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1. Introduction 

1.1. Introduction 

“If you’re not confused, you’re not paying attention”  

~ Tom Peters, *07.11.1942 

 

Freud and some of his colleagues have been widely criticized for lack of 

quantitative research evidence for their elaborate models. They presented detailed case 

reports instead – and modern researchers in various academic fields might provide more 

support for qualitative approaches than expected (e.g. Silverman, 2000; Miles and 

Huberman, 1994). Concurrently, psychosomatic researchers such as Uexküll (Uexküll, 

Adler, Herzog, Joraschky, Köhle, Langewitz, Söllner & Wesiack, 2010) or Meissner 

(2006) have called for a more integrated perspective on the mind-body relationship 

honoring the complexity of dynamic dependencies and intertemporal reciprocal cause 

and effect relationships among different psychic as well as somatic variables. Arguably 

this latter quest stands in contradiction to multiple regression analysis, a cornerstone of 

quantitative research, in which a clear distinction between cause and effect, independent 

and dependent variables, is essential. Relatively recent research in econometric theory 

has, however, challenged this old paradigm by introducing vector autoregressive 

analysis, where all variables in a system are dependent on past values (lags) of 

themselves and the other variables in the system (e.g. Lütkepohl & Krätzig, 2004).  

 

The old dilemma between qualitative and quantitative research (if it can be 

reduced to that) is also a central theme in all past research on the psychosomatic aspects 

of diabetes in insulin dependent children and adolescents (e.g. Minuchin, Rosman & 

Baker, 1978; Coyne & Anderson, 1989). One reason may lie in both, complex somatic 

mechanisms surrounding glycemic metabolic stability as well as the added psycho-

social complexity provided by the fact that individuals (i.e. parents) other than the 

patient have significant influence on (and legal responsibility for) the daily treatment of 

the disease. Yet, diabetes is just one of the many challenges any average child/ 

adolescent may encounter while growing up. As a result, the researcher may find one of 

the most prototypical webs of interconnected psycho-somatic dynamic 

interdependencies, as described by Meissner (2006) above.  

With one out of 600 US or European school-age children suffering from insulin 

dependent diabetes mellitus (Ahmed & Ahmed, 1985; Seiffge-Krenke, 1998a) and just 
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about 33 per cent of diabetics between 13 and 19 years of age managing to maintain 

tolerable glycemic control and a HbA1c below 8, and furthermore 6.3 per cent suffering 

from at least one episode of major hypoglycemia within the last three months (Swift, 

Seidman & Stein, 1967; Thomsett, Shield, Batch & Cotterill, 1999), the subject matter 

seems to warrant further investigation. Especially in light of the devastating immediate 

and long-term effects of poor diabetic control such as kidney failure, blindness, 

polyneuropathy, and even death, to name but a few. 

 

1.2. Research Objectives 

In this work I explain and demonstrate a new quantitative approach to the study 

of families with insulin dependent diabetic children and their glycemic management. 

The methodology has been adopted from econometric theory (e.g. Lütkepohl and 

Krätzig, 2004) and is based on vector autoregression. A case vignette will also be 

presented.  

My mission is twofold: First, I intend to provide an alternative to a purely 

qualitative or traditionally quantitative (multiply regressive) methodology – which both 

have their merits as much as their specific shortcomings. Secondly, I present a case 

report on a family with an insulin dependent diabetic adolescent, quantitatively 

portraying the effects of the emotions of various family members on the glycemic 

variability of the diabetic.  

 

1.3. Contribution of Research 

The primary objective of this research is to demonstrate an entirely new 

quantitative approach to the traditionally qualitative case study concept, thus marring 

the merits of both. In addition, clinical findings from this work may spur new ideas for 

all sorts of future research on psychosomatic underpinnings of families with children 

and adolescents suffering from chronic illness, but, of course, can not be generalized for 

clinical practice. Focus is not only put on a mere coping process within the family, but 

also on how each emotional being of the family impacts on both somatic and psychic 

variables of the patient and vice versa.  
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1.4. Structure of Thesis 

First, I will review extant research on psychosomatic aspects of insulin 

dependent type I diabetic children and their families. Additionally, I will provide a brief 

introduction to econometric theory on vector autoregression. A section on methodology 

will then apply vector autoregression to a case study of a family with a type I diabetic 

minor, not before a case vignette is presented to provide real-life insight into the case. 

Possible amendments to contemporary vector autoregression will be discussed. 

Research findings of this particular case study will be presented and interpreted in 

words and graphical representations, not just for that sake, but also to demonstrate 

innovative avenues for comprehensive presentation of highly quantitative results from 

VAR modeling in general. Limitations of this work and possible trajectories for future 

research will be discussed. The findings of this study will be compared and contrasted 

with popular findings from quantitative and qualitative research on psychosomatic 

aspects of type I diabetes in the family setting. 
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2. Literature Review 

2.1. Introduction 

For the sake of clarity, not all the literature with some relevance to this thesis 

will be reviewed. A focus lies on topics with high relevance or recent publication. First, 

some preliminary remarks to the concept of diabetes in general will be presented. 

Chronically instable diabetes in minors will be reviewed more extensively with 

subsections on the chronic nature of diabetes and the concomitant family dynamics, as 

well as on the concept of what some authors have termed “brittle diabetes” (e.g. Gale & 

Tattersall, 1979; Kent, Gill & Williams, 1994, Brosig, Leweke, Milch, Eckhard & 

Reimer, 2001). Finally, vector autoregression and multivariate time series analysis, 

rooted in econometric theory, will be briefly reviewed to provide some foundation for 

the concepts discussed in the following sections. 

 

2.2. Diabetes Mellitus 

Although this may seem gratuitous to readers with a medical background, others 

may find this thesis to be incomplete without some brief introduction to the concept of 

diabetes. The following brief review of those aspects of the disease with some relevance 

to the comprehension of this research, is mainly based on current guidelines on diabetes 

for physicians in Germany (“Deutsche Diabetes Gesellschaft”, “AWMF – 

Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften”), 

which are published online and frequently updated by expert conventions according to 

current research developments (Kerner & Brückel, 2011; Böhm, Dreyer, Fritsche, 

Fürchtenbusch, Gölz & Mertin, 2011). My presentation of the disease is by no means 

exhaustive. 

According to aforementioned sources, there are various subcategories of 

diabetes, the most well-known of which may be diabetes type I and II. Common to all is 

the lack of or dysfunctional regulation of blood glucose levels via insulin, a hormone 

physiologically secreted in the pancreatic gland to reduce blood glucose levels. Both, 

excessive levels of blood glucose (hyperglycemia) and particularly low levels of blood 

glucose (hypoglycemia) cause severe immediate (coma, death) and long-term effects 

(organ failures, blindness, polyneuropathy, to name but a few). While diabetes type II 

may be caused by either or both, insulin resistance in bodily cells or lack of insulin 

production and secretion in the pancreatic gland, diabetes type I occurs due to a 

destruction of the ß-cells, physiologically producing insulin in the pancreatic gland. 
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Reasons for this destruction may be of autoimmune (diabetes type Ia) or idiopathic 

(diabetes type Ib) nature. Type I diabetes usually manifests in children and is the focus 

of this research. For the autoimmune diabetes type Ia various antibodies can be screened 

for in blood examinations (ICA, IAA, GAD65A, IA-2, ZnT8). However, for the 

diagnosis of both types of diabetes certain benchmark markers related to blood glucose 

levels have been established: HbA1c
1 above or equal to 6.5% (48 mmol/mol), plasma 

glucose levels at any time or two hours after administration of the oral glucose tolerance 

test above or equal to 200 mg/dl (11.1 mmol/l), or plasma fasting glucose levels above 

or equal to 126 mg/dl (7.0 mmol/l). Whenever one of these markers is above its normal 

range, the diagnosis of diabetes is established. Before such testing, usually, various 

clinical symptoms, such as increased thirst, polydipsia, polyuria, weight loss, skin 

manifestations, and general signs of decreases in performance initiate medical attention.  

The cornerstone of treatment for type I diabetics is the subcutaneous injection of 

different types of insulin (rapid acting, long acting, and “normal” acting insulin) in 

aiming to keep blood glucose levels at a constant level with ideally a HbA1c below 7.5 

per cent (individual goals may be above this benchmark) and no hypoglycemic 

derailments. The application of insulin has to both satisfy a base level need for the 

hormone, as well as modulate spikes in blood glucose due to the intake of calories. As a 

result, for the patient (or its primary care giver), either the amount of calories consumed 

can be matched with the insulin administered or vice versa. The first method is usually 

referred to as conventional insulin treatment and requires a strict mealtime regimen. The 

second is called intensified insulin treatment and usually requires more frequent 

injections and blood glucose control measurements. Generally speaking, patients have 

to check their blood glucose levels at least three times a day (morning, lunch, evening) 

and whenever they observe signs of blood glucose derailments (for the recognition of 

which they should be trained). For blood glucose measurements, patients are trained to 

pinch themselves with a lancet to obtain a drop of blood (usually from the tip of a 

finger), which can be analyzed with an automated hand held device. In case blood sugar 

is too low, glucose must be consumed; in case of hyperglycemia insulin must be 

administered. In addition, carbohydrate intake through food and drink must be 

                                                        
1 HbA1c refers to glycated haemoglobin (a protein in red blood cells carrying oxygen), the percentage of 
which provides a measure for the blood glucose levels of a person for the past eight weeks (in the absence 
of distorting factors such as anemia, blood transfusions, pregnancy, etc.). 
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determined at all times and matched with insulin administration in a strict temporal 

relation (depending on the type of insulin). 

As if such complex (and painful) self-treatment is not enough, various 

complications can also affect blood glucose: Physical activity (sports) will usually 

reduce the demand for insulin. Somatic stress, such as infectious diseases or surgery, 

and various hormones (such as adrenalin, cortisol, or growth hormones) will also 

influence the need for insulin/ blood glucose in various ways – especially during 

adolescence. Some of these phenomenons have been described with specific terms such 

as the “dawn phenomenon”2 or “somogyi phenomenon”3. Since both of these will result 

in hyperglycemia in the morning (before breakfast), but require completely opposite 

therapeutic actions, nightly measurements of blood glucose are necessary to determine 

the adequate response. This is not to mention the effect of other medication or (not 

uncommon in adolescents) the consumption of alcohol (causing hypoglycemia), which 

will also impact on glycemic management – often with some delay in time, making it 

even more difficult to retrace cause and effect. 

All in all, crucial to the appreciation of this work, diabetic management requires 

the patient or its primary care giver (as in the case of small children) to constantly pay 

close attention to complex physiological processes, plan all actions (including the time 

and amount of food intake) in advance, and engage in frequent (and often painful) 

monitoring and interventional actions, with little room for spontaneity or behavior 

considered normal in healthy children and adolescents. Disregard of such strict regimen 

will have dire consequences immediately (hypo- hyperglycemic coma, death) and in the 

longer term (organ failures, dialysis, blindness, polyneuropathy, arteriosclerosis, 

diabetic foot syndrome, general susceptibility to skin infections, etc.). For patients and 

care givers, excessive fears of diabetic derailments can be just as detrimental to quality 

of life and psychosomatic health as can be the neglect of monitoring and treating the 

disease. 

 

 

 

                                                        
2 Due to increased secretion of growth hormones over night, blood glucose will be too high in the 
morning (past six am) despite proper insulin administration the previous evening (Herold, 2012).  
3 Due to too much insulin in the evening the patient suffers from hypoglycemia during the night (often 
around 3 to 4 am) which triggers the secretion of opposing hormones and a hyperglycemia in the morning 
(Herold, 2012).  
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2.3. Chronically Instable Diabetes in Minors 

2.3.1. Chronic Diseases, Diabetes and Family Matters – An Introduction to its 

Psychosomatic Aspects 

All chronic diseases are associated with increased prevalence of mood disorders 

and depression (Harris, 2003). This can be evidenced for adults as much as for children 

(e.g. Kogon, Vander, Weiss, Smith, Flynn, & McCauley, 2013). One source, examining 

a total of 91.642 families, claims parents of chronically sick children to be 30 times 

more likely to report developmental, emotional and behavioral problems (including 

attention deficit/ hyperactivity disorder, depression, learning problems, and challenging 

behaviors) in their children, than parents of healthy children – an effect prevailing even 

after adjustment for social and demographic factors (Blackman & Conaway, 2013). 

Other sources add on to that by drawing attention to the high prevalence of alexithymia 

– the sub-clinical inability to identify and describe emotions in the self (Sifneos, 1973) – 

in chronically ill children (Brosig & Zimmer, 2014). Most sources agree with Blackman 

and Conaway (2013), that “attention to these common co-morbidities will not only 

result in enhanced quality of life but will also promote better adherence to medical 

recommendations and, thereby, optimal disease control.” 

 

Diabetes type 1 is a typical chronic disease affecting children as much as adults. 

The prevalence of depression in diabetics in general may be up to 25 per cent 

(Anderson, Freedland, Clouse, Lustman, 2001), or even 30 per cent (Dziemidok, 

Makara-Studzińska, & Jarosz, 2011), or three times higher than in non-diabetic 

populations (Harris, 2003).  

The inner workings of these correlations, including possible cause and effect 

chains, remain the subject of present research. On the one hand, the negative effect of 

such psychological factors, including depression, on disease management in type 1 

diabetics (blood glucose levels) has been widely researched (e.g. Robertson, Stanley, 

Cully, & Naik, 2012). On the other hand, less prominent, there is also some research on 

how blood glucose impacts on the mood of the patients – in which depressive symptoms 

are often taking a more severe course than in non-diabetic populations (Dziemidok, 

Makara-Studzińska, & Jarosz, 2011). Among the most specific of such research, high 

blood glucose levels were associated with negative moods in type 1 diabetics 

(Hermanns, Scheff, Kulzer, Weyers, Pauli, Kubiak, & Haak, 2007; Van Tilburg, 

McCaskill, Lane, Edwards, Bethel, Feinglos, & Surwit, 2001). Most other research 
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remains less specific, more general in its propositions, thus encouraging research such 

as this – with more focus on details (even if it is for the price of small study 

populations).  

