) € U for all t € R } defines an
open subset of X. Let & : A — R,

Ku) = /02” H(u(t)) dt.

Then H € C*(U,R) implies that  is of class C* as well. Additionally both A and & are
invariant with respect to the S'-action on X. So the gradient ¥ : A — X,

¥(u) = VR(u) = (id —A) ' VH(u)

is S!'-equivariant and satisfies (A4).
In order to see that (A5) is valid observe that ¥ splits

id—A)"!
1 WY s oy

xoahx=H
where VH : A — X maps bounded subsets with closure contained in A into bounded subsets,
since H is C2. Therefore the compactness of the embedding H®> < H? shows that (A5) holds.
We’d like to recall that — if needed — more details and references are given in appendix A.
So far we can conclude that the equivariant degree of section 2.1 can be applied to the
H 1—gradient of the action functional ® : A — R,

2m

() = % /0 T iy di— [ Hu) dt = % (L, u) 5 — K(u).

0

2.2.2 Nondegenerate solutions and nontrivial degree

Critical points of @, i.e. solutions of V& = L — ¥ = 0, are 2z-periodic solutions of (2.2)
in the classical sense. Hence Luy — ¥(up) = 0 automatically implies uy € Y. In order to
be able to obtain by Theorem 2.5 a nontrivial degree for a solution u; we need to convince
ourselves that (A8) and (A9) are satisfied. Indeed VH € C(A, L?) clearly gives ¥ € C!(A,Y)
as required in (A8) and the tangent vector field E : Y — X is just given by u + . Thus (A9)
holds.

Let now ug € Y be a solution of L — ¥ = 0. By Definition 2.4 in the abstract setting,
u is called nondegenerate, if Lv — D¥(up)v = 0 implies v € RE(uy). Translated to the
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Hamiltonian setting this means that i is up to scalar multiples the only 27z-periodic solution
of the linearization of (2.2) along u(t), i.e. of

A = V2H(uy(t))v. (2.3)

So for Hamiltonian systems we do not have to verify the nondegenerateness condition of
Theorem 2.5 by investigating Kern(L — D¥(u)) in the Hilbert space setting, rather we can
use equation (2.3) and especially spectral properties of the associated monodromy operator.

RZNXZN

The monodromy operator is the matrix M(2x), where M : R — solves

AM = VZH(Uo(t))M
M(0) = idgon .

Its eigenvalues are called Floquet multipliers of the solution uy. Of course 1 is always a
multiplier, but note also that, since we are dealing with Hamiltonian systems, the algebraic
multiplicity of 1 is at least 2, see for example [61].

By Theorem 2.5 and our discussion we can summarize:

Proposition 2.6. Whenever u, is a 2r-periodic solution of (2.2), such that the Floquet multi-
plier 1 has geometric multiplicity one, then the associated local degree S'-deg" (L — ¥, B, (u)),
€ > 0 sufficiently small is nontrivial.

The considerations above of course remain valid, if the period 2 is replaced by T > 0
and spaces and maps are adapted to this period.

2.2.3 Continuation of periodic solutions

Consider now on (R?N, 0) a family of Hamiltonian systems
£ = Xp, (), (2.0

where H : D — R, (r,z) — H,(2) is defined on an open subset D of R* x R?N, twice
differentiable with respect to z and H itself is continuous as well as the derivatives D, H,
D2H are. We will obtain such families by a suitable rescaling of the N-vortex Hamiltonian
Hg. Suppose we know that (2.4) has a 27-periodic solution u,+ for some parameter value
r*. It is then natural to ask if there are periodic solutions for other parameter values r # r*
emanating from u,«?

This question can be answered be means of the global continuation theorem 2.3. Let X, Y
and L be defined as before and set

D={(r,u) e R* XX : (r,u(t)) e Dforallt e R }.
Then one can see as in the discussion before that ¥ : 9 — X defined as the gradient V,, &
of R: D —> R, ,
K(r,u) = / H,(u) dt
0

satisfies (A6) and (A7). So the equations L — ¥(r, -) = 0 are accessible for Theorem 2.3.
Before we investigate the global aspect we first prove a local continuation Theorem.

Theorem 2.7. Let H, D and D be as just described and suppose that u,~ is a 2;-periodic
solution of (2.4) withr = r”, such that the Floquet multiplier 1 has geometric multpilicity one.
Then there exists a continuous map 1 3 r — u") € X withI C R* being an interval around r*,
u™) =y, <u(r), zlr*>x = 0,4 = Xg, (u") and the Floquet multiplier 1 ofu'") has geometric
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multiplicity one. Moreover, if (r,z) — DH,(z) is of class C*, then the mapsI 3 r — u") € X
andIxR > (r,t) — u®(t) € R*N are C! as well. Also the second order derivatives 8,0,u'"(t),
8,:0,u")(t) exist, are equal and continuous.

Proof. Clearly u is a 27-periodic solution of (2.4), if and only if (r,u) is a zero of the map
L-Y¥:D — X, ie. iff Lu — ¥(r,u) = (id-A)"! (A& — VH,(u)) = 0. Recall also that u, is
contained in Y as a solution of (2.4).

By our assumption we now that Kern (L — D, ¥(r*, uy«)) = Rii,+. Hence if we consider
f{r,w)eD : (Wu)x =0} >{ueY: (ui-)x=0},

(Lu— W(r,u), i)y

f(r,u) =Lu—-Y¥(r,u) - —
[litr]|72

(ld _A)_lur*’

where the domain is equipped with ||-|| x and the range with ||-||y, then u,+ is indeed orthog-
onal to @+, f (r*,u,+) = 0 and Kern D, f (r*, u,«) = {0}. The latter uses that L — D, ¥ (r*, u,+)
is as a second derivative selfadjoint and therefore D, f (r*, u,+) [v] = Lv — D, ¥ (r*, u,+)[v].
But D, f(r*, u,+) is also onto, since by (A5) L — D, ¥(r*, u,+) : X — Y is an index 0 Fredholm
operator. Thus the derivative D,, f(r*, u,+) is an isomorphism.

The implicit function theorem implies the existence of a continuous local family (u(’ )) rel
contained in the X-orthogonal complement of i, satisfying u"”) = u,+ and the equation
Lu" =y (r, u(r)) + A,(id =A) Y4~ € H for some A, € R. Hence u") € Y.

By shrinking I if necessary we can assume that (i, alr )> ;2 # 0forr € I. The invariance
of the action functional under time translations then implies

<Lu(r) - ¥ (r, u) ,a<'>)X
= . . = A’r
<ur*a u(r)>L2

and therefore Lu") — ¥ (r, u(r)) = 0 as desired.

By continuity we have Kern D, f (r, u(’)) = {0} for r close to r*. So if we suppose that
w is linear independent to 4" and satisfies Lw — D, ¥ (r, u )) w = 0, then a suitable lin-
ear combination wt = aw + fu"") is orthogonal to i, and satisfies D, f (r, u(’)) wt = 0.
It follows w* = 0, which contradicts the linear independence of w and #"). Therefore
Kern (L — D,'¥ (r,u'")) = Ra'"), which is equivalent to saying that 1 is a geometrically sim-
ple Floquet multiplier of u(".

The regularity of the map I x R 3 (r,t) > u"(t) € R?N follows from the regularity of
I3 r u"” e X, which implies the same regularity for I 3 r — u")(0) € R*N, and the
smooth parameter dependence of the flow associated to (2.4), see Thm. 9.2 of [3]. O

0

In general the question of continuation of a periodic solution arises also for a fixed,
parameter independent Hamiltonian system as in (2.2) and of course also for arbitrary ODEs.
In the Hamiltonian setting we can apply Theorem 2.7 to give an answer to this question.
Indeed if H € C*(U,R) is a fixed Hamiltonian, we introduce the period as a parameter via
H:R*xU — R, H(r,z) = rH(z). Clearly H is C? and if u is a 27-periodic solution of
the system & = X}y (u), then u(-/r) is a 2zr-periodic solution of the original equation (2.2).
This relation also holds in the other direction. So Theorem 2.7 applies if z*(t) = uy(t/ro) is a
2mry-periodic solution of (2.2) with geometrically simple Floquet multiplier 1.

Of course local continuation results for parameter dependent and independent systems
can be found in the literature. With the flow ¢(t, z) of the fixed system z = Xpy(z), such a
Theorem for example reads:

Theorem 2.8 (Prop. 9.1.1 of [61] or Thm. 2.4 of [63]). Let uy(t) = ¢(t,z) be a Ty-periodic
solution of (2.2), such that the Floquet multiplier 1 has algebraic multiplicity 2. Then there
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exist C! maps T : (—¢9,80) — R, z : (=g, &) — R2N with T(0) = Ty and z(0) = zo, such that
u.(t) = ¢(t, z(¢)) is a T(e)-periodic solution of (2.2) contained in the same energy surface as uy.

Recall that ¢ is C!, since H is C%. The proof relies on the application of the implicit
function theorem to a symplectic Poincaré section associated to uy, see section 2.1 of [63]
for a sophisticated discussion of these type of continuation theorems. The advantage of the
access via a Poincaré section is that it not only applies to Hamiltonian systems, but also to
ODEs, and that if first integrals like the Hamiltonian exist, the continuation happens to be
in the same level sets of the integrals.

On the other hand in the more abstract point of view we have additionally the degree
theory with Theorem 2.3 at hand allowing us to obtain even global continua of periodic
solutions. Recall that A = {u € X :u(t) e U forallt € R}.

Corollary 2.9. Let0 < r; < ry and (ry,r5) 3 r — u") € A be C' and such that every u(-/r)
is a 2;r-periodic solution of (2.2) with Floquet multiplier 1 having geometric multiplicity 1.
Define C; = { (r, 0 * u(r)) :r € (r, 1), 0 €S } Then there exists an equivariant, connected
set C C R* X A with

(i) G cC,
(ii) (r,u) € C = u(-/r) is a 2xr-periodic solution of (2.2),
(iii) Cy4 = (C \ C;) N ((ry, ) x X) satisfies at least one of the following properties:

a) Cy is unbounded,
b) dist(Cy, dA) = 0,
c) inf{r :(r,u) € Cg} =r.

Proof. Let f : R*XA — X, f(r,u) = Lu—r¥(u) with L, ¥ as in section 2.2.1 and S = £~1(0).
We know that C; € S. Let C C S denote the connected component of C;. Then (i) and (ii)
are trivially satisfied. Define C; = (C \ C;) N ((r1, ) X X) and assume that the three options
a), b) and c) of (iii) are wrong. Thus we can choose r; < ry < inf { r:(r,u) € Cy } The
implicit function theorem, cf. proof of Theorem 2.7, provides ¢ > 0 and § > 0 such that the
closure of U = (rg — 8,r9] X (S = Bg(u(”’))) is contained in (ry, c0) X A and

) NU = {e*u“):re[ro—(s,ro], eesl}.

By Proposition 2.6 we also have S'-deg"(L — ro¥, U,,) # 0. Thus Cy is not contained in a
compact subset of D = (ry — §, 00) X A by Theorem 2.3. But since (A5) is satisfied by ¥ this
contradicts our assumption that a), b) and c) are wrong. O

Typically this Corollary will be applied to a local family of periodic solutions having
arbitrarily small periods, i.e. r; = 0.

Remark 2.10. In the situation of Corollary 2.9 let &, = { u(-/r): (r,u) € Gy } denote the set of
the actual solutions of (2.2). The options a) — c) say that at least one of the following properties
is true:

a) The periods of the solutions are unbounded, sup {period ofz:z€ &, } = oo, for exam-
ple the solutions might merge into a heteroclinic orbit or a stationary solution, which is
nothing but a periodic solution having any period. Another option here is that the solu-
tions are unbounded in space, i.e. sup { lz(t)|:z€ &y, t € R} = oo, or in terms of their
velocity, sup{ |2(t)| : z€ &, t e R} = o0.
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b) The solutions approach the boundary OU of the domain of the Hamiltonian H, that is
inf { dist(z(R),0U) : z € &, } =0.

c¢) For everyr € (r1,r2) there exists a 2rr-periodic solution z € &, of (2.2). Together with
the solutions induced by the local graph &; = {u(-/r) :(r,u) € Cg} we then have at
least two distinct periodic orbits for every period in (27rry, 2713).

An illustration of a part of such a global set of solutions can be seen in Figures 5.2, 5.3.

Definition 2.11. We say that a family of periodic solutions (z(s))se(sl’sz) of (2.2) having periods
(T(5))se(sy,s,) &ives rise to a global continuum of periodic solutions, if there exists a connected
set C € R* X A as in Corollary 2.9 containing the set

C = {(@,9*2(5)(@.)) :s € (s1,52), 9651} c Rt X A.
2 2

Note that by the combination of Theorem 2.7 and Corollary 2.9 already a single periodic
solution with geometrically simple Floquet multiplier 1 gives rise to a global continuum.

2.2.4 Choreographic setting

Here we will discuss the application of our degree to periodic solutions with a special sym-
metry — so called choreographic solutions. Of course this requires a certain symmetry of
the Hamiltonian H : D ¢ R*N — R and the symplectic form. Let N = dIl with d,] > 1 and
consider R2N as the product R2N = (RZd)l. For the N-vortex case we haved = 1,1 = N.
As another example d = 3, ] € N can be used for the classical [-body problem of celestial
mechanics.

The permutation group ; of I symbols acts orthogonally on (R??)! via

o *%Z= (Za‘l(l)’ e ,Zo.—l(l)) , Z2= (Zl, . ,Zl) S (RZd)l, (oS Zl.

We assume that H and the skew-symmetric matrix A associated to w are equivariant with
respect to a certain permutation oy € 3, i.e. we assume oy * D C D, H(oy * z) = H(z) and
A(og * z) = 09 * (Az) for any z € D.

Definition 2.12. A T-periodic solution z(t) € D of Az = VH(z) is called oy-choreographic or
just choreographic, if there exists 6y € R such that oo*z(t+6y) = z(t) foreveryt € R. Moreover,
z(t) is called oy-nondegenerate provided Rz are the only T-periodic, oo-choreographic solutions
of the linearization Ao = V?H(z)v.

If ord(og) denotes the order of the permutation of oy, then ord(cy)6, is necessarily a
multiple of the minimal period of z. Note also that the notion of gy-nondegenerateness of a
solution will be adapted, if additional symmetries are present, see Definition 3.6 and Example
3.7.

Let us assume that we are again interested in 27z-periodic solutions. By our symmetry
assumption the action functional ® : A — R,

2

2
O(u) = l/ (At u)gen dt — H(u) dt
2 Jo 0
is invariant under the action of oy induced on X = H', i.e. (oo *u)(t) := 0o * (u(t)), oo * A C A
and ®(op * u) = ®(u) for any u € A. Combining this with the invariance with respect to
time translations, we get ®((op * u)(- + 6p)) = ®(u) for any u € A. Differentiation therefore
implies the equivariance

(00 * VO(u))(- + ) = VO((0p * u)(- + 6p)).
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Hence, if we define
Xchor = {u eH: (o0 = u)(- + 6p) = u}’ Achor = A N Xehors

then VO(Achor) C Xchor- This shows that every critical point of the restriction @5,  is also
a critical point of ® and therefore a 27-periodic solution of Az = VH(z) which in addition is
op-choreographic.

The requirements of the abstract degree setting are induced in a canonical way: The
space Xchor 1S @ complete subspace of X, decomposition into finite-dimensional subspaces
is given by Ezhor = Ex N Xehor and instead of Y = H? we of course have to take the space
Yehor = {u eH?: (oo*u)-+6)=u } By the equivariance of A, Lehor = L|x,, maps
Xehor into Yepor. So the gradient Vdchor of the restriction ®<hr = ® |4, satisfies conditions
(A1)-(A5) and (A8),(A9).

In analogy to Proposition 2.6 we have

Proposition 2.13. Whenever uy is a 2x-periodic, oy-nondegenerate solution of Az = VH(z),
then the associated local degree S'-deg" (VO™ B, (ug)), ¢ > 0 sufficiently small is nontrivial.

Moreover, conditions (A6) and (A7) for the global continuation remain true if we consider
a continuous family H : D ¢ R* x R?N — R of Hamiltonians with the same regularity
assumptions as in 2.2.3 and additionally H, (o9 * z) = H,(z) for any (r, z) € D.

Remark 2.14. The local and global continuation theorems 2.7, 2.9 and Definition 2.11 have to
be adapted to the choreographic context in the following way:

e A2m-periodic, og-nondegenerate solution of Az = VH,+(z) gives rise to a continuous local
family I 3 r +— u'") € X consisting of oo-nondegenerate solutions of Az = VH,(z)
and satisfying the remaining properties of Theorem 2.7.

Now we consider a fixed Hamiltonian system Az = VH(z):

e Let (r1,r5) 31— u") € Agwor be C! and such that every u'")(-/r) is a 2nr-periodic, oq-
nondegenerate solution. Then there exists an equivariant, connected set C C R X Acpor
of solutions satisfying the properties of Corollary 2.9.

e A family (z(r))re(rl ") of choreographic solutions is said to give rise to a global continuum
of choreographic solutions, if there exists a connected set C C R* X Apnor satisfying the
properties of Corollary 2.9.

Summarizing we can say that a choreographic solution, which is nondegenerate in the
choreographic sense, gives rise to a local graph and a global continuum of periodic solutions
sharing the same choreographic pattern.

2.3 Equivariant degree theories and their application to ODEs

There exists a vast amount of equivariant degree theories that have been used to study
differential equations. In this section we briefly introduce some of them. In particular we
provide in 2.3.1, 2.3.2 the degree theories needed for our modification. For a better overview
we refer to the books [7, 44].

First of all we would like to demonstrate that the usual Leray-Schauder degree is of
limited help in the equivariant setting. Consider L — ¥ : A — X as in Section 2.1.4, let
up € A be a nondegenerate solution of L — ¥ = 0 with E(uy) # 0 and suppose that U ¢ A
is a bounded, open and S!-invariant neighborhood of uy, such that U contains no solution
of L — ¥ = 0 and such that the fixed point set US' is empty. By assumption (A5) the map
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idy -K := (L+ Py)) ' o(L-¥): A — X is a compact perturbation of identity and thus
accessible for the Leray-Schauder degree. But since idx —K is equivariant, Thm. 2 of [14]
implies

deg(idx —K, U) = deg(id, 1 —K°',U®") = deg(id, s: —K°', 0) = 0,

xS ek

where K5 = K xSt AS" — X5'. Thus the Leray-Schauder degree only detects solutions
with isotropy group S', i.e. solutions that correspond in the Hamiltonian setting to stationary
solutions.

So one has to use a degree theory that takes the S'-symmetry into account. Doing this
in the case of Hamiltonian systems one possibility is the application of such an equivariant
degree after a finite-dimensional reduction — the so called Amann-Zehnder saddle point
reduction. This has been done for example by Dancer [27] with the degree theory developed
in the same paper or by Rybicki [71] with the degree presented below. But this reduction
relies on the boundedness of the second derivative of the Hamiltonian and thus in general
can not be done globally. An example with a global finite-dimensional reduction can be
found in [37]. In this paper Garcia-Azpeitia and Ize actually study the N-vortex problem
on the whole plane in a rotating coordinate frame. In particular they prove the existence of
global continua of periodic solutions bifurcating from the N + 1-Gon configuration.

In order to avoid finite-dimensional reductions Rybicki develops in [70] a degree for
Sl-equivariant strongly indefinite functionals. This degree applies to the gradient of a S!-
invariant functional

VF:H — H, VF(u)=Au+ K(u),

where H is a Hilbert space equipped with a suitable approximation scheme, A a self-adjoint
equivariant Fredholm operator and K a compact map. The situation above arises when look-
ing at the action functional of a Hamiltonian system defined on the space H 2,ie. the gradient
of F: H? - R,

2 27
Flu) = % /0 (1, JNu)gen dt — /0 H(u) dt

with a suitable Hamiltonian H € C'(R?N,R). But as already mentioned before in the case
of the N-vortex Hamiltonian Hg, which is defined on the open subset () it is not clear
how to work on Hz, since Hz does not embed into the space of continuous functions. While
working in the space H', where this problem does not occur, we have seen that the gradient
of the action functional ® has the form V® = L — ¥. But the linear map L is no longer
Fredholm, because L maps H! into H?. Hence we can not use the degree from [70].

Neither we can use the infinite-dimensional version of the S!-orthogonal degree, cf. Sec-
tion 2.3.2, which requires V® to be a compact perturbation of identity. On the other hand if
we instead pass to (L + Py) ™! o (L — ¥) = id —K, we loose the orthogonality condition stated
in (2.5) below.

Also the degree theory introduced by Dylawerski et al., cf. Section 2.3.1, has been applied
to periodic solutions of ordinary differential equations, but the notion of an “elementary
periodic point” in Thm. 7.3 of [29] is never satisfied in the case of Hamiltonian systems.

The modification of the degree for S'-orthogonal maps (Theorem 2.2) allows us to handle
the action functional of a first order Hamiltonian system on the space H'.

2.3.1 The degree of Dylawerski et al.

Let V = (R", p) be a finite dimensional, orthogonal representation of S!, i.e. p : S' — SO(n)
is a continuous homomorphism. We usually do not distinguish between V and R" and write
as before 6 * v instead of p(e’?)v.
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Add to V a trivial representation of S ! ie. we consider (R” ® R, p ®idg), and denote for
any closed subgroup K < S! and any subset U C V @ R the corresponding fixedpoint set by
UK = {x € U: K % x = x }. Note again that K < S! closed implies K = S! or K = Z;.

Theorem 2.15 (Thm. 1.2 of [29]). Let Q run through the family of all open, bounded, invariant
subsets of V@R, f : Q — V through S'-equivariant, continuous maps with f(0Q) c V \ {0}.
Then there exists a function

S'-deg(f, Q) = (do(f, Q). (di(f, Q)y,) € Zy X Z,
called the S'-degree, satisfying the following conditions:
(a) Ifdi(f, Q) # 0 then f71(0) N QK # 0 withK = S ifk = 0,K = Z; ifk > 0.
(b) If Q1,Q, C Q are open, invariant with Q; N Q, = 0 and f~1(0) C Q; U Q, then
Sl-deg(f, Q) = S'-deg(f, Q) + S'-deg(f, Q).
(c) Ifh : ([0,1] x Q,[0,1] x Q) — (V,V \ {0}) is a S'-equivariant homotopy then
St-deg(hg, Q) = S'-deg(hy, Q).

(d) Suppose W is another representation of_S1 and let U be an open, bounded, invariant
subset of W such that 0 € U. Define F : U X Q — W @&V by F(w,x) = (w, f(x)). Then
St-deg(F,U x Q) = S'-deg(f, Q).

The next theorem tells us how to calculate the S'-degree in a special case. Let Q ¢ V&R
be as in Theorem 2.15. Suppose f : (Q,dQ) — (V, V\{0})is S'-equivariant and continuously
differentiable, such that 0 is a regular value with £~1(0) = S! * xo. Suppose further that the
isotropy group K of xj is finite, i.e. K = Zj for a k € N. As in the infinite-dimensional case
let E(xo) = die | o0 * x0), which is a tangent vector to the submanifold S Lk xq at xo.

The derivative A = Df(x,) : V® R — V is K-equivariant and splits into

A=A+ AL (VKo R) @ (V) - vE @ (VE)L

We choose an arbitrary linear functional a : VK @ R — R satisfying a(E(x;)) = 1 and
define A : VKo R — VK @R, x = (AK(x), a(x)). The map A is an isomorphism, since
E(xo) € Kern AK and 0 is a regular value of f.

