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Summary 

 
Malaria remains a fatal tropical disease caused by a protozoan known as Plasmodium and is threatening 

almost half the world's population. Due to the absence of effective malaria vaccines and remarkable 

increase of drug resistance, the deep understanding of parasite biology and identification of new drug 

targets are desperately required. In this thesis, three aspects have been studied to better understand the 

energy metabolism of Plasmodium falciparum and to support the search for new potential drug targets. 

First, two new adenylate kinase-like proteins have been successfully overexpressed in E. coli cells and 

purified via affinity chromatography. Different substrates of nucleoside triphosphate and 

monophosphate were used for determining the enzyme activity. However, PfAKLP1 (Plasmodium 

falciparum adenylate kinase-like protein 1) only exhibited low activity with ATP and AMP as 

substrates in the enzymic assay in vitro while there was no detectable activity for recombinant 

PfAKLP2 (Plasmodium falciparum adenylate kinase-like protein 2). Besides, we also investigated the 

subcellular localization of all five adenylate kinases characterized from Plasmodium falciparum 

systematically by fusing GFP to the respective adenylate kinase. PfAK1, PfAKLP1, and PfAKLP2 

were all shown to be localized in the cytosol of the parasites while PfGAK which only showed high 

activity with GTP as substrate was found to be in the mitochondrion. Interestingly, PfAK2, a unique 

myristoylated adenylate kinase, was demonstrated to be targeted to the PVM (parasitophorous vacuole 

membrane). A mutation in the myristoylation site of PfAK2 could entirely change the subcellular 

localization from PVM to cytosol, showing that myristoylation is responsible for such localization. 

Results from Western blots using the transfected parasite lysate could confirm the membrane associated 

localization of PfAK2. Unlike adenylate kinase in other species, no adenylate kinase which utilized 

ATP as substrate was localized in the mitochondrion. This might indicate that the mitochondrion is not 

the main source of ATP in Plasmodium, also taking into account that a novel branched tricarboxylic 

acid pathway was demonstrated. These findings enhance our knowledge on adenylate kinase isoforms 

and energy metabolism mediated by adenylate kinase in Plasmodium falciparum. 

Secondly, an overexpression and purification method for recombinant PfNMT with relatively high 

yield and purity was established. More than 500 crystallization solutions were tested to obtain the 

promising conditions for PfNMT crystallization. At least two conditions were further studied to 

crystallize PfNMT. Although no high quality crystals have been obtained so far, the screening 

seems to be worth of further optimization. To gain first structural insights, a model of PfNMT was 

acquired based on the structure of NMT from Plasmodium vivax which showed 80% identity in 

the amino acid sequence. By comparison the model of PfNMT with the structure of human NMT1, 

differences in two regions related to the peptide substrate binding were observed, which may 
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provide the basis for selective inhibition of NMT. 

Thirdly, a metabolic labeling method was applied to study protein myristoylation in P. falciparum. 

The myristoylated proteins were metabolically labeled by a myristic acid analogue and further 

biotinylated via the so-called click reaction. The myristoylated proteins could then be detected by 

a streptavidin-HRP blot. The avidin beads were used to enrich the target proteins so as to identify 

these targets by mass spectrometry. Furthermore, two bioinformatic tools for myristoylation 

prediction based on the conserved myristoylation motif were used to predict the potential targets 

in the whole proteome. As a result, 42 proteins were assumed to be myristoylated by the MYR 

Predictor tool and 64 proteins were discovered by the Myristoylator tool. Although it was possible 

to predict the myristoylated proteins from their amino acid sequences, the results from the two 

bioinformatic tools compared with the experimentally identified targets implied that some real 

targets might be easily overlooked by the bioinformatic approaches. Therefore, the metabolic 

labeling study is a beneficial method not only to understand the biological pathways involved in 

myristoylation but also to discover novel myristoylated proteins from P. falciparum. 
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Zusammenfassung 

 
Die tropische Erkrankung Malaria wird durch ein Protozoon namens Plasmodium verursacht und 

bedroht nahezu die Hälfte der Weltbevölkerung. Da es keine wirksame Malariavakzine gibt und die 

Resistenz des Erregers gegen vorhandene Medikamente ständig steigt, ist es wichtig, die Biologie des 

Parasiten besser zu verstehen und neue Ziele für die Medikamentenentwicklung zu entdecken. In dieser 

Dissertation wurden drei Aspekte untersucht, um den Energiestoffwechsel des Parasiten besser zu 

verstehen und nach neuen möglichen Medikamentenzielen zu suchen. 

Erstens wurden zwei neue Adenylatkinase-ähnliche Proteine erfolgreich in E. coli-Zellen 

überexprimiert und mittels Affinitätschromatographie gereinigt. Verschiedene Nukleosidtri- und 

monophosphate wurden als Substrate eingesetzt, um die Enzymaktivitäten zu untersuchen. PfAKLP1 

(Plasmodium falciparum Adenylatekinase-ähnliches Protein 1) zeigte in den in vitro enzymatischen 

Assays geringe Aktivität mit ATP und AMP als Substrat, während für ebenso rekombinant hergestelltes 

PfAKLP2 (Plasmodium falciparum Adenylatekinase-ähnliches Protein 2) keine Aktivität zu messen 

war. Weiterhin untersuchte ich die subzelluläre Lokalisation von allen 5 bisher bekannten 

Adenylatkinasen aus Plasmodium falciparum systematisch durch den Einsatz von GFP-gekoppelten 

Adenylatkinase-Konstrukten. PfAK1, PfAKLP1 und PfAKLP2 ließen sich alle im Zytosol des 

Parasiten entdecken, während PfGAK, das nur mit GTP als Substrat hohe Aktivitäten zeigte, im 

Mitochondrium lokalisiert werden konnte. Interessanterweise wurde von PfAK2, die eine einzigartige 

myristoylierte Adenylatkinase darstellt, gezeigt, dass sie in der PVM (parasitophorous vacuole 

membrane) gefunden werden konnte. Eine in die Myristoylierungsstelle von PfAK2 eingefügte 

Mutation konnte die subzelluläre Lokalisation komplett von der PVM in das Zytosol verschieben und 

zeigte somit, dass die Myristyolierung für diese Lokalisation verantwortlich ist. Western 

Blot-Untersuchungen mit Lysat von infizierten Parasiten konnten die Membran-Assoziation bestätigen. 

Im Gegensatz zu Adenylatkinasen aus anderen Organismen konnte keine Adenylatkinase, die ATP als 

Substrat nutzt, im Mitochondrium gefunden werden. Dies mag darauf hinweisen, dass das 

Mitochondrium im Parasiten nicht die Hauptquelle für die ATP-Gewinnung darstellt, besonders, wenn 

man die neue Entdeckung eines verzweigten Trikarbonsäurezyklusses mit berücksichtigt. Diese 

Ergebnisse erweitern unsere Kenntnisse von verschiedenen Adenylatkinase-Isoformen und den durch 

sie vermittelten Energiefluss in Plasmodium falciparum. 

Zweitens konnte ein Überexpressions- und Reinigungsprotokoll für die Herstellung von rekombinanter 

Plasmodium falciparum N-Myristoyl-Transferase (PfNMT) mit relativ hoher Ausbeute und hohem 

Reinheitsgrad etabliert werden. Mehr als 500 Kristallisationslösungen wurden getestet, um die besten 

Bedingungen für die Kristallisation von PfNMT zu finden. Unter wenigstens zwei Bedingungen 

konnten erste Anzeichen einer Kristallisation beobachtet werden, weshalb diese weiter optimiert 

wurden. Obwohl noch keine Kristalle erhalten werden konnten, sind diese Bedingungen 

vielversprechend und sollten weiter verfolgt werden. Anhand der bekannten Plasmodium vivax 

NMT-Struktur konnte ein Strukturmodell der PfNMT erstellt werden, da die 

Aminosäuresequenzähnlichkeit mit 80% hoch genug für ein solches Modeling ist. Beim Vergleich des 

erstellten PfNMT Strukturmodells mit der bekannten Struktur der humanen NMT konnten zwei 
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Regionen gefunden werden, die Unterschiede im Bereich der Substratbindung aufweisen und somit als 

Basis für die Entwicklung von Inhibitoren dienen könnten, die selektiv das Malariaenzym und nicht das 

humane hemmen.  

Drittens wurde eine metabolische Markierungsmethode angewendet, um die Myristoylierung in P. 

falciparum zu untersuchen. Die myristoylierten Proteine in P. falciparum wurden mit einem 

Myristinsäureanalog metabolisch markiert und konnten dann durch eine sogenannte Klickreaktion 

biotinyliert werden. Somit konnten myristoylierte Proteine durch einen Streptavidin-HRP Blot 

detektiert werden. Avidin-Kügelchen wurden benutzt, um die biotinylierten Zielproteine anzureichern 

und für weitere Untersuchungen (Massenspektrometrie) in ausreichender Menge zur Verfügung zu 

haben.  

Weiterhin wurden zwei bioinformatische Programme benutzt, um basierend auf dem konservierten 

Myristoylierungsmotiv und der bekannten Struktur von NMTs mögliche Zielproteine des gesamten 

Proteoms zu finden, die myristoyliert werden können (das Myristyolom). Das Ergebnis waren bei dem 

MYR-Predictor Programm 42 vorhergesagte mögliche myristoylierte Proteine, beim Myristoylator 

Programm waren es 64 Proteine. Obwohl es also möglich ist, myristoylierte Proteine anhand ihrer 

Aminosäuresequenz mit bioinformatischen Methoden vorherzusagen, zeigen die Vergleiche mit 

experimentell erhaltenen Daten, dass dabei immer noch einige wirkliche Zielproteine übersehen 

werden können. Deshalb stellen metabolische Markierungsstudien eine wirkungsvolle Methode dar, um 

nicht nur den biologischen Weg der Myristoylierung aufzuzeigen, sondern auch, um neue 

myristoylierte Proteine aus P. falciparum zu entdecken. 
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1. Introduction 

1.1 Malaria 

1.1.1 Malaria: Past and present 

Malaria is the most serious tropical disease caused by protozoan parasites of the genus Plasmodium, 

which is transmitted to humans by the bite of infected mosquitoes. The word "mal’ aria," which means 

"bad air" in Italian, was first used in English when H. Walpole described the disease in 1740. 

''Plasmodium'' is believed to have been a human pathogen for the entire history of the species (CDC 

website 2012). Up to now, 1,277 plant species from 160 families have been used as herbal medicines to 

treat malaria, some having even been used thousands of years ago (Willcox et al., 2004). The qing hao 

plant was first used to treat acute intermittent fever, a malaria-like disease in the 4th century, from 

which artemisinins are isolated as a potent and effective drug today (CDC website 2012). The cinchona 

bark containing quinine was also introduced to cure malaria in the 16th century in Western countries 

(CDC website 2012). These traditional medicines still can be exploited for novel antimalarial drugs as 

affordable and effective treatment in poor, rural areas with malaria epidemics (Willcox et al., 2004). 

Historically, malaria had been epidemic in most countries of the northern hemisphere as far as the 

Arctic Circle until the mid-19th century, threatening an estimated 90% of the world’s population 

(Mendis et al., 2009). There are several key events that occurred at the end of 19th century in malaria 

history. First, the parasites in patient’s blood were identified in 1880 for the first time by Charles Louis 

Alphonse Laveran, who was awarded the Noble Prize in 1907 (CDC website 2012). Around the same 

time, Ronald Ross (honored with Nobel Prize in 1902) and Giovanni Battista Grassi both demonstrated 

that female Anopheles mosquitoes could transmit malaria (CDC website 2012). Although people have 

combated malaria for a long time, the first incomplete, successful Global Malaria Eradication Program 

was initiated by the WHO in 1955 (WHO, 1999), relying on chloroquine for treatment and prevention 

as well as DDT for vector control. This campaign succeeded in eliminating malaria from North 

America, the Caribbean, South-Central America, Europe, and parts of Asia (Carter et al., 2002). With 

the emergence of Plasmodium parasites resistant to chloroquine (CQ) and DDT-resistant Anopheles 

mosquitoes (Brito, 2001), global eradication was abandoned in 1972. Starting from post-global 

eradication, the malaria situation has slowly and progressively deteriorated (Trape, 2001). In order to 

combat this worsening situation and disaster, several programs have been launched to control or 

eliminate malaria as a public health problem. For example, the Roll Back Malaria (RBM) program is a 

global initiative for the effective control of malaria by establishing a global partnership and was started 

in 1998 by the World Health Organization, the United Nations Development Program, the United 

Nations Children’s Fund, and the World Bank (WHO website 2012). The publicized aim of this 

program was to halve the global malaria burden of risk, morbidity, and mortality by 2010 (Hay et al., 

2004). The program has applied multiple tools for malaria control including expanding effective 

treatment and providing insecticide-treated mosquito nets for vector control, encouraging the 

development of new drugs and vaccines against malaria, and setting up an emergency response for 

malaria epidemics. Remarkably, RBM intends to improve local health systems when realized that 

malaria was becoming a health and socioeconomic problem in epidemic areas, especially sub-Saharan 
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Africa (WHO website 2012). Despite eminent progress reported, an estimated 3.3 billion people are at 

risk of malaria (WHO, 2011), which and was responsible for approximately 655,000 to 1.24 million 

deaths (Murray et al., 2012) and 216 million infections in 2010 (WHO, 2011) leads to a great 

socioeconomic and health burden. Up to 81% of the cases and 91% of the deaths occurred in Africa, 

predominantly among pregnant women and children under five (WHO, 2011; Murray et al., 2012). 

As reported by the WHO in 2011, malaria is prevalent in 106 countries of the tropical and subtropical 

world as shown in Figure 1.1, among which 35 countries in central Africa bore the burden of the most 

cases and deaths (WHO, 2011). Compared to one century ago, the worldwide area at risk of malaria has 

shrunk from 53% to 27%, and the number of countries exposed to malaria has decreased from 140 to 

106 (Hay et al., 2004; WHO, 2011). Malaria mortality rates have fallen by more than 25% globally 

since 2000, and by 33% in the WHO African Region (WHO, 2011). Coverage of insecticide-treated 

nets (ITN) and indoor residual spraying (IRS) has increased, and more pregnant women are receiving 

chemoprevention (WHO, 2011). The supply of rapid diagnostic tests (RDTs) and artemisinin 

combination therapies (ACTs) has risen globally, the latter of which was 32% more than that in 2010 

(WHO, 2011). However, there were malaria cases with suspected artemisinin resistance identified in 

three additional border areas between Thailand and Cambodia and the rapidly growing threat of 

resistance to the insecticide, pyrethroid (WHO, 2011). 

 

 

Figure 1.1 Worldwide distribution of countries at risk of malaria in 2010 (Feachem et al., 2010) 

 

1.1.2 Life cycle of Plasmodium falciparum 

Caused by five species of Plasmodium from the phylum Apicomplexa that infect humans, including P. 

falciparum, P. knowlesii (Singh et al., 2004; Collins, 2012), P. malariae, P. ovale, and P. vivax, P. 

falciparum and P. vivax are the predominant species responsible for most malarial infection (WHO, 

2011). P. falciparum is the most severely lethal in Africa for most malarial deaths while P. vivax is 

more frequent and more widely distributed outside Africa with less virulence compared to P. 

falciparum (WHO, 2011). Plasmodium malariae, also called quartan malaria, causes a fever with a 
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periodicity of four days, while the other malarial parasites have only the two-day intervals. P. vivax and 

P. ovale are difficult to eradicate because they can evolve into a hypnozoite, a small structure that can 

hide dormant in the liver for a long period of time. P. knowlesii, a malaria parasite of the long-tailed 

macaque, also naturally infects humans (Singh et al., 2004). 

Malaria parasites display a complex life cycle with different stages and multiple forms occurring in the 

vertebrate (human) and invertebrate (Anopheles mosquito) hosts (Figure 1.2). All five species exhibit a 

similar life cycle with slight variations. 

Sporozoites from the saliva of an Anopheles female mosquito are transmitted to humans by a bite as an 

initial step of infection (Step 1 in Figure 1.2). Normally more than 25 sporozoites are likely to be 

injected into the subcutaneous tissue from where they can migrate into the blood stream. Through the 

circulatory system, sporozoites are carried to the liver where they invade hepatocytes. The intracellular 

parasite undergoes asexual replication known as exoerythrocytic schizogony (Step 2 – 4 in Figure 1.2), 

which last roughly 5.5 days. Notably unlike the others, P. vivax and P. ovale are capable of undergoing 

a dormant period instead of asexual replication within hepatocytes. After this liver stage, thousands of 

mature merozoites are released from the hepatocytes and invade the erythrocytes upon entering the 

bloodstream. The invasion process is mediated by an apical complex, pellicle, and surface coat. Upon 

entering the erythrocytes, the parasites lose their invasion organelles, the apical complex and surface 

coat, and form trophozoites. Parasites as immature trophozoites stay within a parasitophorous vacuole 

in the erythrocyte cytosol. The young trophozoites, in a form called the ring stage due to its 

morphology, develop into mature trophozoites within 24 hours after merozoite invasion. Multiple 

rounds of nuclear division without cellular segmentation manifest the advent of the schizont stage. 

Later these schizonts develop and form approximately 16-18 merozoite cells in the erythrocyte. Red 

blood cells are ruptured and the merozoites burst from infected erythrocyte after 48 hours of invasion 

(72 hours for P. malariae). Invasion of new erythrocyte reinitiates another erythrocytic life cycle (Step 

5 in Figure 1.2). The blood stage is responsible for the pathology associated with malaria and various 

symptoms in malaria patients. 

During the erythrocytic stage, a few of the blood-stage merozoites differentiate into macrogametocytes 

(female) and microgametocytes (male) instead of developing into schizonts (Step 6 in Figure 1.2). 

When a female mosquito bites an infected human, the gametocytes with both types are ingested into 

mosquito gut (Step 7 in Figure 1.2). Macrogametocytes (female) and microgametocytes (male) develop 

into gametes in mosquitos (Step 8 in Figure 1.2). There are several factors to induce this gametogenesis: 

a sudden drop in temperature, a rise in pH, an increase in carbon dioxide, and metabolites within the 

mosquito. Then female gametes are fertilized by male gametes to form zygotes (Step 9 in Figure 1.2). 

The zygotes later elongate and develop into ookinetes (Step 10 in Figure 1.2). The zygote and ookinete 

are the only diploid stages of Plasmodium. Once traversing the peritrophic membrane and epithelium 

of the mosquito midgut and going into basal lamina, ookinetes develop into oocysts there (Step 11 in 

Figure 1.2). Numerous haploid sporozoites are formed after oocyst maturation and ruptured from the 

oocysts, releasing them into the haemolymph (Step 12 in Figure 1.2). The sporozoites migrate into the 

salivary glands for the next round infection (Step 13 in Figure 1.2). Once such mosquitos bite other 

health humans, they can be infected and a new life cycle of Plasmodium starts. Two weeks could be a 

time frame when the mosquito becomes infectious after ingesting gametocytes from an infectious 



Introduction 
 

4 

 

human bloodmeal. 

 

Figure 1.2 Life cycle of malaria (http://www.cartercenter.org/health/malaria_control/index.html). 

 

1.1.3 Antimalarial drugs and malaria vaccine for malaria control 

The unicellular Plasmodium must combat the diverse environments and barriers it encounters during its 

complicated life cycle by employing more than 5,000 genes (Gardner et al., 2002). Thus, each 

developmental stage of Plasmodium provides a potential drug target for disrupting the parasitic life 

cycle. Among numerous potential lead compounds and drugs, the most widely used drugs currently are 

limited to a few categories: quinine, chloroquine, pyrimethamine, atovaquone, artemisinin, and their 

derivatives (Table 1.1). 

Before the introduction of combination therapies, quinoline as an antimalarial drug is the lead member 

in antimalarial therapy. This family comprises chloroquine, quinine, amodiaquine, piperaquine, 

primaquine, and mefloquine, which function by binding to heme and inhibiting its detoxification in the 

food vacuole (Fitch, 2004). Sulfadoxine-pyrimethamine, a co-formulation of two different medicines, 

is widely used to treat chloroquine-resistant malaria (WHO, 2010). Remarkably, infants and pregnant 

women are treated with this drug because of its long half-life, low cost, and safety (WHO, 2010). 

Studies on treatment failure revealed a much higher rate in Africa than in other regions and a fast 

development of resistance once nation-wide intensive usage of this medicine occurred (WHO, 2010). 
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The combination of atovaquone with proguanil is an antimalarial medication used in both the treatment 

and prevention of malaria (WHO, 2010). Malarone as a trade name for this combination has been 

commercially available from GlaxoSmithKline since 2000. It is suitable for travelers as a prophylaxis 

because the drug is taken starting 1-2 days before traveling with good tolerance. Compared to most 

previous antimalarial drugs, artemisinin and its derivatives have more beneficial properties such as 

rapid elimination and targeting all the blood stages of the malaria life cycle including early ring forms, 

which are especially profitable for the treatment of severe malaria. 

Table 1.1 Principle available antimalarial drugs (WHO, 2010). 

 

Today, combination therapy is applied to the treatment of malaria cases because of its multiple 

advantages such as a reduced possibility of resistance development, an enhanced efficacy of treatment, 

and fewer side effects. Thus artemisinin-based combination therapies (ACTs) are the pillars of first-line 

treatment of malaria cases. There are currently five recommended combinations: 

artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, artesunate-sulfadoxine- 

pyrimethamine, and dihydroartemisinin-piperaquine (WHO, 2010). In spite of the emergence of P. 

falciparum strains resistant to artemisinins in Southeast Asia (Dondorp et al., 2009; Anderson et al., 

2010), ACTs globally achieve more than 90% clinical efficacy (WHO, 2010). 

Over the years, the efficacies of almost all antimalarial drugs have been interrupted by the rise of 

resistant Plasmodium strains. Recent studies highlight the importance of mutations in transporter 

molecules as major contributors to drug resistance and focus on three transporters: the chloroquine 

resistance transporter PfCRT, the multi-drug resistance-associated protein PfMRP, and the multi-drug 

resistance transporter 1 PfMDR1 (Sanchez et al., 2010). The multiple polymorphic alleles of pfcrt can 

confer different levels of chloroquine resistance (Sa et al., 2009). Because lower amounts of CQ are 

observed in the food vacuoles of CQ-resistant parasites (Fitch, 2004), access of CQ to its target under 

the control of PfCRT and a transport model of CQ drugs were proposed (Sanchez et al., 2010). Single 

nucleotide polymorphisms of pfmdr1 encoding an ATP-binding cassette (ABC) transporter and a 

homolog of P-glycoprotein in humans regulate drug susceptibility (Reed et al., 2000; Sidhu et al., 
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2005). A recent study demonstrated that PfMRP may transport multiple antimalarial drugs, including 

CQ and QN, out of the parasites, thus playing a role in antimalarial drug resistance (Raj et al., 2009). 

Besides these transporters, one to four point mutations in dihydrofolate reductase (DHFR) have been 

demonstrated to contribute to P. falciparum resistance to antifolates, while the mutations of 

dihydropteroate synthase (DHPS) are connected to the resistance to sulfonamides and sulfones (Le 

Bras et al., 2003). 

Besides the antimalarial drugs for malaria control, development of a safe and effective vaccine against 

malaria will be a vital step towards control, prevention, and eradication of malaria. Although 

acquisition of natural immunity appears limited only to blood stages in the human host, vaccines 

against parasites in three stages, the sporozoite and liver stage (pre-erythrocytic vaccines), the asexual 

blood stage (blood stage vaccines), and the sexual gametocyte/gamete stage (transmission blocking 

vaccines), are being developed (Figure 1.3) (Ashley et al., 2012). A pre-erythrocytic vaccine is 

expected to evoke an immune response targeting all sporozoites or the vital proteins that prevent the 

invasion of hepatocytes, and/or to eliminate parasites within the hepatocytes. The immunization of 

mice with X-irradiated sporozoites of P. berghei, which cannot complete liver stage development, led 

to the development of protective immunity in mice (Nussenzweig et al., 1967). 

RTS,S vaccination, which is a recombinant protein-containing region of circumsporozoite protein 

(CSP), was shown to diminish clinical malaria by 30–50%, which has been the most promising result 

so far (Agnandji et al., 2011). However, the goal in the Malaria Vaccine Technology Roadmap of 50% 

or greater efficacy against severe malaria or death that lasts at least one year is still hard to achieve 

through RTS,S, not to mention the long-term goal that a vaccine must be > 80% effective against 

disease (Nussenzweig et al., 2011). 

