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Abstract

We provide a classification of affine twin buildings of type C̃2 having at least
one exceptional residue with one exception in the case E7 in characteristic
two. Relying on the main results of [TW], [W09] and [MPW] we settle the
uniqueness. The existence part is settled by refining and adapting the theory
of descent in buildings developed in [MPW] to our specific situation.

Kurzfassung

Wir klassifizieren diejenigen affinen Zwillingsgebäude vom Typ C̃2, die min-
destens ein Residuum vom Ausnahmetyp enthalten. Ein noch offenes Prob-
lem bildet der Spezialfall E7 in Charakteristik zwei. Die Eindeutigkeit
basiert auf den Hauptresultaten in [TW], [W09] und [MPW]. Der Exis-
tenzbeweis beruht auf einer Weiterentwicklung der Theorie über descent in
buildings in [MPW].
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Introduction

Buildings have been introduced by J. Tits in order to provide a unified ge-
ometric framework for understanding semisimple complex Lie groups and,
later, semisimple algebraic groups over an arbitrary field. The definition
evolved gradually during the 1950s and 1960s and reached a mature form in
about 1965. At that time, Tits thought of a building as a simplicial complex
with a family of subcomplexes called apartments, subject to a few axioms.
Each apartment is made up of chambers, which are the top-dimensional
simplices. In the more ’modern’ approach, introduced by Tits in [Ti81], one
forgets about all simplices except the chambers. The definition is recast
entirely in terms of objects called chamber systems.
One of the most important results in the theory of buildings is the classi-
fication of irreducible spherical buildings of rank at least 3 in [Ti74]. At
the heart of the classification is the famous Theorem 4.1.2 of [Ti74] which
states that every ’local isomorphism’ from one thick irreducible spherical
building to another extends to an isomorphism of the buildings in question.
Meanwhile, there is a simplified proof in [TW] which makes use of the clas-
sification of Moufang polygons. Irreducible spherical buildings of rank 2
are called generalized polygons. Generalized polygons themselves are too
numerous to classify, but it was observed that (as a consequence of 4.16
of [Ti74]) every thick irreducible spherical building of rank at least 3 as well
as every irreducible residue of such a building satisfies the Moufang condi-
tion. As a consequence, every thick irreducible spherical building of higher
rank is an amalgamation, in a certain sense, of Moufang polygons. Accord-
ing to [TW], Moufang n-gons exist only for n = 3, 4, 6 or 8 and there are
six families of Moufang quadrangles. The family of Moufang quadrangles of
type E6, E7 or E8 together with the family of Moufang quadrangles of type
F4 constitutes the exceptional Moufang quadrangles.

About 30 years ago, M. Ronan and J. Tits defined a new class of buildings
which generalize spherical buildings in a natural way, namely the class of
twin buildings. The motivation of their definition is provided by the theory
of Kac-Moody groups: Twin buildings are naturally associated to ’groups of
Kac-Moody type’ in the same way that spherical buildings are associated to
algebraic groups. The main idea of a twin building is that a twin building
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consists of a pair (∆+, ∆−) of two buildings of the same type together with
a symmetric relation between the chambers of the two different buildings
which has properties similar to the opposition relation on the chambers of a
spherical building. In this way, the twin building behaves in many respects
like a spherical building, whereas the individual buildings ∆+ and ∆− are
generally not spherical.

In view of the classification of spherical buildings it is natural to ask whether
it is possible to classify higher rank twin buildings. A large part of [Ti92]
deals with this question. As a first observation, it turns out that such a
classification seems only to be feasible under the additional assumption that
the entries in the corresponding Coxeter matrices are all finite. The classi-
fication program described in [Ti92] is based on the conjecture that there
is a bijective correspondence between twin buildings of a given type Π and
certain Moufang foundations of type Π for each 2-spherical Coxeter diagram
Π.
In [Ti92], J. Tits conjectures that one can classify all 2-spherical twin build-
ings if one has a classification of all rank 3 twin buildings. This conjecture
is true under the assumption that all rank 3 residues are spherical, due to
unpublished results in [BM]. This is of course a severe restriction. In his
Habilitationsschrift [MHab], B. Mühlherr reduces the proof of the general
conjecture to the verification that each 2-spherical twin building of rank 3
can be constructed via Galois descent. Most of the rank 3 twin buildings
can be handled with the methods established in [MHab] and [M99]. How-
ever, there are some exceptions which need to be considered separately. The
verification for twin buildings of type Ã2 and those of triangle type 443 are
a consequence of [WDis]. The only serious case left is the case of affine twin
buildings of type C̃2. It turns out that, if all panels of the twin building
contain at least four chambers, the halves of such a twin building are so-
called Bruhat-Tits buildings, i.e. these are affine buildings whose building at
infinity is Moufang. There are unpublished partial results about the classifi-
cation of twin buildings of type C̃2 by B. Mühlherr and H. Van Maldeghem
in [MvM20]. They treat the case in which each residue is a classical (i.e.
non-exceptional) Moufang quadrangle. The goal of this thesis is a classifi-
cation of all affine twin buildings of type C̃2 having at least one exceptional
Moufang quadrangle as a residue. Except for one specific case in character-
istic 2 having a residue of type E7, we provide a complete solution of this
problem.

A generalization of Tits’ extension theorem by B. Mühlherr and M. Ronan
in [MR] states that almost all twin buildings, just as spherical buildings,
are uniquely determined by their ’local structure’ or, more precisely, by the
rank 2 neighbourhood of one of its chambers which can be thought of an
amalgamation of Moufang polygons. As a first step along the classification
of the exceptional C̃2- twin buildings we determine those amalgamations of
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two Moufang quadrangles which are candidates for being the local structure
of a twin building. For this, we extensively make use of the classification of
Moufang polygons in [TW] and the classification of Bruhat-Tits buildings of
type C̃2 in [W09] and [MPW, part 2]. Another ingredient which is needed
is a property of possible residues called (Ind). This property is satisfied in
almost all of our cases. Once we have carved out all possible candidates, we
finally have to prove that these can, in fact, be realized as the local structure
of a twin building. We will show the existence of such twin buildings by
giving an explicit construction of those as fixed point structures of certain
automorphism groups in higher rank twin buildings. This relies on the
work of B. Mühlherr, H. Petersson and R. Weiss in [MPW]. Their main
result about the descent in buildings states that (under minimal and clearly
necessary conditions) the set of residues of a building ∆ stabilized by an
arbitrary subgroup of Aut(∆) form a thick building. In [MW], B. Mühlherr
and R. Weiss apply the theory of descent in buildings to give elementary
constructions of the exceptional Moufang quadrangles as the fixed point
building of a Galois involution of a higher rank building. We will use their
descriptions and extend them in a suitable way.

In part II of this thesis we provide the combinatorial properties of the in-
cidence geometries associated with the spherical buildings in question and
give elementary constructions of certain local automorphisms (which will
later on appear as restrictions of the automorphisms used by B. Mühlherr
and R. Weiss in [MW]).
Part III is dedicated to the generalization of the theory of descent in build-
ings to a theory of descent in twin buildings. In order to combine descent
theory and the extension theorem we have to adjust the notion of a founda-
tion of a building. This requires some careful analysis of the extension the-
orem and descent theory. We examine the interplay between the Γ-residues
of the different halves of the twin building and derive a slight variation of
the famous extension theorem of B. Mühlherr and M. Ronan which provides
a pair of opposite Γ-chambers. This is necessary since, even though the
theory of descent in buildings ensures that the fixed point structure of each
half of the twin building is itself a building, we need a codistance function
between the chambers of these two fixed point buildings in order to form
a twin building. As is shown, the existence of a suitable pair of opposite
Γ-chambers provides the existence of such a codistance function.
Part IV deals with the determination of possible candidates for being the
local structure of C̃2-twin buildings having an exceptional residue. Using the
results of part II and part III we give an explicit construction of all C̃2-twin
buildings as fixed point structures in higher rank twin buildings whose local
structure coincides with the candidates of part IV.

In this way we obtain an almost complete classification of all exceptional
twin buildings of type C̃2 except in the one specific case mentioned above.





Part I

Preliminaries

5





Chapter 1

Parameter systems

In this chapter we fix notation which will be used throughout and recall
definitions and results from the literature which play an essential role in
what follows.

Vector spaces

1.1 Definition
A skew field is a triple (K, +, ·) such that the following hold:

(SF1) The pair (K, +) is a commutative group.

(SF2) The pair (K, ·) is a group.

(SF3) For all r, s, t ∈ K we have

r · (s+ t) = r · s+ r · t and (r + s) · t = r · t+ r · s.

A commutative skew field is called field.

1.2 Definition
Let K,K′ be skew fields. An (anti-)isomorphism is an additive bijective
transformation σ : K→ K′ such that for all s, t ∈ K:

σ(st) = σ(s)σ(t) (respectively σ(st) = σ(t)σ(s)).

1.3 Definition
A right vector space is a pair (V ,K) consisting of a commutative group
(V , +) and a skew field K together with a scalar multiplication · : V ×K→ V
satisfying

∀ v ∈ V : v · 1K = v, ∀ v ∈ V , s, t,∈ K : (v · s) · t = v · (st)

7



8 Chapter 1. Parameter systems

and

∀ v,w ∈ V , s, t ∈ K : (v + w) · s = v · s+ w · s, v · (s+ t) = v · s+ v · t.

If (V ,K) is a vector space, we also say that V is a K-vector space or that V
is a vector space over K. If K is a field we consider vector spaces over K as
left vector spaces.

1.4 Definition
Two vector spaces (V ,K) and (V ′,K′) are isomorphic if there is a pair (ϕ,φ)
of isomorphisms φ : K → K′ and ϕ : V → V ′ of skew fields and groups,
respectively, satisfying

∀ s ∈ K, v ∈ V : ϕ(v · s) = ϕ(v) · φ(s).

If (ϕ,φ) : (V ,K)→ (V ′,K′) is an isomorphism of vector spaces, we also say
that ϕ is a φ-semi-linear isomorphism.

Sesquilinear forms

Let K be a skew field and let V be a vector space over K.

1.5 Definition
Let σ : K → K be an anti-automorphism. A σ-sesquilinear form is a bi-
additive transformation f : V × V → K such that

∀ v,w ∈ V , s, t ∈ K : f(v · s,w · t) = σ(s) f(v,w) t.

A σ-sesquilinear form f : V × V → K is called non-degenerate, if for any
0V 6= v ∈ V there exists a vector 0V 6= w ∈ V such that f(v,w) 6= 0K and
vice versa.

1.6 Proposition
Let σ : K → K be an anti-automorphism and let f : V × V → K be a non-
degenerate σ-sesquilinear form. The following two conditions are equivalent:

(i) f is reflexive, i.e. for all v,w ∈ V , the relation

f(v,w) = 0K ⇔ f(w, v) = 0K

holds.

(ii) f is (σ, ε)-hermitian, i.e. there exists ε ∈ K such that

f(w, v) = σ(f(v,w))ε

for all v,w ∈ V . Note that ε 6= 0K since f is presumed to be non-
degenerate.
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Proof This is [Ue, 4.5.8]. �

1.7 Definition
Let idK 6= σ : K → K be an anti-automorphism such that σ2 = idK. A
(σ,−1K)-hermitian form f is also called skew-hermitian (with respect to σ).

1.8 Lemma
Let f : V ×V → K be a (σ, ε)-hermitian sesquilinear form and suppose that
σ2 = idK and ε2 = 1K. Then the following hold:

(a) σ(ε) = ε and

(b) ε ∈ Z(K).

Proof By [Ue, 4.5.10(a)] we have ε = ε−1 = σ(ε). Due to [Ue, 4.5.10(c)]
we have λ = σ2(λ) = ελε for any λ ∈ K. �

Quadratic spaces

1.9 Definition
A quadratic space is a triple Λ := (K,V ,Q) such that

(i) K is a commutative field,

(ii) V is a vector space over K and

(iii) Q : V → K is a quadratic form, i.e. the map fQ : V × V → K defined
by

fQ(v,w) := Q(v + w)−Q(v)−Q(w)

is bilinear and for all v ∈ V ,λ ∈ K we have Q(λv) = λ2Q(v).

Clearly, if U ≤K V is a subspace of the K-vector space V , the triple
(K,U ,Q|U ) is a quadratic space and we will call it a quadratic subspace
of Λ.

1.10 Definition
Let Λ = (K,V ,Q) and Λ′ = (K,V ′,Q′) be quadratic spaces over the same
field K. The orthogonal sum Λ ⊕ Λ′ of Λ and Λ′ is the quadratic space
(K,V ⊕ V ′,Q⊕Q′), where the quadratic form Q⊕Q′ is given by

Q⊕Q′(v, v′) = Q(v) +Q′(v′)

for all v ∈ V and all v′ ∈ V ′. Note that fQ⊕Q′((v, 0V ′), (0V , v′)) = 0K for all
v ∈ V and all v′ ∈ V ′.
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1.11 Definition
Let Λ = (K,V ,Q) be a quadratic space and let E be an extension field of K.
We form the tensor product VE = V ⊗ E and endow VE with the structure
of an E-vector space in the usual way, i.e. s · (v⊗ t) = (v⊗ st) for all v ∈ V
and all s, t ∈ E.
As is shown, for example, in [J69, 1.7-1.8], there exists a unique quadratic
form QE on VE over E such that

QE(v ⊗ s) = Q(v)s2 and fQE(u⊗ s, v ⊗ t) = fQ(u, v)st

for all u, v ∈ V and s, t ∈ K. We will call the quadratic space ΛE = (E,VE,QE)
the scalar extension of Λ from K to E.

1.12 Definition
Let Λ := (K,V ,Q) be a quadratic space. We set

Def(Λ) := {v ∈ V | fQ(v,w) = 0K ∀ w ∈ V }

and

Rad(Λ) := {v ∈ Def(Λ) | Q(v) = 0K}.

The quadratic space Λ is

� non-degenerate if Def(Λ) = {0V } and it is

� regular if Rad(Λ) = {0V }.

1.13 Remark
Let Λ = (K,V ,Q) be a quadratic space and let U ≤K V be a subspace of V .
We define the orthogonal complement of U by

U⊥ := {v ∈ V | fQ(u, v) = 0K ∀ u ∈ U}.

This is a subspace of V and we set (K,U ,Q|U )⊥ := (K,U⊥,Q|U⊥).
If dimK(V ) <∞ and (K,U ,Q|U ) is non-degenerate, [EKM, 1.6] yields that
Λ = (K,U ,Q|U )⊕ (K,U ,Q|U )⊥.

1.14 Definition
Let Λ := (K,V ,Q) be a quadratic space.

� A vector 0V 6= v ∈ V is called isotropic if Q(v) = 0K.

� A subspace U ≤K V is called anisotropic if Q(v) 6= 0K for all 0V 6= v ∈ U .
It is called isotropic otherwise. If Q|U ≡ 0 the subspace U ≤K V is called
totally isotropic.

� The quadratic space Λ is called (an)isotropic if V is (an)isotropic.
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� The quadratic space Λ is called proper, if it is anisotropic and if the
associated bilinear form fQ is not identically zero.

� The Witt index of Λ is the maximal dimension of a totally isotropic
subspace.

1.15 Definition
Let Λ := (K,V ,Q) be a quadratic space and let 0K 6= t ∈ K. The triple
Λt := (K,V , tQ), where tQ : V → K is given by (tQ)(v) := tQ(v), is a
quadratic space, called the t-translate of Λ.

1.16 Definition
Let Λ = (K,V ,Q) and Λ′ = (K′,V ′,Q′) be two quadratic spaces.

� An isometry from Λ to Λ′ is an isomorphism of vector spaces

(φ,ϕ) : (K,V )→ (K′,V ′) such that Q′ ◦ ϕ = φ ◦Q.

� A similarity from Λ to Λ′ is an isometry from Λ onto Λ′t for some
0K′ 6= t ∈ K′.

1.17 Definition
Let Λ = (K,V ,Q) be a quadratic space. A hyperbolic pair of Λ is a pair of
elements v,w ∈ V such that Q(v) = Q(w) = 0K and fQ(v,w) = 1K.
For each hyperbolic pair (v,w) of Λ we denote by H(v,w) the corresponding
quadratic (sub)space (K, 〈v,w〉,Q|〈v,w〉).

If (v,w) is a hyperbolic pair of a quadratic space Λ then, in view of 1.13,
Λ = H(v,w)⊕H(v,w)⊥.

1.18 Lemma
Let Λ = (K,V ,Q) be a regular quadratic space of Witt index k ≥ 1. Then
there exists a hyperbolic pair (v,w) of Λ.

Proof This follows from [EKM, 7.13] �

1.19 Definition
Let Λ = (K,V ,Q) be a quadratic space. A norm splitting of Λ is a triple
(E, ·, {v1, . . . , vd}) such that

(i) E/K is a separable quadratic extension,

(ii) · is a scalar multiplication from E× V to V extending the scalar mul-
tiplication from K× V to V and
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(iii) {v1, . . . , vd} is a basis of V over E (with respect to ·) and

Q

(
d∑
i=1

ti · vi

)
=

d∑
i=1

siN(ti)

for all t1, . . . , td ∈ E, where si = Q(vi) for all 1 ≤ i ≤ d and N is the
norm of the extension E/K.

The elements s1, . . . , sd ∈ K are called the constants of the norm splitting.

Note that the definition of a norm splitting requires the vector space to be
finite-dimensional. This will be sufficient for our purposes.

Hyperbolic quadratic spaces

1.20 Definition
A quadratic space Λ is called hyperbolic if there exist finitely many hyper-
bolic pairs (v1,w1), . . . , (vn,wn) of Λ such that

Λ = H(v1,w1)⊕ · · · ⊕H(vn,wn).

Note that, by definition, a hyperbolic quadratic space is finite dimensional
and non-degenerate (and thus regular).

1.21 Remark
Let Λ = (K,V ,Q) be a hyperbolic quadratic space. Let (v1,w1), . . . , (vn,wn)
be hyperbolic pairs of Λ such that Λ =

⊕n
i=1 H(vi,wi). Then dimK(V ) = 2n

and for any x =
∑n

i=1 λivi + µiwi ∈ V we have Q(x) =
∑n

i=1 λiµi.

1.22 Lemma
Let N be the norm of a quadratic extension E/K and let Λ = (K,E,N)
be the associated quadratic space. The scalar extension ΛE is a hyperbolic
quadratic space.

Proof Let a ∈ E\K. By [MPW, 2.12], the element 1 ⊗ a − a ⊗ 1 ∈ E ⊗ E
is isotropic. The assertion now follows from 1.18. �

1.23 Definition
A quadratic space Λ = (K,V ,Q) is called pseudo-split if it can be written as
Λ = Λ′⊕Λ′′, where Λ′ is a hyperbolic quadratic space and Λ′′ an anisotropic
quadratic space whose associated bilinear form is identically zero.
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Quadratic spaces of type E6,E7 and E8

1.24 Definition
Let Λ = (K,V ,Q) be a quadratic space. Then

(i) Λ is of type E6 if Q is anisotropic, dimK(V ) = 6 and Λ has a norm
splitting.

(ii) Λ is a quadratic space of type E7 if Q is anisotropic, dimK(V ) = 8 and
Λ has a norm splitting (E, ·, {v1, . . . , v4}) with constants s1, . . . , s4 such
that s1 · · · s4 /∈ N(E).

(iii) Λ is a quadratic space of type E8 if Q is anisotropic, dimK(V ) = 12
and Λ has a norm splitting (E, ·, {v1, . . . , v6}) with constants s1, . . . , s6

such that −s1 · · · s6 ∈ N(E).

1.25 Remark
Let Λ = (K,V ,Q) be a quadratic space of type Ek for some k ∈ {6, 7, 8}
and let (E, ·, {v1, . . . , vd}) be a norm splitting of Λ. Since Λ is anisotropic,
si 6= 0K for all 1 ≤ i ≤ d and hence Def(Λ) = {0V }.

1.26 Lemma
Let Λ = (K,V ,Q) be a quadratic space of type E6, E7 or E8. For any norm
splitting (E, ·, {v1, . . . , vd}) of Λ the quadratic space ΛE is pseudo-split.

Proof By [TW, 12.10] the quadratic space Λ is isomorphic to the quadratic
space (K,Ed, s1N ⊕ · · · ⊕ sdN). The assertion follows from lemma 1.22. �

1.27 Definition
Let Λ = (K,V ,Q) be a quadratic space of type Ek for k ∈ {6, 7, 8}, choose
0V 6= ε ∈ V and replaceQ byQ(ε)−1Q (soQ(ε) = 1K). Let (E, ·, {v1, . . . , vd})
be a norm splitting as in 1.24 and let X0 be as in [TW, 13.9] (thus, X0 is a
vector space of dimension 2k−3 over K). Let g : X0 ×X0 → K be defined as
in [TW, 13.26] and set S := X0 ×K. For (a, s), (b, t) ∈ S we define

(a, s) · (b, t) := (a+ b, s+ t+ g(a, b)).

The pair (S, ·) is a (non-abelian) group.

Quadratic spaces of type F4

1.28 Definition
A quadratic space Λ = (K,V ,Q) is of type F4 if char(K) = 2 and the
following hold:

(i) Λ is anisotropic,
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(ii) Q(Def(Λ))/Q(ρ) is a subfield of K for some 0V 6= ρ ∈ Def(Λ) and

(iii) for some complement S0 of Def(Λ) in V , the corresponding quadratic
subspace (K,S0,Q|S0) has a norm splitting (E, ·, {v1, v2}) with con-
stants s1, s2 ∈ K such that s1s2 ∈ Q(Def(Λ))/Q(ρ).

1.29 Lemma
Let Λ = (K,V ,Q) be a quadratic space of type F4, let 0V 6= ρ ∈ Def(Λ) and
let F be the subfield of K as in 1.28(ii).

(a) The field F is independent of the choice of the element 0V 6= ρ ∈ Def(Λ).

(b) K2 ⊆ F ⊆ K

Proof This follows from [TW, 14.2 and 14.4]. �

1.30 Lemma
Let Λ = (K,V ,Q) be a quadratic space of type F4, let S0 be a complement
of Def(Λ) in V and let (E, ·, {v1, v2}) be a norm splitting of the quadratic
subspace (K,S0,Q|S0). Then the quadratic space ΛE is pseudo-split.

Proof By [TW, 12.10] the quadratic space (K,S0,Q|S0) is isomorphic to the
quadratic space (K,E2, s1N ⊕ s2N). It follows from 1.22 that (K,S0,Q|S0)E
is a hyperbolic quadratic space. Since the bilinear form associated to Def(Λ)
is identically zero, proposition [MPW, 2.29] gives that the scalar extension
(K, Def(Λ),Q|Def(Λ))E is anisotropic. We conclude that ΛE is pseudo-split,
since for all u⊗ s, v ⊗ t ∈ Def(Λ)⊗ E we have

fQE(u⊗ s, v ⊗ t) = fQ(u, v)st = 0E.

�

1.31 Definition
Let Λ = (K,V ,Q) be a quadratic space of type F4, let S0 be a complement
of Def(Λ) in V and let (E, ·, {v1, v2}) be a norm splitting of (K,S0,Q|S0)
with constants s1, s2 ∈ K. Let F be the subfield of K as in 1.28(ii). Let D
denote the composite field EF and set X := D ⊕ D. We define a quadratic
form Q̂ on the F-vector space V̂ := X ⊕K via

Q̂(x, y, t) := s1s2N(x) + s−1
1 s2N(y) + t2

for all (x, y, t) ∈ V̂ , where N denotes the norm of the extension D/F.
The quadratic space Λ̂ = (F, V̂ , Q̂) is called a dual of Λ.
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1.32 Remark
Let Λ be a quadratic space of type F4, let S0 be a complement of Def(Λ) in
V and let (E, ·, {v1, v2}) be a norm splitting of (K,S0,Q|S0) with constants
s1, s2 ∈ K. Let Λ̂ be the quadratic space constructed in 1.31 with respect to
these data.

(a) By [TW, 14.13], Λ̂ is a quadratic space of type F4.

(b) Even though Λ̂ appears to depend not only on the quadratic space Λ
but also on the choice of some 0V 6= ρ ∈ Def(Λ), some complement S0

of Def(Λ) in V and a norm splitting (E, ·, {v1, v2}) of (K,S0,Q|S0), it
follows from [TW, 28.44] that, up to similarity, this quadratic space
is, in fact, independent of these choices.
Thus, we will refer to Λ̂ as the dual of Λ in the following, without
emphasizing the chosen element 0V 6= ρ ∈ Def(Q), the complement S0

of Def(Q) in V or the norm splitting (E, ·, {v1, v2}).

(c) Applying the recipe for the dual to Λ̂, we find that the dual of Λ̂ is
similar to the original quadratic space Λ.

(d) According to [TW, 14.25] there exist quadratic spaces of type F4 which
are isomorphic to its dual space. We call such spaces self-dual.

Semi-linear similitudes

1.33 Definition
Let Λ = (K,V ,Q) be a quadratic space with dimK(V ) > 0. An additive
bijection τ : V → V is a semi-linear similitude of Λ if there exist an auto-
morphism σ ∈ Aut(K) and µ ∈ K such that τ is σ-semi-linear and

Q(τ(v)) = µ σ(Q(v))

holds for all v ∈ V .
We also say that τ is a σ-semi-linear µ-similitude.
We denote the set of all semi-linear similitudes of Λ by ΓO(Λ).

The following lemma will be needed in section 8.2.

1.34 Lemma
Let Λ = (K,V ,Q) be a regular quadratic space of Witt index n ≥ 1 and let
τ ∈ ΓO(Λ) be a σ-semi-linear µ-similitude such that τ2 = c · idV for some
0 6= c ∈ K. Then the following hold:

(a) σ2 = idK,

(b) c2 = µ σ(µ),
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(c) c ∈ Fix(σ).

Proof

(a) Choose any 0 6= v ∈ V . For any λ ∈ K we have

cλ · v = τ2(λ · v) = σ2(λ) · τ2(v) = σ2(λ)c · v,

which implies that σ2(λ) = λ.

(b) Let (v,w) be a hyperbolic pair of Λ (which exists by 1.18). Then

c2 = fQ(cv, cw) = fQ(τ2(v), τ2(w))

= Q(τ2(v + w))−Q(τ2(v))−Q(τ2(w))

= µ σ(Q(τ(v + w))) = µ σ(µ ·Q(v + w))

= µ σ(µ) σ(Q(v + w))

= µ σ(µ) σ(fQ(v,w) +Q(v) +Q(w)) = µ σ(µ).

(c) Let 0 6= v ∈ V be any vector and calculate

c · τ(v) = τ2(τ(v)) = τ(τ2(v)) = τ(c · v) = σ(c) · τ(v).

�

Pseudo-quadratic spaces

1.35 Definition
A (right) pseudo-quadratic space is a quintuple Ξ = (K,K0,σ,V ,Q), where

(i) K is a skew-field, σ is an involutory anti-automorphism of K and K0

is an additive subgroup of K such that

1K ∈ K0, {a+ σ(a) | a ∈ K} ⊆ K0 ⊆ Fix(σ), ∀a ∈ K : σ(a)K0a ⊆ K0,

(ii) V is a right vector space over K and

(iii) Q is a pseudo-quadratic form on V with respect to σ, i.e. there is a
skew-hermitian form f on V such that the following hold:

(PS1) ∀a, b ∈ V : Q(a+ b) ≡ Q(a) +Q(b) + f(a, b) mod K0,

(PS2) ∀a ∈ V , t ∈ K : Q(at) ≡ σ(t)Q(a)t mod K0.

If, in addition
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(PS3) Q(a) ≡ 0K mod K0 only for a = 0V ,

then Ξ is called anisotropic with respect to K0.

1.36 Definition
A pseudo-quadratic space Ξ = (K,K0,σ,V ,Q) is called proper if σ 6= idK,
V 6= {0V } and if the associated skew-hermitian form f is non-degenerate.

1.37 Definition
Let Ξ = (K,K0,σ,V ,Q) be a pseudo-quadratic space. We set

T := T (Ξ) := {(a, t) ∈ V ×K | Q(a)− t ∈ K0}

and for (a, t), (b, s) ∈ T we define

(a, t) · (b, s) := (a+ b, t+ s+ f(b, a)).

The pair (T , ·) is a group with (a, t)−1 = (−a,−σ(t)) for each (a, t) ∈ T and
Z(T ) = {(0V , t) | t ∈ K0} ' K0.

1.38 Definition
Let Ξ = (K,K0,σ,V ,Q) be a pseudo-quadratic space, let 0K 6= γ ∈ K0, set

K̂0 := γK0 and define σ̂ : K → K by σ̂(t) := γσ(t)γ−1. Let Q̂ : V → K be
defined by Q̂(a) = γQ(a) for all a ∈ V . Then Ξ̂ := (K, K̂0, σ̂,V , Q̂) is a
pseudo-quadratic space, called the translate of Ξ with respect to γ.

1.39 Definition
Let Ξ = (K,K0,σ,V ,Q) and Ξ′ = (K′,K′0,σ′,V ′,Q′) be pseudo-quadratic
spaces.

• An isomorphism from Ξ onto Ξ′ is an isomorphism of right vector
spaces (ϕ,φ) : (V ,K)→ (V ′,K′) such that

φ(K0) = K′0, φ ◦ σ = σ′ ◦ φ, φ ◦Q ≡ Q′ ◦ ϕ mod K′0.

• A similarity from Ξ onto Ξ′ is an isomorphism from Ξ onto Ξ′γ for
some 0K′ 6= γ ∈ K′0.
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Buildings

Coxeter systems

Let I be a non-empty set with |I| <∞.

2.1 Definition
A Coxeter matrix is a symmetric array [mij ] with index set I and entries in
N ∪ {∞} such that mij ≥ 2 if i and j in I are distinct and mij = 1 if they
are not.
The Coxeter diagram of a Coxeter matrix [mij ] is the graph with vertex set
I and edge set consisting of all unordered pairs {i, j} such that mij ≥ 3
together with the labeling which assigns the label mij to the edge {i, j}.
The label mij = 3 is usually suppressed and the label mij = 4 is often rep-
resented by a double edge connecting i and j.
A Coxeter diagram Π is called irreducible if its underlying graph is con-
nected.

2.2 Definition
Let [mij ] be a Coxeter matrix with index set I and let Π denote the corre-
sponding Coxeter diagram. The Coxeter group of type Π is the group

W := 〈S := {si | i ∈ I} | {(sisj)mij = 1 | i, j ∈ I,mij <∞}〉.

The pair (W ,S) will be called the Coxeter system of type Π. The diagram
Π is called spherical if |W | <∞.

2.3 Notation
The following Coxeter diagrams will arise several times throughout this the-
sis. We fix the following labeling of the vertices which follows [B]:

18
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An

1 2 3 n− 1 n

Cn

1 2 3 n− 2 n− 1 n

C̃n

0 1 2 n− 2 n− 1 n

Dn

1 2 3 n− 3 n− 2

n− 1

n

E6

3 4

2

5 61

Ẽ6

3 4

2

5 61

0

E7

4 5

2

6 731

Ẽ7

4 5

2

6 7310

E8

5 6

2

7 8431

Ẽ8

5 6

2

7 8431 0

F4

1 2 3 4

F̃4

1 2 3 40
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2.4 Definition
Let (W ,S) be a Coxeter system. For w ∈W we define

`S(w) := min{k ∈ N | ∃t1, . . . , tk ∈ S : w = t1 · · · tk}

and call `S : W → N the length function on W with respect to S.

2.5 Definition
Let Π be a Coxeter diagram and let (W ,S) be the corresponding Coxeter
system.

(a) For any subset J ⊆ S, we denote by WJ the subgroup 〈J〉 generated
by J .

(b) We let ΠJ denote the subdiagram of Π whose vertex set is J and where
to vertices i, j ∈ J are joined by an mij-labeled edge if they are joined
by an mij-labeled edge in Π.

(c) A subset J ⊆ S is called spherical, if the subgroup WJ is finite.

(d) A subset J ⊆ S is called irreducible, if the diagram ΠJ is connected.

2.6 Remark
Let Π be a Coxeter diagram and let (W ,S) be a Coxeter system of type
Π. For any subset J ⊆ S the pair (WJ , J) is a Coxeter system of type ΠJ .
Moreover, by [AB, 2.14], `J(w) = `S(w) for any w ∈WJ .

2.7 Definition
Let (W ,S) and (W ′,S′) be Coxeter systems. An isomorphism of Coxeter
systems is a group isomorphism σ : W →W ′ such that σ(S) = S′.
We identify isomorphisms between Coxeter systems with isomorphisms be-
tween their Coxeter diagrams. In particular, if (W ,S) is a Coxeter system
of type Π we will think of Aut(W ,S) and Aut(Π) as being the same.

2.8 Proposition
Let (W ,S) be a Coxeter system and let J ,K ⊆ S. For w ∈ W we set
J±(w) := {s ∈ S | `S(ws) = `S(w)± 1}.

(a) Every double coset WJwWK ∈ WJ/W\WK has a unique element of
minimal length. We denote this element by min{WJwWK}.

(b) Let w1 := min{WJwWK}. Every element w ∈ WJw1WK can be
written as w = w′w1w

′′ with w′ ∈ WJ and w′′ ∈ WK such that
`S(w) = `S(w′) + `S(w1) + `S(w′′).

(c) If w ∈ W and J ⊆ J+(w), then w = min{wWJ} and for all v ∈ WJ

we have `S(wv) = `S(w) + `S(v).
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(d) If J ⊆ S is spherical, then WJ has a unique element of maximal
length. We denote this longest element by rJ . Since `S(r−1

J ) = `S(rJ),
the element rJ must have order two.

(e) If w ∈ W and J ⊂ J−(w), then J is spherical, w = min{wWJ} rJ
and `S(w) = `S(min{wWJ}) + `S(rJ). Moreover, for any u ∈ WJ we
have `S(w) = `S(wu) + `S(u). In particular, w is the unique element
of maximal length in wWJ and will be denoted by max{wWJ}.

Proof This follows from [AB, 2.23] and [MPW, 19.8]. �

2.9 Remark
Let Π be a Coxeter diagram and let (W ,S) be the corresponding Coxeter
system. Let J ⊆ S be spherical. The map s 7→ rJsrJ is an automorphism
of the subdiagram ΠJ . We denote this map by opJ . The map opJ stabilizes
every connected component of ΠJ and acts non-trivially on a given connected
component if and only if it is isomorphic to the Coxeter diagram An(n ≥ 2),
Dn(n ≥ 5 odd), E6 or I2(n)(n ≥ 5).
If Π is a connected spherical or affine Coxeter diagram with |Aut(Π)| > 2,
then Π is isomorphic to the Coxeter diagram Ãn(n ≥ 2), D4, D̃n(n ≥ 4) or
Ẽ6. Thus, if Π is a connected spherical or affine Coxeter diagram not in this
short list, then |Aut(Π)| ≤ 2.

2.10 Lemma
Let (W ,S) be a Coxeter system and suppose that there exists s ∈ S such
that st = ts for all t ∈ S. Then

(a) If w ∈ W and t1, . . . , tn ∈ S are such that w = t1 · · · tn, where
n = `S(w), then ti = s for at most one 1 ≤ i ≤ n.

(b) Suppose that W is finite and let J := S\{s}. Then rS = rJ s = s rJ .

Proof

(a) Suppose that there exist 1 ≤ i < j ≤ n such that ti = s = tj . As
st = ts for all t ∈ S

w = sst1 · · · ti−1ti+1 · · · tj−1tj+1 · · · tn = t1 · · · ti−1ti+1 · · · tj−1tj+1 · · · tn.

But this is a contradiction to the fact that `S(w) = n.

(b) By definition S ⊆ J−(rS) and hence J ⊆ J−(rS). By 2.8(e) we thus
have rS = min{rSWJ}rJ and `S(rS) = `S(min{rSWJ}) + `S(rJ).
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On the other hand, by part (a), rS = sw for some w ∈ WJ and
`S(rS) = `S(sw) = `S(w) + 1. Now

`S(rS)− `S(min{rSWJ}) = `S(rJ) ≥ `S(w) = `S(rS)− 1.

It follows that `S(min{rSWJ}) = 1 and thus `S(rJ) = `S(w). By
2.8(d) it follows that rJ = w.

�

Tits indices

2.11 Definition
A Tits index is a triple T = (Π, Θ,A) consisting of

(i) a Coxeter diagram Π,

(ii) a subgroup Θ ≤ Aut(W ,S), where (W ,S) is the Coxeter system cor-
responding to Π, and

(iii) a proper subset A ( S stabilized by Θ such that for each s ∈ S\A
the subset Js := Θ(s) ∪ A is spherical and rJsArJs = A, where Θ(s)
denotes the Θ-orbit containing s.

2.12 Definition
Let T = (Π, Θ,A) be a Tits index. The Coxeter system (W ,S) (equivalently
the Coxeter diagram Π) is called the absolute type of T.

2.13 Remark
Let T = (Π, Θ,A) be a Tits index. Let J ⊆ S be a Θ-invariant subset of S
such that A is a proper subset of J . Then the triple

TJ := (ΠJ , ΘJ ,A)

is a Tits index, where ΘJ denotes the subgroup of Aut(ΠJ) induced by Θ.

2.14 Definition
Let T = (Π, Θ,A) be a Tits index and let (W ,S) be the Coxeter system
corresponding to Π. For each s ∈ S\A we define

s̃ := rJsrA, S̃ := {s̃ | s ∈ S\A} and W̃ := 〈s̃ | s̃ ∈ S̃〉.

Note that the element s̃ depends only on the orbit Θ(s), not on the element
s itself.
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2.15 Remark
Let T = (Π, Θ,A) be a Tits index and let S̃ and W̃ be as in 2.14. Let

w ∈ W̃ and let s̃1, . . . , s̃k ∈ S̃ such that w = s̃1 · · · s̃k. We say that the tuple
(s̃1, . . . , s̃k) is a compatible representation if `S(w) =

∑k
i=1 `S(s̃i).

According to [MPW, 20.18], every element of W̃ has a compatible represen-
tation and by [MPW, 20.24], if (s̃′1, . . . , s̃′n) is another compatible represen-
tation of w, then k = n. Thus we may define ˜̀(w) to be the length of any
compatible representation of w.

2.16 Proposition
Let T = (Π, Θ,A) be a Tits index and let (W ,S) be the Coxeter system

corresponding to Π. Let S̃, W̃ and ˜̀ be as in 2.14 and 2.15. Then

(a) The pair (W̃ , S̃) is a Coxeter system and the length on W̃ with respect
to S̃ is given by ˜̀.

(b) (W ,S) is spherical if and only if (W̃ , S̃) is spherical. If (W ,S) is
irreducible/ affine, then (W̃ , S̃) is also irreducible/ affine.

Proof This follows from [MPW, 20.32, 20.35(i), 20.40 and 20.43]. �

2.17 Definition
Let T = (Π, Θ,A) be a Tits index. Let S̃ and W̃ be as in 2.14. The Coxeter

system (S̃, W̃ ) (or equivalently the corresponding Coxeter diagram Π̃) is
called the relative type of T.

Buildings

We fix a Coxeter system (W ,S) and let ` := `S be the length function on
W with respect to S. Let Π be the corresponding Coxeter diagram.

2.18 Definition
A building of type (W ,S) is a pair ∆ = (C, δ) consisting of a nonempty set
C, whose elements are called chambers, together with a map δ : C × C →W ,
called the Weyl distance function, such that for all c, d ∈ C the following
three conditions hold:

(WD1) δ(c, d) = 1W if and only if c = d.

(WD2) If δ(c, d) = w and c′ ∈ C satisfies δ(c′, c) = s ∈ S, then δ(c′, d) = sw
or δ(c′, d) = w. If, in addition, `(sw) = `(w) + 1, then δ(c′, d) = sw.

(WD3) If δ(c, d) = w, then for any s ∈ S there is a chamber c′ ∈ C such that
δ(c′, c) = s and δ(c′, d) = sw.
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The building ∆ is spherical, if the set S is spherical, or, equivalently, if W
is finite. It is irreducible, if S is irreducible, or, equivalently, if the Coxeter
diagram Π is connected.
When we refer to the type of a building ∆, we mean either the corresponding
Coxeter system (W ,S) or, equivalently, the corresponding Coxeter diagram
Π.

2.19 Remark
Note that there is more than one approach to buildings. Originally, buildings
were defined as chamber complexes (cf., for instance, [Ti74]) . The definition
of a building as a chamber system was introduced in [Ti81] and a slight
variation of it was taken as the definition of a building in the books by
Ronan [R] and Weiss [W03]. This approach is closely related to our definition
of a building. They define the Weyl distance using galleries. Conversely, the
algebraic properties of our Weyl distance function δ given in 2.18 enable us
to define adjacency and galleries (cf., for instance, [AB, 5.15 and 5.16]).
The reason, why we introduce buildings as an abstract system (C, δ) subject
to axioms characterizing the Weyl distance function δ, is, that twin buildings
are defined in a similar way. For a discussion of the equivalence between
these points of view, see, for example, [Ti81, 2.2], [AB, 5.93] and [AB, 5.23].

2.20 Definition
Let ∆ = (C, δ) and ∆′ = (C′, δ′) be buildings of type Π. Let X ⊆ C and
X ′ ⊆ C′. A bijective mapping ϕ : X → X ′ is called an

(i) isomorphism if there exists σ ∈ Aut(Π) such that for all c, d ∈ X the
following holds:

δ′(ϕ(c),ϕ(d)) = σ(δ(c, d)).

In this case we also call ϕ a σ-isometry.

(ii) isometry if it is an isomorphism and σ = idW .

As usual, an automorphism of a building ∆ = (C, δ) is an isomorphism from
C onto C. We denote the corresponding group by Aut(∆).

2.21 Definition
Let ∆ = (C, δ) be a building of type (W ,S).

� Given J ⊆ S and c ∈ C the set

RJ(c) := {d ∈ C | δ(c, d) ∈WJ}

is called the J-residue of ∆ containing the chamber c. Note that
RJ(c) = RJ(d) if δ(c, d) ∈WJ .
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� A residue of ∆ is a subset R ⊆ C such that R = RJ(c) for some J ⊆ S
and c ∈ C. The set J is called the type of R and it is denoted by
Typ(R). The number r = |J | is the rank of R and it is denoted by
rk(R).

� A residue of rank 1 is called panel. Single chambers are residues of
rank 0 and type ∅.

� The building ∆ is thick, if every panel of ∆ contains at least three
chambers. It is called thin, if every panel of ∆ contains exactly two
chambers.

Note that the intersection of two residues R and T of a building ∆ is either
empty or a residue of type Typ(R) ∩ Typ(T ).

2.22 Lemma
Let ∆ = (C, δ) be a building of type (W ,S), let R ⊆ C be a J-residue and
let T ⊆ C be a K-residue of ∆.

(a) Let c ∈ R and d ∈ T be chambers and set w := δ(c, d). Then
δ(R, T ) := {δ(x, y) | x ∈ R, y ∈ T } = WJwWK .

(b) The pair (R, δ|R×R) is a building of type (WJ , J).

Proof This follows from [AB, 5.29 and 5.30]. �

2.23 Example
If we define δW : W × W → W by δW (w1,w2) := w−1

1 w2, then the pair
(W , δW ) is a thin building of type (W ,S). We call (W , δW ) the standard
thin building of type (W ,S).

Projections

Let ∆ = (C, δ) be a building of type (W ,S).

2.24 Definition
Let c, d ∈ C be chambers. We define

dist(c, d) := `(δ(c, d)).

Note that, since inverting is an automorphism of the Coxeter system (W ,S),
dist(c, d) = dist(d, c) for all c, d ∈ C.

2.25 Definition
Let R be a residue of ∆ and let c ∈ C be a chamber. Due to [AB, 5.34]
there exists a unique chamber d ∈ R such that δ(d, c) = min{δ(R, c)}. This
chamber d has the following properties:
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(i) δ(x, c) = δ(x, d) δ(d, c) for all chambers x ∈ R.

(ii) dist(x, c) = dist(x, d) + dist(d, c) for all chambers x ∈ R.

This unique chamber is called the projection of c onto R and is denoted by
projR(c).

2.26 Definition
Let R and T be residues of ∆.

(a) We set projR(T ) := {projR(c) | c ∈ T } and call it the projection of
T onto R. Note that, by [AB, 5.36(2)], the set projR(T ) is again a
residue of ∆.

(b) The residuesR and T are parallel, if T = projT (R) andR = projR(T ).

2.27 Lemma
Let R and T be parallel residues of ∆.

(a) The restriction of projR to T is an isomorphism from T to R, the
restriction of projT to R is an isomorphism from R to T and these
two isomorphisms are inverses of each other.

(b) The element w := δ(c, projT (c)) is independent of the choice of c ∈ R.

Proof This follows from [MPW, 21.10(i) and (ii)]. �

2.28 Lemma
Let R, T be residues of ∆.

(a) If T ⊆ R we have projT (c) = projT (projR(c)) for all c ∈ C.

(b) If R∩ T 6= ∅, then projR(T ) = R∩ T .

Proof Part (a) is [MPW, 21.6(iii)]. For part (b) note that, if R ∩ T 6= ∅,
we have min{δ(R, T )} = 1W . The assertion now follows from [AB, 5.36(1)],
since projR(T ) = {c ∈ R | 1W ∈ δ(c, T )}. �
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Apartments

Let ∆ = (C, δ) be a building of type (W ,S).

2.29 Definition
(a) Let M be a nonempty subset of C. If (M, δ|M×M) is a building of

type (W ,S), then it is called a subbuilding of ∆.

(b) A thin subbuilding of ∆ is called an apartment of ∆.

(c) Let Σ be an apartment of ∆. A root of Σ is a subset α ⊂ Σ such that
α = {c ∈ Σ | dist(c,x) < dist(c, y)} for some ordered pair (x, y) of
chambers such that δ(x, y) ∈ S.

(d) A root of ∆ is a root of some apartment of ∆.

2.30 Lemma
Let Σ be an apartment of ∆ and let R be a residue of ∆ such that R∩Σ 6= ∅.
Then projR(c) ∈ Σ for each chamber c ∈ Σ.

