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Writing a book is an adventure. To begin with, it is a toy, and an amusement; 

then it becomes a mistress, and then it becomes a master, and then a tyrant. 

The last phase is that just as you are about to be reconciled to your servitude, 

you kill the monster, and fling him about to the public. 

(Churchill, 1949) 
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1 Introduction 

Preterm birth, defined as birth before 37th week of gestational age, accounts for 35% of all 

neonatal death worldwide. Preterm birth increases the risk for long-term complications 

such as visual and hearing impairment and chronic lung diseases. Bronchopulmonary 

dysplasia (BPD) is one of the most common chronic lung diseases and a major contributor 

to the morbidity of preterm infants, especially in very low birth weight infants (Walsh et al., 

2006). Additionally, impairment of the cardiovascular system, neuro-development and 

behavior have been reported in preterm infants (Blencowe et al., 2013).  

Preterm birth is also associated with increased mortality mainly caused by infections of the 

preterm infant. The reduced innate and adaptive immunity of the immature immune 

systems of preterm infant weakens its ability to fight bacteria and detect viruses in cells in 

comparison with term infants. Preterm birth is often caused by intrauterine inflammation 

due to bacterial infection. This prenatal exposure to inflammation can result in a simplified 

lung structure, which increases the risk for the BPD development in neonates in addition to 

the immature lung epithelium resulting from a birth before the lung development could be 

completed (Melville and Moss, 2013). 

Further, the preterm lung faces stretch and oxidant injuries, which may lead to impaired 

development of the lung and to BPD (Jobe, 2006; Speer, 2003). Not only ventilatory 

support, and oxygen levels may lead to BPD, but also sepsis as a pro-inflammatory 

modulator, anti-inflammatory corticosteroids and starvation may lead to BPD (Jobe, 2006). 

Recent studies show that the extended mechanical ventilation is associated with a 

decreased number of CD4-T-cells (Ballabh et al., 2003) with changes in cytokine levels 

(Bose et al., 2013; Köksal et al., 2012), which indicate that sustained systemic 

inflammation may be a risk factor for developing chronic lung diseases (Melville and Moss, 

2013). 

Over the last years, research on BPD started to focus on the transcriptome of preterm 

infants using microarrays. In 2007, Cohen et al. (2007) compared cord blood tissue of 

preterm infants who later develop BPD or infants who not develop BPD. Kompass et al. 

(2010) used animal models to research the alterations in gene expression profiles in 

reaction to ventilation of the lung. Bhattacharya et al. (2012) used tissue of the lungs 

obtained at autopsy of preterm infants with BPD and control tissue from preterm infants 
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without BPD. And recently, Pietrzyk et al. (2013) investigated the gene expression profiles 

of preterm infants and their alterations 5, 14, and 28 days after birth and potential 

pathways associated with the gene profiles. Still missing are gene expression profiles from 

time of birth, which may give a hint on processes during birth or general susceptibility of 

the preterm infants that lead to the development of BPD. Even more scarce are studies on 

the development of mild BPD1 (as defined by Jobe, 2006), a form of BPD with which 

neonates are less or not mechanical ventilated and have shorter periods of oxygen 

treatment. 

Transcriptome analysis has become more and more important in the development of 

diagnostics and the search for biomarkers. Microarray analysis bears the advantage to 

analyze a great number of transcripts simultaneously and facilitate a better understanding 

of the role and involvement of specific transcripts. It may provide hints to biological 

mechanisms resulting from the gene expression profile or underlying mechanisms 

resulting in the observed gene expression profiles. To detect meaningful gene expression 

it is important to assure data quality in the preprocessing of microarray data. 

In this doctoral thesis methods in microarray transcriptome analysis are presented in a 

more detailed manner. Especially preprocessing of microarray data obtained from 

CodeLink™ Bioarrays is reviewed (chapter 2). A workflow for data preprocessing and 

preparation is developed for the open-source platform in R (r-project.com) with the help of 

R- and Bioconductor packages. It will be shown, that preprocessing plays an important 

role in the discovery and correction of handling errors, e.g., mislabeled arrays.  

Subsequently, methods in the statistical analysis of microarrays are introduced (chapter 3), 

especially differential gene expression analysis and cluster analysis methods. But also 

approaches to predict clinical outcomes with microarray data are suggested. Furthermore, 

functional gene annotation analysis methods are applied with the help of the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) and Ingenuity Pathway 

Analysis (IPA). These platforms use gene sets and add functional information to give hints 

                                                

1
 With definition of the new BPD by Jobe (2006) BPD is in very preterm infants (born before the 32 

weeks gestational age) diagnosed if the infants are treated with oxygen over 21% for at least 28 

days. BPD is then divided into three severity grades: mild BPD, if infants breath rom air at 36 weeks 

postmenstrual age or discharge; moderate BPD, if the need for oxygen remains, but below 30% 

oxygen at 36 weeks postmenstrual age or discharge; or severe BPD, if more or equal to 30% 

oxygen and/or positive pressure, either ventilation or continuous positive airway pressure, is 

required at 36 weeks postmenstrual age (Jobe, 2006). 
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in regard to underlying diseases and biological functions, as well as putative upstream 

regulators.  

Combining the described methods of data preprocessing, statistical analysis including 

hierarchical clustering, differential gene expression, and functional analysis of the obtained 

set of transcripts a comprehensive evaluation procedure is assembled and applied to a 

data set of 22 preterm infants (chapter 4). Cord blood of preterm infants born before the 

32nd week of gestation was analyzed showing that a differentiation at birth between 

preterm infants who do not develop BPD and infants who develop different stages of BPD 

is possible. Here, first a supervised approach, using different BPD groups, was followed 

and secondly a semi-supervised approach with stratification for gestational age was 

applied in order to select transcripts whose expression is correlated with mechanical 

ventilation and/or oxygen support. 

 

 

 



Introduction 

 

12 

 

  



Preprocessing of microarray data 

 

13 

 

2 Preprocessing of microarray data 

There is a wide variety of methods to analyze gene expression. One method is based on 

high-density microarrays; these contain more than 10’000 spots2 per square centimeter 

(Lorkowski and Cullen, 2003). In this study, CodeLinkTM Bioarrays (GE Healthcare) are 

used. These microarrays contain probes consisting of specific 30-mer oligonucleotides 

which represent about 10’000 human genes, their transcripts, and expressed sequence 

tags. 

The microarray analysis technique is based on nucleic acid strand binding between 

complementary sequences on the microarray and transcript sequences to be sampled. 

Messenger ribonucleic acid (mRNA) is obtained from tissue under investigation or whole 

blood. Nucleic acid strand bind strongly and specifically to each other using Watson-Crick 

base pairing3; the specificity and affinity of this binding is reduced by mismatching base 

pairs until the hybridization is completely prevented. To label mRNA strands, they are 

usually reverse transcribed to produce complementary deoxyribonucleic acid (cDNA) 

strands. For detection and quantification purposes they are labeled with fluorescent dye 

during this process. The cDNA is hybridized on microarrays, where the DNA strands bind 

complementary to probes attached to the microarray surface. The higher the amount of a 

specific transcript, the higher is the detection signal obtained from the probe (Lorkowski 

and Cullen, 2003). 

Two types of microarrays can be differentiated: single color microarrays, on which only 

one sample is hybridized and two color microarrays, on which two samples labeled with 

two different fluorophores (usually Cy3TM and Cy5TM4) are hybridized. Statistical 

procedures and data transformations differ for these types. In this study, single color 

arrays were used. 

A microarray detection signal consists basically of two parts: (1) the actual signal which 

indicates the amount of specific transcripts in the sample, and (2) the experimental (or 

                                                
2
 Spots contain defined sequences of transcripts and genes as probes for the detection of gene 
expression. 

3
 Watson-Crick base pairing is the binding of cytosine to guanine and thymine to adenine in DNA 

double strands or adenine-uracil and guanine-cytosine in RNA strands by hydrogen bonds.  

4
 Cy3

TM
 and Cy5

TM
 are water-soluble cyanine dyes with an absorption wavelength of 552 nm and 

667 nm respectively and an emission wavelength of 568 nm and 667 nm respectively (Lorkowski 

and Cullen, 2003).  
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background) noise e.g., introduced by microarray handling. The aim of data preprocessing 

in microarray experiments is the reduction of experimental noise to improve the signal 

quality. 

2.1 Review of methods 

The quality of a microarray experiment is determined in every step of the experiment 

starting with the design of the experiment, selecting and obtaining probe material, 

extracting RNA, and finally the hybridization of the RNA to microarrays. Each step of the 

experiment can introduce bias and lead to false positive or false negative results.  

Eady and colleagues (2005) investigated healthy donors and observed that gene 

transcription profiles in the blood of different donors varied with sex, age, body mass index 

and the presence of varying proportions of different leukocyte proportions. They also found 

gene transcription profiles within a single donor to be comparatively stable over time. This 

experiment emphasizes the importance of a careful design of microarray experiments. To 

solve problems regarding probe material and sampling errors, standardization of 

experimental conditions, pooling of multiple samples, and multiple replicates of the 

experiment need to be considered and controlled (Murphy, 2002). 

In addition to errors introduced by the experimental setup and the sampling, also the 

microarray itself can introduce errors, the so called experimental noise (Tu et al., 2002). 

Variation in gene expression may therefore originate in (1) pre-hybridization steps: probe, 

target, and sample preparation; in (2) the hybridization process and readout step: 

background effects, and effects from image processing (Schuchhardt et al., 2000; Tu et 

al., 2002). These aspects are addressed in data preprocessing in background correction 

(chapter 2.1.1) and normalization steps (chapter 2.1.2). Furthermore, missing values due 

to technical problems, the so called “missing completely at random”, or measurements that 

are not reliable or obtainable in some cases, the so called “missing at random” (Aittokallio, 

2010), or due to data handling are addressed in chapter 2.1.3. Low expressed transcripts 

are very susceptible to data problems introduced by background correction, which is why 

they need to be addressed in data preprocessing (chapter 2.1.4). Along with missing and 

low expressed values, also extreme values or outlier values (chapter 2.1.5) must be 

addressed in the preprocessing of microarray data (Liu et al., 2003). At last, methods are 
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reviewed to detect outliers in samples or technical replicates in order to reduce noise 

affecting the whole microarray and not only single probes (chapter 2.1.6).  

2.1.1 Background correction 

In order to compare different microarrays used in a microarray experiment and to reduce 

experimental noise, three aspects of standardization need to be considered (Reimers, 

2010): (1) variance adjustment by binary logarithm transformation (this aspect is not 

further discussed in this work), (2) adjustment of the central tendency by background 

correction, and (3) adjustment of distributions of signal intensities by normalization5. The 

positive impact of background correction and data normalization on statistical analyses 

has been shown, e.g., on clustering by Freyhult et al. (2010). 

The term “background correction” refers to the “removal of ambient, non-specific signal 

from the total intensity […]” (Ritchie et al., 2007) for each microarray. Non-specific 

hybridization and noise in the optical detection system occurs frequently, e.g., different 

amount of cDNA were hybridized on different microarrays, background corrections adjusts 

the signal to get accurate measurements of specific hybridization (Huber et al., 2005).  

Subtract.  The local background is defined by the periphery of pixel of a spot (Applied 

Microarrays, 2013). A straightforward approach for background correction is the 

subtraction of the background from the measured signal intensity. For CodeLink Bioarrays 

the procedure recommended by the manufacturer is to calculate the mean intensity of 

pixels within a spot and subtract the median intensity of the local background. According to 

Ritchie et al. (2007) most image analysis software proceed in this manner. But this method 

of background correction leads to negative values, whenever the background intensity 

exceeds the spot intensity; this in turn leads to missing log-transformed intensities. Log-

transformation further leads to a higher variability of low intensity values, also known as 

“fanning” problem. The issues of low intensity and missing values are addressed again in 

the chapters 2.1.4 and 2.1.3.  

                                                

5
 The term normalization here refers to the adjustment of distributions of measurements. 

Sometimes normalization refers to all steps which aim to make microarrays of different samples 

comparable as seen in Reimers (2010).  
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Half.  To avoid the generation of negative values, it is also possible to replace negative 

values or values smaller than 0.5 after background subtraction by 0.5. This method is 

named for its constant, half. Using this method, variance in intensities near the background 

is reduced, which can be observed in Figure 2-1, presented later in this chapter. 

Normexp. A third possibility for background correction for CodeLink Bioarrays as 

provided in the Bioconductor package codelink (Diez et al., 2007) is the method normexp 

as first introduced by Ritchie et al. (2007) for two-color microarrays. Normexp is an 

abbreviation for normal exponential convolution model. The observed intensities are 

modelled by fitting an exponential distribution to the foreground signals and a normal 

distribution to the background noise where parameter are estimated using a saddle-point 

approximation. This method is based on background correction by robust multiarray 

analysis (RMA) developed for Affymetrix GeneChip system by Irizarry et al. (2003), using a 

global distribution of probe intensities based on empirical observations of global intensities 

(Bolstad et al., 2005). Normexp was enhanced by Silver (2009) using an exact maximum-

likelihood estimation. Normexp can also be combined with a small offset, a constant that 

shifts the whole distribution to the left and thereby stabilizes the variance of small 

variables.  

Comparison of background correction methods 

Ritchie et al. (2007) compared different background correction methods, e.g., standard, 

normexp and normexp with added offset, for two-color cDNA microarrays. Other methods 

they compared were: Kooperberg based on an empirical Bayes model; Edwards, which 

uses a threshold to decide, whether background is subtracted or estimated by a smooth 

monotonic function; vsn, a variance stabilizing method, which uses an arcsin 

transformation instead of the logarithm, and is so able to deal with negative values; and 

morph used in the Spot and GenePix software. The focus of the following short review lies 

on the evaluation of the widely-used normexp and standard methods, as they are further 

available for oligonucleotide CodeLink Bioarrays.  

Ritchie et al. (2007) compared the standard background subtraction method, that may 

produce negative values, with methods which strictly produce positive corrected intensity 
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values. With the help of three data sets, a spike-in6, mixture7, and a quality control study 

data set, they assessed the precision, bias, and performance in differential expression 

analysis of the background correction methods.  

They estimated precision by using the mixture data set; in short, intensity measures are 

expected to follow the mixing patterns; a residual standard deviation gives an estimate for 

the precision of the returned measurements. The fanning effect of background correction 

can be seen in this setting; for low intensities the precision is generally higher than for high 

intensities, whereas without background correction this effect is reversed, with very low 

variances in low and high intensities. Bias is estimated with the spike-in data set which 

provides an array of true fold changes, which then are compared to the estimated fold 

changes. The findings are confirmed with the mixture data set. Bias is summarized by the 

mean absolute deviation of the estimated log2-fold changes from the true log2-fold 

changes.  

For the assessment of the ability to detect differentially expressed genes with significance 

analysis of microarrays (SAM) regularized t-statistic and linear models for microarray 

analysis (LIMMA) empirical Bayes moderated t-statistics Ritchie et al. (2007) used the 

mixture experiment data set. With varying mixtures the altitude of the fold changes are 

expected to differ, but the set of differentially expressed genes should stay constant. 

The investigators observed that a trade-off between bias and precision must be made; 

methods, i.e., normexp with offset or no background correction, performing well in terms of 

precision, show a higher bias. The standard background subtraction shows a very low 

precision in low intensities. With normexp this effect is not quite as pronounced, but it 

shows lower precision in low intensities as well. The method normexp together with a fixed 

offset value is able to reverse this trend; it shows similar variances in low and high 

intensities, also middle intensities show lower variances transformed with this method than 

with other methods. Even lower variances can only be observed without background 

correction. Standard method of background subtraction performs worst resulting in a high 

number of false positives in differential gene expression analysis. Again, the alternative of 

no background correction performs poorly in SAM differential expression analysis. Best 

                                                

6
 A spike-in data set contains reference control RNA, which is added prior to labelling to produce 

known fold changes. 

7
 In a mixture data set mRNA from different reference samples or cell lines in known relative 

concentrations are compared. 
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results in regard to detection of differentially expressed genes can be seen with a variance 

stabilizing method, e.g., normexp + offset.  

Application in CodeLink Bioarrays 

For background correction, the Bioconductor package codelink by Diez et al. (2007), no 

background correction, subtraction, half and normexp can be chosen. It also provides 

graphics, i.e., MA-plots8, density plots, and image plots, to visually inspect the effects of 

background correction and normalization.  

In Figure 2-1, density of 20 randomly sampled CodeLink human whole genome Bioarrays 

are shown before and after background correction with the methods subtract, normexp, 

and half.  

It can be seen that raw data (Figure 2-1, black lines) have higher means and lower 

variance than after background correction. Measures of central tendency of raw data 

distribution show a high variability and are therefore difficult to compare due to a priori 

differences in the distributions. Ideally, distributions of signal intensities resemble each 

other closely. Differences in gene expression between the different treatment groups can 

be expected to be compensated by the great number of unchanged gene expressions.  

After background corrections measurements of central tendency, e.g., modal value 

resemble each other more closely. As expected an overall shift of the distribution to the left 

can be observed. With regard to dispersion it can be observed, that variance of the 

methods subtract (Figure 2-1, red lines) and half (Figure 2-1, blue lines) are higher; after 

half background correction a second peak, where the constant 0.5 was set can be 

observed. In subtract these values are smaller than 0.5 or missing values, as they are 

negative before log-transformation. The method normexp (Figure 2-1, green dotted lines) 

results in distributions with lower variance and more comparable means. 

 

                                                

8
 MA-plots plot the difference in measured signal intensity of each probe between two arrays versus 

the average of the two arrays. For a pair of arrays i and j, and the k-th probe these are calculated as 

follows: M = log2(xki/xkj) or M= log2(xki) - log2(xkj), A = ½ log2(xki*xkj) or A= (log2(xki) + log2(xkj))/2 

(Bolstad et al., 2003). M and A are mnemiotic for “minus” and “add”. For more than two arrays M 

stands for the difference between the median intensity of this probe minus the value for this probe 

and array. It then becomes a “Median (difference) versus Average”-plot. 
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Figure 2-1 Background correction effect on density distributions of 20 CodeLink human 

whole genome Bioarrays.  

In black solid lines raw data distributions are shown, they have a higher mean 
and lower dispersion in data; after background subtraction (in red), all arrays 
show a similar distribution, with the mean shifted to the left and a higher 
variance. The low density at all intensities can be explained by missing 
values due to values below zero before log-transformation. The same can be 
observed with an offset of 0.5 for values below zero, but a second mode, 
where the offset was defined. In normexp background correction (in green) a 
smaller variance and smaller shift to the left can be seen. 

 

It can be seen that background correction in microarray experiments is necessary; 

however, background subtraction bears some difficulties, i.e., the generation of missing 

values and a high variance in expression of low expressed genes. Variance stabilizing 

method for background correction, e.g., “normexp”, lead to a higher accuracy in returned 

intensities. 
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2.1.2 Normalization 

The term “normalization” refers to the data transformation step that “[…] adjusts the 

individual hybridization intensities to balance them appropriately so that meaningful 

biological comparisons can be made” (Quackenbush, 2002). In short, normalization is the 

step of data transformation that makes different arrays comparable (Bolstad et al., 2005; 

Schuchhardt et al., 2000).  

With the background correction step, it is possible to reduce the measured intensities of 

the noise, which leads to shifts in central tendency of the signals of a microarray. But still 

differences in the distribution of signal intensities remain, making it still impossible to 

interpret the data. Normalization strategies are proposed to minimize the influence of noise 

on the signal due to changes in measured intensity between microarrays (Bolstad et al., 

2003; Smyth and Speed, 2003; Wu et al., 2005). To achieve similar distributions, now 

distributions of a microarray are either compared to a baseline-array or are compared in a 

pairwise-manner. Normalization can only be achieved by comparing with another array, 

while background correction is based on the microarray distribution itself. Introduced and 

discussed are normalization methods based on (1) median, (2) local weighted regression 

(loess), (3) quantiles, and (4) briefly mentioned are two methods which are based on a 

subset of genes, e.g., housekeeping genes (Iset and Qspline).  

Median.  Median normalization refers to all methods, which transform measured 

intensities in a manner that all microarrays have the same median. Median normalization 

is one of the most common normalization methods for one-color arrays (Edwards, 2003) 

and is recommended by the manufacturer of CodeLink Bioarrays(Applied Microarrays, 

2013). Therefore measured intensities of each microarray are divided by the median 

intensity, which results in a median of one in all microarrays (Wu et al., 2005). In this case 

the proposed normalization method is independent of other arrays and allows a 

comparison of arrays not preprocessed at the same time. The manufacturer of Affymetrix 

microarrays uses a different normalization method, but also proposes to normalize data in 

a manner that all arrays have the same median (Bolstad et al., 2003). Intensities are 

transformed using a baseline array, which usually is the array with the median that equals 

the median of medians of all microarrays.  

Loess.  Cyclic loess normalization is based on the idea of MA-plots, where the 

average log intensity A= (log2(xki) + log2(xkj))/2 of two arrays or colors is compared with the 



Preprocessing of microarray data 

 

21 

 

log intensity ratio for the microarray i and j, and the k-th probe (Bolstad et al., 2003). It is 

an inter-microarray variant of locally weighted regression (loess) (Cleveland and Devlin, 

1988) based normalization method, a local regression method. It estimates the intensity-

dependent differences in a pair of microarrays, then uses loess smoothing to center the 

loess line to zero, and thus removes the pair wise differences. The cyclic loess 

normalization algorithm is applied in a pairwise manner to all microarrays in one or two 

iterative steps (Bolstad et al., 2003; Wu et al., 2005). 

Quantile.  Smyth and Speed (2003) propose a scale-normalization. Scale-

normalization describes scaling9 of a series of arrays, so that the spread of values and the 

median absolute deviation (MAD) of each array are the same (Smyth and Speed, 2003). 

Quantile normalization is based on a similar idea, particularly on the idea of Q-Q-plots, 

where two distributions are compared. The distributions are the same if the plot shows a 

straight diagonal line. This idea is projected on a higher dimensional level. For the 

example of two arrays are the intensities adjusted in a manner that generates a straight 

diagonal line. For each array, ranks are assigned to raw intensity values, the value for 

each intensity with the same rank are then substituted by the median value of intensities 

with this rank (Bolstad et al., 2003; Wu et al., 2005). Quantile normalization is nowadays 

adapted and also used for RNA sequencing technologies (Dillies et al. 2012). It then 

matches the distributions of gene counts across lanes.  

Iset and Qspline.  Invariant-set- (Iset) and quantile-spline-normalization (Qspline) by 

Workman et al. (2002) both are methods based on a baseline array approach and spline 

smoothing technique with a subset of genes of the array to reduce intensity-dependent 

differences of the arrays. Iset uses rank-invariant or so-called house-keeping genes with 

respect to the baseline-array. Qspline uses quantiles of ranked genes to estimate 

smoothing curves (Bolstad et al., 2003).  

                                                

9
 Scaling refers to the division of a vector by its standard deviation. It can be combined with a 

centering step, where from the vector an average is subtracted. When scaling and centering by the 

arithmetic mean in normal distributed data is done, this process is called z-transformation and the 

vector then is standard normal distributed.  
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Assessing normalization methods 

To evaluate normalization methods, Wu et al. (2005) examine the ability to reduce noise in 

a dataset and the ability to retain signal. They use a number of possibilities to examine the 

effectiveness of normalization methods: by noise reduction via MA-plot, spatial plot, 

coefficient of variation, correlation and variances in replicate arrays; by signal retention via 

the ability to predict a fixed number of known differentially regulated genes, or to reveal 

spike-in genes, overabundance of differentially express genes, or the cross-validation KNN 

classification error (Wu et al., 2005).  

The investigators compared Median, Loess, Quantile, Iset, and Qspline normalization 

methods specifically for CodeLink Bioarrays by using replicate microarrays and/or positive 

control probes which are redundantly, i.e., six times, spotted on each CodeLink Bioarray 

and comparing the numbers of differentially expressed genes. For signal detection a 

minimum detection threshold is determined by the 80%-trimmed mean of negative control 

probes and the standard deviation of trimmed negative control probes. Signal 

reproducibility was assessed by using the number of differentially regulated genes 

detected by parametric and non-parametric statistical significance tests. They used two 

data sets: (1) a time course data set using 5 different durations of treatment and a control 

group on the CodeLink Uniset Rat I Bioarray, and (2) a control versus disease setup with 

patients with idiopathic pulmonary fibrosis on CodeLink Human I Bioarrays (Wu et al., 

2005).  

Bolstad and colleagues (2003) used data of a previously described study from Irizarry and 

colleagues (2003) where datasets are created using a dilution/mixture experiment and a 

spike-in experiment. The dilution and mixture experiment involved 5 RNA dilution levels 

and 3 proportions of mixtures of two tissue lines. In the spike-in experiment 11 different 

cRNA fragments were added at various concentrations. They compared Loess, Quantile, 

Median (of a baseline array) and Iset normalization methods (in addition to the not further 

discussed contrast based normalization method, which is similar to Loess normalization, 

but applies a smoothing transformation in addition) with respect to performance in 

reduction of obscuring variance without increasing bias (Bolstad et al., 2003). For the 

evaluation of variance reduction in Cyclic loess, Quantile, and the contrast based 

normalization method the dilution/mixture experiment is used, where the RNA for the 

arrays stems from a single source. The expression for each probe-set is calculated and 

variance and mean of this probe-set expression is calculated across all arrays of a dilution 
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set and for each normalization method. The common source bears the advantage, that 

normalization methods can directly be compared by variance; the smaller the variance the 

better the method. 

The Median normalization method recommended by the manufacturer shows poor results 

in the assessment of Wu et al. (2005), i.e., noise reduction in both examined datasets is 

improved considerably and consistently with Loess, and Qspline normalization. Quantile 

normalization also shows improvement in the control versus disease – data set, but not in 

the time course data set. Iset shows no improvement over Median normalization in both 

data sets. The authors come to the conclusion to best use the Loess or the Qspline nor-

malization method for CodeLink Bioarrays. However, Loess normalization has the 

disadvantage that it cannot deal with missing values, which are e.g. created by subtract 

background correction, and thus cannot be paired with background subtraction.  

Bolstad et al. (2003) show that normalization outperforms non-normalization in regard to 

intensity dependent differences between two arrays; distributions of differences between 

the same probe of two arrays vary around a median of 0 in normalized data, but are 

shifted in non-normalized data indicating a higher overall intensity level in one of the 

arrays. The normalization methods are able to reduce the variance across a single 

detection probe and variances of the distributions across microarrays of the signal 

intensities. Quantile normalization performs slightly better than Loess or Median 

normalization in terms of bias correction as assessed with a dilution data set. Ideally 

slopes near one would be reached; deviations from one give information about the bias or 

bias correction after normalization respectively. Again Quantile normalization together with 

Median normalization demonstrates good results.  

To illustrate the effect of different normalization methods together with subtract and 

normexp background correction methods, densities of 20 randomly selected CodeLink 

human whole genome Bioarrays are presented (Figure 2-2). The normalization methods 

Median, Quantile, and Loess are incorporated in the codelink Bioconductor package by 

Diez et al. (2007) designed for preprocessing CodeLink Bioarrays. The effect of these 

methods on variances of single distributions and between arrays can be assessed in the 

following figure. Subtract and normexp background correction together with Median, 

Quantile, and in case of normexp Loess normalization is compared as well.  
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Figure 2-2 Normalization and background correction effects on density distributions of 

20 CodeLink human whole genome Bioarrays.  

Each color represents a set of microarrays processed with different background and 
normalization methods. Quantile normalization produces identical distributions; after 
subtract background correction (in magenta) variance is smaller than variance of 
distributions after median normalization (in blue); after normexp densities in loess 
(in grey) and quantile (yellow) normalizations are higher but resemble each other. 
Median normalization shows the same results after both background correction 
methods. 

 

All normalization methods achieve a reduction of the in-between microarray variance when 

distributions of normalized data are compared with either the un-preprocessed raw data 

set (depicted in black) or the background corrected data set (depicted in red for 

background subtraction and in green for normexp). 

Median normalization achieves similar distributions after both background correction 

methods (see Figure 2-2, magenta for normexp, and blue for subtract), with high variances 

between and within microarrays compared to Quantile and Loess, although variance 

between microarrays is still highly reduced compared with the raw data set (depicted in 

black lines). Quantile normalization (see Figure 2-2, cyan and yellow) after subtract 

produces per definition identical distributions and thus a very low variance between 

microarrays, additionally within microarray variances are reduced compared to the after 

background correction distributions (see in red and green respectively). Loess 
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normalization produces distributions with a very small variance between microarrays (see 

grey lines), which equals the Quantile solution.  

2.1.3 Missing values 

The next steps filter probe sets, which cannot be interpreted due to (1) a high proportion of 

missing values, (2) expression values near or below the background (see 2.1.4), or (3) a 

high variability of the probe in a treatment group (see 2.1.4).  

Missing values in microarray experiments occur due to various experimental reasons:  

(1) Scratches, dust or other incidences may compromise parts of the microarray glass 

slide. (2) The hybridization or the signal spotting may be ineffective, leading to misshaped 

spots and then to the removal of the measurement. (3) The user manually removes probes 

after visual inspection of the hybridization image (Troyanskaya et al., 2001; Tuikkala et al., 

2006). Values are also discarded because of (4) low expressed values, i.e., signals below 

background noise (see chapter 2.1.4), or if (5) outlier values occur within a treatment 

group (see chapter 2.1.5). 