In an attempt to tie together some of the results of extant work on the subject, 

elaborate models, intending to map the various interdependencies of type 1 diabetes 

with a diverse set of environmental factors surrounding the patient, have been 

developed. One well-established model by Whittemore, Jasper, Guo, and Grey (2010) 

has recently been modified and re-published to (among other things) better represent the 

effect of family members on the patient. This thesis intends to focus on these 

relationships. Understandably, aforementioned frameworks lack the amount of detail on 

model component definitions and component interactions, I aim to examine in this case 

study. The family, as what I believe to be a germinal component of managing diabetes 

in minors, has to be moved into the spotlight of much more specific research. Not only 

the question how it affects the diabetes of the child or adolescent is of interest, but 

similarly, how the diabetes affects the family as a whole and individuals within it.  

For young children (ages 2 – 7), parental fear of hypoglycemia, parental 

depressive symptoms, and child mealtime behaviours were identified as three major 

factors predicting parental stress (Patton, Dolan, Smith, Thomas, & Powers, 2011). 58 

and 68 per cent of the variances of stress frequency and stress difficulty, respectively, 

were associated with parental depressive symptoms and fear. Parental discomfort may 

not only be problematic for its own merits, but also because parental perceived burden 

of diabetes management is one major factor in prohibiting optimal glycemic control 

(Butler, Zuehlke, Tovar, Volkening, Anderson and Laffel, 2008). This relationship may 

not only be due to direct cause and effect chains in children who are too young to 

manage diabetic control themselves, which makes them particularly dependent on their 

parents, but, as this study will suggest, may be rooted in subconscious effects of affect 

states of parents on affect and blood sugar states of their (otherwise self-competent) 

adolescent child. Streisand, Swift, Wickmark, Chen and Holmes (2005) summarize the 

state of cumulative findings on the topic and provide encouragement for research such 

as this: “Though [this] research clearly indicates that parent psychological and 

behavioral functioning are important, little is known about the specific nature of these 

parents’ pediatric parenting stress.”   
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2.3.2. Brittle Diabetes 

One out of 600 United States or European school-age children suffers from 

insulin dependent diabetes mellitus (Ahmed & Ahmed, 1985; Seiffge-Krenke, 1998a). 

Four pillars underlying overall treatment of a chronic disease such as type 1 diabetes in 

minors are described as being composed of a) the evidence-based individually adjusted 

medical treatment, b) adequate and normalized schooling of the minors, close relatives, 

and other care-givers, c) close monitoring of treatment success through specific 

parameters which allow to evaluate adherence to the treatment protocol, and d) positive 

feedback for patients and their parents during regular and recurring medical 

appointments (e.g. Brosig & Zimmer, 2014). Despite such efforts, widely applied in 

modern medicine, just about 33 per cent of diabetics between 13 and 19 years of age 

manage to maintain tolerable glycemic control and a HbA1c below 8; 6.3 per cent 

suffered at least one episode of major hypoglycemia within the last three months (Swift, 

Seidman & Stein, 1967; Thomsett, Shield, Batch & Cotterill, 1999).  

Fonagy, Moran, Lindsay, Kurtz, and Brown (1987) provided evidence of 44 per 

cent of the variance in blood glucose control to be statistically explained by 

psychological variables in these patients and their parents. Additionally, in a 

randomized controlled study, Moran, Fonagy, Kurtz, Bolton, and Brook (1991) 

demonstrated how an intensive inpatient treatment program including psychoanalytic 

psychotherapy could effectively improve diabetic control in children. In light of such 

findings, it is not surprising that for at least four decades researchers have strived to 

identify the psychosomatic aspects responsible for the devastating statistics evidencing 

poor glycemic control in minors – especially during puberty.  

Based on elaborate qualitative case analyses of what they then termed 

“psychosomatic diabetes” Minuchin, Rosman, and Baker (1978) described young 

diabetics with frequent derailments as having difficulty in handling stress, showing a 

tendency to internalize anger and being somewhat immature in their ability to cope with 

challenging situations. Recurring familial structures were analyzed as featuring 

enmeshment, rigidity, overprotectiveness and lack of conflict resolution and referred to 

as the “psychosomatic family.”  They explain how extreme proximity and intensity in 

family interactions, blurred boundaries between subgroups, poor interpersonal 

differentiation, too much concern for each others’ welfare, conflict avoidance, and a 

strong commitment to maintaining the status quo, all add up to spark and reinforce 

psychosomatic symptoms. Minuchin et al. (1978) went even further by linking blood 
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glucose derailments in type 1 diabetic children with a previous rise in the concentration 

of free fatty acids (FFAs) in the blood. (This is similar to our study in that biological 

markers were linked to psychic ones.) Subsequently, they conducted experimental 

studies provoking a rise in FFAs by triggering conflict within the family, thus causing 

strong emotions in all family members. Unlike this study, they did not focus on specific 

affects which could have been linked to a rise in FFAs, but chose to describe overall 

observer impressions of family situations leading up to the change in FFAs. 

Interestingly, they also evidenced the rise in FFAs to last significantly longer and 

exhibit higher amplitudes in diabetic children, than in healthy children in a similar 

family conflict situation. I believe this research to be a first step toward further 

clarifying and detailing some of the links between biological markers and much more 

specific psychic parameters (than those formulated in extant research) in a family 

system with an insulin dependent diabetic  child.  

However, even ten years after the initial Harvard-publication of Minuchin et 

al.’s (1978) United States grant-supported findings, critics concluded: “…as we 

conducted research and therapy with the families of diabetic children, we were 

impressed with both the limit of the formulation of the family’s role in diabetes offered 

in ‘Psychosomatic Families’ and the uncritical acceptance that the book continued to 

enjoy.” (Coyne & Anderson, 1989). In their rather pointed article entitled “The 

‘Psychosomatic Family’ reconsidered II: Recalling a defective model and looking 

ahead” Coyne and Anderson (1989) criticize Minuchin et al. (1978) primarily for their 

bold, yet statistically (allegedly) poorly supported statements on the “typical 

psychosomatic family” and their overgeneralizations of these overall “weak” findings 

on familial situations in one psychosomatic illness to various psychosomatic illnesses. 

More specifically, small sample sizes and poor documentation of methodology (or lack 

thereof) are being highlighted.  

Later (more quantitative) research has focused on different aspects of 

interactions between glycemic control in adolescent diabetics and their family 

environment, often with inconsistent findings (Leonard, Jang, Savik, & Plumbo, 2005; 

Seiffge-Krenke, 1998b): Luyckx and Seiffge-Krenke (2009) confirmed previous 

research findings underscoring good glycemic control to be linked to high scores of 

positive self-concept and a family climate perceived as organized and controlled 

(Seiffge-Krenke, 1998b; Weist, Finney, Barnard, Davis, & Ollendick, 1993). By 

contrast, Davis et al. (Davis, Delamater, Shaw, La Greca, Eidson, Perez-Rodriguez & 
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Nemery, 2001) found parental restrictiveness to be associated with poor, a warm family 

climate with good glycemic control. Butler, Skinner, Gelfand, Berg and Wiebe (2007) 

found intensive maternal control to be related to depressed moods, which is noteworthy 

since associations between poor glycemic control and depressive symptoms have been 

well established (e.g. McGrady & Hood, 2010; McGrady, Laffel, Drotar, Repaske, & 

Hood, 2009). Burroughs, Harris, Pontious, and Santiago (1997) reviewing 32 studies in 

their meta-analysis found diabetics with supportive and cohesive families embracing 

open and emphatic communication to be most likely to have good metabolic control, as 

opposed to families with frequent conflicts. Seiffge-Krenke (1998b) reports that 

adolescents with diabetes generally perceived their family climates to be significantly 

less cohesive and stimulating than healthy adolescents and suggests discrepancies in the 

empirical research may be due to lack of control for confounding variables. All in all, 

there is little doubt, more research on specific variable interactions surrounding the 

family context of diabetic minors is needed, which I intend to at least partially provide 

through this thesis. 

 

In an attempt to tie various results into one picture, some authors have adopted 

the term “brittle diabetes” to describe chronic glycemic instability with no apparent 

explanation (e.g. Gale & Tattersall, 1979; Kent, Gill & Williams, 1994). Brosig et al. 

(2001) have reviewed literature to identify three possible lines of reasoning behind 

brittle diabetes:  

§ Conscious and unconscious manipulations of the patient cause instable 

blood glucose values (Schade, Drumm, Duckworth & Eaton, 1985; 

Schade, Drumm, Eaton & Sterling, 1985);  

§ Strong affect states cause the release of hormones destabilizing glycemic 

metabolism (Dutour, Boiteau, Dadoun, Feissel, Atlan & Oliver, 1996; 

Tattersall, 1988);  

§ A dysfunctional doctor-patient-relationship, based on the physician 

struggling with counter transference and the patient being impaired by 

lack of object consistency due to bonding pathology, add up and result in 

ineffective diabetic management (Brosig, Kupfer & Brähler, 1997; 

Minuchin, Baker Rosman, Liebman & Milman, 1975; Moran & Fonagy, 

1987; Moran, Fonagy, Kurtz, Bolton & Brook, 1991).  
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Brosig et al. (2001) propose, the dissolution of the parent-child relationship 

during adolescence challenges the diabetic minor with the repression of unconscious 

desires for protection and provisioning, which in the case of brittle diabetes leads to the 

loss of rational control over diabetic management (Brosig et al. 2001). Consecutive 

derailments of blood glucose levels are the result of unconscious acting out, mistakes in 

nutritional intake, and improvident physical activity – all in conjunction with strong 

detached affect states, which remain unconscious to the diabetic and hence undigested 

psychologically. While such complex psychodynamic reasoning may not be proved or 

disproved quantitatively, studies such as this can provide empirical evidence for specific 

variable interaction surrounding brittle diabetes, which may serve as a base for such 

theories. 

 

In conclusion, it seems that extant research reviewed above is either highly 

quantitative and sound methodologically, but clinically unpractical because findings are 

out of context, with unclear relevance and significance, contradictory even, or is 

beautifully coherent and memorable, but lacks trustworthiness due to the entirely 

qualitative nature of its methodology. This work intends to suggest one possible remedy 

to this dilemma by applying highly quantitative methodology (discussed next) to a 

simultaneously qualitatively reviewed and analyzed case study. This discussion will be 

continued in the discussion chapter, where it can be integrated with the empirical 

findings from this case analysis. 

 

2.4. Vector-Autoregression and Multivariate Time Series Analysis 

The question as to what existed first – chicken or egg, is not just an issue in 

psychosomatic medicine. Yet, here particularly, Meissner (2006) among others has 

called for a more realistic perspective on the mind-body relationship (and vice versa) 

without any a priori ascriptions of cause and effect, of dependent and independent 

variable status, but more focus on time and thus the dynamic of relationships between 

parameters. He suggests a more detailed view on the complexity of dynamic 

dependencies and intertemporal reciprocal cause and effect relationships among 

different psychic as well as somatic variables.  

With less abstraction, applied to the subject matter of brittle diabetes in minors, 

we are looking for the following: A research methodology which does not start out by 

setting up an equation where for example glycemic stability is the dependent variable 
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and the emotional states of the child and her parents are independent variables, but 

rather allows for the model to determine whether certain emotional states will cause 

specific glycemic outcomes or (unexpectedly) the relationship works in the opposite 

direction (i.e. glycemic states cause emotional states) or even both (certain glycemic 

states at a specific point in time cause particular emotional states in specific individuals 

today which then bring about other glycemic states in the diabetic tomorrow). It 

becomes quite obvious that traditional multiply regressive methods can not provide such 

features, but will always come with some pre-determination.   

Even univariate time series analysis, mapping the course of a clearly defined 

dependent variable through past observations of that variable itself (termed 

autocorrelation) and (possibly) a set of further independent variables, does not provide 

the methodological flexibility we desire. However, such (and similar) time series 

analyses have been applied to the psychosomatic and psychiatric realms in various 

studies (Crane, Martin, Johnston, & Goodwin, 2003; Dancey, Taghavi, & Fox, 1998; 

Dohnert, Wilz, Adler, Gunzelmann & Brähler, 2001; Fuller, Stanton, Fisher, 

Spitzmuller, Russell & Smith, 2003; Kupfer, Brosig, & Brähler, 2005; Lévesque, 

Savard, Simard, Gauthier, & Ivers, 2004; Posener, DeBattista, Veldhuis, Province, 

Gordon & Schatzberg, 2004; Reid, Towell, & Golding, 2000; van Vliet, Onghena, 

Knapen, Fox, & Probst, 2003; Weinberger & Gomes, 1995). What we are looking for is 

multivariate time series analysis in the form of a vector-autoregressive (VAR) model, a 

methodology so far somewhat foreign to psychosomatic medicine, but increasingly 

popular in econometrics and business. 

 

In econometric theory VAR modeling was perceived as follows: In order to 

provide a more realistic time series modeling approach, in 1980, Sims introduced vector 

autoregression (VAR) analysis, a multivariate extension of the classical univariate 

autoregressive time series models. It allows treating a set of variable as jointly driven by 

the lagged values of all variables in the system. Thereby, no a priori assignment of 

dependent and independent variables is required and reciprocal causality is admitted.  

 

The expert reader of this thesis may wish for some in-depth information on the 

specific requirements to be met before VAR-modeling can be applied to a set of data: A 

central requirement for the correct application of the standard versions of both 

univiariate and multivariate time series models is the stationary nature of all considered 
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time series4. Otherwise, as already pointed out by Granger (1974) drawing on Yule 

(1926), so called spurious correlations might result. These exhibit high t-statistic and R² 

values much more frequently than commonly expected despite the lack of any real 

relationship between the variables analyzed. Consequently, false but seemingly 

statistically significant relationships between a dependent variable and its regressors 

might be the outcome of working with non-stationary data. Various statistical methods 

have been developed for testing for non-stationary data, e.g., the augmented versions of 

the Dickey-Fuller-Test (Dickey & Fuller, 1979, 1981).  