Proof According to [W03, 8.9], apartments are convex. The assumption
now follows from [AB, 5.45]. �

2.31 Lemma
Let c, d, e be chambers of ∆. Then they are contained in a common apart-
ment of ∆ if and only if

δ(c, e) = δ(c, d)δ(d, e).

Proof The only if part is [AB, 5.55].
Conversely, let (W , δW ) be the standard thin building of type (W ,S) (cf.
2.23) and consider the map β : {c, d, e} → {1, δ(c, d), δ(c, e)} ⊆W defined by
β(x) := δ(c,x). If δ(c, e) = δ(c, d)δ(d, e) holds, it is an isometry. According
to [AB, 5.73], any subset of C that is isometric to a subset of W is contained
in a common apartment.

�

Moufang spherical buildings

An important concept along the classification of spherical buildings is the
Moufang property : Thick, spherical buildings with the Moufang property
have turned out to be classifiable (cf. [TW]). Roughly speaking, the Moufang
property ensures that ∆ has a great deal of symmetry. A remarkable theorem
of Tits says that every thick, irreducible, spherical building of rank at least
3 has the Moufang property.
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2.32 Definition
Let ∆ be a spherical building of rank at least two, let α be a root of ∆, and
let Uα denote the subgroup of Aut(∆) consisting of all elements which act
trivially on every panel P of ∆ with |P ∩α| = 2. The subgroup Uα is called
the root group associated with the root α.

2.33 Definition
Let ∆ be a spherical building of rank at least two. Then ∆ has the Moufang
property if for each root α of ∆, the root group Uα acts transitively on the
set of all apartments of ∆ containing α.

2.34 Remark
Note that in the definition sphericity is not used. But it turns out that this
definition is to weak in the non-spherical case. We will discuss this later in
chapter 10 of part II.

2.35 Theorem
Every thick irreducible spherical building of rank at least three has the
Moufang property.

Proof This is [W03, 11.6]. �

In light of 2.35, we will call a spherical building Moufang if it is thick,
irreducible, has rank at least two and satisfies the Moufang condition.

2.36 Theorem
Every irreducible residue of rank at least two of a Moufang spherical building
is a Moufang spherical building.

Proof This is [W03, 11.8]. �

Descent in Buildings

In this chapter we assemble the results of [MPW] on descent in buildings
that we will require.
Throughout, let ∆ = (C, δ) be a building of type (W ,S) and let Π be the
corresponding Coxeter diagram.

2.37 Definition
Let Γ be a subgroup of Aut(∆).

� A Γ-residue is a residue of ∆ stabilized by Γ.

� A Γ-chamber is a Γ-residue which is minimal with respect to inclusion.
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� A Γ-panel is a Γ-residue P such that for some Γ-chamber C, P is
minimal in the set of all Γ-residues containing C properly.

� The group Γ is called isotropic if there exist Γ-residues other than ∆
itself.

� The group Γ is called spherical if there exist spherical Γ-chambers.

2.38 Notation
Suppose that Γ ≤ Aut(∆) is isotropic and let Θ denote the subgroup of
Aut(W ,S) induced by Γ. We denote by CΓ the set of all Γ-chambers of
∆. By [MPW, 22.3(iii)], any two Γ-chambers C,D ∈ CΓ are parallel and
δ(c, projD(c)) ∈ Fix(Θ) for all c ∈ C. We define δ̄ : CΓ × CΓ → Fix(Θ) by
δ̄(C,D) := δ(c, projD(c)) for any c ∈ C.

2.39 Definition
A subgroup Γ ≤ Aut(∆) is a descent group of ∆ if it is isotropic and if each
Γ-panel contains at least three Γ-chambers.

2.40 Theorem
Let Γ be a spherical descent group of ∆. Then all Γ-chambers are of the
same type A ⊆ S, the triple T = (Π, Θ,A) is a Tits index and the pair
∆Γ = (CΓ, δ̄) is a thick building of type (W̃ , S̃), where CΓ and δ̄ are as in
2.38 and (W̃ , S̃) is the relative type of T.

Proof This is [MPW, 22.25]. �

2.41 Theorem
Suppose that ∆ is a Moufang spherical building and let Γ be a descent group
of ∆. Let ∆Γ be the fixed point building as in 2.40 and let k be the rank of
the building ∆Γ.

(i) If k ≥ 2, then ∆Γ satisfies the Moufang condition.

(ii) If k = 1, then there exists a Moufang structure M as defined in [MPW,
24.6] such that the pair (∆Γ,M) is a Moufang set as defined in 9.1.1.

Proof This is [MPW, 24.31]. �

2.42 Theorem
Suppose that ∆ is spherical and let Γ be isotropic. If there exists a Γ-
chamber C such that every Γ-panel containing C contains at least three
Γ-chambers the following hold:

(a) T = (Π, Θ, Typ(C)) is a Tits index.
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(b) Typ(D) = Typ(C) for all Γ-chambers D.

(c) δ̄(C,D) ∈ W̃ , where (W̃ , S̃) denotes the relative type of the Tits index
T.

(d) If each Γ-panel contains at least two Γ-chambers, then ∆Γ := (CΓ, δ̄)
is a building of type (W̃ , S̃).

(e) If there exists a Γ-chamber C1 such that δ̄(C,C1) equals the longest
element in the relative type of T, then Γ is a descent group.

Proof Part (a) follows from [MPW, 22.37(i)]. Parts (b)-(d) follow from
[MPW, 22.14(i)-(iii)], knowing that T = (Π, Θ, Typ(C)) is a Tits index.
Part (e) is [MPW, 22.37(ii)]. �

Twin Buildings

In this section we will give a brief introduction to twin buildings and assem-
ble some basic properties. We fix a Coxeter diagram Π with corresponding
Coxeter system (W ,S) and let ` : W → N denote the length function on W
with respect to S.

2.43 Definition
A twin building of type (W ,S) is a triple (∆+, ∆−, δ∗) consisting of two
buildings ∆+ = (C+, δ+) and ∆− = (C−, δ−) of type (W ,S) together with a
codistance function

δ∗ : (C+ × C−) ∪ (C− × C+)→W

satisfying the following conditions for each ε ∈ {+,−}, any c ∈ Cε and any
d ∈ C−ε, where w := δ∗(c, d):

(Tw1) δ∗(c, d) = δ∗(d, c)−1.

(Tw2) If c′ ∈ Cε satisfies δε(c
′, c) = s with s ∈ S and `(sw) < `(w), then

δ∗(c
′, d) = sw.

(Tw3) For any s ∈ S, there exists a chamber c′ ∈ Cε with δε(c
′, c) = s and

δ∗(c
′, d) = sw.

2.44 Definition
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type (W ,S).

� ∆ is called thick if each of the buildings ∆+ and ∆− is thick.
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� A residue (panel) of ∆ is a residue (panel) of one of the buildings ∆+

or ∆−.

� ∆ is called 2-spherical, if each subset J ⊆ S with |J | = 2 is spherical.

2.45 Definition
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type (W ,S) and let ε ∈ {+,−}.

� We define the numerical codistance between chambers c ∈ Cε and
d ∈ C−ε by

dist(c, d) := `(δ∗(c, d)).

� Two chambers c ∈ Cε and d ∈ C−ε are opposite, if dist∗(c, d) = 0 or,
equivalently, if δ∗(c, d) = 1W .

2.46 Definition
A twin apartment of a twin building ∆ = (∆+, ∆−, δ∗) is a pair Σ = (Σ+, Σ−)
such that Σ+ is an apartment of ∆+, Σ− is an apartment of ∆− and ev-
ery chamber in Σ+ ∪Σ− is opposite (as defined in 2.45) precisely one other
chamber in Σ+ ∪ Σ−.

2.47 Remark
Let Σ = (Σ+, Σ−) be a twin apartment of a twin building ∆ = (∆+, ∆−, δ∗).
We define the opposition involution opΣ to be the map which associates to
each chamber c ∈ Σ+ ∪ Σ− the unique chamber c′ := opΣ(c) ∈ Σ+ ∪ Σ−
satisfying δ∗(c, c

′) = 1W .
According to [AB, 5.173(1)] for each ε ∈ {+,−} the map opΣ : Σε → Σ−ε is
an isometry.

If ∆ is a 2-spherical twin building satisfying the following connectivity con-
dition, then, by [MR, 1.4], the local structure of ∆ determines the global
structure:

2.48 Definition
A twin building ∆ = (∆+, ∆−, δ∗) satisfies (co) if for every ε ∈ {+,−}
and every chamber c ∈ Cε, the set cop of chambers opposite c is a gallery-
connected subset of C−ε.

2.49 Remark
Almost all thick, irreducible , 2-spherical twin buildings of rank at least 3
satisfy (co). More precisely:

(a) According to [MR, 1.5], ∆ satisfies (co) if every rank 2 residue satisfies
(co).
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(b) According to [AvM], there are only four Moufang spherical buildings
of rank 2 that do not satisfy (co), namely the buildings associated to
the finite groups Sp(F2), G2(F2), G2(F3) and 2F4(F2).
In particular, the unique building of type B2 which does not satisfy
(co) is the unique example with three chambers per panel.

We shall need the following lemma in section 9.2:

2.50 Lemma
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type (W ,S) and let ε ∈ {+,−}.
For all c ∈ Cε and d, e ∈ C−ε we have

dist(c, d) ≥ dist(c, e)− dist(e, d).

Proof We proceed by induction on l := dist(d, e).
l = 0: Then e = d and the assertion is trivially true.
l > 1: Then e 6= d and hence w := δ−ε(e, d) 6= 1W . Let s ∈ S such that
`(sw) = `(w) − 1. By (WD3) there exists a chamber c′ ∈ C−ε such that
δ−ε(c

′, e) = s and δ−ε(c
′, d) = sw. Thus

dist(d, c′) = `(sw) = `(w)− 1 = l − 1 < l = dist(d, e)

and the induction hypothesis gives dist(c, d) ≥ dist(c, c′)− dist(c′, d).
Let v := δ∗(e, c). By [AB, 5.139(1)] we have δ∗(c

′, c) ∈ {v, sv}.
Consequently,

dist(c, d) ≥ dist(c, c′)− dist(c′, d) ≥ dist(c, e)− 1− (dist(e, d)− 1).

�
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Chapter 3

Point-line-spaces related to
buildings

3.1 Point-line-spaces

3.1.1 Definition
A point-line-space is a pair S = (P ,L) consisting of a set P (whose elements
will be called points) and a subset L ⊆ P2(P ) := {X ∈ 2P | |X| ≥ 2} (whose
elements will be called lines).

3.1.2 Definition
Let S = (P ,L) be a point-line-space.

(a) Two points of S are said to be collinear if there exists a line of S
containing both or if they are equal.

(b) A point p and a line l are said to be incident, if the point p is contained
in the line l.

(c) For any point p ∈ P we define p⊥ := {q ∈ P | p and q are collinear}
and for any subset X ⊆ P we set X⊥ :=

⋂
x∈X x

⊥.

(d) A subset X ⊆ P is called singular if X ⊆ X⊥.

3.1.3 Definition
A subset U ⊆ P is called a subspace of S if the relation |l ∩ U | ≥ 2 implies
l ⊆ U for each line l ∈ L.

3.1.4 Definition
Let S = (P ,L) be a point-line-space.

(a) A hyperplane of S is a proper subspace h of S, such that any line of
S has at least one point in common with h.

35
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(b) For any subspace U of S we have a point-line-structure SU := (U ,LU )
on U induced from S, where LU = {l ∈ L | l ⊆ U}.

(c) A subspace U of S is singular, if the set U is singular.

3.1.5 Definition
Let S = (P ,L) and S ′ = (P ′,L′) be point-line-spaces. A map α : P → P ′ is
a homomorphism of point-line-spaces if for each line l of S there exists a line
l′ of S ′ such that α(l) ⊆ l′. An isomorphism of point-line spaces is a bijective
homomorphism α such that the inverse map α−1 is also a homomorphism.
An automorphism is defined in the obvious way.

3.1.6 Lemma
Let S = (P ,L) be a point-line-space.

(a) The intersection of any family of (singular) subspaces of S is a (singu-
lar) subspace of S.

(b) Any set X ⊆ P of pairwise collinear points of S generates a singular
subspace

〈X〉 :=
⋂
U | U singular subspace,X ⊆ U .

It is the smallest singular subspace of S containing the set X.

Proof This follows from [Ue, 4.2.1] and [Ue, 4.2.3]. �
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3.2 Projective Spaces

3.2.1 Definition
A projective space is a point-line-space S = (P ,L) having at least two dis-
tinct lines such that the following axioms are satisfied:

(PS1) Any two points of S are collinear and each line is uniquely determined
by two of its points.

(PS2)

For any 5-tuple of pairwise distinct points
a, b, c, p, q ∈ P such that a, b, p and a, c, q are
collinear on distinct lines, the line through b
and c and the line through p and q have a
common point.

a p

b

c

q

It readily follows from the definition that a subspace of a projective space
is singular. A projective space S is said to be thick if each line is incident
with at least three points.

3.2.2 Lemma
Let S = (P ,L) be a projective space and let U be a subspace of S such
that there are at least two lines in U . Then the point-line-space SU is a
projective space.

Proof This is [Ue, 1.4.1]. �

3.2.3 Definition
Let S = (P ,L) be a projective space. We put

rk(S) := min{|X| | X ⊆ P , 〈X〉 = P} − 1.

This number will be called the rank of S. If U is a subspace of S we put

dim(U) := rk(SU ).

3.2.4 Remark
Let K be a skew field and let V be a left vector space over K of positive
dimension. We denote by V(V ) the set of all subspaces of V . For each
X ∈ V(V ), we define

P(X) := {U ≤K X | dimK(U) = 1}

and
L(X) := {P(U) | dimK(U) = 2}.

The pair P(V ) = (P(V ),L(V )) is a projective space, called the projective
space associated with V .
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The next theorem is known as The First Fundamental Theorem for Projec-
tive Spaces:

3.2.5 Theorem
Let S = (P ,L) be a projective space of finite rank n ≥ 3. Then there exists
a skew field K and a left vector space V over K with dimK(V ) = n+ 1 such
that S ' P(V ).

Proof This follows from [Ue, 2.6.1 and 3.7.18]. �

Polarities

3.2.6 Definition
Let S = (P ,L) be a projective space of finite rank n and let δ be a bijective
transformation of the set of points of S onto the set of hyperplanes of S.
Then δ is a duality of S if for any three collinear points p, q, r ∈ P the
hyperplanes δ(p), δ(q) and δ(r) meet in a common subspace of codimension
2, that is

δ(p) ∩ δ(q) = δ(p) ∩ δ(r) = δ(q) ∩ δ(r) = δ(p) ∩ δ(q) ∩ δ(r).

According to [Ue, 4.4.4] dualities act on subspaces as follows:

3.2.7 Proposition
Let S = (P ,L) be a projective space of finite rank n and let δ be a duality
of S. For any subspace U of S we have

δ(U) =
⋂
x∈U

δ(x).

3.2.8 Definition
Let S = (P ,L) be a projective space of finite rank n ≥ 2 and let π be a
bijective transformation of the set of points of S onto the set of hyperplanes
of S. Then π is a polarity of S if for any two points p, q ∈ P the relation
p ∈ π(q) implies the relation q ∈ π(p).

Equivalently well, a polarity of a projective space S is a duality of S of order
2.

We will use the following theorem of Birkhoff and von Neumann which
claims that polarities of projective spaces over vector spaces are induced
by sesquilinear forms. A proof of this theorem can be found, for example,
in [Ue, 5.11].
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3.2.9 Theorem (Birkhoff, von Neumann)
Let K be a skew field and let V be a left vector space over K. Let π be a
polarity of the projective space P(V ). Then there exists a (σ, ε)-hermitian
sesquilinear form f on V with σ2 = idK and ε ∈ {±1K} such that

π(〈v〉) = {w ∈ v | f(v,w) = 0K}

for all v ∈ V .

Given a polarity π of a projective space P(V ), in general, there exist more
than one reflexive sesquilinear form f : V × V → K inducing π. This is due
to the fact that the polarity π is defined on the 1-dimensional subspaces of
V , whereas f is defined on the elements of V .

3.2.10 Definition
Let S = (P ,L) be a projective space and let π be a polarity of S.

(a) A point p ∈ P is called absolute with respect to π if p ∈ π(p).

(b) A subspace U of S is called absolute with respect to π if U ⊆ π(U).

3.2.11 Theorem
Let S = (P ,L) be a projective space and let π be a polarity of S.

(a) If U is a subspace of S which is absolute with respect to π, every point
of U is absolute with respect to π.

(b) Let p and q be points of S which are absolute with respect to π. Then
the line through p and q is absolute with respect to π if and only if
q ∈ π(p).

Proof This is [Ue, 4.4.6]. �
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3.3 Polar Spaces

3.3.1 Definition
A point-line space S = (P ,L) is called a polar space if the following axiom
is satisfied:

(P1)

Let l be a line and let p be
a point not on l. Then either
there exists exactly one point
on l collinear with p or p is
collinear with all points on l.

p

`

p

`

A polar space S = (P ,L) will be called non-degenerate if

(P2) for every point p of S there exists a point q of S such that p and q are
non-collinear.

3.3.2 Definition
Let S = (P ,L) be a non-degenerate polar space.

(a) We say that S is of finite rank n if there exists a natural number n such
that for every chain ∅ 6= U1 ( U2 ( · · · ( Ur of singular subspaces the
relation r ≤ n holds and if there is at least one chain of length n.

(b) A singular subspace U of S has finite rank n if there exists a natural
number n such that for every chain ∅ 6= U1 ( U2 ( · · · ( Ur = U of
proper singular subspaces the relation r ≤ n holds and if there is at
least one chain of length n.

(c) A polar space S of finite rank n is called thick if every line contains
at least three points and if every singular subspace of rank n − 1 is
contained in at least three maximal subspaces.

(d) A hyperbolic pair of S is a pair of non-empty singular subspaces U and
V of S such that U ∩ V ⊥ = ∅ = V ∩ U⊥.

3.3.3 Lemma
Let S = (P ,L) be a non-degenerate polar space.

(a) Each point is incident with at least two lines.

(b) For any set X ⊆ P , the set X⊥ is a subspace of S.

(c) If S is of finite rank 2, only the first case of axiom (P1) occurs, i.e. S
satisfies the stronger condition
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(P ′1) Let l be a line and let p be a point not on l. Then there exists a
unique point x on l such that x and p are collinear.

(d) Let P ′ := L and L′ := P and define l ∈ P ′ and p ∈ L′ to be incident
if and only if they are incident in S. If S is of finite rank 2, the pair
S ′ := (P ′,L′) is a non-degenerate polar space of rank 2.

Proof

(a) Let p ∈ P be a point and let l ∈ L be a line. First suppose that
p is not incident with l. If all points on l are collinear with p, p is
incident with a line through each point on l. Since there are at least
two points on l, the assertion follows. Otherwise there exists a unique
point q on l such that p and q are collinear. Choose a point z which
is non-collinear with q and let h be the unique line through z and a
point of l. As p is collinear with at least one point on h, the assertion
follows.
No suppose that p is contained in l and let q be a point non-collinear
with p. There exists a unique point z on l which is collinear with q.
Let x be point non-collinear with z. Let h be the line through x and
a unique point on the line through q and z. Then p is collinear with
at least one point on h.

(b) Let p ∈ X be a point and let l ∈ L be a line such that |l ∩ p⊥| ≥ 2.
Then p is collinear with all points on l and hence l ⊆ p⊥. Now let
l ∈ L be a line such that |l ∩X⊥| ≥ 2. Since X⊥ ⊆ x⊥ for all x ∈ X
the assertion follows.

(c) This follows from [Ue, 4.2.20].

(d) This is [Ti74, 7.2.8]

�

3.3.4 Proposition
Let S = (P ,L) be a non-degenerate polar space of finite rank 2 and suppose
that there exists a line l ∈ L which is incident with at least three points and
a point p ∈ P which is incident with at least three lines. Then S is thick.

Proof According to Let l and g be two disjoint lines. Then each point
on l is collinear with a unique point on g and vice versa. Hence there is
a bijection between the point sets of two disjoint lines. In particular, two
disjoint lines have the same number of points.
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Now let p ∈ P be a point which is incident with at least three lines. Let
l and g be two lines which are not incident with p. We show that l and g
have the same number of points. Let Lp := {l ∈ L | p ∈ l}. By assumption
we have |Lp| ≥ 3.

Assume that there are h 6= h′ ∈ Lp such that
l ∩ h 6= ∅ 6= l ∩ h′ and let x and x′ denote the
corresponding intersection points. Note that,
since l /∈ Lp, we have x 6= p 6= x′. But then
the point p is collinear with two points on l
which is a contradiction to (P ′1).

p

l

x

x′

h

h′

Hence l and g can intersect at most one line through p each, there exist at
least one line h′′ ∈ Lp which is disjoint to both, l and g. Hence l, g and h′′

have the same number of points.

p

l

q
h

g

Now let h, g be two lines through p and let q
be a point on h different from p. Let l be a
line through q different from h. Then l is a
line not through p (since h 6= l) and g ∩ l = ∅
since otherwise the intersection point would
be collinear with two points on h.

We have seen that each line not through p has the same number of points
and moreover, each line through p has the same number of points as a line
not through p. We conclude that each line is incident with the same number
of points. As there is at least one line which is incident with at least three
points, all lines are incident with at least three points.

We now set P ′ := L and L′ := P and S ′ := (P ′,L′). According to 3.3.3(c)
S ′ is a non-degenerate polar space of rank 2. By assumption there is a line
of S which is incident with at least three points of S. Whence there is a
point of S ′ which is incident with at least three lines of S ′. We now use the
previous considerations to obtain that every line of S ′ is incident with at
least three points. Thus every point of S is incident with at least three lines
of S. �

3.3.5 Lemma
Let S = (P ,L) be a non-degenerate polar space of finite rank n ≥ 2. Then
the following hold:

(a) Any two points of S are incident with at most one line of S.

(b) For any singular subspace U of S containing at least two lines the
point-line-space SU is a projective space.
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(c) If p, q ∈ P are non-collinear, then Spq := (p⊥ ∩ q⊥,Lp⊥∩q⊥) is a non-
degenerate polar space.

(d) Let (U ,V ) be a hyperbolic pair of S. Then rk(U) = rk(V ) and the
point-line-space S(U ,V ) := (U⊥ ∩ V ⊥,LU⊥∩V ⊥) is a non-degenerate
polar space.

Proof

(a) This is [BC, 7.4.11].

(b) This is [BC, 7.4.13(iv)].

(c) This is [BC, 7.4.8]

(d) Induction on the rank of U using part (c).

�

3.3.6 Remark
Let S be a non-degenerate polar space and l and g be two lines such that
(l, g) is a hyperbolic pair of S. Let x be a point on l and suppose that x is
collinear with all points on g. Then x ∈ l ∩ g⊥ = ∅, a contradiction. Hence
each point on l is collinear with a unique point on g and vice versa.

3.3.7 Lemma
Let S = (P ,L) be a non-degenerate polar space, let U be a singular subspace
of S of finite rank k ≥ 2 and let p be a point which is not collinear with all
points of U . Then U ∩ p⊥ is a singular subspace of S of rank k − 1.

Proof Note that, since U contains at least one line, the intersection U ∩p⊥
is non-empty and hence l := rk(U ∩ p⊥) ≥ 1.

According to 3.3.3(b), the set p⊥ is a subspace of S. Thus, in view of
3.1.6, the intersection U ∩ p⊥ is a subspace of S which is singular since it is
contained in the singular set U . Let ∅ 6= U1 ( U2 ( · · · ( Ul−1 ( Ul = U∩p⊥
be a maximal chain of singular subspaces. As U ∩ p⊥ ( U we conclude that
l ≤ k − 1.

We show by induction on k: If U is a singular subspace of S of rank k such
that U 6⊆ p⊥, then rk(U ∩ p⊥) ≥ k − 1.
If k = 2 (P1) implies that U ∩ p⊥ consists of a single point (since p is not
collinear with all points on U).
Suppose that k > 2 and let ∅ 6= U1 ( U2 ( · · · ( Uk−1 ( Uk = U be a
maximal chain of singular subspaces. If Uk−1 ⊆ p⊥, then Uk−1 ∩ p⊥ = Uk−1

and hence rk(U ∩ p⊥) ≥ k − 1. If Uk−1 6⊆ p⊥ we may apply the induction
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hypothesis and obtain rk(Uk−1 ∩ p⊥) ≥ k − 2. Let x ∈ U\Uk−1 be a point.
If x is collinear with p, then rk(U ∩ p⊥) > rk(Uk−1 ∩ p⊥) ≥ k − 2. Thus,
assume that x is non-collinear with p and choose a point y ∈ Uk−1 which
is also non-collinear with p. As U is singular, the points x and y lie on a
common line h. Let z be the unique point on h which is collinear with p.
As Uk−1 is a subspace, z /∈ Uk−1 (otherwise h ⊆ Uk−1 which is impossible
since x /∈ Uk−1). Thus, Uk−1 ∩ p⊥ ( U ∩ p⊥ and l ≥ k − 1.

We obtain k − 1 ≤ l ≤ k − 1.

�

The geometry of totally isotropic subspaces of a vector space with a suitable
form give the most familiar examples of polar spaces. These spaces are called
embeddable.

3.3.8 Proposition
Let S = (P ,L) be a projective space and let π be a polarity of S such that
there exists at least one absolute line with respect to π. The absolute points
and the absolute lines with respect to π define a polar space.

Proof This is [Ue, 4.4.7]. �

3.3.9 Remark
Let S = (P ,L) be a projective space and let π be a polarity of S such that
there exists at least one absolute line with respect to π.

(a) The polar space of proposition 3.3.8 is called the polar space defined
by π and it is denoted by Sπ.

(b) A point and a line of Sπ are incident in Sπ if they are incident in S.

(c) Two points p and q of Sπ are collinear if and only if p ∈ π(q).

3.3.10 Remark
As a special case we obtain the following:
Let Λ = (K,V ,Q) be a quadratic space of Witt index k ≥ 2. Then the
associated bilinear form fQ is a (idK, 1K)-hermitian sesquilinear form on V .
We denote by V(Λ) all non-trivial totally isotropic subspaces of V . We set

P(Λ) := {U ∈ V(Λ) | dimK(U) = 1}

and
L(Λ) := {P(U) | U ∈ V(Λ), dimK(U) = 2}.

The pair P(Λ) := (P(Λ),L(Λ)) is a polar space of finite rank k. It is called
the polar space associated with Λ.
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3.3.11 Remark
(a) If the quadratic space Λ is regular, the associated polar space P(Λ) is

non-degenerate: Indeed, by 1.18 there exists a hyperbolic pair (v,w)
of Λ. The corresponding line 〈v,w〉 of the polar space P(Λ) is not
totally-isotropic, since

Q(v + w) = fQ(v,w)−Q(v)−Q(w) = fQ(v,w) = 1 6= 0.

(b) The totally isotropic subspaces of V of dimension d are in one-to-one
correspondence with the singular subspaces of P(Λ) of rank d.

The next result shows that each semi-linear similitude of the quadratic space
Λ induces an automorphism of the associated polar space P(Λ). If the
dimension of V is

”
high enough“, every automorphism of the polar space is

induced by a semi-linear similitude.

3.3.12 Proposition
Let Λ = (K,V ,Q) be a regular quadratic space of Witt index k ≥ 1.

(a) There is a natural homomorphism ϕΛ : ΓO(Λ)→ Aut(P(Λ)) from the
set of all semi-linear similitudes of Λ onto the set of all automorphisms
of the polar space P(Λ). Its kernel is HT(V ) = {λ idV | λ ∈ K}. The
map ϕΛ is defined by

ϕΛ(α)(〈v〉K) := 〈α(v)〉K

for all α ∈ ΓO(Λ) and v ∈ V .

(b) If dimK(V ) ≥ 5 and k ≥ 2, the homomorphism ϕΛ is surjective.

Proof This is [MPW, 2.38]. �

3.3.13 Remark
Let Λ = (K,V ,Q) be a regular quadratic space of Witt index k ≥ 3 and let
(v,w) be a hyperbolic pair of Λ. Let S := P(Λ) be the polar space associated
with Λ and let p := 〈v〉 and q := 〈w〉. Furthermore, we set H := H(v,w)⊥

and Λ′ := (K,H,Q|H). Now

x is a point of P(Λ′)

⇔ ∃ u ∈ H(v,w)⊥ isotropic such that x = 〈u〉
⇔ ∃ u ∈ V isotropic such that fQ(v,u) = 0 = fQ(w,u), 〈u〉 = x

⇔ x ∈ p⊥ ∩ q⊥

shows that the point sets of P(Λ′) and Spq coincide. As two points of P(Λ)
(respectively Spq) are collinear if and only if they are collinear in S, we
conclude that Spq = P(Λ′).
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Polar Spaces of type D

3.3.14 Definition
Let S = (P ,L) be a non-degenerate polar space.

(a) A submaximal singular subspace of S is a proper hyperplane in a
maximal singular subspace.

(b) The polar space S is called of type D if it is of finite rank and if
each submaximal singular subspace of S is contained in precisely two
maximal ones.

3.3.15 Remark
Let S be a polar space of type D of finite rank n. According to [Ti74, 8.4.3], S
is the polar space associated with a hyperbolic quadratic space of dimension
2n.

Automorphisms

In this section we assemble some basic results about automorphisms of polar
spaces. Let S = (P ,L) be a non-degenerate polar space.

3.3.16 Lemma
Let α ∈ Aut(S) be an automorphism. If l ∈ L is a line stabilized by α and
p ∈ P is a point fixed by α which is collinear with a unique point x on l,
then x is fixed by α.

Proof Since α preserves collinearity, the points α(p) = p and α(x) are
collinear. Since α(x) is incident with l and since there is precisely one point
on l which is collinear with p, we conclude that α(x) = x. �

3.3.17 Lemma
Let α ∈ Aut(S) be an involution and let U and U ′ be singular subspaces
of S which are stabilized by α. If the subset U ∪ U ′ is singular, then the
singular subspace M := 〈U ,U ′〉 is α-invariant.

Proof By definition, M := 〈U ,U ′〉 is the smallest singular subspace of S
which contains the subset U ∪ U ′. As U ∪ U ′ = α(U ∪ U ′) ⊆ α(M), we
conclude that M ⊆ α(M).
Let x ∈ α(M) be a point and let y ∈ M such that α(y) = x. As α is an
involution and since y ∈M ⊆ α(M), there exists z ∈M such that y = α(z).
Now x = α(y) = α2(z) = z ∈M and hence α(M) ⊆M . �
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3.3.18 Lemma
Let S = (P ,L) be a non-degenerate polar space of finite rank n ≥ 4, let
α ∈ Aut(S) be an involution and let U be a singular subspace of S with
rk(U) = 4 such that α(U) = U . Suppose that α does not fix any points of
U . Then U contains at least two α-invariant lines of S. If each line of S is
incident with at least three points, then U contains at least three α-invariant
lines.

Proof Let p ∈ U be any point. By assumption α(p) ∈ U and α(p) 6= p.
Since U is singular, the points p and α(p) lie on a common line l which is
completely contained in U . Choose a point z ∈ U which does not lie on
l. Again, z 6= α(z) ∈ U and the points z and α(z) lie on a common line g
which is completely contained in U .
Note that α(l) is a line which contains the points α(p) and α2(p) = p. In
view of 3.3.5(a), α(l) = l. Similarly, α(g) = g. Since z is a point on g which
is not on l, we conclude that l 6= g.
Suppose that l and g intersect in a single point x, i.e. l ∩ g = {x}. Then
α(x) = α(l ∩ g) ⊆ α(l) ∩ α(g) = l ∩ g = {x}. Since there are no fixed
points, this is impossible. Assume that each line is incident with at least
three points.

Let h ⊆ U denote the line which is incident
with the points z and p and choose a point x
on h different from z and p. Then x 6= α(x)
and x and α(x) lie on a common line which is
α-invariant.

p α(p)

z α(z)

l

g
x

h

α(x)

�



Chapter 4

Spherical buildings and
geometries

4.1 Opposites in spherical buildings

Throughout this section let (W ,S) be a spherical Coxeter system, let Π be
the corresponding Coxeter diagram and let ∆ = (C, δ) be a building of type
Π.

A finite Coxeter group W always has a unique element of maximal length
(cf. 2.8). The existence of a longest element in W leads to the fundamental
concept that distinguishes spherical buildings from general buildings:

4.1.1 Definition
(a) Two chambers c, d ∈ C are called opposite, if δ(c, d) = rS .

(b) Two residues R and T are called opposite, if for each c ∈ R there
exists d ∈ T such that δ(c, d) = rS and vice versa. Equivalently, R
and T are opposite if there exists a pair of chambers (c, d) ∈ R × T
such that δ(c, d) = rS and Typ(R) = opS(Typ(T )).

4.1.2 Lemma
Two opposite residues of ∆ are parallel.

Proof A proof can be found in [AB, 5.114]. �

4.1.3 Lemma
Let s ∈ S such that st = ts for all t ∈ S and set J := S\{s}.

(a) If R is a residue of type J and c is a chamber not contained in R, then
δ(c, projR(c)) = s.

48
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(b) Any two residues R and T of type J are either equal or opposite.

Proof Choose a chamber d ∈ R and let c ∈ C\R. Then w := δ(c, d) = sw′

for some w′ ∈WJ by 2.10(a). Hence

δ(c, projR(c)) = min{δ(c, d)WJ} = min{wWJ} = s.

Let R and T be two residues of type J and suppose that R 6= T . Since the
opposition map opS stabilizes every connected component of Π (cf. 2.9) we
have Typ(R) = J = opS(J) = opS(Typ(T )). Let c ∈ R be any chamber.
Since c /∈ T , part (a) implies that δ(c, projT (c)) = s. Choose a chamber d
opposite projT (c) in T . Then, by 2.10(b),

δ(c, d) = δ(c, projT (c)) δ(projT (c), d) = srJ = rS .

�

4.1.4 Lemma
Let c and d be opposite chambers of ∆. There exists a unique apartment of
∆ containing c and d.

Proof This is [W03, 9.2] �

4.1.5 Lemma
Let τ ∈ Aut(∆) be an involution and set Γ := 〈τ〉 ≤ Aut(∆). Let C be a
Γ-chamber of ∆ and set A := Typ(C). Then for each chamber c ∈ C we
have δ(c, τ(c)) = rA.

Proof By assumption we have τ |C ∈ Aut(C) and the group ΓC := 〈τ |C〉
stabilizes no proper residues of C. Now, by [MPW, 25.17], each chamber
c ∈ C is opposite to its image τ(c) in C, i.e. δ(c, τ(c)) = rA. �

4.2 Isometries on buildings

Throughout this section let Π be a Coxeter diagram with vertex set I and
let (W ,S) denote the corresponding Coxeter system. Let ` : W → N denote
the length function on W with respect to S.

4.2.1 Definition
A subset X ⊆ 2S is called essential if the following conditions are satisfied:

(e1) S /∈ X,
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(e2)
⋃
M∈XM = S and

(e3) for each irreducible subset J ⊆ S with |J | = 2 there exists a subset
M ∈ X such that J ⊆M .

4.2.2 Definition
Let ∆ = (C, δ) be a building of type (W ,S). Given a chamber c ∈ C we
define

(a) Ek(c) :=
⋃

J⊆S
|J|≤k

RJ(c) for any natural number k ∈ N.

(b) E∗2(c) :=
⋃

J⊆S connected
|J|≤2

RJ(c).

(c) EX(c) :=
⋃
J∈X RJ(c) for any subset X ⊆ 2S .

4.2.3 Proposition
Let Π be the Coxeter diagram A1 × A1 and let ∆ = (C, δ) and ∆′ = (C′, δ′)
be thick buildings of type Π. Let c ∈ C and c′ ∈ C′ and suppose that
ϕ : E1(c) → E1(c′) is an isometry such that ϕ(c) = c′. Then ϕ extends
uniquely to an isometry from ∆ onto ∆′.

Proof Let S = {s, t} and note that E1(c) = Ps(c)∪Pt(c). Let d ∈ C\E1(c).
Then δ(c, d) = st = ts. We set

ds := projPs(c)(d) and dt := projPt(c)(d).

Then ds, dt ∈ E1(c)\{c} and ϕ(ds),ϕ(dt) ∈ E1(c′)\{c′} are defined. More-
over, for each r ∈ S, δ′(ϕ(dr), c

′) = δ(dr, c) = r.
Note that, since c′ = projPs(c′)(ϕ(dt)), we have

δ′(ϕ(ds),ϕ(dt)) = δ′(ϕ(ds), c
′) δ′(c′,ϕ(dt)) = st

and whence the chambers ϕ(ds) and ϕ(dt) are opposite in ∆′. In particu-
lar, the panels Pt(ϕ(dt)) and Pt(ϕ(ds)) are opposite and thus parallel (cf.
4.1.2). Hence, d′ = projPt(ϕ(ds))(ϕ(dt)) is the unique chamber in Pt(ϕ(ds))
satisfying δ′(ϕ(dt), d

′) = s. Similarly, d′′ := projPs(ϕ(dt))(ϕ(ds)) is the unique
chamber in the panel Ps(ϕ(dt)) satisfying δ′(ϕ(ds), d

′′) = t. By construc-
tion, d′ ∈ Ps(ϕ(dt)) ∩ Pt(ϕ(ds)) and thus d′ = d′′.
This enables us to define

ϕ(d) := projPs(ϕ(dt))(ϕ(ds)).

In this way we extend ϕ to a map ϕ : C → C′.

Let x ∈ C′. If x ∈ E1(c′), then, by assumption, there exists a chamber
y ∈ E1(c) such that ϕ(y) = x. Suppose that x ∈ C′\E1(c′). Then x is
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opposite to the chamber c′. Let xs := projPs(c′)(x) and xt := projPt(c′)(x).
By assumption there exist chambers ys ∈ Ps(c) and yt ∈ Pt(c) such that
ϕ(ys) = xs and ϕ(yt) = xt. Let Σ be the unique apartment of ∆ containing
the chambers c, ys and yt and let d ∈ Σ be the unique chamber which is
opposite to c. Then, by 2.30, ys = projPs(c)(d) and yt = projPt(c)(d). We
claim that ϕ(d) = x.
Indeed, by definition, ϕ(d) = projPs(xt)(xs) is the unique chamber in Ps(xt)
satisfying δ′(ϕ(d),xs) = t. Hence, ϕ(d) = x and we conclude that the map
ϕ : C → C′ is surjective.

It remains to show that ϕ is an isometry. In view of [AB, 5.61] it suffices
to show that for any two chambers x, y ∈ C with dist(x, y) = 1 we have
δ′(ϕ(x),ϕ(y)) = δ(x, y).
Let x, y ∈ C be such that δ′(x, y) ∈ S.

If x, y ∈ E1(c) then the assumption on ϕ gives δ′(ϕ(x),ϕ(y)) = δ(x, y).

So suppose that x ∈ E1(c) and that y /∈ E1(c) and let s ∈ S such that
δ(x, y) = s. Then y is a chamber opposite to c and since dist(x, y) = 1
we have x = projPt(c)(y). Let ys := projPs(c)(y). By definition we have
ϕ(y) ∈ Ps(ϕ(x)) ∩ Pt(ϕ(ys)) and hence δ′(ϕ(x),ϕ(y)) ∈ {1W , s}. Suppose
that δ′(ϕ(x),ϕ(y)) = 1W , i.e. ϕ(x) = ϕ(y). Since ϕ is a bijection on E1(c)
this fact implies that ϕ(y) 6= ϕ(ys). Now

δ′(c′,ϕ(y)) = δ′(c′,ϕ(x)) = t = δ′(ϕ(y),ϕ(ys)).

But this implies ϕ(ys) ∈ Pt(c′) ∩ Ps(c′) = {c′}, a contradiction. Hence,
δ′(ϕ(x),ϕ(y)) = s.

Let x 6= y be chambers both opposite to c and let s ∈ S such that δ(x, y) = s.
Then d := projPs(x)(c) is the unique chamber in Ps(x) = Ps(y) satisfying
δ(c, d) = t. In particular, d ∈ E1(c). The considerations in the previous case
imply that

δ′(ϕ(d),ϕ(x)) = δ(d,x) = s = δ(d, y) = δ′(ϕ(d),ϕ(y)).

Hence, as ϕ(x),ϕ(y) ∈ Ps(ϕ(d)), δ′(ϕ(x),ϕ(y)) = s.

We conclude that ϕ is an isometry from ∆ onto ∆′.

Now let ψ,ψ′ : C → C′ be isometries which coincide on E1(c). Let Σ ⊆ C
be an apartment of ∆ containing the chamber c. As ψ|Σ : Σ → ψ(Σ) is an
isometry, we conclude that the set ψ(Σ) is isometric to the standard thin
building (W , δW ) of type (W ,S) (cf. 2.23). Hence, ψ(Σ) is an apartment
of ∆′. Similarly, ψ′(Σ) is an apartment of ∆′. Let cs and ct be the unique
chambers of Σ satisfying δ(c, cs) = s and δ(c, ct) = t. Since cs, ct ∈ E1(c),
both apartments ψ(Σ) and ψ′(Σ) contain the chambers ψ(cs) and ψ(ct)
which are opposite in ∆′. In view of 4.1.4 we conclude that ψ(Σ) = ψ′(Σ).
In particular, if d := opΣ(c) is the unique chamber in Σ which is opposite
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to c, then ψ(d) = ψ′(d). Now ψ ◦ ψ′−1 : C → C is an isometry which fixes
E1(c)∪{d} pointwise. The rigidity theorem [AB, 5.205] yields that ψ ◦ψ′−1

is the identity. �

4.2.4 Proposition
Let ∆ = (C, δ) and ∆′ = (C′, δ′) be thick buildings of type Π. Let c ∈ C and
c′ ∈ C′ and suppose that ϕ : E2(c)→ E2(c′) is a bijective mapping such that

(i) ϕ(c) = c′ and

(ii) for all J ⊆ S with |J | ≤ 2 the restriction ϕ|RJ (c) : RJ(c) → RJ(c′) is
an isometry.

Then ϕ is an isometry.

Proof Let x, y ∈ E2(c) and let J ,K ⊆ S be subsets with |J |, |K| ≤ 2 such
that x ∈ RJ(c) and y ∈ RK(c).

Case 1: J ⊆ K or K ⊆ J . Then x, y ∈ RK(c) or x, y ∈ RJ(c) and the
assertion follows by assumption (ii).

Case 2: J ∩K = ∅. In this case RJ(c) ∩ RK(c) = {c} and hence, in view
of 2.28(b), projRK(c)(x) = c. Note that ϕ(x) ∈ RJ(c′) and ϕ(y) ∈ RK(c′).
Since RJ(c′) ∩ RK(c′) = {c′} we conclude that projRK(c′)(ϕ(x)) = c′. We
obtain

δ(x, y) = δ(x, projRK(c)(x)) δ(projRK(c)(x), y) = δ(x, c) δ(c, y)

= δ′(ϕ(x),ϕ(c)) δ′(ϕ(c),ϕ(y)) = δ(ϕ(x), c′) δ′(c′,ϕ(y))

= δ′(ϕ(x), projRK(c′)(ϕ(x))) δ′(projRK(c′)(ϕ(x)),ϕ(y))

= δ′(ϕ(x),ϕ(y)),

where we used that ϕ is an isometry on both, RJ(c) and RK(c).

Case 3: |J | = 2 = |K| and |J∩K| = 1. Let s ∈ S be such that J ∩K = {s}.
We may assume that neither x nor y is contained in the panel Ps(c) (oth-
erwise the assertion follows from case 1). Using again 2.28(b), we obtain
projRK(c)(x) ∈ Ps(c) and projRK(c′)(ϕ(x)) ∈ Ps(c′). By (ii), ϕ restricts to
an isometry Ps(c) → Ps(c′). The map x 7→ ϕ(x) extends this restriction
to an isometry Ps(c) ∪ {x} → Ps(c′) ∪ {ϕ(x)} (since Ps(c) ∪ {x} ⊆ RJ(c)).
Now [MR, 4.2] gives that ϕ(projPs(c)(x)) = projPs(c′)(ϕ(x)). Futhermore, by
2.28(a),

projPs(c)(x) = projPs(c)(projRK(c)(x)) = projRK(c)(x),

since projRK(c)(x) ∈ Ps(c). Similarly,

projPs(c′)(ϕ(x)) = projPs(c′)(projRK(c′)(ϕ(x))) = projRK(c′)(ϕ(x)),
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since projRK(c′)(ϕ(x)) ∈ Ps(c′). Hence

δ(x, y) = δ(x, projRK(c)(x)) δ(projRK(c)(x), y)

= δ(x, projPs(c)(x)) δ(projPs(c)(x), y)

= δ′(ϕ(x),ϕ(projPs(c)(x))) δ′(ϕ(projPs(c)(x)),ϕ(y))

= δ′(ϕ(x), projPs(c′)(ϕ(x))) δ′(projPs(c′)(ϕ(x)),ϕ(y))

= δ′(ϕ(x), projRK(c′)(ϕ(x))) δ′(projRK(c′)(ϕ(x)),ϕ(y))

= δ′(ϕ(x),ϕ(y)).

�

4.2.5 Proposition
Let Π be a spherical Coxeter diagram with vertex set I, let (W ,S) be the
corresponding Coxeter system and let ∆ = (C, δ) be a building of type Π.
Let R be a residue of type J and let T be a residue which is opposite to R.
Let σ ∈ Aut(W ,S) be given by σ(s) := (rSrJ)s(rSrJ)−1 for all s ∈ S.

(a) The projection map projRT : R → T is a σ-isometry.

(b) The projection maps projRT and projTR are mutually inverse.

(c) For any ϕ ∈ Aut(∆) we have ϕ ◦ projRT = proj
ϕ(R)
ϕ(T ) ◦ϕ|R.