Dealing with missing values is important because their influence has been reported for 

multiple downstream analyses; e.g. clustering of transcripts is influenced by missing 

values (Brevern et al., 2004; Celton et al., 2010; Tuikkala et al., 2008), the removal of 

missing values improves the controlling of false positives and true positives in transcript 

prioritization or the detection of differentially expressed transcripts (Hua and Lai, 2007; 

Scheel et al., 2005). Additionally, the impact on the outcome of biological downstream 

analyses depends on the filtering and imputation methods used, and will therefore be 

discussed in more detail in the following chapters. 

 Filtering 2.1.3.1

To deal with missing values three typical approaches exist: (1) transcript filtering, (2) 

imputation, (3) replacement with a constant (Brevern et al., 2004; Tuikkala et al., 2008). In 

our analyses, we included two of these three approaches. The third method, replacement 

with a constant, is inferior to the other methods as demonstrated by the reviews described 

in the following sections.  
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So first, transcripts with high rate of missing values were filtered and then all remaining 

missing values were imputed. Troyanskaya et al. (2001), Tuikkalla et al. (2008), as well as 

Celton et al. (2010) estimate the imputation accuracy of different imputation methods with 

percentages of missing values ranging from 5% to 50%. They show that the higher the 

percentage of missing values is, the lower is the accuracy of the imputation method used. 

Scheel et al. (2005) also find an sample dependent impact on the performance of 

imputation methods in the detection of differentially expressed transcripts when using the 

statistical methods Student’s t-test and SAM; in studies with sample sizes of 5 or 10 

samples in each group, an elimination of transcripts with a high missing rate is as 

important as the in the following chapter evaluated imputation methods (Scheel et al., 

2005). 

Additionally, the accuracy of an imputation of missing values depends on the number of 

arrays used for the analysis: a high number of arrays rather tolerates a high missing rate in 

the data set (Celton et al., 2010; Scheel et al., 2005; Troyanskaya et al., 2001; Tuikkala et 

al., 2008). 

 

Figure 2-3 Missing values filtering algorithm divided into analyses with and without prior 

consideration of treatment groups.  

To start filtering a threshold for the maximum percentage of missing values 
per group or for all arrays must be given. Probe sets exceeding a certain 
amount of missing values in at least one group are discarded and not further 
analyzed. 

 

As mentioned before, a certain percentage of missing values cannot be avoided in a data 

set of microarrays. To assure the accuracy of the data, all probe sets with a high amount 
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of missing values are removed from further analyses. This step is sensible to a priori 

defined treatment groups10, so it can be chosen whether to accept a certain amount of 

missing in the data set containing all microarrays, the no-groups-scenario, or if, in the case 

of the groups-scenario, a too high amount of missing values in one of the groups leads to 

an omission of the detection probe.  

In the no-groups-scenario it is assured that a sufficient amount of data exists to interpret 

and analyze the gene expression. In the groups-scenario, one group is sufficient to 

eliminate this probe set from the scenario. With a high percentage of missing values in one 

group, an interpretation of the gene expression in this group in comparison to other groups 

is not adequate. The gene expression of this probe may not be estimated with sufficient 

accuracy.  

 Imputation 2.1.3.2

Imputation is the statistical estimation and substitution of missing values. Imputation is a 

partial step in data preparation as principal component analysis (PCA), hierarchical 

clustering, and other downstream analyses require complete data sets. Over the years a 

number of imputation methods have been developed and used. 

In the beginnings of gene expression analyses, missing values were substituted using 

standard statistical procedures, such as the replacement with 0, in log2-transformed data, 

or the row- or gene expression-average of the remaining values of a transcript 

(Troyanskaya et al., 2001). Several workgroups describe and show the inferiority of these 

approaches, and more sophisticated, data structure and correlation structure considering, 

methods were developed (Aittokallio, 2010; Kim et al., 2004; Troyanskaya et al., 2001; 

Tuikkala et al., 2008). These methods include strategies based on Singular Value 

Decomposition (SVD) (Troyanskaya et al., 2001), weighted K-nearest neighbors (KNN) 

(Troyanskaya et al., 2001), the re-use of imputed transcript data sequentially in K-nearest 

neighbor method (SeqKNN) (Kim et al., 2004), expectation maximization (EM) or least 

square methods (Bø et al., 2004), local least squares (Kim et al., 2006), linear model 

based imputation (LinImp) (Scheel et al., 2005), semantic similarity in gene-ontology of 

                                                

10
 The term “treatment group” refers to the factor analyzed in the study at hand; it can either refer to 

control vs disease, or different classes of disease, or different treatments.  
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transcripts (Tuikkala et al., 2006), or based on a Bayesian Principal Components Analysis 

(BPCA) (Oba et al., 2003; Tuikkala et al., 2008).  

Principles of imputation methods 

This study focuses on methods available in R or Bioconductor. In Table 2-1 an overview of 

these methods and their package availability is given.  

According to Aittokallio (2010), imputation strategies can be separated into two major 

classes, (I) the generic statistical methods, and (II) application specific modifications, that 

use for example spot quality weights (Johansson and Häkkinen, 2006). The first group can 

further be divided into 6 subclasses (Aittokallio, 2010): (1) Mean imputation, e.g., column 

or row averages of the non-missing values, (2) hot deck imputation, that includes all 

methods which use similar non-missing cases, where the similarity is defined by using 

distance measures. KNN-imputation as a more application specific method derived from 

this principle; (3) model based imputation describes all methods that use a statistical 

model, typically linear regression, to predict the missing values of non-missing values of 

the same case, e.g., expectation maximization (EM), or least squares imputation (LSI); (4) 

multiple imputation methods estimate multiple values for one missing value; (5) cold deck 

imputation methods use external sources of information; and (6) composite methods, 

which use of combination of the aforementioned methods. 

 

Table 2-1 Availability of imputation methods in R 

Imputation method Author Year in R Package Package citation 

K-nearest Neighbors (KNN) Troyanskaya et al.  2001 BioC impute Hastie et al., 2013 

Sequential KNN (SeqKNN) Kim et al.  2004 BioC SeqKNN Kim et al., 2008 

Least squares imputation (LSI) Bø et al. 2004 no
1
   Bø et al., 2004 

Expectation maximization (EM) Bø et al. 2004 no
1
   Bø et al., 2004 

Local least squares (LLS) Kim et al.  2006 BioC pcaMethods Stacklies et al., 2007 

Bayesian Principal Component 
Analysis (BPCA) 

Oba et al. 2003 BioC pcaMethods Stacklies et al., 2007 

Linear model based imputation 
(LinImp) 

Scheel et al. 2005 BioC linimp Scheel, 2007 

1
 authors provide an Java-application  
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KNN. One of the first developed methods for substituting missing values is based K 

nearest neighbors (KNN) algorithm by Troyanskaya et al. (2001). For a given transcript 

with a missing value in one array the algorithm would find k transcripts with a similar gene 

expression, which have a value present in the other arrays. Then transcripts are weighted 

by their expression similarity to the transcript in question and a weighted average is 

calculated. This method is available in the Bioconductor-package impute (Hastie et al., 

2013a). 

SeqKNN. An improvement of the KNN imputation methods is the sequential KNN 

algorithm by Kim et al. (2004). It is designed to improve efficiency in data sets with high 

rates of missing values. Transcripts are sequentially imputed starting with the transcripts 

with the least number of arrays with missing values. Starting with the transcripts with only 

one missing value, k similar transcripts are selected from the set of complete transcripts. 

The weighted column average is calculated to substitute the missing value. This transcript 

is then considered as complete transcript and can be selected for subsequent imputation 

steps for transcripts with more missing values. This methods is available for R until version 

2.14.0 in the Bioconductor-package SeqKnn (Kim et al., 2008). 

LSI.  Imputation methods based on the principle of least squares (LS), least squares 

imputation (LSI), as introduced by Bø et al. (2004) take the correlation structure of arrays 

and transcripts into account. There are different approaches to estimate missing values 

with LS.  

The gene-based approach, LSI_gene, is based on the correlation of transcript intensities. 

For a transcript with missing values, the k most correlated transcripts are selected. Then in 

a single regression that predicts the values of the missing transcript with the complete 

transcripts. The so obtained k times two regression coefficients are weighed by correlation, 

the highest correlation of a transcript with missing values is assigned the highest weight, 

and a weighted average of the regression coefficients is calculated.  

The array-based method, LSI_array, is based on the covariance structure between arrays 

and applies a multiple regression model to estimate missing values. A transcript has 

missing values in certain arrays then in a multiple regression step these missing values 

are estimated by using the profiles of the arrays with values in this transcript. To get a first 

estimate of the missing values and to be able to proceed with the multiple regressions, 

missing values are first substituted by the LSI_gene approach as explained.  
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Bø et al. (2004) also developed two combinations of gene and array approach. In both 

approaches 5% of the missing values are re-estimated. In the “combined” approach, 

LSI_combined, these estimates are used to determine a global mixing or weighing factor 

for the estimates of the array and gene approaches. It is called global because this mixing 

factor is applied to all genes or transcripts respectively. The mixing factor is determined by 

minimizing the sum of squared errors between known and estimated values. In the 

“adaptive” approach, LSI_adaptive the correlation structure of the data is considered. The 

mixing factor is calculated for a set of transcripts with a given maximum absolute 

correlation coefficient.  

Expectation maximization.  Bø and colleagues (2004) also implemented two methods 

based on expectation maxim ization (EM). They are comparable with the gene and array-

based LS methods, but use instead of an empirical covariance matrix the maximum 

likelihood estimate of the covariance matrix. In an iterative algorithm the estimates of 

missing values and the covariance matrix is updated until the estimates stabilize. Methods 

are available as Java application from the authors via a supplementary website.  

LLSI.  In local least squares imputation (LLSI) by Kim et al. (2006) missing values of a 

transcript are estimated using a linear combination of k similar transcripts. Similar 

transcripts are selected on the base of Euclidean distance or Pearson’s correlation 

coefficient. Subsequently a linear regression model of the k most similar gene expression 

patterns is used to predict the gene expression of the transcript with missing values. LLS 

imputation is available for R language in the Bioconductor package pcaMethods (Stacklies 

et al., 2007).  

BPCA.  The Bayesian principal component analysis (BPCA) by Oba et al. (2003) is 

based on a principal component regression, a Bayesian estimation and expectation-

maximization-like repetitive algorithm. In the first step a PCA, i.e., a covariance matrix of 

gene expression is calculated. The factors extracted from the PCA are then used within a 

principal component regression to explain the covariance matrix. Missing values within 

gene expression vectors are estimated by non-missing values of the vector using the 

principal component regression results, namely the factor scores. Finally Bayesian 

estimation is used to improve the accuracy of the obtained parameter set. A variational 

Bayes algorithm is used to execute Bayesian estimation for model parameters and missing 

values in a repetitive algorithm until the parameters converge. With this method redundant 

principal component axes are shrunk toward zero and so only relevant axes remain to be 
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used. It is important to note for workflow considerations that the authors suggest using 

initially even transcripts with high rates of missing values for the BPCA imputation. It 

improves the estimation ability of the method as these transcripts yield additional 

information, but they also strongly suggest eliminating those transcripts afterwards from 

further analyses. BPCA imputation is available in the Bioconductor package pcaMethods 

(Stacklies et al., 2007). 

LinImp.  Linear model-based imputation (LinImp) by Scheel and co-workers (2005) 

estimates the gene expression on a certain array with a certain array of a certain variety 

and gene-based on a linear regression model. Therefore at first all missing values are 

imputed using for example KNN imputation, then parameters for the regression model are 

estimated and missing values are replaced by the outcome. This step is iterated until the 

parameters converge. The authors provided their imputation method as R-package linImp 

(Scheel, 2007). 

Influence of imputation methods on biological downstream analyses 

Although the different biological downstream analyses, i.e., clustering or differential 

expression analysis, are discussed later in this work, systematic reviews of the influence of 

different imputation methods on these analyses are discussed here. The influence of 

missing values on hierarchical microarray clustering methods are discussed by Brevern et 

al. (2004) and are later re-evaluated incorporating more imputation methods by the same 

workgroup (Celton et al., 2010). The influence of missing values on the detection of 

differentially expressed transcripts is discussed by Scheel et al. (2005) and Oh et al. 

(2011) who also discuss the influence of imputation methods on sample classification and 

transcript clustering. 

Brevern et al. (2004) compared the very common imputation method KNN with the 

substitution of 0 on cluster stability of hierarchical clustering methods (see chapter 3.1 for 

further detail on clustering methods). Therefore a reference dataset was constructed in 

which all transcripts with missing values are removed. Then missing values were created 

randomly. The authors developed a Conserved Pair Proportions (CPP) index to assess the 

cluster stability, which corresponds to the number of pairs found in the reference cluster 

and after missing values imputation. The effects of missing values differs between different 

hierarchical clustering algorithms; single linkage method is the most stable method, 

followed by centroid and average linkage, and Ward’s linkage and complete linkage are 
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the most sensitive to missing values. Substitution of missing values with zero, or with a 

KNN estimation method improves the cluster stability of all methods. The KNN imputation 

method thereby outperforms the imputation with zero. 

Celton and co-workers (2010) re-evaluated the finding of Brevern et al. (2004) using more 

imputation methods and clustering methods to compare. For the general performance 

evaluation they used five different published data sets and discarded all transcripts with 

missing values, then missing values were simulated and missing rates ranging from 0.5% 

to 50% by step of 0.5% and then imputed. The Root Mean Squared Error (RMSE) was 

computed. For the evaluation of the influence on clustering, first the original data set was 

clustered as reference cluster. Then hierarchical clustering with Euclidean distance 

measure, several clustering algorithms, and k-means clustering for each imputed data set 

was performed. The resulting clusters were compared with CPP (Brevern et al., 2004) and 

a Clustering Agreement Ratio that describes the proportion of pairs of transcripts 

belonging to the same cluster in the reference clustering after imputation.  

 

Figure 2-4 Efficiency of different imputation methods with regard to imputation 

performance and cluster stability (Celton et al., 2010). 

 

Combined results of imputation performance and cluster stability are summarized in Figure 

2-4. EM_array, LSI_array, LSI_combined, LSI_adaptive by Bø et al. (2004) perform best 

regarding the efficiency of imputation yielding the lowest RMSE and efficiency in cluster 

conservation having the highest CPP values. The widely used methods KNN and its 

improvement SeqKNN, each with optimized k value as defined by Troyanskaya et al. 

(2001), perform similarly. In terms of imputation efficiency and clustering they perform 

worst of the methods compared having the highest RMSE and lowest CPP values.  

For the analysis of the impact of imputation methods on detecting differentiated expression 

Oh and colleagues (2011) examined SAM, LIMMA, and t-test with Benjamini-Hochberg 

correction (Benjamini and Hochberg, 1995). Therefore they used 8 different microarray 
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data sets with binary clinical outcome. For the impact analysis on differential gene 

expression they defined a biomarker list concordance index (BLCI) that compares the lists 

of biomarkers obtained by the reference data set and the imputed data set. They 

compared the imputation methods: KNN based on correlation and based on Euclidean 

distance, LS_gene in the article referred to as ordinary LSI, LS_adaptive, BPCA, as well 

as the not further discussed SVD (Troyanskaya et al., 2001) and partial LS (Nguyen et al., 

2004). They find that among the general evaluation of the impact of imputation on 

differential gene expression detection, sample classification, and transcript clustering, the 

detection of differential gene expression is the most affected by imputation methods. The 

best performances in missing values imputation and in detection consistency of differential 

gene expression show BPCA and LS_adaptive resulting in highest BLCI values.  

Brock et al. (2008) introduce entropy for data sets and show that the estimation 

performance of imputation methods depends on the entropy of data sets. In context of 

microarrays, entropy describes a data set with aspect to complexity of a gene expression 

matrix. The more complex a data set is, the more difficult is it to map data to a lower-

dimensional subspace, where only a few principal components would be generated in a 

principal component analysis. In more complex data sets, with then high entropy value, 

data cannot be reduced to only few components. When the entropy measure of a data set 

is high, neighbor-based methods, such as KNN or methods based on LS perform better. 

When complexity is low methods like BPCA, which use information of the whole 

microarray, perform better. Aittokallio (2010) reviews various studies on imputation 

methods and recommends choosing robust methods such as LSI for data with local 

substructures and BPCA for microarray data. 

2.1.4 Low expression values 

As seen in the previous chapters through background subtraction and log-transformation 

of low expressed data highly variable intensities for a transcript occur more frequently, also 

known as fanning (Ritchie et al., 2007). Through the use of more complex background 

correction methods this problem can be diminished, but not altogether erased. Additionally 

filtering probes, that have low amount of information due to low gene expression in most 

arrays, improves the power of the experiment.  
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To determine whether probe signals are low expressed a detection threshold must be 

defined. Probes in CodeLink Bioarrays, as used in this work, are determined by a 

detection threshold calculated by the analysis software or using quality flags of the 

manufacturer. The detection threshold, also referred to as negative control threshold, was 

calculated as a global threshold using the 80% trimmed mean of negative control probes 

as suggested by CodeLink Bioarrays (as referenced in Wu et al., 2005).  

Global threshold calculation was replaced in 2007 by a local estimation method for lower 

detection limit (Applied Microarrays, 2007). The signal-to-noise ratio (SNR) is calculated 

for every spot, using spot mean intensity and local noise. Every SNR below 1, meaning 

every probe with higher background than signal value, is flagged as “L” (limit signal), 

values with SNR ≥ can be flagged as G (good). Local noise is calculated as:  

Equation 1 Calculation of local noise for Codelink Bioarrays (Applied Microarrays, 2007) 

Local noise = local background median + 1.5 standard deviations of local background  

Not only low signals are flagged, but also S (saturated signal), I (irregular shape), M 

(missed set rate), C (background contaminated) or X for user excludes spots (for further 

detail see Diez, 2013). These flags are blanked for the analysis and are therefore treated 

as missing values (as discussed in chapter 2.1.3).  

 

 

Figure 2-5 Low expression - Algorithm for filtering transcripts with low expression 

divided into analyses with and without prior consideration of groups of 

arrays.  

To start filtering a cutoff for the maximum percentage of values below 
detection threshold per group or for all arrays must be given. Transcripts 
exceeding a certain amount of values below detection threshold in all groups 
are discarded and not further analyzed. 
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To improve data quality a filtering step is incorporated into the data quality workflow (see 

Figure 2-5). Aim of this filtering step is to eliminate all transcripts that are consistently lowly 

expressed. Therefore, a cutoff percentage of values below detection threshold is set. It can 

also be distinguished between the analysis of treatment groups in an supervised approach 

or the analysis of all arrays in an unsupervised approach. In a grouped analysis, only 

transcripts that exceed the maximum rate of low expressed values in all groups are 

discarded, to preserve transcripts that are low expressed due to biological reasons. In an 

ungrouped approach values of a transcript of all arrays are considered. 

Spot with L-flag can also be considered in the quality assessment of microarrays. Instead 

of calculating the percentage of values below the negative-control threshold, the percen-

tage of values flagged with L is calculated. The rest of the procedure remains the same. 

2.1.5 Outlier in expression values 

Through filtering low expressed probe signals a large part of the highly variable low 

expressed probes are eliminated from the analysis, but still probes with high variation 

might occur. Especially problematic are probe signals with only single values deviating 

from signals of one probe in all microarrays, the so called “outliers”, which can either be 

extremely large or small in comparison with the other expression values. Outliers can 

derive from errors in methods or be of biological nature (Pearson et al., 2003). These 

extreme values can alter the results of the microarray analysis. Especially mean and 

standard deviations (SD) are influenced by outliers and thus in statistical analyses based 

on these statistics, i.e., LIMMA, moderated t-test, Pearson regression, outliers may lead to 

problems. Outliers can also have a severe effect on imputation (Aittokallio, 2010). 

For predicting purposes of the gene expression data, only transcripts with a stable gene 

expression are desired, although outliers or extreme expression values also bear the 

chance to examine individual effects or to identify subgroups in treatment groups and 

account for heterogeneity in samples (Ernst et al., 2008). Ernst et al. (2008) use extreme 

expression values for psychiatric research on an individual level to detect individual 

differences across a sample set. This shows that outliers are not altogether undesirable, 

but for the analysis of treatment groups they could lead to false positive or false negative 

results. Therefore these values are removed and are then handled as missing values, i.e., 
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filtered and imputed together with the missing values from previous data preparation steps 

(see chapter 2.1.3). 

Outlier detection methods 

Outlier detection can be based on (1) z-score, (2) median, or (3) median absolute 

deviation (MAD).  

Z-score.  A common method defines outlier values as values outside a 2 SD distance 

from the arithmetic mean. Based on the z-score circa 5% of all values of a probe are 

detected as outliers with a 2 SD distance. The z-score for the interval [arithmetic meanij ± z 

SDij] for every probe i and treatment group is chosen according to the percentage of 

expected outliers in an interval. A major drawback of this criterion is that it is only feasible 

for normal distributed data with outliers included, but the z-score is not robust to outliers, 

and it is unlikely to detect outliers in small samples (Cousineau and Chartier, 2010; Leys et 

al., 2013). For this method is it very important to have symmetrically distributed expression 

values. Values of a probe in different microarrays tend to be skewed to the right, which is 

why data need to be log-transformed. 

Median.  Another criterion is based on the median of the probe signals over the 

samples of a group. The median is a more robust statistic as it is not influenced by the 

existence of outliers and the overall distribution of the values. After log-transformation 

outliers are defined as values outside the interval11 [medianij ± x] for probe i and treatment 

group j if defined. The value x is selected as a fixed constant. 

MAD.   Recently also a robust estimate for the SD, the median absolute deviation12 

(MAD) is used (Leys et al., 2013) combining both z-score and median based methods for 

outlier detection. Outliers are then defined as values outside the interval [medianij ± x 

MAD] for every probe i and treatment group j. 

 

                                                

11
 The interval for log-transformed data equals the interval [medianij/x; x * medianij] for 

untransformed data. 

12
 MADij = b medianij ( |xijk - medianij(xijk)| ), with b=1.4826 for patient k, group j, and transcript I 

(Rousseeuw and Croux, 1993).  
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Table 2-2 Example z-scores for considering outliers by a z-score based criterion with 

arithmetic mean and standard deviation.  

Bonferroni correction takes the sample size into account. Every value outside 
the interval [arithmetic meanij ± z SDij] for every transcripts i and group j is 
considered as outlier. The decision criterion α gives the percentage of values 
expected to be outliers in normal distributed values (Cousineau and Chartier, 
2010).  

Decision 
criterion 

α 

no 
correction 

Sample size with Bonferroni correction 

3 5 10 20 30 50 100 

0.1 1.64 2.13 2.33 2.58 2.81 2.94 3.09 3.29 

0.05 1.96 2.39 2.58 2.81 3.02 3.14 3.29 3.48 

0.01 2.58 2.94 3.09 3.29 3.48 3.59 3.72 3.89 

0.001 3.29 3.59 3.72 3.89 4.06 4.15 4.26 4.42 

 

For the preprocessing workflow used in this work z-score based and median based outlier 

detection methods are implemented. The constants z and x determine the length of the 

interval. The z-score is derived from the standard normal distribution and the percentage 

of values expected to lie within the interval (see Table 2-2). A more conservative approach 

takes the sample size n into account, so that the decision criterion α is corrected for the 

sample size: αc = α/(2n) (Cousineau and Chartier, 2010). For choosing x for the MAD 

based method Table gives a rough estimate of the conservativeness of the intervals.  

Outlier detection is repeated at least once to account for shifts in mean or median, which 

results from the deletion of single values. If no further outliers are detected probes are 

assessed for the amount of missing values and probes are eliminated if they exceed a 

certain percentage of missing values as described in chapter 2.1.3. Outlier detection is the 

last step of data preparation, where missing values are added to the data set, so missing 

values are imputed after filtering steps are completed. 

Assessment of outlier detection methods 

Visual inspection is an important tool to assess whether outliers are truly detected 

(Cousineau and Chartier, 2010). For this purpose we use MA-plots (see Figure 2-6). 

Background corrected, intra-slide normalized, filtered for missing or low expression values 

are used. Log-transformed data is mandatory for a more symmetric graphic. The group 
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median of a probe is plotted against the difference of this group median and the 

expression of this probe in the respective array.  

 

Figure 2-6 Effect of different outlier detection methods on two example arrays.  

Depicted in red are the detected outliers with different methods based on 
median, z-score, and median absolute deviation (mad) with constant = 3. The 
panel on top shows the variation of the values around the group median. The 
right side represents an array with little variation; the left side shows an 
example with high variation, especially in low expressed transcripts. In the 
lower panels on the respective left hand side, detected outliers are depicted; 
on the respective right hand side is the resulting distribution without outliers 
shown. The depicted MA-plots are constructed on log-transformed data after 
filtering for missing or low expression values.  

 

In the upper panel of Figure 2-6, MA-plots of data before outlier detection can be seen. 

Two examples are given, on the left panel an array with higher variability is shown, due to 

high deviations from the median especially in low and middle expressed transcripts, a 

higher amount of outliers can be expected than in the right hand side panel, were the 

variability around the median is lower. In the lower panels the effect of outlier detection, 
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without the effect of imputation, can be evaluated. Outlier detection based solely on the 

median results in a clear cut of outliers. Detection based on the z-score takes also SD of 

transcript expression into account and therefore a clear line cannot be observed. 

Compared to detection via median another set of values is detected as outliers. The third 

introduced method of outlier detection using median and MAD identifies a higher number 

of outliers. The MAD is a more robust estimator for the standard deviation, which is smaller 

than SD used for the previous two methods and therefore more values lie outside the 

interval [medianij ± 3 MAD] than the interval [meanij ± 3 SD]. The MAD in most cases 

smaller than 1 and therefore the interval [medianij ± 3 MAD] is smaller than the interval 

[medianij ± 3]. This allows us to increase the constant in this approach to reduce the 

probability for false positive detection of outliers.  

The visual inspection of outliers allows to find arrays that have a high amount of outliers 

and therefore to identify interesting subjects deviating from the group or arrays that may be 

corrupted and need to be excluded from the analysis. 

2.1.6 Detection of outlier samples and array quality assessment 

Outlier samples in contrast to outlier values are arrays whiceviate greatly from the 

expression profile of the other samples. That can either be the result of hybridization errors 

or RNA problems or sample mislabeling or sample mistreatment (Kauffmann and Huber, 

2010). 

The step of controlling outlier samples or outlier arrays, including technical replicates of the 

samples, in microarray analysis serves to eliminate all greatly compromised arrays 

(Reimers, 2010). This analysis step should be done as first step of the analysis using raw 

data, but often outlier arrays are not apparent at the beginning of the analysis. In every 

step of the analysis, statistics of the arrays should be monitored carefully. In this chapter 

different approaches to detect outlying arrays are introduced and described.  

Kauffmann and Huber (2010) examine different methods for the detection of outlier arrays 

and show that the use of outlier removal procedures leads to an improvement in the 

analysis. It can be expected that through the elimination of arrays the power of the 

analysis decreases, but it actually strengthens the power to discover differentially 

regulated genes and improves significance levels of biological relevant pathways detected 
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by gene set enrichment analysis. The use of outlier removal procedures leads to an 

improvement in the biological relevance of the analysis. This description focuses on 

relative outlier detection; outlier arrays are discovered in comparison to other arrays. 

Absolute quality metrics use internal controls, or spike-in, or the variability of replicate 

probe sets on the array (Kauffmann and Huber, 2010). A careful examination of the quality 

metrics provided by the manufacturer gives an impression of the absolute quality of this 

array. 

Detection of outlier arrays in comparison to other microarrays can be based on robust 

principal component analysis (Shieh and Hung, 2009) or the correlation coefficient 

between arrays and number of outlier values per array (Yang et al., 2007). In general the 

distance between arrays, and the distance between technical replicates with subsequent 

cluster analysis can be used to detect compromised or mislabeled arrays. For the 

examples, introduced in this chapter, of outlier detection we used hierarchical clustering 

with Euclidean distance and complete linkage clustering (see Figure 2-8) or Ward’s linkage 

clustering (see Figure 2-9).  

Visualization tools facilitate the rapid identification of possible outlier arrays. For an 

overview of all distances a cluster analysis and a dendrogram is helpful. A dendrogram 

shows not only the distance between single arrays, but also the distances between groups 

of arrays (see Figure 2-8) as further discussed in chapter 2.1.6.1. MA-plots were again 

used to identify outliers. For the purpose of identifying whole outlier arrays the relative 

amount of identified outliers in a technical replicate compared to other technical replicates 

can be assessed (see Figure 2-7). Lastly, heatmaps are suitable to highlight pairwise 

distances or gene expression profiles as demonstrated in Figure 2-9. It gives a visual 

impression of the similarity or distance between the examined expression profiles.  

The following examples demonstrate how outlier detection in the presented data set was 

used to detect outlier in technical replicates by examining outlier values and with the use of 

cluster analysis at the end of the quality control workflow. 

