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Chapter 1: 

Introduction 

 

 

 

 

 
Upper Aragvi valley (view from Lomisi church), photo by Martin Wiesmair. 
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1.1  Grassland degradation 

Grassland ecosystems provide multiple goods and services which are of high value for our 

society (White 2000; Zavaleta et al. 2010). Elementary are the contributions of the 

grasslands to the global food supply through milk and meat products of ruminants; thus the 

existing grasslands help to ensure food security for an increasing demand of a growing world 

population (O’Mara 2012). Local mountain tourism developments enhance economic growth 

that is founded on the grasslands’ landscape setting for recreational activities such as hiking, 

backpacking, horseback riding and skiing (Debarbieux et al. 2014). Another value is the 

grasslands’ capability of balancing greenhouse gas emissions; hence the ecosystem 

contributes to the mitigation of climate change (Food and Agriculture Organization of the 

United Nations 2010b; Soussana et al. 2007). One more grassland benefit is erosion control, 

which is provided by healthy, dense vegetation cover. Especially the fine, hairy plant roots 

bind to fungal hyphae, microorganisms, organo-mineral bonds and soil organic matter this 

creates aggregates that stabilize the soil (Bird et al. 2007; Jakšík et al. 2015; Oades 1984; 

Tisdall 1994). Furthermore, a high plant diversity increases the variety of root density and 

root depth which benefit the stabilization of mountain slope (Martin et al. 2010; Pohl et al. 

2009). In addition to all the provided ecosystem services, grasslands are precious habitats for 

a wide range of organisms and contribute globally to a high proportion of biodiversity (White 

2000).  

 Vast grassland areas have undergone degradation processes that evidently disrupt the 

provision of services from these ecosystems (Gang et al. 2014; Wen et al. 2013). 

Consequently, the globally increasing phenomenon of land degradation has negative impacts 

on the environment, society, and economy (Food and Agriculture Organization of the United 

Nations 2010). Due to the expansion of degraded grassland, researchers identified climate 

change and human activities as the decisive factors of grassland degradation (Xu et al. 2010; 

Zhou et al. 2013). The climatic factor is dependent on changes of temperature and 

precipitation regimes, whereas the human induced degradation can be observed on 

overgrazed grassland and recreational sites.  

 Grassland degradation is characteristic for developing and transition countries, where 

local populations exceptionally suffer from consequences of socio-economic losses and 

damaging natural disasters (Liu and Diamond 2005). The economic reduction of grassland 
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productivity results from a reduced grass cover and density, increased abundance of 

unpalatable plant species and soil erosion (Liu et al. 2004).  

 Soil erosion is minimizing the soil aggregate stability on patches of reduced vegetation 

cover (Jakšík et al. 2015). Due to topographical properties, erosion processes have much 

higher consequences in alpine and mountainous terrain than in hilly areas (Stahr 1997). As a 

consequence, mountainous grassland patches, where the topsoil layer has been lost act as 

starting points for erosion and natural disasters (Kessler and Stroosnijder 2006). In mountain 

areas, soil erosion is a natural process which is in particular accelerated by inadequate land 

use management. Land use changes such as intensification or abandonment induce 

vegetation changes which influence soil stability and may enforce land degradation (Tasser 

et al. 2003).  

 The terrace-like cattle grazing trails increase slope texture roughness which decreases the 

potential of landslides as they halt the snow material (Leitinger et al. 2008). However, in 

steep, mountainous terrain, trampling by ungulates creates a net of horizontal, diagonal and 

vertical tracks where small damage spots can occur when animals are crossing between the 

passages (Riedl 1983). During heavy rain the water runoff increases on downward facing 

pathways and vegetation damage spots, which further results in an erosion of the soil layer 

(Dommermuth 1995; Riedl 1983). Accordingly, similar effects were observed on sites where 

the vegetation cover had been trampled by tourists (Klug et al. 2002). Consequently, if there 

is no management action against the water runoff taken, then the soil erosion will be 

followed by larger mass wasting events which remove the entire soil layer and expose rubble 

and scree of the parent rock material (Stahr and Langenscheidt 2015). Compared to the 

surrounding grassland, such habitats of scree display drastically altered site conditions and 

are further characterized by pioneer communities which establish a first stage of succession 

(Jenny-Lips 1930; Körner 2003; Zöttl 1952).  

 Due to climatic and topographic conditions, the natural soil formation on mountain slopes 

is an extremely protracted process. Hence, dense vegetation cover is a key prerequisite to 

balance the processes of rapid soil erosion and long lasting soil formation. In summary, the 

loss of vegetation cover and associated processes are based on complex interactions 

between land use, land use changes (intensification and abandonment) and regional 

mountain features, e.g. exposition, underlying parent- rock material, soil type and 

topography. Investigating all interrelated causes of degradation are therefore essential to 
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understand these relationships. However, to prevent larger degradation events the 

detection of early erosion stages which are made visible by changes in vegetation is 

essential. Therefore a thorough knowledge of the vegetation which establishes under 

characteristic site conditions is mandatory for any site conservation efforts.  

 In the Caucasus, the failure of previous restoration efforts with unsuitable and exotic 

plant species indicates the need for information on the present vegetation and in which way 

it might advance under the impact of erosion events. A broad knowledge of early erosion 

stages and revegetation measures with indigenous, site specific seed mixtures has evolved 

for the European Alps (Florineth et al. 2002; Krautzer et al. 2013, 2011; Krautzer and 

Wittmann 2006; Krautzer et al. 2004) whereas nothing is known about the suitability of 

native plant species for restoration measures in the Caucasus region. 

 

 

1.2  Remote sensing 

Remote sensing (RS) is an observation without actually being present and is particularly 

beneficial for mountainous terrains where fieldwork is highly time-consuming and in some 

inaccessible regions even impossible (Curran 1980). Additionally, RS approaches provide a 

method to observe vegetation on a larger scale at multiple time points. The ability to 

observe diverse segments of the environment with means of RS is based on the recorded 

reflectance curves that vary from object to object due to biophysical properties (Carlson and 

Ripley 1997; Huete et al. 1985; Tucker and Miller 1977). Plant leaves contain pigments which 

absorb areas of the visible light for photosynthesis (Knipling 1970; Woolley 1971). Therefore, 

grass canopy reflectance has a distinct spectral reflectance curve (Tucker 1977; Tucker and 

Maxwell 1976). Increasing spectral and spatial resolution of space and airborne sensors 

broadens the options for remote sensing techniques. Hyperspectral sensors capture a high 

detail of the reflectance signal in very narrow ranges. Multispectral satellite sensors focus on 

specific spectral bands which cover a broad range of particular wavelengths, e.g. blue, green, 

red and infrared. As a substitute for space and airborne imagery, portable spectrometers 

offer the possibility to record hyperspectral data with a similar spectral coverage to test their 

applicability for a desired research question (Feilhauer et al. 2013). 
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1.3 Study area 

The Republic of Georgia is situated in the Caucasus region and borders on the Black Sea. Due 

to high topographic and climatic gradients, Georgia consists of various major ecosystems 

such as evergreen and deciduous forests, dry mountain shrub lands, steppes, semi-deserts, 

wetlands, and high mountain habitats (Critical Ecosystem Partnership Fund 2004). The whole 

Caucasus region comprises the high amount of 2791 endemic plant taxa (Solomon et al. 

2014) and is therefore declared as one of the global biodiversity hotspots (Myers et al. 

