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"In such cases, the thoughtless person playing with penicillin is morally responsible for the death 
of the man who finally succumbs to infection with the penicillin-resistant organism. I hope this 
evil can be averted."  

….Sir Alexander Fleming

2. Introduction  

2.1. The emergence and mechanism of antimicrobial resistance  

Antibiotics are one of the milestone discoveries in the medical science of the twentieth 

century. Since the 1940s, the successful use of antibiotics has revolutionized the 

practice of modern medicine. Aside from curing direct bacterial infection antibiotics are 

playing an important role in surgery, organ transplantation, cancer chemotherapy, and 

countless lives have saved around the world [1–3]. Unfortunately, in the modern times, 

antibiotics face a degree of obsolescence because of rapid worldwide appearance and 

spread of untreatable drug-resistant bacteria [4,5]. Antimicrobial-resistance became 

one of the global problems, which transcends through national, international 

boundaries, socio-economic divisions classes and affects human, animal and 

environmental health equally [4]. 

In principle, antibiotic resistance developed when bacteria undergo a genetic change 

to minimize the effects of antibiotics. Traditional mechanisms behind bacterial 

antimicrobial resistance broadly divided into two major genetic strategies: spontaneous 

mutation in genes and acquisition of external genetic material via horizontal gene 

transfer (HGT).  

Mutational resistance: Antimicrobial resistance-conferring mutation is a 

consequence of the multi-step evolutionary process. When a population of microbes 

are challenged with antibiotics, a subpopulation of them evolves to evade the drug’s 

action due to the mutation-selection pressure rendered upon them, as a consequence 

previously antibiotic susceptible bacterial population ends up being resistant to the 

drug [5]. On the other hand, at the same time, antibiotics eliminate the antibiotic-

susceptible population from the community and drug-resistant population gradually 

emerged. In general, the underlying mechanism of antimicrobial resistance occurred 

via one of the following mechanisms: I) Alteration of intracellular drug target: a 

common strategy of bacteria to develop the antibiotic-resistant mutant by modification 



  Introduction  
	 	 	

3	
	

of the drug target site. Few classical examples include a) bacterial resistance 

developed due to a single step point mutation in 16S rRNA methylase encoding (i.e. 

rmtA or rmtD) genes conferring aminoglycoside mutant [6]. b) Another well-

characterized example: mutation in chromosomal DNA in gyrase encoding genes (i.e. 

gyrA/gyrB), which resulted in the fluoroquinolone-resistant mutant [7]. c) Mutation in 

topoisomerase encoding chromosomal genes (i.e. parC/parE) also associated with 

quinolones resistant mutant [8]. d) Finally, another good example, the alternation of 

penicillin-binding protein (PBP) reduced the affinity of beta-lactams group of antibiotic 

and give rise to penicillin-resistant bacteria [9] (Figure1). II) Alteration of membrane 
permeability: another clinically significant mechanism in gram-negative bacteria in 

preventing antibiotic influx to the intracellular compartment through the modification of 

permeability of the membrane. One classical example of the porin mediates resistant 

generally observed in clinically Pseudomonas. aeruginosa, where due to lack of OprD 

porins shows resistance to imipenem [10] In few cases Klebsiella. pneumonia with 

porin mutant has caused the global outbreak also. (Figure 2.1). III) Increased Efflux 
pumps: Overexpression of the bacterial efflux pump, actively transport antibiotic out 

of the cell and produce a drug-resistant phenotype. Another example, observes in 

tetracycline resistant gram-negative bacteria, where tetracycline pumps out from the 

cell by Tet efflux pumps. (Figure 2.1). IV) Overproduction of antibiotic-inactivating 
enzymes: The production of specific enzyme molecules capable to change the 

antibiotic molecule is also a well-known mechanism in both gram positive and negative 

bacteria. Few classical examples include a) the inactivation of aminoglycosides by 

aminoglycoside-modifying enzymes (AMEs) by Acinetobacter spp. [11] b) 

Trimethoprim resistant resulted by the overproduction of dihydrofolate reductase. 

(Figure 2.1). V) Alternation of global metabolic pathways: Through the years of 

evolution bacterial phenotypic resistance mechanism may develop by altering global 

metabolic pathway that bypasses the antibiotic mechanism. For example, certain 

sulfonamide-resistant bacteria do not require extracellular para-aminobenzoic acid 

(PABA) instead, like mammalian cells, they turn to utilizing preformed folic acid [12]. 

The emergence of antimicrobial resistance can be explained by using Darwinian’s 

survival of the fittest model, i.e., beneficial mutations occurred in pre-existing genes of 

the bacterial chromosome that are positively selected by environmental forces. 

However, the exact nature of the drug resistance mechanisms still poorly understood, 

because of few additional unidentified mechanisms also involved in antibiotic 
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resistance. Research strategies to effectively combat antimicrobial resistance include 

the identification of potential resistance genes, as well as the expression pattern of 

those genes by using multi-omics approaches (e.g. RNA-seq) are needed. 

 

Figure 2.1: Diagrammatic representation of the different mechanism by which bacteria can develop 

resistance to antibiotics (Source: Park J.A, 2016). Example included cellular targets for antibiotics 

include DNA replication (e.g. fluoroquinalones), alternation of protein synthesis (e.g. aminoglycosides), 

cell wall integrity changes (e.g. pencillins) and folic acid metabolism (e.g. sulfonamides). 

Acquisition of external genetic material via horizontal gene transfer: Emergence 

and the dissemination of antibiotic resistance may develop vertically by the mutation 

in the chromosomal gene followed by selection pressure. Bacterial resistance may also 

occur by acquiring foreign resistance genes from other bacteria via horizontal gene 

transfer [13,14]. The HGT mechanism can promote commensal and environmental 

nonpathogenic isolate to antibiotic-resistant ones through one of the following modes 

of genetic exchange [15]. 

Conjugation (sexual mode of genetic transfer): Bacterial conjugation is one of the 

principal conduits for direct gene transfer in between two compatible bacterial cells. 

During this process, the transfer of DNA occurred through a multi-step contact-

dependent process membrane-associated macromolecular machinery called Type IV 

secretion system (T4SS). Conjugative machinery may enable the mobilization of 

plasmids mediated AMR gene transfer in many types of ecosystems. A well-

demonstrated conjugation mediates antibiotic resistance gene dissemination of 
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blaCTX−M ESBL genes, which have disseminated to various narrow and broad host 

range plasmids within Enterobacteriaceae [16] (Figure 2.2). 

Transformation (incorporation of naked DNA): Certain bacteria appeared to be capable 

of direct uptake and integration fragments of extracellular DNA from the environment 

by homologous recombination, a process called transformation [17]. Transformation is 

not only a useful method in molecular cloning to produce multiple copies of a 

recombinant DNA molecule, but also a powerful mechanism of gene transfer in a 

natural bacterial population [18]. Transformation mediated antibiotic resistance gene 

dissemination has well documented in many gram-negative bacteria [19] (Figure 2.2).  

 

Figure 2.2: Mechanisms of horizontal gene transfer (Source: Christian, 2016). 

Transduction (bacteriophage mediated): Bacteriophages are viruses that infect 

bacteria and play an important role in bacterial evolution in the different ecological 

niche. Transduction is facilitated by transferring virulence and antimicrobial resistance 

genes to new bacterial hosts. Through specialized or generalized transduction, 

bacteriophages can transfer genes that are advantageous to their microbial hosts, in 

turn promoting their own survival and dissemination. The mobilization or transfer of 

antibiotic resistance genes (ARGs) by bacteriophages has been documented for 

various bacterial species e.g. E. coli, Salmonella [20] (Figure 2.2).  
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Since the last few decades, the worldwide drug resistance scenario has been 

accelerated dramatically because of overuse of antibiotics, and on the other hand, the 

new classes of antibiotics have been not discovered. According to recent surveillance 

reports, antibiotic resistance currently incurs an estimated loss of around 50,000 lives 

in Europe and the United States, costing to estimated €2.5 billion annually [21,22]. In 

fact, the World Health Organization (WHO) has warned antibiotic resistance to be one 

of the most complex public health threats of the 21st century [23]. For many years, the 

population structure of common gram-negative bacteria such as E. coli, K. pneumonia 

and Acinetobacter baumannii were relatively predictable and stable over time. During 

the 1980s the rise of multi-drug resistant gram-negative bacteria (MDRGN) from 

Enterobacteriaceae family that produce extended-spectrum β-lactamase (ESBLs) or 

carbapenemase enzymes are spread throughout the world. Among these groups of 

bacteria, E. coli are of particular clinical concerned worldwide. E. coli can survive a 

wide range of hosts and rapidly acquire resistance to key antibiotics and represent one 

of the most prominent threats for the successful treatment of infections caused by 

these bacteria. Moreover, pathogenic E. coli possessing resistance to other 

antimicrobial agents, including aminoglycosides, sulphonamides and fluoroquinolones 

are associated with significant morbidity and mortality in human and animal healthcare 

[24–26]. Nevertheless, misuse and overuse of antibiotics in human medicine, 

agriculture, and veterinary medicine are primarily accelerating the process of antibiotic 

resistance. Other factors such as wastewater treatment plants, food, and the 

environment also plays a crucial role in its spread.  

2.2. Ecological compartments and evolution of antibiotic resistance 

The traditional healthcare organization system is divided into two major compartments, 

e.g. community and hospital [27,28]. Both the compartments are inextricably linked to 

the dissemination of antibiotic resistance. Therefore, to combating antibiotic resistance 

a “One Health” conceptual framework that could promote the integration of public 

health, food, environment, and animal health surveillance approaches are needed  

2.2.1. The hospital compartment 

Hospital environments have traditionally been assumed mainly to serve as the 

incubator for the breeding of antibiotic-resistant bacteria. Here, bacteria proliferate in 

an environment, filled with immunocompromised patients, and antibiotic pressure is 

continuously eliminating the drug-susceptible bacteria. Numerous clinical studies have 
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demonstrated that the human intestinal tract is most complex and densely populated 

microbial ecosystem, which act as an important reservoir for many gram-negative 

bacteria. Human gut also offers ample opportunities for bacteria to gene flow via the 

horizontal transfer, including antibiotic resistance genes [29]. In general, exposure to 

antibiotics does not induce resistance mechanism but in a few cases, long-term 

antibiotic therapy promotes proliferation of the emergence of new resistant mutants by 

accelerating the selection pressure [30]. Once resistant pathogens have evolved and 

subsequent spread from patient to patient and resulted as an untreatable pan-resistant 

pathogen [31]. Few overarching factors that drive antimicrobial-drug resistance in 

hospital-acquired infections are described below: 

I). Poor infection control and hygiene in health care settings: 
Studies repeatedly reported that several antimicrobial resistant outbreaks are directly 

associated with lack of access to safe infection control in hospital settings. The most 

frequently described organisms associated with nosocomial infections are “ESKAPE” 

pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, 

Acinetobacter baumannii, P. aeruginosa, and Enterobacter species). Furthermore, 

most of the ESKAPE pathogens are often multidrug resistant, which becomes a major 

challenge in clinical practice due to the high susceptibility to immunocompromised or 

elderly patients [32]. Hand-hygiene practices and inadequate sanitary conditions are 

playing a major role in the dissemination of ESKAPE pathogens. Appropriate hand 

hygiene can minimize microorganisms acquired on the hands of the healthcare 

workers during daily duties when there is a direct contact with blood, body fluids, 

secretions, excretions and known and unknown contaminated equipment or surfaces 

of medical devices [33]. 

II). Colonization pressure and selection: 
The role of antibiotic consumption in the hospital is promoting the influence of 

“selection density” in a geographic area. In the hospital, the density-dependent 

selection is very high because of a depleted choice of antibiotics and a reduced 

diversification strategy. Furthermore, the accumulation of the few patients in small 

spaces such as intensive-care unit (ICU) or specific wards and to a rapid resistant 

clone circulation within such a population also contributing the role in selection density. 

Considered these above facts together, excess or overprescribed antibiotics and lack 

of guidance to use antibiotics also play a major role in spreading drug-resistant bacteria 

[34] (Figure 2.3). 
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Figure 2.3: Diagrammatic representation of the transfer of antimicrobial resistance bacteria among 

different compartments (Source: Cantón, 2013 and Stokes, HW 2011). Arrows represent the routes of 

transmission of AMR between the community and hospital compartments. 

2.2.2. Community compartments 

Classically, the “environmental resistome” gene pool comprises both from human 

activities and from ecological, environmental factors. It is hypothesized, that when 

identical antibiotic-resistant bacteria (ARB) that present in environmentally and 

clinically relevant pathogens, probably represents a risk of the transmission cycle. 

These environmental present antibiotic-resistant bacteria are assumed as vast 

reservoirs, which comprise the phylogenetically diverse group of bacteria. Thus, some 

intermediary agents or vectors are required to complete the transmission cycle, e.g. 

via food chain or via mobile genetic elements [35]. The dissemination of ARB across 

the environment compartment is caused by two major mechanisms: HGT; mutation 

and genetic recombination [36]. However, it is unlikely that all antibiotic resistance 

genes (ARGs) that has arisen and spread in clinical settings are always being evolved 

and transferred from environmental bacteria. Environmental hotspots, where ARB are 

abundant or the transfer of ARGs may be promoted, are critical points for resistance 

control. These locations comprise habitats that are influenced by human activities, 

such as wastewater treatment plants (e.g. Hospital, urban and industrial), waste and 

intensive food-production facilities such as agriculture purposes or animal husbandry 

[37]. It is well established that antibiotic selective pressure is the main causative agents 

for the emergence of dangerous superbugs in both hospital and community 

compartments. Recent studies showed in the evolutionary scale, the existence of 

antimicrobial resistance genes in environment hundreds of millions of years ago. In a 
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recent study has reported the presence of antibiotic resistance gene in Yanomami 

tribes of the Amazon jungle of Venezuela who had never been exposed to antibiotics 

[38]. Earlier studies have observed the presence of the ABR gene in the gut bacteria 

inside 1000-year-old mummies from the Inca Empire is resistant to most of today’s 

antibiotics [39]. Overall, the evidence suggests that microbes have long evolved the 

capability to counteract toxins, including antibiotics, and that preventing drug 

resistance may be harder than scientists thought (Figure 2.3). 

2.3. Mobilization of antibiotic resistance genes via mobile genetic 
elements  

Mobile genetic elements (MGEs) are segments of DNA that can play a pivotal role in 

the dissemination of resistance, virulence, and adaptation factors, in between bacteria, 

and even within species. Traditionally, MGEs classified as into different categories 

such as plasmids, transposons, bacteriophages, integrative-conjugative elements. The 

major MGEs involved in the spread and expression of clinically important antimicrobial 

resistance in bacteria are described below. 

Plasmids: Plasmids are extrachromosomal circular or linear genetic element that 

occurs in many bacterial strains and can replicate independently of the bacterial 

chromosome. Plasmids are extraordinarily versatile in their size and gene content and 

are readily transmissible between host cells. Plasmids typically harbor a wide spectrum 

of beneficial host traits, such as antibiotic resistance, heavy-metal-resistance genes 

and adaptation factor for the survival of the different ecological niche. Conjugative 

plasmids serve a central role as the vehicle for the dissemination of antibiotic 

resistance gene and directly linked with many outbreaks [40]. Plasmid classification 

scheme provides useful information insight into the epidemiology and antibiotic 

resistance gene transfer. Based on the replicon typing, plasmid has been classified 

into several incompatibility (Inc) groups, refers to the inability of two plasmids to be 

sharing similar replicon and partition system. Conventional single-locus based typing 

schemes have been widely used for a long time; they provide low-resolution compare 

to multiple loci. Currently in the genomics era based on genome sequence high-

resolution classification scheme also available such as plasmid multi-locus sequence 

typing (pMLST) schemes or based on core genome single nucleotide polymorphism 

(SNPs) phylogenetic approaches. Due to high genomic plasticity and diverseness 

plasmid subtyping always challenging [41].  
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Transposable elements (TEs): TEs are also known as "jumping genes" or 

transposons that are scattered throughout the genome of an organism. Transposons 

are DNA sequence that can exchange a linear piece of DNA with varying degrees of 

site selectivity that ranging size from ~2.5 to ~25 kb. In some transposons, the inverted 

terminal repeats presents with the lack of additional gene sequences and is capable of 

independent movement, called insertion sequences (IS element). Some transposable 

elements excise from the original site and insert into the new site (cut and paste), 

whereas others use replicative mechanisms to create a copy at a new site. In case of 

bacteria, mostly transposon can jump from chromosomal DNA to a plasmid or vice 

versa. Transposons carry a gene that encodes transposase(s), the enzyme(s) 

responsible for recombination of the transposon into another DNA molecule. Studies 

on transposable genetic elements in bacteria have not only given insight into the 

spread of antibiotic resistance but also in the process of DNA movement [42,43] 

(Figure 2.4). 

 

Figure 2.4: Detailed structure of Transposable elements with an example Tn10 and Tn3 transposon 

(Source: Gaikwad B. K, 2015). 

Bacteriophages: Bacteriophages or phages are viruses that consist of a DNA or RNA 

genome surrounded by a protein coat (capsid) and invade the bacterial cell. They are 

the most abundant and diverse biological entities in the biosphere, with a huge 

population structure (~1030–1032). Phages are another major vehicle to shuttle DNA 

between bacteria, numerous phages are also capable of transducing plasmids, 

including those encoding antibiotic resistance. Phages act as an important vechiles for 

genetic exchange via generalized or specialized transduction.There are several 

genetic elements composed of phages or phage-related elements, which play a major 

role in the mobilization of genes in bacteria [44,45].  