Proof Parts (a) and (b) of the assertion follow from [AB, 5.116].
Let τ ∈ Aut(W ,S) be the accompanying automorphism of ϕ. Let c ∈ R
and d ∈ T be chambers and set w := δ(c, d). Then,

`(δ(ϕ(c),ϕ(projT (c)))) = `(τ(δ(c, projT (c)))) = `(δ(c, projT (c)))

= `(min{δ(c, T )} = `(min{wWopS(J)})
= `(min{τ(w)Wτ(opS(J))) = `(min{δ(ϕ(c),ϕ(T ))}).

e conclude that ϕ(projT (c)) = projϕ(T )(ϕ(c)). �
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4.3 Building geometries

We freely use the interplay between spherical buildings and flag complexes
of geometries as developed in [Ti81, section 1], [Ti74, chapters 6-9] and [BC,
chapter 3].

Let I be a set.

4.3.1 Definition
A triple G = (X, τ , ∗) is called an incidence system over I if

(i) X is a set;

(ii) ∗ is a symmetric and reflexive relation on X;

(iii) τ is a map from X to I such that for any two elements x, y ∈ X with
τ(x) = τ(y), the relation x ∗ y holds if and only if x = y.

The elements of X are called the vertices of G, the relation ∗ is called
incidence relation and the image under τ of a vertex is called its type.

4.3.2 Definition
Let G = (X, ∗, τ) be an incidence system over I.

(a) If A ⊆ X, we say that A is of type τ(A) and of rank |τ(A)|. The cotype
of A is I\τ(A) and the corank of A is the cardinality of I\τ(A).

(b) Given Y ⊂ X, we set Y ∗ := {x ∈ X | x ∗ y ∀y ∈ Y }.

(c) A flag of G is a set of mutually incident elements of G. Flags of G of
type I are called chambers.

(d) We denote the set of all flags of G by flag(G).

4.3.3 Definition
An incidence system over I in which every maximal flag is a chamber is
called geometry over I.

4.3.4 Definition
A geometry G is thick if every flag of type other than I is contained in at
least three distinct chambers of G.

4.3.5 Definition
Let G = (X, ∗, τ) and G′ = (X ′, ∗′, τ ′) be geometries over type sets I and I ′

respectively. A bijection α : X → X ′ is an isomorphism if α and α−1 are
incidence preserving.

Moreover, if I = I ′ and τ = τ ′ ◦ α, then α is called special.
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4.3.6 Definition
Let G be a geometry and let F ∈ flag(G) be a flag. Set res(F ) := F ∗\F and
let ∗F and τF be the restrictions of ∗ (resp. τ) to res(F ) × res(F ) (resp.
res(F )). The residue of F in G is the geometry Res(F ) := (res(F ), ∗F , τF )
over the type set I\τ(F ).

4.3.7 Remark
Let Π be a Coxeter diagram with vertex set I and let ∆ be a building of type
Π. Then ∆ can be seen as the flag complex of a geometry G over the type
set I. More precisely: the elements of ∆ may be identified with the flags of
G. To every residue R of ∆ there corresponds a flag FR of G in such a way
that R ' Flag(Res(FR)). In particular, the chambers of ∆ correspond to
the maximal flags of G. Geometries arising in this way from a building are
called building geometries.
Let G be a building geometry. The associated building ∆ = Flag(G) is thick
if and only if G is thick.

4.3.8 Remark (Building geometries of type An)
Let Π be the Coxeter diagram An labeled as in 2.3. Let S = (P ,L) be a
projective space of finite rank n and let V(S) be the set of all non-trivial
subspaces of S. We define τ : V(S) → {1, . . . ,n} via τ(U) := dim(U) + 1
as well as an incidence relation ∗ on V(S) by putting U ∗W if and only if
U ⊆ W or W ⊆ U . The resulting triple G(S) = (V(S), ∗, τ) is a geometry,
called the projective geometry associated with S. The corresponding flag
complex Flag(G(S)) is a building of type An.

Conversely, if ∆ is a building of type An, there exists a projective space S ′
of finite rank n such that ∆ ' Flag(G(S ′)), where G(S ′) is the projective
geometry associated with S ′.
An automorphism of the projective space S induces an automorphism of the
geometry G(S) (and thus an automorphism of the building Flag(G(S))). The
following is well known: Let α ∈ Sym(V(S)) be an automorphism of G(S).
Then α either preserves inclusion or it reverses inclusion. Moreover, if α
preserves inclusion, then there exists a unique automorphism of S inducing
α. If α reverses inclusion, it is induced by a unique duality of S.

Two elements U ,V ∈ V(S) are said to be opposite, if U ∩ V = ∅ and
〈U ,V 〉 = P . Two flags F ,F ′ ∈ flag(G(S)) are opposite if for each U ∈ F
there exists V ∈ F ′ such that U and V are opposite and vice versa.
Let F = {p,h} and F ′ = {q,h′} be opposite flags each consisting of a point
and a hyperplane. Then G(Res(F )) ' G(Sh∩h′).

4.3.9 Remark (Building geometries of type Cn)
Let Π be the Coxeter diagram Cn labeled as in 2.3. Let S = (P ,L) be a
non-degenerate polar space of finite rank n and let V(S) be the set of all
non-trivial singular subspaces of S. We define τ : V(S) → {1, . . . ,n} via



56 Chapter 4. Spherical buildings and geometries

τ(U) := rk(U) as well as an incidence relation ∗ on V(S) by putting U ∗W
if and only if U ⊆W or W ⊆ U . The resulting triple G(S) = (V(S), ∗, τ) is
a geometry, called the polar geometry associated with S. The corresponding
flag complex Flag(G(S)) is a building of type Cn.

Conversely, if ∆ is a building of type Cn, there exists a non-degenerate polar
space S ′ of finite rank n such that ∆ ' Flag(G(S ′)), where G(S ′) is the polar
geometry associated with S ′.

An automorphism of the polar space S induces an automorphism of the
geometry G(S) (and thus an automorphism of the building Flag(G(S))).
Let α ∈ Sym(V(S)) be an automorphism of G(S) and suppose that n ≥ 3.
Then α preserves inclusion and there exists a unique automorphism of S
inducing α.

Two elements U ,V ∈ V(S) are said to be opposite, if (U ,V ) is a hyperbolic
pair of S. Two flags F ,F ′ ∈ flag(G(S)) are opposite if for each U ∈ F there
exists V ∈ F ′ such that U and V are opposite and vice versa.
Let p and q be two non-collinear points of S. Then G(Res(p)) ' G(Spq).

4.3.10 Remark (Building geometries of type Dn)
Let Π be the Coxeter diagram Dn labeled as in 2.3. Let S = (P ,L) be a
polar space of type D of finite rank n and let Vo(S) be the set of all non-
trivial singular subspaces of S which are not submaximal. We fix a maximal
singular subspace M of S. We define a map τ : Vo(S)→ {1, . . . ,n} via

τ(U) :=


i, 1 ≤ rk(U) = i ≤ n− 2

n− 1, U ∩M ∈ Vo(S)

n, otherwise

as well as an incidence relation ∗ on Vo(S) by U ∗W if and only if U ⊆ W
or W ⊆ U or if U ∩W /∈ Vo(S). The resulting triple Go(S) = (Vo(S), ∗, τ)
is a geometry, called the oriflamme geometry associated with S. The flag
complex Flag(Go(S)) is a building of type Dn.

Conversely, if ∆ is a building of type Dn, there exists a polar space S ′ of
type D of finite rank n such that ∆ ' Flag(Go(S ′)), where Go(S ′) is the
oriflamme geometry associated with S ′.

If n ≥ 5, each αo ∈ Aut(Go(S)) is an inclusion-preserving permutation
of Vo(S). Moreover, Aut(G(S)) stabilizes the set Vo(S) and the mapping
π 7→ π|Vo(S) is an isomorphism from Aut(G(S)) onto Aut(Go(S)).

4.3.11 Remark
It readily follows from the definitions that the automorphism groups of G
and Flag(G) are the same and that the stabilizer of a subset X ′ ⊆ X in
Aut(G) corresponds to the stabilizer of flag(X′) in Aut(Flag(G)).
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If G is a geometry associated to a projective or polar space S as described
in 4.3.8 and 4.3.9, we identify the automorphisms of Aut(S) with the auto-
morphisms of G they induce.

4.3.12 Definition
Let ∆ be a building and let G be a geometry such that ∆ ' Flag(G).

(a) Let F and F ′ be two flags of G corresponding to residues R and T of
∆. We set R′ := projR(T ) and let F ′′ be the flag corresponding to
R′. We define projF (F ′) := F ′′\F .

(b) Let F and F ′ be opposite flags in G. We define the mapping

projFF ′ : Res(F )→ Res(F ′) by projFF ′ := projF ′ |Res(F ).

4.3.13 Remark
Let G be a spherical building geometry and let F ,F ′ ∈ flag(G) be oppo-

site flags of G. Then the projection mappings projFF ′ and projF
′

F are mu-
tually inverse isomorphisms and they commute with every automorphism
α ∈ Aut(G), i.e.

proj
α(F )
α(F ′) ◦α|Res(F ) = α ◦ projFF ′ .
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Some specific extensions

5.1 Sesquilinear forms

5.1.1 Notation
Let V be a vector space over a skew field K of finite dimension n ≥ 3. Choose
linearly independent v,w ∈ V and let B := {v,w, b3, . . . , bn} be a basis of V .
Let H := 〈b3, . . . , bn〉 and suppose that f : H ×H → K is a (σ, ε)-hermitian
sesquilinear form with σ2 = idK and ε2 = 1K.

Let pH : V → H be the projection onto H with respect to the basis B, i.e.
for any x =

∑
b∈B λb · b ∈ V there is pH(x) =

∑
b∈B\{v,w} λb · b. Similarly we

let γv : V → 〈v〉 and γw : V → 〈w〉 be the projections onto 〈v〉 and 〈w〉 with
respect to the basis B respectively, i.e. γv(x) = λv and γw(x) = λw.

To abbreviate notation we write λ̄ instead of σ(λ) for all λ ∈ K.

5.1.2 Definition
We define a map fv,w : V × V → K via

fv,w(x, y) := εγv(x)γw(y) + γw(x)γv(y) + f(pH(x), pH(y))).

5.1.3 Proposition
The map f̄ := fv,w is a reflexive non-degenerate σ-sesquilinear form on V
and f̄ |H = f .

Proof Let x,x′, y, y′ ∈ V . An easy calculation, using that γv, γw : V → K
and pH : V → H are linear, shows that

f̄(x+ x′, y + y′) = f̄(x, y) + f̄(x, y′) + f̄(x′, y) + f̄(x′, y′).

58
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Furthermore, since ε ∈ Z(K), for c, d ∈ K we have

f̄(c · x, d · y) = εγv(cx)γw(dy) + γw(cx)γv(dy) + f(pH(cx), pH(dy))

= c(εγv(x)γw(y) + γw(x)γv(y))d+ cf(pH(x), pH(y))d

= cf̄(x, y)d.

Hence, f̄ is a σ-sesquilinear form on V .

Next we show that f̄ is reflexive. For, let x, y ∈ V such that

f̄(x, y) = εγv(x)γw(y) + γw(x)γv(y) + f(pH(x), pH(y))) = 0K.

Multiplying the equation with ε yields

0K = ε2γv(x)γw(y) + εγw(x)γv(y) + εf(pH(x), pH(y))).

Applying the anti-automorphism σ yields

0K = γv(x)γw(y) + εγw(x)γv(y) + εf(pH(x), pH(y)))

= εγv(y)γw(x) + γw(y)γv(x) + f(pH(y), pH(x)) = f̄(y,x).

In order to show that f̄ is non-degenerate, due to the fact that f̄ is re-
flexive, it suffices to show that for any x ∈ V there exists a vector y ∈ V
such that f̄(x, y) 6= 0 − K. Since f is non-degenerate it suffices to con-
sider the case that γv(x) 6= 0K or γw(x) 6= 0K. In the first case choose
β ∈ K\{(εγv(x))−1(−γw(x))}. Then

f̄(x, v + β · w) = εγv(x)γw(v + β · w) + γw(x)γv(v + β · w)

= εγv(x)β + γw(x) 6= 0K.

If γv(x) = 0K choose ν ∈ K\{0K}. Then

f̄(x, ν · v) = γw(x)γv(ν · v) = γw(x)ν 6= 0K.

�
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5.2 Semi-linear similitudes

5.2.1 Notation
Let Λ = (K,V ,Q) be a regular quadratic space of finite dimension and Witt

index k ≥ 4. Let (v,w) be a hyperbolic pair of Λ and set H := H(v,w)⊥.
Let Λ′ := (K,H,Q|H). Let BH be a basis of H and set B := BH ∪ {v,w}.
As in the previous section we let pH : V → H, γv : V → 〈v〉 and γw : V → 〈w〉
be the corresponding projections with respect to the basis B.

Let τ ∈ ΓO(Λ′) be a semi-linear similitude such that τ2 ∈ HT(H). Let
σ ∈ Aut(K) and µ ∈ K∗ be the accompanying automorphism and constant
of τ and let c ∈ K be such that τ2 = c idH . Note that, by 1.34(a) we have
σ2 = idK. To abbreviate notation we write λ̄ instead of σ(λ) for all λ ∈ K.
We suppose that there exist λ1,λ2 ∈ K satisfying λ1λ̄1 = c = λ2λ̄2 and
λ1λ2 = µ.

5.2.2 Definition
We define a map τ(v,w),(λ1,λ2) : V → V via

τ(v,w),(λ1,λ2)(x) := λ1γv(x) · v + λ2γw(x) · w + τ(pH(x)).

5.2.3 Proposition
The map τ̄ := τ(v,w),(λ1,λ2) is a σ-semi-linear µ-similitude such that τ̄2 = c idV
and τ̄ |H = τ .

Proof First notice that for any x ∈ V we have the following:

Q(x) = Q(pH(x)) + γv(x)γw(x). (5.1)

Now for all x, y ∈ V and ν ∈ K we have

τ̄(x+ y) = λ1γv(x+ y) · v + λ2γw(x+ y) · w + τ(pH(x+ y))

= λ1γv(x) · v + λ2γw(x) · w + τ(pH(x)) + λ1γv(y) · v
+ λ2γw(y) · w + τ(pH(y))

= τ̄(x) + τ̄(y)

as well as

τ̄(νx) = λ1γv(ν · x) · v + λ2γw(ν · x) · w + τ(pH(ν · x))

= ν̄(λ1γv(x)v + λ2γw(x)w + τ(pH(x)) = ν̄τ̄(x)

and

Q(τ̄(x)) = Q(pH(τ̄(x))) + γv(τ̄(x))γw(τ̄(x))

= Q(τ(pH(x))) + λ1γv(x)λ2γw(x)

= µQ(pH(x)) + λ1λ2γv(x)γw(x)

= µ(Q(pH(x) + γv(x)γw(x)) = µQ(x).



Chapter 5. Some specific extensions 61

Moreover, for any x ∈ V

τ̄2(x) = τ̄(λ1γv(x) · v + λ2γw(x) · w + τ(pH(x)))

= λ1λ1γv(x) · v + λ2λ2γw(x) · w + τ2(pH(x))

= c · (γv(x) · v + γw(x) · w + ·pH(x)) = c · x.

�

5.2.4 Notation
Let Λ = (K,V ,Q) be a hyperbolic quadratic space of dimension 2n ≥ 10.
Let v1, . . . , vn,w1, . . . ,wn ∈ V such that V =

⊕n
i=1 H(vi,wi).

Let H :=
⊕n

i=3 H(vi,wi) and Λ′ = (K,H,Q|H). As in the previous section
we let pH : V → H, γvi : V → 〈vi〉 and γwi : V → 〈wi〉 for i = 1, 2 be the
corresponding projections with respect to the basis {v1, . . . , vn,w1, . . . ,wn}.

Let τ ∈ ΓO(Λ′) be a semi-linear similitude such that τ2 = c idH ∈ HT(H)
for some c ∈ K. Let σ ∈ Aut(K) and µ ∈ K∗ be the accompanying auto-
morphism and constant of τ . By 1.34, σ2 = idK, σ(c) = c and c2 = µσ(µ).

We may assume that fQ(v2,w2) = c−1µ.
To abbreviate notation we write λ̄ instead of σ(λ) for all λ ∈ K.

5.2.5 Definition
We define a map τ(v1,w1),(v2,w2) : V → V via

τ(v1,w1),(v2,w2)(x) := γv2(x)c·v1+γv1(x)·v2+γw2(x)·w1+γw1(x)c·w2+τ(pH(x)).

5.2.6 Proposition
The map τ̄ := τ(v1,w1),(v2,w2) is a σ-semi-linear µ-similitude, τ̄2 = c idV and
τ̄ |H = τ .

Proof For all x, y ∈ V and λ ∈ K we have

τ̄(x+ y) = γv2(x+ y)c · v1 + γv1(x+ y) · v2 + γw2(x+ y) · w1

+ γw1(x+ y)c · w2 + τ(pH(x+ y))

= τ̄(x) + τ̄(y)

as well as

τ̄(λ · x) = γv2(λ · x)c · v1 + γv1(λ · x) · v2 + γw2(λ · x) · w1 + γw1(λ · x)c · w2

+ τ(pH(λ · x))

= λ(τ̄(x)).
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Note that

Q(x) = Q(γv1(x) · v1 + γv2(x) · v2 + γw1(x) · w1 + γw2(x) · w2 + pH(x))

= fQ(γv1(x) · v1 + γv2(x) · v2 + γw1(x) · w1 + γw2(x) · w2, pH(x))

+Q(γv1(x) · v1 + γv2(x) · v2 + γw1(x) · w1 + γw2(x) · w2)

+Q(pH(x))

= fQ(γv1(x) · v1 + γw1(x) · w1, γv2(x) · v2 + γw2(x) · w2)

+Q(γv1(x) · v1 + γw1(x) · w1) +Q(γv2(x) · v2 + γw2(x) · w2)

+Q(pH(x))

= fQ(γv1(x) · v1, γw1(x) · w1) + fQ(γv2(x) · v2, γw2(x) · w2)

+Q(pH(x))

= γv1(x)γw1(x) + c−1µγv2(x)γw2(x) +Q(pH(x)).

Using this it follows that

Q(τ̄(x)) = Q(γv2(x)c · v1 + γv1(x) · v2 + γw2(x) · w1 + γw1(x)c · w2

+ τ(pH(x)))

= fQ(γv2(x)c · v1 + γv1(x) · v2 + γw2(x) · w1 + γw1(x)c · w2,

τ(pH(x))) +Q(τ(pH(x)))

+Q(γv2(x)c · v1 + γv1(x) · v2 + γw2(x) · w1 + γw1(x)c · w2)

= fQ(γv2(x)c · v1 + γw2(x) · w1, γv1(x) · v2 + γw1(x)c · w2)

+Q(γv2(x)c · v1 + γw2(x) · w1)

+Q(γv1(x) · v2 + γw1(x)c · w2) + µQ(pH(x))

= fQ(γv2(x)c · v1, γw2(x) · w1) + fQ(γv1(x) · v2, γw1(x)c · w2)

+ µQ(pH(x))

= cγv2(x)γw2(x) + µγv1(x)γw1(x) + µQ(pH(x))

= µ(µc−1γv2(x)γw2(x) + γv1(x)γw1(x) +Q(pH(x))) = µQ(x).

Moreover,

τ̄2(x) = τ̄(γv2(x)c · v1 + γv1(x) · v2 + γw2(x) · w1 + γw1(x)c · w2

+ τ(pH(x)))

= γv1(x)c · v1 + γv2(x)c · v2 + γw1(x)c · w1 + γw2(x)c · w2

+ τ2(pH(x))

= c (γv1(x) · v1 + γv2(x) · v2 + γw1(x) · w1 + γw2(x) · w2 + pH(x))

= c · x.

�
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5.3 On projective spaces

Throughout this section let S = P(V ) be a projective space of dimension
d ≥ 5. Let F = {p,h} ∈ flag(G(S)) be a flag of the projective geometry
associated with S consisting of a point p and a hyperplane h. Let F ′ = {q,h′}
be a flag opposite to F and let H ≤K V be such that S ′ := Sh∩h′ = P(H).
Let v,w ∈ V be such that p = 〈v〉 and q = 〈w〉.
We choose a Basis BH of H and let B := BH ∪ {v,w}. Let pH : V → H
be the projection onto H with respect to the basis B, let γv : V → 〈v〉 and
γw : V → 〈w〉 be the projections onto 〈v〉 and 〈w〉 with respect to the basis
B respectively.

We suppose that there is a polarity π of S ′ such that there exist at least
three points of S ′ which are absolute with respect to π such that there are
no absolute subspaces of dimension higher than 0. According to 3.2.9 there
exists a reflexive sesquilinear form f on H inducing the polarity π.

Let f̄ := fv,w be the reflexive non-degenerate sesquilinear form on V defined
in 5.1.2 and let π̄ be the polarity of S induced by f̄ .

5.3.1 Lemma
A point z = 〈x〉 of S is contained in π̄(p) if and only if γw(x) = 0K. It is
contained in π̄(q) if and only if γv(x) = 0K.

Proof

Let x ∈ V and let z = 〈x〉 be the corresponding point of S. Then

z ∈ π̄(p)⇔ f̄(v,x) = 0K

⇔ εγv(v)γw(x) + γw(v)γv(x) + f(pH(v), pH(x)) = 0K

⇔ εγw(x) = 0K ⇔ γw(x) = 0K

where the last equivalence follows since ε 6= 0K. Similarly we have

z ∈ π̄(q)⇔ γv(x) = 0K.

�

5.3.2 Corollary
(a) The points p and q are absolute with respect to π̄.

(b) The unique line through p and q is not absolute.

(c) If z is a point of S ′ which is absolute with respect to π, it is also
absolute with respect to π̄ and the unique line of S through p and z
is absolute.
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(d) π̄(p) = h.

Proof In view of 3.2.11(b), parts (a)-(c) follow from 5.3.1. By 5.3.1 we
have π̄(p) = P(Ker(γw)) is a (d − 1)-dimensional projective space. Since
〈H, v〉 ⊆ Ker(γw) we conclude that h = P(〈H, v〉) ⊆ π̄(p). Since π̄(p) is a
hyperplane, equality holds. �

5.3.3 Lemma
For any point z of S ′ we have π̄(z) = 〈π(z), p, q〉.

Proof Let x ∈ H such that z = 〈x〉. Since f̄ is an extension of f we have
by definition

π(z) = {y ∈ H | f(x, y) = 0K} ⊆ {u ∈ V | f̄(x,u) = 0K} = π̄(z).

Since p and q are contained in π̄(z) by 5.3.1 and since dim(π(z)) = d − 3
while dim(π̄(z)) = d− 1 we conclude that π̄(z) = 〈π(z), p, q〉. �

5.3.4 Lemma
Let U be a subspace of S which is absolute with respect to π̄. Then U is a
point or a line.

Proof Let U be a subspace of S which is absolute with respect to π̄ and
suppose that dim(U) ≥ 1.

Assume that p ∈ U . Then p ∈ U ⊆ π̄(U) ⊆ π̄(p) an hence U ∈ res({p, π̄(p)}).
Thus U ′ := U ∩ π̄(q) is a subspace of S ′ with dim(U ′) = dim(U)− 1.
By definition π(U ′) = {x ∈ H | f(y,x) = 0K ∀y ∈ U ′}. Let u,u′ ∈ U ′ ⊆ U .
Since U is presumed to be absolute with respect to π̄ we have

0K = f̄(u,u′) = f(u,u′)

and hence U ′ ⊆ π(U ′), i.e. U ′ is absolute with respect to π. Our assumption
yields that U ′ has to be a point. Hence, since dim(U) = dim(U ′) + 1, U is
a line.

Now suppose that p /∈ U . Then U ⊆ π̄(U) 6⊆ π̄(p). Let z ∈ U be a point
which is not contained in π̄(p). Note that z is absolute with respect to π̄ by
3.2.11. Since z /∈ π̄(p) the two flags Fp := {p, π̄(p)} and Fz := {z, π̄(z)} are
opposite, stabilized by π̄ and, by construction, U ∈ res(Fz).
Let U ′ := projFzFp(U). Then, applying 4.3.13 and using the fact that U ⊆ π̄(U),
we obtain

U ′ = projFzFp(U) ⊆ projFzFp(π̄(U)) = π̄(projFzFp(U)) = π̄(U ′).
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Thus, U ′ is a subspace containing p which is absolute with respect to π̄. In
view of the first part of this proof, U ′ is a line and the assertion follows since
1 = dim(U ′) = dim(U). �

5.3.5 Lemma
There exist at least three lines containing p which are absolute with respect
to π̄.

Proof By our assumption there are at least three points z1, z2, z3 of S ′
which are absolute with respect to π. For each 1 ≤ i ≤ 3 the subspace
〈p,xi〉 is a line containing p. In view of 5.3.2 each of these lines is absolute
with respect to π̄. �

5.3.6 Proposition
The polar space Sπ̄ is thick, non-degenerate and of finite rank n = 2.

Proof

It follows from 5.3.4 that rk(Sπ̄) = 2.

Consider the points p and q. Since p /∈ π̄(q), p and q are non-collinear.
Now let z be any point of S which is absolute with respect to π̄. If z is
non-collinear with p or with q there is nothing to do. So suppose that z is
collinear with both, p and q. By 5.3.1, z = 〈x〉 for some x ∈ H and it is
absolute with respect to π. By assumption there exists a second point z′

of S ′ which is absolute with respect to π. The line through z and z′ is not
absolute with respect to π. Hence z′ is a point of S which is absolute with
respect to π̄ and non-collinear with z.

By 5.3.5 there exists an absolute point which is incident with at least three
absolute lines. Let l be an absolute line. Since l is incident with at least
three points and all these points are absolute by 3.2.11, it follows from 3.3.4
that Sπ̄ is thick. �

5.3.7 Corollary
Let S be a projective space of finite dimension d ≥ 3, let F and F ′ be
opposite flags of the associated projective geometry G(S) each consisting
of a point and a hyperplane. Let π be a polarity of the projective space
associated to the geometry Res(F ) and suppose that there are at least
three points which are absolute with respect to π but no higher dimensional
absolute subspaces. Then π can be extended to a polarity π̄ of S stabilizing
the flag F such that the polar space defined by π̄ is thick, non-degenerate
and of finite rank 2.
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5.4 On polar spaces I

Throughout this section let S = P(Λ) be a polar space defined over a finite-
dimensional regular quadratic space Λ = (K,V ,Q) of Witt index k ≥ 4.
Let p, q be two non-collinear points of S, let v,w ∈ V be such that 〈v〉 = p
and 〈w〉 = q. Set H := H(v,w)⊥ and Λ′ := (K,H,Q|H). With this setup
we have Spq = P(Λ′) (cf. 3.3.13).
Suppose that there is an involution α ∈ Aut(Spq) which fixes at least three
pairwise non-collinear points but no higher rank singular subspaces. By
3.3.12(b) there exist σ ∈ Aut(K) and µ ∈ K such that α is induced by a
σ-semi-linear µ-similitude τ ∈ ΓO(Λ′).
Since α is an involution, τ2 ∈ Ker(ϕΛ′) = HT(H). In particular, there exists
c ∈ K such that τ2 = c idH .
Let x, y be two non-collinear points of Spq such that α(x) = x and α(y) = y
and let u1,u2 ∈ H such that 〈u1〉 = x and 〈u2〉 = y. We may assume that
u1 and u2 were chosen in such a way that fQ(u1,u2) = 1. Let λ1,λ2 ∈ K
such that τ(ui) = λiui for i = 1, 2. Then

cui = τ2(ui) = λiσ(λi)ui

and whence λiσ(λi) = c for i = 1, 2. Moreover,

λ1λ2 = fQ(λ1u1,λ2u2) = fQ(τ(u1), τ(u2))

= Q(τ(u1) + τ(u2))−Q(τ(u1))−Q(τ(u2))

= Q(τ(u1 + u2)) = µσ(Q(u1 + u2)) = µσ(fQ(u1,u2)) = µ,

since u1 and u2 are isotropic.
Let τ̄ := τ(v,w),(λ1,λ2) ∈ ΓO(Λ) be the σ-semi-linear µ-similitude defined in
5.2.2 and let ϕ := ϕΛ(τ̄) ∈ Aut(S) be the automorphism induced by τ̄ .

5.4.1 Proposition
The automorphism ϕ ∈ Aut(S) has the following properties:

(a) ϕ is an involution.

(b) ϕ fixes the points p and q.

(c) ϕ stabilizes three lines through p.

(d) The line through p and x is incident with three fixed points.

(e) If U is a singular subspace of S which is stabilized by ϕ, then U is a
point or a line.

(f) Each line of S which is stabilized by ϕ is incident with at least two
fixed points.
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Proof

(a) By 3.3.12(a) we have

idS = ϕΛ(c idV ) = ϕΛ(τ̄2) = ϕΛ(τ̄)2.

(b) By definition we have

ϕ(p) = 〈τ̄(v)〉 = 〈λ1v〉 = 〈v〉 = p

and similarly, since τ̄(w) = λ2w, ϕ(q) = q.

(c) By assumption there exist three points x1,x2,x3 ∈ Spq which are fixed
by α and hence by ϕ. For i = 1, 2, 3 let li be the unique line through
p and xi. Since xi is non-collinear with xj for all 1 ≤ i 6= j ≤ 3 the
lines li are pairwise distinct. Now ϕ(li) is a line through the points
ϕ(p) = p and ϕ(xi) = α(xi) = xi, hence ϕ(li) = li.

(d) Recall that x = 〈u1〉 and τ̄(u1) = τ(u1) = λ1u1. By definition we have
p = 〈v〉 and τ̄(v) = λ1v. The unique line l through p and x is given by
l = 〈u1, v〉. Consider the point z := 〈u1 + v〉. Then z is incident with
l and fixed by ϕ since τ̄(u1 + v) = λ1(u1 + v).

(e) Let U be a singular subspace of S which is stabilized by ϕ and suppose
that k := rk(U) ≥ 3.
If U ⊆ p⊥ ∩ q⊥, the assumption yields rk(U) = 1, a contradiction. So
U 6⊆ q⊥ or U 6⊆ p⊥. Suppose that U 6⊆ q⊥ but U ⊆ p⊥. Then, by
3.3.7, U ′ := U ∩ q⊥ is a singular subspace of S of rank k − 1 ≥ 2.
By construction, U ′ is a subspace of Spq which is stabilized by α and
hence rk(U ′) ≤ 1. Again, this is impossible. As the same contradiction
arises in the case U 6⊆ p⊥ and U ⊆ q⊥ we conclude that U 6⊆ p⊥ ∪ q⊥.
Let x ∈ U be a point such that x and p are non-collinear. Note that
U ⊆ x⊥ and that ϕ(x) ∈ U is a point non-collinear with ϕ(p) = p. Let
U ′ := projxp(U). Then, in view of 4.2.5 and 4.3.12,

ϕ(U ′) = ϕ(projxp(U)) = projϕ(x)
p (ϕ(U)) = projϕ(x)

p (U) = U ′.

Hence, U ′ is a singular subspace of rank k satisfying U ′ ⊆ p⊥ which is
stabilized by ϕ. The considerations above imply that such a subspace
does not exist.

(f) Let l be a line of S which is stabilized by ϕ.
First assume that l is a line through p. Then q is collinear with a
unique point on l and by 3.3.16 this point is a fixed point. Similarly
each line stabilized by ϕ through q is incident with two fixed points.
Suppose that l is not incident with p nor with q. Let z and z′ be
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the unique point on l which is collinear with p and q respectively. If
z 6= z′ then the assertion follows since z and z′ are fixed by ϕ by 3.3.16.
Otherwise z = z′ is a fixed point of Spq and we may choose another
fixed point y ∈ Spq. Since z and y cannot be collinear (otherwise there
would exist a line in Spq which is stabilized by α) there is a unique
point on l collinear with y and this point is fixed according to 3.3.16.

�

We have seen that there are points and lines which are stabilized by ϕ.
Moreover, as each such line is incident with at least two fixed points, we are
able to make the following definition:

5.4.2 Definition
We define a point-line space Sϕ = (Pϕ,Lϕ) via

Pϕ := {p ∈ P | ϕ(p) = p}

and
Lϕ := {l ∈ L | ϕ(l) = l}.

5.4.3 Proposition
The point-line space Sϕ is a thick, non-degenerate polar space of rank 2.

Proof Let l be a line of Sϕ and let p be a point of Sϕ not on l. Since l is
a line of S and p is a point of S axiom (P1) gives that p is either incident
with all points on l or with precisely one point on l. In particular, in the
first case, p is collinear with all fixed points on l. If p is collinear with a
unique point on l, this point needs to be a fixed point by 3.3.16. Thus (P1)
is satisfied.
Recall that the points p and q are non-collinear. So let x be a point of Sϕ
collinear with p and q. Then x is a point of Spq which is fixed by α. Since
there are at least three points in Spq which are fixed by α and since all such
points are pairwise non-collinear, there is a fixed point non-collinear with x.
It follows from 5.4.1(b) that Sϕ is of rank 2.
According to 5.4.1 (c) and (d) the point p is incident with three ϕ-invariant
lines and at least one of these lines is incident with at least three fixed points.
According to 3.3.4 the polar space Sϕ is thick. �

5.4.4 Corollary
Let S be a non-degenerate polar space defined over a quadratic space of
finite rank n ≥ 4 and let p and q be two non-collinear points of S. Let α
be an involutory automorphism of the polar space Spq and suppose that α
fixes at least three points but no singular subspaces of higher rank. Then α
can be extended to an involutory automorphism ᾱ of S fixing the point p
such that the polar space defined by the fixed points and lines of ᾱ is thick,
non-degenerate and of finite rank 2.
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5.5 On polar spaces II

Throughout this section let S be a polar space of type D of finite rank n ≥ 6
and let Λ = (K,V ,Q) be a hyperbolic quadratic space such that S ' P(V ).

Let l, g be two lines of S such that (l, g) is
a hyperbolic pair of S and let p be a point
incident with l. By 3.3.6 there exists a unique
point q on g collinear with p. Choose a second
point p′ on l and let q′ be the unique point on
g collinear with p′.

p q

p′ q′

l

g

Let v1,w1, v2,w2 ∈ V be such that 〈v1〉 = p, 〈v2〉 = p′, 〈w1〉 = q′ and
〈w2〉 = q. Since the pair (p, q′) is a hyperbolic pair of S, the vectors v1

and w1 can be chosen such that (v1,w1) is a hyperbolic pair of Λ. Simi-
larly, we may assume that (v2,w2) is also a hyperbolic pair of Λ. Set
H := H(v1,w1)⊥ ∩ H(v2,w2)⊥ and Λ′ := (K,H,Q|H). With this setup
we have S(l,g) = P(Λ′) (applying 3.3.13 twice).

Suppose that there is an involution α ∈ Aut(S(l,g)) which fixes at least three
pairwise opposite lines but no points or higher rank singular subspaces. By
3.3.12(b), there exist σ ∈ Aut(K) and µ ∈ K such that α is induced by a
σ-semi-linear µ-similitude τ ∈ ΓO(Λ′).
Since α is an involution, τ2 ∈ Ker(ϕΛ′) = HT(H). In particular, there exists
c ∈ K such that τ2 = c idH .

We may assume that fQ(v2,w2) = c−1µ. Let τ̄ := τ(v1,w1),(v2,w2) ∈ ΓO(Λ) be
the σ-semi-linear µ-similitude defined in 5.2.5 and let ϕ := ϕΛ(τ̄) ∈ Aut(S)
be the automorphism induced by τ̄ . Note that, by 1.34(c), σ(c) = c.
For reasons of brevity we write λ̄ instead of σ(λ) for all λ ∈ K.

5.5.1 Lemma
(a) ϕ is an involution.

(b) There exists no λ ∈ K such that λλ = c.

Proof Part (a) is just the same as the proof of 5.4.1(a).
Let h be a line of the polar space S(l,g) which is stabilized by α and choose
a point x on h. By assumption α(x) is a point on h different from x. Let
v ∈ H be isotropic such that x = 〈v〉. Then α(x) = 〈τ(v)〉. Let λ ∈ K such
that λλ = c and consider the isotropic vector u := λv + τ(v) ∈ H. Then

τ(u) = τ(λv) + τ(τ(v)) = λτ(v) + c · v = λ(τ(v) + λv) = λu

and the corresponding point 〈u〉 of S(l,g) is fixed by α. But such points do
not exist.

�
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5.5.2 Lemma
The involution ϕ has the following properties:

(a) ϕ does not fix any points.

(b) ϕ(p) = p′ and ϕ(q) = q′.

(c) ϕ stabilizes the lines l and g.

Proof

(a) Let x be a point of S and suppose that ϕ(x) = x. Let u ∈ V such that
x = 〈u〉. Then there exists λ ∈ K such that τ̄(u) = λu. Thus

cu = τ̄2(u) = τ̄(λu) = λ̄τ̄(u) = λ̄λu,

but this is a contradiction to 5.5.1(a).

(b) This follows from the definition of τ̄ , since τ̄(v1) = v2 and τ̄(w2) = w1.

(c) According to (b) we have ϕ(p) = p′. Since ϕ is an involution we also
have ϕ(p′) = ϕ2(p) = p. Thus, ϕ(l) is a line through p and p′. Whence,
ϕ(l) = l. Similarly ϕ(g) = g.

�

5.5.3 Lemma
Let U be a singular subspace of S which is stabilized by ϕ. Then either U
is a line or rk(U) = 4.

Proof According to 5.5.2(a) the automorphism ϕ does not fix any points
of S. Let U be a singular subspace of S which is stabilized by ϕ with
k := rk(U) ≥ 3.

First suppose that l ⊆ U . Since p ∈ U and since q′ is non-collinear with
p, the set U1 := U ∩ q′⊥ is a singular subspace of S of rank k − 1 ≥ 2
(cf. 3.3.7). Note that p′ ∈ U1 and that q is a point non-collinear with p′.
Applying again 3.3.7, we obtain that U2 := U1 ∩ q⊥ is a singular subspace
of S of rank k − 2 ≥ 1. By construction, U2 is a singular subspace of S(l,g)

which is stabilized by α. Hence rk(U ′) = 2 and thus k = rk(U) = 4.

If l 6⊆ U we have |U ∩ l| ≤ 1. Suppose that U ∩ l = {z} for some point z of
S. Since U and l are stabilized by ϕ, the intersection-point z needs to be
fixed by ϕ. But this is impossible and hence U ∩ l = ∅.
If all points of U are collinear with all points on l, consider the singular sub-
space M := 〈U , l〉. It contains the line l, is ϕ-invariant by 3.3.17 and, using
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the dimension formula for projective spaces, rk(M) ≥ 5. The considerations
above show that such a subspace does not exist and we conclude that there
exists a point x ∈ U which is not collinear with all points on l. Let xl be
the unique point on l collinear with x.

As U is ϕ-invariant, ϕ(x) ∈ U and
since U is singular, the points x and
ϕ(x) are collinear. Let h denote
the unique line through x and ϕ(x).
Since ϕ preserves collinearity, ϕ(x) is
collinear with a unique point on l,
namely ϕ(xl) 6= xl.

U

h l

ϕ(x)

x xl

ϕ(xl)

z

The pair (h, l) is a hyperbolic pair of S: If there exists z ∈ h ∩ l⊥, the
point xl has to be collinear with all points on h, in particular with ϕ(x).
But this is a contradiction to the fact that xl and ϕ(x) are non-collinear.
A similar argument shows that l ∩ h⊥ = ∅. Note that U ∈ res(h) and set
U ′ := projhl (U). Then, using 4.2.5,

ϕ(U ′) = ϕ(projhl (U)) = proj
ϕ(h)
ϕ(l) (ϕ(U)) = projhl (U) = U ′.

Hence, U ′ is a ϕ-invariant singular subspace of S containing the line l.
According to the considerations above rk(U) = rk(U ′) = 4. �

5.5.4 Lemma
There exist at least three ϕ-invariant singular subspaces of rank 4 which
contain the line l.

Proof By assumption there exist three pairwise opposite lines in S(l,g) which
are stabilized by α and hence by ϕ. Since each of these lines is contained in
l⊥, each such line, together with the line l, spans a singular subspace of S
which is ϕ-invariant by 3.3.17 and is thus of rank 4 according to 5.5.3. Note
that the subspaces are pairwise disjoint, since the lines are assumed to be
pairwise opposite. �

We have seen that there are lines and singular subspaces of rank 4 which
are stabilized by ϕ. Moreover, according to 3.3.18, each ϕ-invariant singular
subspace of rank 4 is incident with at least two ϕ-invariant lines. This
enables us to make the following definition:

5.5.5 Definition
We define a point-line-space Sϕ = (Pϕ,Lϕ) via

Pϕ = {l ∈ L | ϕ(l) = l}
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and

Lϕ := {U ∈ V(S) | rk(U) = 4,ϕ(U) = U}

by claiming that a line l ∈ Pϕ is incident with a subspace U ∈ Lϕ if and
only if l ⊆ U . Furthermore, two lines l, l′ ∈ Pϕ are collinear if and only if
the set l ∪ l′ is singular.

5.5.6 Lemma
Let l and l′ be ϕ-invariant lines of S and let U be a ϕ-invariant singular
subspace of S of rank 4.

(a) If l 6= l′ we have l ∩ l′ = ∅.

(b) If the set l ∪ l′ is not singular, then the pair (l, l′) is a hyperbolic pair.

(c) If l 6⊆ U , then l ∩ U = ∅.

Proof

(a) If l 6= l′ the intersection l ∩ l′ is a single point x. Now

ϕ(x) = ϕ(l ∩ l′) ⊆ ϕ(l) ∩ ϕ(l′) = l ∩ l′ = {x},

which is a contradiction to 5.5.2(a).

(b) Suppose that the set l ∪ l′ is not singular, in particular, l 6= l′. Then
there exist x,x′ ∈ l ∪ l′ such that x and x′ are non-collinear. As l and
l′ are both singular, we may assume that x ∈ l and x′ ∈ l′. Because of
(P1) the point x is collinear with a unique point on l′.
Suppose that there exists a point y ∈ l⊥∩l′. Then x and y are collinear.
Whence, y is the unique point on l′ collinear with x. Since ϕ preserves
collinearity and as l′ is ϕ-invariant, also ϕ(y) is a point on l′ collinear
with all points on l. In particular, ϕ(y) is collinear with x. Thus,
ϕ(y) = y. The singular subset {y} ∪ l spans a singular subspace of S
which is ϕ-invariant by 3.3.17 and, since y /∈ l by (a), this subspace is
of rank 3. But this is a contradiction to 5.5.3. Hence l⊥ ∩ l′ = ∅.

(c) Suppose that l 6⊆ U . Then |l ∩ U | ≤ 1. Suppose that the intersection
l ∩ U consists of a single point x of S. Again

ϕ(x) = ϕ(l ∩ U) ⊆ ϕ(l) ∩ ϕ(U) = l ∩ U = {x}.

Because of 5.5.2(a) this is impossible.

�
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5.5.7 Proposition
The point-line-space Sϕ is a thick, non-degenerate polar space of rank 2.

Proof Let U be a singular subspace of S which is ϕ-invariant and of rank
4. Let l be a line stabilized by ϕ and suppose that U and l are not incident.
In view of 5.5.6(c) this implies l ∩ U = ∅.
Furthermore assume that there exists a line h ⊆ U which is ϕ-invariant such
that the set l ∪ h is not singular. Choose a point x ∈ l. Since (l,h) is a
hyperbolic pair, there exists a unqiue point y on h such that x and y are
collinear. In particular, x is not collinear with all points of U . By 3.3.7,
therefore, U1 := U ∩ x⊥ is a singular subspace of rank 3. Note that y ∈ U1

and that ϕ(x) is a point on l which is non-collinear with y (since x is the
unique point on l collinear with y). Hence, U2 := U1 ∩ ϕ(x)⊥ is a singular
subspace of rank 2. Moreover, U2 is ϕ-invariant: Indeed, let z ∈ U2. Then,
as U is ϕ-invariant and ϕ respects collinearity, ϕ(z) ∈ U and ϕ(z) ∈ x⊥, i.e.
ϕ(z) ∈ U1. Moreover, as z ∈ U1 ⊆ x⊥, we conclude that ϕ(z) ∈ ϕ(x)⊥ and
hence ϕ(z) ∈ U2. In particular, any point z ∈ U2 is collinear with both, x
and ϕ(x) and hence it is with all points of l. Thus, U2 ⊆ l⊥ and U2 ∪ l is a
singular subset.
Suppose that there are two lines g, g′ ⊆ U which are ϕ-invariant such that
the sets g ∪ l and g′ ∪ l are singular. Since the set g ∪ g′ ∪ l is singular,
too, the subspace M := 〈g ∪ g′ ∪ l〉 is a singular subspace of S which is
ϕ-invariant. Using the dimension formula for projective spaces, we obtain
that dim(M) ≥ 5, i.e. M is a singular subspace of rank at least 5 which
is ϕ-invariant. This is a contradiction to 5.5.3. Hence there is at most one
ϕ-invariant line g ⊆ U such that g ∪ l is singular. We conclude that Sϕ is a
polar space.

Let h be a ϕ-invariant line of S. Then either one of the pairs (h, l) or (h, g)
is a hyperbolic pair of S or h is a line of the polar space S(l,g). In the first

case, h is non-collinear with l or g. If l ⊆ l⊥∩g⊥ there exists by assumption
a line h′ ⊆ l⊥ ∩ g⊥ which is ϕ-invariant and non-collinear with h. Thus, Sϕ
is non-degenerate.

According to 5.5.3, rk(Sϕ) = 2 and by 3.3.18, 5.5.4 and 3.3.4, the polar
space Sϕ is thick. �

5.5.8 Corollary
Let S be a quadratic space of type D of finite rank n ≥ 5 and let l and g be
two opposite lines of S. Let α be an involutory automorphism of the polar
space S(l,g) and suppose that α stabilizes at least three pairwise opposite
lines but no points or singular subspaces of higher rank. Then α can be
extended to an involutory automorphism ϕ of S stabilizing the line l such
that the polar space defined by the fixed lines and singular subspaces of rank
4 is thick, non-degenerate and of finite rank 2.
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5.6 On buildings of type An

5.6.1 Proposition
Let ∆ be a thick building of type An for some n ≥ 3, let Ω ∈ Aut(∆) be an
involution such that Γ := 〈Ω〉 is a descent group of ∆ with corresponding
Tits index

.