2000). Mountain grassland in the high-montane and subalpine zone of the Georgian 

Caucasus includes different types of meadows and pastures mixed with subalpine tall herb 

vegetation (Lichtenegger et al. 2006; Nakhutsrishvili 1999). The present state of the 

Georgian landscape results from a long tradition of human land use which shaped the 

mountain regions. Archeological records of animal artifacts provide evidence of animal 

husbandry since ancient times (Lordkipanidse 1991). Additionally, animals play an essential 

role in religious myths, which reflects the population’s historical dependency on livestock as 

a food source and working aid. One of those legends describes that the construction place of 

the Lomisi church was predetermined by an oxen. The Lomisi church lies on a mountain 

ridge, the Qsani-Aragvi watershed, south of Mleta. The village Mleta is divided into the two 

settlements Kvemo (Lower) and Zemo (Upper) Mleta which are situated on a talus fan in the 

upper Aragvi valley (Figure 1.1). This thesis focuses on the landscape of the upper Aragvi 

valley which was shaped by overgrazing, erosion and mass wasting events. 

 The history of the Aragvi valley which is situated in the Dusheti region is closely linked to 

its neighboring district, the Kazbegi region. Both districts are separated by the Crosspass 

(Jvari Pass, 2379 m a.s.l.) which used to be a great barrier for travelers. South of the 

Crosspass, along the Aragvi valley, people refer to themselves as Mtiuli, inhabitants of 

Mtiuleti. The Kazbegi region stretches north of the Crosspass along the Tergi river towards 

the Russian border. The traditional name for the inhabitants of the Kazbegi region is 

Mokheve, meaning people living in Khevi (georgian for gorge). Due to its localization, the 

Kazbegi region used to be particularly important for trade between Georgia and its 

neighboring countries. At present, settlements of the Mtiuli and Mokheve are located along 

the military road which connects the Georgian capital Tbilisi with Russia. Schmerling & 

Dolidze (1991) illustrate the military road’s route and adjacent cultural monuments in their 

book “From Tbilisi to Caucasus”. The authors describe old alternative routes before the 
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recent military road was built. The previous routes already diverted at Kvesheti or Passanauri 

and did not come about Mleta. Furthermore, Kverashvili's (2012) book “Khevi and the 

Mokheve” clearly describes the connection between the construction of the military road 

and the benefits for the regional development of Mokheve and Mtiuleti. Since the steepest 

part of the military road is located on the opposite slope to Mleta, the village has played a 

key role after the construction of the military road in 1861. People benefited from the 

travelers which enabled further local economic growth and development of the mountain 

region. 

 About that time Nikiforov (1887) investigated the economic life of the Georgian state 

serfs. His work represents the oldest available census on population, livestock and land 

holdings of the Dusheti and Kazbegi region. For the Dusheti region, he stated that most 

arable fields belong to the aristocracy which are farmed by themselves or are given to 

families as a living. Unfortunately the report did not further differentiate between summer 

and winter rangelands. However, due to the limited grassland in combination with high 

livestock numbers, the need for additional fodder during winter times can be assumed.  

 

Figure 1.1 Map of the Upper Aragvi valley. (Map by Martin Wiesmair) 
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 Particular interest was put on sheep husbandry and turned into a thriving business. 

Rcheulishvili’s (1953) notes give insight into the large range of Georgian sheep breed and 

their particular uses. Accordingly, Itonishvili's (1970) “Familiy status of Mokheve” is a 

thorough review on the development of the sheep husbandry of the Kazbegi and Dusheti 

region. The author describes the importance of sheep husbandry for the mountain 

population due to the climatic and topographical settings. At first their number is likely to 

have been low due to the limited fodder resources during winter times. Due to the limited 

resources of mountain grassland for hay production as winter fodder, a transhumance 

system of pastoralism evolved with alternating grazing of northern grounds in the high-

montane to alpine belt during summer times and winter grazing on the southern Georgian 

lowlands. Furthermore, the Russian annexation of Georgia in the early 19th century enabled 

the sheepherders to use grazing grounds in the northern Caucasian territory (Plachter and 

Hampicke 2010). In 1955, Rcheulishvili has already described the transhumance system 

which had evolved in the Georgian mountain regions and gave recommendations for the 

improvement of sheep farming. Later in 1971, Ketskhoveli described the negative impacts of 

land use to the landscape. For the Qsani gorge and the Lomisi ridge he stated that the 

relentless logging of timber as a fuel wood had created desert landscapes along the slopes. 

The author complains about the bad grassland conditions along the Lomisi ridge and in the 

Mleta area. He could already see large erosion gullies and found overgrazed pastures 

dominated by Nardus stricta. Furthermore, the author points out the importance of a dense 

vegetation cover to prevent erosion events. To his opinion, heavy rain events washed out 

the open soil which resulted in soil degradation and mass wasting events which reached a 

much more catastrophic character than it used to be. Ketskhoveli claims to reconstruct the 

natural vegetation by forest and native plant species to cover open soil, and to generally give 

more attention to the landscape. At that time, he could still meet a sheep herd which 

migrated from grazing grounds nearby the Caspian Sea to the Lomisi ridge. The author 

stated that about one third of the Georgian summer grazing grounds were in a bad condition 

and the other remaining rangeland were neither in good state. Particularly, the Aragvi and 

Tergi gorges, stream water heads and gorges showed a generally high degree of water 

erosion and degradation. Ketskhoveli’s (1971) plant book, in which he was already 

complaining about the out-migration of the mountain population, can be considered as a 

claim for nature conservation. 
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 Additionally to the literature review, personal conversations with inhabitants of Mleta 

gave me insight into the landscape development. Here is a summary of personal comments 

which I have encountered during my field stays in 2012 and 2013: 

 

“Until the 1930ies the small settlement Gagazen existed north of Zemo Mleta. Ossetian 

sheepherders stayed there with their sheep from time to time. When the settlement was 

abandoned, the inhabitants settled in Zemo Mleta. To me Gagazen has always been a 

deserted settlement (born 1946). Kvemo Mleta was established after World War II. I was born 

in a previous settlement which was located down by the Aragvi River. Over time, the river 

extended after heavy rain events and the inhabitants left their housings in fear of flooding. 

Therefore, on an upper situated zone we established the village Kvemo Mleta at about 1950. 

Few stone walls still prove evidence of the previous settlement on the Aragvi river (Figure 

1.2). Before that only housings for workers of the military road existed where Mleta is located 

nowadays and with the construction of the road further houses followed.  

 Annually, 60,000 sheep passed the Aragvi valley and another 24,000 sheep remained in the 

village. Those left for their winter grounds from September to May. Until 1970 no fences 

existed but way marks used to facilitate as a landmark for the herders. In the 1970ies, field 

clearance cairns were erected and protected by the herders. Until 1980 the canyon was used 

as a pass for sheep and other livestock, which has resulted in knee-deep erosion gullies. After 

a snowy winter, an avalanche cleared the whole passage which buried smaller houses and a 

cemetery at the bottom of the pass. During Soviet times, sheep husbandry used to be the main 

farming system which was predetermined by the Soviet’s annual production quota. Since 

1970, the number of sheep has been declining and only about 10% have remained since the 

1990ies.  

