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Summary (English) 

Increased fibroblast growth factor 10 (Fgf10) expression in vivo and administration of 

exogenous FGF7 recombinant protein enhance lung repair due to bleomycin injury by sending 

survival signals to lung epithelial cells via tyrosine kinase fibroblast growth factor receptor 2b 

(Fgfr2b). Given the prophylactic effects of FGF7 and therapeutic effects of FGF10 during 

bleomycin injury in mice, it was hypothesized that activation of the Fgfr2b endogenous pathway is 

critical for lung repair after bleomycin injury in mice. Furthermore, as new studies for the 

treatment of Idiopathic Pulmonary Fibrosis (IPF) have begun to target tyrosine kinases, the aim 

was to 1) assess the levels of FGF10 and FGF7 signaling in end-stage IPF lungs, 2) assess the 

level of recruitment of the endogenous Fgfr2b pathway after bleomycin lung injury in mice, and 3) 

assess the effect of FGF10 treatment on IPF fibroblasts in vitro.  

Compared to donor, non-IPF controls, FGF7 and FGF10 transcripts were increased in 

end-stage IPF patient lung homogenates. However, receptors as well as downstream targets of 

FGF7 and 10 were significantly decreased. In contrast, wild type mice undergoing spontaneous 

repair after bleomycin injury, expressed Fgf10 and downstream targets from 14 days post injury, 

indicating potential recruitment of this pathway during repair. Using three different genetic mouse 

lines congenitally deficient in endogenous Fgfr2b signaling, we found that Fgf10 deficient animals 

incurred the highest trend towards increased fibrosis. Surprisingly, in a fourth mouse line allowing 

for induction of a soluble, dominant negative Fgfr2b receptor, induced mice did not show 

increased bleomycin-induced fibrosis compared to non-induced controls.  Thus FGFR2b ligands 

signaling seemed to be recruited in a model of spontaneous repair, and dysregulated in non-

repairing IPF patients. Thus the endogenous FGFR2b pathway may be redundant with other 

repair pathways in mice, as attenuating it did not result in a significant increase in bleomycin-

induced fibrosis.  

IPF fibroblasts responded to FGF10 treatment by decreasing their size, increasing 

proliferation and increasing expression of lipofibroblast markers. In addition, FGF10 inhibited 

transforming growth factor beta (TGF-β) stimulated induction of TGF-β signaling downstream 

target, pSMAD3. Likewise the ability of FGF10 to reduce cell size and inhibit TGF-β signaling in 

IPF fibroblasts, suggests that it could effectively mediate a contractile to synthetic-like phenotype, 

which may be an important step towards UIP lesion repair.   

Taken together, this work highlights and discusses 1) the attenuation of FGFR2b ligand 

signaling in end-stage IPF, 2) FGFR2b signaling recruitment in wild type mice during bleomycin 

injury, yet redundant role in injury, and 3) the potential therapeutic effect of FGF10 given the 

effects of treatment on IPF fibroblasts.  
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Zusammenfassung (Deutsch) 

Eine in-vivo erhöhte Expression von Fibroblasten-Wachstumsfaktor 10 (FGF10) und 
exogene  Verabreichung von rekombinanten FGF7 Protein fördert über Signalwege des 
Tyrosinkinase-abhängigen Fibroblastenwachstumsfaktor-Rezeptors r2b (Fgfr2b) an das 
Lungenepithel die Lungenregeneration nach Bleomycin-induzierter Lungenfibrose. Angesichts 
der prophylaktischen Wirkungen von FGF7 und therapeutischen Wirkungen von FGF10 für die 
Bleomycin-induzierte Lungenschädigung im Mausmodell, lautet unsere Hypothese, dass die 
Aktivierung des endogenen FGFR2b Signalweges in diesem Zusammenhang eine kritische Rolle 
spielt. Darüber hinaus, wird in neuen klinischen Studien zur Behandlung von idiopathischer 
pulmonaler Fibrose (IPF) die Blockade von Tyrosin-Kinasen untersucht. Die vorliegende Arbeit 
hat folgendes zum Ziel: 1) Das Ausmaß der pulmonalen FGF10 und FGF7 Signalwege im 
Endstadium von IPF zu beurteilen, 2) Das Ausmaß der Aktivierung des endogenem FGFR2b 
Signalweges nach Bleomycin-induzierte Lungenschädigung bei Mäusen zu evaluieren und 3) 
Den Effekt der Behandlung von IPF Fibroblasten mit FGF10 in-vitro zu untersuchen. 
 

Im Vergleich zum Spender (Kontrollgruppe ohne IPF), waren FGF7 und FGF10 
Transkripte in Lungenhomogenaten von IPF Patienten im Endstadium erhöht. Allerdings waren 
die Expression der Rezeptoren sowie nachgeschaltete Signalwege von FGF7 und 10 signifikant 
erniedrigt. Im Gegensatz dazu wiesen Wildtyp-Mäuse, die ab Tag 14 nach Bleomycin-induzierte 
Lungenschädigung eine spontane Lungenregeneration zeigten, eine Aktivierung des FGF10 
Signalweges auf. Dies weist darauf hin, dass der FGF 10 Signalweg eine potentielle Rolle 
während der Lungenregeneration spielen könnte.  Unter den drei verwendeten verschiedenen 
genetischen Mauslinien mit kongenital reduziertem endogenem FGFR2b Signalweg, stellten wir 
fest, dass die konstitutiv FGF10 defizienten Mäuse den höchsten Trend zur vermehrten 
Fibrosebildung zeigten. Überraschenderweise, zeigte sich in einer vierten transgenen Mauslinie, 
in der die Expression eines dominant negativen FGFR2b Rezeptor induziert werden kann, in der 
Gruppe mit induzierte Blockade des FGFR2B Signalweges im Vergleich zur Kontrollgruppe keine 
vermehrte Fibrosebildung. Schlußfolgern einerseits wird, dass der FGFR2b Signalweg bei der 
spontanen Regeneration  rekrutiert wird und in nicht-regenerierenden IPF-Patienten im 
Endstadium fehlreguliert ist. Andererseits, scheint neben dem endogenen FGFR2b Signalweg 
andere regenerative Signalwege zu existieren, da eine Blockade dieser nicht zur vermehrten 
Fibrosebildung führte. Obwohl es kann mit anderen Reparaturwege bei Mäusen redundant sein, 
als mildernde es nicht in einem deutlichen Anstieg der Bleomycin-induzierten Fibrose führen. IPF 
Fibroblasten reagierten auf die in-vitro FGF10 Behandlung mit eine Reduktion der Zellgröße 
sowei eine Erhöhung der Proliferation und der Expression von Marker für Lipofibroblasten. 
Darüber hinaus führte die in-vitro Behandlung mit FGF10 zur Hemmung des TGF-ß 
(transformierenden Wachstumsfaktor beta ) Signalweges, was an der Reduktion des  
nachgeschalteten Signalproteins pSMAD3 gezeigt werden konnte. 

 
Die Fähigkeit von FGF10, die Zellgröße der IPF Fibroblasten zu reduzieren und den 

TGF-β Signalweg zu hemmen, deutet darauf hin, dass FGF10 womöglich in der Lage sein 
könnte, die Veränderungen der Fibroblasten vom kontraktilen zum synthetischen Phänotyp zu 
fördern. Dies stellt ein wichtiger Schritt in der Regeneration der UIP (Usual Interstitial Pneumonia) 
Läsionen dar. Zusammenfassend handelt die vorliegende Arbeit von 1) der Abschächung des 
endogenen FGFR2b Signalweges im Endstadium von IPF Patienten, 2) der Rekrutierung des 
FGFR2b Signalweges im Rahmen der spontanen Regeneration nach Bleomycin-induzierter 
Lungenschädigung bei Wildtyp-Mäusen und 3) der potentiellen therapeutisch Wirkung von 
FGF10 auf der Grundlage der in-vitro Daten an IPF Fibroblasten.
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Part 1. Introduction 

         1.1 FGF signaling in the context of the lung 

1.1.1 Discovery and categorization of FGF ligands 

 The mitogenic activity of “growth” factors was first observed by treating 

connective tissue with “tissue juices” extracted from various animals and organs 

in the early 1900’s. The aim of these studies was to improve suture healing after 

surgeries. “If the factors that bring about the multiplication of cells and the growth 

of tissues were discovered, it would perhaps become possible to activate 

artificially the processes of repair,” wrote surgeon and Nobel prize winner for 

physiology, Alexis Carrel in 1912 in the Journal of Experimental Medicine (Carrel, 

1913). He observed that while “embryo juice” had the most “activating power” on 

the density and outgrowth of chicken embryo heart explants, “tissue juice” 

extracts from different organs also improved cultures with variable efficiencies. 

Later, in the 1930s, experiments were performed in order to identify an organ in 

adult fowl whose “tissue juice” had the most potent effect on periosteal fibroblasts 

(Trowell and Willmer, 1938). Brain extracts contained the most potent growth 

promoting properties, followed by thyroid, testis, ovaries, bone marrow, liver, 

kidney, and muscle extracts. Following this seminal observation, scientists 

worked to identify and isolate these potent factors. Finally, in the 1970’s and 80’s, 

the first two fibroblast growth factor (FGF) ligands were isolated from bovine 

brain and pituitary gland respectively: “acidic” FGF (FGF1) and “basic” FGF 

(FGF2) (Böhlen et al., 1985; Gospodarowicz, 1975). Thus the name “fibroblast 

growth factor” came from the observation that in vitro, FGF1 and 2 could induce 

the proliferation of fibroblasts. Since then, FGFs have been identified not only in 

vertebrates and invertebrates (Burdine et al., 1998) but even in the genome of 

viruses (Popovici et al., 2005). Fgf-like sequences have not however been found 

in unicellular organisms such as Escherichia coli or Saccharomyces cerevisiae.  

 In mammals, Fgfs 1-10 and 16-23, have been studied and characterized. 

According to phylogeny and sequence homology, they have been clustered into 

seven subfamilies (Fig 1A): Fgf-1/2, Fgf-3/7/10/22, Fgf-4/5/6, Fgf-8/17/18, Fgf-

11/12/13/14, Fgf-9/16/20, and Fgf-15/21/23 (Itoh and Ornitz, 2008). The 
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hormone-like (hFgfs); Fgf15 in mouse and its ortholog FGF21 in human, as well 

as Fgf23 (mouse and human), require cofactors (Klothos) to bind and activate 

FGF receptors and control important metabolic functions (Adams et al., 2012; 

Kuro-o, 2008). The intracrine FGFs, or (iFgfs) (Fgf-11/12/13/14), are not secreted 

and do not require interaction with receptors for signaling, but rather signal via 

voltage gated sodium channels (Wang et al., 2011). Lastly, FGFs belonging to 

the following subfamilies: Fgf-1/2/5, Fgf-3/4/6, Fgf-7/10/22, Fgf-8/17/18 and Fgf-

9/16/20, are between 20 – 30 kDA in size, glycosylated, secreted, form dimers, 

and signal in a paracrine manner via FGF receptors (FGFRs) in the presence of 

heparan sulfate proteoglycans (HSPGs). Interestingly, the coding regions of iFgfs 

are divided by four introns, while the coding regions of canonical Fgfs and hFgfs 

are divided by two introns; all of whose core locations are highly conserved. 

Many studies suggest that introns are relics of primordial genes (de Roos, 2007; 

Rogozin et al., 2005) thus indicating that the iFgf subfamily is the likely ancestor 

of canonical Fgf ligand families (Fig 1B).  

 This project is focused on the Fgf7 canonical subfamily, whose ligands 

signal in a paracrine fashion via receptors FGFR1 and FGFR2 (Itoh and Ornitz, 

2011). The gene predecessors of the canonical Fgf subfamilies and hFgfs were 

derived from an Fgf13-like ancestral gene via gene duplication followed by 

translocation and accompanied by the loss of two introns. In addition, canonical 

Fgf4 ligand acquired a cleavable amino terminal signal sequence in the first 

exon. Given that Fgf4 is required at the earliest stages of development, an Fgf4-

like gene may be the ancestor for all Fgf ligands in the canonical subfamilies. 

Taken together, a model for the evolution of the Fgf7 subfamily was created (Fig 

1B): First, an Fgf13-like gene gave rise to Fgf4. Later, Fgf5, Fgf8, Fgf9, and 

Fgf10 were generated from an Fgf4-like gene via gene duplications and 

translocations with conserved secreted signal sequences and intron positions 

(Itoh and Ornitz, 2008). An Fgf10-like gene is thus thought to be the ancestor of 

other members of the Fgf-7 family (Fgf-7/10/22). Notably, although Fgf3 is a 

member of the Fgf7 subfamily according to phylogenetic and functional analysis, 

gene location analysis indicates that Fgf3 is linked rather to Fgf4 and Fgf6.  
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Figure 1. Evolutionary relationships within the mouse Fgf gene family and C. 
intestinalis Fgf11/12/13/14. 

(A) Ancestral relationships and subfamilies of FGF genes. Black circle indicates 

family of interest. (B) Functional evolutionary history of ancestors of the mouse Fgf 

gene family. Black rectangle indicates family of interest. 

Figure adapted from (Itoh and Ornitz, 2008). 
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1.1.2 General characteristics of FGF/FGFR structure and signaling 

  Each of the four FGFRs encode up to 20 exons and is comprised of an 

extracellular region composed of two to three immunoglobulin-like (Ig) domains, 

a single pass transmembrane segment, and an intracellular tyrosine kinase 

domain (Johnson and Williams, 1993). Tissue specific and ligand specific 

signaling is achieved by alternative splicing of exons 7 – 9 in the C-terminal end 

which encode the third Ig extracellular domain of FGFRs-1, -2, and -3. These 

receptors are spliced into isoforms “IIIb” and “IIIc”; “III” referring to the third IgG 

domain (Fig 2 A,B). These isoforms allow for both ligand and tissue expression 

specificity (Zhang et al., 2006).  

 FGF ligands bind two at a time leading to receptor dimerization in the 

presence of heparan sulfate proteoglycans (HSPG). This results in the 

transphosphorylation of the dimerized receptors and activation of the intracellular 

tyrosine kinase domain of the receptor. FGFR signaling is largely mediated 

through a single membrane-bound tyrosine phosphorylated docking protein, FGF 

receptor substrate 2 alpha (FRS2α). When FRS2α tyrosite sites are 

phosphorylated (pTyr), it recruits four molecules of the adaptor protein Grb2 and 

two molecules of the protein tyrosine phosphatase Shp2 (Gotoh, 2008; Hadari et 

al., 2001; Zhang et al., 2008). Activated cytoplasmic intracellular signaling 

cascades include: Ras/MAPK, PI3K/Akt, and PLCγ/PKC. These pathways 

regulate the transcription of a variety of target genes that control functions such 

as cell proliferation, migration, differentiation, or survival (Fig 2B).  
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Figure 2. FGFR splicing isoforms confer FGF ligand and therefore 

temporal and tissue specificity for the activation of PI3K, PLCγ and 

Ras/MAPK signaling pathways. 

(A) Based on in vitro studies using BaF3 cells, FGF7 and FGF10 signal mainly 

via FGFR2b, but also have some affinity to FGFR1b. (B) FGFs bind to FGFRs in 

the presence of HSPGs stimulating receptor phosphorylation and the binding of 

the FGF receptor docking protein FRS2α. FRS2α phosphorylation recruits Grb2 

and Gab1 adaptor proteins, as well as the protein tyrosine phosphatase Shp2, 

and directs signaling to either PI3K or Ras-MAPK pathways. Activation of the 

PLCγ pathway stimulates PKC. These pathways control a variety of cellular 

behaviors involved in development and repair. 

Figure adapted from (Wagner and Siddiqui, 2007; Zhang et al., 2006). 
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1.1.3 FGF7 signaling and regulation 

 FGF7, otherwise known as keratinocyte growth factor (KGF), binds with 

high affinity and exclusively to FGFR2-IIIb (Cheon et al., 1994; Mason et al., 

1994). While FGF7 shows potent mitogenic activity on epithelial cells, as FGFR2-

IIIb is expressed exclusively on epithelial cells, no corresponding activity on 

fibroblasts, endothelial cells, melanocytes, or other non-epithelial targets of FGF 

action have been observed (Aaronson et al., 1991). In addition to high receptor 

specificity, a precise conformation of HSPGs with specific charge densities 

between stromal and epithelial cells in the ECM, are also necessary in order for 

FGFR2-IIIb to access stromal-derived FGF7 (Luo et al., 2006a; Luo et al., 

2006b). In vitro studies showed that FGF7 induced activation of FGFR2-IIIb, 

elicited tyrosine phosphorylation not only of FRS2α, but also of the insulin 

receptor substrate 4 (IRS4), the canonical extracellular signal regulated kinase 2 

(ERK2, MAPK2), and cyclin-dependent protein kinase (CDK2) (Luo et al., 2009).   

 In the lung, FGF7 plays an important role in mediating the proliferation, 

migration and differentiation of AEC2 cells (Deterding et al., 1996). Treatment of 

isolated adult lung type II cells (AEC2) with FGF7 increases expression of the 

surfactant-associated proteins SP-A and SP-B, with no effect on SP-C mRNA 

expression (Sugahara et al., 1995). In addition it has been shown to regulate fluid 

balance in the fetal lung (Zhou et al., 1996) possibly via up-regulation of 

aquaporin-5 (AQP5) expression, an epithelial water channel (Tichelaar, 2000).  

Interestingly, FGF7 also stimulates lipogenesis in rat AEC2 cells by inducing 

expression of lipogenic enzymes and transport proteins regulated by transcription 

factors CCAAT/enhancer-binding protein (C/EBP) isoforms and sterol regulatory 

element-binding proteins (SREBP), but not peroxisome proliferation activator 

receptor gamma (PPARγ). Notably, FGF7 induces fatty acid synthase, stearoyl-

CoA desaturase-1 (SCD-1), which activates fatty acid synthesis in AEC2 cells 

(Mason et al., 2003). 

 Regulation of FGF7 by lung fibroblasts is poorly characterized. However, 

inflammatory mediators are known activators, including interleukin 1 beta (IL-1β) 

which appears to be the most potent cytokine inducer of FGF7 expression in 
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fibroblasts (Chedid et al., 1994; Li and Tseng, 1997; Marchand-Adam et al., 

2005). The stimulation of FGF7 expression by IL-1β and to a lesser extent by 

other cytokines such as IL-6, transforming growth factor alpha (TGFα), and 

platelet-derived growth factor (PDGF) may be the mechanism by which FGF7 is 

induced during inflammation, where it has been shown to promote re-

epithelialization and wound healing.  

  

1.1.4 FGF10 signaling and regulation 

 While both FGF7 and FGF10 bind with high affinity to FGFR2-IIIb (Igarashi, 

1998), they may induce different target genes in the lung and thereby play 

different functional roles during development and homeostasis. Regulation of 

Fgf10 however, is only partly understood during lung development and still less 

characterized in the adult lung.  

 During development, Fgf10 is expressed in the distal mesenchyme where it 

induces budding and outgrowth of early lung endoderm (Bellusci et al., 1997) and 

induces chemotaxis in distal lung epithelium (Weaver et al., 2000). While Fgf7 

knockouts are viable (De Moerlooze et al., 2000; Guo et al., 1996; Sekine et al., 

1999), absence of Fgf10 or Fgfr2b results in complete lung agenesis. Fgf10 

expression peaks at E18.5 (Bellusci et al., 1997), and blocking FGF10 with a 

soluble dominant negative receptor from E14.5, results in decreased lung 

morphogenesis and emphysema (Hokuto et al., 2003). In addition, Fgf10 

hypomorphs display vascular defects associated with decreased expression of 

vascular markers Pecam and Laminin, a reduction of WNT signaling, as well as 

significant lung hypoplasia (Ramasamy et al., 2007). These results demonstrate 

that a threshold of Fgf10 is required for the formation and maintenance of 

multiple mesenchymal and epithelial cell progenitor populations in the lung. Also, 

like FGF7, O-sulfated groups in heparin sulfates were found to be critical for 

FGF10 signaling activation in the epithelium during lung bud formation (Izvolsky 

et al., 2003). 

 Known negative regulators of FGF10 during lung development include 

TGFβ (Lebeche et al., 1999), SHH (Bellusci et al., 1997) and BMP4 (Weaver et 
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al., 2000). Positive regulators include FGF9 (De Langhe et al., 2006; del Moral et 

al., 2006) which has been shown to upregulate Fgf10 expression likely via 

Tbx4/5 as well as WNT2 (Goss et al., 2011). In order to identify early lung 

specific, epithelial targets of FGF10 signaling, mesenchyme free E11.5 primary 

epithelial lung cultures were treated with FGF10 and a DNA microarray followed 

by in situ hybridization was performed (Lü et al., 2005). This analyses revealed 

upregulation of genes associated with cell rearrangement and migration, 

inflammatory processes, lipid metabolism as well as BMP and WNT receptors 

(Lü et al., 2005).  

 In addition to FGFR2-IIIb, FGF10 also binds to FGFR1-IIIb (Luo et al., 

1998). This may be the mechanism by which FGF10 maintains lipofibroblast 

progenitors in the lung, as the FGFR1-IIIb isoform is expressed on cells of both 

epithelial and mesenchymal cell lineages (Beer, 2000). Interestingly, FGF10 also 

partly contributes to the expression of C/ebpβ through an autocrine (possibly via 

FGFR1-IIIb) or paracrine (FGFR2-IIIb) mechanism (Sakaue et al., 2002). In vivo 

data supports this finding, as Fgf10-/- mouse embryos lack white adipose tissue 

(Asaki et al., 2004b).  

 While FGFR2b ligands have been shown to be critical for the maintenance 

of ameloblast progenitors which are required for the regeneration of adult mouse 

incisors (Parsa et al., 2010), whether FGF10 signaling is required for the 

preservation or maintenance of lung epithelium or mesenchymal progenitors 

during adult lung homeostasis is unknown. However, FGF10 has been shown to 

be an important mediator of lung repair after injury. In mice injured with 

naphthalene, WNT7b was shown to activate Fgf10 after injury (Volckaert et al., 

2011). In this case, in order to stimulate re-epithelialization, FGF10 coming from 

smooth muscle actin positive (SMA+) cells signaled to variant Clara cells; a 

putative epithelial progenitor cell that is SPC+; CC10+; cytochrome p450 

negative, and therefore immune to naphthalene. Moreover, epithelial specific 

over-expression of Fgf10 was found to be protective against bleomycin induced 

fibrosis partly by inhibiting TGFβ and by triggering an increase in 

CD41+CD25+Foxp31+ T-regulatory cells (Gupte et al., 2009).  
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 Recently, more insight into the difference between FGF7/FGFR2b and 

FGF10/FGFR2b downstream targets and signaling events have been discovered 

(Francavilla et. al. in press Molecular Cell 2013). This study showed that FGF10 

specifically induces Y734 phosphorylation of FGFR2-IIIb which recruits p85; a 

regulatory subunit of PI3K. p85 functions as a scaffold protein for the adaptor 

protein: SH3 domain binding protein 4 (SH3BP4). This complex functions as a 

molecular switch for receptor recycling. Thus, the FGF10/FGFR2b signal 

stimulates receptor recycling and prolonged signaling resulting in cell migration, 

while FGF7/FGFR2b signaling results in transient signaling, receptor degradation 

and proliferation.   

 

1.1.5 FGFR2-IIIb signaling and regulation 

 FGFR2-IIIb is expressed by differentiated epithelial cells in a variety of 

tissues where it functions to maintain epithelial cell homeostasis. It is also under 

stringent co-factor control (HSPGs) (Finch et al., 1989). While FGFR2-IIIb 

signaling supports epithelial cell proliferation, it is self-limited and often occurs in 

parallel with differentiation (Belleudi et al., 2011; Matsubara et al., 1998; Yan et 

al., 1993). Moreover, loss of stromal-epithelial compartmental homeostasis 

concurrent with loss of FGFR2-IIIb has been associated with malignancy (Wang 

et al., 2004). Furthermore, exon switching from the IIIb variant of FGFR2 to the 

IIIc variant was accompanied with malignant progression in prostate cancer (Jin 

et al., 2003). Interestingly, down-regulation of FGFR2-IIIb was associated with 

malignant transformation in keratinocytes (Finch and Rubin, 2006) while re-

expression of FGFR2-IIIb resulted in growth inhibition and induction of 

differentiation in prostate (Matsubara et al., 1998), bladder (Bernard-Pierrot et al., 

2004; Ricol et al., 1999), and human salivary gland carcinoma cells (Drugan et 

al., 1998). While normal FGFR2-IIIb signaling may act as a “tumor suppressor”, 

mutations associated with increases, or aberrant signaling (for example FGFR2-

IIIb expression in the mesenchyme) have been implicated in the pathogenesis of 

gastric, lung, breast, ovarian cancer and endometrial cancer (Katoh, 2008). 
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Sprouty 2 (SPRY2) is an epithelial specific, negative regulator of FGFRs. 

SPRY2 promoter contains ETS-1 and CREB binding elements (Ding et al., 

2003) indicating it is an ERK1/2 cascade target. Growth factor stimulation of 

FGFR2-IIIb results in SRC kinases binding to FRS2 (Li et al., 2004) which in 

turn results in the phosphorylation of several tyrosines on SPRY2 (Mason et al., 

2004; Rubin et al., 2005), thus SRC kinases also play a key role in controlling 

FGFR signaling dynamics (Sandilands et al., 2007). Furthermore, Etv4 is also 

an epithelial transcriptional target of FGFR2-IIIb signaling (Firnberg and 

Neubüser, 2002; Liu et al., 2003).  