  Introduction  
	 	 	

11	
	

Integrative and Conjugative Elements (ICEs): are diverse groups of mobile genetic 

elements found in both gram-positive and gram-negative bacteria. These genetic 

elements primarily reside in a host chromosome, but retain the ability to excise and to 

transfer by conjugation. ICEs use a range of mechanisms to promote their core 

functions of integration; excision, transfer, and regulation, there are common features 

that unify the group. A set of genes in ICEs enables conjugative transfer and control of 

element removal and integration into the host chromosome. These features indicate 

that ICEs are directly involved in the processes of horizontal transfer of genetic 

determinants, which increase the adaptive potential of bacterial species, and can 

function as universal mobilizing factors for other genetic elements. Mobile between 

cells using conjugation machinery and able to integrate into DNA sites via site-specific 

recombination [46] (Figure 2.5). 

 

Figure 2.5: Schematic representation of life cycle of integrative and conjugative element (Source 

Johnson CM, 2015). 

Translocatable units (TUs): The insertion sequence IS26 plays a key role in 

disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions 

containing more than one antibiotic resistance genes that are flanked by a single copy 

of IS26. “A composite transposon is a mobile genetic element consisting of two 

insertion sequences (ISs) flanking a segment of cargo DNA often containing antibiotic 

resistance (AR) genes are termed as Tus” [47][48]. In this mechanism, the donor IS26 

site recognize another IS26 in the recipient site and via RecA-independent, genetic 

rearrangement happens. The rearrangement of TUs is schematically shown below 

(Figure 2.6).  
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Figure 2.6: Diagrammatic representation of formation of translocatable units. Here boxes and line 

represents IS26s carrier DNA segments (Source Harmer JC, 2014). 

2.4. Decline the effectiveness of the antibiotic: conservation vs 
innovation 
Despite the real and growing public health threat posed by ongoing explosion antibiotic 

resistance, in recent decades, the discovery and development of new antibiotics have 

slowed down dramatically. Simultaneously the emergence of antibiotic-resistant 

pathogens has accelerated, allowing for life-threatening infections that will not respond 

to available antibiotic treatment. We are in the midst of the crisis of the antibiotic, which 

similar to managing others natural resources, such as oil, water, and fisheries. 

Excessive use and misuse of antibiotics in human and animal health are leading to 

global warnings that in the near future without effective antimicrobials for prevention 

and treatment of infections. However, to maintain long-term of the effectiveness of 

antibiotic, individual patients, doctors, pharmaceutical companies, hospitals, and even 

countries have little incentive to use antibiotics. The decline of the effectiveness of the 

antibiotic depends on a combination of the following reasons [49,50]. 

Human responsibility: Although antibiotic resistance evolves naturally via natural 

selection through random mutation, human activity is playing a major role to accelerate 

the promotion of resistance. The misuse of antibiotics and biocides in human or animal 

healthcare practice is a significant driver of the emergence and spread of antibiotic-

resistant bacteria. The extensive use of the broad spectrum of antibiotics in agricultural 

applications has also promoted the development of dangerous extreme drug-resistant 

bacteria in the soil with the risk for a further circulation to human or animal via direct 

contact or the food chain. Urbanization and global travel are also intensifying the 

spread of bacterial infections. According to IMS Health MIDAS report, antibiotic 
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consumption of the human in low and middle–income countries have increased 36% 

between 2000 and 2011, mostly last resort classes of antibiotics e.g. carbapenems, 

and polymyxins. As a consequence, today more than 70% of pathogenic bacteria are 

drug resistant [50–52]. 

Innovation failure: One major reason for the declining trends in antibiotic research is 

that over the past decades the resistance rate is spreading faster than the introduction 

of new antibiotics in the clinical setting. The primary reason for failure in discovery is 

due to poor penetration of compounds into bacterial cells. For example, in gram-

negative bacteria, the presence of the double membrane along with a variety of efflux 

pumps that expel drugs out of the cell, making it difficult to design new antibiotics target 

[50–52]. 

Economic and regulatory reasons: In addition to the previously discussed factors, 

several economic factors also play a major role in the burden of the new antibiotic and 

which also affects directly or indirectly physicians, patients, healthcare administrators, 

pharmaceutical producers. One major reason is the increased costs, and the amount 

of time needed to put a drug on the market. Due to the increased production costs, 

pharmaceutical companies cannot cover the risk of research and development 

because for fear of resistance growing very fast and antibiotics having a short life span. 

For Food and Drug Administration Safety regulation, some of the drugs are impossible 

to approve due to the demand for lower antibiotic development costs. For example, in 

between 1980 and 2009, there are ~60 new antibiotics approved, but unfortunately 

pharmaceutical company incentive to sell due to production cost [50–52]. 

2.5. On the hunt for new antibiotics  

As mentioned in the earlier section, in recent decades due to the emergence of the 

deadly drug resistant superbug we are nearing a crisis point of the effective antibiotics. 

In general, most antibacterial drugs are target at intracellular processes and needed to 

penetrate the membrane barrier. Due to double membrane along with the drug efflux 

pump always making difficulties to enter those drug molecules. Alternative 

approaches: i) by changing the drug target site (e.g. fimH inhibitors, quorum sensing 

inhibitoryn molecules), ii) the accurate measure the drug kinetics and penetration, iii) 

find out some alternate way to overcome the membrane barrier (e.g. Porin-mediate 

permeability) and iv) finally, the use of natural product could also be alternate new 

generation drug therapy. Recent studies pinpointed the most promising source of 
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antibiotics from the natural resource. For example, in a recent study Chung et al. have 

highlighted the development of a synthetic peptide called DRGN-1, which very similar 

to antimicrobial active histone H1-derived peptide (VK25) from the Komodo dragon 

DRGN-1 exhibits more antimicrobial and anti-biofilm activity compare to VK25 [53]. 

Recently, scientists have pinpointed a promising source of the antibiotic from leaf-

cutter ants. They reported how ant uses specific bacteria, which secretes antimicrobial 

chemicals against certain fungi and other microbes [54]. In another study Maffioli et al. 

have found a new kind of compound named pseudouridimycin (PUM) from buried in 

dirt, which effective against deadly drug-resistant bacteria infection [55]. Interestingly, 

in another study Zipperer et al. have identified lugdunin (thiazolidine-containing cyclic 

peptide) a new type of antibiotic from human nose, which can be capable of fighting 

against many superbugs i.e. S. aureus [56]. 

2.6. Prevalence and spread of ESBLs –producing 
Enterobacteriaceae 

The worldwide emergence of gram-negative antibiotic resistant pathogens are one of 

the most serious problems in the realm of bacterial infections. In the last decade, the 

prevalence of Enterobacteriaceae that produce ESBLs or carbapenemase enzymes 

continues to increase at alarming rates. In 1983 first plasmid-mediated ESBL was 

reported in a K pneumoniae isolate in Germany, and subsequently identified in 

Argentina, France and Italy [57,58]. ESBLs are enzymes produced by a variety of 

gram-negative bacteria that can hydrolyse the amide bond in the β-lactam which confer 

an increased resistance to commonly used antibiotics such as penicillins, 

cephalosporins, cephamycins, and carbapenems [59,60]. Based on functional and 

substrate profile in general, beta-lactamases can be divided into three major groups; 

TEM, SHV, and CTX-M and some minor groups such as OXA, PER, GES, VEB. Each 

major group can be further divided into subtypes (e.g. TEM: TEM-1, TEM-2 and TEM-

3, CTX- M: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, CTX-M-15, CTX-M-27 and so on) 

[61]. ESBLs are predominantly observed in K pneumonia and E. coli, but may also be 

found in other species of Enterobacteriaceae. These bacteria are common causes of 

urinary tract infections (UTIs) and cause sepsis, respiratory tract- and intra-abdominal 

infections [62]. During the 1990s, the prevalence of ESBLs was higher TEM or SHV 

types and a very low frequency of others ESBLs such as CTX-M, VEB, and GES 

enzymes. Since the twentieth century, the scenario has changed, the incidence of 
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CTX-M upsurge dramatically with the highest number of observed variants. CTX-M β-

lactamase is considered as a major contributor in the paradigm of spreading resistance 

mechanism in gram-negative Enterobacteriaceae spp. [63]. Previous studies 

suggested over the last 10 years  only CTX-M ESBL enzymes are emerging and other 

ESBL enzymes have nearly disappeared in Enterobacteriaceae. Genes conferring 

CTX-M-type β-lactamase resistance are commonly plasmids driven and can be 

transferred between unrelated species by horizontal gene transfer. In 

Enterobacteriaceae, IncFI/FII, IncI, IncL/M, IncA/C, and IncK plasmids are commonly 

associated with genes for CTX-M enzymes [64]. Concerning the geographic 

distribution particular types of CTX-M enzymes are also associated with geographical 

regions. For example, CTX-M-14 type ESBL are frequent in Asian countries (dominant 

in China, Taiwan, and South Korea) whereas CTX-M-15/1 are dominant in Europe and 

USA. Overall CTX-M-15 and CTX-M-1 are widely distributed and disseminated 

worldwide [65]. Retrospective cohort studies showed third-generation cephalosporins 

(3GCREB) resistant Enterobacteriaceae has emerged, mostly due to the occurrence 

of ESBLs, which is an ongoing problem in Europe as well as worldwide [66]. In Europe, 

the prevalence of ESBLs significantly increase in mainly E. coli and Klebsiella spp, 

since the first report in 1983. This displacement might have occurred not only as a 

consequence of the extraordinary dissemination of the corresponding blaCTX-M, over  

time. The prevalence of ESBL- carriage has changed significantly in different parts of 

the world (Figure 7). ESBL producers are not only resistant to beta-lactam antibiotics, 

but also, by co-resistances, are resistant to different other antibiotic and antimicrobial 

agents, such as aminoglycosides, trimethoprim, sulfamethoxazole and several heavy 

metals and detergent [67]. 

Clearly, there is an immediate need for improving infection control and rapid detection 

of ESBL, identify the source and find a solution of treatment. If not stopped, ESBL 

encoding Enterobacteriaceae will emerge as one of the major causes of death in the 

coming decades (Figure 2.7).  



  Introduction  
	 	 	

16	
	

 

Figure 2.7: Worldwide prevalence of different classes of CTX-M β-lactamases (Source Davies, 2010). 

2.7. Microbial identification and strain typing for the clinical setting 

The development of quick and reliable microbial typing methods has  transformed the 

surveillance and infection control. Bacterial genotyping methods can provide a 

comprehensive assessment of the unique label of intra and inter species microbial 

community as well as other features e.g.  virulence factor,resistance geneand 

epidemiological information [68]. Typing systems for discriminating between different 

bacterial isolates are either phenotypic or genotypic level. 

Phenotypic typing: It is determined by the morphology of colonies or by expressing 

gene products to distinguish among different microorganisms. Phenotypic methods 
based on several approaches, such as, serotype (determinants antigenic expressed 

on the cell surface), phage-typing (identify the viruses that infect and destroy bacterial 

cells), bio-type (classified together based on specific variation in biologic behavior), 

antibiogram (based on susceptibility of bacterial isolates to a panel of antimicrobial 

agents), Multilocus enzyme electrophoresis (MLEE) (characterizes the cellular proteins 

by electrophoretically separating them in a gel matrix), bacteriocin typing (identify the 

toxins produced by bacteria) and recently MALDI–TOF (mass spectroscopy of whole 

cell composition) also become a part of bacterial typing [69]. Phenotype-based 

microbial typing methods are successfully used in food, water, clinical, and 

pharmaceutical microbiological testing laboratories. However, the major drawback of 

such typing methods is that they are time-consuming, less discriminatory and the 

complexity of interpretation and phenotypic characteristics can vary in different 
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conditions. In recent years and with the advent of several new methodologies over the 

last two decades, DNA based typing methods have progressively replaced phenotypic 

assays.  

Genotypic typing: Genome-based typing methods are indispensable to study the 

epidemiology of microbial community, which not only provides bacterial species 

identification but also subtypes. DNA-based microbial identification methods are 

theoretically more reliable because nucleic acid sequences are highly conserved in 

most microbial species. Applicable genotypic based typing methods include DNA–DNA 

hybridization, PFGE, PCR, 16S, and 23S rRNA sequencing, multilocus sequence 

typing (MLST), Multilocus variable number of tandem repeats analysis (MLVA) and 

whole genome sequencing-based typing. Some of the over used genotype based 

typing methods outlined below.  

Pulse field gel electrophoresis (PFGE): PFGE is molecular-based laboratory 

subtyping strategy that is used for epidemiological studies in  worldwide. Here the 

genomic DNA is fragmented by using restriction enzymes. The fragments are then run 

on a gel with an alternate electric field change  and separated based on their sizes. 

Compare to the conventional agarose gel. PFGE differs from static to an alternate 

electric filed and capable of separating larger (10 to 800 kb) fragment. Once the DNA 

fragments and fingerprint produce on the gel, the fingerprint data could be, analyzed 

using different software packages e.g. BioNumerics (http://www.applied-

maths.com/bionumerics). After analyzing the local public health laboratory pattern, it is 

also possible to compare the local fingerprint pattern with national wide or global 

database (e.g. PulseNet central database) to find strains similarity. Probably the PFGE 

typing method still consider as the ‘gold standard’ of choice in the typing of human 

bacterial pathogens and the investigation of disease an outbreak. PFGE is relatively 

costly, labor-intensive, lacks reproducibility, and time-consuming to obtain a result. The 

degree of discrimination also depends on the choice of restriction enzymes [70] (Figure 

2.8). 
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Figure 2.8: Representative PFGE of seven clinical E. coli isolates (Source Hirai, 2013). 

Multilocus sequence typing (MLST): The Multilocus-sequencing typing (MLST) 

provides a high-resolution typing approach to uncover allelic variants based on i  seven 

housekeeping genes (450 to 500 bp). The MLST approach allows detecting variations 

in the different loci within a species and permits the identification of the identical clone. 

MLST typing exhibit lack enough resolution to investigate the epidemiological 

concordance such as to distinguish outbreak and non-outbreak isolates. There are 

several available MLST typing schemes hosted on different publicly available websites. 

For example, for E. coli there are three different MLST schemes available. Namely, 

Mark Achtman’s seven genes scheme, the Pasteur Institute eight genes scheme, and 

Shiga toxin producing E. coli, 15-genes scheme [71]. There are several software 

packages, or online resources available to analyze MLST data from sequencing (E.g. 

https://github.com/tseemann/mlst, https://cge.cbs.dtu.dk/services/MLST/). Although, 

MLST is currently one of the most popular genotyping methods, but it is a time and 

cost-intensive method. However this method is widely used to generate evidence in 

population genetics and reconstruct microevolution of epidemic bacteria by selecting 

appropriate housekeeping genes [72] (Figure 2.9). 
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Figure 2.9: Minimum spanning tree analysis of 85 N. eningitidis. Here each circle corresponds to 

indicate the number of isolates of a particular type. The sequence type has given beside the circle. Each 

Thick, solid lines denote   single-locus variants; whereas   the dotted lines indicate types that differ in 

more than two loci. (Source Schouls ML, 2006). 

Multilocus variable number of tandem repeats analysis (MLVA): The MLVA is a 

technique related to MLST based on PCR amplification, and is a fast andportable 

method that analyzes multiple VNTR loci of rapidly mutating repetitive DNA 

sequences. Although MLVA is faster, easier and more inexpensive to perform than 

MLST, there are issues with reproducibility and validation. Therefore, MLVA is not 

suitable for long-term epidemiological surveillance [73]. 

Ribotyping: This method involves fingerprinting of genomic DNA and relies on the 

relative stability of the 16S, 23S, and 5S rRNA genes coding for ribosomal RNA 

operons. Conceptually, ribotyping is similar to probing restriction fragments of 

chromosomal DNA with cloned probes. The genes are fragmented using restriction 

enzymes, and resulting DNA fragments separated by electrophoresis show 

polymorphic regions with varied size and sequence. Several ribotyping-based studies 

have successfully shown taxonomic classification of complex microbial communities in 

water, soil, and other environments [74]. 

Repetitive sequence-based PCR (rep-PCR): Microbial genomes contain numerous 

non-coding, repetitive DNA sequences (33 and 40 bp) that occupy intergenic regions 

and their arrangement varies between strains (500 to 1,000 copies per genome). The 

rep-PCR technique relies on amplifying and separation these repetitive sequences to 

produce unique DNA profiles or fingerprints for individual bacterial strains. The rep-
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PCR is a useful tool for strain tracking in routine pathogen surveillance and disease 

outbreak investigations. There are three families of repetitive sequences exist, the 35-

40 bp repetitive extragenic palindromic (REP) sequence, the 124–127 bp 

enterobacterial repetitive intergenic consensus (ERIC) sequence and the 154 bp BOX 

element which frequently use in REP-PCR assays [75]. 

DNA Microarrays: This method offers a rapid, specific and cost-efficient approach and 

has been proven particularly effective for detecting the presence of a gene of interest. 

DNA microarray is a collection of thousands of spotted DNA probes immobilized in an 

ordered pattern onto a solid surface (a microscope glass slides or silicon chips or nylon 

membrane). The probes can be PCR products of open reading frames (ORFs), 

amplified from the available sequenced genome. The target molecule is initially 

fluorescently labeled later hybridized by base pair matching to its cognate recognition 

probe, which is presented on the plate. Since the probes on the microarray are 

organism-specific, the detection signals generated upon hybridization provide the 

basis for pathogen identification. DNA microarray not only used for genome-wide 

comparison of their genetic contents, but also have been used to measure changes in 

expression levels and to detect mutations  [76].  