 During Soviet period, people had several different breeds of cow (Swiss, milk etc.) and 5 

large farms specialized on cattle farming and diary production. The dairy products were 

transported to Tbilisi. Nowadays only the Georgian mountain breed is used for cattle 

farming. Kvemo Mleta owns 23 cows which are daily driven to nearby grazing grounds and 

another 23 cows remain in the village and are fed by hay. The villagers alternate on a daily 

basis with their duty to drive home the cattle. Bull calves remain to the end of the summer on 

remote grazing grounds and are taken care of by cowboys. More distant pastures used to be 

mown at the end of the season but recently more often the hay is harvested from less inclined 

slopes. Therefore, Mleta cooperates with other neighboring villages. 
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 During World War II, the whole region was deforested and what we see today is a 

secondary forest. At about 1950 the whole forest had been cleared. 20 years later we had a 

decent regrowth but in the 1990ies the forest was cut due to the need of fuel wood to 

substitute gas in winter times. As the gas price has been increasing since independence. In 

1976 an avalanche cleared the gorge behind the school. The timber wood fulfilled the 

village’s fuel wood supply for the coming 5 years. From 1989-93 there was a state-run 

reforestation with mountain ash (Sorbus aucuparia) and conifers (Pinus sp.). However most 

of the planted trees were damaged from grazing animals. During the reforestation process, 

the grazing was not stopped and therefore even 20 years old trees still look like shrubs. 

 During Soviet time, about 360 families lived in the village Mleta. Until 1990, Mleta 

profited a lot from tourism of horseback riding, camping, heliskiing and hiking. In the course 

of the South-Ossetian conflict, livestock was kidnapped and armed conflicts followed. As a 

consequence the air traffic was closed and tourism collapsed. Nowadays, there are about 200 

families living in Mleta but many have migrated due to the lack of work.” 

 

 
Figure 1.2 Previous settlements near Mleta: a) Signs of Gagazen (abandoned about 1930); b) 
Buried housewalls next to the Aragvi valley (abandoned about 1950). (Photos by Martin 
Wiesmair) 

 

 

1.4 Objectives 

The overall objective of this thesis was to study grassland degradation in the Greater 

Caucasus in order to develop site-specific methods to prevent further degradation in the 

Caucasus region. Therefore we implemented the commonly used feature of vegetation cover 

to assess the extent of grassland degradation by remote sensing imagery (chapter 1). 

However, to gain a deeper understanding we needed to better understand the impacts of 
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overgrazing and erosion events on Georgian mountain grassland. To evaluate these impacts, 

we investigated the relationships between plant diversity, site conditions and vegetation 

cover (chapter 2). Based on those results we developed a list of potential plant species for 

grassland restoration measures. Furthermore we improved the detection of grassland 

degradation by multispectral satellite sensors as we implemented vegetation cover and 

vegetation types into a classification model (chapter 3).  

 

1.4.1 Chapter 2: Estimating vegetation cover from satellite imagery 

In this study, we developed a site-specific remote sensing approach to assessing grassland 

degradation based on vegetation cover. We photographed 93 plots within the high-montane 

and subalpine zone to determine their vegetation cover from image pixels. Further, we used 

a World View 2 satellite image and derived two vegetation indices, the modified soil 

adjusted vegetation index (MSAVI2) and the normalized difference vegetation index (NDVI). 

In a random forest regression model, we tested each vegetation index as a predictor for 

vegetation cover to detect changes in the grassland canopy from high-resolution satellite 

images. From the data of the superior NDVI we mapped the high-montane and subalpine 

grassland cover for our area of interest. To evaluate the indices’ ability to assess 

heterogeneous mountain terrain, we further determined the compositional cover values of 

rock, soil, and vegetation across varying degradation intensities.  

 

1.4.2 Chapter 3: Plant diversity, site conditions, vegetation and grassland conservation 

We described and quantified the mountain grassland vegetation which develops under 

characteristic overgrazed and eroded site conditions. We illustrated the vegetation 

composition, environmental variables and functional plant groups along a gradient of 

grassland vegetation cover. Further, we proposed potential native plant species for 

revegetation to restore and conserve valuable mountain grassland habitats.  

 The specific research questions were: a) Which environmental variables are related to the 

species distribution on overgrazed and eroded sites? b) How is species-richness related to 

the species distribution on overgrazed and eroded sites? c) Which species-richness and 

abundance of functional plant groups can be observed on sites of different vegetation 

cover? d) Which native plant species occur along a gradient of vegetation cover at high 



Chapter 1 

11 

frequencies and can therefore be considered for the restoration of grassland ecosystems in 

the Caucasus? 

 

1.4.3 Chapter 4: Enhanced remotely-sensed grassland degradation indication 

In our third study we developed a novel tool to detect grassland degradation by 

multispectral satellite sensors. Therefore, we combined vegetation cover and vegetation 

types as indicators for the detection of grassland degradation from remote sensing. We used 

a hand-held field spectrometer to simulate the multispectral World View 2 sensor at a very 

high spatial resolution and calculated several multispectral vegetation indices. With random 

forest modeling we predicted vegetation cover and vegetation types from the simulated 

World View 2 bands, vegetation indices and environmental variables. Finally, we classified 

the grassland condition from the combination of vegetation types and threshold values of 

vegetation cover. 

 The specific research questions were: a) To which extent can spectral and environmental 

variables predict vegetation cover and grassland types and which predictor variables are 

most important? b) Can grassland degradation, represented by grassland types and coverage 

be detected in multispectral data?  

 

 

1.5 Methods 

For the remote sensing approaches (chapters 2 & 4), we used random forest modeling 

(Breimann 2001) with the spectral data as predictors. The random forest approach has 

previously been successfully used to analyze remote sensing data (Feilhauer et al. 2014; 

Lawrence et al. 2006; Rodriguez-Galiano et al. 2012; Stefanski et al. 2014). A random forest 

is an ensemble of individual regression trees (Grömping 2009), which are constructed by 

repeatedly splitting the dataset into homogeneous groups in order to explain the response 

variable (De’ath and Fabricius 2000). The significance of predictor variables is provided by 

the measure of variable importance. We used 100times bootstrapping with replacement to 

validate our model results.  

 To graphically display the similarity of data, we used non-metric dimensional scaling 

(NMDS) which is a widely used ordination technique among ecological studies. Therefore a 



Chapter 1 

12 

distance measure is calculated which is stepwise placed into a multidimensional space to 

keep the original distances. The goodness of fit, or how well the configuration fits the data, is 

measured as stress (Kruskal 1964). To gain information about the indicator species of each 

vegetation cluster, we performed an indicator species analysis (Dufrêne and Legendre 1997).

 In order to evaluate grassland degradation from multispectral data (chapter 4) we 

implemented the predicted vegetation cover values and vegetation types into a classification 

(Figure 1.3). Therefore, we set for each vegetation type a threshold of vegetation cover 

which indicates grassland degradation. For the pastures, we used the threshold of 70% 

vegetation cover which is a common restoration goal to secure mountain slopes (Krautzer 

and Klug 2009). For the poor grassland we defined the vegetation cover below 35% as being 

degraded. Sites which already display vegetation of eroded sites were generally assigned to 

the class of degradation and therefore the threshold of 100% vegetation cover was chosen. 

 

 

Figure 1.3 Classification scheme of grassland degradation (isDegraded 0/1) by including the 
predicted values of vegetation cover and vegetation type 

 

 

1.6 Main results 

The best results for an assessment of vegetation cover from satellite imagery were achieved 

by a random forest model with the NDVI. The produced vegetation cover map showed a low 

vegetation cover on pastures near the village of Mleta, which indicates more degraded areas 

and a higher pressure of cattle grazing. Similar developments have been observed within 

other former Soviet countries in Central Asia (Iniguez et al. 2005). As the animals remain 

longer in nearby areas, these grasslands are more intensively grazed (Suttie et al. 2005). 
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Particularly, the steep slopes near villages can be considered to be of higher risk for 

grassland degradation. Furthermore, we found low vegetation cover, indicating grassland 

degradation, along hiking trails. 