Even though it is unlikely that a blood stage vaccine will be completely effective in eliminating 

parasites, considering the fast speed of replication and destruction malaria brings to the immune system, 

it is still worth developing it as a powerful tool for malaria control and eradication. Up until now, the 

candidate antigens in the blood stage comprise merozoite surface protein 1-3 (MSP1-3), apical 

membrane antigen 1 (AMA-1), erythrocyte-binding surface antigen 175 (EBA-175), glutamate-rich 

protein (GLURP), ring-infected erythrocyte surface antigen (RESA), and serine repeat antigen 5 

(SERA5) (Ashley et al., 2012). The observation that low concentrations of anti-basigin antibodies can 

completely block the invasion of malaria (Crosnier et al., 2011) suggested conserved merozoite ligands 

as candidate antigens. A vaccine at the sexual stage could directly benefit blocking the transmission of 

malaria, thus having a role in malaria elimination. Transmission-blocking vaccines (TBVs) target the 

developmental stages in the mosquito vector, therefore not attracting as much attention as other 

vaccines (Dinglasan et al., 2008). Studies of Pfs25, a protein expressed on the surface of the zygote and 

ookinete form of the parasites, showed that high anti-Pfs25 IgG titers and sera from immunized mice 

inhibited the transmission of P. falciparum to the mosquito in mice (Goodman et al., 2011). However, 

TBVs alone are obviously not capable of entirely eradicating malaria. 

Even though much effort has been devoted to malarial research for centuries, malaria has yet to be 

conquered in its bastion. With the emergence of both drug and insecticide resistance and no effective 

vaccine, the identification of new promising targets is urgently needed. 

 



Introduction 
 

7 

 

 

 

Figure 1.3 Parasite targets in different stages of the malaria life cycle used for vaccine development (Ashley 

et al., 2012). Apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte-binding surface 

antigen 175 (EBA-175), glutamate-rich protein (GLURP), merozoite surface proteins 1-3 (MSP1–3), 

reticulocyte-binding family homolog 5 (PfRh5), ring-infected erythrocyte surface antigen (RESA), serine repeat 

antigen 5 (SERA5), and thrombospondin-related adhesion protein (TRAP). 

 

1.2 Adenylate kinase 

The malaria parasite Plasmodium requires highly active adenylate kinase to fulfill its energetic and 

synthetic demands due to its fast metabolic rate and rapid multiplication. Adenylate kinase (AK, EC 

2.7.4.3, ATP + AMP ⇔ 2 ADP), belonging to the nucleoside monophosphate kinase (NMPK) family, 

catalyzes the reversible high energy phosphoryl transfer from ATP to AMP, forming 2 ADP. This 

enzyme has been thoroughly studied to exemplify a model for catalytic mechanisms, the intracellular 

phosphoryl transfer system, and signal pathways. 

 

1.2.1 Molecular and biochemical properties of adenylate kinase 

It has been more than 60 years since adenylate kinase, initially called myokinase, was first reported by 

Colowick and Kalckar (Colowick et al., 1943; Kalckar, 1944; Kotel'nikova, 2001). It was identified in 

many species such as Escherichia coli (Barzu et al., 1983), yeast (Chiu et al., 1967), rice (Kawai et al., 
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1995), pig (Sato et al., 1982), and other organisms. In mammals, there are eight isoenzymes of AK 

encoded by separate genes and located on different chromosomes. AK1 and AK2 are localized in the 

cytosol and the mitochondrial intermembrane, respectively, and prefer ATP rather than other nucleotide 

triphosphates as substrate, while AK3 is found in the mitochondrial matrix and uses GTP as a substrate 

(Tomasselli et al., 1979; Walker et al., 1982; Tanabe et al., 1993; Janssen et al., 2004). Acetylation and 

myristoylation in yeast AK1 and mouse AK2 were discovered to facilitate their binding to cell 

membranes (NODA, 1973; Klier et al., 1996; Janssen et al., 2004). AK4 and AK5 are found in the 

mitochondrial matrix and cytosol, respectively, with tissue specificities (Yoneda et al., 1998; Noma, 

2005). Human AK4 was initially designated AK3 due to its 58% homology to bovine AK3, which was 

then renamed AK4 when it was found in the mammalian central nervous system (Yoneda et al., 1998). 

Thus, there are two AKs in the mitochondrial matrix, but no AK activity can be detected in vitro for 

human AK4 (Noma et al., 2001). AK4 could interact with the mitochondrial ADP/ATP translocator, 

through which it exerts protective properties for cell survival and proliferation as a stress responsive 

protein (Liu et al., 2009). Further studies show that a glutamine to arginine (Q159R) mutation in 

human AK4 recovers the adenylate kinase activity with GTP as a substrate (Liu et al., 2009). AK5 is 

expressed in human pancreatic beta-cells and regulated in the K-ATP channel (Stanojevic et al., 2008). 

Human AK6 is found in the nucleus and belongs to a distant subgroup of the AK family (Ren et al., 

2005) with an unusually broad substrate specificity, nuclear localization, and structural features of 

ATPase/GTPase proteins (Drakou et al., 2011). The nuclear protein Rad50 in the DNA repair 

RAD50/MRE11/NBS1 protein complex (RMN) exhibits AK activity besides ATP hydrolysis 

facilitating efficient tethering between different DNA molecules (Bhaskara et al., 2007). NBS1, the 

Nijmegen breakage syndrome gene product, is required for enzymatic activities of Rad50 and the 

whole RMN complex function (Paull et al., 1999). Recently human AK7 and AK8 have been 

characterized, and both have cytosolic localizations with a much larger size of AK7 compared to other 

isoforms (Panayiotou et al., 2011). The blast program reveals an NAD(P) binding site at its N-terminus, 

implying the other potential functions of human AK7. 

 

1.2.2 Structure and catalysis of adenylate kinase 

Structure and conformational transitions during the catalytic process of adenylate kinase have been 

investigated intensively. The general structure of adenylate kinase is composed of a CORE domain 

with a peripheral NMP-binding domain and a LID domain as shown in Figure 1.4. The CORE and 

NMP-binding domains are conserved in all AKs, whereas the LID domain is quite different. Depending 

on the size of the LID domain, AKs are divided into two groups: short form AKs including AK1, AK5, 

and AK6 in which the LID is simply a variable loop; and long form AKs such as AK2, AK3, and AK4 

in which the LID is a four-stranded anti-parallel b-sheet. Prokaryotes exclusively have the long variant 

while both short and long AK variants are found in the cytoplasm and mitochondria of eukaryotes (Yan 

et al., 1999). 
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Figure 1.4 3D structure of adenylate kinase with closed and open conformations. Structure of apo/open 

conformation of AK from E. coli (left) (Arora et al., 2007). The LID domain is in red, the AMP-binding domain in 

blue, and the core domain in green. The structure of the closed conformation of AK1 from P. falciparum (right) 

(3TLX from PDB) was partly predicted due to several missing amino acid residues in databank. A unique structure 

at the N-ternimus is labeled by an arrow. 

 

NMR spectroscopy, X-ray crystallography and temperature-stability studies combined with 

site-directed mutagenesis have been employed for investigating structurally and catalytically important 

residues in adenylate kinases. Lysine13 of AK from E. coli may play a vital role in catalysis (Reinstein 

et al., 1990). Arg132,138 and Arg149 of cytosolic AK1 from the pig were important in transition-state 

stabilization, while Arg44 and Arg97 interacted with AMP specifically, and Asp93 was critical to Mg2+ 

binding (Tsai et al., 1991). Construction of a stabilized pentaco-ordinated transition state based on the 

crystal structure of E. coli AK with a bi-substrate inhibitor AP5A was demonstrated as well (Figure 

1.5). 

 

Figure 1.5 Schematic diagram of hydrogen bonds between Ap5A and the polypeptide of AK (Muller et al., 

1992). 
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More research has focused on conformation transition of AK in the reaction since large conformational 

changes between active and inactive states are required for the activity of the enzyme. Conformational 

changes in the LID and NMP domains of adenylate kinase are demonstrated to be pivotal to ligand 

binding. 

 

Figure 1.6 Structures of AK during the extreme stages of catalysis (Olsson et al., 2010). (A) Substrate-free 

open AK; (B) Closed AK with bound Ap5A. 

 

Several models are proposed for elucidating the conformational changes in AK. In an induced-fit 

model, segments in between hinge regions’ binding are spatially translated as rigid bodies (Gerstein et 

al., 1993). Closure of ATPlid resulted from rotation of the INSERT segment in helices α6 and α7, which 

in turn rotated the CORE domain (Figure 1.6) (Gerstein et al., 1993; Olsson et al., 2010). In another 

cracking model inferred from coarse-grained modeling and the principle of minimal frustration, high 

strain energy in the reaction was observed and released through localized regions of the protein 

unfolding during the functional transition (Whitford et al., 2007). It was also suggested that LID 

motion signals NMP motion in a catalytic mechanism (Figure 1.7) (Whitford et al., 2008). 

Unfolding/refolding of a partial subdomain in the enzyme is involved in the interconversion between 

open and closed states of the ATP-binding subdomain by using a combination of biophysical and 

mutagenic approaches (Olsson et al., 2010). 

 

A B 
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Figure 1.7 Proposed mechanism for AK catalysis (Whitford et al., 2008). 

 

1.2.3 Energy metabolism and signal pathway 

The requirement of a significant concentration gradient in condensed mitochondrial and cellular 

structures makes them inefficient in energy transfer via diffusional exchange of adenine nucleotides 

(Dzeja et al., 2003). The important role of adenylate kinase in cellular energy metabolism has been 

acknowledged, especially since the discovery that AK transfers and utilizes γ- and β-phosphoryls 

among adenosine phosphate molecules following a chain of sequential reactions (Dzeja et al., 1985; 

Zeleznikar et al., 1990; Dzeja et al., 1996). The function of utilizing the second high-energy bond of 

the β-phosphoryl in the ATP molecule is crucial for the local compartment, which requires high and 

fluctuating energy. The networks of efficient energy transfer catalyzed by AK and ligand conduction 

circuit are gained by phosphoryl exchange measurements using 18O-assisted 31P-NMR techniques and 

biochemical, gene-knockout research (Janssen et al., 2000; Dzeja et al., 2002; Dzeja et al., 2007b; van 

Horssen et al., 2009). Figure 1.8 demonstrates the energy transfer shuttle catalyzed by AK from 

production to utilization within a cell. The energy transfer network of AK has multiple functions, which 

supply the driven force of high-energy phosphoryl flux. Contraction-mediated phosphorylation of 

AMP-activated protein kinase (AMPK) and muscle energetic economy were impaired in the skeletal 

muscle of AK-deficient mice (Janssen et al., 2000; Hancock et al., 2006). Energy supply to cell nucleus 

and cell motility was facilitated by functional energy transfer mediated by AK (Ren et al., 2005; Cao et 

al., 2006; Ford, 2006; Botta et al., 2008). Adenylate kinase could modulate the activity of glycolytic 

and glycogenolytic enzymes and provide an integrative node for both pathways in order to respond 

rapidly to fluctuating energy demands (Dzeja et al., 2007a). AK was shown to be involved in sperm 

motility through ATP delivery from mid-piece mitochondria to remote ATPases in the tail (Schoff et al., 
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1989). Lower energetic efficiency, misrepresented signals to energy and metabolic sensors, including 

AMPK and K-ATP channels, and compromised adenosine generation were observed in AK1 knockout 

mice (Pucar et al., 2000; Carrasco et al., 2001; Pucar et al., 2002; Hancock et al., 2005; Hancock et al., 

2006). 

A network of cellular energetic systems provides new angles for interpreting the relevant diseases from 

interruption aspects of energy metabolism, metabolic surveillance and sensor response (Weiss et al., 

2006; Dzeja et al., 2007b). Heart failure was also shown to be related to compromised AK energy 

transfer (Dzeja et al., 1999; Dzeja et al., 2000; Dzeja et al., 2007b). 

 

Figure 1.8 Energy transfer shuttle catalyzed by AK from production to utilization (Dzeja et al., 2009). i.m. 

and o.m. – inner and outer membranes of mitochondria. 

 

A membrane-associated isoform AK1 affected a tumor suppressor protein, p53, and low energy status 

in cells suppressed the malignant phenotype in tumor development (Collavin et al., 1999; Swinnen et 

al., 2005). Down-regulation of cytosolic AK1 transcription with siRNA resulted in increasing apoptosis 

in pancreatic cancer cells in human kinome profiling (Giroux et al., 2006). The myristoylated AK1 was 

shown to be associated with the nuclear envelope, indicating a possible role in energy support of the 

nucleus (Janssen et al., 2004). Mutations in the mitochondrial AK2 gene were discovered in the 

patients with reticular dysgenesis, which is the rare autosomal recessive form of inborn severe 

combined immunodeficiencies (SCID), which is associated with sensorineural deafness 

(Lagresle-Peyrou et al., 2009; Pannicke et al., 2009). It was shown that expression of AK2 was reduced 

significantly by AK2 gene defects identified in individuals with RD (Pannicke et al., 2009). In contrast 

to the general concept that adenylate kinase mainly consumes ATP, the function of maintaining 

nucleotide pools was compromised in AK1 knock-out hearts under metabolic stress (Pucar et al., 

2000). 

Since recent studies demonstrate that AMP signaling participates in diverse cellular processes (Hardie, 

2008; Hardie et al., 2012), AK is considered to play a critical role in metabolic pathways. Due to the 

catalytic properties of AK, a small decrease in ATP would result in a significant increase in AMP, thus 

representing AMP as an excellent energetic signal (Hardie et al., 2012). For example, the catabolic 
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pathways producing ATP will be up-regulated, while the consumption of ATP is suppressed as a result 

of AK-mediated metabolic monitoring and downstream AMP signaling as activated by energetic stress 

(Figure 1.9) (Dzeja et al., 2009). Adenylate kinase also promotes transmission of nucleotide signals in 

the compartment of intracellular and extracellular space through a sequence of spatially arranged 

enzymatic reactions. AK directly regulated the response of ATP-sensitive potassium channels K(ATP) 

to metabolic challenge and delivered mitochondrial signals to the cell membrane environment 

(Carrasco et al., 2001). Due to the restriction of metabolite diffusion and spatial heterogeneity in the 

cell, the network of adenylate kinase is suitable for a high rate of phosphoryl exchange supported 

ligand conduction and signal transmission (Dzeja et al., 2003). AK can cause AMPK activation, which 

has multiple cellular functions from adaptation to stress as shown in Figure 1.10 (Hardie et al., 2012). 

An increase of AMPK activity in ischemia and protection of myocardium against ischemic injury by 

AMPK agonists were observed (Young et al., 2005; Dyck et al., 2006). Activation of AMPK by 

chemical compounds increases glucose transport activity in skeletal muscle both in vivo and in vitro 

(Bergeron et al., 1999). The fact that mitochondrial content was significantly reduced in muscle tissue 

of double knockout mice lacking any AMPK activity demonstrated a vital role of AMPK in 

mitochondrial biogenesis (O'Neill et al., 2011). The vital function of adenylate kinase in energetic 

signaling, which controls actin assembly in cell movement and chemotaxis, has been revealed (Kuehnel 

et al., 2009). Above all, adenylate kinase regulates the signals for downstream AMPK, the energy 

metabolic pathways, and biomolecular synthesis through its unique β-phosphoryl utilization and 

nucleotide ratio adjustment. 

 
Figure 1.9 AK-mediated AMP signal pathways and monitor system (Dzeja et al., 2009). AMP signal produced 

by AK, through which the energy status in cells is transmitted. AMP-sensors will up-regulate ATP production 

pathways and negatively regulate ATP utilization. 
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Figure 1.10 Effects of activation of AMPK on cellular metabolism (Hardie et al., 2012). 

 

The multiple isoforms of adenylate kinase with diverse subcellular localizations, tissue specificities, 

and kinetic properties are required for their local metabolic environment. There are variants of AK1-2 

only found in Caucasian populations and hemophilia-A patients (Lee et al., 1998) that have less than 

one third specific activity compared to variant AK1-1 with the same Michaelis constants (Luz et al., 

1990). AK3 and AK4 could be regulated by transcript factors called hypoxia-inducible factor 1(HIF-1) 

for cell survival (Semenza, 2000; Hu et al., 2006). In situ compartmentation studies demonstrated that 

adenylate kinase was localized along with creatine kinase and glycolytic enzymes in skeletal muscle 

myofibrils, implying multiple multienzyme complex formation and energy supply for muscle 

contraction (Wegmann et al., 1992). Using tagging GFP protein, myristoylated AK1 isoform was 

localized to the plasma membrane, while wild-type AK1 was in the cytosol (Ruan et al., 2002). A study 

of intracellular localizations of AK isoforms in the parasite Trypanosoma brucei interpreted an 

unusually expended adenylate kinase family and provided insight for understanding the complexity of 

energy metabolism, demonstrating a sophisticated phosphotransfer network in this invasive parasite 

(Ginger et al., 2005). By using Ty1 epitopes at the C-terminus of respective AKs, they demonstrated 

that one was targeted to the unique kinetoplastid-specific microbodies of the peroxisome class called 

glycosomes, where many reactions of carbohydrate metabolism are compartmentalized, and three 

isoforms were selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, 

which is essential for motility. Kinetic results from the only short form trypanosome adenylate kinase 

displayed a high activity and specificity toward CMP, revealing an adaptation to very low intracellular 

cytidine nucleotide concentrations (Ginger et al., 2005). In a closely related species Trypanosoma cruzi, 
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six different genes of adenylate kinase isoforms were discovered via RT-PCR and Northern blot 

(Bouvier et al., 2006). Thus this enlarged adenylate kinase gene family suggested a complex energy 

metabolism in this unicellular parasite. Strikingly, introduction of a Pro87Ser substitution in adenylate 

kinase renders Yersinia pestis avirulent (Munier-Lehmann et al., 2003). 

Therefore, adenylate kinase is a key component in the cellular bioenergetics network for regulating and 

maintaining energy homeostasis and AMP-mediated signal pathways. 

 

 
Figure 1.11 Adenylate kinase isoforms network and intracellular localizations (Dzeja et al., 2009). 

 

1.2.4 Adenylate kinase in Plasmodium 

Plasmodium requires highly active adenylate kinase for rapid ATP turnover in order to cope with its 

energetic demand and biomolecular synthesis. Consumption of glucose in parasitized red blood cells 

has been shown to increase 50-100-fold compared to uninfected erythrocytes and is utilized during 

glycolysis to produce ATP (Roth, 1990). Parasites in the intraerythrocytic stage have also been 

suggested to export ATP to their host cell by means of an adenylate translocator and adenylate kinase, 

which is explained to maintain the minimum glycolysis pathway in the host cells so as to provide more 

glucose to the parasites (Kanaani et al., 1989). Malaria parasites developed a unique TCA pathway 

according to their life cycle in order to meet their own needs. By using mass spectrometry combined 

with 13C-labelled compounds, the tricarboxylic acid metabolism in Plasmodium falciparum has been 

shown to be disconnected from glycolysis and has its own features compared to the canonical pathway 

(Olszewski et al., 2010). The notable characteristics of the TCA cycle in parasites are that the cycle is 

bifurcated and glutamate is required due to it lacking a pathway to convert pyruvate to acetyl-CoA as 

shown in Figure 1.12 (Olszewski et al., 2010). Although ATP is believed to mainly be generated in the 

glycolytic pathway of parasites at least during the asexual stage, there is biochemical evidence to 

display mitochondrial function in ATP synthesis and Ca2+ transport in the trophozoite stage of the 

malaria parasite Plasmodium berghei (Uyemura et al., 2000). Recent studies suggest that ATP synthase 

is localized to the parasite mitochondrion and seems essential for parasite survival in Plasmodium 

falciparum (Balabaskaran Nina et al., 2011), indicating that a mitochondrial function in adenosine 
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triphosphate (ATP) production cannot be completely excluded. Atovaquone, one antimalarial drug, has 

been shown to inhibit electron transport and to collapse the mitochondrial membrane potential in 

malaria parasites (Srivastava et al., 1997). 

 
Figure 1.12 Metabolic and energetic pathways in P. falciparum (Ginsburg, 2010). Classic pathways are labeled 

in green; the unique pathways in P. falciparum are labeled in red. 

 

Two AKs (PfAK1, PfAK2) and a GTP:AMP phosphotransferase (PfGAK, EC 2.7.4.10, GTP + AMP ⇔ 

GDP + ADP) have been characterized in the malaria parasite Plasmodium falciparum (Ulschmid et al., 

2004; Rahlfs et al., 2009). Heterologous overexpression in E. coli produces enzymatically active 

proteins of 28.9 (PfAK) and 28.0 kDa (PfGAK), the genes of which are located on chromosomes 10 

and 4, respectively (Ulschmid et al., 2004). Recombinant PfAK1 displays the highest specificities for 

AMP and ATP as substrates with 75 U/mg, whereas PfGAK exhibits a preference for GTP and AMP 

(Ulschmid et al., 2004) with a specific activity of 100 U/mg. The bi-substrate analog inhibitors AP5A 

and GP5A inhibit PfAK and PfGAK at a Ki value of 0.1 µM and 0.2 µM, respectively (Ulschmid et al., 

2004). PfAK2 with a molecular weight of 33 kDa displays 10 U/mg with ATP and AMP as a substrate 

pair and is inhibited by AP5A with an IC50 value of approximately 0.2 µM (Rahlfs et al., 2009). The 

properties of well-characterized AKs in P. falciparum are listed in Table 1.2 (Rahlfs et al., 2009). 

Interestingly, PfAK2 can be N-myristoylated and forms a heterodimer with N-myristoyltransferase 

when coexpressed with both proteins in E. coli (Rahlfs et al., 2009). PfAK1 has been hypothesized to 

be located in mitochondria, since it contains an N-terminal amphipathic helix (residues 118 to 130) that 

could function as a mitochondrial import signal (Ulschmid et al., 2004). While most GAKs are located 

in the mitochondrial matrix, PfGAK is predicted (PlasmoAP4.4, PlasmoDB) to be targeted to the 

apicoplast, a non-photosynthetic plastid found in Apicomplexa. For PfAK2, no target signals could be 
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identified when using the prediction programs PlasmoAP and PlasMit (Rahlfs et al., 2009). 

 
Table 1.2 Properties of AK isozymes from Plasmodium falciparum (Rahlfs et al., 2009). a, Vmax for all studied 

forms of PfAK2; b. AMP and GTP as substrate. 

 

Recently the structure of PfAK1 was resolved and displays a similar structure to other adenylate 

kinases except for a unique helix structure at its N-terminus (PDB code 3TLX as shown in Figure 1.4). 

A crystal of PfGAK was obtained through crystallization screening and was grown in 1.9-2.1 M 

ammonium sulfate, 0.1 M Tris-HCl pH 8.0 at 12 mg/ml, and the crystal structure of PfGAK is currently 

being analyzed (Law et al., 2012). 

 

1.3 Myristoylation and N-myristoyltransferase 

1.3.1 Protein lipidation 

Diverse functions including driving proteins to various subcellular membrane domains, tracking 

protein subcellular localization, regulating activity and stability, and enhancing protein-protein 

interactions have been found by a protein modification, protein lipidation, thereby adding another level 

of functionality to many proteins (Resh, 2006). This process involves co- or post-translational 

modifications of proteins with a wide variety of lipids through covalent bounds. Protein lipid 

modifications can be classified based on the identity of the attached lipid moiety. Each type of lipid 

modification has unique features in terms of the nature of the covalent bond, the modified site of the 

lipid in the polypeptides, and the enzymes involved. There are five major types of protein lipidation: 

GPI-anchor addition, prenylation, cholesteroylation, palmitoylation, and myristoylation. The linkage of 

glycosyl-phosphatidylinositol (GPI) to the C-terminus of extracellular proteins takes place during 

GPI-anchor addition via transaminidase, which mediates their attachment to the plasma membrane 

(Paulick et al., 2008). Addition of an isoprenoid lipid (farnesyl (C-15) or geranylgeranyl (C-20)) to one 

or two cysteines at or near the C-terminus by a thioether bond occurs in prenylation (Crowell et al., 

2009). In cholesteroylation, a cholesterol molecule is attached to a C-terminal glycine residue by an 

ester bond (Mann et al., 2000). S-palmitoylation is defined as the attachment of long-chain fatty acids 

to cysteine residue and less frequently to serine and threonine residues of target proteins through a 

thioester linkage catalyzed by various protein fatty acyl transferases (PATs) such as the DHHC-PATs 

family (Linder, 2000; Resh, 2006; Tsutsumi et al., 2008). A myristic acid is irreversibly attached to an 
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N-terminal glycine of the protein by N-myristoyltransferase by an amide bond after the removal of the 

first methionine residue, thus promoting weak protein-membrane association and protein-protein 

interaction (Towler et al., 1987; Farazi et al., 2001). 