Whole genome sequencing (WGS): The whole genome sequencing (WGS) method 

provides a superior alternative when compared to the genotyping methods discussed 

earlier and introduced a significant breakthrough in microbial epidemiological studies. 

. Currently, with the advancement of high-throughput benchtop NGS instruments like 

454, Illumina, PacBio and Oxford Nanopore, WGS whole genome could be achieved 

in less than 24 hours. At present, data interpretations from all WGS platforms are still 

computationally challenging. During the last decades, the rapid technological 

improvement in sequencing technology and subsequent bioinformatics analysis has 

transformed our understanding of biological knowledge [77,78]. Looking back over the 

past decade the development of WGS technology could be marked by three major 

phases as follows  
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Table 1: Comparison of most common bacterial typing techniques (adapted from Adzitey et al. 2013, Li 

et al. 2013, Sabat et al. 2013). 
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Figure 2.10: Schematic representation of different typing methods and their resolution levels within 

a typical population structure (Source Maiden, 2013 & modified) Different levels of loci information 

can be associated with hierarchical nomenclature schemes.  

2.8. Genome sequencing  

2.8.1. First revolution in sequencing  

In the the 1990s, the bacterial genome-sequencing revolution was initiated by the 

introduction of automated DNA sequencing technologies. However, the development 

started in the late 1970s, by Sanger and later Maxam and Gilbert in 1977. Both these 

platforms were based on sequencing by synthesis (SBS). Sanger’s sequencing 

methods were popular comparing to Maxam and Gilbert method DNA sequencing that 

is also called as the ‘First- Generation Sequencing’ (FGS). With Sanger’s technique, 

Sanger and colleagues successfully deciphered the PhiX174 bacteriophage genome. 

The basic mechanism used deoxynucleotide (dNTPs) and fluorescently labeled 

modified dideoxynucleotides (ddNTPs) to act as chain terminators as 

dideoxynucleotides lack of 3 ́OH and stop chain elongation further separated in a 

parallel fashion on acrylamide gels in capillary electrophoresis to obtain the final output 

[79,80]. 

2.8.2. Second revolution in sequencing  

There was another continual modification of sequencing concurrent with the 

development of Sanger sequencing, although the basic principles have remained 
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same with an addition of massively parallel sequencing of millions of DNA fragments 

simultaneously. In the second revolution, major game changers were introduced by 

454 Life Sciences, Life Technologies and Illumina sequencing technology. In 2005 the 

first pyrosequencing “sequencing-by-synthesis” platform became commercially 

available by 454 Life Sciences, which was later acquired by Roche [81,82]. The 

technology behind pyrosequencing chemistry was based on emulsion PCR [83] 

(emPCR) of DNA coated beads and light is detected and measured after it is produced 

by luciferase sulfurylase reaction. In the first step, double-stranded DNA (dsDNA) is 

fragmented by nebulization to shorter lengths ranging between 100 bp–3 kb. The blunt-

ended fragment followed by phosphorylated and ligated to adaptor into dsDNA. Next, 

dsDNA fragments are then separated into single-stranded DNA and the fragmented 

DNAs mixed with the micro-sized agarose beads (~28µm diameter). Each bead 

surface carried oligonucleotide sequence, which is complementary to an adaptor 

sequence of fragmented DNA and one DNA fragment bind with one bead. After mixing, 

the library fragment is captured by the specific oligonucleotides on the beads and the 

complex mixed with oil-water emulsion. Next, the fragmented DNA on the bead is 

amplified by an emulsion PCR, which produces around one million copies of each 

fragmented DNA. Each bead is then placed into a picotiter plate, which allows 

placement of only one bead  and is mixed with DNA polymerase and sequencing 

buffer. The next step is pyrosequencing where each plate acts as a flow cell and each 

time depended on the incorporation of a new nucleotide released light by the activity 

of pyrophosphates, ATP sulfurylase, and luciferase, which determined incorporation 

events of each nucleotide. At each time, the light signal emitted by the amplified 

reaction is captured by using by CCD (charge-coupled device) camera, which further 

proceeds to generate a flowgram to get a final sequence. The 454 platforms have been 

used in a great variety of applications such as clinical microbiology and functional 

genomics, and its long reads have made it especially appealing for studies of 

microbiomes since only longer reads can generally be identified with greater accuracy 

and precision of the complex region of a genome. Few major drawbacks of 454 

detection relates to the homopolymers present in the DNA to be sequenced i.e. 

consecutive stretch of a similar bases) which often can result in an error, and cause 

an insertion-deletion (indel). A major factor relates tothe cost of the instrument 

(~$500,000) and cost per megabases (~$60) [84]. Another game changer in this era 

was Illumina (Figure 2.11) sequencing technology, which began in mid-1998 with an 
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Indian-born British chemist Prof. Shankar Balasubramanian and Prof. Herchel Smith 

from Medicinal Chemistry in the Department of Chemistry the University of Cambridge. 

The major idea behind was “Sequencing by synthesis" (SBS), which developed in 

Solexa in 1998. In 2007, Solexa was acquired by Illumina, and large-scale microbe, 

human and other animals sequencing has been achieved by this approach. The 

Illumina sequencing workflows include three basic steps: 

1. Library Preparation: In the first step of the Illumina protocol, an adenylated DNA 

adapter is ligated with 5′ and 3′ randomly fragmented DNA. Alternatively, 

“tagmentation” combines the fragmentation and ligation reactions into a single step 

that greatly increases the efficiency of the library preparation process.  

2. Cluster Generation: For cluster generation, a parallel PCR bridge amplification takes 

place to generate the dense cluster where each of the DNA fragment is binds and 

forms a bridge.  

3. Sequencing by synthesis: After cluster generation of sequencing, four fluorescent-

labeled nucleotides are sequenced of each cluster on the flow cell surface in a parallel 

fashion. In each cycle, a single labeled deoxynucleotide triphosphate (dNTP) is added 

to the nucleic acid chain. The labeled nucleotide serves as a terminator for 

polymerization, after each dNTP incorporation, and the fluorescent dye is imaged to 

identify the base and then enzymatically cleaved to allow incorporation of the next 

nucleotide [85]. 
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Figure 2.11: The three revolutions in sequencing technology that have transformed the landscape of 

clinical microbiology (Source Loman, 2015). 

2.8.3 Third revolution in sequencing (3rd GS) 

Another revolution in the sequencing technology was achieved by introduction of single 

molecule sequencing by Pacific Biosciences (Pacbio) and Oxford Nanopore. The first 

single-molecule real-time (SMRT) sequencing was developed from Pacific 

Biosciences. Unlike first and second-generation sequencing technologies, PacBio do 

not require amplification of DNA.  

In principle, the SMRT technology follows two main steps. Firstly, SMRT bell 

generation: where fragmented dsDNA is ligated to the hairpin adaptor to both the ends 

called a SMRTbell (Figure 2.12). The fragment size varies from 250 to ~10kb. In next 

step the library is then load onto a SMRT cell that contains an array of several thousand 

(~75,000) of individual Pico liter wells termed as zero-mode waveguides (ZMWs). 

ZMWs are nanoscale metal apertures within which no propagating modes of light can 
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exist and it acts as a detector during sequencing, when DNA molecule passed inside 

the ZMWs via polymerase each time fluorescent bases added and light emitted. Each 

time the fluorescent recorded by an array of the movie of light pulses [86,87] and 

fluorescence color determined which nucleotide has incorporated (Figure 2.13). An 

important advantage of PacBio sequencing, compare to earlier technology is the longer 

read length with less runtime. These long reads  are extremely valuable to resolve the 

complex repetitive regions of the genome.  PacBio also can detect DNA methylation, 

which is very helpful to study biological regulation, such as gene expression, gene 

silencing, and host–pathogen interactions. In October 2015, PacBio has launched 

another new sequencing platform the Sequel system, with ~1 million ZMWs per SMRT 

cell, and up to seven times more reads with half the instrument cost.  

 

Figure 2.12: Diagrammatic representation of PacBio SMRTbell preparation workflow Firstly the input 

sample dsDNA is fragmented into desire size. The ends are then repaired and ligated to hairpin adaptors 

(blue), which forms a closed circle. Later purified templates are submitted into a sequencer (Source: 

Kong N, 2017). 

 

Figure 2.13. Diagrammatic representation of SMRT sequencing technology (Source: Rhoads A, 2015). 
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Another cutting-edge real-time sequencing technique was introduced by Oxford 

Nanopore technology (ONT). ONT also referred as fourth generation sequencing, as 

sequencing performed here without intervening PCR amplification.   It has the potential 

to quickly and reliably sequence within a minimum effort and short time (e.g., entire 

human genome for less than $1000). The principle behind real-time nanopore 

sequencing is to apply an electrical potential across a membrane, and the changes of 

electric current are monitored to determine whether any analyte has passed through 

the protein-inserted (α-hemolysin) pore. When analytes such ssDNA molecule is 

passed through the pore, each base is disrupting the current to a different extent which 

allowing nucleotides to be identified by the detector [88,89]. This technology not only 

allows us to study the DNA molecule but RNA and protein molecules also could be 

identified. The error rate of ONT is still high, base calling algorithms needed in order to 

reduce error rates. 

2.9. From reads to the complete finished genome  

The new generation of sequencing technologies is revolutionizing in the field of 

molecular biology and genetics paradigm. Currently, with the advancement of 

sequencing technology, genome sequencing becomes a routine and affordable health 

care procedure. Some new sequencing technologies have spurred by rapidly 

decreasing costs of genome sequencing. Despite this advancement in sequencing the 

major bottleneck bioinformatics analysis, particularly in genome assembly, error 

correction and gaps present in final assembly are always lagging behind.  

2.9.1. Preassembly steps 

Before running the genome assembly, quality assessment of raw reads are needed 

because good quality data leads to an accurate assembly. In raw read cleaning steps, 

the base quality, GC content, presence of adaptor sequences, abundance repeat and 

duplicate sequences should be assessed. Also in Illumina sequencing technology PhiX 

phage DNA is often added to the sequencing reaction, which should be removed 

before assembly. There are several command line or web based tools that are publicly 

available for conducting a quality assessment of raw FASTQ files. Tools such as 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) or multqc [90] 

provide quality statistics of raw reads. Quality Trimming of low-quality bases (<Q30) 
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can be performed by using tools such as Trimmomatic [91] or cutadapt 

(http://cutadapt.readthedocs.io)  

2.9.2. De Novo assembly approaches  

The strategies adopted by genome assembly can be widely divided into two categories: 

de-novo assembly (if no prior knowledge is available) and reference based assembly 

(complete reference genome to guide) [92,93]. The basic strategy of De novo assembly 

is the process of stitch together the short NGS overlapping reads into contiguous 

sequences (contigs) without the use of any reference genome as a guide. The most 

efficient assemblers for short-read sequence assembler are typically followed one of 

several strategies such as greedy, overlap layout consensus (OLC) [94], de Bruijn and 

string graphs approach [95]. The choice of the paradigm depends on the 

characteristics of the sequencing data being assembled. For example, OLC or string 

graph is mostly used for longer, more inaccurate sequencing data. The approaches 

follows three major phases: initially all overlaps reads are first identified, secondly the 

overlaps, information is then constructed as a graph and finally the consensus 

sequence is inferred from the graph (Hamiltonian path). First generation genome 

assembler such as Newbler, TIGR, Arachne, Celera Assembler (CABOG), Minimus, 

Edena, CAP, PCAP followed the OLC approach [96]. The major dis-advantages of 

OLC approach are to handle repeated parts of a genome, correct order of the contigs 

and thereby being a time-consuming approach. Introduction of the most widely used 

de Bruijn graph led to significant improvement in the genome assembly. Here assembly 

based on k-mer graphs (Figure 2.14) extracted from the input reads. The first step here 

is starting with a k-mer size from read information and split the original raw reads. Next, 

a directed graph use to connecting pairs of k-mers with overlaps between the first k-1 

nucleotides and the last k-1 nucleotides. The direction of the arrow goes from the k-

mer, whose last k-1 (Eulerian path) nucleotides are overlapping, to the k-mer, whose 

first k-1 nucleotides are overlapping [97]. Tools such as Velvet, ALLPATH, ABySS, 

SOAPdenovo, SPades. Compare to earlier strategies major advantage here no 

calculation of pairwise alignments needed, which speed up the assembly. The 

disadvantage here k-mer graphs are sensitive to choose the parameter k Even though 

there are more than fifty assemblers available, no particular package stands out as the 

best solution for de novo genome assembly. Performance of an assembler would 

largely depend on sophisticated properties of genome content, and NGS data, such as 

error rate, read depth, final error correction [98,99] (Figure 2.15). 
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Figure 2.14 : Simplified genome assembly steps.  

 

Figure 2.15: General workflow of the de novo assembly of a whole genome. Initially, by overlapping 

reads, contigs are assembled from short reads before scaffolding, and the remaining gaps are filled. 

Through this procedure, a draft genome consisting of chromosomes are built. Some unfilled gaps may 

remain in the draft genome (Source Sohn, 2016).  

2.9.3 The coming era of long-reads sequencing and hybrid assembly 

The development of third generation sequencing (TGS) technologies like single 

molecule Real-Time (SMRT™) sequencing and Oxford Nanopore Technologies (ONT) 

methods has been a major driving force behind the rapid advancements in genomics 

in last five years. Notably, the advent of second generation sequencing (SGS) is 

capable of generating hundreds of thousands or millions of short DNA sequence reads 

at a relatively low cost. Recent years, TGS is capable of generating long sequence 

reads allows without amplification-free approaches in a shorter time and at even lower 
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costs per instrument run. Long reads sequencing could also be used as the 

intermediate bridge for short reads assembly, which is very useful for investigating 

structural and copy number variation within de novo assemblies of the sampled 

populations. Combined hybrid analysis of long-read and short-read sequencing 

technologies not only offer to improve the assembly quality, N50 values, but also fill 

the gaps generated by conventional NGS platforms [100] (Figure 2.16 ). Long reads 

sequencing platforms has also followed a different algorithm for de novo assembly and 

analysis protocol,  such as PacBio, have specific de novo assembly algorithm, e.g. 

Hierarchical Genome Assembly Process (HGAP) [101], FALCON toolkit 

(https://github.com/PacificBiosciences/FALCON), Canu [102].Nanopore sequencer 

also use different assembler e.g. GMAP, Graphmap [103] and MHAP [104].  

 

Figure 2.16: In house workflow for producing hybrid assemblies by using short reads and long reads 

sequencing approaches. 

2.9.4. Post-assembly data analysis 

Once contigs are assembled from the sequencing reads, the next step is to evaluate 

the quality of genome assembly. In order to obtained a gap-free, high quality 

assembled genome we need pass through draft assembly into a variety of post 

assembly protocols.  

Assembly Quality assessment: It is important to evaluate the performance of the 

quality of the genome assembly. To evaluate, the user needs a statistical approach for 

quantifying the error rates of the assemblies. There are several standard metrics such 

as N50 (length of the contig that represent 50% of total assembly length) and counting 
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numbers are often used for assembly evaluation. Tools such as QUAST, KAT, Icarus, 

misFinder are widely used [105,106] to evaluate assembly quality for downstream 

analyses.  

Assembly quality Improvement: Genome assembly from short-read sequencing 

technologies can have many internal errors such as genomic rearrangement and also 

fragmented into contigs. The incomplete and fragmented assembly leads to errors in 

gene identification in downstream genome annotation, which subsequent introduce 

biases in gene content within species, as well as gene gain and loss between species. 

Several comprehensive post-assembly genome quality improvement pipelines are 

available for polishing the assembly, e.g. eg. PAGIT (post-assembly genome-

improvement toolkit) and Pilon. These tools improve draft genome assemblies by 

aligning sequences against contig ends, variant detection  and performing local 

assemblies to produce gap-spanning contigs [107,108]. Once the genome assembly 

quality improvments are done, the draft genome are ready to run annotation steps. 

Genome annotation: The massive genome sequencing data using NGS technologies 

are demanding automated systems capable of accurate annotation of a complete 

genome in a short time. In order to understand the functional content of a sequenced 

genome (e.g. ORF, tRNA, rRNA) and to do many downstream genome analyses high-

quality annotations are needed.. The underlying mechanism behind most of the 

annotation software can be divided into two distinct stages. In the first stage, the step 

the expressed sequence tags (ESTs), proteins, Untranslated regions and so on, are 

identified and aligned to genome. Once a sequence has been defined, in the 

'annotation' phase, these data is synthesized into gene name. Because this process is 

intrinsically complicated and involves so many different tools, the programs that 

assemble to compute data and use to create genome annotations are generally are 

referreded as annotation pipelines. Current pipelines are focused mainly on the 

annotation of protein-coding genes and rRNA element inside the cell. Tools such as 

Prokka, RAST, DIYA, RATT, BASys, and BEACON are widely used for bacterial 

genome annotation [109–113]. 