Let S be a projective space of finite rank n such that ∆ ' Flag(G(S)).
Then there exists a polarity π of S inducing Ω on ∆ and this polarity has
the following properties:

(a) If U is a subspace of S which is absolute with respect to π, then U is
a point.

(b) There exist at least three points of S which are absolute with respect
to π.

Proof Let the Coxeter diagram An be labeled as in 2.3. Let p, q, r be three
collinear points of S = (P ,L), i.e. they lie on a common line l ∈ L of S.
By assumption, Ω ∈ Aut(G(S)) acts bijectively on the set of subspaces of S,
maps points onto hyperplanes and Ω2 = idV(S).
Moreover, according to [MT, 4.7], Ω({p}) ∩ Ω({q}) = Ω(〈p, q〉) = Ω(l)
as well as Ω({p}) ∩ Ω({r}) = Ω(l) and Ω({q}) ∩ Ω({r}) = Ω(l). Thus,
Ω({p}) ∩ Ω({q}) ∩ Ω({r}) = Ω(l). We conclude that Ω|P is a polarity.

(a) Let U be a subspace of S which is absolute with respect to π. Then
the flag F := {U ,π(U)} ∈ flag(G(S)) is stabilized by Ω and thus the
corresponding residue R of ∆ is a Γ-residue of rank n − 2. Thus,
Typ(R) = {s2, . . . , sn−1} and τ(F ) = {1,n}. Hence, dim(U) = 0.

(b) By 2.40, there are at least three Γ-chambers of ∆ and each Γ-chamber
is of type A := {s2, . . . , sn−1}. Let C be a Γ-chamber, let p be a
point and h a hyperplane of S such that C corresponds to the flag
F = {p,h} ∈ flag(G(S)). As C is Γ-invariant, the corresponding flag
F is stabilized by π. We conclude that the point p is absolute with
respect to π.
To conclude: Each Γ-chamber of ∆ corresponds to a point of S which
is absolute with respect to π.

�
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5.6.2 Theorem
Let ∆ be a thick building of type An for some n ≥ 5. Let Π be the Coxeter
diagram An labeled as in 2.3, let (W ,S) be the corresponding Coxeter system
and let J := S\{s1, sn}. Let ∆0 be a residue of ∆ of type ΠJ . Suppose that
there is an involution Ω0 ∈ Aut(∆0) such that Γ0 := 〈Ω0〉 is a descent group
of ∆0 with corresponding Tits index

.

There exists an extension of Ω0 to an involutory automorphism Ω ∈ Aut(∆)
such that Γ := 〈Ω〉 is a descent group of ∆ with Tits index

and such that the fixed point building ∆Γ is a Moufang quadrangle.

Proof Let S = (P ,L) be a projective space of finite rank n such that
∆ ' Flag(G(S)) and let F = {p,h} ∈ flag(G(S)) be the flag consisting of a
point p and a hyperplane h of S corresponding to the residue ∆0.
Choose a flag F ′ = {q,h′} which is opposite to F . Then

∆0 ' Flag(Res(F)) ' Flag(G(Sh∩h′)).

According to 5.6.1, there is a polarity π of the projective space Sh∩h′ inducing
the involution Ω0 on ∆0. Furthermore, there are at least three points of Sh∩h′
which are absolute with respect to π and all subspaces of Sh∩h′ of positive
dimension ain’t absolute.

By 5.3.7, the polarity π can be extended to a polarity π̄ of S in such a
way that it stabilizes the flag F and such that the polar space defined by
π̄ is thick, non-degenerate and of finite rank 2. Let Ω be the involutory
automorphism of ∆ induced by π̄ and set Γ := 〈Ω〉. The fixed point structure
∆Γ is isomorphic to the flag complex Flag(G(Sπ̄)), which is a thick building
of type C2. Hence, by 2.42, Γ is a descent group of ∆ with Tits index
T = (An, 〈opS〉, {s3, · · · , sn−2}). As ∆ satisfies the Moufang condition, 2.41
implies that ∆Γ is a Moufang quadrangle.

�



76 Chapter 5. Some specific extensions

5.7 On buildings of type Cn

5.7.1 Proposition
Let ∆ be a building of type Cn for some n ≥ 3, let Ω ∈ Aut(∆) be an
involution such that Γ := 〈Ω〉 is a descent group of ∆ with corresponding
Tits index

.

Let S be a non-degenerate polar space of finite rank n such that
∆ ' Flag(G(S)). Then there exists an automorphism α ∈ Aut(S) inducing
Ω on ∆ and it has the following properties:

(a) If U is a singular subspace of S which is α-invariant, then U is a point.

(b) There exist at least three points of S which are fixed by α. Moreover
these points are pairwise non-collinear.

Proof Let Π be the Coxeter diagram Cn labeled as in 2.3. By assumption,
Ω ∈ Aut(G(S)) acts bijectively on the set of singular subspaces V(S) of S
and Ω2 = idV(S).
According to [MT, 5.14], Ω preserves inclusion and α := Ω|P ∈ Aut(S).

(a) Let U be a subspace of S which is stabilized by α and let i := rk(U).
Then U corresponds to a residue of ∆ of type S\{si} which is stabilized
by Ω. We conclude that si = s1, i.e. U has rank 1 and thus is a point.

(b) By assumption each Γ-chamber of ∆ corresponds to a point of S which
is fixed by α. If two of such points would be collinear, α would stabilize
the line through these points. But this is a contradiction to (a).

�

5.7.2 Theorem
Let Λ = (K,V ,Q) be a regular but not hyperbolic quadratic space of Witt
index n ≥ 4, let S := P(Λ) be the associated non-degenerate polar space of
rank n and let ∆ := Flag(G(S)) be the associated thick spherical building
of type Cn. Let ∆0 be a residue of ∆ of type Cn−1 and suppose that there
is an involution Ω0 ∈ Aut(∆0) such that Γ0 := 〈Ω0〉 is a descent group of
∆0 with corresponding Tits index

.

There exists an extension of Ω0 to an involutory automorphism Ω ∈ Aut(∆)
such that Γ := 〈Ω〉 is a descent group of ∆ with Tits index
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and such that the fixed point building ∆Γ is a Moufang quadrangle.

Proof

Let p be the point of S corresponding to the residue ∆0 and choose a point
q of S which is non-collinear with p. Then

∆0 ' Flag(Res(p)) ' Flag(G(Spq)).

According to 5.7.1 there is an involutory automorphism α ∈ Aut(Spq) in-
ducing the involution Ω0 on ∆0. Furthermore, α fixes at least three pairwise
non-collinear points but stabilizes no higher rank singular subspaces of Spq.
By 5.4.4, the automorphism α can be extended to an involutory automor-
phism ᾱ ∈ Aut(S) such that it fixes the point p and such that the fixed
points and stabilized lines constitute a thick, non-degenerate polar space of
finite rank 2. Let Ω be the involutory automorphism of ∆ induced by ᾱ and
set Γ := 〈Ω〉. The fixed point structure ∆Γ is isomorphic to the flag complex
Flag(G(Sϕ)), which is a thick building of type C2. Hence, by 2.42, Γ is a de-
scent group of ∆ with Tits index T = (Cn, {id}, {s3, . . . , sn}). As ∆ satisfies
the Moufang condition, 2.41 implies that ∆Γ is a Moufang quadrangle.

�
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5.8 On buildings of type Dn

5.8.1 Proposition
Let ∆ be a thick building of type Dn for some n ≥ 5, let Ω ∈ Aut(∆) be
an involutory isometry such that Γ := 〈Ω〉 is a descent group of ∆ with
corresponding Tits index

.

Let S be a polar space of type D and rank n such that ∆ ' Flag(Go(S)).
There exists an involution α ∈ Aut(S) inducing Ω on ∆ and it has the
following properties:

(a) If U is a singular subspace of S which is α-invariant, then U is a line.

(b) There exist at least three lines of S which are stabilized by α. More-
over, these lines are pairwise opposite.

Proof Let the Coxeter diagram Dn be labeled as in 2.3. By [MT, 6.2],
Ω ∈ Aut(Go(S)) is an inclusion-preserving permutation on the set Vo(S) of
all non-trivial singular subspaces of S which are not submaximal. Moreover,
there exist a unique automorphism Ω′ ∈ Aut(G(S)) such that Ω′|Vo(S) = Ω.

(a) Let U be a subspace of S which is stabilized by α and set k := rk(U).
The corresponding flag F := {U} ∈ flag(G(S)) is stabilized by Ω and
hence the corresponding residue of ∆ is Γ-invariant and of type S\{sk}.
We conclude that sk = 2 and hence U is a line.

(b) By 2.40 there are at least three Γ-chambers of ∆ and each Γ-chamber
is of type A := S\{s2}. Let C be a Γ-chamber and let l be the line of
S such that C corresponds to the flag F = {l} ∈ flag(G(S)). As C is
Γ-invariant, the corresponding line l is stabilized by α.
Let l and g be two lines corresponding to different Γ-chambers. In
particular, l ∩ g = ∅ since there are no fixed points. Suppose that
g ∩ l⊥ 6= ∅ and let x ∈ g ∩ l⊥. Since g is α-invariant and α preserves
collinearity, α(x) ∈ g ∩ l⊥. Then l is a proper subspace of the singular
subspace 〈l, g∩ l⊥〉 which is α-invariant. But this is a contradiction to
(a).

�
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5.8.2 Theorem
Let ∆ be a thick building of type Dn for some n ≥ 7. Let ∆0 be a residue of ∆
of type Dn−2 and suppose that there is an involutory isometry Ω0 ∈ Aut(∆0)
such that Γ0 := 〈Ω0〉 is a descent group of ∆0 with corresponding Tits index

.

There exists an extension of Ω0 to an involutory automorphism Ω ∈ Aut(∆)
such that Γ := 〈Ω〉 is a descent group of ∆ with Tits index

and such that the fixed point structure ∆Γ is a Moufang quadrangle.

Proof Let S = (P ,L) be a polar space of type D and finite rank n such
that ∆ ' Flag(Go(S)) and let F = {p, l} ∈ flag(Go(S)) be the flag consisting
of a point p and a line l of S corresponding to the residue ∆0. Choose a flag
F ′ = {q, g} which is opposite to F . Then

∆0 ' Flag(Go(Res(F))) ' Flag(Go(S(l,g)).

According to 5.8.1 there is an involution α ∈ Aut(S(l,g)) inducing the invo-
lution Ω0 on ∆0. Furthermore, there exist at least three pairwise opposite
lines of S(l,g) which are stabilized by α but no α-invariant singular subspaces
of rank not equal to two.

By 5.5.8 the involution α can be extended to an involution ᾱ ∈ Aut(S) in
such a way that it stabilizes the line l and such that the stabilized lines and
singular subspaces of rank 4 constitue a thick, non-degenerate polar space
Sα of finite rank 2. Let Ω be the involutory automorphism of ∆ induced by
ᾱ and set Γ := 〈Ω〉. The fixed point structure ∆Γ is isomorphisc to the flag
complex Flag(G(Sα)), which is a thick building of type C2. Hence, Γ is a
descent group of ∆ with Tits index T = (Dn, {id}, {s1, s3, s5, . . . , sn−1, sn}).
As ∆ satisfies the Moufang condition, 2.41 implies that ∆Γ is a Moufang
quadrangle. �

5.8.3 Proposition
Let ∆ be a thick building of type Dn for some n ≥ 5, let Ω ∈ Aut(∆)
be an involuory isometry such that Γ := 〈Ω〉 is a descent group of ∆ with
corresponding Tits index
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.

Let S be a polar space of type D of finite rank n such that ∆ ' Flag(Go(S)).
Then there exists an involution α ∈ Aut(S) inducing Ω on ∆ and it has the
following properties:

(a) If U is a singular subspace of S which is α-invariant, then U is a point.

(b) There exist at least three points of S which are fixed by α. Moreover
these points are pairwise non-collinear.

Proof Let Π be the Coxeter diagram Dn labeled as in 2.3.
By [MT, 6.2], Ω ∈ Aut(Go(S)) is an inclusion-preserving permutation on the
set Vo(S) of all non-trivial singular subspaces of S which are not submaximal.
Moreover, there exist a unique automorphism Ω′ ∈ Aut(G(S)) such that
Ω′|Vo(S) = Ω.

(a) Let U be a subspace of S which is stabilized by α and let i := rk(U).
Then U corresponds to a residue of ∆ of type S\{si} which is stabilized
by Ω. We conclude that si = s1, i.e. U has rank 1 and thus is a point.

(b) By assumption each Γ-chamber of ∆ corresponds to a point of S which
is fixed by α. If two of such points are collinear, α would stabilize the
line through these points. But this is a contradiction to (a).

�

5.8.4 Theorem
Let ∆ be a thick spherical building of type Dn for some n ≥ 6. Let ∆0 be
a residue of ∆ of type Dn−1. Suppose that there is an involutory isometry
Ω0 ∈ Aut(∆0) such that Γ0 := 〈Ω0〉 is a descent group of ∆0 with corre-
sponding Tits index

.

There exists an extension of Ω0 to an involutory isometry Ω ∈ Aut(∆) such
that Γ := 〈Ω〉 is a descent group of ∆ with Tits index
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and such that the fixed point structure ∆Γ is a Moufang quadrangle.

Proof Let S = (P ,L) be a polar space of type D and rank n such that
∆ ' Flag(Go(S)). According to 3.3.15, S ' P(Λ), where Λ is a hyperbolic
quadratic space of Witt index k ≥ 6.
Let p be the point of S corresponding to the residue ∆0 and choose a point q
of S which is non-collinear with p. Then ∆0 ' Flag(Go(Spq)). According to
5.8.3 there is an involutory automorphism α ∈ Aut(Spq) fixing at least three
pairwise non-collinear points but stabilizing no higher rank singular sub-
spaces. According to 5.4.4, α can be extended to an involution ϕ ∈ Aut(S)
which fixes the points p and q. Let ϕ′ ∈ Aut(Go(S)) be induced by ϕ.
Let Ω be the involutory automorphism of ∆ induced by ϕ′ and define
Γ := 〈Ω〉. Then the fixed point structure ∆Γ is isomorphic to the flag com-
plex Flag(G(Sϕ)), which is, by 5.4.4, a thick building of type C2. Hence, Γ
is a descent group of ∆ with Tits index T = (Dn, {id}, {s3, . . . , sn}). As ∆
satisfies the Moufang property, 2.41 gives that ∆Γ is a Moufang quadrangle.

�

5.8.5 Theorem
Let ∆ be a thick building of type Dn × A1 for some n ≥ 6. Let ∆0 be
a residue of ∆ of type Dn−1 × A1. Suppose that there is an involutory
isometry Ω0 ∈ Aut(∆0) such that Γ0 := 〈Ω0〉 is a descent group of ∆0 with
corresponding Tits index

.

There exists an extension of Ω0 to an involutory isometry Ω ∈ Aut(∆) such
that Γ := 〈Ω〉 is a descent group of ∆ with Tits index

and such that the fixed point structure ∆Γ is a Moufang quadrangle.

Proof Let Π be the Coxeter diagram Dn × A1 and let (W ,S) be the
corresponding Coxeter diagram. Let s ∈ S be such that st = ts for all
t ∈ S and let J := S\{s}. We label the vertices of ΠJ as in 2.3. Let
K := J\{s1} = S\{s1, s} and L := K\{s2}.
Let ∆0 be a residue of type Dn−1×A1 and let Ω0 ∈ Aut(∆0) be an involution
such that Γ0 = 〈Ω0〉 is a descent group of ∆0 with Tits index
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.

Choose a Γ0-chamber C of ∆0 and fix a chamber c ∈ C. According to 2.40,
A := Typ(C) = L ∪ {s} is the type of any Γ0-chamber. By 4.1.5 and 2.10
we have δ(c, Ω0(c)) = rA = rLs.
Set c′ := Ω0(c). The restriction Ω0|RK(c) is an isometry from RK(c) onto
RK(c′). Lemma 4.1.3 yields that the residues RK(c) and RK(c′) are op-

posite residues of ∆0, 4.2.5 implies that the projection map proj
RK(c′)
RK(c) is

a σ-isometry with inverse proj
RK(c)
RK(c′), where σ ∈ Aut(WK∪{s},K ∪ {s}) is

given by
σ(t) = rK∪{s} rK t rK rK∪{s} = t

for all t ∈ K ∪ {s}, in particular, the projection maps proj
RK(c′)
RK(c) and

proj
RK(c)
RK(c′) are mutually inverse isometries. We define

α := proj
RK(c′)
RK(c) ◦Ω0|RK(c) ∈ Aut(RK(c)).

In view of 4.2.5(c) we have α = Ω0 ◦ proj
RK(c)
RK(c′) and thus α2 = idRK(c).

There is the following connection between Γ0-residues of ∆0 and 〈α〉-residues
of RK(c):

Claim 1: If T ⊆ RK(c) is an α-invariant residue, then the unique
residue of type Typ(T )∪{s} of ∆0 containing T is Ω0-invariant. Con-
versely, if T is a Γ0-residue of ∆0, then projRK(c)(T ) = T ∩ RK(c) is
α-invariant.

Proof of claim 1: Let T ⊆ RK(c) be an α-invariant residue and let Ts
be the unique residue of type Typ(T )∪{s} such that T ⊆ Ts. Choose
any chamber d ∈ T . According to 4.1.3(a) δ(d, projRK(c′)(d)) = s and
hence projRK(c′)(d) ∈ Ts for any d ∈ T . Now

T = α(T ) = Ω0(proj
RK(c)
RK(c′)(T )) ⊆ Ω0(Ts)

and since Typ(Ω0(Ts)) = Typ(Ts) we conclude that Ω0(Ts) = Ts.
Conversely, let T be a Γ0-residue of ∆0 and let d ∈ T . By assumption
s ∈ Typ(T ). By 4.1.3(a) we have δ(d, projRK(c)(d)) ∈ {1, s} and thus
T ∩RK(c) 6= ∅. In view of 2.28(b) we have projRK(c)(T ) = T ∩RK(c).
Similarly, T ∩RK(c′) 6= ∅ and thus projRK(c′)(T ) = T ∩RK(c′). Now

α(projRK(c)(T )) = Ω0(T ∩ RK(c′)) ⊆ T ∩RK(c) = projRK(c)(T ).

�
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In particular, if C is a Γ0-chamber of ∆0, then projRK(c)(C) is an 〈α〉-
chamber of RK(c). Conversely, if D is an 〈α〉-chamber of RK(c), then the
unique residue of ∆0 of type L ∪ {s} containing D is a Γ0-chamber of ∆0.

Claim 2: The group 〈α〉 ≤ Aut(RK(c)) is a descent group of RK(c)
with Tits index

.

Proof of claim 2: Note that RK(c) is the only 〈α〉-panel. By as-
sumption there exist at least three Γ0-chambers of ∆0. Let C and D
be two of them. Then, by (1), C ′ := projRK(c)(C) = C ∩ RK(c) and
D′ := projRK(c)(D) = D ∩ RK(c) are 〈α〉-chambers of RK(c). Note
that, since C 6= D, we have C ′ 6= D′. Thus, there exist at least three
〈α〉-chambers in RK(c) and 〈α〉 is a descent group of RK(c) with Tits
index T = (Dn−1, {id},L). �

Using 5.5.8 we obtain that α can be extended to an involutory isometry
ᾱ ∈ Aut(RJ(c)) such that 〈ᾱ〉 ≤ Aut(RJ(c)) is a descent group of RJ(c)
with Tits index

and such that the fixed point structure RJ(c)〈ᾱ〉 is a Moufang quadrangle.

Again, by 4.1.3, the residues RJ(c) and RJ(c′) are opposite in ∆ and thus,

by 4.2.5 the projection maps proj
RJ (c)
RJ (c′) and proj

RJ (c′)
RJ (c) are mutually inverse

isometries. We define an isometry

Ω′ := proj
RJ (c)
RJ (c′) ◦ᾱ : RJ(c)→ RJ(c′).

For x ∈ C\RJ(c) we set cx := projRJ (x)(c). By 4.1.3(a), δ(c, cx) = s and
thus cx ∈ C, where C is the unique Γ0-chamber of ∆0 containing c. In
particular, Ω0(cx) ∈ C is defined. For any chamber x ∈ C we define

Ω(x) :=

{
Ω′(x), x ∈ RJ(c)

(projRJ (Ω0(cx)) ◦Ω′ ◦ projRJ (c))(x), otherwise
.

Note that the chambers cx and Ω0(cx) are oppsoite in C, since by 4.1.5 we
have δ(cx, Ω0(cx)) = rA. Thus, RJ(cx) 6= RJ(Ω0(cx)) and moreover, in view
of 4.1.3, these residues are opposite.
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RJ (x) RJ (c)

RJ (c′)

RJ (Ω0(cx))

x

c

c′

Ω(x)
proj Ω′

Ω0

proj

cx

Claim 3: Ω: C → C is an isometry.

Proof of claim 3: Once we showed that Ω is surjective, according
to [AB, 5.61], it suffices to show that δ(Ω(x), Ω(y)) = δ(x, y) for all
x, y ∈ C such that δ(x, y) ∈ S.

Let y ∈ C be any chamber. If y ∈ RJ(c′), then, by assumption,
there exists x ∈ RJ(c) such that y = Ω′(x) = Ω(x). So suppose that
y /∈ RJ(c′). Then c′y := projRJ (y)(c

′) is the unique chamber in RJ(y)
satisfying δ(c′, c′y) = s and thus c′y ∈ C. Note that

δ(c, Ω0(c′y)) = δ(Ω0(c), c′y) = δ(c′, c′y) = s,

in particular, Ω0(c′y) = projRJ (Ω0(c′y))(c).

Let z := projRJ (Ω0(c′y)) ◦Ω′−1◦projRJ (c′)(y). By definition, z ∈ RJ(Ω0(c′y))

and, furthermore, cz := projRJ (z)(c) = Ω0(c′y)). Thus,

Ω(z) = projRJ (y) ◦Ω′ ◦ projRJ (c)(z)

= projRJ (y) ◦Ω′(Ω′−1(projRJ (c′)(y))

= projRJ (y) ◦projRJ (c′)(y) = y,

where we used that the residues RJ(z) and RJ(c) are opposite as well
as the residues RJ(y) and RJ(c′).

Now choose x, y ∈ C such that δ(x, y) ∈ S.
If δ(x, y) ∈ J , then the residues RJ(x) and RJ(y) coincide and thus
projRJ (x)(c) = cx = cy = projRJ (y)(c).

Since the composition proj
RJ (c′)
RJ (Ω0(cx)) ◦Ω

′ ◦ proj
RJ (x)
RJ (c) is an isometry from

RJ(x) onto RJ(Ω0(cx)), we conclude that δ(Ω(x), Ω(y)) = δ(x, y).
So suppose that δ(x, y) = s and set x′ := projRJ (c)(x) as well as
y′ := projRJ (c)(y). Since δ(x,x′), δ(y, y′) ∈ {1W , s} we conclude that
δ(x′, y′) ∈ {1W , s}. As x′, y′ ∈ RJ(c) and s /∈ J it follows that
δ(x′, y′) = 1W and hence x′ = y′. Now, by definition,

Ω(x) = projRJ (Ω0(cx))(Ω
′(x′))
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and
Ω(y) = projRJ (Ω0(cy))(Ω

′(x′)).

Again, δ(Ω(x), Ω′(x′)) ∈ {1W , s} as well as δ(Ω(y), Ω′(x′)) ∈ {1W , s}.
We conclude that δ(Ω(x), Ω(y)) ∈ {1W , s}.
Our assumption on x and y gives that RJ(x) ∩ RJ(y) = ∅. Hence,
δ(Ω0(cx)), Ω0(cy)) = δ(cx, cy) = s and as s /∈ J this fact implies that
RJ(Ω0(cx)) ∩RJ(Ω0(cy)) = ∅ and thus δ(Ω(x), Ω(y)) = s.

�

Claim 4: Ω|∆0 = Ω0.

Proof of claim 4: Let x ∈ ∆0 = RK∪{s}(c) be any chamber. Then
projRJ (c)(x) ∈ RK(c) and hence Ω0(projRJ (c)(x)) = projRJ (c′)(Ω0(x))
by 4.2.5. Moreover, as projRJ (x)(c) ∈ RK(x) we conclude that the
residues RJ(Ω0(cx)) and RJ(Ω0(x)) coincide. Now

Ω(x) = projRJ (Ω0(x))(Ω
′(projRJ (c)(x)))

= projRJ (Ω0(x))(Ω0(projRJ (c)(x)))

= projRJ (Ω0(x))(projRJ (c′)(Ω0(x))) = Ω0(x),

since Ω′|RK(c) = Ω0. �

Claim 5: Γ := 〈Ω〉 ≤ Aut(∆) is a descent of ∆ with Tits index

and the fixed point structure ∆Γ is a Moufang quadrangle.

Proof of claim 5: Similar as in the proof of claim 1 one verifies
the following connection: If T ⊆ RJ(c) is an 〈ᾱ〉-residue, then the
unique residue of ∆ of type Typ(T )∪{s} containing T is Ω-invariant.
Conversely, if T is a Γ-residue of ∆, then projRJ (c)(T ) is a 〈ᾱ〉-residue.

According to (4), the Γ0-chamber C is a Γ-chamber and ∆0 is a Γ-panel
containing C. By assumption, ∆0 contains at least three Γ-chambers.
Let P be a Γ-panel containing C other than ∆0. Due to the remark
above, projRJ (c)(P) is a 〈ᾱ〉-panel and as 〈ᾱ〉 is a descent group of
RJ(c), projRJ (c)(P) contains at least three 〈ᾱ〉-chambers and each is
of type L. For any 〈ᾱ〉-chamber D of RJ(c) the unique residue of type
L∪ {s} containing D is a Γ-chamber. Hence P contains at least three
Γ-chambers. By 2.42, T = (Dn × A1, {id},A) is a Tits index. Note
that the relative types of the Tits indices T and (Dn, {id},L) coincide.
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As 〈ᾱ〉 is a descent group of RJ(c), there exists a 〈ᾱ〉-chamber D′ such
that δ̄(projRJ (c)(C),D′) equals the longest element in the relative type
of the Tits index T. Now let x ∈ C be any chamber and let D be the
unique Γ-chamber containing D′. Then, if x ∈ C ∩RJ(c),

δ(x, projD(x)) = min{rS̃WA} = rS̃ ,

since A ⊆ J+(rS̃) by [MPW, 20.13(iii)]. Otherwise, if x /∈ RJ(c), we
have δ(x, projRJ (c)(x)) = s and, according to the previous considera-
tions,

δ(projRJ (c)(x), projD(projRJ (c)(x))) = rS̃ .

Again, since s ∈ A ⊆ J+(rS̃) we have `(srS̃) = `(rS̃) + 1 and thus
by (WD2), δ(x, projD(projRJ (c)(x))) = rS̃ . Again, δ(x, projD(x)) =
min{rS̃WA} = rS̃ . Thus, by 2.42(e), Γ is a descent group of ∆.

According to 2.40, the fixed point structure ∆Γ is a building of type
C2 (since the relative type of the Tits index (Dn, {id},L) is C2). As
the the map C 7→ projRJ (c)(C) is an isometry from ∆Γ onto RJ(c)〈ᾱ〉

we conclude that ∆Γ is a Moufang quadrangle. �

This finishes the proof.

�
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Descent in twin buildings
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Chapter 6

Twin buildings

6.1 Projections in twin buildings

Given a residue R and a chamber c of a building ∆, there exists a unique
chamber x ∈ R which is

”
nearest“ c in the sense that it minimizes the dis-

tance from c onto R. Although there are no galleries between a chamber
c ∈ C+ and a chamber d ∈ C−, one should think of the numerical codis-
tance dist(c, d) as a measure of how far away c and d are from each other.
Decreasing codistance should be thought of as increasing distance. We will
now see that any spherical residue in Cε contains precisely one chamber that
is

”
closest“ to a given chamber d ∈ C−ε in the sense that it has maximal

codistance from d among all chambers in R.
As is common in the theory of twin buildings, we do not distinguish in
notation and terminology between the projections in one building and the
projections between the two “halves“ of a twin building. Note, however,
that the latter exist only for spherical residues. It will always be clear from
the context which type of projection we mean.

Throughout this chapter let Π be a Coxeter diagram with vertex set I, let
(W ,S) be the corresponding Coxeter system and let ∆ = (∆+, ∆−, δ∗) be a
twin building of type (W ,S). Let ε ∈ {+,−}.

6.1.1 Proposition
Let R be a residue of ∆ε of type J ⊆ S.

(a) If T is a residue of ∆−ε of type K ⊆ S, then

δ∗(R, T ) := {δ∗(c, d) | c ∈ R, d ∈ T } = WJ δ∗(x, y) WK

for any x ∈ R and y ∈ T .

89
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(b) If J is spherical and d is a chamber in C−ε, then there is a unique
chamber z ∈ R such that δ∗(z, d) = max{δ∗(R, d)}. This chamber z
satisfies

δ∗(c, d) = δε(c, z) δ∗(z, d)

and

dist(c, d) = dist(z, d)− dist(c, z)

for all c ∈ R.

Proof Part (a) is [AB, 5.148] and part (b) is [AB, 5.149]. �

6.1.2 Definition
If R, d and z are as in 6.1.1(b), then z is called the projection of d onto R
and is denoted by projR(d).

6.1.3 Definition
Let R be a spherical residue of ∆ε and let T be an arbitrary residue of ∆−ε.
We define

projR(T ) := {projR(x) | x ∈ T }.

6.1.4 Lemma
Let R be a spherical residue of ∆ε of type J ⊆ S and let T be a residue
of ∆−ε of type K ⊆ S. Let w1 := min{δ∗(R, T )} and let rJ := max{WJ}.
The projection P := projR(T )

(a) is given by P = {x ∈ R | rJw1 ∈ δ∗(x, T )};

(b) is a residue of type J ′ := rJ(J ∩ w1Kw
−1
1 )r−1

J .

Proof Let x ∈ R such that rJw1 ∈ δ∗(x, T ) and y ∈ T such that
δ∗(x, y) = rJw1. Note that δ∗(y,x) = w−1

1 rJ and w−1
1 = min{δ∗(T ,R)}.

Thus, J ⊆ J+(w−1
1 ) and by 2.8(c) we have `(w−1

1 v) = `(w−1
1 ) + `(v) for all

v ∈WJ . In particular, w−1
1 rJ = max{w−1

1 WJ} and hence

δ∗(x, y) = rJw1 = max{WJw1} = max{δ∗(R, y)}.

We conclude that x = projR(y) ∈ projR(T ).

Conversely, let y ∈ T , set x := projR(y) and w := δ∗(x, y) ∈ δ∗(R, T ).
Consider the element rJw ∈ WJw1WK . According to 2.8(b) the element
rJw can be written as rJw = wJw1wK with wJ ∈ WJ and wK ∈WK and
`(rJw) = `(wJ) + `(w1) + `(wK). As w = max{δ∗(R, y)} = max{WJw},
w−1 = max{w−1WJ} and by 2.8(e), `(w−1v) = `(w−1)−`(v) for all v ∈WJ .
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In particular, w−1rJ = min{w−1WJ} and hence rJw = min{WJw}. Sup-
pose that wJ 6= 1W . Then, since K ⊆ J+(w1),

`(w−1
J rJw) = `(w1wK) = `(w1) + `(wK)

< `(w1) + `(wK) + `(wJ) = `(rJw).

But this is a contradiction to the minimality of `(rJw) in WJw. Thus,
wJ = 1W and hence rJw = w1wK . Therefore,

rJw1 = (w−1
1 rJ)−1 = (wKw

−1)−1 ∈ wWK = δ∗(x, T )

and (a) holds.

Now let x ∈ projR(T ) and y ∈ T such that δ∗(x, y) = rJw1. The proof of
part (a) implies x = projR(y). For z ∈ Cε we have

δ∗(z, y) = δε(z,x) δ∗(x, y) = δε(z,x) rJw1.

Hence,

z ∈ projR(T )⇔ z ∈ R, rJw1 ∈ δ∗(z, T ) = δε(z,x)rJw1WK

⇔ δε(z,x) ∈WJ , (rJw1)−1δε(z,x)(rJw1) ∈WK

⇔ δε(z,x) ∈WJ ∩ rJw1WKw
−1
1 r−1

J .

Since

WJ ∩ rJw1WKw
−1
1 r−1

J = rJ(WJ ∩ w1WKw
−1
1 )r−1

J

= rJWJ∩w1Kw
−1
1
r−1
J

= WrJ (J∩w1Kw
−1
1 )r−1

J
,

we conclude that z ∈ projR(T ) if and only if z ∈ RrJ (J∩w1Kw
−1
1 )r−1

J
(x) and

(b) holds.

�

6.1.5 Lemma
Let c ∈ Cε be a chamber and let T ⊆ R ⊆ C−ε be spherical residues. Then

projT (c) = projT (projR(c)).

Proof Since projT (c) ∈ T ⊆ R we use 6.1.1(b) and obtain

dist(projT (c), c) = dist(projR(c), c)− dist(projT (c), projR(c)).
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Using the properties of the projection in the building ∆−ε (cf. 2.24) we
obtain

dist(projT (c), projR(c)) = dist(projT (c), projT (projR(c)))

+ dist(projT (projR(c)), projR(c)).

It follows that

dist(projT (c), c) = dist(projR(c), c)− dist(projT (c), projT (projR(c)))

− dist(projT (projR(c)), projR(c))

= dist(projT (projR(c)), c)

− dist(projT (c), projT (projR(c))).

If projT (c) 6= projT (projR(c)), then dist(projT (c), projT (projR(c))) > 0 and

dist(projT (c), c) < dist(projT (projR(c)), c),

which is a contradiction since projT (c) is the unique chamber in T such that
δ∗(projT (c), c) = max{δ∗(T , c)}. �
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6.2 On parallel and opposite residues

There is a notion of parallel residues in arbitrary buildings. We will extend
this notion to spherical residues contained in different halves of a twin build-
ing. Since we use projections, the residues need to be spherical, whereas the
notion of parallel residues in arbitrary buildings makes no requirements on
the type of the residues.

We will then give the definition of opposite residues which exist in every twin
building while opposite residues do only exist in spherical buildings. At first
sight the convention that opposite residues have the same type seems to be
inconsistent with the definition of opposite residues in spherical buildings.
We will give an equivalent definition of being opposite which justifies this
part of the definition.

Throughout this section let Π be a Coxeter diagram with vertex set I, let
(W ,S) be the corresponding Coxeter system and let ∆ = (∆+, ∆−, δ∗) be a
twin building of type (W ,S). Let ε ∈ {+,−}.

6.2.1 Definition
Let R be a spherical residue of ∆ε and let T be a spherical residue of
∆−ε. The residues R and T will be called parallel if R = projR(T ) and
T = projT (R).

6.2.2 Lemma
Let R ⊆ Cε and T ⊆ C−ε be spherical residues of ∆. Then R and T are
parallel if and only if the projection maps projR and projT induce mutually
inverse bijections between R and T .

Proof The only if part is clear. So suppose that R and T are parallel.
Choose x ∈ R, let y ∈ T such that x = projR(y) and set z := projT (x). By
6.1.1(b), dist(x, y) = dist(x, z)− dist(z, y) and by 2.50 we obtain

dist(projR(z), y) ≥ dist(projR(z), z)− dist(z, y)

≥ dist(x, z)− dist(z, y) = dist(x, y).

But x is the unique chamber in R such that δ∗(x, y) = max{δ∗(R, y)}, so we
conclude that x = projR(z) = projR(projT (x)). A similar argument shows
that y = projT (x) = projT (projR(y)). �

There is a notion of opposite chambers and residues for spherical buildings.
As we will work with twin buildings whose type is not necessarily spherical,
we will not make use of this notion and introduce instead the notion of an
opposition relation between the two halves of a twin building.
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6.2.3 Definition
Two residues R ⊆ Cε and T ⊆ C−ε are called opposite if Typ(R) = Typ(T )
and there exists a pair of chambers x ∈ R, y ∈ T such that δ∗(x, y) = 1W .

6.2.4 Lemma
Let R ⊆ Cε and T ⊆ C−ε be residues of ∆. The following are equivalent:

(i) The residues R and T are opposite.

(ii) For every chamber x ∈ R there exists a chamber in y ∈ T which is
opposite x and vice versa.

Proof Let R and T be opposite residues as defined in 6.2.3. Let x ∈ R
and y ∈ T such that δ∗(x, y) = 1W and set J := Typ(R) = Typ(T ).
Note that w1 := min{δ∗(R, T )} = 1W . Choose a chamber z ∈ R. Then
δ∗(z, T ) = δ∗(z, y)WJ and since δ∗(z, y) ∈ δ∗(R, T ) = WJ we conclude that
1W ∈ δ∗(z, T ). Similarly for every d ∈ T there exists a u ∈ R such that
δ∗(d,u) = 1W .

Set J := Typ(R) and K := Typ(T ). Since for any chamber x ∈ R there ex-
ists y ∈ T such that δ∗(x, y) = 1W we have δ∗(x, T ) = δ∗(x, y)WK = WK for
any chamber x ∈ R. Similarly δ∗(R, z) = WJ for any chamber z ∈ T . Now
let c ∈ R be any chamber, w ∈WK and d ∈ T such that w = δ∗(c, d). Then
w ∈ δ∗(R, d) = WJ and hence WK ⊆WJ . Similarly, let d ∈ T be any cham-
ber, w′ ∈ WJ and c ∈ R such that w′ = δ∗(c, d). Then w′ ∈ δ∗(c, T ) = WK

and hence WJ ⊆WK . We conclude that J = K. �

Opposite chambers and residues have quite similar properties as opposite
chambers and residues in spherical buildings.

6.2.5 Lemma
Let R and T be opposite residues of spherical type J in the twin building
∆. Then R and T are parallel.

Proof This follows from proposition [AB, 5.152] together with 6.2.2. �

6.2.6 Lemma
Let R ⊆ Cε and T ⊆ C−ε be opposite residues of ∆ of spherical type J ⊆ S.
Then δ∗(c, projT (c)) = rJ for all c ∈ R.

Proof Choose a chamber c ∈ R. By 6.2.4 there exists d ∈ T such that
δ∗(c, d) = 1W and hence δ∗(c, projT (c)) = max{δ∗(c, T )} = max{WJ} = rJ .

�
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6.3 Convex subsets and twin apartments

Throughout this chapter let Π be a Coxeter diagram with vertex set I, let
(W ,S) be the corresponding Coxeter system and let ∆ = (∆+, ∆−, δ∗) be a
twin building of type (W ,S). Let ε ∈ {+,−}.

6.3.1 Definition
A pair (M+,M−) of nonempty subsets M+ ⊆ C+ and M− ⊆ C− is called
convex if projP(c) ∈ M+ ∪ M− for any c ∈ M+ ∪ M− and any panel
P ⊆ C+ ∪ C− that meets M+ ∪M−.

6.3.2 Lemma
Let (M+,M−) be a convex pair of ∆. Let R be a residue of ∆ε of spherical
type J ⊆ S with R∩Mε 6= ∅. Then projR(x) ∈Mε for all x ∈M+ ∪M−.

Proof Since R ∩Mε 6= ∅ we may choose c ∈ R ∩Mε. Let x ∈ Mε and
let P ⊆ Cε be a panel that meets Mε. Since (M+,M−) is a convex pair,
it follows by definition that projP(x) ∈Mε. It follows from [AB, 5.46] that
Mε is a convex subset of Cε as defined in [AB, 5.43]. The assertion now
follows by [AB, 5.45].
So let x ∈ M−ε and set w := δ∗(c,x). Then δ∗(R,x) = WJ δ∗(c,x) is finite
and we may define d := max{δ∗(R,x)}.
If w = d, then c = projR(x) and hence projR(x) = c ∈ Mε. Otherwise
there exists s ∈ J such that `(sw) > `(w). Let P := Ps(c) and note that
δ∗(P,x) = {w, sw}. As s ∈ J is such that `(sw) > `(w), we conclude
that c 6= projP(x). Set cs := projP(x). Since (M+,M−) is a convex pair,
cs ∈Mε∩R and satisfies dist(cs,x) > dist(c,x). Continuing in this way, we
obtain a gallery c, cs, . . . in R ∩Mε along which the numerical codistance
to x is strictly increasing. Since J is spherical, the process must terminate
after finitely many steps with projR(x) ∈ R ∩Mε.

�

6.3.3 Lemma
Let Σ = (Σ+, Σ−) be a twin apartment of ∆.

(a) Given c ∈ Σε and w ∈W there exists a unique chamber d ∈ Σ−ε such
that δ∗(c, d) = w.

(b) For any three chambers c, d, e ∈ Σ+ ∪ Σ−,

δ(c, e) = δ(c, d) · δ(d, e),

where each δ is to be interpreted as δ+, δ− or δ∗, whichever one makes
sense.
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(c) Σ is convex.

Proof This is [AB, 5.173]. �

6.3.4 Corollary
Let ∆ = (C+, C−, δ∗) be a twin building, let Σ = (Σ+, Σ−) be a twin apart-
ment of ∆ and let R be a spherical residue of ∆ which meets Σ. Then for
any x ∈ Σ we have projR(x) ∈ Σ.

Proof By 6.3.3(c), Σ = (Σ+, Σ−) is a convex pair of ∆. The assertion now
follows by 6.3.2. �

6.3.5 Proposition
Let c+ ∈ C+ and c− ∈ C− be opposite chambers of ∆. Then there exists
a unique twin apartment of ∆ containing c+ and c−. This twin apartment
will be denoted by Σ{c+, c−}. Moreover, for any d ∈ Σ{c+, c−}∩Cε we have
δε(cε, d) = δ∗(c−ε, d).

Proof This follows from [AB, 5.179(1)] and [AB, 5.173(2)]. �

6.3.6 Theorem
Suppose that ∆ is thick, choose a chamber c ∈ C+ ∪ C− and suppose that
there is a finite subset X ⊆ 2S with the following properties:

(i) Each J ∈ X is spherical.

(ii) ∀ K, J ∈ X such that K ∩ J 6= ∅: K ∩ J ∈ X.

(iii) There exists a family of apartments (ΣJ)J∈X , where ΣJ is an apart-
ment of RJ(c) containing c and for J ,K ∈ X with K ⊆ J we have
ΣK = ΣJ ∩RK(c).

Then there exists a twin apartment Σ∆ = (Σ+, Σ−) of ∆ such that for all
J ∈ X we have Σ∆ ∩ ΣJ = ΣJ .

Proof Choose an apartment system A of ∆, set Ac := {Σ ∈ A | c ∈ Σ}
and note that, in view of [AB, 5.179(3)], Ac 6= ∅.
Choose a twin apartment Σ = (Σ+, Σ−) ∈ Ac. If Σ ∩ ΣJ = ΣJ holds for all
J ∈ X, we are done. Thus, suppose that there exists a set J ∈ X such that
Σ ∩ ΣJ 6= ΣJ . Note that c ∈ Σ ∩ ΣJ . Suppose that c ∈ Cε.
Let co ∈ ΣJ be the unique chamber such that δε(c, c

o) = rJ . Then co /∈ Σ,
since otherwise ΣJ ⊆ Σ according to the fact that Σ is convex. Thus there
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exist chambers d, e ∈ ΣJ such that δε(d, e) = s for some s ∈ J and d ∈ Σ
while e /∈ Σ. Set P := Ps(d) ⊆ RJ(c) and note that ΣJ ∩ P = {d, e} and
projP(c) = d.

Claim 1: For all x ∈
⋃
K∈X ΣK : projP(x) ∈ {d, e}.

Proof of claim 1: Let K ∈ X such that x ∈ ΣK . Note that
c ∈ ΣK ∩RJ(c). We consider two cases:
First, suppose that L := K ∩ J 6= ∅. Then, by (ii), L ∈ X and
according to (iii), ΣL = ΣK ∩ RL(c) = ΣK ∩ RJ(c). Similarly we
obtain ΣL = ΣJ ∩ RL(c) = ΣK ∩ RJ(c). As ΣK is convex, [AB, 5.45]
implies that

projRJ (c)(x) ∈ ΣK ∩RJ(c) = ΣL = ΣJ ∩RK(c) ⊆ ΣJ .

Hence, using 2.28(a),

projP(x) = projP(projRJ (c)(x)) ∈ projP(ΣJ) = {d, e}.

If K ∩ J = ∅, then RJ(c)∩RK(c) = {c} and thus projRJ (c)(x) = c by
2.28(b). Hence,

projP(x) = projP(projRJ (c)(x)) = projP(c) = d.

�

Claim 2: There exists a twin apartment Σ′ of ∆ with the following
properties:

(B1) Σ′ ∈ Ac,
(B2) Σ ∩ ΣK ⊆ Σ′ ∩ ΣK for all K ∈ X,

(B3) Σ ∩ ΣJ ( Σ′ ∩ ΣJ .

Proof of claim 2: Let e′ ∈ Σ be the unique chamber such that
P ∩ Σ = {d, e′}. Define

αε := {x ∈ Σε | dist(d,x) < dist(e′,x)}

and
α−ε := {y ∈ Σ−ε | dist(opΣ(d), y) < dist(opΣ(e′), y)}.

According to [AB, 5.190] the pair α := (α+,α−) is a twin root of Σ.
By definition P∩αε = {d}. Let A(α) be the set of all twin apartments
containing the twin root α. By [AB, 5.198] the convex hull of the set
{{e} ∪ α} is a twin apartment Σ′ of ∆. This twin apartment Σ′ has
the desired properties:
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(B2) Let K ∈ X and x ∈ Σ ∩ ΣK be any chamber. Then by claim 1
and [AB, 5.45] projP(x) ∈ {d, e} ∩ Σ = {d} and thus

dist(x, e′) = dist(x, projP(x))+dist(projP(x), e′) = dist(x, d)+1.

We conclude that x ∈ αε ⊆ α ⊆ Σ′. Hence Σ ∩ ΣK ⊆ Σ′ ∩ ΣK .

(B1) Since c ∈ Σ ∩ ΣJ the assertion follows by (B2).

(B3) By (B2) we already know that Σ ∩ ΣJ ⊆ Σ′ ∩ ΣJ . Moreover, the
chamber e lies in Σ′ ∩ ΣJ but not in Σ ∩ ΣJ .