 

1.3.2 Protein myristoylation event 

Protein myristoylation is initially considered co-translational on the nascent polypeptide upon removal 

of the lead methionine residue by a methionine aminopeptidase (Wilcox et al., 1987). Interestingly, the 

methionine aminopeptidase has been shown to display high efficiency when the glycine is present after 

the initial methionine residue (Frottin et al., 2006). 

 

Figure 1.13 Process of protein myristoylation on the nascent polypeptide (Wright et al., 2009). Ribosome, 

blue; polypeptide, red; mRNA, black. 

 

The prevalence of myristoylated proteins naturally occurring in eukaryotes is predicted to be 0.5~3% of 

the whole proteome (Maurer-Stroh et al., 2002). Several proteins have been reported to be 

myristoylated including tyrosine kinases, calcium-binding proteins, and MARCKS and are capable of 

protein-protein interaction, activity regulation, and membrane targeting (McLaughlin et al., 1995; 

Hantschel et al., 2003; Matsubara et al., 2004). The 3D structure of cAMP-dependent protein kinase 

together with a myristoyl moiety demonstrated the important stability function of myristoylation 

(Zheng et al., 1993). As myristoylation alone is not sufficient for membrane binding, adjacent 

palmitoylation or polybasic peptides are required (Cross et al., 1984; Peitzsch et al., 1993; Resh, 2004). 

A myristoyl switch is proposed and demonstrates the regulation of protein functions (Resh, 2006). The 

myristate moiety can exist in two states: the exposed state for facilitating membrane binding or in 

concealed mode in order to hide inside the protein, depending on the ligand binding and conformation 

change (Resh, 2006). The fact that GTP binds to the ADP ribosylation factor will lead to myristoyl 

exposure outside, therefore targeting the ADP ribosylation factor to the membrane (Amor et al., 1994). 

The function of c-Abl tyrosine kinases can be regulated by a “myristoyl/phosphotyrosine” switch in a 

similar manner (Hantschel et al., 2003). Considering the irreversibility of myristoylation, the reversible 

binding between myristoylated proteins and membrane domains in such models can be considered a 

regulator, allowing the regulation of such bindings according to the signal changes in the cell (Resh, 

2006). 

Myristoylated Src family tyrosine kinases such as pp60src, pp60yes, and pp56lck (Cross et al., 1984) 
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exhibit elevated activity in many human cancers (Summy et al., 2003). Studies that the inhibition of 

pp60src myristoylation reduced colony formation, cell proliferation and specific localization to the 

membrane reveal the vital function of pp60src myristoylation for tumorigenicity (Shoji et al., 1990). 

Furthermore, these studies show that dephosphorylation and activity of pp60src are modulated by 

myristoylation (Bagrodia et al., 1993). Recently, myristoylation and subsequent membrane targeting of 

pp60src is shown to regulate the ubiquitination and degradation of the protein and elevate the activity 

(Patwardhan et al., 2010). 

In 2000, Bid, a proapoptotic member of the Bcl-2 family, was the first protein shown to be 

post-translationally myristoylated on an internal glycine residue once this glycine was exposed at the 

N-terminus due to caspase cleavage during apoptosis (Zha et al., 2000). Apoptosis is a rigorously 

controlled process where a series of sequential processes take place such as DNA degradation, 

mitochondrial dysfunction, and ultimately cell death (Wyllie, 1997). Myristoylated Bid will target to 

the mitochondrial membrane and react to Bak, resulting in mitochondrial dysfunction and cytochrome 

c release as a vital step in apoptosis (Zha et al., 2000). The following study has identified 15 proteins 

cleaved by caspases that can be post-translationally myristoylated by a new metabolic labeling method 

with an azido-myristate analog (Martin et al., 2008), which is illustrated in section 1.3.3 and enhances 

our knowledge of the role of myristoylation in the apoptotic process (Figure 1.14). 

 

Figure 1.14 Post-translational myristoylation of proteins during apoptosis (Martin et al., 2010). Fragments of 

Bid, Actin, PAK2, and Gelsolin cleaved by caspase can be myristoylated. See details in Martin's paper. 

 

The first direct evidence that myristoylation is involved in human disease is the identification of 

aberrant myristoylation in the SHOC2 protein, which contains a glycine at position 2 in patients who 

develop a Noonan-like syndrome with loose anagen hair (Cordeddu et al., 2009). The studies 
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demonstrated the incorporation of 3H- myristic acid to mutant SHOC2, and mutant proteins were 

driven to the cell membrane rather than the nucleus in order to activate the Ras and the MAPK pathway 

(Mazzanti et al., 2003; Schubbert et al., 2007). 

Some myristoylated proteins have been identified in protozoan parasites, including ADP ribosylation 

factors (Price et al., 2003), CAP5.5 in T. brucei (Hertz-Fowler et al., 2001), calcium-dependent protein 

kinase 1, and the 45-kDa gliding association protein in P. falciparum (Moskes et al., 2004; 

Rees-Channer et al., 2006). The importance of the ADP ribosylation factors in endocytosis and 

Golgi-lysosome trafficking in T. brucei has been revealed (Price et al., 2003; Price et al., 2007). 

 

1.3.3 Click reaction in myristoylation research 

The vital role played by myristoylation in cell signaling transduction warrants the identification of the 

myristoylation proteome. For a long time, metabolic labeling with 3H-myristic acid combined with 

fluorography has been employed in order to investigate the myristoylated proteins. This 

time-consuming method is a laborious work, because it needs weeks or months of exposure time and 

has low sensitivity. Another method useed myristic acid analogs containing 125I which greatly increases 

health hazards. Therefore, new methods need to be explored for such studies. 

New concepts in chemical proteomics are emerging that benefit from the great progress in chemistry, 

proteomics, and biology, providing a new method to detect and identify protein modifications such as 

myristoylation. The bio-orthogonal chemical reporters are the key inventions in such methods. In our 

research, this reporter should be an analog of myristic acid without metabolically interrupting in vivo 

labeling and contain a biologically inert tag for downstream detection. The bio-orthogonal chemical 

reporters are employed, which can be specifically incorporated into proteins and then react initially 

with probes through Staudinger ligation between the alkyl azide and a phosphine (Hang et al., 2007). 

The different chain length analogs of fatty acids containing azido groups were synthesized and used in 

the investigation of fatty acylated proteins in cells via the methods described here (Hang et al., 2007; 

Martin et al., 2008). The general procedure is as follows. A bio-orthogonal reporter of myristic acid 

(azido myristate) is incorporated into the N-terminal glycine of proteins, which should be myristoylated 

in vivo. The proteins comprising the azido group react with phosphine probes conjugated with biotin or 

FLAG. The last step is to detect the proteins in the Western blot against biotin or FLAG tag. The 

ultimate goal of the method is to purify the proteins through a pull-down assay and subsequently 

identify them via mass spectrometry. Later application of azide alkyne Huisgen cycloaddition known as 

click chemistry significantly optimized this method. Three types of reactions are used in this new 

technique as shown in Figure 1.15. Typically an alkynyl-myristic acid analog is metabolically ligated to 

a specific protein catalyzed by NMT. The azido probe containing a detection tag (biotin, rhodamine) 

could be added to the labeled proteins via click chemistry. Depending on the probe, various techniques 

such as Western blot, in-gel fluorescent scanning, or mass spectrometry can be applied for detection 

and identification (Figure 1.16) (Charron et al., 2009). Charron and co-workers reported comparing the 

alkynyl and azido fatty acid chemical reporters for the metabolic labeling process (Charron et al., 2009). 

They also employed a new CuI-catalyzed Huisgen [3 + 2] cycloaddition reaction and fluorescent tag 

for in-gel fluorescence scanning detection. The study showed that these optimizations obtained robust 
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and sensitive detection for analyzing the fatty-acylated proteins in cells (Charron et al., 2009). The 

study then can provide a rapid and sensitive method for visualization of protein fatty-acylation, thereby 

enhancing our understanding of the functions and regulatory mechanisms of fatty-acylated proteins in 

physiology and disease. 

In order to study S-palmitoylation in mammalian cells, 17-octadecynoic acid (17-ODYA) was 

exploited as a bio-orthogonal chemical reporter (Martin et al., 2009). Both the Cu(I)-catalyzed azide 

alkyne [3 + 2] cycloaddition reaction and multidimensional protein identification technology (MudPIT) 

were employed in this method. They also used hydroxylamine to verify the palmitoylation modification 

through a thioester bond between 17-ODYA and proteins. Martin and Cravatt identified ~125 

palmitoylated proteins including G proteins, receptors, and a family of uncharacterized hydrolases in 

mammalian cells. For validation, they constructed 12 high-confidence and 6 medium-confidence 

vectors that were overexpressed in 293T cells. As a result, only 2 targets cannot be palmitoylated 

in293T cells, therefore showing the high reliability of this method (Martin et al., 2009). 

 

 

 
Figure 1.15 Three bio-orthogonal ligation reactions in use (Wright et al., 2009). A) Staudinger ligation 

between a phosphine and an organic azide; B) Cu(I)-catalyzed 3+2 cycloaddition reaction between an alkyne and 

an azide; C) strain-promoted 3+2 cycloaddition reaction between a cyclooctyne and an azide. R and R1 can be any 

set of labels, proteins, DNA, or other biomolecules. 
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By using the new optimized method, fatty-acylated proteins in mammalian Jurkat T cells were 

investigated by using chemical reporters. The authors synthesized four types of chemical reporters and 

metabolically labeled mammalian cells for 8 hours. Total cell lysate then reacted with biotin or 

rhodamine for enrichment or visualization, respectively. The enriched proteins can be identified via 

mass spectrometry. It should be noted that they added a cleavable linker in the biotin tag so as to elute 

the proteins from streptavidin beads, specifically as the strong interaction between streptavidin and 

biotin significantly reduce the recovery of the binding proteins. The results demonstrated a novel 

S-acylation of histone H3 variants (Wilson et al., 2011). The method can be adapted for the large-scale 

analysis of fatty-acylated proteomes in other cells. 

 

 
Figure 1.16 The complete procedure of identifying myristoylated proteins by bio-orthogonal analogs of 

myristic acid. Adapted from (Wright et al., 2009). 

 

1.3.4 N-myristoyltransferase 

N-myristoyltransferase belonging to the glycylpeptide N-tetradecanoyltransferase superfamily is 

universally present in many organisms including yeast, plants, and animals, but not in bacteria (Martin 

et al., 2010). In vertebrates, two NMTs can catalyze the N-myristoylation reaction, while a unique one 

exists in lower organisms (Martin et al., 2010). The catalytic mechanism of reaction catalyzed by NMT 

follows an ordered Bi-Bi model first to bind myristoyl-CoA with subsequent peptide binding (Figure 

1.17) (Rudnick et al., 1991). There is 76% identity of amino acids between two human NMTs with 

different substrate preferences resulting from the observation of NMT knock-out mice (Giang et al., 

1998; Yang et al., 2005). NMT activity is regulated by phosphorylation, which is catalyzed by the Src 
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family tyrosine kinase members (Rajala et al., 2001). Considering the fact that these Src family 

members can be myristoylated by NMT, there must be a complicated network of regulation. 

The conserved motif for reorganization of NMT has been found to be Gly-X3-X4-X5-(Ser/Thr/Cys)6 

(Utsumi et al., 2004). The N-terminal Gly residue is absolutely essential for myristoylation, while Ser, 

Thr, Cys are more frequently observed at position X6 (Utsumi et al., 2004). The first 17 amino acids at 

the N-terminus are predicted to be vital for myristoylation based on sequence alignment studies 

(Maurer-Stroh et al., 2002). These studies also show that polar residues are preferred at positions 3 and 

4, while large hydrophobic residues are favored at position 5 (Maurer-Stroh et al., 2002). Small, polar 

residues at position 6 and the following lysine at position 7 are more frequent (Maurer-Stroh et al., 

2002). The MYR Predictor and MYRbase are two on-line tools for myristoylation prediction. 

 

 

Figure 1.17 NMT catalytic mechanism (Wright et al., 2009). 

 

Structures of NMT with or without substrate analogs from several species such as Leishmania 

donovani, Candida albicans, Saccharomyces cerevisiae, and humans have been resolved (Bhatnagar et 

al., 1998; Weston et al., 1998; Brannigan et al., 2010). The overall structures of NMT are quite similar 

and are composed of a saddle-shaped β-sheet as a core with a few surrounding α-helices as shown in 

Figure 1.18. This compact globular α/β protein forms a deep pocket in the center with two flanked 

grooves in a spatial structure. The protein seems to be symmetric in a three-dimensional structure, 

thereby divided into an N-terminal half and a C-terminal half (Weston et al., 1998). The N-terminal 

half has been shown to form the groove for the myristoyl-CoA with only one residue from the 

C-terminus, while the peptides bind to the groove mostly formed by C-terminal half (Weston et al., 

1998; Farazi et al., 2001). The binding of myristoyl CoA interacts with two amino residues to form an 

oxyanion hole. Then the carbonyl group is polarized to assist the nucleophilic attack on the carbon 

(Farazi et al., 2001). The directing of the fatty acyl chain into the pocket of the enzyme where the 

methyl group interacts with the pocket floor will position the CoA and thioester properly (Farazi et al., 

2001). In this manner, NMT can specify the carbon chain length. As a result, all NMTs have a high 

specificity to myristoyl-CoA. The peptide binding site partially composed of the myristoyl CoA proves 
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the Bi-Bi ordered mechanism for catalysis (Farazi et al., 2001). The N-terminal Gly ammonium group 

binds to the C-terminus of the enzyme. Both charges are neutralized, and resulting amine is ready for 

the nucleophilic attack on the thioester carbonyl of myristoyl CoA (Bhatnagar et al., 1998). The 

rotation of the amine group is necessary for the approach to the thioester carbonyl for the proceeding 

reaction, thus making it impossible to substitute the Gly (Farazi et al., 2001). The observation that the 

myristoyl CoA binding site is highly conserved among species probably indicates that it is not a wise 

strategy to design the inhibitor interacting with this site (Kishore et al., 1993). According to studies of 

the specificity of the peptide substrate (Towler et al., 1987; Duronio et al., 1991; Rocque et al., 1993), 

the peptide binding site is not highly conserved between species. A study of co-expression of the 

mammalian G protein alpha subunits and S. cerevisiae NMT in E. coli revealed that yeast NMT is 

unable to myristoylate mammalian G protein alpha subunits, which were supposed to be myristoylated 

in the mammalian cell (Duronio et al., 1991), implying different protein substrates of NMT from 

different species as well. By using a group of 12 octapeptides, a distinct substrate preference between 

human NMT and S. cerevisiae NMT was shown, thus providing a chance to design the specific 

inhibitors against NMT from S. cerevisiae (Rocque et al., 1993). 

 

Figure 1.18 Crystal structure of NMT (Bhatnagar et al., 1998; Goncalves et al., 2012). a) Ribbon 

representation of chain A of the crystal structure of PvNMT with bound NHM (S- (2- OXO) pentadecyl-CoA) (left) 

and inhibitor (right); b) Molecular surface of NMT from Saccharomyces cerevisiae. 

 

1.3.5 N-myristoyltransferase as a drug target 

Myristoylation, as an important cellular process, is involved in diverse metabolic pathways including 

cell signaling, apoptosis, and tumorigenesis as described above. Thereby, the enzyme NMT catalyzing 

the reaction is considered a promising target for treatment. Assembly and replication of some viruses 

including HIV also demand myristoylation (Maurer-Stroh et al., 2004). Gag and Nef proteins in HIV, 

which are critical for virus replication, are myristoylated by host NMT and target to the plasma 

membrane (Schultz et al., 1983; Spearman et al., 1997). Due to the importance of these proteins in 

forming the viral capsid, the Gag precursor was found to be accumulated, and replication of competent 

viruses is blocked through the inhibition of myristoylation (Furuishi et al., 1997). However, any 

anti-HIV inhibitors based on such studies have to target human NMT, causing a potential toxicity for 

uninfected cells. Searching for the specific substrate profile of human NMT 1 and 2 may circumvent 

a 
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this problem (Seaton et al., 2008). Since there are still many questions to be clarified, much more effort 

is required before this strategy can be applied against HIV infection. 

Relying on the different substrate specificities between human and yeast NMTs (Rocque et al., 1993) 

and their vital role in cell survival and vegetative growth of human pathogen C. albicans (Weinburg et 

al., 1995; Price et al., 2003; Yang et al., 2005), they provide a promising drug target to develop novel 

inhibitors against NMT specifically from various fungus species such as Candida albicans and 

Cryptococcus neoformans (Lodge et al., 1994; Devadas et al., 1998). C. albicans with significantly 

reduced activity of NMT via genetic mutation cannot kill the animals in an immunosuppressed mouse 

model, unlike the wild-type NMT C. albicans strain (Weinburg et al., 1995). Novel nonpeptidic 

inhibitors with bioavailability have been synthesized and display antifungal activity (Devadas et al., 

1998). Some parasitic protozoa including Leishmania major and Leishmania donovani (leishmaniasis 

disease), Trypanosoma brucei (African sleeping sickness), and Plasmodium falciparum (malaria) also 

possess their own NMTs that seem to be essential for their survival (Price et al., 2003; Bowyer et al., 

2008). T. brucei in the bloodstream forms cells with knockdown NMT by RNAi lost virulence in a 

mouse model and has endocytic defects (Price et al., 2010). 

Recently, a pyrazole sulphonamide inhibitor against T. brucei NMT has been discovered (Frearson et 

al., 2010). The selectivity between T. brucei and human NMT is over 100-fold, and a tight correlation 

between NMT activity and T. brucei proliferation has been observed. The inhibition of myristoylation 

in vivo has been shown by adding this leading compound, indicating that NMT is its target. By 

resolving the structure of L. major NMT with this compound, it can be demonstrated that pyrazole 

sulphonamide binds to the pocket of the peptide binding site. Moreover, this compound rapidly kills T. 

brucei below a detectable level in a mouse model of human African trypanosomiasis and eliminates the 

bloodstream form of T. brucei in cell culture. Therefore, optimization of this compound may lead to a 

real drug with promising therapeutic properties for treating African sleeping sickness (Frearson et al., 

2010). 

P. falciparum NMT has been characterized (Gunaratne et al., 2000), and a series of compounds 

containing a core benzothiazole scaffold were shown to inhibit the activity of P. falciparum NMT in 

the micromolar range by using a scintillation proximity assay suitable for high throughput screening, 

and two compounds were found to reduce the parasitemia by >80% at 10 µM in cultured parasites in 

vitro (Bowyer et al., 2007). However, a strong overlap between the structure-activity relationships 

(SAR) for Plasmodium NMT and both human NMTs indicated the potential challenge in obtaining an 

appropriate selectivity profile according to the programs that target N-myristoyltransferases as starting 

points for treating tropical diseases (Bell et al., 2012). Very recently, a series of inhibitors against 

Plasmodium vivax NMT has been discovered through high-throughput screening and the 

high-resolution crystal structure of NMT in complex with the leading compound. These studies provide 

the opportunity to understand the binding mode of the inhibitors and to further improve rational drug 

design (Goncalves et al., 2012).The sequence alignment showed 80% identity of amino acids between 

PfNMT and PvNMT, therefore probably demonstrating similar structure and inhibition patterns.  
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1.4 Objective of study 

Due to the absence of a vaccine and increasing resistance to current drugs, new chemotherapeutic 

approaches fighting malaria are urgently needed (Dondorp et al., 2010). This thesis aims to explore 

energy homeostasis mediated by adenylate kinase and the potential of targeting N-myristoyltransferase 

as a drug target. The following specific objectives are explored:. 

 

1.4.1 Adenylate kinase networks 

The first aim of my work was to characterize two new members of the AK family and to investigate the 

subcellular localization of all AKs in P. falciparum, thereby mapping the energy metabolism network 

catalyzed by AK isoforms. 

 

1.4.2 Myristoylation 

The second aim was to investigate the possibility of using chemical reporters to label the myristoylated 

proteins in P. falciparum, to detect the naturally occurring myristoylated proteins, and to identify them 

via mass spectrometry by using the new bio-orthogonal chemical reporter method, thus better 

understanding the myristoylation function in P. falciparum. The experimental results are compared with 

the protein list obtained via bioinformatic methods in order to reveal new myristyolated targets in P. 

falciparum. 

 

1.4.3 N-myristoyltransferase 

A heterologous expression and purification system of PfNMT was established to obtain the highly pure 

NMT for crystallization studies. Different screenings were tried to crystallize NMT in order to resolve 

its structure so as to compare it to human NMT and to study SAR (structure-activity relationship) for 

novel inhibitor discovery. 
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2. Materials 

2.1 Antibiotics 

Antibiotic Source Stock concentration Working concentration 

Carbenicillin Roth 50 mg/ml in 50% Ethanol 100 µg/ml 

Chloramphenicol Roth 25 mg/ml in 100% ethanol 25 µg/ml 

Kanamycin Roth 25 mg/ml in water 50 µg/ml 

 

2.2 Antibodies 

Antibody Source 

Mouse anti-histidine6-tag antibody Dianova, Hamburg 

HRP Anti-mouse IgG antibody Pearce, Rockford 

Anti-GFP antibody  Roche, Mannheim 

Anti-Exp 1 antibody Dr. Przyborski, Marburg 

Anti-Hsp 70 antibody Dr. Przyborski, Marburg 

Anti-SERP antibody Dr. Przyborski, Marburg 

HRP Streptavidin GE Healthcare, München 

 

2.3 Buffers and solutions 

2.3.1 Buffer for DNA electrophoresis 

DNA Sample buffer 0.1% Bromophenol blue 

 60% Saccharose 

 1 mM Tris 

 pH 8.3 HCl (adjustment) 

10 X TBE (electrophoresis buffer) 1 M Tris 

 1 M Boric acid 

 20 mM EDTA 

 pH 8.0  Acetic acid (adjustment) 

 

2.3.2 Buffer for extraction of P. falciparum parasites 

Saponin lysis buffer 7 mM K2HPO4 

 1 mM MgCl2 

 1 mM NaH2PO4 

 11 mM NaHCO3 

 58 mM KCl 

 56 mM NaCl 

 14 mM Glucose 

 0.02% Saponin 

 pH 7.4  HCl (adjustment) 
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Cytomix 12 mM KCl 

 5 mM MgCl2 

 10 mM KH2PO4 

 10 mM K2HPO4 

 25 mM HEPES 

 0.15 mM CaCl2 

 2 mM EGTA 

 pH7.6 KOH (adjustment) 

Parasite cell lysis buffer 137 mM  NaCl 

 2.7 mM  KCl 

 8 mM  Na2HPO4 

  1.46 mM  KH2PO4 

  1% Triton 

  pH 7.6 HCl (adjustment) 

 

2.3.3 Buffer for AK assay 

AK assay buffer 1.5 mM MgCl2 

 90 mM KCl 

 110 mM TEA-HCl 

 pH 7.6 HCl (adjustment) 

 

2.3.4 Buffer for protein purification 

Lysis buffer 50 mM Na3PO4 

 300 mM NaCl 

 pH 8.0 NaOH (adjustment) 

Tris-NaCl buffer 50 mM Tris 

 300 mM NaCl 

 pH 7.6 HCl (adjustment) 

 

2.3.5 Buffer for SDS-PAGE electrophoresis 

Electrophoresis buffer 193 mM Glycine 

 25 mM Tris 

 0.1% (w/v) SDS 

 pH 8.3  HCl (adjustment) 

SDS Sample buffer (4x) 240 mM 1 M Tris-HCl, pH 6.8 

 8% (w/v) SDS 

    40% (v/v) Glycerol 

 5% (v/v) 14.7 M β-Mercaptoethanol 

 0.04% (w/v) Bromophenol Blue 



Materials 
 

29 

 

Coomassie staining solution 0.2% (w/v) Coomassie brillant blue R250 

 40% (v/v) 2-Propanol 

 10% (v/v) Acetic acid 

Coomassie destaining solution 10% (v/v) Acetic acid 

 40% (v/v) Methanol 

 

2.3.6 Western blot buffer 

Anode buffer I 300 mM Tris 

Anode buffer II 25 mM Tris 

Cathode buffer 40 mM 6-aminohexanoic acid 

TBS buffer 10 mM Tris 

 155 mM NaCl 

 pH 8.0 HCl (adjustment) 

TBS-Tween (TBST) 0.05% Tween 20 (in TBS buffer) 

Ponceau staining solution 1% (w/v) Ponceau S 

 5% (v/v) Acetic acid 

Ponceau destaining solution 5% (w/v) Acetic acid 

Luminol solution (store in dark 

at 4 °C) 

1.25 mM  Luminol 

0.0093% (v/v) H2O2 

0.1 M  Tris-HCl, pH 8.6 

 

2.3.7 Stock solutions 

Compound Concentration Solvent Storage 

APS 10% (w/v) H2O -20 °C 

L-Arabinose 20% (w/v) H2O Filter sterilized, -20 °C 

IPTG 1 M H2O Filter sterilized, -20 °C 

Rhamnose 20% (w/v) H2O Filter sterilized, -20 °C 

 

2.4 Biological materials 

2.4.1 Plasmids 

Plasmids Antibiotic resistance Source 

pARL-1a+ Carbenicillin Prof. Alan F. Cowman, Melbourne University 

pET24 Kanamycin Novagen, Darmstadt 

pET28 Kanamycin Novagen, Darmstadt 

pGEM-T Easy Carbenicillin Promega, Mannheim 

pGRO7 Chloramphenicol TaKaRa, Göttingen 

pQE30 (no His-tag) Carbenicillin Qiagen, Hilden (Lab modified) 

pRAREII Chloramphenicol Novagen, Darmstadt 

pSK Carbenicillin Stratagen, La Jolla, USA 
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2.4.2 E. coli strains 

E. coli strain Usage Source 

XL-1 Blue Cloning and plasmid preparation Stratagene, Amsterdam 

KRX Overexpression Promega, Mannheim 

BL21 Overexpression Invitrogen, Karlsruhe 

C41 Overexpression Avidis, France 

 

2.4.3 Plasmodium falciparum strain 

Plasmodium falciparum strain Source 

3D7 (Chloroquine-sensitive) Prof. Lanzer, Heidelberg University 

 

2.5 Chemicals  

Most chemicals used in the study were of highest purity available. 