Theorem 2.16 (Thm. 4.1 of [29]). (i) Ifdet A* > 0 then

signdet A ifj=k

0 else.

dj(f,Q)={

(ii) If det A* < 0 then k is even and

sgndet A ifj=k
dj(f,Q) = {-sgndetA ifj=k/2

0 else.

2.3.2 The degree of Rybicki

Let V still be a finite dimensional orthogonal S!-representation. Rybicki uses in [69] the
degree of DGJM to construct a degree theory for S!-orthogonal maps. These are continuous
equivariant maps f : V — V satisfying

(f(v),E(W))y =0 (2.5)
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forevery v € V, where E(v) = die |9:0(9*U) as before. A subclass of S!-orthogonal maps form

gradients of Sl-invariant functionals on V. For the definition of Rybicki’s degree assume
that f : (Q,0Q) — (V,V \ {0}) is S!-orthogonal and that there exists v > 0 such that
v =uv+Uv, € (VS1 ® (VSl)l) N Q, vy | < vimplies f(v) —v € VS A map satisfying

this condition is called S'-normal. Now let U, := {v=vy+v, € Q: |v | >Vv} X (-1,1),
f:U, -V, f(v,A) = f(v) + AE(v) and define

S'-deg*(f. Q) = (dE(f. Q) € 2™
via 1
deg (f|Qsl’QS ) ifk=0,

di .2 = {dk(f, U,) else.

Here deg denotes the classical Brouwer degree. Note that f is indeed admissible for U, due
to the S'-normality of f. For a general S'-orthogonal map g, Rybicki shows the existence of
an admissible homotopy connecting g with a S'-normal map f.

The definition S!-deg* (g, Q) := S!'-deg*(f, Q) turns out to be indeed well-defined and
the degree defined in that way has the usual properties:

Theorem 2.17 (Thm. 3.9 of [69]). Let Q C V be an open, bounded and S'-invariant subset and
f:(Q,09Q) — (V,V\{0}) be S'-orthogonal. The degree S'-deg" has the following properties:

a) lfdi‘(f, Q) # 0 for some k € Ny, then there exists v € QK with f(v) = 0 where K = S!
ifk=0,resp. K =Zy ifk > 1.

b) if Qo C Q is an open, S'-invariant subset such that f~1(0) N Q C Qy, then

§'-deg"(f, Q) = S'-deg"(f. )

¢) if Q; and Q, are open S'-invariant subsets of Q such that Q; N Q, = 0 and £~1(0) N Q
is contained in the union Q; U Q,, then

S'-deg*(f, Q) = S'-deg*(f, Q1) + S'-deg™(f, Q2).

d) ifh: (Qx[0,1],0Q x [0,1]) = (V,V \ {0}) is a S'-orthogonal homotopy, then
S'-deg*(h(-,0), Q) = S'-deg*(h(-, 1), Q)
e) let W be another representation of the group S* and let U C W be an open, bounded and

S'-invariant subset such that 0 € U. Defineamap F : U X Q — W @ V by the formula
F(w,v) = (w, f(v)). Then

S'-deg*(F,U x Q) = S'-deg*(f, Q).
Moreover, restricted to the class of gradients he could in Thm. 2.11 of [72] also prove the
following multiplication rule.

Theorem 2.18 (Thm. 2.11 of [72]). Let Q; C Vi, i = 1,2 be open, invariant and bounded
subsets of S'-representations V;. If f; : (Q;,0Q;) — (V;, V; \ {0}) are gradients of S'-invariant
functionals, then

St-deg(fi X fo, Q1 X Q3) = S'-deg™(f1, Q1) x S'-deg*(f2, Q).
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A formula for the computation of Rybicki’s degree can also be found in [69]. We will
here state it only in the case of a linear isomorphism, which will be needed for our modifi-
cation. Suppose that the finite-dimensional representation V is given in terms of the classi-
fication Theorem 2.1, ie. V = @::1 Vi, with V,,,, = R[k;, m;], and consider an equivariant,
symmetric isomorphism T : V. — V. By Schur’s Lemma, see 3.22 in [1], each restriction
Tm; = Tjv,, is an isomorphism V;,, — V. Let pi, denote the Morse index of Ty,,. Due
to the equivariance of T, the indices y,,, are even for m; # 0. Indeed if v is an eigenvec-
tor, so is E(v). It follows that signdetT = 1,if m; # 0 foralli = 1,...,r, and otherwise
signdet T = sign det Tj. For equivariant isomorphisms we let

S'-deg*(T,V) := S'-deg™(T, B1(0)).

Proposition 2.19 (Cor. 4.3 of [69]). The orthogonal degree S'-deg* (T, V) of an equivariant,
symmetric isomorphism T : V. — V is given by

signdet T ifj=0,
di (T, V) = { 1pim, signdetT  ifj =m;,
0 else.

2.4 Construction of the degree

Here we will extend the finite-dimensional degree of Rybicki to our infinite-dimensional
setting. We consider the S'-equivariant map L — ¥ : A — X defined on an open, invariant
subset A of an infinite-dimensional, orthogonal S!-representation X as in section 2.1.2. Let
O C X be open, invariant, bounded with O c A and such that Lu — ¥(u) = 0 has no solution
on A0. By the assumptions (A1)—-(A5) the set of solutions S = (L — ¥)"*(0) N O is compact.

Lemma 2.20. There exists ny € N and an invariant neighborhood B.(S) C O such that for
everym,n > ngy and every t € [0, 1] the following holds true

a) u € B.(S) implies (P, + t(P, — Py,)) € O,
b) Lu — (Pp, + t(Py — P)) ¥ (P, + t(Py, — Ppy)) u) = 0 has no solution on dB.(S),
¢) Lu — P,¥(u) = 0 has no solution in O \ B(S).

Proof. We prove the properties step-by-step. If the first one is wrong, we can find sequences
mi,ng = k, tp € [0,1] and uy € B%(S) satisfying p := (Pmk + t3(Puy = Pm,)) ug € O. It

follows the existence of a solution wy € S satisfying |lux — willx < 1. By the compactness
of S we can assume wp — w, as well as fy — ¢, for some w € S, t € [0,1]. It follows
ur — wand then X \ O 3 pr — w € S, which contradicts dist(00, S) > 0.

Now we fix B.(S) and an index n; € N, such that a) is true for any m,n > n; and

t € [0,1]. As a consequence ¥ ((Py, + t(Py, — Pp)) u) is well-defined for such m,n,t and

u € B.(S). Next we assume b) to be wrong and find sequences my, ny > k > ny, t € [0, 1],
ur € 0B.(S) such that

Luy - Qk(uk) = Luy — (Pmk + tk(Pnk - Pmk)) ¥ ((Pmk + tk(Pnk - Pmk)) Uk) =0

for all k > ny. By (A3) this equation can be rewritten as

ur — (L + Po) ™' [Poug + Qk(ug)] = 0.
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Since X, = E, is finite-dimensional and since (L + Py)~! commutes with the projections P, s
P,,, we may by (A5) assume that ty — t € [0,1], Poux — v and (L + Pp)'[Qk(ux)] — w.
Thus uy € dB.(S) converges to u := v + w € dB.(S) with Lu — ¥(u) = 0, a contradiction.
Property c) follows with a similar, easier indirect argument, because L — ¥ = 0 has no
solution in the closed set O \ B4(S). O

We abbreviate the Brouwer degree of L — ¥ restricted to the fixed point set O° ' by
do = deg(L - ¥,0%") = d-(L - ¥,0).
Note that P,¥ : AN X, — X, is the gradient of & 5nx, and hence a S'-orthogonal map.
Lemma 2.21. Let O and ng be as in Lemma 2.20. Then the difference
S'-deg*(L — P,¥,0 N X,) — dy - S'-deg* (L + Py, X,)
is independent of n > ny.

Proof. By Lemma 2.20 b) and c) we can make an excision, followed by the use of the homo-
topy invariance and another excision to get

S'-deg*(L — P,¥,0 N X,) = S*-deg™(L - P,¥, B,(S) N X,)
= S'-deg* (L — Pp,¥(Py,*), B«(S) N X,).

Note here that the homotopy h; : B.(S)N X, — X, hy = L— V(R{anx, © (P + H(Pny — Pn)))
is indeed well-defined by 2.20 a), S!-orthogonal and admissible by 2.20 b).

Next observe that Sy = (L — Py, o ¥ o P,,,)7'(0) N B.(S) is contained in X,,, and compact
by 2.20 b). We therefore split X, into X, = X, ® (X, N X,fo) and find open and invariant
neighborhoods U; € X, of Sp and U; € X, N X,fo of 0, such that the product U; X U, is
contained in B.(S) N X,,. Several excisions and the multiplication formula 2.18 show

S'-deg*(L — Pp,¥(Pp,*), B«(S) N X,,) = S'-deg™ (L — Pp,¥(Py, ), Uy X Up)
= S'-deg™ (L — Pn, ¥, 0 N X)) x S'-deg™(L, X, N X).

Now dj (L, X, N X;.) = 1 by 2.19 and dj (L — Py, ¥, 0 N X,,,) = dy yield

S'-deg*(L — P,¥,0 N X,) + (do,0,0,...) =
S'-deg*(L — P, ¥, 0 N Xp,) + do - S'-deg™ (L, X, N X;.).

Combining this equation with

S'-deg*(L + Py, Xp,) = S'-deg™ (L + Po, Xp,) * S'-deg™ (L, X, N X;)
= S'-deg™ (L + Py, Xp,) + S'-deg™(L, X, N X;.) = (1,0,0,...)

finally shows that
S'-deg*(L — P,¥,0 N X,) — do - S*-deg™ (L + Py, Xp,)
does not depend on n > ny. O

Having Lemma 2.21 at hand we are ready to define the degree for S'-equivariant gradient
maps.
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Definition 2.22. ForL-Y¥ : A — X satisfying (A1)-(A5) and bounded, invariant, open subsets
O c X withO c A and (L —¥)7'(0) N 00 = 0 we define

(o)

S'-deg"(L - ¥,0) = (dZ(L vy, 0))k€N cPz

k=0

where dY (L — ¥, 0) = deg(L — ¥,0%") and for k # 0:
dV(L-¥,0) = lim (d;(L —Pa¥,0 N X,) - deg(L - ¥,0%") - d-(L + po,xn)) .

It remains to prove that the degree has the stated properties (D1)-(D4).

Proof of Thm. 2.2. (D1) (Existence): Let dZ(L - ¥,0) # 0. If k = 0, we find a solution

ue0S of L-¥ =0 by the corresponding property of the Brouwer degree. If k # 0, by our
definition we can find ny € N such that for all n > ny there holds di (L-P,¥,0NnX,) # 0or

deg(L - ¥,0° 1) # 0. In the latter case we are done, since OS5 c OZ. Otherwise we find for
any n > ng an element u,, € 0% N X, solving L — P, ¥ = 0. By our compactness condition
(A5) we can conclude that along a subsequence u,, — u* € O% with Lu* — ¥(u*) = 0.

(D2) (Excision and additivity): Replacing O by O \ (O; U O3) in the proof of Lemma
2.20 and using t = 1 shows that L — P, ¥ = 0 does not have a solution in 5\ (01U 0,) for all
n large enough. Therefore (D2) follows from the corresponding properties of the Brouwer
degree and Theorem 2.17 b),c).

(D4) (Multiplicativity): This is a straightforward calculation based on the multiplication
properties of the degree theories of Brouwer and Rybicki 2.18.

(D3) (Homotopy): First of all we can extend the homotopy invariance stated in Theorem
2.17 d), i.e. we consider a continuous family of S'-gradient maps L, — ¥, : A — X, t € [0,1]
and a fixed open, invariant and bounded set O c X with O c Aand (L, - ¥,)(80) c X\ {0}
for all t € [0, 1]. As in Lemma 2.20 one can see that there exists ng € N such that the finite-
dimensional equation L; — P,'¥; = 0 has no solution on 00 N X,, for all n > ny, t € [0, 1].
Thus by Theorem 2.17 d), the homotopy invariance of the Brouwer degree and since every
L; + Py : X;, = X, is an isomorphism we obtain that Sl-degV(Lt —¥,;,0) is independent of
t €[0,1].

It remains to prove the generalized homotopy invariance. So let L; — ¥, : A — X
be as before and consider U < [0,1] X X (rel.) open, bounded, such that every section
U, = {ueX:(t,u) € U} is invariant and U, C A, (L — ¥;)1(0) N U, = 0. We extend
L, —¥ byLy—Y¥, fort < 0andby L; —¥; for t > 1. Furthermore, let ¢, € [0, 1], X=RoX
with trivial S'-action on R, A = R X A C X and define L € £L(X), ¥ : A — X by

L(t,u) = (0,Lu), Y(t,u) = (to — t, Pr(u)).

With canonical modifications like Ey = R @ Ej it is easy to see that X, L and V¥ satisfy (A1)-
(A5). Next we extend U to an open subset of X via

U=UU(-1,0] x Uy U [1,2) x U,.

Then U is also invariant, bounded and its closure is contained in A. Clearly the homotopy
h:[0,1] XA — X,

hat,u) = (t = to, ALy, — By )(w) + (1 = (L, — ¥)(w))

is admissible with respect to U. So we can use the homotopy invariance just shown together
with a suitable excision around {to} x (L, — ¥;,)'(0) N U;,) and the mutliplicativity (D4)
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to conclude
S'-degV(L — ¥, U) = S'-deg" (ho, U) = S'-deg" (h1, U)
= S'-deg" (- — to, (ty — &, tg + £)) * S'-deg" (Ly, — Ws, Uy,)
= S'-deg"(Ls, — ¥y, Uy,
Now if we do the same construction with another parameter value #; € [0, 1], say we define

®(t,u) = (t; — t, ¥;(u)), then we can clearly connect L — ¥ and L — ® with an U-admissible
homotopy. Therefore

S'-deg(Ly, — ¥, Uy,) = S'-deg” (L— ¥, U) = S'-deg” (L - &, U) = S'-deg" (L, — ¥, Uy,).

O

2.5 The global continuation theorem

The proof of Theorem 2.3 uses a refinement of Whyburn’s lemma. Recall that a topological
space S is normal provided every two disjoint closed subsets of S have disjoint open neigh-
borhoods. Two subsets A, B C S are separated in S, if there exist U,V C S disjoint, open,
nonempty satisfyingS =UUVandAcU,BcCV.

Proposition 2.23 (Prop. 5 of [2]). Let S be a compact, normal topological space. IfA C S and
B C S are closed and not separated, then there exists a connected set C C S \ (AU B) such that
CNA+0,CNnB=+0.

We consider now the family of equations
Lu—¥(r,u)=0, (r,u)e D CR"xX,

where X, L satisfy (A1)-(A3) and ¥ satisfies (A6),(A7). Recall that we defined S as the set of
solutions
S={(r,uy)e D :Lu—¥(r,u)=0}

and that we write M, = {u € X : (r,u) e M} for M Cc R* x X, r € R*.

Proof of Theorem 2.3. We first add two points at infinity to the set D \ 0U:
D" =(D\IU)U { 001,00, }.
In order to define the topology of D* we set for 0 < ¢ < 1:
D(e) = {(r, u)ye D :releel, dist(u,0D,) > ¢, ||lully <& } .

A neighborhood basis of ooy is given by the family ({oo1} U U) \ D(1/n), n € N, and a
neighborhood basis of oo; is given by ({co,} U (D \ U)) \ D(1/n), n € N. Then D* is a
normal topological space and S* := S U {ooq, 005} is a compact subspace of D*. We need to
prove that there exists a connected set C C S such that ooy, 00, € C € D*. According to
Proposition 2.23 it is sufficient to show that co; and co, are not separated in S*. Arguing by
contradiction suppose that there exist two open subsets Vi, V, ¢ D* such that Vi NV, = 0,
001 € V1, 009 € V3, and 8* € V; U V,. Then

Vi C{ooiJUHUD(e)° and V, C {o03} UD\ U\ D(¢)
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for some 0 < ¢ < min{1,r,}. Since S and U are S'-invariant, we can without restriction
also assume that V; \ {c0;} € D, j = 1, 2 are invariant. By (D2),(D3) it follows that

S'-deg(L — ¥(ro,-), (Vi N U),,) + S*-deg(L — ¥(ro, ), (Vi \ U)y,)
= Sl_deg(L - \P(VO’ ')’ (Vl)ro) = Sl-deg(L - ‘I—’(l/g, ')’ (Vl)l/f) =0

and

S'-deg(L — ¥(ro, ), (Vi \ U),,) = S'-deg(L — ¥(e, ), (V; \ U),) = 0,

hence

S'-deg(L — ¥(ro,-), (Vi N U)y,) = 0.

Moreover, we have
S'-deg(L — ¥(ro, ), (Vo N U),,) = S'-deg(L — ¥(e, -), (Vo N U),) = 0.
This leads to the contradiction

0+ Sl'deg(L - \P(rO’ ')’(L(ro)
= S'-deg(L — ¥(ro, ), (Vi N U)y,) + S'-deg(L — ¥(ro, ), (V2 N U),) = 0.

2.6 Calculation of the degree

The degree of a nondegenerate solution will be expressed in terms of signs of compact linear
perturbations of identity. Let X be an arbitrary Banachspace and Q : X — X compact linear
with spectrum o(Q). For A € o(Q) \ {0} denote by G, = U, Kern(Q — 1id)* the generalized
eigenspace. The sign of id —Q is defined by

sign(id—Q) = (-)™, with m_=dim ) G
Aea(K)N(1,00)

This is of course possible due to the spectral theorem of Riesz-Schauder.
Letnow L — ¥ : A — X satisfy (A1)-(A5) and assume that (A8),(A9) hold true as well. In
this situation we use the (nonlinear) compact map K : A — X,

K(u) = Pou + (L + Py) " '¥(u),

such that (L + Py) ™' o (L - ¥) = id -K.

We consider a nondegenerate solution uy € A of L — ¥ = 0 having finite isotropy group
I, = Z. The derivative id —DK(u) is Zi-equivariant and maps X>* into itself. The same is
true for (X%*)*, since id —DK (u) is up to the isomorphism (L + Py)~! the second derivative
of a functional.

Recall that by (A9) and the definition of a nondegenerate solution in 2.4 uy € Y and
E(up) € X — in fact E(ug) € X% — and Kern(id —DK(ug)) = RE(uy).

In order to formulate our theorem we define the linear map Q € £(X),

_ (u, E(u)) x
IE(uo)ll x (L + Po)E(uo)ll x

Qu (L + Po)E(uo)
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and the following two signs:
Sy = Sigl’l (ld —DK(uo) : (sz)J_ - (XZk)L) >
So := sign (id —DK(up) + Q : X% — XZk) .

Theorem 2.24. Letuy € A be a nondegenerate solution of Lu — ¥(u) = 0 with isotropy group
L, = Zy. There exists an invariant neighborhood O of S* #uq such that (L—¥)"1(0)NO = S'xu,
and

(i) ifs, =1, then

B i =k,
dY(L-¥,0) = { So i)
0 otherwise
(ii) if s, = —1, then k is even and
-0 ifj=k
dY(L-¥,0)=1sy ifj=k/2
0 otherwise.

Remark 2.25. Theorem 2.5 directly follows from Theorem 2.24 in the case I, = Zy and by the
analogous property of the Brouwer degree if I, = S'.

Lemma 2.26. In the situation of Theorem 2.24 there exists an invariant neighborhood O of
St s« uy withO N X5" = 0, as well as an index nyg € N and a sequence (uy)n>n, C O such that
foralln > ny:

L-9)'0)N0 =S "%uy, (L-P,¥)(0)NO=8"+%u, I, =7,
E(un) _  E(uo)
IE@n)llx — I1E(uo)llx

Proof. Let Ny, = {u € X : {u, E(u)) = 0}, Nj = Ny, N Be(uo) and observe that E(ug) # 0,
uy € Ny, and B.(S! * uy) = S! = N;, for any ¢ > 0. The orthogonal projection onto Ny,
is denoted by Py, : X — Ny. We abbreviate E, := (L + Py)E(uo) and denote by Ny its
orthogonal complement and by PN:To the corresponding projection.

Kern(L — P,D¥(uy)) = RE(u,), u, — uo,

Claim 2.26.1. There exists an invariant, bounded neighborhood O, of S' * uy with 51 C A,
0:NX5 =0and (L-¥)1(0)NO; = S* * .

Proof. Clearly L — ¥ = 0 if and only if id —K = 0. The derivative id —DK(u,) is a compact
perturbation of identity on X and therefore an index 0 Fredholm-operator, i.e.

codim Range(id —DK(ug)) = dim Kern(id -DK (1)) = 1.

Moreover, we have, since L — D¥(uy) is as the second derivative of a functional self-adjoint,
the inclusion Range(id —~DK(uo)) C N;;. Thus by comparing dimensions equality holds and
therefore id ~DK(ug) : Ny, — Nj; is an isomorphism. Hence the inverse function theorem

implies the existence of ¢y > 0 such that PN;0 o(id-K) : N2 — Ny is a diffeomorphism

onto its image. We set O; := S' * N,?. Thenu € O1, Lu—¥(u) =0 implies 0 % u € N_Zg for
some 0 € S! and PN;*O(Q * u — K(6 * u)) = 0. Therefore 0 * u = uy. Due to I,,, = Z; we can

without restriction also assume that O_l nxs = 0. m]
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Next we want to show that there exists an invariant subset O C O; such that for all
n € N big enough (L — P,¥)"1(0) N O N X,, contains exactly one nondegenerate orbit. In

order to do this we define g, : N;? — N,

gn(u) = PN;0 (u— P,K(u)).

Claim 2.26.2. There exists ¢; € (0, &) and ny € N such that for any n > nj one can find in

N,i(l) a unique zero u, of g,. Moreover, u,, — uy as n — oo and the derivative Dg,(u,) has
trivial kernel.

Proof. Clearly u € N, is a zero of gy, if and only if u is a fixpoint of T,, : N0 — Ny,

Ty(u) = u — (id =DK(uo)) ™" [gn(w)].

Let ¢y := ”(id —DK(up))~ ) and choose ¢; € (0, &) such that

1
|z
1 —_—
IDK (1) = DK (uo)|| £(x) < ™ forallu € N,.
Co
Then choose ny € N with

1
o — Prtiollxc < ;—1 and  [IDK(u) = PaDK(uo)l| rix) < 7— foralln > no.
Co Co

The latter is possible since DK(ug) is compact. With these choices we have for u,v € N_,il)
and n > ng

IT() = Ta(@llx = |4 = © = (id=DK(wo)) ™ o Pz [u = 0 = PulK(w) = K] |

IA

co (i ~DK o)) = 0] = Pa [u = v = PulK ()~ K(o))] |
co |Pa(K () = K(©)) = DK(uo)[u = 0] L
co 1K () = K(2) = DK (u)lu - olllx

+ o (DK (o) = PuDK (u0))[u = o1l

IA

IA

IA

1
1
o / |DK (o) = DK(su + (1 = 5)0) rx) ds llu=ollx + 7 llu=ollx
0

IA

Ju— o
—lu =2,
5 X
as well as
1
170 () — uollx < [|Tn(uo) — uollx + 2 llu — uoll

1
< ¢ lug = Prutol|x + S8 < &.

So T, : N,. — Ny, n > ng is a contraction and thus has a unique fixpoint, which we call u,,.
Next

1
lun = tollx = 1Tn(un) — uollx < co llto = Putiollx + 5 llun — ollx

implies u, — ugasn — oo. Furthermore, observe that v € Kern Dg,(u,) gives DT,,(u,)v = v
and therefore v = 0, since T}, is a contraction. O
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In a next step we need to get rid of the projection PNu*0 in g,.