With the advancement of NGS bacterial genome sequencing, become easy and 

accessible in short time with limited cost. There has been a needed to develop new 

bioinformatics tools and areas, such as comparative genomics. The following section 

of the study will describe fundamental features of genome analysis.  
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Phylogeny: The phylogenetic or evolutionary tree represents the evolutionary 

relationships between genomes. In a molecular epidemiological study, phylogeny is 

routinely used to generate the outbreak of the transmission network. There are several 

algorithms available for the construction of the phylogenetic tree. e.g..: Distance-matrix 

methods: In this method, the distance between every pair of sequences is calculated 

by multiple sequence alignment and the resulting distance used for the construction of 

final tree. One most commonly used a distance matrix method is Neighbor-joining 

method, where the clustering algorithm  measure the distance matrix to construct the 

phylogenetic tree. Another popular approach Maximum parsimony method where 

phylogenetic tree constructed based on the evolutionary events observed in the 

sequence data. Maximum likelihood: here the tree constructed based on probability 

distributions. This method uses several substitution models to calculate the probability 

of particular mutations. Finally, Bayesian inference: This approach uses different 

substitution model to construct the tree. For example, one of the most popular model 

is general time reversible model (GTR), which  is frequently used. Commonly used 

tools for construction phylogeny are PHYLIP, PhyML, RAxML , and GARLI, etc. [114–

116]. To visualize phylogenetic trees, common desktop based GUI tools such as 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/), Dendroscope, MEGA, or Web-

based applications such as iTOL (http://itol.embl.de/) (190), EvolView [117] and 

phandango [118] could be used.  

Pan and core genome analysis: In 2005, Tettelin et al. introduced the concept of 

pan-genome. The pan-genome or supragenome has been defined as the entire 

genomic repertoire of a given species. According to the gene, content pangenome is 

divided into three groups: core (shared by all genomes), dispensable or accessory 

genome (which contains genes present between two and n–1 strains), and strain- (or 

isolate) specific unique genes (present only in a single strain).  The relation of pan and 

core genome always depends on the size of the dataset. Few common tools for pan 

genome analysisare: Panseq (Pan-Genome Sequence Analysis Program), PGAT 

(Prokaryotic Genome Analysis Tool), PGAP (Pan-Genome Analysis Pipeline), BPGA, 

and Roary [119–122]. 



  Introduction  
	 	 	

33	
	

 

Figure	2.17:	Schematic	representation	of	Pan	and	core	genome	analysis.	

Genome-wide association studies (GWAS): GWAS are the relatively new way of 

analyzing large-scale microbial genome sequencing data and becoming a popular day-

to-day. In the last decade, GWAS have revolutionized a remarkable advent in human 

genetics to identify the genetic variation that influences the phenotype. The principle 

underlying GWAS is to identify certain SNPs at positions that are associated within a 

group of strains and influence the phenotype. by using several statistical model. In 

contrast to human genetics, bacterial genetics are relatively difficult due to the high 

plasticity of the genome caused by mobile genetic elements. Few existing 

approaches rely on genetic variation in the pan-genome with the phenotypes such 

as antimicrobial resistance or host adaption gene. Commonly use tools for GWAS 

include PLINK [123] and Scoary [124]. 

2.9.4 Genome characterization by using Web-Based tools:  

Currently, high-throughput sequencing can generate high-quality sequence data within 

a short time period and at limited costs. In public health laboratories once whole- 

genome sequencing reads are generated, in next step theidentification of species, 

genome annotation, pathogen characterization, epidemiological profile, virulence and 

antimicrobial-resistance genes prediction can became a routine clinical practice. 

Several integrated and comprehensive web based tools are available for computing 

such information, which could be included in infection control settings without relatively 
deep bioinformatics knowledge, e.g.:  

Specis level identification: Taxonomic classification from sequening reads is one of 

the most important tasks in clinical microbiology. Species level identification is very 

helpful in disease outbreak analysis. For species level identification, some useful, user-
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friendly popular web based tools as discussed here. a) KmerFinder. KmerFinder is a 

method based on K-mer statistics across the entire genome for identifying bacterial 

species from raw sequencing reads or from contigs. The tool is accessible as a web-

based platform (https://cge.cbs.dtu.dk/services/KmerFinder/) b) SpeciesFinder: 

SpeciesFinder predicts the prokaryotic species based on the 16S rRNA gene from 

NGS reads. A web service of SpecisFinder is available at 

(https://cge.cbs.dtu.dk/services/SpeciesFinder/). c) JSpeciesWS: JSpeciesWS is a 

computational pairwise comparison approach in between two species belonging same 

species or not based on their Average Nucleotide Identity (ANI) value. 
(http://jspecies.ribohost.com/jspeciesws/). 

Virulence gene finding: Identification and characterization of virulence genes are a 

common practice in the clinical microbiology laboratory. There are several web-based 

tools available for detection virulence gene. a) Virulence factor database (VFDB): The 

VFDB is a web-based virulence factors database which provides in-depth coverage of 

virulence  for bacterial pathogens [125] (http://www.mgc.ac.cn/VFs/), b) 

VirulenceFinder: The VirulenceFinder is a web-based approach to identify virulence 

genes. The tool uses BLASTn approaches to identify the virulence genes and can be 
accessed online (https://cge.cbs.dtu.dk/services/VirulenceFinder/)  

Antimicrobial resistance gene finding: To identify the resistance genes, one of the 

most important tasks in all microbiology laboratories. Two most popular web-based 

antibiotic resistance gene prediction tools are a) ResFinder: identifies horizontally 

acquired resistance genes and finds the chromosomal mutations for acquiring 

resistance. ResFinder uses BLASTn for identification of acquired antimicrobial 

resistance genes. It is accessible via online 

(https://cge.cbs.dtu.dk/services/ResFinder/). b) RGI/CARD: is a manually curated 

database of antibiotic resistance gene. For detection of the antibiotic resistance gene, 

the CARD uses protein homology models and also predicts their products and 
associated phenotypes. (https://card.mcmaster.ca/).  

Genome annotation: As it has been mentioned in the preceding section, genome 

annotation is a key process for identifying the protein-coding and non-coding regions 

of a genome gene location and functions. One of the most popular web based 

annotation: a) Rapid Annotation Using Subsystem Technology (RAST) is an 

automated web-based tool that can be used to annotate assembled contigs. The 

algorithm uses GLIMMER3 to identify gene–candidate, closest neighbor identification 
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by using BLASTP, the compare nearest neighbor by BLASTX finally overlap pattern 
remove by BLAST and SEED k-mer-based annotation algorithm [110] 

Plasmid Characterization: As mentioned earlier section, plasmids act as a potential 

vehicle for harbor and spreading of resistance gene. The detection of plasmids Inc 

types and frequencies are important. Few popular web-servers for plasmid detection 

and pMLST prediction a) PlasmidFinder: PlasmidFinder [126] and pMLST, which 
provide in silico detection and characterization  

Phage detection: Bacteriophage are one of the most dynamic part of bacterial 

genome sequencing data) PHAST (PHAge Search Tool) [127] is a web server to 

identify, annotate and graphically display prophage sequences from sequenced data 

within bacterial genomes or plasmids. PHASTER is the current upgraded version of 

the popular PHAST web server (http://phaster.ca/), which capable to identify, annotate 
and graphically display prophage sequence. 

The web-based application evolved mostly in the last decade. The major advantages 

of web-based analysis that it is accessible everywhere without local installation that 

saves resources. Typically, the minimum requirement for a client would be a web 

browser on the PC. The major drawback of web-based tools are security risks a user 

could lose control of critical data in the unsecured server. Sometimes server failure on 

the host side or large, which could be slow down the analysis and undocumented 
changes made to the server misleading in the analysis.  

2.10. Objectives of the study 

Advancements and extensive applications of next-generation sequencing (NGS) 

technologies are providing a new and powerful way to obtain insights into genomics. 

Sequencing technology has been evolved at an impressive speed, with drastically 

reduced time, cost and higher throughput compared to low-resolution typing methods. 

The overall aim of this thesis was to investigate the molecular ecology and 

epidemiology of ESBL producing E. coli in Germany by adapting whole genome 

sequencing technology.  

The specific objectives of the present dissertation were: 

Objective I 
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To investigate the population structure and genomic relatedness of ESBL-producing 

E. coli isolates recovered from the human, animal and food across Germany, in 

between 2009 to 2016. 

Objective II 

To understand the abundance and diversity of the common (e.g. ST410) and host 

specific clone (e.g. ST131) of ESBL- producing E. coli across and detailed study of 

genome level relatedness among them. 

Objective III 

Adapting third generation single molecule sequencing, to study the genome plasticity 

of a globally disseminated clone (E. coli ST131) on a  single base resolution level. Also 

to, evaluate the role of mobile genetic elements in adaption of E. coli ST131 into the 

human and animal. 

Objective IV 

Finally to study the potential role of translocatable units (Tus) in the dissemination of 

antibiotic resistance genes.  
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3. Population structure of multidrug resistant ESBL 
encoding E. coli in Germany  

3.1 Publication 

Manuscript under preparation (This study is the part of unpublished thesis work of 

HG). 

3.2 Contribution 

The author (H.G) was part of designing of the study and drafting the manuscript under 

the supervision of T.C. He performed pre-processed of raw reads and subsequent 

bioinformatics analysis and interpretation of the data. 

3.3 Abstract 

The global incidence of ESBL-producing E. coli has been an ever-growing burden in 

the hospital and community settings. Infections caused by ESBL-producing E. coli are 

associated with higher rates of mortality, morbidity as well as health care costs. Despite 

the growing importance of this pathogen, there is limited knowledge about the 

population structure and epidemiology of ESBL encoding E. coli. The potential 

reservoir and transmission of this bacterium remain inconclusive due to lack of large-

scale population-based cohort studies. Here we performed whole genome sequence 

(WGS) of a subset of (n=4386) of ESBL-E.coli. Our aim was to investigate the 

population structure and genomic relatedness of a systematic collection of multidrug 

resistant ESBL- E. coli isolates (n=281) recovered from human, animal, food and the 

environment across Germany, between 2009 to 2016.  

Our in-depth genomic and phylogenetic analysis elucidated a highly diverse population 

of ESBL E. coli are circulating in different hosts. In spite of large genetic diversity, a 

limited number of clones that emerged in the diverse background and highly 

associated with the spread of the antibiotic resistance gene. The predominant allele 

blactx-M-15/1/14 was mostly associated with the conjugative IncF plasmids connoting 

transmission potential. Our genome-wide association (GWAS) study showed that the 

isolates from different ecological compartments share not only core genes but also 

there is always bidirectional gene flow in the accessory genomes, across the different 

hosts. Single nucleotide polymorphism (SNP) clustering approach shows that the 
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entire population could be grouped into nine major and five minor clusters. Overall, we 

identified the existence of most common and niche specific, highly adapted antibiotic 

resistant clone in a diverse ecological niche. For example, E. coli ST131 was identified 

in humans and companion animals whereas ST410 were distributed in different niche 

and circulating across humans, animal and the environment. Our study highlight that 

there are significant differences in strain-specific transmission across diverse hosts. 

3.4 Background and Introduction 

E. coli predominantly colonizes in the gastrointestinal tract of humans and many other 

warm-blooded animals. Pathogenic E. coli has a potential role to carry out a wide range 

of life threatening infections, including urinary tract infection (UTIs), bacteremia, 

meningitis in particular in the immunocompromised host [128][129]. According to the 

recent report, it has been estimated that on an average 150 million UTIs cases occur 

per year worldwide which costs the global economy in excess of 6 billion US dollars 

annually [130]. By the mechanism of horizontal gene transfer these bacterium acquired 

several mobile genetic elements (MGEs) such as genomic/pathogenicity islands, 

prophages, specific virulence factors that contribute to fitness advantage [131]. 

Recently a majority of these strains began to gain attention due to acquiring antibiotic 

resistance and form as a pathogenic organism to an extensive drug resistance (EDR) 

pathogen, which imposing serious therapeutic challenges. The worldwide emergence 

of ESBL encoding E. coli particularly CTX-M 15/1 producers among humans, 

companion animal, livestock to food became a major public health issue, offering a 

limited treatment option leading to higher morbidity and mortality [132]. ESBL encoding 

genes are mostly believed to be located on conjugative plasmids and less frequently 

on the chromosome which can be disseminate through horizontal gene transfer. 

ESBLs can efficiently hydrolyze the beta lactam ring of β-lactam antibiotics, such as 

third-generation cephalosporins and monobactams, as a result, these bacteria confer 

resistance to beta-lactam group of antibiotics such as penicillins, cephalosporins. Until 

now, a limited evidence has been speculated about the mechanism of spreading of 

ESBL genes into the different host via food chain or via direct contact of humans and 

animals [133]. In recent years, with the advent of high-throughput DNA sequencing 

technologies, it is possible to generate whole-genome sequence data from large 

numbers of clinically relevant bacterial isolates in a short time and it is possible to 

compare genomic differences in SNPs derived genotypes and virulence gene profiles 
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between different isolates and to draw a transmission and evolutionary pathways. In a 

previous study, our group phenotypically characterized the epidemiology of ESBL-E. 

coli from extra intestinal infections in humans and companion animals that were 

collected over a 5 yrs. time period in Germany [134]. In continuation of our previous 

work, this study was aimed to investigate the population structure, genetic composition 

of ESBL producer and genetic relatedness of ESBL-producing E. coli isolated from a 

shared population across Germany.  

3.5 Material and methods 

A total of 4386 non-repetitive ESBL-producing E. coli isolates were recovered 

throughout Germany in between 2009 to 2016 from various hosts (human, animal, food 

and environment). Initially, species level identification was performed using MALDI-

TOF and ESBL production was confirmed using the double disk synergy test, and the 

presence of a particular ESBL gene was confirmed using allele-specific PCR. In the 

current study a representative subset of 281 isolates, human (n=83), livestock (n=71), 

companion animal (n=66), and food (n=61) were selected for sequencing and analyzed 
to assess the genetic relatedness among all those isolates.  

Genomic DNA was isolated using a Purelink™ DNeasy Kit (Invitrogen, Darmstadt, 

Germany) according to the manufacturer's instructions. WGS was carried out on a 

MiSeq platform (Illumina Netherlands BV, Eindhoven, The Netherlands) using an 

Illumina Nextera XT library with 2 × 300 bp paired-end reads. Raw reads were 

assembled using SPAdes Assembler v.3.5 [135] and finally contigs with a size >500 bp 
were used for annotation and subsequent analysis. 

3.6 Results and discussion 

3.6.1. Sequencing and Genomic information 

The draft genome sequences obtained from Illumina sequencing yielded, median value 

numbers of contig > 500bp is 116 (± 53) and genome size median value 5.04 mb (± 

.28 mb) median GC content 50.66 N50 value 155655 (± 84795). MLST identified the 

presence of 87 different ST types among all the 281 studied isolates. Overall in our 

studied population balCTX-M-1, balCTX-M-15, balCTX-M-14 were predominant in the 

compartments (Figure 3.1 & 3.2). Our MLST analysis reviled fourteen major ST types 

(ST10, ST410, ST131, ST744, ST88, ST167, ST224, ST101, ST69, ST117, ST135, 
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ST361, ST648 and ST354). Among all fourteen ST types, nine ST types (n<5) were 

predominant in all four compartments. Human isolates (~51%, 43/84) were members 

of  the major ST types such as, ST131, S10, ST224, whereas isolates in companion 

animal (~39 %, 25/64)  were predominantly associated ST10, ST410, ST131, ST88, 

ST167, in the case of livestock 46% (33/71) isolates were predominant by ST410, 

ST10, ST744, ST101, ST135, food isolates  39% (24/61) ST167, ST410, ST744, 

ST117. Overall, ST410, ST88, ST10 types were observed in all of our studied  

compartments. In a total of 58 different fimH allele and 126 serogroup had identified in 

our investigated isolates. From draft genome assembly, we categorized the pan (all 

the genes present in an organism), core (gene shared by all the isolates) and 

accessory (gene present specific set of isolates) genome. Our in -silico analysis 

indicate the large pan genome containg 36,365 genes of which approximately 14.5% 

(n=2488) constituted the core genome. Further analysis revealed 342 genes were soft-

core genes (in 99% and <= 100%, in 95% and < 99 %), shell genes were 3045 (in 15% 

and < 95%) and cloud genes 30,493 (in 0% and < 15%). The core genome composed 

of a 2.49 mb where 4,46,553 polymorphic sites were identified. This large number of 

the accessory genome indicates a high degree of diversity of ESBL E. coli among 

different habitat. To investigate overall genomic similarity and relationships of all 

isolates we did SNP based core genome alignment and generated a maximum 

likelihood phylogenetic tree (Figure. 3.3). Core genome analysis revealed that all the 

isolates formed few lineages and each lineage composed of isolates from the different 

compartment. 

 

Figure 3.1: Percentage of each CTX-M variant in 281 ESBL-encoding E.coli isolates in different host. 
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Figure 3.2: Prevalence of predominant ESBL genes in 281 ESBL-encoding E. coli studied isolates. 

. 

Figure 3 3: Genome phylogeny overview of 281 ESBL- encoding E. coli. The phylogeny was determined 

considering the core genome alignment and maximum likelihood reconstruction phylogeny by using 

Parsnp program implemented in Harvest suite [136]. 