Chemical  Producer 

Acetic acid  

Acrylamide and bis-acrylamide solution (30/0.8%)  

Roth, Karlsruhe 

BioRad, München 

Adenosine monophosphate (AMP) Sigma Aldrich, Steinheim 

Adenosine triphosphate (ATP) Sigma Aldrich, Steinheim 

Agarose PeqLab, Erlangen 

Albumax Gibco, Karlsruhe 

Alkynyl biotin Invitrogen, USA 

6-Aminohexanoic acid Roth, Karlsruhe 

Ammonium persulfate (APS) Sigma Aldrich, Steinheim 

Ammonium sulfate Roth, Karlsruhe 

L-Arabinose  Sigma Aldrich, Steinheim 

Azido myristic acid Invitrogen, USA 

Bradford reagent  BioRad, München 

Bacto-Agar  Roth, Karlsruhe 

Boric acid Roth, Karlsruhe 

Bovine serum albumin  Roth, Karlsruhe 

Bromophenol blue Sigma Aldrich, Steinheim 

Calcium chloride Roth, Karlsruhe 

Carbenicillin  Roth, Karlsruhe 

Chloramphenicol  Roth, Karlsruhe 

Coomassie brilliant blue R250 Sigma Aldrich, Steinheim 

Coumaric acid Sigma, Steinheim 

Cupric sulfate (CuSO4) Sigma Aldrich, Steinheim 

Cystatin  Roth, Karlsruhe 
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Cytidine monophosphate (CMP) Sigma Aldrich, Steinheim 

1,4-Dithiothreitol (DTT) Roth, Karlsruhe 

Dimethyl sulfoxide (DMSO) Roth, Karlsruhe 

Dipotassium phosphate (K2HPO4) Roth, Karlsruhe 

Disodium hydrogen phosphate (Na2HPO4) Roth, Karlsruhe 

dNTPs Fermentas, St. Leon-Rot 

Ethanol Roth, Karlsruhe 

Ethidium bromide Sigma Aldrich, Steinheim 

Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe 

Ethylene glycol tetraacetic acid (EGTA) Roth, Karlsruhe 

Gentamycin Invitrogen, Karlsruhe 

Giemsa (0.4%, w/v) Sigma Aldrich, Steinheim 

Glucose Merck, Darmstadt 

Glycerol Roth, Karlsruhe 

Glycin Roth, Karlsruhe 

Guanosine monophosphate (GMP) Sigma Aldrich, Steinheim 

Guanosine triphosphate (GTP) Sigma Aldrich, Steinheim 

Hydrochloric acid Roth, Karlsruhe 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth, Karlsruhe 

Hydrogen peroxide Sigma Aldrich, Steinheim 

Imidazole  Roth, Karlsruhe 

Inosine monophosphate (IMP) Sigma Aldrich, Steinheim 

Inosine triphosphate (ITP) Sigma Aldrich, Steinheim 

Isopropanol  Roth, Karlsruhe 

Isopropyl-β-D-thiogalactopyranoside (IPTG)  Roth, Karlsruhe 

Kanamycin Roth, Karlsruhe 

Luminol Sigma Aldrich, Steinheim 

Methanol Roth, Karlsruhe 

Magnesium chloride  Roth, Karlsruhe 

β-Mercaptoethanol  Roth, Karlsruhe  

Milk powder  Roth, Karlsruhe 

β-Nicotinamide adenine dinucleotide, reduced  

disodium salt (NADH) 
Sigma Aldrich, Steinheim 

Nickel-nitrilotriacetic acid (Ni-NTA)  Qiagen, Hilden 

PEG 3350 (Polyethylene glycol) Roth, Karlsruhe 

PEG 6000 Roth, Karlsruhe 

Pepstatin A Sigma Aldrich, Steinheim 

Phenylmethylsulfonylfluoride (PMSF)  Sigma Aldrich, Steinheim 

Phosphoenolpyruvate (PEP) Sigma Aldrich, Steinheim 

Ponceau Sigma Aldrich, Steinheim 

Potassium chloride (KCl) Roth, Karlsruhe 
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2.6 Enzymes 

2.6.1 Restriction Enzymes 

Enzyme Cleavage sequence Source 

AvrII 5' C  CTAGG 3' Fermentas, St. Leon-Rot 

BamHI 5' G  GATCC 3' Fermentas, St. Leon-Rot 

BglII 5' A  GATCT 3' Fermentas, St. Leon-Rot 

HindIII 5' A  AGCTT 3' Fermentas, St. Leon-Rot 

NdeI 5' CA  TATG 3' Fermentas, St. Leon-Rot 

XhoI 5' C  TCGAG 3' Fermentas, St. Leon-Rot 

 

2.6.2 DNA Polymerase 

Enzyme  Company 

AccuPrimeTM Taq DNA Polymerase Invitrogen, Karlsruhe 

Pfu DNA Polymerase Promega, Mannheim 

RedTaq® DNA Polymerase Sigma Aldrich, Steinheim 

Potassium dihydrogen phosphate (KH2PO4) Roth, Karlsruhe 

Potassium hydroxide (KOH) Roth, Karlsruhe 

Rhamnose Sigma Aldrich, Steinheim 

RPMI 1640 Gibco Invitrogen, Karlsruhe 

Saccharose Roth, Karlsruhe 

Saponin Roth, Karlsruhe 

Sodium acetate Roth, Karlsruhe 

Sodium chloride (NaCl) Roth, Karlsruhe 

Sodium dihydrogen phosphate (NaH2PO4) Roth, Karlsruhe 

Sodium hydrogen carbonate ( NaHCO3) Roth, Karlsruhe 

Sodium dodecyl sulphate (SDS)  Merck, Darmstadt 

Tetramethylethylenediamine  (TEMED)  Sigma Aldrich, Steinheim 

Triethylamine hydrochloride (TEA-HCl) Sigma, Steinheim 

Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) Sigma Aldrich, Steinheim 

Tris(2-carboxyethyl)phosphine (TCEP) Sigma Aldrich, Steinheim 

Tetramethylethylenediamine (TEMED)  Sigma Aldrich, Steinheim 

Tris(hydroxymethyl)aminomethane (Tris)  Roth, Karlsruhe 

Triton X-100 Sigma Aldrich, Steinheim 

Trypton Roth, Karlsruhe 

Tween 20 Merck, Darmstadt 

Uridine monophosphate (UMP) Sigma Aldrich, Steinheim 

Uridine triphosphate (UTP) Sigma Aldrich, Steinheim 

Yeast extract  Oxoid LTD, U.K 
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2.6.3 Other enzymes 

Enzyme Source Function 

DNaseI Roche, Mannheim DNA digestion  

DpnI Fermentas, St. Leon-Rot Methylated DNA digestion 

Lactate dehydrogenase  Roche, Mannheim AK assay 

Lysozyme Sigma Aldrich, Steinheim Cell lysis 

Pyruvate kinase Roche, Mannheim AK assay 

T4 Ligase Fermentas, St. Leon-Rot Nucleotide fragment ligation 

Thrombin Novagen (Merck), Darmstadt Cleavage of His-tag from fused 

protein 

 

2.7 Instruments  

Instruments Producer 

Analytical Balance Scaltec Instruments, Göttingen 

Autoclave Webeco, Bad Schwartau 

Beckman DU 650 Spectrophotometer Beckmann, München 

Beckman Optima Max Ultracentrifuge Beckmann, München 

Bio Photometer  Eppendorf, Hamburg 

Eppendorf Research® Plus Pipettes Eppendorf, Hamburg 

Eppendorf Thermomixer Eppendorf, Hamburg 

FPLC-Software Unicorn Amersham Bioscience, Freiburg 

FPLC System ÄKTA-FPLC Amersham Bioscience, Freiburg 

Fraction Collector Frac-100 Pharmacia Biotech, Freiburg 

Freezer -86 °C Heraeus Instruments, Hanau 

Gene Pulser Xcell Electroporation BioRad, München 

GEL DOC 2000 System BioRad, München 

HeraCell CO2 Incubator for P. facliparum Culture Heraeus Instruments, Hanau 

Hitachi U-2001 Spectrophotometer Hitachi, Schwäbisch Gmünd 

Honeybee 961 Crystallization robot  Zinsser Analytic, Frankfurt 

Magnetic Stirrers RCT basic IKA Werke, Staufen 

Mastercycler® Thermal Cyclers Eppendorf, Hamburg 

Megafuge 1.0R Centrifuge Heraus Instruments, Hanau 

Mini-PROTEAN 3 cell Electrophoresis Module BioRad, München 

Minispin® Centrifuge Eppendorf, Hamburg 

Mitsubishi P91 Photo Printer Mitsubishi, Ratingen 

Neolab Heating Block NeoLab, Heidelberg 

OptimaTM TLX Ultracentrifuge Beckmann, München 

OptiMax X-ray Film Processor Protec, Oberstenfeld 

QuadroMACS® Magnetic Separator Miltenyi Biotec GmbH, Bergisch 
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Gladbach 

Owl EasyCast B1A Mini Gel Electrophoresis 

Systems (Agraose) 

Thermo Scientific, Dreieich 

pH Meter Beckman, München 

Pharmacia LKB Multiphor II NovaBlot Amersham Pharmacia Biotech, Freiburg 

Rotor Sorvall SLA 3000, SS34  Thermo Fisher Scientific, Waltham, USA 

Shaker KS 500 Junke & Kunel, Ika Werke 

Sonopuls GM 70 Ultrasonicator Bandelin Electronics, Berlin 

Sorvall® RC5BPlus Centrifuge ThermoScientific, Waltham, USA 

Thermomixer Comfort Thermo Life Sciences, Egelsbach 

Ultra Pure Water System MembraPure, Bodenheim 

UV/Vis-Spectrophotometer Beckman DU® 650 Beckmann, München 

Vortex Minishaker MS2 IKA Werke, Staufen 

 

2.8 Kits 

Bradford kit  Biorad, München 

HiSpeed® Plasmid Maxi kit Qiagen, Hilden 

JCSG Core Suite kit Qiagen, Hilden 

QIAprep Spin Miniprep Kit Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden 

Western lightning chemiluminescence reagent  Perkin Elmer, Boston, U.S.A 

 

2.9 Materials of affinity chromatography 

Nickel-Nitrilotriacetate-Agarose (Ni-NTA) Qiagen, Hilden 

Protino® Ni-TED Machery-Nagel, Düren 

Soft-link avidin agarose Proemga, Mannheim 

SuperdexTM 200 prep grade (HiLoad 16/60) GE Healthcare, Freiburg 

 

2.10 Media for E. coli culture 

Lysogeny Broth Medium (LB), 1 L 10 g Tryptone 

5 g Yeast extract 

10 g NaCl 

Terrific Broth Medium (TB), 1 L 12 g Tryptone 

24 g Yeast extract 

9,4 g K2HPO4 

2,2 g KH2PO4 

4 ml Glycerol 

2x YT Medium, 1 L 16 g Tryptone 

10 g Yeast extract 
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5 g NaCl 

Modified LB, 1 L 12 g Tryptone 

 24 g Yeast extract 

 5 g NaCl 

 5 g K2HPO4 

 0,142 Na2SO4 

 40 ml Glycerol 

 

2.11 Protease inhibitors 

Inhibitor Stock concentration Working concentration 

Protease Inhibitor Cocktail Tablets / 50 ml solution / one tablet 

Cystatin  40 µM in buffer 80 nM 

Pepstatin A 0.3 mM in DMSO 3 µM 

PMSF 100 mM in ethanol 0.1 mM 
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3. Methods 

3.1 General methods 

3.1.1 Agarose gel electrophoresis 

Via agarose gel electrophoresis, DNA fragments were separated based on their sizes and shapes. The 

DNA sample was mixed with 6x loading buffer and loaded into the gel slots. The separation of DNA 

sample was often performed in 1% agarose gel, which was horizontally placed in an electrophoresis 

chamber containing 1 x TBE buffer. The size of the sample was compared with Fermentas 1 kb DNA 

size standard. The electrophoresis was carried out initially at a voltage of 70 V and then adjusted to 100 

V for approximately 50 minutes. Then the gel was soaked in an ethidium bromide buffer for 15 minutes. 

Finally, the DNA bands were visualized under UV via the Gel Doc 2000 system. 

 

3.1.2 Cleavage of double strand DNA by restriction endonuclease  

The DNA fragments of PCR products or plasmids were cleaved by the restriction endonuclease 

(Roberts, 1976), which has the function of cutting DNA at a specific nucleotide sequence known as the 

restriction site. The DNA fragments were digested by one or more Fermentas restriction enzymes at an 

optimized buffer and temperature for 1 hour according to the manufacture’s instruction. The mixture 

can be purified by QIAquick PCR Purification Kit and be further used for the ligation step. 

 

3.1.3 Determination of DNA concentration 

The concentration of DNA fragments from purified PCR products or the plasmids was determined via 

absorption at 260 nm. H2Odd was used as a blank. A value of one measured by absorption at 260 nm is 

equal to 50 ng/µl of DNA concentration (Sambrook et al., 2001). The purity of the DNA sample could 

be examined via absorption at 280 nm. The ratio of A260nm/A280nm for a pure DNA sample ranges from 

1.8 to 2.0. 

 

3.1.4 Preparation of competent cells 

The E. coli cells that would be used for transformation were inoculated into a liquid LB medium (3 ml) 

and grown overnight (~ 15 hours) in a shaking incubator at 37 °C. Then 150 ml LB medium was 

inoculated with the overnight culture and cultured until the OD600 value reached 0.6. The culture was 

placed on ice for 10 minutes and transferred into the Falcon tubes. The culture was then harvested at 

4 °C for 10 minutes with a speed of 4,000 g. The pellet was resuspended in 10 ml ice-cold 0.1 M CaCl2 

containing 15% glycerol, which was then put on ice for 30 minutes. Again the resuspended pellet was 

centrifuged at 4,000 g at 4 °C for 10 minutes. The pellet was resuspended in 1.5 ml ice-cold 0.1 M 

CaCl2 containing 15% glycerine. The competent cells were aliquoted into sterile Eppendorf tubes and 

frozen in liquid nitrogen for 3 minutes. The cells were stored at -80 °C ready to use. 

If pGro7 or pRARE II plasmid was used in the heterologous expression system, a fresh transformation 

procedure as described in 3.1.5 was required before starting the above protocol for preparing the 

competent cells. The chloramphenicol antibiotic should be added to the medium for the whole 
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procedure because of the plasmid resistance. 

 

3.1.5 Ligation and transformation 

T4 ligase can catalyze the reaction to form a phosphodiester bond between the 5' phosphate group of 

one fragment and the 3'‐hydroxyl group of the other. The molar ratio of the insert to the vector can 

vary from 3:1 to 7:1, and the amount of insert can be calculated as follows: 

 

Insert (ng) =     
Vector (ng) x Insert (kb) 

x desired molar ratio of insert:vector 
Vector (kb) 

 

The ligation mixture contained DNA fragments (insert), vector, and T4 ligase in a proper buffer. The 

reaction was performed at 16 °C for 3 h or 4 °C overnight (~ 15 h). 50 µl competent cells were 

incubated with 5 µl of the ligation mixture on ice for 30 minutes. The cells were placed at 42 °C for 90 

seconds for heat shock and later cooled on ice for 5 minutes. 400 µl LB medium was added to the 

transformed cells, and the culture was grown at 37 °C for 1 hour. The bacterial suspension was spread 

on the agar plates with the appropriate antibiotic according to the plasmids, which then were incubated 

at 37 °C overnight. 

The colonies on the agar plates were examined the next day, which were inoculated in 3 mL LB 

medium with the right antibiotics and grown overnight (~ 15 hours). The cells were harvested and 

plasmids were prepared by using the Qiagen Miniprep plasmid kit following the protocol from the 

manufacture’s instruction. The plasmids could be further identified by the cleavage of proper restriction 

enzymes described in 3.1.3. The positive ones were sent for DNA sequencing for precise checking. 

 

3.1.6 SDS-polyacrylamide gel electrophoresis 

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis, is a technique used to separate 

protein mixtures based on their molecular weight under denaturing conditions. The detergent SDS 

would linearize and impart the negative charge to the polypeptide. The distribution of SDS covered on 

the protein surface mostly correlates to the molecular weight of the protein, therefore allowing them to 

be separated by their sizes. 

 

Resolving gels (12%)  Resolving gels (10%) 

1.5 M Tris pH 8.8 3.75 ml  1.5 M Tris pH 8.8 3.75 ml 

SDS (10% in water) 0.15 ml  SDS (10% in water) 0.15 ml 

Acrylamide (Rotiphorese® gel 30)* 6 ml  Acrylamide (Rotiphorese® gel 30)* 4.95 ml 

TEMED 7.5 µl  TEMED 7.5 µl 

APS (10%) 75 µl  APS (10%) 75 µl 

H2O 5.1 ml  H2O 6.25 ml 
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Stacking gels (4%) 

1.5 M Tris pH 6.8 1.25 ml 

SDS (10% in water) 0.05 ml 

Acrylamide (Rotiphorese® gel 30)* 0.65 ml 

TEMED 5 µl 

APS (10%) 25 µl 

H2O 3.05 ml 

Table 3.1 Composition of SDS-PAGE gels. 

 

The solution of the resolving gel prepared as described above was poured into a Bio-Rad® casting 

apparatus. First, 70% ethanol was overlaid on the top of the solution. After cross-linking between 

polyacrylamide molecules for 40 minutes, the ethanol was removed. The stacking gel solution was 

filled on the top of the resolving gel, and the gel combs were inserted immediately. After 

polymerization for 20 minutes, the gel could be used directly after the polymerization of the stacking 

gel or stored at 4 °C for 3 weeks. 

SDS-PAGE was performed according to the following steps. Protein samples were mixed with 4x 

sample buffer and denatured at 95 °C for 4 minutes. The sample mixture was loaded on 10% or 12% 

SDS-PAGE and run at 200 V in an electrophoresis buffer. The proteins were first concentrated in the 

stacking gel and further separated in the resolving gel on the basis of their molecular weight. After 

electrophoresis, the gel was stained in Coomassie blue solution for 20 minutes at RT with shaking. The 

destaining solution was changed several times in order to destain the gel so that the protein bands could 

be visualized. If Western blot was required, the gel was directly transferred into the cathode buffer 

without the Coomassie blue staining step. 

 

3.1.7 Western blot 

In our Western blot analysis, the proteins separated by SDS-PAGE were transferred into a 

polyvinylidene difluoride (PVDF) membrane. The target protein can be detected by a specific antibody 

through an immunological reaction. Semi-dry Western blot was used in our experiments (Towbin et al., 

1979). After the completion of the gel electrophoresis as described in 3.1.6, the gel was subjected to 

cathode buffer. The PVDF membrane was dipped in pure methanol for activation. Then 3 filter papers, 

2 filter papers and the activated PVDF membrane, and 5 filter papers including the gel were soaked in 

anode buffer I, anode buffer II, and cathode buffer, respectively, for about 10 minutes. Then the total 

transfer stack composed of 5 filter papers from cathode buffer, the gel, the PVDF membrane, 2 filter 

papers from anode buffer II, and 3 filter papers from anode buffer I laid out from cathode to anode was 

set up as demonstrated below. The transfer process was performed at 0.8 mA/cm2 of gel electrogram for 

55 minutes. 

After the transfer, the PVDF membrane was stained in Ponceau staining solution for 30 seconds and 

destained with 1% acetic acid until protein bands appeared. Then the PVDF membrane was washed in 

TBST solution until no protein band was visible. The PVDF membrane was then blocked by 5% milk 

TBS solution at RT for 1 hour with shaking or at 4 °C overnight in order to prevent non-specific 
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adsorption of antibodies. The membrane was washed 3 times for 10 minutes each in TBST solution and 

incubated with the primary antibody such as anti-histidine antibody for 1 hour at RT. After rinsing with 

TBST solution 3 times for 10 minutes each, the PVDF membrane was incubated for 1 hour at RT with 

a secondary antibody against the primary antibody. Again repeating the washing step with TBST 

solution, the membrane was immunostained by adding an enhanced chemiluminescence mixture 

containing 1 ml luminal solution and 10 µl coumaric acid to the PVDF membrane for 1 minute. The 

membrane was then placed in a film cassette and exposed to an X-ray film for an appropriate amount 

of time ranging from 30 seconds to 10 minutes. The film was developed by using an X-ray film 

exposure machine, and the signal was detected. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Transfer stack in semi-dry Western blot. Arrangement of the transfer stack from cathode to anode: 5 

filter papers in cathode buffer, SDS-PAGE gel in cathode buffer, PVDF membrane in anode buffer II, 2 filter 

papers in anode buffer II, and 3 filter papers in anode buffer I. 

 

3.1.8 Determination of protein concentration 

The Bradford method for determining protein concentration is based on the shift of absorbance 

maximum of Coomassie Brilliant Blue G-250 dye from 465 nm to 595 nm when the protein-dye 

complex is formed (Bradford, 1976). An increase in absorbance at 595 nm correlates with the amount 

of protein, hence providing a measurement for the determination of protein amount. 

In order to determine the protein concentration, a series of BSA concentrations as standards was 

prepared to plot a calibration curve. Then, 5 µl of each standard was mixed with 495 µl ddH2O. To this 

mixture, 125 µl Bradford reagent was added with an immediate vortex and incubated for 15 minutes at 

RT. The absorption in a cuvette at 595 nm was observed using a photometer. Thus, the calibration 

curve of absorption against protein concentration was plotted. The absorption of a sample following the 

above procedure was obtained, and the sample concentration could be calculated using the previous 

calibration curve. 

 

3.1.9 Cell culture of P. falciparum 

The P. falciparum 3D7 strain in intraerythrocytic stages was cultured as described before with slight 

CATHODE (-) 

ANODE (+) 

Filter paper/ 
Cathode buffer 

SDS-PAGE gel 

PVDF membrane 

Filter paper/ 
Anode buffer II 

Filter paper/ 
anode buffer I 
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modification (Trager et al., 1976). The RPMI 1640 medium plus 0.5% Albumax, 9 mM glucose, 0.2 

mM hypoxanthine, 2.1 mM L-glutamine, and 22 µg/ml gentamycin was used to culture the parasites 

supplemented with RBC (A+) at 3.3% hematocrit. The culture was maintained in an incubator 

containing 3% O2, 3% CO2, and 95% N2 at 37 °C. The parasite growth was monitored by checking the 

parasitemia with Giemsa staining (10% Giemsa, 20 minutes). Normally parasites propagate 3 to 8-fold 

every 48 hours. High parasitemia should be avoided in order to obtain a standard growth unless 

experiments are required. 

 

3.1.10 Magnetic purification of P. falciparum in trophozoite stage 

The parasites in the trophozoite stage were purified by magnetic MACS® columns (Ribaut et al., 2008). 

The hemozoin that exists in the trophozoite, schizont, and gametocyte stages binds to the magnetic 

column, resulting in the separation of parasites in these stages from the other parasites and non-infected 

RBCs. An LD magnetic column was connected to a 3-way stopcock and was set into a 

QuadroMACSTM separation system (Miltenyi Biotec, Germany). The LD column was first incubated 

with warmed (37 °C), complete RPMI 1640 medium. One plate of P. falciparum cell culture was 

harvested by centrifugation. The pellet was resuspended in 5 ml RPMI 1640 medium. The suspension 

was loaded on the top of the column, and the column was then washed more than twice with 

pre-warmed culture medium until the flow-through was almost free of RBCs. The column was 

removed from the magnetic support. Then, 10 ml culture medium was used to elute the parasites from 

the column. The eluate was centrifuged, and the pellet was directly used for further analysis or stored at 

-80 °C. 