Claim 2.26.3. There exists n; > ng such that u, — P,K(u,) = 0 for every n > n;.

Proof. Since we already have g,(u,) = 0, it is enough to find a direction v, € X \ Ny with

(up — PyK(uy),vy) = 0. Using g,(u,) = 0 we can write u, as

(up — PuK(un), Ex)x
IEII%

where y, € X,, C Y, A, e Rand E, = (L + Py)E(up) € Y. So u,, € Y and E(u,) € X exists by
(A9). We abbreviate E, (uy,) := (L + Py)E(uy,), use the identity

u, = Pp,K(u,) + Ey, =1 yn + A, E,

<un - K(un)’ E*(”n))X = <Lun - q’(un)’ E(un»X =0

and obtain

<un - PnK(un)’ E*(un»X = <(1d _Pn)K(un)v E*(un»X
= ((id =Pn)K(un), (L + Po)E(yn) + An(L + Po)E(E4)) x
= An (K(up), (id =Py )(L + Po)E(Ex)) x =: Anfn-

Thus with v, := ||Ex||% Ex(un) — fnEx there holds
(un — PnK(un)’ Un)X = ||E*||§< Anﬁn - ﬁnAn ||E*||§( =0.

By (A3),(A9) Ex(un) = (L+Py)E(u,) = E(L+Py)u,) — Ex asn — oo and B, — 0. Therefore
we can find n; > ng, such that v, ¢ N;O forn > ny. m|

So far we have found with O := S' * N;! an invariant, bounded neighborhood of S' * u
satisfying (L — P,¥)"1(0) N O = S' x u, C X,. By Claim 2.26.2 and the equivariance of
L—-P,¥, Kern(L — P,D¥(u,)) = RE(u,) holds. We also know u,, — uy.

Claim 2.26.4. The isotropy group I,,, of u, satisfies I,,, = Zj for all n big enough.

Proof. We first show that Z; = I, is a subgroup of every I,, . Therefore observe that Zj

leaves N,; invariant. So by the uniqueness of the solution of L — P, ¥ = 0 in Ny, it follows
0 * u, = u, for every 0 € Zy. Thus Zy < I,,.

For the other inclusion recall that E; denotes the isotypical component of E;- correspond-
ing to (R?, p/). Define E i < Ey ® Ej to be the full isotypical component of X and Pg to be

the orthogonal projection X — Ej. Note that PE,—“O # 0 implies j € kN, because I,,, = Z.
We define A to be the set of all indices | € N satisfying Py uo # 0. Then I;, = Z implies

ﬂ(%zmo,n)z{o}.

leA

We can replace A by a finite subset A C A such that the equation above still remains valid.
Since u,, — uy, we find an index ny, > n; with PElkun # 0 for every l € A, n > n,. This yields

27 B 27 (k-1)27 |
IunSQ(EZﬂ[O,Zﬂ))—{O,k,..., - }_zk,
€

It remains to prove



Chapter 2. An S'-equivariant degree for Hamiltonian systems 30

E(un)

Claim 2.26.5. The normed tangent vectors e(uy,) := BT, converge in X towards the
normed tangent vector e(u) := TGS Ejff;;())hx'

Proof. This would be clear, if u,, — uj in Y, but we only know u, — 1y in X. Since DK (u)
is compact one has ||P, DK (u,) — DK(uo)l| £(x) — 0. By

e(un) = PoDK(uy)e(un) = DK(up)e(uy) + o(1),

the convergence (along a subsequence) of e(u,) to an element in the kernel of id —DK(uy)
with length 1 follows. Hence e(u,,) — *e(u). The correct sign is obtained by using the fact
that (L + Py)u, — (L + Py)ug in Y and therefore (L + Py)E(u,) — (L + Py)E(up) in X. O

With that we have shown all properties of the Lemma. ]

Proof of Theorem 2.24. Take everything as in Lemma 2.26. The fact that onxs' =0 implies
dOV(L— ¥,0) = 0 and

dY(L-¥,0) = lim d}(L - P,¥,0 N X,)

for j > 1. So we need to calculate the degree S'-deg*(L — P,¥,0 N X,) for n sufficiently
large. Luckily the map L—P,¥ : ONX, — X, is already S'-normal, since O NX5" = 0, such
that the definition of Rybicki’s degree (cf. section 2.3.2) directly transfers us to the degree of
DGMYJ, i.e.

dy(L-¥,0) = lim d;(fn. Un).

where U, := (0O N X,) X (-1, 1), fn : Up — X, fn(v,/l) = Lv — P,¥(v) + AE(v). Due to
the orthogonality of L — P, ¥ and E, the orbit S % (up, 0) is the only orbit of zeroes of f,.
Moreover, Lemma 2.26 implies

Kern Dfn(un, 0) = R(E(uy), 0),

so we can apply Theorem 2.16. In order to use this Theorem we define the needed linear
maps A;, : (X2 = (XE)L A, Xk @R — Xk @R,

Ao = Dfn(un, 0)(v,0) = Lv — P,D¥(u,)v

(@, E(un»x) |

An(v, ) = | E(un)ll%

Lv — P,D¥(u,)v + pE(uy),

Then according to 2.16 it remains to show signdet A;, — s* and signdet A, — —sy. And
indeed due to the equivariance of L + Py one has

sign det A% = sign det(L + Py) - sign det (id =P, DK () : (X;*)* = ()" )
= 1-sign (id —P,DK(un) : (XZ)* (ka)l) sk,
For A, we need some auxiliary maps. We abbreviate in a similar way as before the tangent

vectors E,, = E(up,), Exn = (L + Py)E(uy,) and the orthogonal projection Py X%" — Ey,.
Observe that v — DK(up)v € Ey, for every v € X,. Therefore, if we define the maps
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I, On : X2 @R — X% @ R,

”E*n”X -1 <Z), E*n>X
I(U,ﬂ):(P*U+ﬂ (L+P0) Ea— )
" N IEnllx " Enllx Exnllx
En E*n ||En”X
Q (v,,u):(v—P DK(u )v+<v, > , ,
" " " IEnllx [ x IExnllx ™ IExnllx
there holds
. <U’ En)X
(L + Py, idg) o I © Qu(v, ) = (L + Py) (v — PpDK(un)v) + UEn, W
nllx

= An(v, ,U)

Again by the equivariance of L + Py we have signdet(L + Py, idg) = 1 and by Lemma 2.26
there holds signdet O, — s¢. So it remains to show that I, is not orientation preserving.
To see this decompose X%" into E, @ RE,, and write according to this decomposition
v = vt + @222, such that in blockmatrix form

TExnllx’
0 *
idp. : : vt
In(UL’ a,p) = o 0 * (04
0 -+ 0 0 |Eulx|\H
0 - 0 E O

Therefore det I, = —1 and the proof of theorem 2.24 is finished. O
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Chapter 3

Periodic solutions consisting of
clusters

In this chapter we will establish the existence of periodic solutions for the N-vortex system
consisting of several vortex clusters located at the points of an equilibrium solution of an
m-vortex system, m < N. Each of the clusters is in its shape close to a rigidliy rotating
configuration of the whole-plane system.

We would like to mention that the general idea of grouping vortices into different clusters
plays a role in establishing the existence of quasi-periodic solutions via KAM theory, see [46,
58].

3.1 Statement of results

Let Q C R? be a domain and fix a symmetric C? function g : Q x Q — R, for example
the regular part of the Dirichlet (or more generally a hydrodynamic) Green’s function of
Q. We will investigate a point vortex like system similar to (1.3), which is induced by the
generalized Green’s and Robin functions

Glry) = =5 loghe =yl — g(x.9). hix) = g(x, )

At first we consider on the domain Q a system of m € N vortices with vorticities
I',...,T™ e R\ {0} and Hamiltonian

m m
H(a)= Y T T¥G(a*,a") - ) r*r¥n(d)
k,k'=1 k=1
k#k’

defined on 7,,(Q) = {a =(a',...,a") € Q™ :aX £ a" forall k # k’ } We require that the
corresponding m-vortex system admits a stationary solution, cf. section 3.1.1. To be more
precise we assume

(A1) H has a nondegenerate critical point a € 7, (Q).

Next we fix a number [ € {1,...,m}, which will be the number of vortices that are
splitted into configurations consisting of more than a single vortex. Without restriction we
take the first [ vortices. Le. for k = 1,...,[ choose Ny > 2 vorticities Fll‘, e l"]f,k e R\ {0},
such that

Ni vk _ 1k
(A2) ZFII‘J. =TI*.
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We then define the Hamiltonian H]gz : PN (R?) - R,

Nk
1
k _ krk
Hiu(e) = o~ > TTflogle; - ]
JJ'=1
j#’
inducing the Ni-vortex system

Tfz = JVo,Hiy(2), j=1,....Nk (3.1)

on R?.

As mentioned in the introduction a N-vortex system on R? allows rigidly rotating so-
lutions, also called relative equilibria, of the form Z(t) = e“INtz @ # 0, cf. section 3.1.2
for examples. Here J = diag(J,J,....J) € R*¥?N_ Due to scaling Z(t) — AZ(t/1?),
A > 0, we can assume = +1. The corresponding 27-periodic relative equilibrium is called
nondegenerate, if the linearized equation

Tiw; = J(VHpe(Z(t))w);, j=1,...,N (3.2)

has only 3 linear independent 27-periodic solutions. This is the minimal possible number
due to the invariance under rotations and translations. Our third requirement is:

(A3) For k € {1,...,1} there exists a 27-periodic nondegenerate relative equilibrium
solution Z¥(t) = e*/Ne!zk of (3.1).

Note that condition (A2) can always be achieved by a change of time scale provided one
has a relative equilibrium solution of (3.1) with };; l"jk # 0.

The remaining m — I vortices — which may be none — are not splitted into configurations.
Le. fork =1+1,...,mwelet Ny = 1,Tf =T*, HF, : R* > R, HE, =0and Z* : R — R?,
Zk(t) = o.

The system under investigation is the generalized N := 3}/ | Ni-vortex system

If2 = JVH(z), k=1,....m j=1,....Ng, (3.3)
J
with Hamiltonian

Hiz) = . T GGENZE) - ) TFTfhG).
(k)7 (3)

Here z = (zi, . ,z}vl, R AL, z}\”,m) € Fn(Q) and the indices of the sums run through
{(k,j): 1 <k <m,1 < j < N¢}. We equivalently write for (3.3)

m
1°

Mrz = JNVH(z)
with Mr = diag (I}, T}, ..., T3, Ty IS T T ST ) € RANVEN
tic matrix Jiy = diag (], .. ,]) € R#NV2N,
As described before we will use the Sobolev spaces H% = HY(R/TZ,R?*N), T > 0 of
continuous T-periodic functions with square-integrable derivative, equipped with the scalar
product

and the symplec-

T T
(u,v)H; :/ (U, U)gen dt+/ (U, D)o~ dt
0 0
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and induced norm ||||H; For Z!,...,Z™ as defined before let

M={(Z'(+61),....Z"(-+0p) : 61,....0m eR} CH,, (3.4)
which is a I-dimensional submanifold, since Z/*! = ... = Z™ = 0. And for an element
a=(al,...,a™) € R’ we define

a=(a',...,a",d% ...,a% ...,a" ...,a™) eR*M x . xR*Nm = RN,

Now we are ready to formulate a first version of our theorem.

Theorem 3.1. Under the assumptions (A1)-(A3) there exists Ty > 0 such that for every
T € (0,Ty) the N-vortex type system (3.3) has I distinct T-periodic solutions that are in the
following sense close to a and (Z',...,Z™): Let (z4)nen be a sequence consisting of these pe-
riodic solutions with periods T, — 0 as n — oo, then the kth components [zn]f,j =1,...,Ng

converge to ak asn — o0,k =1,...,m. Moreover, if we rescale z,,, such that

t . ,T
Zn(t) = TnlUp (_2) ta, In= z , Up€ Hzlm
rn 2

then dist(u,, M) — 0 with respect to ||-||H21 asn — oo,

So roughly speaking we can split vortices of a stationary solution into suitable rigidly
rotating configurations and obtain periodic solutions. For fixed T € (0, Tp) the multiplicity of
the T-periodic solutions is based on the relative orientation of the I nontrivial configurations
to each other.

Note that the conditions (A1), (A3) are only related to each other in the sense that the
vorticities need to add up as stated in (A2). Also the specific relative equilibrium solutions
can be choosen independently of each other. Under an additional technical assumption,
that couples the critical point of H and the relative equilibria Z¥, one could improve the
multiplicity from [ to 2/~! T-periodic solutions, cf. Section 3.4.1. This would also lead to
global continua of solutions as in Theorem 3.9 below.

Next we will discuss and improve assumptions (A1), (A3) with respect to their applicabil-
ity to the classical N-vortex system (1.3). Whenever we provide a function with an index Q,
like H,, we refer to the corresponding function induced by the regular part of the Dirichlet
Green’s function.

3.1.1 Critical points of Ho

The search for stationary solutions in general domains itself is not an easy task. Of course
there is one trivial case: If m = 1 the 1-vortex Hamiltonian Hg, coincides up to a factor with
the Robin function hq, which always has a minimum in bounded domains.

Concerning more vortices only in the last years some results on the existence of critical
points of the N-vortex — in our case m-vortex — Hamiltonian for bounded domains could be
achieved, examples include:

e meN, T =... =T™ # 0 and Q not simply connected [28] or dumbell shaped [31],
« me {2,3,4}, conditions on I'*, e.g. m = 2 and I'I'? < 0, Q arbitrary [16],

« m € N, conditions on I'* (different from the ones in [16]) for Q arbitrary and for Q
not simply connected [49],

« me N, TF = (=1)*T!, Q symmetric with respect to reflection at a line [17] or the
action of a dihedral group [50].
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None of the mentioned results addresses the question of nondegeneracy of the critical points,
on which our proof relies. Indeed condition (A1) is for these solutions hard to check, since
the Hamiltonian H, and the critical point  are not explicitely known. However, a recent
result of Bartsch, Micheletti and Pistoia [15] shows that H, has only nondegenerate critical
points for a generic bounded domain Q.

So if the vorticities T, . . ., T™ allow the existence of a critical point of H,, as for example
in one of the listed cases, then condition (A1) is satisfied at least after an arbitrarily small
deformation of the domain.

In some cases also explicit stationary configurations are known, for example if Q = R?
or Q = B(0). But these are all degenerate due to the symmetries of the domain, i.e. if
a € Fm(B1(0)) is a critical point of Hp, (g), then every e’ma, A € Ris a critical point as well.
Thus J,a € Kern V2Hp, (g)(a) and condition (A1) is violated. But we will see that degeneracy
induced by symmetries can still be handled, i.e. we may replace assumption (A1) by

(A1”) ‘H has a critical point @ € 7,,(Q) and one of the following properties holds:
(i) «isnondegenerate,

(i) Q and g are radial (eV/Q = Q, g (eVx,eMy) = g(x,y) for every 1 € R,
x,y € Q) and dim Kern V*H(a) = 1,

(iii) Q and g are in one direction translational invariant (there exists v € R?\ {0}
with Av + Q = Q, g(x + Av,y + Av) = g(x,y) for every A € R, x,y € Q) and
dim Kern V2H () = 1,

(iv) Q =R? g(x,y) = §(|x — y|) and dim Kern V>H (a) = 3.

Note that in the classical case g = gg always inherits the symmetries of the domain.

Example 3.2. Let Q be the unit disc B1(0) and g = gg, (o) be the regular part of the Dirichlet
Green’s function of B1(0), which is given by

1
9(x,y) = 931(0)(x’ y) = “ar log (|x|2 |y|2 —2{X,Y)pz + 1) .

The 2-vortex Hamiltonian Hp, (o) with vorticities T' = 1, T? = —1 satisfies (A1') with a de-

generate critical point o = ((/1, 0), (—4, 0)), where j1 = V5 = 2. This will be shown in section
3.6.

Remark 3.3. IfQ = R%, g = gg: = 0 then critical points of Hgz exist depending on the
vorticities T, ..., T™. In the easiest case m = 3 vortices with strengths T',T% T satisfying
['T% 4+ T'T? + I'?I® = 0 are stationary when placed at certain distances along a fixed line,
see Theorem 2.2.1 in [64]. More on stationary configurations can also be found in [5]. How-
ever, for every critical point a of Hg: the inequality dim Kern V2Hg2(a) > 4 holds true. Here
3 dimensions of the kernel are induced by translations and rotations of the critical point a.
A fourth dimension by scaling, since differentiation of A +— Hg2(Aa) at A = 1 shows that
ks TKTK = 0 is a necessary condition for the existence of critical points. Therefore we have
Hrp2(Aa) = Hyz(a) and

Kern V*Hgz(ar) > {(a,...,a) € R*" } ® RJ,a ® Ra.

This means that (A1) never holds for critical points of the classical m-vortex Hamiltonian Hgz,
cf- Remark 3.14.

Remark 3.4. Another idea for the existence of periodic solutions is the Weinstein-Moser Theo-
rem [10, 62, 77] to obtain periodics for the Hamiltonian Hq, itself via bifurcation from the critical
point a. But here one encounters the difficulties that « and Hgq are not explicitely known as
well.
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3.1.2 Relative equilibria on R?

For the N-vortex problem on Q = R? quite a lot of rigidly rotating vortex configurations
are known, see [4, 5] for an overview. Checking the nondegeneracy condition of such a
configuration is, after writing (3.2) in a rotating coordinate frame, a matter of calculating
the spectrum of a 2N X 2N matrix. The spectral properties of this matrix are also of interest
in the investigation of the linear stability of the configuration as a periodic solution. So in
section 3.5 we will use results of Roberts, [67] to verify the nondegeneracy.

Example 3.5. The following relative equilibrium solutions are nondegenerate after normal-
ization (scaling and translation):

e N=2,T1 + L, # 0, Z(0) € F»(R?) arbitrary, cf. Example 3.21,

e N=311+L+I5#0,0 # I, + 115 + 515 # 1"12 + 1"22 + 1"3:2, Zl(()), Zg(O), Z3(0) forming
an equilateral triangle, cf. Example 3.22,

e N>3T=... =In, Zj(0) = (x(,0),j = 1,...,N with xy,...,xn being the roots of
the Nth Hermitian polynomial, see Example 3.23.

Observe that the condition for the equilateral triangle configuration excludes the special
case It = I; = I5. Nonetheless with a second refinement we can also treat this case leading
to solutions for (3.3) in which the vortices of a subgroup may form choreographies.

The permutation group Xy of N symbols acts orthogonally on R?N via permutation of
components, i.e.

oxzZ= (20__1(1),...,20—1(]\[)), O'EZN, ZERZN.

Definition 3.6. A relative equilibrium solution Z(t) of the whole plane system is called o-
nondegenerate, provided o« Z(-+2m) = Z and (3.2) has only three linear independent solutions
satisfying o = w(- + 27) = w.

Note that every nondegenerate relative equilibrium is c-nondegenerate with o = ids,.
As a nontrivial example we have

Example 3.7. N € N identical vortices placed at the vertices of a regular N-Gon form a
rigidly rotating configuration, called Thomson’s N-Gon configuration. It is (after scaling) a
o-nondegenerate relative equilibrium solution withc = (12 ... N) € Xy, see Lemma 4.1 in

[12].
Concerning our situation we weaken assumption (A3) to
(A3’) Foreach k € {1,...,1} there exists ox € Xy, with ij = F(’T‘_lm,j =1,...,Ng, as
k

well as a ox-nondegenerate relative equilibrium Z*(t) = exp ( + Jn, t/ord(cy))2*
solving (3.1). For consistency in notation let Z¥ = 0 and oy = ids, in the case
ke{l+1,...,m}.

3.1.3 Statement of results part 2

For (ak,Zk )km:1 as in assumption (A3’) let ¢ = 2z ord(o), where ord(c) denotes the order
of o = (01,...,0m) € [Ix ZN,, further on let 0 * z = (07 * zl, ..., om * 2™) for a vector
z=(z',...,2™) € RN, Observe that M as defined in (3.4) is now contained in H.. We have
the following generalization of Theorem 3.1.
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Theorem 3.8. Assume that (A1’), (A2) and (A3’) hold. Then there exists Ty > 0 such that
(3.3) has distinct T-periodic orbits for every T € (0, Ty). Similar to Theorem 3.1 if we rescale a
sequence (z,)nen Of these solutions with periods T,, — 0 by

t R T,
zn(t) = rpuy = |+a rm= w/—n, U, € H}
ra T

then dist(u,, M) — 0 in H.. Additionally the kth subgroup, k = 1,. .., m consisting of the Ny
vortices z¥(t) = (zf(t), cees kaVk (t)) of one of the T-periodic solutions z(t) inherits the symmetry
of the relative equilibrium Z*(t), i.e.

o *z(t + T/ord(0)) = z(¢).

In the case that only the first vortex is splitted up into a configuration with at least two
vortices, i.e. when [ = 1, we can slightly improve Theorem 3.8.

Theorem 3.9. Let] = 1, g € C*(Q x Q,R) withk > 2. If (A1’)-(A3’) hold, then there exists
ri > 0and aC* 2 mapu : [0,r1) = H., r — u” withu® = Z = (Z',0,...,0) € H.,
o« u(- + 27) = u'") and such that

t
z(r)(t) = ru” (ﬁ) +a
is a rr¥-periodic solution of (3.3) for everyr € (0,r1). Ifk > 3, then
0u® e{a:aeR*™} c H.

Moreover, if in (A1’) (i) or (iii) is true, the family (z(’))re(o, r) &ives rise to a global continuum
C(a, Z) of periodic (choreographic) solutions of (3.3) in the sense of Definition 2.11 (or Remark
2.14).

Remark 3.10.  a) In the cases (A1’) (ii) or (iv) a global continuum of solutions is likely to
exist as well, but this seems to require a further development of the degree theory, cf.
Remark 3.19.

b) If m =1 = 1 it is possible to obtain a global continuum of periodic solutions also under
the weaker assumption that a € Q is only a topological stable critical point of the Robin
function h, i.e. under the condition deg(Vh, B.(a)) # 0 instead of det V>h(a) # 0. But in
that situation the local part is not guaranteed to be a graph, see Thm. 2.1 in [13].

¢) By our definition the global continuum C(a,Z) C R* x H! contains the set
tr? (T .
—,ru (—-)+a :re(0,ry) ;.
2 27

3.2 Ansatz and preliminaries

Fixa,Z* o, k=1,...,m according to (A1’), (A3’) and let 0 = (074, . . ., 01n). We are looking

for a solution z : R — Fx(Q) where each subgroup of vortices (zf(t), cees z]]i]k (t)) is located

near o* and forms a configuration close to a scaled version of the relative equilibrium Z*(¢).
In order to reformulate the problem we define

m  Ni Ny m Ng

F(z) = Z Z ZF]kF]k G(zjlf + ak,zji +ak) - Z Z l“jkl“j’fg(z;C + ak,z]’i +ab)

k,k’=1 j=1 j’=1 k=1J,j'=1
k#k’
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together with the following Hamiltonians Hy : Oy := Fn,(R?) X ... X Fn, (R?) - R,

Ho(u) = Z (k.. k)

and forr > 0, H, : O, := {u eR¥N :ru+a ETN(Q)} — R,
H,(u) = Hy(u) + F(ru) — H(a).
Observe that F is defined on an open subset of R?N containing 0.

Lemma 3.11. Let I be an open intervall and r > 0. Then z(t) = ru(t/r?) + & solves (3.3) on I
if and only if u solves
Mri = JnVH;(u) (3.5)

onr’l.