 The analyses of plant diversity, vegetation cover and site conditions (Chapter 3) showed 

four distinct vegetation types. The subalpine zone is characterized by tall herb vegetation, 

with a high infestation of ruderal pasture weeds. The high-montane sites comprises of 

nutrient-rich pastures, poor grassland, and scree vegetation. In total we revealed a median 

of 36 species per plot. Species-richness was highest for the high montane pasture and poor 

grassland, which differed significantly from the vegetation of the eroded sites. Considering 

the long lasting period of soil formation in mountainous regions, the long-term loss of 

diverse grassland and the development towards habitats of no conservation value has to be 

expected once the vegetation cover is removed. Due to the tolerance to varying site 

conditions of plant species which we could find within all vegetation types of the high-

montane zone and a comparison to other species suggestions for restoration of mountain 

grassland (Krautzer et al. 2004), we suggested plant species for grassland restoration in the 

Greater Caucasus. The seed production and suitability of the proposed species for 

restoration measures in the Caucasus region should be further tested in field studies. 

Although some single species may possess the capability to quickly restore vegetation cover, 

the necessity to restore species-rich grassland for erosion control has been reported (Martin 

et al. 2010; Pohl et al. 2009). 

 To further improve the detection of grassland degradation by remote sensing we 

developed a classification model that includes the outcomes of our first two studies (chapter 

4). From the implementation of several vegetation indices and WV2 wavebands we 

improved our previous results (chapter 2) for the detection of vegetation cover from remote 

sensing. Most important predictors for our random forest models were as follows: the 

enhanced vegetation index (EVI), the green atmospherically resistant vegetation index 

(GARI), red edge, near infrared1, near infrared2 and for the random forest classification of 

vegetation types, the environmental variables altitude and slope. We implemented the 

predicted values of vegetation cover and vegetation types into a classification. The 

classification of grassland degradation displayed an overall accuracy of 75%. The lowest 

accuracy was achieved for the poor grassland and the highest accuracy for the nutrient rich 

pastures. 
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1.7 Final conclusion 

The cause for mountain grassland degradation involves complex interactions between biotic 

and abiotic environmental factors. On the one hand, geomorphologic and climatic settings 

predetermine the potential of erosion and mass wasting events. On the other hand, human 

activities influence the vegetation layer and its ability to stabilize the slope. In the upper 

Aragvi valley, most likely the overgrazing during Soviet period in combination with logging of 

protective forest destabilized steep mountain slopes and caused erosion events. Since 

Georgia’s independence, the land use changes have further impacted landscape 

development. However, due to a recent decline in gas prices the logging of protective forest 

has most likely come to a halt. Furthermore, the livestock numbers have declined and 

erosion events are mainly localized in the vicinity of settlements where an uncontrolled 

cattle grazing occurs. Furthermore, grazing has also positive impacts as the rough slope 

texture of grazing paths and short grasses prevent snow gliding and avalanches. However, if 

the vegetation cover is damaged by grazing animals or hikers, such damage spots can act as 

starting points for larger erosion events. On eroded sites, plant diversity is decreased and 

ecosystem services are lost. Additionally, such habitats of scree diminish the beauty of the 

mountain landscape. Due to the development of Georgian mountain regions from 

agricultural to touristic income, the scenic beauty could have further impact for theier future 

livelihood.  

 The outcomes of this thesis conclude to monitor grassland conditions. Due to the absent 

responsibility for the condition of collective rangeland, the establishment of a responsible 

person to oversee the grassland condition was advisable. The presented novel remote 

sensing method is a tool for the large scale assessment in addition to field observations. Due 

to the high costs of satellite images, we suggest assessing the sourroundings of villages, at a 

high spatial resolution. Before and after the grazing season the detection of vegetation 

damage spots is essential to prevent further erosion from rain and snow. The damaged spots 

need to be excluded from grazing and recreational activites, and revegetated with 

indigenous seed material. Therfore the seed material of the suggested plant species needs to 

be produced and harvested in Georgian mountain regions to ensure its conformity. The 

benefit of a revegetation with herbaceous plant material is a very quick regrowth which 

ensures that the sites can be used again after a few years. Whereas the large scale 

reforestation needed wide-ranging management installations. Previous reforestation efforts 
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for slope protection have failed due to the lack of an appropriate grazing management. 

Consequently, to conserve precious Georgian mountain grasslands a sustainable landscape 

management for the collective mountain grasslands is mandatory. The result of this thesis 

serve for the implementation into sustainable agricultural and touristic development plans 

of mountain regions which suffer from grassland degradation. 
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Abstract 

In the Georgian Caucasus, unregulated grazing has damaged grassland vegetation cover and 

caused erosion. Methods for monitoring and control of affected territories are urgently 

needed. Focusing on the high-montane and subalpine grasslands of the upper Aragvi Valley, 

we sampled grassland for soil, rock, and vegetation cover to test the applicability of a site-

specific remote-sensing approach to observing grassland degradation. We used random-

forest regression to separately estimate vegetation cover from 2 vegetation indices, the 

Normalized Difference Vegetation Index (NDVI) and the Modified Soil Adjusted Vegetation 

Index (MSAVI2), derived from multispectral WorldView-2 data (1.8 m). The good model fit of 

R2 = 0.79 indicates the great potential of a remote-sensing approach for the observation of 

grassland cover. We used the modeled relationship to produce a vegetation cover map, 

which showed large areas of grassland degradation.  
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2.1 Introduction 

Grassland ecosystems provide multiple goods and services such as food products from 

ruminants, erosion control, and recreation. Globally, vast grassland areas have undergone 

degradation that has been triggered by the impacts of climate change and anthropogenic 

activities such as overgrazing (Gang et al. 2014). Grassland degradation from overgrazing is 

common in developing countries, in which local populations suffer from the consequences of 

degradation such as socioeconomic hardship and increased natural disasters (Liu and 

Diamond 2005).  

 Similar processes can be observed in Central Asian and Caucasian countries where a 

transition in livestock management has taken place (Suttie et al. 2005). During the Soviet 

period, sheep husbandry was practiced with summer grazing in mountain sites and winter 

grazing in the lowlands. On their migration routes, large sheep herds damaged the 

vegetation layer of steep slopes (Körner 1980). Nowadays, in most parts of Georgia, 

migratory sheep husbandry has been replaced by localized cattle farming. Further, in the 

Georgian Caucasus, erosion is caused by unregulated cattle grazing and logging of protected 

forests; both have increasingly negative effects on soil stability (Ministry of Environment 

Protection et al. 2009). To control land degradation, the Georgian national risk assessment 

report defined areas in the Georgian Caucasus that are prone to natural disasters (CENN and 

Faculty of Geo Information Science and Earth Observation, University of Twente 2012). 

Restoration and sustainable use of pastures are urgently required. Furthermore, the growing 

popularity of hiking and downhill skiing requires sustainable management of sensitive 

recreational sites.  

 Approaches to recording the extent of grassland degradation in developing countries 

have emerged in China, where about 90% of grasslands are considered degraded due to 

overgrazing and other factors (Liu and Diamond 2005). Akiyama and Kawamura (2007) 

proposed grassland monitoring by means of remote sensing (RS) as a promising tool for 

restoring and sustainably managing affected regions. For a long time, the use of RS to 

monitor arid and semiarid grassland cover has been recognized as essential to determining 

livestock capacity in order to prevent desertification (Purevdorj et al. 1998).  