 Detecting outlier in technical replicates 2.1.6.1

For our investigation 63 CodeLink Human 10k Bioarrays of 22 preterm infants were 

examined in an unsupervised analysis approach with no prior definition of groups as 

described in chapter 4. For each sample two to four technical replicates were prepared. 

Raw data was background corrected using subtract and intra-slide normalized using 



Preprocessing of microarray data 

 

41 

 

median normalization. Negative values were removed, and transcripts were filtered, when 

more than 50% of the values were missing or below negative control detection threshold. 

Outlier values were defined as values of a probe i outside the interval [mediani ± 3]. To 

visually assess whether outlier arrays were present MA-plot were used (see Figure 2-7). 

Technical replicates with high number of outlier values in comparison to the other 

replicates can be considered corrupted and should be removed from the analysis. In this 

data set the arrays “unsup.896.00.3” and “unsup.1073.00.3” show a great number more 

outlier values than the respective replicates.  

 

Figure 2-7 Detection of outliers in technical replicates via MA-plots.  

Each row shows a set of technical replicates of two samples with outlier 
arrays. In each row the third plot shows a higher number of outlier values 
(indicated in red) and can be considered outlier arrays. Median of a transcript 
of all arrays was plotted against the difference of an expression value of a 
transcript and array and the respective median. As outlier value were values 
with an absolute difference to the median greater 3 considered.  

 

For demonstration purposes these arrays were left in the analysis and after filtering probes 

with high rates of missing values due to outlier values, all missing values were imputed, 

and technical replicates were averaged. Figure 2-8 demonstrates how outlier in arrays can 

be detected through the distance of technical replicates to each corresponding replicate 

and through the distance of a single array to all other arrays.  
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Figure 2-8 Detection of outliers in technical replicates through clustering.  

Dendrograms of hierarchical clustering of arrays before, on the left side, and 
after averaging, on the right side, of technical replicates indicate that two 
arrays can be classified as outlier as they show a high distance to the other 
replicates. Contrary to the expectation of a high similarity of technical 
replicates and thus an early clustering of these arrays, the outlier arrays are 
added late to the establishing clusters. The two sets of replicates are 
indicated in lighter and darker grey boxes.  

 

Two dendrograms are shown; the left shows the hierarchical clustering with Euclidean 

distance and complete linkage clustering of arrays before technical replicates are 

averaged, while the right shows the hierarchical clustering result after averaging. All genes 

that remained after quality control are taken into account. Between technical replicates a 

short Euclidean distance is expected. In complete linkage clustering this translates into an 

early clustering of technical replicates. In the example however, it can be seen that array 

“unsup.896.00.3”, indicated in darker grey in the upper left corner of the left dendrogram, 

not only has a greater distance to its replicates, but also to the rest of the arrays, strongly 

suggesting that it is an outlier array and should be removed from the analysis. Replicate 

“unsup.1073.00.3”, indicated in lighter grey, also shows a great distance to its replicates, 

also marked in lighter grey. The same phenomenon can be seen for the supervised 
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microarray analysis approach (data not shown), consideration of groups has no apparent 

effect on the distance between outlier-arrays and their replicates.  

 Detecting mislabeled arrays through microarray analysis 2.1.6.2

Microarray analysis may also be able to detect grouping errors or may be able to generate 

hypothesis concerning single outlying microarrays. In the later described analysis of cord 

blood of preterm infants later developing BPD it became apparent, that arrays of preterm 

infant displayed a gene expression similar to the group it was not assigned to.  

 

Figure 2-9 Cluster analysis of preterm infants with and without BPD can also be used to 

detect mislabelled arrays.  

In the cluster (on the left hand side) of eight preterm infants without BPD two 
arrays of BPD preterm infants are clustered; of these two clusters one array 
(BPD.1149, on the far left) belongs in fact to the group of no BPD preterm 
infants; it displays a profile similar to the no BPD preterm infants than to the 
BPD infants. 
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To detect this, an unsupervised quality control, i.e., without the prior assignment of groups, 

was conducted. Afterwards transcripts were selected using a linear model of known risk 

factors to describe the variation in gene expression (see detailed description in material 

and methods of the study itself in chapter 4.2). If at least one regression-coefficient of the 

model displayed an adjusted significance level of ≥ 90%, the transcript was selected and 

all transcripts were used for a hierarchical cluster analysis.  

Then a closer look was taken at the cluster formation in the gene expression patterns that 

fit to the pattern of risk factors for BPD that were established later, i.e., days of mechanical 

ventilation and oxygen dependence of the preterm infants, as well as a priori risk factors, 

i.e., the gestational age or maturity of the preterm infants. In Figure 2-9, a heatmap of the 

expression profiles of 20 preterm infants at time of birth is displayed. Hierarchical cluster 

analysis (Euclidean distance, Ward’s linkage clustering) was performed on samples and 

on transcripts. In transcript clustering roughly two main clusters can be distinguished, a 

cluster of up-regulated and a cluster of down-regulated transcripts between the two 

clusters identified on sample level. One of the sample cluster mainly, i.e., 8 of 10, contains 

preterm infants without BPD (see Figure 2-9, top left cluster) and one cluster mainly 

contains BPD preterm infants (see Figure 2-9, top left cluster). Examining cluster 1 with 

only two no BPD preterm infants it becomes apparent, that these two expression profiles 

rather seem like profiles of preterm infants without BPD than with BPD. In the process of 

examining this phenomenon it becomes apparent that one of these preterm infants 

(“BPD.1149”) had a short need of oxygen support and therefore should not be grouped in 

the BPD-group. After double-checking with the clinical data of these preterm infants it 

becomes clear, that this infant in fact did not develop BPD.  
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2.2  Preprocessing workflow 

The preprocessing workflow (Figure 2-10) described in this chapter will summarize the 

methodology and steps used in the BDP study to be presented in chapter 4, which are 

necessary to make data obtained from different microarrays comparable through noise 

reduction by background correction and normalization, as well as examination and 

preparation of signals for statistical analysis. The presented workflow thereby allows to 

easily evaluate the order of those steps and to allocate their respective place within the 

workflow. 

 

Figure 2-10 Preprocessing workflow as established for this investigation.  

It begins with the raw data format. Microarrays are constantly checked for 
abnormalities affecting whole arrays. Outlier samples are then removed from 
the data set. Background is subtracted and intra-slide normalized using 
median normalization provided by the manufacturer software. With the 
normalized data begins data preparation in R. Values are filtered if more than 
50% in at least one group are missing, or more than 50% in each group are 
low expressed. Then outlier values are identified by the group median and set 
to missing. Again values were filtered for missing values. Missing values are 
then imputed by Bayesian Principal Component Analysis (BPCA). Technical 
replicates are averaged using the arithmetic mean of the transcripts  

 

In short, the workflow aims at the (1) removal of uninterpretable signals due to high rates 

of missing values, or rates of values below a detection threshold, (2) reduction of 

variances of gene expression across microarrays of a treatment group due to high rates of 
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outlier values in a treatment group, (3) imputation of missing values to meet requirements 

and improve results of statistical analyses. The following workflow is incorporated in R (R 

Core Team, 2014) or prepared to be incorporated into a R-routine.  

Outlier samples. Abnormalities in the data with regard to overall distributions of 

microarrays, e.g., in the number of missing values or the number of outlier values is 

constantly monitored. In addition, clustering techniques (see chapter 3.1) are applied and 

correlation measures between technical replicates used to detect microarrays which 

deviate strongly from technical replicates or from the treatment group. Detected outliers 

are then examined separately for possible defects or handling errors, e.g., mislabeling and 

are finally discarded. 

Background correction  As stated in section 2.1.1 it is necessary in microarray 

experiments to improve the signal of gene expression and to reduce the noise in the 

measured intensities due to technical issues, e.g., different amount of hybridized mRNA. 

To ensure the ability to compare the recent study with other previously done studies based 

on this array type we followed the recommendation of the manufacturer of CodeLink 

Bioarrays and used background subtraction. But it later has been shown that background 

subtractions bears some difficulties and a variance stabilizing method for background 

correction, i.e., “normexp” in addition to an offset, lead to a higher accuracy in returned 

signals (Ritchie et al., 2007). In future studies it should be considered to switch to another 

background correction method. Resulting negative values were blanked. 

Normalization. For the investigation presented in this work, we normalized the data 

twice. After the preparation of the microarray data was first background corrected using 

the subtract method and then normalized using Median normalization as an intra-

microarray normalization step. As previously stated in section 2.1.2, Median normalization 

has a great advantage in microarray analysis, because it is applicable when microarrays 

are processed at different times and it is, as well as background correction, independent of 

the expression of other microarrays and still achieves comparable distributions in signal 

intensities.  

After Median normalization data is filtered as discussed below affecting once more the 

distribution. Therefore we added a second normalization step. Here, Quantile 

normalization as an inter-microarray method is used, which then compares the 

distributions of the microarrays actually used in the study. For Quantile normalization the 

Bioconductor limma (Ritchie et al., 2015) was used. 
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Missing values filtering. Filtering for missing values was done twice. First, data was 

filtered for missing values accounting for missing values due to preparation steps and 

background correction. If at least 50% of the values of a transcript in at least one group 

were missing the transcript was excluded. A second step of missing value filtering is 

conducted after outliers are identified and removed from the data set, again rejecting 

transcripts with missing rates > 50%.  

Low expressed values. In contrast to filtering for missing values low expressed value 

(missing values are counted as low expressed values) filtering is only done, if in each 

group a certain amount of low expressed values are found. Filtering for low expressed 

transcripts was conducted using the negative control threshold as quality flag data was not 

available for our data set. In the case that flags are available, they should be considered 

as they bear even more information than the negative control threshold. Transcripts were 

excluded if in each groups at least 50% of the values were below detection threshold. The 

order of the missing value or low expressed value filtering does not play an important role. 

We decided to place this step second because of computation time constraints. The 

removal of transcripts with high amounts of missing values in a treatment group may 

speed up the process of low expression filtering. 

Outlier values.  Outlier detection is conducted in order to avoid bias due to sporadic 

extreme values in a treatment group and transcript. Data was analyzed for outlier values 

defining log-transformed values as outlier using a median based method. We used a 

method based on median plus offset for outlier detection as it is a more robust method to 

detect outliers than using a z-transformation based method. In the future using and 

implementing a MAD based method would be more conservative as it considers a robust 

estimation for the standard deviation of a transcript over all arrays. The procedure was 

performed twice to adjust for new medians after the first step of outlier detection. 

Afterwards data was again filtered for missing values using the same settings as described 

above.  

Imputation. The remaining missing values, values were log-transformed, were imputed 

using an BPCA imputation described by Oba et al. (2003) via the Bioconductor-package 

pcaMethods (Stacklies et al., 2007). BPCA is recommended as robust method suitable for 

microarray data by various reviews and imputation comparison studies as elucidated in 

chapter 2.1.3.2. 



Preprocessing of microarray data 

 

48 

 

Log-transformation.  After inter-microarray normalization, technical replicates are 

averaged using the arithmetic mean of a transcript. One procedural question remains: 

when to log-transform the data. In the current workflow data is log-transformed as the last 

step before statistical analysis, but for other case studies it may have advantages to log-

transform at an earlier point in data preparation. The background correction methods 

subtract and half are not affected by log-transformation. For normexp background 

correction Ritchie et al. (2007) recommend to perform a started log-transformation 

afterwards. Median and Quantile normalization are independent of the prior distribution of 

the transcripts. Procedures filtering transcripts with missing values or values below 

detection threshold are not affected whether data is log-transformed or not, but imputation 

procedures are affected. Evaluation of literature sources (Aittokallio, 2010; Oba et al., 

2003; Oh et al., 2011; Troyanskaya et al., 2001) indicate a preference for log-

transformation of data before the imputation step. Troyanskaya and colleagues (2001) also 

point out that log-transformation reduces the effect of outliers present in the data set on 

transcript similarity detection. For averaging technical replicates it is also beneficial to use 

log-transformed data, as this ensures normal distributed data where the mean is the most 

accurate statistic.  
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3 Statistical analysis of microarray experiments 

Statistical analysis in microarray data serves two main purposes: (1) find similar 

expression profiles caused by a certain disease at a certain time point and identify the 

underlying biological processes, and (2) find a gene expression profile that is able to 

predict a certain disease or outcome. 

Based on the prior information about the subjects, statistical methods can be classified as 

supervised, when information about the subjects is considered, and unsupervised, when 

no information about the subjects is given (Bair and Tibshirani, 2004; Boutros and Okey, 

2005). Unsupervised methods perform well in recognizing underlying patterns. The most 

common unsupervised methods are hierarchical clustering and partitioning clustering (i.e. 

k-means clustering and self-organizing maps (SOM)) (Boutros and Okey, 2005).  

To gain more information about a certain disease, treatment groups are defined prior to 

the microarray analysis in most studies. In these supervised approaches, differentially 

expressed genes or transcripts between those subtypes are determined; this so called 

gene prioritization generates a small set of relevant transcripts to analyze further. Two of 

the main problems in the analysis of microarray experiments are (1) the larger number of 

predictors, here gene transcripts, which exceeds the number of observations, here 

patients or samples and (2) multicollinearity of the microarray experiment itself as the 

expression of different transcripts are highly correlated (Pérez-Enciso and Tenenhaus, 

2003). Therefore adaptions to common statistical tests, e.g., Student’s t-test for two-

sample problems have to be made. 

A third class of methods is defined by Bair and Tibshirani (2004): the semi-supervised 

methods, that combines gene expression data and clinical data to predict disease 

subtypes. Analyses for prediction purposes try to prioritize the gene sets even more 

stringent. Only the transcripts which contribute most to the classification of a certain 

disease are selected. 

To gain more information about the underlying biological processes, the set of transcripts 

is annotated and analyzed for common functional themes, e.g., biological functions or 

regulators. Therefore overrepresentation analyses were developed.  

In the following chapter different methods for classification of disease types, differential 

gene expression between disease types, prediction of disease types, and functional 

annotation are introduced.  
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3.1 Clustering approaches 

Clustering or unsupervised pattern recognition tries to identify small subset of transcripts 

or samples that have a similar expression pattern (Boutros and Okey, 2005; Chipman et 

al., 2003; Modlich and Munnes, 2007). In subjects or patients different types of diseases 

e.g. cancer subtypes (Bair and Tibshirani, 2004; Yeoh et al., 2002) shall be identified with 

clustering approaches. In gene expression subsets of genes with similar expressions, the 

so called co-expression, shall be identified to discover possible functional relationships as 

specific functions tend to be enriched in gene clusters (Boutros and Okey, 2005; 

D’haeseleer, 2005). These co-expression patterns then can, e.g., be used to identify 

common regulators or common transcription factor binding sites (Boutros and Okey, 

2005). 

Two of the most important classes of clustering methods are the unsupervised methods 

hierarchical clustering and partitioning (D’haeseleer, 2005). Hierarchical clustering 

subdivides clusters into smaller clusters, a hierarchical structure of clusters is established; 

similar genes or patients are successively grouped together. In partitioning clustering, as 

for example k-means or SOM clustering, a number of clusters is predetermined (Bair and 

Tibshirani, 2004; D’haeseleer, 2005). 

Before clustering techniques can be applied a standardization step should be considered, 

so every transcripts has the same weight in clustering or classification (Dudoit and 

Fridlyand, 2003). Standardization, also referred as scaling, is a z-transformation that 

achieves that every variable has the mean zero and standard deviation of one, by 

subtracting the mean of the variable from every value and dividing by SD of the variable; 

also possible are more robust estimators: median and MAD (Dudoit and Fridlyand, 2003).  

All methods have in common that the similarity between patients or transcripts needs to be 

determined. Most commonly used are Euclidean distance, which is sensitive to scaling and 

differences in average expression levels and the Pearson correlation coefficient 

(D’haeseleer, 2005).  

Hierarchical clustering.  In hierarchical clustering first the two objects with the 

shortest distance are clustered together, and then depending on the linkage function a 

new distance matrix is calculated and the next object is added to the cluster. If two 

unclustered object have the shortest distance, then first those two objects are clustered 

(Quackenbush, 2001). The added object can be:  
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- the object with the shortest distance to one of the clustered object (single linkage),  

- the object with the shortest distance to the arithmetic average or median distance 

of both objects or the centroid of two clusters (average or median or centroid13 

linkage respectively),  

- the shortest distance to the furthest object in the cluster (complete linkage) 

(Boutros and Okey, 2005; Brevern et al., 2004; D’haeseleer, 2005; Quackenbush, 

2001). 

- or the object that minimizes the sum of squared deviations from the mean of a 

cluster of two clusters (Ward’s clustering) (Quackenbush, 2001; Ward, 1963) 

This way a tree-like structure, a dendrogram, is built (see Figure 2-8). The number of 

clusters and their members are then determined by using a maximal distance between to 

clusters as cut-off (Boutros and Okey, 2005; D’haeseleer, 2005). 

K-means clustering.  Partitioning methods use an iterative approach to minimize 

the within-group dissimilarity for a predefined number (k) clusters (Chipman et al., 2003). 

In k-means clustering objects are randomly assigned to one of the previously defined k 

clusters, an average expression is calculated for each of the clusters; the inter- and intra-

cluster distances are calculated. In an iterative step objects are shuffled until moving an 

object would lead to higher intra-cluster variability and lower inter-cluster variability 

(Quackenbush, 2001).  

Self-organizing-maps.  In self-organizing-maps (SOM) a set of k reference vectors is 

assigned for each partition. Objects are then clustered in accordance to their similarity to 

these vectors. The reference vectors are first derived from a geometric grid, predefined by 

the user, laid over all objects to analyze. A random expression is then used as reference 

vector, this expression vector is iteratively adjusted when new objects are assigned to the 

cluster (Quackenbush, 2001; Tamayo et al., 1999). 

Principal component analysis.  A problem of partitioning methods is to identify the 

number of clusters in the data set. Here, a PCA can help. PCA reduces the dimensionality 

of a data set by identifying principal components in highly correlated data that are no 

longer correlated (Chipman et al., 2003). The resulting principal components should still 

explain the same amount of variance in the data that the single variables in the analysis 

                                                

13
 The centroid of a cluster can be understood as center of gravity of a cluster in a three-

dimensional space (Quackenbush, 2001) 
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(Raychaudhuri et al., 2000). PCA can be used to inspect variables and their distance to 

each other in a three-dimensional space or to estimate the number of clusters to be 

analyzed using k-means clustering or SOM. Eigenvalues of principal components indicate 

how much of the total variance can be explained by the component. The number of k 

clusters can be determined by inspecting the Eigenvalues of the principal components: the 

higher the Eigenvalue the more variance is explained. The number of components with 

high Eigenvalues estimates the number of clusters (Raychaudhuri et al., 2000).  

Common visualization techniques for hierarchical clustering in microarray data analysis 

are heatmaps accompanied by the respective transcript and sample dendrograms (see for 

example Figure 2-8). Heatmaps provide a quick overview of similarities and dissimilarities 

of samples and transcripts; hereby, the most effective way is ordering the transcripts and 

samples. Dendrograms or other clusters methods provide the possibility to order the 

heatmap in an effective way (Chipman et al., 2003). For co-expression analyses often 

profile-plots are used.  

Freyhult et al. (2010) examined seven cancer data sets and different clustering methods 

for their performance in detecting known classes. They examined hierarchical clustering 

with Euclidean distance, Manhattan distance, and Pearson correlation coefficient distance 

together with average linkage and Ward’s linkage, as well as k-means, SOM, prediction 

analysis of microarrays (PAM, see 3.3.1), and model-based clustering (Mclust) with the 

help of the Rand index, which measures the similarity of two portioning methods. They find 

that in hierarchical clustering Ward’s linkage outperforms average linkage clustering with 

every distance measure investigated. They report, that hierarchical clustering with Ward’s 

linkage and correlation distance as well as k-means performs better than PAM and SOM. 

Also Brevern et al. (2004) show that hierarchical clustering and especially complete 

linkage and Ward’s linkage methods are the most suitable clustering methods for 

microarray experiment and therefore these methods will be pursued for the presented BPD 

study.  
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3.2 Prioritizing genes or differential gene expression analysis 

In comparative microarray experiments gene expression is measured for defined groups, 

the so called treatment groups, of samples. These treatment groups may be for example a 

group of healthy subjects versus a group of patients, a control versus disease set up, or 

different grades of a single disease. Also in a microarray experiment samples taken at 

different time points and different stadiums of a disease can be compared. Is a transcript 

or gene over- or underexpressed, in one or more groups this transcript is differentially 

expressed (Li and Tibshirani, 2013). Differential expression analysis also can be used to 

identify transcripts that are correlated with a quantitative feature or the survival of patients.  

In the following chapter some common methods to identify differential expression in two- 

or multiple-group set ups are introduced. But first the problem of testing multiple 

hypotheses at once needs to be addressed: Multiple testing problems occur when multiple 

parameters are tested in a single population of probes. In microarrays thousands of genes 

or probe sets are monitored simultaneously. According to the multiple testing problem the 

probability of a false discovery or a false positive detection of statistically significant 

differentially expressed genes increases dramatically (Reiner et al., 2003). Therefore, the 

“use of ordinary t-tests or other traditional univariate statistics to assess differential 

expression be disastrous” [(Ritchie et al., 2007) citing (Smyth, 2004)]. 

Jeanmougin and colleagues (2010) used gene list analysis, simulations, spike-in data sets, 

and re-sampling to compare the Welch’s t-test, analysis of variance (ANOVA), Wilcoxon 

rank sum test as classical methods to analyze differences in groups, and SAM and LIMMA 

among others for their efficiency to detect differentially regulated genes. They show that 

LIMMA and SAM tends to increase power in the spike-in data set; ANOVA, SAM, and 

LIMMA have no deviation in the actual percentage of false-positives compared to the 

expected percentage of false positives in the simulation study, while Wilcoxon and Welch’s 

t-test tend to be more conservative, especially in small data sets (Jeanmougin et al., 

2010). 

This shows that the use of methods designed to address the problems of microarray data 

analysis are better suited than using conventional statistical analyses as, e.g., the t-test. 
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3.2.1 Fold change 

Differential gene expression analysis started out by simply comparing expression levels a 

ratio of the mean expression of a group in a transcript (see DeRisi, 1997), the so called 

fold change (FC).  

The FC is calculated as shown in  

Equation 2 for an example microarray design with control probes and disease probes. But 

the calculation holds true for every pairwise comparison of groups of microarrays. 

 

Equation 2 Calculation of the fold change (FC) for a disease/control design 

FC=2
expression 

disease

control  , for ratios > 1(up regulated transcripts)  

FC=-
1

2
expression 

disease
control

 , for ratios < 1(down – regulated transcripts). 

 

As gene expression is log-normal distributed, the expression ratio is calculated with log-

transformed expression values. The expression ratio is then calculated using Equation 3. 

 

Equation 3 Calculation of the log-ratio for a disease/control design in single-channel 

arrays 

log-ratio= ld(expression
disease)-ld(expression

control ) 

 

The fold-change as single criteria does not consider the variance of gene expression 

levels and is thus prone to identify a differential gene expression that are not truly 

differential expressed, but have a higher measurement error as e.g. in low expressed 

transcripts. They then meet the minimum FC request, but do not represent a truly 

differentially expressed transcript. On the other hand it is also possible that transcripts with 

a low FC are very stable in a certain condition but are truly differentially expressed; they 

are not detected due to the set cut-off FC (Mutch et al., 2002). 

Today the fold-change is often used as an additional criterion to define a minimum change 

in expression to be relevant in biological networks.  
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3.2.2 Significance analysis of microarrays (SAM) 

Comparing normal distributed gene expressions with homogeneous variances would lead 

to a series of conventional Student’s t-tests in an experiment with a small number of genes 

to test. This would not only consider the FC of the transcript in question, but also the 

variances in the two different groups. Thereby stable transcripts are selected to be 

significantly differentially regulated from a statistical point of view. But a large number of 

tests would lead to a large number of transcripts identified as differentially regulated by 

chance alone. 

Tusher and colleagues (2001) adapted the Student’s t-test specifically for microarray 

experiments, which would require a large number of t-tests. The test-statistic is here 

calculated as shown in Equation 4, where s is the pooled standard error of the difference 

in expression of both groups resulting in an adapted t-statistic for d(i). 

 

Equation 4 Test-statistic in SAM (Tusher et al., 2001) 

 d(i)=
xi disease
̅̅ ̅̅ ̅̅ ̅̅ ̅ - xi control

̅̅ ̅̅ ̅̅ ̅̅

s+s0

 

 

The authors added a small positive constant s0 to the denominator to make the variance of 

d(i) independent of the gene expression level. Then all balanced permutations, all 

permutations with an equal amount of control and disease probes, were computed. From 

these permutations the expected average expression is calculated and compared to the 

calculated d(i). A cut-off is set as minimum difference between observed and expected 

expression levels (Tusher et al., 2001).  

The number of false positives is determined by using the permutations, where no 

regulation is expected; the average number of transcripts identified as significantly 

differentially regulated in permutations indicates the number of false positives. Compared 

with the number of significantly differentially regulated genes the percentage of false 

positives is computed (Tusher et al., 2001). The percentage of false positive transcripts is 

also called false discovery rate (FDR), first introduced by Benjamini and Hochberg (1995) 

later adapted by Storey (2002), whose version is used for SAM.  
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This method can also be extended to multivariate or paired analysis by re-defining para-

meters used to calculate d(i) (see Equation 4) except s0. E.g., for three or more groups an 

experiment d(i) is defined using an adaption of Fisher’s linear discriminant. For survival 

time analysis Cox’s proportional hazard function is adapted, and for a quantitative 

parameter the Pearson correlation coefficient is adapted (Tusher et al., 2001). 

The function was prepared for the Bioconductor platform and can be found in the 

packages samr and can be used for differential expression analysis in microarray and 

sequencing data (Chu et al., 2014; Tibshirani et al., 2011). 

3.2.3 Two-sample Bayesian t-test 

While in SAM the variance to calculate the test-statistic for a two-sample comparison is 

adapted by adding a fixed parameter s0, empirical Bayes approaches estimate this 

parameter from the data to analyze. To do this a prior probability for the expression means 

and variances are estimated using a probabilistic Bayesian framework. Thereby 

information about dependent gene expression profiles can be used.  

Fox and Dimmic (2006) developed a two-sample t-test for microarrays based on an 

empirical Bayes approach developed by Baldi and Long (2001) called CyberT (see also 

Hatfield et al., 2003), which uses the dependency of the gene expressions on a microarray 

to obtain prior variances and degrees of freedom and so gain additional information about 

the data. In short, they combine empirical variances of the genes on the microarray with 

local background variances of the neighboring genes (Baldi and Long, 2001). 

Having m genes or transcripts in n replicates, the prior degrees of freedom ν0 are 

calculated by ν0= m(n-1), which are then used to calculate the prior variances from the 

sum of all sums of squared deviations (SSD) of an expression from the mean expression 

per gene (see Equation 5) (Fox and Dimmic, 2006).  

 

Equation 5 Calculation of the prior variance σ0
2 for a two-sample Bayesian t-test (Fox and 

Dimmic, 2006) 

σ0
2= 

∑ ∑ (y
k,i

-y̅
k
)
2n

i=1
m
k=1

ν0

= 
∑ ∑ (y

k,i
-y̅

k
)
2n

i=1
m
k=1

m(n-1)
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The posterior SSD from the mean is then obtained by adding to the prior the total SSDs 

from the samples. Together with the posterior degrees of freedom νn as sum of the 

degrees of freedom from the samples and the prior degrees of freedom a posterior 

variance σn
2 can be calculated as shown in Equation 6, which in turn is used to calculate 

the t-statistic (Fox and Dimmic, 2006).  

 

Equation 6 Posterior variance for the two-sample Bayesian t-test (Fox and Dimmic, 2006) 

σn
2= 

ν0σ0
2 + (𝑛1 − 1)s1

2 + (𝑛2 − 1)s2
2

νn

= 
SSD0 + SSD1 + SSD2

𝑛1 + 𝑛2 + ν0 − 2
 

 

3.2.4 Linear model for microarray analysis (LIMMA) 

LIMMA is the microarray analysis equivalent of an ANOVA or a multiple regression 

(Smyth, 2004). For every gene or transcript a linear model is fitted to explain the variance 

of every gene by the specified predictors. The method improves the test statistic by testing 

if the null hypothesis, the coefficients equal 0, in similar fashion as the two-sample Bayes 

t-test for microarrays previously described. As gene expressions in a microarray 

experiment are not independent from each other a hierarchical model is defined which 

describes how the coefficients and expression variances vary across genes.  

Therefore first, prior distributions for the coefficient and expression variances are 

estimated using an empirical Bayes approach by estimating the parameters from the data 

taking advantage of the dependency of gene expression in a microarray. The posterior 

values are then obtained by adjusting the prior values with the actual observed values. For 

the testing of every coefficient, information is borrowed from the microarray itself, thereby 

degrees of freedom are saved and thus more genes with differential expression can be 

detected (Smyth, 2004). 