Proof. Clearly z(t) as above is a solution of (3.3) if and only if
Mru = rJNVH(ru + &)

and
m Ng

H(ru + &) = Ho(u) + F(ru) — — Z Z rkrk logr.

kl]] =1
J#

O

Lemma 3.12. The set O := |, 5,{r} X O, is open in [0,00) X RN and the family of Hamilto-
nians H : O — R, (r,u) — H,(u) defines a C* function, especially F(0) = H(a). Furthermore,

FkVZ];;F(O) =T}V . H(a) =0,

T*(V2F(0)a)" = I* (V2H(a)a)" o
j
for any (k, j) and a € R*™,
Proof. Openess and smoothness are easy to check, since by (A2) indeed
m m
F(0) = Z TFTX G, a') - Z I T g(a*, a¥) = H(a).
k,k’'=1 k=1
k#k!
For the derivative of F with respect to zj’? we have
m Ny N
sz’FF(Z) =2 Z Z ijl“]k VlG(zJ’-C +ak, zf +ak)-2 Z:I“jkl“j’fVlg(zj-C +ak, zk +a)
k'=1j'=1 j=1
k'#k

and therefore

m
FkVZj;;F(O) =TTk 2 Z ¥ v,G(ak, o) = T*Vh(a¥) | = TFV H(a) = 0

k’=1
k' #k
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by (A1’). Now let a € R?*™, The (k, j)th component of V2F(0)d is given by

m (Np
(VZFO)a)} = ) (Z szi/VZ;_cF(O)) a¥

k=1 \j’=1

m
= 21“}." Z l"k,(V"fG(ak, a)d* + V,V,G(, ak')ak/)

v
- l"jkl“k(ZVfg(ak, a®) + ZVngg(ock, a*))a*
=V2h(ak)
Ik m , T*
= Lk VakaakW((x)ak = ik(Vzﬂ(a)a)k.
r pret r

O

Next we turn to the functional setting. Let 7 := 27 ord(c). In order to find T-periodic
solutions of (3.3) with T > 0 small, we use the variational structure of (3.5) to look for z-
periodic solutions of (3.5) with r > 0 small. We work on the Sobolev space H! as stated in
section 3.1 and will also need the corresponding spaces L2 and H2. The action functional
associated to (3.5) is given by

D,(u) = % ‘/T (Mru, JNu)gen dt — /T H,(u) dt = ®p(u) — /T F(ru) dt + tH(a).
0 0 0
Let®: A" > R, (r,u) — ®,(u), where
A = {(r,u) € [0,00) x HY : (r,u(t)) € O forall t € R} .

Then A’ is open in [0, c0) X H., since H} embeds into C?, ® € C*(A’,R) due to Lemma 3.12
and we have to solve V®,(u) = 0 for (r,u) € A’ withr > 0.
The action o * z = (o7 * 2%, ..., om * 2™) on R?N | induces an action on H!. Let

X = {ueH; :o-*u(-+27r)=u}, A=NNRxX), A, ={u:(r,u)eA}.
Then X is a complete subspace of H! and (A3’) implies V®,(u) € X for (r,u) € A, since
indeed H,(0 * z) = H,(2), Mr(o * z) = o * (Mrz) yield ®,(c * u(- + 2x)) = ®,(u) for any
(r,u) € A’. So it is enough to find a critical point of the restriction ®,5, : A, — R. We
denote the restriction ®|, again by ®. As stated in 2.2.1 one has

VO, (1) = V(1) — (id =AY rVE(ru) = (id —A)"! (= ]y Mrit — VHo(u) — rVE(ru)),

where A : H2 — L%, u > ii, such that for v € H}, w € L% the relation

<v, (id—A)—lw)H; = /OT (U, W)gen dt = (v, w)2

holds true. Note that actually V® € C!(A, H2 N X), where H2 N X is equipped with the norm
1l
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3.3 Proof of Theorem 3.8

For r — 0 the limiting equation of (3.5) is the decoupled system
Truf :]Vuj,;H{Igz(uf,...,uj’i]k), j=1,...,Ny, k=1,...,m.

So by (A3’), Z(t) := (Z(t),...,Z™(t)) € X is a critical point of ®;, which of course is
not isolated due to the symmetries of Hy. Let D = {d ta€ Rzm} C X and for a tuple
0=(0...,0,) € R/tZ)™ =T™, u € X define the shifted version

OxueX by (H*u)f :uj-c(-+0k).
Then ®(u + @) = Oo(u) = Do(0 *+ u) for any u € Ay, d € D, 8 € T™ indeed implies that
{0«Z+ada:0€T™ acR™}

is a (I+2m)-dimensional critical manifold of ®. Since every Z¥ k = 1, ..., is by assumption
(A3’) a o;.-nondegenerate solution of (3.1), we have

Kern V2®((Z) = span { AN } ® D. (3.7)

Here Z¥ is meant to be the element (0, ...,0,2%,0,...,0) € X. Whereas this degeneracy
is natural for the limiting case r = 0, the functionals ®, with r > 0 are in general neither
invariant with respect to translations by elements of D nor under the action of T™ - except
for synchronous time shifts 8 = (04, ..., 6;) € T™. We would like to mention here that this
loss of symmetry for r > 0 prevents us from simply using continuation theorems like Thm.
2.4 of [63].

To deal with the degeneracy of the limiting problem we modify our equation V®,(u) = 0.
For a subspace Y C X we denote by Py : X — Y the orthogonal projection onto Y and by
Y+ the orthogonal complement of Y in X. Let

M=T"xZ, Y= {d : cleKel‘nV27'((05)}l C X.
Here the space Y is not to be confused with the space Y = H? in the degree theoretic setting.

Lemma 3.13. There exist constants ry, p > 0 with [0,r9) X B,(M) C A, such that the map
YU :=[0,r)) X (Bp(M)NY) > Y,
() (id —Pp)V® (1) + 5 Ppay VO, (u), 1 >0,
u)=
' Vdo(u) — Ppny V2F(0)u, r=0
is continuous, C' on U N ((0,r9) X X) with D,y continuous up tor = 0 and satisfies for

(r,u) e U,r > 0:
Vo, (u)=0 < ¢(u)=0.

Moreover, M is a nondegenerate [-dimensional manifold of zeroes of Y. Le. for anyv € M
there holds
Yo(v) =0, KernDyp(v) = T, M = span { ol ..., 0 } .
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Proof. As a first step observe that for positive r, i, : A, — X,

Jr(w) = (1d ~Pp)V, (u) + 5 PV, (u)
r ) (3.8)
= V®,(u) — (id —=Pp)(id —A) ' rVF(ru) — ;PDVF(ru)

has the same zeroes as V®,. In the second equation we used that V&, maps into D+, since
@, is invariant with respect to translations. Clearly / is C! as long as r > 0. Since F is C?
and VF(0) = 0, i, extends as r — 0 continuously to ¢/ : Ag — R,

Yo(u) = V®y(u) — PpV*F(0)u.

The partial derivative D, : A — £L(X) is continuous as well and the regularity of i/ will
carry over to §/ once we have defined it.

Now let v € M. Since Z¥(t) = exp (£ ]th/ord(o'k))zk or ZK(t) = 0 due to (A3, we
see that V2F(0)v € D* C Y. Hence (v) = 0. Next

Kern Dy (v) (=) (span { ol,..., 0 } ® D) N Kern PpV2F(0)
3.7
and

PpVZF(0) = PpV2F(0)d.

Zﬂki}k +d
k

By Lemma 3.12, V2F(0)a = Mrb with b* = rik(V2‘I—((a)a)k, which projected onto D gives

r A . k . P
PpMrb = ¢ with ¢* = K,—kbk. Hence we see that ), A0 + @ is an element of the kernel of

Dip(v) if and only if @ € Kern V2H (a), which means @ € Y*. So if we restrict i to i as
stated in the Lemma, especially Di/o(v) = PyDyjy(v) : Y — Y, we get

Kern Di)y(v) = span { ol 0 } =T, M.

It remains to prove that i,(u) = 0 for r > 0 small, u € Y close to M implies V®,(u) = 0.
Note that ,(u) = 0 if and only if PyV®,(u) = 0. If « € F,,(Q) is a nondegenerate critical
point of H as in (A1’)(i), we have Y = X and are done. Otherwise by (A1’), Q, g and hence
also G and h are invariant with respect to translations and/or rotations.

Assume first that (iii) of (A1’) holds, i.e. Av + Q = Q, g(x + Av,y + Av) = g(x, y) for any
x,y € Q,1 € Randsome v € R?\ {0}. Then H(a+AV) = H(a), where v = (v,...,v) € R?™,
and ®,(u + AV) = ®,(u) show that ¥ € Y+ and (VO (u), 13> = 0 forany u € A,. Soif v is
the only direction, in which g is invariant, then X = Y @& R¥ by (A1’) and PyV®,(u) = 0
automatically gives V®,(u) = 0.

If Q and g are rotational invariant, i.e. e/ Q = Q, g(e* x, eMy) = g(x, y) for any 1 € R,
x,y € Q, we obtain J,,a € Kern V2H(a), since H(e'ma) = H(a) for any A € R. For @,
there holds

1 1
D, (e’UN (u + —0?) - —0?) = ®,(u)
r r

and therefore (V®,(u), Jy(ru + &)) = 0 for any u € A,. Assuming that Q, g have no other
symmetry properties leads to the fact that PyV®,(u) = 0 implies V®,(u) = 0 as long as
X =Y ®RJn(ru + &). Due to Jy@ € Y+ we can find a subset [0, 79) X B,(M) C A on which
this condition holds. This settles case (A1’)(ii).
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In the remaining case (A1’)(iv), where Q = R? we have to choose the neighbourhood of

{0} x M such that
X =Y & span { €1, 6, JN(ru + &) } .

O

Remark 3.14. If a is a critical point of H not satisfying (A1’), then Lemma 3.13 remains true
with the exception that Y, (u) = 0 only implies PyV®,(u) = 0.

So far we have reduced the degeneracy of the limiting problem by 2m = dim D dimen-
sions. To overcome the remaining degeneracy induced by the [ independent time shifts of
Z,...,Z" we perform a Lyapunov-Schmidt reduction.

For v € M denote by P, : X — T,M C Y the orthogonal projection onto T, M.
Moreover, define l/; (U = [0,r0) X M X (B,(0)NY) =Y,

gﬂ(r, v,w) = (id —P,)¥, (v + w) + P,w.

Since M 3 v > P, € £(X) is C!, we have §/ € C! where r > 0, as well as continuity of i/,
vlp le// on all of U. For (r,v, w) € U there holds

o +w) =0, w LT LM {fjvl//r(v+w) =0,
lp(r,U,W) = 0.

Lemma 3.15. Shrinking both ry > 0 and p > 0 if necessary, we find a continuous map
W :[0,r9) X M — B,(0) NY satisfying W(r,v) L T, M for any (r,v) € [0,r9) X M and

Y(r,ow)=0 e w=W({,0)

onU. Moreover, eachW(r,") : M — B,(0) is equivariant with respect to the orthogonal action
of {0 €T™:0,=...=0,}=S"onX. Concerning regularity we have W € C'((0,ry) x M),
and D, W is as W itself continuous up tor = 0.

Proof. Let v € M. One has 1/(0,v,0) = 0 and
T := D,,/(0,v,0) = (id —P,)Dyyo(v) + P, = Dijp(v) + Py

has trivial kernel by Lemma 3.13. But note that Range(T) # Y, in fact T is an isomorphism
between Y and H?ﬁY, which, similar to the proof of Theorem 2.7, can be seen in the following
way:

Let Py : H! — R2?N be the orthogonal projection onto the space of constant functions
and L : HS — H*', u — (id =A)"}(—=JyMrtt) + Pyu. Then L is an isomorphism, also when
viewed as a mapping from Y — H2NY. Since v is smooth, L‘lgﬂ(o, v,-)—id: B,(0)NY — Y
is continuously differentiable and maps bounded subsets onto relatively compact subsets.
Hence L™!T : Y — Y is an index 0 Fredholm operator with trivial kernel. Therefore also
T:Y — LY = H-NY is an isomorphism.

Note also that g& viewed as a map into H2 N Y with ||-|| pz instead of Y has the same
regularity as the original tﬁ So the implicit function theorem yields local maps W, solving
the stated equation on [0, r,,) X U, X B, (0), where U, C M is an open neighbourhood of v.

However, the compactness of M and the uniqueness of the solution allow us to construct
a global map W : [0,79) X M — B,(0) N'Y as requested by the Lemma. The equivariance
of every W(r,-) with respect to synchronuous time shifts follows from the corresponding
equivariance of , i.e. /(r, 0 % v, 0 * w) = 0 * J/(r, v, w). O
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For r € (0,ry), v € M it now remains to solve
Py (v + W(r,v)) = 0.
Therefore let ¢ : [0,r9) X M — R,
01, 0) = 9r(0) = By (v + W(r, ). (3.9)

Lemma 3.16. There exists r; € (0,ry) such thatr € (0,r1), v € M with Dg,(v) = 0 imply
Pothe(v + W(r,v)) = 0.

Proof. Differentiation of P,W(0,v) = 0 shows that P,D,W(0,v) = 0. We therefore have
P,D,W(r,v) = o(1) uniformly in v € M as r — 0 and thus can choose r; € (0, ry) such that
|Po Do W (r, )| o1, pmy < % for every (r,v) € (0,r1) X M.

Assume Dg,(v) = 0 for some 0 < r < ry, v € M. Using P, o Pp = 0 one sees that
I}(r, v, W(r,v)) = 0 implies

(id =P,)PyV®,(v + W(r,v)) = 0. (3.10)
Thus we obtain for v’ € T, M

0 = Do, (v)v" = (VO,(v + W(r,v)), id +D,W(r,v))v’)
= (PyV®,(v + W(r,v)), Py(id +D,W(r,v))v") (3.11)
= (P,PyV®,.(v + W(r,v)), id +P,D,W(r,v))v")

and conclude P, (v + W(r,v)) = P,PyV®,(v + W(r,v)) = 0, since by our choice of r; the
map id +P, D, W(r,v) : T, M — T, M is an isomorphism. m|

Now it remains to investigate critical points of ¢, for r € (0, ry).

Proof of Theorem 3.8. Let r € (0,r;). The reduced functional ¢, is invariant with respect to
the action of {0 € T™ : 0, = ... = 0,, }, which is smooth on M. So every critical point of
¢, belongs to a whole orbit of critical points. If I = 1, we are done. Otherwise we can find
on each of the critical orbits a point of the form (0. .., ot zbo, ..., 0) € M. There-
fore the number of critical orbits is given by the number of critical points of T"! — R,
0 o, ((01, ey 0124,0,...,0) % Z), for which the Lusternik-Schnirelmann category of Ti-1
provides [ as a minimal bound, see for example [23].

This way we have found for every r € (0,ry) [ critical points of ®, lying on distinct
orbits. Let u = v + W(r,v) € Y be one of them. Then z(t) = ru(t/r?) + & is by construction
aT(r) = rr? = 2z ord(c)r?-periodic solution of (3.3), for which the properties of Theorem
3.8 hold. ]

3.4 Additional information and the case/ =1

For now we just continue our investigation with [ € {1,...,m} arbitrary.

Lemma 3.17. Letr € (0,71), © € M be a critical point of ¢,, which means V®,(d) = 0 with
=0+ W(r,0). Then

Kern V?®,.(i) N'Y = (id +D,W(r, d)) Kern D?¢,(3).
Proof. With the modified function ¢ from 3.13 we have Kern Dy, (i) = Kern V2®,(i#) N Y.

Now (id —P)Dy, (@) + Py = Dwtﬁ(r, 0, W(r,9)) : Y — Y N H? is an isomorphism for every
r > 0 small enough and (id —P;)Dy,(i1) : Y — YNH? is a Fredholm operator with index 0, cf.



Chapter 3. Periodic solutions consisting of clusters 44

proof of Lemma 3.15. Thus by shrinking r; if necessary we get dim Kern(id —P3) Dy, (71) = 1.
On the other hand we know from Lemma 3.15, that (id —P,)¢,(v + W(r,v)) = 0 for every
v € M, and hence

(id —=P5)Dy(w)(id +D,W(r, 9))v" = 0

for v’ € Tz M. So
Kern V20, (1) NY = {0’ + D,W(r, o)’ : v’ € ToM } N Kern Py Dy, ().

Next (3.11) shows that v’ € Kern D?¢,(9) iff P;PyV2®,(a)(id +D,W(r,d))v’ = 0 and we
conclude the statement since P@PszdDr(a)w = P;Dy,(a1). m|

Lemma 3.18. Letg € CK(Q x Q,R) withk > 2. The map W : [0,r5) x M — H! is of class
C*=2. Furthermore, ifk > 3, 9,W(0,v) € D for anyv € M.

Proof. Since M 3 v — P, € L(X) is C*™ and since W is implicitly defined, the regularity
of W is induced by 1. With g € CF we also have F € C* and hence ® € C*. Then
by the definition of ¢ in 3.13 one sees that i/ is indeed of class C¥~? provided the map

k: U — LA(R/tZ,R¥N),
K(rou) = %VF(ru), r>0,
V2F(O)u, r=0

is Ck=2. In order to proove this observe that x is C* as long as r > 0. The continuity up to
r = 0 follows as in the proof of Lemma 3.13 from the fact that F is C? and that VF(0) = 0.
Also the partial dervivatives that include at least one differentiation of k¥ with respect to u
are easily seen to extend in a continuous way as r — 0. So we have to look at the partial
derivative

% 2k(r,u) = Z (k ) (= 1)k_J = UH)("U)[ v,

where (r,u) € U with r > 0. Now a (pointwise) expansion of FU*1 gives

i+ j & l +1+ + r -
FOD(ru)up = ; EIORE - G POl

for some & = &(j,u,t) € (0,r). But as r — 0 we obtain for the remainder

FOEw) ]! = FO0)[u]" + o(1)
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with respect to ||| 2 and uniformly in u € B,(M). Thus

k-2 k-2—j _
alc—ZK(r,u) — Z Z ( _2):5' 1)k J = 11 l jF(J+1+l)(0)[ ]]+l
Jj=0 [=0
(k = 2)/(-D)k .
Z e O/ LIt
2 n .
(k=208 ey e S D
nZ::‘)( nlrk-1-n HO)u] ]Z_(;ﬂ(n—j)!)

+ FO0)[u] / (1-3)2ds +0(1)

1
= ——FO©O)[u]*! + o(1).
PO + o(1)
So the partial derivatives aix, j=1,...,k— 2 exist and are continuous on all of U.
For the second part assume that g € C*. Now W is C! on all of [0, ry) X M and we know
by Lemma 3.15 that

(id =P,)PyV®,(v + W(r,v)) =0, P,W(r,v)=0

for r > 0 small, cf. equation (3.10). Differentiation of both equations with respect to r at
r = 0 and the use of 8, V®,(v) = 0 as well as (id —P, )Py V2®y(v) = V2®y(v) shows

9, W(0,v) € Kern V2®y(v) N (T,M)* =D
m}

Proof of Theorem 3.9. Let now [ = 1. In that case the reduced map ¢, is in fact constant.
Hence the demanded solutions of V®,(u) = 0 can be parameterized by u : [0,r;) — HL,
ri—u") = Z + W(r,Z), where r; > 0 is taken from Lemma 3.16 and Z = (Z',0...,0) € M.
By Lemma 3.18 this parametrization is indeed C*~? provided g € C¥, k > 2 and 8,u® € D
when k > 3.

It remains to prove the part concerning the global continuum. Assume that (A1’) (i)
holds. Then X = Y and by Lemma 3.17

Kern V2®, (u'”) = (id +D, W(r, Z)) Kern D¢, (Z) = (id +D, W(r, Z))RZ = Rai'",

where the last equality holds due to the equivariance of W. By Theorem 2.5 and Theorem
2.3 the local family (u(r))r implies the existence of a global connected set C C A, such that

ru(t/r?) + & is a rr2-periodic solution of (3.3) for every (r,u) € C. Via the rescaling

C:{(TZZ: ru(2;)+o?):(r,u)€é},

such that (s,v) € C implies v(-/s) is a 2zs-periodic solution of 3.3, we translate this con-
tinuum into a continuum C C R* X H, _ satisfying the properties of Corollary 2.9 and/or
Remark 2.14.

If (A1’) (iii) holds, then the orbits S * ") are not isolated critical orbits of ®,. But we
still can argue in the same way as before with the difference that we now have to work on
the space Y = {u €X: (u, 13> % } instead of X. For this reasoning it is important that V&
maps AN Y into Y. m|
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Remark 3.19. In the cases (A1’) (ii) or (iv) the orbits S' xu(") are also not isolated. Additionally,
since the symmetry group of rotations is now nonlinear, A N'Y is not mapped into Y by VO,
which prevents us from using the degree. One could try to factor out the rotational symmetry
and establish the degree theory in the quotient manifold setting, but this has not been done.

3.4.1 Thecasel>1

For the case [ > 1 a corresponding result would be true provided one knows that ¢, for
every r > 0 small is a Morse function except for synchronuous time shifts. This would not
only imply that the solution set of V®,(u) = 0 close to {0} X M is a union of graphs and
that these graphs induce global continua of solutions, but also increase for fixed r > 0 the
number of existing solutions to 2!~!, which is the bound given by Morse theory.

However, a verification of the Morse property seems quite difficult. Suppose for simplic-
ity that g is C™, such that ¢ : [0,71) X M — R, ¢,(v) = (v + W(r,v)) is also of class C*.
Obviously ¢¢(v) = ®p(v) is independent of v € M. So we will expand ¢ with respect to r.
By (3.10) and since W(r,v) € Y N (T, M)* we have

<V<I>,(v + W(r,0)), 05 W(r, v)>H1 - <(id PPy VO, (v + W(r,v)), X W(r, v)>H1 = 0.
’ " (3.12)
Thus 9,¢,(v) = 3,9, (v+W(r,v)) and especially d,¢o(v) = 0. Differentiation of (3.12) shows

that the second derivative can be expressed by
afq)r(v) = (9fd>r(v + W(r,v)) - (VZCD,(U + W(r,v)o,W(r,v),d,W(r, v))H1 .
In particular, since 8, W(0,v) € D,
O20u(©) = 000) = - [ (VFO.0) .
0

We will show that this function is in fact also independent of v € M. Recall that

m  Np Np m Ng
— kK’ k k K k' _ krk k k _k k
F(z) = ZZZI}FJ’G(ZJ-HX’ZJ’-'_(X ) ZZFJ-I},g(zj+a,zj,+a)
k,k’=1 j=1 j’=1 k=1j,j/=1
k#k’

= Fi(z) = ) Fe(2).
k=1

For k = 1,...,m the map Fi(z) does only depend on the components zX. Thus if we write
v=0%xZe M,0=(0,...,0,) € T™ and substitute t = t + 0, we see that

‘/0 <V2Fk(0)v,v>R2N dt = 6;8:0‘/0 Fi(ev) dt

does only depend on Z* and not on 6 resp. v. With the same argument we obtain for some
constant c € R

: 2 _ k1K’ ‘ k _K'\, k' .k
/ (V Fo(O)U,U)RZN dt=c+2 Z Z ZFJ 1§ '/0 <V2V1G(a AN >R2 dt

0 kzk'

=c+2 Z / <V2V1G((Zk, (Xk,)(,‘k/, Ck>R2 dt,

kzk ¥0
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where ¢ denotes the center of vorticity of the whole plane solution v*, i.e.
Ni
— k., k
Ck = I"J v;
j=1

In general the center of vorticity is preserved along solutions of the whole plane systems, see
for example [64]. In our case we have ¢, = 0, since v*(t) is a relative equilibrium solution
rigidly rotating around the origin. Thus also the second derivative §?¢(v) is independent
of v.