 

1.1.6 FGFR1-IIIb signaling and regulation 

 The highest levels of FGFR1-IIIb expression are found in sebaceous glands 

and in the neurons of the hippocampus and the cerebellum. However, it is also 

expressed in the kidney, lung, skeletal muscle, heart, testis, and intestine (Beer, 

2000). Furthermore, FGFR1-IIIb is expressed in the pancreas where it can 

modulate functions that regulate cell proliferation, adhesion, and movement (Liu 

et al., 2007b). FGFR1-IIIb binds FGF1 with highest affinity, and has a lower 

relative affinity to FGF10 (Beer et al., 2000; Zhang et al., 2006). Mice carrying an 

in-frame stop codon in the IIIb exon of Fgfr1, were viable and fertile (Partanen et 

al., 1998). Like the FGFR2-IIIb isoform, FGFR1-IIIb also showed tumor-

suppressor qualities; for example re-expression of this isoform in pancreatic 

cancer cells inhibited their malignant phenotype (Liu et al., 2007a).  

 In the lung, FGFR1-IIIb expression has been detected in whole lung 

homogenates and rat lung fibroblasts cell lines (Rehan and Bellusci unpublished 

data). Thus FGF10 may signal in an autocrine fashion to mesenchymal derived 

cells such as lipofibroblasts in the lung in order to promote surfactant 

homeostasis or repair after injury. Spry4 is also a mesenchymal target and 

negative regulator of FGF signaling in the mesenchyme (de Maximy et al., 1999). 

Like SPRY2, it blocks FGF signaling by inhibiting the MAPK pathway.  
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   FGF10 FGF7 FGFR1-IIIb FGFR2-IIIb 

Embryonic 
Development 

distal tips of 
mesenchyme from 
E9.51 , PBSMCs5 

lipofibroblast 
progenitors8 

through-out 
mesenchyme 
from E14.52 

 
unknown; 

mutation is not 
lethal3; putative 

epithelium3 
      

epithelium 
from E9.54 

Alveologenesis 
lipofibroblast 
progenitors8  

lung 
fibroblasts, 
“stromal” 

cells6 

putative 
lipofibroblasts 
progenitors12 

epithelial 
progenitors1  

Adult Lung 

 
PBSMCs after 

epithelial injury1 

stromal cells11  
lipofibroblasts12 

 

 
lung 

fibroblasts, 
“stromal” 

cells6 

 
putative: 

lipofibroblasts12 
basal 

respiratory 
cells9 

 
respiratory 
epithelium9, 

variant 
Clara 

cells10,* 

 

Table 1. Summary of FGF10, FGF7, FGFR1-IIIb, FGFR2-IIIb expression 
patterns in the lung 
(Finch et al., 1995)2 (Partanen et al., 1998)3 (Peters et al., 1992)4 (Mailleux et 
al., 2005)5 (Chelly et al., 1999)6  (El Agha et al., 2012)7,8  (Hughes, 1997)9 

(Volckaert et al., 2011)10  (El  Agha et al., 2013 in revision)11 (Bellusci Lab, 
Unpublished Data)12  
 
*variant Clara cells: cytochrome P450 negative, CC10+;SPC+; putative stem 
cells of bronchio-alveolar duct junction (BADJ) 
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1.2 The Human Adult Lung 

1.2.1 Airway anatomy and cell types of the adult human lung  

 As in the case of other vertebrates, the human lung is the primary organ of 

respiration, or the exchange of carbon dioxide for oxygen. The human lung is 

divided into two asymmetrical sides: the left lung is made up of two lobes, and 

the right lung, three. Air enters through the mouth or nose, travels through the 

oropharynx or nasopharynx; and continues to the larynx and trachea. After the 

trachea, it then enters a progressively subdividing system of bronchi and 

bronchioles. Finally, it reaches the alveoli where oxygen passes into the 

bloodstream and where carbon dioxide is released from the bloodstream into the 

alveolar compartments and exhaled. Lung structure can thus be divided into 

“conductive” airways and “respiratory” airways. The conductive airway assures 

that air is delivered to the “respiratory airways” where gas exchange takes place. 

The first main structure of the conducting airway is the trachea. The trachea, or 

windpipe, is a ringed-cartilaginous tube lined with smooth, pseudostratified, 

columnar epithelial cells and mucin secreting goblet cells, all of which are 

anchored to the basement membrane by basal cells. The trachea then divides 

into the two main bronchi, which enter either, the right or left lobe. The right main 

bronchus divides into three lobar bronchi, the right bronchi into two lobar bronchi. 

These lobular bronchae are then segmented into still narrower airways which 

segment further into bronchioles. Bronchioles lack both cartilage and mucin 

producing cells and are the last structures to comprise the conducting airway. A 

mixed population of ciliated and non-ciliated epithelial cells line the conducting 

airways of mice and humans. The non-ciliated cells are Clara cells characterized 

by apical protrusions that secrete Clara cell secretory protein (CCSP), which has 

antioxidant and surfactant-like immune-modulatory properties. In healthy 

humans, there are few Clara cells in the large conducting airways, but their 

numbers progressively increase in more distal airways (Coppens et al., 2007) . 

   The respiratory airway begins where the bronchioles end. The bronchioles 

terminate into alveolar sacs; the structure where they meet, the alveolar ducts, 

marks the beginning of the respiratory airway, as gas exchange takes place here. 
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Each alveolar sac is wrapped in a fine mesh of capillaries covering about 70% of 

its area and each lung contains about 300 million alveoli. Alveoli are comprised 

primarily of Type I pneumocytes (simple squamous alveolar cells), which are also 

called alveolar epithelial cells (AECI). AECIs account for 95% of alveolar cells. 

They are the site of gas exchange, they provide structural support for the alveoli, 

help manage lung fluid homeostasis, have very little mitotic activity, and are very 

susceptible to injury (Kathuria et al., 2007). Partial pressure differences allow 

oxygen (in the alveoli) and carbon dioxide (in the red blood cells) to exchange 

places via passive diffusion (Maina and West, 2005). Type II pneumocytes 

(AECII) only account for approximately 5% of alveolar cells. However, they are 

mitotically active, they secrete and are able to alter surfactant composition, they 

participate in both the immune and inflammatory responses, and they can also 

proliferate and transform into AECIs to repair alveolar walls (Wang, Manzer, 

McConville, & Mason, 2006).    

 While epithelial cells make up the majority of the respiratory airways, they 

could not maintain their shape during the cycles of alveolar expansion and 

collapse during respiration without support by interstitial fibroblasts or “stromal” 

cells. Several different fibroblasts are present in the adult lung. Alveolar 

myofibroblasts, sometimes called alveolar smooth muscle cells, assist in 

extracellular matrix (ECM) production and support alveolar structure. 

Lipofibroblasts are distinguished by the presence of large, cytoplasmic lipid 

droplets, and assist AECII cells with surfactant production particularly during 

alveologenesis (Vaccaro and Brody, 1978). Surfactant proteins are small, 

hydrophobic and hydrophilic proteins, secreted by AECIIs, which are crucial for 

both the establishment and maintenance of lung alveolar structure and function.  

  The lung parenchyma is defined as the tissues and spaces that surround 

the air sacs of the lung. Cells such as fibroblasts, monocytes, and macrophages 

fill the delicate space between the basement membranes of AECI and AECII 

cells; the area known as the interstitium, and contribute to the circulatory, 

immune and structural support system of the lung.  
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Figure 3. Major cell types of the human lung 

The lung is composed of the conducting and respiratory airways each of which 

is composed of special cell types. The conducting airways are composed of 

basal, ciliated, Clara, intermediate and goblet cells, as well as differentiating or 

‘intermediate’ cells. The respiratory airways are mainly composed of AEC1 cells, 

but also include AEC2, lipofibroblast, myofibroblasts, and alveolar macrophages. 

Not featured here: other immune cells, as well as endothelial cells composing 

the capillaries that line the alveolar sacs, and neuroendocrine cells.  

 

Figure adapted from (Bérubé et al., 2010) 
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 70 square meters of alveolar membrane space makes the lung by far the 

largest surface of the human body in contact with the outside world. Because the 

lung surface is so vulnerable to foreign agents breathed in from the environment; 

it has evolved a first line of defense against the detection and elimination of 

bacteria and viruses, otherwise called the “innate immunity”. Alveolar 

macrophages are part of the innate immunity as they recognize microbial or viral 

motifs on the organism’s surface. Intruders are opsonized or marked by 

macrophages and subsequently discarded by phagocytosis. Even the surfactant 

proteins, SP-A and SP-D, assist in the clearance of pathogens by opsonizing the 

target for eradication by leukocytes. In addition, humans have also evolved an 

“adaptive immunity”, which responds to the innate signals by mounting antigen 

specific antibodies against both microbes and viruses. 

 

 

     1.3 Intersection of the lung and fibroblast growth factors  

 1.3.1 FGF mutations can result in abnormal lung phenotypes 

 Given that FGFs are so important for the normal embryonic development of 

a wide range of tissues, it’s not surprising that a single germ line mutation in 

either FGF receptor or ligand results in the manifestation of genetic syndromes. 

Genetic disorders or “syndromes” refer to complex clinical pathologies that have 

more than one identifying feature or symptom resulting from one or more genetic 

defects. There are many known heritable and spontaneous genetic mutations in 

FGF genes that have adverse effects on just about every organs development. 

Germline loss and gain of function mutations in FGF10, FGFR1, and FGFR2b 

result in improper signaling during embryonic development and manifest as 

syndromes. In addition, SNPs in FGF7 have been associated with COPD. These 

mutations and their effects on the respiratory system are summarized in Table 2. 

 Gain of function (g.o.f.) mutations in FGFR1 (Pfeiffer 1, Osteo-glophonic 

dysplasia) and FGFR2 (Apert, Crouzon, Pfeiffer 1,2, and 3, and Beare-

Stevenson) occur more frequently than loss of function mutations and can result 

in the premature fusion of the skull or digits; craniosynostosis and syndactyly 
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respectively (Albuisson et al., 2005; Dutt et al., 2011; Ibrahimi et al., 2004; Katoh, 

2008; Meyers et al., 1996; Seo et al., 2012; Snyder-Warwick et al., 2010; Vargas 

et al., 2003; Wilkie et al., 1995). This affects the individual’s ability to see, hear, 

use their hands and feet, and occasionally has a detrimental effect on 

intelligence. Mice that carry a typical Apert point mutation Fgfr2c+/S252W (Wilkie et 

al., 1995), or a splicing mutation that causes Fgfr2c g.o.f (Hajihosseini et al., 

2001), in addition to mice hemizygous for Fgfr2c (Fgfr2c+/Δ) (Hajihosseini et al., 

2009) exhibit an Apert syndrome-like phenotype including cranial synostosis, 

digit syndactyly and a tracheal sleeve. Moreover, while humans with Apert 

Syndrome may exhibit absence of interlobular fissures, mice lack the entire 

medial and accessory lobes of the lung due to developmental patterning defects. 

In the Apert’s mouse, it was found that the b isoform of FGFR2, which is normally 

expressed strictly in the epithelium, was ectopically expressed in the 

mesenchyme. During development, ectopic expression of FGFR2b in the 

mesenchyme, led to mesenchymal autocrine FGF10 signaling; including in the 

trachea progenitor cells, which resulted in a tracheal sleeve phenotype. 

Interestingly, the Apert’s syndrome-like phenotype of the Fgfr2c+/Δ mice was 

rescued when these mice were crossed with Fgf10+/- mice (De Langhe et al., 

2006; Hajihosseini et al., 2009; Tiozzo et al., 2009).    

 In terms of airway abnormalities, g.o.f. mutations in both FGFR1 and 

FGFR2 can cause the premature fusion of the palatal shelves during 

development resulting in smaller naso-pharyngeal cavities or a deviated nasal 

septum. In addition, both tracheal and bronchial development is affected. Instead 

of cartilaginous rings, the trachea is sometimes incased in a continuous 

cartilaginous sleeve, and the bronchial tree is hypoplastic or angulated. A small 

or malformed, upper airway architecture can cause chronic upper airway 

obstruction; especially during sleep which causes apnea, cyanosis, right 

ventricular hypertrophy and a predisposition to pneumonia. In addition, a l.o.f. 

mutation in FGFR1 can result in Kallmann syndrome, two of the manifestations of 

which are cleft palate and the inability to smell (anosmia) (Albuisson et al., 2005). 

 To date, only l.o.f. mutations for FGF10 have been reported. These 
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mutations can result in non-syndromic cleft lip or palate, which can usually be 

fixed with surgery (Riley et al., 2007). Depending on the severity of the mutation, 

aplasia of lacrimal and salivary glands (ALSG), or the more severe form, 

lacrimal-auricular-dental-digital, (LADD) can also occur (Entesarian et al., 2007; 

Francannet et al., 1994). Some patients with LADD develop hypoplasia of the left 

lung vasculature and mild hypoplasia of the left pulmonary artery. Interestingly, 

FGF10 haplo-insufficient patients showed a non-reversible airway obstruction 

when compared with both predicted reference values and siblings with normal 

FGF10 alleles. Significantly reduced forced expiratory volume (FEV1) (68% of 

predicted) and FEV1/IVC (0.6; normally above 0.70–0.75) were consistent with 

obstructive lung disease. Although individuals had a normal total lung capacity 

(TLC), they had slightly reduced inspiratory vital capacity (IVC) (83% of 

predicted). The degree of chronic obstructive pulmonary disease (COPD) was 

classified as moderate or stage II COPD (FEV1/IVC < lower limit of normal (LLN) 

and 60% ≤FEV1 <69% of predicted). Thus far, these findings provide the most 

direct connection between FGF10 and human lung function (Klar et al., 2011). 

Interestingly, a recent study showed that SNPs correlating with both increased or 

decreased expression of FGF7 was also associated with the development of 

COPD (Brehm et al., 2011; Xu et al., 2012). 

 In summary, loss of function mutations in FGF10 and gain of function in 

FGFR2b, the quintessential ligand/receptor pair for lung development, leads to 

respiratory organ dysfunction and susceptibility to respiratory disease. In 

addition, an isoform switch from FGFR2-IIIb expression to FGFR2-IIIc in 

epithelial cells has been implicated in lung cancers (Dutt et al., 2011).  
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Table 2. FGFR1/2 and FGF7/10 mutations resulting in syndromes with 
respiratory phenotype or lung cancer 

 

 

 

            

Gene/ 
location  Syndrome Type of 

mutation 

amino 
acids/genetic 

phenotype  
Airway Phenotype Citation 

            

FGFR1/ 
8p12  

Pfeiffer type 1  g.o.f. P252R 
upper airway obstruction ,tracheal 
sleeve, hypoplastic bronchial tree, 

deviated nasal septum 

Moore 1995, 
Imbrami 2004, 

Hockstein 2004, 
Gupta 2011  

Kallmann 
l.o.f.;       

autosomal 
dominant 

C277Y, V607M, 
R622X, W666R 

>40  
anosmia, cleft palate Dodé 2003  

Osteo-glophonic 
dysplasia  

g.o.f     
autosomal 
dominant 

Y372C 

hypophosphatemia, reduction in 
[calcitriol]-> poor inspiratory effort 
with atelectasis-> predisposed to 

pneumonia.  

White 2005, 
Shankar 2010 

x 
increased 

copy number 
in tumors 

approx. 20% 
increase by FISH non-squamous cell lung cancer Dutt A 2011 

            

FGFR2/ 
10q26  

Apert  g.o.f. P253R, C255G, 
S252W 

tracheal sleeve; also angulated, 
short, stenotic trachea, obstructive 

sleep apnea, cyanosis,  right 
ventricular hypertrophy 

Cohen 1992, 
Imbrami 2004 

Crouzon  
g.o.f     

autosomal 
dominant 

Y105C, S252L, 
S267P, Y281C, 
Q289P,W290G, 
W290R, L292E, 

W301C… 

upper airway obstruction, tracheal 
sleeve 

1996 Meyers, 
2011 Robin 

Pfeiffer types 1,2 
and 3 

g.o.f     
autosomal 

dominant for 
1, de novo 

for 2, 3 

S351C, W290C, 
C342R 

upper airway obstruction, tracheal 
sleeve, hypoplastic bronchial tree, 

deviated nasal septum 

Moore 1995, 2011 
Robin 

Beare-Stevenson  g.o.f., de 
novo S372C, Y375C respiratory distress due to upper 

airway obstruction 
Vargas 2003 

Fonesca 2008 

x 

FGFR2b to 
FGFR2c, 

gene amp. 
or missense  

K660E,D283N, 
I380V, R612T  

non-squamous cell lung cancer, lung 
squamous cell carcinoma, 

adenocarcinoma 

Seo 2012, Katoh 
2008 

            

FGF10 
5p13-
p12 

Aplasia of lacrimal 
and salivary 

glands 

l.o.f     
autosomal 
dominant 

G138E, R80S None 2007 Entesarian 

Lacrimal-auricular-
dental-digital 

l.o.f     
autosomal 
dominant 

H207R, C106F 
hypoplasia of the left lung 

vasculature, mild hypoplasia of the 
left pulmonary artery 

1994 Franncannet, 
2007 Entesarian 

non-syndromic 
cleft lip and palate  

l.o.f     
autosomal 
dominant 

S59F none 2007 Riley 

x 
haplo-

insufficiency 

loss of one 
FGF10 allele 

from birth 

chronic obstructive pulmonary 
disease like phenotype Klar 2011 

            
FGF7 

15q15-
q21.1 

x 
increase/ 
decrease 

expression 
SNPs COPD Brehm 2011; 

Xu 2012 



                 Introduction         
 

  19 

1.4 Introduction to interstitial lung diseases 

1.4.1 ILD Overview  

 Interstitial lung diseases (ILDs), or diffuse parenchymal lung diseases 

(DPLDs) are a heterogeneous group of non-neoplastic disorders that result in 

damage to the lung parenchyma (alveolar tissue including respiratory 

bronchioles), due to either fibrosis (scarring) or inflammation. ILDs can have both 

distinct and unknown causes, albeit with overlapping clinical pathologies and 

diverse histopathological signatures, leading to much confusion over the 

histological and clinical terminology. Prognoses for ILD patients range from 

excellent to fatal. ILDs with known etiologies are often treatable, while ILDs with 

unknown causes are not. Therefore it is critical to achieve the utmost diagnostic 

accuracy via a thorough, multi-step differential diagnosis process that spans 

multiple medical disciplines. Thankfully for ILD patients, the combined efforts of 

pulmonologists, radiologists, and pathologists of the American Thoracic Society 

(ATS) and the European Respiratory Society (ERS), have led to an international 

consensus for the accurate categorization of hundreds of ILDs (American 

Thoracic and European Respiratory Society, 2002) 

 Patients suffering from ILDs usually cough and exhibit dyspnea (shortness 

of breath) on exertion. While onset and progression are variable, tachypnea, 

reduced chest expansion, bibasilar end-inspiratory dry crackles, and finger 

clubbing (25 – 50%) are also common. ILD patients exhibiting these clinical 

symptoms will also exhibit a typical histopathological signature in the lung called 

an “interstitial pneumonia” (IP); “interstitial” refers to the “stromal cells” or 

fibroblasts supporting the alveolus, “pneumonia”, is the general term describing 

abnormalities caused either by fibrosis, inflammation or both. While clinical and 

histopathological signs of ILDs are very similar, prognoses vary from treatable to 

palliative.   

 

1.4.2 Idiopathic pulmonary fibrosis (IPF) 

 The most important distinction among IPs is between idiopathic pulmonary 

fibrosis (IPF) (non-treatable) and the other IPs, which include nonspecific 
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interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP), acute 

interstitial pneumonia (AIP), respiratory bronchiololitis-associated interstitial lung 

disease (RB-ILD), desquamative interstitial pneumonia (DIP), and lymphoid 

interstitial pneumonia (LIP) (American Thoracic and European Respiratory 

Society, 2002). IPF, sometimes called cryptogenic fibrosing alveolitis (CFA), is an 

ILD for which there is no known cause and no known treatment. The prevalence 

of IPF is estimated to be between 14 and 42.7 per 100,000; usually presents 

itself during or after the 5th decade of life and is more common in males (Gribbin 

et al., 2006; Olson et al., 2007). The incidence of IPF is 6.8 to 16.3 per 100,000, 

and this figure has been rising for the last 30 years. Diagnosis of IPF is a death 

sentence, with a median survival of 3-5 years after diagnosis and a 5-year 

survival rate of 10-15% (Lewis and Scullion, 2012). Many patients suffer a 

gradual decline in lung function until death. However, unpredictable, acute 

episodes of respiratory failure may also result in death. IPF is the most common 

and most lethal type of idiopathic interstitial pneumonia (IIP); accounting for 

approximately 55% of lung diseases classified as IIPs; thus its histologic pattern 

was named “UIP” or usual interstitial pneumonia.  

 Pulmonologists begin the differential diagnostic for IPF by taking a detailed 

patient history, physical examination, chest x-ray, and finally a spirometry test to 

FEV1 and TLC. With this first batch of tests, it can be determined whether the 

patient has 1) a history of exposure to environmental toxins, drugs, chemicals, or 

tobacco use, family history of lung disease and symptom duration 2) whether the 

radiographs show one of the characteristics of IPs including both typical 

peripheral reticular opacity in peripheral, subpleural and basal areas, as well as 

‘honeycombing’ which is defined by visualization of multiple lucent shadows from 

2 to 10 mm in size on the radiograph, often indicating end-stage IPF, and finally 

3) the lung function test; which can also help to determine the stage of disease 

progression. A pulse oximetry test to check blood oxygen levels, and a six-

minute walk test to assess exercise capacity may also be performed if lung 

function is poor. Patients with unclear radiograph results then undergo a high-

resolution computed tomography (HRCT) scan to see whether patchy, subpleural 
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UIP or honeycombing, together with traction bronchiectasis (irreversible dilation 

of the bronchial tree) are present. If the diagnosis is still unclear, and UIP cannot 

be detected, a bronchoscopy may be needed to visually assess the bronchioles, 

in addition to a bronchoalveolar lavage to examine the cells in the airway. The 

last resort is a surgical lung biopsy in which a surgeon goes through the ribs and 

collects a piece of lung for histological analyses. This so-called “transbronchial” 

biopsy is in fact usually necessary unless the patient presents with a clear 

clinical/radiological picture of IPF. Histologically, UIP presents with dense, 

patchy, collagenous scars that are often surrounded by fibroblastic foci of loose 

organizing connective tissue and cystic changes, often bordering intact lung 

tissue. Importantly, IPF patients should lack active sarcoidosis or Langerhans 

lesions, inflammation, granulomas, inorganic dust deposits, and eosinophilia.   

 

1.4.2.1 Familial IPF – Molecular links to the pathogenesis of IPF 

 Between 1-5% of IPF patients have a first degree relative with IPF. 

However, the histopathology of the familial (F-IIP) and the non-familial forms of 

IPF (sporadic IPF) are characterized by ‘usual interstitial pneumonia’ (UIP) and 

are to date pathologically indistinguishable. One molecular link to the familial 

form of IPF has been found to be related to surfactant protein folding defects 

caused by a mutation in the gene SFTPC. Protein folding defects cause stress in 

the endoplasmic reticulum (ER) and result in an “unfolded protein response” 

(UPR) by AECII cells that may result in the inability of AECII cells to re-

epithelialize a damaged area of the lung in both F-IIP and sporadic IPF patients 

(Korfei et al., 2008; Kropski et al., 2013).  

 Hermansky-Pudlak, is a rare, autosomal recessive syndrome characterized 

by skin and hair hypopigmentation, photophobia, platelet dysfunction and cellular 

storage disorders resulting in ceroid accumulation in the lung and kidneys. 

Mutations in HPS genes located on chromosome 10q2; which is interestingly, 

near FGFR2, results in lethal pulmonary fibrosis in Hermansky-Pudlak syndrome 

(HPS) type 1 in the fourth and fifth decades of life (Gahl et al., 2002).  
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1.4.2.2 Putative mechanisms of sporadic IPF  

While it is clear that our delicate air filtration system protects us from the 

daily onslaught of foreign pathogens via innate and adaptive immune responses, 

what happens when the alveolar membrane itself is destroyed or damaged by 

cellular toxins or blunt injury? How does an alveolus repair itself after it is 

damaged? What causes the formation of a UIP lesion, and how long does it take 

for it to form? Does a defective repair mechanism; i.e., the formation and 

persistence of a fibrotic mass in response to foreign assaults, rather than the 

replenishing of AECI cells, spur the beginning of IPF? Is an IPF patient’s 

“epithelial repair on-switch” or “scar resolution off-switch” simply defective? Is 

epithelial cell injury absolutely necessary for the formation of a UIP lesion? Do 

some individuals have more efficient epithelial repair mechanisms than others? 

Do all IPF patients have defective AEC2 cells? The questions of how and why 

IPF disease begins and how it progresses are still unanswered; hence it is still 

referred to as “idiopathic” pulmonary fibrosis. It is hypothesized, however, that 

IPF progresses slowly over many years, but that an IPF patient will not be 

referred to a pulmonologist until it is already “too late”. Although no one knows for 

certain how IPF begins, the dominant paradigm asserts that the on-set of IPF 

begins when AECII cells turn defective.  

In 1973, the first evidence for the clonal expansion and differentiation of 

AECII into AECI cells was observed in rats treated with nitric oxide (NO) 

indicating the importance of type two cells in lung homeostasis and barrier 

maintenance (Evans et al., 1973). Normally, the lung maintains the alveolar 

epithelial barrier by replacing damaged AECI cells that derive from AECIIs. AECII 

cell injury can occur as a result of both external and internal injury. For example, 

repeated environmental toxin exposure combined with an internal protein-folding 

defect and shorter than average telomeres all contribute to the incapability of the 

AECII cells to replenish the damaged area by “re-epithelializing” it with AECI 

cells. The lung, programmed to protect the gas exchange barrier at all costs, thus 

in theory responds to a defective epithelial barrier by sending a barrage of 

fibroblasts to clog the leak, thus marking the onset of UIP lesion.  
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Recently, it was shown that lineage-labeled AEC2s in 3-D culture gave 

rise to self-renewing “alveolospheres,” which contained both AEC2s and cells 

expressing multiple AEC1 markers. Interestingly, growth and differentiation of the 

so-called alveolospheres occurred most readily when co-cultured with primary 

PDGFRα+ lung stromal cells and lipofibroblasts (Barkauskas et al., 2013a); thus 

suggesting that mesenchymal-epithelial cross-talk is essential for repair. 