 The observation of vegetation cover on a larger scale at multiple time points makes RS 

approaches beneficial for monitoring purposes. Liu et al. (2005) used RS methods to 

estimate the vegetation cover of alpine grassland in Qinghai Province in China. Their results 
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showed high accuracy levels, which indicate the applicability of RS methods for mountainous 

terrain.  

 Previous studies on the estimation of vegetation cover relied on examinations at a rather 

coarse spatial resolution of 30 m x 30 m. Such a scale is unlikely to show the heterogeneity 

of grass cover (Zha et al. 2003), as variations occur within a few meters in mountainous 

terrain (Asner and Lobell 2000). Consequently, there is a need to detect small-scale 

vegetation damage points, in order to prevent further erosion in mountainous regions 

(Alewell et al. 2008). Increasing the spatial resolution of space-borne sensors broadens RS 

options; resolution should be chosen in accordance with the spatial scale of the 

environmental pattern that is analyzed (Feilhauer et al. 2013). We chose imagery from 

WorldView-2, one of the multispectral sensors with the highest available spatial resolution 

for our area of interest. The applicability of vegetation indices for the estimation of 

vegetation cover has been tested with field spectrometers and satellite images (Gessner et 

al. 2013; Lehnert et al. 2015). From a wide range of vegetation indices, the Normalized 

Difference Vegetation Index (NDVI) and the Modified Soil Adjusted Vegetation Index 

(MSAVI2) have been proposed as good predictors of arid and semiarid grassland vegetation 

cover (Purevdorj et al. 1998; Liu et al. 2007).  

 In this study, we developed a site-specific RS approach to assessing grassland degradation 

based on vegetation cover. This assessment can inform management of vulnerable 

grasslands in the upper Aragvi Valley, where grassland degradation, erosion, and mudflows 

frequently occur. We tested the 2 multispectral vegetation indices MSAVI2 and NDVI for 

their appropriateness to detect changes in grassland cover from high-resolution satellite 

images. To evaluate the indices’ ability to assess heterogeneous mountain terrain, we 

determined the compositional cover values of rock, soil, and vegetation across varying 

degradation intensities. From the data of the NDVI we mapped the high-montane and 

subalpine grassland cover for our area of interest.  
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2.2 Methods 

 

2.2.1 Study area 

The study was conducted in the upper Aragvi Valley in the vicinity of the village of Mleta in 

the Greater Caucasus in Georgia (Figure 2.1). Mleta (42°25’52”N, 44°29’52”E, 1535 m above 

sea level [m a.s.l.]) is situated on the Georgian Military Road, which connects Tbilisi, the 

capital of Georgia, with Russia. Mleta consists of 2 parts, Zvemo (Upper) Mleta and Kvemo 

(Lower) Mleta. South of Mleta, at the bottom of the upper Aragvi Valley, lies the village of 

Pasanauri (42°21’8”N, 44°41’16”E, 1050 m a.s.l.). Climate data were contributed by the 

National Environmental Agency and modified by Ina Keggenhoff. The study area has a mean 

annual temperature of 8.2°C and a mean annual precipitation of 1011 mm. January, the 

coldest month, has a mean temperature of -3.3°C and 50 mm mean precipitation. The 

hottest month, July, has a mean temperature of 18.9°C and a mean precipitation of 103 mm.  

 The upper Aragvi Valley is formed by andesite-basalt in alternation with clay shale, shale 

marls, and enclosures of limestone and sandstone (Khetskhoveli et al. 1975; Gobejishvili et 

al. 2011). Close to Mleta, the upper Aragvi Valley is asymmetrically shaped. The slightly 

inclined, north-facing side is covered by loose sediment, which is prone to erosion and 

mudflows (Lichtenegger et al. 2006). In the Aragvi Valley, mountain meadow and forest soil 

can be found (Georgian Institute of Public Affairs 2007). According to the World Reference 

Base for soil (IUSS Working Group WRB 2007), soil types in the mountain meadows include 

Leptosols, Cambisols, and Cryosols. The mountain forest soil mainly consists of Dystric 

Cambisol. Along the river valley, alluvial deposits have built up Calcaric Fluvisols.  

 The slopes near Mleta range from the river valley bottom at approximately 1500 m a.s.l. 

to the ridges at about 2200 m a.s.l. The north-facing slopes are characterized by beech 

forests (Fagus orientalis), large erosion gullies, and grassland, which is mainly used for cattle 

grazing. Cattle tracks and erosion can be observed on the steep slopes of the grassland 

(Figure 2.2A). Due to anthropogenic impact and topographic features, no clear demarcation 

line can be drawn between the high-montane and subalpine zones of the Greater Caucasus 

(Lichtenegger et al. 2006; Nakhutsrishvili et al. 2006). We defined the high-montane zone 

border at about 1900 m a.s.l., where scattered rhododendron shrubs (Rhododendron 

luteum) indicate a transition to the subalpine zone. The high-montane grassland comprises 

grass species such as Agrostis planifolia, Cynosurus cristatus, Festuca pratensis, Poa 
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pratensis, and Trisetum flavescens (Khetskhoveli et al. 1975; Lichtenegger et al. 2006). The 

subalpine grassland is characterized by Astrantia maxima, Betonica macrantha, Festuca 

varia, Inula orientalis, and a strong infestation of Veratrum lobelianum (Figure 2.2C).  

 

Figure 2.1 Map of the study area 
and its location within the 
Caucasus region (Map by Martin 
Wiesmair) 

 

 

 

2.2.2 Field data  

In July 2012 and 2013, we sampled plots (25 m2) of high-montane and subalpine grassland 

for vegetation cover, soil cover, and rock cover. In our study area, July is the month of peak 

plant development; thus, that period offered ideal conditions for vegetation sampling. In the 

plots, we arranged three 1 m2 subplots in a triangle with the tip aligned uphill (Figure 2.3). 

We selected plots according to their total vegetation cover to sample a gradient of grassland 

coverage. All plots were located on the slope; the flat terrain was not sampled.  

 Vegetation and soil cover are essential indicators of grassland health or degradation 

(Zhang et al. 2013). Therefore, we visually estimated the percentages of vegetation, soil, and 

rock cover. However, due to observer estimation error, the vegetation cover estimates did 

not yield satisfying model results. To increase accuracy, we photographed the ground 

vegetation cover and further used these digital images to determine vegetation cover. 
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Therefore each subplot was photographed with a handheld digital camera (Panasonic LUMIX 

DMC-TZ1, 5 Megapixel). Photos were taken from a distance to the canopy height over plain 

ground at nadir 140 cm. We used the image processing program Photoshop CS5 version 12 

(Adobe Systems, Mountain View, CA) to calculate the vegetation cover of each subplot. 

Within each subplot image, we identified pixels that represented vegetation and used the 

ratio of vegetation pixels to total image pixels to define the percentage of vegetation cover. 

We further distinguished between the covers of vascular plants and mosses, as mosses 

considerably contribute to the greenness of sparsely vegetated terrain (Karnieli et al. 2002, 

1996). Finally, the plot vegetation cover was computed from the mean of the embedded 

subplot values calculated before. Altogether, 5 plots were detected as outliers and were 

removed from further analysis. The remaining 93 plots were then grouped into 4 classes of 

degradation intensity, based on their percentage of vegetation cover (Table 2.1), a 

classification comparable to those used in other studies. We used the Wilcoxon rank sum 

test with Bonferroni correction method for post-hoc class comparisons. All analyses were 

performed using the R Project statistical computing software (R Core Team 2014).  