 

3.2 Adenylate kinase 

3.2.1 Cloning of Pfaklp1 and Pfaklp2 

From a gametocytic cDNA library of P. falciparum 3D7 as well as blood stage cDNA library, the gene 

of Pfaklp1 was cloned by PCR-amplification using the primers (5‘-AACATATGAAAAGAAAAGTAC 

CGAATATAAT-3‘, 5‘-AACTCGAGTATATATGAGAGAACCCAATTTTTTA-3‘) with NdeI and XhoI 

restriction sites (underlined). The following PCR program was employed, and the PCR product was 

ligated into a pGEM-T easy vector (Promega) and transformed into E. coli KRX cells. The colonies 

containing the plasmids were inoculated into 3 mL LB medium containing carbenicillin (100 µg/ml) to 

be grown overnight (~ 15 hours). The plasmids were prepared by using the Qiagen Miniprep plasmid 

kit and identified by the cleavage of NdeI and XhoI restriction enzymes on the agarose gel. The 

plasmids were further sent to sequence for verification. The correct Pfaklp1 gene without a stop codon 

(558 bp) was then cleaved from the pGEM-T easy vectors and subcloned into the expression vector 

pET24a (Pfaklp1/pET24a) with a C-terminal hexahistidyl (His)-tag. 
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PCR mixture  PCR program 

Component Volume (µl)  Program Time and Temperature 

10x buffer 5  Initialization 94 °C for 3 min 

Template (~80 ng) 1  Denaturation 94 °C for 30 s 

dNTP (2 mM) 4  Annealing 55 °C for 45 s 

Primer forward (100 µM) 1  Elongation 72 °C for 90 s 

Primer reverse (100 µM) 1  Cycles 30 cycles 

Polymerase  0.5  Final elongation 72 °C for 10 min 

H2O dd 37.5  

 

In order to clone the Pfaklp1 into a N-terminal His-tag, two primers (5‘-AACATATGAAAAGAAAAG 

TACCGAATATAAT-3‘, 5‘-AACTCGAGTCATATATATGAGAGAACCCAATTTTTTA-3‘) with NdeI 

and XhoI restriction sites amplified an approximate 560 bp fragment. The PCR products were ligated 

into a pGEM-T easy vector and transformed into E. coli KRX cells. The colonies grown on agar plates 

were inoculated into 3 ml LB medium containing carbenicillin (100 µg/ml). The plasmids were 

prepared from overnight culture and identified by the digestion of NdeI and XhoI restriction enzymes. 

The plasmids containing the inserts were sent for sequencing. After sequencing, the Pfaklp1 gene was 

subcloned into the pET28a (Pfaklp1/pET28a) vector with an N-terminal His-tag. 

 

PCR mixture  PCR program 

Component Volume (µl)  Program Time and Temperature 

10x buffer 5  Initialization 94 °C for 3 min 

Template (~80 ng) 1  Denaturation 94 °C for 30 s 

dNTP (2 mM) 4  Annealing 57 °C for 45 s 

Primer forward (100 µM) 1  Elongation 72 °C for 90 s 

Primer reverse (100 µM) 1  Cycles 30 cycles 

Polymerase  0.5  Final elongation 72 °C for 10 min 

H2O dd 37.5  

 

For amplification of the PfAKLP2-encoding sequence, two primers (5‘-ATATGGATCCGAAACACTT 

CTACATAGCGAAATAT-3’ and 5’-ATATCTCGAGTTACCTTATATAGGAAAGAACTTGG-3’) with 

restriction sites of BamHI and XhoI (underlined) were used and amplified an approximately 790 bp 

product by PCR from a blood stage cDNA library of P. falciparum 3D7. The amplified sequence was 

ligated into a pGEM-T easy vector. After the ligation, the mixture was added to competent E. coli XL-1 

Blue cells for transformation. The colonies observed on the agar plates were picked up to be cultured in 

3 ml LB medium containing carbenicillin (100 µg/ml) overnight (~ 15 hours). The plasmids were then 

prepared by using Qiagen Miniprep plasmid kit. After verified by restriction enzymes, the sequence 

was performed, and the results were compared with the data in the NCBI databank in order to check the 

whole sequence. The fragment with the correct sequence was then subcloned into pET28a 

(Pfaklp2/pET28a) with an N-terminal His-tag. 
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PCR mixture  PCR program 

Component Volume (µl)  Program Time and Temperature 

10x buffer 5  Initialization 94 °C for 3 min 

Template (~80 ng) 1  Denaturation 94 °C for 30 s 

dNTP (2 mM) 4  Annealing 55 °C for 45 s 

Primer forward (100 µM) 1  Elongation 72 °C for 90 s 

Primer reverse (100 µM) 1  Cycles 30 cycles 

Polymerase  0.5  Final elongation 72 °C for 10 min 

H2O dd 37.5  

 

3.2.2 Overexpression and purification of PfAKLP1 and PfAKLP2 

The construct Pfaklp1/pET24a or Pfaklp1/pET28a was transformed into E. coli KRX cells. Cells were 

grown at 37 °C in TB medium containing 50 µg/ml of kanamycin. The culture was induced by 0.1% 

(w/v) rhamnose at an optical density (OD600nm) of 0.6. The culture was further grown at 30 °C 

overnight for about 15 hours. Cells were harvested by centrifugation at 10,000 g for 15 minutes at 4 °C 

and resuspended in 50 mM sodium phosphate, 300 mM NaCl, pH 8.0. After adding protease inhibitors 

composed of pepstatin, cystatin, and PMSF, cells could be stored at -20 °C or directly be lysed for 

purification. 

The cells were lysed by the addition of lysozyme and DNase I and stirred on ice for 30 minutes, 

followed by 6 times for 20 seconds, with each sonication in the presence of protease inhibitors (100 µM 

PMSF, 3 µM pepstatin, and 80 nM cystatin). After centrifugation at 38,000 g for 30 minutes at 4 °C, the 

supernatant containing all soluble proteins was deposited onto a 1 ml nickel-nitrilotriacetate (Ni-NTA) 

column that was equilibrated with buffer containing 50 mM sodium phosphate, 300 mM NaCl, pH 8.0. 

The recombinant protein was eluted with 20-200 mM imidazole after the column was washed with 10 

ml buffer. The fractions were observed on the SDS-PAGE. The samples were concentrated with a 10 

kDa viva spin column and further purified by gel filtration. 

Overexpression and purification of PfAKLP2 were carried out as described for PfAKLP1, but Protino® 

Ni-TED resin was used instead of Ni-NTA for the purification.  

 

3.2.3 Gel filtration of PfAKLP1 and PfAKLP2 

The proteins can be separated according to their molecular mass during gel filtration. The large proteins 

pass through the gel filtration medium faster than the small ones.  

PfAKLP1 and PfAKLP2 were further purified by gel-filtration chromatography on a HiLoad 16/60 

Superdex 200 prep-grade column connected to an ÄKTA FPLC system (Amersham Pharmacia 

Biotech). The column was first calibrated with a gel-filtration standard (Amersham Pharmacia Biotech). 

Before loading the sample, the column was rinsed by 1 column volume of ultrapure water and then 

equilibrated with the buffer containing 50 mM sodium phosphate, 300 mM NaCl, pH 8.0. PfAKLP1 or 

PfAKLP2 was applied onto the column and the proteins in eluate fractions were detected 

spectrophotometrically at 280 nm. The protein fractions containing PfAKLP1 and PfAKLP2 were 
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concentrated with a 3 kDa viva spin column. Protein concentrations were determined using the 

Bradford protein assay (Bradford, 1976) using bovine serum albumin as a standard sample. Purity of 

the recombinant proteins was verified by SDS-PAGE. After use, the column can be washed with buffer 

and ultrapure water and stored in 20% ethanol water.  

 

3.2.4 His-tag cleavage of recombinant proteins by thrombin enzyme 

N-terminal His-tag cleavage of PfAKLP1 and PfAKLP 2 was carried out by using a thrombin kit from 

Novagen. This endoprotease could recognize the sequence of Leu-Val-Pro-Arg-Gly-Ser and cut 

between Arg and Gly, which exist between the His-tag and our recombinant proteins due to the design 

of the pET28a vector. Therefore, the protein without the His-tag can be obtained. In our study, about 

3-4 mg of PfAKLP1 and PfAKLP 2 mixed with 10x thrombin cleavage buffer and 0.1 ml of thrombin 

per mg of protein was used, and the whole reaction was performed for 16 hours at 4 °C. Subsequently, 

the mixture was again loaded onto the affinity column in order to remove the uncleaved proteins. The 

resulting protein without His-tag could be obtained in the fraction of flow through. The proteins can be 

detected via SDS-PAGE gel and the cleavage of the tag can be confirmed by Western blot with the 

His-tag antibody. 

 

3.2.5 Enzyme assay 

The AK assay used in our study is based on the determination of ADP with pyruvate kinase and lactate 

in a coupled assay system as shown in Figure 3.2. Generally, ADP produced by AK can be utilized by 

PK, yielding the pyruvate. The third reaction catalyzed by LDH could use pyruvate and NADH as the 

substrate. The consumption of NADH is measured by the change of absorbance at 340 nm. The enzyme 

assay mixture contained 200 µM NADH, 10 U/ml lactate dehydrogenase (Roche), 10 U/ml pyruvate 

kinase (Roche), 2.3 mM NMP, 0.8 mM NTP, and rate-limiting quantities of PfAKLP1 or PfAKLP2 in 

1.5 mM MgCl2, 90 mM KCl, 110 mM TEA-HCl, pH 7.6, at 25 °C. The consumption of NADH (ε340nm 

= 6.22 mM-1cm-1) was measured spectrophotometrically at 340 nm. In order to determine the substrate 

specificity, we tested AMP, CMP, UMP, IMP, and GMP as substrates while using ATP as the phosphate 

donor. The NTPs were also studied by testing ATP, GTP, ITP, and UTP as phosphate donors with AMP. 

 

 

ATP + AMP ⇔ 2 ADP  ADP + PEP ⇔ ATP + Pyruvate  Pyruvate + NADH ⇔ NAD+ + Lactate 

 

Total reaction:  AMP + 2 PEP + 2 NADH   ATP + 2 Lactate + 2 NAD+ 

 

εNADH = 6.22 mM-1cm-1 △A/min X V0 

6.22 X Vi 

 

Figure 3.2 Overall reaction in an adenylate kinase-coupled assay. PK, pyruvate kinase; LDH, lactate 

dehydrogenase; PEP, phosphoenolpyruvate. 

LDH PK AK 

[ U/ml ] VA= 
V0 is the total volume of assay,  

and Vi is volume of enzyme used. 
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3.2.6 GFP constructs of all wild type AKs 

Green fluorescent protein (GFP) is a protein originally containing 238 amino acids that will emit green 

fluorescence at 509 nm when excited with blue or ultraviolet light (Shimomura et al., 1962; Tsien, 

1998). The vectors expressing target proteins fused with GFP can be transfected into P. falciparum, 

which can then be examined for subcellular localization of target proteins. Under a fluorescent 

microscope, immunofluorescence from a compartment-specific protein will co-localize with 

fluorescence from GFP, thus revealing unique compartment localizations of target proteins.  

In order to investigate the localization of all AKs in P. falciparum, we designed primers (Table 3.1) to 

insert BglII and AvrII restriction sites at both ends of the genes of Pfak1, Pfak2, Pfgak, and Pfaklp1, 

respectively. The genes were then cloned into a pSK-GFP vector via BglII and AvrII restriction sites in 

order to obtain GFP-fused genes with the right orientation, which located AK genes in the upstream of 

the GFP gene. Digestion with XhoI yielded fragments containing the respective gene coupled to a 

downstream GFP gene. After sequencing, the correct fusion fragments were ligated into a pARL-1a+ 

shuttle vector, which has a low-expression CRT promoter and allows episomal expression as described 

previously (Kehr et al., 2010). The transfection vectors containing the fusion constructs were verified 

by sequencing, transformed in E. coli, and purified from E. coli using a Qiagen Maxi Kit. After the 

preparation of DNA from the kit, a further precipitation step was required to obtain the sterile DNA 

with high purity. Normally 550 µl of DNA solution was transferred to a 2 ml EP tube. Then 55 µl (0.1 

volume) of a 3 M sodium acetate solution (pH 5.8) was added to the DNA solution. Finally 1.35 ml 

(2.5 fold) of cold ethanol was mixed with the solution. During this step, the DNA precipitation 

appeared. Typically the precipitation process was performed at -20 °C for at least 30 minutes. Then the 

tube was centrifuged at 13,000 rpm for 15 minutes at 20 °C in order to pelletize the DNA. The DNA 

pellet was washed twice with 70% cold ethanol and dried at RT. Finally the pellet was dissolved in 

60-90 µl of sterile TE buffer. 

Gene Primers 

Pfak1 
CATAGATCTATGAATGAAAATTTAGAAAATTTTTC 

CATCCTAGGacctgctgcACCGTCTATATGTTGAGAGATTT 

Pfak2 
CATAGATCTATGGGATCATGTTATAGTAGAA  

CATCCTAGGacctgctgcATTGGGGTTATCATCTATAATG 

Pfgak 
CATAGATCTATGAGAATTGTATTATTTGGAG  

CATCCTAGGacctgctgcTTTTAATTTTTCATTTTTTCTGTA 

Pfaklp1 
CATAGATCTATGAAAAGAAAAGTACCGAATATA     

CATCCTAGGacctgctgcTATATATGAGAGAACCCAATTTTT   

Pfaklp2 

Mutant 
ATGTTAACTATtCTAGGAACTAATAAAAAG 

CTTTTTATTAGTTCCTAGaATAGTTAACAT 

GFP CATAGATCTATGGAAACACTTCTACATAGC  

CATCCTAGGacctgctgcTATATCACCGTTTAAAGTCGA 

Table 3.2 Primers for AK-GFP constructs. The BglII and AvrII restriction sites are underlined. Two pairs of 

primers are needed for Pfaklp2 because an additional silence mutation was required. The mutated nucleotides are 

indicated as bold small letters. 
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Figure 3.3 AK protein-fused GFP for sublocalization. The GFP gene is placed on the C-terminus of the AK gene, 

hence the fused protein. 

 

Because an AvrII restriction site exists in Pfaklp2, we first introduced a silent mutation to remove the 

AvrII restriction site. The introduced mutation was designed to eliminate the AvrII restriction site in the 

nucleotide sequence without changing the amino acids of PfAKLP2 so that we could use BglII and 

AvrII restriction sites for GFP vector construction. Site-directed mutagenesis was performed as 

described by the QuickChange® site-directed mutagenesis kit with some modifications. The 

Pfaklp2/pET28a and the mutant primers (shown in Table 3.1) were used to generate the silent mutation. 

PCR was performed according to the table listed below, and products were purified with a QIAquick 

PCR purification kit and then digested with DpnI (37 °C for 2 hours). The digestion step (see below) 

was used to destroy the template, a methylated DNA used in mutagenesis PCR. Since the 

Pfaklp2/pET28a as the template was prepared from E. coli culture, it was methylated and could be 

cleaved by DpnI. After this step, the mutagenic plasmids from the PCR reaction were transformed into 

E. coli XL-1 blue cells. A colony on the agar plate was inoculated in LB medium and grown overnight 

(15 hours), and plasmids were prepared by using the Qiagen Miniprep plasmid kit. The mutation was 

verified by sequencing the plasmids. Subsequently, a GFP fusion vector for Pfaklp2 was constructed by 

following the procedure we described above for other AKs.  

 

DpnI digestion 

Component Volume (µl) 

PCR product 30 

10 x Tango buffer 5 

DpnI (10 U/µl) 2.5 

H2O dd 12.5 

 

PCR Mixture  PCR Program 

Component  Volume (µl)  Program Time and Temperature 

10x Pfu buffer 5  Initialization 94 °C for 5 min 

Template (~80 ng) 1  Denaturation 94 °C for 1 s 

dNTP (2 mM) 4  Annealing 55 °C for 1 s 

Primer forward (100 µM) 1  Elongation 68 °C for 9 min 

Primer reverse (100 µM) 1  Cycles 18 cycles 

Pfu Polymerase  0.5  Final elongation 68 °C for 15 min 

DMSO 2.5   

H2O dd 35  

AK GFP N C 
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3.2.7 GFP construction of a mutant PfAK2 at the myristoylation site 

Glycine in position 2, the N-myristoylation site of PfAK2 [6], was mutated to an alanine. PCR for 

site-directed mutagenesis of Pfak2 was performed with a Pfu polymerase (Promega) using primers 

carrying the respective mutated codon: 5‘-GAGATCTATGGCATCATGTT ATAGTAGAAAAAAT-3‘, 

5‘-ATTTTTTCTACTATAACATGATGCCATAGATCTC-3‘; the mutated codon is underlined. PCR 

templates were removed by digestion with DpnI, and the PCR product was subsequently transformed 

into competent E. coli XL1-Blue cells. The introduction of the correct mutation into the gene sequence 

was verified by sequencing, and a GFP-fusion construct of PfAK2G2A was created as described above. 

 

PCR Mixture  PCR Program 

Component  Volume (µl)  Program Time and Temperature 

10x Pfu buffer 5  Initialization 94 °C for 5 min 

Template (~80 ng) 1  Denaturation 94 °C for 1 s 

dNTP (2 mM) 4  Annealing 55 °C for 1 s 

Mutant primer forward (100 µM) 1  Elongation 68 °C for 9 min 

Mutant primer reverse (100 µM) 1  Cycles 18 cycles 

Pfu polymerase  0.5  Final elongation 68 °C for 15 min 

DMSO 2.5   

H2O dd 35  

 

3.2.8 Parasite transfection 

Transfection was carried out with the P. falciparum 3D7 strain via the electroporation method (Crabb et 

al., 2004). A 5 ml parasite culture at ring stage (8-10 hours) with 5-8% parasitemia was centrifuged at 

1,500 g for 5 minutes. Cytomix buffer was mixed with 150 micrograms of plasmid (AK-GFP fusion 

gene in pARL-1a+) in a total volume of 400 µl. Then parasite pellet was resuspended in 400 µl plasmid 

Cytomix solution. The suspension was transferred into a sterile electroporation cuvette. Subsequently, 

the parasites were electroporated at 310 V, 950 µF (Gene pulser, Bio-Rad) as described (Crabb et al., 

2004). The resulting time constant was about 13 milliseconds. Transfected parasites were immediately 

transferred into 15 ml of fresh pre-warm (37 °C) medium with 3.5% hematocrit. Six hours post 

transfection, 2 nM WR99210 was added as a selection marker for transfectant selection. After 3-4 

weeks, the concentration of WR99210 can be increased to 5 nM. Parasites were maintained by 

changing the complete RPMI medium daily containing WR99210 and adding 100 µl of fresh 

erythrocytes weekly. 

 

3.2.9 Immunofluorescence imaging 

Immunofluorescence imaging was carried out in collaboration with Dr. Jude Przyborski’s group at 

Philipps University in Marburg. The cells were fixed in 4% paraformaldehyde/0.0075% glutaraldehyde 

in PBS pH 7.4 for 30 minutes at 37 °C (Tonkin et al., 2004). The fluorescence quenching was achieved 

by adding 100 mM glycine/PBS. To label the nucleus, Hoechst DNA binding dye (50 ng/ml) was used 
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while the MitoTracker probe was applied to reveal the mitochondrion. Anti-SERP antibody can display 

the parasitophorous vacuole where serine-rich protein (SERP) was localized and anti-EXP1 antibody 

can show the parasitophorous vacuole membrane. The BODIPY dye can stain the lipid membrane. The 

images were obtained on a Zeiss Axio Observer inverted epifluorescence microscope system. 

 

3.2.10 Western blot analysis 

The transgenic parasites were maintained as described [9]. Parasitized red blood cells with P. 

falciparum at the trophozoite stage (IRBC) were enriched using LD-columns (MACS, Miltenyi Biotec) 

[12]. IRBCs were harvested at 300 g for 3 minutes at room temperature and resuspended in 50 µl 10 

mM Tris pH 7.4, containing complete cocktail protease inhibitors from Roche. IRBCs were lysed by 

three freezing-thawing cycles using liquid nitrogen. The pellet was vigorously mixed by using a table 

vortex and briefly centrifuged before soaking it into the liquid nitrogen. The lysate was centrifuged at 

50,000 g for 30 minutes at 4 °C. The supernatant containing the erythrocyte cytosol and parasite 

cytosol was transferred to a new tube and centrifuged two more times in order to remove any remaining 

contamination with the membrane fraction. The membrane pellet derived from the first centrifugation 

of the lysate was washed once with 1 ml and twice with 100 µl of the Tris buffer. 

The membrane pellet and the supernatant including proteins from the erythrocyte cytosol and parasite 

cytosol were separated by 12% SDS-PAGE and transferred to a PVDF membrane. Membranes were 

probed with anti-GFP (1:1,000, Roche), anti-Hsp70 (1:1,000, T. Blisnick, Paris), or anti-Exp1 (1:500, 

Jude Przyborski) antibodies, respectively, followed by HRP-conjugated secondary anti-mouse 

antibodies (1:10,000, Jackson ImmunoResearch). All antibodies were diluted in 5% non-fat milk in 

TBST buffer. The membrane was then incubated with enhanced chemiluminescence agents for 

detection and exposed to X-ray film for a proper time starting from 30 seconds to 10 minutes. The film 

was developed by using an OptiMax X-ray film processor and the signal was detected. 

 

3.3 N-myristoylation in P. falciparum 

3.3.1 Metabolic labeling of P. falciparum in cell culture with azido myristic acid 

The bio-orthogonal chemical reporters have been discovered to be a powerful tool for studying the fatty 

acylation of proteins in cells. Due to the property tested in mammalian cells (Hang et al., 2007), we 

employed azido myristic acid to investigate the myristoylation in P. falciparum.  

The P. falciparum strain 3D7 was continuously cultured in vitro according to the method in 3.1.9. The 

azido myristic acid was dissolved in DMSO to obtain a 50 mM stock solution. 45 µl stock solution of 

azido myristic acid was pre-mixed with 45 ml warm (37 °C) complete medium (RPMI 1640 medium 

with supplements). The culture medium was then changed with this fresh medium containing azido 

myristic acid at 1.25% parasitemia at the schizont stage. After around 26 hours, the medium was 

changed once with the addition of the same concentration of azido myristic acid. After another 12-hour 

culture, the parasite was purified with the magnetic column as in the previously described method in 

3.1.10. The pellet was incubated with saponin solution for approximate 45 s to burst the RBCs without 

lysing the parasites. The complete medium was used to wash the parasites several times. The parasites 



Methods 
 

48 

 

were harvested by quick centrifugation and were ready to use. The same volume of DMSO was added 

in cell culture instead of azido myristic acid in order to obtain the parallel negative control. Different 

concentrations of azido myristic acid were added into the cell culture when the dose-dependent effect 

was investigated. During the whole labeling process, we tried to minimize the exposure of the sample 

to light because the azido myristic acid is photosensitive.  

 

3.3.2 Preparation of parasite cell lysate and click reaction 

The parasite pellet was resuspended in 1% Triton PBS buffer (pH 7.4) and lysed by freezing-thawing 

four times and three times for 5 seconds for each sonication. The lysate was centrifuged at 16,000 g for 

30 min at 4 °C. The supernatant was transferred into another tube and centrifuged at 100,000 g for 30 

min at 4 °C. The pellet and the supernatant were collected separately for later experiments. The 

samples during preparation should not be exposed to light. 