However the signals required for clonal expansion, and differentiation of AEC2s 

are yet to be defined.  

The second part of the UIP paradigm focuses on the hyperfibrotic 

response of the lung to epithelial injury. It is currently hypothesized that in order 

to fix a leaky epithelial barrier, interstitial fibroblasts, which usually help to 

maintain the structure of the alveolus and traffic lipids for surfactant production, 

become “activated”. These “activated myofibroblasts” turn “bad”, and begin to 

secrete too much collagen and ECM. While the resulting UIP lesion is often 

described as “scar-like” the lesion is in fact anything but a scar. In normal wound 

healing processes, scars contain fibroblasts that secrete an organized collagen 

scaffold that allows for tissue repair. UIP lesions are rather disorganized clusters 

of chaotic fibroblasts secreting excessive amounts of collagen and matrix. Unlike 

scars, these collagenous foci are not re-absorbed but rather propagate and 

expand sporadically throughout the lung impeding lung function and rapidly 

deteriorating the patient’s quality of life. While some investigators hypothesize 

that the lesions appear wherever the barrier is broken; i.e., wherever AECII cells 

are dysfunctional, others suggest an intrinsic fibroblast disorder. In any case, it is 

still unknown why and how these lesions appear; thus our inability to re-

capitulate IPF accurately in animal models is one of the reasons for the plethora 

of studies reporting “successful” animal studies amidst the failure of clinical trials.  

 

1.4.2.3 Current treatments for IPF patients 

The fact that IPF seems to appear out of nowhere, and is un-responsive to 

typical anti-fibrotics, anti-inflammatories, or anti-receptor tyrosine kinase 

antibodies, is frustrating not only for patients, but also for clinicians and scientists 
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alike (Loomis-King et al., 2013). It has been suggested that IPF patients undergo 

a long progressive pre-symptomatic phase characterized by chronic 

inflammation, which would be one explanation for the weakening and eventual 

irreversible damage of the epithelial barrier. However, given that the proposed 

chronic inflammation period is “asymptomatic” it is impossible to characterize the 

histopathologic phenotype of IPF during the early stages. What clinicians and 

scientists are presented with is rather a snapshot of an end-stage, lethal lung 

disease. The unresponsiveness of IPF patients to typical treatments may lie in 

the fact that the pathogenesis of IPF is, to date, under characterized. Therefore, 

it may be critical to first identify the cell types that are responsible for UIP 

formation. Next, once a common molecule or marker for the pathogenic cells is 

found, a strategy to reverse or stagnate IPFs progression by targeting these cells 

for apoptosis, could theoretically halt the disease. However, too much apoptosis 

may also result in collapse of the alveolus, which is also counter-productive when 

the goal is to try to improve or at least maintain lung function. Alternatively, 

targeting activated myofibroblasts for trans-differentiation, while protecting 

surviving epithelium may also spur de novo alveolar structure formation, as long 

the existing epithelial cells are not responsible for pathogenic progression 

(Marmai et al., 2011).   

Pirfenidone initially appeared to slow the progression of pulmonary fibrosis 

in HPS patients with significant residual lung function. While a random 

coefficients model showed no significant difference, using data restricted to 

patients with an initial forced vital capacity (FVC) >50% of predicted, both 

statistical models showed the pirfenidone group losing FVC (p<0.022), FEV1 

(p<0.0007), TLC (p<0.001), and diffusion capacity for lung carbon dioxide, 

DL(CO) (p<0.122) at a rate that was approximately 8%/year slower than the 

placebo group (Gahl et al., 2002). However, a double blind study repeated in 

2011 showed no significant difference between the groups (Gahl et al., 2002; 

O’Brien et al., 2011). The use of Pirfenidone continues to be debated since for 

the majority of individuals treated, the drug side-affects not only further reduced 

their quality of life but also had a very limited effect on the rate of disease 
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progression. The small percentage of patients that the drug claims to ‘help’ 

experience at the most, a 9% decrease in the rate of progression as measured 

by FVC, at the cost of many side effects (Jenkins, 2013; Raghu and Thickett, 

2013). 

 

1.5 Introduction to mouse models of ILDs 

    1.5.1 Discovery and clinical use of bleomycin 

 The bleomycin mouse model, the most commonly used and described 

mouse model of IPF, cannot be introduced without first describing the history of 

the discovery, and the subsequent use of bleomycin in the clinic. Bleomycin is a 

chelating molecule of high molecular weight; 1415 kDa, that causes DNA 

scission, and was first isolated from Streptomyces verticillus, (S. verticillus) by a 

Japanese researcher, Hamao Umezawa in 1963. After observing its deadly effect 

on squamous carcinoma cells, Dr. Umezawa published his discovery in 1966 

(Umezawa et al., 1972). Based on these results and following toxicology studies 

reporting the ability of bleomycin to cleave DNA site-specifically (D’Andrea and 

Haseltine, 1978), researchers quickly developed clinical protocols for the 

treatment of squamous cell cancers. However, by 1970, it became clear that 

despite the absence of hematopoietic toxicity or immunosuppression, bleomycin 

had toxic effects on the skin, muscosa and lungs. Moreover, while some lesions 

were successfully annihilated, prognosis after treatment was unpredictable as 

response to treatment was heterogeneous (Mathé, 1970). Despite the 

unpredictability of the patient’s response, the drug continues to be used today for 

the treatment of testicular cancer, lymphoma, and squamous cell cancers of the 

head, neck, cervix, penis and other sites. It is also used to treat cancer that has 

spread to the lungs, in order to prevent fluid from building up between the lungs 

and chest wall (American Cancer Society, 2010) and most recently off-label use 

has been reported for the removal of plantar warts by intralesional injection 

(McLaughlin and Shafritz, 2011) . 

 The heterogeneity in cancer treatment response to bleomycin treatment, 

both in terms of tumor regression and side effects, prompted mechanistic studies 
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of how bleomycin is metabolized by both tumors and the body. In one of the first 

studies published in 1968, mice were subcutaneously injected with 3H-bleomycin 

and harvested one hour later. Interestingly, the lung and the skin contained the 

highest concentration of un-metabolized drug, while the liver, kidney, peritoneum 

other organs metabolized it more efficiently (Umezawa et al., 1968). The ability to 

metabolize bleomycin was also found to be weaker in older mice (28 weeks) 

compared to younger mice (3 or 5 weeks) with almost double the radioactivity in 

the lungs of older mice; a result which was in accordance with clinical 

observations (Ohkoshi and Oka, 1984).  

 The differential response by organs to bleomycin is related to the level of a 

bleomycin-inactivating enzyme; a hexameric ring barrel structure, called 

bleomycin hydrolase. The bleomycin hydrolase gene (BLMH) is conserved in 

bacteria, yeast, birds, reptiles, and mammals. In yeast, it is in fact the well-known 

‘Gal6’, a key regulator of galactose inducible genes. Umezawa was the first to 

discover and describe its action in mice and human tissues, and the first to 

isolate it from the liver; the organ with the highest concentration. He found that 

the enzyme inactivated bleomycin by hydrolyzing the carboxamide group of the 

β-amino-alanine moiety of bleomycin molecule (Umezawa et al., 1974). In the 

case of tumors, all those that were studied were reported to be able to 

metabolize bleomycin; although, bleomycin hydrolase activity did not always 

reflect the level of inactivation of bleomycin (Lazo et al., 1982). Later, genetic 

variations in the gene were discovered to play a role in the prognosis of cancer 

treatment with bleomycin and are described in the next section.    

 

1.5.2 Bleomycin-induced pulmonary disease (humans)  

 Humans, rather than rodents, with bleomycin induced pulmonary disease, 

were perhaps the first inadvertent experimental models of IPF. The lung, the 

organ with the least amount of BLMH expression in both humans and mice (Lazo 

and Humphreys, 1983) is the most susceptible organ to the negative side effects 

of bleomycin cancer treatment; particularly, the development of lethal pulmonary 

fibrosis after protracted intravenous treatment. Overall, approximately 20% of 
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patients treated with bleomycin will develop clinical pulmonary disease and as 

many as 1% will die from pulmonary consequences of bleomycin therapy 

(Limper, 2004). Pre-existing renal disease is the best predictor for bleomycin lung 

toxicity. The half-life of the drug, which is normally metabolized within 2-5 hours 

can increase up to 30 hours in patients with renal disease (Alberts et al., 1978). 

Normally, between 50 to 70% of a dose of bleomycin is excreted by the kidneys, 

in its original form, within the first 24 h (McLeod et al., 1987). In patients with 

reduced glomerular filtration rate (creatinine clearance <35 mL/min), the drug 

half-life is increased leading to longer exposure in the lung and higher incidence 

of bleomycin induced lung disease. In addition to kidney disease, age, 

cumulative exposure to bleomycin, and pre-existing lung disease also 

significantly contributes to bleomycin induced lung disease.  

 Lethality of bleomycin pulmonary toxicity seems to depend on whether the 

patient survives an acute event, in which case they may improve substantially 

(Froudarakis et al., 2013). However, once significant fibrosis is present, it can 

progress insidiously, despite corticosteroid administration, and may be difficult to 

distinguish from IPF/UIP. More frequently, an acute onset of bleomycin 

hypersensitivity is described where the patient presents with fever, and 

peripheral blood or BAL eosinophilia. Discontinuation of bleomycin corticosteroid 

regimen usually reverses this hypersensitivity variant of bleomycin pneumonitis. 

Lastly, a rare, but clinically important, presentation of bleomycin pneumonitis can 

occur, the clinical presentation of nodular pulmonary lesions that mimic tumor 

metastasis. The nodular lesions of bleomycin pneumonitis often display the 

histologic pattern of bronchiolitis obliterans with organizing pneumonitis (BOOP). 

BOOP-like histologic patters have also been described in association with other 

chemotherapeutic agents, including cyclophosphamide, methotrexate, 

mitomycin, chlorambucil, and interferon, as well as nonchemotherapeutic agents, 

including amiodarone, gold, and nitrofurantoin (Cohen et al., 1989; Santrach et 

al., 1989). 
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1.5.3 Bleomycin-induced pulmonary disease in mice 

 Despite the fact that IPF remains an idiopathic disease; a disease without a 

known cause, researchers have searched for ways to recapitulate the 

histopathological phenotype of IPF (UIP lesions). While almost any substance 

that causes non-lethal DNA damage or cellular toxicity can be sprayed into the 

lung and result in fibrotic response, bleomycin remains the best characterized 

agent partly due to its translational potential; as it is frequently used as a 

chemotherapeutic agent in humans, and partly because of its relatively low cost. 

Rats and mice are the most frequently used subjects due to their amenability to 

laboratory experiments; though rat lung architecture is more similar to humans 

than that of the mouse. Although bleomycin treated rodents, incur fibrotic lesions, 

decreased lung function, and increased collagen deposition, the lesions 

themselves are nevertheless distinct from UIP lesions and may explain why 

drugs found to attenuate bleomycin-induced lung fibrosis have no effect on UIP.  

Interestingly, bleomycin lesions in rodent lungs do not resemble lesions incurred 

by humans receiving bleomycin as chemotherapy treatment (Borzone et al., 

2001). Notably, they lack fibroblastic foci, hyperplastic epithelium, and temporal 

heterogeneity. Moreover, rodents are able to spontaneous recover if they do not 

die of acute lung injury (ALI), which is characterized by an influx of neutrophils 

during the first week. The lesions that Borzone et al. described at 21 – 28 days 

post injury (dpi) that resulted from intra-tracheal installation of bleomycin in rats: 

mural inflammation, fibrosis at the level of the bronchioles and emphysematous 

changes, resemble COPD much more than IPF. Recently, a study showed that 

bleomycin administration induces molecular changes in the lung that are directly 

relevant to “active” stages of IPF rather than a the end-stage of a slowly 

progressing disease. Using gene set enrichment analysis the authors showed 

that genes differentially expressed during the fibrotic phase of the single 

challenge bleomycin model were significantly enriched in the expression profiles 

of IPF patients (Peng et al., 2013). Moreover, genes involved in mitotic 

processes were expressed at higher levels in lung tissues from bleomycin-

treated mice and IPF patients as well as fibroblasts isolated from IPF patients 
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with rapidly progressing disease. Thus, while bleomycin injury in rodents may not 

be progressive, it may be a decent model for patients with rapidly progressing 

IPF.  

 In a further attempt to recapitulate the IPF phenotype in mice, the transient 

expression of IL-1β or TGF-β was induced after bleomycin exposure in order to 

achieve the formation of fibroblastic foci and honeycombing features, (Kolb et al., 

2001; Liu et al., 2001); however while inflammatory cell infiltrates are sometimes 

found in IPF lungs, whether inflammation plays an important role in IPF 

pathogenesis, especially at the end stage of the disease, is debated, especially 

given the resistance to corticosteroid and immunosuppressant therapies (Collard 

et al., 2004). 

  Additionally confounding for investigators is the fact that mice, like humans, 

show a differential response to bleomycin metabolism. Some strains are 

particularly sensitive, while others are resistant, thus indicating a genetic 

component. A genetic study comparing C3Hf/Kam (bleomycin immune) and 

C57BL/6J (bleomycin sensitive) mouse strains showed highly significant linkage 

to two loci: 1) a locus on chromosome 17 in the major histocompatibility complex 

(MHC), locus of determination, (LOD) = 17.4, named Blmpf1, which was found to 

be highly significant in both males and females, and accounts for approximately 

20% of the phenotypic variance and 2) a locus on chromosome 11, LOD = 5.6, 

named Blmpf2, which was found to be significant in males only (Haston et al., 

2002). Further complicating the model, in MHC congenic mice of different, inbred 

strain backgrounds and strain-specific genetic factors in addition to the MHC 

genotype influence susceptibility to bleomycin lung injury. Therefore, most 

researchers use young female mice from an inbred background strain with wild 

type littermate controls for their experiments. 

 Bleomycin lung injury phenotype and outcome is also dependent on the 

method of administration. It can be administered via single or multiple intra-

tracheal installations with a micro-sprayer, sub-cutaneous implantation of a mini-

pump, which uses osmotic diffusion of the product for up to 10 days, 

intravenously, or trans-tracheally. Direct tracheal installation results in the acute 
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destruction of the respiratory airway epithelium and often results in ALI, which is 

characterized by an influx of neutrophils. The time frame for the end of ALI; 

characterized by a reduction of neutrophils, and the beginning of scar formation, 

is dependent not only on the delivery method, but also the dosage, age, sex and 

genetic background of the mouse. In general, inflammation peaks between 1 and 

10 dpi and begins to wane between 10 and 21 dpi. A larger dose is needed when 

delivering bleomycin systemically via either intra-venous or osmotic mini-pump in 

order to achieve a fibrotic reaction in the lung.   

 

Table 3. Delivery methods of bleomycin 

Method Dose Cost Main disadvantages 

intra-tracheal (i.t.) 0.8 – 5.0U/kg low 
death due to ALI with high dose, 

insufficient injury if too low 

multiple i.t. 
0.2 – 1.0U/kg   

per dose 
medium 

labor intensive, risk of ALI death, 
surgical stress 

trans-tracheal 0.2 – 1.0U/kg low surgery, death due to ALI 

intra-venous 50-300U/mouse low 
model for chemotherapy induced lung 

fibrosis but less relevant for IPF 

osmotic mini pump 50-300U/mouse high 
labor intensive, diffuse lesions, 

expensive pumps 
 

 After bleomycin administration, the next step is to worsen, reduce, or 

eradicate either the inflammatory or fibrotic response by administering a 

treatment to the experimental group. Thus studies that aim to find a difference 

between groups intrinsically require a homogenous response by the animals to 

the injury. Therefore littermate, age, and sex-matched controls are absolutely 

crucial, as is using the same batch of bleomycin since drug activity can vary. 

Outcome of the experimental group is measured not only by survival and overall 

health condition, but also by lung function as well as assessment of collagen 

deposition, quantification of the extent of fibrosis (Ashcroft score), and gene 

expression profiling.  

 

1.5.4 Effects of FGFs on bleomycin-induced pulmonary disease in mice  

Although the pathomechanism of IPF is not yet fully understood, chronic 

injury, especially injury leading to chronic endoplasmic reticulum (ER) stress in 

AECII cells, followed by extensive apoptosis, is generally accepted as a key 
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pathological event (Korfei et al., 2008). Hence protecting AECIIs against 

apoptosis, is considered to be a potential therapeutic approach. FGF7 

(Deterding et al., 1997; Li et al., 2010; Sakamoto et al., 2011; Yi et al., 1996) 

and FGF10 (Gupte et al., 2009), as well as hepatocyte growth factor (HGF) 

(Gazdhar et al., 2013) were all found to diminish the extent of epithelial injury 

and apoptosis and to attenuate lung fibrosis in the bleomycin model of lung 

fibrosis. Moreover, Fgf10 overexpression (Gupte et al., 2009), unlike 

recombinant FGF7 treatment (Sugahara et al., 1998) was found to result in an 

accelerated resolution of lung fibrosis in the bleomycin model. The mechanism 

by which FGF10 accelerated recovery may have been due to inhibition of TGFβ 

and the recruitment of T-regulatory cells. Furthermore endogenous Fgf10 

produced by the peribronchial smooth muscle cells appeared to be critical for 

amplification of bronchial epithelial progenitors in response to naphthalene injury 

in mice (Volckaert et al., 2011) suggesting that FGF10 acts to preserve or 

amplify lung progenitor cells. In addition to mouse models, few experiments 

have been performed with IPF cells and FGFs. However, in an experiment 

performed with IPF fibroblasts, FGF7 expression upon IL-1β stimulation was 

found to be decreased in donor vs. IPF fibroblasts (Marchand-Adam et al., 

2005). Finally, one study showed that humans genetically deficient in Fgf10 

exhibited decreased lung function (Klar et al., 2011). Thus while clear links have 

been demonstrated between FGFs and lung repair, the exact mechanism of 

action must be elucidated.  
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Part 2. Aims of this Study 

 Previous studies in mouse injury models have clearly shown that 

exogenous FGF7 can protect the lung from injury and that FGF10 can trigger a 

repair response by acting directly on lung progenitor cells. Given these results 

and the importance of FGF signaling in lung development, this study aimed to 

find out whether expression of FGF10, FGF7, FGFR1b and FGFR2b in the 

lungs of humans with end-stage IPF was dysregulated. In addition, this project 

aimed to demonstrate whether endogenous FGF7 and 10 signaling in mice 

plays a role in the repair process of bleomycin-induced fibrotic lesions.  

 

In summary, the aims were as followed: 

 

1) To identify whether FGF signaling was dysregulated in IPF patients 

using RNA and protein isolated from donor and IPF lung 

homogenates. 

 

2) To test whether repair after bleomycin-induced lung fibrosis was 

defective in mice genetically deficient in Fgf7, Fgfr2b, Fgf10, and/or 

all FGFR2b ligand signaling. 

 

3) Identify the mechanism of action of FGF10 on primary cultures of 

IPF and donor lung fibroblasts. 
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Part 3 Materials and Methods 

3.1 Procurement of human lung tissue specimens used for microarray or 

primary culture of human lung fibroblasts 

 Lung tissues were collected from patients undergoing lung transplants for 

interstitial lung disease at the Universities of Giessen, Germany or Vienna, 

Austria. Non-transplanted donor lung tissue showing no evidence of interstitial 

lung disease served as healthy controls. The institutional ethics committee 

approved the protocol and tissue usage, and informed consent was obtained 

before lung transplantation. Explanted lungs were directly rinsed until free from 

blood and preserved in ice-cold preservation buffer. Next, tissue samples were 

immediately frozen for later mRNA extraction.  

 

3.2 Laser-assisted microdissection of human lung tissue 

 Laser assisted microdissection of donor and IPF lung tissue was performed 

as described previously (Kwapiszewska et al., 2005). Cryosections from lung 

tissue were mounted on glass slides; to limit storage time, only 10 slides were 

performed at time. After short hematoxylin staining, septa were micro-dissected 

under optical control using the Laser Microbeam System (P.A.L.M., Bernried, 

Germany). Next, cells were isolated using a sterile, 30-gauge needle. Needles 

and adherent cells were transferred into a reaction tube containing 200ul of RNA 

lysis buffer. Total cellular RNA was isolated with the RNeasy kit (Qiagen, 

Valencia, CA) and purified according to the kit's protocol. 

 

3.2.1 RNA extraction for microarray 

 RNA was isolated using the RNeasy kit (QIAgen, Hilden, Germany) 

following the kit instructions. Reverse Transcription, pre-amplification, and 

fluorescent labeling. Total RNA was reverse-transcribed, pre-amplified, and 

labeled using the BD Atlas SMART Fluorescent Probe Amplification Kit (Clontech 

Laboratories, Heidelberg, Germany). RNA from laser-microdissected material 

was used quantitatively. According to pilot experiments and based on 

quantitative real-time PCR measurements of reference genes, the estimated 
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amount was 5-50 ng total RNA. From homogenates, aliquots containing 50 ng 

total RNA were reverse transcribed. cDNA was amplified with 22 SMART PCR 

cycles. The dsDNA products were labeled by four additional PCR cycles in the 

presence of aminoallylated UTP, then coupled with mono-functional reactive Cy3- 

and Cy5-dyes (Amersham, Freiburg, Germany). The labeled dsDNA was purified 

with the QIAquick PCR Purification Kit (Qiagen). Absorbance spectra were 

measured with the ND-1000 (Nanodrop, Montchanin, DE). The concentrations of 

the nucleic acids (RNA, dsDNA) were estimated from the absorbance at 260 nm; 

absorbance values at 550 nm and 650 nm were used to calculate the amount of 

incorporated Cy3 and Cy5, respectively.  

 

3.2.2 Microarray hybridization and scanning 

 Labeled dsDNA containing 40 pmol incorporated Cy-dyes of each sample 

were subjected to hybridization. IPF and donor samples were competitively 

hybridized on Agilent whole human genome arrays (Gene Expression Omnibus: 

G4112A) spotted with 44k 60-mer oligonucleotides according to Agilent's protocol 

(Version 4.1; Agilent, Santa Clara, CA). The hybridization was performed for 18 

hrs at 60°C while continuously rotating the Agilent hybridization chambers in a 

standard in situ hybridization oven. After hybridization, slides were washed 

according to the Agilent protocol.  

 

3.2.3 Microarray data analysis 

 Slides were scanned with the Axon 4100A (Molecular Devices, Munich, 

Germany). Photomultiplier tube (PMT) gains were adjusted to use the entire 

dynamic range of the scanner, yielding similar intensity histograms for both 

channels (Cy3 and Cy5). Image analysis was done with GenePix 5.0 (Molecular 

Devices), further data processing was performed using R (R Development Core 

Team, 2009) and the limma package (Smyth, 2004). Spots were weighted with 

factors between 0 (worst) and 1 (best) according to percentage of pixels with an 

intensity higher than the mean local background + 2 SD, homogeneity (coefficient 

of variation of the pixel intensities), and saturation (% pixels in saturation) for both 
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channels. M and A values were calculated using the mean intensities. The M-

versus-A values were normalized by a weighted LOESS correction.  

 Candidate selection was based on a moderated t-statistic controlling the 

false discovery rate (Hochberg and Benjamini, 1990). Genes were ranked for 

differential expression by a moderated Welsh-t-statistic. The selected 773 

candidates were subjected to a pathway analysis using PathwayExpress (Khatri 

et al., 2007). Pathways were ranked by the PathwayExpress impact factor. 

Pathways with impact factors greater than 1 and with more than three regulated 

genes were considered relevant. 

 

3.3 Bleomycin-induced lung injury on mice 

3.3.1 Generation of mice 

CMV-Cre mice (Sauer, 1998) were crossed with rtTAflox mice (Gossen and 

Bujard, 1992) to generate mice expressing rtTA under the ubiquitous Rosa26 

promoter. This constitutive Rosa26rtTA/+ mouse line was then crossed with the 

tet(O)solFgfr2b responder line to generate Rosa26rtTA/+;tet(O)sFgfr2b/+ 

heterozygous animals, allowing ubiquitous expression of soluble decoy FGFR2b 

receptor (Parsa et al., 2010). All mice were generated on a CD1 mixed 

background. Attenuation of FGFR2b ligands activity was achieved by 

administration of doxycycline-containing food; normal rodent diet with 0.0625% 

doxycycline (Harlan Teklad). Mice were genotyped as described previously 

(Belteki et al., 2005; Hokuto et al., 2003; Schwenk et al., 1995). To generate 

Fgfr2b+/- or Fgf10+/- mice, CMV-Cre mice (Schwenk et al., 1995) on a C57BL/6J 

background were crossed with either Fgfr2bflox/flox (De Moerlooze et al., 2000) or 

Fgf10flox/flox (Abler et al., 2009; Urness et al., 2010) mice (also C57BL/6). Fgfr2b+/- 

and Fgf10+/- mice were crossed with C57BL/6 wild type mice to generate 

Fgfr2b+/- (or Fgf10+/-) experimental and corresponding Fgfr2b+/+ (or Fgf10+/+) 

littermate controls. Fgf7-/- animals were obtained from Jackson Laboratory (Stock 

number: 004161), and backcrossed for several generations on a C57BL6 

background. Corresponding genetically matched C57BL/6 mice were used as 

controls.  
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3.3.2 Establishing the dosage of bleomycin  

 Each genetic background of mouse used required a dosage finding 

experiment in order to determine the dose of bleomycin needed to cause robust 

fibrosis with minimal death (<10-30%) due to acute lung injury.  