If a series is non-stationary (which is not the case with the data analyzed in this 

thesis), often taking first differences (i.e. the value of its second most recent observation 

is subtracted from the most recent one) might result in a stationary series suitable for 

further analysis. Alternatively, one might test for cointegration between non-stationary 

variables, i.e. whether there exist relationships between the variables resulting in 

stationary error terms of the model (e.g., Granger & Weiss, 1983; Engle & Granger, 

1987; Granger, 1983 for univariate models, and Johansen, 1991 for applications in the 

context of VAR-models, which are labeled Vector Error Correction models or VEC-

models in this case). On a less theoretical level, a cointegration equation describes the 

equilibrium relationship which the considered variables will adhere to amongst each 

other in the long run. Therefore, a VEC-model additionally models the short run 

dynamics and the speed of adjustment towards the long-run relationships for each 

variable. This is the rationale behind the label of error correction, which is not necessary 

in VAR-models with stationary data, because there is no difference between short run 

and long run dynamics. 

 

Given that the variables used in the present study turn out to be stationary time 

series, only the standard VAR model will be considered and further econometric 

reasoning may be sacrificed in light of the medical nature of this thesis. The latter is 

also the reason why I will, for reasons of comprehensiveness, address the issues of VAR 

model selection (just as one multiply regressive equation is selected from a pool of less 

useful ones) and interpretation for the selected VAR-model by means of Cholesky 

impulse response analysis in the next section. Similarly, the additional adjustments to 

                                                        
4 Assuming a normal distribution of stochastic components, a variable or lagged values thereof are 
defined to be stationary if its mean and variance remain constant over time (Pierse, 2010). More general 
theoretical definitions are provided by Lütkepohl and Krätzig (2004). 
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the selected VAR-model, based on an optimized multivariate lag selection process 

developed by Winker (1995; 2000) and Savin and Winker (2013) will for practical 

reasons be presented in the methods section. Readers looking for more general 

information on vector autoregressive time series modeling, VAR model selection, 

Cholesky impulse response analysis or the optimized multivariate lag selection process 

are referred to original literature by Lütkepohl and Krätzig (2004), Winker (1995; 2000) 

and Savin and Winker (2013). 

 

2.5. Conclusion 

Important concepts for the context of this thesis have been discussed according 

to its twofold objective of applying innovative econometric methodology to 

psychosomatic research, while also providing a case study of brittle diabetes – serving 

for its own merit as much as for the sake of an example to which econometric 

methodology can be applied to.   
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3. Methods 

3.1. Introduction 

As discussed in the previous chapter, the use of vector autoregressive (VAR) 

models for the analysis of time series data in psychosomatic medicine allows treating a 

set of variables as jointly driven by the lagged values of all variables in the system with 

no a priori assignment of dependent and independent status being necessary. In this 

chapter I intend to describe how the quantitative time-series data was collected from a 

family of three over a period of 120 days. I also present a qualitative account of the 

somatic and psychological background of the case I analyze in the VAR model. More 

specific details of the application of the VAR model to the case data collected will be 

discussed. 

 

3.2. The Patient – A Case Vignette 

3.2.1. Somatic History  

At age four Debby presented for the first time with a short history of polyuria, 

polydipsia, loss of appetite, and fungal infection of the genital area. Initial blood tests 

revealed a haemoglobin A1c (HbA1c) value of 9.1 % (normal range 4%-6.3%) without 

metabolic acidosis, and positive antibodies against islet cells and GAD65, thus 

confirming the diagnosis of type I diabetes.  

Debby had a history of poorly controlled bronchial asthma and allergic diseases. The 

family anamnesis was negative for diabetes mellitus. Subcutaneous insulin treatment 

with regular and NPH insulin twice a day was initiated. The patient was readmitted at 

age 6 due to nocturnal hypoglycaemia with impaired consciousness. During this 

hospital stay Debby suffered from a tonic-clonic seizure related to profound 

hypoglycaemia on the basis of a change to the insulin type administered during her stay. 

In her parents, this further promoted fear of hypoglycaemia5 and mistrust against 

hospital personnel.  

Despite frequent visits to an outpatient clinic, recurrent stationary 

hospitalizations, intensive counselling, and various insulin therapies, the girl’s 

metabolic control remained unstable over the following years. The objective of an 

HbA1c value < 7 % could never be achieved.  

 

                                                        
5 Parental fear of hypoglycaemia is a common complication to diabetes treatment in minors (Barnard, 
Thomas, Royle, Noyes and Waugh, 2010). 
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3.2.2. Psychological Background  

Debby and her parents sought for intensified family treatment, because the 

patient`s diabetic condition could not, as previously described, be stabilized by means 

of the “treatment  as usual-approach” with individual and family-based counseling, 

detailed and repetitive information about glycemic control mechanisms (including the 

influence of nutrition), sport, and other aspects of blood sugar regulation. Debby and 

her mother seemed to be caught in a constant power struggle over glycemic control. 

Both were terrified somewhat irrationally, but based on the patient’s somatic history, 

about the danger of hypoglycemia. They were taking the risk of higher blood sugar 

levels in order to evade “sharp and life-threatening declines”. Her father seemed more 

distant to the matter, but started crying, when Debby’s somatic history with 

hypoglycemic crises and seizures came up. At this point, he did not fail to underscore 

his deeply rooted mistrust in the hospital’s capacity to control this case of diabetes and 

his profound fears of hypoglycemia.  

In six family sessions every two weeks during the time of this study, the family 

recalled Debby’s shock of being diagnosed with diabetes type 1 and the family’s long-

standing distrust concerning the interdisciplinary diabetes team, which seemed to them 

too superficial, not adapted to the individual needs of the patient, and finally, too harsh 

in terms of communication-habits. The therapist confronted them with their specific 

type of collusion concerning (in-)dependence, in which both parents, in their manifest 

statements, advocated for more self-confidence and extended duties on the side of their 

daughter, but on a latent level, gave hints to their “beloved little girl” of not yet being in 

charge of the blood sugar monitoring. The mostly hidden conflict resulted in unclear 

paths of communication concerning diabetic control, unclear distributions of duties 

within the family members, and, as a result of the arrangement, deep dissatisfaction 

with the failure to meet sugar-benchmarks.          

   

3.3. Quantitative Data Collection and Analysis 

3.3.1. Collecting the Raw Data 

The participating family, composed of two biological parents and their type 1 

diabetic adolescent, completed a structured diary over a period of 120 days. Extant 

research in the psychosomatic realm has provided examples for such diary-based data 

collection (e.g. Appelt & Strauß, 1985; Wilz, Adler, Gunzelmann, & Brähler, 1997). 

This form of diary based data collection is also referred to as ecological momentary 
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assessment with many benefits in terms of accuracy and validity of measurements (see 

Ebner-Priemer & Trull, 2009 for details). 

In the diary (on a daily basis), each family member completed a self assessment 

manikin (SAM, see figure I below) as developed by Lang (Bradley & Lang, 1994; 

Hamm & Vaitl, 1993; Lang, 1980) on their affective valence (negative – positive), 

activation (calm - excited), and control (a sense of being absent - present), while also 

recording unusual events which may have influenced their emotions. The adolescent 

additionally recorded at least three measurements of blood glucose levels (morning, 

lunch, evening), and up to as many as were taken on a particular day. For an excerpt 

from the adolescent’s diary please refer to exhibit 1 in the appendix.  

Based on the daily blood glucose measurements, standard deviations were 

calculated for each day as a measure for glycemic variability. Recent research has 

identified glycemic variability as the most precise predictor of diabetic control – 

followed by the HbA1c-value in second place (Hirsch & Brownlee, 2005; Hirsch, 2005; 

Zaccardi, Pitocco, & Ghirlanda, 2009; Penckofer, Quinn, Byrn, Ferrans, Miller & 

Strange, 2012), due to glycemic variability being the best known predictor for diabetic 

complications (Hirsch, 2005; Zaccardi, Pitocco, & Ghirlanda, 2009; Penckofer et al., 

2012) and micro-vascular derailments in particular (Risso, Mercuri, Quagliaro, 

Damante, & Ceriello, 2001). The descriptive statistics (means, standard deviations) of 

all ten time series variables, as well as two additional time series composed of the daily 

means of blood glucose recordings and the number of recordings per day, are presented 

in exhibit 2 of the appendix. 
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Figure I: The Self Assessment Manikin (original presentation) 

 
Legend: first line – valence/ pleasure, second line – activation/ arousal, third line - 

dominance 

Source: Bradley, M. M. & Lang, P. J. (1994). Measuring emotion: The Self-

Assessment Manikin and the Semantic Differential. Journal of behavior therapy and 

experimental psychiatry, 25(1), 49–59.  

 

Although, the SAM (figure I above) is historically much more established as a 

measure for emotion, than glycemic variability is for diabetic control, some comment 

on its origins shall be in order. As Lang (1969) put it, emotional response can be 

measured in at least three different ways – affective (verbal or other) reports, 

physiological reactions, and overt behavioral acts. The SAM is an inexpensive, easy 

non-verbal pictorial assessment technique for quickly assessing an individual’s report of 

affective response to various stimuli in the three basic emotional dimensions of 

pleasure, arousal and dominance (Lang 1980). These three basic dimensions were 

initially suggested by Wundt (1896), who labeled them “lust” (pleasure), “spannung” 

(tension) and “beruhigung” (inhibition). Bradley and Lang (1994) were able to 

demonstrate that various measures of emotional response, such as the Semantic 

Differential scale devised by Mehrabian and Russell (1974), did not deliver results 

which could not be reduced to the same information the SAM provided. They also cited 
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studies in which the SAM had been used to measure emotional responses to all sorts of 

stimuli and been drawn on in different language settings, with children and with various 

study populations suffering from psychiatric diseases (Bradley & Lang, 1994).  

 

3.3.2. Constructing a VAR Model 

Resulting from this data collection and primary analysis are ten time series: 

Three time series for each of the three family members from the SAM – affective 

valence, arousal and dominance, as well as one time series recording glycemic 

variability. With these ten time series a VAR model was estimated using EViews 7.1 

(QMS, Quantitative Micro Software, Irvine CA). Augmented Dickey Fuller Tests 

(Dickey & Fuller, 1979, 1981) rejected the null hypothesis of non-stationary data for all 

ten time series (see previous chapter), thus endorsing the construction of a VAR model 

instead of a vector error correction model (VECM). Since econometric theory has not 

focused much on the scale of VAR-variables, we have also ignored the fact that the nine 

emotional variables are of ordinal scale, which is uncommon for the economic data 

VAR models are usually applied to.  

Any VAR model requires the user to select a maximum number of lags, which, 

in more practical terms, refers to how far back in time the user wants to search for past 

recordings of all variables to predict the present value of one variable. The farther back 

in time the user decides to extend a search, the more explanatory variables (lags) need 

to be included in the model (Lütkepohl, 2005; Lütkepohl & Krätzig, 2004). (Means to 

evade this rule, as developed by Winker (1995, 2000) and Savin and Winker (2013), 

will be discussed later.) 

Unfortunately including more explanatory variables (incorporating more past 

recordings) is a double edged sword, since this will provide a VAR model more 

representative of reality (goodness of fit), but also one with less explanatory power 

(lower adjusted R2). The latter is due to the tremendous penalty inflicted by the large 

number of explanatory variables (lags) in the model resulting in high estimation 

variance (Lütkepohl, 2005; Lütkepohl & Krätzig, 2004).  So, for instance, for this study, 

the number of past days included for lag length determination, would have to be 

multiplied by the number of time series (ten) plus control variables (controlling for 

effects due to it being a holiday or weekend etc.) to represent the total number of 

variables in the final model. Logically large numbers of variables will frequently be 

achieved in VAR models, resulting in large penalties to the coefficient of determination 
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(R2), thus yielding very low adjusted R2 values for these models. Readers not versed to 

VAR methodology may therefore believe the results of a VAR study with such low 

adjusted R2 values to be almost irrelevant in clinical terms, which must not be the case.  

The number of lags included in a VAR model is also referred to as the order of 

the VAR model. Lag order selection for a VAR model extensively influences the 

estimation precision of impulse response analyses, to be applied to the final model in 

the next step, which is why various information criteria can be calculated to aid in 

determining the most appropriate number of lags to be included (Lütkepohl, 2005). In 

table 1, I considered various information criteria proposed by econometric 

methodology.  According to Lütkepohl (2005) the Akaike Information Criterion (AIC) 

and Final Prediction Error (FPE) may have better properties than the Hannan-Quinn 

Information Criterion (HQ) or Schwarz Information Criterion (SC) in determining the 

appropriate VAR model for small samples (at least 16 observations). While AIC and 

FPE tend to asymptotically overestimate, the asymptotically consistent HQ and SC 

more frequently underestimate the order of a VAR. Lütkepohl (2005) concludes (p.151) 

that for small samples, models based on AIC or FPE tend to deliver superior forecasts 

even if their order should be incorrect.  

 

Table 1: Criteria Considered For Appropriate Lag Number Selection 

Selection Criterion Number of lags suggested 

LR: Sequential Modified Likelihood Ratio 

Test Statistic (each test at 5% level) 

1 

FPE: Final Prediction Error 1 

AIC: Akaike Information Criterion 7 

 SC: Schwarz Information Criterion 0 

HQ: Hannan-Quinn Information Criterion 0 

  

Endogenous variables: glycemic variability, affective valence, activation and control for 

all three family members 

Exogenous variables: control variable 

 

In estimating the various information criteria (utilizing EViews), the user has to 

manually enter the maximum lag length to be tested for. Both, Lütkepohl and Krätzig 
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(p.110, 2004), as well as Lütkepohl (p. 146, 2005), emphasize the importance of the 

purpose and underlying subject matter of a study in determining the appropriate order of 

the VAR model. Hence, I chose 7 days as the maximum lag length to be tested by 

information criteria, since one week is an internationally and historically consistent 

entity of time, in many ways organizing human interaction. As can be derived from 

Table 1, information criteria suggested the construction of a VAR model with either 1 

or 7 lags, or did not provide useful information at all. 