The ordinary test-statistic is calculated as follows (Smyth, 2004): 
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Equation 7 Calculation of the ordinary t-test test-statistic for testing regression 

coefficients (Smyth, 2004) 

tgj= 
β̂

gj

sg√νgj

 

 

For every gene g and contrast j, β̂gj is the observed FC, sg is the residual SD of gene g, 

and results together with √νgj in a standard error for β̂gj. For the moderated t-statistic the 

posterior SD s̃g is used for which information is taken from an empirical Bayes approach 

with s0
2 as a priori variance i.e. a common variance for all genes and d0 as a priori degrees 

of freedom and the residual SD (Smyth, 2004):  

 

Equation 8 Calculation of the moderated t-statistic in LIMMA (Smyth, 2004) 

t̃gj= 
β̂

gj

s̃g√νgj

= 
β̂

gj

√
d0s0

2+ dgsg
2

d0+dg
√νgj

  

 

To apply the LIMMA analysis to various research questions an extensive Bioconductor 

package limma was created (Ritchie et al., 2015; Smyth, 2005). Here the overall 

moderated F-value of a general linear model is calculated as well as the moderated 

t-statistics for the comparisons specified together with the respective p-values and 

adjusted p-values are computed. Also a B-statistic is given, which specifies the log-odds 

for a transcript to be differentially regulated; using the log-odds a probability for the 

differential expression can be calculated (Smyth, 2005).  

3.2.5 Rank Product Analysis 

Based on the test-statistic of Smyth (2004) further methods have been developed; e.g., 

intensity-based moderated t-statistic by Sartor et al. (2006), which estimates posterior 

variances by local regression of the expression levels, or a fully moderated t-statistic deve-
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loped by Yu et al. (2011), which adapts the prior variances by local regression of every 

expression. 

A different approach was taken by Breitling et al. (2004) with the development of the 

calculation of rank products (RP). Gene expression in all arrays was ordered and ranked 

for every array. If a gene is randomly expressed, every gene has the same probability to 

be ranked first (p = 1/nk, for k replicates and n genes). If a gene is up regulated in a group 

compared to the other group, it is likely to be ranked higher in one group than the other. 

This principle is the foundation for the RP method. Genes are ranked across an array and 

then across all ranks. To account for a possibly unbalanced number of genes per array the 

ranks are then divided by the number of genes in the array. In this manner a probability for 

up or down regulation can be obtained for single sample designs. For two samples design 

first all pairwise log-ratios or FCs are calculated and ranked. The so obtained RP value is 

the probability to observe a certain expression or FC at a certain rank. A permutation step 

allows the calculation of an expected RP value for the experiment. The average expected 

value is then used to calculate the percentage of false-positives (Equation 9), where 

rank(g) is the rank of the gene g by their RP values. The percentage of false-positives is 

an estimator for the FDR (Breitling et al., 2004).  

 

Equation 9 Percentage of false positives q for gene g (Breitling et al., 2004). 

q
g
=

E(RPg)

rank(g)
 

 

The RP method is a robust method as it is based on ranks and not influenced by outliers, 

and makes only weak assumptions. So equal variances in the arrays are assumed, which 

is an assumption met after normalization of the arrays. The RP methods does not require 

to calculate the variance for each gene or transcript and is therefore also applicable in 

experiments with a low number of replicates, where e.g. SAM fails to calculate significance 

levels (Breitling et al., 2004).  

The RP method is prepared as Bioconductor package RankProd (Hong et al., 2006). The 

RP method is extended for the package to compare different microarray platforms or 

different origins of microarrays for meta-analysis purposes as described by Hong and 

Breitling (2008).  
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Here, some of the most common approaches in microarray analysis to detect differentially 

regulated genes have been presented. Starting with the definition of fold changes to to the 

comparison of expression levels at different states, continuing with the presentation of 

approaches adapting a common t-test with hierarchical Bayesian models, and concluding 

with approaches based on the formulation of ranks for which a variety of methods have 

been developed. All tests have in common that they are adapted for multiple testing while 

trying to improve power of the test by reducing the number of estimated parameters. 

3.3 Prediction of clinical outcome with microarray data  

RNA microarray data can be used to explain differences in phenotype by the use of 

differential gene expression. This information is the foundation for in-depth analysis of the 

gene transcripts involved via function gene expression tools, described hereafter. But gene 

expression analysis also can be used to facilitate diagnosis or predicting clinical outcome, 

for which a list of a few transcripts or genes may be helpful.  

The viewpoint of the statistical analysis hereby differs from the differential gene expression 

analysis: differential gene expression analysis determines genes that are differential 

expressed in probes with different conditions. Therefore, differential gene expression is a 

result of different pre-existing conditions; in other words, the clinical condition explains the 

gene expression. In the prediction of a clinical outcome with microarray data; gene 

expression profiles are used to predict a clinical outcome. The classification approach with 

microarrays is challenging due to the large number of predictors (transcripts or genes) and 

small numbers of samples, which makes it difficult to identify the best classifying predictors 

(Tibshirani et al., 2002). 

Different methods have been developed and different approaches were followed to use 

expression profiling for the diagnosis of diseases. Khan et al. (2001), e.g., used artificial 

neural networks to classify cancers to specific diagnostic categories. Gruvberger-Saal et 

al. (2004) adapted the use of artificial neural networks to predict a continuous outcome, 

i.e., they predicted estrogen-receptor protein values instead of just the estrogen-receptor 

status in breast cancer samples. Geveart et al. (2006) integrate clinical data with 

microarray data by using Bayesian networks. Tibshirani and colleagues (2002) developed 

a predictive analysis of microarrays (PAM) based on an microarray adaption of the t-test 

SAM to predict tumor types. A third approach is the use of partial least square (PLS) 
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regression. Pérez-Enciso and Tenenhaus (2003) used PLS discriminant analysis to predict 

the clinical outcome of breast cancer.  

In the following sections PAM and PLS are further described as both methods are 

available for the integration into R and are commonly used to evaluate clinical outcomes.  

3.3.1 Predictive Analysis of Microarrays (PAM) 

Tibshirani and colleagues (2002) adapted SAM as introduced in chapter 3.2.2 for the 

purpose of predicting tumor types by gene expression analysis, called predictive analysis 

of microarrays (PAM). Here, a similar estimation for di is used as in SAM (compare to 

Equation 4): with the difference that s0, the median of all si, is also multiplied with mk 

(Equation 10); si is the pooled within-class SD of gene i and results with the multiplication 

of mk in the pooled standard error for the difference in gene expression from class k to the 

overall centroid. 

 

Equation 10 Test-statistic in PAM (Tibshirani et al., 2002) 

dik=
xik̅̅ ̅ - xi̅

 mk (si+s0)
 

 

It uses then a nearest shrunken centroids approach to identify the class centroid a gene 

belongs to. The t-statistic di is rewritten to explain the class centroid xik̅̅ ̅, and then a 

threshold is set by which amount dik is reduced (“shrunk”). If a gene does not contribute to 

the nearest-centroid computation the shrunken centroid for all classes is the same. The 

higher the chosen threshold the lower is the number of genes near the class centroids or 

the lower the number of predicting genes. The threshold is determined by cross-validation 

and the misclassification error. Thus a minimal list of genes for predictive purposes can be 

obtained (Tibshirani et al., 2002). 

PAM is prepared for microarray analysis as Bioconductor package pamr (Hastie et al., 

2013b). 
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3.3.2 Partial least squares based prediction analysis 

Partial least square (PLS) is a dimension reduction method coupled with regression 

suitable for high-dimensional, noisy data with a higher number of predictors than samples 

and high level of multicollinearity as often found in transcriptomics and proteomics data 

(Boulesteix et al., 2008; Boulesteix and Strimmer, 2007; Pérez-Enciso and Tenenhaus, 

2003). Pérez-Enciso and Tenenhaus (2003) used PLS discriminant analysis (PLSDA) to 

predict the clinical outcome of breast cancer patients. Boulesteix and Strimmer (2007) 

review different PLS methods and give examples for the application of PLS in regression, 

classification, feature selection, survival analysis problems. PLS regression can be applied 

in cases of univariate or multivariate responses (Boulesteix and Strimmer, 2007).  

In PLS regression first all predictors are summarized in PLS components, thus reducing 

the dimension of the predictors. In the second step, these PLS components are used to 

explain the response in an ordinary least squares regression (Boulesteix et al., 2008). For 

univariate responses the covariance of the predictors and response is calculated directly, 

but with multivariate responses first a common latent variable which explains the response 

variables simultaneously needs to be determined (Boulesteix and Strimmer, 2007). 

The latent components explaining the covariation of the different transcripts are obtained 

by linear transformation of the expression matrix with a matrix of weights (Boulesteix and 

Strimmer, 2007). For the interpretation of the variable importance often the weight vector 

of the first component is taken; it maximizes the estimated covariance between predictors 

and response variables (Johansson et al., 2003).  

The R-package plsgenomics (Boulesteix et al., 2012) implements PLS regression for 

regression problems, a combination of PLS and linear discriminant analysis for 

classification problems, and an algorithm to select variables for binary classification 

problems.  

3.4 Functional gene annotation analysis 

Microarray analysis could end with a list of genes, which are differentially expressed in 

different conditions, or are able to predict a certain outcome, but as an exploratory tool it is 

important for microarray analysis to end with a research question. Databases and 
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exploratory pathway analysis facilitate the search for the right question for confirmatory 

approaches rather than the right answer (Kelder et al., 2010). 

The challenge is now to gain insight into the biological mechanism of the studied 

conditions or diseases in order to understand what lead to the observed gene expression 

pattern or to what an observed expression pattern could lead (Hatfield et al., 2003; 

Subramanian et al., 2005).  

3.4.1 Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) developed by Subramanian and colleagues (2005) 

is a method to determine whether genes at the top or bottom of a ranked list of genes or 

transcripts are involved in e.g. a common pathway, biological function, or a chromosome.  

Therefore, first all genes are ranked according to their correlation with the phenotype. 

Gene sets are defined using different kind of databases, so gene sets can be defined by 

e.g. Gene Ontology (GO) categories or pathways of the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). Then, it is determined whether genes of a certain gene set are 

enriched, i.e. present more often than by chance alone. The enrichment score (ES) in 

GSEA is determined by walking down the list of genes and calculation a running-sum 

statistic, where the sum is increased if the encountered gene is in the list and decreased if 

not. The statistical significance is determined by an empirical phenotype-based 

permutation test procedure, i.e. the phenotype labels are permuted, and so the ES is 

recalculated until a null-distribution for the ES is determined. In a final step results are 

adjusted for multiple hypothesis testing by using the false discovery rate (FDR) 

(Subramanian et al., 2005).  

3.4.2 Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, 

http://david.abcc.ncifcrf.gov/) is an open-source set of data-mining tools (Dennis et al., 

2003; Huang et al., 2009). It uses different gene identification and annotation databases, 
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e.g. GenBank, UniGene, RefSeq, LocusLink, KEGG, Online Mendelian Inheritance in Man 

(OMIM), or GO as referenced in Dennis et al. (2003) to link the genes in question to the 

data stored within those databases to a common DAVID identification number (Sherman et 

al., 2007). Based on this knowledgebase different exploration tools are implemented in 

DAVID (Huang et al., 2009):  

Gene name batch viewer examines a list of genes, and finds genes with similar functions 

in the list by examining related genes. 

Gene functional classification facilitates the identification of gene groups via ES and the 

function associated with these groups. The ES is calculated by the geometric mean of all 

enrichment p-values. The enrichment p-values in turn are calculated by a modified Fisher 

exact score (EASE score).  

The functional annotation chart is more focused on the common biological functions of 

the genes in the analysis. Different functional annotation databases can be chosen by the 

user of DAVID. Again the EASE score is used to examine the significance of the gene-

term enrichment, along with a correction for multiple hypothesis testing. Furthermore a fold 

enrichment measure is provided, which measures the percentage of genes in the analyzed 

gene list compared to the background of all gene eligible for selection, the so called 

background.  

Functional annotation clustering focuses more on common themes in functional 

annotation. Redundant, similar, or hierarchical terms are clustered together by their 

percentage of common genes involved in these terms. An ES of 1.3 is a p-value of 0.05 on 

negative log-scale, an ES of 1 stands for a geometric average of p-values of 0.1. Every 

functional cluster with ES greater 1.3 or also 1 is a reasonable starting point for further 

investigations. 

3.4.3 Ingenuity Pathway Analysis (IPA) 

Ingenuity Pathway Analysis (IPA, www.ingenuity.com) is a commercial tool for gene list 

analysis with a manually curated database for gene annotation and gene functions. For the 

curation of the IPA knowledgebase various sources are used. The direction of the effect, 

i.e. upstream and downstream effect, as well as the tissue, species, and cell of the found 
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interaction are included into the knowledgebase and are made accessible (Kramer et al., 

2014).  

An IPA core analysis consists of several analyses. First a background of genes available 

for selection is used. The IPA software offers several microarray platforms as implemented 

backgrounds as well as the option to use the user dataset as background. As the user 

data set typically does not cover all possible genes it is advisable to select this option. 

Otherwise significances are overestimated due to the fact that, e.g., a higher percentage of 

genes attributed to infection than to metabolism are spotted on a microarray. Then the 

significance level of the analysis is set. With this set of transcripts or genes upstream 

biological causes and downstream effects on biological and disease functions are 

analyzed with the help of a Fisher’s exact test to test whether genes of a canonical 

pathway, biological, or toxicological functions are more frequently than expected by 

chance alone. In the same manner are upstream regulators analyzed, e.g., transcription 

factors, but also micro-RNA, cytokines, or any gene or small molecule, which affects gene 

expression (Kramer et al., 2014).  

In addition to associating the list of analysis genes with upstream regulators and 

downstream effects, it is predicted, whether upstream regulators are putatively up or down 

regulated and whether downstream effects are activated or deactivated inferred by the 

causal relationship of the molecules in the analysis. For this purpose, along with the 

enrichment score determined by the Fisher’s exact test p-value, an activation z-score is 

used. The activation z-score takes the consistency of the network of regulated genes and 

upstream regulators or downstream effects respectively into account and the consistency 

of the pattern in comparison with a random pattern (Kramer et al., 2014). Upstream and 

downstream analyses are then combined into regulator effects networks, if they share the 

same regulated genes. Regulator effects networks are built by using the respective 

p-value and activation cut-off z-scores. They help to focus research on putative 

mechanism underlying the observed gene expression pattern. 
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3.5  Statistical analysis workflow 

For the study presented in chapter 4 different approaches were used (Figure 3-1). For 

each approach different methods that were described in the previous chapters were used. 

In this chapter the different approaches and the used statistical analyses are summarized. 

The presented workflow thereby allows to easily evaluate the order of those steps and to 

allocate their respective place within the workflow. 

 

Figure 3-1 Statistical analysis approaches with main statistical methods used in this 

investigation. 

Unsupervised clustering.  Starting with an unsupervised clustering approach to identify 

possible outliers in arrays or technical replicates as described in chapter 2.1.6., as last 

preprocessing step to check whether preprocessing can be completed. Here a hierarchical 

clustering method was used. As in an unsupervised approach no prior number of 

treatment groups was assigned for k-means clustering or SOM. Pearson’s correlation 

coefficient for technical replicates and Euclidean distance for samples were used as 

measures of similarity between microarrays or samples respectively. We used Ward’s 

linkage in accordance with Brevern et al. (2004) and Freyhult et al. (2010) as one of the 

most suitable method for analyzing microarray data. 

Supervised approach.  Then the LIMMA method as a supervised approach followed. 

The study population of 22 preterm infants was therefore divided into three treatment 

groups: i) 13 preterm infants with no BPD, ii) 6 with mild BPD, and iii) 3 with 
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moderate/severe BPD. LIMMA was used to identify differentially regulated transcripts in 

the data set in order to identify processes at birth that are differentially activated between 

the infants. LIMMA is a suitable method in this context as the study population 

encompasses more than 2 treatment groups. Subsequently, for all pairwise comparisons 

the FC was calculated. Subgroups in treatment groups and co-regulated transcripts were 

analyzed using hierarchical clustering with Euclidean distance and Ward’s linkage 

clustering as described above. 

In a second step of the supervised approach, PAM was applied to find a set of transcripts 

able to predict to which BPD group the neonate belongs at birth. From this set of 

transcripts it may be possible to define a set of transcripts for diagnostic purposes. Here 

we used the obtained set of transcripts together with the FC from LIMMA to detect 

biological processes responsible for the development of mild or moderate/severe BPD. 

LIMMA and PAM are especially designed for microarray analysis purposes and try to save 

degrees of freedom by taking the general correlation structure of gene expressions into 

account. LIMMA also allows the pairwise comparison of the defined groups based on 

overall F-test, which tests whether two of the three groups in this analysis show a 

difference in gene expression. In two-sample test as in the Bayesian t-test or Rank 

Product analysis this would not have been possible.  

Semi-supervised approach.   In a third approach, a semi-supervised approach was 

used. In order to identify transcripts correlated with continuous clinical factors, i.e. duration 

of assisted ventilation and duration of oxygen supply which show effects despite or 

independent from gestational age of preterm infants. Here, an unsupervised preprocessing 

workflow is followed by a selection of transcripts based on a linear regression model, with 

gene expression as independent variable and gestational age, duration of oxygen support, 

and duration of mechanical ventilation as explaining variables. This idea is derived from 

the partial least square (PLS) method. Although, for multivariate responses first a latent 

variable is calculated making it impossible to separate the effects of GA from the other 

effects. So for every gene expression a multifactorial regression model with oxygen 

support, mechanical ventilation and gestational age was fitted and all transcripts are 

selected that show an effect in oxygen support and/or mechanical ventilation or the 

interaction between both factors are selected. In further studies it will be interesting to 

adapt this approach for the correlation structure underlying microarray experiments as 

demonstrated in LIMMA and thereby save explanatory power. 
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All obtained sets of transcripts were analyzed for functional relevance using DAVID 

functional annotation clustering for clusters of differentially regulated transcripts. DAVID 

was used in order to detect general themes in clusters, as well as in up or down regulated 

transcripts. As DAVID gives no hint in regard to the activation or deactivation of biological 

processes and the involvement of upstream regulators, e.g. transcription factors, IPA 

pathway analysis was used to determine activation or deactivation of upstream regulators 

and downstream effects.  
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4 Transcriptional profiling of preterm infants with 

Bronchopulmonary Dysplasia (BPD) and integration of clinical 

data  

As a proof of concept, the methods for preprocessing and biostatistical analyses of 

microarrays as described in section 2 and 3 were applied on a data set of preterm infants 

with bronchopulmonary dysplasia (BPD).  

4.1 Background 

Prematurity is defined as birth before the completion of 37 weeks of gestation and 

accounts for 35% of all neonatal death worldwide (Blencowe et al., 2013). Preterm birth 

increases the risk for acute and long-term complications. The development of chronic lung 

disease, i.e. bronchopulmonary dysplasia has been identified as a major determinant for 

both pulmonary and neurologic sequelae (Walsh et al., 2006). BPD occurs mainly in 

preterm infants and is defined as (1) mild BPD, when oxygen requirement persists at 28 

days of life or (2) as moderate BPD when oxygen requirement is below 30% at 36 weeks 

postmenstrual age (PMA) or (3) as severe BPD when oxygen requirement is ≥ 30% and/or 

positive pressure, either as ventilation or continuous positive airway pressure (CPAP) is 

required at 36 weeks postmenstrual age (Jobe, 2006). 

The main risk factor for the development of BPD is the degree of immaturity. Thus, 

preterm infants < 28 weeks gestational age (GA) are at greatest risk due to their functional 

and structural immature lung (Blencowe et al., 2013). Furthermore, pre- and postnatal 

infections, nutrition status and the impact of necessary postnatal therapies, i.e., oxygen 

supplementation and mechanical ventilation (MV) contribute to the development of the 

disease (Jobe, 2006; Speer, 2006; Thompson and Bhandari, 2008).

Potential downstream results of the indicated risk factors are sustained inflammation due 

to MV, hyperoxia, chorioamnionitis, infection (Ballabh et al., 2003; Bose et al., 2013; 

Köksal et al., 2012; Melville and Moss, 2013; Speer, 2006), and oxidative stress (Perrone 

et al., 2012; Saugstad, 2010). Oxidative stress is thereby defined as the incapacity of the 

antioxidant defense to bind free radicals, e.g., reactive oxygen species (ROS), which 

results in an overflow of free radicals. Free radicals occur due to oxygen treatment and/or 

inflammation. The oxidant damage in turn can be increased by a low calorie intake (Jobe, 
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2006). The pathophysiological characteristics are impaired alveolarization and 

vascularization, resulting in a simplified lung structure (Jobe, 2006; Melville and Moss, 

2013).  

Over the last years, research on BPD has started to focus on the transcriptome of preterm 

infants using microarrays. In 2007, Cohen et al. (2007) tested umbilical cord tissue of 

preterm infants with or without the development of BPD. They first studied the influence of 

GA with preterm infants < 27 weeks GA vs. infants with 27 to 28 weeks GA on the 

expression profile and found three pathways to be overrepresented, which were related to 

oxidative phosphorylation, mitochondrial energy metabolism, and DNA repair. In the 

comparison of preterm infants with and without BPD, defined as persistent oxygen 

requirement at 36 weeks PMA, they found pathways involved in bioenergy, histone 

acetyltransferase binding activity, and chromatin remodeling. However, these findings are 

not based on significantly differentially regulated genes, and can therefore result in a large 

set of false positives.  

Kompass et al. (2010) used animal models, i.e., they used ventilated lung tissue of 

premature baboons, rats, and mice, to investigate the alterations in gene expression 

profiles after ventilation of the lung. They identified highly conserved transcriptional 

responses to mechanical ventilation. Activating transcription factor 3 (ATF3) and FBJ 

osteosarcoma oncogene (FOS) are differentially expressed across several models of 

ventilator-induced lung injury. Among the differentially regulated genes they found a set of 

genes overrepresented in the transforming growth factor-β (TGF-β) receptor signaling 

pathway.  

Bhattacharya et al. (2012) investigated tissues of lungs obtained from autopsies of preterm 

infants with and without BPD. Significantly differentially regulated genes are involved in 

biological processes that included cell-cycle regulation, immune-cell regulation, i.e., 

immunodeficiency signaling and B-cell development, and processes specific to the lung, 

i.e., sonic hedgehog signaling and retinol metabolism.  

Recently, Pietrzyk et al. (2013) examined the gene expression profiles of preterm infants 

and their alterations 5, 14, and 28 days after birth and identified potential pathways 

associated with the disease. They found the T-cell-receptor pathway as the most down 

regulated pathway. In addition to the T-cell-receptor pathway primary immunodeficiency is 

continuously down regulated on all days of observation. The identified pathways depended 

on disease severity and immaturity. 
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Except for Pietrzyk et al. (2013), all studies have in common that they focused on severe 

cases of BPD, no information can be obtained about the development of mild BPD. 

Although, Pietrzyk et al. (2013) use samples from preterm infants with different BPD 

severity grades, they don’t distinguish between severity grades. Therefore it is one aim of 

our study to generate hypotheses in regard to whether and how the development of mild 

BPD differs from those cases without or severe forms of BPD.  

With the use of umbilical cord tissue we want to generate hypotheses concerning 

mechanisms before and after birth predisposing infants to the development of BPD and 

diagnostic markers, that can be obtained at birth and differentiate between BPD severity 

grades. 

This study will investigate whether transcriptional profiles can be found at birth of preterm 

infants that give a clue in regard to the development of BPD and especially in the mild 

forms of BPD. Cord blood of 22 preterm infants born before the 32nd of gestational age is 

analyzed using CodeLink Human 10k Bioarrays. The chosen cohort is especially suitable 

to further investigate the mild form of BPD due to the fact that the major part of preterm 

infants with BPD has developed a mild rather than a severe form of BPD. 

Transcriptional profiles as well as biological processes and upstream regulators will be 

identified that differ between infant developing no BPD, mild BPD, or severe to moderate 

BPD. In addition, gene expression profiles explained by a model of the duration of 

mechanical ventilation, oxygen support, and gestational age is used to identify transcripts, 

whose gene expression can be explained by mechanical ventilation (MV) and oxygen (O2) 

support despite the influence of the GA. Again cytokine upstream regulators and 

downstream biological effects are identified in order to generate hypotheses on the 

development of (mild) BPD and on possible biomarkers for BPD obtainable at birth. 
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4.2 Methods 

The study has been approved by the legal ethical committee (File 79/01, University of 

Giessen, Germany). 

4.2.1 Patient characteristics  

Newborn infants ≤ 32 weeks GA, were prospectively included in the study. Exclusion 

criteria were premature rupture of membranes  3 weeks prior to birth leading to oligo- or 

anhydramnios, severe congenital malformations and the diagnosis of severe metabolic 

disorders. Furthermore, prepartum treatment of the mother with cytostatic or 

immunosuppressive medication other than for lung maturation, as well as postnatal 

treatment with corticosteroids in a dose  1 mg/kg body weight, led to exclusion of the 

neonate. Analysis of C-reactive protein (CRP), whole white blood count and 

microbiological examination of blood cultures, swabs, urine and stool samples were done 

in the first 72 hours of life. Patients were clinically re-evaluated in short intervals and 

continuously monitored for vital signs, i.e. heart rate, blood pressure, microcirculation and 

breathing pattern.  

Patients were allocated to one of the three following groups according to the presence of 

persistent oxygen requirement or ventilatory support at 36 weeks postmenstrual age: (I) no 

BPD, (II) mild BPD, and (III) moderate and severe BPD according to the definition of Jobe 

and Bancalari (2001).  

A total of 22 preterm infants were included in the gene expression analysis study. Of 

these, 13 preterm infants developed no BPD (group I), 9 developed BPD grade 1 (mild 

BPD, group II) and 3 preterm infants developed BPD grade 2 or 3 (moderate and severe 

BPD, group III). 

Groups are matched for gender, CRP, intrauterine growth restriction (IUGR), antenatal 

corticosteroids, and incidents of placental chorioamnionitis (see Table 4-2 in the results 

section). GA could not be perfectly matched for the groups. Preterm infants of group I tend 

to be more mature at birth than preterm infants, who develop mild BPD, but have a similar 

GA as the preterm infants of group III. Infants of group I also tend to have more weight 

than preterm infants who develop BPD.  
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4.2.2 Microarray analysis 

The PAXgene Blood RNA System (PreAnalytiX, Heidelberg, Germany) was used to collect 

whole blood samples and isolate the RNA according to the manufacturer’s 

recommendations (PreAnalytiX). Total RNA was quantified with Nanodrop (NanoDrop 

Technologies, Rockland DE, USA) and the quality of RNA was assessed using the Agilent 

2100 Bioanalyzer (Agilent Technologies GmbH, Boeblingen, Germany). When the total 

RNA fulfilled quality criteria such as sufficient yield (> 2 µg), a 260/280-ratio of > 1.9 and 

electrophoretic profiles showing clear and sharp ribosomal peaks, the RNA was subjected 

to cRNA synthesis, cRNA fragmentation and hybridization on CodeLink UniSet Human 10 

K Bioarrays (GE Healthcare, Freiburg, Germany) using the CodeLink Expression Assay Kit 

(GE Healthcare) according to the manufacturer's instructions. Each patient sample was 

hybridized on at least two Bioarrays (technical replicates). Bioarrays were stained with 

Cy5™-streptavadin (GE Healthcare) and scanned using the GenePix® 4000 B scanner 

and the GenePix Pro 4.0 Software (Axon Instruments, Arlington, USA). A total of 75 array 

images were subjected to data analysis.  

Spot signals of CodeLink Bioarrays were quantified using CodeLink Expression Software 

V1.21 (GE Healthcare), as outlined in the user's manual. CodeLink Expression Software 

V4.1 generated raw data as well as background corrected and median- centered intra-

slide normalized data. The intra-slide normalized data were used for further analysis. The 

software automatically calculated thresholds for intra-slide normalized intensities for each 

array and flagged probes as TRUE when the signal intensity was higher than the threshold 

or FALSE when the intensity was lower than the threshold. The present call of a 

microarray was given as the ratio of probes flagged as TRUE by the total number of 

probes on the microarray. Microarrays subjected to data analysis showed a mean present 

call of 81%, indicating a high number of probes above the threshold, i.e. being flagged as 

TRUE. Furthermore, the software flagged each probe value as GOOD, EMPTY, POOR, 

NEG or MSR, thus defining different quality measures as outlined in the user's manual. 

Table 4-1 Number of replicates per sample amounting to 61 microarrays in the data set 

Patient ID 

1
0
0
4

 

1
0
0
5

 

1
0
0
6

 

1
0
3
8

 

1
0
6
9

 

1
0
7
3

 

1
0
7
4

 

1
0
8
0

 

1
0
8
1

 

1
0
8
2

 

1
0
8
6

 

1
0
8
7

 

1
0
9
1

 

1
1
3
3
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1
4
0

 

1
1
4
9

 

1
1
5
0

 

1
1
5
7

 

7
5
1

 

8
1
6

 

8
9
6

 

9
1
2

 

T
o

ta
l 

number of 
replicates 

3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 2 2 2 3 3 3 3 61 
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Preprocessing for microarray analysis was performed as discussed in chapter 2 in 

consideration of the grouping of the arrays. Outlier arrays and outliers in technical 

replicates were detected using spearman correlation coefficients and cluster analysis as 

described in further detail in chapter 2.1.6. For each sample 2 to 3 technical replicates 

were prepared. The final data set for data preparation consists of 61 microarrays (Table 

4-1). 