�

If Σ′∩ΣJ 6= ΣJ , we apply claim 2 to the twin apartment Σ′ to obtain a twin
apartment Σ′′ ∈ Ac such that Σ′ ∩ ΣJ ( Σ′′ ∩ ΣJ and Σ′ ∩ ΣK ⊆ Σ′′ ∩ ΣK

for all K ∈ X. Since |ΣJ | < ∞ we finally end up with a twin apartment
Σ̄ ∈ Ac such that Σ̄ ∩ ΣJ = ΣJ and Σ̄ ∩ ΣK ⊆ Σ ∩ ΣK .
We now apply claim 2 sequentially to the finitely many K ∈ X (if necessary)
to obtain a twin apartment Σ∆ ∈ Ac such that for all K ∈ X we have
Σ∆ ∩ ΣK = ΣK .

�



Chapter 7

Isometries on twin buildings

7.1 Basic concepts

In this section we introduce isomorphisms between twin buildings and prove
some basic results for those.

Throughout this section let Π be a Coxeter diagram with vertex set I and
let (W ,S) be the corresponding Coxeter system.

7.1.1 Definition
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆+, ∆−, δ∗) be twin buildings of type Π.
Let X ⊆ C+ ∪ C− and X ′ ⊆ C′+ ∪ C′−. A mapping ϕ : X → X ′ is called an

(i) isomorphism, if there exists σ ∈ Aut(Π) such that for each ε ∈ {+,−}
the restriction ϕ|X∩Cε is a σ-isometry from X ∩Cε onto X ′∩C′ε and for
all c ∈ X ∩ Cε and d ∈ X ∩ C−ε we have

δ′∗(ϕ(c),ϕ(d)) = σ(δ∗(c, d)).

In this case we also call ϕ a σ-isometry.

(ii) isometry, if it is an isomorphism with σ = idΠ.

As usual, an automorphism of a twin building ∆ = (∆+, ∆−, δ∗) is an iso-
morphism from C+ ∪ C− onto C+ ∪ C−. We denote the corresponding group
by Aut(∆).

7.1.2 Lemma
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be twin buildings of type Π,
let ϕ : C+ ∪ C− → C′+ ∪ C′− be an isometry and let Σ be a twin apartment of
∆. Then ϕ(Σ) is a twin apartment of ∆′.

99
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Proof Let Σ = (Σ+, Σ−) be a twin apartment of ∆. For each ε ∈ {+,−} the
map ϕ|Σε is an isometry from Σε onto ϕ(Σε). As Σε is an apartment of ∆ε,
[AB, 5.67] provides an isometry φ : W → Σε from the standard thin building
(W , δW ) of type (W ,S) onto the apartment Σε. Thus, ϕ ◦ φ : W → ϕ(Σε)
is an isometry and hence, by [AB, 5.67], ϕ(Σε) is an apartment of ∆′.
Choose a chamber c ∈ ϕ(Σ+) ∪ ϕ(Σ−) and let x ∈ Σ+ ∪ Σ− be the unique
chamber such that ϕ(x) = c. Let y := opΣ(x) be the unique chamber in
Σ+ ∪ Σ− such that δ∗(x, y) = 1W and let d := ϕ(y). Then

δ′∗(c, d) = δ′∗(ϕ(x),ϕ(y)) = δ∗(x, y) = 1W

and we conclude that d ∈ ϕ(Σ+)∪ϕ(Σ−) is a chamber which is opposite to
c. Let e ∈ ϕ(Σ+) ∪ ϕ(Σ−) be a chamber opposite to c and let z ∈ Σ+ ∪ Σ−
be such that ϕ(z) = e. Then x and z are opposite and, by [AB, 5.178], it
follows that z = y. Hence, e = d and thus the pair ϕ(Σ) = (ϕ(Σ+),ϕ(Σ−))
is a twin apartment of ∆′. �

The following lemma will be called standard uniqueness argument for twin
buildings:

7.1.3 Lemma
Let ∆ be a twin building of type Π, let Σ be a twin apartment of ∆ and
let ϕ ∈ Aut(∆) be an isometry. Then ϕ fixes Σ pointwise if and only if it
stabilizes Σ and fixes some chamber c ∈ Σ.

Proof The only-if part is clear.
Let c ∈ Σ be such that ϕ(c) = c and let ε ∈ {+,−} such that c ∈ Σε.
Choose any chamber d ∈ Σ and let w := δε(c, d) if d ∈ Σε and w := δ∗(c, d)
if d ∈ Σ−ε. As ϕ is an isometry we have ϕ(Σ+) = Σ+ as well as ϕ(Σ−) = Σ−
and

w = δ�(c, d) = δ�(ϕ(c),ϕ(d)) = δ�(c,ϕ(d)),

where δ� is to be interpreted as δε or δ∗, whichever one makes sense. By [AB,
5.66] and 6.3.3(a), it follows that ϕ(d) = d. �

7.1.4 Lemma
Let ∆ and ∆′ be two twin buildings of type Π. Let Σ = (Σ+, Σ−) and
Σ′ = (Σ′+, Σ′−) be twin apartments of ∆ and ∆′ respectively. For ε ∈ {+,−}
and any pair of chambers (c, c′) ∈ Σε × Σ′ε there exists a unique isometry
φ : Σ→ Σ′ sending c onto c′.

Proof Let ε ∈ {+,−} and choose c ∈ Σε and c′ ∈ Σ′ε. Let (W , δW ) be
the standard thin building of type (W ,S) (cf. 2.23). Consider the map
φc : Σε →W ,x 7→ δε(x, c). Then, for x, y ∈ Σε,

δW (φc(x),φc(y)) = δε(x, c)δε(y, c)−1 = δε(x, c)δε(c, y) = δε(x, y),
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where the last equality follows from 6.3.3(b). By [AB, 5.66], the map φc is bi-
jective and hence an isometry. Similarly we define an isometry φc′ : Σ′ε →W
via φc′(x) := δ′ε(x, c′) and

φε := φ−1
c′ ◦ φc : Σε → Σ′ε

which is an isometry sending c onto c′.
Let d := opΣ(c) ∈ Σ−ε be the unique chamber opposite c. Similarly, we
let d′ := opΣ′(c

′) ∈ Σ′−ε be the unique chamber opposite c′. Just as the
construction above, there exists an isometry φ−ε : Σ−ε → Σ′−ε sending d
onto d′. We define

φ : Σ→ Σ′ via φ(x) :=

{
φε(x), x ∈ Σε

φ−ε(x), x ∈ Σ−ε
.

Suppose that x ∈ Σε and y ∈ Σ−ε. In view of 6.3.5 we have Σ = Σ{c, d}
and Σ′ = Σ{c′, d′} and

δ−ε(d, y) = δ∗(c, y) and δ′−ε(d
′,φ(y)) = δ′∗(c

′,φ(y)).

Using 6.3.3(b) we obtain

δ∗(x, y) = δε(x, c)δ∗(c, y) = δ′ε(φ(x), c′)δ−ε(d, y)

= δ′ε(φ(x), c′)δ′−ε(d
′,φ(y)) = δ′ε(φ(x), c′)δ′∗(c

′,φ(y))

= δ′∗(φ(x),φ(y)).

Hence, φ : Σ→ Σ′ is an isometry with the desired properties. Let ψ : Σ→ Σ′

be an isometry sending c onto c′. Then ψ−1 ◦ φ : Σ → Σ stabilizes Σ and
fixes the chamber c. By 7.1.3, ψ−1 ◦ φ is the identity. �

7.1.5 Lemma
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be twin buildings of type Π.
Let R ⊆ C+ and R′ ⊆ C′+ be spherical residues of the same type and let
ϕ : R → R′ be an isometry. Let (c, d) ∈ R × C− and (c′, d′) ∈ R′ × C′−
be pairs of opposite chambers. If ϕ(projR(d)) = projR′(d

′), then the map
d 7→ d′ extends ϕ to an isometry from R∪ {d} onto R′ ∪ {d′}.

Proof Let J ⊆ S denote the type of the residues R and R′. Choose a
chamber x ∈ R. Then

δ′∗(ϕ(x), d′) = δ′+(ϕ(x), projR′(d
′)) δ′∗(projR′(d

′), d′)

= δ′+(ϕ(x),ϕ(projR(d)) rJ

= δ+(x, projR(d)) δ∗(projR(d), d) = δ∗(x, d).

�
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It follows from the extension theorem of B. Mühlherr and M. Ronan in [MR]
that almost all thick, irreducible, 2-spherical twin buildings of rank at least
3 are completely determined by their local structure. In order to apply this
result we need the following preliminary work:

7.1.6 Proposition
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be thick 2-spherical twin
buildings of type Π. Let c ∈ C+ and c′ ∈ C′+ be two chambers and suppose
that there is an isometry ϕ : E2(c) → E2(c′) sending c onto c′. Then there
exist chambers d ∈ C− and d′ ∈ C′− which are opposite to c and c′ respectively
and such that the map d 7→ d′ extends ϕ to an isometry from E2(c) ∪ {d}
onto E2(c′) ∪ {d′}.

Proof The basic idea of the proof is to start with arbitrary chambers d
and d′ which are opposite to c and c′ respectively. We then go through all
subsets J ⊆ S of cardinality at most 2 one after another (starting with the
subsets of cardinality 1) and “correct“ the chamber d′, if necessary.

Choose a chamber d ∈ C− which is opposite to c. For x ∈ C′− such that x is
opposite to c′ we define Sx := {s ∈ S | ϕ(projPs(c)(d)) = projPs(c′)(x)}. If
x ∈ C′− is opposite to c′ such that Sx = S, then the map d 7→ x extends the
restriction ϕ|E1(c) : E1(c)→ E1(c′) to an isometry E1(c)∪{d} → E1(c′)∪{x}:
Indeed, let y ∈ E1(c) and let s ∈ S such that y ∈ Ps(c). As s ∈ S = Sx,
7.1.5 yields that the map d 7→ x extends the isometry Ps(c)→ Ps(c′) to an
isometry from Ps(c)∪{d} onto Ps(c′)∪{x} and whence δ′∗(ϕ(y),x) = δ∗(y, d).

Let d′ ∈ C′− such that c′ and d′ are opposite. If Sd′ = S, we are done. So
suppose that there is s ∈ S such that ϕ(projPs(c)(d)) 6= projPs(c′)(d

′).
Since the chambers c and d are opposite chambers of ∆, projPs(c)(d) 6= c
and hence ϕ(projPs(c)(d)) 6= c′. Let d′′ := projPs(d′)(ϕ(projPs(c)(d))). As the
panels Ps(c′) and Ps(d′) are opposite, [AB, 5.153] implies that d′′ is opposite
to the chamber c′ and, in view of 6.2.5 and 6.2.2,

projPs(c′)(d
′′) = projPs(c′)(projPs(d′)(ϕ(projPs(c)(d)))) = ϕ(projPs(c)(d)).

In particular, s ∈ Sd′′ . Moreover, we have Sd′ ⊆ Sd′′ :
To see this let t ∈ Sd′ , i.e. ϕ(projPt(c)(d)) = projPt(c′)(d

′). We need to show
that ϕ(projPt(c)(d)) = projPt(c′)(d

′′). Note that, by definition, d′′ ∈ Ps(d′).
By 6.1.4(a), the set projPt(c′)(Ps(d

′)) is a residue of Pt(c′) whose type is, by
6.1.4(b), t({t}∩{s})t = ∅, i.e. projPt(c′)(Ps(d

′)) is a single chamber. Hence,
projPt(c′)(d

′′) = projPt(c′)(d
′) = ϕ(projPs(c)(d)).

Thus, d′′ is a chamber which is opposite to c′ and Sd′ ∪ {s} ⊆ Sd′′ . We
replace d′ by d′′.

Applying the construction described above sequentially to each of the finitely
many s ∈ S (if necessary), we finally obtain a chamber d′ ∈ C′− which is op-
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posite to the chamber c′ and which satisfies Sd′ = S.

We translate the ideas of the rank 1 case to the rank 2 case without loosing
the achievements we obtained so far. Let S′ denote the set of all subsets of
S of cardinality 2. Just as in the rank 1 case we define for a chamber x ∈ C′−
which is opposite to c′ a subset

Jx := {J ∈ S′ | ϕ(projRJ (c)(d)) = projRJ (c′)(x)}.

If x ∈ C′− is opposite to c′ such that Jx = S′, then the map d 7→ x extends
the isometry ϕ : E2(c)→ E2(c′) to an isometry E2(c) ∪ {d} → E2(c′) ∪ {x}
just as desired: Indeed, let y ∈ E2(c) and let J ∈ S′ such that y ∈ RJ(c).
As J ∈ S′ = Jx, 7.1.5 yields that the map d 7→ x extends the isometry
RJ(c) → RJ(c′) to an isometry from RJ(c) ∪ {d} onto RJ(c′) ∪ {x} and
whence δ′∗(ϕ(y),x) = δ∗(y, d).

Let d′ ∈ C′− be the a chamber which is opposite to c′ and such that Sd′ = S.
If Jd′ = S′ we are done.
So suppose that J ∈ S′ is such that projRJ (c′)(d

′) 6= ϕ(projRJ (c)(d)).
Let d′′ := projRJ (d′)(ϕ(projRJ (c)(d))). Since the residues RJ(c′) and RJ(d′)
are opposite we have

projRJ (c′)(d
′′) = projRJ (c′)(projRJ (d′)(ϕ(projRJ (c)(d)))) = ϕ(projRJ (c)(d))

in view of 6.2.5 and 6.2.2. According to 6.2.6,

δ∗(d, projRJ (c)(d)) = rJ = δ′∗(d
′′, projRJ (c′)(d

′′))

and hence the calculation

δ′∗(c
′, d′′) = δ′+(c′, projRJ (c′)(d

′′)) rJ = δ+(c, projRJ (c)(d)) rJ

= δ∗(c, d) δ∗(d, projRJ (c)(d)) rJ = 1W

shows that the chamber d′′ is opposite to the chamber c′. In particular,
J ∈ Jd′′ .
We show that the chamber d′′ has the following properties:

(i) Sd′′ = S

(ii) Jd′ ⊆ Jd′′

To (i): Let s ∈ S. First suppose that s ∈ J . Then, by 6.1.5,

projPs(c)(d) = projPs(c)(projRJ (c)(d))

as well as
projPs(c′)(d

′′) = projPs(c′)(projRJ (c′)(d
′′)).
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Now it follows from [MR, 4.2] that

ϕ(projPs(c)(d)) = ϕ(projPs(c)(projRJ (c)(d)))

= projPs(c′)(projRJ (c′)(d
′′)) = projPs(c′)(d

′′).

If s /∈ J , then projPs(c′)(d
′′) ∈ projPs(c′)(RJ(d′)) which is, by 6.1.4, a residue

of Ps(c′) of type s({s}∩J)s = ∅. Hence, projPs(c′)(RJ(d′)) is a single cham-
ber and thus projPs(c′)(d

′′) = projPs(c′)(d
′) = ϕ(projPs(c)(d)), as desired.

To (ii): Let K ∈ Jd′ . Then, by definition, projRK(c′)(d
′) = ϕ(projRK(c)(d)).

We need to show that projRK(c′)(d
′′) = ϕ(projRK(c)(d)).

Suppose that J ∩ K = ∅. Then, projRK(c′)(d
′′) ∈ projRK(c′)(RJ(d′)). By

6.1.4(a), the set projRK(c′)(RJ(d′)) is a residue of RK(c′) whose type is,
by 6.1.4(b), rK(K ∩ J)rK = ∅. Hence, it is a single chamber and therefore
projRK(c′)(d

′′) = projRK(c′)(d
′) = ϕ(projRK(c)(d)).

Suppose that K ∩ J = {s} for some s ∈ S. Let x := projRK(c′)(d
′)

and y := projRK(c′)(d
′′) and suppose that x 6= y. Since the projection

projRK(c′)(RJ(d′)) is a residue of RK(c′) of type rK(K ∩ J)rK = rKsrK we
have δ′+(x, y) = rKsrK .

Note that, by (i),

ϕ(projPs(c)(d)) = projPs(c′)(d
′′) = projPs(c′)(projRK(c′)(d

′′))

and similarly, as Sd′ = S,

ϕ(projPs(c)(d)) = projPs(c′)(d
′) = projPs(c′)(projRK(c′)(d

′)).

In particular, projPs(c′)(x) = projPs(c′)(y).

As the chambers d′ and c′ are opposite, [MR, 3.3] gives that δ′+(c,x) = rK
and hence δ′+(x, projPs(c′)(x)) = rKs. Now, as δ′+(y,x) = rKsrK and
`(rKsrK rKs) = `(rK) = `(rKs) + 1, (WD2) implies that

δ′+(y, projPs(c′)(x)) = δ′+(y, projPs(c′)(y)) = rK ,

a contradiction. Thus, projRK(c′)(d
′′) = y = x = projRK(c′)(d

′).

Thus, d′′ is a chamber which is opposite to c′ and Jd′ ∪ {J} ⊆ Jd′′ . We
replace d′ by d′′.

Applying the construction described above sequentially to each of the finitely
many J ∈ S′ (if necessary), we finally obtain a chamber d′ ∈ C′− which is
opposite to the chamber c′ and which satisfies Jd′ = S′.

�
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7.2 Translates

Let Π be a Coxeter diagram with vertex set I, let (W ,S) be the correspond-
ing Coxeter system and let σ ∈ Aut(W ,S). We denote by ` : W → N the
length function on W with respect to S.

7.2.1 Definition
Let ∆ = (C, δ) be a building of type Π. We define a map δσ : C × C → W
via

δσ(c, d) := σ(δ(c, d))

for all c, d ∈ C.

7.2.2 Lemma
Let ∆ = (C, δ) be a building of type Π and let δσ : C × C → W be defined
as in 7.2.1. Then the pair ∆σ := (C, δσ) is a building of type Π and the
identity-map on C is a σ-isometry from ∆ onto ∆σ.

Proof First, we verify the axioms (WD1)-(WD3):

(WD1) Let c, d ∈ C be chambers such that δσ(c, d) = 1W . Then

δ(c, d) = σ−1(δσ(c, d)) = σ−1(1W ) = 1W

and thus c = d. Conversely, if c = d we have

δσ(c, d) = σ(δ(c, d)) = σ(1W ) = 1W .

(WD2) Let c, d ∈ C be chambers and set w := δσ(c, d). Let c′ ∈ C such
that δσ(c′, c) = s ∈ S. By definition this yields δ(c, d) = σ−1(w) and
δ(c′, c) = σ−1(s) ∈ S. Thus, applying axiom (WD2) of ∆, we obtain

δ(c′, d) ∈ {σ−1(sw),σ−1(w)}.

Hence, δσ(c′, d) = σ(δ(c′, d)) ∈ {sw,w}.

Suppose that `(sw) = `(w)+1. Since σ (and thus σ−1) is an automor-
phism we have `(σ−1(sw)) = `(sw) = `(w)+1 = `(σ−1(w))+1. Thus,
again by (WD2), δ(c′, d) = σ−1(sw) and δσ(c′, d) = σ(δ(c′, d)) = ws.

(WD3) Let c, d ∈ C and w := δσ(c, d). Choose s′ ∈ S and let s ∈ S be the
unique element such that σ(s) = s′. By (WD3) there exists a chamber
c′ ∈ C such that δ(c′, c) = s and δ(c′, d) = sσ−1(w). Thus the chamber
c′ ∈ C satisfies δσ(c′, c) = σ(s) = s′ and δσ(c′, d) = s′w.
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Hence, ∆σ := (C, δσ) is a building of type Π.

Consider the map idC : C → C given by idC(c) = c for all c ∈ C. Then

δσ(idC(c), idC(d)) = δσ(c, d) = σ(δ(c, d))

shows that idC is a σ-isometry from ∆ onto ∆σ. �

The building ∆σ is called the translate of ∆ with respect to σ. A similar
construction can be done for twin buildings:

7.2.3 Definition
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Π. We define a map
δσ∗ : (C+ × C−) ∪ (C− × C+)→W via

δσ∗ (c, d) := σ(δ∗(c, d))

for all (c, d) ∈ (C+ × C−) ∪ (C− × C+).

7.2.4 Lemma
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Π. For ε ∈ {+,−} let
∆σ
ε be the translate of ∆ε with respect to σ as described in 7.2.2. Let

δσ∗ : (C+ × C−) ∪ (C− × C+) → W be defined as in 7.2.3. Then the triple
∆σ := (∆σ

+, ∆σ
−, δσ∗ ) is a twin building of type Π and the identity-map on

C+ ∪ C− is a σ-isometry from ∆ onto ∆σ.

Proof Let ε ∈ {+,−}. According to 7.2.2 the pair ∆σ
ε = (Cε, δσε ) is a

building of type Π. We verify the axioms (Tw1)-(Tw3): Let c ∈ Cε, d ∈ C−ε
and set w := δσ∗ (c, d) ∈W .

(Tw1) Applying (Tw1) for ∆ we obtain

δσ∗ (c, d) = σ(δ∗(c, d)) = σ(δ∗(d, c)−1) = σ(δ∗(d, c))−1 = δσ∗ (d, c)−1.

(Tw2) Let c′ ∈ Cε be a chamber such that δσε (c′, c) = s ∈ S . Suppose that
`(sw) < `(w). Then `(σ−1(w)) = `(w) > `(sw) = `(σ−1(sw)) and
δε(c

′, c) = σ−1(s) ∈ S. Axiom (Tw2) yields δ∗(c
′, d) = σ−1(sw) and

thus δσ∗ (c′, d) = sw.

(Tw3) Let s ∈ S. Since s′ := σ−1(s) ∈ S, (Tw3) for ∆ provides a chamber
c′ ∈ Cε such that δε(c

′, c) = s′ and δ∗(c
′, d) = s′σ−1(w). The chamber

c′ is as desired, since δσε (c′, c) = s and δσ∗ (c′, d) = sw.

Hence, ∆σ := (∆σ
+, ∆σ

−, δσ∗ ) is a twin building of type Π.
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Let C := C+ ∪ C− and let idC : C → C be defined by idC(c) = c for all c ∈ C.
By 7.2.2, the restriction idC |Cε is a σ-isometry from ∆ε onto ∆σ

ε for each
ε ∈ {+,−}. Let c ∈ Cε and d ∈ C−ε. Then

δσ∗ (idC(c), idC(d)) = σ(δ∗(idC(c), idC(d))) = σ(δ∗(c, d))

shows that idC is a σ-isometry from ∆ onto ∆σ. �

The twin building ∆σ is called the translate of ∆ with respect to σ.
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7.3 An extension theorem

One of the main results in [Ti74] asserts that a building of spherical type is
determined by its local structure. More precisely, an isomorphism between
thick spherical buildings is uniquely determined by what it does on a small
part of the domain. There is also an existence theorem, which says that an
isomorphism can be arbitrarily prescribed in the neighbourhood of a given
chamber, provided the buildings are irreducible and of rank at least 3.
Even though the rigidity theorem and its proof remain valid for automor-
phisms of thick twin buildings, the situation for the extension theorem is
more complicated. There does exist an extension theorem for a class of twin
buildings, due to work of Mühlherr and Ronan in [MR] that is based on ear-
lier results of Tits [Ti92]. The following statement follows from [MR, 1.1,1.2
and 1.3]:

7.3.1 Theorem
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be thick 2-spherical twin build-
ings of the same type which satisfy condition (co). Let (c+, c−) ∈ C+ × C−
and (c′+, c′−) ∈ C′+×C′− be two pairs of opposite chambers. Then each isom-
etry from E2(c+)∪{c−} onto E2(c′+)∪{c′−} extends uniquely to an isometry
from ∆ onto ∆′.

Throughout this section let Π be a Coxeter diagram with vertex set I and
let (W ,S) be the corresponding Coxeter system.

We will be interested in the following consequences of the extension theorem
7.3.1:

7.3.2 Corollary
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be thick 2-spherical twin
buildings of type Π which satisfy condition (co) and let c ∈ C+ and c′ ∈ C′+
be chambers. Let Σ = (Σ+, Σ−) and Σ′ = (Σ′+, Σ′−) be twin apartments of
∆ and ∆′ containing the chambers c and c′ respectively.
Let φ : E2(c)→ E2(c′) be an isometry with φ(c) = c′ and let ψ : Σ→ Σ′ be
an isometry that coincides with φ on the intersection Σ∩E2(c). Then there
is a unique isometry from ∆ onto ∆′ extending φ and ψ.

Proof Let Σ, Σ′, c and c′ be as in the theorem. Let d := opΣ(c) and
d′ := opΣ′(c

′) and note that Σ′ = Σ{c′, d′} is the unique twin apartment
of ∆′ containing the opposite chambers c′ and d′. As c ∈ E2(c) ∩ Σ the
assumption on φ and ψ yields ψ(c) = φ(c) = c′.

We proceed in a series of steps:

Claim 1: ψ(d) = d′
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Proof of claim 1: Since d ∈ Σ it follows that ψ(d) ∈ Σ′. As

δ∗(ψ(d), c′) = δ∗(ψ(d),ψ(c)) = δ∗(d, c) = 1W ,

we conclude that ψ(d) = opΣ′(c
′) = d′.

�

Claim 2: Let J ⊆ S with |J | ≤ 2 and set R := RJ(c) as well as
R′ := RJ(c′). Then φ(projR(d)) = projR′(d

′).

Proof of claim 2: Note that J is spherical. According to 6.3.4 we
have projR(d) ∈ Σ, since Σ is convex and Σ ∩ R 6= ∅. In particular,
projR(d) ∈ Σ ∩ R ⊆ Σ ∩ E2(c). The assumption on φ and ψ gives
φ(projR(d)) = ψ(projR(d)) ∈ Σ′. Similarly, lemma 6.3.4 gives that
projR′(d

′) ∈ Σ′.
We use 6.3.5 and obtain

δ′∗(d
′,φ(projR(d))) = δ′ε(c

′,φ(projR(d))) = δ′ε(φ(c),φ(projR(d)))

= δε(c, projR(d)) = δ∗(c, d) δ∗(projR(d), d)−1

= 1W max{WJ}−1 = rJ .

On the other hand we have

δ′∗(d
′, projR′(d

′)) = max{δ′∗(d′, c′)WJ} = rJ .

In view of 6.3.3(a) we have projR′(d
′) = φ(projR(d)). �

Claim 3: For all x ∈ E2(c) we have δ∗(x, d) = δ′∗(φ(x), d′).

Proof of claim 3: Let x ∈ E2(c) and let J ⊆ S with |J | ≤ 2 such
that x ∈ R := RJ(c). Then φ(x) ∈ R′ := RJ(c′) and by using claim 2
we obtain

δ′∗(φ(x), d′) = δ′ε(φ(x), projR′(d
′)) δ′∗(projR′(d

′), d′)

= δ′ε(φ(x),φ(projR(d))) rJ

= δε(x, projR(d)) rJ

= δε(x, projR(d)) δ∗(projR(d), d)

= δ∗(x, d).

�

Thus, the map d 7→ d′ extends φ to an isometry E2(c)∪{d} → E2(c′)∪{d′}.
Applying 7.3.1 we obtain a unique isometry ϕ : ∆→ ∆′ extending φ.
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We consider the restriction ϕ|Σ. According to 7.1.2, ϕ(Σ) is a twin apart-
ment of ∆′. Moreover, as ϕ(Σ) containins the chambers ϕ(c) = φ(c) = c′

and ϕ(d) = d′, we conclude that ϕ(Σ) = Σ′. Hence, ϕ|Σ is an isometry from
Σ onto Σ′ mapping c onto c′. In view of 7.1.4 we have ϕ|Σ = ψ. �

Before we will give another consequence of the extension theorem, which
we will apply in the sequel to construct certain automorphisms on twin
buildings, we recall the definition of an essential set (cf. 4.2.1): A subset
X ⊆ 2S is called essential, if S /∈ X,∪M∈XM = S and if for each irreducible
subset J ⊆ S having cardinality 2 there is a set M ∈ X such that J ⊆M .

7.3.3 Corollary
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be thick 2-spherical twin
buildings of type Π which satisfy condition (co) and let c ∈ C+ and c′ ∈ C′+
be chambers. Let X ⊆ 2S be an essential set such that each subset M ∈ X
is spherical. Let ϕ : EX(c)→ EX(c′) be a bijective map such that ϕ(c) = c′

and such that for all M ∈ X the restriction ϕM := ϕ|RM (c) is an isometry
from RM (c) onto RM (c′).
Let Σ and Σ′ be twin apartments of ∆ and ∆′ containing the chambers c
and c′ respectively and suppose that ϕ maps Σ ∩ RM (c) bijectively onto
Σ′ ∩ RM (c′) for all M ∈ X. Then there exists a unique isometry from ∆
onto ∆′ extending each ϕM .

Proof Let x ∈ E2(c). Then there exists a subset J ⊆ S with |J | ≤ 2 such
that x ∈ RJ(c).
If J is irreducible there exists a subset M ∈ X such that J ⊆ M and
thus x ∈ EX(c) and ϕ(x) ∈ EX(c′) is defined. Moreover, the restriction
ϕJ := ϕM |RJ (c) is an isometry from RJ(c) onto RJ(c′).
If J is reducible, |J | = 2 and ΠJ is the diagram A1 × A1. For each s ∈ J
the map ϕs := ϕ|Ps(c) is an isometry from Ps(c) onto Ps(c′). By 4.2.3, there
exists a unique isometry ϕJ : RJ(c) → RJ(c′) extending ϕs for each s ∈ J .
We define a mapping

ϕ̄ : E2(c)→ E2(c′)

by ϕ̄(x) := ϕJ(x) if x ∈ RJ(c). Note that this map is well-defined since
for any two subsets J ,K ⊆ S of cardinality at most 2 with J ∩ S 6= ∅
the corresponding maps ϕJ and ϕK coincide on RJ∩K(c). By construction,
ϕ̄ satisfies the properties of proposition 4.2.4 and whence is an isometry
E2(c)→ E2(c′).

Let φ : Σ → Σ′ be the unique isometry mapping the chamber c onto the
chamber c′ (cf. 7.1.4).

Let x ∈ E2(c) ∩ Σ. We show that ϕ̄(x) = φ(x):
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First suppose that x ∈ E∗2(c) and let M ∈ X such that x ∈ RM (c). Then
x ∈ Σ ∩RM (c) and ϕ̄(x) = ϕ(x) ∈ Σ′ ∩RM (c′). Since c′, ϕ̄(x) and φ(x) are
chambers of Σ′, we may apply 6.3.3(b) and obtain

δ′+(ϕ̄(x),φ(x)) = δ′+(ϕ̄(x), c′) δ′+(c′,φ(x))

= δ+(x, c) δ+(c,x) = 1W ,

which implies that ϕ̄(x) = φ(x).

If x /∈ E∗2(c) there exists a reducible subset J = {s, t} ⊆ S such that
x ∈ RJ(c). Note that, since x /∈ Ps(c) ∪ Pt(c), x is the unique element in
Σ such that δ+(c,x) = rJ = st = ts. We conclude that φ(x) is the unique
element in Σ′ such that δ′+(c′,φ(x)) = rJ = st = ts.
Let c′s be the unique element in Σ′ such that δ′+(c′, c′s) = s and similarly let
c′t be the unique element in Σ′ such that δ′+(c′, c′t) = t. Following the proof
of 4.2.3, we obtain

ϕ̄(x) = ϕJ(x) = projPt(ϕ(c′s))
(ϕ(c′t))

and since ϕ(c′s) ∈ Σ′ ∩ Pt(ϕ(c′s)) we conclude that ϕ̄(x) ∈ Σ′ by 6.3.2. As
δ′+(c′, ϕ̄(x)) = δ+(c,x) = rJ we conclude that ϕ̄(x) = φ(x).
By 7.3.2, there is a unique isometry Φ: ∆→ ∆′ extending ϕ̄ and φ.

Choose M ∈ X and let d ∈ Σ be the unique chamber such that δ+(c, d) =
rM . Set EM1 (c) :=

⋃
s∈M Ps(c) and choose x ∈ EM1 (c). Then there exists

s ∈M such that x ∈ Ps(c) and as Ps(c) ⊆ E∗2(c) we have

Φ(x) = ϕ̄(x) = ϕ(x) = ϕM (x).

Clearly, Φ(d) = φ(d) is the unique element in Σ′ such that δ′+(c′, Φ(d)) = rM .
By assumption, ϕM (d) ∈ Σ′ and since ϕM is an isometry from RM (c) onto
RM (c′), we have δ′+(c′,ϕM (d)) = δ+(c, d) = rM . Whence Φ(d) = ϕM (d).

Now Φ−1 ◦ ϕM is an isometry from RM (c) onto RM (c) fixing EM1 (c) ∪ {d}
pointwise. The rigidity theorem [AB, 5.205] implies that Φ and ϕM coincide
on RM (c). �



Chapter 8

Descent

8.1 Γ-residues

The main idea of this section is to generalize the concepts and results of
chapter 22 of [MPW] to twin buildings.

Throughout this section let Π be a Coxeter diagram with vertex set I and
let (W ,S) be the corresponding Coxeter system and denote by ` : W → N
the length function on W with respect to S. Let ∆ = (∆+, ∆−, δ∗) be a
twin building of type Π (not necessarily thick) and let Γ be a subgroup of
Aut(∆). We denote by Θ the subgroup of Aut(W ,S) induced by Γ.

8.1.1 Definition
(i) A Γ-residue is a residue of ∆ stabilized by Γ.

(ii) A Γ-chamber is a Γ-residue which is minimal with respect to inclusion.

(iii) A Γ-panel is a Γ-residue P such that for some Γ-chamber C ⊆ P,
P is minimal in the set of all Γ-residues containing C. Equivalently,
a Γ-panel is a Γ-residue P that contains a Γ-chamber C such that
Typ(P)\Typ(C) is a single Θ-orbit.

8.1.2 Remark
For each ε ∈ {+,−} the restriction of Γ to the building ∆ε is a subgroup
Γε ≤ Aut(∆ε) and a Γ-residue (panel/chamber) of ∆ contained in ∆ε is noth-
ing else than a Γε-residue (panel/chamber) of ∆ε as defined in [MPW, 22.2].

8.1.3 Lemma
Let R be a Γ-residue and let T be a residue containing R. Then T is a
Γ-residue if and only if Typ(T ) is Θ-invariant.

112
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Proof Let ε ∈ {+,−} such that R ⊆ T ⊆ Cε. For each γ ∈ Γ we denote by
σγ ∈ Θ the accompanying automorphism of γ. Conversely, for each σ ∈ Θ
there exists γ ∈ Γ such that σγ = σ.
Let σ ∈ Θ and let γ ∈ Γ such that σγ = σ. Suppose that T is a Γ-residue,
let s ∈ Typ(T ) and choose x, y ∈ T such that δε(x, y) = s. We have
γ(x), γ(y) ∈ T and hence

σ(s) = σγ(s) = σγ(δε(x, y)) = δε(γ(x), γ(y)) ∈ Typ(T ).

Conversely, choose a chamber c ∈ R and let J := Typ(T ) be Θ-invariant.
Then T = RJ(c) and γ(c) ∈ R for all γ ∈ Γ. Let x ∈ T be any chamber
and set w := δε(c,x) ∈WJ . Since σ(w) ∈WJ for all σ ∈ Θ we have

δε(γ(c), γ(x)) = σγ(δε(c,x)) = σγ(w) ∈WJ .

Thus, γ(x) ∈ RJ(γ(c)) = RJ(c) = T .

�

8.1.4 Lemma
Let ε ∈ {+,−}, let R be a spherical Γ-residue in Cε and let T be a Γ-residue
in C−ε. Then the projection projR(T ) is a Γ-residue.

Proof According to 6.1.4, the set projR(T ) is a residue.

Let J := Typ(R) ⊆ S and let w1 := min{δ∗(R, T )}. Let γ ∈ Γ and let
σ ∈ Θ be the accompanying automorphism of γ. Since R is a Γ-residue, its
type is Θ-invariant by 8.1.3. Hence, σ(rJ) ∈ WJ and since σ preserves the
length, in view of 2.8(d), we conclude that σ(rJ) = rJ . Let w ∈ δ∗(R, T )
and let c ∈ R, d ∈ T such that δ∗(c, d) = w. Then

σ(w) = σ(δ∗(c, d)) = δ∗(γ(c), γ(d)) ∈ δ∗(R, T ),

since γ(c) ∈ R and γ(d) ∈ T . Since σ preserves the length, in view of 2.8(a),
we conclude that σ(w1) = w1. Now, using the characterization in 6.1.4, the
fact that γ(y) ∈ T for all y ∈ T and the considerations above,

x ∈ projR(T )⇔ ∃ y ∈ T : δ∗(x, y) = rJw1

⇔ ∃ y ∈ T : σ(δ∗(x, y)) = rJw1

⇔ ∃ y ∈ T : δ∗(γ(x), γ(y)) = rJw1

⇔ rJw1 ∈ δ∗(γ(x), T )

⇔ γ(x) ∈ projR(T ).

�
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8.1.5 Lemma
Let T be a Γ-residue which is parallel to a spherical Γ-chamber. Then T is
also a Γ-chamber.

Proof Let C be a spherical Γ-chamber parallel to T . According to 2.27(a)
and 6.2.2, the projection maps projC : T → C and projT : C → T induce
mutually inverse bijections. Suppose that there exists a proper Γ-residue
X ( T and choose a chamber d ∈ T \X. By 8.1.4, projC(X) ⊆ C is a Γ-
residue and hence projC(X) = C. Let c := projC(d) ∈ C. As C = projC(X)
there exists x ∈ X such that projC(x) = c. Thus,

d = projT (projC(d)) = projT (c) = projT (projC(x)) = x ∈ X,

a contradiction. �

8.1.6 Corollary
Let ε ∈ {+,−}, let C be a spherical Γ-chamber in Cε and let D be a Γ-residue
in C−ε which is opposite to C. Then D is a Γ-chamber.

Proof By 6.2.5, opposite residues of spherical type are parallel. The asser-
tion now follows from 8.1.5. �

8.1.7 Corollary
Let ε ∈ {+,−}, let R be a spherical Γ-residue in Cε and let C be a spherical
Γ-chamber in C−ε. Then the projection projR(C) is a Γ-chamber.

Proof By 8.1.4, X := projR(C) ⊆ R is a Γ-residue. We show that C and
X are parallel and then the assertion follows from 8.1.5.
Let x ∈ X and c ∈ C such that projR(c) = x. According to 6.1.5 we have

projX(c) = projX(projR(c)) = projX(x) = x,

and hence X ⊆ projX(C) ⊆ X. Applying again 8.1.4, we obtain that
projC(X) ⊆ C is a Γ-residue. As C is minimal with respect to inclusion, we
conclude that projC(X) = C and X and C are parallel. �

8.1.8 Lemma
Let R+ ⊆ C+ and R− ⊆ C− be opposite Γ-residues of spherical type and
let C+ ⊆ R+ and C− ⊆ R− be Γ-chambers. Then w := δ∗(c, projC−ε(c)) is
independent of the choice of the chamber c ∈ Cε for each ε ∈ {+,−}.
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Proof Let ε ∈ {+,−} and J := Typ(R+) = Typ(R−). According to
8.1.7, the set projR−ε(Cε) is a Γ-chamber contained in R−ε and by 6.2.6,
δ∗(c, projR−ε(c)) = rJ for all c ∈ Cε. Note that, by [MPW, 22.3(iii)] the Γ-
chambers C−ε and projR−ε(Cε) are parallel. In view of 2.27(b), the element
v := δ−ε(d, projC−ε(d)) is independent of the choice of the chamber d ∈
projR−ε(Cε). Hence, using 2.28(a), for each c ∈ Cε,

δ∗(c, projC−ε(c)) = δ∗(projC−ε(c), c)
−1

= (δ−ε(projC−ε(c), projR−ε(c)) δ∗(projR−ε(c), c))
−1

= rJ δ−ε(projR−ε(c), projC−ε(projR−ε(c))) = rJ v

is independent of the chamber c. �

8.1.9 Proposition
Let P be a spherical Γ-residue and suppose that P contains two Γ-residues
C and D of the same type A such that Typ(P)\A is a single Θ-orbit. Let
ΣC be an apartment of C. If C and D are opposite in P the following hold:

(a) There exists a unique apartment ΣP of P such that ΣP ∩D 6= ∅ and
ΣP ∩ C = ΣC .

(b) If ΣC is Γ-invariant, then so is ΣP .

Proof Let ε ∈ {+,−} such that P ⊆ Cε.

(a) Choose a chamber c ∈ ΣC and let x ∈ ΣC be the unique chamber such
that δε(x, c) = rA.
Let d := projD(x). Since C and D are opposite, they are parallel and
thus x = projC(d). Now [W03, 9.11(iii)] gives that

δε(d,x) = rΘ(s)∪A rA

and thus

δε(d, c) = δε(d,x) δε(x, c) = rΘ(s)∪ArArA = rΘ(s)∪A.

In particular, the chambers c and d are opposite in P. Let ΣP be the
unique apartment of P containing the chambers c and d. Applying
[AB, 5.45] gives that for all y ∈ ΣP the chamber projC(y) ∈ ΣP , since
ΣP ∩ C 6= ∅. In particular, x = projC(d) ∈ ΣP . As ΣP ∩ C is an
apartment of C containing the chambers c and x, we conclude that
ΣP ∩ C = ΣC .

Now let Σ′P be another apartment of P such that Σ′P ∩ C = ΣC and
Σ′P ∩ D 6= ∅. Again, by [AB, 5.45], d = projD(x) ∈ Σ′P . As d and c
are opposite in P, we conclude that ΣP = Σ′P .
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(b) Let γ ∈ Γ and suppose that γ(ΣC) = ΣC . Let ΣP be the unique
apartment of P containing ΣC such that ΣP ∩D 6= ∅. Then γ(ΣP) is
an apartment of P containing γ(ΣC) = ΣC . Let y ∈ D ∩ΣP . As D is
a Γ-residue, γ(y) ∈ D ∩ γ(ΣP). Thus, γ(ΣP) = ΣP .

�

8.1.10 Lemma
Let C be a spherical Γ-chamber and suppose that there exists a twin apart-
ment Σ of ∆ which is stabilized by Γ such that Σ∩C 6= ∅. Then there exists
a Γ-chamber D which is opposite to C.

Proof Let ε ∈ {+,−} such that C ⊆ Cε. Set A := Typ(C) and choose
c ∈ C ∩Σ. Note that, since C is a Γ-chamber, A is Θ-invariant. Since both,
C and Σ, are Γ-invariant, we conclude that γ(c) ∈ C ∩ Σ for all γ ∈ Γ.
Let d := opΣ(c), let γ ∈ Γ and let σ ∈ Θ be the accompanying automorphism
of γ. Set w := δε(c, γ(c)) ∈WA. Note that γ(d) ∈ Σ and thus, by 6.3.5 and
6.3.3(b),

δ−ε(d, γ(d)) = δ∗(c, γ(d)) = δε(c, γ(c)) δ∗(γ(c), γ(d))

= w σ(δ∗(c, d)) = w ∈WA.

Thus, γ(d) ∈ RA(d) for all γ ∈ Γ. Set D := RA(d) and let x ∈ D be any
chamber. Then w′ := δ−ε(x, d) ∈WA and hence

δ−ε(γ(x), γ(d)) = σ(δ−ε(x, d)) = σ(w′) ∈WA.

We conclude that γ(x) ∈ RA(γ(d)) = D which implies that D is Γ-invariant.
Hence, D is a Γ-residue opposite to C and thus, according to 8.1.6, D is a
Γ-chamber. �

8.1.11 Definition
A Γ-chamber C of ∆ will be called thick if every Γ-panel containing C
contains at least three Γ-chambers.

8.1.12 Proposition
Let C be a thick Γ-chamber of ∆. Then every Γ-chamber opposite C is
thick.

Proof Let A := Typ(C) and let D be a Γ-chamber opposite C. Let PD be
a Γ-panel containing D. Hence Typ(PD)\A is a single Θ-orbit. Let PC be
the unique residue of the same type as PD which contains the Γ-chamber C.
By 8.1.3, PC is a Γ-panel. By assumption the Γ-panel PC contains at least
three Γ-chambers.
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For every Γ-chamber C ′ ⊆ PC , the set projPD(C ′) ⊆ PD is a Γ-chamber
(cf. 8.1.7). As, by construction, the two Γ-panels PC and PD are opposite
residues, they are parallel. In particular, the projection maps projPC and
projPD are mutually inverse bijections. We conclude that for any two Γ-
chambers X 6= Y ⊆ PC we have projPD(X) 6= projPD(Y ). Thus, D is thick.

�

8.1.13 Proposition
Let C be a thick Γ-chamber such that every Γ-panel containing C is of
spherical type. Then

T := (Π, Θ, Typ(C))

is a Tits index.

Proof Let A := Typ(C). The assumption on C yields that A is spherical
and the assertion follows from [MPW, 22.13]. �
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8.2 Fixed point buildings

Throughout this section let Π be a Coxeter diagram with vertex set I, let
(W ,S) be the corresponding Coxeter system and let ` : W → N denote the
length function on W with respect to S. Let ∆ = (∆+, ∆−, δ∗) be a twin
building of type (W ,S).
Let Γ be a subgroup of Aut(∆) and let Θ ≤ Aut(W ,S) be the subgroup
induced by Γ.

We suppose that C+ is a spherical Γ-chamber in C+ of type A and that C−
is a Γ-chamber in C− which is opposite to C+ such that T := (Π, Θ,A) is a
Tits index.
We let (W̃ , S̃) be the relative type of T and denote by ˜̀: W̃ → N the length
function on W̃ with respect to S̃.

8.2.1 Remark
In view of [MPW, 22.14](i) every Γ-chamber of ∆ is of type A. Hence, if P
is a Γ-panel, there exists s ∈ S\A such that Typ(P) = Θ(s)∪A. Moreover,
as T is a Tits index, each Γ-panel is of spherical type.

8.2.2 Lemma
Let P and P ′ be opposite Γ-panels. The relation of non-opposition induces
a bijection between the Γ-chambers of P and the Γ-chambers of P ′.