One step further one can also show that the third derivative

Oou(o) = 320, (0 + Wiro) = - [ PP d
0

does not depend on v € M. Only the fourth order expansion of ¢, at r = 0 has a chance to be
a Morse function, since it involves among other, less explicit terms containing d?W (0, v) the
term /OT F®(0)[v]* dt. At least the latter seems not to be constant, since we can not recover
the center of vorticity in “biquadratic” terms like

ZZFF DZDZG(o: a )[vj,v],v' .'].

That the critical points of 8 ¢,(v) are indeed nondegenerate (up to synchronuous time shifts)
has not been investigated further.

3.5 Examples of nondegenerate relative equilibria
Let Z(t) = e~ ®/N?z, z € R?N fix, be a rigidly rotating solution of the whole plane system
Mrz = JNVHgz(z). (3.13)
We define the so called stability matrix
A= JN(Mp'VPHge(z) + o - id) € RPN,

If we rewrite (3.13) in a rotating coordinate frame w(t) = e~“/N’z(t), then Z is a nondegen-
erate relative equilibrium if and only if

W= Aw (3.14)

has only 3 linear independent %—periodic solutions.

In order to check this for concrete examples we shall use results of Roberts [67], who
studied the linear stability of relative equilibria and therefore investigated the spectrum of
A. For the convenience of the reader we recall Lemma 2.4 and some consequences from [67].
For v € R?N we use the notation E,, := span{ v, Jyv } ¢ R?N.

Lemma 3.20. a) Let é1,é, € D be the standard basis of D C R2N . The spaces E, and D
are invariant subspaces of A. The representation of A in the basis (z, [Nz, €1, JN€é2) of the
direct sum E; & D is given by

0 0 0 O
20 0 0 O
A=
0 0 0 -w
0 0 w O
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b) Supposev is a real eigenvector of M'V*Hy(z) with eigenvalue ji. Then E,, is an invariant
subspace of A, on which A is represented by

0 H—w
pu+o 0 |°

¢) Supposev = vy +iv, is a complex eigenvector of M' V2 Hy(z) with eigenvalue ji = & +in.
Then span { vy, v, JNU1, JNU2 } C R2N is g real invariant subspace of A, on which A is
represented by

0 0 E-w n

0 0 -n -
E+w 7 0 o |
- f+o 0 0

Note that the Hamiltonian in [67] differs by a factor of 7! from Hg: but the correspond-
ing stability matrices coincide, when translating the solution of one system to the other.

Example 3.21. Let N = 2 and I3, # 0 with[ := I +1; # 0. Any initial position z1, z; of the
two point vortices gives a relative equilibrium solution of (3.13) (see e.g. [64]). Via translation
we can assume that they rotate rigidly around the origin with frequency © = m # 0. Due
to Lemma 3.20 the stability matrix A € R™* of any such solution is given (in a suitable basis)

by

0 0 0 0
20 0 0 0
A_OOO—w
0 0 w O

The linear system (3.14) then possesses exactly 3 linearly independent %—periodic solutions.

Example 3.22. Now we consider N = 3 vortices with vortex strengths, I'1, 15,15 # 0, and such
that T :=T7 + I; + I3 # 0. Then every equilateral triangle configuration zi, z3, z3 is a relative
equilibrium solution of the 3-vortex problem (3.13) (see Section 2.2 in [64]). Let Z(t) = e~ “/'z
be an equilateral triangle configuration rotating around the origin. The corresponding stability
matrix A is a 6 X 6 matrix. In [67] Roberts computed its eigenvalues explicitly in the case when
@ = T'/3 — this can always be achieved by a suitable scaling. He showed that in addition to the
eigenvalues 0,0, iw of the block in 3.20 a) there are two more eigenvalues given by ++/—L/3,
where L = I1 I, + 11 I3+ 1,15 is the total vortex angular momentum. Hence the linear system (3.14)
has more than 3 linearly independent %—periodic solutions if L > 0 and \/m € wZ = gZ,
hence if there exists k € Z with

3L=FKT*=k* (I} +T; + I +2L).

This is only possible if k* = 1 and L = T? + I} + I'2. Therefore the equilateral triangle configu-
ration is nondegenerate providedT # 0,L # 0 and L # I'?> + T? + I7.

Example 3.23. Let N € N be arbitrary and Ty = ... = Iy # 0. If one places all point
vortices on a line, say zy = (xk,0) and such that xy, . .., xn are the roots of the Nth Hermitian
polynomial, then the line of vortices rotates rigidly around the origin, see page 2172 of [4]. From
Corollary 3.3 in [67] we can conclude that this configuration is nondegenerate for any N > 3.

So far we have shown all the examples stated in 3.5. We would like to mention that [67]
provides with rhombus configurations and the trapezoidal configurations two more specific
examples consisting of 4 vortices that could be considered for condition (A3).
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3.6 An explicit stationary solution

With Examples 3.5 and 3.7 we have already seen some relative equilibrium solutions that are
o-nondegenerate or just nondegenerate and therefore can be choosen in (A3’) for theorem
3.8. Independent of the relative equilibrium solutions we also need for (A1’) a nondegener-
ate or not too degenerate critical point of the m-vortex Hamiltonian H. We will verify this
for Example 3.2. Le. we look at the 2-vortex system in the unit disc Q = B;(0) with vor-

ticities I'! = 1, T? = —1. By combining for example a Thomson N;-Gon configuration with
vorticities I“j1 = N%, j =1,...,Nj and a collinear configuration of N, vortices of strengths
1“1.2 = —Niz, j =1,...,N, or another Thomson configuration we obtain therefore periodic

solutions of (3.3) in the unit disc for an arbitrary number of N = N; + N, > 3 vortices that
are not rigidly rotating around the center of the disc.
The regular part of the Dirichlet Green’s function in B;(0) is given by

1
9(x,y) = gB,0)(x,y) = =~ log (Ix® [yl* = 2 (x, y)ge + 1)

and .
h(x) = hp,0)(x) = “ o log(1 - |x]?),

such that the Hamiltonian defined on #3(B1(0)) is given by
1 1
H(a',a*) = p (log |a' - a®| - > log (|al|2 |a2|2 -2{(a', a2>R2 + 1))
1
o (log (1- |a1|2) +log (1 - |a2|2 )) .

Let R(y) = Iy% be the reflection at the unit circle, then

1_ 2 1 2 1
2V, H(al a) = a—a  a-R@) a
’ - 2 2 2°
la' —a?|”  [a' = R(@*)|” 1-]a'|
a? — al a®> — R(a") a’

aVyH(a',a?) = - -

la2 —a'|> |a?-R@))* 1-]a?*

The ansatz a! = (4, 0), @ = (—p,0) with z > 0 shows that & = (a!, @?) is a critical point of
H if and only if
put =1 - 4P (3.15)

which means g = VV/5 — 2. For the second derivatives at the critical point & = (u, 0, —1, 0)
we get with a repeated use of (3.15)

1 1 -1 0 1 {1+ 0
”V%(“)‘(T;ﬂ_mﬁV)(o e R

1 —6p% + 1 0
S 26p2-6\ 0 4’ —1)’

1 /-1 o 1 1 0
7TV2V17‘{(0‘)=W(0 1)+m(0 1)’

1 pr+1 0
C20p2-4\ 0 3pi-1
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and ViH(a) = ViH(a), ViV, H(a) = V,V1H(a). So the Hessian of H is given by

—6y2+1 0 y2+1
2612—6 20p2—4 0
0 4p’-1 0 3p%-1
2 26u%—6 20p%—4
VvV H(Cf) = /12+1 H —6y2+1 H .
20024 0 26u%—6 0
0 3u’-1 0 4p%-1
20p2—4 26412—6

Using (3.15) one can verify that the second and the fourth column are identical. This corre-
sponds to the degeneracy induced by the rotational invariance, which means that the vector
Joa¢ = (0, —p1,0, 1) is contained in Kern V2 (a). On the other hand one easily sees that the
first three columns are linearly independent. This shows that « is a critical point of the 2
vortex Hamiltonian H satisfying condition (A2’)(ii) as it has been stated in Example 3.2.
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Chapter 4

Periodic solutions near 0Q2

In the previous chapter we have obtained periodic solutions by viewing the influence of the
boundary Q) as a perturbation of several whole-plane systems. Contrary to that we will now
exploit vortex-boundary interactions in order to prove the existence of periodic solutions
close to Q. The proof again relies on a suitable singular limit scaling and the continuation of
an existing periodic solution of the limiting problem. This time we will also use a symplectic
change of coordinates transferring a neighborhood of a boundary component to the unit disc.

4.1 Statement of results

Let Q C R? be a domain with nonempty boundary dQ, and let C C dQ be a compact
connected component of the boundary of class C*. Clearly C is diffeomorphic to S'. Let
v : C — R? denote the exterior unit normal and k : C — R the curvature of C with respect
to v. Set d(x) = dist(x, C) and fix § > 0 sufficiently small such that the orthogonal projection

pi{xeQ:dx)<s}—C

is well defined.
Instead of an actual Green’s function we consider as before a general symmetric C3
function g : Q X Q — R, and set

1
G(x,y) = —Elog |x —y| —g(x,y) forx,ye Q, x #vy.

We also need the corresponding generalized Robin function 4 : Q — R defined as usual by
h(x) = g(x, x) and the generalized harmonic radius p : Q — R,

p(x) = exp(~2mh(x)).

See appendix B.3 for the definition and some properties of the classical harmonic radius.
Contrary to chapter 3 we consider the case of N identical point vortices, i.e. without

limitation Iy = ... = Iy = 1, such that the Hamiltonian H : ¥5(Q) — R is given by
N N
H(z, .. ozn) = ), Glzjnze) = ) (k).
Jk=1 k=1
Jk

Therefore the system under investigation simply reads

2= JnVH(2). (4.1)
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Assumption 4.1 contains the required asymptotic behavior of the functions induced by
g near C. For y € Q with d(y) < & let Q, : R* — Rv(p(y)) denote the orthogonal projection
onto the normalspace N,(,,)C, i.e. Qyv = (v(p(y)), v)gz v(p(y)).

Assumption 4.1. p can be extended to a C* function on Q U C by setting p(x) := 0 forx € C,
thus from now on p : Q U C — R. Moreover, Vp(x) = —2v(x), and V?p(x) = —2k(x) - idp: for
every x € C. For every ¢ > 0 the function G satisfies

IViG(x,y)| +|ViG(x,y)| = O(d(y)) and V,ViG(x,y) = O(1)Q, + O(d(y))

as d(y) — 0 uniformly on the set { (Y EQXQs:|x—y| >¢ }

The terms O(1) and O(d(y)) = d(y)- O(1) in the second equation in 4.1 are matrix valued.
It follows from Assumption 4.1 that

p(x) = 2d(x) - k(p(x))d(x)* + o(d(x)?)
as d(x) — 0, and h(x) — oo as d(x) — 0.

Proposition 4.2. Assumption 4.1 holds for g = gq being the regular part of the Green function
of the Dirichlet Laplace operator in the cases when

a) Q is a simply connected bounded domain with C** boundary.
b) Q isanannulus{xeRzza< | x| <b},0<a<b.
Proof. See Corollary B.2, Lemma B.3 and Lemma B.4 in Appendix B. O

For more general multiply connected domains it might be possible to prove Assumption
4.1 using analytical formulae for the Green’s function based on the Schottky-Klein prime
function, see [25].

Theorem 4.3. Let L denote the length of C and suppose that g : Q X Q — R satisfies Assump-
tion 4.1. Then there exists ¥ > 0 and a C' map

(0,F) xR 3 (r, 1) = z27(t) € Fa(Q),

having also continuous mixed derivatives 8,0,2")(t) = 8,0,2")(t) and such that z\") is a pe-
riodic solution of (4.1) with minimal period Lr for each r € (0,7). Moreover, these periodic
solutions possess the following properties:

(1) zg)(t) = z(lr) (t + %) foreveryk =1,...,N.

(2) The rescaled function v")(t) := zgr)(rt) converges in the space of L-periodic C! functions
towards a parametrization y of C according to arc-length and with Jy = v o y. More
precisely there holds

o = y—Lvoy+o(r),
27
-(r)z(l_L )-+
s Lxoy)y+ o)
uniformly int asr — 0.
(3) The distance d(v'"(t)) satisfies

I 2
d(v )=§+@KO}/+O(7’)
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(4)

asr — 0 uniformly int € R.

The family (z(r))r induces a global continuum of choreographic solutions in the sense of
Definition 2.11 and Remark 2.14.

Remark 4.4.  a) The theorem shows that for T > 0 small enough, the system (4.1) has a

b)

d)

4.2

T-periodic solution with all vortices moving on the same trajectory. At first order the
trajectory has distance r /2 = T /2nL from C. The second order term in (3) tells us that
the trajectory of the vortices comes closer to C in regions where C has negative curvature,
and the vortices speed up by (2). On the other hand, near positively curved parts of C the
trajectory increases the distance to C and the vortices slow down. In any case the vortices
try to use shortcuts near curved parts of the boundary, cf. Figure 1.3.

The expansions in (2) and (3) are independent of N.

The boundary component C splits R? into a bounded component B¢ and an unbounded
component Uc, i.e. R? is the disjoint union Bc UC U Uc. Let 6(C) = 1, if Q N B¢ # 0
and o(C) = -1, if Q N Uc # 0. With the use of (2) we obtain the following expansion of
the H; -norm

va

2 ) r L L

1! = ”Y”Hi - (‘/0 (> Jy)ge dt +/(; Ko ydt) + o(r)

20(C)r
s

= lIyli%, - (voly(Bc) + ) + o(r).

The theorem holds also for a boundary component of class C* instead of C*, cf. the paper
with Q. Dai and T. Bartsch [12]. However, the proof shown here requires the curvature x
to be of class C%. One might recover the original theorem by an approximation procedure
with C* boundary curves and a careful control of the maximal parameter value 7, but
this has not been examined closer.

Scaling of the domain

Here we will just prove that it is sufficient to consider the case of a boundary component C
with length 27.

Lemma 4.5. Suppose that Theorem 4.3 holds under the additional condition that L = 27. Then
it in fact holds for any length L of C.

Proof. Let Q C R? be a domain, C a bounded boundary component of class C* with length
Landletg: Q x Q — R be such that the induced functions G and p satisfy the conditions
in Assumption 4.1.

Define A = ZT” such that the boundary component AC of AQ has length 27. On AQ
consider g; : AQ X AQ — R,

1
ga(x,y) = g(x/A,y/A) - Py log A

and the induced functions

pa(z) = e 279152 = dp(z/ ),

1
G(x,y) = ~o log |x —y| = ga(x,y) = G(x/A,y/A).
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Since the curvatures x; of AC and x of C are related via k (Ap) = A7 'k(p), p € C, we can
verify that p,, G, satisfy Assumption 4.1.

Thus we obtain a family of 277-periodic solutions ("), 7 € (0, 7,) of the generalized N-
vortex system on AQ induced by g, instead of g satisfying the properties of Theorem 4.3.
For r € (0,A7'7;) we define

27(t) = “”(Azt)

Then each z") is indeed a Lr-periodic solution of the N-vortex system on Q induced by g
and (r,t) — z")(t) has the regularity required by Theorem 4.3. Concerning the expansions
we write y; : [0, 2] — AC for the parametrization of AC in arclength appearing in Theorem
43andsety : [0,L] — C,y(t) = A"y, (At), which is a parametrization of C in arclength. We
then have

270ty = < ~W>w M) = (mm - —mw) + o(Ar))
=y(t) - z—mt) +o(r),
T
% (zgr)(rt)) = %b:m (Egh)(/lr : s)) = (1 - j—;m(m(/lt))) ya(At) + o(Ar)

_ (1 _ LK(t)) j (1) + o(r),

( <’>(rt)) dlst( A r - Ap), AC) - % (ﬂ + ﬁmmmnqﬁ 2))

2

= é + #K(}/(t)) +o(r).

Of course also the choreographic property of the solutions is not lost:

") l~(,1r) 9 (k=1)2xAr _~(Ar) 2 (k —1)2xr G (k=1)Lr
z, (t)—/lz1 (/lt+—N 74 A —)LN =z t+—N .

Concerning the global continuum we translate the induced set of periodic solutions

CcRY*x{ueH,  :u(t)e AFy(Q)forallt eR}

chor *
containing the local graph{ (7, E(f)(F-)) : 7 €(0,7) } viaC := {(r//l, u/A): (r,u) € C } Then
CcR*x {u € H! hor F W) EQ, L € R} is a global connected set of periodic solutions as in
Corollary 2.9 with C > { (r, 2" (ZL—;)) cr € (0,A717) } O

4.3 Symplectic boundary coordinates and scaling

We will introduce a very useful change of coordinates in a neighbourhood of C. By the
previous section we can assume that the length of the boundary component C is exactly 2.
Let y : R — Cbe a C* 27-periodic covering of C, such that Jy(s) = v(y(s)) for every s € R,
in particular |y| = 1. Then the curvature k depending on the parameter s can be expressed
by

K(s) = k(y(s)) = (Jy(s), y(s))ge -
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Furthermore, we define U; = {(s, q) € R? : [k(s)q| < % }, a:U >R, ¢:U — R?

a(s,q) = ﬁ (1 - m) , k(s) #0,
e K(s) = 0,
(s, q) = y(s) — als, 9)Jy(s).

Example 4.6. If Q is the unit disc B1(0), then the transformation is given by

cos(s 1 1
¢Bl(o)(3,q):w/1—2q( ()), s € R, —§<q<5.

sin(s)

In general we have d(¢(s,q)) = a(s, q) as well as p(¢(s,q)) = y(s) for all ¢ > 0 small
enough, since 0Q satisfies the double sided ball condition. The reason for defining o as
above is that the harmonic radius composed with ¢ now satisfies uniformly in s € R and as
0 < g — 0 the expansion

p(p(s, @) = 2a(s, q) — k(s)a(s, q)* + o(a(s,q)*) = 2q + o(q*)

= prz(s,q) + o(q’), (42

where pg: (s, q) = 2q is the actual harmonic radius of the Green’s function in the upper half-

plane R? = {x € R? : x, > 0}, see Section B.2.2. So one could say ¢ flattens the boundary
of Q up to second order.
The standard symplectic form on R? is given by wgz(v, w) = (v, Jw)gz = v1ws — V2 Wy.

Lemma 4.7. ¢ is of class C? and symplectic, i.e. wg2(Dp(u)v, Dp(u)w) = wgz(v, w) for all
u=(s,q) € U, v,weR%

Proof. The expansion
1
als,q) =q+ Ek(s)q2 +... (4.3)

shows that « is as smooth as k. Therefore ¢ is C?. In dimension 2 a map is symplectic if and
only if its derivative has determinant 1 everywhere. One has

D(s, q) = (y(s) — 8sa(s, 9)Jy(s) — als, q)Ji(s), —0qa(s, q)Jy(s)) € R¥.

So we calculate

det Do(s, q) = wze ((s) — dsax(s, q)Jy(s) — a(s, @) Jj(s), —0qa(s, q)Jy(s))
= dqa(s, q) — dqa(s, q)a(s, q) (J7(s), y(s)) gz
= 0qa(s,q)(1 — k(s)a(s,q)) = 1.

O

By the inverse function theorem and the compactness of C we obtain a small number
ro > 0 such that for any r € (0, ry) the map ¢ is locally a diffeomorphism between the stripe
R X% (0,r) c U; and the image Q,, := ¢(R X (0,7)) C Q with the property ¢(s1, q1) = ¢(s2, q2)
if and only if ¢; = ¢, and s1 — s € 27Z.

We prefer to avoid working on the quotient manifold (R/272Z) X (0,7) and therefore
compose ¢ with a scaled version of the “inverse” of ¢g,(p). Let B, := B;(0) \ {0} and for
r € [0, ry) define

b= 00 =01 ‘;x|2),
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where 1 : R? \ {0} — [0, 277) is the argument function.
Lemma 4.8. Forr € (0,ry) the map y, is a C? diffeomorphism and
wr2 (DY (x)0, DY (x)W) = rwpe(v, w)  forall x € B,,v,w € R?,

i.e. Y, is symplectic with multiplier r. Moreover, [0,79) X B, 3 (r,x) — ,(x) € R? is of class
C2.

Proof. Of course 1 is not continuous, but the composition with y defines a diffeomorphism
between S' and C c dQ. Observe also that the following diagram commutes

(pBl(O)T [

Rx(O,%)LRx

A~ —

0.)
where A, : R? — R?, (s, q) = (s,rq). Since A, is symplectic with multiplier r, the statement

follows. m]

In order to treat N-vortices we define ¥, : BY — QN

rCrs s xn) = (o), - Y (Xn) -

Recall that the symplectic form associated to the N-vortex Hamiltonian system (4.1) is given

by w(v, w) = ij\il wgz2(vj, wj). Therefore ¥ : BN — QN is a C? diffeomorphism and sym-

plectic with multiplier . With a look at Lemma A.2, if needed, we can therefore conclude

Proposition 4.9. Letr € (0,ry). A functionu : I — Fn(B.) defined on an interval I Cc R
solves

it = JNV(H o %)), (4.4)
ifand only ifz : rI = Fn(Q,), z(t) = (¥, o u)(t/r) is a solution of the N-vortex system (4.1).

4.4 A single vortex

We start the investigation of (4.4) in the case of having only a single vortex in the domain,
i.e. we consider (H o ¥, )(u) = —h(y,(u)), u € B.. The single vortex case will already cover a
major part of the work to do in the multiple vortex case.

Lemma 4.10. Let K C B, be compact. Asr — 0 the following asymptotics hold in C*(K,R):

1
h(yr(w)) + o logr = hp,0)(w) + o(1),
where hpg, (o)(u) = —i log(1 — |u|?) is the Robin function of the unit disc, cf. (B.3). Moreover,
lirr(l) 0, V(hoy)(u)=0 (4.5)

uniformly on K.

Proof. Recall that —27h(z) = log p(z). Since the logarithm and its derivatives are uniformly
continuous on compact subsets of (0, 00), it is enough to prove that

P (W) = psoy(@) = 1— [uf?
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in C*(K, R).
By Assumption 4.1 we can expand p and its derivatives uniformly on a neighborhood of
C:

pz) = 2d(2) - k(p(2))d(2)* + o(d(2)*),
Vp(2) = (=2 + 2k(p(2))d(2)) v(p(2)) + %d(Z)ZV%(P(Z))[V(P(Z)), v(p(2)] + o(d(2)?),
V2p(z) = —2k(p(2)) idgz +d(2)V° p(p(2))[=v(p(2))] + o(d(2))

as d(z) — 0. Evaluating these expansions at i/, (1) shows that

pr(w)) = r(1 = [uf?) + o(r?),
Vpr(w) = (=2 + rc(u(u)(1 = [ul)) Ji (1))

—ul?)?
rzwvw(y(mu»)[ Jy (@), Jy (1(w))] + o(r?), (4.6)

1—|ul?
2

VEp(yr (u) = —2x((w)) idgz +r V2 p(y (u))[=J7 ((w))] + o(r)

as r — 0 and uniformly in u € K, cf. (4.2), (4.3). Therefore we can directly conclude the
convergence of r'p(/,(u)) — pa,0)(w) in C°(K, R).
The derivatives of the stated limit function are given by

VPBl(O)(u) = —2u, Vngl(o)(u) = —2idp: .