Microarrays were background corrected using background subtract and intra-slide 

normalized using Median normalization as recommended by the manufacturer. The 9945 

transcripts were filtered for high rates of missing values, low expressed values and outlier 

values per probe over all microarrays as discussed in chapter 2.1 and is summarized in 

chapter 2.2. Transcripts with a rate > 50% missing values in a probe of all microarrays of a 

group (chapter 2.1.3.1), as well as transcripts with a rate > 50% of values below the 

negative control detection threshold (chapter 2.1.4) were discarded. Outliers were defined 

as values three times greater or smaller than the median (chapter 2.1.5). All transcripts 

with a rate > 50% with outlier values were also discarded. A total of 2416 probes were 

filtered. The remaining missing values were estimated using BPCA imputation (chapter 

2.1.3.2). Data was subsequently inter-slide normalized using Quantile normalization. A 

total of 7529 probes were submitted to annotation and statistical analysis.  

Transcripts were annotated using the SOURCE database14 by Diehn et al. (2003) All 

transcripts are annotated with Genbank Accession number as provided by the 

manufacturer, a total of 6955 could be annotated with Unigene Cluster ID and a gene 

name, 6796 with Hugo gene symbol (6594 unique gene symbols) and Entrez gene ID. 

For the semi-supervised microarray analysis no treatment groups were considered a priori. 

Background correction, normalization, as well as filtering, and imputation steps remained 

identical; a total of 2860 transcripts were filtered. For this part of the analysis a total of 

7085 transcripts were obtained, which translate into 6537 annotated transcripts with 6386 

gene symbols (6202 unique gene symbols).  

                                                
14

 SOURCE database can be found at: http://smd.princeton.edu/cgi-bin/source/sourceSearch. 
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4.2.3 Statistical analyses 

Analysis of microarray data 

For microarray analysis umbilical cord tissue of the 22 preterm infants, further on also 

referred to as study population or cohort, was used. In chapter 3.5, three approaches to 

analyze microarray data have been developed: an unsupervised, supervised, and semi-

supervised approach. As gene expression profiles associated with BPD or the need for 

prolonged MV or oxygen support should be identified the supervised and semi-supervised 

approaches are chosen for the present study.  

(1) In the supervised approach, first the difference in gene expression between the 

treatment groups was detected with Linear Models for Microarray Analysis (LIMMA) 

(Smyth, 2005) using the Bioconductor package limma (Ritchie et al., 2015). The 

significance level was adjusted for multiple testing and the cut-off FDR for differential 

expression was set at FDR < 0.05 and a minimum absolute FC of 2 between at least two 

groups. Hierarchical clustering of the gene set and arrays was conducted with Euclidean 

distance measure and the Ward’s linkage clustering method. Methods of this first step of 

the supervised approach are described in detail in chapter 3.2 - Prioritizing genes or 

differential gene expression analysis. 

(2) The second step is based on the methods described in chapter 3.3 - Prediction of 

clinical outcome with microarray data: to identify transcripts able to predict to which group 

a preterm infant belongs as early as time of birth, a predictive analysis of microarrays 

(PAM) developed by Tibshirani et al. (2002) was performed using the Bioconductor 

package pamr (Hastie et al., 2013b).  

(3) In a semi-supervised approach linear regression models were fitted in order to stratify 

preterm infants according the quantitative identifiers for BPD, i.e. their dependency for 

oxygen supplementation and ventilatory support, under consideration of the degree of 

immaturity (GA in weeks). Transcripts were selected when the correlation coefficients for 

O2 and/or MV and/or interactions between those parameters were statistically significant 

with p < 0.01. Hierarchical clustering with Euclidean distance and Ward’s linkage was 

performed to separate groups of samples and transcripts. Fisher’s exact test and pairwise 

Wilcoxon tests were used to distinguish clusters of preterm infants for their BPD group, 

GA, O2, or MV respectively. 
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Functional annotation 

Cluster of co-regulated transcripts, identified by hierarchical clustering, were submitted to 

Database for Annotation, Visualization, and Integrated Discovery (DAVID, 

http://david.abcc.ncifcrf.gov/) functional annotation clustering in order to identify common 

biological processes in transcript clusters in regard to Gene Ontology Biological 

Processes.  

To take the analysis a step further, the sets of transcripts obtained by the supervised and 

semi-supervised approaches were submitted to the Ingenuity Pathway Analysis (IPA) 

(Ingenuity®Systems, 2014). IPA can not only analyze the data for the enrichment of 

certain biological functions downstream of the expression pattern and upstream regulators, 

but also adds information in regard to activation and deactivation of functions and 

regulators. Sets of transcripts were obtained by pairwise comparison of BPD groups 

(supervised analysis) with an absolute FC > 2 and p-value < 0.05, and regression 

coefficients with p < 0.01. Significance level for enrichment was set at p < 0.05. 

Furthermore, upstream regulators and downstream effects in biological functions are 

combined to identify regulator–effect networks (Kramer et al., 2014). Regulators and 

biological functions were considered if the showed an absolute activation z-score ≥ 1.5.  
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4.3 Results 

4.3.1 Patient characteristics 

Between the three groups of the cohort (no BPD, mild BPD, moderate or severe BPD) 

differences in regard to the GA, birth weight, frequency of congenital sepsis, duration of 

CPAP, and also in the duration of oxygen supply could be detected. Differences in oxygen 

supply were expected from the definition of BPD, and serve as a proof of principle. 

Statistically significant differences between the cases with moderate/severe BPD and 

cases with mild BPD could not be detected (Table 4-2). 

Table 4-2 Patient characteristics of the study cohort. 

  
no BPD mild BPD 

moderate/ severe 
BPD 

Sig. 

    
Mean 
(SE) 

Median N 
Mean 
(SE) 

Median N 
Mean 
(SE) 

Median N 

Gestational age 
29.99 

30.29a  13 
26.14 

24.71b 6 
27.52 

27.57a,b 3 0.009 
0.28 1 1.61 

Birth weight 
1382 

1400a 13 
932 

770b 6 
960 

1060b 3 0.011 
74.2 145.15 105.04 

Length / cm 
38.11 

40 9 
33.6 

33 5 
37 

37 2 0.182 
1.11 2.23 1 

Head circumference / cm 
27.06 

27 9 
23.8 

23 5 
25.5 

25.5 2 0.071 
0.56 1.03 1 

CRP value / mg/l 
9.58 

9.75 4 
46.83 

35.7 3 
40.25 

40.25 2 0.112 
1.41 23.36 29.05 

Duration of mechanical 
ventilation (days) 

6 
7 7 

5.5 
5.5 6 

17.33 
7 3 0.858 

0.93 0.76 13.45 

CPAP days 
3.55 

2.00a 11 
22 

21.00b 6 
6 

6.00a,b 3 0.007 
1.03 6.04 1.15 

O2 days 
6.08 

4.00a 13 
46 

43.50b 6 
80.33 

66.00b 3 0 
1.62 6.45 30.02 

Gender 
male 7a 1a 1a 

0.353 
female 6a 5a 2a 

Growth (IUGR) 
no 13a 5a 3a 

0.409 
yes 0a 1a 0a 

Congenital sepsis 
no 7a 0b 0a, b 

0.041 
yes 6a 6b 3a, b 

Antenatal 
corticosteroids 
(ANCS) 

no 2a 2a 1a 
0.657 

yes 6a 1a 2a 

ANCS - 7 days to 24 
h before birth 

no 5a 3a 1a 
0.779 

yes 6a 1a 2a 

Clinical suspicion of 
amniotic infection 
syndrome (AIS) 

no 12a 4a, b 0b 
0.005 

yes 1a 2a, b 3b 

Significances were determined by Kruskal-Wallis-Test for quantitative parameters and Fisher's exact test for 
qualitative parameters. Every index (a, b) indicates a subset of BPD study groups, which do not differ from each 
other on a 5%-significance level (pairwise Wilcox-Test with FDR correction for multiple testing). 
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It becomes apparent that the preterm infants in this study without congenital sepsis do not 

develop BPD, while the infants with congenital sepsis develop additionally BPD. 

Differences in the number of preterm infants with congenital sepsis can be observed 

between no BPD preterm infants and mild BPD preterm infants. Differences in the number 

of infants with suspicion of an amniotic infection syndrome (AIS) can be observed: no BPD 

infants tend to have less AIS than infants with moderate/severe BPD. Differences between 

the groups can also be observed in GA, birth weight, duration of CPAP ventilation, and the 

duration of O2. The preterm infants in our study without BPD tend to be older, to have a 

higher birth weight, to be in less need for CPAP and O2, and have fewer cases of 

congenital sepsis than mild BPD preterm infants. This is also true for the comparison with 

moderate/severe BPD preterm infants in terms of weight and oxygen assistance. 

Additionally can for all cases of moderate/severe BPD an AIS be suspected. 

4.3.2 Differential expression analysis of BPD severity groups using LIMMA 

Supervised clustering reveals distinct gene expression pattern discriminating 

preterm infants with lower and higher BPD grades at birth. 

The supervised approach of the microarray analysis revealed 238 differentially regulated 

transcripts with a FDR < 0.05, and |FC| > 2 out of 7529 transcripts (see Figure 4-2). 

Hierarchical clustering of samples with these differentially regulated genes reveals two 

main clusters of expression profiles. One cluster contains all microarray patterns of 

preterm infants with mild BPD. The other cluster can be divided into a subcluster of no 

BPD preterm infants and a subcluster, which contains all samples of preterm infant of 

group 3. The expression patterns indicate that processes at birth in the group of no BPD 

and moderate to severe BPD are more similar to each other than to the group of patients, 

who developed a mild BPD. 
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Figure 4-1 Total of 238 differentially expressed genes in comparison of three BPD 

severity grades (no, mild, and moderate-severe BPD) 

 

Most of the differentially expressed transcripts can be found in the comparison of preterm 

infants without BPD and with mild BPD (Figure 4-1). In this comparison, 127 transcripts 

are differentially expressed, 84 are up regulated, and 43 are down regulated in infants with 

mild BPD compared to preterm infants without BPD. Preterm infants with mild BPD also 

show a distinct pattern compared to preterm infants with moderate or severe BPD with 125 

(62 up, 63 down regulated) significantly differentially regulated transcripts.  
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Figure 4-2 Expression profiles of significantly differentially regulated genes in preterm 

infants reveal two main hierarchical clusters of expression.  

Preterm infants with BPD grade 1 are depicted in blue, with BPD grade 2 or 3 
in green, and infants without BPD in red in the upper hierarchical clustering 
dendrogram. Hierarchical clustering was performed on scaled data with 
Euclidean distance measure and Ward’s Linkage clustering method. 
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A high number of differentially regulated genes in the comparisons of group II vs. I and 

group II vs. III of 39 transcripts indicates that the gene expression pattern in preterm 

infants developing mild BPD differs greatly from no BPD and moderate to severe BPD 

gene expression. The development of mild BPD follows different routes than the 

development of more severe BPD. The most down regulated transcripts in mild BPD are 

CRIP1 (Cysteine-rich protein 1 (intestinal)), NM_005129, PTPRCAP (Protein tyrosine 

phosphatase, receptor type, C-associated protein); the most up regulated transcripts in 

mild BPD are GAL (Galanin prepropeptide), SLC24A3 (Solute carrier family 24 

(sodium/potassium/calcium exchanger), member 3), and CDH13 (Cadherin 13, H-cadherin 

(heart)) (see Table 8-1 in   
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Appendix). DAVID functional annotation clustering indicates an overrepresentation of 

these genes associated with the cytoskeleton and calcium homeostasis. Transcripts which 

are only significantly differentially regulated in group II (mild BPD) compared to group I (no 

BPD) preterm infants are putatively overrepresented in the membrane/glycoprotein, 

transmembrane transport, and leukocyte activation. Transcripts only differentially regulated 

between group II and group III (moderate/severe BPD) are putatively overrepresented in 

the mitochondrion or oxidation reduction, and regulation of cell migration. 

Group III preterm infants express 27 genes differentially, when compared to preterm 

infants who develop mild or no BPD (see Table 8-2 in   
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Appendix). The most up regulated transcripts at birth in preterm infants at birth with 

moderate/severe BPD are HPR (Haptoglobin-related protein), MAP4K3 (Mitogen-activated 

protein kinase 3), and PGLYRP1 (Peptidoglycan recognition protein 1), CDA (Cytidine 

deaminase). The most down regulated genes in moderate or severe BPD are FKBP14 

(FK506 binding protein 14), GNG11 (Guanine nucleotide binding protein (G protein), 

gamma 11), and ETNK1 (Ethanolamine kinase 1). DAVID functional annotation clustering 

indicates an overrepresentation of genes associated with transcription or transcription 

factor activity.  

Group III preterm infants differ in the expression of 48 transcripts (32 up regulated, 16 

down regulated) from infants without BPD. A total of 4 transcripts, i.e. ACTN2 (Actinin, 

alpha 2), NM_003832, NM_018104, and SLC2A11 (Solute carrier family 2 (facilitated 

glucose transporter), member 11), is able to differentiate between mild BPD and no BPD 

preterm infants, and is also differentially regulated in preterm infants with moderate/severe 

BPD and infants without BPD (see Table 8-3 in   
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Appendix). Transcripts only significantly differentially regulated in group III preterm infants 

compared to no BPD infants are putatively overrepresented in the biological processes: 

induction of apoptosis, regulation of transcription. For the transcripts differentially regulated 

in both group II and group III preterm infants compared to no BPD infants, no functional 

clustering analysis can be conducted.  

Principal component analysis reveals a clear distinction between preterm infants without 

BPD, mild BPD, and moderate/severe BPD (Figure 4-3). In hierarchical cluster analysis it 

can be seen that the gene expression pattern of preterm infants without BPD is more 

similar to gene expression in preterm infants with moderate or severe BPD than with mild 

BPD.  

 

Figure 4-3 Principal components analysis using 238 differentially regulated genes 

identified by gene expression analysis of BPD severity groups 
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At time of birth differentially regulated genes in preterm infants are involved in 

chemotaxis and leukocytes. 

An IPA comparison analysis for the unsupervised analysis approach predicted 

(1) activated chemotaxis of cells and (2) decreased biological functions associated with 

apoptosis and accumulation of leukocytes in preterm infants developing mild BPD (vs. no 

and moderate/severe BPD) as well as (3) decreased phagocytosis in infants with 

moderate/severe BPD (vs. no BPD) (see Table 4-3).  

 

Table 4-3 Biological functions predicted to be increased or decreased at time of birth in 

preterm infants developing BPD  

Shown are functions with z-scores ≥ |1.5|, which indicate the direction of activation; processes with 
positive z-scores are predicted to increased, negative z-scores indicate a decreased function; 
asterisks indicate significance level of enrichment: * p < 0.05, ** p < 0.01, * p < 0.001. 

 

Diseases and Bio Functions 
mild vs. no 

BPD 

mod./s. 
vs. no 
BPD 

mod./s. 
vs. mild 

BPD 

accumulation of cells -2.42 * 
    

apoptosis of cancer cells -2.23 * 
    

damage of kidney -2.22 * 
    

accumulation of granulocytes -2.22 ** 
    

cell death of cancer cells -2.22 * 
    

accumulation of leukocytes -2.20 ** 
    

accumulation of eosinophils -1.98 *** 
    

weight loss -1.71 *         

phagocytosis     -1.73 *   
 

branching of neurites 
    

1.96 * 

cell movement of vascular smooth muscle cells 
    

-2.00 * 

chemotaxis of cells 2.66 * 
  

-1.86 * 

aggregation of cells 1.95 **     -0.73 * 

chemotaxis of leukocytes 2.28 * 
    

quantity of granulocytes 2.18 * 
    

chemotaxis of mononuclear leukocytes 2.11 * 
    

quantity of neutrophils 2.06 * 
    

airway hyperresponsiveness 1.85 ** 
    

chemotaxis of lymphocytes 1.83 *         
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Cytokines as upstream regulators in mild BPD 

Cytokines play an important role in the innate immunity of preterm infants (Melville and 

Moss, 2013). Therefore the upstream regulator analysis (see chapter 3.4.3 functional gene 

annotation analysis with IPA) is focused on cytokines with the aim to identify potential 

cytokines as biomarkers present in the cord blood of preterm infants (see Table 4-4).  

Table 4-4 Cytokine upstream regulators (IPA) predicted to be activated or deactivated at 

birth of preterm infants developing BPD 

Upstream regulators 
mild vs. no 
BPD 

mod./s. vs. no 
BPD 

mod./s. vs. 
mild BPD 

IL2 1.80 
     TNF 1.66 ** 

    IL6 1.52 * 0.00 * 
  IL10 1.21 * 

    IFN alpha/beta 1.13 ** 
    IFNG 0.56 * 
    CCL19 0.00 ** 
    CCL8 0.00 * 
    CXCL9 0.00 * 
    Ifn gamma 0.00 ** 
    IFNE 0.00 ** 
    IFNK 0.00 * 
    IFNW1 0.00 ** 
    Mac 0.00 * 
    TSLP 0.00 * 
    CSF3 

  
0.00 * 

  EBI3 
  

0.00 ** 
  IFN Beta 

  
0.00 * 

  IFNA1/IFNA13 
 

0.00 * 
  IFNA10 

  
0.00 * 

  IFNA14 
  

0.00 * 
  IFNA17 

  
0.00 * 

  IFNA21 
  

0.00 * 
  IFNA4 

  
0.00 * 

  IFNA5 
  

0.00 * 
  IFNA6 

  
0.00 * 

  IFNA7 
  

0.00 * 
  IFNA8 

  
0.00 * 

  IL27 
  

0.00 ** 
  IL5 

    
2.00 

 IL8 
  

0.00 * 
  WNT1 

    
0.00 * 

Shown are z-scores, which indicate the direction of activation; regulators with 
positive z-scores are predicted to activated (red); asterisks indicate significance 
level for enrichment: * p < 0.05, ** p < 0.01, * p < 0.001. 

 

In mild BPD compared to no BPD TNF- and interleukins (IL-2, IL-6, and IL-10) are the 

highest activated cytokines, but also interferons and chemokines are predicted to be 
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activated. Differentially regulated genes in moderate/severe BPD infants on the other hand 

are mainly regulated by interferons.  

Networks combining differentially expressed genes, upstream regulators, and downstream 

effects, so called regulator effects networks, of differentially regulated genes in preterm 

infants with mild BPD compared to infants with no BPD firstly demonstrated a relationship 

between the activation of IL-6, TCR (T cell receptor), TNF- and the regulation of CXCL9 

(chemokine ligand 9), IL-10, LAT (Linker for activation of T cells), LGALS3 (lectin, 

galactoside-binding, soluble, 3), MMP7 (matrix metallopeptidase 7), TLR3 (toll-like 

receptor 3), TNFRSF1A (tumor necrosis factor receptor superfamily, member 1a) (Figure 

4-4). The regulation of these genes is linked to a predicted activation of the function 

chemotaxis of leukocytes, and the deactivation of the accumulation of eosinophils and 

fibrosis.  

 

Figure 4-4 Regulator effector networks linking TCR, TNF-α, IL-6 activation to activation 

of chemotaxis of leukocytes and deactivation of fibrosis and accumulation of 

eosinophils in preterm infants with mild BPD compared to preterm infants 

without BPD 

 

Secondly, a relationship between the predicted activation of MAPK14 (mitogen-activated 

protein kinase 14), the differential expression CAT (catalase), IL-10, SREBF1 (sterol 
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regulatory element binding transcription factor 1), ZFP36 (zinc finger protein 36), and the 

predicted deactivation of disease functions leading to apoptosis and necrosis (damage of 

kidney, cell death of cancer cells) was found (Figure 4-5).  

 

 

Figure 4-5 Regulator effector networks linking MAPK14 activation and the inhibition of 

functions leading to apoptosis and necrosis in preterm infants with mild BPD 

compared to preterm infants without BPD 

 

The activation of TNF- was furthermore predicted by the expression of CAT, CDH13 

(cadherin 13), IL-10, LGALS3, TNFRSF1A which in turn had been linked to airway 

hyperresponsiveness in preterm infants with mild BPD (Figure 4-6). 
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Figure 4-6 Regulator effector networks linking TNF-α activation to the activation of 

airway hyperresponsiveness in preterm infants with mild BPD compared to 

preterm infants without BPD 

 

Figure 4-7 Regulator effector networks linking TNF-α activation to the activation of 

proliferation of granulocytes in preterm infants with mild BPD compared to 

preterm infants without BPD 

 

An additional prediction analysis showed the activation of TNF- by BID (BH3 interacting 

domain death agonist), CDH13, IL-10, LGALS3, TF (transferrin), TNFRSF1A, ZFP36, 

involved in granulocytes proliferation (Figure 4-7).  

Increased neutrophil number is predicted as a consequence of up-regulated IL-10, TNF-, 

TNFRSF1A through the regulator IL-6 (Figure 4-8).  
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Figure 4-8 Regulator effector networks linking IL-6 activation to the activation of 

proliferation of neutrophils in preterm infants with mild BPD compared to 

preterm infants without BPD 

 

4.3.3 Predictive Microarray Analysis (PAM) for preterm infants with and 

without BPD 

In order to be able to predict the severity of BPD from gene expression at the time of birth 

a PAM was conducted. A set of 71 transcripts is obtained using the methods described in 

chapter 3.3 especially PAM (chapter 3.3.1), that is able to discriminate between the three 

groups of preterm infants (Figure 4-9 A; Table 8-4 in supplemental material). 

Of these 71 transcripts 58 transcripts also are differentially regulated (see Figure 4-9 C). 

For DAVID functional annotation and gene functional classification 47 transcripts could be 

converted into DAVID IDs. Gene classification could not find classes of genes with a 

suitable enrichment score. DAVID functional annotation clustering (see Table 8-5 in 

supplemental material) shows an enrichment of genes involved in regulation of leukocyte 

activation (ES: 1.65, involved genes: GAL, HLX, ZEB1, LAT), and regulation of cell 

proliferation/ embryonic organ development (ES: 1.19, involved genes: GAL, CDH13, 

BTG3, ALDH1A2, PRTN3, HLX, KLF5, ZEB1). 
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Figure 4-9  Expression profiles of transcripts that are able to differentiate between 

groups of BPD preterm infants.  

A: heatmap of all 71 predictive transcripts,  
B: Euler Venn diagram shows the overlap of transcripts between PAM 

analysis for predictive transcripts and LIMMA analysis for differentially 
regulated transcripts,  

C: heatmap of 58 predictive and differentially regulated transcripts. 

 

Cluster analysis revealed a pattern comparable to the one identified by the LIMMA 

analysis with a high similarity between the transcriptome expression pattern of infants with 

moderate/severe BPD and no BPD. The clinical data of the study cohort also showed a 

similarity between moderate/ severe and no BPD and difference to mild BPD in GA, 

number of congenital sepsis, duration of non-invasive positive pressure ventilation, and 

CPAP (Table 4-2).  
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Down regulation of reactive oxygen species prevents the development of higher 

grade BPD 

From the 71 transcripts that are able to discriminate between the different BPD severity 

states, 66 transcripts could be annotated. IPA toxicity analysis indicates that transcripts 

associated with oxidative stress are overrepresented in this set of genes. Genes involved 

in synthesis of reactive oxygen species (ROS) and production of ROS are overrepresented 

in this analysis, but differ between the groups in the direction of regulation (Figure 4-10).  

Compared to preterm infants with mild BPD, the production of ROS is predicted to be 

activated in no BPD (activation z-scoreI vs. II = 1.6) and in moderate to severe BPD (zIII vs. II = 

1.6). No difference in activation state could be found between group I and III. Together 

with the activation of the inflammatory response and chemotaxis of cells in BPD the 

activation state of these functions are able to differentiate BPD severity groups. Activated 

in both group II and group III compared to group I (no BPD) are the biological functions 

inflammatory response (zII vs. I = 2.0, zIII vs. I = 1.4) and chemotaxis of cells (zII vs. I = 1.5, 

zIII vs. I = 1.7). 
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Figure 4-10 Biological processes inflammatory response and chemotaxis of cells are 

predicted to be activated in both BPD groups compared to no BPD and the 

production of reactive oxygen species is predicted to be deactivated in mild 

BPD compared to no BPD, but is predicted to be active in moderated-severe 

BPD compared to no BPD. 
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In IPA upstream analysis, again TNF- can be identified as regulator of more genes than 

could be expected by chance alone. Additionally, interleukins, chemokines, and interferons 

can be identified as putative cytokine upstream regulators (Table 4-5).  

This predictive analysis for microarray analysis emphasizes the role of cytokines and 

inflammatory processes at birth in preterm infants. To secure that these findings are not 

solely based on the effect of GA, we correlate gene expression with O2 and duration of 

MV under consideration of the GA of the infants as outlined in chapter 3.5 in the semi-

supervised approach. 

 

Table 4-5 Cytokine upstream regulators (IPA) predicted to be activated or deactivated at 

birth of preterm infants developing BPD of genes able to discriminate 

between BPD groups (PAM, threshold=2.2) 

 

Z-scores 

 

Upstream regulators 

Mild BPD vs. 

no BPD 

mod. /sev. BPD 

vs. no BPD 

mod. /sev. BPD 

vs. mild BPD 

TNF 0.29 ** 1.97 ** 1.50 ** 

Csf 0.00 ** 0.00 ** 0.00 ** 

Interferon alpha -0.74 ** 1.23 ** 0.00 ** 

IL32 0.00 * 0.00 * 0.00 * 

CCL19 0.00 * 0.00 * 0.00 * 

CCL21 0.00 * 0.00 * 0.00 * 

IL4 0.00 * 0.00 * 0.00 * 

IL6 0.45 * 1.34 * 0.45 * 

IL12 (complex) 0.00 * 0.00 * 0.00 * 

CCL3L1/CCL3L3 0.00 * 0.00 * 0.00 * 

Ifn gamma 0.00 * 0.00 * 0.00 * 

IL3 0.00 * 0.00 * 0.00 * 

Shown are z-scores, which indicate the direction of activation; asterisks indicate significance level 
for enrichment: * p < 0.05, ** p < 0.01, * p < 0.001. 
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4.3.4 Semi-supervised approach – regression model 

In order to further separate preterm infants with different BPD grades and to identify genes 

associated with prolonged ventilatory support and/or oxygen supply under consideration of 

the degree of immaturity, an advanced linear regression model was designed. A total of 

210 genes with significant correlation to the duration of O2 and/or to MV or interactions 

between O2 and MV were selected at a 1%-significance level (Table 8-4). A total of 17 

transcripts were correlated with MV, 83 transcripts with O2, 1 showed correlation with an 

additive effect of MV and O2, and 109 were correlated with the interaction effect of MV and 

O2 (Table 4-6). Of these 210 transcripts 55 (7 in MV, 32 in O2, 16 in interaction) were also 

correlated with GA. 

 

Table 4-6 Number of transcripts correlated with oxygen supply, mechanical ventilation, 

and interaction between oxygen and mechanical ventilation on a 1%-

significance level. 

number of transcripts 

with effects by 
gestational age (GA) 

without effects by GA 

single 
effects  

additive 
effects 

single 
effects 

additive 
effects 

oxygen (O2) 83 
1 

51 
1 

mechanical ventilation (MV) 17 10 

interaction O2:MV 109 
 93  

Total 210 155 

 

Unsupervised microarray analysis identifies infants with different BPD grades at 

birth 

By the use of the above indicated, unsupervised analysis, three main clusters of preterm 

infants were identified, which could be assigned to either ‘BPD’ or ‘no BPD’ (Fisher’s exact 

test, p-value = 0.032; Figure 4-11).  

Cluster 1 comprises transcriptome profiles from preterm infants with no BPD (median GA 

30.9 weeks, IQR = 0.5), short duration of O2 (median 1 day, IQR = 0.75), and no history of 

ventilatory support exceeding 48 hours. Cluster 2 comprises the transcriptome pattern of 

preterm infants with no BPD (median GA 29.9 weeks, IQR = 1.2), a median duration for 
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O2 of 16 days (IQR = 17.25) in addition to a history of ventilatory support (median 7 days, 

IQR = 1.5). Cluster 3 comprises preterm infants with all grades of BPD, but preterm infants 

in this cluster show a higher degree of immaturity (median GA of 24.7 weeks, IQR = 3), a 

median duration for assisted ventilation of 4 days (IQR = 4.8) and a median duration of 

oxygen supplementation of 49.5 days (IQR = 36).  