 

3.3.3 Delivery of bleomycin         

 Mice were anesthetized with a non-lethal dosage (i.p.) of a 

ketamine/dormitor solution (Table 4). When they no longer responded to a light 

forceps pinch between the toes, Bepanthene was placed over the eyes to 

prevent dryness, and they were gently placed on a stand at a 45° angle, to hang 

from their incisors on a rubber band. A light was positioned over the mouth and 

trans-tracheally for visualization of the larynx. A blunt forceps was used to pull 

the tongue gently to one side and open the mouth. Once the larynx was located, 

the trachea was intubated with a 20 G plastic catheter. Next the microsprayer 

(PennCentury) was filled with 200 ul bleomycin or saline solution, positioned 

inside the catheter, and sprayed. Mice resumed spontaneous breathing shortly 

after being sprayed and were placed in a cage positioned partially over a 37°C 

heating pad. Mice were kept under observation until consciousness and stable 

physical condition were regained. Mice who did not recover due to mechanical 

injury were euthanized with an overdose of ketamine/dormitor (see Table 4). 

 
Table 4. Anesthesia dosages for bleomycin treatment and end point lung 
function measurement 
 

anesthesia dose (i.p.) for 
bleomycin treatment (i.t.) 

0.6ul/g Ketamine 10% 
(100mg/mL) 

0.3ul/g Dormitor 10% 
(0.5mg/mL) 

lethal anesthesia dose 
(i.p.) for end point lung 

function test  

1.2ul/g Ketamine 10% 
(100mg/mL) 

0.6ul/g Dormitor 10% 
(0.5mg/mL) 

 

3.3.4 Monitoring of the physiological response post-injury  

 After injury, mice were monitored daily for physiological signs of suffering 

(Table 5). Reduced activity, grooming, and weight, as well as briefly abnormal 

respiration were common between 1 and 4 dpi followed by a steady recovery. 
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Mice suffering from acute lung injury, marked by prolonged periods of abnormal 

respiration and weight reduction were euthanized between 5 and 10 dpi. 

However, mice that recovered to 10 dpi, usually survived until 28 dpi. 

Occasionally some mice with normal breathing would be removed from the study 

before 14 dpi due to a reduction of more than 20% of the initial weight. All mice 

were anaesthetized (i.p.) with a ketamine/dormitor solution appropriate for either 

deep sleep or death as needed (Table 4).  

Table 5. Daily physiological response chart  

Daily physiological response chart  
total score < (6) or weight loss <20%; animal euthanized 

Spontaneous 
Activity Grooming Weight 

Reduction 
 Physiological 
Temperature Respiration 

normal (0) normal (0) <5% (0) 0.5 ºC (0) normal (0) 

reduced (1) reduced grooming (1) 5-10%(1) <1 ºC (2) 
briefly  

abnormal (1) 

isolates (2) 
very reduced 
grooming  (2) 

10-20%(2) 1-2 ºC (2) 
extended  

abnormal (2) 

apathetic (3) matted fur (3) >20%(3) >2 ºC (3) 
permanently  
abnormal (3) 

 

3.3.5 Mouse experiments were performed according to approved protocols 

Table 6. Mouse experiment protocols 

Fig. Experiment Site Protocol  
Fig 6 5U/kg bleo i.t. wild type CHLA * 193-12 
Fig 9 DOX admin. (validation Rosa26rtTA+/;tet(O)solFgfr2b/+) CHLA 193-12 
Fig 10 3.5U/kg bleo i.t. and DOX from 7 dpi CHLA 193-12 
Fig 11a 1.0U/kg bleo i.t. and d7 – 28 DOX Rosa26rtTA+/;tet(O)solFgfr2b/+ CHLA/JLU** 73/2012 
Fig 11b 2.0U/kg bleo i.t. and d14 – 28 DOX Rosa26rtTA+/;tet(O)solFgfr2b/+ CHLA 193-12 
Fig 12 3.5U/kg bleo i.t. Fgfr2b+/- CHLA 193-12 
Fig 13 3.5U/kg bleo i.t. Fgf7-/- JLU 72/2012 
Fig 14 3.5U/kg bleo i.t. Fgf7-/- JLU 72/2012 
Fig 15 3.5U/kg bleo i.t. Fgf10+/- CHLA 193-12 
  *CHLA; Children’s Hospital Los Angeles; **JLU; Justus Liebig Universität, Giessen 

 
3.4 Acquisition of lung function measurements (forced oscillation 
plethysmography) 
  
 Post bleomycin injury analyses were begun with end point lung function 

measurements after the mice were appropriately anaesthetized (Table 7). Lung 

function was analyzed using the SCIREQ flexiVent forced oscillation 
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plethysmograph (emka technologies) to give an overall readout of lung function. 

The SCIREQ flexiVent used a computer-controlled ventilator combined with data 

acquisition and analysis software for the measurement of respiratory mechanics 

of animals. Deeply anaesthetized mice were intubated transtracheally and 

ventilated at a rate of 150 breaths per minute with a positive end-expiratory 

pressure (PEEP) between 1 and 3 cm H2O. PEEP was calculated automatically 

by the software and dependent on the weight of the animal. After stable 

ventilation was achieved; the mouse was no longer spontaneously breathing, but 

the heart continued to beat, a 3 second, weight dependent, fixed volume wave 

form was initiated every 15 – 20 seconds 8 times. During this perturbation, 

“Snapshopts” of the following respiratory function parameters were taken: total 

respiratory compliance, or change in volume over change in pressure (ΔV mL 

/ΔP cmH2O); elastance, the reciprocal of compliance which measures the lungs 

ability to recoil to it’s original shape (ΔV mL / - ΔP cmH2O), and resistance, or the 

impedance to ventilation (ΔP cmH2O/s/ΔV mL). Sufficiently damaged bleomycin 

treated lungs showed a decrease in compliance along with an increase in both 

elastance and resistance. In the case of acute lung injury, as often was the case 

for measurements performed 7 or 14 dpi, airway resistance was positively 

increased as compared to airway compliance due to the presence of 

inflammatory cells in the airspaces.  

Table 7. Lung function read-out Summary 

Lung Function Read-Out Summary 

Injury Level Compliance Elastance  Resistance 

Normal  .035 - .009  30 - 70 0.3 – 1.2 

Mild  .008 - .005  80 - 150 1.3 - 2.5 

Moderate .005 - .002 160 - 300 2.6 - 4.0  

Severe  < .002 < 300 < 4.0 

 

3.4.1 Statistical analyses of SCIREQ data 

Lung function measurements were taken every 15 – 20 seconds, a total of 

8 times for each mouse. The average of these measurements were taken, and 

used as one value to represent one biological sample. To compare groups, at 
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least 3 mice were taken from each experimental group and an unpaired, two-

tailed Student’s T-test was performed in order to test whether the group means 

were significantly different.  

 

3.5 Histological preparation and analyses of the left lung 

 The bleomycin model of IPF can vary in terms of the extent of fibrosis 

incurred by each of the five lobes. Therefore it is necessary to take many 

approaches; both physiological and molecularly, in order to obtain a 

comprehensive read-out of the extent of injury and to accurately and thoroughly 

compare experimental groups (Thannickal et al., 2004). Immediately after lung 

function measurements were taken, the thorax was opened, and the right 

bronchus was clamped to avoid contamination with paraformaldehyde (PFA). 

Next, transcardiac perfusion of the left lobe was performed with 15 mL phosho-

buffered saline (PBS) in order to wash away the blood and prepare the left lobe 

for histological analysis. The left lobe was then perfused from 22 cm – 24 cm 

above the mouse for 1-2 min with PBS followed by 2 min with 4% PFA. The 

trachea was tied off with a string, and the lung was removed and placed in 4% 

PFA for at least 24 hrs at RT or up to one week at 4°C. Immediately afterwards, 

the cranial and accessory lobes were removed and placed in TRIZOL for RNA 

extraction. The medial and caudal lobes were washed with PBS and processed 

for the collagen deposition assay. These preparatory methods along with further 

experiments are described in detail in the sections below. Left lobes were then 

embedded with a Leica embedding machine and paraffin blocks were kept cold 

until 3 – 5 um sections were cut. These sections were used for Masson’s 

trichrome stain, Hematoxylin and Eosin (H/E), immunofluorescence, or TUNEL 

stainings.   

 

3.5.1 Masson’s trichrome stain 

In order to stain for collagen fibers, sections from the left lobe were 

deparaffinized in xylene (3 x 10 min) followed by decreasing concentrations of 

ethanol gradients (1 x 5 min) and re-fixed in Bouin's solution for 1 hr at 56°C. Tap 
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water was run for 10 min, followed by staining in Weigert's iron hematoxylin 

working solution for 10 min. Weigert’s Hematoxylin Solution was made fresh by 

adding equal volumes of Solution A (1% Hematoxylin in 95% EtOH) and Solution 

B (1.2% Ferric Chloride Sigma F7134 and 1% Acetic Acid in distilled water) and 

stained the nuclei blue-black. Next, slides were run under running tap water for 5 

min and rinsed in ddH2O. Slides were then incubated for 10-20 min in Biebrich 

Scarlet-Acid Fuchsin Solution, which stains the cytoplasm and keratin red, and 

washed twice in ddH2O. Next, the stain was differentiated in phosphomolybdic-

phosphotungstic acid solution for 10-15 min or until collagen was not red. Then, 

sections were transferred directly to aniline blue solution, which stains the 

collagen fibers green-blue, and stained for 5-10 min. Afterwards, they were 

rinsed briefly in distilled water and differentiated in 1% acetic acid solution for 2-5 

mins. Lastly, slides were rinsed briefly in distilled water and dehydrated very 

quickly through 95% EtOH, 100% EtOH, cleared in xylene, and mounted with 

clear Permamount mounting media.  

 

3.5.2 Hematoxylin and eosin stain 

 3 – 5 um sections of the left lobe were deparaffinized, dipped in water and 

stained for Mayer’s Hematoxylin solution for 1 – 3 min and washed under running 

tap water for up to 10min. Slides were monitored under the microscope for over 

and under staining. Slides were then incubated for 2 min in Eosin dye and 

brought back through increasing gradients of EtOH, xylene and cover slipped 

with Pertex mounting media.  

 

3.5.2.1 Ashcroft score and % confluent fibrosis 

Ashcroft scoring was performed blinded using a modified Ashcroft scoring 

protocol as described by (Hübner et al., 2008) on H and E stained sections of the 

left lobe. While Hübner et. al., scored multiple 20X images, we imaged with light-

microscopy at the furthest objective (1.25X), which allowed for visualization of 

one entire section of the left lung. ImageJ was used to measure the area of the 

lung that was covered in confluent fibrosis; percent confluent fibrotic area per 



                                              Material and Methods     
 

  41 

total section area was calculated. When no confluent fibrotic areas were 

detected, Ashcroft score was used to assess extent of alveolar wall thickening.  

 

3.5.2.1.1 Statistical analyses of % confluent fibrosis 

Sections were measured a total of 3 times, blindly and scores were 

averaged.  Normally the measurement system was robust such that the sample 

always received the same score; with the exception of lower scores, where a 

higher magnification was used to identify the extent of alveolar wall thickening. A 

Student’s T-Test was used with a Mann-Whitney correction to assess whether 

there was a difference between two experimental groups.  

 

3.5.3 TUNEL assay for apoptosis 

The DeadEnd™ Fluorometric TUNEL System (Promega G3250) 

measures the fragmented DNA of apoptotic (or necrotic) cells by catalytically 

incorporating fluorescein-12-dUTP at 3´-OH DNA ends using the Terminal 

Deoxynucleotidyl Transferase, Recombinant, enzyme (rTdT), which forms a 

polymeric tail using the principle of the TUNEL (TdT-mediated dUTP Nick-End 

Labeling) assay. Briefly, slides with 3 – 5 um sections were deparaffinized, 

dipped in .85% saline solution, pre-fixed with 4% PFA for 15 min, washed in 

PBS, then incubated for 13 min in 20 ug/mL Proteinase K for antigen retrieval. 

The slides were then washed in PBS, and post-fixed for 5 min in 4% PFA. 

Sections were equilibrated in equilibration buffer for 10 min before adding the 

smallest volume of reaction mixture possible, and incubating for 1 hr at 37°C. 

The reaction was quenched for 15 min in 2X SSC buffer and washed in the dark 

3 times with PBS. Sections were then counterstained with DAPI and the 

fluorescein-12-dUTP-labeled DNA was then visualized directly by fluorescence 

microscopy. 

 

3.5.4 Immunofluorescence  

 For the washing steps, if the antigen of interest was nuclear, phosho-

buffered saline with 0.1% Triton-X 100 (PBX) was used, if it was located on the 
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cell surface, phosho-buffered saline with 0.1% Tween-20 (PBT) was used. Slides 

were deparaffinized, and then blocked 3% bovine serum albumin (3% BSA) in 

PBS for 1 hr at RT. The primary antibody was diluted 1:50 – 1:200 in incubation 

buffer (1% BSA in PBS) and incubated for 1 – 2 hrs at RT or overnight at 4°C. 

Next, slides were washed with PBT or PBX 3 x 5 min. The secondary antibody 

was diluted in blocking buffer (1:450 – 1:1000) and incubated for 1 – 3 hrs at RT 

in the dark. Slides were washed again with either PBT or PBX 3 x 5 min and 

cover slipped with 10 ul of mounting media mounting media (VECTASHIELD) 

with or without 4',6-diamidino-2-phenylindole, (DAPI). 

 

3.5.4.1. Quantification of TUNEL and/or immunofluorescent staining  

 In order to quantify immunofluorescent staining from sections or cell 

cultures, at least 6 fields of view from each biological sample or treatment group 

was taken. Experiments were repeated in triplicates or at least 3 biological 

samples were used. Either LAS software or ImageJ was used to count the total 

number of cells (DAPI). The section was then divided into a grid and counted, 

blindly, to determine the number of stained cells. Percentage of positive cells 

were calculated accordingly and compared.  

 

3.5.4.1.1 Statistical analyses of immunostaining 

Unpaired, two-tailed Student’s T-test was performed in order to test 

whether the group means were significantly different.  

 

3.6 Collection of RNA for qPCR 

 After lung function was performed, and the left lobe was removed for 

histology, the accessory and cranial lobes were removed and placed directly in 2 

mL TRIZOL in a GentleMacs (Milteny Biotec) homogenizer. Tissue was 

homogenized for 1 min under the “RNA” setting and tubes were spun down at RT 

1200 rpm for 5 min. Supernatant was collected immediately in cryovials, frozen in 

liquid nitrogen and stored at -80°C until RNA extraction could be performed.  

 Samples were brought up from -80°C and thawed on the bench for 5 min at 
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RT. Heavy phase-lock gel tubes (5 PRIME 2302830) eppendorfs were 

centrifuged for 5 min at maximum speed. The homogenized lysate was added to 

the separator column and incubated at RT for 3 min. 1/10 total volume of 

chloroform was added. Tubes were shaken for 15 s and incubated for 3 min at 

RT. Next, tubes were centrifuged for 15 min at 10,000 g at 4°C.  The aqueous 

layer was extracted and added to a new eppendorf. 1.5 volumes 100% 

isopropanol was added. Tubes were inverted to mix and incubated for 10 min at 

RT. After incubation, tubes were spun down for 15 min at 10,000 g, 4°C. After the 

pellet was identified, the supernatant was discarded and the pellet was washed 

with 75% EtOH and vortexed. Lastly, tubes were centrifuged for 5 min at 8,000 g, 

4°C; supernatant was discarded, and the pellet was dried on the bench until it 

became transparent. 30 ul of ddH2O was added and samples were Nanodropped 

for RNA concentration and purity. Samples were stored at -80°C until reverse 

transcription was performed. 

 

3.6.1 cDNA synthesis and quantitative PCR 

 cDNA was either reverse transcribed directly after RNA isolation or RNA 

was brought up from -80°C and thawed on ice. 2 ug of RNA was used and 

reverse transcription was performed in PCR tubes using Qiagen QuantiTect 

Reverse Transcription Kit (205313). cDNA was nanodropped and diluted to a 

concentration between 40 and 100 ng/ul.  

 Primers were designed using Roche Applied Sciences Assay Design 

Process. All primers were designed to span introns and blasted for specificity. 

Sybr Green Master Mix was used for RT-PCR with a Roche LightCycler 480 

machine.   

 

3.6.2 Mouse primers 

See table 8. 
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Table 8. Mouse primer table 

Gene Forward Primer Reverse Primer 
Adrp cctcagctctcctgttaggc cactactgctgctgccattt 

Cc10 gatcgccatcacaatcactg cagatgtccgaagaagctga 

C/ebpa aaacaacgcaacgtggaga gcggtcattgtcactggtc 

col2a agtaccggagctcgaggag gatcacccttggcaccag 

Ecad gttgcagaaggcgctgtt gtgttgacgtcatcgtctgc 

Etv4 cagacttcgcctacgactca gccataacccatcactccat 

Etv5 gcagtttgtcccagattttca gcagctcccgtttgatctt 

Fgf1 ccgaagggcttttatacgg tcttggaggtgtaagtgttataatgg 

Fgf10 atgactgttgacatcagactcctt cactgttcagccttttgagga 

Fgf3 gattactgcggtggaagtgg ccgttccacaaactcacactc 

Fgf7 actatctgcttataaaatggctgct gtggggcttgatcatctgac 

Fgf9 tgcaggactggatttcatttag ccaggcccactgctatactg 

Fgfr1 tctggcctctacgcttgc aggatgggagtgcatctga 

Fgfr1b ccacaggtctggtgacagtga cgggaagtaatagctcggatg 

Fgfr1c tctggcctctacgcttgc cttccgaggatgggagtg 

Fgfr2_3_b ccctacctcaaggtcctgaa catccatctccgtcacattg 

Fgfr2_3_c tgcatggttgacagttctgc tgcaggcgattaagaagacc 

Fgfr2b cctacctcaaggtcctgaagc catccatctccgtcacattg 

Fibronectin cctctgcagacctacccaga taaggtggccaggaatggta 

HPRT gctgacctggattac ttggggctgtactgctta 

IL-1 beta tgtaatgaaagacggcacacc tcttctttgggtattgcttgg 

Lipase gcgctggaggagtgttttt ccgctctccagttgaacc 

Perillipin ggatggagacctccctgag ctcacaggtcccgctcac 

PPAR gamma gaaagacaacggacaaatcacc gggggtgatatgtttgaacttg 

Pten aggcacaagaggccctagat ctgactgggaattgtgactcc 

Rac1 catcagttacacgaccaatgc cattggcagaatagttgtcaaaga 

Sma actctcttccagccatctttca ataggtggtttcgtggatgc 

SPC ggtcctgatggagagtccac gatgagaaggcgtttgaggt 

Spry2 gagaggggttggtgcaaag ctccatcaggtcttggcagt 

Spry4 gtggagcgatgcttgtgac caccaagggacaggcttcta 

T1-alpha cagtgttgttctgggttttgg tggggtcacaatatcatcttca 

Tbx4 ctgcatgagaaggagctgtg gaatccgggtggacatacag 

Tbx5 cgaagtgggcacagagatg caccttcactttgtaactagggaaaca 

Tgf-ß1 tggagcaacatgtggaactc cagcagccggttaccaag 

Ttf1 catgccttcagactgcacat tctttgcacggtagtacacga 

Twist1 agctacgccttctccgtct tccttctctggaaacaatgaca 
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Table 8. Primer table for human whole lung homogenates or primary 
cultures of human lung fibroblasts. 
 

GENE Forward Primer Reverse Primer 

ACTA2 CTGTTCCAGCCATCCTTCAT TCATGATGCTGTTGTAGGTGGT 

ADRP TCAGCTCCATTCTACTGTTCA CC CCTGAATTTTCTGATTGGCACT 

CC10 CTCACCCTGGTCACACTGG CTGAAAGCTCGGGCAGAT 

CEBPA GGAGCTGAGATCCCGACA TTCTAAGGACAGGCGTGGAG 

COL1A1 ATGTTCAGCTTTGTGGACCTC CTGTACGCAGGTGATTGGTG 

ECAD TTG ACG CCG AGAGCTACAC GTCGACCGGTGCAATCTT 

EP2 CCACCTCATTCTCCTGGC TA AGGTCCCATTTTTCCTTTCG 

ETV4 GCAGTTTGTTCCTGATTTCCA ACTCTGGGGCTCCTTCTTG 

ETV5 CATCCTACATGAGAGGGGGTTA AAGTATAATCGGGGATCTTTTTCA 

FGF1 CAATGTTTGGGCTAAGACCTG GGCTGTGAAGGTGGTGATTT 

FGF10 GAAGGAGAACTGCCCGTACA GGCAACAACTCCGATTTCTACT 

FGF3 TGGAGAACAGCGCCTACAGT GGAGAAGAGACCCCTGATGG 

FGF7 AAGGGACCCAAGAGATGAAGA CCTTTGATTGCCACAATTCC 

FGFR1 GGAGTATCTGGCCTCCAAGA TCACATTGTCCTCTGTCACCA 

FGFR1b GCATTCGGGGATTAATAGCTC CCACAGGTCTGGTGACAGTG 

FGFR1c ACCACCGACAAAGAGATGGA GCAGAGTGATGGGAGAGTCC 

FGFR2b GATAAATAGTTCCAATGCAGAAGTGCT TGCCCTATATAATTGGAGACCTTACA 

FN GCGAGAGTGCCCCTACTACA GTTGGTGAATCGCAGGTCA 

IL1-B TACCTGTCCTGCGTGTTGAA TCTTTGGGTAATTTTTGGGATAA 

LPN1 GATGAGAAATTCTGGGCCTTT GATGAGAAATTCTGGGCCTTT 

PDPN/(T1-a) AAATGTCGGGAAGGTACTCG AGGGCACAGAGTCAGAAACG 

PGBD TGTCTGGTAACGGCAATGCG CCCACGCGAATCACTCTCAT 

PLIN1 ACATTAAAGGGAAGAAGTTGAAC TTCTCCTGCTCAGGGAGGT 

PPARG CCTAAACTTCGGATCCCTCCT TTTGTGGTTTAGTGTTGGCTTC 

PTEN GGGGAAGTAAGGACCAGAGAC TCCAGATGATTCTTTAACAGGTAGC 

PLA2 TTTTGGGGCCAAGGAACT GTACTGGATGCCGACCATCT 

PTGS2 CTTCACGCATCAGTTTTTCAAG TCACCGTAAATATGATTTAAGTCCAC 

RAC1 CTGATCAGTTACACAACCAATGC CATTGGCAGAATAATTGTCAAAGA 

SFTPC CATAGCACCTGCAGCAAGAT CAGCAGGGAATGCCAAAT 

SMAD3 CACCACGCAGAACGTCAA GATGGGACACCTGCAACC 

SPRY2 TTTGCACATCGCAGAAAGAA TCAGGTCTTGGAAGTGTGGTC 

SPRY4 CCCCGGCTTCAGGATTTA CTGCAAACCGCTCAATACAG 

TBX5 GGCAGGTCTTTTGCGTCA GAAGAGGTGGGATAGTTGGAGA 

TBX4 CCATCGCTACAAGTTCTGTGAC TTGTAGCTGGGGAACATCCT 

TGF-B CACGTGGAGCTGTACCAGAA CAGCCGGTTGCTGAGGTA 

TWIST2 TTTTGGGGCCAAGGAACT GCAGCATCATTCAGAATCTCC 
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3.7 Hydroxyproline content assay 

 After lung function was performed, the right bronchus was clamped, and the 

medial and caudal lobes were removed and washed briefly in PBS. The tissue 

was then dried overnight in the hood, and either stored at 4°C or processed 

using Quickzyme Hydroxyproline Assay protocol directly. Dried lobes were 

scraped out of a cells culture plate, weighed and transferred into acid safe tubes. 

6M hydrochloric acid (HCl) was added to obtain a concentration of 50 mg of 

tissue/mL. At the same time, a collagen standard was prepared for incubation 

with the samples. Standard and sample tubes were sealed tightly and incubated 

for 20 hrs at 95°C in a thermoblock. After incubation, tubes were cooled to RT 

and spun down at 13,000 x g. The supernatant of the hydrolyzed sample was 

diluted 10 times in 4M HCl. In addition, a collagen standard was prepared from 

the hydrolyzed stock solution. 35 ul of the sample and standards were pipetted 

into a 96-well plate. 75 ul Assay buffer was added to the wells and the plate was 

covered with an adhesive seal and incubated for 20 min at RT while shaking. 75 

ul of detection reagent was added to each well, and plate was incubated in the 

dark at 60°C in an oven. The plate was then cooled on ice until the solution 

reached RT and an ELISA plate reader was used to measure the absorbance at 

570 nm.   

 

3.7.1 Hydroxyproline content analysis 

 After the A570 values were obtained fort he samples, a standard curve was 

constructed in the range of 6 - 300 ug/mL collagen. Total collagen measured in 

medial and caudal lobes were fit accordingly. Samples were plated in triplicate 

and an unpaired, two-tailed Student’s T-test was performed in order to test 

whether the group means were significantly different.  

 

 

 

 

 



                                              Material and Methods     
 

  47 

3.8 Primary culture of human lung fibroblasts 

3.8.1 Culturing and passaging  

 5 cm lung cubic biopsies were washed in PBS and multi-scissored in 

growing culture medium (DMEM with 5 – 10% FCS, 1% glutamine, and 1% 

Penicillin-Streptomycin (P/S) into small pieces. The small pieces were seeded in 

a large 75cm2 flask allowed to grow out at 37°C, 5% CO2  for up to one month 

with weekly media changes. Chunks were eventually washed away, and 

adherent fibroblasts remained. After the second passage, fibroblasts were frozen 

in 10% DMSO, 10% FCS and DMEM. These steps were usually performed 

before we received them. Normally, we received previously frozen aliquots of 

fibroblasts between 1 and 4 million cells per cryotube.  

 In order to bring up frozen cells for culture, media (DMEM 90%; FCS 10%; 

P/S 1%) was pre-warmed to 37°C and 7 mL aliquoted into 75cm2 flasks which 

were also pre-warmed in incubators at 37°C 5% CO2 for at least 30min. 10 mL of 

pre-warmed media were also prepared and labeled in 15 mL tubes. Cells were 

then removed from liquid nitrogen and placed in a 37°C water bath until thawed 

for approximately 1-2 min. Next, cells were immediately pipetted into the 

aliquoted media and centrifuged for 5 min at 100 g. Supernatant was removed 

and the cell pellet was resuspended in 3 mL of media. This media was then 

added to the pre-warmed flasks and placed in the incubator.  