 To extract spectral information from the satellite image, we sampled the geographic 

position of each plot. The 4 coordinates of our plot corners were recorded with a GPS device 

(Garmin GPSMap 62s) with a 3–5 m position accuracy. To increase geographic position 

accuracy, we repeated positioning on a different date, marking plot centers with magnetic 

markers to locate the plots with a metal detector (Figure 2.3). We further used the mean 

center function of ArcGIS10 (ESRI, Redlands, CA) to compute the geographic mean of 8 GPS 

points for each plot.  

 

Table 2.1 Classification of degradation intensity of Georgian high-montane and subalpine 
grassland based on vegetation cover (modified from Purevdorj et al. 1998, Gao et al. 2006, 
and Liu et al. 2007) 

  Vegetation cover (%)   Degradation class  

  80 – 100   None  

  60 – 79   Light to moderate  

  30 – 59   Moderate to severe  

    0 – 29   Extreme  
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Figure 2.2 Grassland of the upper Aragvi Valley. (A) Cattle tracks and erosion from grazing on 
steep slopes near the villages; (B) cattle grazing on nondegraded, high-montane grassland; 
(C) subalpine grassland with an infestation of Veratrum lobelianum; (D) grassland 
degradation along a hiking trail (Photos by Martin Wiesmair) 

 

2.2.3 Multispectral data and analysis  

We chose the WorldView-2 satellite sensor, which provides 8 spectral bands from visible 

(400 nm) to near-infrared (1040 nm) at a spatial resolution of 1.84 m. The sensor provides a 

radiometric resolution of 11 bit and 16.4 km swath width with a revisiting time of 3.7 days 

(Digitalglobe 2013). Compared to other satellite sensors, WorldView-2 offers a very high 

spatial resolution (Ünsalan and Boyer 2011). Recently launched sensors such as WorldView-3 

have an even higher spatial resolution but were not yet available when our studies took 

place. Our WorldView-2 image was acquired on 8 July 2011, during the period of highest 

vegetation density. The image was atmospherically corrected with the ATCOR 2 module of 

ERDAS 2013 (DLR, Wessling, Germany).  

 The vegetation indices MSAVI2 and NDVI were calculated for our plots from the satellite 

image following Equations 1 and 2:  

 𝑀𝑆𝐴𝑉𝐼2 =  2𝑟𝑁𝐼𝑅 + 1 −   2𝑟𝑁𝐼𝑅 + 1 2 − 8 𝑟𝑁𝐼𝑅 − 𝑟𝑅𝐸𝐷  2    (1) 

 NDVI =
𝑟𝑁𝐼𝑅 −𝑟𝑅𝐸𝐷

𝑟𝑁𝐼𝑅 +𝑟𝑅𝐸𝐷
   (2) 
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where 𝑟𝑁𝐼𝑅  and 𝑟𝑅𝐸𝐷  are the simulated reflectance values in near-infrared and red.  

 We used NDVI and MSAVI2 separately as predictors for vegetation cover in our random-

forest regression analyses. The random-forest approach has been successfully used to 

analyze RS data (Lawrence et al. 2006; Rodriguez-Galiano et al. 2012; Feilhauer et al. 2014). 

From the R-package “randomForest 4.6-7” (Liaw and Wiener 2002; Breiman and Cutler 2012) 

we chose the default setting for the number of predictors sampled for the splitting at each 

node. As suggested by Breiman (2003), we tested other values, but the default 

parameterization produced the best results. The number of trees to grow was set to 5000.  

 We used 100 times bootstrapping with replacement to validate the data sample. A 

predicted vegetation cover value for each plot was calculated from the mean of each 

bootstrap sample. The random-forest model fit was validated through a linear regression of 

the predicted versus the observed (ground truth) values. For each model we calculated the 

total root mean square error of prediction (RMSEP), a commonly used criterion for judging 

the performance of a multivariate calibration model (Faber 1999). For comparisons to other 

studies, we additionally extracted the RMSEP of each degradation class. All analyses were 

based on the continuous vegetation cover range. Afterward the classification levels were 

applied to the model results. The RMSEP was calculated following Equation 3:  

 𝑅𝑀𝑆𝐸𝑃 =     𝑌𝑖 − 𝑌 𝑖 
2

𝑛  𝑛
𝑖=0    (3) 

where X is the predicted value from the model, Y the observed value, and n the number of 

predictions.  

 A grassland vegetation cover map was predicted from NDVI values, which were extracted 

from the WorldView-2 satellite image. We applied a continuous vegetation cover scale to a 

map, where we masked out larger forested areas, streams, clouds, the Aragvi River bed, and 

settlements. 
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Figure 2.3 Arrangement of 
subplots and magnetic marker 

 

 

 

 

2.3. Results 

 

2.3.1 Grassland management  

During our fieldwork, we witnessed the grassland management of the upper Aragvi Valley. 

Grassland is commonly used by all village inhabitants, mainly for cattle grazing on all 

vegetation cover densities. Most of the grassland area was used as pasture; only small 

parcels of meadows were fenced off to exclude grazing animals. In order to make use of the 

whole grassland area, some of the cattle remained close to the villages while others were 

driven to nearby grazing grounds each morning (Figure 2.2B). The cattle roamed freely 

during the day and returned to the village in the evening. Small herds of free-roaming horses 

were met on plateaus with dense vegetation cover. We observed controlled sheep herding 

on distant pastures southeast of Mleta near the village of Kvesheti. The hiking trails leading 

to a monastery on top of the mountain range attracted many tourists and pilgrims. The trails 

lie within the grassland, and we detected severe vegetation damage spots along them 

(Figure 2.2D). Minor work to restore parts of one hiking trail has been undertaken.  

 

2.3.2 Site cover variables and vegetation cover models  

Site variables are displayed as median values for each degradation class in Table 2.2. Soil 

cover ranged from 4 to 24% and rock cover from 0 to 50%. The soil and rock cover were 

lowest in sites of no degradation and highest in extremely degraded sites. All classes differed 

significantly, except that the soil cover of moderately to severely degraded sites did not 
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differ from that of light to moderately degraded and extremely degraded sites. Soil and rock 

cover were strongly negatively correlated with vegetation cover.  

 Table 2.3 displays the validated results of both randomforest regression models with 

corresponding model errors within vegetation cover classes. The validation was calculated 

from bootstrapped predicted versus observed data. Values for each vegetation cover class 

were extracted from the model results, which were previously run from the full range of 

vegetation cover. NDVI and MSAVI2 were calculated from a WorldView-2 satellite image. To 

visualize the model fits, we plotted values predicted by the model versus the observed 

values (Figure 2.4). We observed identical model fits for both vegetation indices at R2
 = 0.79. 

Minor differences in total errors or errors of individual degradation classes were observed 

between NDVI and MSAVI2. The RMSEP for MSAVI2 was 0.02% cover higher on severely and 

nondegraded classes. For extremely degraded sites, MSAVI2 was 0.11% cover higher than 

NDVI and did not differ on moderately degraded sites. With decreasing vegetation cover, the 

model error increased for both indices.  

 We found the largest proportions of grassland degradation within the high-montane zone 

(Figure 2.5). Through visual interpretation we identified errors that corresponded to the 

given RMSEP values of about 15% cover on the extremely degraded sites, which are 

attributed to erosion gullies and zones of accumulation of debris flow.  

 

Table 2.2 Median values of environmental variables for each degradation intensity class. 