 

Figure 4-11 Heatmap of genes correlated with the duration of assisted ventilation and/or 

oxygen support, stratified for maturity (upper plot) and plot of gestational 

age, oxygen supply, and mechanical ventilation for the clusters obtained by 

regression analysis. Asterisks indicate the significance levels of pairwise Wilcoxon 

test with FDR correction: *** FDR < 0.001, ** FDR < 0.01, * FDR < 0.05.  
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All transcripts are separated in sets of genes correlated with the duration of ventilation or 

duration of O2 or the interaction of both and submitted to IPA for analysis of regulator 

effector networks. Transcripts correlating with ventilation indicate a decreased function in 

the morphology of leukocytes, decreased hypoplasia of thymus glands, and decreased 

lack of T lymphocytes, but increased quantity of thymocytes with prolonged ventilation 

(Table 4-7). For transcripts correlating only with the duration of O2 no increased or 

decreased functions can be found. For transcripts correlating with the interaction of 

ventilation and oxygen an increased proliferation of double-negative T lymphocytes can be 

found.  

Table 4-7 IPA de- or increased diseases and biological functions for sets of transcripts 

correlated with either ventilation, oxygen support or the interaction of both 

treatments.  

By regression coefficients Z-scores 

Diseases and bio functions  ventilation 
oxygen 
support 

ventilation: 
oxygen 

morphology of lymphocytes * -2.22 0.51 1.19 

morphology of leukocytes * -2.22 0.51 1.19 

hypoplasia of thymus gland * -2.22 0.49 1.48 

morphology of T lymphocytes ** -1.98 0.06 0.83 

lack of T lymphocytes 
**
* -1.98 0.06 0.83 

morphology of blood cells * -1.78 0.81 0.81 

proliferation of leukemia cell lines * 1.94 0.28 -1.11 

quantity of thymocytes ** 1.58 0.25 -1.19 

quantity of double-negative T lymphocyte * -0.93 1.19 1.99 

All activated or inhibited biological functions showed a p-value < 0.05 based on test for over-
representation. 

 

For the transcripts associated with the duration of ventilation, the prediction revealed an 

activation of IL3, CD40LG, and CSF2 as putative cytokine upstream regulators. For 

transcripts correlated with O2, a deactivation of IL-1B and IL-1 can be predicted. Their role 

is also indicated by the analysis of transcripts showing an effect in correlation to both, 

ventilator support and O2, as an activation of IL-1 and deactivation of IL-10 is predicted 

here (Table 4-8). 
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Table 4-8 Overrepresentation of IPA upstream regulators for sets of transcripts 

correlated with either ventilation, oxygen support or the interaction of both. 

The direction of activation is determined by the direction of the regression 

coefficients.  

 
Z-scores 

 
Upstream regulators ventilation 

oxygen 
support 

Interaction of 
ventilation and 

oxygen 

IL3 1.95 * -1.60 * 0.31 * 

CD40LG 1.93 
     CSF2 1.93 
     IL7 1.30 * -1.49 * -0.37 * 

IL1B 
  

-1.98 
   IL1 

  
-1.94 

 
1.94 

 Interferon alpha 0.06 ** -1.35 ** 0.65 ** 

IL10 
 

* 
 

* -1.83 * 

IFNA2 0.51 
 

-0.11 
 

0.11 
 

All activated or inhibited upstream regulators showed a p-value < 0.05 based on test for over-
representation. 

 

 

 

 

 

Figure 4-12 Regulator effects network for genes correlated with the need of assisted 

ventilation. To be able to predict the direction of regulation in upstream 

regulators or downstream biological processes regression coefficients were 

used. Upregulated translates then in positively correlated, down regulated in 

negatively correlated. 
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For genes correlating with ventilation, a regulator effects network could be identified 

showing how IL3 and blood cell function are connected (Figure 4-12). Here, activation of 

IL3 as its regulator can be predicted. The increase in expression of BCL2L1, CD247, 

CD3G, LY9, ODC1, SOX4 and the decrease in LIF expression with increasing need for 

assisted ventilation indicates a decrease of biological functions involved in the morphology 

of blood cells and an increase in proliferation of leukemia cell lines.  

4.3.5 Cytokine upstream regulators in microarray analyses 

The results indicate that cytokines are overrepresented as putative upstream regulators; 

they are significantly overrepresented as regulators for genes differentially expressed 

between the different groups of BPD preterm infants, and in transcripts correlated with the 

duration of assisted ventilation or O2 in consideration of the maturity. In the various steps 

of the microarray analysis a total of 46 cytokines as putative activated or deactivated 

upstream regulators are identified (Figure 4-13).  

A common cytokine in the unsupervised approach, the regression analysis, and the 

supervised approach using LIMMA is the IL-10, which is predicted to be down-regulated 

(activation z-score= -1.83) through the interaction effect of MV and O2, while predicted to 

be activated in mild BPD compared to no BPD (activation z-score= 1.21). In both the 

unsupervised approach and the predictive supervised approach using PAM IL-3 and the 

group of interferon alpha cytokines are predicted to be involved as upstream regulators for 

the observed gene expression. The activation of ventilation is associated with MV, while 

O2 is associated with the deactivation of IL-3. For interferon alpha no indication concerning 

the direction of activation can be made.  
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Figure 4-13 Common cytokine upstream regulators of the gene set of 238 differentially 

regulated genes (LIMMA), 71 genes suitable for predicting BPD groups (PAM), 

and of the 210 genes correlated with duration of ventilation and/or oxygen 

support, corrected for maturity of preterm infants (Regression).  
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4.4 Discussion 

4.4.1 Discussion of results 

The developed workflow for a standardization transcriptome analysis (chapter 2 and 3) has 

been successfully applied in a proof of concept presented in the current chapter 4 dealing 

with the development of BPD in preterm infants. The presented tool set thereby proved to 

be flexible and robust enough to handle the flaws in real world data sets and deliver robust 

results in accordance with the research question at hand. The results of the proof of 

concept study will be interpreted in the following discussion, and shall highlight the full 

potential of a possible clinical study to be conducted based on the presented work. 

 Supervised microarray analysis – differential gene expression analysis 4.4.1.1

The presented analysis shows that differences in gene expression patterns at the time of 

birth of preterm infants lead to the development of different BPD grades (Figure 4-2, 

Figure 4-1, Figure 4-3). Interestingly, preterm infants with mild BPD exhibit a different 

expression pattern as preterm infants without BPD and preterm infants with 

moderate/severe BPD. This may indicate that the development of mild BPD follows 

different routes than the development of more severe BPD. One would expect that preterm 

infants with any grade of BPD have similar expression patterns at time of birth, if these 

patterns determine the development of BPD at such an early stadium as birth. But only 

four transcripts are differentially expressed at birth in both BPD groups compared to the 

group of no BPD infants. Nevertheless, it is possible to distinguish infants with moderate or 

severe BPD from preterm infants without BPD at birth. This indicates that certain 

processes at birth predispose infants for the development of moderate or severe forms of 

BPD. Three potential underlying causes can be discussed here: 

1. Genetic predisposition for higher grade BPD, 

2. Immaturity or other clinical factors of infants hindering preterm infants to cope 

with infection,  

3. Prenatal inflammatory processes. 

Genetic predisposition.  Twin studies indicate that the development of BPD in one 

twin serves as a risk factor for the other twin. In a careful review of twin studies Shaw and 

O’Brodovich (2013) come to the conclusion that at least for moderate/severe BPD a 
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genetic factor may be suspected. For mild BPD no evidence for heritability could be found 

(Shaw and O’Brodovich, 2013). Lavoie et al. (2008) examined clinical data of monozygotic 

and dizygotic twins born before 30 weeks GA for genetic and environmental susceptibility 

factors towards BPD. Their findings suggest that the need of oxygen at 36 weeks 

postmenstrual age is genetically influenced. For mild BPD they found little evidence for a 

genetic influence, but mild BPD could be attributed to environmental effects, such as 

gestational age. Bhandari et al. (2006) as well conducted a twin study on preterm infants 

born with ≤ 32 weeks GA. They also found a genetic association with the need for oxygen 

supplementation at 36 weeks postmenstrual age. However, in our findings a higher 

similarity between preterm infants without BPD and with moderate or severe BPD cannot 

be explained by the findings of the twin studies examined by Shaw and O’Brodovich 

(2013), Lavoie et al. (2008), or Bhandari et al. (2006). A genome-wide-association study 

by Wang et al. (2013) could not find an genetic factor that makes preterm infants 

susceptible to the development of BPD. Wang et al. (2013) however, examined a 

putatively different ethnicity. While the twin studies of Shaw and O’Brodovich (2013) 

probably examined Caucasian patients, one from Canada (Lavoie et al., 2008) and one 

from central USA (Bhandari et al., 2006), the examined study population of Wang et al. 

(2013) is of Mexican-Hispanic origin. 

Clinical data.   In comparison with the clinical data of the preterm infants in this 

study (Table 4-2), we noticed that GA, congenital sepsis, and the duration of CPAP follow 

a similar pattern as the microarray cluster analysis (Figure 4-2). Here differences could be 

found between neonates with mild BPD and without BPD, but not in comparison of either 

group to moderate/severe BPD. Infants with mild BPD were born younger (Median GA: 

24.7 weeks in mild BPD, 30.3 weeks in no BPD, 27.6 days in cases with moderate or 

severe BPD), received longer CPAP treatment (Median: 21 days in mild BPD, 2 days in no 

BPD, 6 days in moderate or severe BPD infants) and developed more often than expected 

a congenital sepsis. In our study population, all neonates who later developed BPD had 

congenital sepsis, but only half of the no BPD infants. Immaturity of preterm infants is a 

well-known risk factor for the development of BPD and it is difficult to eliminate its 

influence entirely from the analysis. It also becomes apparent that the incidence of BPD 

and congenital sepsis cannot be clearly separated in our study group. Both diseases are 

strongly associated with the birth weight. This explains why it was not possible to match 

BPD groups by the factors gestational age despite our best efforts. Nevertheless the 
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observed unique expression pattern for preterm infants developing mild BPD can be seen 

as a starting point for future research. 

Inflammatory processes.  Findings based on DAVID functional annotation clustering 

indicate that differentially expressed transcripts in preterm infants with mild BPD compared 

to moderate/severe BPD are overrepresented in ontology terms associated with 

cytoskeleton and calcium homeostasis. Transcript differentially expressed in mild BPD 

compared to no BPD are putatively overrepresented in the gene ontology terms 

transmembrane transport and leukocyte activation. Moderate/severe BPD infants express 

transcripts differentially that are putatively overrepresented in induction of apoptosis and 

transcription. The differences in the profiles of moderate/severe BPD infants compared to 

both other groups of infants may be lead back to transcription factor activity. The 

differences compared to only mild BPD indicate differences in cell migration, oxidation 

reduction, and the mitochondrion. 

As the overrepresentation analysis by DAVID gives no clues to the direction of the 

processes, an additional IPA analysis was conducted to predict the increased or 

decreased activation of processes, as well as finding upstream regulators responsible for 

the observed gene expression patterns. In summary, it can be seen that the regulators 

TNF, IL6, TCR, and MAPK14 play an important role in processes at birth of children 

developing mild BPD and are frequently activated for those infants. Processes to be 

activated are involved in chemotaxis; processes predicted to be deactivated are involved 

in the accumulation of eosinophils and cell death and fibrosis. In preterm infants with 

moderate or severe BPD is the chemotaxis of cells predicted to be deactivated in 

comparison with mild BPD infants (see Table 4-3).  

It becomes apparent that in preterm infants developing mild BPD cytokines indeed play an 

important role (see Figure 4-4, Figure 4-6, Figure 4-7, Figure 4-8); the upstream regulators 

TNF-α and IL-6 are linked to an activation of airway hyperresponsiveness, chemotaxis, 

and an increased proliferation of neutrophils and granulocytes. The observed regulator 

effect networks indicate the presence of inflammatory processes in preterm infants at birth. 

Melville and Moss (2013) review the effect of MV on preterm infants and find that 

sustained systemic inflammation may be a risk factor for chronic lung diseases. This is 

also based on findings from Köksal et al. (2012), who find in tracheal aspirate and serum 

from the umbilical cord of preterm infants increased levels of TNF-α, IL-1β, IL-6, but 

decreased levels of anti-inflammatory IL-10. They find no differences in cytokine levels by 
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BPD severity like in our study. The expression levels in our study also indicate activation of 

TNF-α and IL-6 of for preterm infants with mild BPD (see Table 4-4), although not for 

higher severities, which may be due to the rather low sample size. Köksal et al. (2012) 

also find differences in GA in the observed groups, which makes the study population 

comparable to the results in our study.  

 Supervised microarray analysis – predictive microarray analysis 4.4.1.2

The IPA comparison analysis for transcripts identified by PAM s further empathizes the 

importance of cytokines, here especially TNF-α, and the importance of inflammatory 

processes (Figure 4-10). For these genes the process production of ROS, which is 

putatively deactivated in preterm infants with mild BPD, and the processes chemotaxis of 

cells and inflammatory response, which are predicted to be activated in both BPD groups, 

either mild or moderate/severe BPD, stand out as they represent biological processes 

which may be able to differentiate between no BPD, mild BPD and moderate/severe BPD.  

Similar mechanism were also detected by DAVID functional clustering for the set of 

transcripts obtained by LIMMA, which identified the mitochondrion or the gene ontology 

term of oxidation reduction as well as cell migration as overrepresented in transcripts 

differentially regulated in the mild BPD group and induction of apoptosis in the 

moderate/severe BPD group, each compared to no BPD. 

The synthesis of ROS or free radicals can have beneficial effects when it is used to fight 

infection as a first line defense system, but together with an immature antioxidant defense 

system and oxygen treatment of the preterm infants it can lead to severe oxidant stress 

and cause lung damage (Perrone et al., 2012; Speer, 2006). ROS can also serve as 

second messengers to transcription factor activation and induce apoptosis, further radical 

formation, and inflammation; it amplifies the inflammatory response (Auten and Davis, 

2009). 

Our finding show that the transcripts able to predict BPD severity grades lead to an 

activation of inflammatory response, and chemotaxis processes in preterm infants with 

BPD. However, in preterm infants with mild BPD a deactivated synthesis of ROS is 

predicted (Figure 4-10, Figure 4-14). So it can be assumed that the deactivation of ROS 

synthesis has a beneficial effect on preterm infants dealing with inflammation. This may be 

due to the reduced oxidative stress and reduced inflammatory response.  
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Figure 4-14 In BPD are processes in inflammatory response and chemotaxis activated, 

but the deactivation of ROS synthesis leads to an only mild form of BPD. 

 

 Semi-supervised microarray analysis – linear regression models 4.4.1.3

To assure that only the risk factors, which are able to discriminate between BPD severity 

grades, are taken into account we fitted multiple linear regression models with duration of 

ventilation, duration of O2, and GA to explain the observed gene expression patterns 

(Figure 4-2). A total of 210 transcripts were either positive or negative regression 

coefficients for ventilation and/or oxygen or the interaction between those two parameters 

were selected. Despite the fact that the effect of GA cannot be eliminated, the differences 

between the clusters of preterm infants become less pronounced than in the initial 

analysis. Of the 210 transcripts 55 showed regression coefficients also significant in GA at 

a 90%-significance level. Despite differences in GA, clusters obtained by this set of 

transcripts also show different levels of O2 and MV, which serves as proof that this 

analysis indeed, selects groups of preterm infants with greater variation in these 

parameters.  

Again, it can be observed that cytokines and inflammatory processes at birth are 

connected with the development of BPD. The correlation structure with the duration of 

assisted ventilation and O2 indicates that processes, concerning for example the 

morphology of blood cells, influence the time a preterm infants needs to be ventilated 

thereby influencing the risk for the development of BPD. Transcripts which correlate with 

Preterm infants 

born < 32 weeks of gestation 

BPD 

Activated inflammatory response, and 
activated chemotaxis  

Mild BPD 

Dectivated synthesis of ROS 

Moderate/severe BPD 

ROS synthesis and inflammation 

No BPD 

ROS synthesis, but no inflammation 
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the interaction of O2 and MV and are regulated by IL-1 indicating an activation of these 

cytokines, while IL-10 is deactivated (Table 4-8). These findings are also supported by 

findings of Köksal et al. (2012), who report an increase in IL-1β and an decrease in IL-10 

in the tracheal secret and cord blood of preterm infants developing BPD. It also shows that 

the gene expression of some transcripts leads to a prolonged treatment with O2 and MV 

due to the inflammatory response they trigger.  

4.4.2 Limitations of the study 

It is important to notice that despite applying appropriate statistical methods, the sample 

size of this analysis remains small. It is thus difficult to detect significant differences 

between the BPD groups and generate hypotheses based on these findings. Especially 

preterm infants developing moderate or severe BPD are sparse. Owing to this our finding 

can and should not be generalized to deduce new principles valid beyond the scope of this 

study. While they serve as a profound basis to initiate further research and hint towards 

possible systematic in the development of BDP in preterm infants one needs to be aware 

of this limitation when evaluating the results. 

In the regression model based analysis a rather simplistic approach was used to connect 

clinical data from time of birth and later stages in the life of preterm infants. This analysis is 

based on the assumption that a linear relationship between clinical data and gene 

expression exists as well as on the assumption that residuals are normally distributed with 

and expected mean of zero. This simplistic approach was necessary because we wanted 

to separate effects associated with the continuous factors GA, MV, and O2. The same 

holds true for LIMMA models which are also able to consider quantitative data. LIMMA 

would be an interesting alternative to the here presented approach, as it saves degrees of 

freedoms and thus increases the probability to detect associated transcripts. However, the 

selection of transcripts associated with certain factors and not with other factors remains 

difficult. 

Another alternative multivariate approach would have been the partial least squares based 

prediction analysis. It uses gene expression data to predict quantitative clinical 

parameters. But to accomplish this, first a factor analysis to reduce the multivariate 

problem to a univariate problem has to be conducted. Then this factor is predicted by gene 

expression. Factor analysis bears the advantage of eliminating multicollinearity between 

the factors, which can bias the estimation of regression coefficients. But on the other hand 



Transcriptional profiling of preterm infants with Bronchopulmonary Dysplasia (BPD) and integration of clinical data 

 

107 

 

factor analysis makes it impossible to separate the influence of GA from the other factors. 

Due to these circumstances together with the very low sample size it is not possible to 

create a complete picture. This is a first step to understand the need for MV and O2 

determined at birth, but certainly needs further investigations to create more suitable 

models.  

4.5 Conclusion 

This study demonstrates that the development of mild BPD follows different routes than 

the development of moderate/severe BPD in preterm infants. Transcriptome analysis 

indicates a high similarity between the preterm infants with no BPD and the preterm infants 

with moderate/severe BPD investigated in the study. Preterm infants with mild BPD seem 

to follow a different route in the development of BPD. The following possible drivers for 

BPD have been discussed: 1) genetic predisposition, 2) maturity or other clinical factors of 

the preterm infants, 3) or inflammation prior to birth.  

The effect of genetic factors and the role they play in the development of mild BPD was 

not analyzed in this study, even though the performed hierarchical clustering hints toward 

a possible genetic component influencing the transcriptome. For future genetic studies, it 

may be interesting to separate preterm infants with different grades of BPD and set a 

focus on the development of mild BPD as it has not been covert in recent literature.  

The clinical data of our patient cohort revealed that GA, duration of CPAP, and congenital 

sepsis follow the same pattern as obtained by the supervised microarray analysis 

approach. Maturity in our study is higher in preterm infants with no BPD and in preterm 

infants with moderate/severe BPD, while CPAP treatment is shorter. From the supervised 

analysis approach we learn that in these infants transcripts are differentially expressed 

than in mild BPD infants that are not only associated with oxidation reduction, but also lead 

to a predicted activation of ROS synthesis. In addition with transcripts leading to an 

increased inflammatory response and chemotaxis of cells in preterm infants with either 

mild or moderate/severe BPD it may be possible to diagnose BPD at the birth of preterm 

infants with the help of specialized microarrays. 

These findings point at a connection between the maturity of the preterm infants, which is 

associated with the ability of ROS synthesis, and an increased inflammatory response in 

the development of different BPD severity grades. In short, preterm infants with 
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moderate/severe BPD show a much stronger inflammatory response than preterm infants 

with mild BPD. The importance of oxidative stress (Auten and Davis, 2009; Perrone et al., 

2012; Saugstad, 2010) and inflammation (Melville and Moss, 2013; Speer, 2006, 2003) for 

the development of BPD has been discussed in various publications, but up to now no 

publication has successfully separated the different severity grades of BPD based on 

microarray data. 

When only the duration of MV or oxygen support is used to select transcripts, it can be 

seen that a correlation between a gene expression of transcripts that predict an increased 

development of T cells and the duration of MV and oxygen support exists. 

In accordance with Jobe (2006) the BPD severity grades used in this thesis were assigned 

to the preterm infants based on the required time of O2 and MV treatment. Gene 

expression patterns and pathways leading to a prolonged need for MV and O2 under 

consideration of the GA were investigated. This analysis allowed us to filter genes that are 

associated with MV and/or O2, or the interaction of both factors, but showed at most an 

additional association with GA. It became apparent that prolonged ventilation is correlated 

with gene expression at birth leading to an increase in T-cell development. In the studied 

cohort it can be seen that the cornerstone for MV and prolonged O2 is laid at birth, possibly 

through inflammatory processes and oxidative stress starting at the time of birth. 

Not only the downstream effects hint at inflammation at birth, but also the analysis of 

upstream regulators shows that especially cytokines are involved in the gene expression 

observed mediating the inflammatory response. A total of 46 cytokines were identified to 

be overrepresented as regulators of the transcripts identified by the different microarray 

analysis approaches.  

The findings of the microarray analysis have yet to be validated by a second much larger 

cohort. It also would be interesting to see whether at later stages cluster formation as seen 

at birth persists. With the development of BPD the patterns of infants with mild BPD and 

infants with higher grades of BPD must become more similar and distinguish more clearly 

from preterm infants without BPD. 
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5 Summary 

Bronchopulmonary dysplasia is one of the most common chronic lung diseases and 

contributes greatly to morbidity of preterm infants. While moderate and severe forms of 

BPD are the most common forms under investigation little is known about the development 

of mild BPD. The aim of this work is to identify mechanisms and biomarkers, which make it 

possible to predict at birth whether a preterm infant is prone to develop no BPD, mild BPD, 

or a stronger form of BPD. 

Transcriptome and in particular microarray analysis plays an important role in the 

generation of hypotheses regarding underlying mechanisms and diagnostic tools. 

Microarrays are able to examine a multitude of transcripts simultaneously. In order to 

obtain reliable results, however, a number of data preparation steps are necessary. The 

statistical analysis has some peculiarities due to the high number of parameters collected 

and a comparatively small number of patients. In the present study, a standardized 

workflow for the statistical analysis of transcriptome data is developed and used to predict 

BPD in very preterm infants. 

First, background correction and normalization steps are performed to prepare the data. 

This on the one hand, separates signal from noise in the gene expression, and on the 

other hand makes the microarrays comparable. Then informative transcripts are iteratively 

selected. Transcripts are reviewed for missing values, low expression levels, and extreme 

values and if necessary eliminated. Then remaining missing values are estimated using an 

imputation algorithm. 

Data preparation was particularly facilitated through the implementation and automation of 

workflow using the programming language R. In comparison to a preparation that is based 

on different independent programs and tools a considerable advantage in terms of data 

amount that can be processed, processing time, and actuality of the algorithms can be 

achieved. Existing programs have been replaced by Bioconductor packages where 

possible to avoid data transmission errors. 

The instruments for data preparation can be used for the analysis of either predefined 

groups (supervised) as well as without predetermined groups (un-/ semi-supervised). This 

way it is possible to take the nature and prerequisites of the different statistical analyses 

into account. The group-based (supervised) data analysis is used to work out differences 

between the examined groups. For the presented study two methods (Limma, PAM) were 
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used to identify differentially regulated genes. While Limma determined individual 

transcripts that are differentially regulated in isolation from other transcripts, the focus of 

PAM is on the interplay of the transcripts to explain the different expressions of the 

phenotypes. 

The aim of the transcriptome analysis without prior definition of groups (unsupervised) is to 

identify groups solely based on gene expression. Since in this case a very large number of 

transcripts will be taken into account, this approach is only suitable to draw conclusions 

about underlying diseases affecting the whole gene expression. Therefore in a semi-

supervised approach the data preparation is performed without groups. However, only a 

selection of transcripts is used. The selection is based on clinical data associated with the 

phenotype. With this selection clustering techniques are then used to identify groups.  

In the present case different maturities of preterm infants at time of birth caused particular 

difficulties while forecasting BPD groups. Frequently the gene expression patterns differ 

with maturity. To address this issue in particular the gestational age of preterm infants is 

used as a secondary variable in the selection of transcripts. In addition it is beneficiary to 

have only transcripts selected that show an effect in mechanical ventilation and oxygen 

requirement but not in GA or in addition to the effect of GA. As this cannot be achieved 

with the usual methods of gene selection (Limma, PLS), a multiple linear regression is 

performed here, which allows filtering only transcripts with additional effects. 

The gene expression analysis of the present study comprising neonates born before 32 

weeks of gestation shows that consideration of processes at birth significantly augments 

the understanding of BPD in general and its classification in different severity grades. With 

the help of the presented gene expression analysis tools for data preparation, data 

analysis and functional gene expression analysis, it is possible to predict BPD severity 

grades at birth and identify cytokines as biomarkers. 

Our results showed that the combination of oxidative stress and inflammation at birth 

contributes to the severity of BPD. In light of the duration of mechanical ventilation and the 

duration of oxygen supply considered, it becomes evident that processes responsible for 

the T-cell development are associated with the development of BPD. Furthermore, the 

importance of tumor necrosis factor  (TNF), interleukin 6 (IL6), interleukin 1 and 

interleukin 10 in the regulation of the differential gene expression in BPD becomes 

apparent.   
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6 Zusammenfassung 

Bronchopulmonare Dysplasie ist eine der am meisten verbreiteten chronischen 

Lungenerkrankungen und trägt stark zur Morbidität von Frühgeborenen bei. Während 

moderate und starke Formen von BPD bevorzugt untersucht werden, ist über die milde 

Form von BPD nur wenig bekannt. Ziel dieser Arbeit ist es, Hinweise auf Mechanismen 

und Biomarker zu identifizieren, die es möglich machen bei Geburt die Entwicklung keiner 

BPD, einer milden BPD, oder einer stärker ausgeprägten Form von BPD vorherzusagen.  

Transkriptomanalysen und insbesondere Microarray-Analysen spielen eine wichtige Rolle 

in der Generation von Hypothesen in Bezug auf zugrundeliegende Mechanismen und 

diagnostischen Hilfsmitteln. Microarrays sind in der Lage eine Vielzahl von Transkripten 

gleichzeitig zu untersuchen. Um jedoch belastbare Ergebnisse zu bekommen, ist eine 

Reihe von Datenvorbereitungsschritten notwendig. Auch die statistische Analyse birgt 

einige Besonderheiten aufgrund der hohen Anzahl an erhobenen Parametern bei 

vergleichsweise geringer Anzahl an Patienten. In der vorliegenden Arbeit wurde ein 

standardisierter Ablaufplan zur statistischen Analyse von Transkriptom-Daten entwickelt 

und zu BPD-Prognose von Frühgeborenen verwendet. 

Zunächst werden die mithilfe von Microarrays gewonnen Transkriptomdaten mit den 

üblichen Schritten der Hintergrundkorrektur und Normalisierung aufbereitet. Dies dient 

zum einen dazu, die Genexpression, die durch die zu untersuchende Krankheit 

hervorgerufen wurde, von dem Hintergrundsignal zu trennen und zum anderen dazu, die 

Microarrays vergleichbar zu machen. Anschließend werden informative Transkripte iterativ 

ausgewählt. In diesem Abschnitt der Datenaufbereitung werden Transkripte auf fehlende 

Werte, niedrige Expression und Extremwerte überprüft und gegebenenfalls eliminiert. 

Verbleibende fehlende Werte werden mithilfe eines Imputationsverfahrens geschätzt. 

Eine besondere Erleichterung der Datenvorbereitung konnte durch die Implementierung 

und Automatisierung des Arbeitsablaufes in der Programmiersprache R erreicht erzielt 

werden. Im Vergleich zu einer Vorbereitung, die auf verschiedenen unabhängigen 

Programmen basiert, kann ein erheblicher Vorteil in Bezug auf Datenumfang, 

Bearbeitungszeit und Aktualität der Algorithmen erreicht werden. Soweit möglich wurden 

bestehende Programme durch Bioconductor-Pakete ersetzt, die es ermöglichen 

Übertragungsfehler zu vermeiden. 



Zusammenfassung 

 

112 

 

Diese Instrumente der Datenaufbereitung können sowohl bei der Analyse von 

vorgegebenen Gruppen (supervised) und ohne vorgegebene Gruppen (un-

/semisupervised) eingesetzt werden. Auf diese Weise wird bereits bei der Vorbereitung 

der Daten berücksichtigt, welche Art der statistischen Analyse durchgeführt werden wird. 

Die gruppenbasierte (supervised) Datenauswertung dient dazu, Unterschiede zwischen 

den zu untersuchenden Gruppen herauszuarbeiten. Für die vorgestellte Studie wurden 

zwei Methoden (Limma, PAM) verwendet, um differentiell regulierte Gene zu identifizieren. 

Während Limma einzelne Transkripte ermittelt, die losgelöst von anderen Transkripten 

differentiell reguliert sind, liegt der Fokus von PAM auf dem Zusammenspiel der 

Transkripte, welches die unterschiedliche Ausprägung des Phänotyps erklären.  