Proof We may suppose that P ⊆ C+ and P ′ ⊆ C−. Let s ∈ S\A such
that J := Typ(P) = Θ(s) ∪A and let C be a Γ-chamber in P. By 8.1.7 the
projection D := projP ′(C) is a Γ-chamber. In view of 6.2.5 and 6.2.2 we
also have projP(D) = C.
Let c ∈ C. Since δ∗(c,D) = δ∗(c, projP ′(c))WA = rJWA, we conclude that
δ∗(c, d) 6= 1W for all d ∈ D because of [MPW, 20.9]. Hence, C and D can
not be opposite.
Let X be a Γ-chamber in P ′ different from D, let d := projP ′(c) ∈ D and
choose a chamber x ∈ X such that δ−(x, projX(d)) = rA. Then

δ∗(x, c) = δ−(x, d) δ∗(d, c) = δ−(x, projX(d)) δ−(projX(d), d) δ∗(d, c).

According to [MPW, 22.14](ii) δ−(d, projX(d)) = s̃ = rJrA = rArJ . Thus,

δ∗(x, c) = rA s̃ rJ = r2
A r2

J = 1W ,

and since Typ(C) = Typ(X) = A we conclude that the Γ-chambers C and
X are opposite. �

8.2.3 Proposition
Every Γ-panel contains at least two Γ-chambers.
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Proof Let P be a Γ-panel. Let ε ∈ {+,−} be such that P ⊆ Cε and
let C be any Γ-chamber in Cε. According to [MPW, 22.3(i) and (ii)], the
projection projP(C) is a Γ-chamber parallel to C and by [MPW, 22.15(ii)],
δε(C, projP(C)) ∈ W̃ .
We will show that for each n ∈ N the following statement holds:

If P is a Γ-panel in Cε and if there exists a pair of opposite Γ-chambers
(X+,X−) ∈ ∆̃+ × ∆̃− such that ˜̀(δε(Xε, projP(Xε))) = n, then P has at

least two Γ-chambers.

We proceed by induction on n.
First, let P be a Γ-panel in Cε containing the Γ-chamber Cε and define
D := projP(C−ε). By 8.1.7, D is a Γ-chamber in P and since C+ and C−
are opposite, Cε 6= D by 8.2.2. Hence our assertion is true for n = 0.

Next suppose that P is a Γ-panel in Cε such that ˜̀(δε(Cε, projP(Cε))) = s̃ for
some s ∈ S\A. Let P ′ be the unique residue of type Θ(s)∪A containing Cε.
In view of 8.1.3, P ′ is a Γ-panel which contains the Γ-chamber projP(Cε).
Let Q be the unique residue of type Θ(s)∪A containing the Γ-chamber C−ε
and let X := projQ(Cε). Again by 8.1.7, X is a Γ-chamber in Q and in view
of 8.2.2, X and projP(Cε) are opposite. Now (projP(Cε),X) ∈ ∆̃ε × ∆̃−ε is
a pair of opposite Γ-chambers such that projP(Cε) ∈ P. The considerations
in the first case show that P has at least two Γ-chambers.

Let P be a Γ-panel in Cε, let w := δε(Cε, projP(Cε)) ∈ W̃ and suppose that
˜̀(w) = n. Let s1, . . . , sn ∈ S\A such that w = s̃1 · · · s̃n. Note that for c ∈ Cε

w = δε(c, projP(c)) = min{δε(c,P)}. (8.1)

Let P1 be the unique residue of type Θ(s1) ∪ A containing Cε. In view of
8.1.3, this is a Γ-panel. Let C1 := projP1

(projP(Cε)). By 8.1.7, C1 is a
Γ-chamber in P1 and we show that the following hold:

(i) C1 6= Cε and

(ii) if projP(C1) = projP(Cε) then

˜̀(δε(C1, projP(C1))) < ˜̀(δε(Cε, projP(Cε))).

Indeed, let c ∈ Cε, d := projP(c) and c1 := projP1
(d). Note that, since Cε

and projP(Cε) are parallel, due to 2.28(a),

c = projCε(d) = projCε(projP1
(d)) = projCε(c1).

Now δε(d, c) = w−1 and thus δε(d,Cε) = w−1WA. In particular, if x is a
chamber of Cε there exists v ∈ WA such that δε(d,x) = w−1v. According
to [MPW, 20.13(iii)], A ⊆ J+(w−1) and thus, by 2.8(c),

`(δε(d,x)) = `(w−1v) = `(w−1) + `(v) ≥ `(w−1) = `(w). (8.2)
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Conversely, since Typ(P1) = Θ(s1)∪A and since s̃1 ∈WΘ(s1)∪A there exists
a chamber x ∈ P1 such that δε(d,x) = w−1s̃1 = s̃n · · · s̃2. By [MPW, 20.31]
we have `(w−1s̃1) = `(s̃n · · · s̃2) =

∑n
i=2 `(s̃i) = `(w) − `(s̃1) < `(w). In

particular, `(δε(d, c1)) ≤ `(w) − `(s̃1) < `(w). In view of 8.2 we conclude
that c1 /∈ Cε. Whence Cε 6= projP1

(projP(Cε)) = C1 and (i) holds.

This implies δε(c, c1) = δε(Cε,C1) = s̃1. Moreover,

δε(projP(C1),C1) = δε(d, c1) = δε(d, c)δε(c1, c)

= w−1s̃1 = s̃n · · · s̃2.

Hence

˜̀(δε(C1, projP(C1))) = ˜̀(δε(c1, d)) = ˜̀(s̃2 · · · s̃n) = n− 1

< n = ˜̀(δε(Cε, projP(Cε)))

and (ii) follows.

If the projection projP(C1) is not equal to the projection projP(Cε), then
the Γ-panel P contains at least two Γ-chambers, as desired. In view of (ii),
if both projections are equal, it suffices to give a Γ-chamber D opposite C1

and the assertion follows by induction.
For this, let T1 be the unique residue of type Θ(s1) ∪ A containing C−ε.
Then T1 is a Γ-panel and, by construction, P1 and T1 are opposite. Since
C−ε is contained in T1 we have δ−ε(C−ε, projT1(C−ε)) = 0 and it follows by
induction that T1 contains at least two Γ-chambers. By 8.2.2, at least one
is opposite to C1. �

8.2.4 Corollary
For each ε ∈ {+,−} the fixed point structure ∆Γε

ε is a building of type

(W̃ , S̃). This building is thick if and only if every Γ-panel contains at least
three Γ-chambers.

Proof According to 8.2.3, each Γ-panel of ∆ε contains at least two Γ-
chambers. The assertion now follows from [MPW, 22.14(iii)]. �

8.2.5 Proposition
If one of the Γ-chambers C+ or C− is thick, all Γ-chambers are thick.

Proof In accordance with 8.1.12, both Γ-chambers C+ and C− are thick.
Since the set of Γ-chambers of each half is connected (cf. 8.2.4), it suffices to
show that each Γ-chamber contained in a common Γ-panel with C+ or C− is
thick. For this, let X be a Γ-chamber such that there exists a Γ-panel P such
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that P contains the Γ-chambers Cε and X. Let P ′ be the unique Γ-panel of
type Typ(P) containing the Γ-chamber C−ε. By construction, P and P ′ are
opposite and, due to 6.2.5, parallel. Since the chambers C+ and C− are thick,
the Γ-panels P and P ′ both contain at least three Γ-chambers. In particular,
there exists a Γ-chamber Y ⊆ P ′ such that projP ′(Cε) 6= Y 6= projP ′(X). In
view of 8.2.2, the Γ-chamber Y is opposite to both, X and Cε. Now 8.1.12
applied to Y gives that Y is thick. Once again we apply 8.1.12 and obtain
that X is thick. �

As an immediate consequence of 8.2.5 and 8.2.4 we obtain the following
corollary:

8.2.6 Corollary
If one of the Γ-chambers C+ or C− is thick, then for each ε ∈ {+,−} the
group Γε is a descent group of ∆ε. In particular, the fixed point structure
∆Γε
ε is a thick building of type (W̃ , S̃).

Proof Proposition 8.2.5 implies that each Γ-panel contains at least three
Γ-chambers. The second assertion follows from 2.40. �

The following observations will be needed for the construction of a codistance
function between the Γ-chambers of ∆+ and the Γ-chambers of ∆−.

8.2.7 Proposition
Let R+ ⊆ C+ and R− ⊆ C− be opposite Γ-residues of spherical type J ⊆ S.
Let C be a Γ-chamber in R+ and let D be a Γ-chamber in R−. We define
X := projR−(C) and Y := projR+

(D). Then

(a) For every c ∈ C we have c = projC(projR+
(projD(projR−(c)))) and

for every d ∈ D we have d = projD(projR−(projC(projR+
(d)))).

(b) δ+(C,Y ) = rJ̃ δ−(X,D) rJ̃ , where rJ̃ = max{W̃J̃}.

Proof According to 8.1.4, the projection X is a Γ-chamber in R− while the
projection Y is a Γ-chamber in R+. Thus, the elements w := δ+(C,Y ) ∈ W̃
and w′ := δ−(X,D) ∈ W̃ are well-defined by [MPW, 22.3(iii)] and [MPW,
21.8(iii)]. In view of 6.2.6 we have δ∗(y, projR−(y)) = rJ for any y ∈ R+

and similarly δ∗(x, projR+
(x)) = rJ for any x ∈ R−.

Now let c ∈ C be any chamber. We set x := projR−(c), d := projD(x) and
y := projR+

(d). In view of 6.1.5 we have

d = projD(x) = projD(projR−(c)) = projD(c).

Now
δ∗(d, c) = δ−(d,x) δ∗(x, c) = w′−1 rJ .
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Hence

δ+(c, y) = δ+(c, y) δ∗(y, d) rJ = δ∗(c, d) rJ

= δ∗(d, c)−1 rJ = rJ w
′ rJ .

As J ⊆ S is such that A ⊆ J , the triple TJ = (ΠJ , ΘJ ,A) is a Tits index (cf.
2.13). Since the absolute type (WJ , J) of TJ is spherical, also the relative
type (W̃J̃ , J̃) is spherical by 2.16(b). Moreover, part (ii) of [MPW, 20.35]
yields that rJ = rJ̃ rA = rA rJ̃ . Due to this

δ+(c, y) = rJ w
′ rJ = rJ̃ rA w′ rA rJ̃ = rJ̃ w

′ rJ̃ ,

since, by [MPW, 22.14(ii)] w′ ∈ W̃J̃ and W̃J̃ ⊆ CWJ
(rA) by [MPW, 20.11(i)].

Since opJ̃ : W̃J̃ → W̃J̃ defined by opJ̃(s̃) := rJ̃ s̃ rJ̃ is an automorphism

(cf. 2.9) we have ˜̀(rJ̃ w
′ rJ̃) = ˜̀(w′). As δ+(c,Y ) = δ+(c, y)WA and A ⊆

J+(w′) by [MPW, 20.13(iii)], we conclude that y ∈ Y is such that δ+(c, y) =
min{δ+(c,Y )}. By [AB, 5.34], y = projY (c) and, as C and Y are parallel,
c = projC(y). Thus, (a) follows. Moreover, (b) is satisfied since

δ+(C,Y ) = δ+(c, y) = rJ̃ w
′ rJ̃ .

�
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8.3 2-twinnings

In [M98], B. Mühlherr gives a local criterion for a relation between the cham-
bers of two buildings to be the opposition relation of a codistance function
of the buildings in question. More precisely, he requires the existence of
an opposition relation on the set of pairs of rank-2-residues, a so-called 2-
twinning :

8.3.1 Definition
Let Π be a Coxeter diagram with vertex set I, let (W ,S) be the correspond-
ing Coxeter system and let ∆+ and ∆− be two buildings of type Π. A set
O ⊆ (C+×C−)∪ (C−×C+) is called a 2-twinning of the pair (∆+, ∆−) if the
following axioms are satisfied:

(T1) O 6= ∅,

(T2) (x, y) ∈ O if and only if (y,x) ∈ O,

(T3) if J ⊆ S is such that |J | ≤ 2 and if R+ and R− are J-residues of ∆+

and ∆− respectively, then either O∩ ((R+×R−)∪ (R−×R+)) = ∅ or
O∩((R+×R−)∪(R−×R+)) is the opposition relation of a codistance
function between R+ and R−.

The precise statement of [M98] reads as follows:

8.3.2 Theorem
Let Π be a Coxeter diagram, let ∆+ = (C+, δ+) and ∆− = (C−, δ−) be two
thick buildings of type Π and let O ⊆ (C+ × C−) ∪ (C− × C+). Then O is
the opposition relation of a codistance function between ∆+ and ∆− if and
only if O is a 2-twinning.

8.3.3 Notation
Throughout this section let Π be a Coxeter diagram with vertex set I, let
(W ,S) be the corresponding Coxeter system and let ∆ = (∆+, ∆−, δ∗) be a
twin building of type Π.
Let Γ be a subgroup of Aut(∆), let Θ ≤ Aut(W ,S) be induced by Γ and
suppose that for each ε ∈ {+,−} the group Γε is a spherical descent group
of the building ∆ε.
We suppose that we are given two opposite Γ-chambers C+ ⊆ C+ and
C− ⊆ C− of type A such that T := (Π, Θ,A) is a Tits index. Let (W̃ , S̃) be
the relative type of T and let ˜̀: W̃ → N be the length function on W̃ with
respect to S̃. We assume that each subset J̃ ⊆ S̃ with |J̃ | ≤ 2 is spherical.

8.3.4 Remark
Let ε ∈ {+,−}.
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(a) According to 2.40, all Γ-chambers of ∆ are residues of type A and the
pair ∆Γε

ε = (CΓε
ε , δ̄ε) is a thick building of type (W̃ , S̃).

(b) Let R be a Γ-residue of ∆ε and let J = Typ(R) ⊆ S. Choose elements
s1, . . . , sk ∈ S\A in distinct Θ-orbits such that

J = Θ(s1) ∪ · · · ∪Θ(sk) ∪A.

Let ΓR denote the subgroup of Aut(R) induced by Γ, let

TJ := (ΠJ , ΘJ ,A)

be as in 2.13 and let

J̃ = {s̃1, . . . , s̃k},

where s̃i for all 1 ≤ i ≤ k is as in 2.14.
Then ΓR is a descent group of R with Tits index TJ and the fixed
point building RΓR is a J̃-residue of the building ∆Γε

ε .

We show that there exists a 2-twinning of the pair (∆
Γ+
+ , ∆

Γ−
− ) in order to

ensure the existence of a codistance function between the Γ-chambers of ∆+

and ∆− and hence the existence of a twin building of type (W̃ , S̃) whose
chambers are the Γ-chambers of ∆.

8.3.5 Definition
Let R+ ⊆ C+ and R− ⊆ C− be opposite Γ-residues of spherical type J ⊆ S.
For ε ∈ {+,−} and Γ-chambers C ⊆ Rε and D ⊆ R−ε we define

δ̃∗(C,D) := rA δ̄∗(C,D),

where δ̄∗(C,D) is as in 8.1.8.

8.3.6 Lemma
Let R+,R−,C,D and δ̃∗ be as in 8.3.5. Let s1, . . . , sk ∈ S\A be in distinct

Θ-orbits such that J = Θ(s1) ∪ · · · ∪ Θ(sk) ∪ A and set J̃ := {s̃1, . . . , s̃k}.
Note that, since J is spherical, also J̃ is spherical (cf. 2.16(b)). Then

(a) δ̃∗(C,D) ∈ W̃J̃

(b) The map

δ̃∗ : (R
ΓR+
+ ×R

ΓR−
− ) ∪ (R

ΓR−
− ×R

ΓR+
+ )→ W̃J̃

is a codistance function.
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Proof Let ε ∈ {+,−}. In view of 8.3.4, ΓRε is a descent group of Rε and
the set of Γ-chambers contained inRε constitutes a building of type (W̃J̃ , J̃).

In particular, for any two Γ-chambers X,Y ⊆ Rε we have δ̄ε(X,Y ) ∈ W̃J̃ .
According to [MPW, 20.35(ii)] we have rArJ = rJ̃ . Thus, by 8.1.8,

δ̃∗(C,D) = rA δ̄∗(C,D) = rA rJ δ̄−ε(projR−ε(C),D)

= rJ̃ δ̄−ε(projR−ε(C),D) ∈ W̃J̃ .

Let w := δ̃∗(C,D) ∈ W̃J̃ . We verify the axioms (Tw1)-(Tw3):

(Tw1) We use 8.2.7 and obtain

δ̃∗(D,C) = rJ̃ δ̄ε(projRε(D),C)

= rJ̃ rJ̃ δ̄−ε(D, projR−ε(C)) rJ̃

= δ̄−ε(D, projR−ε(C)) rJ̃

= (rJ̃ δ̄−ε(projR−ε(C),D))−1 = δ̃∗(C,D)−1.

(Tw2) Let C ′ be a Γ-chamber in Rε such that δ̄ε(C
′,C) = s̃ ∈ J̃ and suppose

that ˜̀(s̃w) < ˜̀(w). We need to show that δ̃∗(C
′,D) = s̃w.

Let w̃ := δ̄−ε(projR−ε(C),D) ∈ W̃J̃ . Since the Γ-residues R+ and R−
are opposite, they are parallel and hence projR−ε(C) 6= projR−ε(C

′)

due to 6.2.2. Note that, by definition, w = δ̃∗(C,D) = rJ̃ w̃ and by
8.2.7 it follows that

δ̄−ε(projR−ε(C), projR−ε(C
′)) = rJ̃ s̃ rJ̃ ∈ J̃ .

Now, since rJ̃ is the unique element in the Coxeter group W̃J̃ ,

˜̀(rJ̃ s̃ rJ̃ w̃) = ˜̀(rJ̃ s̃ w) = ˜̀(rJ̃)− ˜̀(s̃w)

= ˜̀(rJ̃)− ˜̀(w) + 1 = ˜̀(w̃) + 1.

We apply axiom (WD2) and obtain

δ̄−ε(projR−ε(C
′),D) = rJ̃ s̃ rJ̃ w̃.

Thus

δ̃∗(C
′,D) = rJ̃ δ̄∗(projR−ε(C

′),D) = s̃ rJ̃ w̃ = s̃w,

as desired.

(Tw3) Let s̃ ∈ J̃ . We need to show that there exists a Γ-chamber C ′ ⊆ Rε
such that δ̄ε(C

′,C) = s̃ and δ̃∗(C
′,D) = s̃w.
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Let w̃ := δ̄−ε(projR−ε(C),D) ∈ W̃J and note that w = rJ̃ w̃. We apply
(WD3) and obtain that there exists a Γ-chamber D′ ⊆ R−ε such that

δ̄−ε(D
′, projR−ε(C)) = rJ̃ s̃ rJ̃ ∈ J̃ and δ̄−ε(D

′,D) = rJ̃ s̃ rJ̃ w̃.

Let C ′ := projRε(D
′). Using 8.2.7 we obtain δ̄ε(C

′,C) = s̃ and thus

δ̃∗(C
′,D) = rJ̃ δ̄−ε(D

′,D) = s̃ rJ̃ w̃ = s̃w,

as desired.

�

8.3.7 Definition
We define

Õ := {(C,D) ∈ (CΓ+
+ × CΓ−

− ) ∪ (CΓ−
− × C

Γ+
+ ) | C and D are opposite}.

8.3.8 Proposition
Õ is a 2-twinning of the pair (∆

Γ+
+ , ∆

Γ−
− ).

Proof We verify the axioms (T1)-(T3):

(T1) By our assumption we have (C+,C−) ∈ Õ.

(T2) If C is opposite to D, then D is also opposite to C.

(T3) Let J̃ ⊆ S̃ with |J̃ | ≤ 2, let R̃+ and R̃− be residues of ∆
Γ+
+ and ∆

Γ−
− of

type J̃ respectively and suppose that Õ∩((R̃+×R̃−)∪(R̃−×R̃+)) 6= ∅.
Let δ̃∗ : (R̃+ × R̃−) ∪ (R̃− × R̃+) → W̃J̃ be the codistance function

defined in 8.3.6. Then Õ∩ ((R̃+×R̃−)∪ (R̃−×R̃+)) is the opposition
relation of the codistance function δ̃∗:

Let (C,D) ∈ Õ ∩ ((R̃+ × R̃−) ∪ (R̃− × R̃+)). Since C and D are
opposite Γ-chambers of ∆, we have δ∗(c, projD(c)) = rA for all c ∈ C.
Hence,

δ̃∗(C,D) = rA δ̄∗(C, projD(C)) = r2
A = 1W = 1W̃J̃

.

We conclude that C and D are opposite with respect to δ̄∗.
Conversely, let C ∈ R̃+ and D ∈ R̃− be such that δ̃∗(C,D) = 1W̃J̃

.

Choose a chamber c ∈ C. Then

1W̃J̃
= 1W = δ̃∗(C,D) = rA δ∗(c, projD(c)).



Chapter 8. Descent 127

Let d ∈ D be a chamber opposite to projD(c). Then

δ∗(d, c) = δ−(d, projD(c)) δ∗(projD(c), c) = r2
A = 1W .

Since A = Typ(C) = Typ(D) and since there exists a pair of opposite
chambers (c, d) ∈ C × D we conclude that the Γ-chambers C and D
are opposite residues of ∆, i.e. (C,D) ∈ Õ.

�

8.3.9 Corollary
There exists a codistance function

δΓ
∗ : (∆

Γ+
+ ×∆

Γ−
− ) ∪ (∆

Γ−
− ×∆

Γ+
+ )→ W̃

between the Γ-chambers of ∆+ and the Γ-chambers of ∆− . In particular,

the triple (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is a twin building of type (W̃ , S̃).

Proof By 8.3.8 there exists a 2-twinning of the pair (∆
Γ+
+ , ∆

Γ−
− ). In view

of 8.3.2, this 2-twinning is the opposition relation of a codistance function
between ∆

Γ+
+ and ∆

Γ−
− . �
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Chapter 9

Moufang polygons

9.1 Moufang sets

Moufang sets were introduced by Jacques Tits in [Ti92]. Moufang sets are
the rank-one-case of Moufang buildings.

9.1.1 Definition
A Moufang set is a pair M = (X, {Ux}x∈X), consisting of a set X with
|X| ≥ 3 and a set of root groups {Ux}x∈X satisfying the following conditions:

(M1) For each x ∈ X, the group Ux ≤ Sym(X) fixes x and acts sharply
transitively on X\{x}.

(M2) For all x, y ∈ X and each g ∈ Ux we have gUyg
−1 = Ug(y).

9.1.2 Remark
As developed in [dMW], every Moufang set is completely determined by the
structure of one of the root groups together with one additional permutation
of the non-trivial elements of this group.
Conversely, let (U , +) be a group, let X := U ∪ {∞} be the disjoint union
of U and {∞} and let τ ∈ Sym(X) be a permutation interchanging 0 and
∞. We define groups {Ux}x∈X as follows: For each a ∈ U we let αa be
the permutation of X fixing ∞ and mapping each x ∈ U to x + a. Then
U∞ := {αa | a ∈ U} is a subgroup of Sym(X) isomorphic to U . Now we
define U0 := τ−1U∞τ and Ua := α−1

a U0αa for each 0 6= a ∈ U .
One of the main results of [dMW] is a necessary and sufficient condition for
the resulting data M(U , τ) := (X, {Ux}x∈X) to be a Moufang set (cf. [dMW,
3.2]).

9.1.3 Remark
An important property of all Moufang sets is the µ-action: Let M = M(U , τ)
be a Moufang set and let a ∈ U\{0}. By (M1) there exist g1, g2 ∈ U0 such

131
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that g1(∞) = −a and g2(a) = ∞ and these maps are uniquely determined
by these properties. Thus, the map µa := g2 ◦ αa ◦ g1 is the unique element
in the double coset U0αaU0 interchanging 0 and ∞.

We list the Moufang sets which appear as residues in Moufang quadrangles
of quadratic, pseudo-quadratic or exceptional type. The formulas for the
double µ-maps of Moufang sets of quadratic and pseudo-quadratic form
type can be deduced from [TW, 33.11 and 33.13].

Desarguesian Moufang sets Given a skew field K, the corresponding
Moufang set of linear type is

M(K) := M(K, τ), where τ : K∗ → K∗

x 7→ −x−1.

Moufang sets of quadratic form type Given an anisotropic quadratic
space Λ = (K,V ,Q), the corresponding Moufang set of quadratic form type
is

M(Λ) := M(V , τ), where τ : V ∗ → V ∗

v 7→ −Q(v)−1 · v.

For a, b ∈ V ∗ the corresponding double µ-map is given by

mΛ
a,b(v) := (µa ◦ µ−1

b )(v) =
Q(a)

Q(b)
πa(πb(v))

for all v ∈ V , where πa(v) = v −
(
fQ(v,a)
Q(a) a

)
.

Moufang sets of pseudo-quadratic form type Let Ξ = (K,K0,σ,V ,Q)
be a pseudo-quadratic space and let T = T (Ξ) as in 1.37. The corresponding
Moufang set of pseudo-quadratic form type is

M(Ξ) := (T , τ), where τ : T ∗ → T ∗

(a, t) 7→ (at−1,−t−1).

For (a, t) ∈ T ∗ the corresponding double µ-map is given by

mΞ
(a,t)(b, v) :=

(
µ(a,t) ◦ µ−1

(0,1)

)
(b, v) = (btσ − at−1f(a, b)tσ, tvtσ)

for all (b, v) ∈ T .
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Moufang sets of type En Let Λ = (K,V ,Q) be a quadratic space of
type E6, E7 or E8, choose 0V 6= ε ∈ V and replace Q by Q(ε)−1Q. Let
(E, ·, {v1, . . . , vd}) be a norm splitting of Λ as in 1.24 and let S, π and g be
as in 1.27 and [TW, 13.26 and 13.28]. The corresponding Moufang set of
type En is

M(S) := (S, τ), where τ : S∗ → S∗

(a, t) 7→
(
afQ(ε,π(a) + tε)ε− (π(a) + tε)

Q(π(a) + tε)
,
−t+ g(a, a)

Q(π(a) + tε)

)
.

9.1.4 Lemma
Let Ξ = (K,K0,σ,V ,Q) be a proper anisotropic pseudo-quadratic space
with associated skew-hermitian form f , let T be the group defined in 1.37
and choose (0, t) ∈ Z(T )∗. For (b, v) ∈ T we define

Ωt
(b,v) := {(a, s) ∈ T ∗ | mΞ

(a,s) ◦m
Ξ
(0,t)(b, v) ∈ (bK,K)}

and set b⊥ = {x ∈ V | f(b,x) = 0K}. Then (a, s) ∈ Ωt
(b,v)∪{(0V , 0K)} if and

only if a ∈ bK ∪ b⊥.

Proof First, let a ∈ bK ∪ b⊥ and let s ∈ K such that (a, s) ∈ T (which
exists since (a,Q(a)) ∈ T ). If s = 0K then, as (a, s) ∈ T , Q(a) ∈ K0 implies
that a = 0V since Ξ is anisotropic. Thus we may suppose that s 6= 0V , in
particular (a, s) ∈ T ∗.
Suppose that there is r ∈ K such that a = br. Then

mΞ
(br,s) ◦m

Ξ
(0,t)(b, v) = mΞ

(br,s)(bσ(t), tvt)

= (bσ(t)σ(s)− brs−1f(br, bσ(t))σ(s), stvtσ(s))

= (b (σ(st)− rs−1f(br, bσ(t))σ(s)), stvtσ(s))

is contained in (bK,K). Suppose that a ∈ b⊥. Then

mΞ
(a,s) ◦m

Ξ
(0,t)(b, v) = mΞ

(a,s)(bσ(t), tvt)

= (bσ(t)σ(s), stvtσ(s)) ∈ (bK,K).

Conversely, suppose that (a, s) ∈ Ωt
(b,v). Then there exist r,u ∈ K such that

(br,u) = mΞ
(a,s) ◦m

Ξ
(0,t)(b, v)

= (bσ(t)σ(s)− as−1f(a, bσ(t))σ(s), stvtσ(s))

= (bσ(t)σ(s)− as−1f(a, b)σ(t)σ(s), stvtσ(s)).

If a /∈ b⊥, then x := −s−1f(a, b)σ(t)σ(s) 6= 0K and thus

a = b (r − σ(t)σ(s))x−1) ∈ bK.

�
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9.1.5 Definition
Let (X, {Ux}x∈X) and (Y , {Uy}y∈Y ) be two Moufang sets. An isomorphism
between (X, {Ux}x∈X) and (Y , {Uy}y∈Y ) is a bijection β : X → Y such that
for all x ∈ X the map u 7→ βuβ−1 defines a group isomorphism from Ux
onto Uβ(x).

We also give a definition in terms of groups and permutations:

9.1.6 Definition
Let M := M(U , τ) and M′ := M(U ′, τ ′) be Moufang sets. An isomorphism
of Moufang sets β : M → M′ is an isomorphism of groups β : U → U ′ such
that M(U ′, τ ′) = M(U ′,βτβ−1).

In [dMS, 3.1] they give a necessary and sufficient condition on the two permu-
tation maps τ ′ and βτβ−1 on U ′ providing that M(U ′, τ ′) = M(U ′,βτβ−1).

9.1.7 Lemma
Let M = M(U , τ) and M′ = M(U ′, τ ′) be Moufang sets, let β : M → M′ be
an isomorphism and let 0 6= a,x ∈ U . Then β(µa(x)) = µ′β(a)(β(x)) for the
µ-multiplications in the corresponding Moufang sets.

Proof By assumption β : U → U ′ is an isomorphism of groups and hence
β(0) = 0′. We extend β to a bijection U ∪ {∞} → U ′ ∪ {∞′} by defining
β(∞) := ∞′. Recall that for 0 6= a ∈ U the map µa is the unique map
in the double coset U0αaU0 interchanging 0 and ∞ and that µa is given
by g2 ◦ αa ◦ g1, where g1, g2 ∈ U0 are uniquely determined by g1(∞) = −a
and g2(a) = ∞. Similarly, µ′β(a) is the unique map in the double coset

U0′αβ(a)U0′ interchanging 0′ and ∞′.
By definition, β induces an isomorphism of root groups U0 → U0′ via
g 7→ β ◦ g ◦ β−1. Hence, g′1 := β ◦ g1 ◦ β−1 ∈ U0′ and g′1(∞′) = −β(a).
Similarly, g′2 := β ◦ g2 ◦ β−1 ∈ U0′ and g′2(β(a)) =∞′.
In particular, this implies g′2 ◦ αβ(a) ◦ g′1 ∈ U0′αβ(a)U0′ and

(g′2 ◦ αβ(a) ◦ g′1)(0′) =∞′ as well as (g′2 ◦ αβ(a) ◦ g′1)(∞′) = 0′.

We conclude that µβ(a) = g′2 ◦ αβ(a) ◦ g′1. Now, for any x ∈ U ,

β(µa(x)) = β ◦ g2 ◦ αa ◦ g1(x) = g′2 ◦ β ◦ αa ◦ β−1 ◦ g′1(β(x))

= g′2 ◦ αβ(a) ◦ g′1(β(x)) = µβ(a)(β(x)),

since β(αa(β
−1(y))) = β(β−1(y) + a) = y + β(a) for all y ∈ U ′. �
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9.2 Moufang polygons and root group sequences

9.2.1 Definition
A Moufang n-gon (for n ≥ 3) is a thick building of type

n

which satisfies the Moufang property (cf. 2.33). A Moufang polygon is a
Moufang n-gon for some n.

See [TW, 4.2] for an equivalent definition in terms of bipartite graphs. The
classification of Moufang polygons was carried out in [TW]. According to
[TW, 17.1] Moufang n-gons only exist for n = 3, 4, 6 and 8. Moreover, the
classification says that each Moufang polygon is uniquely determined by a
root group sequence as defined in [TW, 8.7] and these root group sequences
in turn are determined by certain algebraic data.

9.2.2 Remark
Let ∆ be a Moufang n-gon for some n ≥ 3, let Σ be an apartment of ∆
and let c be a chamber of Σ. Let α1, . . . ,α2n be the roots of Σ numbered
either clockwise or counterclockwise such that {c} = α1 ∩ · · · ∩αn. For each
1 ≤ i ≤ n let Ui denote the root group Uαi and set U[1,n] := 〈U1, . . . ,Un〉.

(a) The sequence
Ω := (U[1,n],U1, . . . ,Un)

is a root group sequence as defined in [TW, 8.7]. It is called the root
group sequence of ∆ based at (Σ, c).
The tuple Ωo := (U[1,n],Un, . . . ,U1) is also a root group sequence as
defined in [TW, 8.7] and it is called the opposite root group sequence
of Ω.

(b) Let Ω be as in (a). The root group sequence Ω is uniquely determined
(up to opposites) by the pair (Σ, c). By [W03, 11.12], the subgroup
G† of Aut(∆) which is generated by all the root groups of ∆ acts
transitively on the set of ordered pairs consisting of an apartment of
∆ and a chamber contained in this apartment. It follows that the
root group sequence Ω is - up to opposites and conjugation in G† -
independent of the choice of the apartment Σ and the numbering of
its roots. This fact justifies referring to Ω as the root group sequence
of ∆.

9.2.3 Definition
Let Ω = (U[1,n],U1, . . . ,Un) and Ω′ = (U ′[1,n],U

′
1, . . . ,U ′n) be two root group

sequences as defined in [TW, 8.7] for some n ≥ 3. An isomorphism from Ω
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to Ω′ is an isomorphism of groups U[1,n] → U ′[1,n] mapping Ui to U ′i for all
1 ≤ i ≤ n.

9.2.4 Remark
Let ∆ be a Moufang polygon, let Σ be an apartment of ∆ and let Ω be the
root group sequence of ∆. Due to [TW, part III] we can assume that the
numbering of the roots of the apartment Σ has been chosen so that there
is an isomorphism from Ω to one of the root group sequences described
in [TW, 16.1-16.9]. We identify Ω with its image under this isomorphism.
Thus, Ω is the root group sequence defined by one of the recipes mentioned
above in terms of a suitable parameter system Θ and isomorphisms xi from
some part of Θ to the root group Ui, one for each i ∈ [1,n].

We list those standard root group sequences appearing as root group se-
quences of Moufang quadrangles of quadratic, pseudo-quadratic or excep-
tional type:

9.2.5 Notation
(Q) Quadrangles of quadratic form type

Let Λ = (K,V ,Q) be an anisotropic quadratic space with V 6= {0}
and let fQ denote the bilinear form associated with Q. For i = 1, 3 let
xi be an isomorphism from the additive group of K to a group Ui and
for i = 2, 4 let xi be an isomorphism from the additive group of V to
a group Ui. Let U[1,4] be the group generated by the groups U1,U2,U3

and U4.
The root group sequence

QQ(Λ) := (U[1,4],x1(K),x2(V ),x3(K),x4(V ))

with commutator relations [U1,U2] = [U2,U3] = [U3,U4] = [U1,U3] = 1
as well as

[x2(a),x4(b)−1] = x3(fQ(a, b))

for all a, b ∈ V and

[x1(t),x4(a)−1] = x2(ta)x3(tQ(a))

for all t ∈ K and all a ∈ V is the standard root group sequence with
respect to Λ.

(P) Quadrangles of pseudo-quadratic form type
Let Ξ = (K,K0,σ,L0,Q) be an anisotropic pseudo-quadratic space,
let f denote the skew-hermitian form associated with Q and let T be
the group defined in 1.37. For i = 1, 3 let xi be an isomorphism from
T to a group Ui and for i = 2, 4 let xi be an isomorphism from the
additive group of K to a group Ui. Let U[1,4] be the group generated
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by the groups U1,U2,U3 and U4.
The root group sequence

QP(Ξ) := (U[1,4],x1(T ),x2(K),x3(T ),x4(K))

with commutator relations [U1,U2] = [U2,U3] = [U3,U4] = 1 as well as

[x1(a, t),x3(b,u)−1] = x2(f(a, b)),

[x2(v),x4(w)−1] = x3(0,σ(v)w + σ(w)v)

and
[x1(a, t),x4(v)−1] = x2(tv)x3(av,σ(v)tv)

for all (a, t), (b,u) ∈ T and all v,w ∈ K is the standard root group
sequence with respect to Ξ.

(E) Quadrangles of type E6, E7 and E8

Let Λ = (K,V ,Q) be a quadratic space of type E6, E7 or E8, choose
0V 6= ε ∈ V and replace Q by Q(ε)−1Q. Let (E, ·, {v1, . . . , vd}) be
a norm splitting of Λ as in 1.24 and let S be the non-commutative
group defined in 1.27. For i = 1, 3 let xi be an isomorphism from S
to a group Ui and for i = 2, 4 let xi be an isomorphism from V to a
group Ui. Let U[1,4] be the group generated by the groups U1,U2,U3

and U4.
The standard root group sequence with respect to Λ is defined by

QE(Λ) := (U[1,4],x1(S),x2(V ),x3(S),x4(V )),

the defining commutator relations depend on several mappings and
can be found in [TW, 16.6].

(F) Quadrangles of type F4

Let Λ = (K,V ,Q) be a quadratic space of type F4 and let Λ̂ = (F, V̂ , Q̂)
be the dual of Λ as defined in 1.31. For i = 1, 3 let xi be an isomor-
phism from V̂ to a group Ui and for i = 2, 4 let xi be an isomorphism
from V to a group Ui. Let U[1,4] be the group generated by the groups
U1,U2,U3 and U4.
The standard root group sequence with respect to Λ is defined by

QF (Λ) := (U[1,4],x1(V̂ ),x2(V ),x3(V̂ ),x4(V )),

the defining commutator relations depend on several mappings and
can be found in [TW, 16.7].

9.2.6 Remark
(a) Let Ω = (U[1,n],U1, . . . ,Un) be one of the root group sequences in [TW,

16.1-16.9]. According to [TW, 8.11 and 7.5] there is a unique Moufang
polygon ∆ such that Ω is isomorphic to a root group sequence of
∆. The classification of Moufang polygons in [TW] says that, up to
isomorphism, there are no other Moufang polygons.
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(b) Let Λ be a quadratic space of type En. By [TW, 27.20], the root group
sequence QE(Λ) is independent (up to isomorphism) of the choice of
the element ε and the norm splitting (E, ·, {v1, . . . , vd}).

(c) Let Λ be a quadratic space of type F4. By [TW, 28.43], the root group
sequence QF (Λ) is independent (up to isomorphism) of the choice of
the complement S0 and the norm splitting (E, ·, {v1, v2}).

9.2.7 Notation
As in the notion in [W09, 30.15], the Moufang quadrangles corresponding
to the cases (Q), (P), (E) and (F) described in 9.2.5 are, in order, called:
BQ2 (Λ), BP2 (Ξ), BE2 (Λ) and BF2 (Λ).

9.2.8 Remark
In [TW, 35.8 and 35.10-35.12] it is determined to what extend the alge-
braic structure is an invariant of the corresponding Moufang quadrangle of
quadratic, pseudo-quadratic or exceptional type:

(i) Let Λ and Λ′ be proper anisotropic quadratic spaces. Then
QQ(Λ) ' QQ(Λ′) if and only if Λ and Λ′ are similar.

(ii) Let Ξ and Ξ′ be proper anisotropic pseudo-quadratic spaces. Then
QP(Ξ) ' QP(Ξ′) if and only if Ξ and Ξ′ are similar.

(iii) Let Λ and Λ′ be quadratic spaces of type E6, E7 or E8. Then
QE(Λ) ' QE(Λ′) if and only if Λ and Λ′ are similar.

(iv) Let Λ and Λ′ be quadratic spaces of type F4. Then QF (Λ) ' QF (Λ′)
if and only if Λ and Λ′ are similar.

(v) Let Λ be a quadratic space of type F4 and let Λ̂ be the dual of Λ as
defined in 1.31. Then QoF (Λ) ' QF (Λ̂).

9.2.9 Remark
Let Λ be a quadratic space of type F4 which is self-dual as defined in 1.32(d).

Then, in view of 9.2.8(v), QF (Λ) ' QoF (Λ̂) ' QoF (Λ).
A Moufang quadrangle of type F4 will be called self-dual if it is isomorphic
to a Moufang quadrangle BF2 (Λ) which is defined over a self-dual quadratic
space Λ of type F4.

9.2.10 Remark
Let ∆ be a Moufang polygon and let P be a panel of ∆. For each x ∈ P define
a subgroup Ux ≤ Sym(P) as in [MPW, 1.19]. Then M∆,P := (P, {Ux}x∈P)
is a Moufang set.

Let Σ, c,α1, . . . ,α2n,U1, . . . ,Un and Ω be as in 9.2.2. Let P be the unique
panel of ∆ containing c such that Ui acts non-trivially on P. Let Mi := M∆,P
denote the corresponding Moufang set. If
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(i) Ω ' QQ(Λ) for some anisotropic quadratic space Λ = (K,V ,Q), then
M1 'M(K) and M4 'M(Λ).

(ii) Ω ' QP(Ξ) for some anisotropic pseudo-quadratic space
Ξ = (K,K0,σ,V ,Q), then M1 'M(Ξ) and M4 'M(K).

(iii) Ω ' QE(Λ) for some quadratic space Λ of type E6, E7 or E8, then
M1 'M(S) and M4 'M(Λ).

(iv) Ω ' QF (Λ) for some quadratic space Λ of type F4 with dual Λ̂, then
M1 'M(Λ̂) and M4 'M(Λ).

9.2.11 Notation
Let ∆ be a Moufang polygon and let P be a panel of ∆. We will say that
P is (non-)commutative if the group describing the Moufang set M∆,P is
(non-)commutative. We will say that the panel P is of quadratic form type,
if the corresponding Moufang set M∆,P is isomorphic to a Moufang set of
quadratic form type.
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9.3 Property (Ind)

9.3.1 Remark
Let ∆ be a Moufang n-gon and let P and P ′ be two panels of ∆ of the

same type. Choose two chambers c ∈ P and d ∈ P ′. Let G† denote the
subgroup of Aut(∆) generated by all the root groups of ∆. By [W03, 11.12],
G† acts transitively on the set of chambers of ∆. Hence there exists an
isometry g ∈ G† such that g(c) = d and consequently g(P) = P ′. We
show that the restriction of g to P induces an isomorphism of Moufang sets
M∆,P →M∆,P ′ :
Clearly, the restriction φ := g|P : P → P ′ is a bijection. It remains to show
that for any x ∈ P we have φUxφ

−1 = Uφ(x).
For, choose a chamber x ∈ P and an apartment Σ of ∆ containing x. Let
y ∈ P such that Σ ∩ P = {x, y}. Let α be the unique root of Σ containing
x but not y, i.e. α = {z ∈ Σ | dist(x, z) < dist(y, z)}. The associated root
group Ux is given by {ϕ|P | ϕ ∈ Uα}. Now g(x), g(y) ∈ P ′, Σ′ := g(Σ) is
an apartment of ∆ and Σ′ ∩P ′ = {g(x), g(y)}. Moreover g(α) is the unique
root of Σ′ containing g(x) but not g(y). Since the permutation group Ug(x)

is independent of the choice of the apartment, Ug(x) = {ϕ|P ′ | ϕ ∈ Ug(α)}.
According to [AB, 7.25], gUαg

−1 = Uϕ(α) and hence φUxφ
−1 = Uφ(x).

In particular, each automorphism g ∈ StabAut(∆)(P) induces an automor-
phism of the corresponding Moufang set M∆,P . The converse of this ob-
servation is not true in general. There might be more automorphisms of
the Moufang set as the stabilizer of any panel provide (for example non-
desarguesian planes), cf. [MvM98, Lemma 2] for a proof of this fact.

9.3.2 Definition
Let ∆ be a Moufang n-gon and let P be a panel of ∆. We say that ∆ has
property (Ind) at P if the following is satisfied:

(Ind) For every automorphism α ∈ Aut(M∆,P) there is an automorphism
ϕ ∈ Aut(∆) inducing α on P.

9.3.3 Proposition
Let Λ = (K,V ,Q) be an anisotropic quadratic space such that dimK(V ) ≥ 3

and fQ is not identically zero. Then the Moufang quadrangle ∆ := BQ2 (Λ)
has property (Ind) at each panel P of ∆ satisfying M∆,P 'M(Λ).

Proof According to 9.2.7, QQ(Λ) = (U[1,4],x1(K),x2(V ),x3(K),x4(V ))
is a root group sequence of ∆. Let P be a panel of ∆. By 9.2.10, the
corresponding Moufang set M∆,P is either isomorphic to the Desarguesian
Moufang set M(K) or it is isomorphic to the Moufang set M(Λ). Suppose
that M∆,P ' M(Λ) and let α ∈ Aut(M(Λ)). Thus, α : V → V is a group
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isomorphism respecting the double µ-maps (cf. 9.1.7). By [MPW, 6.10],
therefore, there exist φ ∈ Aut(K) and t ∈ K∗ such that α is a φ-linear
t-similitude of V .

For 1 ≤ i ≤ 4 we define group automorphisms βi : Ui → Ui as follows:
For i = 2, 4 we define βi : xi(V ) → xi(V ) by βi(xi(v)) := xi(α(v)). More-
over, we let β1 : x1(K) → x1(K) be defined by β1(x1(s)) := x1(φ(s)) and
β3 : x3(K)→ x3(K) by β3(x3(s)) := x3(tφ(s)). Since for all v,w ∈ V and
s ∈ K we have

[β2(x2(v)),β4(x4(w))−1] = [x2(α(v)),x4(α(w))−1]

= x3(fQ(α(v),α(w)))

= x3(t φ(fQ(v,w))) = β3(x3(fQ(v,w)))

and

[β1(x1(s)),β4(x4(v))−1] = [x1(φ(s)),x4(α(v))−1]

= x2(φ(s)α(v)) x3(φ(s) Q(α(v)))

= x2(α(sv)) x3(φ(s) t φ(Q(v)))

= β2(x2(sv)) β3(x3(sQ(v)))

the automorphisms βi induce an automorphism β : U[1,4] → U[1,4]. By [TW,
7.5], β extends uniquely to an automorphism of ∆.