Lütkepohl (p. 157, 2005) further concludes that “…it may be a good strategy to 

compare the order estimates obtained with different criteria and possibly perform 

analyses with different VAR orders”. Consequently, I further analyzed both, a VAR 

model with just one lag (as proposed by the LR-test and FPE), and one with seven lags 

(as proposed by AIC). Since Lütkepohl (2005) describes the FPE and AIC to deliver 

superior information for small samples (even if the exact lag length suggested should be 

incorrect), this further supports the construction of two VAR models. 

 

Once the VAR models are computed with EViews, the coefficients provided in 

the VAR estimation output for each variable have the limitation of including 

simultaneous dependencies and indirect links among the VAR variables. For increased 

significance of results, literature (e.g. Lütkepohl, 2005; Lütkepohl & Krätzig, 2004) 

recommends Cholesky Impulse Response Analysis for the identification of dynamic 

effects. Cholesky Impulse Response Analysis was conducted at a 95 per cent confidence 

level for both models. In more practical terms, Cholesky Impulse Response Analysis 

provides information as to what effect a random shock (change in value) to one of the 

time series in the system will have on another over a certain period of time.  

Focus was put on two questions: First, shocks to which variables will result in a change 

in glycemic variability? Secondly, which variables will be affected if a shock is induced 

to glycemic variability? 

In order to conduct Cholesky Impulse Response Analysis, the user needs to 

predetermine which variables are likely to be the most rapidly adapting to an external 

shock to the system. For the Cholesky ordering of the variables, I determined glycemic 

variability to be the most rapidly adapting variable for the purpose of contemporaneous 

effects of shocks in Impulse Response Analysis. It was followed by affective valence, 

activation and control of the adolescent, of its mother and finally its father. This 

Cholesky ordering seemed prudent, since extant literature in the psychosomatic realm 
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has primarily focused on the diabetic patient herself and, in a second step, on her mother 

(see first chapter). There is little to no research linking glycemic variability and 

emotions of a diabetic adolescent to her father, most likely because the male parent is 

traditionally seen as more distant to the raising of children than the female?  

 

The workings of Impulse response analysis can be illustrated by the following 

example: Figure II below reproduces one of the impulse response graphs. It shows the 

effect a shock to the father’s valence (making him sad) will have on his daughter’s 

glycemic variability over the next couple of days. The extent of the effect to glycemic 

variability is displayed on the y-axis, while time (days) is tracked on the x-axis. We can 

see how glycemic variability will increase significantly (ca. 10 standard deviations) on 

the first day, because the top and bottom graphs showing the 95 per cent confidence 

interval (two standard deviations of the mean) and the mean (graph in the middle) of 

glycemic variability are well above the base line (which is mapping the expected course 

of glycemic variability if no shock to the system had occurred). During the second day 

after the shock, glycemic variability begins to stabilize and fluctuates around the blood 

sugar level as before the shock was administered (base line).  

 

Figure II: Impulse Response of Glycemic Variability to a Shock Administered to 

the Father’s Valence (making him sad) 

 
y-axis: glycemic variability; x-axis: time in days; base line: blood glucose level before shock. 

The top and bottom lines represent 2 SD from the middle line (mean). 

 

Overall, all significant effects observable in response to either a change in some 

emotional time series (first research question) or change in blood sugar (second research 

Shock administered to father’s valence 
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question)  persisted over less than four full days. After four days the mean fluctuated 

somewhere around the- base line, with the base line included within the 95 per cent 

confidence interval. 

Without the intention to foreclose the results chapter, it shall be disclosed here 

that the coefficients of determination R2 indicate the incorporated variables to capture 

11.11 and 64.56 per cent of the variance for the VAR models with lag one and seven, 

respectively. Not surprisingly, the very large number of explanatory variables in the 

models (for lag one: 110, for lag seven: 710) resulted in significant penalties in the 

calculation of adjusted R2 with values of 0.028 and 0.041, respectively. This is not 

uncommon for VAR estimation and is one of the reasons why other criteria, such as the 

tests for lag length identification criteria discussed above, are much more relevant and 

commonplace in VAR model evaluation. However, going one step further, a relatively 

new methodology entitled the Optimized Multivariate Lag Selection Process has also 

been adjusted and applied to the ten time series, thus constructing a third VAR model 

with completely different advantages (higher adjusted R2) and limitations (no Cholesky 

Impulse Response Analysis, more a priori determinations similar to classic multiply 

regressive systems). The Optimized Multivariate Lag Selection Process and hence the 

construction of a third VAR model will be discussed next. 

 

3.3.3. Introducing the Optimized Multivariate Lag Selection Process to VAR 

Modeling 

Any VAR model requires the user to select a maximum number of lags, as 

discussed in the previous section. The farther back in time the user decides to go to 

predict a current value of a variable, the more explanatory variables (lags) need to be 

included in the model resulting in far below average adjusted R2 values. The latter is 

due to the tremendous penalty inflicted by the large number of explanatory variables 

(lags) in the model resulting in high estimation variance (Lütkepohl, 2005; Lütkepohl & 

Krätzig, 2004). This substantial drawback weakened the substance of empirical findings 

derived from VAR models, because researchers would either present results through 

models with teeth clatteringly low R2 values, or adopt models only incorporating the 

effects of events preceding the predicted value of a variable by one day/ one unit of time 

in the VAR (see for example Wild, Eichler, Friedrich, Hartmann, Zipfel & Herzog, 

2010).  
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The versed VAR methodologist may long have wondered for the possibility to 

include only such lags which, in lay terms, provide more benefit to the coefficient of 

determination (R2) than inflicting damage to its adjusted value. So for illustrative 

purposes, if one decided (for whatever reason or because one of the lag length 

determination criteria suggests so) to include the last 7 days/ units of time in a VAR 

model to predict a current value of a variable, but realizes that for instance just days -7, 

-4, and -2 serve as predicators of the current value, why not just include these three days 

in the equation predicting the value of the variable, instead of all days?  Until recently 

methodological literature did not provide for this possibility (Lütkepohl, 2005; 

Lütkepohl & Krätzig, 2004).  

In order to alleviate this shortcoming in this study, a computer code 

implementing a statistical procedure recently published in parts in Savin and Winker 

(2013) and Winker (2000; 1995), referred to as the optimized multivariate lag selection 

process, was developed. It allows (contrary to previous practice) to exclude such 

explanatory variables (lags) from the VAR model which add little to its goodness of fit 

(estimated representativeness of reality) while nonetheless reducing its explanatory 

power (adjusted R2). The “price” for this advantage is that so far no Cholesky Impulse 

Response Analysis tool has been developed to be applied to the output. More a priori 

predeterminations somewhat similar to traditional multiply regressive systems have to 

be made. However, this “admittance of holes” to the lag structure (equations organizing 

the explanatory variables) allows to present an additional VAR-based model exhibiting 

more detailed dynamics with a smaller number of parameters – for the data in this case 

resulting in an about tenfold increase of the adjusted R2 value for the prediction of some 

variables (such as glycemic variability).  

 

The process of applying the Optimized Multivariate Lag Selection Process will 

be detailed next. First, the standard vector autoregressive (VAR) model was 

constructed, using EViews 7.1 (QMS, Quantitative Micro Software, Irvine CA), based 

on the ten time series I mentioned above. The novel contribution now is to maximize 

the informational content of the model by minimizing an information criterion (Savin & 

Winker, 2013; Winker, 2000; Winker, 1995). Equations (seemingly unrelated multiple 

regressions) predicting the variables of interest are created without including all the lags 

as in common VAR models.  
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In more concrete terms, drawing on Winker (2000, 1995) and Savin and Winker 

(2013), given the huge discrete search space of all possible lag structures to predict any 

one variable with a maximum lag length of seven, but without the lags with no added 

value to the predicting equation, heuristic optimization algorithms are used to this end. 

For this process, a computer code was developed using Matlab R2011b with an 

interface to EViews 7.1, which implements an Genetic Algorithm for the search of an 

optimized lag structure making use of information criteria (the Bayesian Information 

Criterion, BIC) as in the standard selection procedure [see Savin and Winker, 2013 for 

more details]. By providing an approximation to the minimum of the information 

criterion, the resulting model exhibits an optimized tradeoff between a good fit to the 

multivariate dynamics of the data and model parsimony. 

As a result, I obtained a model with only 70 parameters, but still cover effect 

delays up to one week. Since the maintained lags are selected based on their joint 

informational content (as measured by the information criteria), the procedure results in 

a model with much higher explanatory power (for predicting glycemic variability 

adjusted R2 value of 0.20 as opposed to 0.02 for the standard model with only one lag) 

and a richer temporal dynamic. 

Given the rich temporal dynamics between all variables of the model, besides 

considering single equations, the calculation of impulse response functions would be of 

interest. However, the zero constraints of the VAR model with holes preclude the 

application of standard methods for the calculation of confidence bands. 

 

3.4. Conclusion 

In conclusion, the three models constructed for this study all have individual 

advantages and disadvantages. For the purposes of inducing discussion on the 

application of econometric methodology to time series analysis in psychosomatic 

research, as much as outlining the prospects and boundaries of time series analysis 

itself, the actual results of this study have little relevance at first sight. Yet, I also want 

to showcase ways to graphically present the results derived from the rather abstract 

mathematical procedures described in this chapter for more clinically oriented 

applications. This will be one of my objectives for the next chapter. In a concluding 

chapter, I intend to return to the opening discussion of this thesis, thus critically 

reflecting on the overall value, potentials and contingencies of applying such highly 
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quantitative research approaches as vector autoregressive time series analysis and its 

extensions to psychosomatic explorations. 
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4. Research Findings 

4.1. Introduction 

This chapter is divided into two main sections. In the first, the results from the 

VAR models with one and seven lags adhering to conventional VAR methodology 

adopted from econometrics (see Lütkepohl and Krätzig, 2004) will be presented. In the 

second section, the results from the extension to contemporary VAR modeling provided 

by Winker (1995, 2000) and Savin and Winker (2013), termed the Optimized 

Multivariate Lag Selection Process, will be demonstrated. Focus is put on avenues for 

creative graphical presentations of the mathematically dry subject matter in order to 

showcase how clinical implications can be derived from such highly quantitative time 

series modeling.  

 

4.2. The First and Second (Conventional) VAR Model 

Two vector autoregression (VAR) models with dynamics acting on 1 and 7 days 

were computed. The coefficients of determination R2 indicate that the incorporated 

variables capture 11.11 and 64.56 per cent of the variance for the VAR models with lag 

one and seven, respectively. Not surprisingly, the very large number of explanatory 

variables in the models (for lag one: 110, for lag seven: 710) results in significant 

penalties in the calculation of the adjusted R2 with values of 0.028 and 0.041, 

respectively. This is not uncommon for VAR estimation and is one of the reasons why 

other criteria, such as the tests for lag length identification criteria discussed above, are 

much more relevant and commonplace in VAR model selection and evaluation.  

Unlike in contemporary multiply regressive models, the coefficients provided in 

the VAR estimation output for each variable do not provide a complete picture due to 

simultaneous dependencies and indirect links of the VAR variables. For this reason, 

literature (e.g. Lütkepohl, 2005; Lütkepohl & Krätzig, 2004) recommends Cholesky 

Impulse Response Analysis for the identification of dynamic effects, which I conducted 

at a 95 per cent confidence level for both models. It provides information as to what 

effect a random shock (change in value) to one of the variables in the system will have 

on the others. Focus was put on two questions:  

First, shocks to which variables will result in a change in glycemic variability. In 

lay terms I ask, what will happen to the patient’s blood sugar if one of the family 

members encounters a situation making him or her happy, sad, excited, calm, more or 

less dominant.  
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Secondly, which variables will be affected if a shock is given to glycemic 

variability? This refers to asking what effect a change in blood sugar in the patient (for 

whatever reason) will have on the emotions of both, the adolescent herself and her 

parents. Both questions were answered twice, based on both VAR models. Thereby, the 

effect with a specific lag was considered as significant, if the corresponding point-wise 

confidence band at the 95 percent level did not include the zero line at some horizon 

(see methods chapter for details and an example).  

 

In answering the first question, both models provided evidence that glycemic 

variability would increase with shocks inducing sadness in the adolescent patient or her 

father. In addition, the VAR model with lag seven showed that glycemic variability 

would also increase whenever the adolescent’s mother felt in control and would 

decrease whenever the adolescent herself felt calm and dominant (present to the current 

environment and situation). In order to provide a complete presentation, it be stated, that 

opposite changes in affect would also result in opposite movements of glycemic 

variability. 

 

Next, I will examine the results to the second research question: Which variables 

will be affected by a shock to glycemic variability for whatever reason? In the VAR 

model with one lag, a shock increasing glycemic variability would result in the 

adolescent’s father feeling in control. In the model with seven lags, a shock increasing 

glycemic variability would result in the patient feeling sad and her father feeling calm. 

Of course, shocks decreasing glycemic variability would be linked to the opposite 

familial emotions.  

 

Globally speaking, all significant impulse responses discussed above persisted 

over less than four full days after a shock, to then fluctuate somewhere around the base 

line. For that reason, a display of all impulse response graphs would have provided little 

added value. At the same time, a graphical representation providing a simplified and 

transparent overview of results was desirable. Figures III and IV are schematic displays 

of the impulse response analysis results for the one and seven lagged VAR models, 

respectively.  