Ziel der Transkriptom-Analyse ohne vorherige Festlegung von Gruppen (unsupervised) ist 

es, rein aufgrund der Genexpression Gruppen zu identifizieren. Da in diesem Fall eine 

sehr große Anzahl von Transkripten berücksichtig wird, ist dieser Ansatz nur bedingt 

geeignet, um Rückschlüsse auf zugrundeliegende Krankheiten zu ziehen. Deshalb wird in 

einem semi-supervised Ansatz zwar die Datenvorbereitung ohne Gruppen durchgeführt, 

jedoch wird eine Auswahl an Transkripten anhand klinischer Daten getroffen, die im 

Zusammenhang mit dem zu untersuchenden Phänotyp stehen. Aufgrund dieser Auswahl 

werden dann mittels Clustering Gruppen identifiziert. Eine besondere Schwierigkeit in der 

Prognose von BPD-Gruppen stellt im vorliegen Fall die Berücksichtigung der Reife der 

Frühgeborenen dar. Häufig ist die Genexpression zum Zeitpunkt der Geburt beeinflusst 

durch die Reife der Frühgeborenen; deshalb sollten nur Transkripte ausgewählt werden, 

die in Bezug auf mechanische Ventilation und Beatmung einen zusätzlichen Effekt zeigen. 

Mit den bisher üblichen Methoden der Genselektion (Limma, PLS) kann dies jedoch nicht 

berücksichtigt werden, weshalb hier eine multiple lineare Regression durchgeführt wird, 

die es erlaubt nur Transkripte mit zusätzlichen Effekten zu filtern. 

Die Studie der Genexpression von Neugeborenen, geboren vor der 32. 

Schwangerschaftswoche, zeigt, dass eine Betrachtung der Prozesse zum Zeitpunkt der 

Geburt deutlich zum Verständnis von BPD im Allgemeinen und der Ausprägung 

verschiedener Schweregrade im Speziellen beitragen kann. So ist es möglich, anhand der 

vorgestellten Instrumente und mit Instrumenten der funktionellen Expressionsanalyse, 

biologische Prozesse und Zytokine identifizieren, die dazu dienen den Schweregrad einer 

BPD schon bei Geburt abzuschätzen.  
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In der vorliegenden Studie ist zu sehen, dass bereits bei Geburt, die Kombination aus 

oxidativem Stress und Inflammation zur Ausprägung des BPD-Schweregrades beitragen. 

In der Betrachtung der Dauer der mechanischen Ventilation im Zusammenspiel mit der 

Dauer der Sauerstoffgabe wird deutlich, dass Prozesse der T-Zell-Entwicklung an der 

Entwicklung von BPD beteiligt sind. Die Betrachtung der Zytokine, die die beobachten 

Gen-Expression regulieren, wird die Bedeutung des Tumornekrosefaktors  (TNF-), 

Interleukin 6 (IL-6), Interleukin 1  und Interleukin 10 für das Auftreten von BPD deutlich. 

Die Proteinanalyse bestätigt die Relevanz von TNF- und IL-6 zur Differenzierung der 

BPD-Grade bei Geburt.  
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8 Appendix 

8.1 Supplemental material and tables 

Table 8-1 Differentially regulated transcripts (39) in mild BPD compared to no BPD and 

moderate/severe BPD 

False discovery rate (FDR) and fold change (FC) were calculated with LIMMA. ACCN: Genbank 
Accession number, Gene ID from Entrez Gene ID database, and Symbols are Hugo gene symbols 
obtained with SOURCE.  
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NM_001311 
Cysteine-rich protein 1 
(intestinal) 

CRIP1 1396 0.000 0.764 0.000 -8.53 1.44 12.30 

NM_005129 
   

0.001 0.992 0.007 -5.64 1.03 5.81 

NM_001607 Acetyl-CoA acyltransferase 1 ACAA1 30 0.004 0.724 0.008 -3.12 1.51 4.72 

NM_004545 
NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 
1, 7kDa 

NDUFB1 4707 0.025 0.732 0.031 -3.06 1.62 4.95 

NM_005608 
Protein tyrosine phosphatase, 
receptor type, C-associated 
protein 

PTPRCAP 5790 0.001 0.925 0.017 -2.58 1.18 3.05 

NM_018335 Zinc finger protein 839 ZNF839 55778 0.001 0.978 0.007 -2.54 1.06 2.71 

AB011126 Formin binding protein 1 FNBP1 23048 0.008 0.916 0.033 -2.33 1.20 2.79 

NM_004891 
Mitochondrial ribosomal protein 
L33 

MRPL33 9553 0.010 0.780 0.022 -2.33 1.36 3.17 

NM_004427 
Polyhomeotic homolog 2 
(Drosophila) 

PHC2 1912 0.012 0.587 0.012 -2.29 1.60 3.67 

BC010420 
Arginyl-tRNA synthetase 2, 
mitochondrial 

RARS2 57038 0.001 0.860 0.008 -2.26 1.20 2.70 

NM_032031 
   

0.022 0.855 0.041 -2.20 1.29 2.83 

NM_015414 Ribosomal protein L36 RPL36 25873 0.034 0.694 0.033 -2.04 1.43 2.91 

M77140 Galanin prepropeptide GAL 51083 0.000 0.975 0.000 15.49 1.14 -13.59 

NM_020689 
Solute carrier family 24 
(sodium/potassium/calcium 
exchanger), member 3 

SLC24A3 57419 0.000 0.997 0.006 4.10 -1.01 -4.16 

NM_001257 Cadherin 13, H-cadherin (heart) CDH13 1012 0.000 0.985 0.008 4.06 1.05 -3.87 

NM_001585 
   

0.001 0.993 0.034 3.70 1.03 -3.58 

AL049332 
   

0.000 0.910 0.001 2.92 -1.15 -3.34 

NM_002387 Mutated in colorectal cancers MCC 4163 0.003 0.993 0.045 2.65 1.03 -2.58 

AB028949 
   

0.000 0.981 0.003 2.63 -1.04 -2.75 

NM_003672 
CDC14 cell division cycle 14 
homolog A (S. cerevisiae) 

CDC14A 8556 0.000 0.862 0.003 2.52 -1.18 -2.97 

NM_031885 Bardet-Biedl syndrome 2 BBS2 583 0.001 0.986 0.026 2.48 -1.04 -2.58 

NM_002570 
Proprotein convertase 
subtilisin/kexin type 6 

PCSK6 5046 0.010 0.913 0.040 2.46 -1.25 -3.06 

NM_014240 LIM domains containing 1 LIMD1 8994 0.001 1.000 0.024 2.45 1.00 -2.45 
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ACCN Name Symbol Gene ID 
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AL122083 
   

0.006 0.982 0.048 2.42 -1.06 -2.56 

NM_016735 
   

0.003 0.972 0.036 2.38 -1.10 -2.62 

NM_005267 
Gap junction protein, alpha 8, 
50kDa 

GJA8 2703 0.002 0.981 0.038 2.33 1.05 -2.21 

NM_003146 
Structure specific recognition 
protein 1 

SSRP1 6749 0.001 0.985 0.018 2.31 -1.03 -2.38 

NM_018050 MANSC domain containing 1 MANSC1 54682 0.008 0.853 0.024 2.25 -1.26 -2.83 

NM_017803 
Dihydrouridine synthase 2-like, 
SMM1 homolog (S. cerevisiae) 

DUS2L 54920 0.008 0.951 0.038 2.22 -1.14 -2.53 

AL096732 
Dynein, axonemal, heavy chain 
3 

DNAH3 55567 0.006 0.808 0.022 2.14 -1.31 -2.80 

NM_005201 
Chemokine (C-C motif) receptor 
8 

CCR8 1237 0.006 0.971 0.038 2.13 -1.09 -2.32 

AL080111 
NIMA (never in mitosis gene a)-
related kinase 7 

NEK7 140609 0.011 0.836 0.029 2.09 -1.26 -2.63 

AF063936 
Immunoglobulin superfamily, 
DCC subclass, member 3 

IGDCC3 9543 0.003 0.961 0.029 2.07 -1.10 -2.29 

NM_133631 
Roundabout, axon guidance 
receptor, homolog 1 
(Drosophila) 

ROBO1 6091 0.006 0.971 0.038 2.06 -1.09 -2.25 

NM_002939 
Ribonuclease/angiogenin 
inhibitor 1 

RNH1 6050 0.021 0.528 0.013 2.05 -1.63 -3.33 

NM_001466 Frizzled homolog 2 (Drosophila) FZD2 2535 0.010 0.208 0.003 2.04 -1.86 -3.79 

NM_013305 
ST8 alpha-N-acetyl-neuraminide 
alpha-2,8-sialyltransferase 5 

ST8SIA5 29906 0.017 0.716 0.026 2.03 -1.39 -2.83 

NM_001065 
Tumor necrosis factor receptor 
superfamily, member 1A 

TNFRSF1
A 

7132 0.010 0.944 0.040 2.02 -1.14 -2.30 

NM_007147 Zinc finger protein 175 ZNF175 7728 0.011 0.266 0.003 2.01 -1.80 -3.61 
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Table 8-2 Differentially regulated transcripts (27) in mild BPD compared to no BPD and 

moderate/severe BPD 

False discovery rate (FDR) and fold change (FC) were calculated with LIMMA. ACCN: Genbank 
Accession number, Gene ID from Entrez Gene ID database, and Symbols are Hugo gene symbols 
obtained with SOURCE.  

ACCN Name Symbol Gene ID F
D

R
 m

il
d

 –
 

n
o

 B
P

D
 

F
D

R
 m

o
d

./
 

s
e
v
e
re

 –
 n

o
 

B
P

D
 

F
D

R
 m

o
d

./
 

s
e
v
e
re

 –
 

m
il
d

 B
P

D
 

F
C

 m
il
d

 –
 

n
o

 B
P

D
 

F
C

 m
o

d
./
 

s
e
v
e
re

 –
 n

o
 

B
P

D
 

F
C

 m
o

d
./
 

s
e
v
e
re

 –
 

m
il
d

 B
P

D
 

NM_020995 Haptoglobin-related protein HPR 3250 0.974 0.001 0.001 -1.03 19.73 20.31 

NM_003618 
Mitogen-activated protein 
kinase 3 MAP4K3 8491 0.220 0.001 0.022 1.68 6.67 3.96 

NM_005091 
Peptidoglycan recognition 
protein 1 PGLYRP1 8993 0.553 0.014 0.005 -1.37 5.76 7.87 

AF453583 Secretogranin III SCG3 29106 0.068 0.000 0.000 1.53 5.44 3.55 

NM_021958 H2.0-like homeobox HLX 3142 0.845 0.005 0.005 -1.10 4.55 5.01 

NM_001785 Cytidine deaminase CDA 978 0.384 0.015 0.004 -1.40 4.45 6.25 

NM_005849 
Immunoglobulin superfamily, 
member 6 IGSF6 10261 0.616 0.045 0.018 -1.31 4.06 5.33 

NM_000348 

Steroid-5-alpha-reductase, 
alpha polypeptide 2 (3-oxo-5 
alpha-steroid delta 4-
dehydrogenase alpha 2) SRD5A2 6716 0.523 0.003 0.017 1.24 3.87 3.11 

NM_014870 
Zinc finger and BTB domain 
containing 40 ZBTB40 9923 0.906 0.003 0.006 1.05 3.59 3.41 

NM_006145 
DnaJ (Hsp40) homolog, 
subfamily B, member 1 DNAJB1 3337 0.527 0.033 0.010 -1.24 3.12 3.86 

NM_016364 Dual specificity phosphatase 13 DUSP13 51207 0.780 0.015 0.013 -1.13 3.04 3.43 

NM_007219 Ring finger protein 24 RNF24 11237 0.843 0.047 0.033 -1.11 3.00 3.31 

NM_014213 Homeobox D9 HOXD9 3235 0.815 0.026 0.040 1.10 2.84 2.58 

NM_001039 
Sodium channel, nonvoltage-
gated 1, gamma SCNN1G 6340 0.323 0.041 0.007 -1.35 2.74 3.70 

NM_022154 
Solute carrier family 39 (zinc 
transporter), member 8 SLC39A8 64116 0.529 0.042 0.013 -1.25 2.69 3.36 

NM_024327 Zinc finger protein 576 ZNF576 79177 0.785 0.003 0.003 -1.09 2.68 2.91 

NM_006399 
Basic leucine zipper 
transcription factor, ATF-like BATF 10538 0.809 0.043 0.029 -1.09 2.45 2.68 

NM_007222 Zinc fingers and homeoboxes 1 ZHX1 11244 0.844 0.032 0.046 1.07 2.33 2.18 

NM_000892 
Kallikrein B, plasma (Fletcher 
factor) 1 KLKB1 3818 0.690 0.005 0.003 -1.09 2.03 2.20 

NM_017946 
FK506 binding protein 14, 22 
kDa FKBP14 55033 0.698 0.006 0.004 1.13 -3.04 -3.43 

BC009709 
Guanine nucleotide binding 
protein (G protein), gamma 11 GNG11 2791 0.237 0.001 0.029 -1.35 -2.98 -2.21 

NM_018638 Ethanolamine kinase 1 ETNK1 55500 0.994 0.037 0.036 1.00 -2.73 -2.74 

NM_032010 
   

0.933 0.036 0.040 -1.04 -2.60 -2.50 

NM_000053 
ATPase, Cu++ transporting, 
beta polypeptide ATP7B 540 0.731 0.014 0.007 1.09 -2.37 -2.58 

NM_002878 RAD51-like 3 (S. cerevisiae) RAD51L3 5892 0.849 0.043 0.029 1.07 -2.28 -2.43 

NM_003941 Wiskott-Aldrich syndrome-like WASL 8976 0.989 0.042 0.040 1.01 -2.26 -2.28 

NM_017588 WD repeat domain 5 WDR5 11091 0.719 0.014 0.031 -1.09 -2.26 -2.07 
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Table 8-3 Differentially regulated transcripts (4) in mild BPD and moderate/severe BPD 

compared to no BPD 

False discovery rate (FDR) and fold change (FC) were calculated with LIMMA. ACCN: Genbank 
Accession number, Gene ID from Entrez Gene ID database, and Symbols are Hugo gene symbols 
obtained with SOURCE.  
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NM_030807 
Solute carrier family 2 
(facilitated glucose 
transporter), member 11 

SLC2A11 66035 0.000 0.014 0.888 6.93 6.15 -1.13 

NM_001103 Actinin, alpha 2 ACTN2 88 0.036 0.033 0.455 2.16 3.28 1.52 

NM_018104 
   

0.005 0.029 0.840 2.11 2.29 1.09 

NM_003832 
   

0.000 0.013 0.870 -16.74 -13.81 1.21 

 

 

Table 8-4 Transcripts (71) able to discriminate between BPD groups, PAM threshold = 

2.2 

False discovery rate (FDR) and fold change (FC) were calculated with LIMMA. ACCN: Genbank 
Accession number, Gene ID from Entrez Gene ID database, and Symbols are Hugo gene symbols 
obtained with SOURCE.  
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AA318707 
S100 calcium binding 
protein A9 

S100A9 6280 0.944 0.351 0.192 -1.2 21.3 25.3 

AB028949 
   

0.000 0.981 0.003 2.6 -1.0 -2.7 

AF095735 
Sarcosine 
dehydrogenase 

SARDH 1757 0.034 0.943 0.093 -2.8 1.3 3.6 

AJ223280 
Linker for activation of T 
cells 

LAT 27040 0.010 0.975 0.135 -3.2 -1.1 2.8 

AK001143 
   

0.011 0.973 0.162 3.6 1.2 -3.1 

AK001814 
Hypothetical 
LOC100505876 

LOC10050587
6 

100505876 0.100 0.115 0.520 2.2 3.6 1.6 

AK002039 
Murine retrovirus 
integration site 1 
homolog 

MRVI1 10335 0.001 0.584 0.154 2.1 1.3 -1.6 

AK024496 
Kelch domain containing 
4 

KLHDC4 54758 0.011 0.855 0.256 -2.8 -1.4 2.0 

AL049274 
Mannosidase, alpha, 
class 1C, member 1 

MAN1C1 57134 0.003 0.981 0.057 -2.8 -1.1 2.6 

AL049332 BTG family, member 3 BTG3 10950 0.000 0.910 0.001 2.9 -1.1 -3.3 

AL110274 
aldehyde 
dehydrogenase 1 family, 
member A2 

ALDH1A2 8854 0.006 0.941 0.126 2.7 1.2 -2.3 

AL162053 F-box protein 3 FBXO3 26273 0.018 0.124 0.883 -2.1 -2.2 -1.1 

AL539691 
   

0.000 0.548 0.101 -4.8 -1.8 2.6 
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BM741997 

Solute carrier family 25 
(mitochondrial carrier; 
phosphate carrier), 
member 3 

SLC25A3 5250 0.001 0.191 0.413 -4.8 -2.8 1.7 

M77140 Galanin prepropeptide GAL 51083 0.000 0.975 0.000 15.5 1.1 -13.6 

NM_000275 
Oculocutaneous 
albinism II 

OCA2 4948 0.006 0.999 0.067 2.5 1.0 -2.4 

NM_000732 
CD3d molecule, delta 
(CD3-TCR complex) 

CD3D 915 0.039 0.971 0.278 -2.9 -1.2 2.4 

NM_000985 Ribosomal protein L17 RPL17 6139 0.012 0.962 0.053 -3.9 1.2 4.8 

NM_001257 
Cadherin 13, H-cadherin 
(heart) 

CDH13 1012 0.000 0.985 0.008 4.1 1.0 -3.9 

NM_001311 
Cysteine-rich protein 1 
(intestinal) 

CRIP1 1396 0.000 0.764 0.000 -8.5 1.4 12.3 

NM_001585 
   

0.001 0.993 0.034 3.7 1.0 -3.6 

NM_001607 
Acetyl-CoA 
acyltransferase 1 

ACAA1 30 0.004 0.724 0.008 -3.1 1.5 4.7 

NM_001730 
Kruppel-like factor 5 
(intestinal) 

KLF5 688 0.023 0.389 0.008 -2.0 1.7 3.3 

NM_001752 Catalase CAT 847 0.007 0.389 0.532 6.7 3.4 -2.0 

NM_001803 CD52 molecule CD52 1043 0.027 0.992 0.147 -2.7 1.0 2.9 

NM_002108 Histidine ammonia-lyase HAL 3034 0.020 0.971 0.207 2.6 1.2 -2.3 

NM_002416 
Chemokine (C-X-C 
motif) ligand 9 

CXCL9 4283 0.006 0.983 0.086 2.9 1.1 -2.7 

NM_002570 
Proprotein convertase 
subtilisin/kexin type 6 

PCSK6 5046 0.010 0.913 0.040 2.5 -1.2 -3.1 

NM_002777 Proteinase 3 PRTN3 5657 0.321 0.015 0.068 1.4 3.9 2.8 

NM_003578 
Sterol O-acyltransferase 
2 

SOAT2 8435 0.015 0.780 0.354 2.7 1.5 -1.8 

NM_003726 
Src kinase associated 
phosphoprotein 1 

SKAP1 8631 0.032 0.993 0.183 -2.7 -1.0 2.6 

NM_003832 
   

0.000 0.013 0.870 -16.7 -13.8 1.2 

NM_003841 

Tumor necrosis factor 
receptor superfamily, 
member 10c, decoy 
without an intracellular 
domain 

TNFRSF10C 8794 0.006 0.640 0.342 2.8 1.6 -1.7 

NM_004049 BCL2-related protein A1 BCL2A1 597 0.363 0.312 0.492 2.8 8.7 3.1 

NM_004221 Interleukin 32 IL32 9235 0.073 0.955 0.142 -2.5 1.2 3.1 

NM_004305 Bridging integrator 1 BIN1 274 0.039 0.994 0.202 -2.3 -1.0 2.2 

NM_004418 
Dual specificity 
phosphatase 2 

DUSP2 1844 0.025 0.735 0.465 -6.8 -2.5 2.7 

NM_004427 
Polyhomeotic homolog 2 
(Drosophila) 

PHC2 1912 0.012 0.587 0.012 -2.3 1.6 3.7 

NM_004545 
NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 1, 7kDa 

NDUFB1 4707 0.025 0.732 0.031 -3.1 1.6 5.0 

NM_005091 
Peptidoglycan 
recognition protein 1 

PGLYRP1 8993 0.553 0.014 0.005 -1.4 5.8 7.9 

NM_005129 
   

0.001 0.992 0.007 -5.6 1.0 5.8 

NM_005389 
Protein-L-isoaspartate 
(D-aspartate) O-
methyltransferase 

PCMT1 5110 0.022 0.887 0.056 -2.2 1.3 2.7 

NM_005608 
Protein tyrosine 
phosphatase, receptor 

PTPRCAP 5790 0.001 0.925 0.017 -2.6 1.2 3.1 
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type, C-associated 
protein 

NM_005849 
Immunoglobulin 
superfamily, member 6 

IGSF6 10261 0.616 0.045 0.018 -1.3 4.1 5.3 

NM_006308 
Heat shock 27kDa 
protein 3 

HSPB3 8988 0.001 0.862 0.056 2.6 1.2 -2.2 

NM_006746 
Sex comb on midleg-like 
1 (Drosophila) 

SCML1 6322 0.006 0.256 0.822 -2.4 -2.1 1.1 

NM_007147 Zinc finger protein 175 ZNF175 7728 0.011 0.266 0.003 2.0 -1.8 -3.6 

NM_014299 
Bromodomain 
containing 4 

BRD4 23476 0.060 0.978 0.176 2.5 -1.1 -2.9 

NM_014381 MutL homolog 3 (E. coli) MLH3 27030 0.025 0.960 0.086 -2.6 1.2 3.2 

NM_014801 
Pecanex-like 2 
(Drosophila) 

PCNXL2 80003 0.003 0.961 0.076 -2.9 -1.2 2.5 

NM_015987 Heme binding protein 1 HEBP1 50865 0.039 0.554 0.766 12.9 6.8 -1.9 

NM_016735 
   

0.003 0.972 0.036 2.4 -1.1 -2.6 

NM_017947 
Molybdenum cofactor 
sulfurase 

MOCOS 55034 0.865 0.059 0.076 1.1 5.3 4.6 

NM_018050 
MANSC domain 
containing 1 

MANSC1 54682 0.008 0.853 0.024 2.2 -1.3 -2.8 

NM_018104 
   

0.005 0.029 0.840 2.1 2.3 1.1 

NM_018356 
Chromosome 5 open 
reading frame 22 

C5orf22 55322 0.053 0.999 0.225 2.5 1.0 -2.5 

NM_018427 
RRN3 RNA polymerase 
I transcription factor 
homolog (S. cerevisiae) 

RRN3 54700 0.001 0.928 0.063 -4.0 -1.2 3.2 

NM_018457 Proline rich 13 PRR13 54458 0.012 0.971 0.056 -3.4 1.2 3.9 

NM_020689 

Solute carrier family 24 
(sodium/potassium/calci
um exchanger), member 
3 

SLC24A3 57419 0.000 0.997 0.006 4.1 -1.0 -4.2 

NM_020995 
Haptoglobin-related 
protein 

HPR 3250 0.974 0.001 0.001 -1.0 19.7 20.3 

NM_021958 H2.0-like homeobox HLX 3142 0.845 0.005 0.005 -1.1 4.5 5.0 

NM_022154 
Solute carrier family 39 
(zinc transporter), 
member 8 

SLC39A8 64116 0.529 0.042 0.013 -1.2 2.7 3.4 

NM_025084 
   

0.013 0.997 0.106 -3.0 1.0 3.1 

NM_030751 
Zinc finger E-box 
binding homeobox 1 

ZEB1 6935 0.064 0.043 0.404 -2.3 -4.2 -1.8 

NM_030807 
Solute carrier family 2 
(facilitated glucose 
transporter), member 11 

SLC2A11 66035 0.000 0.014 0.888 6.9 6.2 -1.1 

NM_031296 
RAB33B, member RAS 
oncogene family 

RAB33B 83452 0.007 0.925 0.172 2.3 1.2 -1.9 

NM_031885 Bardet-Biedl syndrome 2 BBS2 583 0.001 0.986 0.026 2.5 -1.0 -2.6 

NM_032031 
   

0.022 0.855 0.041 -2.2 1.3 2.8 

NM_032621 
Brain expressed X-
linked 2 

BEX2 84707 0.004 0.997 0.057 -2.1 1.0 2.2 

NM_052972 
Leucine-rich alpha-2-
glycoprotein 1 

LRG1 116844 0.521 0.037 0.109 1.4 4.2 3.0 

X00437 
Interleukin 23, alpha 
subunit p19 

IL23A 51561 0.034 0.992 0.195 -2.9 -1.1 2.8 
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Table 8-5 DAVID functional annotation clustering for 58 transcripts able to differentiate 

between BPD groups and are differentially regulated between at least two 

BPD groups 

False discovery rate (FDR) and fold change (FC) were calculated with LIMMA. ACCN: Genbank 
Accession number, Gene ID from Entrez Gene ID database, and Symbols are Hugo gene symbols 
obtained with SOURCE. 
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regulation of leukocyte activation (ES: 1.65) 

M77140 Galanin prepropeptide GAL 51083 0.000 0.975 0.000 15.5 1.1 -13.6 

NM_021958 H2.0-like homeobox HLX 3142 0.845 0.005 0.005 -1.1 4.5 5.0 

NM_030751 
Zinc finger E-box binding 
homeobox 1 

ZEB1 6935 0.064 0.043 0.404 -2.3 -4.2 -1.8 

AJ223280 
Linker for activation of T 
cells 

LAT 27040 0.010 0.975 0.135 -3.2 -1.1 2.8 

regulation of cell proliferation/ embryonic organ development (ES: 1.19) 

M77140 Galanin prepropeptide GAL 51083 0.000 0.975 0.000 15.5 1.1 -13.6 

NM_001257 
Cadherin 13, H-cadherin 
(heart) 

CDH13 1012 0.000 0.985 0.008 4.1 1.0 -3.9 

AL049332 BTG family, member 3 BTG3 10950 0.000 0.910 0.001 2.9 -1.1 -3.3 

AL110274 
aldehyde dehydrogenase 1 
family, member A2 

ALDH1A2 8854 0.006 0.941 0.126 2.7 1.2 -2.3 

NM_002777 Proteinase 3 PRTN3 5657 0.321 0.015 0.068 1.4 3.9 2.8 

NM_021958 H2.0-like homeobox HLX 3142 0.845 0.005 0.005 -1.1 4.5 5.0 

NM_001730 
Kruppel-like factor 5 
(intestinal) 

KLF5 688 0.023 0.389 0.008 -2.0 1.7 3.3 

NM_030751 
Zinc finger E-box binding 
homeobox 1 

ZEB1 6935 0.064 0.043 0.404 -2.3 -4.2 -1.8 
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Table 8-6 Transcripts (210) obtained from regression model explaining gene expression 

by the need of assisted ventilation, oxygen support, or the interaction of 

ventilation and oxygen support under consideration of maturity. 
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NM_016471 
  