3.6.2. Phylogenetic analysis 

Next, we employed a combined analysis of core genome and the accessory genome 

of studied isolates. The pattern of accessory genome demonstrated a high level of 

concordance between the core genome tree and a tree built from the 

presence/absence of accessory genes. This allows us to separate the entire population 

into nine major clusters. This combined analysis suggests that each cluster has a 
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unique set of accessory genes, which could be generated through an early 

evolutionary process of each cluster (Figure 3.6) This analysis indicates that during 

evolutionary process each cluster acquired some accessory genome and is then 

evolving separately thereby forming separate lineages, which may have a role in niche 

adaptation. The pairwise SNP distance between isolates showed that the population 

was highly structured and composed of a closely related cluster with far more distantly 

related clones (Figure 3.5). According to SNP density cluster analysis revealed  a total 

of 89 different clusters with a total of 446,553 polymorphic sites present in our studied 

population. All the clusters further classified into nine major clusters.  

 

 

 

 

	

 

Figure 3.4: Comparison between the core genome (left) and the accessory genome tree (right). The 

accessory genome tree was constructed from the presence and absence pattern of genes and a core 

genome maximum likelihood tree were constructed from the variation in core genome. The connected 

line indicate the identical isolates of the two trees. 

 

 

 

 

 

 

Figure 3.5: A histogram of pairwise SNP distances between all 281 isolates. The SNP distances were 

plotted based on the core genome alignment. 

Core genome tree  Accessory genome 
tree 
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3.6.3. Cluster composition analysis  

Our distance based clustering approach reveled the entire population to be comprised 

of nine predominant clusters, which harbor isolates from different compartments with 

a limited number of genetic distances (e.g. within the cluster three <100 SNPs, Figure 

3.5). It supports one general hypothesis that ESBL E. coli is widely disseminated 

among different host types with closely related isolates. MLST composition of each 

cluster identified only few major ST types or similar clonal complex which are 

predominate in all clusters. We also identified one cluster (cluster IV) to be only 

composed of the isolates from human and companion animals. Which could be an 

evidence that certain ST types (e.g. ST131) can only be found in human and 

companion animal. We use the evolutionary time variation of each cluster to calculate 

the recent nucleotide substitution rate and the role of genetic recombination to form 

each cluster (not included in the thesis). 

 

Figure 3.6: Maximum likelihood tree constructed from the core genome with gene presence (blue) 

absence (white) matrix of accessory genome elements. 
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Figure 3.7: The SNP- distance based Neighbor Joining tree were generated using RaxML. 

 

Figure 3.8. Cluster composition analysis Left side represent all the source of isolates of each cluster 

and right side represent MLST types of each cluster. 

 Figure 3.9. Frequency of overlapping plasmid replicon types of ESBL encoding E coli.  
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3.6.4. Plasmid analysis 

Plasmids are important “vehicles” to spread of antibiotic resistance gene. The 

identification of complete structure of plasmid is always challenging from short reads 

sequencees. We therefore searched for  Inc types of all the plasmids from plasmid 

finder database. plasmid Inc type analysis indicated that  there are in a total thirty 

different replicon types present in our investigated dataset, which further clustered into 

nine major replicon types. This analysis shows there is a great diversity in plasmid 

types. In spite of huge diversity in plasmid Inc types, IncF plasmids ((IncFII /IncFIB, 

IncFIA/) were the most frequently observed replicons types in our investigated strains. 

Among all of those IncFII/ IncFIB predominant which indicates an intrinsic character 
with all those strains (Figure 3.9).  

3.7 Conclusion 

The current study describes an in-depth genome sequence analysis of a collection of 

ESBL encoding E. coli across Germany. Our genomic and phylogenetic approaches 

elucidated the population structure and dynamics of ESBL E. coli. Overall, the 

observed ESBL E. coli population in Germany,are highly diverse with a large accessory 

genome. Based on SNP and gene level the entire population clustered into nine major 

cluster and five minor clusters. Each cluster is predominated by either a single 

sequence type or a clonal complex type. There is always overlap between core 

genome as well as the accessory genome pattern also such as resistance gene and 

plasmid types. From plasmid analysis, we observed that multiple IncF replicons were 

present, which further classified into eight major combinations. Among all the observed 

Inc types, IncF plasmid predominate within all compartment and mostly associated with 

ESBL resistance gene. Our findings support the suggestion that ESBL –E. coli already 

well adapted in different ecological habitats. Our high-resolution whole genome 

sequencing data enable us to illustrate the population structure and dissemination of 
ESBL E. coli  national wide. 

. 
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4. Genomic portrait of E. coli ST131: The emergence of a 
globally disseminated clone 
4.1 Publication 

Manuscript: under preparation, (This study is the part of unpublished thesis work of 
HG). 

4.2 Contribution 

The author (H.G) was part of designing of the study under the supervision of TC. He 

performed the data analysis and carried out subsequent analysis such as developing 

and designing a bioinformatics workflow with BB and SD, for 3rd generation genome 

assembly and annotation. 

4.3 Abstract 

Since the initial emergence in 2008 E. coli sequence type 131 (E. coli - ST131) has 

spread explosively throughout the world and emerged as a major antimicrobial-

resistant pathogen. E. coli ST131 often associated with fluoroquinolone-resistane (FQ-

R) and causing bloodstream infections (BSIs) and urinary tract infections (UTIs). 

Recent population genomics studies elucidated the fine clonal structure of ST131, 

which comprises into three major lineages A, B and C, and multiple sub lineages (H30, 

H30-R, and H30-Rx) with the distinct resistance profile. The reasons behind the 

globally dissemination and expansion of ST131 sub clones in different ecological niche 

remain undefined. Here we analyzed 30 E. coli ST131 genomes (n=18: in-house, 

n=12: public database) of ESBL and non-ESBL ST131 by using PacBio RSII long-read 

sequencing platform. We determined the complete closed genome of 18 E. coli ST131 

that shared ~64% of their core genome and a highly conserved IncF plasmid as a core 

component. On the other hand, ~36% genome content and non-IncF plasmid formed 

the accessory genome, which comprised of prophages, IS-associated elements, and 

acquired genetic islands that harbor metabolic genes for low energy substrates, type 

IV secretion systems, iron uptake, toxin anti-toxin systems and antibiotic resistance 

genes indicated high genomic plasticity. Those acquired genetic components could be 

accounted for the overall success of the ST131. The antibiotic resistance gene 

cassette (blaCTX-M) was variably present on both IncF and non-IncF plasmid as well as 
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at different positions on the chromosome indicating that it has been acquired 

independently. Spread of the blaCTX-M cassette could be attributed to the plasmid-

encoded IS26 dependent translocatable unit (TU). Our data provide a differentiated 

view of ST131 evolution, because the core elements in ESBL and non-ESBL genomes 

are conserved, we conclude that ST131 represented an already highly adapted clone 

that is ancestral to these habitats. Subsequent horizontal gene transfer (HGT)-based 

acquisition of antibiotic resistance and genomic island (GIs) together with niche 

specific bacteriophage uptake promoted the emergence and expansion of these 

lineages. 

4.4 Background and Introduction 

The emergence of antibiotic resistant E. coli ST131 presents a substantial clinical 

challenge in developed as well as in developing countries [137] [138]. E. coli ST131 is 

more frequently predominant in humans compared to other hosts. Earlier some low-

resolution typing based studies (such as MLST, PFGE) suggested that most of the E. 

coli ST131 show highly similar PFGE, virulence, antibiotic resistance gene profile 

[139]. Population genetic studies indicate that E. coli ST131 is often associated with 

fluoroquinolone resistance and  belongs to phylogenetic group B2, serogroup O25:H4 

with type1 fimbriae FimH30 allele. Worryingly E. coli ST131 often associated with 

blaCTX-M alleles, which confer the resistance against several  antibiotics such as 

cefotaxime, ceftriaxone, ceftazidime, cefepime and monobactams. Recent, NGS 

based studies suggested E. coli ST131 evolved from a single source which further 

separated into lineages (A, B and C) and several subsequent sub-lineages (A, B0, B1, 

B2, B3, B4, B5, C0, C1 and C2) of ST131 [140] [141]. Among all these lineages, 

isolates from lineage C, particularly sub-lineages C1/H30R (associated with FQ-R) and 

C2/H30-Rx (associated with the ESBL CTX-M-15) were rapidly expanding and 

associated with human infection while lineage A and B appeared to be sporadic. 

Lineage A is represented to contained the fimH 41, lineage B harbour fimH22 whereas 

lineage C mostly associated with fimH30  allele. Moreover ST131 also associated with 

several ExPEC-associated virulence genes such as adhesion, cell protection, iron 

uptake, toxin yersiniabactin receptor, serum resistance (papA, iha, kpsMTII, iut and 

sat, fyuA, iss, traT). Along with all these features ST131, commonly harbour different 

plasmids such as IncF, IncI1, IncN and IncA/C [141].  The current view of expansion 

of the lineage of ST131 was promoted due to use of fluoroquinolone and the 
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introduction of third generation cephalosporin since late 1980s. In addition, 

homologous recombination events have accelerated the evolution process. Several 

other hypotheses highlights acquisition of several different plasmids and phages as 

playing a major role. Overall, the draft genome sequence studies provide an idea about 

the epidemiological aspects to a greater extend while offering clues for the 

perspectives involved in the evolution of ST131, such as, specific connotation with 

antibiotic resistance traits, obligatory association of IS and antibiotics genes, 

cumulative prophages as well as genomic islands and homologous recombination. To 

get a holistic view of evolution of E. coli ST131 that comprises the core genome and 

accessory genome is currently not available. In order to get genomic portrait in more 

detailed in this study, our first aim was to identify  the genome dynamics of ST131.. 

Secondly, to identify the role of introduction of prophages, genomic islands, IS 

elements and horizontal gene transfer in the evolution of ST131. Thirdly, 

characterization of plasmids composition of the  E. coli ST131. Finally, to identify the  

unique genomic composition of each clade that make each clades  more successful 

than others. This study employed third generation single molecule real-time (SMRT) 

sequencing technology to analyze the genome plasticity of ESBL and non-ESBL E. 

coli ST131 strains (n=30) isolated from human and companion animals. Closed 

genome analysis, indicated that the core components of ST131 are highly conserved 

in both ESBL and non-ESBL isolates. A conserved IncF plasmid harboring blactx-M 

allele along with a number of toxin anti-toxin systems and metabolic gene cassettes 

was also observed. Genomic variability is mainly driven by the accessory genome such 

as prophage, acquisition, and loss of genomic islands as well as integrase-associated 

genetic segments. Our findings provide a differentiated view of ST131 evolution: 

because ESBL and non-ESBL genomes share, conserved core elements and it 

suggest that ST131 represents a highly adapted clone that is ancestral to these 

habitats. Subsequent acquisition of antibiotic resistance and genomic island (GIs) 

together with niche specific bacteriophage uptake promoted the worldwide expansion 

of several lineages. 
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4.5 Material and methods 

Sample collection, preliminary characterization and whole genome short read 

sequencing are described earlier in chapter three. Long read resequencing was 

performed for the 18 E. coli ST131 isolates for current  study by Single Molecule Real 

Time (SMRT) technique on a PacBio RSII (Pacific Biosciences, Menlo Park, CA, USA). 

SMRTbell™ template libraries were prepared according to the manufacturer’s 

instructions using the 20 kb template preparation using BluePippin™ size-selection 

system. De novo long read genome assembly was carried out using the 

RS_HGAP_Assembly.3 protocol. Contigs obtained from each independent de novo 

assembly was error corrected by using illumina short reads, trimmed, circularized, and 

adjusted to dnaA as first gene for all chromosomes. Chromosomes and plasmids were 

annotated using Prokka 1.11 [142] followed by manual curation. In silico MLST was 

performed, pan genome, genomic islands and prophage analysis performed by using 

PHAST [143]. Virulence genes were identified using, an in-house virulence gene 

database using LS-BSR package [144]. Plasmids were experimentally determined by 

S1-nuclease digestion followed by pulsed-field gel electrophoresis as described 

previously. From sequencing data plasmid, incompatibility groups were determined by 

PlasmidFinder [126]. 

4.6. Result and discussion: 

4.6.1. The genome size and core genome of ST131 genome 

Closed genome comparison identified that the entirely studied ST131 chromosomes 

were highly syntenic, with two small exceptions consisting in an inversion of 957 kb 

and 257 kb in H049 and H132. The genome size of ST131 considerably varied from 

4,717,338 - 5,260,260 bp (Figure 4.1). All investigated isolates belonged to phylogroup 

B2 with serogroup O25b:H4 (n=15), O16:H5 (n=3) and O150:H5 (n=1). The whole-

genome SNP phylogeny grouped to three major clonal lineages (A, B and C) of ST131. 

Core genome analysis identified in a total of 3,433,668 bp regions shared among all 

the investigated lineages, which included 3547 core genes (99% <= studied isolates 

<= 100%), 329 soft-core genes (95% <= studied isolates < 99%), 1181 shell genes 

(15% <= studied isolates strains < 95%) and in a total of 7460 (0% <= studied isolates 

<= 100%) genes were identified as pan genome. Lineage C observed more stable core 

genome compare to A and B, with 4323 core genes. 
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Figure 4.1: Box-plot comparisons of genome size estimates based on complete genome of E. coli 

ST131 three different lineages (lineage A, lineageB, lineage C). LineageC represent highest genome 

size.	

	

Figure 4.2: Chromosomal synteny of E. coli ST131 genomes. Pairwise alignments of genomes were 

generated using Mauve. All genomes were aligned to EC958 as a reference. The colored bars inside 

the blocks are representing similar homologous locally collinear blocks. 
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4.6.2. The chromosomal synteny of ST131 genome  

A total of 525-545 chromosomal locations was identified to be as recombinant within 

the ST131 lineages that disturbed the genomic synteny. These chromosomal regions, 

mainly generated due mobile genetic elements (e.g. transposons, genomic island, IS 

elements) which mainly resulted from horizontal gene transfer mechanism. Notably, in 

case of lineage C there were ~544, variable regions (VRs) observed. We classified 

these VR according to their gene content (minor-VR: regions that contained less than 

five genes, medium VR: 6-15 gene and major-VR: more than 15 genes were assigned). 

The minor-VR contributed ~94% of VR and mainly consisted genes that due to point 

mutations, transposons, IS element or insertion of IS elements, whereas the medium 

and major VR (altogether ~6%) were observed generated due to horizontal gene 

transfer events such as prophages and GIs. A total of 39 major variable regions 

(assigned with serial alphabets from A-AL) were observed, which formed due to 

acquisition of prophage and genomic island (Figure 4.2). 

4.6.3. Diversity within all the ST131 lineages  

Comparing 30 closed ST131 genomes identified 13 VR that encode genes for 

functional proteins. Of these HGT segments, eight VR was associated with tRNA, thus 

identified to be GIs while others five were without tRNA and assigned as unclassified-

VR (U-VR). All the GI and most of the U-VR flanked by integrase gene on either end, 

thus are the forms of integrative elements. Unlike prophages, different GI and U-VR 

encoded genes with functionally diverse categorical proteins and offered various new 

capabilities to the strains. Complete or partial metabolic gene operons for utilization of 

metabolite such as glutathione (gsi operon), glutamine (gln), galactitol (gat), 

galactarate (gar), propanediol (pdu), dihydrogen-fumarate (hyb), ethanolamine (eut), 

glucitol (srl) and iron (fec) were observed on various GI and U-VR. Virulence factors 

such as aerobactin synthase (iuc operon), secreted auto-transporter toxin (sat), 

enterotoxin (espC), afimbrial-adhesion (afa), antigen 43 (Ag43), flagella (fli, flg), 

fimbriae (dra), pili (pap), increased serum survival (iss), chemotaxis (laf); type II 

secretion system (eps), and capsule (kps) were also observed to be encoded on GIs 

and URs. 

A careful observation indicates the uniqueness of 55 genes to lineage C. These genes 

were found to be present at a unified location of the chromosome and this location was 

nothing but the genomic island associated with tRNA-Leu. These genes revealed 

presence of five gene-clusters that were encoding- restriction modification (RM) 
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system, Fe (+3)-dicitrate transport system (FecBCDE), choline transport, while 

function of two gene cluster remained speculative. The presence of unique RM 

systems has been shown to be involved in the shaping lineages. The RM system 

present in lineage C was an unusual combination of Type IV (mrr) and Type I (hsdM-

hsdS-hsdR) system forming ‘immigration control region’. The Fe (+3)-dicitrate 

transport system known mainly for the siderophore based iron acquisition. 

Nevertheless, once the ferric citrate is taken up citrate is released along with iron, 

which is an important intermediate of TCA cycle. Low carbohydrates environment such 

as urine was invading strains has to survive on the limited resources, citrate can act 

as an important source of energy. Additionally, citrate and iron present in the human 

urine that forms a ready-made chelation complex can be captured by Fe (+3) dicitrate 

transport system. Thus, for bacterial strains invading the urinary tract, presence of Fe 

(+3)-dicitrate transport system is an advantage. Third gene cluster observed was 

responsible for the high affinity choline transporter (BetT), which is responsible for 

superior osmoprotection by Choline over Glycine or Betaine. Consequently, these 

uniquely occurring genes elucidate the formation of different lineages of ST131 as well 

as suggestive of host-adaptation (Figure 4.3). 
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Figure 4.3: Variable regions of the ST131 strains. A plot was constructed based on the core genes (x-

axis) (referenced to EC958 co-ordinates at the bottom) and the genes that disturbed the synteny (y-

axis). The factors that caused disturbance in chromosomal synteny (or variable regions) were revealed 

to be prophages, genomic islands, unclassified region and regions containing more than one type of 

factors (red) are marked. The right side vertical labels denote the lineages. (Key: GI = genomic island, 

ф = prophage, Uncl = unclassified variable regions). 
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4.6.4. IncF plasmid replicon as a single conserved plasmid of ST131  

All studied ST131 strains contained at least one plasmid. A total of 45 plasmids (> 7 

Kb, circularized, 1-4/strain) was identified from 30 strains that varied from 24.4 - 209 

Kb in size (avg size ~110kb). Plasmid analysis was made based on replicon types, 

backbone structure and phylogenetic approach (Figure 4.4). The metadata of plasmids 

consist of two major groups, such as IncF and non-IncF allele. Moreover, the IncF 

allele was found to be the only active allele. The plasmid backbone alignment showed 

similar collinear blocks shared across the IncF plasmids, suggesting the conserved 

backbone structure. The main variation observed among the commonly observed 

within IncF plasmids were associated with the IS- and integrase- associated elements 

(Figure 4.5). These elements carried cargo of toxin-antitoxin systems, sugar 

metabolism and antibiotic resistance genes.  