The proteins labeled by azido myristic acid that have an azido group can react with alkynyl biotin. The 

Cu-catalyzed azide-alkyne cycloaddition reaction can form a triazole from a terminal alkyne and an 

azide, therefore resulting in the biotinylation of the proteins that are supposed to be myristoylated. The 

protein concentration of parasite lysate was determined by the Bradford assay (Bradford, 1976). The 

click reaction took place as follows: 

 

Component Stock concentration Working concentration Volume 

Protein / 1-2 mg  

Alkynyl biotin 4 mM 100 µM 12.5 µl 

TCEP 50 mM 1 mM 10 µl 

TBTA 10 mM 100 µM 5 µl 

CuSO4 50 mM 1 mM 10 µl 

PBS buffer / / Up to 500 µl 

Table 3.3 Compositions of CuAAC click reaction 

 

The reaction lasted for 3 hours at RT with shaking. After the click reaction, the proteins become 

biotinylated and are stable in the presence of light. The methanol:chloroform precipitation method was 

employed to terminate the reaction and remove excess biotin from the solution. Briefly, 600 µl of 

methanol was added to the 200 µl reaction solution following an addition of 150 µl chloroform to the 

mixture. Then 400 µl of ultrapure water was required for mixing. The vortex step was necessary after 

each addition. After centrifugation for 10 minutes at 15,000 g, the upper aqueous phase was discarded 

as much as possible without disturbing the interface layer. Then 450 µl of methanol was added to the 

tube and was centrifuged for 10 minutes at 15,000 g. The supernatant was removed afterwards and the 

protein pellet was washed three times with 600 µl methanol and was air-dried for 5 minutes. The pellet 

was resuspended in 1% Triton PBS and kept at -20 °C for around 3 days. The water-bath sonication 

may be required to fully solubilize the protein pellet. The negative control and the sample with the 

addition of azido myristic acid should simultaneously proceed following the same procedure as 

described above. 
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3.3.3 Visualization of myristoylated proteins by streptavidin-HRP blot 

The general procedure is the same as the classic Western blot described in 3.1.7, except that no second 

antibody is required. Before the sample was loaded onto the SDS-PAGE, the protein concentration was 

measured using a Bradford assay (Bradford, 1976). The same amounts of proteins from negative 

control and sample were loaded into gel slots. After gel electrophoresis, the proteins were transferred 

into a PVDF membrane using the semi-dry method. The efficiency was checked by Ponceau staining, 

and the membrane was blocked in 5% milk TBST at 4 °C overnight. The streptavidin-HRP with 

1:1,000 dilution in TBST solution was prepared and added to the membrane for 1 hour at RT after 

washing three times. The membrane was incubated with chemiluminescence reagent for 1 minute and 

visualized in an X-ray film. 

 

3.3.4 Pull-down assay of myristoylated proteins with avidin beads from P. falciparum 

The biotin-avidin system is a mainstay in most fields of biological sciences. The binding interaction 

between biotin and streptavidin is one of the strongest non-covalent ones known in nature. The strong 

interaction between avidin and biotin can be exploited to affinity-isolate biological molecules. In our 

study, we employed soft-link avidin beads in order to pull down the biotinylated proteins. 

This soft-link avidin beads allow the neutral condition to elute the proteins from the beads. The 5 mM 

biotin was pre-incubated to the 100 µl bead slurry for 30 minutes in order to block all the binding sites 

of biotin in the avidin beads. After incubation, the biotin solution was discarded by centrifugation, and 

the beads were washed several times with PBS buffer. Then 1 ml 10% acetic acid was added to wash 

the beads with gentle shaking for 10 minutes. The acetic acid needed to be changed twice. During this 

step, the irreversible binding sites in avidin beads were still blocked by biotin while reversible binding 

sites were released by acid wash. Then the beads were washed five times with 500 µl NaPO4 (pH 7.0) 

buffer, and the pH was monitored until it reached 6.8. The beads were equilibrated with 0.1 M NaPO4 

(pH 7.0) for 1 hour in order to let avidin refold. The beads were then equilibrated with 1% Triton PBS 

buffer. Then the protein sample was added to the beads for pull-down with shaking for 3 hours. The 

beads were centrifuged, and the supernatant was removed. After this, the beads were intensively 

washed 6 times with 1% Triton PBS buffer, and the biotinylated proteins were eluted by using the 5 

mM biotin PBS solution. The eluants were collected for further analysis. The beads were boiled with 

4x sample buffer at 96 °C for 10 minutes to check the elution efficacy.  

 

3.3.5 Prediction of myristoylation in P. falciparum 

Since a conserved motif for myristoylation exists, at least two prediction tools are available on the web. 

Myristoylator on ExPASy (Bologna et al., 2004) web and the MYR Predictor provided by IMP 

Bioinformatics Group (Maurer-Stroh et al., 2004) can predict the myristoylated proteins by 

bioinformatic methods based on the analysis of diverse NMT structures from different species and the 

recognition motif in the myristoylated proteins. The MYR Predictor is developed relying on a method 

that uses position-specific independent counts, redundancy-corrected profiles of known substrates in 
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combination with physicochemical constraints of enzyme-substrate interactions (Maurer-Stroh et al., 

2004). The MYR Predictor is designed to predict not only the N-terminal glycine myristoylation site 

but also a possible internal glycine. The myristoylator employs a neural network models that can 

distinguish the myristoylated proteins from nonmyristoylated ones for prediction and has a false 

positive error rate equal to 2.1%. The entire proteome of P. falciparum was obtained from the 

PlasmoDB web server, which contains a lot of information of Plasmodium. The sequences of the whole 

proteome were subjected to the web server of the MYR Predictor. Then the server returned prediction 

results. After this, the predicted proteins were repeatedly analyzed with the myristoylator tool.  

 

3.4 Crystal screening of N-myristoyltransferase 

3.4.1 Overexpression and purification of N-myristoyltransferase from P. falciparum 

The Pfnmt gene was subcloned into pET28 from a Pfnmt/pQE30 construct (Rahlfs et al., 2009) in order 

to overexpress PfNMT with a His-tag. In brief, BamH I and Hind III were used to digest the 

Pfnmt/pQE30 and pET28. The ligation step was performed as described in the general methods section 

in order to construct a Pfnmt/pET28. The ligation mixture was transformed into competent KRX cells, 

and the plasmid was confirmed by digestion with BamH I and Hind III following the standard protocol 

described previously.  

Heterologous overexpression of PfNMT was optimized by varying the different parameters such as cell 

strain, medium, and helper plasmids. The overexpression conditions tested in my work are listed in 

Table 4.1 in the Results section. 

The optimized protocol for PfNMT overexpression employed in our experiment is described below. 

The vector PfNMT/pET28 was transformed into a competent C41/pGro7 cell line. After inoculating the 

colony into 3 ml LB medium and subsequently into 50 ml medium as a pre-culture, one liter of TB 

medium was inoculated and shaken at 37 °C. The media each contained 50 µg/ml kanamycin and 25 

µg/ml chloroamphenicol. L-arabinose with a final concentration of 1 mg/ml was added when starting 

the 1-liter culture. The addition of 1 mM IPTG was carried out when OD600 reached 0.8. Subsequently, 

the culture was grown at RT for 24 h with a shaking speed of 170 rpm. The cells were harvested by 

centrifugation at 8,000 g for 15 minutes at 4 °C. To resuspend the cells, approximately 30 ml of buffer 

(50 mM Tris, 300 mM NaCl, pH 7.6) was used in addition to the protease inhibitor (100 µM PMSF, 3 

µM pepstatin, and 80 nM cystatin). The cell resuspension was stored at -20 °C.  

The cells were lysed by the addition of lysozyme and DNase I for 40 minutes and then sonicated four 

times for 30 seconds each in the presence of protease inhibitors (100 µM PMSF, 3 µM pepstatin, and 

80 nM cystatin). After centrifugation at 38,000 g for 30 minutes at 4 °C, the supernatant was loaded 

onto a 1 ml Protino-Ni-TED column that was equilibrated with a buffer composed of 50 mM sodium 

phosphate, 300 mM NaCl, and pH 8.0. The recombinant protein was eluted with 30-200 mM imidazole. 

The fractions were analyzed by SDS-PAGE. 

For further purification of PfNMT, the fractions containing PfNMT proteins were combined and 

concentrated with a 10 kDa viva spin column. Gel filtration was carried out as described in chapter 

3.2.3 with only a minor modification. The buffer used for PfNMTP purification was 50 mM Tris, 300 

mM NaCl, pH 7.6. Purity of PfNMT was confirmed by SDS-PAGE and the protein was concentrated 
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with a 10 kDa viva spin column. Protein concentration was determined by a Bradford assay (Bradford, 

1976), which could be used for the following crystallization screen. 

 

3.4.2 PfNMT crystal screening 

This experiment aims to produce crystals of PfNMT that can be used for X-ray diffraction. X-ray 

diffraction data can then be collected for structure solution and structure refinement. Finally, the 

structure of the protein can be solved. Both hanging drop and sitting drop methods, which are 

schematically demonstrated in Figure 3.4, were applied in order to crystallize PfNMT protein based on 

vapor diffusion. The principle of the method is based on vaporization of water or certain volatile agents 

between the droplet containing the protein and the reservoir solution with a large volume and higher 

precipitant. As water vaporizes from the droplet, the precipitant concentration of the droplet gradually 

increases until a crystal appears. Crystals can grow under these optimum conditions because the system 

is in equilibrium (McRee, 1993; Rhodes, 1993). 

The initial trial of crystal screening of PfNMT started with the JCSG Core Suite kit from Qiagen by 

using the Honeybee 961 robot from Zinsser Analytic, which automatically allows a minimum of one 

nanoliter of protein solution for screening and fast plate preparation within 2 minutes. The full set of 

the JCSG Core Suite kit is composed of four screens of 384 unique conditions that have three types of 

precipitants, salt, organic, and polymers, on the basis of analyzing over 500,000 crystallization 

experiments. Therefore, higher hit rates could be expected for the initial screening. The reservoir 

solution without the protein was also sitting on a pedestal above the reservoir solution (Figure 3.4B) as 

a comparison. 

After the preliminary screening, several solutions were picked up for further testing using a manual 

hanging drop method. Reservoir solution drops 2.5 µl in size were mixed with a 2.5 µl PfNMT solution 

sitting on the cover slips. These were then placed over a small well containing 800 µl of the reservoir 

solution. Silicon oil was used on the sides of the glass slip to seal the entire well. 

Besides PfNMT, the complex of the enzyme with myristoyl-CoA was also tried for crystal screening. 

After the pure protein was obtained, myristoyl-CoA was added at a molar ratio of 1:1.5 between  
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Figure 3.4 Schematic diagram of Hanging drop (A) and Sitting drop (B) for protein crystallization. 
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PfNMT and myristoyl-CoA. The complex was ready to use for crystal screening after one night of 

incubation. The crystallization of PfNMT with myristoyl-CoA was screened with the JCSG Core Suite 

kit from Qiagen by using a Honeybee 961 robot. Several conditions were further screened with a 

manual hanging drop method. 

 

3.4.3 Homology modeling of PfNMT 

Homology modeling is a method to construct a 3D structure of the target protein based on its amino 

acid sequence and an experimental structure of its related homologous protein. The accuracy of the 

predicted structure depends on the identity of amino acids between the target proteins and the proteins 

with known structures. Homology modeling requires the following steps (Schwede et al., 2003). First, 

the template will be chosen based on the sequence alignment in a database with the structure solved. 

Then the target sequence is aligned with the main template structures using a local pair-wise method. 

The backbone structure of the target protein will be constructed followed by side chain modeling. The 

energy minimization method is applied in order to normalize and improve the structure. The 

stereochemistry as well as geometric and energetic arrangement of the model should be considered in 

the evaluation process.  

The structural model of PfNMT was predicted via the homology modeling method with the 

Swiss-Model Server (Peitsch et al., 1995). There are three modes to choose from: automated, alignment, 

and project mode. Due to the known structure of Plasmodium vivax NMT, which shares about 80% 

identity with PfNMT, the automated mode can be applied in our experiment. The FASTA format of the 

amino acid sequence from PfNMT was submitted to the Swiss-Model Server. Then best template 

structures from ExPDB were acquired relying on its sequence similarity to PfNMT. This process was 

obtained by aligning the target protein sequence with all entries of the ExPDB sequence database by 

using the BLASTP tool. After this step, the best template was determined to be PvNMT. Hence, the 

structural model was built on a crystal structure of Plasmodium vivax NMT (4a95A). Details of the 

structure model were displayed in a new interface. The model’s coordinates and all analysis results can 

be sent to the user via e-mail. 

 

3.4.4 Crystal screening of PfNMT and the PfAK2 complex 

In our previous study, PfAK2 and PfNMT could form a heterodimer (Rahlfs et al., 2009) in E. coli cells 

that lack myristoylation and NMT of their own and could be overexpressed and purified as a complex 

in vitro.  

In brief, the Pfnmt gene was cloned into a special pQE30 vector, which was modified in our lab in 

order to eliminate the sequence encoding the His-tag. Pfak2 was cloned into pET28 with a C-terminal 

His-tag. Both plasmids were transformed into competent C41 cells for coexpression. The complex of 

PfNMT/AK2 was obtained by two-step purification. The Protino-Ni-TED column was used as a first 

step followed by gel filtration chromatography. The complex of PfNMT/AK2 was concentrated by a 10 

kDa viva spin column to approximately 6 mg/ml and the protein concentration was determined by the 

Bradford method (Bradford, 1976).  
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The crystal screening of PfNMT/AK2 was initiated with the JCSG Core Suite kit from Qiagen by using 

the Honeybee 961 robot from Zinsser Analytic. The various PEG and pH buffers were also tested for 

the initial screening step. 
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Figure 3.5 Flow chart of Protein 3D structure modeling. 
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4. Results 

4.1 PfAKLP1 and PfAKLP2 

In this study, new putative adenylate kinase isoforms have been identified, cloned, heterologously 

overexpressed, and tested in AK enzymatic assays. Besides this, the subcellular localization of AK 

isoforms has been systematically investigated in order to elucidate the AK-mediated, high-energy 

phosphotransfer network in P. falciparum. 

 

4.1.1 Sequence alignment and phylogenetic tree 

When searching for adenylate kinases in PlasmoDB, two new putative adenylate kinases were 

predicted. One gene (PFA0530c; PfAKLP1) is located on chromosome 1 and consists of one exon with 

561 bp. The gene is expressed in intraerythrocytic stages as well as in gametocytic stages (PlasmoDB). 

A homology search on NCBI shows the highest similarity (64% identity) between PfAKLP and a 

hypothetical protein related to nucleotide kinase in P. knowlesi, while the sequences of PfAK1 and 

PfAKLP1 only share 25% identity. Moreover, PfAKLP1 shows similarity with 33% amino acid identity 

compared to human AK6, which has AK activity and is located in the nucleus (Ren et al., 2005). A 

multiple sequence alignment (Figure 4.1) shows that most amino acids of the canonic 

phosphoryl-binding loop GxxGxGxxT in PfAKLP1 (G12, G17, K18, T20 for ATP binding; K18 and 

L75 for AMP binding) are conserved (Rahlfs et al., 2009), while a number of residues typically 

involved in AMP binding (L63, R64, G84, V87, V92, G113, R116, Q120 in PfAK1) are missing in 

PfAKLP1. The arginine residue at position 127 and the spartate residue at position 172 contributing to 

transition state stabilization are conserved in PfAKLP1 (Figure 4.1) (Reinstein et al., 1990; Tsai et al., 

1991). 

Additionally, a second protein (PFI1550c, PfAKLP2) was predicted to belong to the AK family. The 

open reading frame of Pfaklp2 positioned on chromosome 9 has 792 bp including 4 exons. The gene is 

expressed in all stages and has an expression peak in late schizonts (PlasmoDB). A homology search 

based on the BLASTP program predicts the enyme to belong to the P-loop-NTPase superfamily and 

shows that PfAKLP2 has similarity with adenylate kinase from several species including Trypanosoma 

brucei, Leishmania braziliensis, and Gallus gallus. A sequence alignment revealed that the amino acids 

for substrate binding (Q95, K108) and transition stabilization (E138, E175) are hardly conserved in 

PfAKLP2. While V111, I116, G139, and Q146 are reminiscent of AMP binding in PfAKLP2, the 

sequence of the canonic P-loop is – apart from G65 – hardly noticeable (Figure. 4.1) (Reinstein et al., 

1990; Tsai et al., 1991; Ulschmid et al., 2004). 
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Figure 4.1 Multiple sequence alignment of AK family members (Ma et al., 2012). PfAKLP1 (XP_001351038), 

PfAKLP2 (XP_002808979), PfAK1 (XP_001347371), PfAK2 (XP_001349355), PfGAK (XP_001351464), 

human AK6 (NP_057367), and Trypanosoma brucei adenylate kinase B (XP_822341). Amino acids forming the 

canonic phosphoryl loop (P-loop, GxxGxGxxT) are demonstrated in a frame; amino acids responsible for AMP 

binding are indicated by solid circles. The conserved residues labeled by solid triangles play a role in the catalytic 

mechanism of AKs. The polybasic stretch of amino acids related to membrane association is marked by a 

horizontal black arrow. The myristoylated glycine within the myristoylation motif of PfAK2 (underlined) is given 

in the box. The alignment was created by using Clustal Omega. 

 

A phylogenetic tree (Figure 4.2) was constructed based on multiple sequences with high similarity of 

various AKs. It seems the AK members in Plasmodium can be classified into two subgroups. It became 

obvious that the subfamilies of PfAK1 and PfGAK are conserved in closely related organisms. 

Accordingly, PfAK2, which has a novel myristoylated motif at its N-terminus, is clustered separately to 
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distant subgroups of AK when compared to PfAK1 and PfGAK,. The branch of PfAKLP1 seems closer 

to the subgroup of human AK6 while PfAKLP2 is clustered individually. In the phylogenetic tree, the 

branch of PfAK2 is closer to the group including PfAK1 and PfGAK, while the cluster of PfAKLP2 

belongs to the group comprising PfAKLP1 and human AK6. 

 

Figure 4.2 Radial phylogenetic tree generated by using the neighbour-joining method based on the results of 

multiple sequence alignments of AKs from various species (Ma et al., 2012). Tg, Toxoplasma gondii, 

XP_002366164; Tp, Theileria parva, XP_766154; Os, Oryza sativa, NP_001067759; At, Arabidopsis thaliana, 

NP_201145; Nc, Neospora caninum, CBZ51007; Al, Albugo laibachii, CCA23523; Cm, Cryptosporidium muris, 

XP_002141495; Hs, Homo sapiens, NP_057367; Ip, Ictalurus punctatus, NP_001187781. Scale bar, evolutionarily 

indicated 0.2 substitutions per site. Numbers at the branches indicate the confidence level of a bootstrap analysis 

with 1,000 replications as a percentage value. 

 

4.1.2 Cloning of Pfaklp1 and Pfaklp2 

Pfaklp1 was successfully amplified from a gametocytic cDNA library of P. falciparum 3D7 as well 

as blood stage cDNA library using the specific primers described in methods. The resulting 560 bp 

fragment was cloned to pET24 vector, therefore adding a C-terminal His-tag to the protein. In order to 
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cleave the His-tag, Pfaklp1 was subcloned into the pET28a vector to obtain the recombinant PfAKLP1 

protein with a N-terminal His-tag. 

PCR was performed to clone the Pfaklp2 gene in order to construct the overexpression vector. The gene 

was then cloned into the pET28a vector so that the produced proteins contained an N-terminal His-tag 

for further purification and cleavage.  

 

4.1.3 Overexpression and purification of recombinant PfAKLP1 and PfAKLP2 

PfAKLP1 has been successfully overexpressed and purified by the methods we described previously. 

PfAKLP1 was purified by Ni-NTA affinity chromatography followed by gel filtration chromatography 

(Figure 4.3 A and Figure 4.4 A). Heterologous overexpression of PfAKLP1 in E. coli yielded a 25 kDa  

 

           

Figure 4.3 12% SDS-PAGE gel after affinity chromatography purification. A) SDS-PAGE gel of PfAKLP1 

after Ni-NTA purification. M, unstained molecular weight marker; 1: flow-through; 2: wash fraction; 3-7: elution 

with 10 mM, 50 mM, 100 mM, 200 mM, and 500 mM imidazole, respectively. B) SDS-PAGE gel of PfAKLP2 

after Protino Ni-TED purification. M, unstained molecular weight marker;1-5: elution with 10 mM, 50 mM, 100 

mM, 200 mM, and 500 mM imidazole, respectively. 

 

 

Figure 4.4 SDS-PAGE and Western blot of recombinant PfAKLP1 and PfAKLP2 (Ma et al., 2012). (A) and 

(B), recombinant PfAKLP1 and PfAKLP2 on SDS-PAGE with Coomassie staining after gel filtration. (C) and (D), 

Western blot of recombinant proteins PfAKLP1 and PfAKLP2 using an anti-His antibody. 

 

protein with a C-terminal His-tag. The maximum yield of pure protein reached about 4 mg/L E. coli 
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culture. PfAKLP2 can be further purified by gel filtration chromatography after the first purification 

with Protino Ni-TED resin (Figure 4.3 B and Figure 4.4 B). The yield of recombinant PfAKLP2 with 

90% purity was about 1.5 mg/L E. coli culture (Figure 4.3 B and Figure 4.4 D). 

Both recombinant proteins can be verified by Western blot with an anti His-tag antibody as shown in 

Figure 4.4 C and D. 

 

4.1.4 Cleavage of His-tag of recombinant PfAKLP1 and PfAKLP2 by thrombin 

In order to test the effect of the His-tag on the enzyme activity, the enzyme thrombin was used to cut 

the His-tag. Since both genes were cloned into the pET28 vector, recombinant proteins had a thrombin 

cleavage site between their N-terminal His-tag and the proteins. After affinity chromatography 

purification, the His-tags of recombinant proteins were cleaved, and the undigested proteins could be 

removed by an affinity chromatography column. The recombinant proteins were collected in the 

flow-through. As shown in Figure 4.5, the recombinant proteins without His-tag were a little smaller 

than the uncut ones (Figure 4.5 A and C). In a Western blot, such treated proteins were not recognized 

by the anti His-tag antibody, while the untreated ones showed the signals (Figure 4.5 B and D). 

 

4.1.5 Enzyme assay 

The enzyme activity of PfAKLP1 was mainly determined by using the recombinant protein with a 

C-terminal His-tag. The specific activity of PfAKLP1 was approximately 3 mU/mg with ATP and AMP 

as substrates. In order to study whether the His-tag affects the enzymatic activity of PfAKLP1, the 

enzyme without His-tag was also tested in the enzyme assay. However, there was no difference in the 

specific activity of recombinant PfAKLP1 with and without His-tag. We also tested different pH 

ranging from 6 to 9, but the activity was still low. Therefore, it was impossible to determine the Km of 

the substrate in our assay. Different monophosphate nucleotides including AMP, CMP, UMP, IMP, and 

GMP were used as substrates while using ATP as the phosphate donor. Also the various triphosphate 

nucleotides such as ATP, GTP, ITP, and UTP were tested as phosphate donors with AMP. PfAKLP1 

showed the best enzyme activity with ATP and AMP as substrates. 

Even though the different substrates were also employed to show substrate specificities, PfAKLP2 was 

not found to be active in the enzymatic assay described above. After the cleavage of the His-tag by 

thrombin, there was still no detectable activity for PfAKLP2 to demonstrate the His-tag effect. The low 

or absent enzyme activity for these two proteins is indicative that our purified proteins are not 

contaminated with E. coli AK. 
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Figure 4.5 12% SDS-PAGE gel and Western blot after His-tag cleavage by thrombin. A) SDS-PAGE gel of 

recombinant PfAKLP2. M, unstained molecular weight marker; 1, PfAKLP1 with his-tag; 2, PfAKLP1 without 

His-tag after thrombin treatment and Ni-NTA purification. B) Western blot of recombinant PfAKLP1. 1, PfAKLP1 

with His-tag; 2, PfAKLP1 without His-tag after thrombin treatment and Ni-NTA purification. C) SDS-PAGE gel 

of recombinant PfAKLP2. M, unstained molecular weight marker; 1, PfAKLP2 with His-tag; 2, PfAKLP2 without 

His-tag after thrombin treatment and Ni-NTA purification. Black arrow, PfAKLP2. D) Western blot of recombinant 

PfAKLP2. 1, PfAKLP2 with His-tag; 2, PfAKLP2 without His-tag after thrombin treatment and Ni-NTA 

purification. 
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4.2 Localization of PfAK1, PfAK2, PfGAK, PfAKLP1, and PfAKLP2 

4.2.1 Localization of AKs and GAK in Plasmodium 

The vector was constructed by adding a GFP gene downstream of full-length AK genes. Then different 

subcellular localizations of all Plasmodium AKs were demonstrated by examining transgenic parasites 

via immunofluorescence microscopy. It is clear that PfAK1, PfAKLP1, and PfAKLP2 are located in 

the parasite cytosol (Figure 4.6 A-C). Immunofluorescence analyses suggest that PfGAK is located in 

the mitochondrion, as seen by co-localization of the GFP and mitotracker signals (Figure 4.6 D). 

 

Figure 4.6 Localization of P. falciparum AKs fused to GFP (Ma et al., 2012). Cytosolic targeting of PfAK1 (A), 

PfAKLP1 (B), and PfAKLP2 (C). Line (D) illustrates mitochondrial targeting of PfGAK as shown by 

co-localization with anti-GFP antibody and the mitochondrial dye MitoTrackerOrange. Hoechst, a nucleus dye. 

Scale bar, 3 µm. 

 

4.2.2 Localization and N-myristoylation of PfAK2 

Interestingly, PfAK2 localized to a ring-like structure around the parasite, and “loops” apparently 

connected to the PVM (Figure 4.7, Figure 4.8 A). This was highly indicative of localization to the PV. 