For the convergence of the derivatives of r~!p o 1/, we will need also some expansions of
(1) and its derivatives. By the expression of « in the power series (4.3) we have

f(e,0) =y, (14 e %u) = ylu(w) +6)

Lol gy AU+ O

= Jy((u) +6) (r + O(r3)) ,
with O(r®) being the reminder of the power series. Thus we obtain again uniformly inu € K
asr — 0:

G-lb) |u|2) ) + o),

Dy(u)[u] = 9. £(0,0) = (r lul® + r’x(i(u))

|u| 2 (1- | 2\
Dy (w)[-Ju] = 89 £(0,0) = y((w)) — |r 5 k(u(u)———— | Ji(uw))
2
O L R P
D*y(u)[u, u] = 82£(0,0) = r |ul® Jy(:(u)) + O(r) (4.7)
D? lpr(u)[ ,—Ju] = aﬂaef(o’ O) Dlpr(”)[ ul
2
= —y(uu)) + r | | Jy((u)) + o(r),

D2, (), ~Ju] = &%£(0,0) + D%(u)[ |
= () - P2 '”' L2 5 @) + r Jul? 7 6aw) + ofr),
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with y®® being the third derivative of the parametrization y. Combining now (4.6), (4.7) and
ly| = 1 shows

(V(p o Yr) (), u)gz = (Vp(r(w), DY (w)[ul)ge = =2 [ul* + o(r)

=r (VpB](O)(u), u)RZ + o(r),
OM)Jy(uw)) + o(r), y(u(w) + O(1)J7(e(w)) + o(r))g2 = o(r)
(9 sy ().~ +olr)

(Vlp o ¢r)(u), —Ju)g:

uniformly. So we can conclude the convergence in C!(K,R).
In the same straightforward way one can check that

Vi(p oy )w)lu,u] = =2r |ul* + o(r),  V(p o Y )w)lu, ~Ju] = ofr).

Only V2(p o ,)(u)[—Ju, —Ju] is a little trickier. Here we need the first order expansion
V2 p(r () (e(w), y(u(w)] + 2x(s(w))

_ 2
L a7, 7w, )] + 00
2
LR )+ )7 @) 7w+ o) = o)
€ |e=0

=r

This together with

(re@) yPaw) |, = =76l = —xG(w),
which is a consequence of |y| = 1, shows

Vi(p o Y )w)[~Ju, = Jul = (V2 p(§r () Dy (w)[~Jul, DYy (w)[~Jul),
+ (Vo (), D*Yr(w)[=Ju, = Jul ).

- et |pun - = |

(=24 ()1 = ) J7 ), )

+ <—2Jy<:<u>>, —r#]y%(u» +r |u|21y<l<u>)>R2 +o(r)
= —2r [u]? + o(r).

Therefore r™'p o ), — pp,(9) in C*(K, R).

It remains to prove that ,V(h o 1/,) = o(1) in C°(K,R™). By the expansion in (4.6)
and since (r,u) — p(y»(u)) is in C*([0,r9) X B, R), there holds 8, (r ' p(¢,(u))) = o(1) in
C°(K,R). Suppose for a moment that we also know 8, (r"'V(p o ¢,)) = o(1) in C°(K,R?),
then

~278,V(h o Y,)u) = 6, ( r_ Vipo ¢r)(u))

) 7
P, (p(xﬁr(u»)
r

ooyt _

= om+oma(
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Thus we use the second order expansion of Di/,(u)[u] in (4.7) to improve the previous ex-
pansion to (V(p o ¥, )(u), u)g. = =2r lul* + o(r?). In a similar way the identity

V2 p(y (@) [y (e(w), Ji (o(w)), y((w))] = =2&(:(w))

shows that (V(p o ¢, )(u), —Ju)z: = o(r?). Since (r,u) — V(poy;,)(u)is in C([0, ry) X B,, R?)
we get the desired asymptotics 9, (r™'V(p o ,)) = o(1) in C°(K,R™).
This finishes the proof of the Lemma. O

So we have shown that the scaled and transformed 1-vortex system on B,

u=—JV(hoy,)(u) (4.8)
is in the limit » — 0 a perturbation of the actual 1-vortex system in the unit disc

Ju
(1= [ul®)

which for the initial condition u, € B, has the solution

u= —]VhBl(g)(u) = - , (4.9)

1
ult) = exp (‘mﬁ)

From these solutions we pick out one that is 27-periodic, e.g. we fix

sin(t)

w(t)=Vi- g1 (Cos(t)) : (4.10)

Lemma 4.11. The space of 2x-periodic solutions of the linearization

0 = —JV2hp o) W*(t)v (4.11)
is Rut*.
Proof. By the invariance of hp, () under rotations we can use a rotating coordinate frame
v(t) = e/*w(t), such that equation (4.11) is equivalent to

w = ]W _]Vthl(O) ( V1 — ﬂ'_lel) w.

The explicit formula of the Hessian

2227

V2hg, (0)(2) = —
moe) 7(1 = |z)?

idge

_
(1~ |zl*)

w = 0 Ow
“\2r-2 o

This system clearly has only the stationary points Re; as 2z-periodic solutions and hence
any 27-periodic solution v of (4.11) satisfies v € Ra*. O

cf. B.3, therefore gives

Proof of Theorem 4.3 in the case N = 1. Combining Lemma 4.10, Lemma 4.11 and Theorem
2.7 we obtain a C!-family (”(r))re[o y CX = H! of 2z-periodic solutions of (4.8) having 1

as geometrically simple Floquet multiplier and with u® = u*, (u(’ ), u*) « = 0. By Theorem
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2.7 we also are allowed to differentiate
it = =]V (ko ) (u1))

with respect to r at r = 0, which by (4.5) leads to
0, (0,u(1)) = =JVP(h o Yr)(w' (1) [ 0,40

So 8,u? is a 27-periodic solution of (4.11) and therefore Lemma 4.11 implies 8,u® = Au*
for some A € R. On the the other hand differentiation of (u(’ ), u*> x =0 shows A = 0 and
thus

du® =o. (4.12)

By Proposition 4.9 we obtain a family z(") = , (u(’)(- /1)), r € (0,r1) of 2z r-periodic solutions
of the original 1-vortex system on €. Moreover, (0,71) X R 3 (r,t) > z(")(t) € Q is C' and
the mixed partial derivatives 8,9,2")(t), 8,0,z (t) exist, are equal and continuous. If we
rescale the solutions to z")(r-) = ¢, o u'"), the same regularity holds now up to r = 0. So
by (4.7),(4.12) and u*(t) = V1 — w~le™/?e; the following expansions hold uniformly in ¢ as
r—0:

27(rt) = Yo' (8)) + rdho(u'()) + o(r)

P 2
= vt @)~ POy ) + o)

= y(t) = 5= Ji(t) + o(r)

d | (4.13)
= (220) = Dou" )" (0)] + ré, Dfo(u" )] (1)] + ofr)

= 7(t) = S J7(D) + or)

= (1= 5ox(0) (1) + ol

For the distance to the boundary component C we have by (4.3)
G
J (z(r)(rt)) . (, (um(t)) rﬂ)
2 (4.14)

2
= é + #K(t) +0(r?).
So far we have proven the local properties of Theorem 4.3 in the case of a single vortex.
For the global part we need to show that the Floquet multiplier 1 of z") is geometrically
simple. Let v be a Floquet solution for z(") to the multiplier 1, i.e. v is a 2777-periodic solution
of the linearization © = —JV?H (z(r)(t)) v. By Lemma A.2 v corresponds to a 2z-periodic
solution w(t) = Dy, (u(’)(t))_1 o(rt) of w = —JV2 (h o ¢,) (u"(t)) w. But since u") has 1 as
a geometrically simple multiplier, we have w € Ru(". It follows v € Rz(") and Corollary 2.9
implies the existence of a global continuum of periodic solutions of the generalized 1-vortex
system on Q. i

4.5 Choreographic solutions with N > 2 vortices

We now turn to the case of N > 2 vortices. Consider again a boundary component C of
length 27 and recall that by Proposition 4.9 it is our goal to find for r > 0 small 2-periodic
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solutions u(t) € Fn(B.) of
u=JnV(H o ¥y )(w).

In order to achieve this we consider as usual the action functional

27 27
,(u) = % /0 (i, Jnt)aen dt — /0 H(Y, (1)) dt.

As in the previous chapter we restrict ourselves to the the subspace of choreographic
functions. Let 0 = (123 ... N) be the cyclic permutation of N symbols and for an element
z=(z1,...,zn) € R®N orafunctionu(t) = (uy(t), ..., un(t))let oz = (zn, 21,22, . . ., ZN-1)s
(o *= u)(t) = o * (u(t)). Since all the vorticities are equal, the functional ® satisfies

B, (0 * w)(- + 27/N)) = By (u)
for any r > 0 and u € H! with u(t) € Fx(B.). This implies
VO, ((o = u)(- + 2/N)) = (o * V®,(w))(- + 27/N).

So especially for u € X = {u e H : (o *u)(-+27w/N) = u} we see that V&,(u) € X.
Contrary to Chapter 3 we will not work on X but prefer to use this time the isomorphism
j:X =HYR/2nZ,R?) — X given by

) = (wu(- + 27 /N),u(- + 47 /N), ..., u(- + (N = 1)21/N)).

The inverse clearly is j~!(uy,...,un) = u;. Let A, = {u € X : (j(u)(R) C Fn(B.)} and
observe that our solution u*(¢) of the 1-vortex problem in B;(0), see (4.10), is contained in
A.. We abbreviate 6 = k27x/N fork =1,...,N.

Lemma 4.12. Let ry € (0,ry). There exist ¢ > 0, a compact intervall K C (0, 1) and an open
neighborhood O C A, of u*, such that (r,u) € [0,r1] X O implies |u(t)| € K and

9 (u(t + Ok)) — ¢ (u(t + 01))| 2 €
foreveryt e Randk,l € {1,...,N} withk # L.

Proof. Recall that [u*(t)| = V1 — z~! =: by. Clearly there exists a constant ¢ > 0 depending
only on N with inf; gz [u*(t + 0) —u*(t + 0;)] > 2c. Since X continuously embeds into
the space of 2z-periodic continuous functions, we can find § > 0 - without restriction we
assume 20 < c and K := [by — 8, by + &] C (0,1) — and an open neighborhood O c A, of u*
such that u € O implies |u(t)| € K and

inf |u(t +6y) —u(t+6;)| > c.
t,k#l

Forue O,teR,jke{1,...,N}, k # j we therefore obtain

[ (u(t + Ok)) — ¢ (u(t + 61))|
> inf{ [¥r(a) — ()| : ¥ € [0,71], a,b € R?, |a],|b| €K, |a—Db| > c} =:¢.

If e would be 0, the continuity of (r, x) — 1/,(x) shows the existence of a, b € R?, |a|, |b| € K,
la—b| > cand r € [0, r;] with ¢(a) = ,(b). This is impossible for r > 0, since each ¢, is a
diffeomorphism. So ¢ = 0 implies y(«(a)) = o(a) = Yo(b) = y(«(b)). But then

c<la=bl=|lal—|b]l| £bg+d—(bg—0)=25 <c
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is a contradiction. Hence ¢ > 0. m|
From now on we fix r; € (0,ry) and O, K, ¢ according to Lemma 4.12.

Lemma 4.13. The map F : [0,r1] X O — X,

(7l o V&, o j)(u), r>0,

F(r,u) = {(id _A)! (_]u + VhBl(O)(u)) , 7=0

is of class C' with derivatives 8,F(0,u) = 0 and
D, F(0,u)[w] = (id—A)"" (—Jw + Vthl(O)(u)w) )
Proof. Since V®,(j(u)) € X, the map F is indeed well-defined. For positive r we have

F(r,u) = (id =A)™ (=Ju = Vi(H o ¥,)(j(w)))
N-1

= (d=A)" | =Ji+ Fo(ru) =2 ) Fi(r,w) |,

k=1

where Fy(r,u) = V(h o ¢,)(u) and F(r,u) = Dtﬁr(u)TVlG(lﬁr(u),gbr(u(- + 0x))) for every
k=1,...,N — 1. We interpret these maps as maps between [0,r,] X O and L(R/27Z, R?).

Now ifu € O, t € R, then u(t) is by Lemma 4.12 contained in the compact annulus
{z € B. : |z|] € K}. Thus we know by Lemma 4.10

Fo(r,u) — Vhp,)(u), DyuFo(r,u) — Vthl(o)(u), 0y Fo(r,u) > 0

with respect to ||-||;2 and uniformly in u € O as r — 0. It therefore remains to show that
Fe(r,”) = 0in CY(O, L?) and 0, F(r,-) = 0in C°(O,L?),k=1,...,N - 1.
To do this we use that u € O not only implies |u(t)| € K, but also

|V ((t)) = ¥ (u(t + O1))| = &,

such that Assumption 4.1 gives

|Fi(r, u)(6)] = O(d(Wr(u(t + 0x)))) = O(a(u(ut + 1), r(1 ~ Ju(t + 6p)[*)/2)) = O(r)

uniformlyinu € Oandt e Rasr — 0.
For the derivative we similar have

DyFi(r,u)(t) = O(r) + Dy (u(£)) " Vo V1 G (w(t)), Y (u(t + 1)) Difr (u(t + 6k)
= O(r) + O()Qy, (u(e+6,) DY (u(t + Ox))

uniformly in u € O and t € R. Now recall that Q, is the orthogonal projection onto the nor-
mal space JT,(,)C. In our case y = ¢, (u(t + 6x)) and p(y) = y(«(u(t + 6x))), hence Qy, (u(r+0,))
is the orthogonal projection onto RJy(«(u(t + 6x))). On the other hand by (4.7) we have
Dy, (u(t + 0))[w] = Ay ((u(t + 6))) + O(r) for w € R? and with some A = A(w) € R. This
shows

Dy Fi(r,u)(t) = O(r)

uniformly inu € O, t € R.
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It remains to look at the partial derivative

0, F(r,u)(t) = O(r) + D, (u(t) T Vo Vi Gy (u(t)), Y (u(t + k)0, (ult + 61))
=) 00+ [V2ViGy u(t + 00), U (D) DY (w(t))] " O, (e + 61))
= O(r),
which holds again uniformly inu € O and t € R. q

Proof of Theorem 4.3 for N > 2. We still consider a boundary component C of length 2.
Since u* is a solution of the 1-vortex system on B;(0), we have F(0,u") = 0. Furthermore,
Kern D,F(0,u*) = Ru* by Lemma 4.11. As in the proof of Theorem 2.7 we obtain a C!-map
[0,r)2r > u" e O with (u(’>,a*)x =0,F (r, u(’)) = 0 and Kern D, F (r, u(r)) =Ra™, By
the equivariance of V®, it follows that V@, (j (u(’))) = 0 and hence by Proposition 4.9

200 =, (7 (u) ()

is a 2zr-periodic solution of the generalized N-vortex system (4.1). From Theorem 2.7 we
also know that (0,72) X R 3 (r,t) — z(t) € Fa(Q) is of class C! and has the continuous
mixed derivatives 0,0,z (t) = 8,0,2(t).

The construction of z") shows

200 =y (4 (£ + 01 )) = v (um (t + (k= D2zr/N )) _0 (t L (k- 1)2m) |

r N

The expansions of v")(t) := z(lr)(rt) = 1, (u")(¢t)) follow in exactly the same way as in the
single vortex case, since d,F(0, u™) = 0 from Lemma 4.13 and (u(’), a*)x = 0 imply 9,u® = 0.

Finally by Corollary 2.9 and especially Remark 2.14 for the choreographic version we
need to show that Rz(") are the only 277-periodic solutions of v = JyV?H (z(r)(t)) v, which
satisfy (o * v)(t + 22r/N) = ov(t). And indeed if v is a 2zr-periodic function with these
properties, the r-symplectic transformation ¥, shows that

DY, (ju(r)(t))_lv(”t) =j (Dlﬁr(u(r)(t))_lvl(rt)) € Kern V2@, (ju'").

Hence Dy, (u(’)(t))_lvl(rt) is an element of the kernel Kern D,F (r, u(’)) = Ra'"). It follows
v € Rz") and hence we obtain a global continuum of choreographic solutions. O
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Chapter 5

Conclusion and open questions

We have seen that we can combine existing solutions, i.e. stationary solutions of an m-vortex
problem on a domain Q and relative equilibria of the whole plane system, to get new periodic
solutions on Q. The easiest example is given in 3.2 and illustrated in Figure 1.2. We have
also seen that choreographic solutions with an arbitrary number of identical vortices can be
found near the boundary of the domain, and that both types of solutions (at least if m = 1)
give rise to a global connected set of periodic solutions. In this last chapter we investigate
the N-Gon family in the unit disc as a concrete example for a global set of solutions, and we
also discuss some open questions.

5.1 The N-Gon in the unit disc

Let Q = By(0) and g(x,y) = gp,0)(x,y) = —é log (|x|2 lyl* — 2 (x, y)ge + 1). The Hamilto-
nian for N identical vortices of unit strength then reads

1 1
Hp,(0)(2) = “om 210g|2k ~zj| + i Zlog (|Zk|z |ZJ‘|2 A 1) :
k#j k.j

It is known that the point vortex system z = JyVHp,(0)(2z) has a family of choreographic
solutions z™V*5(t) = (z(t), . .., zn(t)) given by the points

27 (k-1)
cos (wN(s)t + =N

zi(t) = s
sin (wN(s)t + —2”(11\(,_1))

F1GURE 5.1: Rigidly rotating pentagon in the disc
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at the radius s € (0, 1) and with uniform angular velocity

1 N N+1
oN(s) = — |5 - :

T2 2

see Figure 5.1. The detailled calculation can be found for example in the thesis by Qianhui
Dai, [26]. Note that the Hamiltonian there differs by a factor 2 with the one used here.

5.1.1 Local aspects

The solutions can be seen in the following two ways: They are emanating from the boundary
where s = 1, i.e. they serve as an example of Theorem 4.3, and they are emanating from the
critical point of the Robin function hp, () at the origin where s = 0, which gives an example
of Theorem 3.9 with m = 1.

In the first point of view we consider s ~ 1 and observe that z
ron(s) = 1,ie. if

N.s is 2mr-periodic if

o 2msi(1—s2N)
T N-1+(N+1)s?N’

Close to s = 1 and r = 0 this equation can be inverted to write s = s(r), such that the
functions z\) := zN-(") form the local r-dependent family of Theorem 4.3. An expansion of
the implicitly defined function s(r) shows that

d(z(lr)) =1-s(r)= I + I + o(rz),
T T

as r — 0. This coincides with property (3) of Theorem 4.3.
Similar we can view the family in the context of Theorem 3.9. Consider s ~ 0 and
T = 27N. The solution z™** is rr?-periodic if r’Non(s) = 1, i.e. if

s 2752(1 — s2N)
T N(N -1+ (N +1)s2N)’

r

Again we can locally solve this equation to write s = s(r). Then z() := zN-5(") is the 7r?-
periodic solution of Theorem 3.9. In complex notation we get for the rescaled r-periodic
function u" = r~12)(r2.) the following expansion

. ; IN(N-1)
ugcr)(t) _ @esz(s(r))rztelzn(k—n/N - %et(mzn(k—l))ﬂ\’ +o(1).

One can then check that the limiting function u()(¢) is indeed the 27 N-periodic Thomson
N-Gon configuration of the whole plane system.

5.1.2 Global aspects

To discuss the global extension of the solutions we normalize the period of the solutions to
27 by introducing an additional parameter as in section 2.2.3, i.e. we consider for r > 0 the
family

z = r]nVHg,(0)(2). (5.1)

If u is a 27 periodic solution of this equation, then u(-/r) is a 2zr-periodic solution of the
original N-vortex system on the unit disc. Let A = { u € H' : u(t) € Fn(B1(0)) forall t € R}
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and S = {(r,u) € R* X A : u solves (5.1) }. We denote by

CN-Gon = { ( ! ,ZN’S(‘/CON(S))) :s € (0, 1)} cS
wN(s)

the known regular N-Gon family, by Cﬁ}m the connected component of Cn.gon With re-
spect to choreographic solutions S N { (r,u) : ux = u1(- + 2(k — 1)/N) } and by Cy the full
connected component of Cn_gon in S. In general we have

CN-Gon C CI" C Cy. (5.2)

In the easiest case of a single vortex we know all possible solutions of the system on
B1(0). As the radius s tends to 0 the periodic solutions z** merge at the parameter value
limg_,0 w;(s)™! = 7, which corresponds to a limiting period of 272, into the stationary solu-
tion at the origin, see Figure 5.2. We can therefore conclude C; = Ci.gon U R™ X {0}.

Figure 5.3 shows the set Cn.Gon in terms of ||-||;1 for some N > 1. In that case a full
characterization of Cy is not available, especially it is not clear if for some N the inclusions
in (5.2) can be replaced by equalities. In fact Bolsinov, Borisov and Mamaev show in [19]
that bifurcations from the equilateral triangle into other relative equilibrium configurations
occur. This means Cs.gon C C;h"r # Cs. In general it would be interesting to know, if
bifurcations from Cn-gon into other choreographic solutions can be detected with the help
of the equivariant degree S*-deg" . For this purpose one would need to actually compute the
degree with the formula of Theorem 2.24 or by other means. So far we have only used this
formula to conclude that a nondegenerate solution has a nontrivial degree.

5.2 The general case

In the case of a general domain Q C R? the structure of the set of periodic solutions is
of course even less clear. Suppose that Q is bounded, simply connected and has a smooth
boundary of length 27. Suppose further that the Robin function hqg has I nondegenerate crit-
ical points aj, . .., a; and recall that I > 1 for a generic bounded domain. For the vorticities
we assume I7 = ... = Iy = 1 and denote by Z(¢) the Thomson N-Gon configuration of the
whole plane system. Then for each critical point a; Theorem 3.9 provides the existence of a
global connected set of choreographies C(a;, Z). Another continuum C(9Q2) emanates from
the boundary by Theorem 4.3.

If we try to illustrate these continua in terms of a r vs. ||u|| ;1 plot as in Figures 5.2, 5.3,
we only can say something for the local parts that are given as a graph. For example for the
local part of C(0Q) corresponding to the solutions close to Q2 we know by Remark 4.4 c)
that

2r
lull?: = N |lyll5, - ;(volz(Q) +7) | + o(r).

This provides the initial height and the initial slope of the curve in terms of the domain Q.
A similar first order expansion can be obtained for the local parts of C(a;, Z). This time in
terms of a; and Z.

Beyond these local expansions much more is so far not known. For example in the unit
disc we have C(dB1(0)) = C(0,Z), but even in a different convex domain this is not clear
anymore. The general open question is what happens at the “other end(s)” of the continua?
When do some of the sets C(99), C(a;, Z), or even C(a;, Z) for some other relative equilib-
rium Z, actually coincide? When do they merge into stationary or heteroclinic solutions?
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—N=1

FIGURE 5.2: This shows the structure of all periodic solutions (r, %) € Ci-Gon

in terms of r at the x-axis vs. the norm ||u||g: at the y-axis. The solutions

start at the boundary of the disc with arbitrarily small period and H'-norm

2+/z. With shrinking radius they merge at r = ;(0)"! = x into the station-

ary solution. In terms of Remark 2.10 we see that options a) and c) are valid
for the global continuum induced by the solutions near dB;(0).

e nnnn
N U R WN

|
zzzzzz

FIGURE 5.3: Similar to the N = 1 case we illustrate the set Cn.gon Vvia the
plot of r vs. N71|jul|z:. One sees that the periodic solutions emanating
from the boundary (upper end of the lines) are connected with the solutions
emanating from the critical point of the Robin function (lower end of the
lines). On both ends the solutions approach 0% (B1(0)) with periods going
to 0. So for Cy D Cn-Gon at least options b) and c) of Remark 2.10 are valid.