0.176 0.000 0.051 -0.98 -1.00 0.50 -1.31 1.18 1.55 

NM_012417 PITPNC1 26207 0.698 0.000 0.686 1.07 1.00 -0.50 -1.01 1.25 1.26 

NM_007233 
  

0.020 0.000 0.021 1.02 -1.00 0.50 -1.13 1.16 1.31 

NM_003107 SOX4 6659 0.680 0.000 0.143 1.25 -1.00 -2.00 1.47 3.52 2.39 

NM_006963 ZNF22 7570 0.326 0.001 0.870 0.91 -1.00 -2.00 -1.07 1.31 1.41 

NM_001558 IL10RA 3587 0.276 0.001 0.968 1.14 -1.00 -2.00 -1.26 1.67 2.10 

NM_000734 CD247 919 0.469 0.001 0.489 1.08 -1.00 -2.00 1.10 1.71 1.56 

AL137521 TMEM104 54868 0.333 0.001 0.140 -1.00 1.00 -0.50 1.19 -1.14 -1.37 

NM_004585 RARRES3 5920 0.161 0.001 0.286 1.11 -1.00 0.50 -1.09 1.40 1.53 

NM_001383 DPH1 1801 0.033 0.001 0.303 -0.92 1.00 2.00 -1.39 -1.22 1.14 

NM_013416 NCF4 4689 0.065 0.001 0.805 1.23 -1.00 -2.00 -1.32 3.06 4.03 

NM_004305 BIN1 274 0.084 0.001 0.734 1.15 -1.00 -2.00 1.09 1.66 1.52 

NM_017415 KLHL3 26249 0.091 0.001 0.461 1.15 -1.00 0.50 -1.18 1.55 1.82 

AK057700 ATP6V0E2 155066 0.138 0.001 0.717 1.06 -1.00 0.50 1.00 1.71 1.71 

AJ223280 LAT 27040 0.548 0.002 0.641 1.32 1.00 2.00 -1.07 2.37 2.55 

NM_004716 PCSK7 9159 0.378 0.002 0.403 1.09 -1.00 0.50 -1.13 1.33 1.51 

NM_006746 SCML1 6322 0.117 0.002 0.182 1.01 -1.00 0.50 -1.27 1.20 1.52 

NM_004310 RHOH 399 0.388 0.002 0.069 0.96 -1.00 -2.00 1.35 1.39 1.03 

X00437 IL23A 51561 0.269 0.002 0.833 1.22 -1.00 0.50 -1.11 1.88 2.08 

NM_030807 SLC2A11 66035 0.097 0.002 0.093 0.97 1.00 -0.50 1.63 -1.11 -1.81 

NM_014875 KIF14 9928 0.202 0.002 0.360 -1.03 1.00 -0.50 1.19 -1.20 -1.43 

AL162053 FBXO3 26273 0.145 0.002 0.242 -0.98 -1.00 0.50 -1.35 1.37 1.85 

NM_000449 RFX5 5993 0.233 0.002 0.111 -0.94 -1.00 0.50 -1.24 1.14 1.41 

NM_002309 
  

0.765 0.002 0.031 -0.97 -1.00 0.50 -1.27 1.12 1.42 

NM_002827 PTPN1 5770 0.222 0.002 0.450 -1.08 1.00 -0.50 1.05 -1.35 -1.42 

NM_033544 RCCD1 91433 0.998 0.002 0.032 -0.97 -1.00 0.50 -1.84 1.24 2.29 

NM_022761 C11orf1 64776 0.505 0.002 0.001 -0.95 -1.00 0.50 -1.86 -1.03 1.81 

NM_030911 CDADC1 81602 0.978 0.003 0.952 -1.10 1.00 2.00 -1.05 -1.56 -1.49 

NM_031209 QTRT1 81890 0.186 0.003 0.807 1.13 -1.00 -2.00 -1.02 1.63 1.67 

NM_014911 AAK1 22848 0.210 0.003 0.937 -1.03 1.00 2.00 1.03 -1.16 -1.19 

NM_004580 RAB27A 5873 0.303 0.003 0.213 -0.77 -1.00 0.50 -1.64 2.79 4.57 

NM_001894 CSNK1E 1454 0.514 0.003 0.710 1.10 -1.00 -2.00 1.05 1.85 1.76 

NM_004418 DUSP2 1844 0.801 0.003 0.679 1.00 -1.00 0.50 -1.30 1.86 2.43 

NM_000073 CD3G 917 0.081 0.003 0.560 1.04 -1.00 -2.00 1.16 1.41 1.21 
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NM_004753 DHRS3 9249 0.759 0.004 0.604 1.12 -1.00 0.50 -1.09 1.57 1.71 

AA601902 
  

0.453 0.004 0.943 1.15 -1.00 -2.00 1.20 2.38 1.98 

AF244129 LY9 4063 0.383 0.004 0.418 1.12 -1.00 0.50 -1.18 1.42 1.68 

NM_030819 GFOD2 81577 0.257 0.004 0.049 0.95 -1.00 0.50 -1.16 1.14 1.32 

NM_005682 GPR56 9289 0.453 0.004 0.586 0.99 -1.00 -2.00 1.23 1.52 1.24 

NM_000732 CD3D 915 0.521 0.004 0.341 1.25 -1.00 0.50 -1.37 2.32 3.17 

U43368 VEGFB 7423 0.693 0.004 0.794 1.13 -1.00 -2.00 -1.02 1.83 1.87 

NM_003726 SKAP1 8631 0.096 0.004 0.972 1.17 -1.00 -2.00 -1.03 1.64 1.68 

NM_003890 FCGBP 8857 0.455 0.004 0.905 1.08 -1.00 0.50 -1.09 1.54 1.68 

BE378990 OGDH 4967 0.116 0.004 0.372 -0.93 -1.00 0.50 -1.44 1.24 1.78 

NM_003463 PTP4A1 7803 0.490 0.004 0.057 1.05 1.00 -0.50 1.37 1.04 -1.31 

NM_007011 ABHD2 11057 0.182 0.004 0.100 -1.16 -1.00 0.50 -1.31 -1.95 -1.49 

NM_003330 TXNRD1 7296 0.788 0.004 0.075 -1.07 1.00 2.00 -1.20 -1.51 -1.26 

NM_018075 ANO10 55129 0.443 0.004 0.580 -1.08 1.00 2.00 -1.29 -1.53 -1.18 

NM_002833 PTPN9 5780 0.489 0.005 0.956 -1.13 1.00 2.00 1.00 -1.77 -1.77 

NM_018346 RSAD1 55316 0.905 0.005 0.757 1.08 -1.00 -2.00 1.00 1.63 1.62 

NM_021064 HIST1H2AG 8969 0.774 0.005 0.299 -1.01 1.00 -0.50 1.34 -1.16 -1.55 

NM_002539 ODC1 4953 0.772 0.005 0.258 1.04 -1.00 0.50 -1.00 1.35 1.35 

NM_018381 C19orf66 55337 0.815 0.005 0.937 1.12 -1.00 0.50 -1.06 1.63 1.73 

NM_018074 CCDC94 55702 0.404 0.005 0.184 -0.95 -1.00 0.50 -1.26 1.25 1.58 

AB029010 SLC8A2 6543 0.505 0.005 0.651 -1.08 1.00 2.00 1.02 -1.69 -1.73 

NM_030984 TBXAS1 6916 0.180 0.005 0.121 0.96 1.00 -0.50 1.35 -1.30 -1.75 

NM_002106 H2AFZ 3015 0.460 0.006 0.752 1.10 -1.00 0.50 -1.07 1.51 1.62 

AL137416 C15orf55 256646 0.003 0.006 0.766 -0.95 1.00 -0.50 -1.12 1.03 1.16 

NM_006357 UBE2E3 10477 0.442 0.006 0.542 0.89 -1.00 -2.00 1.21 -1.39 -1.68 

NM_007240 DUSP12 11266 0.700 0.006 0.186 0.96 -1.00 0.50 -1.49 1.08 1.61 

NM_019884 GSK3A 2931 0.402 0.006 0.094 0.96 1.00 -0.50 1.44 -1.22 -1.76 

NM_005858 AKAP8 10270 0.556 0.007 0.825 0.95 -1.00 -2.00 1.08 1.36 1.26 

NM_004328 BCS1L 617 0.668 0.007 0.434 1.02 -1.00 -2.00 1.10 1.41 1.28 

AB020671 MPRIP 23164 0.506 0.007 0.259 -0.93 -1.00 0.50 -1.25 1.33 1.67 

NM_021874 
  

0.566 0.007 0.128 1.20 1.00 -0.50 1.27 2.13 1.67 

NM_006453 TBL3 10607 0.763 0.007 0.769 1.07 -1.00 0.50 1.00 1.38 1.38 

AL539691 
  

0.642 0.007 0.716 0.98 -1.00 -2.00 -1.11 1.23 1.37 

NM_001436 FBL 2091 0.143 0.007 0.803 1.05 -1.00 0.50 -1.06 1.36 1.44 

Y12395 IFRD2 7866 0.937 0.007 0.678 0.97 -1.00 0.50 -1.01 1.33 1.34 

CAA94614 
  

0.092 0.008 0.262 -0.91 1.00 -0.50 1.21 -1.02 -1.23 

NM_005923 MAP3K5 4217 0.561 0.008 0.682 -1.03 1.00 -0.50 -1.03 -1.40 -1.36 



Appendix 

 

134 

 

ACCN Symbol Gene ID p
-v

a
lu

e
 f

o
r 

v
e
n

ti
la

ti
o

n
 

p
-v

a
lu

e
 f

o
r 

o
x

y
g

e
n

 

p
-v

a
lu

e
 f

o
r 

in
te

ra
c
ti

o
n

 o
f 

v
e
n

ti
la

ti
o

n
 a

n
d

 

o
x

y
g

e
n

 

F
C

 v
e
n

ti
la

ti
o

n
 

F
C

 o
x

y
g

e
n

 

F
C

 v
e
n

ti
la

ti
o

n
: 

o
x

y
g

e
n

 

F
C

 c
lu

s
te

r 
1
 v

s
. 

2
 

F
C

 c
lu

s
te

r 
1
 v

s
. 

3
 

F
C

 c
lu

s
te

r 
2
 v

s
. 

3
 

NM_002386 MC1R 4157 0.463 0.008 0.297 -1.06 1.00 -0.50 1.11 -1.35 -1.50 

NM_013279 C11orf9 745 0.665 0.008 0.102 -1.04 -1.00 0.50 -1.13 1.09 1.24 

AI984373 
  

0.209 0.008 0.322 -0.92 1.00 -0.50 1.04 -1.05 -1.09 

NM_014289 CAPN6 827 0.828 0.008 0.838 -1.06 1.00 -0.50 1.00 -1.27 -1.27 

NM_018133 MSL2 55167 0.470 0.009 0.137 1.00 1.00 -0.50 1.07 -1.17 -1.25 

NM_016543 SIGLEC7 27036 0.734 0.009 0.863 -1.02 1.00 2.00 -1.03 -1.18 -1.15 

AF038440 PLD2 5338 0.808 0.009 0.145 0.98 1.00 -0.50 1.16 -1.25 -1.45 

AB032967 ZNF473 25888 0.114 0.009 0.533 -0.96 1.00 2.00 -1.00 -1.31 -1.31 

NM_018104 
  

0.341 0.009 0.752 -1.00 1.00 -0.50 1.02 -1.36 -1.39 

AB029012 SMG5 23381 0.366 0.010 0.462 -1.03 1.00 -0.50 1.15 -1.15 -1.32 

NM_005451 PDLIM7 9260 0.832 0.010 0.942 -0.97 1.00 2.00 1.01 -1.40 -1.41 

NM_004907 IER2 9592 0.848 0.010 0.172 -0.96 -1.00 0.50 -1.59 1.58 2.51 

L29376 HCG26 352961 0.036 0.010 0.303 1.02 -1.00 0.50 -1.14 1.13 1.28 

AF327354 WDR20 91833 0.377 0.010 0.067 0.99 1.00 -0.50 1.18 -1.06 -1.25 

AL137489 C9orf123 90871 0.000 0.710 0.151 -0.93 1.00 -0.50 -1.30 1.36 1.78 

NM_013308 GPR171 29909 0.001 0.265 0.623 -0.93 1.00 -0.50 -1.35 1.36 1.83 

NM_019025 
  

0.002 0.614 0.029 1.01 1.00 -0.50 -1.03 3.74 3.85 

NM_004538 NAP1L3 4675 0.003 0.067 0.040 -1.03 1.00 2.00 -1.55 -1.31 1.19 

NM_017980 LIMS2 55679 0.003 0.591 0.033 1.10 1.00 -0.50 1.44 1.19 -1.21 

AB028960 WDTC1 23038 0.004 0.185 0.383 -0.98 -1.00 0.50 -1.09 1.05 1.15 

NM_016940 RWDD2B 10069 0.004 0.356 0.703 -0.95 1.00 2.00 -1.10 1.14 1.25 

NM_006145 DNAJB1 3337 0.004 0.532 0.213 -1.10 -1.00 0.50 -2.01 -1.02 1.96 

AF007155 LPCAT4 254531 0.004 0.039 0.404 -1.10 -1.00 0.50 -1.13 -1.21 -1.06 

BE866015 
  

0.005 0.319 0.613 0.99 -1.00 -2.00 -1.01 1.05 1.06 

NM_003984 SLC13A2 9058 0.006 0.751 0.939 -0.93 1.00 -0.50 -1.13 1.21 1.37 

NM_017586 CACFD1 11094 0.006 0.737 0.967 -0.93 1.00 -0.50 -1.11 1.16 1.29 

U79265 B3GNTL1 146712 0.006 0.277 0.057 1.01 1.00 -0.50 1.09 1.18 1.08 

AK001228 UHRF1BP1 54887 0.006 0.018 0.720 -0.99 1.00 -0.50 -1.08 -1.06 1.02 

NM_002574 PRDX1 5052 0.008 0.824 0.880 -0.81 1.00 -0.50 -1.10 3.61 3.96 

AL050381 DNAJB12 54788 0.010 0.251 0.543 -0.93 1.00 -0.50 -1.03 1.23 1.26 

NM_018089 ANKZF1 55139 0.010 0.401 0.179 -0.95 1.00 2.00 -1.20 1.05 1.27 

NM_016211 SEC31A 22872 0.821 0.406 0.000 1.02 1.00 -0.50 2.29 1.63 -1.40 

NM_015367 BCL2L13 23786 0.108 0.351 0.000 0.95 1.00 -0.50 4.01 1.38 -2.91 

NM_006336 ZER1 10444 0.793 0.844 0.000 0.96 1.00 -0.50 2.26 1.51 -1.49 

NM_001418 EIF4G2 1982 0.498 0.860 0.000 1.11 1.00 -0.50 2.28 1.81 -1.26 

AL133623 XRN1 54464 0.769 0.159 0.000 -1.04 -1.00 0.50 -1.79 -1.46 1.23 

NM_003217 TMBIM6 7009 0.268 0.277 0.000 0.96 1.00 -0.50 2.21 1.37 -1.61 



Appendix 

 

135 

 

ACCN Symbol Gene ID p
-v

a
lu

e
 f

o
r 

v
e
n

ti
la

ti
o

n
 

p
-v

a
lu

e
 f

o
r 

o
x

y
g

e
n

 

p
-v

a
lu

e
 f

o
r 

in
te

ra
c
ti

o
n

 o
f 

v
e
n

ti
la

ti
o

n
 a

n
d

 

o
x

y
g

e
n

 

F
C

 v
e
n

ti
la

ti
o

n
 

F
C

 o
x

y
g

e
n

 

F
C

 v
e
n

ti
la

ti
o

n
: 

o
x

y
g

e
n

 

F
C

 c
lu

s
te

r 
1
 v

s
. 

2
 

F
C

 c
lu

s
te

r 
1
 v

s
. 

3
 

F
C

 c
lu

s
te

r 
2
 v

s
. 

3
 

NM_006304 SHFM1 7979 0.937 0.327 0.000 -1.00 -1.00 0.50 -2.04 -1.54 1.32 

NM_000175 GPI 2821 0.710 0.994 0.000 0.98 1.00 -0.50 2.31 1.75 -1.32 

NM_005778 RBM5 10181 0.169 0.971 0.000 0.96 1.00 -0.50 1.91 1.27 -1.50 

NM_014390 SND1 27044 0.930 0.084 0.000 0.92 1.00 -0.50 2.09 1.18 -1.77 

AB014530 HIPK1 204851 0.808 0.078 0.000 0.96 1.00 -0.50 2.04 1.10 -1.87 

NM_006170 NOP2 4839 0.046 0.206 0.000 1.06 1.00 -0.50 1.71 1.50 -1.14 

NM_014402 UQCRQ 27089 0.100 0.673 0.001 -1.01 -1.00 0.50 -1.69 -1.58 1.07 

NM_001191 BCL2L1 598 0.664 0.695 0.001 0.98 1.00 -0.50 2.13 1.45 -1.47 

NM_032204 ASCC2 84164 0.506 0.601 0.001 0.97 1.00 -0.50 3.21 1.46 -2.20 

NM_007176 C14orf1 11161 0.360 0.250 0.001 -1.03 -1.00 0.50 -1.70 -1.36 1.26 

NM_003746 DYNLL1 8655 0.578 0.888 0.001 -1.07 -1.00 0.50 -1.24 -1.23 1.01 

AL046016 FAM46C 54855 0.762 0.481 0.001 0.95 1.00 -0.50 2.00 1.24 -1.61 

NM_013291 CPSF1 29894 0.343 0.432 0.001 1.10 1.00 -0.50 2.19 1.50 -1.46 

AB037788 CPSF2 53981 0.954 0.118 0.001 -1.01 1.00 2.00 -1.43 -1.40 1.02 

NM_000274 OAT 4942 0.649 0.140 0.001 1.03 1.00 -0.50 3.11 1.37 -2.26 

NM_004238 TRIP12 9320 0.737 0.251 0.002 1.03 1.00 -0.50 2.04 1.30 -1.57 

NM_001923 DDB1 1642 0.731 0.176 0.002 0.98 1.00 -0.50 2.18 1.57 -1.39 

NM_013236 ATXN10 25814 0.825 0.836 0.002 1.09 1.00 -0.50 2.18 1.64 -1.33 

NM_012394 PFDN2 5202 0.548 0.760 0.002 -1.06 -1.00 0.50 -1.50 -1.40 1.07 

NM_004879 EI24 9538 0.537 0.836 0.002 0.93 -1.00 -2.00 2.16 1.48 -1.46 

NM_003639 IKBKG 8517 0.098 0.442 0.002 -1.05 -1.00 0.50 -1.40 -1.31 1.07 

NM_032179 
  

0.909 0.878 0.002 0.83 -1.00 -2.00 2.09 1.10 -1.90 

NM_021078 KAT2A 2648 0.487 0.345 0.002 0.95 1.00 -0.50 1.71 1.16 -1.48 

NM_033103 RHPN2 85415 0.269 0.205 0.003 1.00 1.00 -0.50 1.83 1.06 -1.73 

NM_014761 IST1 9798 0.136 0.900 0.003 0.94 -1.00 -2.00 1.45 1.17 -1.23 

NM_032305 POLR3GL 84265 0.596 0.046 0.003 -1.01 -1.00 0.50 -1.77 -1.13 1.57 

NM_005001 NDUFA7 4701 0.398 0.633 0.003 -1.05 -1.00 0.50 -1.46 -1.39 1.05 

AL137257 UHMK1 127933 0.354 0.335 0.003 0.99 1.00 -0.50 1.77 1.10 -1.60 

NM_004120 GBP2 2634 0.380 0.482 0.003 1.09 1.00 -0.50 2.07 1.64 -1.26 

NM_031902 MRPS5 64969 0.466 0.053 0.003 -1.02 -1.00 0.50 -1.51 -1.09 1.39 

NM_001358 DHX15 1665 0.403 0.349 0.003 0.96 1.00 -0.50 1.92 1.30 -1.48 

NM_004541 NDUFA1 4694 0.635 0.619 0.003 -1.03 -1.00 0.50 -1.66 -1.67 -1.00 

NM_006402 HBXIP 10542 0.948 0.651 0.003 -1.09 -1.00 0.50 -1.39 -1.35 1.03 

D50683 
  

0.373 0.549 0.003 0.94 -1.00 -2.00 1.39 1.12 -1.24 

AK026880 BRD3 8019 0.677 0.090 0.003 -0.98 1.00 2.00 -1.54 -1.35 1.14 

NM_006711 RNPS1 10921 0.142 0.231 0.003 0.98 1.00 -0.50 1.64 1.15 -1.43 

NM_002080 GOT2 2806 0.449 0.619 0.004 0.99 1.00 -0.50 1.90 1.41 -1.35 
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NM_018206 VPS35 55737 0.253 0.156 0.004 1.04 1.00 -0.50 1.62 1.14 -1.42 

NM_014453 CHMP2A 27243 0.634 0.688 0.004 -1.03 -1.00 0.50 -1.52 -1.30 1.17 

NM_014637 MTFR1 9650 0.446 0.485 0.004 -1.03 -1.00 0.50 -1.61 -1.51 1.07 

NM_015710 GLTSCR2 29997 0.072 0.940 0.004 1.06 1.00 -0.50 1.66 1.43 -1.16 

NM_004127 GPS1 2873 0.769 0.304 0.004 1.01 1.00 -0.50 2.28 1.54 -1.48 

NM_017742 ZCCHC2 54877 0.932 0.753 0.005 -1.05 -1.00 0.50 -2.08 -1.61 1.30 

NM_024552 CERS4 79603 0.334 0.082 0.005 -1.02 1.00 2.00 -1.71 -1.71 -1.00 

NM_019082 DDX56 54606 0.075 0.449 0.005 1.04 1.00 -0.50 1.21 1.25 1.03 

NM_004604 STX4 6810 0.810 0.111 0.005 -1.04 -1.00 0.50 -1.57 -1.13 1.40 

U66042 CXorf40B 541578 0.177 0.199 0.005 -1.12 -1.00 0.50 -1.35 -1.40 -1.04 

NM_025211 GKAP1 80318 0.088 0.854 0.005 -1.17 -1.00 0.50 -1.78 -1.69 1.05 

NM_031844 HNRNPU 3192 0.816 0.985 0.005 0.95 -1.00 -2.00 2.05 1.53 -1.34 

NM_001549 IFIT3 3437 0.475 0.336 0.005 -1.10 -1.00 0.50 -1.43 -1.25 1.15 

NM_018196 TMLHE 55217 0.910 0.411 0.005 -0.93 1.00 2.00 -1.72 -1.19 1.45 

NM_004046 ATP5A1 498 0.469 0.109 0.006 1.16 1.00 -0.50 2.04 2.50 1.23 

BE560878 MAP2K3 5606 0.867 0.027 0.006 -1.08 -1.00 0.50 -1.43 1.01 1.44 

BC004988 FEM1A 55527 0.522 0.345 0.006 0.98 1.00 -0.50 2.01 1.29 -1.56 

AB029032 KIAA1109 84162 0.748 0.034 0.006 0.98 1.00 -0.50 2.40 1.19 -2.02 

NM_014943 ZHX2 22882 0.562 0.066 0.006 1.02 1.00 -0.50 1.60 1.18 -1.35 

NM_021943 ZFAND3 60685 0.211 0.177 0.006 0.98 1.00 -0.50 1.95 1.14 -1.71 

NM_002873 RAD17 5884 0.814 0.104 0.006 1.09 1.00 -0.50 1.69 1.18 -1.43 

NM_005341 ZBTB48 3104 0.212 0.409 0.006 1.02 1.00 -0.50 1.15 1.16 1.01 

NM_003339 UBE2D2 7322 0.357 0.852 0.006 -1.04 -1.00 0.50 -1.42 -1.23 1.16 

AF334405 SPRYD7 57213 0.867 0.967 0.006 -1.02 -1.00 0.50 -1.67 -1.36 1.24 

U90878 PDLIM1 9124 0.175 0.796 0.006 1.06 1.00 -0.50 1.32 1.30 -1.02 

NM_004515 ILF2 3608 0.105 0.973 0.006 1.03 1.00 -0.50 1.27 1.12 -1.14 

NM_018307 RHOT1 55288 0.619 0.094 0.006 0.92 1.00 -0.50 1.71 -1.04 -1.78 

NM_000359 TGM1 7051 0.179 0.720 0.007 -1.02 -1.00 0.50 -1.50 -1.21 1.24 

NM_000527 LDLR 3949 0.827 0.384 0.007 -1.06 -1.00 0.50 -1.73 -1.70 1.02 

NM_024009 GJB3 2707 0.770 0.120 0.007 0.97 1.00 -0.50 1.98 1.14 -1.75 

NM_004794 RAB33A 9363 0.231 0.346 0.007 -1.04 -1.00 0.50 -1.60 -1.33 1.20 

AL050277 ATP5L 10632 0.684 0.331 0.007 -1.04 -1.00 0.50 -1.45 -1.26 1.15 

NM_019598 KLK12 43849 0.062 0.181 0.007 1.01 1.00 -0.50 1.79 1.47 -1.22 

AA536084 MCM7 4176 0.727 0.201 0.007 0.98 1.00 -0.50 1.80 1.21 -1.49 

NM_022831 AIDA 64853 0.182 0.313 0.007 0.97 1.00 -0.50 1.83 -1.02 -1.86 

D85730 HSPA1L 3305 0.089 0.669 0.008 -1.14 -1.00 0.50 -1.90 -1.71 1.11 

NM_003003 SEC14L1 6397 0.062 0.838 0.008 -1.01 -1.00 0.50 -1.73 -1.08 1.61 
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NM_024894 NOL10 79954 0.535 0.465 0.008 -0.90 1.00 2.00 -1.67 -1.46 1.15 

NM_005291 GPR17 2840 0.495 0.025 0.008 1.00 1.00 -0.50 2.07 1.10 -1.89 

NM_032102 SRSF8 10929 0.338 0.079 0.008 0.95 1.00 -0.50 1.87 -1.08 -2.01 

NM_018320 RNF121 55298 0.754 0.027 0.008 -0.97 -1.00 0.50 -1.49 -1.03 1.45 

NM_006405 TM9SF1 10548 0.343 0.022 0.008 -1.13 -1.00 0.50 -1.34 -1.18 1.13 

NM_002947 RPA3 6119 0.850 0.121 0.008 -0.95 -1.00 0.50 -1.66 -1.02 1.63 

AF014403 PPAP2A 8611 0.574 0.456 0.008 -0.93 -1.00 0.50 -1.85 -1.30 1.42 

AB037861 INTS1 26173 0.898 0.027 0.008 1.01 1.00 -0.50 1.41 -1.01 -1.43 

NM_001164 APBB1 322 0.377 0.621 0.008 1.11 1.00 -0.50 1.96 1.71 -1.15 

NM_006022 TSC22D1 8848 0.706 0.706 0.008 -1.08 -1.00 0.50 -1.68 -1.57 1.07 

AL133052 TMEM183A 92703 0.421 0.173 0.008 1.06 1.00 -0.50 2.09 1.24 -1.69 

NM_005412 SHMT2 6472 0.035 0.084 0.009 1.03 -1.00 -2.00 1.64 1.46 -1.12 

AB020861 
  

0.503 0.429 0.009 -1.10 -1.00 0.50 -1.32 -1.40 -1.06 

NM_016565 CHCHD8 51287 0.836 0.103 0.009 -1.03 -1.00 0.50 -1.51 -1.12 1.34 

NM_014168 METTL5 29081 0.543 0.123 0.009 -1.09 -1.00 0.50 -1.72 -1.22 1.41 

AK024426 EMR2 30817 0.123 0.173 0.009 -1.10 -1.00 0.50 -1.46 -1.64 -1.12 

NM_020150 SAR1A 56681 0.772 0.734 0.009 -1.05 -1.00 0.50 -1.80 -1.48 1.21 

NM_002686 PNMT 5409 0.393 0.228 0.009 1.03 1.00 -0.50 1.56 1.33 -1.18 

NM_004712 HGS 9146 0.273 0.161 0.009 -1.00 1.00 2.00 -1.41 -1.24 1.14 

NM_022898 BCL11B 64919 0.358 0.186 0.009 1.01 1.00 -0.50 1.32 1.16 -1.14 

AK057343 ZNF131 7690 0.346 0.614 0.009 0.93 -1.00 -2.00 1.38 1.02 -1.36 

NM_005006 NDUFS1 4719 0.793 0.837 0.009 -1.02 -1.00 0.50 -1.53 -1.36 1.12 

NM_003139 SRPR 6734 0.176 0.097 0.009 0.97 1.00 -0.50 1.53 1.13 -1.36 

NM_001896 CSNK2A2 1459 0.805 0.132 0.009 -1.06 -1.00 0.50 -1.45 -1.15 1.27 

NM_014403 
  

0.897 0.732 0.009 0.97 1.00 -0.50 2.23 1.45 -1.54 

AB029016 TNRC6B 23112 0.845 0.627 0.009 0.94 -1.00 -2.00 1.63 1.17 -1.40 

BC008861 ATP6V0D1 9114 0.712 0.629 0.010 1.05 1.00 -0.50 1.89 1.49 -1.26 

NM_003953 MPZL1 9019 0.491 0.835 0.010 -1.04 -1.00 0.50 -1.75 -1.56 1.12 
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8.2 List of abbreviations 

AIS Amniotic infection syndrome 

ANOVA Analysis of variance 

BLCI Biomarker list concordance index 

BPCA Bayesian Principal Component Analysis 

BPD Bronchopulmonary dysplasia 

cDNA Complementary deoxyribonucleic acid 

CPAP Continuous positive airway pressure 

CPP Conserved pair proportions 

CRP C-reactive protein 

DAVID Database for Annotation, Visualization, and Integrated Discovery 

EM Expectation maximization 

ES Enrichment score 

FC Fold Change 

FDR False discovery rate 

GA Gestational age 

GO Gene Ontology 

GSEA Gene Set Enrichment Analysis 

IPA Ingenuity Pathway Analysis 

IQR Interquartiles range 

Iset Invariant-set-normalization 

IUGR Intrauterine growth restriction 

KEGG Kyoto Encyclopedia for Genes and Genomes 

KNN K-nearest neighbor 

LIMMA Linear Models for Microarray analysis 

LinImp Linear model-based imputation 

LLSI Local least squares imputation 

Loess locally weighted regression 

LS Least squares 

LSI Least squares imputation 

MAD Mean absolute deviation 
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mRNA Messenger ribonucleic acid 

MV Mechanical ventilation 

NIPPV Nasal intermittent positive pressure ventilation  

OMIM Online Mendelian Inheritance in Men 

OPLSDA Orthogonal partial least squares discriminant analysis  

PAM Predictive analysis of microarrays 

PCA Principal component analysis 

PLS Partial least squares 

Qspline Quantile-spline-normalization 

RMA Robust Multiarray Average 

RMSE Root mean squared error 

ROS Reactive oxygen species 

RP Rank Products 

SAM Significance analysis of microarrays 

SD Standard deviation 

SE Standard error 

SeqKNN  sequential K-nearest neighbor 

SNR Signal-to-noise ratio 

SOM Self-organizing map 

SSD Sum of squared deviations 

SVD Singular value decomposition 
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