�

9.3.4 Remark
Let Ξ = (K,K0,σ,V ,Q) be a proper anisotropic pseudo-quadratic space. If
K/K0 is a separable quadratic extension of fields, σ is the non-trivial element
of Gal(K/K0) and dimK(V ) = 4, then it is shown in [MvM20] that the Mo-
ufang quadrangle ∆ := BP2 (Ξ) has property (Ind) at each non-commutative
panel P. One conjectures that the same is true if K is a quaternion division
algebra over K0 with standard involution σ and dimK(V ) = 4. However,
there isn’t any proof, yet.



Chapter 10

Moufang twin buildings and
condition (co)

By [AB, 7.83 and 7.116] there is a one-to-one correspondence between the
set of spherical Moufang buildings and the set of RGD systems of spherical
type as defined in [AB, 7.82]. The concepts and results about spherical
Moufang buildings generalize with minor modifications to twin buildings.
The algebraic version is a theory of RGD systems of arbitrary type (W ,S).
This motivates the definition of arbitrary Moufang buildings: An arbitrary
building is said to be Moufang if it is part of a Moufang twin building. This
definition firstly appeared in [R].

Throughout this section let (W ,S) be a Coxeter system which has no isolated
nodes in its Coxeter diagram. Let ∆ = (∆+, ∆−, δ∗) be a thick twin building
of type (W ,S) of rank at least 2.

10.0.1 Definition
Let α be a twin root of ∆ as defined in [AB, 5.190]. The root group Uα
is defined to be the set of automorphisms g ∈ Aut(∆) such that g fixes P
pointwise for every interior panel P of α.

10.0.2 Definition
Let α be a twin root of ∆. By [AB, 8.17(2)], the root group Uα acts on
the set A(α) consisting of all twin apartments containing the twin root α.
We say that ∆ is Moufang (or, equivalently, a Moufang twin building) if the
action of the root group Uα on A(α) is transitive for every twin root α of
∆.

10.0.3 Proposition
If ∆ is a Moufang twin building, then every spherical residue of rank at least
two of ∆ is a Moufang spherical building.

142
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Proof This is [AB, 8.21]. �

According to Ronan [R], general Moufang buildings are defined as follows:

10.0.4 Definition
Let ∆′ be a thick building of type (W ,S). The building ∆′ is called Moufang
if there exists, for a fixed apartment of ∆′, a system (Uα)α∈Φ of subgroups
of Aut(∆′), where Φ is the set of all roots of ∆′, satisfying the conditions of
proposition [AB, 8.56] together with (RGD2).

Suppose that ∆ is a Moufang twin building. By [AB, 8.47], the system
(G, (Uα)α∈Φ,T ), where Φ denotes the set of all twin roots of a given twin
apartment Σ of ∆, G = 〈Uα | α ∈ Φ〉 and T = FixG(Σ), is a general RGD
system as defined in [AB, 8.6.1]. According to [AB, 8.57], a (general) RGD
system always gives rise to a (general) Moufang building.
Conversely, if ∆′ is a (general) Moufang building then ∆′ gives rise to a
(general) RGD system (G, (Uα)α∈Φ,T ), where the Uα are as in the definition
of a (general) Moufang building. By [AB, 8.81], the twin building associated
to the RGD system is Moufang.

10.0.5 Proposition
A thick, irreducible, 2-spherical twin building of rank at least 3 that satisfies
(co) is Moufang.

Proof This is [AB, 8.27]. �

Throughout the rest of this chapter let ∆ = (∆+, ∆−, δ∗) be a thick twin
building of type C̃2. Choose a chamber c ∈ C+∪C− and let R and R′ denote
the two irreducible residues of ∆ of rank 2 containing c. We assume that
one of these, say R, is a Moufang quadrangle of exceptional type.

Let Ω = (U[1,4],U1, . . . ,U4) be the root group sequence of R. Since R is an
exceptional Moufang quadrangle we may assume that either

Ω ' QE(Λ)

for some quadratic space Λ = (K,V ,Q) of type E6, E7 or E8 or

Ω ' QF (Λ)

for some quadratic space Λ = (K,V ,Q) of type F4.

10.0.6 Proposition
∆ satisfies condition (co).
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Proof In view of 2.49(a) it suffices to show that every rank 2 residue of ∆
satisfies (co). By 2.49(b), therefore, we show that each panel has at least 4
elements.

Consider the residue R ' BE2 (Λ). By definition, the quadratic space Λ is
anisotropic and dimK(V ) ≥ 4. In view of [T, 11.2], we conclude that the
field K has infinitely many elements. Let P := Ps2(c) and note that P is a
panel of both, R and R′. Since R is a Moufang polygon, the panel P has
an induced structure of a Moufang set (cf. [MPW, 1.19]).

Suppose that Λ is of type E6, E7 or E8. Choose an element 0 6= ε ∈ V ,
replace Q by Q(ε)−1Q and choose a norm splitting (E, ·, {v1, . . . , v4}) of Λ.
Let S be the group defined in 1.27 with respect to these data. As |K| =∞,
we conclude that the group S as well as the K-vector space V consist of
infinitely many elements. By 9.2.10, M∆,P ' M(Λ) or M∆,P ' M(S). In
particular, there is a bijection P → V ∪ {∞} or P → S ∪ {∞} and hence
|P| =∞.
Suppose that Λ is of type F4 and let F be the subfield of K as in 1.28(ii).
Since K2 ⊆ F (cf. 1.29(b)), we conclude that the field F has infinitely
many elements. Let Λ̂ = (F, V̂ , Q̂) denote the dual of Λ as in 1.31. By
9.2.10, M∆,P ' M(Λ) or M∆,P ' M(Λ̂). In particular, there is a bijection

P → V ∪ {∞} or P → V̂ ∪ {∞} and hence |P| =∞.

Let ε ∈ {+,−} such that c ∈ Cε and choose a chamber d ∈ C−ε opposite
c. Let P ′ := Ps2(d). By construction, P and P ′ are opposite and hence,
by [AB, 5.153], |P| = |P ′|.
Now let T be any residue of ∆+ or ∆− of type B2 and choose a panel of T
of type {s2}. Then, by [AB, 5.157], this panel is isometric to P (if T ⊆ Cε)
or it is isometric to P ′ (if T ⊆ C−ε). In particular it consists of infinitely
many chambers. �

10.0.7 Proposition
∆ has the Moufang property. In particular, R′ is a Moufang quadrangle.

Proof Since ∆ is thick, irreducible, 2-spherical of rank 3 and satisfies (co)
by 10.0.6, ∆ satisfies the Moufang condition by 10.0.5. The second assertion
follows from 10.0.3. �

Let ε ∈ {+,−} such that c ∈ Cε. As defined in [W09], a Bruhat-Tits building
is a thick irreducible affine building whose building at infinity is a spherical
Moufang building.

10.0.8 Proposition
The building ∆ε is a Bruhat-Tits building whose building at infinity is an
exceptional Moufang quadrangle.
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Proof We denote the building at infinity associated to ∆ε by ∆∞ε . Since
∆ satisfies the Moufang condition for twin buildings by 10.0.7, the building
∆ε is a general Moufang building as defined in 10.0.4. Thus, we may apply
the main theorem of [vMvS] and obtain that ∆∞ε is a Moufang quadrangle.

Since Ω ' QE(Λ) or Ω ' QF (Λ), we have [U1,U3] 6= {1} 6= [U2,U4].
By [AB, 11.107], R can be identified with a subbuilding of ∆∞ε and for
all 1 ≤ i ≤ 4 the root group Ui embeds in the corresponding root group of
the quadrangle ∆∞ε . The classification of Moufang polygons in [TW] claims
that every Moufang quadrangle is isomorphic to one of the quadrangles de-
scribed in [TW, (16.2)-(16.7)]. Let Θ = (U ′[1,4],U

′
1, . . . ,U ′4) be the root group

sequence of ∆∞ε . If ∆∞ε is of involutory, quadratic or indifferent type, then
[U ′i ,U

′
i+2] = {1} for at least one i ∈ {1, 2}. Hence, ∆∞ε is either of pseudo-

quadratic or exceptional type.
By [W09, 24.58], a Bruhat-Tits building whose building at infinity is a Mo-
ufang quadrangle of pseudo-quadratic form type has no residues of excep-
tional type. Hence, ∆∞+ needs to be a Moufang quadrangle of type E6, E7, E8

or F4. �
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Foundations

11.1 Basic concepts

Let Π be a Coxeter diagram with vertex set I and let (W ,S) be the corre-
sponding Coxeter system. For any subset J ⊆ S we let J ′ denote the set of
all irreducible subsets of J which have cardinality 2.

11.1.1 Definition
A foundation of type Π is a triple

F :=
(

(∆J)J∈S′ , (cJ)J∈S′ , (θjik){sj ,si},{si,sk}∈S′
)

such that the following hold:

(F1) ∆J = (CJ , δJ) is a building of type ΠJ with cJ ∈ CJ for each J ∈ S′;

(F2) each glueing θjik : Psi(c{sj ,si}) → Psi(c{si,sk}) is a bijection sending
c{sj ,si} onto c{si,sk};

(F3) θkil ◦ θjik = θjil for all si, sj , sk, sl ∈ S such that si /∈ {sj , sk, sl} and
{sk, si}, {si, sl}, {sj , si} ∈ S′.

11.1.2 Remark
Let F be a foundation of type Π. If si, sj ∈ S are such that {si, sj} ∈ S′,
axiom (F3) yields θjij ◦ θjij = θjij . Since θjij is a bijection, it is the
identity on the panel Psi(c{si,sj}). Hence, if si, sj , sk ∈ S are such that

{si, sj}, {si, sk} ∈ S′ we have θkij ◦ θjik = θjij and thus θkij = θ−1
jik.

11.1.3 Definition
A foundation F =

(
(∆J)J∈S′ , (cJ)J∈S′ , (θjik){sj ,si},{si,sk}∈S′

)
of 2-spherical

type Π will be called a Moufang foundation if the following hold:

146
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(MF1) For all J ∈ S′ the building ∆J is a Moufang polygon.

(MF2) If sj , si, sk ∈ S are such that {sj , si}, {si, sk} ∈ S′, then the glueing θjik
induces an isomorphism between the Moufang sets M∆{si,sj},Psi (c{si,sj})
and M∆{si,sk},Psi (c{si,sk})

.

11.1.4 Definition
Let F be a foundation of type Π and let K ⊆ S. The K-residue of F is the
foundation

FK := ((∆J)J∈K′ , (cJ)J∈K′ , (θjik){sj ,si},{si,sk}∈K′).

11.1.5 Definition
Let F and F ′ be foundations. An isomorphism of foundations ϕ : F → F ′
is a system ϕ := {π,αJ | J ∈ S′} of isomorphisms

π : Π→ Π′, αJ : ∆J → ∆′π(J)

such that αJ(cJ) = c′π(J) and for all si, sj , sk ∈ S with {sj , si}, {si, sk} ∈ S′

and all x ∈ Psi(c{sj ,si}) we have

(θ′π(j)π(i)π(k) ◦ α{sj ,si})(x) = (α{si,sk} ◦ θjik)(x).

An isomorphism ϕ : F → F ′ is special if Π = Π′ and π = idΠ.

11.1.6 Remark
Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Π, let ε ∈ {+,−} and let
c ∈ Cε be a chamber. The union of all irreducible rank 2 residues of ∆ε

containing c provides a foundation in a canonical way: For each J ∈ S′ we
set

∆J := (RJ(c), δε|RJ (c)×RJ (c)) and cJ := c

and for si, sj , sk ∈ S such that {sj , si}, {si, sk} ∈ S′ we let θjik be the
identity on the panel Psi(c). Now the resulting triple

F(∆, c) := ((∆J)J∈S′ , (c)J∈S′ , (θjik){i,j},{i,k}∈S′)

is a foundation of type Π. It is called the foundation of ∆ based at c.
It is a (not completely trivial) fact that for any chamber d ∈ Cε we have
F(∆, d) ' F(∆, c) . Moreover, for c′, d′ ∈ C−ε we have F(∆, c′) ' F(∆, d′)
and the isomorphism class of F(∆, c′) is uniquely determined by the isomor-
phism class of F(∆, c) and vice versa.
If ∆ satisfies the Moufang condition, the foundation F(∆, c) is a Moufang
foundation for every chamber c ∈ C+ ∪ C−.

11.1.7 Definition
A foundation F of type Π is called integrable, if there exists a twin building
∆ of type Π and a chamber c of ∆ such that F ' F(∆, c).
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11.1.8 Remark
Let ∆ = (C, δ) be a Moufang spherical building of type Π and let c ∈ C be
a chamber. Again, the triple

F(∆, c) := ((RJ(c))J∈S′ , (c)J∈S′ , (id){i,j},{i,k}∈S′)

is a Moufang foundation of type Π. In view of [AB, 8.81], ∆ is part of a
Moufang twin building ∆′ and F(∆, c) ' F(∆′, c). Thus, the foundation
F(∆, c) is integrable.

11.1.9 Lemma
Let F be an integrable foundation of type Π and let J ⊆ S such that |J | ≥ 2.
Then the J-residue FJ is integrable.

Proof This is Theorem 20.1 of [WDis]. �

11.1.10 Definition
A foundation F = ((∆J)J∈S′ , (c)J∈S′ , (θjik){i,j},{i,k}∈S′) of type Π satisfies

(lco), if for any J ∈ S′ the building ∆J is spherical and for each chamber
c ∈ CJ the chamber system defined by the set of chambers opposite c
is connected.

(lsco), if Π is 3-spherical and if each panel Ps(cJ) has at least 17 elements for
any s ∈ S and J ∈ S′ with s ∈ J .

11.1.11 Theorem
Let F be a Moufang foundation of affine, irreducible type Π which satisfies
(lco) and (lsco). Then the following are equivalent:

(i) F is integrable.

(ii) For each irreducible subset J ⊆ S with |J | = 3 the J-residue FJ is
integrable.

Proof Let D be as in [BM], which is an RGD-system since Π is affine. The
assertion now follows by Theorem 3.20 of [BM]. The second implication is
11.1.9. �

As has been announced earlier, almost all twin buildings are uniquely de-
termined by the foundation of one of its halves:

11.1.12 Theorem
Let ∆ = (∆+, ∆−, δ∗) and ∆′ = (∆′+, ∆′−, δ′∗) be thick, irreducible, 2-
spherical twin buildings of type Π which satisfy (co) and let c ∈ C+ and
c′ ∈ C′+ be chambers such that the foundations F(∆, c) and F(∆′, c′) are
isomorphic. Then ∆ and ∆′ are isomorphic.
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Proof Let ϕ = {π,αJ | J ∈ S′} : F(∆, c) → F(∆′, c′) be an isomorphism,
where S′ denotes the set of all irreducible subsets of S of cardinality 2. For
all J ∈ S′ the map αJ : RJ(c) → Rπ(J)(c

′) is a π|J -isometry which maps

c onto c′. By replacing ∆′ by ∆′π
−1

via the π−1-isometry id (cf. 7.2.4),
each map α′J := id ◦αJ : (RJ(c), δ+) → (RJ(c′), δπ

−1

+ ) becomes an isometry
mapping c onto c′. If s ∈ S and J ,K ∈ S′ are such that s ∈ K ∩ J ,
then (IoF2) ensures that α′J(x) = α′K(x) holds for all x ∈ Ps(c). Hence
the mapping φ : E∗2(c) → E∗2(c′) defined by φ(x) := αJ(x) if x ∈ RJ(c) is
well-defined.
Let s, t ∈ S be such that st = ts. As Π is irreducible we may choose
J ,K ∈ S′ with s ∈ J and t ∈ K. Let x ∈ Ps(c) and let y ∈ Pt(c) such that
x 6= c 6= y. Then, by 2.28, c′ = projPs(c′)(φ(y)) and c = projPs(c)(y). Hence

δ′+(φ(x),φ(y)) = δ′+(φ(x), c′)δ′+(c′,φ(y)) = δ+(x, c)δ+(c, y) = δ+(x, y)

implies that φ|Ps(c)∪Pt(c) is an isometry from Ps(c)∪Pt(c) onto Ps(c′)∪Pt(c′).
Using 4.2.3 we extend φ to a map Φ: E2(c)→ E2(c′) which, by construction,
satisfies the properties of 4.2.4. Thus, Φ is an isometry E2(c) → E2(c′).
According to 7.1.6, there exist chambers d ∈ C− and d′ ∈ C′− which are
opposite to c and c′ respectively such that the map d 7→ d′ extends Φ to an
isometry E2(c) ∪ {d} → E2(c′) ∪ {d′}.
By 7.3.1, Φ extends uniquely to an isometry from ∆ onto ∆′π

−1
. As ∆′ is

isomorphic to ∆′π
−1

(cf. 7.2.4), the assertion follows. �

11.2 nm2-foundations

Let 3 ≤ n,m ∈ N. Throughout the rest of this section let Π be the 2-
spherical Coxeter diagram

n m

1 2 3 .

We denote the corresponding Coxeter system by (W ,S) and let

F = ((∆{s1,s2}, ∆{s2,s3}), (c{s1,s2}, c{s2,s3}), (θ123))

be a Moufang foundation of type Π.
Note that, in view of 11.1.2, it suffices to consider the glueing θ123. The
building ∆{s1,s2} is a Moufang n-gon while ∆{s2,s3} is a Moufang m-gon.
We set P := Ps2(c{s1,s2}) and let M := M∆{s1,s2},P denote the corresponding

Moufang set. Similarly, we set P ′ := Ps2(c{s2,s3}) and M′ := M∆{s2,s3},P
′ .

Note that θ123(c{s1,s2}) = c{s2,s3}.
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11.2.1 Remark
Let d be any chamber of ∆{s1,s2} and set Q := Ps2(d). Let G† denote
the subgroup of Aut(∆{s1,s2}) generated by all the root groups of ∆{s1,s2}.

According to [W03, 11.12] there exists g ∈ G† such that g(c{s1,s2}) = d
and by 9.3.1, g induces an isomorphism of the corresponding Moufang sets
M → M∆{s1,s2},Q. In particular, the map γ123 := θ123 ◦ (g|P)−1 : Q → P ′ is

a bijection inducing an isomorphism of Moufang sets M∆{s1,s2},Q →M′ and
α := {idΠ, g, id∆{s2,s3}

} is an isomorphism of foundations

α : F → ((∆{s1,s2}, ∆{s2,s3}), (d, γ123(d)), (γ123)).

11.2.2 Lemma
Let d ∈ P be a chamber. Then F ' ((∆{s1,s2}, ∆}s2,s3}), (d, θ123(d)), (θ123)).

Proof If d = c{s1,s2} the assertion is clear. So suppose that d 6= c{s1,s2}.
Since ∆{s1,s2} is thick we may choose z ∈ P\{c{s1,s2}, d}. By property (M1),
there exists a unique g ∈ Uz such that g(c{s1,s2}) = d. Similarly, there exists
a unique g′ ∈ Uθ123(z) such that g′((c{s2,s3})) = θ123(d).

Let G† denote the subgroup of Aut(∆{s1,s2}) generated by all the root groups

of ∆{s1,s2} and similarly let G†
′

denote the subgroup of Aut(∆{s2,s3}) gen-

erated by all the root groups of ∆{s2,s3}. There exist ϕ ∈ G† and φ ∈ G†′

inducing the maps g and g′ respectively. Then α := {idΠ,ϕ,φ} is an iso-
morphism of foundations

F → ((∆{s1,s2}, ∆{s2,s3}), (d, θ123(d)), (g′ ◦ θ123 ◦ g−1)).

Since θ123 can be seen to be an isomorphism of Moufang sets M → M′ we
have θ123Uzθ

−1
123 = Uθ123(z). In particular, θ123 ◦ g ◦ θ−1

123 ∈ Uθ123(z). Moreover,

as (θ123 ◦ g ◦ θ−1
123)(θ123(c)) = θ123(d), we conclude that θ123 ◦ g ◦ θ−1

123 = g′.
Hence, g′ ◦ θ123 ◦ g−1 = θ123 and the assertion follows. �

11.2.3 Lemma
If ∆{s1,s2} satisfies (Ind) at P or if ∆{s2,s3} satisfies (Ind) at P ′, the founda-
tion F is uniquely determined by ∆{s1,s2} and ∆{s2,s3}.

Proof Let F ′ := ((∆{s1,s2}, ∆{s2,s3}), (d, γ123(d)), (γ123)) be a foundation
of type Π. In view of 11.2.1 we may assume that d = c{s1,s2}.

Let G†
′

denote the subgroup of Aut(∆{s2,s3}) generated by all the root

groups of ∆{s2,s3}. Let g ∈ G†
′

such that g(θ123(c{s1,s2}) = γ123(c{s1,s2}).
Following 9.3.1, g induces an isomorphism of the corresponding Moufang
sets g|P ′ : M′ →M∆{s2,s3},Ps2 (γ123(c{s1,s2}))

.
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Suppose that ∆{s1,s2} satisfies (Ind) at the panel P. Because of this property

there is ϕ ∈ Aut(∆{s1,s2}) inducing φ := γ−1
123 ◦ g|P ′ ◦ θ123 ∈ Aut(M). Now

α := {idΠ,ϕ, g} is an isomorphism

α : F → ((∆{s1,s2}, ∆{s2,s3}), (ϕ(c{s1,s2}), γ123(ϕ(c{s1,s2}))), (γ123)).

As ϕ(c{s1,s2}) ∈ P, lemma 11.2.2 gives that F ' F ′.
If ∆{s2,s3} satisfies (Ind) at the panel P ′, there exists ϕ ∈ Aut(∆{s2,s3})

inducing φ := g|−1
P ′ ◦ γ123 ◦ θ−1

123 ∈ Aut(M′). Now α := {idΠ, id∆{s1,s2}
, g ◦ ϕ}

is an isomorphism F → F ′.
�

11.2.4 Remark
Choose an apartment Σ12 of ∆{s1,s2} containing the chamber c{s1,s2}. By
9.2.2 the Moufang n-gon ∆{s1,s2} can be described by the root group se-
quence Ω12 = (U+,U1, . . . ,Un) based at (Σ12, c{s1,s2}). Similarly, ∆{s2,s3}
can be described by a root group sequence Ω23 = (U ′+,U ′1, . . . ,U ′m). We
choose the labeling in such a way that the glueing θ123 is an isomorphism
Mn →M′1. If at least one of the polygons satisfies (Ind) at the glueing panel,
lemma 11.2.3 enables us to briefly describe the foundation by F = (Ω12, Ω23).

For the rest of this section we assume that n = m = 4, i.e. F is a foundation
of type C̃2.

11.2.5 Remark
Let π ∈ Aut(Π) be the non-trivial automorphism of the Coxeter diagram

C̃2. Then α := {π, id∆{s1,s2}
, id∆{s2,s3}

} is an isomorphism

α : F → Fo := ((∆{s2,s3}, ∆{s1,s2}), (c{s2,s3}, c{s1,s2}), (θ321)).

We continue to assume that at least one of the polygons satisfies (Ind)
at the glueing panel and let Ω12 and Ω23 denote the corresponding root
group sequences such that F = (Ω12, Ω23). The considerations above yield
(Ω12, Ω23) = F ' Fo = (Ωo

23, Ωo
12).

11.2.6 Lemma
Suppose that ∆{s1,s2} ' BE2 (Λ) for some quadratic space Λ of type Ek for

some k ∈ {6, 7, 8} and that ∆{s2,s3} ' BQ2 (Λ′), where Λ′ is an anisotropic
quadratic space. Then the glueing is along the panels of quadratic form
type.

Proof Let Λ = (K,V ,Q) and Λ′ = (K′,V ′,Q′). Note that the Moufang
sets M(V ′) and M(K′) are commutative. Hence the glueing needs to be an
isomorphism M(V ) → M(V ′) or M(V ) → M(K′). In view of [KDis, 3.3.5],
the latter is impossible, since dimK(V ) ≥ 6 and Def(Λ) 6= V by 1.25. �
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11.2.7 Lemma
Suppose that ∆{s1,s2} ' BE2 (Λ) for some quadratic space Λ of type Ek for

some k ∈ {6, 7, 8} and that ∆{s2,s3} ' BP2 (Ξ), where Ξ is an anisotropic
pseudo-quadratic space. Then the glueing is along the non-commutative
panels.

Proof Let Λ = (K,V ,Q) and Ξ = (K′,K′0,σ′,V ′,Q′). Suppose that the
quadrangles are glued along their commutative panels. Then there is an
isomorphims of Moufang sets M(V )→M(K′). In view of [KDis, 3.3.5], this
is impossible, since dimK(V ) ≥ 6 and Def(Λ) 6= V by 1.25. �

11.2.8 Lemma
Suppose that ∆{s1,s2} ' BF2 (Λ) for some quadratic space Λ of type F4 and

that ∆{s2,s3} ' BQ2 (Λ′), where Λ′ is an anisotropic quadratic space. Then
the glueing is along panels of quadratic form type.

Proof Let Λ = (K,V ,Q), let Λ̂ = (F, V̂ , Q̂) be the dual of Λ and let
Λ′ = (K′,V ′,Q′). Note that both Moufang sets associated to a Moufang
quadrangle of type F4 are of quadratic form type. Since dimK(V ) > 4 and
V 6= Def(Q) as well as dimF(V̂ ) > 4 and Def(Q̂) 6= V̂ by definition, the
assertion follows from [KDis, 3.3.5]. �

11.2.9 Theorem
Let Λ1 = (K1,V1,Q1) and Λ2 = (K2,V2,Q2) be either quadratic spaces of
type E6 or let Λ1 and Λ2 be quadratic spaces of type E7 with char(K1) 6= 2.
Let Ξ1 = (K̄1,K1

0,σ1, V̄1, Q̄1) and Ξ2 = (K̄2,K2
0,σ2, V̄2, Q̄2) be proper pseudo-

quadratic spaces. For i = 1, 2 let Fi := ((BE2 (Λi), BP2 (Ξi)), γi) be integrable
Moufang foundations of type C̃2, where the Moufang quadrangles are glued
along their non-commutative panels in each case. Then each isomorphism
ϕ : BE2 (Λ1)→ BE2 (Λ2) extends to an isomorphism of foundations F1 → F2.

Proof Let i ∈ {1, 2}. As Fi is assumed to be integrable, there exists a
twin building ∆i = (∆i,+, ∆i,−, δi,∗) of type C̃2 and a chamber ci ∈ Ci,ε for
some ε ∈ {+,−} such that Fi ' F(∆i, ci). By 10.0.8, the building ∆i,ε

is a Bruhat-Tits building whose building at infinity is an exceptional Mou-
fang quadrangle. According to the classification of Bruhat-Tits buildings of
type C̃2 having an exceptional Moufang quadrangle as building at infinity
given in [MPW, 14.3 and 17.3], we obtain that Ξi is a 4-dimensional proper
anisotropic pseudo-quadratic space.
Moreover, if Λi is of type E6, then, by [MPW, 14.3(2)(iii)(a)], K̄i/Ki

0 is a
separable quadratic extension and σi is the non-trivial element of Gal(K̄i/Ki

0).
If Λi is of type E7, then, by [MPW, 14.3(3)(ii)(a)], K̄i is a quaternion division
algebra, Ki

0 is its center and σi is the standard involution on K̄i.
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For i = 1, 2 choose ei ∈ Vi, replace Qi by Qi(ei)
−1Qi (so Qi(ei) = 1Ki) and

choose a norm splitting (Ei, ·, {vi1 , . . . , vid}) of Λi and set sij := Qi(vij ) for
each 1 ≤ j ≤ d}. We may assume that vi1 = ei. Let Si be the group defined
in 1.27 with respect to these data and let Ti be the group defined in 1.37
with respect to the anisotropic quadratic space Ξi.

Let i ∈ {1, 2}. Set Xi := Si/Z(Si) (so if Λi is of type Ek, Xi is a vec-
tor space over Ki of dimension 2k−3). If Λi is of type E6 set Di := Ei.
By [TW, 13.9], Xi is a 4-dimensional vector space over Di. If Λi is of
type E7 let Di := (Ei/Ki, si2si3si4). As si2si3si4 /∈ N(Ei) by definition, Di
is a quaternion division algebra and, by [W06, 3.6], there exists a scalar
multiplication ∗ : Di ×Xi → Xi extending the scalar multiplication of Ki

on Xi which gives Xi the structure of a vector space over Di. Note that
dimDi(Xi) = 4.
By [TW, 13.6], the Ki-vector space Vi acts on Xi and, by [TW, 12.53], this
action has a unique extension to a map Xi × C(Qi, ei) → Xi making Xi

into a right C(Qi, ei)-module, where C(Qi, ei) denotes the Clifford algebra
of Qi with basepoint ei as defined in [TW, 12.47]. As is shown in [W06, 3.8],
the centralizer of this action in EndKi(Xi) is isomorphic to Di. Since also
K̄i centralizes the action of Vi on Xi, we conclude that K̄i can be identified
with Di.

Now consider the group Ti. As Ξi is a pseudo-quadratic space, Ti/Z(Ti) ' V̄i
is a 4-dimensional vector space over K̄i ' Di. On the other hand, by as-
sumption, there is an isomorphism of Moufang sets γi : M(Si)→M(Ti) (and
hence of the underlying groups) which carries the structure of a vector space
over Di from Si/Z(Si) = Xi onto Ti/Z(Ti). Thus, γi induces an isomorphism
of vector spaces.

Suppose that we are given an isomorphism ϕ : BE2 (Λ1) → BE2 (Λ2). Let P
be a non-commutative panel of BE2 (Λ1). Then the restriction γ := ϕ|P
induces an isomorphism of Moufang sets: γ : M(S1)→M(S2). Since ϕ is an
isomorphism of Moufang quadrangles, it respects the actions of V1 on S1 and
V2 on S2 and hence it is compatible with the Di-vector space structure of
Xi. Hence there is an isomorphism of skew fields φ : D1 → D2 such that the
map ϕ1 : S1/Z(S1) → S2/Z(S2) induced by γ is φ-semi-linear. Moreover,
the map γ′ := γ2 ◦ γ ◦ γ−1

1 is an isomorphism M(Ξ1) → M(Ξ2) of Moufang
sets such that for all x ∈ X = S1/Z(S1) we have γ−1

2 ◦ γ′ ◦ γ1(x) = ϕ1(x).
According to [WDis, 7.15], γ′ is well-defined on the first component and thus
induces an isomorphism of groups γ′1 : T1/Z(T1) → T2/Z(T2) which can be
thought of to be a φ-semi-linear map of the underlying vector spaces due to
the considerations above.

Let (0X2 , t) ∈ Z(T2) be such that γ′(0X1 , 1D1) = (0X2 , t). Let b ∈ X1 and
v ∈ D1 be such that (b, v) ∈ T1 and let (a, s) ∈ T ∗1 . Let s′, v′ ∈ D2 be such
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that γ′(a, s) = (γ′1(a), s′) and γ′(b, v) = (γ′1(b), v′). In view of 9.1.7 we have

γ′(mΞ1

(a,s) ◦m
Ξ1

(0X1
,1D1 )(b, v)) = γ′(mΞ1

(a,s)(b, v))

= γ′(µΞ1

(a,s) ◦ µ
Ξ1

(0X1
,1D1 )

−1
(b, v))

= µΞ2

γ′(a,s) ◦ µ
Ξ2

γ′(0X1
,1D1 )

−1
(γ′(b, v))

= µΞ2

(γ′1(a),s′) ◦ µ
Ξ2

(0X2
,t)

−1
(γ′1(b), v′)

= mΞ2

(γ′1(a),s′) ◦m
Ξ2

(0X2
,t−1)

(γ′1(b), v′).

In particular, if (a, s) ∈ Ω
1D1
(b,v), where Ω

1D1
(b,v) is defined as in 9.1.4, then there

exist u,u′ ∈ D1 such that mΞ1

(a,s) ◦m
Ξ1

(0X1
,1D1 )(b, v) = (bu,u′). Hence,

mΞ2

γ′(a,s) ◦m
Ξ2

(0X2
,t−1)

(γ′(b, v)) = γ′(mΞ1

(a,s)(b, v))

= γ′(bu,u′) = (γ′1(b)φ(u),u′′) ∈ (γ′1(b)D2,D2)

implies that γ′(a, s) ∈ Ωt−1

γ′(b,v). Note that this is reasonable since t−1 ∈ K2
0

by [TW, 11.6].

Let i ∈ {1, 2}. For a better readability we now identify each element b ∈ Xi

with its image γi(b) ∈ Ti/Z(Ti). Let fi be the skew-hermitian form as-
sociated with Q̄i and let πi be the polarity of the projective space P(Xi)
induced by fi, i.e. π is defined by πi(〈x〉) = x⊥ for all x ∈ Xi. Note that for
all 0Xi 6= b ∈ Xi we have b /∈ b⊥, since the fact fi(b, b) = 0D̄i implies that
Q̄i(b) ∈ Ki

0 which in turn implies that b = 0Xi since Ξi is anisotropic. In
particular, 〈b〉 ∩ b⊥ = {0Xi} for all b ∈ Xi.
Moreover, for all b ∈ X1 we have γ′1(π1(〈b〉)) = π2(〈γ′1(b)〉) : Indeed, let
a ∈ b⊥. Clearly, if a = 0X1 then γ′1(a) = 0X2 ∈ γ′1(b)⊥. Otherwise, by

9.1.4, we have (a, Q̄1(a)) ∈ Ω
1D1
(b,Q̄1(b))

and the considerations above show

that γ′(a, Q̄1(a)) ∈ Ωt−1

γ′(b,Q̄1(b))
and thus, by 9.1.4, γ′1(a) ∈ 〈γ′1(b)〉 ∪ γ′1(b)⊥.

As a /∈ bD1, γ′1(a) ∈ γ′1(b)⊥ = π2(γ′1(b)).

This illustrates that the skew-hermitian forms f̂ := φ◦f1◦(γ′1
−1×γ′1

−1) and
f2 induce the same polarity on P(X2). Thus, they are “proportional“, i.e.
there exists c ∈ D∗2 such that f̂(a′, b′) = cf2(a′, b′) holds for all a′, b′ ∈ X2.
By [BC, 7.3.14], f̂ = cf2 is a (σ̂, ε̂)-hermitian form, where σ̂ is given by
σ̂(s) = cσ2(s)c−1 for all s ∈ D2 and ε̂ = −cσ2(c)−1. Since f̂ is skew-
hermitian, we conclude that c ∈ FixD2(σ2) = K2 ' Z(S2) ' Z(T2) ' K2

0.
Note that Z(D2) = FixD2(σ2) also holds for D2 being a quaternion divi-
sion algebra with standard involution σ2 since we excluded the case that
char(K2) = 2.
If char(K2) 6= 2 the pseudo-quadratic forms Q̂ := φ ◦ Q̄1 ◦ γ−1

1 and Q̄2 are
uniquely determined by their associated skew-hermitian forms (cf. [TW,
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11.28]) and we conclude that Q̂ = cQ̄2. If char(K2) = 2, then [TW, 11.19]
implies that the skew-hermitian forms are trace-valued and thus again de-
termine the associated pseudo-quadratic forms. In particular, the pair (γ,φ)
is a similarity from Ξ1 onto Ξ2. According to [TW, 35.19 and 7.5], this simi-
larity extends to an isomorphism ψ : BP2 (Ξ1) ' BP2 (Ξ2).
Furthermore, since ϕ|P = ϕ1, ψ|γ1(P) = γ′1 and γ′1 ◦ γ1(x) = γ1 ◦ ϕ1(x)
holds for all x ∈ P, the system {id,ϕ,ψ} is an isomorphism of foundations
F1 → F2.

�



Chapter 12

Determining the local
structure

12.0.1 Theorem
Let ∆ = (∆+, ∆−, δ∗) be a thick twin building of type C̃2 and suppose that
for some chamber c ∈ C+ the rank 2 residue R := R{s1,s2}(c) is isomorphic
to a Moufang quadrangle of exceptional type. Let R′ := R{s2,s3}(c) and let
F := F(∆, c) be the foundation of ∆ based at c. Then

(E6) if R ' BE2 (Λ) for some quadratic space Λ of type E6, then the founda-
tion F is uniquely determined by R and R′ and either

F ' (QE(Λ),QoQ(Λ)) or F ' (QoE(Λ),QP(Ξ)),

where Ξ is a proper anisotropic pseudo-quadratic space which is uniquely
determined (up to similarity) by R;

(E7) if R ' BE2 (Λ) for some quadratic space Λ of type E7, then either F is
uniquely determined by R and R′ and

F ' (QE(Λ),QoQ(Λ)), or F ' (QoE(Λ),QP(Ξ)),

where Ξ is a proper anisotropic pseudo-quadratic space which is uniquely
determined (up to similarity) by R if char(K) 6= 2;

(E8) if R ' BE2 (Λ) for some quadratic space Λ of type E8, then the founda-
tion F is uniquely determined by R and R′ and

F ' (QE(Λ),QoQ(Λ));

(F4) if R ' BF2 (Λ) for some quadratic space of type F4, then the foundation
F is uniquely determined by R and R′ and

F ' (QF (Λ),QoQ(Λ)) or F ' (QF (Λ̂),QoQ(Λ̂)),

where Λ̂ denotes the dual of Λ as defined in 1.31.

156
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Proof According to 10.0.7, the foundation F is a Moufang foundation.
Moreover, by 10.0.8, the building ∆+ is a Bruhat-Tits building whose build-
ing at infinity is an exceptional Moufang quadrangle. Thus we may use the
classification of exceptional Bruhat-Tits buildings of B. Mühlherr, H. Pe-
tersson and R. Weiss summarized in [MPW, 14.3 and 17.3] to determine the
structure of the residue R′.

(E6) Suppose that R is a Moufang quadrangle of type E6. Then, by [MPW,
14.3 and 17.3] the building ∆∞+ is either a Moufang quadrangle of type
E6 or E7.

In the first case [MPW, 11.4(i)] implies that R′ is a Moufang quadran-
gle of quadratic form type. Thus, there exists an anisotropic quadratic
space Λ′ = (K′,V ′,Q′) such that the root group sequence of R′ is iso-
morphic to the root group sequence QQ(Λ′). According to 11.2.6,
R and R′ are glued along their panels of quadratic form type and
hence there is an isomorphism of Moufang sets γ : M(Λ)→M(Λ′), i.e.
γ : V → V ′ is an isomorphism of groups which, by 9.1.7, respects the
µ-multiplication. Therefore, according to [MPW, 6.10], Λ′ is similar to
Λ and hence, by [TW, 35.8], QQ(Λ) ' QQ(Λ′). By 9.3.3, R′ satisfies
(Ind) at the glueing panel and hence 11.2.3 implies that the foundation
F is uniquely determined by R and R′. Thus, F ' (QE(Λ),QoQ(Λ)).
If ∆∞+ is of type E7, [MPW, 12.8(iv)] implies that there exists a proper
anisotropic pseudo-quadratic space Ξ = (E,K′,σ,V ′,Q′), where E/K′
is a separable quadratic extension, σ is the non-trivial element of
Gal(E/K′) and dimE(V ′) = 4 such that the root group sequence of
R′ is isomorphic to the root group sequence QP(Ξ). According to
11.2.7, R and R′ are glued along their non-commutative panels. Thus
we have F ' (QoE(Λ),QP(Ξ)). Moreover, by 11.2.9, the foundation F
is uniquely determined by the isomorphism class of R.

Note that, in view of [TW, 38.9], the two foundations given can not
be isomorphic.

(E7) Suppose that R is a Moufang quadrangle of type E7. Then, by [MPW,
14.3 and 17.3] the building ∆∞+ is either a Moufang quadrangle of type
E7 or E8.

In the first case [MPW, 11.4(i)] implies that R′ is a Moufang quadran-
gle of quadratic form type. Thus, there exists an anisotropic quadratic
space Λ′ = (K′,V ′,Q′) such that the root group sequence of R′ is iso-
morphic to the root group sequence QQ(Λ′). According to 11.2.6,
R and R′ are glued along their panels of quadratic form type and
hence there is an isomorphism of Moufang sets γ : M(Λ)→M(Λ′), i.e.
γ : V → V ′ is an isomorphism of groups which, by 9.1.7, respects the
µ-multiplication. Therefore, according to [MPW, 6.10], Λ′ is similar to
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Λ and hence, by [TW, 35.8], QQ(Λ) ' QQ(Λ′). By 9.3.3, R′ satisfies
(Ind) at the glueing panel and hence 11.2.3 implies that the foundation
F is uniquely determined by R and R′. Thus, F ' (QE(Λ),QoQ(Λ)).
If ∆∞+ is of type E8, [MPW, 12.9(i)] implies that there exists a proper
anisotropic pseudo-quadratic space Ξ = (D,K′,σ,V ′,Q′), where D is
a quaternion division algebra over K′, σ is the standard involution
of D and dimD(V ′) = 4 such that the root group sequence of R′ is
isomorphic to the root group sequence QP(Ξ). According to 11.2.7,
R and R′ are glued along their non-commutative panels. Thus we
have F ' (QoE(Λ),QP(Ξ)). Moreover, if char(K) 6= 2, by 11.2.9, the
foundation F is uniquely determined by the isomorphism class of R.

Note that, in view of [TW, 38.9], the two foundations given can not
be isomorphic.

(E8) Suppose that R is a Moufang quadrangle of type E8. Then, by [MPW,
14.3 and 17.3] the building ∆∞+ is a Moufang quadrangle of type E8.

By [MPW, 11.4(i)],R′ is a Moufang quadrangle of quadratic form type.
Thus, there exists an anisotropic quadratic space Λ′ = (K′,V ′,Q′) such
that the root group sequence of R′ is isomorphic to the root group
sequence QQ(Λ′). According to 11.2.6, R and R′ are glued along their
panels of quadratic form type and hence there is an isomorphism of
Moufang sets γ : M(Λ) → M(Λ′), i.e. γ : V → V ′ is an isomorphism
of groups which, by 9.1.7, respects the µ-multiplication. Therefore,
according to [MPW, 6.10], Λ′ is similar to Λ and hence, by [TW, 35.8],
QQ(Λ) ' QQ(Λ′). By 9.3.3, R′ satisfies (Ind) at the glueing panel and
hence 11.2.3 implies that the foundation F is uniquely determined by
R and R′. Thus, F ' (QE(Λ),QoQ(Λ)).

(F4) Suppose that R is a Moufang quadrangle of type F4. The classification
in [MPW, 14.3 and 17.3] shows that, irrespective of the type of ∆∞+ ,
R′ is a Moufang quadrangle of quadratic form type in each case. Thus,
there exists an anisotropic quadratic space Λ′ = (K′,V ′,Q′) such that
the root group sequence of R′ is isomorphic to the root group sequence
QQ(Λ′).
Let Λ̂ denote the dual of Λ. By 11.2.8, the glueing induces an isomor-
phism between two Moufang sets of quadratic form type. By [MPW,
6.10], therefore, the quadratic space Λ′ is similar to Λ or Λ̂, depend-
ing on the glueing panel. Hence, by [TW, 35.8], QQ(Λ) ' QQ(Λ′) or
QQ(Λ̂) ' QQ(Λ′). AsR′ satisfies (Ind) at the glueing panel (cf. 9.3.3),
11.2.3 implies that the foundation F is uniquely determined by R and
R′. In view of 11.2.5 and 9.2.8(v) we have F ' (QF (Λ),QoQ(Λ)) or

F ' ((QoF (Λ),QoQ(Λ̂)) ' ((QF (Λ̂),QoQ(Λ̂)).

�
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Chapter 13

Existence of certain twin
buildings of higher rank

13.1 Buildings of type Ẽn

Let ∆ be a building of type Dn (n ≥ 4) or En (n = 6, 7, 8). According
to [Ti74, 6.7], each irreducible rank-2-residue of ∆ is associated to a Desar-
guesian projective plane and each of these projective planes is defined over
the same skew field K. By [Ti74, 6.12 and 6.13], the defining skew field K
is a field and it determines the building ∆ up to isomorphism.
Moreover, for each field K there exists such a building of type Dn (n ≥ 4)
or En (n = 6, 7, 8) which will be denoted by Dn(K) or En(K), respectively.

13.1.1 Notation
Throughout this section we fix a quadratic space Λ = (K,V ,Q) of type En
for n ∈ {6, 7, 8}. We let E/K be a separable quadratic extension such that
{E, {v1, . . . , vd}} is a norm splitting of Λ.

13.1.2 Proposition
Let Π be the Coxeter diagram Ẽn labeled as in 2.3. There exists a twin

building ∆ = (∆+, ∆−, δ∗) of type Ẽn such that for some ε ∈ {+,−} each
residue of type {s1, . . . , s6} in Cε is isometric to the building En(E).