5.3 Further remarks

As already mentioned before, an actual computation of the degree S!-deg" in the case of a
nondegenerate periodic solution has not been carried out. It would also be nice to know,
how the degree behaves under a symplectic transformation of the Hamiltonian system.

It seems likely that the solutions of Theorem 3.8 consisting of m > 2 clusters also give
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rise to global continua, but this has not been verified for a concrete example, cf. Section
3.4.1.

Concerning solutions near the boundary of a domain, one could try to scale more than
one vortex towards the same (time dependent) boundary point in order to find more com-
plicated configurations chasing along the boundary.

As explained in section 1.1 the N-vortex system arises as some sort of singular limit of
more sophisticated models given by partial differential equations. A natural and interesting
question is therefore what kind of conclusions one can draw for these PDEs from solutions
of the point vortex system.

By constructing appropriate stream functions it is for example possible to desingularize
stationary solutions of the N-vortex problem to stationary solutions of the 2D Euler equa-
tions (1.2), see [20] and references therein. A similar result for the Euler equations and peri-
odic solutions is so far not available. Concerning the Gross-Pitaevskii equation (1.4) Venka-
traman has shown in [76] that rigidly rotating solutions of (1.3) in the unit disc Q = B;(0)
give rise to corresponding periodic solutions of (1.4). The same is true for rigidly rotating
configurations on the sphere S, see [39]. Apart from that the desingularization of general
periodic solutions like the ones discussed in this thesis is also for the Gross-Pitaevskii equa-
tion an open problem.
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Appendix A

Hamiltonian systems and their
variational structure

We collect here some facts about first order Hamiltonian systems and the associated action
functional. The elaboration is getting only to a point sufficient for this thesis. For further
properties we refer to the books [43, 60, 61].

A.1 Hamiltonian systems on R?N and symplectic transforma-
tions

A symplectic form on the vectorspace R?Y is a bilinear map o : R?N x R?N — R, which is
nondegenerate and skew-symmetric, i.e. w(v, w) = 0 for every w € R?N implies v = 0 and
(v, w) = —w(w,v) for all v, w € R?N,
Let now  be such a symplectic form, U ¢ R?N open and H : U — R be a C? function.
By the nondegenerateness of w there exists a unique C! vectorfield Xz : U — RN satisfying
forallz € U, w e R®N
w(Xy(z),w) = DH(z)w.

The Hamiltonian system associated to w and H is then the first order differential equation
z = Xy(2). (A.1)

Lemma A.1. There exists a skew-symmetric, regular matrix A depending only on w, such that
(A.1) is equivalent to
Az = VH(z).

Proof. Letey,...,eyn be the usual basis of RN consisting of unit vectors and S be the 2NX2N
matrix with entries s;; = w(e;, ;). Since w is nondegenerate, S is regular and the skew-
symmetry of  implies ST = —S. Moreover, for v = 3; v;e;, w = 2.; wje; there holds

w(v,w) = Z viwjw(e;, ej) = (v, SW)g:n .
i,j
Thus with A := ST = - follows
(AXH(z), whgen = 0(XH(2), w) = DH(z)w
for any z € U, w € R?N and hence AXp(z) = VH(z). ]

Let now U c R?N be another open subset of R?N and assume that we have a C? dif-
feomorphism ¢ : U — U. It is called symplectic with multiplier r # 0 or r-symplectic,
if

w(Dg(z)v, Dp(2)w) = rw(v, w)
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forany z € U, v,w € R®NV_If r = 1, then ¢ is just called symplectic.

Lemma A.2. Let ¢ € C*(U,U) be a r-symplectic diffeomorphism, r # 0 and H € C*(U, R).
Then z(t) is a solution of z = Xy (z) on U, if and only if u(t) := ¢~ '(z(rt)) solves i = XHog(u)
on U. Moreover, we have a similar equivalence between the linearizations, i.e. v(t) solves
o(t) = DXg(z(t))v(t), if and only if y(t) := De(u(t)) " v(rt) solves the corresponding equation
y(t) = DXHO(p(u(t))y(t)-

Proof. The function z(t) = ¢(u(t/r)) solves z = Xg(z), if and only if for every w € R*N
%w(D(p(u(t))u(t), w) = w(2(rt), w) = DH(z(rt))w = DH(p(u(t)))w.

Since every Do(u(t)) is an isomorphism, we may replace w in this equation by De(u(t))w
with w € R?N and obtain this way w(i(t), w) = D(H o ¢)(u(t))w for every w € RV ie.
it = XHog(u). This shows the first part.
For the linearized equations we have that v(t) = Do(u(t/r))y(t/r) solves © = DXg(z(t))v,
if and only if
o (DPp()[A(0), y ()] + Deu()h(0), w)

= w(v(rt), w) = D’H(z(rt))[v(rt), w] = D*H(p(u(t)))[De(u(t)y(t), w]

for every w € R?N. Replacing again w by Do(u(t))w, w € R?N we see that

o (y(t), w) = D*(H o ¢)(u(t)[y(t), W]

holds true provided

%w(D2¢(u(t))[i¢(t), y(1)], De(u(t))w) = ~DH(p(u(t))D*p(u(t))[y(t), ],

but this identity is a consequence of

d . 1d _ .
0= 2, D) = 10 o(Dp(w(t) + ey(e)il), Dplu(t) + ey(n))

= %w(Dzw(u(t))[it(t), Y], Dp(u(t))w) + (2(rt), D*p(u(t)[y(t), w).

A.2 The Sobolev spaces H*

This summary of facts is taken from Section 3.3 of [43].
Let u : R/27Z — R?N be a square-integrable function with L?-Fourier-series represen-

tation
u(t) = Z e INFt g
keZ

For s € [0,c0) the Sobolev space H® is defined by saying that u € H?®, if and only if the
Fourier-coefficients a; € R?V satisfy

D1k Jag]* < oo,

kezZ
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The vector space H® equipped with the inner product

(u,0); = (a0, Bogan +27 ) 1k (@, Bidgew

kezZ

foru =Y e /NFay, v = 3 e /NK By and induced norm ||ul|? = (u,u), is a Hilbert space.
We will especially use the space H' and like to point out that we use instead of (u,v), the
inner product

2
(U, ) g1 = /0 u(t), v(t)gen + (@(t), 9(t))gen dt = 27 Z(l + k) (s BrYgen »

keZ

but this causes no problems, since the induced norm ||-||i,1 = (,-)p is equivalent to ||-]|;.
We have the following continuous embeddings (Prop. 3 and 4 of [43]):

« H' < H*® compactly for t > s,
« H — C*R/272Z,R*N) fors > k + 1, k € N,.

In particular for H! we can find a constant c, such that

lullco = sup Ju(®)] < clullpp
tel0,2r]

for every u € H'. In fact one can prove that H'-functions are %—Hélder continuous and that
the embedding H! < C? is compact and as a consequence completely continuous, cf. [60].

A.3 The action functional on H!

On the space H! we will now set up the action functional ® associated to a Hamiltonian sys-
tem (A.1), prove its regularity and the correspondence between critical points and periodic
solutions.

Since we need it in our application, we directly consider a family of Hamiltonian systems
on the symplectic space (R?2V,w). Le. let D ¢ R X R?N open, H : D — R, (r,z) — H,(2)
with each H, being of class C? and H, D,H, DH continuous.

Let D = {(r,u) e RxH':(r,u(t)) e Dforall t € R} and D, = {u e H :(r,u) € Z)}
and observe that these sets are open subsets of R X H! and H! by the embedding H' — C°.

The action functional associated to the family of Hamiltonian systems

z = Xp,(2) (A.2)

is defined by @ : D — R,

2

1 2
®,(u) = 5/ (Atl, uypen dt — H,(u) dt,
0 0

where A is the skew-symmetric matrix of Lemma A.1.

Let (id —A) : H*?2 — HS, s > 0 denote the isomorphism

u= ZBkak S u—i = Z(l + kz)BkO{k,

keZ keZ
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such that for u € H!, v € L? there holds

2
(u, (id —A)_10>H1 = ‘/0 (U, v)gen dt = (U, )2 .

Thus if we define L : H' — H?, Lu = (id —A)"'Au, then L is self-adjoint and we can write
the quadratic form of ®, as

1 2 . 1
O(u) = —/ (A, uypen dt = = (Lu,u)p .
2 /s 2

Clearly Q is defined on all of H! and smooth with VQ(u) = Lu.
We now turn to the nonlinear part. Let & : D — R,

21
K (u) = H,(u) dt.
0
Lemma A.3.  a) The functional§ is as smoothasH, i.e. eachK, € C*(D,,R) with gradient
V&, (u) = (id—A)"'VH,(u), V2K, (u) = (id —A)"'V2H,(u) and the maps ], V], V2K are
continuous.

b) For each r we even have V], € CY(D,,H?) and if B C D is closed in R x H! and
bounded, then VR(B) is relatively compact in H%.

¢) More generally, ifH € CK(D,R) fork > 1, then & € CX(D,R) and

D], (W), ..., 0] = 7 DL Hy (u(t)[v' (1), ..., 0 ()] dt
0

forall0 < j,l withj+1 <k and2',..., o' € H.

Proof. a) The proof of these properties will rely mainly on the fact that if a sequence u, — u
in H', then u,, — uin C°. Hence u,(t), t € Ris for nlarge enough in a compact neighborhood
of the orbit u(R), on which H, and its derivatives are bounded and therefore serve as an
integrable majorant. Alternatively one can also argue that H, restricted to the orbit u(R) is
uniformly continuous and hence H, o u, — H, o u uniformly.

To get started consider (r,u) € D and sequences r, — r in R, u, — u in H'. Then

27T
18, () — Sy, (un)] < /0 \H, (u(t)) — Hy, (un(0))] dt = o(1).

since the integrand converges pointwise to 0 and H is bounded on a compact neighborhood
of {r} X u(R). Thus K is continuous.
Next we have for ||v||gn — 0:

2m
K, (u+0) — K, (w) - / (VH, (1), V)gen dt
0

21 1
/ </ VH,(u + Av) dA — VH,(u), v> dt
0 0 R2N

Hence each &, is differentiable with V&, (u) = (id =A)"'VH,(u).

Since (id—A)™! : L? — H? is an isomorphism, it is sufficient to prove that the map
D > (r,u) — VH,(u) € L? is continuous in order to conclude the continuity of VK. But the
continuity of this map follows in the same way as shown before for & itself.

< o(1) - [[ollzz < o([[vllgn)-
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In a similar way as above we obtain

[VR:(u +v) = V&, (w) = (id=A)'V2H, (u)v||;, < |[VH(u + v) = VH,(u) = V’H (W),
= o([[v]l ),

which shows that each K, is twice-differentiable. Again as before we get the continuity of
D > (r,u) — V&, (u) = (id—A)"1'V2H,(u) € L(H'). This shows &, € C*(D,,R) for every
rand ], VK, V28 are continuous.

b) That V&, € CY(D,,H?) is a consequence of VH, € CY(D,,L?) and that the map
(id—A)™! : L? — H? is an isomorphism. Next we will show that VH actually maps continu-
ously into H! and that the image of a bounded closed subset B8 C D under VH is bounded
in H.

Let (r,u) € D and fix a compact neighborhood O C D of the orbit { (r,u(t)) : t € R}, on
which VH and V2H are bounded by a constant ¢ > 0. Then ||V2Hr(u)[i¢]“L2 < c||t]| ;2 and
by an approximation of u with 27-periodic C! functions we can conclude that VH, (u)[%] is
indeed the weak derivative of VH, (u). Thus VH,(u) € H'.

For the continuity of VH : D — H' it remains to show that V2H, (up)[i,] — V?H,(u)[u]
in L2, when u,, — uin H', r, — r in R. Checking this gives us

21
/ }VzHrn(un)[un] - VzHr(u)[u”z dt <c ”un - ulliz
0
2w
+ / |V2H,, (un) - VzHr(u)HZL(RZN) la(t)|? dt — 0.
0

Let now B C D be bounded and closed in R x H'. As a consequence of the compact
embedding H' < C°, the set B = {(r,u(t)) : (r,u) € B} is a compact subset of R x RN,
Therefore

sup [|VH, ll% < 27 sup [VHI? + sup [V?H[[% pun, - sup 1]l < oo.
(r,u)eB B B (r,u)eB
So VH(8B) is bounded in H'. Applying the isomorphism (id =A)™! : H! — H? and the
compact embedding H> < H? we finally see that VR(8) is relatively compact in H>.

c) For k = 1 we have already seen that D, &, (u)[v] = fozn D, H,(u(t))[v(t)] dt and that
VR, hence also D, &, is continuous. For the partial derivative with respect to r one easily
gets

2
Sy ) =)= [ 8, ) de = o),

as well as the continuity of 9,8, (u) = /02” 0,H,(u) dt.
For k > 1 the statement follows by induction. O

Lemma A.4. A 2r-periodic function u is a solution of (A.2), if and only ifu € D, is a
critical point of ®,. Similar v € Kern V2®,(u), if and only if v is a 2x-periodic solution of the
linearization © = DXy, (u(t))v.

Proof. If u € D, is a critical point of ®,, then

2
/ (At — VH,(u), v)geny dt =0
0

for any v € H!. The fundamental lemma of calculus of variations implies Aii— VH, (1) = 0 al-
most everywhere. But since VH, (u) € H', this means that « has a continuous representation
and hence Au — VH,(u) = 0 holds everywhere.
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In a similar way v € Kern V2®,(u) implies Ao — V2H,(u)v = 0, which is equivalent to
U= DXHr (u)v.
The other directions are obvious. O
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Appendix B

Green’s and Robin function

The N-vortex Hamiltonian arising in fluid dynamics is classically determined by the Dirich-
let - or more generally a hydrodynamic - Green’s function of the domain. We present here
some properties of the Dirichlet Green’s function, that are needed for our existence results
on periodic solutions. For some words on the more general hydrodynamic version skip to
section B.4.

B.1 Basic properties

First we recall some basic facts of the Green’s function for the Dirichlet-Laplace operator,
which can be found for example in [32, 40]. Let Q C R? be a bounded or unbounded domain
with non empty boundary. A Dirichlet Green’s function Gq for Q is a real-valued function,
defined on (Q x Q) \ {(z,2) : z € Q} and satisfying for every y € Q

{—AGQ(-,y) =4y, inQ, B.1)

Ga(-,y) =0, on 0Q

in the sense that A,Gg(x,y) = 0 for x € Q \ {y} and

/QGQ(x, Y)Ap(x) dx = —¢(y)

for every real valued C™ function ¢ compactly supported in Q.
In the case Q = R? one takes the fundamental solution of —A as the Green’s function

1
Gra(x,y) = ——loglx —y].
T
Since —AGg:(-,y) = 8, for any y € R?, the ansatz

Gal(x,y) = Gr2(x,y) — ga(x,y)

shows that a Green’s function for Q exists, provided one can solve for every y € Q the
boundary value problem

1

AgQ('7 y) = 0’ in Q’
gQ("y)=_ﬁlog|'_y|’ on 0Q.

Hence Perron’s method, section 2.8 in [40], guarantees the existence of a Green’s function
for a bounded domain, if all way-components of the complement of the domain consist
of more than a single point. Moreover, in the case of a bounded domain, the maximum
principle implies the uniqueness of G and also the positivity Go(x, y) > 0 for any x,y € Q,
x # y. In general Gq is symmetric, which means Go(x,y) = Gq(y, x), whenever Gq(x, 1)
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is defined. The function ggq is therefore symmetric as well. It is called the regular part of
Ggq and smooth on all of @ X Q. The evaluation of gq at the same point defines the Robin
function hg : Q — R,
ha(2) = ga(z, 2),

and pq : Q — R satisfying h(z) = —3- log pa(z) is called harmonic radius.

Before we state some explicit examples, we mention a consequence of the positivity of
Gq and Hopf’s Lemma, see [32]. Let Q be bounded, y € Q, p € dQ, such that the interior
ball condition at p is satisfied with some ball B, then

8VGQ(p’ y) <0, (BZ)

where v is the exterior unit normal of B at p. If #Q € C?, then the interior ball condition is
satisfied at every boundary point and v is just the exterior unit normal for Q.

B.2 Explicit cases

This section collects formulas of three important cases, in which the Green’s function is
explicitly known. These are the whole plane R?, the upper halfplane R? and the unit disc
B4(0).

B.2.1 The wohle plane

On R? the Green’s function is just the fundamental solution of —A, thus

1
Grz(x,y) = o log|x —y|, gre(x,y)=0, hr(z)=0,

1 x-—
VG, y) = —— ——2

27 |x — y|*’

1 1 - _nT
Voot = (1 g 90
27 \Jx =yl

VZGRZ(X’ y) = Vlc;RZ(y’ x) = _VlGRz(x’ y),

’

x —y|*
VyV1Gra(x, y) = =ViGra(x, y) = —ViGza(y, x).

B.2.2 The upper halfplane

For the upper halfplane R? = {(21,22) €eR?:z, > O} the Green’s function can be con-
structed by the method of images, i.e. with the reflection at the x-axis 7 : R? — R?
z = (2z1,22)  (z1,—22) = Z holds

1 1
gr2 (x,y) = - log|x - g| = Gra(x,9), hgz(2) = “om log(2z2),
ViGg: (x,y) = ViGre(x,y) = ViGro(x,3), k=0,1,2
VoViGge (x,y) = VoViGra(x, y) — VoViGre(x, §) o T
= —ViGgz (x,y) — ViGpa(x, §) o (idge —7),

1 /0 1 (0 0
Vhge(z) = ——— .|, Vihge(z) = — .
7 (2) 27z, (1) 7 (2) 2nz) (0 1)

Note that the Green’s function for the upper halfplane is not unique. For example
G(x,y) = Ggz (x,y) + x2y, satisfies (B.1) as well. But Ggz induces a velocity field that tends
to zero for points far away from the source.
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B.2.3 The unit disc
Denote by R : R? \ {0} — R?\ {0}, R(z) = ﬁ the reflection at the unit circle. For y,z # 0,

the Green’s and Robin function of the disc B;(0) and their derivatives can then be written as

1 1
98,06, y) = =7~ log (Ix? ly* = 2 (. y)ge + 1) = Gra(x, R(y)) - 5 loglyl,

1

GB,(0)(x, y) = Gra(x,y) — Gre(x, R(y)) + e log |yl
V]fGBl(O)(x, y) = V’fGRz(x, y) — V’fGRz(x, R(y)), k=1,2,
V,oViGa,0)(x, y) = V2ViGre(x,y) — Vo ViGga(x, R(y))DR(y)

= —ViGsg,(0)(x, y) — V;Gpe(x, R(y))(idrz —DR(y)),

1 z
h z)=——1log (1-|z|?), Vh z) = ——,

Bl(O)( ) Py g( |z] ) Bl(O)( ) 21— |z|2) .
2227 (B3)

+ VR
(1 - |z[%)

Vthl(o)(z) = idp>

1
(1~ |2?)
B.3 Boundary behaviour

For the periodic solutions of Chapter 4 emanating from the boundary of a domain we need
a sound asymptotic behaviour of the Green’s and Robin function, when pushing several
vortices towards the boundary. Starting with the Robin function, recall that hq is determined
by the harmonic radius pq via hg(z) = —% log po(z). The maximum principle implies a
monotonicity property for the harmonic radius, por < pg if Q" € Q. Hence if p € 0Q is
a boundary point at which the double sided ball condition is satisfied, a comparison of pq
with the harmonic radius of the interior ball and of the complement of the exterior ball leads
to the expansion

pa(p —dv) = 2d + o(d), (B.4)

where v denotes the exterior unit normal of the interior ball at p. For details see [8] or [34].
It turns out that this first order expansion is not sufficient for our application. Luckily it can
be improved in the simply connected case.

B.3.1 The harmonic radius in simply connected domains

Let now Q C R? be a simply connected bounded domain, such that a conformal equivalence
in terms of a Riemann mapping f : Q — B;(0) exists. Since the Green’s function (in dimen-
sion 2) is invariant under conformal transformations, see e.g. [34], we can write G in terms
of f and the explicitly known Green’s function for the unit disc:

Ga(x,y) = G, o) (f (%), f (). (B.5)

Also the harmonic radius - in the simply connected case called conformal radius — can be
expressed in terms of the Riemann map, which allows an improvement of expansion (B.4).
We interpret here f as a holomorphic map defined on Q c C and write f” and f*) for the
first and kth complex derivative of f.

Lemma B.1 (Bandle, Flucher [8, 34]). The conformal radius can be written as

_1-|fP
ST

(B.6)
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Furthermore, at every boundary point p € 0Q and ford — 0,

pa(p — dv(p)) = 2d — x(p)d* + o(d?®), (B.7)
provided Q is of class C**,0 < & < 1.

Note that the approximation is exact for the unit disc and the upper halfplane, since
Pr(@) = 1= |22 = 2d(z) (2, pra(z) = 2~ % = 2d(2).

Corollary B.2. If0Q € C*% k > 2, a € (0, 1), the conformal radius p = pq extends C* to Q
with
p(p) =0, Vp(p)=—2v(p).  Vip(p) = ~2k(p) - idss, p € HQ.

Proof. Since dQ € C*“, f extends to f € C**(Q) by the Kellogg-Warschawski Theorem,
cf. [65]. As a consequence of (B.2) and (B.5) the derivative f’ can not be 0 on the boundary
0Q. In the interior this is clear, since f is a biholomorphic map. For the moment we therefore
obtain pg € C*71(Q) by (B.6).

In order to see p € C*(Q), derive (B.6) k times in the interior of Q and observe that the
(k + 1)st derivative of f only appears in one term containing the product p f**). But for
z — 0Q holds

d(z) FBw) - FOE)

2mi |w—z|:¥ (w—2z)?

dw| = O(d(2)®),

s 0a) = 52

due to (B.4).

Now the expansion p(p — dv(p)) = 2d — k(p)d* + o(d?) of Lemma B.1 shows p = 0,
(Vp,v) = -2 and (Vzpv, v> = —2x onto the boundary. Then clearly (Vp, Jv) = 0, which
gives Vp = —2v on 0Q. Finally, since Dv(p) : T,0Q — T,0Q is given by multiplication with
k(p), V2pJv = D(=2v)[Jv] = —2kJv and therefore V2p = —2k - idg: holds. O

B.3.2 The harmonic radius of an annulus

The following Lemma shows that the second order expansion of pg needed for Assumption
4.1 not only holds in simply connected domains.

Lemma B.3. Let py be the harmonic radius of the annulus A = {x eR?:a< x| < b} with
0 < a<b. Then py € C3(A) and

pa(p) =0, Vpa(p) = -2v(p), Vpa(p) = —2k(p) -idg2, p € OA.