 

 



 
 

30 

Figure III: Impulse Response Results for VAR with Lag 1 

 

 

Figure IV: Impulse Response Results for VAR with Lag 7 

 

 

Legend to Figures III and IV 

Arrows display the effect a shock to one variable will have on other variables over the 

next 1 - 3 days  

   VAR Impulse Response with negative Correlation 
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   VAR Impulse Response with positive Correlation 

(correlations involving glycemic variability are boldface) 

shocks increasing glycemic variability  –> high SD of blood sugar  

shocks increasing valence   –> sadness 

shocks increasing activation   –> inner calmness 

shocks increasing control   –> dominance 

shocks decreasing glycemic variability, valence, activation or control –> low blood 

sugar SD, happiness, excitement, feeling out of control (respectively) 

 

The most clinically relevant results displayed in the graphical representations 

can be summarized as follows: 

Generally speaking, the seven lagged VAR (partially supported by the model with one 

lag) showed: The adolescent feeling happy, calm and in control will reduce her 

glycemic variability and hence diabetic derailment. A non-dominating mother and a 

happy father will also reduce the adolescent’s glycemic variability. Shocks from inside 

or outside the family, deliberate or not, increasing glycemic variability in the adolescent 

affect only the adolescent and her father: In the model with one lag, the male parent will 

feel in charge. In the model with seven lags, the adolescent will be sad and her father 

will calm down.  

In addition to the linkages between glycemic variability and emotions discussed 

above, figures 2 and 3 also display various further linkages between family emotions 

also evidenced by impulse response analysis. So for example, in the model with seven 

lags activation (excitement) in one parent, also leads to activation in the other parent. 

While this linkage seems to be rather commonplace, other linkages may or may not be 

representations of pathological interaction between family members. The analysis of 

such hints would be of interest to a therapist trying to identify and modify dysfunctional 

family structures and interactions. Yet, such observations are not the focus of this 

research. Their mentioning is just for the sake of completeness and to provide a possibly 

interesting trajectory for future research. For such purposes it also be noted that both 

graphical representations were conceived using Microsoft Word – no technically 

advanced or costly software tools are required. 
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4.3. A Third Model: Results from the Optimized Multivariate Lag Selection 

Process 

The optimized multivariate lag structure selection process provides one equation 

of seemingly unrelated multiple regression for each of the ten time series. Three of them 

directly involve glycemic variability in addition to the one for glycemic variability 

itself, which shall be presented last (lags in parentheses).  

 

affective valence of the adolescent = α1glycemic variability (-6) + α2valence adolescent 

(-1)    (R2 = 0.25, adj. R2 = 0.24) 

 

Thus, the pleasure/ displeasure of the adolescent is predicted by her glycemic variability 

six days earlier and her pleasure/ displeasure one day earlier. Since this should suffice 

as an example for reading the equation properly, the remaining equations are presented 

without individual explanatory comments.  

 

affective valence of the mother = α3dominance adolescent (-7) + α4valence mother (-5) 

+ α5arousal mother (-6) + α6arousal father (-4) + α7arousal father (-6)  

(R2 = 0.21, adj. R2 = 0.18) 

 

affective valence of the father = α8valence adolescent (-3) + α9valence adolescent (-5) + 

α10arousal mother (-5) + α11dominance father (-3)    (R2 = 0.21, adj. R2 = 0.18) 

 

arousal of the adolescent = α12arousal adolescent (-1) + α13arousal adolescent (-3) + 

α14arousal adolescent (-7) + α15valence mother (-4) + α16arousal mother (-3) + 

α17valence father (-2) + α18valence father (-6)     (R2 = 0.30, adj. R2 = 0.25) 

 

arousal of the mother = α19glycemic variability (-3) + α20arousal adolescent (-7) + 

α21dominance adolescent (-5) + α22arousal mother (-5) + α23arousal mother (-7) + 

α24dominance mother (-1) + α25dominance father (-6)    (R2 = 0.29, adj. R2 = 0.24) i 

 

arousal of the father = α26valence mother (-4) + α27dominance mother (-6) + α28arousal 

father (-1) + α29arousal father (-2) + α30arousal father (-6) + α31dominance father (-1)    

(R2 = 0.19, adj. R2 = 0.15) 
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dominance of the adolescent = α32valence adolescent (-1) + α33arousal adolescent (-5) + 

α34arousal father (-1) + α35dominance father (-1)    (R2 = 0.25, adj. R2 = 0.22) 

 

dominance of the mother = α36valence mother (-7) + α37dominance mother (-1) + 

α38dominance mother (-3) + α39dominance father (-5)    (R2 = 0.65, adj. R2 = 0.64) 

 

dominance of the father = α40glycemic variability (-1) + α41dominance child (-6) + 

α42valence mother (-5) + α43valence mother (-7) + α44dominance mother (-4) + 

α45dominance mother (-6) + α46valence father (-1) + α47valence father (-3) + α48arousal 

father (-3) + α49dominance father (-2)        (R2 = 0.34, adj. R2 = 0.27) 

 

glycemic variability (of the adolescent) = ß1glycemic variability (-4) + ß2arousal mother 

(-3) + ß3arousal mother (-7) + ß4dominance mother (-4) + ß5dominance mother (-7) + 

ß6valence father (-5) + ß7valence father (-6) + ß8arousal father (-3) + ß9arousal father (-

7) + ß10dominance father (-2) + ß11dominance father (-5)    (R2 = 0.28, adj. R2 = 0.20) 

 

Tables displaying the coefficients, their standard error, t-statistic, and probability for all 

ten equations presented above will be portrayed here: 

 

Table 2: Coefficients and Their Statistical Properties 

 Coefficient Std. Error t-Statistic Prob.   

     
     α1 0.008371 0.002505 3.341682 0.0009 

α2 0.439050 0.071648 6.127902 0.0000 

α3 0.196661 0.072361 2.717768 0.0067 

α4 0.193472 0.070105 2.759765 0.0059 

α5 0.166062 0.072169 2.301002 0.0216 

α6 -0.093081 0.038780 -2.400229 0.0166 

α7 0.083885 0.023675 3.543200 0.0004 

α8 -0.133217 0.045307 -2.940347 0.0033 
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α9 0.135556 0.044104 3.073571 0.0022 

α10 -0.096673 0.029864 -3.237170 0.0012 

α11 -0.220601 0.061646 -3.578496 0.0004 

α12 -0.083390 0.031821 -2.620595 0.0089 

α13 0.167024 0.043985 3.797288 0.0002 

α14 0.499978 0.148744 3.361336 0.0008 

α15 0.235265 0.063599 3.699206 0.0002 

α16 -0.118392 0.039810 -2.973946 0.0030 

α17 -0.177384 0.058985 -3.007251 0.0027 

α18 0.327619 0.062900 5.208601 0.0000 

α19 -0.006755 0.002888 -2.339111 0.0195 

α20 -0.516945 0.178245 -2.900191 0.0038 

α21 -0.973039 0.242951 -4.005083 0.0001 

α22 0.190612 0.063265 3.012915 0.0026 

α23 -0.212629 0.060467 -3.516477 0.0005 

α24 -0.560562 0.136662 -4.101828 0.0000 

α25 -0.464339 0.146477 -3.170045 0.0016 

α26 -0.090665 0.041861 -2.165871 0.0305 

α27 0.447149 0.069911 6.395994 0.0000 

α28 0.234203 0.065907 3.553560 0.0004 

α29 -0.225144 0.058588 -3.842809 0.0001 

α30 0.129774 0.038175 3.399442 0.0007 

α31 0.182089 0.037975 4.795004 0.0000 

α32 -0.077998 0.029281 -2.663826 0.0078 

α33 -0.325788 0.065003 -5.011909 0.0000 
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α34 0.215753 0.065266 3.305758 0.0010 

α35 -0.259613 0.081614 -3.181004 0.0015 

α36 0.200644 0.061428 3.266334 0.0011 

α37 0.292372 0.060802 4.808558 0.0000 

α38 -0.186054 0.064022 -2.906069 0.0037 

α39 -0.233369 0.086570 -2.695740 0.0071 

α40 0.004900 0.001217 4.024947 0.0001 

α41 0.367140 0.102177 3.593182 0.0003 

α42 -0.128680 0.045575 -2.823477 0.0048 

α43 -0.111369 0.043503 -2.560006 0.0106 

α44 -0.186954 0.067466 -2.771067 0.0057 

α45 -0.187772 0.065392 -2.871465 0.0042 

α46 -0.192931 0.048915 -3.944164 0.0001 

α47 -0.201673 0.062378 -3.233079 0.0013 

α48 -0.092639 0.048991 -1.890956 0.0589 

α49 0.154373 0.062922 2.453387 0.0143 

     
     Determinant residual covariance 9.14E-05   

     
      

 Coefficient Std. Error t-Statistic Prob.   

     
     ß1 -0.197322 0.076111 -2.592545 0.0097 

ß2 3.639513 1.583793 2.297973 0.0218 

ß3 -4.889116 1.647518 -2.967565 0.0031 

ß4 22.52994 3.969363 5.675959 0.0000 

ß5 -6.340918 3.554736 -1.783794 0.0747 
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ß6 9.565170 3.704850 2.581797 0.0100 

ß7 9.249940 2.865721 3.227788 0.0013 

ß8 7.562806 2.651011 2.852801 0.0044 

ß9 10.96846 2.600148 4.218400 0.0000 

ß10 13.04606 3.522259 3.703891 0.0002 

ß11 11.03846 4.583850 2.408120 0.0162 

     
     Determinant residual covariance 9.14E-05   

 

The application of a novel statistical methodology allowed me to disentangle the 

data and generate statistically reliable results in the form of ten equations. The dynamic 

of the results pertaining to glycemic variability,6 taking into account the direction of 

coefficients, can be summarized as follows: 

Low glycemic variability and therefore good diabetic control will correlate with 

the following: high glycemic variability four days earlier, an excited mother three days 

earlier, a calm mother seven days earlier, a non-dominating mother four days earlier, a 

dominating mother seven days earlier (although statistically insignificant), a happy 

father both five and six days earlier, an excited father both three and seven days earlier, 

and a non-dominating father both two and five days earlier. Low glycemic variability 

will also correlate with a happy child six days later, a calm mother three days later, and 

a non-dominating father one day later.  

For more clarity, a graphical representation of these results shall be presented 

next (figures V – IX). Not just in order to express the more regressive, less dynamic 

nature of the results, the images presenting results from the Optimized Multivariate Lag 

Selection Process are constructed entirely different from those provided earlier for the 

VAR models analyzed with Cholesky Impulse Response Analysis. Again, relying on 

Microsoft Word, timelines were created stressing the augmented focus on specific 

temporal relations between the variables instead of the dynamic focus earlier with the 

classic VAR analysis.    

 
                                                        
6 As already noted in the methods chapter, it has to be taken into account that additional dynamic 
interactions arise due to spillover between equations, which are not considered here – one of the 
disadvantages in comparison to conventional VAR modeling.  
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Figure V: Timeline displaying effects correlating with high glycemic control 

 
 

Legend: The graph depicts a psycho-somatic cycle in which various emotional states of 

all involved family members influence glycemic variability of the adolescent patient 

and vice versa.  

  

Similarly, poor glycemic control (high glycemic variability) will correlate with 

low glycemic variability four days earlier, a calm mother three days earlier, an excited 

mother seven days earlier, a dominating mother four days earlier, a non-dominating 

mother seven days earlier (although statistically insignificant), a sad father both five and 

six days earlier, a calm father both three and seven days earlier, and a dominating father 

both two and five days earlier. High glycemic variability will also correlate with a sad 

child six days later, an excited mother three days later, and a dominating father one day 

later.  

   

 

 

 

 

 

 

 

 

 

 



 
 

38 

Figure VI: Timeline displaying effects correlating with poor glycemic control 

 
 
Legend: The graph depicts a psycho-somatic cycle in which various emotional states of 

all involved family members influence glycemic variability of the adolescent patient 

and vice versa.  

 

In clinical terms, this means, good diabetic control was preceded by attentive 

and alert (“high arousal”, excited) parents with a positive attitude (“happy father”), at 

the same time refraining from too much overwhelming presence (“low dominance”). 

Similarly, phases of good diabetic management were followed by a continuously distant 

father (“low dominance”), unfortunately a less alert mother (“low arousal”), and a 

content (“happy”) adolescent index patient.  

 

Similar to the above, now mostly self-explanatory graphical representations 

were constructed for the effects surrounding the affective valence of all three family 

members. I picked these three timelines for more detailed examination because the 

appropriate measurement of depressive symptoms (which at least at a distance 

somewhat relates to affective valence) in diabetics in general remains to be a topic of 

current debate in the literature (i.e. Hofmann, Köhler, Leichsenring, & Kruse, 2014).  
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Figure VII: Timeline displaying effects correlating with affective valence in the 

adolescent index patient 

 
Legend: The graph depicts a psycho-somatic cycle in which various emotional states of 

all involved family members influence affective valence (pleasure) of the adolescent 

patient and vice versa.  

 

Figure VIII: Timeline displaying effects correlating with affective valence in the 

mother of the adolescent index patient 

Legend: The graph depicts a psycho-somatic cycle in which various emotional states of 

all involved family members influence affective valence (pleasure) of the mother to the 

adolescent patient and vice versa.  
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Figure IX: Timeline displaying effects correlating with affective valence in the 

father of the adolescent index patient  

Legend: The graph depicts a psycho-somatic cycle in which various emotional states of 

all involved family members influence affective valence (pleasure) of the father to the 

adolescent patient and vice versa.  

 

Similar or different image representations could be conceived for activation and 

dominance in all family members based on the seemingly unrelated multiply regressive 

equations presented in this section. The tradeoff between accuracy of graphical 

presentation and facility of inspection is the primary challenge in their design. 

 

4.4. Conclusion 

In conclusion, the results demonstrate the distinctive scopes, potentials and 

contingencies of different time series analysis models. As for the key research question, 

which affect states in individual family members will affect diabetic control (glycemic 

variability), all three models provide somewhat similar results: For instance, maternal 

dominance, which some might interpret as excessive overprotectiveness, will result in 

poor diabetic stability (high glycemic variability). This increases the credibility of the 

results and statistical methodology of this thesis – especially, since this finding is in line 

with extant research discussed in the literature on instable diabetes in children and 

adolescents (i.e. Minuchin et al., 1978; Davies et al., 2001; Butler et al., 2007). 