 Environmental 
variables 

Degradation classes 

Re 

 

 None Light to moderate Moderate to severe Extreme  

 Vegetation cover (%) 91.5 70.2 42.2 23.7 -  

 Soil cover (%) 
4.0a 12.5a,b 20.0b,c 24.0c 

- 
0.73 

 

 Rock cover (%) 
0.0a 8.0b 31.5c 50.0d 

- 
0.87 

 

a,b,c,d Significant variable differences for the Wilcoxon rank sum test of a post-hoc cluster 
comparison using the Bonferroni correction method (p < 0.05) 
e Spearman correlation coefficient of vegetation cover to soil and rock cover at p < 0.05 
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Figure 2.4 Model fits 
for NDVI and MSAVI2 
based on predicted and 
observed vegetation 
cover values, given as 
percentage 

 

 

 

 

2.4 Discussion  

 

2.4.1 Grassland management  

Our vegetation cover map indicates a higher pressure of cattle grazing on pastures near the 

village of Mleta, where we found more degraded areas. Similar developments have been 

observed within other former Soviet countries in Central Asia (Iniguez et al. 2005). As the 

animals remain longer in nearby areas, these grasslands are more intensively grazed (Suttie 

et al. 2005). In addition to land use, topographical conditions affect the severity of erosion. 

Tasser et al. (2003) found that a slope inclination of 30–40% increased the risk of alpine 

grassland erosion in the Alps. Therefore, steep slopes near villages can be considered to be 

of higher risk for grassland degradation. Slope inclination was not considered in our model 

but should be incorporated in future management plans.  

 The weeds Veratrum lobelianum and Cirsium obvallatum, which have been reported in 

grazing areas in the Caucasus (Callaway et al. 2000), primarily occur in the subalpine zone in 

areas with dense vegetation cover. Therefore, the influence of varying spectral 

characteristics of grazing weeds, as has been proposed by Liu et al. (2015), is mainly 

restricted to the subalpine zone. The subalpine zone of the study region is further 

interspersed with rhododendron shrubs, which might further contribute to variation in the 

spectral characteristics of dense vegetation cover. Nevertheless, the degradation spots along 

the hiking trails are well displayed on our vegetation cover map for the subalpine zone.  
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2.4.2 Vegetation cover assessment 

 Grassland in the study region showed higher proportions of soil and rock cover with 

increasing degradation intensity. This is in accordance with described erosion processes on 

steep slopes of the Alps. First, the vegetation layer is damaged, and then clods of soil are 

washed downward until the base rock layer becomes exposed (Stahr 1997). Although 

revegetation can be observed to some extent on these extremely degraded sites, the natural 

formation of a new soil layer on degraded mountain slopes is an extremely slow process.  

 Considering the differing site coverages of our study region, the differences in the 

spectral reflectance of rock, soil, and vegetation have to be considered for RS methods 

(Elvidge and Lyon 1985; Clark 1999). Purevdorj et al. (1998) showed that MSAVI2 produced 

fewer errors than NDVI in the estimation of very low vegetation cover. In our model, 

differences between NDVI and MSAVI2 were negligible, which is most likely attributable to 

different site conditions: Sampling plots in our study area included steep slopes up to 43° 

inclination, and the soil cover values did not exceed those for vegetation or rock cover. It is 

possible that the stronger topographic influence and high rock cover values interfered with 

the MSAVI2, which therefore did not mitigate the soil background effect and did not strongly 

differ from NDVI. The similarity between the 2 vegetation indices at high vegetation cover 

has also been demonstrated by Qi et al. (1994). Furthermore, both indices were found to be 

strongly influenced by variations in spectral signals of rock–soil brightness (Elvidge and Lyon 

1985).  

 Considering our model errors and map interpretation, the high rock cover within erosion 

gullies is most likely causing the higher errors in the prediction of vegetation cover < 30%. 

Even though Liu et al. (2007) and Purevdorj et al. (1998) showed high model accuracies for 

vegetation cover < 30%, our results indicate restricted applicability of the vegetation indices 

for very high rock covers in mountainous terrain. Novel approaches for grassland monitoring 

by means of multispectral reflectance incorporate several vegetation indices and performed 

well on the Tibetan plateau (Lehnert et al. 2015). Topographic correction methods, an 

incorporation of further vegetation indices, and advanced regression methods such as the 

support vector machine, which were presented by Lehnert et al. (2015), might further 

improve model results.  

 Our model’s error rate is comparable to that of visual field interpretations, which can 

range from 10% (Kennedy and Addison 1987) to 15–40% (Tonteri 1990). We assume that the 
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NDVI’s high sensitivity to changes in vegetation cover enabled the good model results. In our 

study, NDVI derived from multispectral reflectance was shown to detect grassland 

degradation at a high spatial resolution of 1.84 m, which seems to be appropriate to detect 

small vegetation damage spots in heterogeneous grassland terrain. 

 

Table 2.3 Validated model fit of random forest regression models 

   RMSEP  

 
Vegetation 
index R² 

Extreme 
degradation 

Moderate to 
severe 

degradation 

Light to 
moderate 

degradation 
No 

degradation Total 

 

 NDVI 0.79 16.11 14.25 13.29 9.81 12.61  

 MSAVI2 0.79 16.22 14.27 13.29 9.79 12.63  

 

2.4.3 Practical implications  

Our models proved to be most suitable for mapping vegetation cover of 30–100%. To control 

erosion in highmontane grassland, vegetation cover of at least 70% is needed (Moismann 

1984). Therefore, our models’ coverage range is of highest interest for early detection of 

grassland degradation to enable the implementation of appropriate grazing management 

and restoration practices.  

 The manual classification of vegetation cover from photographs of ground cover was 

highly time consuming, and automated classification methods have been presented as time-

saving alternatives by other authors (e.g. Vanha-Majamaa et al. 2000; Zhou and Robson 

2001). Although novel methods to retain the fractional vegetation cover from satellite 

images have been developed (e.g. Li et al. 2014), monitoring should always be supported by 

field surveys (Gintzburger and Saidi 2010).  

 Regarding the satellite acquisition date, our model results proved that the period of 

optimum vegetation growth is an appropriate time to differentiate vegetation cover from 

soil and rock cover. This has also been demonstrated for other regions with highest 

separability of green vegetation cover from soil/rock cover (Dennison and Roberts 2003; 

Marsett et al. 2006; Feilhauer and Schmidtlein 2011).  

 Because of their cost, WorldView-2 images can generally be applied only to small areas. 

Their use in transitional and developing countries can be limited to areas near villages that 

have been defined as vulnerable by larger assessments (such as the Georgian national risk 
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assessment—CENN and Faculty of Geo Information Science and Earth Observation, 

University of Twente 2012), skiing slopes, and intensively used hiking trails.  

 For mountainous areas, general assumptions about grassland degradation based on 

vegetation cover should only be made after incorporating local knowledge about land use. 

For the upper Aragvi Valley, the loss of vegetation cover from land use and erosion has been 

well described (e.g. Khetskhoveli et al. 1975; Körner 1980; Lichtenegger et al. 2006). 

Additional impacts of overgrazing include reduction of plant diversity and infestation by 

unpalatable weed species (Liu et al. 2004). In the upper Aragvi Valley, these additional types 

of grassland degradation can be observed. This study, however, focused exclusively on loss 

of total vegetation cover. Its interrelationship with other degradation types was not tested in 

the study and would be a fruitful avenue for further research.  

 

 

Figure 2.5 Vegetation cover predicted by NDVI for a high-montane and subalpine grassland 
in the upper Aragvi Valley in 2011. Inset shows degradation along a hiking trail (Map by 
Martin Wiesmair) 
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2.5 Conclusion  

Transitional countries like Georgia have experienced substantial changes in land use, 

agricultural systems, and the tourism industry. Further development needs to take place in 

an environmentally sustainable manner. In order to reduce grassland degradation caused by 

uncontrolled grazing, the establishment of case-related, sustainable grazing management 

adapted to the vulnerable mountain grassland is urgently needed.  