 

Figure 4.4: Comparative analysis of the IncF type plasmids of ST131 strains. IncF type plasmid showed 

similar backbone structure as demonstrated by MAUVE alignment on the right side. Dendrogram based 

on the DNA-DNA similarity of plasmids (left side). Name of the plasmids are highlighted as per their 

lineages A (red), B (orange) and C (green). Black squares represent the presence, while the number in 

it gives allele details. Grey square represents presence of a particular trait in non-IncF plasmid of the 

same strain. Key: G3P= IS-associated cassette of Glycerol-3-phosphate, Fe-S = IS-associated cassette 

of ron uptake system, blaCTX-M allele and their copy number in parentheses, * = variants 
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Figure 4.5: Comparative analysis of the non ESBL IncF type plasmids and ESBL IncF plasmids of 

ST131 isolates. Major difference observed in IS associate cassette region.  

 

4.7 Conclusion 

The results of this study provide compelling evidence that clonal expansion is the 

dominant mechanism for the proliferation of both ESBL encoding and non-ESBL also 

From the closed genome analysis, we observed that the core components of ST131 

are highly conserved in both ESBL and non-ESBL isolates. In comparison with the 

earlier draft genome based study [145], where authors identified a large plasmid 

diversity, our closed genome study found a differentiated view about plasmid diversity. 

The current study revealed a conserved IncF plasmid harboring blactx-M allele along 

with a number of toxin-antitoxin systems and metabolic gene cassettes. Genomic 

variability is mainly driven by accessory genome such as prophage, acquisition and 

loss of genomic islands as well as integrase-associated genetic segments. Our 

findings provide a differentiated view of ST131 evolution: because ESBL and non-

ESBL genomes share, conserved core elements and it suggest that ST131 represents 

a highly adapted clone that is ancestral to these habitats. Subsequent acquisition of 

antibiotic resistance and genomic island (GIs) together with niche specific 

bacteriophage uptake promoted the worldwide expansion of several lineages. 
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5. Emergence of blaCTX-M-27-encoding E coli ST131 lineage 
C1/M27 clone in clinical isolates in Germany 
5.1 Publication	

Emergence of blaCTX-M-27-encoding E coli ST131 lineage C1/M27 clone in clinical 
isolates in Germany 

Ghosh H, Doijad S, Falgenhauer L, Fritzenwanker M, Imirzalioglu C and Chakraborty 

T*  

Emerging Infectious Diseases EID-17-0938 DOI: 10.3201/eid 2310.170938 

Complete Genome Sequence of blaCTX-M-27 -Encoding E coli Strain H105 of ST131 
Lineage C1/H30R 

Ghosh H, Bunk B, Doijad S, Schmiedel J, Falgenhauer L, Spröer C, Imirzalioglu C, 

Overmann J, Chakraborty T*  

Genome announcement: Volume 5 Issue 999 e00736-1  

5.2 Contributions 

The author (H.G) conceived and designed both the studies together with other authors. 

He processed data for both the publication, carried out all subsequent analysis, 

designed, and developed workflows of data analysis under the supervision of T.C. He 

did genome assembly, annotation and subsequent analysis. Furthermore, he drafting 

the manuscripts and responded reviewer comments with other authors.  

5.3. Abstract 

E. coli ST131 became high-risk pathogens causing infection humans and animal. 

Retrospective studies suggest strains, particularly one clade, C/H30R of ST131 are 

spreading extensively worldwide and frequently associated with urinary tract infections 

(UTIs) and bacteraemia. ESBL production is predominant with subgroup 

fluoroquinolone resistant E. coli ST131-C2/H30 which conferred by the CTX-M-15 

allele. Recently another emerging subclade of E. coli ST131, C1/H30R1-M27 has been 

reported, which often associated with blaCTX-M-27 allele and dramatically increased in 

Japan and France. Our study reported the emergence of ESBL producing E. coli 

ST131 C1/H30R1-M27 in Germany. We highlighted here that the incidences of E. coli 

ST131 C1/H30R-blaCTX-M-27 isolate increased from zero to 45% in 2009 to 2016. The 
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whole genome comparative study suggested that genomic distance of all the German 

and Japan isolates separated though only with few SNPs, suggesting a clonal origin. 

Our data suggest an ongoing shift in ESBL allele of E. coli ST131 clone associated 

with blaCTX-M-27 alleles, which could be a major warrant for further attention.  

5.4. Background and Introduction 

Over the past twenty years, E. coli ST131 have emerged as a prevalent vehicle for the 

spread of extended-spectrum β-lactamases (ESBL) worldwide. This is particularly true 

for isolates of the clade ST131 C/H30R that are associated frequently with urinary tract 

infections (UTIs) and bacteremia [138] [137]. While the ESBL-production of 

predominant subgroup ST131 C2/H30 is conferred by the CTX-M-15 allele (Rx), the 

emerging subgroup C1 is often associated with yet another CTX-M alleles such as -14 

and -27. An increase of C1/H30R-bla CTX-M-27 ST131 isolates were first time 

reported for clinical isolates in Japan [146]. More recently, a dramatic rise from 0-65% 

in the incidence of ST131 C1/H30R-bla CTX-M-27 isolates in France between 2010 

and 2015 has been reported [147]. In addition, there are sporadic reports of ST131 

isolates harboring blaCTX-M-27 from other countries [146]. To investigate the possible 

expansion of blaCTX-M-27 encoding ST131 in Germany, we examined ESBL-producing 

isolates obtained from livestock, human, companion animals, food and environment 

between 2009 to 2016 (Figure 5.1). Here we report that E. coli ST131 C1/H30R-blaCTX-

M-27 is exclusively present in human populations and that its incidence increased from 

zero to 45%. 

5.5. Material and Methods 

In two nationwide research projects (DZIF, RESET) a total of 4,386 non-repetitive 

phenotypically ESBL-producing E. coli isolates were obtained from humans, livestock, 

and companion animals. For this study, a representative subset of 953 ESBL isolates 

were subjected to whole genome-sequenced using the Miseq/NextSeq (Illumina, The 

Netherlands). Briefly, genomic DNA was isolated from overnight cultures by using the 

Purelink Genomic DNA Mini kit (Invitrogen, Darmstadt, Germany). For short read 

whole genome sequencing, an Illumina Nextera XT library (Illumina Netherlands BV, 

Eindhoven, The Netherlands) was used for sequencing on an Illumina MiSeq or 

Illumina NextSeq with 2x300 or 2x150 read length, respectively. In the second study 

to investigate the genomic organization in more detailed one blaCTX-M-27 encoding E. 
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coli ST131 isolate H105 (Accession numbers: CP021454) belonging to lineage 

C1/H30R was sequenced for its complete genome using PacBio RSII system (Pacific 

Biosciences, USA). 

5.5. In silico analysis: 

For genome assembly of Illumina reads we used Spades V.3.6 [135] and annotation 

were carried out using prokka V1.11 [142] with default parameter settings. Spades 

assembly yielded an average number of contig 149 N50 value 102438 bp and genome 

size ~5mb. PacBio data of H105 de novo assembled based on 59,447 PacBio long 

reads with an average read length of 10,355 bp using “RS_HGAP_Assembly.3”, 

included in the SMRT Portal version 2.3.0. Later on Illumina short-reads were mapped 

onto the assembled sequences of H105 using BWA in order to obtain a highly accurate 

genome with QV60 final quality. Assembly quality was assessed through QUAST v2.3 

[105], and contigs with >500 bp were considered for further analysis. Multilocus 

sequence typing (MLST) was carried out by ‘mlst-package’ (). The blaCTX-M profiles, 

FimH type, serotype and virulence gene were determined by Resfinder, FimTyper, 

SeroTypeFinder, VirulenceFinder respectively (https://cge.cbs.dtu.dk/services). 

Plasmid incompatibility and plasmid multilocus sequence typing were identified by 

PlasmidFinder and pMLST, respectively. The presence of M27PP1 region was 

confirmed by BLASTN. For core genome analysis, draft genomes were compared 

along with isolates from Japan (n=13) using Harvest Suite [136] with a default 

parameter by using EC958 [148] and H105 as a reference genome for in between and 

within the clade. 

5.6 Result and discussion 

In silico multi-locus sequence typing (MLST) identified 17% (159/953) isolates as of 

sequence type 131 (ST131). Of these, blaCTX-M-15 was the most prevalent (46%, n=73) 

followed by blaCTX-M-27 (15%, n=24), blaCTX-M-1 (11%, n=18), blaCTX-M-14(9%, n=15), and 

other blaCTX-M-3/11/17/24/36/47 (6%, n=10). All ST131 isolates with blaCTX-M-27 were of 

serogroup O25b and harbour a fimH30 allele with the exception of a single strain that 

was of serogroup O16 with a fimH41 allele. In 20 of 24 cases, the isolates were 

harboring contigs with F1:A2:B20 plasmid replicons. The F1:A2:B20 plasmid is highly 

conserved in ST131 and ancestral to the H30R/C1 clade, as it is present in all the 

ST131 blaCTX-M-27 isolates regardless of whether they harbor antibiotic resistance 
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genes (5). In the remaining isolates, blaCTX-M-27 was detected on other non-conserved 

F1:A6:B20, F1*:A2:B20, F1:A2: B- and F29: A-:B10 plasmids. Core genome phylogeny 

revealed that all the ST131 C1/H30R blaCTX-M-27 isolates had an average of 294 SNPs 

when compared to E. coli ST131 EC958 (Accession number HG941719). In contrast, 

isolates within the C1-M27 clade are only separated by 68 SNPs (Figure 5.2). 

Comparative genomic analyses revealed that isolates from Germany and Japan 

shared ~85% of the genome with an average difference of SNPs between these 

genomes indicating clonal and possible evolution from a single common ancestor. 

Recently C1-M27’ clade was defined by the presence M27PP1 prophage-like region.  

 
*2013 data not available 

Figure 5.1: Proportions of different blactx-M allele in ST131 studied population during the 7-yr sampling 

framework. The number of isolates has been plotted by year ordered by the frequency. The emergence 

of blactx-M-27 encoding ST131 observed in 2014 and 2016, respectively. 

 

5.7 Conclusion 

Our results provide evidence for the recent emergence of ST131 subgroup FimH30-

O25b, clade C1-M27, harbouring blaCTX-M-27 in Germany and reinforce observations 

made elsewhere. Our findings suggest an ongoing shift in CTX-M alleles associated 

with ST131 infections worldwide that now warrants further attention. 
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Figure 5.2: Core genome SNP based phylogenomic analysis of blaCTX-M27-encoding E. coli ST131 from 

Germany and Japan (13). An average of 292 SNPs was identified in in between C1-M27 and non C1-

M27.Whereas an average of 59 SNPs was observed within the C1-M27 clade. The isolates from 

Germany and Japan clustered together in a unified clade separated from non-C1-M27 clade (Source 

Ghosh, 2016). 
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6. Circulation of clonal populations of fluoroquinolone-
resistant CTX-M-15-producing Escherichia coli ST410 in 
humans and animals in Germany 
	

6.1 Publications 

Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-
producing E.coli ST410 in humans and animals in Germany 

Falgenhauer L, Imirzalioglu C, Ghosh H, Gwozdzinski K, Schmiedel J, [...], 

Chakraborty T * 

 Int J Antimicrob Agents 2016 Jun; 47 (6):457-65.  

Chromosomal Locations of mcr-1 and blaCTX-M-15 in Fluoroquinolone-
Resistant E. coli ST410 

Falgenhauer L, Waezsada S. E, Gwozdzinski K, Ghosh H, Doijad S, [..], Chakraborty 

T* Emerging infectious diseases 22 (9), 1689-1691	

6.2 Contributions 

The author (H.G) performed data analysis and drafting the manuscript on both the 

manuscript with LF and TC. Furthermore, H. G. carried out de novo assembly 

annotation and subsequent in silico analysis e.g. core genome SNPs analysis in 

between each clade by using Parsnp and virulence gene screening by using LS-BSR 

pipeline. 

6.3 Abstract  

The prevalence of ESBL producing multidrug-resistant E. coli, specially CTX-M-type 

ESBLs increasing in the community as well as in the hospital setting and became a 

major concern of one health issue. Here, we evaluated the relative abundance of 

different sequence type (STs) within the population of blaCTX-M-15 encoding E. coli, 

which sampled from humans, companion animals, livestock and environments in 

between 2009-2014 from Germany. To get into further insights into the complex 

ecology we have chosen high-resolution whole-genome sequencing approach for our 

analysis. Our analysis revealed that the CTX-M-15 encoding E. coli highly diverse with 

26 different sequence types (STs) were detected of which ST410 were predominant 
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within all the population. Core genome analysis revealed five (A-E) major clusters are 

present within ST410 population of which B and C shows a limited number of SNPs 

along with chromosomal insertion of blaCTX-M-15 allele. Conclusively our analysis 

revealed the potential of clinically relevant multi-resistant bacteria E. coli ST410 found 

in different ecological niche, which could be a high-risk in interspecies transmission in 

coming future for one health approach.  

6.4 Background and Introduction 

The emergence of ESBLs encoding multidrug-resistant bacteria especially E. coli is 

increasing worldwide in the recent years [58]. Majority ESBL encoding genes are 

plasmid encoded and confers resistance to penicillins, cephalosporins and 

monobactams. Several types of CTX-M-type enzymes have been reported from 

different parts of world whereas majorities are CTX-M-15, CTX-M-1 predominant 

among different niche [149] [150]. To investigate the transmission and colonization of 

ESBL E. coli several epidemiological studies has performed in the UK, The 

Netherlands and Germany [151]. Most of these studies showed that isolates from 

different source share identical CTX-M alleles, common STs and have similar 

resistance plasmids. This suggests that they shared a common gene pool and few 

accessory genomes play a role in terms of adaptation in different ecological niches. 

Most of the studies are limited in terms of number or the low resolution analysis 

approach. Here we performed high resolution whole genome sequencing to identify 

the genetic relatedness of major STs within blactx-m-15 encoding E. coli in animal and 

human populations from different locations in Germany. We highlighted majority of 

them are predominant by only few STs Types among them ST410 are predominant in 

all compartments. Core genome SNPs based phylogenetic analysis revealed five 

major clades within ST410. Few clades show limited number of SNPs with an overlap 

pattern of genetic content. Our findings suggest that the occurrence of frequency of E. 

coli ST410 is also high in the commensal niche, as well as hospital settings.  

6.5 Material and Methods   

In between 2009 -2013 a total of 111 phenotypically ESBL producer isolates from 

different sources (humans, animals, and environment) were collected under two 

national wide antimicrobial surveillance program (RESET) and the German Center for 

Infection Research, DZIF (http://www.dzif.de/). Preliminary ESBL production and 
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presence of CTX-M-15 resistance gene were identified using double disc synergy test 

and PCR. For whole genome sequencing were performed as mentioned  proceeding 

chapters. 

6.6 Analysis of Sequence Data 

Raw illumina reads were assembled using Spades (version 3.0) [135] and contigs size 

over 500 bp were selected for further analysis. Core genome phylogeny and density of 

single nucleotide polymorphisms (SNPs) were analyzed using ParSnp [136] and 

Ginger under the Harvest Suite. In silico MLST and resistance gene, pathogenicity 

island and plasmid incompatibility groups were identified by web based MLST tool, 

resfinder [152] PAI DB and plasmid finder [126] respectively. For virulence gene, 

screening in house local virulence gene database were used and gene screening were 

performed by using LS-BSR pipeline [144].  

6.7 Result and discussion 

Phylogenetic group and multilocus sequence typing (MLST) analysis revealed all the 

studied isolates belongs to 4 major phylogroup A (n = 54), B1 (n = 16), B2 (n = 15) and 

D (n = 12) with a total of 26 different STs types. Among all isolates only four ST types 

were predominant within all compartments, ST410 (n=27), ST131 (n=15), followed by 

ST224 and ST648 (n= six isolates each). The all the remaining isolates comprised 22 

different known STs. ST410 were most abundant cluster in all populations (humans, 

livestock, companion animals and farm environment) (Figure 6.1).  

 
Figure 6.1: Distribution of different STs Types with four different compartments (Source Falgenhauer, 
2016). 
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Core genome phylogenetic analysis of all ST410 isolates revealed that all isolates 

clustered into five clades designated as A–E. All the isolates share 86% of their core 

genome. Isolates of Clades A and E were exclusively human and companion animal. 

Clade D isolates were from a mixed population (humans and livestock) while it is true 

for clade C also. Clade B isolates were a mixed populations of all four different sources. 