Nevertheless, it should be stressed here, once again, that the clinical results derived 

from this case study can not be generalized to inform clinical practice on a broader 

scale.  
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5. Discussion 

5.1. Introduction 

First, I intend to integrate and review the various results of this case study and 

the process of different time series analysis methodologies through which they were 

derived and discuss how they fit in with extant literature. Limitations and avenues for 

future research will be addressed. Beyond that, a more general discussion on 

psychosomatic research on brittle diabetes will be entered to build a bridge to the 

introductory remarks on extant qualitative and quantitative approaches to the subject 

matter and the vigorous discussion which has subsequently endured in the literature. 

 

5.2. The Scope, Prospects and Limitations of this Study and its Method(s) 

The scope of this empirical time series case study on glycemic variability is 

twofold: A creative exploration of new psychosomatic aspects of familial affect 

interplay surrounding an adolescent suffering from what has recently been termed brittle 

diabetes, and providing perspectives on innovative statistical methodology (adopted 

from econometric theory) to do so in a highly quantitative fashion. Three competing 

models were presented with no contradictions between them as far as the principal 

results on glycemic variability are concerned. As already mentioned in the methods 

chapter, the VAR models involving Cholesky Impulse Response Analysis are better 

able to portray the dynamic effects between the family members’ individual affect states 

and glycemic variability. The aspect of specific temporal relations and traditional 

measures of methodological quality, such as the adjusted coefficient of determination, 

take a back seat to the aforementioned distinctive features. By contrast, the Optimized 

Multivariate Lag Selection Process offers three advantages:  

• Increases in the adjusted coefficient of determination R2 for the model prediction 

of glycemic variability by factor ten (adjusted R2 value of 0.20 as opposed to 

0.02) while also incorporating significant effects of explanatory variables (lags) 

stemming from a longer period of time preceding the predicted event than is the 

case in most conventional VAR models (with just 1 or 2 lags). 

• A more precise timeline of effects of various variables on each other – including 

glycemic variability and vice versa (for example “a non-dominating mother four 

days prior to a set day will increase glycemic control” instead of “a non-

dominating mother somewhere up to four days prior to a set day will increase 

glycemic control”). 
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• Additional relationships between variables which did not reach statistical 

significance earlier or took more time to take effect than the time frame of the 

earlier (conventional VAR) models allowed for. 

Yet, it seems premature to declare the Optimized Multivariate Lag Selection 

Process superior on all counts, given the dynamic aspects – so potently outlined in the 

contemporary VAR models – are at least partially lost due to the absence of Cholesky 

Impulse Response Analysis. In essence, the advantages over traditional VAR modeling 

are bought with a methodological step back toward more multiply regressive properties. 

In conclusion, no one model is superior to the others, but each has specific features to 

offer, which complement one another in providing a vivid picture of both interpersonal 

and intertemporal emotional dynamics in interplay with diabetic management. 

 

One of the results confirmed by both the conventional seven lagged VAR model 

and the Optimized Multivariate Lag Selection Process pertains to the detrimental effect 

of maternal dominance on diabetic control. According to the Optimized Multivariate 

Lag Selection Process, this can be extended to paternal dominance. The latter model 

also suggests specific temporal relationships: Glycemic variability in the child could be 

linked to maternal dominance four days earlier and paternal dominance both two and 

five days earlier. Similar results, linking parental (particularly maternal) 

overprotectiveness with poor diabetic management have been reported in both 

qualitative and quantitative literature (Minuchin et al., 1978; Davis et al., 2001; Butler 

et al., 2007). This increases the trustworthiness of such findings. The methodology of 

this research may be a first step toward further clarifying and empirically detailing some 

of the links between particular biological markers (blood sugar) and much more specific 

psychic parameters of the family members surrounding the diabetic child, than the 

statistical approaches chosen in extant literature were able to.  

However, it is also important to keep in mind the most significant limitation 

inherent to the otherwise advantageous in-depth exploration the case study design of 

this thesis allowed. As Kruse, Schmitz, and Thefeld (2003) point out, results may be 

different for different social or demographic confounding factors, sample 

characteristics, and definitions of variables. Thus, no generalizations of any sort should 

be informed by the results of this work. Arguing to similar effect, Luyckx and Seiffge-

Krenke (2009) suggest there to be at least three separate developmental classes of 

glycemic control based on the age of adolescents with type 1 diabetes. They describe 
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each developmental stage as having its own characteristics in family structure and self-

concept. Laron, Galatzer, Amir, Gil, & Karp (1989) found at least three periods of 

adjustment to diabetes type I diagnoses, each with specific psychological changes 

within the patient and her family. Again, both studies point to the fact that the results 

presented in this case study are highly unlikely to hold for all children and adolescents 

suffering from brittle diabetes. Both, the age of the patient and the time having passed 

since being first diagnosed, may have effects on family system dynamics. Yet, it 

seemed important to develop a methodology to empirically research much more detailed 

understandings of the factors surrounding familial affect interplay and its relationship to 

diabetic control (Streisand et al., 2005). Such interaction may be difficult to explore 

over longer time-spans or with more participants given various environmental mediators 

(Seiffge-Krenke, 1998b). Future research involving more participants should be able to 

draw on this work in order to define variables and key interrelations on which to focus 

in developing a trustworthy empirical methodology.  

 

With respect to the time series variables adopted in this study, I have already 

reasoned for their overall superior validity in the methods chapter. Yet, in the context of 

limitations to this study, there are two suggestions for further scrutiny in future research 

in order to maximize the validity of the time series variables presented here:  

For one, critics may raise the topic of increased prevalence of alexithymia in 

type I diabetics (e.g. Friedman, Vila, Even, Timsit, Boitard, Dardennes, Guelfi, & 

Mouren-Simeoni, 2003; Manfrini, Bruni, Terminio, Poterzio, Ricci, Sforza, Pantano, 

Costanza, Valente, Ganz, & Pozzilli, 2005; Naundorf, Brosig, Bayer-Pörsch, & Stingl, 

2014) and the possible impact of that condition on participants’ SAM responses. The 

concept of alexithymia first popularized by Nemiah and Sifneos (1973; Nemiah, 

Freyberger, & Sifneos, 1976) describes individuals with a limited ability to recognize 

affect states and/ or express them verbally, limited imaginative capabilities, and a 

functional way of reasoning with a strong external fact-based orientation. As reasons for 

the syndrome, neuropsychological defects, deficits in verbal development, and counter-

transferrence phenomena in a therapeutic relationship are discussed (Naundorf et al., 

2014). Regardless of its cause, alexithymia could possibly impact the ability of 

participants of this study (or future studies) in their daily completion of the self-

assessment manikin, despite its non-verbal nature in the assessment of affect. For the 

purposes of this research, the patient has been negatively screened for alexithymia with 
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the German version of the widely accepted Toronto-Alexithymia-Scale (TAS-26). 

Similar measures should be taken in future research and the topic of alexithymia should 

be further explored, especially since findings so far are inconsistent: While some 

researchers (Eriksson, Gustavsson, Hilding, Granath, Ekbom, & Ostenson, 2012) found 

no correlation between alexithymia and glycemic regulation, several studies found 

linkages between the phenomenon and the conscientious recording of blood sugar self-

measurements (Housiaux, Luminet, Van Broeck, & Dorchy, 2010; Luminet, de Timary, 

Buysschaert, & Luts, 2006) – essential to proper diabetic management and meaningful 

study participation.  

Another suggestion for future research involves the optimization of the 

measurement for diabetic control. This idea was developed in a research cooperation of 

the author of this thesis with Prof. Dr. P. Winker of the Department of Economics 

(Justus-Liebig-University, Giessen) and Prof. Dr. A. Colubi, Prof. Dr. A. Blanco-

Fernandez, and Ms. M. García-Bárzana of the Department of Statistics and Operational 

Research of the University of Oviedo, Spain: The literature review chapter provides 

extensive reasoning for the adoption of glycemic variability as a measure for the quality 

of diabetic treatment success – superior even to the HbA1c (Hirsch & Brownlee, 2005; 

Hirsch, 2005; Zaccardi, Pitocco, & Ghirlanda, 2009; Penckofer et al., 2012; Risso, 

Mercuri, Quagliaro, Damante, & Ceriello, 2001). Regardless, the construction of an 

interval variable for glycemic variability based on the centre and the radius of a set of 

measurements (from a single day), instead of the more comprehensive standard 

deviation of those recordings, may entail additional accuracy for the variable.  

Specifically, such a proposed interval-valued blood sugar variable construct, 

would be composed of two real-valued variables, namely a centre and a radius emerging 

from the blood sugar recordings of a given day. Such approach might entail higher 

determination coefficients and smaller mean square errors, in comparison to current 

models partially for the following rationale: While the consideration of mean and 

standard deviation measurements merely implies the summarization of the daily range, 

the interval obtained from the mid-point and the radius represents the real daily range of 

actual blood sugar recordings through the patient. In a practical example: Given three 

measurements of blood sugar in a certain day, say 235, 254 and 272 mg/dl, the interval 

obtained from (mean; sd) is [235.1644,272.1689], which does not include the 

measurement 235 mg/dl, whereas with the (mid; spr) concept of a variable it is indeed 

contained in the daily range [235,272]. Unfortunately, no VAR analysis, much less the 
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Optimized Multivariate Lag Selection Process has so far been conducted with interval 

variables – entailing a myriad of challenges to advanced mathematics. For this reason 

the aforementioned research cooperation has, as a first step, returned to the construction 

of a multiply regressive model for the raw data examined in this thesis. The results of 

this completely separate statistical analysis of this data, representing a fourth model 

solution, has also provided evidence for detrimental effects of maternal 

overprotectiveness on glycemic stability in the diabetic adolescent (adj. R2 12.31%), but 

lacked the vivid portrayal of specific variable interrelations the three models presented 

in this thesis are able to offer. Mathematical details of this fourth model have, for 

reasons of clarity – and to avoid the loss of focus (on VAR analysis) in this thesis – 

been secluded to the appendix (see exhibit 3: “A fourth model: Multiple regression with 

an interval variable for glycemic variability”).  

 

Future research may also look at correlations between glycemic control in the 

patient and emotions of individuals outside of the core family, who have frequent 

contact and/ or influence on the patient, as already suggested by Minuchin et al. (1978). 

If, and to what extent, individuals beyond the primary care givers (usually the parents) 

have influence on minor diabetics may vary significantly from case to case depending 

on social structures surrounding the patient. Borus and Laffel (2010), in their review of 

challenges faced by adolescents when managing type I diabetes, described mixed 

findings on the role of peer influence. They caution that perception of social situations 

from the point of view of the adolescent patient and reality (in terms of what his social 

surroundings really think and feel) may differ substantially. For example, a diabetic 

adolescent may perceive his social status to be compromised by admitting the disease 

although that may not be the case. If influences from beyond the core family are 

present, which has been doubted (e.g. Helgeson, Reynolds, Escobar, Siminerio, & 

Becker, 2007; La Greca, Auslander, Greco, Spetter, Fisher & Santiago, 1995), they may 

be difficult to explore, due to the difficulties of identifying, reaching, and recruiting all 

relevant individuals for participation in a study.  

Just as the effect of attachment figures (beyond the parents) on the diabetic 

minor would be of interest, the same holds true for the opposite direction of impacts. 

For instance, another German research fellowship explored quality of life for siblings to 

minors suffering from type I diabetes (Grundlach et al., 2006), but remained empty 

handed in their search for indication of differences to siblings of “healthy” families. 
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Research on such effects will face the same challenges as explorations of the opposite 

interrelations. 

 

In addition to the relevance of this work for future inquiries into brittle diabetes, 

as outlined above, the same or different linkages between family member’s emotions 

and biological parameters identified in this study may also be useful in suggesting 

specific toeholds for interventional advice in family therapy. In the case history of the 

family on study, the therapist was able to confront the parents with their collusion 

hindering a higher degree of independence of their daughter and thus her acceptable 

blood sugar management. Critics will certainly argue the experienced therapist will not 

need such elaborate technological support in arriving at meaningful therapeutic 

interventions. Yet, in a time where evidence based medicine is rapidly evolving in 

importance, particularly in the psychosomatic and psychiatric realm, such technological 

aid may be a powerful tool in providing reproducible and well documentable rationale 

for psychotherapeutic interventions. As further critique on this study, it did not look at 

the type of relationships and communication styles within the familial system, a German 

study group has already addressed partially by drawing on attachment theory, thus 

identifying three parental relationship types with differences in coping strategies and 

quality of relationship (Slesazeck, Würz, Kapellen, Kiess, & Brähler E., 2003). So in 

conclusion, therapeutic experience and merit is required, no matter how clear and 

conclusive links between family system dynamics and blood sugar management may 

appear in the statistical analysis of a family. Also, therapists should always keep in 

mind Seiffge-Krenke’s (amongst others’) caution: Medical and developmental needs of 

any adolescent must not coincide at all times (Seiffge-Krenke, 1998b). Hence, the 

results of this research should not mislead the reader to equate good glycemic control 

with adequate functional psychological development of the adolescent or satisfying 

quality of life within the family; interrelations between such parameters need to be 

explored separately.  

 

5.3. Critical Reflections on Quantitative versus Qualitative Research on Brittle 

Diabetes 

A more substantial contribution of this thesis is the demonstration and practical 

application of the Optimized Multivariate Lag Selection Process to VAR analysis, 

resolving an essential shortcoming in VAR analysis of (relatively) small samples. 
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Hence, this contribution to literature will have relevance beyond the case study 

approach, but also to VAR-based studies of larger cohorts of patients as for example 

presented in Wild et al. (2010) – significantly increasing either the number of effects 

(lags) analyzed (as would be the case in Wild et al., 2010) or the statistical reliability 

(i.e. the adjusted R2) with which results are presented. All in all, mathematically refined 

quantitative methodological approaches relying on modern computational technology 

can generate more specific, reproducible and thus trustworthy results than purely 

qualitative (narrative) accounts – while still honoring the benefits of the case study 

approach aiming to explore previously unforeseen avenues fit for further vested inquiry 

(often costly to perform).  