Indeed, co-localization analysis shows that PfAK2-GFP co-localizes with the PV resident protein SERP 

(Figure 4.7 A). SERP seems to be excluded from the “loops,” suggesting that PfAK2-GFP in fact 
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actually associates with the membrane of the PV rather than being found in a soluble state in the PV 

lumen. Staining parasites with the membrane stain Bodipy-TR-ceramide indeed verified that the loops 

contain membranous material (Figure 4.7 B). Especially, the fluorescence images of PfAK2-GFP can 

be merged well by using the anti-exp1 antibody (Figure 4.7 C). Taken together, these data suggest that 

PfAK2 localizes to the PVM. Parasite proteins secreted beyond the boundary of the parasite’s plasma 

membrane commonly contain an N-terminal secretory signal sequence. Since PfAK2 lacked such a 

signal, we wished to study its mode of trafficking to the PVM. A mutant of PfAK2 lacking the target 

site of N-myristoylation (PfAK2G2A) was constructed and transfected into P. falciparum. PfAK2G2A was 

clearly located in the cytosol (Figure 4.8 C), thus demonstrating that N-myristoylation of the protein is 

required in order to target PfAK2 to the PVM. Western blots using an anti-GFP antibody confirmed 

that PfAK2 is indeed associated with the membrane, while PfAK2G2A was found in the soluble fraction. 

To control the separation of membrane and cytosolic fractions of the parasite, antibodies reacting with 

the membrane protein Exp1 and the cytosolic protein Hsp70 were employed. As shown in Figure 4.8 B 

and D, both membrane and cytosolic fractions of transgenic parasites containing the AK2-GFP fusion 

protein can be separated, since only a little contamination by the two antibodies was observed. The 

majority of PfAK2 was found in the parasite pellet, while most of PfAK2G2A could be detected in the 

cytosolic fraction of the parasitized erythrocytes by an anti-GFP antibody. 

 

Figure 4.7 Localization of PfAK2 (Ma et al., 2012). (A) Co-localization of PfAK2-GFP with serine-rich protein 

(SERP). (B) A comparison of PfAK2-GFP localization with Bodipy-TR-ceramide shows that the loops contain 

membranous material. (C) Co-localization of PfAK2-GFP with Plasmodium falciparum-exported protein (EXP1). 

Bodipy, a lipid membrane dye; SERP, a protein localized in the parasitophorous vacuole; EXP1, a protein localized 

in the parasitophorous vacuole membrane. Scale bar, 3 µm. 
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Figure 4.8 Subcellular localizations of PfAK2 and PfAK2G2A in P. falciparum (Ma et al., 2012). (A) 

Localization of PfAK2 in the parasitophorous vacuole membrane. (B) Western blot of parasites transfected with 

AK2-GFP constructs using anti-Exp1 as a marker for the membrane fraction, anti-Hsp70 as a marker for the 

cytosolic fraction, and anti-GFP antibodies. (C) Cytosolic localization of PfAK2G2A. (D) Western blot of 

parasites transfected with the AK2G2A-GFP. Cytosol comprises erythrocyte cytosol and parasite cytosol; pellet 

includes the parasite membrane plus erythrocyte membrane plus parasitophorous vacuole membrane. Scale bar, 3 

µm. 

 

4.3 N-myristoyltransferase from P. falciparum 

Pure PfNMT was obtained by using the optimized expression and purification method described in this 

work with a 2-fold improvement in the amount compared to a previous study (Bowyer et al., 2007). It 

was sufficient to be used for crystallization screenings. 

 

4.3.1 Sequence alignment 

Through multiple sequence alignment, NMT was shown to be highly conserved among different 

organisms. 
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Figure 4.9 Multiple sequence alignment of NMT from various species. Pf, Plasmodium falciparum, 

XP_001348300; Pv, Plasmodium vivax, XP_001616826; Hs, Homo sapiens, NP_066565 (Type 1), NP_004799 

(Type 2); Sc, Saccharomyces cerevisiae, NP_013296; Ca, Candida albicans, XP_722859; Lm, Leishmania major, 

XP_001685320; Ld, Leishmania donovani, XP_001467690; Tb, Trypanosoma brucei, CBH16561. Signature 

motifs of NMTs are labeled with red frames. 
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PfNMT as well as others do not contain a long N-terminus, which exists in both types of human NMT 

and was shown to have a vital role in the subcellular localization of NMT in mammalian cells (Glover 

et al., 1997). Also two signature motifs including [DEK]-[IV]-N-[FS]-L-C-x-H-K and K-F-G-x-G-D-G 

are found in all NMTs. The amino acid residues involved in the myristoyl-CoA binding are F40, W41, 

Y103, E105, N169, F170, L171, V173, R178, K180, R181, I187, T191, A202, Y204, and L210 in S. 

cerevisiae NMT (Farazi et al., 2001). These residues are conserved in all NMTs including PfNMT, 

showing that binding myristoyl-CoA is very strict. Y103, F111, F113, N169, T205, Y219, H221, F234, 

Y330, G416, D417, G418, and L455 residues in the peptide binding pocket of S. cerevisiae NMT are 

conserved in PfNMT. However, the residues of R107, F334, I347, Y349, and M454 are not the same 

between PfNMT and S. cerevisiae NMT. 

 

4.3.2 Overexpression and purification of recombinant PfNMT 

The recombinant PfNMT was initially overexpressed in KRX cells using LB medium at 37 °C for 4 

hours. Then the 4 different media and three strains of E. coli were employed as the first optimization 

step for improving overexpression as shown in Table 4.1. The results showed that C41 combined with 

TB medium and overnight expression was the best condition for producing the recombinant PfNMT. 

However, a Western blot demonstrated that small parts of the PfNMT existed as an insoluble form in 

the cell debris, although the majority of recombinant protein was in the supernatant after cell lysis. 

Considering another study (Bowyer et al., 2007), codon optimization may also enhance overexpression. 

Therefore, two plasmids were used for the next optimization step as shown in Table 4.1. Plasmid pGro7 

contains several chaperones to help proteins properly fold so as to increase solubility, while the pRARE 

II plasmid was constructed to provide around ten tRNA genes that are rare in the expression systems of 

E. coli cells. This further step was conducted as shown in Table 4.1. The best yield could be obtained 

by using the pGro7 plasmid to co-express PfNMT in the C41 cells at RT overnight. Meanwhile, two 

affinity chromatography columns were used to purify the protein. Impurity was significantly improved 

by using the Protino Ni-TED resin rather than Ni-NTA resin. 

As shown in Figure 4.10, there were always three obvious protein-bands after the Protino Ni-TED 

column. However, these three proteins can hardly be eluted at different concentrations of imidazole. 

The purity of PfNMT after this step was not satisfactory for further crystallization screening. Thus an 

additional purification step was applied by using a native gel filtration chromatography. Eventually, 

very pure PfNMT as shown in Figure 4.11 could be obtained with a yield of 1 mg/ liter culture, which 

can be used in crystallization trials. 
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Optimization 

step 

E. coli strain  Medium Tempature/time Results 

Step 1 

KRX 

LB; 2xYT; RT / overnight; TB medium and overnight 

expression could slightly 

improve the final yield. 
TB; MLB 37 °C / 4 h 

BL21 

LB; 2xYT; RT / overnight; BL21 cell could enhance the 

overexpression combined with 

TB medium and overnight 

induction. 

TB; MLB 37 °C / 4 h 

C41 

LB; 2xYT; RT / overnight; C41 gave the best PfNMT yield 

if PfNMT was overexpressed in 

TB medium at RT overnight. 
TB; MLB 37 °C / 4 h 

Step 2 

C41; 

TB RT / overnight 

The solubility of recombinant 

PfNMT could be increased, and 

there was no recombinant 

protein in the cell debris if the 

C41/pGro7 cell was used as 

shown by anti-His tag western. 

C41/pGro7; 

C41/pRAREII 

Table 4.1 Optimization of the heterologous overexpression of PfNMT. 

 

 

 

Figure 4.10 10% SDS-PAGE gel of PfNMT after Protino Ni-TED purification. M, unstained molecular weight 

marker; 1-8: elution fraction with 10 mM, 30 mM, 50 mM, 75 mM, 100 mM, 150 mM, 200 mM, and 500 mM 

imidazole, respectively. Black arrow, PfNMT.  
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Figure 4.11 10% SDS-PAGE gel of PfNMT after gel filtration purification. A) 7.5 µg of recombinant PfNMT; 

B) Western blot of PfNMT using the anti-His tag antibody. 

 

4.3.3 Complex of PfNMT/AK2 

The complex of PfNMT/AK2 can be obtained through a coexpression method described in the method 

part (Rahlfs et al., 2009). The complex can be seen in the gel filtration analysis in Figure 4.12. P1 peak 

with retention time at 79.4 min represented the heterodimer of PfNMT/AK2 which is shown in Figure 

4.12B. 
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Figure 4.12 Gel filtration and SDS-PAGE gel analysis. A) Schematic diagram of gel filtration of the 

PfNMT/AK2 complex after affinity chromatography purification. P1, peak of PfNMT/AK2 heterodimer; P2, peak 

of PfAK2 alone. B) 12% SDS-PAGE gel analysis. M, unstained molecular weight marker; A, PfNMT/AK2 

complex. 

 

4.3.4 Crystallization of PfNMT  

4.3.4.1 Crystallization screening of PfNMT in complex with myristoyl-CoA 

The crystallization screening trials of PfNMT were initiated with a JCSG Core Suite kit using a 

screening robot. Moreover different types and concentrations of PEG as well as various buffers with 

different pH were tested as a start point. Two concentrations of 9 mg/ml and 17 mg/ml were used for 

screening. PfNMT was stored in the buffer containing 50 mM Tris, 300 mM NaCl, 2 mM DTT with pH 

7.6. There was no significant impact with these concentrations. The complex of PfNMT with 

myristoyl-CoA was also used for the crystallization test. 

After the preliminary test, the complex and PfNMT showed similar results. Four conditions seemed 

promising for further optimization listed in Table 4.2. By slightly varying the concentrations of 

components in these conditions, further screening could be tested manually. Even though there were 

some signs of crystals forming, no high quality crystal was obtained from these trials. 
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Drop 1 Drop 2 Drop 3 Drop 4 

21% PEG 3350, 0.1 M 

Bis-Tris, pH 5.3 

0.2 M ammonium 

acetate, 20% PEG 6000, 

0.1 M HEPES, pH 7.5 

20% PEG 3350, 0.1 

M LiCl, 0.1 M 

HEPES, pH 7.5 

20% PEG 6000, 0.1 

M Tris, pH 8.5 

Table 4.2 Promising conditions for crystallization screening. 

 

Furthermore, we also tested buffer conditions used for the crystallization of NMT in other species. The 

conditions were listed in Table 4.3. Precipitation was observed in most drops after 5 days. No crystal 

was observed. 

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 

19% PEG 3350, 

0.2 M ammonium 

citrate, tribasic 

anhydrous, pH 5.7 

2.4 M ammonium 

sulfate, 20 mM 

HEPES, pH 7.5 

10% PEG 4000, 50 

mM zinc acetate, 

0.1 M sodium 

cacodylate, 21% 

glycerol 

18% PEG 3350, 0.2 

M lithium sulfate, 

50 mM HEPES, 

pH7.5 

10% PEG 4000, 

15% glycerol, 

0.1 M Tris-HCl, 

pH7 

Condition 6 Condition 7 Condition 8 Condition 9 

20% PEG 4000, 

0.1 M ammonium 

acetate, 0.1 M 

sodium 

cacodylate 

18% MME, 10 

mM nickel 

chloride, 0.1 M 

sodium 

cacodylate 

10% PEG 3350, 

0.2 M ammonium 

acetate, 50 mM 

HEPES, pH7.5 

26% PEG 1500, 0.2 

M sodium chloride, 

0.1 M sodium 

cacodylate 

Table 4.3 Crystallization conditions for NMT from other organisms. 

 

4.3.4.2 Crystallization screening of the complex comprising PfNMT with its natural substrate 

PfAK2 

The complex purified by gel filtration was used directly for crystallization screening. As with PfNMT, 

the trial of PfNMT started with the JCSG Core Suite kit using the screening robot. Different types and 

concentrations of PEG as well as various buffers with different pH were also screened. The protein 

concentration was 6 mg/ml. The proteins seemed to precipitate quickly, and no promising conditions 

could be further investigated. 
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4.3.5 Homology modeling of PfNMT 

 

Figure 4.13 Secondary structure prediction of PfNMT.  helix,  strand. , beta turn; , 

gamma turn;  , beta hairpin. The image was created by the PDBsum online server. 

 

A model of PfNMT was generated on the basis of the crystal structure of P. vivax NMT. Since the 

amino acid sequence of NMT between P. falciaprum and P. vivax shares 80% identity, the amino acid 

sequence was submitted to the Swiss-Model Server in automated mode in order to generate the PfNMT 

model. Then the model was completed and provided as a PDB file. As shown in Figure 4.14, the 

predicted structure of PfNMT was very similar to the known structure of NMT. Its core is composed of 

several compact stranded β-sheets surrounde features ranging from amino acid 325 to 340 were 

observed in this secondary structure profiles d by some α-helices (Figure 4.14). The tiny differen 
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Figure 4.14 The PfNMT model and details of substrate binding sites. A) The overall model of PfNMT 

generated by the Swiss-Model Server. The brown molecule in the left red circle is the NHM, a myristoyl-CoA 

analog showing the myristoyl-CoA binding site. The purple molecule in the right red circle is an inhibitor known 

to bind to the peptide substrate pocket, indicating the peptide substrate binding site. B) Amino acids in the 

myristoyl-CoA binding pocket in comparison to the model of PfNMT on the ternary complex of ScNMT with 

NHM and the octapeptide GLYASKLA. C) Amino acids in the peptide binding pocket in comparison to the model 

of PfNMT on the ternary complex of ScNMT with NHM and the octapeptide GLYASKLA. All shown amino 

acids are within 4 Å of substrates. 

A 

B 
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compared to the well-defined NMT structure of NMT from S. cerevisiae (Wu et al., 2007). The 

substrate binding site can be shown by superposing the model of PfNMT onto the ternary complex of 

ScNMT with NHM and the octapeptide GLYASKLA. The details of both substrate binding sites in the 

PfNMT model are illustrated in Figure 4.14 B and C. 

 

4.4 Myristoylation in P. falciparum 

4.4.1 Metabolic labeling of myristoylated proteins in P. falciparum 

The metabolic labeling method was demonstrated to study myristoylation in P. falciparum. As shown 

in Figure 4.15, the myristoylated proteins can be detected by a streptavidin-HRP blot. Three different 

concentrations including 25 µM, 50 µM, and 100 µM were tested to demonstrate dose-dependent effect 

and labeling optimization. The latter dose-dependent experiment showed that 50 µM was the best 

concentration for the labeling step (Figure 4.15). 

 

              

Figure 4.15 Streptavidin-HRP blot of myristoylated proteins in P. falciparum by metabolic labeling. A) 

Preliminary test with azido-myristic acid at the concentration of 25 µM. 1, DMSO negative control; 2, 

azido-myristic acid labeling. 5 µg of total lysate input for each sample. B) Dose dependent effect of azido-myristic 

aicd. 1, 2, 3, and 4 represented the treatment of DMSO control, 25 µM, 50 µM, and 100 µM azido-myristic acid 

and 3 µg was loaded for each sample. 5 and 6 represented the 50 µM, and 100 µM azido-myristic acid treatment 

samples with 15 µg input for each. C) 50 µM treatment with 10 µg input for each sample. 1, azido-myristic aicd 

treatment; 2, DMSO treatment as negative control. 

 

4.4.2 Pull-down assay 

The biotinylated proteins were incubated with soft-link avidin beads for enrichment. Although the 

biotinylated proteins should be eluted from the beads by 5 mM biotin according to the manufacture's 

instruction, it was not possible to elute the proteins under such conditions. From the Western blot result 

in Figure 4.16, it is obvious that the biotinylated proteins could be eluted with sample buffer at 95 °C 

for 5 minutes. However, the gel of the elution sample demonstrated that this elution condition cannot 

selectively elute the proteins. Thus, it is not possible to send these samples for mass spectrometry 

A B C 
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identification. Even though different elution conditions including the acid elution, long-time elution, 

and alternative avidin beads have been employed, there is no significant improvement of the pull-down 

assay to achieve. So further optimization steps are required to elute the biotinylated proteins selectively, 

which then hopefully leads to the final identification of the myristoylated proteome in P. falciparum. 

 

       
Figure 4.16 Pull-down assay of myristoylated proteins from P. falciparum. A) Streptavidin blot of a pull-down 

assay with soft-link avidin beads. 1, 5 mM biotin elution of DMSO negative control; 2, 5 mM biotin elution of 

azido-myristic acid treatment; 3, flow-through of DMSO negative control; 4, flow through of azido-myristic acid 

treatment; 5, wash fraction of DMSO negative control; 6, wash fraction of azido-myristic acid treatment; 7, boiling 

fraction with sample buffer of DMSO negative control; 8, boiling fraction with sample buffer of azido-myristic 

aicd treatment. B) SDS-PAGE gel of boiling sample. 1, boiling sample of DMSO negative control (Sample 7 in 

figure 4.16A); 2, boiling sample of azido-myristic acid treatment (Sample 8 in figure 4.16A); M, unstained 

molecular weight marker.  

 

4.4.3 Prediction of myristoylated proteins in P. falciparum 

The whole proteome of P. falciparum could be obtained from PlasmoDB. The MYR Predictor 

(Maurer-Stroh et al., 2004) allows the submission of whole proteome sequences at once and claims to 

be capable of predicting the N-terminal and internal myristoylation site. The total number of proteins 

predicted by MYR Predictor is 42, while no internal myristoylation site is found. The percentage of 

myristoylation in the proteome is 0.76%. Among them, there are four targets that cannot be recognized 

by another tool – Myristoylator. The Myristoylator predicts (Bologna et al., 2004) 65 myristoylated 

proteins in the P. falciparum proteome with a percentage of 1.1%. The protein information is 

summarized in Tables 4.4 and 4.5. It is shown that at least nine members in the PfEMP1 family can be 

myristoylated. And another big group is the conserved proteins with unknown function, implying more 

efforts are required to reveal the multiple functions and pathways that myristoylation is involved in. 

Since only one sequence is permitted to be submitted to the server each time and no internal 

myristoylation can be predicted by the Myristoylator, we tested all the sequences which have glycine at 

their position 2 from P. falciparum proteome. Also the new ones in the Myristoylator table that the 

MYR Predictor cannot predict mostly have medium or low confidence. It seems that the results from 
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the MYR Predictor prediction are more reliable. However, two proteins (PF08_0062 and PF10_0203) 

that have been demonstrated to be myristoylated (Leber et al., 2009; Rahlfs et al., 2009) in the 

experiment cannot be reliably discovered with high confidence by the MYR Predictor, implying that 

much stricter laws for prediction by MYR Predictor may ignore the potential targets. Therefore, it is 

still worthwhile to experimentally explore myristoylation in P. falciparum, not only for the 

improvement of prediction tools, but also for the biological study and proof of NMT as a drug target 

against malaria.
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Protein Name 
Accession number 

(PlasmoDB) 

Protein length 

(Amino acid) 
Recognition motif 

Tested by 

Myristoylator 
Remarks 

Rab GTPase 5b PF3D7_1310600 207 GCSSSTERLTSTKNINI Verified  

Protein phosphatase 2C PF3D7_1138500 924 GAYLSSPKTNKESLDGG Verified  

Serine/threonine protein kinase PF3D7_1450000 376 GSTISKRKNNTDKNVKD Verified  

Erythrocyte membrane protein 1 

(PfEMP1)-like protein 

 

PF3D7_0600400 1325 GSDYSSPGGNKSVNITE Verified 
False positive prediction:  

2.39e-02 

Erythrocyte membrane protein 1 PF3D7_1255200 2268 GGSNGGGGSSQEQDESV Failed 
False positive prediction:  

2.07e-02 

Protein phosphatase PF3D7_0810300 550 GTCISFLKKNSVKEKKN Verified 
False positive prediction:  

5.67e-03 

Conserved Plasmodium membrane 

protein 
PFL1825w 210 GCTVSNLKCVTNVAGLA Verified  

Erythrocyte membrane protein 1 PFD1235w 3553 GNASSSEGEAKTPSLTE Verified  

Golgi reassembly stacking protein 1 PF3D7_1017300.1 573 GAGQTKEIMGGYRILRI Failed 
Experimental proof (Struck 

et al., 2005) 

Conserved Plasmodium membrane 

protein 
PFI1500w 4553 GNCKSYSSHFSVNKNNT Failed  

Calcium-dependent protein kinase 2 

 
PFF0520w 509 GNHLSVNKLKRKKKKKS Verified  
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Protein Name 
Accession number 

(PlasmoDB) 

Protein length 

(Amino acid) 
Recognition motif 

Tested by 

Myristoylator 
Remarks 

Calcium-dependent protein kinase 1 PFB0815w 524 GCSQSSNVKDFKTRRSK Verified 
Experimental proof 

(Moskes et al., 2004) 

Calcium-dependent protein kinase 4 PF07_0072 528 GQEVSSVNNTKNEHHKT Verified  

Protein phosphatase 2c-like protein PF3D7_1309200 827 GNCASVINHSKFKIKKK Verified  

Conserved protein PF10_0107 144 GNIVSCCSLDENKKYLN Verified  

Erythrocyte membrane protein 1 PF11_0008 2994 GSQTSKFSKTVVGNETH Verified  

Erythrocyte membrane protein 1 PF08_0141 2858 GSQGSKPVDTSDVKNES Verified  

Erythrocyte membrane protein 1 PFE1640w 3164 GNEQSSSSSEGAKNPSI Verified  

Erythrocyte membrane protein 1 PF13_0003 3346 GNTQSSEEEEAKSPSLT Verified  

TPR-like domain containing protein PFF0080c 285 GAFGSKNLEYYNYASMK Verified 
False positive prediction:  

1.20e-02 

Erythrocyte membrane protein 1 PFF0005c 259 GSQSSKSLEPIVDTNES Verified  

Glideosome-associated protein 45 PFL1090w 204 GNKCSRSKVKEPKRKDI Verified 
Experimental proof 

(Rees-Channer et al., 2006) 

Erythrocyte membrane protein 1 PFD0020c 3467 GTGSSTPSVPKDVKNES Verified  

Calpain PF3D7_1362400 2048 GCINSKVKEKRKIKKRK Verified 
Experimental proof (Russo 

et al., 2009) 

Developmental protein 

 
PFI0300w 195 GNKISTEDHIFRLKLKT Verified  
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Protein Name 
Accession number 

(PlasmoDB) 

Protein length 

(Amino acid) 
Recognition motif 

Tested by 

Myristoylator 
Remarks 

ADP-ribosylation factor-like protein PF10_0337 178 GLIFSSIFSRLFSNKEV Verified 
False positive prediction:  

1.57e-02 

Conserved Plasmodium protein PFI1430w 341 GNAMGFKDKNKNKENIS Verified 
False positive prediction:  

1.20e-02 

Conserved Plasmodium protein PFI1455c 272 GQISSKEDEIEKQNIYA Verified  

Conserved protein PFL0095c 207 GSSSSSSDMFILKNHED Verified  

Cleft lip and palate-associated 

transmembrane related protein 
PF11_0384 689 GLSLSSPQLPANAGSNI Verified  

Mitochondrial import receptor subunit PFE1230c 105 GTALSKIITINEENRLV Verified 
False positive prediction:  

1.57e-02 

ABC transporter (MDR family) PF13_0218 925 GNSLSLCLLRETSKDVF Verified 
False positive prediction:  

7.44e-03 

Conserved ARM repeats protein 

 
PFD0720w 275 GNNCCAGRDLLYKNKLQ Verified  

CAMP-dependent protein kinase 

regulatory subunit 
PFL1110c 441 GNVCTWRQGKEKAGDDN Verified  

Protein phosphatase 2b 

regulatory subunit 
PF14_0492 177 GNTQAILSEKDQKDLLQ Verified  

Conserved Plasmodium protein PF3D7_0728700 720 GNTLSNSTLFRPTEPSY Verified  
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Protein Name 
Accession number 

(PlasmoDB) 

Protein length 

(Amino acid) 
Recognition motif 

Tested by 

Myristoylator 
Remarks 

Conserved Plasmodium protein PF14_0578 148 GNLCCSNND IKNSKSNI Failed  

Conserved Plasmodium protein 

 
PFI0675w 86 GCRLSKAND PKEQKHTE Verified  

Vacuolar protein-sorting protein PF08_0064 209 GTYFSKDLQECLREEKR Verified  

Adenylate kinase PF08_0062 275 GSCYSRKNKVSTISLDE Verified 

False positive prediction:  