In silico serotyping revealed clade A and B as O8:H21, isolates of clade C as O8:H9 

and isolates of clades D and E as O-:H9 serotype. SNP analysis revealed clade B and 

clade C were tightly bound, the total number of SNPs were separated by between 31 

- 70 SNPs. Comparative analysis revealed clade A and C differed from clade B by 121 

and 146 SNPs. In a total of SNPs were detected in isolates of clades D and E in 

between 1528 and 1536 SNPs (Figure 6.2). Three different chromosomal insertion 

sites were identified with transposition unit “orf477- blaCTX-M-15 - ISEcp1”. In some case, 

the transposition unit was mediated by prophage. Chromosomal insertion was 

significantly different then plasmid-mediated transposition. In case of plasmid the role 

of IS26 mediate antibiotic resiatnce gene transfer were observed. Virulence gene 

screening revealed several virulence factors such as lpfA gene (codes for long polar 

fimbriae) prfB gene (coding for P-related fimbriae), serum survival gene (iss) microcins 

or colicins (mcmA or cma). Toxin genes (astA and senB). All isolates harboured the 

ferrichrome and ferrous iron-uptake operons (fhuABCD, feoABCD), the iron(III) 

dicitrate uptake operon (fecRI-ABCDE) as well as the enterobactin siderophore operon 

(entABCDEFH, entS, fepABCDEG, fes, ybdZ), sit operon (sitABCD, Fe2+ 

transport),aerobactin operon (iucABCD, iutA) salmochelin operon (iroBCDEN) 

yersiniabactin operon (fyuA, irp1, irp2, ybtAEPQSTUX) was present in isolates of 

clades D and E (Figure 6.3). 

6.8 Conclusion 
Our study revealed the genetic relationship of sampled CTX-M-15-producing E. coli 

isolates from the livestock, companion animals, farm environmental sources and 

humans from different regions in Germany. Majority of these isolates belongs to four 

major ST types, and separated by <100 SNPs, which support epidemiological linkage 

of these isolates. Earlier studies suggested that chromosomal locations of blaCTX-M-15 

are relatively uncommon. Our study showed chromosomal insertion insertions of 

blaCTX-M-15 is a common phenomenon, especially in clade B. Plasmid analysis indicated 

that studied population harboured a commonly occurring FII, FIA and FIB plasmid 

replicon types with similar sizes. Future studies needed for the presence of ST410 
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clades which will provide information as to whether this is also the case in other 

countries worldwide. 

	

Figure 6.2: Phylogenetic analysis of the E coli sequence type 410 (ST410) isolates. The phylogenetic 

tree was generated by using Parsnp and visualized by Figtree (Source Falgenhauer, 2016).  

 

 

Figure 6.3: Presence of virulence genes heat map. Here black, grey and white indicate fully present, 

partially present and absent (Source Falgenhauer, 2016). 
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7. Detection of translocatable units in a blaCTX-M-15 
extended-spectrum β-lactamase-producing ST131 E coli 
isolate using a hybrid sequencing approach 
7.1 Publication 

Detection of translocatable units in a blaCTX-M-15 extended-spectrum β-
lactamase-producing ST131 E coli isolate using a hybrid sequencing approach 

Ghosh H, Doijad S, Bunk B, Falgenhauer L, Yao Y, Spröer C, Gentil K, Schmiedel J, 

Imirzalioglu C, Overmann J and Chakraborty T 

International Journal of Antimicrobial Agents, 2016-03-01, Volume 47, Issue 3  

7.2 Contributions 

The author (H.G) was part of designing of the study and drafting the manuscript under 

the supervision of T.C. He processed bioinformatics analysis steps to preprocessed 

data and carried out all subsequent analysis. He designed and developed workflows 

of data analysis of 3rd generation sequencing specially genome assembly and 

annotation under the supervision of BB and T.C. Furthermore, HG investigate reviewer 

comment with T.C and SD for the final publication. 

7.3 Abstract  

Microbes can exchange their genetic material between neighboring microbes by 

horizontal gene transfer (HGT). IS26 plays a major role in the acquisition and 

dissemination of mobile genetic elements in gram-negative bacteria. In this study, we 

have investigated a novel mechanism of lateral gene transfer in bacteria through 

“Translocatable units” (TUs). TUs are direct flanking TSDs in IS26 copies and reflect a 

novel dynamic processes of bacterial genome alteration, involving transfer of antibiotic 

resistance gene via RecA-independent recombination. With the advent of hybrid 

sequencing approach, here we confirmed the complete nucleotide sequence and gene 

transfer mechanism of the two novel TUs. Both the TUs harbor several antibiotic 

resistance genes. One containing (TU-1) a circular DNA element carrying multiple 

copies of IS26 and antibiotic resistance genes such as ant1, blaCTX-M-15, the major 

facilitator superfamily (MFS) efflux pump transporters mphA, emrE, srpC and mdfA, 

genes involved in folate biosynthesis (folA and folP), the phenolic acid stress response 

regulator padR, and cyclic-di-GMP phosphodiesterase adrB genes. Another one (TU-
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2) additionally carries the antibiotic resistance genes aacA4, catB3 and blaOXA-1. This 

is the first report of sequencing based study to identify not only on the ‘static’ genome 

information, but also captures dynamic changes mediated by mobile genetic elements. 

7.4. Background and Introduction 

Transposon mediated lateral gene transfer is a common phenomena for bacterial 

survival and adaptation in different niche [153]. It also plays a key role in the 

dissemination of antibiotic resistance and virulence gene to same bacterial species, as 

well as to bacteria in another genus or species. Recently, studies have demonstrated 

that intramolecular replicative transposition generates circular molecules, containing a 

single copy of the insertion sequence IS26 with an adjacent DNA segment designated 

as a TUs [154][47]. TUs can move as a discrete unit inside bacterial cell and integrated 

at a new chromosomal location via replicative transposition with RecA-independent 

mechanism. The aim of this work is to analyze composite transposons and molecular 

characterization of TUs using third generation sequencing approach. As a specific 

example, we describe one of the most clinically important lineage E. coli sequence type 

(STs) ST131 “translocatable unit” and discuss its possible impact in the dissemination 

of antibiotic resistance gene. Extended-spectrum beta-lactamase (ESBL)-producing E. 

coli ST 131 (ST131) is a pandemic clonal group of strains and emerging global threat 

[155]. CTX-M-type beta-lactamases are the most common ESBL-type found in E. coli 

ST131 strains that are frequently associated with high virulence [65]. In particular, the 

CTX-M-15 enzyme has a worldwide distribution and is often encoded on conjugative 

plasmids, but also, less frequently, on the chromosome [156].  

7.5 Material and Methods 

An E. coli isolate V282 was obtained from a 12-year-old dog presenting with cystitis 

from the local veterinary hospital in Giessen, Germany. Preliminary characterization of 

the isolate revealed the sequence type ST131, harboring the ESBL gene blaCTX-M-15. 

The isolate was resistant to ampicillin, trimethoprim/sulfamethoxazole, cefotaxime, 

chloramphenicol and tetracycline. For Genome sequencing, we used the protocol 

described in chapter III MiSeq platform (Illumina Netherlands BV, Eindhoven, The 

Netherlands) yielded 1,201,696 paired reads with a mean read length of 205 bp. Initially 

the raw reads were assembled by using Spades V.5 (7) after quality-filtering and 

preliminary analysis of the data indicated the presence of multiple copies of genetic 
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elements harboring antibiotic resistance genes such as blaCTX-M-15. However, these 

genetic elements could neither be assigned to the plasmid nor to the chromosome. To 

resolve the issue, we performed long read Single Molecule Real Time (SMRT) 

sequencing (Pacific Biosciences, Menlo Park, USA) from the same DNA isolated from 

V282. Long-read single molecule real-time (SMRT) sequencing (Pacific Biosciences, 

Menlo Park, CA) was performed using the DNA isolated from V282. A total of 53,634 

reads with a mean read length of 9,610 bp was obtained during PacBio sequencing. 

PacBio reads were first assembled by RS HGAP Assembly. protocol included in SMRT 

Portal 2.3.0, after which MiSeq reads were mapped onto the assembled sequence 

using Burrows–Wheeler Aligner (BWA) in order to obtain a highly accurate genome 

with QV60 final quality. Both the circular molecule finally annotated by using prokka 

1.11 (8) and The genome and TUs sequences of V282 has been deposited in the 

National Center for Biotechnology Information (NCBI) (GenBank accession nos. 

KT988018–KT988020). 

7.6 Result and discussion 

Genome assembly resulted in a single circular contig of 5.11 Mb, identified as the 

chromosome and an additional circular contig of 118.3 kb designated as plasmid 

pECOV282. In addition, two discrete circular genetic elements of 23.7 and 16.3 kb 

were assembled, harboring the blaCTX-M-15 allele. Hereby, the 23.7 kb element showed 

a two-fold, the 16.3 kb element even a three-fold increased coverage compared to that 

of the chromosome pECOV282 (Figure 7.1.) Further investigations revealed that these 

elements were identical to each other with the exception of a 6 kb insertion in either 

element. A BLAST search indicated no significant similarity to the chromosome, but 

~99% sequence similarity to pECOV282, suggesting these elements originate from the 

plasmid (Figure 5.1) while absence of repA gene confirms they are not plasmid. High-

confidence assembly generated by PacBio followed by MiSeq read error correction 

eliminated the possibility of these segments being tandemly duplicated on pECOV282. 

All elements contain identical insertion sequences and can be mapped to a common 

region on pECOV282 (Figure 7.2.A). In addition, mapping to pECOV282 using MiSeq 

reads resulted in ~5-fold higher coverage for this region compared to the rest of the 

plasmid (Figure 7.2.B) supporting their presence as separate entities. The high 

coverage ensures the existence of these elements in high copy number, which is an 

attribute of the replicative transposition mechanism described earlier. Both elements 
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carry antibiotic resistance genes as ant1, blaCTX-M-15, and a multidrug efflux transporter, 

the 23.7 kb element carries additional antibiotic resistance genes aacA4, blaCTX-M-15, 

cat and blaOXA-1. 

Based on our analysis, we conclude that these two elements represent dynamic 

regions of frequent transposition events within pECOV282 that are continuously being 

duplicated and excised. For further confirmation, our analysis was compared with 

another 30 ST131 strains, which showed the occurrence of such TUs in 12 cases. A 

careful observation of these clusters revealed these antibiotic resistance genes, and 

IS elements were occurring in a distinctive gene cassette where antibiotic resistance 

genes were flanked between IS26 elements (IS-ARC). Various combinations of IS-

ARC were observed in the different clusters of the different plasmids, suggesting each 

IS-ARC as an independent unit. Thus, in-depth sequencing of a bacterial isolate 

provides information not only on the “static” genome but also captures dynamic 

changes, as indicated by higher copy numbers, such as duplication and insertion-

excision events associated with mobile elements. Our data cautions against 

interpreting presence of additional copies of antibiotic coding resistance elements as 

multiple insertions, either singly or in tandem, within the chromosome or plasmid 

(Figure 7.3).  

7.7 Conclusion  

The hybrid sequencing approach used here by combining Illumina short reads and 

PacBio long reads allows the generation of an accurate and reliable finished and closed 

genome representing a snapshot of genome dynamics within the culture. In many 

cases, short reads mapped to the reference sequence with coverage values above the 

genomic average are considered as artifacts and are often neglected. We recommend 

careful observation of such high coverage regions as they may represent significant 

dynamic changes due to insertion elements with localized replicative activity. 
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Figure 7.1: The representation of the two genetic elements and homologous regions on the closed 

plasmid from E. coli V282 (pV282). From inside out, ring 1: Read mapping indicating fold coverage (note 

comparative ~5x high coverage for genetic elements), ring 2: pV282, ring 3 and 4: 16.3 and 23.7 bp 

genetic element. The outermost circle represents transposon/Insertion sequence (red) and antibiotic 

resistance gene (blue). The image is generated by ‘BLAST ring image generator’ (BRIG) program 

(Source Ghosh, 2016).  
 

 
 

Figure7.2.A: Depth of Sequence data coverage: Schematic diagram showing the coverage of illumina 

read mapping of pV282. Highlighted red region (< 12kb region) indicate the presence of TUs1 in this 

region.  
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Figure 7.2.B: Depth of sequence data coverage: Schematic diagram showing the coverage of illumina 

read mapping of pV282. Highlighted red region (> 110kb) indicate the presence of TUs2 in this region.  

	

 
	

Figure 7.3: Translocatable Units (TU) of the ST131. (A) a typical cassette of TU observed in this study. 

A total of 3 homologues TUs were observed of which two were exactly identical (V282-TU-1, and V260-

TU-1) while V282-TU-2 appended with additional antibiotic resistance genes cassette at one end. (B) 

An evidence for localized replication of TU (in this case V260-TU-1) was observed represented by dot 

plot matrix. (C) TUs mapped against the V282 and V260 (red; four copies of V260-TU-1 and a V282-

TU-1, organe; V282-TU-2). * represented truncated version.
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8. Summary 

During recent decades, the emergence of multidrug-resistant bacteria has become a 

major concern to public healthcare settings worldwide [157–160]. Infections caused by 

drug-resistant bacteria, limiting the available treatment options with a high rate of 

mortality, morbidity and substantial economic burden Indeed, drug resistance 

phenomena occur due to the normal evolutionary process of bacteria, but it accelerates 

when bacteria gets any external selective pressure such as misuse or overuse of 

antibiotics [51]. However, in the last decades the problem of antimicrobial-resistance 

has been increasing due to the growing incidence of infections caused by antibiotic-

resistant gram-negative bacteria. Particularly, the prevalence of extended-spectrum β-

lactamase (ESBLs) and carbapenemase-producing E. coli in clinical settings is 

increasing at an alarming rate [25,161,162]. These ESBLs producers are resistant to 

penicillin, cephalosporin, and monobactam antibiotics and are often associated with 

urinary tract infections and life-threatening sepsis in immunocompromised hosts 

[133,163,164].  

Overall, this thesis demonstrates the genomic characterization and diversity of 

antimicrobial resistant ESBL-E. coli that were isolated during two nationwide 

antimicrobial surveillance projects in between 2009 and 2016. Considering the 

advantages of NGS over the conventional sub genomic typing methods, we used 

whole genome sequencing to monitor the emergence and spread of antimicrobial 

resistance. To the best of our knowledge, this is the first study that considered the 

whole-genome sequence of ESBL-E. coli from humans, animal, environment, and 

food. The first part of this work demonstrates the molecular epidemiology and ecology 

of ESBL-E. coil isolated from a shared population. Our in-depth genomic and 

phylogenetic analysis elucidated a highly diverse population of ESBL-E. coli is 

circulating in the different hosts and ecology. In spite of the large genetic diversity, a 

limited number of clones that has emerged in the diverse background and highly 

associated with the spread of the antibiotic resistance gene. The predominant CTX-M 

allele, blactx-M-15/1/14 that was mostly associated with the conjugative IncF plasmids 

replicon types. Previous studies from Germany, the Netherlands and UK have 

suggested that within ESBL-E.coli population, most commonly plasmid replicon types 

were IncI1-Iγ and followed by IncF [165]. Corresponding with proceeding report, our 

investigation revealed IncF and IncI replicons were also the most common replicon 
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types. Notable, IncFII IncFIB, IncFIA were predominant replicon types, which 

connoting transmission potential. Genome-wide association (GWAS) analysis 

illustrates that isolates from different ecological compartments share not only core 

genes, but also showed bidirectional gene flow in their accessory genomes in across 

different hosts. Moreover, we did not find any clear evidence for the presence of host 

specific resistance gene or virulence factor. Further, compared to conventional typing 

approaches, our analysis also highlighted the application of; single nucleotide 

polymorphism (SNP) based clustering methods could be an alternate approach to 

study a large scale closely related bacterial population. SNP clustering reveled nine 

major and five minor clusters in our studied population. Overall, in this part of the thesis, 

the existence of most common and niche specific, highly adapted antibiotic resistant 

clone in a diverse ecological niche were identified. E.g., E. coli ST131 was exclusively 

identified in human and companion animal, whereas ST10, ST410 were distributed in 

all different ecological niches and circulating across human, animal and the 

environment. Therefore, a significant difference in strain-specific transmission across 

diverse hosts was observed.  

In the second part of the study, we studied the genomic portrait of E.coli ST131, which 

are commonly associated with urinary tract, kidney, bloodstream and other infections 

[166] [167]. We employed third generation, single-molecule real-time (SMRT) 

sequencing technology to analyze the genome plasticity of ESBL and non-ESBL E. 

coli ST131 strains (n=30) isolated from human and companion animals. As mentioned 

above, the major obstacle of the draft genome based study was challenging to 

understand the role of the contribution of core and accessory genome including the 

role of plasmids in evolution. Our closed genome analysis revealed that the core 

components of ST131 are highly conserved in both ESBL and non-ESBL isolates. 

Recent draft genome based studies indicated that a huge and diverse group of 

plasmids were associated with the rapid emergence and successful spread of E. coli 

ST131 [145]. Compared to the earlier study a limited plasmid diversity were observed 

in our studied population. In addition, a conserved IncF plasmid, harboring blactx-M 

allele along with a number of toxin- antitoxin systems and metabolic gene cassettes 

were identified. In the recent studies, it has been shown, that the onset success behind 

ST131 was mainly driven by accessory genome such as prophage, acquisition, and 

loss or gain of genomic islands as well as integrase-associated genetic segments [167] 

[168]. Our analysis also corresponding well together with preceding reports. Moreover, 



Summary 

74	
	

our closed genome analysis provides evidence that the core component between 

ESBL and non-ESBL were conserved, which suggested a differentiated view of ST131 

evolution that represents a highly adapted clone and were ancestral to these habitats. 