 

Yet, I dare to inquire critically, if the added mathematical complexity honors the 

overall value of the results a case study approach can provide. Revisiting the opening 

comments of this work in the context of brittle diabetes, it seems interesting to note that 

particularly the most highly acclaimed and clinically widely trusted research on brittle 

diabetes has also been the most severely and broadly criticized. So for instance, more 

than ten years after the initial publication of the pioneering work of Minuchin et al. in 

1978 (on what they called “psychosomatic diabetes”) entitled “Psychosomatic 

Families”, critics commented as follows: “…as we conducted research and therapy with 

the families of diabetic children, we were impressed with both the limit of the 

formulation of the family’s role in diabetes offered in ‘Psychosomatic Families’ and the 

uncritical acceptance that the book continued to enjoy.” (Coyne & Anderson, 1989). In 

their rather pointed article entitled “The ‘Psychosomatic Family’ reconsidered II: 

Recalling a defective model and looking ahead” Coyne and Anderson (1989) criticize 

Minuchin et al. (1978) primarily for their bold, yet statistically (allegedly) poorly 

supported statements on the “typical psychosomatic family”7 and their 

overgeneralizations of these overall “weak” findings on familial situations in one 

psychosomatic illness to various psychosomatic illnesses. More specifically, small 

sample sizes and poor documentation of methodology (or lack thereof) is being 

highlighted.  

 
                                                        
7 Minuchin et al. (1978) describe the “psychosomatic family” as featuring enmeshment, rigidity, 
overprotectiveness and lack of conflict resolution and the children affected by brittle diabetes as having 
difficulty in handling stress, showing a tendency to internalize anger and being somewhat immature in 
their ability to cope with challenging situations. 
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Reflecting on such valid criticism in light of my own impressions on both the 

subject of brittle diabetes in adolescents as well as on the various shortcomings of 

contemporary statistical approaches to time series data in psychosomatic medicine, I 

believe in there being a case for both sides: On the one hand, I must vigorously support 

critics (i.e. Coyne and Anderson 1989) in their call for much more detailed and 

sophisticated reports on and publication of statistical methodology in such complex and 

intricate research situations as are present in multivariate time series analysis. The 

reason lies in there being vast room for pitfalls and error with this type of research. On 

the other hand, however, with the change of statistical approach, the results drawn from 

a given set of data may change somewhat, despite both methodologies being perfectly 

valid and academically accepted. The most striking example for such phenomenon in 

this work involves the fact that the Optimized Multivariate Lag Selection Process did 

not (and the conventional one lagged VAR model only partially) evidenced any effect 

of the adolescent’s own emotions on its glycemic variability, although the seven lagged 

conventional VAR model showed such linkage (along with extant literature on 

diabetes). Similarly, further linkages (of lesser magnitude to the focus of this study) 

drawn in the VAR model with seven lags are absent in that with one lag and vice versa. 

Of course, various reasons for all this inconsistency, involving the lack of Cholesky 

Impulse Response Analysis for the third model, the deliberate elimination of certain 

lags from the VAR system in the third model, the reduced time frame from which lags 

were recognized in the one lagged VAR model (also resulting in different dynamics 

within the variables that were recognized), and many more, can all be called upon as 

rationale for why certain effects may have appeared in one model but not the other.  

Still one wonders, how this (agreeably small) imprecision of highly quantitative 

research is any different from the (possibly – but not necessarily – larger) inaccuracy of 

qualitative research due to subjectivity? Not to mention the potential for human error, 

also present in any quantitative method (despite cross checking of results among 

different qualified individuals)? Noteworthy – and in taking up the cudgels for 

Minuchin et al. (1978, 1975) – the one finding clinically observable before conducting 

any statistical testing at all, namely that of a dominating mother having a negative effect 
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on glycemic control of her child, was also a finding both methodologies of this research 

were able to support at a high level of significance. 8  

Additionally, I ponder critics of Minuchin et al. (1978) may not have realized the 

vastness of data inherent even in a small sample in time series analysis – an 

apprehension possibly supported by the fait accompli of most of them failing to provide 

any statistically evidenced findings on the subject of brittle diabetes themselves. Not to 

mention the individual specificity of psychosomatic reactions (Brosig, Kupfer, & 

Brähler, 1993; Brosig et al. 2001) in patients, which may make it near impossible to 

generate comprehensive and detailed models on brittle diabetes applicable to each and 

every patient. In that sense, well documented, empirical case analysis drawing on both 

qualitative and quantitative (time series analysis) findings may be of higher clinical 

relevance than expected. They may involve the careful observation of the clinically 

experienced therapist as much as a sound (and progressive) statistical approach. 

 

5.4. Conclusion 

The preceding chapter has highlighted the fact, that the actual clinical results 

from this case study come second (at best) to much broader reflections and explorations 

on the application of innovative research methodologies to psychosomatic studies 

involving time series analysis – a form of research becoming more and more popular in 

this field (see for instance Wild et al., 2010, Crane et al., 2003; Dancey, Taghavi, & 

Fox, 1998; Dohnert et al., 2001; Fuller et al., 2003; Kupfer, Brosig, & Brähler, 2005; 

Lévesque et al., 2004; Posener et al., 2004; Reid, Towell, & Golding, 2000; van Vliet et 

al., 2003; Weinberger & Gomes, 1995 – and many more). If nothing else, I hope to have 

broadened researchers’ horizons to look beyond the psychological realm, the medical 

field even, in their quest to find the best fitting methodology for a given research 

question. Cooperation between different academic disciplines may be essential to fulfill 

the high expectations of modern evidence based medicine and its vigorous quality 

measures for academic research. 

 

                                                        
8 Amusingly, one might find what Minuchin et al. (1978)  described as overprotectiveness in families 
with brittle diabetes, is very similar, if not the same, to what this research was able to pinpoint in terms of 
exaggerated control of a mother over her glycemically out of control child. 
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6. Conclusion 

6.1. Introduction 

The objective of this chapter is to recite the key findings in the time series 

analysis of this case study on a family of three with an adolescent suffering from brittle 

diabetes. Rationale and research objectives of this thesis are briefly revisited. Key 

implications for future research are discussed.  

 

6.2. Key Findings 

Three statistical models (and a fourth model in the appendix), as well as a 

qualitative case vignette were presented based on the set of raw data stemming from a 

classical family of three, consisting of biological parents and their adolescent daughter 

suffering from brittle diabetes.  

Generally speaking, the lag 7 VAR model, taking into account events of the past seven 

days, (partially supported by the model with one lag, only considering events of the past 

day) showed: The adolescent feeling happy, calm and in control will reduce her 

glycemic variability and hence diabetic derailment. A non-dominating mother and a 

happy father will also reduce the adolescent’s glycemic variability. Shocks from inside 

or outside the family, deliberate or not, increasing glycemic variability in the adolescent 

affect only the adolescent and her father: In the model with one lag, the male parent will 

feel in charge. In the model with seven lags, the adolescent will be sad and her father 

will calm down.  

Through the introduction and first ever application of the Optimized 

Multivariate Lag Selection Process to psychosomatic research, more specific temporal 

relations between affect states and the biological marker of glycemic variability were 

isolated at statistical significance: Low glycemic variability and therefore good diabetic 

control correlated with high glycemic variability four days earlier, an excited mother 

three days earlier, a calm mother seven days earlier, a non-dominating mother four days 

earlier, a happy father both five and six days earlier, an excited father both three and 

seven days earlier, and a non-dominating father both two and five days earlier. Low 

glycemic variability also correlated with a happy child six days later, a calm mother 

three days later, and a non-dominating father one day later. In clinical terms, this means 

for this third model, good diabetic control was preceded by attentive and alert (“high 

arousal”, excited) parents with a positive attitude (“happy father”), at the same time 

refraining from too much overwhelming presence (“low dominance”). Similarly, phases 
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of good diabetic management were followed by a continuously distant father (“low 

dominance”), unfortunately a less alert mother (“low arousal”), and a content (“happy”) 

adolescent index patient. 

 

6.3. Future Research 

First of all, the application of methodology presented here for the study of a 

larger number of families would be desirable to generate results fit for more generally 

applicable implications. Electronic soft- and hardware facilitating raw data collection 

and analysis would be desirable for this end. For instance, tablet devices with a 

connection to the World Wide Web and a central data recording and control station in a 

research center could not only ensure and enforce conscientious and timely data 

recording by participants, but also serve as a motivator for patients and their families to 

join such research studies.  

Numerous medical content related limitations have already been discussed in the 

discussion chapter. These provide for various avenues for future research. Furthermore, 

while brittle diabetes continues to be an important research area in psychosomatic 

medicine for all age groups, there are a number of other chronic diseases, which could 

be studied in a similar fashion: Colitis Ulcerosa, Morbus Crohn, various rheumatoid 

diseases, celiac disease/ non-tropical sprue, to name but a few. Similarly, for brittle 

diabetes or any other chronic disease, additional psychic and social parameters beyond 

affect states as much as a plethora of biological parameters could be researched. 

Various classification systems for the comprehensive assessment of somatic and 

psychic parameters have been published for most chronic diseases (e.g. the Best-/ 

Crohn’s-Disease-Activity-Index for Morbus Crohn) and readily offer themselves for 

such research. 

In addition, various unresolved statistical challenges should be scrutinized: The 

ordinal scale of the nine time series representing affect states should be addressed by 

either reviewing and possibly modifying the self assessment manikin (Lang 1980; 

Bradley and Lang, 1994) to change the scale of affect recordings, or econometric theory 

for the construction of VAR models should be researched to provide more theoretical 

and practical background to VAR model construction with ordinary scale variables. 

More importantly, it would be of interest to develop a Cholesky Impulse Response 

Analysis application to the Optimized Multivariate Lag Selection Process, as this would 

eliminate possible simultaneous dependencies and indirect links among the VAR 
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variables, which might presently distort results. Research on such shortcomings, as well 

as other statistical weaknesses should be left to econometrics or similar mathematical 

disciplines, despite the vested interest various medical scientists would have in the 

further tailoring of VAR methodology to medical applications.  

 

6.4. Conclusion 

Key findings from this case study and major avenues for future research have 

been summarized in this chapter. Much more research is needed not only as far as 

medical aspects are concerned, but also in the further development and tailoring of the 

statistical procedures applied in this thesis. Cooperation between academic disciplines 

and an open mind for novel approaches to old problems will be essential components 

for scientific progress. 
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7. Executive Summary/ (Zusammenfassung) 

Statistical approaches rooted in econometric methodology, so far foreign to 

psychosomatic medicine, have provided dynamic psycho-somatic models on brittle 

diabetes9 in yielding to Meissner’s (2006) and others’ call for a more integrated view on 

mind-body relationships with no a priori cause and effect assignments to interacting 

variables. The conception and portrayal of such models is the focus of this work, in 

addition to the clinical findings they provide on the case study otherwise primarily 

serving as an example for their application.  

Over 120 days, this structured diary time series case study explored the mutual 

interactions of individual affect states in a classic three person family with its type 1 

diabetic adolescent’s daily blood glucose variability and vice versa. Glycemic 

variability was measured through daily standard deviations of blood glucose recordings 

(at least three per day). For the same period of time, affect states were captured 

individually utilizing the self-assessment manikin (Lang, 1980; Bradley & Lang, 1994) 

on affective valence (positive – negative), arousal (high – low), and dominance (sense 

of being absent – sense of being present). Auto- and cross-correlating the stationary 

absolute (level) values of the mutually interacting parallel time series data sets through 

standard vector autoregression (VAR, Lütkepohl, 2005; Lütkepohl & Krätzig, 2004) 

and a newly conceived Optimized Multivariate Lag Order Selection Process (Winker, 

1995, 2000; Savin & Winker, 2013) allowed for the formulation of three predominantly 

consistent models.  

In the two standard VAR models Cholesky Impulse Response Analysis was 

applied at a 95 per cent confidence level, cumulatively evidencing for an adolescent 

being happy, calm, and experiencing high dominance to exhibit less glycemic 

variability and hence diabetic derailment. A non-dominating mother and a happy father 

also seemed to reduce glycemic variability. Random external shocks to the two VAR 

models increasing glycemic variability affected only the adolescent and her father: In 

one model, the male parent exhibited high dominance; in the other, he calmed down 

while his daughter turned sad. All effects lasted for less than four full days. In the third 

model based on the Optimized Multivariate Lag Selection Process, more specific 

temporal relations between affect states and the biological marker of glycemic 

                                                        
9 Brittle diabetes is a term adopted to describe difficult to control insulin dependent diabetes mellitus with 
frequent hypo- and hyperglycemic derailments (e.g. Gale & Tattersall, 1979; Kent, Gill & Williams, 
1994, Brosig et al., 2001). 
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variability were isolated at statistical significance: Low glycemic variability and 

therefore good diabetic control correlated with high glycemic variability four days 

earlier, an excited mother three days earlier, a calm mother seven days earlier, a non-

dominating mother four days earlier, a happy father both five and six days earlier, an 

excited father both three and seven days earlier, and a non-dominating father both two 

and five days earlier. Low glycemic variability also correlated with a happy child six 

days later, a calm mother three days later, and a non-dominating father one day later.  

Graphical representations were proposed for all three models – the intention 

being a demonstration of avenues for clinically oriented presentations of arguably rather 

abstract quantitative findings. Additionally, a multiply regressive approach to the data 

with interval-valued variables and a qualitative case vignette were presented, to 

complement these highly quantitative models.  
Extant literature on brittle diabetes in children and adolescents and the family 

dynamics complementing it was reviewed in light of all findings. The recurring 

correlation between maternal dominance and poor glycemic control was recognized. In 

addition, the prospects and contingencies arising from applying econometric theory to 

psychosomatic questions were discussed throughout this thesis. The value and 

limitations of qualitative and quantitative research on brittle diabetes in general, as well 

as pertaining to this study, received particular attention. 