1.57e-02; experimental 

proof (Rahlfs et al., 2009) 

Conserved Plasmodium protein PF11_0100 155 GNTFSSYDEKERRGLIL Verified  

ADP-ribosylation factor-like protein PFI1005w 191 GNTVTTFFRDCCNRLFN Verified  

Table 4.4 Myristoylated protein prediction of the whole proteome of P. falciparum via the MYR Predictor tool. Remarks, prediction with low reliability or the experimental evidence are 

labeled here. Recognition motif is given by the MYR Predictor tool.  
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Protein name Accession number (PlasmoDB) Protein length (Amino acid) Recognition motif Remarks 

Erythrocyte membrane protein 1 PF11_0521 3119 MGNAIPATPDPIFINESY  

PfMNL-2 CISD1-like 

iron-sulfur protein 
PFD0807c 89 MGNNMLKAKSRNVFRKKG  

40S ribosomal protein S29 PF3D7_0705700 54 MGCILNVHPKKYGQGSRQ Medium confidence 

40S ribosomal protein S17 PFL2055w 137 MGRVRTKTIKRAARQIVE Medium confidence 

Alpha/beta hydrolase PF3D7_0805000 245 MGNVLNRIIFNGPTEGYY  

Conserved Plasmodium protein PF14_0149 590 MGNAMYAKSVYSSEGSEI Medium confidence 

Serine/threonine protein kinase PF14_0227 284 MGNALNKLLKHYRNVEKK  

Conserved Plasmodium protein PFF0960c 633 MGNTISERKQRQFVLYKD  

Conserved Plasmodium protein PF14_0390 227 MGSKKNSNTVDSSENVEE Medium confidence 

Conserved Plasmodium protein PF3D7_1317500 89 MGFFYSGFHKPNKKNMND  

Krox-like protein PF3D7_1344100 805 MGEGYSKSTINHGNLSEE  

Pantothenate kinase PF14_0354 766 MGNTLGIECSFNYVHVTT Medium confidence 

Cytochrome c oxidase 

copper chaperone 
PF10_0252 67 MGMSLNKPINNTNEANKG  

Small ubiquitin related modifier PFE0285c 100 MGDDDSAVNNNGSSPVNN Low confidence 

ADP ribosylation factor 1 PF10_0203 181 MGLYVSRLFNRLFQKKDV 
Experimental proof (Leber et 

al., 2009) 

Conserved Plasmodium protein 

 
PF14_0684 574 MGVYFSEAKVYIYDDIKG Medium confidence 
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Protein name Accession number (PlasmoDB) Protein length (Amino acid) Recognition motif Remarks 

Conserved Plasmodium protein PFB0870w 2380 MGNTNRKDISHKEYDKSF Low confidence 

Protein kinase PF3D7_0823000 1332 MGNTLYSNIGHSTTELDD Medium confidence 

BSD domain PFD1095w 136 MGNKHNKKKYELCEIQYE  

Phosphotyrosyl phosphatase 

activator 
PF14_0280 319 MGDVNSLSYKIINDESII Low confidence 

Conserved Plasmodium protein PFC0690c 365 MGTFINNTGNFRNKTLNS Low confidence 

Protein kinase PF11_0079 1501 MGNTLDSNKPKNFVTYAD  

Phosphatidylinositol-4-phosphate 

5-kinase 
PF11_0307 1338 MGNKLTCGEIRNDGVRGL Medium confidence 

Conserved Plasmodium protein PFD0185c 734 MGNALNQLIFRPHPPSYS  

Conserved Plasmodium 

membrane protein 
PF14_0312 1123 MGNGNSKVVKIFLLIQNE  

Conserved Plasmodium protein PF14_0333 359 MGNITSEQKKKPLMLHEL  

Table 4.5 Myristoylated protein prediction of the whole proteome of P. falciparum by the Myristoylator tool. The medium or low confidence provided by the tool is reported in the 

remarks line. The experimental proof is mentioned in this line as well. 
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5 Discussion 

5.1 AK networks and energy metabolism 

In this thesis, the two new putative adenylate kinase isoforms from P. falciparum have been 

investigated through biochemical characterization of their recombinant proteins. PfAKLP1 displays 

an especially close relation to human AK6, which is a distant member of the AK family (Ren et al., 

2005) and an atypical AK with an unusually broad substrate specificities, nuclear localization, and 

structural features of ATPase/GTPase proteins (Drakou et al., 2011). Using the heterologous 

expression and purification methods described previously, pure recombinant protein was obtained. 

However, PfAKLP1 only showed 3 mU/mg activity, which is rather low compared to other AK 

isoforms in P. falciparum (Rahlfs et al., 2009). This is similar to its homolog human AK6, which has 

less than 1% activity (0.95 U/mg) compared to human AK1 (Ren et al., 2005). Although we tested 

various NTP and NMP combinations and assay buffers with different pH (from 6 - 9) and even 

removed the His-tag, the in vitro activity of PfAKLP1 remained low. This indicates that PfAKLP1 

might exert functions other than AK activity or needs additional cellular factors for full activity. 

However, except for similarity to the AK superfamily, extensive sequence alignments only showed 

similarities to hypothetical proteins with yet unknown functions. 

Under the conditions tested in this study, an in vitro AK activity was not detectable for PfAKLP2, 

thus suggesting that it might not belong to the AK superfamily. As shown in Figure 4.1, many amino 

acids involved in substrate binding such as K70 that are essential for activity in other AKs are not 

conserved in PfAKLP2; this is consistent with the missing AK activity. Besides that, the residues 

generally required for catalytic activity (Figure 4.1) are missing. Apart from K70, no residue of the 

P-loop is present. For PfAKLP2, the highest sequence similarity was found with hypothetical proteins 

from P. knowlesi and P. yoelii and a putative AK from P. vivax. Moreover, PfAKLP2 is partially 

homologous – from residue 20 to 173 with 50% similarity – to the AK isoform B of T. brucei (Figure 

4.1) (Reinstein et al., 1990). In fact, Noma also reported there was no AK activity for human AK4 in 

vitro (Noma et al., 2001). 

There are two new AK isoforms, AK7 and AK8, which have been characterized from humans recently. 

Both of them showed AK activity and cytosolic localization (Panayiotou et al., 2011). Notably, human 

AK7 is larger, containing 723 amino acid residues, and reveals a NAD binding site at its N-terminus 

plus an AK-active motif, indicating multiple functions of this enzyme in addition to AK activity alone. 

Following this discovery, we found a hit in the Plasmodium falciparum database when using human 

AK7 as a blast sequence on NCBI. The hit protein (PFC0260w) has 1114 amino acids and shows ATP 

and AMP binding sites. This may expand AK members in P. faciparum and demonstrate the existence 

of a larger AK group compared to other isoforms. When employing human AK8 for searching, no 

homologous protein was found in P. falciparum. 

Analyzing the subcellular distribution of AK isoenzymes in Plasmodium indicates that they are 

located in different compartments, which allows for an efficient network of energy supply and 

consumption. In humans, eight AKs with different tissue specificities and kinetic properties have been 

allocated to specific subcellular compartments (Dzeja et al., 2009; Panayiotou et al., 2011). Human 

AK6 in the nucleus negatively regulates the number of Cajal bodies, which are nuclear organelles 
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involved in the maturation of small nuclear ribonucleoproteins, showing that isoforms of AK exert 

very different functions (Santama et al., 2005). In P. falciparum, two adenylate kinases and one 

GTP:AMP phosphotransferase had been characterized so far (Ulschmid et al., 2004; Rahlfs et al., 

2009). Also two more AK-like proteins have been now investigated in our study. PfAK1 was 

predicted to be targeted to the mitochondria because of its amphipathic helix, while PfGAK was 

predicted to be localized in the apicoplast due to its N-terminal targeting sequence (Ulschmid et al., 

2004). By using AK fused with GFP, we could show three localizations of AK isoforms in P. 

falciparum (Figure 5.1). PfAK1 and PfAKLP2 are localized in the cytosol of Plasmodium, while 

PfGAK and PfAK2 are targeted to the mitochondria and parasitophorous vacuole membrane 

respectively. PfAKLP1, unlike its homologous human AK6 in the nucleus, is localized in the cytosol 

of Plasmodium as well, implying that a similar function of the proteins is unlikely. These results show 

that in silico predictions of localizations still need to be improved. 

Considering its high energy demands and rapid multiplication, Plasmodium requires an efficient 

interconversion system of adenine nucleotides. PfAK1 and PfAKLP1 are located in the cytosol, 

where most of the energy is consumed. The mitochondrial localization of PfGAK, which transfers the 

high-energy phosphate from GTP to AMP, is consistent with the fact that GTP is produced in the citric 

acid cycle in the mitochondrion (Tomasselli et al., 1979). 

 

 

Figure. 5.1 Scheme of the subcellular localization of known adenylate kinases in P. falciparum. ER, 

endoplasmic reticulum; PVM, parasitophorous vacuole membrane; PPM, parasite plasma membrane. 

 

N-myristoylation anchors proteins to a membrane in order to mediate diverse functions such as signal 

transduction, protein translocation, and cellular regulation (Zha et al., 2000; Ducker et al., 2005). A 

polybasic stretch of amino acids or one or two palmitoylated cysteine residues next to the myristoyl 

moiety attached to the protein is necessary for stabilizing the membrane localization (McCabe et al., 
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1999; Resh, 2004). PfAK2 has an unusual polybasic stretch of amino acids when compared to other 

AKs in Plasmodium (Figure 4.1). The G2A mutation of the N-myristoylation site of PfAK2 

demonstrated that N-myristoylation is required in order to bind PfAK2 to the PVM, since the loss of 

the N-myristoylated glycine alone changes the localization of the protein. Parasite proteins exported 

into the host erythrocyte must stay in an unfolded state, and an important role for molecular 

chaperones has been suggested in this context (Gehde et al., 2009). These chaperones are supposed to 

have a considerable demand for adenine nucleotides. Considering the important role of the 

parasitophorous vacuole membrane for protein transport from the parasite to the host cell 

compartment, we propose that PfAK2 plays a vital role for the energy supply of protein transport. 

Alternatively, Kanaani discovered that parasites supply ATP to their host cells by means of an 

adenylate translocator and adenylate kinase. They also suggested the important role of adenylate 

kinase in this metabolic pathway. Thus, PfAK2 may play a role in the ATP transport as well. 

Surprisingly, no adenylate kinase isoform that prefers ATP as the substrate is localized in the 

mitochondria if we compare this to the mitochondrial intermembrane localization of AK2 in other 

organisms (Walker et al., 1982). Since in other species most ATP is produced by the oxidative 

phosphorylation and electron transport chains, it is reasonable to have an AK isoform in the 

mitochondrial intermembrane. Therefore, there may still be new AK isoforms as we mentioned above 

that have not yet been identified although the whole genome of P. facliparum has been mapped since 

2002 (Gardner et al., 2002). 

ATP produced in the mitochondrial pathway can be utilized in the high-energy phosphotransfer 

network shown in Figure 5.2 in other organisms. Such a network for facilitated high-energy 

phosphoryl transfer between ATP-consuming and ATP-generating sites relies on the chains of 

sequential rapid equilibrating reactions catalyzed by CK and AK (Zeleznikar et al., 1995; Dzeja et al., 

2003). It has been shown that intracellular high-energy phosphoryl transfer networks can be 

compensated by AK and glycolytic enzymes in creatine kinase-deficient muscles (de Groof et al., 

2001; Dzeja et al., 2004), demonstrating interplay between different shuttles of phosphoryl transfer. 

However, a homology search using the creatine kinase sequence revealed that apparently no such 

enzyme exists in P. falciparum. Thus, it is only possible to use ATP generated in the mitochondrion by 

the glycolytic enzymes such as hexokinase without a fast equilibrium network as in other organisms, 

considering the probable cytosolic localization of 3-phosphoglycerate kinase. This may demonstrate 

that mitochondria may not play a vital role in ATP production in P. falciparum. 

As of 2010, it has been shown that P. falciparum may have a unique metabolic pathway in the 

mitochondria. As mentioned in 1.2.4 and Figure 1.12, P. falciparum has been shown to have a novel 

tricarboxylic acid cycle (Olszewski et al., 2010). Olszewski and co-authors have found that the TCA 

cycle in the mitochondria of P. falciparum was a branched structure rather than a cyclic. In this 

pathway, several steps of reactions go in the reverse direction compared to the standard one. 

Therefore, the TCA cycle in P. falciparum mainly functions in production of succinyl-CoA for heme 

biosynthesis and citrate synthesis rather than efficiently supplying ATP (Olszewski et al., 2010). 

Therefore it is rational that only PfGAK is localized in the mitochondria because GTP can be 

generated in this branched TCA cycle. The observation that no adenylate kinase isoform is localized 

in the mitochondria may further prove that the TCA cycle is not the main source of ATP production in 
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P. falciparum. In spite of this situation, ATP synthase in the mitochondrion of P. falciparum assembles 

as a large dimeric complex like in other eukaryotic organisms and seems to be essential for parasite 

survival (Balabaskaran Nina et al., 2011). Interestingly, the direct biochemical results showed that the 

mitochondria play a functional role in ATP synthesis and Ca2+ transport in the malaria parasite 

Plasmodium berghei (Uyemura et al., 2000). 

 

 

Figure 5.2 Integrated communications between cellular sites of ATP utilization and ATP generation. 

Adapted from (Dzeja et al., 2003). CK, creatine kinase; AK, adenylate kinase; PGK, 3-phosphoglycerate kinase; 

HEX, hexokinase; PK, pyruvate kinase; PFK, phosphofructokinase; Gl, glucose; PEP, phosphoenol pyruvate; Pyr, 

pyruvate. 

 

5.2 N-myristoyltransferase structure analysis for the potency of an antimalarial drug 

target 

An overexpression and purification method for producing pure and homogeneous PfNMT has been 

established in this report. In a previous study, the difficulty of obtaining PfNMT has been described 

and the following inhibitor screening and crystallization study\ies have been limited (Bowyer et al., 

2007). By utilizing a synthetic codon-optimized PfNMT gene, the overall yield was 0.4 mg/l culture 

compared to a previous 12 µg/l culture (Bowyer et al., 2007). In our study, initial overexpression of 

PfNMT in E. coli cells resulted in partial insoluble proteins in cell pellets. When introducing a pair of 

chaperones in the overexpression system, the solubility of PfNMT improved since the chaperones 
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could assist proteins for proper folding. Meanwhile, the purity of PfNMT was enhanced with the 

Protino® Ni-TED column rather than Ni-NTA resin. The pure protein was obtained after an additional 

gel filtration purification step. The overall yield of PfNMT in this method is typically 1 mg/ liter 

culture. This provides the opportunity for high-throughput screening of inhibitors against PfNMT and 

crystal screening of PfNMT. 

As of today, the structure of NMT from several species including Leishmania major, Saccharomyces 

cerevisiae, Candida albicans, and Homo sapiens has been revealed in order to explain the substrate 

binding and catalytic mechanism (Bhatnagar et al., 1998; Weston et al., 1998; Sogabe et al., 2002; 

Frearson et al., 2010), facilitating the elucidation of inhibitor behavior and rational drug design. 

Therefore, obtaining the details of the binding sites from the crystal structure will provide a chance 

for selective inhibition against this enzyme. During my thesis I tried several hundred conditions for 

the crystal screening including those that were already known for the other NMT crystals. Especially, 

the crystallization conditions of P. vivax NMT which shares more than 80% identity with NMT from P. 

falciparum have been tried. The lack of N-terminal 26 amino aicds in P. vivax NMT used for 

crystallization might be the reason for such difference (Goncalves et al., 2012). In fact, most NMt 

structures have no N-terminal sequence since removal of this region has no significant effect on 

enzymatic activity (Rudnick et al., 1992). However, it is also possible that this region has influence on 

the whole structure of NMTs. Therefore, they may require different conditions for crystallization. In 

fact, it was demonstrated that Asp22 and Asp23 in S. cerevisiae NMT are involved in the binding of the 

peptide substrate based on the structure of full-length S. cerevisiae NMT, although the region may not 

participate in catalysis (Rudnick et al., 1992; Wu et al., 2007). 

In order to demonstrate the peptide binding feature in a PfNMT model, we superposed this structure 

onto the ternary complex of ScNMT with NHM and the octapeptides GLYASKLA (PDB code 1IIC) 

(Wu et al., 2007). The residues that are predicted to surround this peptide in PfNMT are Y95, V96, 

E97, D98, D100, V102, F103, F105, Y107, H213, F226, Y315, L317, S319, F334, E383, G384, D385, 

G386, L388, L409, and L410. Among all these residues, there are four amino acid differences 

between PfNMT and HsNMT type I including V102 (M), F334 (Y), E383 (I), and L410 (Q), which 

may provide the selectivity between both for novel inhibitors. 

The high-resolution structure of HsNMT type I in complex with myristoyl-CoA and inhibitor has 

been resolved by the Structural Genomics Consortium (SGC) and can be obtained from PDB (code 

3IWE, unpublished). This structure and the predicted structure of PfNMT can be superimposed, and 

the image can be displayed as shown in Figure 5.3. From this comparison, we could discover four 

regions with slight differences between humans and P. falciparum. Two regions labeled with red ovals 

seem to be on the remote surface and may not contribute to substrate binding and catalysis, while the 

other two marked with purple ovals reveal the possible domains that may participate in the peptide 

binding site. One of them (the purple oval in the middle of Figure 5.3) is the L410, which plays an 

important role in peptide binding and catalysis of the reaction (Farazi et al., 2001). The other region 

also seems to be involved in substrate binding, since the His313 in this region of HsNMT may 

interact with the peptide substrate derived from the comparison of HsNMT with ScNMT, containing 

the bound octapeptide GLYASKLA according to Brannigan's finding (Brannigan et al., 2010). The 

corresponding C228 in PfNMT as shown in multiple sequence alignments in the results section as 
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well as the close N230 and R232 are clearly different from the residues in this region. The differences 

in both regions may form the basis of selective inhibition for further selective inhibitor screening. 

 

Figure 5.3 Comparison of human NMT type I (brown) (amino acids 115 to 496) and a model of PfNMT 

(teal) (amino acids 27 to 410). Myristoyl-CoA (green) and inhibitor against human NMT1 (yellow). Slight 

differences are labeled in ovals (red and purple). Image created by PDB Viewer 4.0.4. 

 

Since evidence of NMT as a druggable target in fungi has been shown, there has been increasing 

interest in identifying the potency of inhibiting this enzyme against protozoan infectious disease 

(Lodge et al., 1994; Ebiike et al., 2002; Ohtsuka et al., 2003; Price et al., 2003; Yamazaki et al., 

2005). The exciting finding of a nanomolar range inhibitor against T. brucei and a cure for 

trypanosomiasis in mice indicates that targeting NMT could be a promising strategy against protozoan 

parasites (Frearson et al., 2010). Superposing the structure of LmNMT with inhibitor and the peptide 

onto the model of PfNMT, two amino acids (E383 and L410) at the C-terminus of PfNMT probably 

responsible for peptide substrate binding are different from the ones in human NMT. Since the 

selective inhibition is more related to the peptide binding, this may imply the possibility of selective 

inhibition of PfNMT as a drug target. 

Even though NMT is a highly conserved protein, and the structures of the enzyme from several 

organisms have been resolved, it is still worth crystallizing this protein from P. falciparum in order to 

show the details of the binding motif. The complexity of inhibition patterns was demonstrated by 

showing that a subtle change in chain flexibility can cause a significant change in inhibitor selectivity. 

The study of high-throughput screening of inhibitors against P. vivax NMT illustrates that a 

significant increase in inhibition selectivity can be achieved by removing a group from compound 1 

which does not display much selectivity of P. vivax and human NMT (Goncalves et al., 2012). 
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Furthermore, Bell and co-authors discovered two novel series of inhibitors with adequate selectivity 

for P. falciparum NMT over other NMTs, although it seems a challenging task due to the observation 

of strong overlap between the structure-activity relationships for P. falciparum NMT and both human 

NMTs (Bell et al., 2012). Since the inhibitor studies against NMT focused on the peptide binding site 

of the enzyme, it is also a good idea to co-crystallize the PfNMT with PfAK2, one of its natural 

substrate proteins. The structure of such a complex will elucidate the binding relation between NMT 

and its intact substrate protein, which may greatly enhance our understanding of peptide binding 

patterns. As a result, it would be helpful for novel inhibitor discovery. Thus, continuous efforts should 

be undertaken to finally solve the structure of this enzyme and/or its complex. 

 

5.3 Myristoylation in P. falciparum 

In this work for the first time, we demonstrate that myristoylation in P. falciparum can be visualized 

by using a new metabolic method. Bio-orthogonal chemical reporters have been developed to study 

protein post-translational modification (van Kasteren et al., 2007). The general principle of this 

method is to attach the azido or alkynyl group to the substrate, which can be utilized in the metabolic 

pathway without significantly affecting its bioactivity in the cells. Since the study of fatty acylation in 

mammalian cells has been successfully established, we therefore explored the capabilities of this 

method for myristoylation in P. falciparum. Considering the unique life cycle of malaria parasite and 

the feature of parasitized red blood cells, the substrate of azido-myristic acid was fed twice during the 

metabolic labeling process. The time to initially add this substrate was chosen at the point just before 

the erythrocyte ruptures with mature schizonts so as to increase the substrate uptake by P. falciparum. 

Additionally, dose-dependent labeling of myristoylated proteins was studied in order to determine the 

optimal substrate concentration for the labeling step. Not surprisingly, 50 µM was the best 

concentration for labeling proteins, which is two times more than the substrate concentration for 

labeling mammalian cells (Wilson et al., 2011). This lower uptake efficiency probably results from 

various membrane barriers between the parasites and the substrate. The following streptavidin-HRP 

blot could provide an easy and sensitive method for detecting successful labeling. In our experiment, 

we also use the anti-biotin antibody for detection. However, the signals were hard to detect, indicating 

the low proportion of myristoylated proteins within the whole proteome of parasites. 

Theoretically, the labeled proteins can be further enriched through a pull-down assay and identified 

via mass spectrometry. Although this has been illustrated in human cells with cleavable and 

non-cleavable tags such as biotin (Martin et al., 2009; Wilson et al., 2011), it is likely that the 

cleavable tag will yield a better recovery and lower the false positives resulting from non-specific 

binding. In my study, several conditions including various elution buffers, pH, and avidin beads have 

been tested for eluting the bound proteins. However, such efforts still failed to selectively recover the 

labeled proteins. This may be ascribed to the low amount of myristoylated proteins and strong affinity 

between labeled proteins and the affinity material. Therefore cleavable biotin may be the best option 

for solving this problem. In fact, a second-generation cleavable tag (Figure 5.4) has been synthesized 

in order to be applied in this label method and has exhibited satisfying compatibility for protein 

identification (Yang et al., 2010). Because this method is brand new and rapidly developing, such 
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cleavable tags are not yet commercially available. Only recently could the azido-biotin with bound 

disulfide be purchased. Therefore, it may eventually provide a new chance for continuing the 

pull-down assay and identifying the target proteins via mass spectrometry. 

 

Figure 5.4 Biotin tags for the chemical reporter method. Cleavable azo-biotin tag with the azido group (1) or 

alkynyl group (2). Cleavable azido-biotin with disulfide bound (3). Adapted from Yang et al., 2010, and a 

product manual from Jena Bioscience. 

 

Comparing the target lists using two individual tools for myristoylation prediction based on the amino 

acid sequence, it is likely that the MYR Predictor has more stringent standards than the Myristoylator. 

The myristoylation proteome in P. falciparum comprises phosphatase, serine/threonine protein kinase, 

Golgi reassembly stacking protein, calcium-dependent protein kinase, ARF, erythrocyte membrane 

protein family members, and others. Thus it explains the vital function of NMT in parasite survival, 

showing it to be a promising drug target from another aspect. Even though the conserved motif that 

can be myristoylated has been well studied, inventing a universal program for myristoylation 

prediction still might be a challenging task. This may result from slight, progressive variation in 

different species.  

Recently, the apoptosis in P. falciparum is a debate topic and is becoming an attractive strategy to 

combat malaria. As described in the introduction section, myristoylation could be a vital component 

during apoptosis and this chemical reporter method has shown its potency to label and identify the 

apoptic plays which have the internal myristoylated motif (Martin et al., 2008). This can also be 

employed to study post-translational myristoylation during the apoptosis once the apoptosis-like signs 

can be properly induced in the malaria parasite. 

In summary, this method relying on the chemical reporter is becoming a powerful tool to study 

myristoylation in the malaria parasite. As a consequence, it will contribute to understanding the 
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biological role played by myristoylation, the significance of NMT inhibition, and possibly even 

apoptosis in the parasite. 
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