 Human lung fibroblasts grow extremely fast and often reached 80 – 100% 

confluence by the following day. Before splitting, 50 mL tubes were labeled and 

1X trypsin, as well as 1X PBS with 1% P/S were pre-warmed to 37°C. Cell 

supernatant was then aliquoted into pre-labeled 50 mL flasks, and washed twice 

with 10 mL 1X PBS, followed by incubation at 37°C for 2-3 min with 6 mL 1X 

trypsin. Flasks were spanked and adherence was monitored under the 

microscope. Once most cells were detached, 4 mL 1X PBS was added to the 

flask, and the solution was mixed, washed and pipetted back into the original 

supernatant in order to stop the trypsin reaction. The solution was inverted to 

mix, and cells were counted using a hemocytometer. 10 ul of cells were added to 

one side of the hemocytometer. Cells present in an area of 4 larger squares 
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composed of a smaller grid of 16 squares were counted. The total number of 

cells in this area was divided by 4 (to get the average), then multiplied by 10 (for 

the volume in ul used for counting), then multiplied by the dilution of cells 

(normally 20 mL or 20,000 ul). For example if 80 cells total were counted; 80 

divided by 4 (number of squares) multiplied by 10 (ul volume used for counting) 

times 20,000 (ul diluted), would equal 4 million total cells. After counting, cells 

were spun down at 100 g for 5 min and resuspended according to the needed 

concentration.  In order o achieve 80 – 100% confluency by the next day, for six-

well plates, cells were seeded at 150 – 250,000/well; for 4 well slides, 20 – 

50,000/well, and 8-well slides, 8 – 15,000/well.  

 

3.8.2 Treatment with rhFGF1, rhFGF10 and TGF-β 

 25 ug rhFGF1 (R&D Systems 232-FA) was resuspended in 0.1% BSA in 

PBS and diluted in PBS for a final concentration of 100 ng/mL. rhFGF10 (R&D 

Systems 345-FG) were resuspended in 250 ul of 0.1% BSA in PBS to make a 

stock concentration of 100 ug/mL. Cells were serum starved for at least 12 hrs 

and treated with 200 – 500 ng/mL rhFGF10. 2 ug hTGF-β (R&D Systems 240-B) 

was resuspended in 0.1% BSA in 4 mM HCl and diluted in PBS for treatment of 

cells at a final concentration of 4 ng/mL.  

 

3.8.3 Treatment with Rosiglitazone 

 10 mg of Rosiglitazone (R2408 Sigma) was diluted with 280 ul DMSO for a 

.1M solution. A working solution of 0.033 M Rosiglitazone was then made by 

using 1 part Rosiglitazone and 3 parts PBS. Cells were treated at a final 

concentration of 20 uM or 100 uM Rosiglitazone.  

 

3.8.4 Harvesting cells for RNA 

 Human fibroblasts were grown in monolayers in 6 well plates to 80 – 100% 

confluency.  Media was aspirated, cells were washed with 1X PBS briefly, and 

200 ul of TRIZOL was added per well. Cells were scraped away with a cell 

scraper and pipetted into a cryovial. At least 3 wells were combined into one 
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cryovial and vortexed for at least 30 s and placed immediately in liquid nitrogen. 

Homogenized cell lysates were then stored in -80°C until RNA was extracted. 

 Heavy phase-lock gel tubes (5 PRIME 2302830) eppendorf tubes were 

centrifuged for 5 min at maximum speed. The homogenized lysate was added to 

the separator column and incubated at RT for 3 min. 1/10 total volume of 

chloroform was added. Tubes were shaken for at least 15 s and incubated for 3 

min at RT. Next, tubes were centrifuged for 15 min at 10,000 g at 4°C. The 

aqueous layer was extracted and added to a new eppendorf. 1.5 volumes 100% 

isopropanol was added. Tubes were inverted to mix and incubated for 10 min at 

RT. After incubation, tubes were spun down for 15 min at 10,000 g, 4°C. After the 

pellet was identified, the supernatant was discarded and the pellet was washed 

with 75% EtOH and vortexed. Lastly, tubes were centrifuged for 5 min at 8,000 g, 

4°C; supernatant was discarded, and pellet was dried on the bench until it 

became transparent. 30 ul of ddH2O was added and samples were Nanodropped 

for RNA concentration and purity. 

3.8.4.1 Making cDNA 

See section 3.6.1 for cDNA. 

3.8.4.2 Human primers 

See Table 9 for list of human primers. 

3.8.5 Immunohistochemistry of cells 

 Cells were rinsed briefly in PBS and immerse for 30 min in 4% PFA solution 

at 37ºC. Next, for the washing steps, if the antigen of interest was nuclear, PBX 

was used, if it was located on the cell surface, PBS was used. Cells were 

washed in PBS or PBX 3 x 5 min. Next, cells were covered in blocking buffer (1% 

BSA in PBS) for 30 min at 37ºC or 3% BSA in PBX. Blocking buffer was removed 

by draining with KimWipe. The primary antibody was diluted 1:50 – 1:200 in 

blocking buffer and incubated for 1 – 2 hrs at RT or overnight at 4°C. Next, the 

primary antibody solution was blotted on away with a KimWipe and cells were 

washed with PBS or PBX 3 x 5 min. The secondary antibody was diluted in 

blocking buffer (1:450 – 1:1000) and incubated for 1 hr at RT. The solution was 

drained or blotted with a KimWipe and cells were washed again with either PBS 
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or PBX 3 x 5 min. Chambers were removed, and PBS or PBX was drained. 

Lastly 10 ul of mounting media (VECTASHIELD mounting media with or without 

DAPI (UV channel) for cell nuclei staining was added and slides were cover-

slipped. 

3.8.6 Oil red O stain 

 A stock solution of Oil Red O (Sigma O-0625) was prepared: 0.35 g Oil Red 

O in 100 mL of isopropanol was stirred overnight on a stir plate, filtered (0.2 uM) 

and stored at RT. Next, a 3:2 working solution was prepared with water and 

filtered again. Cells were washed twice with PBS, once with 10% formalin, and 

incubated for up to one day in fresh 10% formalin. Formalin was then removed 

with a pipette and cells were washed twice with water, then 60% isopropanol for 

5 min at RT. Cells were then dried with a hair dryer and 1 mL of Oil Red O 

working solution was added and cells were incubated for 10 min. Solution was 

immediately removed and cells were washed 4 times with water. Cells were 

imaged with light microscopy. 

3.8.7 Protein isolation and quantification 

 Cells were washed twice with cold PBS, and then incubated with cold RIPA 

buffer including protease/phosphatase Inhibitor Cocktail (Cell Signaling #5872), 1 

mM phenylmethylsulfonyl fluoride (PMSF), and 1 mM Sodium Orthovanadate, on 

ice for 2 min. Cells were then scraped with a frozen cell scraper into an 

eppendorf tube and spun down at 4°C for 30 min. The supernatant was then put 

on ice while a Bradford Assay was performed for quantification of lysate. A 1:10 

dilution of the lysate was usually used. Lysates were then diluted to 1.2 ug/mL, 

5X sample buffer with β-mercaptoethanol was added for a final concentration of 1 

ug/mL, and samples were stored at -80°C.   

3.8.8 Statistical Analyses 

 Percentage of the number of positive cells stained over the total DAPI 

stained cells were calculated. A student’s un-paired, nonparametric two-tailed T-

test was performed, followed by a Mann-Whitney test to detect significant 

differences between the stained cells.  

3.8.9 Quantification of immunofluorescent microscopy 
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See section 3.5.4.1 

3.9 Primary culture of MLE-12 cells 

3.9.1 Culture and passaging of MLE-12 cells 

  Mouse lung epithelial cells (MLE-12) CRL-2110 (ATCC) cells were kindly 
provided to us from Dr. Martina Korfei. Cells were cultured as described by 
ATCC, briefly: 37°C and 5% CO2 in DMEM/F-12 medium (ATCC) supplemented 
with 0.005 mg/mL insulin, 0.01 mg/mL transferrin, 10 nM hydrocortisone, 10 nM 
beta-estradiol, L-glutamine 2 mM, Insulin-Transferrin-Selenium (ITS) solution 1X 
(PAN Biotech P07-03100), 10 mM HEPES and 2% fetal bovine serum (FBS) and 
1% pen-strep. Cells were split every 2 days or at 80% confluence. For treatment 
with growth factors, cells were deprived of serum for at least 18 hrs prior to 
treatment.    
3.9.2 RNA isolation 

 See section 3.8.4 for RNA isolation protocol.  

3.9.3 Protein isolation and quantification 

 See section 3.8.7 for RNA isolation protocol.    

 3.9.4 Western blot  

 Loading buffer was added to protein samples from cell extracts (5% SDS 
in bromophenol blue and β-mercaptoethanol) denatured for 5 min at 95°C and 
cooled on ice. At least 10 ug of sample was loaded on a 10% polyacrylamide gel 
and run at 120 V for approximately 2 hrs. Samples were then electrically 
transferred to a polyvinylidene fluoride (PVDF) membrane by semi-dry electro 
blotting (2 mA/cm2) for 90 min. The membrane was blocked with 3-5% milk in 
TBS blocking buffer at RT on shaker for 1 h followed by incubation with primary 
antibody overnight at 4°C. After washing with 1X TBS-T three times for 10 min 
each, the membrane was incubated with the respective HRP-labeled secondary 
antibody at RT for 2 hrs followed by three times washing with 1X TBS-T buffer for 
10 min each. The protein bands were detected by ECL (Enhanced Chemi-
luminescence, Amersham, Germany) treatment, followed by exposure of the 
membrane.  

3.10 Details regarding animal experiments done at JLU (BreAnne 
MacKenzie: BM, Andreas Gunther: AG) versus those performed at 
Childrens Hospital Los Angeles  (Denise Al Alam: DAA) and the 
Comprehensive Lung Center in Munich (Melanie Koenigshoff:MK)      

The number of animal experiments performed at JLU was limited by a slow 
approval process, it was decided to take advantage of an ongoing collaboration 
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with Dr. Denise Al Alam at Children’s Hospital Los Angeles (California, USA), Dr. 
Melanie Koenigshoff (Munich, Germany) and Prof. Andreas Günther (Giessen, 
Germany).  

Collaboration with Denise Al Alam: former postdoc of Dr. Bellusci, inherited Dr. 
Bellusci’s lab when he moved to JLU. All protocols for bleomycin treatment were 
approved at CHLA and significant experience was in place (Gupta et al., 2009). 
The animal experiments in Fig 6, 10, 11b, 12 and 15 were done in the US. 
Bleomycin administration, weight and lung function were carried out at CHLA. 
Samples were sent to JLU for further analyses by BM. 

Collaboration with Melanie Königshoff: Fig 7a. We have obtained cDNA from 
lungs of mice at different times after bleo exposure. qPCR were done by BM.  

Collaboration With Prof. Andreas Günther: Fig 7b. We have obtained protein 
extracts from lungs of wild type mice at different times after bleomycin exposure. 
Western blots were done by Dr. Ingrid Henneke from Prof. Dr. Günther’s lab. 
Figure preparation and data analyses were done by BM. The table below 
summarizes the respective contributions and the protocol 

Table 10. Delegation of animal experiment work.  
 

Fig. #  Prot.# Geno-
type 

weight 
meas. 

bleo  

tx 

lung 
function 

gross 
pics 

H&E q-
PCR 

hydroxy-
proline 

stain-
ing 

data 

6 CHLA 
193-12 

WT DAA DAA DAA - -  BM BM BM 

7a - WT - MK - - - BM - - BM 

7b - WT - AG - - - - - AG BM 

9 CHLA 
193-12 

WT -  DAA DAA BM BM - - BM 

10 CHLA 
193-12 

WT DAA DAA - - - - - - BM 

11a JLU 
73/2012 

DTG BM BM BM - BM BM BM - BM 

11b JLU 
73/2012 

DTG DAA DAA DAA - BM BM BM - BM 

12 CHLA 
193-12 

Fgfr2b+/- DAA DAA DAA - BM - BM - BM 

13 JLU 
72/2012 

Fgf7-/- BM BM BM - BM BM BM - BM 

14 JLU 
72/2012 

Fgf7-/- BM BM BM - BM BM BM - BM 

15 CHLA 
193-12 

Fgf10+/- DAA DAA DAA - BM BM BM BM BM 
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Part 4. Results  

      4.1 FGF signaling is dysregulated in end-stage IPF lungs 

4.1.2 Microarray suggested blunted epithelial FGF signaling in IPF patients 

 RNA isolated via laser-capture micro-dissection from IPF patients (n=11) 

and donors (n=11) was reversed transcribed, labeled and competitively 

hybridized on Agilent whole human genome arrays (Fig 4). Squares indicate 

comparison between homogenate collected from random areas of IPF lungs with 

homogenates of random areas collected from donor lungs. Circles represent 

RNA collected exclusively from fibrotic regions of IPF lungs compared to normal 

healthy septa of donor lungs. Triangles indicate comparison between normal 

healthy septa of donor and “normal” appearing septa of IPF patients. When the 

expression levels of IPF fibrotic septa were compared against normal donor 

septa (circle symbols), FGF1 and FGF7 as well as FGFR1 were upregulated 

while SPRY2 was downregulated. This indicated that while ligands and receptors 

were present in IPF fibrotic septa, signaling was muted. However, since the 

Agilent probes were not isoform specific, it could not be determined whether the 

b or c isoform of the receptors were regulated. When IPF whole lung 

homogenates were compared to donor whole lung homogenates (square 

symbols), FGF1 was not observed to be regulated. However, FGF7, FGFR1 and 

SPRY2 were downregulated while FGFR2 was upregulated. “Normal” appearing 

IPF septa were compared to “normal” appearing donor septa (triangle symbols), 

and the expression pattern was found to be similar to the expression pattern of 

comparing fibrotic IPF septa with “normal” donor septa (circle symbols); 

indicating that “normal” appearing septa of IPF lungs may also be molecularly 

dysregulated. In both normal and fibrotic areas of IPF lungs there was an 

upregulation of FGF1 and FGFR1 while SPRY2 was downregulated. However, 

FGFR2 was also upregulated in “normal” septa of IPF compared to donor 

controls. In summary, FGF ligands and receptors appeared to be actively 

expressed in IPF lungs; however, signaling (SPRY2) was decreased compared 

to donor lungs.   

       



 Results         

  54 

 

 

Figure 4. Microarray work flow and profile suggesting decreased FGF 

signaling in IPF lungs.   

Microarray workflow is displayed for (n=11) donor and (n=11) IPF lung samples. 

Squares indicate comparison between homogenate collected from random areas of 

IPF lungs with homogenates of random areas collected from donor lungs. Circles 

represent RNA collected from fibrotic regions of IPF lungs compared to normal 
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healthy septa of donor lungs. Triangles indicate comparison between normal 

healthy septa of donor and “normal” appearing septa of IPF patients.  

Limitation: isoforms b and c for FGFR1 and FGFR2 receptors were not tested. 

Fibrotic septa of IPF were not compared against “normal” IPF septa. There was no 

probe for FGF10.  

Microarray was performed by Dr. Jochen Wilhelm; analyses and presentation by me (BM). 

   

 4.1.3 Transcriptome analyses by qPCR of FGFs and other genes  

 In order to identify a transcription signature in IPF whole lung 

homogenates, qPCR was performed on biopsies from end-stage IPF patients 

(n=22-30) compared to donors (n=8-15) (Fig 5). Porphobilinogen deaminase 

(PGBD) was selected as a reference gene, as its expression, unlike HPRT 

ACTB, was not regulated in either Donor or IPF lung homogenates as previously 

published (Tian et al., 2011). Expression is displayed as negative delta delta Ct, 

so that positive values indicate an increase in expression and negative values, a 

decrease. First, mesenchyme specific expression was analyzed. While 

TWIST2, a basic helix-loop-helix transcription factor, a marker for mesenchyme 

differentiation, and promoter of EMT (Katoh and Katoh, 2009b) was slightly 

downregulated, S100 calcium binding protein S100A4 (Lawson et al., 2005); 

also known as “fibroblast specific protein” which is involved in cell migration, was 

slightly upregulated. Next, both as a positive control and to demonstrate 

upregulation of pathogenic, markers characteristic of fibrosis, expression of 

smooth muscle actin (ACTA2), collagen type 1 alpha 1 (COL1A1), and 

fibronectin (FN) were assessed (Marmai et al., 2011). While all 3 were highly 

upregulated, ACTA2 was the highest, followed by COL1A1 and then FN 

indicating robust, active fibrosis was occurring in the IPF patient samples. Also 

highly upregulated was the cell motility/WNT signaling ras-related C3 

botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC1) 

(Akunuru et al., 2011). Next, epithelial markers were analyzed. E-cadherin 1 

(ECAD), a calcium dependent cell-cell adhesion glycoprotein was slightly 

upregulated, while podoplanin, an epithelial specific marker (T1-α) (Ono et al., 
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2013) was not regulated. Epithelial progenitor cell markers Clara cell 

secreted protein (CC10) was not regulated and surfactant protein C (SFTPC) 

was down-regulated potentially indicating AEC2 cell injury, a decrease in the 

number of AEC2 cells or dysregulation. Interestingly, inflammatory markers 

transforming growth factor beta 1 (TGFβ1), downstream TGFβ1 target SMAD3, 

and potent cytokine interleukin 1 beta (IL-1β), were not regulated compared to 

donor samples; indicating that the inflammatory process in the end-stage IPF 

samples measured was unlikely to be more active than in donor lungs. Tumor 

suppressor gene phosphatase and tensin homolog (PTEN) was only slightly 

upregulated in IPF samples possibly indicating a lack of epithelial protection. 

Importantly, FGF ligands were also analyzed and observed to be regulated. 

FGF1, FGF7, and FGF10, were upregulated, while FGF2 and FGF9 were 

downregulated. Mesenchymal specific receptor isoforms FGFR2c and 

FGFR1c, the main receptors for FGF2 and FGF9 were upregulated possibly 

indicating an over-abundance of lung mesenchymal cells. FGFR1b, expressed 

in both mesenchymal and epithelial cells, as well as epithelial receptor FGFR2b, 

were downregulated, possibly indicating a lack of epithelial cells or dysregulation 

of the receptor. Downstream FGF signaling markers whether in the epithelium; 

SPRY2, or in the mesenchyme; SPRY4, ETV4, were downregulated, as well as 

upstream regulators of FGF signaling TBX4 and TBX5. Only ETV5 showed a 

slight trend towards upregulation. Markers for lipofibroblasts, adipocyte 

differentiation related protein (ADRP) and CAAT CEBP/a were also 

downregulated indicating a decrease in lipofibroblasts in IPF lungs. Lastly, 

eicosanoid expression was evaluated as it may play an important role in 

negatively regulating collagen production in the lung (Bozyk and Moore, 2011; 

Ghosh et al., 2004). Phospholipase A2, an enzyme required for fatty acid 

synthesis (PLA2) and prostaglandin E2 receptor (EP2) both appeared to be 

slightly upregulated. 
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Figure 5.  Transcriptome analyses of IPF patients vs. donor by qPCR  

qPCR was performed on lung homogenates biopsied from end-stage IPF 

patients (n=22-30) and compared to donors (n=8-15). Porphobilinogen 

deaminase (PGBD) was used as a reference gene and expression is displayed 

as negative delta delta Ct, so that positive values indicate an increase in 

expression and negative values indicate a decrease in expression.  

 

Limitations: no pathological report was provided with donor samples; due to 

variation in age and sex of donors, patients with emphysema may provide a 

more homogenous sample pool and serve as a more appropriate control. 

 

qPCR and data analyses by BM, graphic presentation by Dr. Jochen Wilhelm 

 

4.2 Heterogeneity in fibrotic response to bleomycin in C57Bl/6 injured 

animals (5U/kg i.t.) and limited collagen deposition compared to end-stage 

IPF 

 A massive deposition of collagen is characteristic of end-stage IPF patient 

lung pathology (Fig 6A,B). In order to establish the bleomycin injury model, we 

first evaluated the level of collagen deposition by Masson’s trichrome stain at 

different time points after injury in order to visualize both the extent of injury and 

to evaluate homogeneity of response (Fig 6C-Q). We observed, that although 
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mice from the same background (C57Bl/6) and age (12 weeks) were treated with 

the same dosage of bleomycin (5U/kg i.t.), some suffered only a moderate injury 

(MOD INJ), while others suffered severe injury (SEV INJ) as measured by 

hydroxyproline quantification, weight loss, and lung compliance. This dose, 5U/kg 

i.t., was chosen since our group previously obtained comparable survival (40%) 

and a robust fibrotic response with 3U/kg via osmotic mini-pump (Gupte et al., 

2009). Notably, whether mice were part of the MOD INJ or SEV INJ group was 

usually externally apparent, as mice were monitored daily for physiological signs 

of suffering (see Table 5). Mice suffering from acute lung injury, marked by 

prolonged periods of abnormal respiration and >20% reduction of initial weight 

were euthanized and also considered as SEV INJ. At 7 days post injury (dpi) 

collagen deposition had already begun in SEV INJ mice (Fig. 6E), was 

accompanied by a robust inflammatory cell influx and an Ashcroft score (AS) of 4 

(Fig 6D). A significant decrease in compliance was observed as well at 7 dpi in 

both groups (Fig 6F), however the MOD INJ group recovered their weight (Fig 

6G). By 14 dpi, MOD INJ mice showed an Ashcroft score of 4 (Fig. 6H) while 

SEV INJ showed an average Ashcroft score of 6 (Fig. 6D). Interestingly, a 

significant increase in hydroxyproline (Fig 6J) and decrease in weight (Fig 6L) 

was only detected in SEV INJ mice at 14 dpi, though compliance was 

significantly decreased in both groups (Fig 6K). Mice that survived to 21 dpi 

showed less inflammatory cells and more collagen deposition (Fig 6M,N,O) than 

at 7 and 14 dpi; however, only SEV INJ mice showed a significant decrease in 

lung compliance (Fig 6P); both groups recovered weight, however SEV INJ mice 

lost more weight during the earlier stages of injury. Taken together, the results 

presented in this figure feature important limitations that should temper the 

conclusions and interpretations drawn from the mouse model of IPF. Thus it is 

important to consider both the inadequate recapitulation of the human phenotype 

in the mouse model (AS=8 in end-stage IPF vs. maximum 6 in mice), as well as 

the disparate responses dependent on sex, age, genetic background, and 

weight; in addition to the technical expertise required for the administration of 

bleomycin. 
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Figure 6. Heterogeneity in response of bleomycin to wild type injured 

animals (5U/kg i.t.) and limited collagen deposition compared to end-stage 

IPF  

(A,B) Masson’s trichrome stain; collagen in green, donor, Ashcroft score Donor 

(AS)=0 and IPF; AS=8. (C) Masson’s trichrome stain at 7 dpi in saline (SAL); 

AS=0 versus (D) severely injured (SEV INJ) bleomycin-injured lung at 7 dpi; 

AS=4; comparison at 7 dpi of SAL, versus mice with moderate injury (MOD INJ), 

and SEV INJ: (E) hydroxyproline, (F) compliance, (G) average weight loss. 

Masson’s trichrome stain at 14 dpi in (H) MOD INJ; AS=4 versus (I) SEV INJ; 
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AS=6; comparison at 14 dpi SAL, versus mice with MOD INJ and SEV INJ: (J) 

hydroxyproline, (K) compliance, (L) average weight loss. Masson’s trichrome 

stain at 21 dpi in (M) MOD INJ; AS=5 versus (N) SEV INJ; AS=6 comparison at 

21 dpi SAL, versus mice with MOD INJ and SEV INJ: (O) hydroxyproline, (P) 

compliance, (Q) average weight loss.  

Limitations: experimental results may have been confounded by the technical 

ability to perform i.t. injection efficiently. In addition, only the caudal and medial 

lobes were assessed for hydroxyproline; other lobes may incur more or less 

collagen deposition depending on the angle of the sprayer and the anatomy of 

the mouse. Nonetheless, it should be noted that even with the highest dose of 

bleomycin injury, collagen deposition in mice never occurred as robustly as in 

humans with end-stage IPF. 

Bleomycin i.t. injury kindly performed by Dr. Denise Al Alam at CHLA, protocol number 193-12; 

Hydroxyproline measurement, sectioning, and staining, data analyses, performed by me (BM).  

4.3 FGF10/FGF7 signaling is blunted in end-stage IPF patients and 

activated in mice spontaneously recovering from bleomycin-induced lung 

injury by 14 dpi.  

While the lungs of bleomycin-injured mice are demonstrably less 

damaged than the lungs of human IPF patients, which compromise the 

conclusions and interpretations drawn from therapies that improve survival and 

lung function of injured mice, the spontaneous repair response initiated by mice 

after injury, offer a unique model to evaluate whether FGF signaling is critical for 

a regulated repair process to occur. Furthermore, comparing the transcriptome 

signature during the repair response by mice with the end-stage transcriptome 

signature of IPF, gives insight into whether dysregulation of FGF signaling 

pathways contributes to IPF in humans.  

To determine whether FGF10/FGF7 signaling was dysregulated in IPF 

lungs, the expression of FGF ligands (FGF7 and FGF10), receptors (FGFR1b 

and FGFR2b) and downstream targets (SPRY2, SPRY4 and ETV5) in biopsies 

from end-stage IPF patients (n=22-30) compared to donors (n=8-15) were 

analyzed (Fig 7a., A-D). Studies in mice have shown that FGFR2b, expressed 
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primarily in the epithelium, binds to FGF7 and FGF10 while FGFR1b, expressed 

in both the epithelium and mesenchyme (Beer, 2000) binds FGF10 but not 

FGF7 (Zhang et al., 2006). While Spry2 and Etv4 are epithelial transcriptional 

targets (Firnberg and Neubüser, 2002; Liu et al., 2003; Zhang et al., 2001) and 

Spry4 a mesenchymal target (de Maximy et al., 1999). Fgfrs themselves are 

also downstream targets of FGF signaling (Shu et al., 2005). 