 

Zusammenfassung 

 Der Psychosomatischen Medizin bisher fremde statistische Anwendungen der 

Ökonometrie konnten, unter Berücksichtigung der Forderung Meissners (2006) und 

anderen nach einer ganzheitlicheren Betrachtungsweise der Körper-Seele-Beziehung, 

ohne a priori Festlegung von Ursache-Wirkungs-Beziehungen zwischen interagierenden 

Variablen, dynamische psycho-somatische Modelle zum Brittle Diabetes10 liefern. Die 

Konzeption und Darstellung solcher Modelle am Fallbeispiel ist Fokus dieser Arbeit – 

zusätzlich zu den klinischen Ergebnisse der Fallstudie an sich.  

 Im Rahmen einer Einzelfall-Zeitreihenanalyse, basierend auf strukturierten 

Tagebuchaufzeichnungen über 120 Tage, wurden die wechselseitigen Interaktionen 

zwischen Affekten der Mitglieder einer klassischen dreiköpfigen Familie und der 

                                                        
10 Brittle Diabetes beschreibt den schwer einstellbaren, durch häufige hypo- und hyperglykäme Krisen 
gekennzeichneten, insulinabhängigen Diabetes mellitus (z.B. Gale & Tattersall, 1979; Kent, Gill & 
Williams, 1994, Brosig et al., 2001). 
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Blutzuckervariabilität des Typ-I diabetischen Jugendlichen exploriert. Die 

Blutzuckervariabilität wurde mittels der täglichen Standardabweichung der 

Blutzuckermessungen (mindestens drei pro Tag) verfolgt. Für den gleichen Zeitraum 

wurden die Affektzustände für jedes Familienmitglied mittels self-assessment manikin 

(Lang, 1980; Bradley & Lang, 1994) im Sinne von Valenz (positiv – negativ), Erregung 

(hoch – niedrig) und Dominanz (Gefühl der Abwesenheit – Gefühl der Präsenz) 

erhoben. Korrelationen und Autokorrelationen zwischen den stationären Werten der 

wechselseitig interagierenden parallel erhobenen Zeitreihen konnten mittels 

Vektorautoregression (VAR, Lütkepohl, 2005; Lütkepohl & Krätzig, 2004) und dem 

Optimized Multivariate Lag Order Selection Process (Winker, 1995, 2000; Savin & 

Winker, 2013) in Form von drei weitgehend übereinstimmenden Modellen dargestellt 

werden.  

 Durch die zwei Standard-VAR-Modelle konnte mittels Cholesky 

Impulsantwortfolgen mit einem 95 Prozent Konfidenzintervall insgesamt gezeigt 

werden, dass Gefühle von Glück, innerer Ruhe und hoher Dominanz bei der 

Jugendlichen mit weniger Blutzuckervariabilität und daher weniger diabetischen 

Entgleisungen verbunden waren. Eine nicht-dominante Mutter und ein glücklicher 

Vater schienen ebenfalls die Blutzuckervariabilität zu reduzieren. Zufällige extern 

verursachte Anhebungen der Blutzuckervariabilität zeigten in beiden VAR-Modellen 

nur auf die Jugendliche und ihren Vater Einfluss: In einem Modell zeigte der Vater 

erhöhte Dominanz, in dem anderen innere Ruhe und seine Tochter Traurigkeit. Alle 

Effekte konnten für weniger als vier Tage nachgewiesen werden. In dem dritten, auf den 

Optimized Multivariate Lag Selection Process basierenden Modell, konnten 

spezifischere zeitliche Relationen zwischen den Affektzuständen und dem biologischen 

Marker der Blutzuckervariabilität mit statistischer Signifikanz nachgewiesen werden: 

Niedrige Blutzuckervariabilität und daher eine gute diabetische Stoffwechselkontrolle 

korrelierte mit hoher Blutzuckervariabilität vier Tage vorher, einer erregten Mutter drei 

Tage vorher, einer ruhigen Mutter sieben Tage vorher, einer nicht-dominanten Mutter 

vier Tage zuvor, einem glücklichen Vater sowohl fünf als auch sechs Tage zuvor, einem 

erregten Vater drei und sieben Tage zuvor und einem nicht-dominanten Vater zwei und 

fünf Tage vorher. Niedrige Blutzuckervariabilität korrelierte auch mit einer glücklichen 

Jugendlichen sechs Tage später, einer ruhigen Mutter drei Tage danach und einem 

nicht-dominanten Vater am nächsten Tag.  
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 Für alle drei Modelle wurden graphische Darstellungen vorgeschlagen – mit 

dem Ziel Wege für eine klinisch orientierte Präsentation der eher abstrakten 

quantitativen Ergebnisse zu finden. Außerdem wurde eine statistische Bearbeitung 

mittels Multipler Regression mit Intervallvariablen, sowie eine qualitative Fallvignette 

vorgestellt, um die höchst quantitativen Modelle zu ergänzen.  

 Literatur zum Brittle Diabetes in Kindern und Jugendlichen und den damit 

einhergehenden Familiendynamiken wurden unter dem Gesichtspunkt der Ergebnisse 

besprochen. Die wiederkehrende Korrelation zwischen mütterlicher Dominanz und 

schlechter Blutzuckereinstellung wurde erwähnt. Weiterhin wurden die Chancen und 

Risiken der Anwendung ökonometrischer Theorie auf psychosomatische 

Fragestellungen innerhalb der gesamten Arbeit diskutiert. Dabei wurde besonderes 

Augenmerk auf den Wert und die Grenzen qualitativer und quantitativer Darstellungen 

beim Brittle Diabetes allgemein als auch in Bezug auf diese Studie gelegt. 
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8. Abbreviations  

AIC à Akaike Information Criterion 

BIC à Bayesian Information Criterion 

FFA à Free Fatty Acid 

FPE à Final Prediction Error 

HQ à Hannan-Quinn Information Criterion 

LR à Sequential Modified Likelihood Ratio Test Statistic 

OLS à Ordinary Least Squares 

R2 à Coefficient of Determination 

SAM à Self Assessment Manikin 

SC à Schwarz Information Criterion 

VAR à Vector Autoregression, Vector Autoregressive 

VEC à Vector Error Correction 

VECM à Vector Error Correction Model 
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11. Appendices 

Exhibit 1: An Excerpt from the Adolescent’s diary (blank) 

Tagebuch	(Self	assessment	manikin	SAM)	 	 	 Datum:___________	

	

Im	 Folgenden	 siehst	 Du	 drei	 Reihen	 von	 unterschiedlichen	Männchen.	 Schau	 sie	 Dir	 an	
und	 versuche	 täglich	 gegen	 20:00	 Uhr	 Abends	 die	 Spannbreite	 deiner	 heutigen	
Gefühlszustände	 den	 Männchen	 zuzuordnen.	 Du	 hast	 dabei	 die	 Möglichkeit,	 in	 jeder	
Reihe	eine	Linie	(mit	Anfangs-	und	Endpunkt)	zwischen	zwei	Figuren	einzuzeichnen.	Bitte	
nicht	vergessen	oben	rechts	das	Datum	des	heutigen	Tages	einzutragen.	
	

	
	
Falls	 irgendein	Ereignis	Deine	Stimmung	mit	beeinflusst	haben	sollte,	bitte	 ich	dies	auf	
der	Rückseite	einzutragen.	Herzlichen	Dank	für	Deine	Mitarbeit.	
	
	
Blutzucker	Morgens:	
	
Blutzucker	Mittags:	
	
Blutzucker	Abends:	
	
Weitere	Blutzucker-Messungen:		
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Exhibit 2: Descriptive Statistics on the Ten Time Series 

a) Statistics on Blood Sugar Measurements 

 # of meas. BZMW BZSD  

     

mean 4.26 216.99 55.36  

median 4.00 216.75 52.35  

max 9.00 315.00 147.79  

min 2.00 118.88 17.32  

standard deviation 0.70 34.41 23.74  

      

    

    

 N 119 119 119 

 

b) Means of Affect Variables 
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c) Standard Deviations of Affect Variables 
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Exhibit 3: A Fourth Model: Multiple Regression with an Interval Variable for 

Glycemic Variability 

The proposed multiple regression model involves the dependent interval-valued 

variable “blood sugar in the current day”, yBS, and the independent interval-valued 

variable “blood sugar in the previous day”, xBS, and, for each family member, the real-

valued affect variables “valence” (denoted by Valc – sadness of the child, Valm – 

sadness of the mother and Valf – sadness of the father respectively), “arousal” (Errc, 

Errm and Errf ) and “dominance” (Domc, Domm and Domf ). High values of the 

valence variable are interpreted as sadness and low values as feelings of pleasure in the 

family member. By contrast, high values for arousal and dominance are interpreted as 

such (excitement for arousal and a sense of presence for dominance). 

Given the nine real-valued independent variables Valence, Dominance and Arousal 

stored in the vector XR and the interval-valued variable representing the blood sugar 

yesterday xBS, the model can be expressed as follows: 

 

yBS = xBS
M bm1 + xBS

S bs1 + xBS
C bs2 + xBS

R bm2 + XRb1
* + ε 

 

where xBS
M = mid xBS [1 ±0], xBS

S = spr xBS [0 ± 1],  xBS
C = mid xBS [0 ± 1] and xBS

R = 

spr xBS [1 ± 0], working with the real-valued variables containing the mid-points of the 

blood sugar in the previous day (midxBS) and the radius (spr xBS); XR can contain any 

combination of real-valued variables (for instance XR = (Domc, Errc) or XR = (Valm, 

Domf, Errc), or any other combination). ε = (ε 1,...., ε n)t  is such that E(ε | xBS
M, xBS

S, 

xBS
C, xBS

R , XR) = 1nΔ. The notation of the variables comes from M=mid, S=spread, 

C=center, R=radius, and bmi (for all i in {1, 2}) is used to represent the coefficients 

related to the mids, bsi those ones related to the spreads (and is used to remark that b1 is 

not a real number, as bmi and bsi, but a vector of intervals whose size depends on the 

dimension of XR). 

 

A backwards stepwise regression is implemented, when in each step one 

emotional variable is removed from the model. The estimation process is solved by 

least-squares, where the problem becomes a constrained quadratic problem to assure the 

existence of the residuals in accordance with the interval arithmetic (Blanco-Fernández, 

Corral, & Gonzalez-Rodriguez, 2011). The objective function in the problem is split in 

two parts, one related to the mids and another to the spreads. This simplifies its 
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resolution, as those coefficients related to the mids are not affected by constraints and 

are obtained straightforward by ordinary least squares (OLS) and only the estimation of 

the coefficients related to the spreads is addressed with the constrained problem. For 

further details see Blanco-Fernández, García Bárzana, Colubi, & Kontoghiorghes 

(2014). For reasons of comprehensiveness, among the different models obtained with 

the backwards stepwise regression, only that one providing the best results (in terms of 

adjusted determination coefficients) is considered. The results are summarized in Table 

1. 

 

Exhibit 3, Table 1: 

 

 
Legend: Chosen model providing the best adj. R2. The first column contains the 

variables, the second column the estimated residuals and columns 3, 4 and 5 the 

estimated regression coefficients. The adjusted R2 is 0.1224. 

 

A preliminary study of the variables is to be conducted. Some normality tests 

based on the Shapiro-Wilks test are carried out, the null hypothesis H0 being: the 

variable is normal. The p-values are summarized in the following table: 

 

Exhibit 3, Table 2: 

Variables midXBS sprXBS Domc Domm Domf Errc 

p-values 0.240 0.006165 2.2e-16 9.451e-11 7.881e-06 2.2e-16 

Variables Errm Errf Valc Valm Valf  

p-values 7.182e-07 2.213e-07 2.177e-08 1.105e-07 4.579e-06  

 

Considering a 0.05 significance level, only midxBS is normal, so the classical 

methodology to make inferences is not applicable. This is the reason why bootstrap 

techniques need to be applied (Efron, 1993). 
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As the considered case-based study is applied to a time series dataset, it is 

important to justify the validity of applying a regression model instead of an 

autoregressive model. Therefore, some Durbin Watson (DW) correlation tests are 

developed, where the null hypothesis is H0: the residuals from the linear regression are 

uncorrelated against H1: the errors follow a stationary first order autoregression. The 

DW tests are performed separately for the mids and the spreads. The results for the 

model highlighted in Table 1 are summarized in Table 3. 

 

Exhibit 3, Table 3: 

Model p-value mid p-value spr p-value 

Model 0.9792 0.2580 0.9921 

 

Legend: “p-value mid” denotes the p-values obtained when the variables involved to 

compute the residuals are those ones related to the mids, i.e., XBS
M and XBS

R. Analogous 

to this, “p-value spr”, being in this case involved XBS
S and XBS

C. Finally, in the last 

column is the “p-value” of the residuals computed using the dT distance as (1 – r) (midY 

– midŶ) + r(spry – sprŶ) 

 

In order to justify the significance of the variables, a bootstrap test is carried out to 

test the null hypothesis, H0: The coefficient is equal to zero. 

 

The results indicate the mother's affective variables (arousal, dominance and 

valence), followed by the child's blood sugar variable in the previous day (XBS) to be 

the major predictors of its blood sugar variable the current day (YBS, with adj. R2 

12.31%). %). Working with the standardized coefficients of the proposed model, 

maternal dominance the day before is evidenced to have a negative effect on the 

adolescent’s glycemic variability (i.e. high maternal dominance results in high glycemic 

variability). By contrast, positive maternal valence, followed by high arousal in terms of 

effect size, both have positive impacts on diabetic control (low glycemic variability). 

Low glycemic variability one day before correlates with low glycemic variability the 

next day. As was to be expected with multiply regressive methodologies, these results 

lack the scope and clarity of the results delivered in the other three models presented in 

this thesis, but partially support their findings.  
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