Subsequent acquisition of antibiotic resistance and genomic islands (GIs) together with 

niche specific bacteriophage uptake promoted the worldwide expansion of several 

lineages. In continuation with previous studies further, we identified the emergence of 

a major sub-lineage ST131 C1-M27 clade in Germany, which also observed in Japan 

and France [146] [147]. Our analysis illustrates that in Germany the incidence of ST131 

C1-M27 has been increased from 0% in 2009 to 45% in 2016. Our closed genome 

data will help to advance the understanding of the genome plasticity and the role of the 

accessory genome in adaptation and evolution of ST131. Moreover, our high-quality 

data will serve as a reference genome in comparative genome analysis of E. coli 

ST131. 

In the final part of the thesis, the probable mechanisms of the rapid emergence of 

antibiotic resistance were elucidated. Recently, studies have been reported that the 

IS26 plays a key role in the dissemination of antibiotic resistance genes via composite 

transposons [47] [154]. Similarly, in our approaches, the temporal dynamic of the 

bacterial genome mediated by IS26 was investigated. By using single molecule real 

time sequencing method a circular intramolecular replicative transposition comprising 

of only a single copy of IS26 along with an adjacent DNA segment has been identified, 

which is termed a “Translocatable Units” (TUs) [47,154,169]. TUs are novel genetic 

elements, capable of generating tandem arrays of antibiotic resistance genes by a 

mechanism that is distinct from transposition mechanism. Our Study found TUs plays 

a significant role in the mobilization of several antibiotic resistance genes (e.g. ant1 

and blaCTX-M-15) along with drug efflux pump (mphA, emrE, srpC) and stress response 

regulator genes (padR and adrB). Our analysis concluded an accurate in-depth 

sequencing would provide information on not only the ‘static’ genome, but also 

captures dynamic events mediated by mobile genetic elements. In conclusion, the 

expansion of these multidrug-resistant clones suggests that the treatment of ESBL-E. 

coli infections will become increasingly difficult in the future. 

Overall, the potential of whole-genome sequencing is still undisputed for clinical 

diagnostics and decision-making. Currently, complete microbiological diagnostics is 

not yet feasible by WGS due to time and cost reasons and proper standardization and 

bioinformatics analysis. In addition, other "omics" approaches, such as 
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transcriptomics, metabolomics, proteomics and sub proteomics, can be used. In the 

future, in addition to whole-genome analysis in the sense of an integrated, multi-

dimensional omics approach would serve  better to understand infectious diseases and 

for improved clinical microbiological diagnostics. Inherently, our study is limited to a 

few points: The numbers of investigating isolates was relatively small to get a clear 

epidemiological picture of antimicrobial resistance transmission. All the isolates 

obtained only from Germany and the collection time was limited. There is a clear need 

for a global collection of the dataset at least from the Eurozone to understand the 

population fluctuation in dominant lineages. In order to understand the clear picture of 

dissemination of antibiotic resistance, it is necessary to get a detailed plasmidome 

characterization. Finally, the draft genome analysis could always challenge due to 

chance, to lose functionally and ecologically important genetic material (e.g. genomic 

island), which could introduce bias into the subsequent comparative genome analysis. 
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9. Zusammenfassung 
	

Das weltweite Auftreten multi-resistenter Bakterien in den öffentlichen 

Gesundheitseinrichtungen ist in den letzten Jahrzehnten ein wichtiges Thema 

geworden [155-158]. Für multi-resistente Bakterien-Infektionen gibt es 

Einschränkungen in der Auswahl von verfügbaren Behandlungsmöglichkeiten. Sie 

sind daher mit einer hohen Mortalitätsrate und Morbidität verbunden und verursachen 

beträchtliche wirtschaftliche Verluste. Aufgrund evolutionärer Prozesse in Bakterien 

können Arzneimittelresistenzphänomene auftreten; diese beschleunigen und 

verstärken sich aber, wenn ein Mikroorganismus unter externen Selektionsdruck gerät 

wie z.B. die unsachgemäße oder übermäßige Anwendung von Antibiotika [50]. Die 

zunehmende Häufigkeit der durch Antibiotika-resistente Gram-negative Bakterien 

verursachten Infektionen in den letzten Jahrzehnten verschärfte das Problem der 

antimikrobiellen Resistenz enorm. Insbesondere ist es alarmierend, dass die 

Prävalenz von β-Lactamasen mit erweitertem Spektrum (ESBLs) und 

Carbapenemase-produzierenden Enterobacteriaceae in Krankhäusern dramatisch 

angestiegen ist [25, 159, 160]. Diese ESBL-Produzenten sind resistent gegen 

Penicillin-, Cephalosporin- und Monobactam-Antibiotika und stehen häufig in 

Zusammenhang mit Harnwegsinfektionen und lebensbedrohlicher Sepsis bei 

Immunsupprimierten [131, 161, 162]. 

Die vorliegende Arbeit postuliert die genomische Charakterisierung und genetische 

Diversität von antimikrobiellen resistenten, ESBL produzierenden E. coli Isolaten, 

gewonnen aus zwei landesweite Überwachungsprojekten während der Zeit zwischen 

2009 und 2016. Unter Berücksichtigung der Vorteile von next generation sequencing 

(NGS) gegenüber den herkömmlichen Typisierungsverfahren verwendete ich NGS für 

das Monitoring des Auftretens und der Ausbreitung der Antibiotika-Resistenz. Der 

erste Teil der Arbeit untersuchte die molekulare Epidemiologie und Ökologie von 

ESBL-kodierenden E. coli aus einer gemeinsamen Population. Die tiefergehende 

Genomanalyse und phylogenetische Untersuchung entdeckte eine sehr 

unterschiedliche Population von ESBL-positiven E. coli, die zwischen den 

verschiedenen Wirten und Ökosystemen zirkulierten. Trotz der großen genetischen 

Vielfalt gab es nur eine begrenzte Anzahl von Klonen, die in den verschiedenen 

Hintergrund entstanden und stark mit der Verbreitung des Antibiotikaresistenzgens 

verbunden sind. Die vorherrschenden ESBL-Allele waren blaCTX-M-15/1/14 und 
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hauptsächlich mit konjugativen IncF-Plasmiden assoziiert. Frühere Studien aus 

Deutschland, den Niederlanden und dem Vereinigten Königreich deuten darauf hin, 

dass IncI1-Plasmide die am häufigsten vorkommenden Replikontypen waren, gefolgt 

von IncF [163]. Die vorliegenden Untersuchungen ergaben aber, dass IncF-Replikons, 

insbesondere IncFII, IncFIB und IncFIA die häufigsten Replikon-Typen waren, die 

gleichzeitig auf ein Übertragungspotential hindeuten. Die GWAS-Analyse zeigte, dass 

Isolate aus verschiedenen ökologischen Kompartimenten nicht nur ein gemeinsames 

Core-Genom (konservative Kerngene), sondern auch einen bidirektionalen Fluss von 

Genen in den akzessorischen Genomen der verschiedenen Wirtsspezies haben. 

Keinerlei Hinweise auf Wirts-spezifische Resistenz-Gene oder Virulenz-Faktoren 

wurden gefunden. Im Vergleich zu herkömmlichen Typisierungsverfahren wurde die 

Single-Nucleotide-Polymorphismus- (SNP)-Methode für die Analyse verwendet. SNP-

Clustering könnte ein alternativer Weg sein, um eine umfangreiche Bakterien-

Population zu gruppieren. 

Die Ergebnisse nach dem SNP-Clustering zeigten neun große und fünf kleinere 

Cluster in der untersuchten Population. Die häufigsten und nischenspezifisch- 

adaptierten Antibiotika-resistenten Klone in vielfältigen ökologischen Nischen konnten 

identifiziert werden. Ich fand zum Beispiel, dass E. coli des Sequenztyps ST131 

hauptsächlich in Menschen und Haustieren, und E. coli des ST410 in verschiedenen 

Nischen (in Mensch, Tier und Umwelt) zirkulieren. Daher wurde ein signifikanter 

Unterschied zwischen den stammspezifischen Übertragungen über verschiedene 

Wirte beobachtet.  

Im zweiten Teil der vorliegenden Arbeit wurde E. coli des ST131, die häufig Infektionen 

in Harnwege, Nieren und Blutbahnen verursachtet, genauer untersucht. Die 

Einzelmolekül-Echtzeit-Sequenzierungstechnologie (SMRT), eine Dritt-

Generationsmethode der Genomsequenzierung wurde zur Sequenzierung von 30 

ST131 E. coli Isolate aus Menschen und Haustieren eingesetzt, um die 

Genomplastizität der ESBL- und Nicht-ESBL-Stämmen zu untersuchen. Analysen 

basiert auf Draft-Genom-Sequenz können nur sehr schwer erklären, welche Rolle das 

Kern- und akzessorische Genom einschließlich Plasmiden in der bakteriellen Evolution 

spielen. Mit geschlossenen Genomen können dagegen vielseitige Genomvergleiche 

durchgeführt werden. Es wurde festgestellt, dass die Kernkomponenten von ST131 

sowohl in ESBL- als auch in Nicht-ESBL-Isolaten hochkonserviert waren. Nur wenige 

neuere genombasierte Studien wiesen darauf hin, dass eine große und vielfältige 



Zusammenfassung 

78	
	

Gruppe von Plasmiden mit dem schnellen Auftreten und der erfolgreichen Ausbreitung 

von E. coli ST131 assoziiert war [143]. Im Vergleich zu den früheren Studien fand ich 

eine begrenzte Plasmid-Diversität in den untersuchten Isolaten. Darüber hinaus wurde 

ein konserviertes IncF-Plasmid mit einem blaCTX-M-Allel sowie einer Anzahl von Toxin-

Antitoxin-Systemen und metabolischen Genkassetten identifiziert. Die jüngsten 

Studien haben gezeigt, dass sich hinter dem ST131 Erfolg hauptsächlich das 

akzessorische Genom wie Prophage, die Akquisition und der Verlust von genomischen 

Inseln sowie Integrase-assoziierten genetischen Segmenten verbergen. Dies wurde 

auch in dieser Studie beobachtet. Die Ergebnisse zeigten, dass die Kernkomponente 

zwischen ESBL und Nicht-ESBL konserviert war, was auf eine differenzierte 

Evolutionssichtweise der ST131 Stämme hindeutet, die einen hochadaptierten Klon 

repräsentieren und als Vorfahren in diesen Lebensräumen vorkamen. Der 

anschließende Erwerb von Antibiotika-Resistenz-Genen und genomischen Inseln 

(GIs), zusammen mit einer Aufnahme nischenspezifischer Bakteriophagen bildete 

mehrere Linien und förderte die weltweite Ausbreitung dieser Linien. In einem 

Unterkapitel wurde die Entstehung einer großen Sub-Abstammungslinie ST131 C1-

M27 in Deutschland behandelt. Diese Sublinie wurde in Japan und Frankreich 

berichtet. Die hier durchgeführte Analyse zeigt einen Anstieg dieser Abstammungslinie 

von 0% in 2009 bis 45% in 2016.  

Die Sequenzen geschlossener Genome ermöglichten uns, die Genome-Plastizität von 

ST131 Stämmen und die Rolle des accssory Genoms in der Adaption und Evolution 

zu verstehen. Die erzeugten hochqualitativen Daten können als Referenzgenome für 

vergleichende Genomanalyse von ST131 E. coli dienen. 

Der letzte Teil dieser Arbeit sollte einen wahrscheinlichen Mechanismus des schnellen 

Auftretens von Antibiotikaresistenz aufklären. Neuerlich berichten einige 

Untersuchungen, dass IS26 einen entscheidende Rolle in der durch 

zusammengesetzten Transposons vermittelten Antibiotikaresistenzausbreitung spielt 

(47, 152). Ich untersuchte mit den oben genannten Methoden die durch IS26 

vermittelte temporäre Dynamik in bakteriellen Genomen. Unter Verwendung von 

SMRT Sequenzierung wurde ein zirkuläres intramolekulares replikatives Transposon 

identifiziert, das eine einzige IS26 Kopie zusammen mit einem benachbarten DNA-

Segment umfasst und als "Translocatable Units" (TUs) [47, 145, 164] bezeichnet ist. 

TUs sind neue genetische Elemente, die in der Lage sind, durch einen Mechanismus 

anders als die Transposition, Tandem-Arrays von Antibiotikaresistenzgenen zu 
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erzeugen. Die Analysen zeigten, dass TUs eine bedeutende Rolle in Mobilisierung von 

Antibiotikaresistenzgenen (z.B. ant1 und blaCTX-M-15) zusammen mit Antibiotika-

Pumpen (mphA, ermE, srpC) und Stress-Response Regulator-Genen (padR und adrB) 

haben [47]. Ich habe gezeigt, dass eine genauere Tiefsequenzierung nicht nur 

Informationen über das "statische" Genom liefert, sondern auch dynamische 

Ereignisse erfasst, die durch mobile genetische Elemente vermittelt werden. 

Zusammenfassend lässt die Expansion dieser multiresistenten Klone vermuten, dass 

die Behandlung von ESBL - E. coli - Infektionen in Zukunft immer schwieriger wird.  

Insgesamt ist das Anwendungspotenzial der Gesamtgenomsequenzierung für die 

klinische Diagnostik und Entscheidungsfindung unbestritten. Allerdings ist zurzeit eine 

vollständige mikrobiologische Diagnostik aus Kosten- und Zeitgründen sowie durch 

eine entsprechende Standardisierung und bioinformatische Analyse noch nicht 

möglich. Darüber hinaus können andere "Omics" -Ansätze, wie Transkriptomik, 

Metabolomik, Proteomik und Subproteomik, verwendet werden. In Zukunft soll neben 

der Ganzgenomanalyse im Sinne eines integrierten, multidimensionalen Omics-

Ansatzes ein besseres Verständnis von Infektionskrankheiten und eine verbesserte 

klinische mikrobiologische Diagnostik ermöglicht werden. Naturgemäß ist die 

vorgelegte Studie mit Einschränkung in folgenden Punkten behaftet: Die Anzahl der 

untersuchten Isolate war relativ gering, um ein klares epidemiologisches Bild der 

antimikrobiellen Übertragung zu erhalten. Alle Isolate stammten ausschließlich aus 

Deutschland und in einer kurzen Periode. Es besteht ein eindeutiger Bedarf für eine 

globale Sammlung des Datensatzes, zumindest aus der Eurozone, um die 

Populationsfluktuation der wichtigen Linien zu untersuchen. Darüber hinaus ist 

detaillierte Charakterisierung der Plasmidome notwendig, d.h. der Plasmidinhalte der 

Bakterien, um ein klares Bild für die Verbreitung von Antibiotika-Resistenzgenen zu 

verschaffen. Die Draft-Genome Analyse könnte manchmal unausreichend sein, 

aufgrund ihrer Unvollständigkeit, z.B. Verluste von funktionell und ökologisch wichtigen 

genetischen Sequenzen, und diese in dem anschließenden Genomvergleich zu 

Abweichung führen kann. 
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10. Abbreviations  
	

AFLP    Amplified fragment length polymorphism 

ABR    Antibacterial resistance 

AMR    Antimicrobial resistance 

AR    Antibiotic resistance 

ARG    Antibiotic resistance gene  

BLAST   Basic Local Alignment Search Tool 

CARD    Comprehensive Antibiotic Resistance Database  

CCD    Centers for Disease Control and Prevention 

CCD    Charge-coupled device 

EDR    Extensive drug resistance  

ERIC    Enterobacterial repetitive intergenic consensus 

ESBLs   Extended-Spectrum Beta- Lactamases 

ESTs    Expressed sequence tags  

EUCAST            European Committee on Antimicrobial Susceptibility Testing 

FQ-R    Fluoroquinolone-resistant 

GI     Genomic island 

GWAS   Genome-wide association studies  

HGAP    Hierarchical Genome Assembly Process 

HGT    Horizontal gene transfer 

ICEs    Integrative and Conjugative Elements 

ICU              Intensive care unit 

IS    Insertion sequences  

MALDI   Matrix Assisted Laser Desorption/Ionization 

MDR    Multi-drug-resistant 

MDRGN   Multi-drug resistant gram-negative bacteria 

MGE    Mobile genetic element 

MGEs    Mobile genetic elements  

MLEE    Multilocus enzyme electrophoresis  

MLEE:    Multilocus enzyme electrophoresis    



Abbreviations 

81	
	

MLST    Multilocus sequence typing 

MLVA    Multilocus variable number of tandem repeats analysis  

NGS    Next-generation sequencing 

OLC    Overlap layout consensus  

ORFs    Open reading frames  

PCR    Polymerase chain reaction 

PFGE    Pulse field gel electrophoresis  

RAPD    Random Amplified Polymorphic DNA 

RMs    Restriction modification systems 

rRNA     ribosomal RNA 

SBS    Sequencing by synthesis  

SGS    Second generation sequencing  

SMRT    Single Molecule Real Time  

SNPs    Single nucleotide polymorphism 

TEs    Transposable elements  

TGS    Third generation sequencing  

TUs    Translocatable units  

UTIs    Urinary tract infections  

VFDB    Virulence factor database 

VNTR    Variable number tandem repeat 

VRs    Variable regions  

WGS    Whole genome sequencing  

WHO    World Health Organization  

ZMW    Zero-mode waveguides
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