IPF lung homogenates showed increased ACTA2 and COL1A1 

expression indicating an abundance of smooth muscle actin-positive, collagen-

producing myofibroblasts (Fig 7a., A). While FGF7 expression trended towards 

an increase, FGF10 expression was significantly increased (Fig 7a., B). A 

modest decrease in both FGFR1b and FGFR2b was also observed (Fig 7a., C).  

Downstream epithelial targets SPRY2 and ETV4 were also downregulated (Fig 

7a., D). Among FGF targets, SPRY4 was the most decreased.  

We performed the same analyses on WT mice treated with either saline 

(n=3) or a single administration of 3.5 U/kg bleomycin (IT) at 7 (n=3-5), 14 (n=4-

5) and 21 (n=4-5) days post-bleomycin injury (dpi) (Fig 7a., E-P). By 7 dpi (Fig 

7a., E), Acta2 and Col1a1 were increased in bleomycin-treated mice. While Fgf7 

and Fgf10 were not changed (Fig 7a., F), Fgfr2b, was downregulated suggesting 

severe epithelial loss at this stage (Fig 7a., G). Fgfr1b was also significantly 

downregulated. Although no major change in Spry4 and Etv4 was detected, a 

significant reduction in Spry2 expression was observed (Fig 7a., H). In summary, 

FGF signaling did not appear to be significantly activated at 7 dpi.  

At 14 dpi, (Fig 7a., I-L) Acta2 and Col1a1 were significantly increased (Fig 

7a., I). Although no change in Fgf7 expression was observed, Fgf10 was 

significantly increased (Fig 7a., J). While Fgfr1b expression was upregulated, 

Fgfr2b was still significantly reduced, indicating damaged epithelium (Fig 7a., K). 

Spry2 expression was unchanged and Etv4 expression was increased. 

Interestingly, the mesenchymal FGF signaling target, Spry4 was upregulated  

(Fig 7a., L). Overall, FGF signaling both in the epithelium and mesenchyme 

appeared to be activated by 14 dpi.  

Finally, at 21 dpi (Fig 7a., M-P), fibrosis resolution and epithelial repair 



 Results         

  62 

were underway as indicated by Acta2 expression and Col1a1, which although 

still elevated, were expressed at lower levels than 14 dpi (Fig 7a., M). Though a 

slight decrease in Fgf7 expression was observed, Fgf10 remained upregulated. 

An increase in Fgfr1b expression and maintenance of Fgfr2b expression 

indicated efficient epithelial repair and fibrosis resolution (Fig 7a., O). In addition, 

Spry2 expression was not changed, while Spry4 and Etv4 remained upregulated 

(Fig 7a., P). Overall, at 21 dpi, we observed a decrease in mesenchymal FGF 

signaling associated with maintenance of epithelial FGF signaling.  

In summary, our results indicated a dynamic FGF pathway signature after 

bleomycin injury characterized by strong activation by 14 dpi followed by 

maintenance of signal during fibrotic resolution. Thus, the decrease in FGF 

downstream targets in end-stage IPF patients may indicate defective activation of 

FGF signaling, which may contribute to aberrant repair.  

 

 

 



 Results         

  63 

 

Figure 7a. Transcriptome analysis of members of the FGF7 and 10 

signaling pathway in human IPF and bleomycin-treated mice 

The expression of ACTA2 and COL1A1 was determined to confirm the extent of 

fibrosis. The expression of the ligands FGF7 and FGF10, the associated 

receptors FGFR1b and FGFR2b as well as the downstream targets SPRY2, 

SPRY4 and ETV4 was determined in human and WT mice receiving a single, 

3.5U/kg bleomycin IT installation or saline. (A-D) End-stage IPF (n=22-30) 

versus donor (n=8-15). (E-H) Gene expression at day 7; saline (n=3); bleomycin 

injured (n=3-5). (I-L) Gene expression at day 14; saline (n=3); bleomycin injured 

(n=4-5). (M-P) Corresponding mouse genes at day 21; saline (n=3); bleomycin 
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injured (n=4-5).  

Limitations: All IPF samples were taken from patients diagnosed with end-

stage IPF. While lung donor samples excluded individuals with diagnoses with 

any IIP diseases, cancers were not excluded thus in order to better standardize 

analyses, patients with emphysema may be more appropriate controls. While 

genes may be regulated on a transcriptional level, it is important to also show 

regulation at the protein level. cDNA kindly provided by Dr. Melanie Königshoff, München. 

qPCR and data analyses performed by me (BM). 

 

4.3.1 p-Akt and p-ERK are activated in patients with IPF and in bleomycin –

treated mice; total FGFR2 and FRS are increased in IPF 

 Levels of growth factor signaling targets, p-ERK and p-Akt were analyzed 

via western blots in Donor (n=5) and IPF (n=5) lung homogenate. P-ERK and p-

Akt was strongly activated in IPF patients compared to donor (Fig 7b, A-C) 

suggesting increased growth factor signaling in coherence with previous data 

(Yoshida et al., 2002). In addition these markers were also activated in mice 

treated with bleomycin (n=5/time point) from 7 dpi (Fig 7b, F-H) compared to 

saline controls (n=4). Interestingly, total FRS2 and FGFR2 were also found to be 

upregulated in IPF patients compared to donor (Fig 7b, A). While this may be 

indicative of an increase in mesenchymal cells in the IPF lung, further 

experiments are needed to confirm whether FGFs are actively signaling in both 

IPF and bleomycin-treated mice. 
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Figure 7b.  p-Akt and p-ERK are activated in patients with IPF and 

bleomycin treated mice; total FGFR2 and FRS are also increased in IPF 

Limitations: pAkt and pERK are targets of many growth factor signaling 

cascades including PDGF and VEGF, thus they do not represent an exclusive 

read-out of FGF signaling. No histological information was available on the 

donor samples. While total FGFR2 and FRS were increased, whether FGF 

signaling was actively signaling must be confirmed via p-FGFR2 or p-FRS. 

Western blot performed by Dr. Ingrid Henneke; Figure preparation, data analyses performed 

by me (BM). 
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4.4 Bleomycin mouse model experiment schematic 

Results from the qPCR transcriptome analyses of bleomycin injured wild 

type mice suggested that FGF signaling was strongly activated by 14 dpi 

followed by maintenance of signal during fibrotic resolution (14 – 28+ dpi). Thus, 

the decrease observed in FGF downstream targets in end-stage IPF patients 

(SPRY4, ETV4, ETV5) may indicate defective activation of FGF signaling during 

end-stage disease, which may contribute to aberrant repair. Moreover, defective 

FGF signaling could also contribute to IPF pathogenesis if FGFs are required to 

activate and sustain an FGF-mediated endogenous repair mechanism in the lung 

as it is in the case of bleomycin injured mice (Fig 8A). In order to further 

investigate the hypothesis that deficient endogenous FGF signaling inhibits the 

lungs repair mechanism after bleomycin injury, mice deficient in FGF signaling: 

Rosa26rtTA+/-;tet(O)solFgfr2b/+ (DTG), Fgfr2b+/-, Fgf7-/-, and Fgf10+/- mice (Fig 8C) 

were treated with bleomycin and outcome was compared to either littermate or 

genetic background-matched controls (Fig 8B). Lung function, modified Ashcroft 

Score (% area confluent fibrosis) and hydroxyproline content or Col1a1 

expression were then performed on injured mice at 28 dpi and compared to 

corresponding wild types.  
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Figure 8. Bleomycin mouse model experiment schematic. 

(A) Early pathogenesis of IPF is not well characterized but believed to involve 

chronic epithelial cell injury, ER stress, and defective AEC2 cells. After 

presumably many years, patients present with dyspnea, and severely reduced 

lung function. Thus, once diagnosed, patients are already “end-stage” and live 

on average 3-5 years due to defective repair mechanisms in the lung. FGF 

signaling may play a role in both early and late stage IPF, however due to the 

poor characterization of early disease stages, only the study of FGFs role in 

end-stage IPF is possible (B) Lungs of wild type mice treated with bleomycin 

mount and sustain a spontaneous repair response that may be dependent on 

FGF signaling. (C) Mice deficient in endogenous FGF signaling may also show 

signs of aberrant repair, thus the hypothesis that FGF signaling is required for 

the repair after lung injury was tested with using these mice.  
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4.5 Attenuating FGF1/7/10/22 signaling in mice 

4.5.1 Validation of the Rosa26rtTA+/-;tet(O)solFgfr2b/+ construct 

 In order to attenuate FGF ligand signaling during injury, mice homozygous 

for reverse tetracycline transactivator (rtTA) (Fig 9A) under the ubiquitous 

promoter Rosa26 were crossed with mice carrying a soluble form of the 

extracellular domain of the endogenous FGFR2-IIIb receptor fused to the Fc 

domain of the IgG heavy chain and under the control of a tetracycline responsive 

element, tet(O)solFgfr2b/+ (Fig 9B) (Parsa et al., 2010). When mice carrying both 

constructs are exposed to doxycycline, the soluble, FGFR2b decoy receptor is 

secreted, trapping all FGFR2b specific ligands (Fig 9C,D). In order to test 

whether the construct could be activated postnatally, adult DTG mice were fed 

doxycycline food from PN28 to PN88. As previously reported (Parsa et al., 2010), 

incisors failed to regenerate after extended exposure to doxycyline food (Fig 

9E,E’). Pregnant mothers heterozygous for the driver and positive for the 

tet(O)solFgfr2b construct were fed doxycycline food from the date of conception; 

embryonic (E) day 0 to E12.5 and sacrificed. Embryos deficient in FGF ligand 

signaling lacked limbs (Fig 9F,F’) and lung growth was stunted in DTG embryos 

that were fed dox from E10.5 to E18.5 and analyzed at E18.5 (Fig 9G,G’). These 

results were expected, as mice homozygous for Fgfr2b or Fgf10 lack both limbs 

and lungs (De Moerlooze et al., 2000 Ohuchi et al., 2000; Sekine et al., 1999). In 

an additional postnatal validation, it was observed that mice homozygous for the 

Rosa26rtTA driver, expressed twice as much decoy receptor as mice 

heterozygous for the driver after one week on doxcycline food (Fig 9H). In a 

longer study, DTG mice fed either normal or doxycyline from PN28 to PN88, 

showed that lung compliance was observed to be slightly reduced in the DTG 

+DOX group (Fig 9I).  
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Figure 9. Validation of Rosa26rtTA/+;tet(O)solFgfr2b/+ mice  

(A) A reverse tetracycline transactivator is under control of the Rosa26 promoter, 

which is expressed in every cell. (B) Doxycycline binds to rtTA and (C) binds to 

the tet(O)7 response element upstream of the CMV promoter, which activates 
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expression of a soluble decoy Fgfr2b receptor. The receptors signaling domain 

has been replaced with a heavy chain IgG domain, so ligands are sequestered, 

and signaling is attenuated (D). (E-E’) Complete degeneration of maxillary and 

degradation of mandibular incisors in DTG mice fed doxycycline for 60 days 

postnatally. (F-F’) Recapitulation of Fgf10-/- and Fgfr2b-/- embryonic phenotype 

E0.5 – E12.5; white arrows indicate limbs (F) and absence of limbs (F’). (G-G’) 

lobes of lung are absent/under-developed; DOX food E10.5 – E18.5. (H) 

Homozygous driver mice expressed twice as much decoy receptor as 

heterozygous mice after one week on DOX food. (I) Lung compliance was 

slightly decreased in mice fed DOX food post-natally from PN28 to PN88.  

Limitations: not 100% of ligands are trapped, and residual signaling may occur. 

Doxycycline administration may interfere with interpretation of animal injury 

experimental  results.  

Doxycyline administration kindly provided by Dr. Denise Al Alam, CHLA, protocol number 193-12; 

Data analyses and presentation performed by me (BM). 

 

4.5.2 Administration of doxycycline food from 7 days post bleomycin-injury 

had no effect on survival after injury  

While some reports have claimed that doxycycline confers resistance to 

bleomycin delivery (Fujita et al., 2011; Huang et al., 2006), in a pilot study, we 

found that wild type mice exposed to doxycycline from 7 days post bleomycin 

injury (3.5U/kg) showed no survival advantage (43%) over wild type mice fed 

normal chow (63%) (Fig 10A). Moreover, it was noted that mice that did recover 

from the initial acute lung injury (ALI) stage which occurs during the first week 

after bleomycin injury, died whether they were fed doxycycline food or not. As 

illustrated in the figure, changes in endogenous gene expression or 

administration of potential therapeutics after day 7 may be more relevant for the 

treatment of IPF than prophylactic treatment of treatment during the first week 

after injury. Lastly, we found that all survivors recovered weight loss due to 

injury (Fig 10B).    
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Figure 10. Survival curve for bleomycin-injured wild type mice fed 

doxycycline chow from 7 dpi. 

(A) Mice (n=15) were injured with 3.5U/kg bleomycin. At 7 dpi, mice were 

divided into two groups. 7 were fed doxycycline food, 8 were not. The group that 

received plain food had a 63% survival rate, while those from those who 

received doxycycline food had a 43% survival rate. Survival rate depended on 

level of injury sustained during the initial phase of bleomycin injury. Mice who 

showed signs of repair after injury survived while mice that did not, died, 

regardless of doxycycline food. (B) Survivors in both groups recovered weight 

loss after injury.  

Limitations: while doxycycline did not show a protective effect after 3.5U/kg 

bleomycin injury, the level of injury resulted in substantial death and was thus 

too high to discriminate the effect of FGFR2b ligands.   

Doxycylcine data kindly provided by Dr. Denise Al Alam at CHLA, protocol number 193-12; data 

analyses and presentation performed by me (BM).  
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4.6 Ubiquitous attenuation of FGFR2b ligands activity during bleomycin 

injury led to moderately increased fibrosis. 

To determine whether FGFR2b ligands contribute to spontaneous 

resolution of bleomycin-induced fibrosis, we globally expressed a soluble decoy 

receptor upon injury from 7 dpi until 28 dpi. Rosa26rtTA/+;tet(O)solFgfr2b/+ (DTG) 

female mice (n=10) and single transgenic age-matched tet(O)solFgfr2b/+ (STG) 

controls (n=10) were given bleomycin (1.0 U/kg) and fed food containing 

doxycycline thereafter (Fig 11a., A). This low dose of bleomycin resulted in mild 

fibrosis and increased survival at 28 dpi. Upon doxycycline administration, the 

decoy receptor was secreted, trapping endogenous FGF7 and FGF10 ligands in 

DTG mice. While 100% of DTG mice survived, one STG mouse was sacrificed 

at 21 dpi due to insufficient respiration and decrease in body weight (90% 

survival rate) (Fig 11a., A). Surviving STGs recovered from injury-induced 

weight loss significantly better than DTGs (Fig 11a., B) suggesting an overall 

better repair process in STGs. Although DTGs incurred a uniform increase in 

fibrosis as visualized by H/E staining (Fig 11a., E-F,E’-F’) and quantified by 

percent area confluent fibrosis (Fig 11a., G), lung function was not statistically 

different (Fig 11a., D). The decrease in compliance observed indicated very mild 

lung fibrosis. An increase in hydroxyproline content in either group vs. saline 

was not observed (Fig 11a., H). The low hydroxyproline content measurement in 

control groups (60 ug vs. 75-90 ug average in saline groups from other 

experiments) may be due to an increase in the length of drying time (3 days vs. 

overnight).  In summary, while a homogenous increase in confluent fibrosis was 

observed in DTGs vs. STGs, 1U/kg of bleomycin did not cause a significant 

increase in hydroxyproline content or decrease in lung function in either +DOX 

or –DOX group.  
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Figure 11a. Impact of FGFR2b signaling attenuation on fibrosis formation in 

bleomycin-injured mice 

(A) Rosa26rtTA/+;tet(O)sFgfr2b/+ (DTG) experimental and tet(O)sFgfr2b/+ control 

(WT) mice were treated with bleomycin IT at day 0 and put on doxycycline food 

from 7 - 28 dpi.  (A) Survival curve. (B) Relative weight change. (C) Transcript 

detected. (D) Compliance in control and experimental lungs at 28 dpi. (E and E’) 

Low and high magnification bleomycin treated WT lungs at 28 dpi. Scale bar F 

and F’:  2 mm; D’ and E’:  200  µm. Low and high magnification of DTG lungs at 

28 dpi. (G) Quantification of percent fibrotic area in control and experimental 

lungs at 28 dpi (H) Measurement of hydroxyproline content. Limitations: low 

dose of bleomycin resulted in very mild lung phenotype. More extensive injury 

may be required to detect a difference between mice with intact or attenuated 

ligand signaling. 

JLU Protocol 73/2012 
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Due to the low level of bleomycin injury sustained by both WT and DTG 

mice in the previous experiment, we repeated the experiment using a higher 

dose of bleomycin (2.0 U/kg) and activated the soluble decoy receptor upon 

injury from 14 dpi through 28 dpi as our intention was to focus on the role of the 

FGFR2b receptor after the inflammatory response began to subside. 

Rosa26rtTA+/+;tet(O)solFgfr2b/+ (DTG) female mice (n=7) and single transgenic 

age-matched tet(O)solFgfr2b/+ (STG) controls (n=5) were given bleomycin (1.0 

U/kg) and fed food containing doxycycline from 14 dpi (Fig 11b). Although the 

dose of bleomycin used was double the amount used in the previous 

experiment, 100% of the mice survived (Fig 11b., A) and mice recovered from 

moderate weight loss by 24 dpi (11b., B). We confirmed that the soluble decoy 

receptor was expressed exclusively in the DTG +DOX mice (Fig 11b., C). WT 

and DTGs incurred a similar increase in fibrosis as visualized by H/E staining 

(Fig 11b., E-F,E’-F’) and similar as quantified by percent area confluent fibrosis 

(Fig 11b., G). Lung compliance was also not statistically different (Fig 11b., D); 

neither was hydroxyproline content (Fig 11b., H) nor COL1A1 expression (Fig 

11b., I). In summary, while a homogenous increase in confluent fibrosis was 

observed in both DTGs vs. STGs, a significant difference in fibrotic response 

was not apparent in either +DOX or –DOX groups indicating that FGFR2b 

ligands may play a more crucial role in the earlier stages of injury.  
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Figure 11b. Impact of FGFR2b signaling attenuation on fibrosis formation 

in bleomycin-injured mice 

(Rosa26rtTA/rtTA;tet(O)sFgfr2b/+ (DTG) experimental and tet(O)sFgfr2b/+ control 

(WT) mice were treated with bleomycin IT and fed doxycycline food from 14 dpi 

and analyzed at 28 dpi.  (A) Survival curve. (B) Relative weight change. (c) 

Detection of soluble Fgfr2b transcript. (D) Compliance in control and 

experimental lungs at 28 dpi. (E and E’) Low and high magnification bleomycin 

treated WT lungs at 28 dpi. Scale bar F and F’:  2 mm; D’ and E’:  200  µm. Low 

and high magnification of DTG lungs at 28 dpi. (G) Quantification of percent 

fibrotic area in control and experimental lungs at 28 dpi. (H) Measurement of 

hydroxyproline content.  (I) solFgfr2b expression (J) Col1a1 expression.  

Limitations: despite a moderate dose of bleomycin injury and the use of a 

homozygous Rosa26rtTA driver, a very mild lung phenotype at 28 dpi in these 

mice resulted which may be due to their CD1 outbred background or inefficiency 

of this driver in the lung. More extensive injury along with earlier attenuation of 

ligand signaling may be necessary to detect a function for FGFR2b ligands after 
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bleomycin injury. 

Bleomycin administered by Dr. Denise Al Alam at CHLA, protocol number 193-12; data 

analyses and presentation, hydroxyproline measurement, qPCR, sectioning, staining 

and quantification thereof, performed by me (BM).  

 

4.7 Fgfr2b+/- mice incurred more bleomycin-induced fibrosis than WT mice 

We hypothesized that the detrimental effects of attenuating FGFR2b 

ligand activity during fibrosis resolution may have been diminished due to the low 

level of bleomycin injury. Therefore, we treated Fgfr2b+/- (n=9) and corresponding 

littermate controls (n=8) with bleomycin (3.5U/kg) and monitored them for 28 

days. This higher dose triggered more extensive fibrosis in survivors, and we 

hypothesized that it engaged endogenous FGF signaling. By 14 dpi, 30% of 

transgenic and 50% of WT mice were sacrificed because of significant weight 

loss and labored respiration. By day 28, 50% of WT mice (n=4) and 60% of 

Fgfr2b+/- mice (n=6) were in stable condition (Fig 3A). No difference was 

observed between bleomycin groups in terms of weight loss (Fig 12B) and 

hydroxyproline content (Fig 12G). However, bleomycin-treated Fgfr2b+/- mice 

showed statistically significant increase in fibrosis compared to WT mice as 

visualized by H/E staining (Fig 12D,E,D’,E’) and percent area of confluent fibrosis 

was quantified (Fig 12F). A decrease in lung function as compared to WT mice 

was also observed (Fig 12C). Thus upon a greater degree of injury, epithelial 

FGFR2b signaling appeared to be required for efficient repair.  
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Figure 12. Decrease in endogenous Fgfr2b expression leads to increased 

fibrosis following bleomycin injury 

(A) Survival curve. (B) Relative weight change. (C) Compliance in control and 

experimental lungs at 28 dpi. (D and D’) Low and high magnification of control 

lungs at 28 dpi. (E and E’) Low and high magnification of experimental lungs at 

28 dpi. Scale bar D and E:  2 mm; D’ and E’:  200  µm. (F) Quantification of 

percent area of confluent fibrosis per section in control and experimental lungs at 

28 dpi (G) Measurement of hydroxyproline content. Bleomycin administered by Dr. 

Denise Al Alam at CHLA, protocol number 193-12; data analyses and presentation, 

hydroxyproline measurement, qPCR, sectioning, staining and quantification thereof, 

performed by me (BM). 

4.8 Fgf7 knockout mice showed no hindrance in repair at 28 dpi 

While FGF7, one of the main ligands acting primarily via epithelial 

FGFR2b, has been shown to protect against acute lung injury, whether it has an 

effect on fibrotic resolution remains controversial. Therefore, Fgf7-/- mice (n=14) 
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and genetic-background, age, and sex-matched, control mice (n=11) were given 

(3.5 U/kg) bleomycin and observed for 28 days. After five days, three control 

mice and three Fgf7-/- mice were sacrificed due to acute lung injury. However, at 

10 dpi, the remaining seven control mice began to recover from the initial injury 

(63% survival at d28), while five of the remaining Fgf7-/- mice declined in health 

and were sacrificed at day 14 (43% survival at d28) (Fig 13A). Despite the initial 

increase in mortality in the bleomycin Fgf7-/- group, Fgf7-/- survivors (6 out of 14 

mice treated initially) showed no difference in their ability to gain weight after 

injury compared to bleomycin WT controls (Fig 13B). In addition, the 

hydroxyproline content was not significantly different between both bleomycin 

groups (Fig 13D), and the difference in the amount of confluent fibrosis (Fig 13G) 

and lung function (Fig 13C) was insignificant suggesting that Fgf7 may be 

dispensable for fibrosis resolution.  
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4.9 Fgf7 knockout mice were more vulnerable to the acute lung injury phase 

of bleomycin due to elevated apoptosis 

In complement to previous studies showing the beneficial effects of 

synthetic FGF7 (Palifermin) against a variety of acute lung injuries (Yildirim et 

al., 2010), we demonstrated that bleomycin treated Fgf7-/- mice were much more 

vulnerable to bleomycin injury than WTs. By 10 dpi, 5 of the 11 remaining Fgf7-/- 

  Figure 13. Absence of endogenous Fgf7 had no significant impact on repair  

  (A) Survival curve. (B) Relative weight change. (C) Compliance in control and 

experimental lungs at 28 dpi. (D and D’) Low and high magnification of control 

lungs at 28 dpi. (E and E’) Low and high magnification of experimental lungs at 

28 dpi. Scale bar D and E:  2 mm ; D’ and E’:  200  µm. (F) Quantification of 

percent area of confluent fibrosis in control and experimental lungs at 28 dpi (G) 

Measurement of hydroxyproline content. Limitations: experiment was not 

performed directly on littermate controls. JLU Protocol 72/2012 
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bleomycin-treated mice continued to lose weight and showed labored breathing 

compared to the remaining 7 WT mice that began to recover (Fig 14A). By 14 

dpi, these 5 mice were removed from the study and 3 of the recovering WTs 

were sacrificed for comparative analyses. The Fgf7-/- mice showed a drastic 

reduction in weight (Fig 14B) and significantly decreased lung function (Fig 

14C). Moreover, hydroxyproline content was elevated (Fig 14D) as well as the 

extent of fibrosis visualized after H/E staining (Fig 14E,F) and quantified (Fig 

14K). Interestingly, quantification of TUNEL staining (Fig 14K) indicated an 

increase in apoptosis not only in bleomycin-treated Fgf7-/- compared to 

bleomycin-treated WT mice (Fig 14I,J) but also in basal level apoptosis in Fgf7-/- 

saline controls as compared to saline treated WTs (Fig 14G,H). Our results 

suggest that while endogenous Fgf7 expression is required immediately after 

bleomycin-induced lung injury it appears to be dispensable during fibrosis 

resolution.  
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Figure 14. Absence of endogenous Fgf7 led to increased acute lung injury 

following bleomycin administration 

(A) Survival. (B) Relative weight change. (C) Compliance in control and 

experimental lungs at 14 dpi. (C) Quantification of percent area of confluent 

fibrosis in control and experimental lungs at 14 dpi. (D) Measurement of 

hydroxyproline content. (E) Low magnification of control lungs and (F) 

experimental lungs at 14 dpi. Scale bar E and F:  2 mm. (G) White arrows 

indicate TUNEL staining of saline controls, (H) saline Fgf7-/- (I) bleomycin-treated 

WT at d14 and (J) bleomycin-treated Fgf7-/- at d14. Scale bar G – J: 100 µm. (K) 

% area confluent fibrosis. (L) Quantification of TUNEL staining.           