Proof

n = 6 Let ∆1 be the building E6(E), let the corresponding diagram be labeled
as in 2.3 and choose a chamber c ∈ ∆1. Let ∆2 be the building D5(E).
Let R := R{s2,s3,s4,s4}(c) be a residue of ∆1 of type D4. If R′ is a
residue of ∆2 of type D4, the classification of spherical buildings yields
that there is an isomorphism ϕ : R → R′. Let d := ϕ(c). We relabel
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the diagram D5 in such a way that ϕ(R{si,sj}(c)) = R{si,sj}(d) holds
for all {i, j} ∈ {{2, 4}, {3, 4}, {4, 5}} and the unique vertex which does
not belong to the subdiagram D4 will be labeled by 0. Then

F := ((R{s1,s3}(c),R{s3,s4}(c),R{s2,s4}(c),R{s0,s2}(d),

R{s4,s5}(c),R{s5,s6}(c)),

(c, c, c, d, c, c),

(θ134, θ342, θ245, θ456)),

where θ420 = ϕ|P{s2}(c) and θijk = id in all the other cases, is a foun-

dation of type Ẽ6. According to [WDis, 25.1], the foundation F is
integrable. Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Ẽ6 and
let x ∈ C+ ∪ C− be such that F(∆,x) ' F . Let J := {s1, . . . , s6}.
Then, FJ ' F(∆1, c) and thus, by [AB, 5.209], RJ(x) ' ∆1 ' E6(E).
In view of [AB, 5.157], each spherical residue of type J which is con-
tained in the same half as the chamber x is isometric to the building
E6(E).

n = 7 Let ∆1 be the building E7(E), let the corresponding diagram be labeled
as in 2.3 and choose a chamber c ∈ ∆1. Let ∆2 be the building D6(E).
Let R := R{s1,...,s5}(c) be a residue of ∆1 of type D5. If R′ is a residue
of ∆2 of type D5, the classification of spherical buildings yields that
there is an isomorphism ϕ : R → R′. Let d := ϕ(c). We relabel the
diagram D5 in such a way that ϕ(R{si,sj}(c)) = R{si,sj}(d) holds for
all {i, j} ∈ {{1, 3}, {2, 4}, {3, 4}{4, 5}} and the unique vertex which
does not belong to the subdiagram D5 will be labeled by 0. Then

F := ((R{s0,s1}(d),R{s1,s3}(c),R{s3,s4}(c),R{s2,s4}(c),R{s4,s5}(c),

R{s5,s6}(c),R{s6,s7}(c)),

(d, c, c, c, c, c, c),

(θ013, θ134, θ342, θ345, θ245, θ456, θ567)),

where θ013 = ϕ−1|P{s1}(d) and θijk = id in all the other cases, is a

foundation of type Ẽ7. According to [WDis, 25.1], the foundation F is
integrable. Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Ẽ7 and let
x ∈ C+ ∪ C− be such that F(∆,x) ' F . Let J := {s1, . . . , s7}. Then,
FJ ' F(∆1, c) and thus, by [AB, 5.209], RJ(x) ' ∆1 ' E7(E). In
view of [AB, 5.157], each spherical residue of type J which is contained
in the same half as the chamber x is isometric to the building E7(E).

n = 8 Let ∆1 be the building E8(E), let the corresponding diagram be labeled
as in 2.3 and choose a chamber c ∈ ∆1. Let ∆2 be the building D8(E).
Let R := R{s2,...,s8}(c) be the unique residue of ∆1 of type D7. If R′
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is a residue of ∆2 of type D7, the classification of spherical buildings
yields that there is an isomorphism ϕ : R → R′. Let d := ϕ(c). We
relabel the diagram D7 in such a way that ϕ(R{si,sj}(c)) = R{si,sj}(d)
holds for all {i, j} ∈ {{2, 4}, {i, i + 1} | 3 ≤ i ≤ 7} and the unique
vertex which does not belong to the subdiagram D7 will be labeled by
0. Then

F := ((R{s1,s3}(c),R{s3,s4}(c),R{s2,s4}(c),R{s4,s5}(c),

R{s5,s6}(c),R{s6,s7}(c),R{s7,s8}(c),R{s8,s0}(d)),

(c, c, c, c, c, c, c, d),

(θ134, θ342, θ345, θ245, θ456, θ567, , θ678, θ780)),

where θ780 = ϕ|P{s8}(c) and θijk = id in all the other cases, is a foun-

dation of type Ẽ8. According to [WDis, 25.1], the foundation F is
integrable. Let ∆ = (∆+, ∆−, δ∗) be a twin building of type Ẽ8 and
let x ∈ C+ ∪ C− be such that F(∆,x) ' F . Let J := {s1, . . . , s8}.
Then, FJ ' F(∆1, c) and thus, by [AB, 5.209], RJ(x) ' ∆1 ' E8(E).
In view of [AB, 5.157], each spherical residue of type J which is con-
tained in the same half as the chamber x is isometric to the building
E8(E).

�

13.1.3 Proposition
For n = 6, 7 let Π be the Coxeter diagram Ẽn+1 labeled as in 2.3. There

exists a twin building ∆ = (∆+, ∆−, δ∗) of type Ẽn+1 such that for some
ε ∈ {+,−} each residue of type {s1, . . . , sn} in Cε is isometric to the building
En(E).

Proof Let ∆ be the twin building of type Ẽn+1 described in 13.1.2. Then,
for some chamber x of ∆, RJ∪{sn+1}(x) ' En+1(E). In view of the clas-
sification, since RJ(x) is a residue of En+1 of type En, RJ(c) ' En(E).
By [AB, 5.157], each spherical residue of type J which is contained in the
same half as the chamber x is isometric to the building En(E). �

13.2 Buildings of type F̃4

Let L/K be an inseparable extension of fields with char(K) = 2 such that
L2 ⊆ K ⊆ L. Let q : L → K denote the quadratic form which is defined by
q(x) := x2 for all x ∈ L. According to [Ti74, 10.2] there exists a unique
building of type F4 such that its residues of type C2 are isomorphic to the
building BQ2 (K,L, q). We denote this building by F4(L/K).
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13.2.1 Notation
Throughout this section we fix a quadratic space Λ = (K,V ,Q) of type F4.
Let F be as in 1.29, let (E, ·, {v1, v2}) be a norm splitting of some complement
of Def(Λ) in V and let D denote the composite field EF. Thus D/E is an
extension such that D2 ⊆ E ⊆ D. Moreover, in view of [T, 11.2], the field E
has infinitely many elements.

13.2.2 Proposition
Let Π be the Coxeter diagram F̃4 labeled as in 2.3. There exists a twin

building ∆ = (∆+, ∆−, δ∗) of type F̃4 such that for some ε ∈ {+,−} each
residue of type {s1, . . . , s4} in Cε is isometric to the building F4(D/E).

Proof Let ∆1 be the building F4(D/E), let c be a chamber of ∆1 and let
F1 := F(∆1, c) be the foundation of ∆1 based at c. By 11.1.8, the foundation
F1 is integrable and Moufang.

We consider the quadratic space Λ′ := (E,V ′,Q′), where V ′ := D⊕ (E)8 and
Q′ : V ′ → E is defined by Q′(x0,x1, . . . ,x8) := x2

0 +x1x3 +x2x4 +x5x6 +x7x8

for all x0 ∈ D,x1, . . . ,x8 ∈ E. Let ∆2 := Flag(G(P(Λ′))). Thus ∆2 is a
building of type C4. In view of 11.1.8, the foundation F(∆2, d) is integrable
and Moufang for each chamber d of ∆2.

Let R := R{s1,s2,s3}(c) be a residue of ∆1 of type C3 and let R′ be a residue
of ∆2 of type C3. Due to the classification of buildings of type F4 and
the construction of ∆2, the C2-residues of R and R′ of type C2 are both
isomorphic to the building BQ2 (E,D,x 7→ x2). Thus, according to [Ti74,
8.8(ii)] there is an isomorphism ϕ : R → R′. Let d := ϕ(c). We relabel the
diagram C4 in such a way that ϕ(R{si,si+1}(c)) = R{si,si+1}(d) holds for all
1 ≤ i ≤ 2 and the unique vertex which does not belong to the subdiagram
C4 will be labeled by 0. Then

F := ((R{s0,s1}(d), (R{si,si+1}(c))1≤i≤3), (d, (c)1≤i≤3), (θ012, θ123, θ234)),

where θ012 = ϕ−1|Ps1 (d) and θijk = id in all the other cases, is a Mo-

ufang foundation of type F̃4. Let s ∈ {s0, s1, s2}. Then the Moufang set
M∆2,Ps(d) is isomorphic to the Desarguesian Moufang set M(E) and since E
has infinitely many elements, we conclude that |Ps(d)| = ∞. Similarly, if
s ∈ {s3, s4}, the Moufang set M∆1,Ps(c) is isomorphic to the Desarguesian
Moufang set M(D) and as D has at least |E| many elements, we conclude
that |Ps(c)| =∞. In particular, in view of [MR], the foundation F satisfies
(lco) and (lsco) (cf. 11.1.10).

Let J ⊆ {s0, . . . , s4} be an irreducible subset of rank 3. Then the residue
FJ is isomorphic to a residue of one of the foundations F1 = F(∆1, c) or
F2 := F(∆2, d). As, by 11.1.9, each residue of F1 or F2 of rank 3 is inte-
grable, we conclude that FJ is integrable. According to 11.1.11, therefore,
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F is integrable. Let ∆ = (∆+, ∆−, δ∗) be a twin building of type F̃4 and
let x ∈ C+ ∪ C− be such that F(∆,x) ' F . Let J := {s1, . . . , s4}. Then,
FJ ' F(∆1, c) and thus, by [AB, 5.209], RJ(x) ' ∆1 ' F4(D/E). In view
of [AB, 5.157], each spherical residue of type J which is contained in the
same half as the chamber x is isometric to the building F4(D/E). �



Chapter 14

Exceptional fixed point
buildings

In [MW] Mühlherr and Weiss apply the theory of descent for buildings to
give elementary constructions of the exceptional Moufang quadrangles as
the fixed point buildings of involutions of higher rank buildings. As we will
extend their constructions, we list the main results here.

14.0.1 Theorem
Let Λ = (K,V ,Q) be a quadratic space of type E6. Then there exists a
separable quadratic extension E/K such that QE is hyperbolic and for each
such extension E/K, there exists an involution Ω of the building ∆ = E6(E)
such that the group Γ := 〈Ω〉 is a descent group of ∆ with Tits index

and the fixed point building ∆Γ isomorphic to BE2 (Λ).

Proof This is [MW, 14.11]. �

14.0.2 Theorem
Let Λ = (K,V ,Q) be a quadratic space of type E7. Then there exists a
separable quadratic extension E/K such that QE is hyperbolic and for each
such extension E/K, there exists an involution Ω of the building ∆ = E7(E)
such that the group Γ := 〈Ω〉 is a descent group of ∆ with Tits index

166
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and the fixed point building ∆Γ is isomorphic to BE2 (Λ).

Proof This is [MW, 13.12]. �

14.0.3 Theorem
Let Λ = (K,V ,Q) be a quadratic space of type E8. Then there exists a
separable quadratic extension E/K such that QE is hyperbolic and for each
such extension E/K, there exists an involution Ω of the building ∆ = E8(E)
such that the group Γ := 〈Ω〉 is is a descent group of ∆ with Tits index

and the fixed point building ∆Γ is isomorphic to BE2 (Λ).

Proof This is [MW, 11.21]. �

14.0.4 Theorem
Let Λ = (K,V ,Q) be a quadratic space of type F4 and let F be as in 1.29.
Then there exists a separable quadratic extension E/K such that QE is
pseudo-split and for each such extension E/K, there exists an involution Ω
of the building ∆ = F4(EF,E) such that the group Γ := 〈Ω〉 is a descent
group of ∆ with Tits index

and the fixed point building ∆Γ is isomorphic to BF2 (Λ).

Proof This is [MW, 17.14]. �



Chapter 15

Existence of exceptional twin
buildings of type C̃2

15.1 Case E6

Throughout this section let Λ = (K,V ,Q) be a quadratic space of type E6

and fix a norm splitting (E, ·, {v1, . . . , v3}) of Λ.

15.1.1 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QE(Λ),QoQ(Λ)).

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type Ẽ6 constructed
in 13.1.2. Let Π be the Coxeter diagram Ẽ6 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s6} is isomorphic to the building E6(E). As each rank 2 residue
of ∆̃ is either of type A2 or of type A1 × A1, ∆̃ satisfies condition (co)
by [MR, 1.5].

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s6}(x) ' E6(E) be the unique
residue of ∆+ of type {s1, . . . , s6} containing the chamber x.

According to 1.26, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.1 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 :=

168
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and such that the fixed point building ∆Γ0
0 is isomorphic to the Moufang

quadrangle BE2 (Λ).

We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of type
{s0, s2, . . . , s5} of ∆+ containing C. Then ∆01 := ∆0 ∩ ∆1 is the unique
residue of type D4 containing C. By assumption, ∆01 is a Γ0-panel of ∆0 and
hence contains at least three Γ0-chambers. According to 2.42, the restriction
Ω01 := Ω0|∆01 ∈ Aut(∆01) is an involution and the group Γ01 := 〈Ω01〉 is a
descent group of ∆01 with Tits index

.

By 2.41, the fixed point building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ,M) is a Moufang set. It follows from

[MW, 10.4] that

(∆Γ01
01 ,M) 'M(Λ). (15.1)

By 5.8.5, the involution Ω01 can be extended to an involution Ω1 ∈ Aut(∆1)
such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s2, . . . , s5, s0},M0 := {s1, . . . , s6},M01 := M0 ∩ M1 and
A = {s3, s4, s5} of S and set X := {M1,M0,M01,A}. The set X is a finite
essential set as defined in 4.2.1.
Let σ ∈ Aut(Π) be the automorphism fixing the vertices 4, 2 and 0 and
interchanging the vertices 1 and 6 as well as 3 and 5 respectively. Let
∆̃σ = (∆σ

+, ∆σ
−, δσ∗ ) be the translate of ∆̃ with respect to σ (cf. 7.2.4). For

i = 0, 1 let σi := σ|ΠMi and note that σi ∈ Aut(ΠMi). With this setup Ωi is
a σi-isometry of the building ∆i.

We define a mapping ϕ from EX(c) onto EX(c′) (where the last is considered
as a subset of the building ∆σ

+) via

ϕ(x) :=

{
id ◦Ω0(x), x ∈ RM0(c)

id ◦Ω1(x), x ∈ RM1(c)
,

which is well-defined since for each M ∈ X we have M ⊆ M0 or M ⊆M1

and since Ω0 and Ω1 coincide on the intersection of their domains RM01(c).
The map ϕ is bijective, the inverse on RMi(c

′) is given by Ωi ◦ id−1 for each
i = 0, 1.
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For each M ∈ X let ϕM := ϕ|RM (c) be the restriction of ϕ to the residue
RM (c). For x, y ∈ RM (c) we have

δσ+(ϕM (x),ϕM (y)) = δσ+(id(Ωi(x)), id(Ωi(y)))

= σ(δ+(Ωi(x), Ωi(y)))

= σ2(δ+(x, y)) = δ+(x, y),

where i = 0 or i = 1 depending on wether M ⊆ M0 or M ⊆ M1. In
particular, for each M ∈ X the map ϕM is an isometry from (RM (c), δ+)
onto (RM (c′), δσ+).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chambers C
and D are opposite in ∆01. By 8.1.9(a), there exists a unique apartment
of ∆01 containing the apartment ΣA and intersecting D non-trivially. We
denote this apartment by ΣM01 . Moreover, by 8.1.9(b), the apartment ΣM01

is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map stabilizes A we
conclude that C and Ci are opposite residues of ∆i. Let Pi be the unique
residue of ∆i of type D4 containing the Γi-chamber Ci. Then Pi and ∆01

are opposite spherical Γi-residues of ∆i. Again, by 8.1.9(a), there exists a
unique apartment of ∆i containing the apartment ΣM01 and intersecting Pi
non-trivially. We denote this apartment by ΣMi . In view of 8.1.9(b), the
apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃σ of ∆̃σ such that for all M ∈ X
we have ΣM ⊆ Σ∆̃σ . Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃σ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃σ ∩RM (c′).

According to the extension theorem 7.3.3, there is a unique isometry Ω̃ from
∆̃ onto ∆̃σ extending id ◦Ω0 and id ◦Ω1. Set Ω := id−1 ◦Ω̃. Then Ω is an
isometry from ∆̃ onto ∆̃ extending Ω0 and Ω1. Let Γ := 〈Ω〉 ≤ Aut(∆̃).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers, i.e.
at least three Γ-chambers.
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By 8.1.10, there exists a Γ-chamber which is opposite to C in ∆̃ and by
8.1.13

T :=

is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16, the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.
According to 8.3.9 there exists a codistance function δΓ

∗ between the Γ-

chambers of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is

a twin building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at C. The irreducible rank 2
residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As ∆Γ0

0 ' BE2 (Λ)
and ∆Γ0

0 and ∆Γ1
1 are glued along a panel of quadratic form type (cf. 15.1),

theorem 12.0.1 implies that F(∆,C) ' (QE(Λ),QoQ(Λ)). �

15.1.2 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QoE(Λ),QP(Ξ))

for some anisotropic pseudo-quadratic space Ξ.

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type Ẽ7 constructed
in 13.1.3. Let Π be the Coxeter diagram Ẽ7 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s6} is isomorphic to the building E6. As each rank 2 residue of ∆̃ is
either of type A2 or of type A1×A1, ∆̃ satisfies condition (co) by [MR, 1.5].

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s6}(x) ' E6(E) be the unique
residue of ∆+ of type {s1, . . . , s6} containing the chamber x.

According to 1.26, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.1 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 :=

and such that the fixed point building ∆Γ0
0 is isomorphic to the Moufang

quadrangle BE2 (Λ).
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We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of type
{s0, s1, s3, . . . , s7} of ∆+ containing C. Then ∆01 := ∆0 ∩∆1 is the unique
residue of type A5 containing C. By assumption, ∆01 is a Γ0-panel of ∆0 and
hence contains at least three Γ0-chambers. According to 2.42, the restriction
Ω01 := Ω0|∆01 ∈ Aut(∆01) is an involution and the group Γ01 := 〈Ω01〉 is a
descent group of ∆01 with Tits index

.

By 2.41, the fixed poi9nt building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ) is a Moufang set. It follows from [MW,

14.10] that

(∆Γ01
01 ) 'M(S). (15.2)

By 5.8.5, the involution Ω01 can be extended to an involution Ω1 ∈ Aut(∆1)
such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s1, s3, . . . , s7, s0},M0 := {s1, . . . , s6},M01 := M0 ∩M1 and
A = {s3, s4, s5} of S and set X := {M1,M0,M01,A}. The set X is a finite
essential set as defined in 4.2.1.
Let σ ∈ Aut(Π) be the automorphism fixing the vertices 4 and 2 and inter-
changing the vertices 0 and 7, 1 and 6 as well as 3 and 5 respectively. Let
∆̃ = (∆σ

+, ∆σ
−, δσ∗ ) be the translate of ∆̃ with respect to σ (cf. 7.2.4). For

i = 0, 1 let σi := σ|ΠMi and note that σi ∈ Aut(ΠMi). With this setup, Ωi

is a σi-isometry of the building ∆i.

We define a mapping ϕ from EX(c) onto EX(c′) (where the last is considered
as a subset of the building ∆σ

+) via

ϕ(x) :=

{
id ◦Ω0(x), x ∈ RM0(c)

id ◦Ω1(x), x ∈ RM1(c)
,

which is well-defined since for each M ∈ X we have M ⊆ M0 or M ⊆ M1

ans since Ω0 and Ω1 coincide on the intersection of their domains RM01(c).
The map ϕ is bijective, the inverse on RMi(c

′) is given by Ωi ◦ id−1 for each
i = 0, 1.
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For each M ∈ X let ϕM := ϕ|RM (c) be the restriction of ϕ to the residue
RM (c). For x, y ∈ RM (c) we have

δσ+(ϕM (x),ϕM (y)) = δσ+(id(Ωi(x)), id(Ωi(y)))

= σ(δ+(Ωi(x), Ωi(y))) = σ2(δ+(x, y)) = δ+(x, y),

where i = 0 or i = 1 depending on wether M ⊆ M0 or M ⊆ M1. In
particular, for each M ∈ X the map ϕM is an isometry from (RM (c), δ+)
onto (RM (c′), δσ+).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chambers C
and D are opposite in ∆01. By 8.1.9(a) there exists a unique apartment of
∆01 containing ΣA and intersecting D non-trivially. We denote this apart-
ment by ΣM01 . Moreover, by 8.1.9(b) this apartment is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map stabilizes A we
conclude that C and Ci are opposite residues of ∆i. Let Pi be the unique
residue of ∆i of type A5 containing the Γi-chamber Ci. Then Pi and ∆01

are opposite spherical Γi-residues of ∆i. Again by 8.1.9(a) there exists a
unique apartment of ∆i containing the apartment ΣM01 and intersecting Pi
non-trivially. We denote this apartment by ΣMi . In view of 8.1.9(b), the
apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃σ of ∆̃σ such that for all M ∈ X
we have ΣM ⊆ Σ∆̃σ . Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃σ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃σ ∩RM (c′).

According to the extension theorem 7.3.3, there is a unique isometry Ω̃ from
∆̃ onto ∆̃σ extending id ◦Ω0 and id ◦Ω1. Set Ω := id−1 ◦Ω̃. Then Ω is an
isometry from ∆̃ onto ∆̃ extending Ω0 and Ω1. Let Γ := 〈Ω〉 ≤ Aut(∆̃).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers, i.e.
at least three Γ-chambers.
By 8.1.10, there exists a Γ-chamber which is opposite to C in ∆̃ and by
8.1.13

T :=
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is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16, the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.
According to 8.3.9 there exists a codistance function δΓ

∗ between the Γ-

chambers of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is

a twin building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at C. The irreducible rank 2
residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As ∆Γ0

0 ' BE2 (Λ) and
∆Γ0

0 and ∆Γ1
1 are glued along a non-commutative panel (cf. 15.2), theorem

12.0.1 implies that there exists an anisotropic pseudo-quadratic space Ξ such
that F(∆,C) ' (QoE(Λ),QP(Ξ)). �
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15.2 Case E7

Throughout this section let Λ = (K,V ,Q) be a quadratic space of type E7

and fix a norm splitting (E, ·, {v1, . . . , v4}) of Λ.

15.2.1 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QE(Λ),QoQ(Λ)).

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type Ẽ7 constructed
in 13.1.2. Let Π be the Coxeter diagram Ẽ7 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s7} is isomorphic to the building E7(E). As each rank 2 residue
of ∆̃ is either of type A2 or of type A1 × A1, ∆̃ satisfies condition (co)
by [MR, 1.5].

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s7}(x) ' E7(E) be the
residue of ∆+ of type {s1, . . . , s7} containing the chamber x.

According to 1.26, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.2 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 :=

and such that the fixed point building ∆Γ0
0 is isomorphic to the Moufang

quadrangle BE2 (Λ).

We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of type
{s0, . . . , s5, s7} of ∆+ containing C. Then ∆01 := ∆0 ∩ ∆1 is the unique
residue of type D5 × A1 containing C. By assumption, ∆01 is a Γ0-panel
of ∆0 and hence contains at least three Γ0-chambers. According to 2.42,
the restriction Ω01 := Ω0|∆01 is an involutory automorphism of ∆01 and the
group Γ01 := 〈Ω01〉 is a descent group of ∆01 with Tits index

.

By 2.41, the fixed point building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ,M) is a Moufang set. It follows from

[MW, 10.4] that

(∆Γ01
01 ,M) 'M(Λ). (15.3)
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By 5.8.5, the involution Ω01 can be extended to an involution Ω1 ∈ Aut(∆1)
such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s0, s1, . . . , s5, s7},M0 := {s1, . . . , s7},M01 := M0 ∩M1 and
A = {s2, . . . , s5, s7} of S and set X := {M1,M0,M01,A}. The set X is a
finite essential set as defined in 4.2.1. Note that for each M ∈ X we have
M ⊆M0 or M ⊆M1. Hence we may define a mapping

ϕ : EX(c)→ EX(c′) via ϕ(x) :=

{
Ω0(x), x ∈ RM0(c)

Ω1(x), x ∈ RM1(c)
,

which is well-defined since Ω0 and Ω1 coincide on the intersection of their
domainsRM01(c). As both Ω0 and Ω1 are involutions, the map ϕ is bijective.
For each M ∈ X let ϕM := ϕ|RM (c) be the restriction of ϕ to the residue
RM (c) and note that all these maps are isometries fromRM (c) ontoRM (c′).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chamber C
and D are opposite. By 8.1.9(a) there exists a unique apartment of ∆01

containing ΣA and intersecting D non-trivially. We denote this apartment
by ΣM01 . Moreover, by 8.1.9(b), this apartment is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map acts trivially on the
diagram ΠMi we conclude that C and Ci are opposite residues of ∆i. Let
Pi be the unique residue of ∆i of type D5 × A1 containing the Γi-chamber
Ci. Then Pi and ∆01 are opposite spherical Γi-residues of ∆i. Again by
8.1.9(a), there exists a unique apartment of ∆i containing the apartment
ΣM01 and intersecting Pi non-trivially. We denote this apartment by ΣMi .
In view of 8.1.9(b) the apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃ of ∆̃ such that for all M ∈ X
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we have ΣM ⊆ Σ∆̃. Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃ ∩RM (c′).

According to the extension theorem 7.3.3, there exists a unique isometry
Ω ∈ Aut(∆) extending Ω0 and Ω1. Set Γ := 〈Ω〉 ≤ Aut(∆).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers, i.e.
at least three Γ-chambers.
By 8.1.10, there exists a Γ-chamber which is opposite to C in ∆̃ and by
8.1.13

T :=

is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16, the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.
According to 8.3.9 to obtain a codistnace function δΓ

∗ between the Γ-chambers

of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is a twin

building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at the chamber C. The irre-
ducible rank 2 residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As

∆Γ0
0 ' BE2 (Λ) and ∆Γ0

0 and ∆Γ1
1 are glued along a panel of quadratic form

type (cf. 15.3), theorem 12.0.1 implies that F(∆,C) ' (QE(Λ),QoQ(Λ)). �

15.2.2 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QoE(Λ),QP(Ξ))

for some anisotropic pseudo-quadratic space Ξ.

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type Ẽ8 constructed
in 13.1.3. Let Π be the Coxeter diagram Ẽ8 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s7} is isomorphic to the building E7(E). As each rank 2 residue
of ∆̃ is either of type A2 or of type A1 × A1, ∆̃ satisfies condition (co)
by [MR, 1.5].

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s7}(x) ' E7(E) be the unique
residue of ∆+ of type {s1, . . . , s7} containing the chamber x.
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According to 1.26, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.2 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 :=

and such that the fixed point building ∆Γ0
0 is isomorphic to the a Moufang

quadrangle BE2 (Λ).

We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of
type {s2, . . . , s8, s0} of ∆+ containing C. Then ∆01 := ∆0 ∩ ∆1 is the
unique residue of type D6 containing C. By assumption, ∆01 is a Γ0-panel
of ∆0 and hence contains at least three Γ0-chambers. According to 2.42,
the restriction Ω01 := Ω0|∆01 is an involutory automorphism of ∆01 and the
group Γ01 := 〈Ω01〉 is a descent group of ∆01 with Tits index

.

By 2.41, the fixed point building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ,M) is a Moufang set. It follows from

[MW, 13.11] that

(∆Γ01
01 ,M) 'M(S). (15.4)

By 5.8.2, the involution Ω01 can be extended to an involution Ω1 ∈ Aut(∆1)
such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s2, . . . , s8, s0},M0 := {s1, . . . , s7},M01 := M0 ∩ M1 and
A = {s2, . . . , s5, s7, s0} of S and set X := {M1,M0,M01,A}. The set X is
a finite essential set as defined in 4.2.1. Note that for each M ∈ X we have
M ⊆M0 or M ⊆M1. Hence we may define a mapping

ϕ : EX(c)→ EX(c′) via ϕ(x) :=

{
Ω0(x), x ∈ RM0(c)

Ω1(x), x ∈ RM1(c)
,
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which is well-defined since Ω0 and Ω1 coincide on the intersection of their
domains RM01(c).
For each M ∈ X let ϕM := ϕ|RM (c) be the restriction of ϕ to the residue
RM (c) and note that all these maps are isometries fromRM (c) ontoRM (c′).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chamber C
and D are opposite. By 8.1.9(a) there exists a unique apartment of ∆01

containing ΣA and intersecting D non-trivially. We denote this apartment
by ΣM01 . Moreover, by 8.1.9(b), this apartment is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map acts trivially on
the diagram ΠMi we conclude that C and Ci are opposite residues of ∆i.
Let Pi be the unique residue of ∆i of type D6 containing the Γi-chamber
Ci. Then Pi and ∆01 are opposite spherical Γi-residues of ∆i. Again by
8.1.9(a), there exists a unique apartment of ∆i containing the apartment
ΣM01 and intersecting Pi non-trivially. We denote this apartment by ΣMi .
In view of 8.1.9(b) ,the apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃ of ∆̃ such that for all M ∈ X
we have ΣM ⊆ Σ∆̃. Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃ ∩RM (c′).

According to the extension theorem 7.3.3, there exists a unique isometry
Ω ∈ Aut(∆) extending Ω0 and Ω1. Set Γ := 〈Ω〉 ≤ Aut(∆).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers,
i.e. at least three Γ-chambers. By 8.1.10, there exists a Γ-chamber which is
opposite to C in ∆̃ and by 8.1.13

T :=

is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16, the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
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by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.

According to 8.3.9 there exists a codistance function δΓ
∗ between the Γ-

chambers of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is

a twin building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at C. The irreducible rank 2
residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As ∆Γ0

0 ' BE2 (Λ) and
∆Γ0

0 and ∆Γ1
1 are glued along a non-commutative panel (cf. 15.4), theorem

12.0.1 implies that there exists an anisotropic pseudo-quadratic space Ξ such
that F(∆,C) ' (QoE(Λ),QP(Ξ)). �
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15.3 Case E8

Throughout this section let Λ = (K,V ,Q) be a quadratic space of type E8

and fix a norm splitting (E, ·, {v1, . . . , v6}) of Λ.

15.3.1 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QE(Λ),QoQ(Λ)).

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type Ẽ8 constructed
in 13.1.2. Let Π be the Coxeter diagram Ẽ8 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s8} is isomorphic to the building E8(E). As each rank 2 residue
of ∆̃ is either of type A2 or of type A1 × A1, ∆̃ satisfies condition (co)
by [MR, 1.5].

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s8}(x) ' E8(E) be the unique
residue of ∆+ of type {s1, . . . , s8} containing the chamber x.

According to 1.26, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.3 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 :=

and such that the fixed point building ∆Γ0
0 is isomorphic to the Moufang

quadrangle BE2 (Λ).

We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of
type {s2, . . . , s8, s0} of ∆+ containing C. Then ∆01 := ∆0 ∩ ∆1 is the
unique residue of type D7 containing C. By assumption, ∆01 is a Γ0-panel
of ∆0 and hence contains at least three Γ0-chambers. According to 2.42,
the restriction Ω01 := Ω0|∆01 is an involutory automorphism of ∆01 and the
group Γ01 := 〈Ω01〉 is a descent group of ∆01 with Tits index

.

By 2.41, the fixed point building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ,M) is a Moufang set. It follows from

[MW, 10.4] that

(∆Γ01
01 ,M) 'M(Λ). (15.5)
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By 5.8.4, the involution Ω01 can be extended to an involution Ω1 ∈ Aut(∆1)
such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s2, . . . , s8, s0},M0 := {s1, . . . , s8},M01 := M0 ∩ M1 and
A = {s2, . . . , s7} of S and set X := {M1,M0,M01,A}. The set X is a finite
essential set as defined in 4.2.1. Note that for each M ∈ X we have M ⊆M0

or M ⊆M1. Hence we may define a mapping

ϕ : EX(c)→ EX(c′) via ϕ(x) :=

{
Ω0(x), x ∈ RM0(c)

Ω1(x), x ∈ RM1(c)
,

which is well-defined since Ω0 and Ω1 coincide on the intersection of their
domains RM01(c).
For each M ∈ X let ϕM := ϕ|RM (c) be the restriction of ϕ to the residue
RM (c) and note that all these maps are isometries fromRM (c) ontoRM (c′).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chamber C
and D are opposite. By 8.1.9(a), there exists a unique apartment of ∆01

containing ΣA and intersecting D non-trivially. We denote this apartment
by ΣM01 . Moreover, by 8.1.9(b), this apartment is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map acts trivially on
the diagram ΠMi we conclude that C and Ci are opposite residues of ∆i.
Let Pi be the unique residue of ∆i of type D7 containing the Γi-chamber
Ci. Then Pi and ∆01 are opposite spherical Γi-residues of ∆i. Again by
8.1.9(a), there exists a unique apartment of ∆i containing the apartment
ΣM01 and intersecting Pi non-trivially. We denote this apartment by ΣMi .
In view of 8.1.9(b), the apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃ of ∆̃ such that for all M ∈ X
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we have ΣM ⊆ Σ∆̃. Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃ ∩RM (c′).

According to the extension theorem 7.3.3, there exists a unique isometry
Ω ∈ Aut(∆) extending Ω0 and Ω1. Set Γ := 〈Ω〉 ≤ Aut(∆).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers,
i.e. at least three Γ-chambers. By 8.1.10 there exists a Γ-chamber which is
opposite to C in ∆̃ and by 8.1.13

T :=

is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16 the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.

According to 8.3.9 there exists a codistance function δΓ
∗ between the Γ-

chambers of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is

a twin building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at C. The irreducible rank 2
residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As ∆Γ0

0 ' BE2 (Λ),
theorem 12.0.1 implies that F(∆,C) ' (QE(Λ),QoQ(Λ)). �
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15.4 Case F4

Throughout this section let Λ = (K,V ,Q) be a quadratic space of type F4.
Fix a complement S0 of Def(Λ) in V and a norm splitting (E, ·, {v1, v2}) of
(K,S0,Q|S0). Let F be as in 1.29 and let D denote the composite field EF.
Thus, D/E is an extension such that D2 ⊆ E ⊆ D.

15.4.1 Theorem
There exists a twin building ∆ of type C̃2 such that for some chamber c of
∆ we have

F(∆, c) ' (QF (Λ),QoQ(Λ)).

Proof Let ∆̃ = (∆+, ∆−, δ∗) be the twin building of type F̃4 constructed
in 13.2.2. Let Π be the Coxeter diagram F̃4 labeled as in 2.3 and let (W ,S)
be the corresponding Coxeter system. Then each residue of ∆+ of type
{s1, . . . , s4} is isomorphic to the building F4(D/E). By construction, ∆̃
satisfies condition (co).

Choose a chamber x ∈ C+ and let ∆0 := R{s1,...,s4}(x) ' F4(D/E) be the
unique residue of ∆+ of type F4 containing the chamber x.

According to 1.30, the quadratic form QE is pseudo-split and hence we
may apply theorem 14.0.4 to obtain an involution Ω0 ∈ Aut(∆0) such that
Γ0 := 〈Ω0〉 is a descent group of ∆0 with Tits index

T0 := .

and such that the fixed point building ∆Γ0
0 is isomorphic to the Moufang

quadrangle BF2 (Λ).

We fix a Γ0-chamber C ⊆ ∆0 and let ∆1 denote the unique residue of type
C4 of ∆+ containing C. Then ∆01 := ∆0 ∩ ∆1 is the unique residue of
type C3 containing C. By assumption ∆01 is a Γ0-panel of ∆0 and hence
contains at least three Γ0-chambers. According to 2.42, the restriction
Ω01 := Ω0|∆0∩∆1 ∈ Aut(∆01) is an involution and the group Γ01 := 〈Ω01〉 is
a descent group of ∆01 with Tits index

.

By 2.41, the fixed point building ∆Γ01
01 can be equipped with a Moufang

structure M such that the pair (∆Γ01
01 ,M) is a Moufang set. It follows from

[MW, 17.12] that

(∆Γ01
01 ,M) 'M(Λ). (15.6)
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Due to the construction of ∆̃, the polar space corresponding to ∆01 is the
polar space associated with a regular but not hyperbolic quadratic space
Λ. Thus, by 5.7.2, the involution Ω01 can be extended to an involution
Ω1 ∈ Aut(∆1) such that the group Γ1 := 〈Ω1〉 is a descent group of ∆1 with
Tits index

T1 :=

and such that the fixed point building ∆Γ1
1 is a Moufang quadrangle.

Choose a chamber c ∈ C and let c′ := Ω0(c) = Ω1(c) ∈ C. We define
subsets M1 := {s0, s1, s2, s3},M0 := {s1, s2, s3, s4},M01 := M0 ∩M1 and
A = {s2, s3} of S and set X := {M1,M0,M01,A}. The set X is a finite
essential set as defined in 4.2.1. Note that for each M ∈ X we have M ⊆M0

or M ⊆M1. Hence we may define a mapping

ϕ : EX(c)→ EX(c′) via ϕ(x) :=

{
Ω0(x), x ∈ RM0(c)

Ω1(x), x ∈ RM1(c)
,

which is well-defined since Ω0 and Ω1 coincide on the intersection of their
domains RM01(c). For each M ∈ X the restriction ϕM := ϕ|RM (c) is an
isometry from RM (c) onto RJ(c′).

By 4.1.5, the chambers c and c′ are opposite in C. Let ΣA be the unique
apartment of C containing c and c′. Since Ω0(ΣA) is an apartment of C
containing the chambers Ω0(c) = c′ and Ω0(c′) = c, we conclude that ΣA is
Γ0-invariant. Similarly, as Ω0 and Ω1 coincide on C, ΣA is also Γ1-invariant.
Choose a Γ0-chamber D of ∆01 different from C. Then the Γ0-chambers C
and D are opposite in ∆01. By 8.1.9(a), there exists a unique apartment of
∆01 containing ΣA and intersecting D. We denote this apartment by ΣM01 .
Moreover, by 8.1.9(b), this apartment is Γ0- and Γ1-invariant.

Since (∆Γi
i , δ̄i) is a spherical building for each i ∈ {0, 1}, we may choose a

Γi-chamber Ci of ∆Γi
i such that δ̄i(Ci,C) = rS̃i , where rS̃i is the longest

element of the relative type of the Tits index Ti. Thus, by [MPW, 20.35],
δ+(c, projCi(c)) = rS̃i = rMirA and in particular there exists a chamber
z ∈ Ci such that δ(c, z) = rMi . As the opposition map acts trivially on the
diagram ΠMi we conclude that C and Ci are opposite residues of ∆i. Let Pi
be the unique residue of ∆i of type C3 containing the Γi-chamber Ci. Then
Pi and ∆01 are opposite spherical Γi-residues of ∆i. Again, by 8.1.9(a),
there exists a unique apartment of ∆i containing the apartment ΣM01 and
intersecting Pi. We denote this apartment by ΣMi . In view of 8.1.9(b), the
apartment ΣMi is Γi-invariant.

With the notations as above, the set X satisfies the conditions of theorem
6.3.6. Thus there exists a twin apartment Σ∆̃ of ∆̃ such that for all M ∈ X
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we have ΣM ⊆ Σ∆̃. Now, for M ∈ X and ϕ as above,

ϕ(Σ∆̃ ∩RM (c)) = ϕ(ΣM ) = ΣM = Σ∆̃ ∩RM (c′).

According to the extension theorem 7.3.3, there exists a unique isometrie
Ω ∈ Aut(∆̃) extending Ω0 and Ω1. Set Γ := 〈Ω〉 ≤ Aut(∆̃).
Let P be a Γ-panel containing C. Then P is spherical and P is a Γi-panel
of ∆i for i = 0 or i = 1. Hence P contains at least three Γi-chambers, i.e.
at least three Γ-chambers.
By 8.1.10, there exists a Γ-chamber which is opposite to C in ∆̃ and by
8.1.13

T :=

is a Tits index. Using 8.2.6 we obtain that for ε ∈ {+,−} the group
Γε := Γ|∆ε is a descent group of ∆ε.
Let Π̃ be the relative type of the Tits index T. In view of 2.16, the diagram
Π̃ is connected, of rank 3, its corresponding Coxeter system is affine and,
by construction, has two subdiagrams of type B2. We conclude that the
relative type of T is C̃2. In particular, for each ε ∈ {+,−} the fixed point
structure ∆Γε

ε is a building of type C̃2.

According to 8.3.9 there exists a codistance function δΓ
∗ between the Γ-

chambers of ∆+ and the Γ-chambers of ∆−. Hence, ∆ := (∆
Γ+
+ , ∆

Γ−
− , δΓ

∗ ) is

a twin building of type C̃2.

Let F(∆,C) be the foundation of ∆ based at C. The irreducible rank 2
residues of ∆ containing C are precisely ∆Γ0

0 and ∆Γ1
1 . As ∆Γ0

0 ' BF2 (Λ) and
in view of (15.6), theorem 12.0.1 implies that F(∆,C) ' (QF (Λ),QoQ(Λ)).
�
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Combining the results of the previous chapters we finally obtain the following
classification:

15.4.2 Theorem
Let ∆ be a Moufang quadrangle of type E6. Then there exist, up to isomor-

phism, exactly two twin buildings of type C̃2 which have a residue isomorphic
to ∆.

Proof Fix a quadratic space Λ of type E6 such that ∆ ' BE2 (Λ) and note
that Λ is uniquely determined up to similarity by [TW, 35.11]. Let ∆1 be
the twin building constructed in 15.1.1 and let c1 be a chamber of ∆1. Then
F(∆1, c1) ' ((QE(Λ),QoQ(Λ)). Let ∆2 be the twin building constructed in
15.1.2 and let c2 be a chamber of ∆2. Then F(∆2, c2) ' ((QoE(Λ),QP(Ξ)),
where Ξ is a proper anisotropic pseudo-quadratic space which is, up to simi-
larity, uniquely determined by ∆. In view of [TW, 38.9], the twin buildings
∆1 and ∆2 are non-isomorphic. Thus, there exist at least two twin buildings
of type C̃2 which have a residue isomorphic to ∆.

Let ∆′ = (∆+, ∆−, δ∗) be a twin building of type C̃2 having a residue iso-
morphic to ∆. Choose such a residue R ⊆ C+ and a chamber c ∈ R. In view
of 12.0.1, either F(∆′, c) ' (QE(Λ),QoQ(Λ)) or F(∆, c) ' (QoE(Λ),QP(Ξ)),
where Ξ is a proper anisotropic pseudo-quadratic space which is, up to simi-
larity, uniquely determined by ∆. According to 11.1.12, therefore, the twin
building ∆′ is either isomorphic to ∆1 or it is isomorphic to ∆2. �

15.4.3 Theorem
Let ∆ be a Moufang quadrangle of type E7. Then there exist at least two

twin buildings of type C̃2 which have a residue isomorphic to ∆. If the
characteristic of the defining field is not equal to 2, there exist exactly two
twin buildings of type C̃2 which have a residue isomorphic to ∆.

Proof Fix a quadratic space Λ of type E7 such that ∆ ' BE2 (Λ) and note
that Λ is uniquely determined up to similarity by [TW, 35.11]. Let ∆1 be
the twin building constructed in 15.2.1 and let c1 be a chamber of ∆1. Then
F(∆1, c1) ' ((QE(Λ),QoQ(Λ)). Let ∆2 be the twin building constructed in
15.2.2 and let c2 be a chamber of ∆2. Then F(∆2, c2) ' ((QoE(Λ),QP(Ξ)),
where Ξ is a proper anisotropic pseudo-quadratic space. In view of [TW,
38.9], the twin buildings ∆1 and ∆2 are non-isomorphic. Thus, there exist
at least two twin buildings of type C̃2 which have a residue isomorphic to
∆.

Suppose that char(K) 6= 2 and let ∆′ = (∆+, ∆−, δ∗) be a twin building of
type C̃2 having a residue isomorphic to ∆. Choose such a residue R ⊆ C+

and a chamber c ∈ R. In view of 12.0.1, either F(∆′, c) ' (QE(Λ),QoQ(Λ))
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or F(∆, c) ' (QoE(Λ),QP(Ξ)), where Ξ is a proper anisotropic pseudo-
quadratic space which is, up to similarity, uniquely determined by ∆. Ac-
cording to 11.1.12, therefore, the twin building ∆′ is either isomorphic to
∆1 or it is isomorphic to ∆2. �

15.4.4 Theorem
Let ∆ be a Moufang quadrangle of type E8. Then there exists a twin build-

ing of type C̃2 having a residue isomorphic to ∆ and this twin building is
uniquely determined up to isomorphism.

Proof Fix a quadratic space Λ of type E8 such that ∆ ' BE2 (Λ) and note
that Λ is uniquely determined up to similarity by [TW, 35.11]. Let ∆′ be
the twin building constructed in 15.3.1 and let c′ be a chamber of ∆′. Then
F(∆′, c′) ' ((QE(Λ),QoQ(Λ)). Thus, there exists a twin building of type C̃2

which has a residue isomorphic to ∆.

Let ∆′′ = (∆+, ∆−, δ∗) be a twin building of type C̃2 having a residue
isomorphic to ∆. Choose such a residue R ⊆ C+ and a chamber c ∈ R. In
view of 12.0.1, F(∆′′, c) ' (QE(Λ),QoQ(Λ)). According to 11.1.12, therefore,
the twin building ∆′′ is isomorphic to ∆′. �

15.4.5 Theorem
Let ∆ be a Moufang quadrangle of type F4. If ∆ is self-dual as defined

in 9.2.9 there exists a unique twin building of type C̃2 having a residue
isomorphic to ∆. Otherwise there exist, up to isomorphism, exactly two
twin buildings of type C̃2 having a residue isomorphic to ∆.

Proof Fix a quadratic space Λ of type F4 such that ∆ ' BF2 (Λ) and let
Λ̂ denote the dual of Λ as defined in 1.31. Note that, by 1.32(a), Λ̂ is a
quadratic space of type F4 and that Λ and Λ̂ are uniquely determined up to
similarity by [TW, 35.12]. Let ∆1 be the twin building constructed in 15.4.1
with respect to the quadratic space Λ and let c1 be a chamber of ∆1. Then
F(∆1, c1) ' ((QF (Λ),QoQ(Λ)). Let ∆2 be the twin building constructed in

15.4.1 with respect to the quadratic space Λ̂ and let c2 be a chamber of
∆2. Then F(∆2, c2) ' ((QF (Λ̂),QoQ(Λ̂)). In view of [TW, 38.9], the twin
buildings ∆1 and ∆2 are isomorphic if and only if the quadratic space Λ is
self-dual as defined in 1.32(d).

Let ∆′ = (∆+, ∆−, δ∗) be a twin building of type C̃2 having a residues
isomorphic to ∆. Choose such a residue R ⊆ C+ and a chamber c ∈ R. In
view of 12.0.1, F(∆′, c) ' (QF (Λ),QoQ(Λ)) or F(∆, c) ' (QF (Λ̂),QQ(Λ̂)).
According to 11.1.12, therefore, the twin building ∆′ is isomorphic to ∆1 or
it is isomorphic to ∆2. �
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Indices for the exceptional C̃2-twin buildings

Λ quadratic space of type E6 (15.4.2)

BE2 (Λ) BQ2 (Λ)

BE2 (Λ)BP2 (Ξ)

Λ quadratic space of type E7 (15.4.3)

BE2 (Λ)BQ2 (Λ)

BE2 (Λ) BP2 (Ξ)

Λ quadratic space of type E8 (15.4.4)

BE2 (Λ) BQ2 (Λ)

Λ quadratic space of type F4 (15.4.5)

BQ2 (Λ) BF2 (Λ)

BQ2 (Λ̂) BF2 (Λ)
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