Proof. We prove this for b = 1,ie. A = {x eR*:a<|x| <1 } A formula for the Robin
function h4 is given by the following series

1 [(oglx])? <~ 1 |x[*™=2a%" + a®™ |x|7*™
hax) = —— |22\ L ,
AW) 2 ( loga ; m 1—a?m

see [42], Corollary 2.1. Setting ha(x) = —5- ( log(2d(x)) + qo(x)) we have pa(x) = 2d(x)e?™).
A direct calculation shows that it suffices to prove ¢(x) — 0, (Vo(x), Jv(p(x)))p: — 0,
(Vo(x), v(p(x)))ge — %K(p(x)), |V2(pf is bounded as x — AA and lim,_,g4 D3¢(x) exists.
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We just consider the outer boundary, i.e. [x| — 1. In this case we have:

2m + aZm |x|—2m

o) = “‘jg'x')z TEREIESSS

1—a?m

=

_ (log |x|)* IXI)2
log

g (2(1-IxD) -

M8
S

( N -

_ g2m
— 1—a

:<log|x|>2 1+|x| i )2’”(|x|2’"—1)2

loga Ix| m(1 — a?m)’

Q

m=1

Now lim|y|—; @(x) = 0 is equivalent to
0 2m 2m 2
-1
N A GtV
xl-1 &=\ x| ] m(1—a®™)
a

2m_4\2
The latter is true since 0 < ] < 1, % is uniformly bounded, hence the series is

uniformly convergent as |x| — 1. Furthermore,

1 2log |x| & (a1 |xtm
Vo(x) = ( T + xlog a +2 Z (m) A ) v(p(x)),

m=1

so (Vo(x), Jv(p(x)))gz = 0 and

hm (Vo(x), v(p(x)))g: = 1 +2 11m

|—>1

)

(a7 o= xtm 1
(1-a?m)|x| 2

|x]

Continuing differentiating, in the same manner one can derive that |V2(p(x)| is bounded and
that limy|—,; D?¢(x) exists. The situation when x approaches the inner circle is analogous.
O

B.3.3 Green’s function

Now we turn to the part of Assumption 4.1 concerning the Green’s function Gg. Recall that
Qy : R* = Ry(p(y)) is the orthogonal projection onto the normal space Nj(,)dQ whenever
this is defined for y € Q.

Lemma B.4. Let Q C R? be a domain (not necessarily simply connected) and C C 0Q a
compact connected component of class C*%. Choose a bounded neighborhood Qy C Q of C
with dQy € C*%, such that the orthogonal projection p onto dQ is welldefined on Q. For every
€ > 0 the function Gq satisfies

[V1Ga(x, y)| + |ViGa(x,y)| = 0d(y)), V2ViGa(x,y) = O(1)Q, + O(d(y))
as d(y) — 0 uniformly on the set A, := {(x Y eQAXQ: |x—y| > 5}

Proof. 1t is well known that Gq, € CS’“(ZS), see [40] Thm. 6.19. Since Gg(x,y) = 0 forx € Q
and y € C C 9Q, we have V{Gq(x,y) = 0 and VfGQ(x, y) = 0forx € Qand y € C. The
estimate

[V1Ga(x, )l + |[ViGa(x, y)| = 0(d(y))

as d(y) — 0, uniformly on the set A, now follows because Gq is of class C* and A, is compact.
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Next observe that ViGg(x,y) = 0, x € Q, y € C implies that D, (V;Gq(x, y))|T c =0,
Yy
ie. VaViGa(x,y) = a(x,y)Qy for x € Q, y € C and with some a(x,y) € R?¥2 Again the
compactness of A, and Gg being of class C* imply

V2ViGa(x,y) = O(1)Qy + O(d(y))

as d(y) — 0 uniformly on A,. O

B.4 Hydrodynamic Green’s function

Let Q c R? be a bounded domain with boundary 4Q = |J!_, C; consisting of smooth closed
curves. Usually Cy denotes the exterior curve. For a smooth vectorfield u : Q — R? the
circulation around C; is defined by
ci(u) :f u-ds.
C;

Let w = curlu = 01uy — d,u; denote the rotation of u. Stokes’ Theorem implies

l

/Q wdx = co(u) — Z ci(u). (B.8)

i=1

Theorem B.5 (Chap. 1, Thm. 2.2 of [57]). Given w : Q — R smooth and cy,...,c; € R.
There exists a unique vectorfield u : Q — R?, tangent to 0Q and with curlu = o, divu = 0,
ci(u) =c; fori =1,...,1. (The circulation around C, is determined by (B.8).)

If Q is simply connected and u : Q — R? a divergence-free vectorfield, tangent to 9
with compactly supported vorticity w = curl u, then u can be expressed with the help of the
Dirichlet Green’s function via

u(x) = /Q]VlGQ(x, yow(y) dy =: (V*Gg * 0)(x). (B.9)

Indeed the right-hand side has divergence 0 and curl(V*Gg*w) = (-AGq)*w = @. Moreover,
the tangential derivative of V*Gg * w at a boundary point is vanishing, since Go(-, y)9q0 = 0.
Therefore Theorem B.5 implies u = V+Gq * w.

In the simply connected case equation (B.9) provides an equivalence between a vec-
torfield and its vorticity. The notion of a hydrodynamic Green’s function generalizes this
equivalence to multiply connected domains. The following definition and properties can be
found in [34, 35].

Let Q be a multiply connected domain with boundary curves Cy, . .., C;.

Definition B.6. The hydrodynamic Green’s function with periods yy,...,y; € R, such that
>.i Vi = —1, is defined as the solution G(-,y) of the problem

-AG(,y) = 6, in Q,

05,G(,y) = 0 0n 09Q,

/ 0,G(-,y) = y; foreveryi=0,...,1,

i

/ G(-,y)0,G(-,z) = 0 for everyy,z € Q.
oQ
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The second condition says that G(-,y) is constant on each component C; and the third
can be rephrased in terms of circulations, i.e. ¢o(V*G(-,y)) = —yo and ¢;(V*G(-,y)) = y;
fori = 1,...,1. By (B.8) the hydrodynamic Green’s function only has a chance to exist, if
2!, yi = —1. The last condition in B.6 is a normalization.

Lemma B.7 (Lem. 15.3 of [34]). Let Q andy;,i =0,...,I be as before. Then we have:
a) The hydrodynamic Green’s function exists if and only ifZézo vi = -1

b) G is unique, symmetric and

l
G(x,y) = Galx,y) + > g/ui(x)uy(y),
i,j=0
where Gq is the Dirichlet Green’s function, [gij]i’jzo,___’[ is a symmetric, positive semi
definite matrix with one-dimensional kernel spanned by (yo, . . ., y1), and u; is the unique
harmonic function with valuesu; = 1 on C;, uj = 0 on Cy. fork # j.

¢) The hydrodynamic Robin function h(z) := go(z,2) — 2; ; 97 ui(z)u;(z) satisfies
1
h(z) = ———log(d(z)) + O(1)
27

uniformly as z — 0Q.

In particular if Q is simply connected, we see that G (with y, = —1) is nothing but the
Dirichlet Green’s function Gg. For the possibly multiply connected case where dQ = |J; C;
we conclude:

Corollary B.8. Ifu : Q — R? is a smooth divergence-free vectorfield, tangent to Q2 and
with compactly supported vorticity w = curlu satisfying T’ := fQ @ dx # 0. Then there exists
a unique hydrodynamic Green’s function G, such that u = V*G * w. The choice of G depends
only onT and the circulations c;(u).

Proof. Tt is easy to see that the convolution it = VG * o with an arbitrary hydrodynamic
Green’s function G satisfies divii = 0, curlii = o in Q and (@, v)z> = 0 on the boundary.
Since

. 1A —Yo, i=0,
ci(@) = /Q ci(V2G( y))o(y)dy =T - { (B.10)

Yis i> 0,
we define yy = —@ andy; = # fori=1,...,1. By (B.8) the numbers y; satisfy the con-
sistence relation Zﬁ:o ¥i = —1, and hence the corresponding hydrodynamic Green’s function
G exists. By the definition of the periods y; the vectorfields u and V*G * w have the same
circulations. Thus Theorem B.5 implies u = V4G * w. O

Ifr = /Q ® dx = 0, equation (B.10) shows that a representation of u in terms of a
convolution is only possible if all circulations c;(u) are vanishing. If this is the case, then
u = VG * w for any hydrodynamic Green’s function G.
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Appendix C

A derivation of the N-vortex
problem

Here we will see how the 2D-Euler equation gives rise to the N-vortex problem in terms of
a localization result. Roughly speaking we will see that highly concentrated vortex blobs
remain concentrated while their centers follow the corresponding point vortex solution.
This has been shown in [59] by Marchioro and Pulvirenti. The discussion in the first section
is based on the books [34] and [57].

C.1 Two representations of the Euler equation

We consider an incompressible nonviscous fluid contained in a two-dimensional bounded
domain Q surrounded by smooth closed boundary curves C;, i = 0, ..., I, which are impen-
etrable for the fluid. The velocity field u : Q x R — R?, (x,t) — u(x, t) and the pressure
p: QAXR —> R, (x,t) — p(x,t) of the fluid satisfy the Euler equations

Ou+w-Viu=-Vpin Q xR, divu=0inQ XR,

_ (C.1)
u-v=00n0Q xR, u(,0)=uyin Q.

Here div u = 01u; +0;uz = 0, where d; = 0y,, corresponds to the incompressibility condition,
the scalar product with the exterior unit normal u - v = 0 models the impenetrability of 9Q,
and u is the initial velocity field.

Suppose that u, p are smooth solutions of the 2D-Euler equation (C.1). The vorticity
associated to u is given by v = curlu = du; — d,u; and its time evolution is determined by
the scalar equation

0;0 = curl(0,u) = —curl((u - V)u + Vp) = —u - Vo (C.2)
For x € Q we denote by ®;_,(x) the solution of the initial value problem

$(t) = u(p(t), 1), (ko) = x,

ie. t — @, 4 (x) describes the trajectory of a particle moving with the fluid starting in x at
time t,. Note that if x is initially located in a boundary curve C;, then ®; ;(x) € C;. This
follows from u - v = 0 and can for example be seen by locally writing C; N B.(x) as a regular
level set h~1(0) and considering the Hamiltonian system § = JVh(y). Since u is tangent
to 0Q, the solutions of this Hamiltonian system are a reparameterization of the particle
trajectories @, ; (x).

In other words 02 consists of invariant flow lines and as a consequence ®; ; (x) is glob-
ally defined for all x € Q, t,t; € R. Moreover, Dy, 1, 0Dy, 1, = Dy, 1, fOr any triple £y, 11,2 € R.
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This implies that each ®; 4, : Q> Qisa diffeomorphism with inverse <I>;,1t0 = &y, ;. Since
divu = 0, we also know that det D®; ; (x) = 1 for any ¢,#, € R, x € Q.

The properties of @, ; (x) discussed so far are also valid for an arbitrary divergence-
free vectorfield u(x, t), tangent to 0Q. For a vector field satistfying the Euler equation and
therefore (C.2), we can in addition conclude w(®; 4, (x), t) = w(x, ty), and especially

w(x,t) = w(Pg,(x), 0). (C.3)

As a consequence we see that the total vorticity is conserved, indeed ®;  area-preserving

implies
/ w(x,t)dx = / (Do, +(x),0) dx = / w(x,0) dx.
Q ;.0(Q) Q

By Kelvin’s Theorem the same holds for the circulations: We rewrite (u-V)u = %V lul®>-wJu,

and get
d 1.,
—c;i(u(-, 1)) = Oy -ds = — V= lul®+p|- ds+ wJu- ds = 0.
dt Ci Ci 2 Ci

Suppose that the initially velocity field u, is such that w(-,0) € C.°(Q2) with nonzero total
vorticity I' = /Q @(-,0) dx, then Corollary B.8 provides a unique hydrodynamic Green’s
function G, such that

u(-,t) = /]VG(-, yYo(y,t) dy = VG x w(-, t).
Q
Hence the vorticity satisfies in Q X R the equation
0,0+ (VG * w) - Vo = 0. (C.4)

Conversely if we suppose that w(x, t) satisfies (C.4) with a fixed hydrodynamic Green’s func-
tion G and initial vorticity w(-,0) € C°(Q), then u := VG * w and p defined as the (up to a
constant unique) solution of the Neumann boundary value problem

1 1
Ap=w2—5A|u|2 inQ xR, d,p= (w]u—5V|u|2) -von dQ XR,

solve the 2D-Euler equation (C.1). Indeed u is divergence free, tangent to dQ and curlu = w.
Thus it remains to show that

1
ﬁ:=8tu+(u-V)u+Vp=8tu+§V|u|2—w]u+Vp=0.

We have curlé = 0 by (C.4), as well as divii = 0, &4 - v = 0 by the choice of p. In order to
apply Theorem B.5 we thus need to show that the circulations ¢;(4u(-, t)) are vanishing. We
have

d d
Ci(ﬁ(" t)) = Ci(atu(" t)) = Eci(u(” t)) = i}/ia ./Q w(x’ t) dx,

wherey; € R,i =0,...,[ are the periods of the Green’s function G, cf. (B.10). To see that the
total vorticity is constant we can argue in the same way as before, i.e. we denote by @ ; (x)
the particle-trajectory map associated to u = VG * w, observe that it is an area preserving
diffeomorphism and that (C.4) implies w(®; 4, (x), t) = w(x, tp). It follows ¢;(u(-, t)) = 0.

Our discussion shows that the equations (C.1) and (C.4) are equivalent — at least under
the condition of nonzero total vorticity. Note also that ¥ = G * w defines a stream function
for u, which has been used in the introduction in equation (1.2).
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C.2 The localization of vortex blobs

Following [59] we will now present the localization result. As a step in between we consider
a single vortex blob on the whole plane under the influence of an external field. For ¢ > 0,
a € R?N and T # 0 we define a set B.(a,T') ¢ CZ(R?,R) by saying that w € B,(a,T) if and
only if
supp w C Be(a), oI > 0 on all of R? and / wdx =T.
RZ

So B.(a,T') contains smooth vortex blobs concentrated in the £-ball around a and with total
vorticity I'.

For the external field we consider a collection (F).e(,¢) € C*(R?* X R,R?) of smooth
vectorfields, such that there exists a constant L > 0 independent of ¢ with

div Fe(x,t) = 0, supp Fe(:,t) € Br(0), |Fe(x,t)| < Land |F.(x,t) — Fe(y,t)| < L|x —y|

foralle € (0,¢), x,y € R, t € R.
For ¢ € (0, &) we suppose that v, € C*(R? x R, R) satisfies

0rwe + (V1 Gre * w0 + F) - Vo, =0 (C.5)

with initial vorticity profiles w,(-,0) € B.(a,T) such that |w.(x, t)| = O(¢”7) for some 1 < g.
We define the center of vorticity

1
ce(t) = —/ xwe(x,t) dx
T Jgre
and e,(t) as the solution of the initial value problem

éc(t) = Fe(ee(t),1), ec(0) =a.

Theorem C.1 (cf. Thm. 3.1 of [59]). ForT > 0 and § > 0 there exists &y = &o(T,5) > 0, such
that for all ¢ < &y and every t € [0, T] there holds

supp (-, 1) € Bs(ce(1)).
Moreover, |c.(t) — e (t)] — 0 uniformly on [0,T] ase — 0.

Remark C.2. The Theorem stated above differs slightly from the original version in [59]. First
of all we have formulated everything for smooth w., F. with compactly supported fields F.(-,t).
This is of course way too much. The paper [59] deals with w(-,t) € L' N L™, the weak form of
the Euler equation and a uniformly Lipschitz continuous, uniformly bounded external field.

In fact the original formulation considers a single external field F instead of a family (F).,
but the proof only uses the uniform Lipschitz continuity and the uniform boundedness of F.

A third difference is that Thm. 3.1 of [59] considers a blob with vorticity ' = 1, but the
general case can be reduced to this case by rescaling &.(x,t) = T w.(ox,t/|T|), o = sign(T)
and Fe(x,t) = T"'F(ox,t/|T)).

Next we look at the Euler equation in vorticity form on a bounded domain Q ¢ R? with
smooth boundary, i.e. we fix a hydrodynamic Green’s function G(x, y) = Ggz(x, y) — g(x, y)
and consider

00+ (V*G*w)-Vo=0 inQxR. (C.6)

In Section C.1 we have already seen that a solution of this equation implies that the vector
field u = V*G * w and a suitable pressure function p solve the Euler equation (C.1). Let
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(a,...,an) € Fn(Q), T4, ..., Iy € R\ {0} and denote by w, : Q X R — R the solution of
(C.6) with initial condition

N
we(x,0) = Z wl(x,0),
i=1

where w!(-,0) € B.(a;,T;) and |w(x,t)] = O(e7") for some n < % Concerning global

existence and uniqueness of solutions of (C.6), the proof with G being the Dirichlet Green’s
function can be found in [57].
For our initial value problem we consider only ¢ > 0 satisfying 3¢ < min;; |ai -a j| and

2¢ < min; dist(a;, 0Q), such that supp w’(-,0) N supp wl(-,0) = 0 and supp(w’(-,0)) c Q for
i # j. In view of (C.3) we define

W, (x, 1) = w0, (@f ,(x),0),

where @7 ; (x) is the particle-trajectory map associated to the vectorfield u, := V=G * w,. In
other words w!(-, t) tracks the evolution of the vortex blob w!(-, 0) initially located around
a;. Clearly w.(x,t) = Y; 0i(x,t) and

/ wl(x,t)dx = T;.
Q

Next we set up the N-vortex Hamiltonian' H : F5(Q) — R induced by the hydrody-
namic Green’s function G, i.e.

H(zy,...,zN) = % (; LiG(zi, zj) — IZJ: LiT9(zi, zj) | »
and denote by z(t) = (z1(2), . . ., zn(t)) the solution of the initial value problem
Iizi = JV;,H(z), zi(0)=a;, i=1,...,N.
Let 0 < T* < oo be the upper bound of the existence interval of the solution z(t).

Theorem C.3 (cf. Thm. 2.1 of [59]). ForT € (0,T+) and § > 0 there exists &g = &o(T,5) > 0,
such that foralle < ¢y,t € [0,T] andi =1,...,N there holds

supp wi(+, t) C Bys(zi(t)).

Moreover, for any f € C°(Q,R) we have

N
‘/Q we(x, 1) f(x) dx — Z i f (zi(1))
i=1

uniformly on [0,T] ase — 0. That is w,(-,t) = 3; T;0,,(+) weakly in the sense of measures.

Proof. First of all we observe that the identity @7 (@ ,(x)) = x implies

d £ &
E(Do,t(x) = =D& ,(x)uc(x, )

lin the other parts of the thesis we neglect the factor 3
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and therefore
. d . .
Orwp(x,t) = sz(cbg’t(x), 0) = =V (®g ,(x),0) - DG ,(x)ue(x,t)
= —Vol(x,t) - u(x, t).

Thus if we write
u:(x,t) = (VG * w,.)(x, 1) = / V4 Gre(x, y)wl(y, t) dy
Q

« 3 [ viepolwndy- [ vowpoiun dy

#i
=: (V*Gpz * wl)(x, 1) + F (0L, ..., 0N)(x, 1),

we see that the functions w! satisfy the following system of Euler equations
8tw£ + (VlGRz * a)é +Fi(wi,...,a)N)) Voli=0, inQxR,i=1,...,N. (C.7)

Next we regularize the interaction between different vortex blobs, as well as the interaction
with the boundary by a modification of the convolutions in F'. Let T € (0,T*) and choose
b > 0 such that b < |zi(t) - zj(t)| and b < dist(z;(t),0Q) forall1 <i < j < N,t €[0,T].
Take smooth cutoff functions &, & : R> — R with

1, |x| >
0, |x|<

&(x) = &(lx)) = {

1SN S8

1, xe€Qand dist(x,0Q) > &
&(x) = . f
0, x ¢ Qor dist(x,0Q) < 2

and define §,G : R x R? — R,

g(x,y) = &(x0)&(y)g(x, ), G(x,y) = &H()EY)E(x — y)Gre(x, y) — §(x. ).

Let ! denote the solution of the following system of regularized Euler equations
Ol + (VLGRZ x Ol + FL (&L, . . .,655)) Vol =0, inR*xR,i=1,...,N, (C8)
where @L(-,0) = w,(-,0) and

Fl(ag, ..o ) (x, t)=Z/QVLG~(x,y)cDi(y, ) dy—/QV*é(x,y)d)i(y, ) dy.

J#i

This system coincides with (C.7) as long as the distance between different vortex blobs and
towards the boundary are sufficiently large.

The vector fields fgi(x, t) = F i(cb;, e, 6)5] )(x, t) are smooth, uniformly bounded, uni-
formly Lipschitz continuous and for each ¢,t the support supp f:(-,¢) is contained in Q.
Thus we can apply Theorem C.1, which provides for every § > 0 a number (T, ) > 0,
such that

‘ . ‘ 1 :
supp @, (-, t) C Bs(cp(t)) with cL(t) := T / x@,(x, t) dx, (C.9)
i Ja

whenever ¢t € [0,T],i =1,...,N and ¢ < ¢. Note that also for the regularized system there
holds fRz ®(y,t) dy = T; for any t. We will now show that c.(t) — z;(t) uniformly on [0, T]
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as¢ — 0. Let § > 0 and ¢ < min(6, & (T, §)). At time t = 0 we have

|2:(0) — ¢, (0)] =

1 »
a; - F/ (ai + y)og(a; +y,0) dy‘
i JR2

~ i .
35/ Mdysgs&
1".
B(0) i

For the development in time observe that G(z;, z;) = Gz, zj), 9(zi, zi) = g(zi,z;) on [0, T]
and

/ (v(x, t) - VO (x, t))x dx = —/ v(x, 1) (x, t) dx
R? R?

for any smooth divergence-free vector field v. Hence

|2"i(t) - éé(t)| =

1 . L
Z I;V*G(zi, zj) - iV g(zi, zi) — T ./RZ (V' Gge * @, + f}) o, dx

J#i t

< Yoz - [ [ viem e naln d dy|

J#i t

~ 1 ~ ~i ~i
covsgeam- 1 [ vimoteno.n )

1 . :
+ —/ / V-Gre(x, y)dL(x, t)o(y, t) dx dy‘.
I Jr2 Jr2
The last term actually is 0 due to the symmetry of Gge. For the first term we estimate
’FjVLé(zi(t), 2;(1)) - ;VEG(cl (), cg‘(t))‘ <M, (|z,-(t) —cl(B)] + |z(0) - c{;(t)|)

with a constant M; > 0 depending on G, § and I, . . ., Ty. On the other hand (with a similar
constant M)

GGl el - ¢ [ [ 6wl 0ol 0 dx dy‘

1

< M,é,

1 L P o
T ‘/]RZ /R2 (V Gl (t), cr(t)) — V*G(x, y)) ah(x, )ak(y, t) dx dy

since supp @.(+,t) C Bs(ci(t)) fori = 1,...,N. The same procedure applied to the term
involving V*§(z;(t), z;(t)) finally gives us

N
[2:() = cL(B)] < M3 ) [zj(t) = cl(t)] + M.

j=1
Thus
N t N
D Jzilt) = k()] < Mad + My / D Jzils) = cks)] ds
i=1 0 %=1

and we can apply Gronwall’s lemma to conclude |z,—(t) - c"g(t)| < MySeMT for t € [0,T].
This shows |zi(t) - cf;(t)| — 0 uniformly as ¢ — 0.
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By (C.9) we therefore can find to every § > 0 a number (T, §) > 0, such that for every
£<ég,tel0,T]andi=1,...,N there holds

supp &L (-, t) C Bs(zi(t)).

In particularif § < %, we can conclude that aslong as t € [0, T] the collection ®’,i = 1,...,N
not only is a solution of the regularized system (C.8), but also of the original system (C.7).
Hence cbé( t) = a)é(-, t)fort € [0,T],i =1,...,N. This shows that the vortex blobs remain
localized around the point vortex solution.

It remains to prove the uniform convergence

N
/Q o0 ds = 3Tz ()

for f € C°(Q,R) as e — 0. Let § > 0 and take § > 0 independent of t € [0, T], such that
| f(x) — f(zi(t))] < & whenever |x — z;(t)| < J. For ¢ < ¢(T, §) we have

’ /Q F0! (e, 1) dx - T, fzi(1)

< / FG) — Fa(0)] |wi e 1)] dx < § ]|
Bs(zi(t))

and the statement follows. O
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