Limitations: experimental controls were performed on C57Bl/6 mice.          

Fgf7-/-  mice are 67% C57Bl/6, and 33% 129/Sv.                                                             

JLU Protocol 72/2012 
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4.10 Spontaneous resolution was significantly hindered in Fgf10+/- mice  

In order to test whether endogenous Fgf10 deficiency affects 

spontaneous repair, we treated Fgf10+/- (n=10) mice and littermate, WT controls 

(n=5) with bleomycin (3.5 U/kg). Fgf10+/- mice survival rate to 28 dpi was poor 

(60%) compared to WT mice (80%) (Fig 15A). However, Fgf10+/- survivors 

recovered their weight to a similar extent as WT mice (Fig 15B). Although 

hydroxyproline accumulation was not significantly different between bleomycin 

groups (Fig 15D), Fgf10+/- mice showed an increase in collagen (Col1a1) 

expression (Fig 15H). Moreover, Fgf10+/- survivors showed worse lung function 

(Fig 15C) and more fibrosis by H/E (Fig 15E,F,E’,F’) and evaluation of percent 

area of confluent fibrosis (Fig 15D). Overall, Fgf10+/- mice suffered from 

inefficient repair 28 days after bleomycin injury as demonstrated by decreased 

lung function and increased fibrosis. 
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Figure 15. Decrease in endogenous Fgf10 expression led to increased 

fibrosis following bleomycin injury 

(A) Survival curve. (B) Relative weight change. (C) Compliance in control and 

experimental lungs at 28 dpi. (D) Measurement of hydroxyproline content. (E and 

E’) Low and high magnification of control lungs at 28 dpi. (F and F’) Low and high 

magnification of experimental lungs at 28 dpi. Scale bar E and F:  2 mm; E’ and F’:  

200  µm. (G) Quantification of percent area of confluent fibrosis in control and 

experimental lungs at 28 dpi (H) Fold change of Col1a1 expression. Limitations: in 

order to evaluate whether endogenous FGF10 signaling is critical for repair, an 

earlier time point between 7 and 14 dpi must be evaluated.  

Bleomycin administered by Dr. Denise Al Alam at CHLA, protocol number 193-12; data 

analyses and presentation, hydroxyproline measurement, qPCR, sectioning, staining and 

quantification thereof, performed by me (BM). 
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4.11 Fibrotic foci of bleomycin-injured Fgf10+/- mice are more active than 

corresponding WT littermate control lesions   

Given that spontaneous resolution of fibrotic lesions was most impaired in 

Fgf10+/- mice, we performed immunohistochemical and gene expression 

analyses on samples collected at 28 dpi (n=3/group). The fibrotic foci of Fgf10+/- 

bleomycin-treated lungs displayed markedly increased proliferation. 12% of cells 

in the fibrotic foci of Fgf10+/- bleomycin treated lungs were Ki67 positive vs. just 

4% in WT fibrotic foci (Fig 16A–C). In addition, cells present in fibrotic foci of 

Fgf10+/- mice also expressed lower levels of the epithelial marker E-

Cadherin/Cdh1  (Fig 16D–F) and higher levels of α-Smooth muscle actin (SMA) 

(Fig 16G–I) suggesting that fibrotic areas of Fgf10+/- mice were less resolved 

than those of bleomycin-treated WT littermate controls at 28 dpi. Moreover there 

was a trend towards increased TGFβ1 signaling in Fgf10+/- mouse lungs. 

Expression of negative regulator Smad7 was decreased (Fig 16J) while 

transcriptional target Smad3 was increased (Fig 16K).  
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Figure 16. Decreased Fgf10 expression leads to persistence of fibrotic 

lesions with increased proliferation, decreased epithelial markers, and 

increased smooth muscle actin after bleomycin injury.  

(A) Immunolocalization of Ki67 in fibrotic areas of WT and (B) Fgf10+/- bleomycin-

treated mice and (C) quantification (n=3 biological samples/group; 6 fibrotic 

areas/sample). (D) Immunolocalization of Cadh1 in fibrotic areas of WT and (E) 

Fgf10+/- bleomycin-treated mice and (F) mRNA expression level by qPCR of 

Cadh1 (fold change; n = 3/group). (G,H) Immunolocalization of SMA in fibrotic 

areas of WT and Fgf10+/- bleomycin-treated mice. (I) mRNA expression level by 

qPCR of Acta2 (Sma) (fold change; n = 3/group). mRNA expression of Smad3 (J) 

and Smad7 (K). Limitations: qPCR was performed on whole lung homogenates, 

not particular areas of fibrosis for example via laser-capture microdissection. In 

addition assays at the protein level for TGFβ1 must be performed. Bleomycin 

administration kindly provided by Dr. Denise Al Alam at CHLA, protocol number 193-12 
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4.12.1 Primary culture of human lung fibroblasts express FGF ligands and 

receptors 

Relative expression levels were measured by qPCR in donor (n=3) and 

IPF (n=3) primary culture fibroblasts (Fig 17). Relative to FGF1 expression, FGF7 

expression was expressed approximately 200-fold more than FGF1 in donor and 

125-fold more than FGF1 in IPF. FGF10 was expressed approximately 12-fold 

for than FGF1 in donor and 14-fold more than FGF1 in IPF fibroblasts (Fig 

17A,B). In addition, receptor expression was analyzed relative to FGFR1b 

expression in both Donor and IPF fibroblasts (Fig 17A’B’). In donor samples, 

FGFR1c was expressed approximately 70-fold more the FGFR1b, while FGFR2c 

expression was minimal (0.1 fold relative to FGFR1b) and FGFR2b was also very 

minimally expressed (0.0007 fold). While normally such low expression would be 

considered background, the receptor was undoubtedly present when compared 

to e-cadherin (ECAD), which was absent in primary cultures (Fig 17A’). In IPF 

samples, FGFR1c was expressed approximately 80-fold more the FGFR1b, 

while FGFR2c expression was minimal (0.1 fold relative to FGFR1b) and 

FGFR2b was also very minimally expressed (0.0006 fold). ECAD was absent 

(Fig 17B’). Both IPF and Donor fibroblasts exhibited similar expression patterns 

for these ligands and receptors. No significant difference between gene 

expression levels in donor and IPF samples were found. 
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Figure 17._Primary culture of human lung fibroblasts express FGF ligands 
and receptors 
 
(A) FGF7 and FGF10 expression relative to FGF1 in donor samples and (B) IPF; 

n=3/group. (A’) FGFR1c, FGFR2c, FGFR2b and ECAD expression relative to 

FGF1b in donor samples and (B’) IPF; n=3/group. PGBD was used as a 

reference gene for all experiments. 

 
Limitations: fold change calculation were based on an arbitrary calibrator 

selection of FGF1 for ligands and FGFR1b for receptors.  
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4.13 Impact of rhFGF10 treatment on donor and IPF fibroblasts  

4.13.1 IPF fibroblasts exhibit robust proliferation response to FGF10   

 In order to investigate whether human fibroblasts respond to FGF10, 

immunostaining was performed on primary culture of human lung fibroblasts for 

different markers and results were quantified. Fibroblasts from (n=3) donors and 

(n=3) IPF patients were counted, seeded and cultured to 50 – 80% confluency on 

8 well chamber slides at which point they were serum-starved overnight, and 

treated with 200 ng/mL rhFGF10 the next day. 18hrs later, cells were stained for 

Ki67, a marker for cell proliferation (Fig 18a). Both donor and IPF fibroblasts 

responded by proliferating at an accelerated rate compared to non-treated cells 

(Fig 18a., A – A’; B – B’). However, donor treated fibroblasts proliferated less 

than IPF fibroblasts (Fig 18a., C,D). Interestingly, 2.1% (±) 2.53 of serum-starved 

donor cells were Ki67 positive and 3.13% (±) 2.44 of IPF cells (p=0.0446) (Fig 

18a., E). However, after adding FGF10, IPF fibroblasts responded by with an 

average proliferation rate of 19.7% (±) 13.12 while donors responded with an 

average of 7.1% (±) 5.53; (p=0.0004) (Fig 18E).  
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Figure 18a. IPF fibroblasts exhibit robust proliferation response to FGF10 
compared to both non-treated IPF and donor treated cells 

(A) White arrows indicate immunolocalization of Ki67 (pink), DAPI (blue) in donor 

fibroblasts and (B) IPF fibroblasts. (A’) 200ng/mL rhFGF10 was added to donor 

and (B’) IPF cultures and cells were stained 18 hours later. (C) FGF10 treatment 

increased the number of Ki67 positive fibroblasts in donor samples (n=3) and (D) 

IPF (n=3). (E) Average percent of proliferating cells was more robustly increased 

in FGF10 treated IPF samples than donors. Limitations: shorter treatment and 
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analyses of downstream targets should be performed at the protein level in order 

show more direct evidence of the cell responding to FGF10.  

4.13.1.1 FGF1 or FGF10 treatment results in p-ERK activation in MLE-12 cells  
  

 In order to confirm the activity of the growth factors in cell culture 

experiments, we tested the activity of FGF1 and FGF10 in culture 10, 30, and 60 

min after treatment of mouse lung epithelial cells (MLE-12). Compared to 

untreated, serum starved cells, FGF1 strongly activated p-ERK signaling after 

just 10 min. FGF10 also activated p-ERK but to a lesser extent than FGF1 (Fig 

18b., A). 

 
 

Figure 18b. MLE-12 cells respond to FGF1 and FGF10 treatment  

FGF1 and FGF10 (both 200 ng/mL) activated p-ERK in MLE-12 cells compared 

to serum-starved untreated cells.  

 

Limitations: While this experiment confirms the activity of FGF1 and FGF10 in 

culture, cell culture experiments with IPF and Donor cells were analyzed either 

the next day after treatment or after 3 days continuous treatment.  

 

Blot kindly performed by Dr. Ingrid Henneke; experimental design, and data 
presentation performed by me (BM).  
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4.13.2 FGF10 treatment of IPF fibroblasts led to increased FGF7 expression  

 IPF fibroblasts were starved overnight and treated with 200ng/mL FGF10 

treatment (n=6) donor and (n=5) IPF patients. 18 hours later, RNA was harvested 

from cells and expression of FGF7 was analyzed. While expression of FGF7 did 

not change in treated donor cells, there was a trend towards an increase in FGF7 

expression in treated IPF cells (Fig 19A). Immunofluorescence for FGF7 also 

indicated an increase at the protein level (Fig 19B – C).  

 

 

 

 

 

 

 

 

 

 

Figure 19. FGF10 treatment resulted in a trend towards an increase in FGF7 

expression by IPF fibroblasts 

qPCR results show trend towards increase in expression of FGF7 in IPF 

fibroblasts 18 hours after 200ng/mL FGF10 treatment (n=6) donor and (n=5) IPF 

patients (A). Immunofluorescence for FGF7 illustrated increase in staining in IPF 

fibroblasts treated with 200ng/mL FGF10 (B – C).  
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4.13.3 Impact of FGF10 treatment of IPF fibroblasts on FGFR2b expression  

Again, IPF fibroblasts were starved overnight and treated with 200ng/mL 

FGF10 treatment (n=4) donor and (n=4) IPF patients. 18 hours later, RNA was 

harvested from cells and expression of FGFR2b was analyzed. There was a 

trend towards an increase in FGFR2b expression in both donor and IPF FGF10 

treated fibroblasts (Fig 20A). Immunofluorescence for FGFR2 protein, Bek, 

indicated an increase at the protein level in both donor (Fig 20B – B’) and IPF 

cells 18 hours after FGF10 treatment (Fig 20C – C’). 

 

Figure 20. FGF10 treatment results in a trend towards an increase in 

FGFR1b and FGFR2b expression in IPF fibroblasts 

qPCR results show trend towards increase in expression of FGFR1b in IPF 

fibroblasts (A) and FGFR2b (B). Immunofluorescence for Bek (FGFR2 antibody) 

illustrated increase in Bek staining in donor and IPF fibroblasts treated with 

200ng/mL FGF10. Limitations: Bek antibody is not isoform specific, thus the 

antibody could be detecting both c and b isoforms of FGFR2.  
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4.13.4 FGF10 treatment of Donor or IPF lung fibroblasts may result in an 

increase of lipid droplets  

 Given the importance of lipofibroblasts in maintaining surfactant 

homeostasis in the adult lung, Oil Red O staining was performed on IPF and 

donor primary cultures of lung fibroblasts (Fig 21A – D). 200ng/mL FGF10 

treatment resulted in denser lipid droplet formation and possible and increase in 

lipid droplet formation (Fig 21A’ – D’). 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 21. FGF10 treatment of donor or IPF lung fibroblasts may result in 

an increase and denser localization of lipid droplets 

20X Oil Red O stain (black) for lipid droplets in Donor (A) and IPF (C) primary 

cultures, and 18 hours after 200ng/mL rhFGF10 treatment in Donor (B) and IPF 

(D’), (A’ – D’) 40X.  

Limitation: results were not quantified; counterstaining with hemotoxylin or 

collection of dye from cell supernatant and O/D measurement would give a more 

conclusive result.  
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4.14 FGF10 and rosiglitazone treatment of IPF cells pushed cells towards a 

lipofibroblast-like phenotype 

 Rosiglitazone is a synthetic agonist of the peroxisome proliferator activator 

receptor gamma (PPARγ), a gene that is known to inhibit profibrotic phenotypes 

in human lung fibroblasts and bleomycin-induced pulmonary fibrosis (Milam et 

al., 2008). Human IPF fibroblasts were plated at low density and treated each 

day for 3 days with either 20 – 100uM Rosiglitazone, 500 or 200ng/mL FGF10, or 

both. 72 hours later, cells were either immunostained or RNA was harvested for 

gene expression analyses in order to test whether FGF10 inhibits the profibrotic 

phenotype of IPF fibroblasts and whether it acts synergistically with PPARγ 

pathway.  

4.14.1 Rosiglitazone and FGF10 treatment decreased the size of SMA+ IPF 

fibroblasts 

 Both FGF10 and Rosiglitazone treatment of human IPF lung fibroblasts 

significantly reduced the size of SMA+ cells (Fig 22). Untreated fibroblasts were 

displayed many filopodia projections and had an average size of 2000um2 (Fig 

22A – A’, E). FGF10 treated SMA+ cells were smaller and rounder (Fig 22B – B’) 

with few projections and reduced to 1000um2 in size (Fig 22E). Rosiglitazone 

treated SMA+ cells were also round (Fig 22C – C’), as well as cells treated with 

both factors (Fig 22D – D’). Rosiglitazone alone, and when added together with 

FGF10 reduced SMA positive cell size to approximately 200um2 (Fig 22E). While 

size was reduced, neither the average fluorescence intensity of the SMA staining 

(Fig 22F) nor the number of SMA+ cells (Fig 22G) was significantly reduced in 

any of the treated groups compared to the untreated group. Interestingly, FGF10 

treatment resulted in a trend towards a decrease in SMA expression while 

Rosiglitazone had no effect (Fig 22H). When cells were treated with both, no 

change was observed (Fig 22H). 
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Figure 22. Rosiglitazone and FGF10 treatment decreased the size of SMA+ 

IPF fibroblasts 

(A – A’) Untreated IPF fibroblasts at 20 and 40X, (B – B’) 500ng/mL FGF10 

treated (C – C’) 100uM Rosiglitazone treated (D – D’) 500ng/mL FGF10 and 

100uM Rosiglitazone treated cells. (E) Average surface area of SMA+ cells, (F) 

fluorescence intensity of SMA+ cells, (G) percent of cells SMA+, (F) ACT2A 

(SMA) expression fold change normalized to non-treated cells with PGBD as a 

reference gene. Limitations: results were only observed when cells were 

cultured at low density. A shorter time period after treatment followed by protein 

analyses is necessary.  
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4.14.2 Rosiglitazone and FGF10 treatment increased C/EBPα expression 

IPF fibroblasts were treated with either 250ng/mL of rhFGF10 or 20uM of 

Rosiglitazone, or both for 3 days to test whether treatment could induce the 

expression of adipogenesis marker, C/EBPα (Martis et al., 2006; Rehan et al., 

2006). C/EBPα was induced by FGF10 (Fig 23E), however the percent of 

C/EBPα+ cells did not change (Fig 23F). Rosiglitazone also induced the 

expression of C/EBPα (Fig 23E), and the number of C/EBPα positive cells (Fig 

23F). Interestingly, treatment with both Rosiglitazone and FGF10 resulted in a 

significant increase in C/EBPα cells (Fig 23F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Rosiglitazone and FGF10 treatment increased C/EBPα expression 

Immunofluorescence of C/EBPα (red) and DAPI (blue) on human IPF fibroblasts at 

10X and 40X magnification on (A – A’) untreated (B – B’) 250ng/mL rhFGF10, (C  - 

C’) 20uM Rosiglitazone (D – D’) both. Quantification of C/EBPα expression at the 

RNA level (E) and percent C/EBPα+ cells (F). While C/EBPα mRNA was not 

significantly increased in IPF cells treated with FGF10 and/or Rosiglitazone, the 

percent of C/EBPα+ cells as measured by immunofluorescence was significantly 

increased. 
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4.14.3 Impact of Rosiglitazone and FGF10 on FGFR1b expression 

Human IPF fibroblasts were treated with either 250 ng/mL of rhFGF10 or 

20 uM of Rosiglitazone for 3 days to test whether FGF10 or rosiglitazone could 

induce the expression of FGFR1-IIIb. Cells treated with FGF10 showed a slight 

reduction in FGFR1-IIIb (Fig 24E) and FGFR1-IIIc (Fig 24F) after treatment at the 

RNA level. However, immunostaining suggested increased FGFR1 receptor at 

the protein level (Fig 24B – B’) compared to non-treated controls. Rosiglitazone 

treatment resulted in a slight increase in FGFR1-IIIb (Fig 24E) and FGFR1-IIIc 

(Fig 24F) at the RNA level, however immunostaining, revealed less FGFR1 (Fig 

24C – C’) at than untreated cells or cells treated with FGF10. Lastly, cells treated 

with both, also revealed in a slight increase in FGFR1-IIIb (Fig 24E) and no 

change in FGFR1-IIIc (Fig 24F) at the RNA level, and also an increase in FGFR1 

at the protein level (Fig 24D – D’).  
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Figure 24. Rosiglitazone resulted in trend towards increased FGFR1 

expression. 

Immunofluorescence of FGFR1/Flg (green) and DAPI (blue) on human IPF 

fibroblasts at 10X and 40X magnification on (A – A’) untreated (B – B’) 250ng/mL 

rhFGF10, (C  - C’) 20uM Rosiglitazone (D – D’) both. Quantification of FGFR1-

IIIb expression (E) and FGFR1-IIIc expression at the RNA level (F).  

 

Limitation: Immunofluorescence study is limited since Flg antibody detects both 

c and b isoforms of FGFR1.  
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4.15 FGF10 hinders TGF-β signaling in primary cultures of human lung 

fibroblasts 

 Given that TGF-β signaling is involved in the transition of lung fibroblasts 

to become activated collagen and ECM secreting ‘myofibroblasts’; a cell type 

strongly implicated in the formation of UIP lesions in IPF, we tested whether 

FGF10 treatment of human lung fibroblasts could alter TGF-β signaling and the 

level of SMA expression.  

 

4.15.1 FGF10 treatment decreased TGF-β signaling 

 Pre-treatment of IPF human fibroblasts (n=3) with 250 ng/mL rhFGF10 

one hour before 4 ng/mL TGF-β treatment resulted in significantly reduced TGF-

β signaling as indicated by reduction of pSMAD3 staining (Fig 25A-B). pSMAD3, 

a downstream target of TGF-β was slightly reduced in FGF10 treated cells 

compared to untreated cells as well as by approximately 80% when administered 

one hour before TGF-β stimulation (Fig 25C).  

 

Figure 25. FGF10 treatment decreased TGF-β signaling 

Immunofluorescence for pSMAD3 (pink) and DAPI (blue) on human IPF 

fibroblasts at 40X magnification one hour after (A) 4 ng/mL TGF-β treatment and 

(B) 250 ng/mL rhFGF10 followed by 4ng/mL TGF-β. (C) pSMAD signal in FGF10 

pre-treated cells was slightly reduced FGF10 treated cells compared to untreated 

cells and by approximately 80% when administered one hour before TGF-β 

stimulation.  
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4.15.2 FGF10 treatment decreases number of high SMA+ cells  

 IPF fibroblasts expressing ‘high’ levels of SMA constituted approximately 

5% of the total number of DAPI stained cells in culture (Fig 26A,E). When 250 

ng/mL of FGF10 was added and SMA staining was performed one hour later, 

FGF10 treatment reduced the number of “high” SMA positive cells to 

approximately 3% (Fig 26B,E). This finding corresponded to a 30% reduction in 

the overall intensity measured by mean gray values on the red channel using 

Leica software (Fig 26F). Adding 4 ng/mL TGF-β to culture medium increased 

the percentage of ‘high’ SMA+ cells to approximately 9% (Fig 26C,E). Pre-

treating cells with FGF10 reduced the number of high positive SMA cells to 

around 5% or the level of the untreated (Fig 26D,E). This result also 

corresponded to the measured mean gray values, as pretreatment reduces 

intensity of SMA staining by approximately 27% (Fig 26F).  
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Figure 26. FGF10 treatment decreases number of SMA+ fibroblasts  

Immunofluorescence for SMA (red) and DAPI (blue) on human IPF fibroblasts at 

40X magnification (A) without treatment (B) one hour after FGF10 treatment (C) 

one hour after 4ng/mL TGF-β treatment and (D) 250ng/mL rhFGF10 pre-

treatment followed by 4ng/mL TGF-β. (E) Quantification of ‘high’ SMA+ cells in 

immunofluorescent samples. (F) Quantification of red channel staining intensity 
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Part 5. Discussion 

5.1 Analyzing the resolution of bleomycin-induced fibrosis in mice may be 

more relevant to IPF than analyses at earlier stages  

Bleomycin-induced lung injury in rodents is the most used and best 

characterized model for IPF; however, just as a cure for IPF is still lacking, 

relevant translational conclusions generated by this model are also scarce; 

perhaps partly due to the heterogeneity of the animals in response to the drug 

(Fig 6). While animal studies have traditionally focused on either prophylactic or 

early effects of drugs, the focus has recently shifted to analyses at later stages. 

Bleomycin-mediated DNA destruction results in AEC1 and 2 cell death and a 

subsequent acute inflammatory response that continues until approximately 14 

dpi. Thereafter, inflammation wanes and peribronchial fibrotic lesions form, 

contributing to mortality after 14 dpi. Unlike UIP lesions, bleomycin-induced 

lesions resolve spontaneously at 21-28 dpi (Moeller et al., 2008). Therefore, 

comparing the effect of endogenous gene dosages or drugs on the resolution of 

UIP-like lesions in mice may be more clinically relevant than identifying targets 

that have a positive impact when administered before 14 dpi. However, given 

that the height of injury is occurs between 7 and 14 dpi, it may be useful to 

compare experimental groups at two given time points (i.e. 14 and 28 dpi) in 

order to more accurately assess the extent of injury and recovery especially 

since it is not currently possible to measure the extent of injury without 

sacrificing the animal. Although the molecular mechanism of spontaneous 

resolution after bleomycin injury in mice is unknown, we showed that 

endogenous Fgf10 is critical for bleomycin-induced fibrotic repair and that 

recovery was not perturbed in Fgf7-/- animals surviving until 28 dpi. However, 

additional analyses at an earlier time point (7 and 14 dpi) will provide more 

conclusively whether FGF10 is involved in the active repair of bleomycin-

induced lesions.  
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5.2 FGF signaling is activated in bleomycin-treated mice and attenuated in 

end-stage IPF patients. 

Microarray gene expression analyses of IPF fibrotic septa compared 

against normal donor septa showed that FGF7 was upregulated while SPRY2 

was downregulated (Fig 4). This indicated that while ligands were likely 

expressed in IPF fibrotic septa, downstream signaling was muted. While FGF10 

but not FGF7 was upregulated in end-stage IPF whole lung homogenates, a 

downregulation in both the receptors and downstream targets of FGF7 and 10 

including: FGFR1b, FGFR2b, SPRY2, SPRY4 and ETV4 were detected, 

suggesting that expression of FGF signaling genes; critical for lung repair, were 

diminished in IPF patients (Figs 5,7a). Interestingly, downregulation of ligands 

FGF2 and FGF9 and upregulation of their main receptors FGFR2c and FGFR1c 

were observed. Copy number increases as well as mutations leading to gain of 

function of c-isoforms have been implicated in the progression of tumorgenesis 

in many different cancers, with FGFR1c specifically implicated in lung cancer 

(Katoh and Katoh, 2009a; Katoh and Nakagama, 2013). Furthermore, an 

isoform switch from FGFR2-IIIb to IIIc in epithelial cells have has also been 

observed in lung cancers (Dutt et al., 2011). Therefore, a gain of c-isoform 

expression in IPF lungs along with a loss of b-isoform expression may contribute 

to the persistence of UIP lesions. Moreover, reduced FGF signaling could be 

due to several factors including distorted extracellular matrix architecture due to 

UIP lesions, aberrant expression of HSPGs (Yue et al., 2013), as well as 

diminished expression of both FGFR2-IIIb on hyperplastic AEC2 cells and 

FGFR1-IIIb on activated myofibroblasts. Taken together, an imbalance of FGF 

signaling could play an important role in the pathogenesis of IPF.  

To further explore the potential role of FGF signaling on fibrotic 

resolution, we examined the expression of the same ligands, receptors and 

targets in bleomycin-treated wild type mice at different stages after injury. While 

FGF signaling was not activated at 7 dpi, the transcriptomic signature at 14 dpi 

suggested a significant upregulation of FGF signaling in both the epithelium and 

mesenchyme. By 21 dpi, a decrease in mesenchymal FGF signaling associated 



Discussion         

 

  104 

with maintenance of epithelial FGF signaling is observed. Interestingly, the 

increase in FGF signaling (at 14 dpi) is not concomitant, but rather precedes the 

fibrosis resolution phase (21 dpi onwards) suggesting that FGF signaling is a 

driving force in fibrotic resolution. Further analyses of FGF hypomorphs at 14 dpi 

will be needed in order to determine whether these mice incur greater injury than 

controls as well as additional analyses at the protein level.  

Interestingly, p-ERK and p-Akt were activated in IPF samples as well as 

in bleomycin-treated mice from 7 dpi and sustained through 28 dpi (Fig 7b). 

While these markers are known downstream targets of FGF signaling, they are 

also the targets of many other growth factor signaling pathways. While some 

clinical studies aimed to block tyrosine kinase activity with anti-RTK agents, 

none have shown a clear, significant beneficial clinical outcome and treatment 

comes at the cost of reduced quality of life due to side effects (Daniels et al., 

2010; Günther et al., 2012). The results of these studies may support the role of 

particular RTK signaling in lung repair. More specific downstream targets for 

FGF signaling such as p-FRS2, p-FGFR1 and p-FGFR2 should be analyzed at 

the protein level. While total FGFR2 and FRS2 was increased in IPF patients, it 

is unclear whether this is due to an accumulation of mesenchymal derived cells 

or indicative of active FGF signaling. In addition to phosphorylated FGF specific 

protein analyses, a bleomycin experiment using a transgenic mouse to induce 

FRS2 silencing (as knockouts are not viable) may be necessary in order to 

uncouple the role of FGF signaling in the mouse response to bleomycin.  

5.3 Exogenous FGF7 may protect the epithelium from acute lung injury but 

is unlikely to promote fibrotic lesion resolution  

FGF7 is an established survival factor for AEC2 cells. It has been shown 

to protect against lung injury by increasing surfactant protein production and 

enhancing barrier integrity. While many in vivo studies have focused on either 

prophylactic or therapeutic application of FGF7 (KGF or Palifermin) in chemical-, 

mechanical- or radiation-mediated, as well as bleomycin and other drug-induced 

lung epithelial injuries (Guo et al., 1998; Hu et al., 2010; Li et al., 2010; Liu et al., 
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2011; Yildirim et al., 2008), none have studied the long-term effects of 

bleomycin-induced lung injury in Fgf7 deficient mice. However, a recent study 

challenged this idea: mice that received adenoviral-vector FGF7 at 7 dpi after an 

initial bleomycin mini-pump injury followed by a second 7-day bleomycin mini-

pump instillation at d29, showed increased survival and recovery. The limitation, 

however is that it was not clear whether the observed effect was due to 

attenuation of inflammation or enhanced fibrotic resolution (Sakamoto et al., 

2011). Thus this result supports the idea that FGF7 acts as a potent epithelial 

survival factor during lung injury rather than a driving force in fibrotic resolution. 

We are the first to show that Fgf7-/- animals are susceptible specifically to the 

acute phase of bleomycin-induced lung fibrosis yet dispensable for long-term 

repair. Consequently, while Palifermin may promote survival of lung epithelium, 

it is unlikely to promote the resolution of UIP lesions. On the contrary, our data 

using our previously published Fgf10 gain- (Gupte et al., 2009) and loss-of-

function (this study) suggest that FGF10, unlike FGF7, could effectively drive 

fibrotic resolution, thus presenting a potential therapeutic option. 

5.4 Importance of FGFR2b-independent FGF10 signaling for fibrosis 

resolution in mice 

Surprisingly, attenuating FGF ligand signaling either, 6 – 28 dpi (Fig 11a) 

or 14 – 28 (Fig 11b) had little effect on the ability of the mouse lung to repair 

after bleomycin injury. While the first experiment (Fig 11a) resulted in very subtle 

increases in injury in animals expressing the soluble decoy receptor, we 

concluded that the lack of difference could be related to the low level of injury 

(1.0U/kg bleomycin i.t.). However, upon repeating the experiment with double 

the dose of bleomycin (2.0U/kg) and inducing expression of the soluble receptor 

starting from 14 dpi in order to focus on the resolution of bleomycin induced 

lesions, we did not find a significant difference between wild types and those 

expressing the soluble decoy (Fig 11b). Although we confirmed the expression 

of the soluble receptor via qPCR, (Fig 11b., I), it could be that the Rosa26 driver 

is not highly expressed in the adult lung. In addition, the mice were bred on a 
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CD1 outbred background, which may render them more resistant to bleomycin 

injury than other inbred strains such as C57bl/6. Lastly, since the soluble decoy 

receptor traps all ligands, it may be possible that the negative effects of a lack of 

FGF7 or FGF10 signaling are muted by the lack of FGF1 signaling which is able 

to signal to both c and b isoforms of FGFR1 and FGFR2 as expession of a 

soluble decoy receptor for FGFR2c was shown to be beneficial in the bleomycin 

model (Yu et al., 2012) 

Despite the lack of phenotype incurred by bleomycin treated mice 

expressing soluble FGFR2b, we found, complementary to our previous study 

which showed that overexpression of FGF10 enhances fibrotic resolution (Gupte 

et al., 2009), that bleomycin-induced fibrotic lesions of Fgf10+/- animals were 

less resolved and lung function was significantly attenuated at 28 dpi (Fig 15). 

Interestingly, Fgf10+/- lungs were impaired not only relative to WTs, but also 

compared to mice with attenuated epithelial FGFR2b signaling (Fgfr2b+/- mice 

and Fgf7-/- mice). Therefore we hypothesize that FGF10 may drive fibrotic 

resolution in an epithelial, FGFR2b-independent manner, possibly via FGFR1b. 

FGFR1b, expressed in the epithelium and mesenchyme (unpublished data), is 

upregulated at 14 dpi in mice and may be important in fibrosis resolution. 

Supporting this possibility, we observed an increase in Spry4 expression (an 

FGF transcriptional target expressed mostly in the mesenchyme) at 14 dpi. In 

the future, bleomycin studies performed on mice genetically deficient in Fgfr1b 

could determine the significance of this receptor in the resolution of fibrosis. 

Moreover, additional studies should be performed to determine the differential 

effect of FGF10 on the epithelium versus mesenchyme. Finally, given the trend 

towards increased TGFß1 activity in Fgf10+/- bleomycin-induced lesions, which 

correlates with the decreased TGFß1 signaling (and expression of Tgfß1 itself at 

the transcriptional level) upon FGF10 overexpression (Gupte et al., 2009), more 

studies are needed to investigate the molecular and cellular bases underlying 

the inhibition of TGFß1 signaling by FGF10 in vivo.   
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5.5 FGF10 pushed IPF fibroblasts towards a lipofibroblast-like phenotype 

Lipofibroblasts are important for alveologenesis and later assist AEC2 

cells in the production of lipids and thus help to maintain surface tension and 

epithelial barrier integrity. While the presence of lipofibroblasts have been 

described in the adult lung (Vaccaro and Brody, 1978), they have recently 

emerged in the literature as cell types requiring further investigation and 

characterization. Lipid homeostasis, and thus barrier function is compromised in 

IPF lungs due to damaged AEC2 cells and the activation of myofibroblasts. 

Recently, it was shown that growth and differentiation of the AEC2 cells occurred 

most readily when co-cultured with primary PDGFRα+ lung stromal cells and 

lipofibroblasts (Barkauskas et al., 2013a); thus suggesting not only that that 

mesenchymal-epithelial cross-talk is essential for repair, but also that 

lipofibroblasts form part of a lung stem cell niche. However the signals required 

for clonal expansion, and differentiation of AEC2s are yet to be defined. Thus 

targeting myofibroblasts for transdifferentiation into lipofibroblasts may be a 

potential therapeutic approach.  

 Though the progenitors of lipofibroblasts have not yet been thoroughly 

described, lineage tracing studies performed by our lab using the 

FGF10iCre;Tomatoflox mouse, have shown that FGF10 is a marker for a subset of 

lipofibroblasts progenitors (El Agha et. al., 2013, Development, in press) which 

become SMA positive 14 days after bleomycin injury (unpublished data). In 

addition, Thy-1, a glycosylphosphytidylinositol-linked cell-surface glycoprotein 

signals via peroxisome proliferator-activated receptor-gamma (PPARγ) and is 

critical for the differentiation of lipofibroblasts during alveologenesis and is thus 

also considered a marker of lipofibroblasts (Varisco et al., 2012). Interestingly, 

the PPARγ signaling pathway has also been targeted in therapeutic approaches 

for IPF, as its actions are not only limited to lipid metabolism and homeostasis 

but also in the regulation of inflammatory responses and cellular proliferation and 

differentiation and apoptosis (Corton et al., 2000; Escher and Wahli, 2000). For 

example, PPARγ-agonist rosiglitazone significantly reduced bleomycin-induced 

lung injury in mice (Genovese et al., 2005). 
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 In order to assess whether FGF10 stimulation of IPF cells triggered a 

similar response as PPARγ-agonists, IPF fibroblasts were treated with either 

Rosiglitazone or FGF10. Both treatments induced expression of C/EBPα, a 

marker of adipogenesis (Fig 20) as well as PPARγ (data not shown). 

Furthermore, treatment with both factors seemed to have a synergistic effect on 

FGFR1-IIIb expression (Fig 21), a receptor implicated as both a tumor-

suppressor (Ricol et al., 1999) and in adipocyte formation (Asaki et al., 2004a; 

Sakaue et al., 2002). Interestingly, FGF10 treatment also seemed to correlate 

with an increase in the aggregation of lipid droplets in both IPF and donor 

fibroblasts (Fig 18). Whether FGF10 promotes lipogenesis in adult human lung 

fibroblasts must be further investigated.  

 

5.6 FGF10 tempers TGFß1 signaling in IPF fibroblasts 

 Though the origin of activated myofibroblasts in IPF is disputed, they are 

nonetheless conspicuously involved in the formation of UIP lesions. While 

resident lung fibroblasts, epithelial to mesenchymal transition of AEC1 and AEC2 

cells, bone marrow–derived fibrocytes, pericytes of the lung interstitium, and 

endothelial cells have all been implicated (Patel et al., 2013; Scotton and 

Chambers, 2007) (Fig 27). Thus although the origin of the myofibroblasts 

remains undefined, the damage they cause to the alveolar epithelium due to the 

secretion of exorbitant amounts of matrix is clearly lethal.  

 Many studies propose that the master switch of fibrogenic mediators, TGF-β 

is responsible for the activation of cells to become myofibroblasts. Damaged 

AEC2 cells express TGF-β, which in turn activates other cells in the milieu, thus 

propagating a fibrotic response. Cleavage of latent TGF-β into its active form is 

mediated by matrix metalloproteinases (Dancer et al., 2011), changes in pH 

(acidic conditions), reactive oxygen species (Bargagli et al., 2009), 

thrombospondin-1 (Crawford et al., 1998), tissue stiffness (Hinz, 2009), as well 

as by integrins αVβ3, αVβ5, αVβ8, and αVβ6, which have also been implicated in 

fibrotic disorders (Margadant and Sonnenberg, 2010). In the lung, TGF-β is 

produced by alveolar macrophages, neutrophils, activated alveolar epithelial 
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cells, endothelial cells, fibroblasts, and myofibroblasts. Once activated, not only 

does it induce macrophage and fibroblast recruitment as well as fibroblast 

proliferation via platelet-derived growth factor (PDGF) expression, it also 

stimulates expression of a number of pro-inflammatory and fibrogenic cytokines, 

such as TNF-α, PDGF, IL-1β, or IL-13, thereby amplifying and perpetuating the 

fibrotic response (Fernandez and Eickelberg, 2012). In the mouse model of 

bleomycin-induced fibrosis, epithelial specific reduction of TGF-β receptor has 

also been found to attenuate the fibrotic response (Li et al., 2011). Thus targeting 

TGF-β has been the goal of ongoing clinical studies. While Pirfenidone has 

demonstrated anti-fibrotic and anti-inflammatory effects by attenuating TGF-β 

production and action (Hisatomi et al., 2012) the clinical efficacy is on one hand 

celebrated, but also extremely limited and additionally mitigated by its side 

effects (Günther et al., 2012; Jenkins, 2013; Raghu and Thickett, 2013).  

 Interestingly, our preliminary results showed that FGF10 treatment of IPF 

fibroblasts also limits TGF-β signaling. Pre-treatment of cells one hour prior to 

TGF-β treatment decreased the percentage of cells positive for pSMAD3 staining 

by approximately 80% (Fig 25). While the basal level of pSMAD3 staining was 

not particularly high in untreated cells (less than 5%), treatment with only FGF10 

also slightly reduced pSMAD3 staining. Further evidence for the attenuation of 

TGF-β signaling by FGF10 was demonstrated by a 40% reduction of “high” SMA 

staining (Fig 26E) and 34% reduction in overall SMA staining intensity following 

pre-treatment of FGF10 (Fig 26F). Pre-treatment of cells with FGF10 one hour 

prior to TGF-β treatment resulted in a 44% decrease in high SMA staining 

compared to TGF-β treatment alone (Fig 26E) and a 27% reduction in the overall 

intensity of SMA staining (Fig 26E).  

 We have shown that FGF10 inhibits TGF-β signaling in IPF fibroblasts as 

well as that reduction in endogenous signaling can have a detrimental effect on 

lung repair in the bleomycin mouse model. Likewise, overexpression of FGF10 

enhanced fibrotic resolution in accordance with attenuation of TGF-β signaling 

(Gupte et al., 2009). Taken together, we hypothesize that FGF10 contributes to 

reducing active TGF-β signaling in the fibrotic milieu thus preventing trans-
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differentiation of resident fibroblasts and lipofibroblast cells into activated 

myofibroblasts (Fig 27). Our model predicts that the recruitment of resident lung 

cells into the fibrotic milieu involves a step in which they lose their original 

markers; such as a reduction of lipid droplets in lipofibroblasts, followed by the 

acquisition of a “synthetic” phenotype characterized by high proliferation, low 

production of ECM and lack of SMA expression. Due to continued exposure to 

TGF-β and other profibrotic cytokines, these cells eventually acquire a 

“contractile” phenotype characterized by low proliferation, high SMA expression 

and excessive ECM production and eventually the formation of UIP lesions; a 

lesion that FGF10 may be able to inhibit. Interestingly, both FGF10 and 

Rosiglitazone treatments resulted in a reduction in cell size and filopodia 

projections, as well as a decrease in the intensity in SMA staining (Fig 19) 

possibly indicating a transdifferentiation out of a myofibroblast phenotype and 

possibly towards a more “synthetic” phenotype (Rensen et al., 2007), which may 

characterize an earlier stage of IPF. Our results thus implicate a role for FGF10 

in the transdifferentiation of UIP cells back into a SMA negative cell type via the 

inhibition of TGF-β signaling. Whether FGF10 can push cells that have acquired 

a “contractile” phenotype all the way back to normal lipofibroblasts however, 

remains to be studied. 
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Figure 27. Model of the inhibition of TGF-β signaling by FGF10 in IPF 

Epithelial cell injury results in the production of TGF-β which results in EMT, 

epithelial cell death and/or the “activation” of resident fibroblasts and 

lipofibroblasts characterized by the loss of markers such as lipid droplets. In IPF, 

we hypothesize that these activated cells undergo a transition towards a 

“synthetic” phenotype characterized by high proliferation. Due to continued 

exposure to TGF-β, synthetic cells then acquire a “contractile” phenotype 

characterized by high SMA expression and ECM production, and low 

proliferation. Thus we hypothesize that FGF10; via inhibition of TGF-β signaling, 

not only blocks the activation of myofibroblasts, but also inhibits the acquisition 

of a “contractile” phenotype. Whether FGF10 can push contractile cells back to a 

synthetic phenotype, and/or synthetic cells back to a resident or lipofibroblast 

cells phenotype remains to be studied.  
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5.7 Therapeutic potential of FGF10 for end-stage IPF patients 

  FGF10 may have potential therapeutic effects on end-stage IPF patients. 

These include: 1) the amplification of lung progenitor cells (Fig 28D); 2) the trans-

differentiation of myofibroblasts to lipofibroblasts (Fig 28E) and 3) and like FGF7, 

the protection of intact epithelium (Fig 28D,E).  

 Given that Fgf10 and Fgfr2b knockout mice fail to form both limbs and 

lungs indicating the importance of this signaling pathway in organ branching 

morphogenesis and of course lung development (Arman et al., 1999; Bellusci et 

al., 1997) and thus may be essential for human lung repair after injury as FGF10 

has been already to be enhance repair in mice after bleomycin (Gupte et al., 

2009) and FGFR2b ligands have been shown to be critical for lung epithelial 

repair after naphthalene injury (Volckaert et al., 2011).  While earlier studies have 

found that FGF10 specifies smooth muscle cell progenitors in the lung during 

development (Ramasamy et al., 2007), our group recently showed that FGF10 

marks lung lipofibroblast progenitors in adults mice both before and after 

bleomycin challenge (El Agha et. al., Development, in press). This data suggests 

that exogenous FGF10 may play a role in the transdifferentiation of 

myofibroblasts to lipofibroblasts possible through the attenuation of TGF-β 

signaling. Studies further characterizing FGF10 cells in the adult mouse lung 

must be completed in order to attain a better understanding of the role of 

endogenous FGF10 in the adult lung. Moreover, additional studies are needed in 

order to characterize adult lung cell types in general as there is a dire need for 

specific markers of differentiated cells in the lung.   

 FGF ligands are also known to be critical for the maintenance of transit-

amplifying ameloblast progenitor cells of the mouse incisors (Parsa et al., 2010). 

Additional studies should be performed by expressing the soluble decoy FGFR2b 

receptor in the lung over a long period of time and analyzing not only the status 

of AEC2 cells but also of putative lung epithelial and mesenchymal progenitor 

cells by FACS analyses (McQualter et al., 2010).  
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 Taken together, we have provided evidence to support the role of FGF10 

as a potential therapy for IPF patients. Additional experiments however are 

critical to define the role of endogenous FGF10 signaling in the lung.  

 

Figure 28. Model for therapeutic effects of FGF10 in end-stage fibrosis 

A) Legend. B) Normal distal lung epithelium of healthy person featuring AEC1 

and 2 cells, interstitial fibroblasts, lipofibroblasts, endothelial cells, multipotent 

progenitor cell, and ECM. C) end-stage IPF involves the activation of cells of 

unknown origin which become “myofibroblasts” characterized excessive of 

matrix secretion resulting in a respiratory blockade. D) Exposure of UIP lesions 

to FGF10 results in signaling via FGFR1b or FGFR2b leading to the 

amplification of lung progenitor cells. E) Signaling via FGFR1b, possibly 

expressed on cells of mesenchymal origin could result in cell type switch from 

pathogenic myofibroblast to lipofibroblasts, possibly via inhibition of TGFβ. F) 

Additional differentiation factors may be necessary to promote differentiation of 

multipotent progenitors.   
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5.8 Future analyses of the role of FGF10 in lung progenitor cells are critical 

While AEC2s were initially described as being the main distal lung 

progenitor cell, recent experiments using mouse genetics and cell lineage 

tracing in mouse lung injury models suggest the recruitment of diverse 

populations of progenitors that not only self-renew but also repopulate and 

repair the lung after injury (Fig 29). Using the bleomycin model of lung 

injury and an SPC-driven inducible cre mouse to fate-map AECs, the 

majority of AEC2s in fibrotic areas were found to derive not from 

preexisting AEC2s, but rather from SPC negative, α6β4+ epithelial 

progenitor cells (Chapman et al., 2011). These progenitor cells were also 

able gave rise to Scgb1a1+ cells indicating their ability to differentiate into 

both distal and proximal epithelium. In addition to epithelial progenitor 

cells, distal airway stem cells that were keratin 5 and p63 double positive 

were demonstrated to form “pods” or solid spheres of cells after H1N1 

influenza injury (Kumar et al., 2011). The pods developed lumen and 

expanded in size over 10 days and formed alveoli-like structures. 

Interestingly, while they expressed AEC1 markers and markers for 

angiogenesis, SPC expression was absent. In addition, SPC negative, 

Clara (Scgb1a1+) cells have also been shown to contribute to repopulating 

the epithelium with SPC+ cells after bleomycin injury (Barkauskas et al., 

2013b; Rock et al., 2011) and variant Clara cells have been shown to give 

rise to both Clara and ciliated cell populations after naphthalene injury 

(Volckaert et al., 2011). Interestingly, in this study, FGF10 was implicated 

as an important mediator for inducing re-epithelialization after naphthalene 

injury. Furthermore, FGF10 expression was found to correlate with the 

capacity of stromal cells to support lung epithelial stem cell growth in vitro 

(McQualter et al., 2013). Given the importance of FGF10/R2b signaling for 

lung development and the aforementioned studies, it will be important for 

future studies using mouse injury models to address the role of FGF10 in 
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the self-renewal and or differentiation of lung progenitor cells during lung 

injury and repair. 

Figure 29. Model of lung progenitor cells are recruited during injury/repair 

Distal lung epithelial progenitor cells (α6β4+) were demonstrated to differentiate 

into variant Clara cells and AEC2 cells. The putative broncho-alveolar stem cell 

or BASC is thought to be present at the broncho-alveolar duct junction and 

differentiate into AEC2s or variant Clara cells, however recently their existence 

and the proportion of their contribution to repair is disputed. Basal cells form 

“pods” after H1N1, bleomycin and naphthalene injury and express markers for 

both Clara cells and AEC1 cells. Variant Clara cells repopulate both the 

broncho-alveolar epithelium and the distal epithelium. Clara cells can also give 

rise to mucin secreting goblet cells. AEC2s give rise to AEC1 cells after 

hyperoxia and other injuries that damage the distal lung.    
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Part 6. Conclusion 

The aim of this project was to investigate the role of FGFR2b ligands in 
IPF. We demonstrated that endogenous FGFR2b ligand signaling may be 
dysregulated in end-stage IPF patients and that FGF10 may drive repair of 
bleomycin-induced lesions in mice.  

Despite increased expression of FGF7 and FGF10 in end-stage IPF 

patient lungs, receptors as well as downstream targets of these ligands were 

significantly decreased. In contrast, wild type mice undergoing spontaneous 

repair after bleomycin injury, expressed Fgf10 and downstream targets from 14 

days post injury, suggesting recruitment of the pathway during repair. While 

mice deficient in endogenous Fgfr2b ligand signaling were not significantly more 

injured than wild type animals, the possibility that the soluble Fgfr2b receptor 

bound mesenchymal Fgf ligands as well, may have masked the contribution of 

epithelial Fgfr2b signaling in balancing the spontaneous repair equation. 

Nevertheless, the lack of FGF7/10/FGFR2b and FGF10/FGFR1b signaling 

observed in end-stage IPF lungs and the recruitment of Fgf10/Fgfr1b during the 

peak of bleomycin injury of wild type mice both indicate the potential therapeutic 

use of exogenous growth factors to promote lung repair. Likewise the ability of 

FGF10 to reduce cell size and inhibit TGF-β signaling in IPF fibroblasts, 

suggests that it could effectively mediate a contractile to synthetic-like 

phenotype, which may be an important step towards UIP lesion repair.   

Effective treatment of IPF may be a matter of efficiently targeting which 

cells in the lung should survive and which cells should die. While a global 

blockade of tyrosine kinase activity may eventually lead to the abolishment of 

activated fibroblasts, intact lung epithelial cells as well as progenitor cells in both 

epithelial and stromal cell compartments, are also likely to suffer when they are 

deprived of survival signals over an extended period of time. Likewise, globally 

inhibiting a master inflammatory regulator such as TGF-β may result in both 

positive and negative outcomes for IPF patients. Thus if a cell type exclusive 

therapeutic is not possible, combining an auspicious regimen of cytoprotective, 

exogenous FGF10 ligand in conjunction with a global tyrosine kinase blocker or 

TGF-β inhibitor may preserve the remaining epithelial integrity as well as 

progenitor cell populations, possibly resulting in a better outcome in terms of 

fibrosis progression and/or resolution.  
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I joined the Molecular Biology and Medicine of the Lung Program in 
Giessen, Germany because I was attracted to the “translational” component of 
research projects offered to PhD students in Giessen. Though I did not succeed 
in curing IPF, while investigating the aim of this project I learned the limitations 
of translational models and the importance of using multiple experimental 
approaches and designs to investigate a clearly defined hypothesis. Ideally, 
both etiology; the causes of a disease; and pathogenesis; the mechanisms by 
which the disease develops, causes tissue damage and spreads within the body 
are understood before therapeutic approaches are investigated. However, while 
even the most transparent disease pathogenesis allows specific targeting to 
slow, stop, or even reverse the disease both in vitro and in vivo (animal models), 
translation of a potential therapy to humans is not guaranteed; several thousand 
diseases distress us, but fewer than 500 can be treated. Moreover, the average 
length of time from target discovery to new drug approval is 13 years. The 
failure rate exceeds 95%, and the cost per successful drug exceeds $1-2 billion, 
after adjusting for all of the failures (Munos, 2009; Paul et al., 2010). Intense 
interdisciplinary cooperation is essential to successful “translation” of 
experimental results at the bench to medicines in the clinic. Moreover, 
understanding the limitations of animal models as well as their unique, innate 
response to drugs and treatments will help researchers to streamline 
translational research.  

IPF remains a rare, idiopathic disease; the clinical manifestations are 
variable as there are variations in the age of on-set, rate of progression, and 
histological phenotype, rendering it intrinsically very difficult to model in an 
animal. The bleomycin mouse model seeks to recapitulate the general 
phenotype of IPF (UIP lesions) using a DNA damaging substance that results in 
lung scarring. While hundreds of studies report agents that ‘attenuate bleomycin 
induced fibrosis in mice’, repairing this UIP-like phenotype has led neither to an 
effective treatment nor a cure for IPF. Thus, it is imperative that researchers not 
only understand the limitations, assumptions and caveats embedded in animal 
models, but also explore further experimental approaches when attempting to 
solve the mystery of this terrible disease.                          .
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