 In the upper Aragvi Valley, the severe grassland degradation near the village of Mleta 

indicates that the local population is threatened by mass wasting events and the loss of 

available grazing grounds, and management measures are therefore necessary to prevent 

these risks. While the extremely degraded slopes require substantial revegetation efforts, 

more moderately degraded areas might be restored by better-regulated cattle grazing. In 

using RS to estimate grassland cover, uncertainties due to changes in plant composition and 

background signals have to be considered. Nevertheless, the RS method presented here can 

be used to detect changes in vegetation cover with an error rate that is comparable to the 

error rate of on-site field observations.  

 We propose the following site-specific management measures for the upper Aragvi Valley 

and mountain regions that face similar environmental problems:  

 Take into account the whole range of vegetation cover.  

 Accompany RS monitoring with field observations.  

 Take information on slope inclination into account.  

 Maps of vegetation cover produced in the presented way can play a key role in the 

evaluation of current grassland degradation, the decision for potential tourist development, 

and the success of future management plans.  
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Abstract  

Overgrazing, land use abandonment and increasing recreational activities have altered the 

vegetation of high-montane and subalpine grassland of the Caucasus. The failure of previous 

restoration efforts with unsuitable and exotic plant species indicates the need for 

information on the present vegetation and in which way it might change. Within the Greater 

Caucasus, we have described and quantified the mountain grassland which develops under 

characteristic overgrazed and eroded site conditions. Further, we have proposed potential 

native plant species for revegetation to restore and conserve valuable mountain grassland 

habitats. We used non-metric dimensional scaling ordination and cluster comparison of 

functional plant groups to describe a gradient of grassland vegetation cover. For our study 

region, we identified four major vegetation types with increasing occurrence of ruderal 

pasture weeds and tall herb vegetation on abandoned hay meadows within the subalpine 

zone. Within high-montane grassland a decline of plant diversity can be observed on sites of 

reduced vegetation cover. Due to a low potential of the grassland ecosystem to balance 

further vegetation cover damage, the long-term loss of diverse habitats can be expected. We 

conclude with management recommendations to prevent erosion and habitat loss of 

precious mountain grasslands. 
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3.1 Introduction 

The stability of mountain slopes is substantially influenced by site conditions such as 

vegetation cover, vegetation composition and species-richness (Martin et al. 2010; Pohl et 

al. 2009), which are in turn dependent on biotic environmental conditions and management 

practices (Tephnadze et al. 2014; Wellstein et al. 2007). Agricultural management practices 

under low stocking numbers and short grazing periods are of vital importance for a 

sustainable grassland management. Accordingly, a disregarded grazing regime harms the 

vegetation cover and induces grassland degradation processes. Furthermore, key plant 

species such as grasses can be replaced by unpalatable, invasive plants (Vallentine 2001) and 

some of them e.g. Veratrum lobelianum and Cirsium obvallatum are referred to as ruderal 

pasture weeds (Callaway et al. 2000). In steep, mountainous terrain, trampling by ungulates 

creates a net of horizontal, diagonal and vertical tracks where small damage spots can occur 

when animals are crossing between the passages (Riedl 1983). During heavy rain the water 

runoff increases on downward facing pathways and vegetation damage spots, which further 

results in an erosion of the soil layer (Dommermuth 1995; Riedl 1983). Accordingly, similar 

effects were observed on sites where the vegetation cover had been trampled by tourists 

(Klug et al. 2002). Consequently, if there is no management action against the water runoff 

taken, then the soil erosion will be followed by larger mass wasting events which remove the 

entire soil layer and expose rubble and scree of the parent rock material (Stahr and 

Langenscheidt 2015). Compared to the surrounding grassland, such habitats of scree display 

drastically altered site conditions and are further characterized by pioneer communities 

which establish a first stage of succession (Jenny- Lips 1930; Körner 2003; Zöttl 1952). Due to 

climatic and topographic conditions, the natural soil formation on mountain slopes is an 

extremely protracted process. In mountainous regions, erosion is a natural process which is 

further accelerated by a reduced vegetation cover. Dense vegetation cover is a key 

prerequisite to balance the processes of rapid soil erosion and long lasting soil formation. 

Hence, the loss of vegetation cover and associated processes are based on complex 

interactions between land use, land use changes (intensification and abandonment) and 

regional mountain features, e.g. exposition, underlying parent rock material, soil type and 

topography. Investigating all interrelated causes of degradation are therefore essential to 

understand these relationships. However, to prevent larger degradation events the 

detection of early erosion stages which are made visible by changes in vegetation is 
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essential. Therefore a thorough knowledge of the vegetation which establishes under 

characteristic site conditions is mandatory for any site conservation efforts. Consequently, a 

broad knowledge of early erosion stages and revegetation measures with indigenous, site 

specific seed mixtures has evolved for the European Alps (Florineth et al. 2002; Krautzer et 

al. 2013). Immediate revegetation of open vegetation with indigenous, site specific seed 

mixtures is an essential prerequisite for the success of ecological restoration (Krautzer et al. 

2004; Krautzer and Wittmann 2006; Krautzer et al. 2011). However, despite ongoing erosion 

processes nothing is known about the suitability of native plant species for restoration 

measures in the Caucasus region.  

 Altogether, overgrazing influences grassland condition which results in a reduced grass 

cover, an increased abundance of unpalatable plant species and soil erosion. On a mountain 

landscape level it has to be considered that these complex effects appear spatially and 

temporally interdependent. Previous studies have mainly independently researched effects 

of either vegetation cover (Martin et al. 2010; Pohl et al. 2009) or pasture weeds (Callaway 

et al. 2000) in relation to the diversity of degraded grassland. The first goal of our study was 

to describe and quantify the vegetation which develops under characteristic overgrazed and 

eroded site conditions. Therefore we have addressed the following research questions:  

 Which environmental variables are related to the species distribution on overgrazed and 

eroded sites?  

 How is species-richness related to the species distribution on overgrazed and eroded 

sites?  

 Our second goal was to give recommendations for a site specific ecosystem restoration in 

the Caucasus. Therefore we aimed to describe and quantify functional plant groups in order 

to maintain ecosystem functions after restoration measures. Further, we aimed to suggest 

potential plant species for revegetation. Therefore we addressed the following questions:  

 Which species-richness and abundance of functional plant groups can be observed on 

sites of different vegetation cover?  

 Which native plant species occur along a gradient of vegetation cover at high frequencies 

and can therefore be considered for the restoration of grassland ecosystems in the 

Caucasus?  
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3.2 Methods 

 

3.2.1 Study region  

The Republic of Georgia is situated in the Caucasus region and borders on the Black Sea. Due 

to high topographic and climatic gradients, Georgia consists of various major ecosystems 

such as evergreen and deciduous forests, dry mountain shrub lands, steppes, semi-deserts, 

wetlands, and high mountain habitats (Critical Ecosystem Partnership Fund 2004). The whole 

Caucasus region comprises the high amount of 2791 endemic plant taxa (Solomon et al. 

2014) and is therefore declared as one of the global biodiversity hotspots (Myers et al. 

2000). Mountain grassland in the high-montane and subalpine zone of the Georgian 

Caucasus includes different types of meadows and pastures mixed with subalpine tall herb 

vegetation (Lichtenegger et al. 2006; Nakhutsrishvili 1999).  

 The present state of the Georgian landscape results from a long tradition of human land 

use which shaped the mountain regions. Although archeological records of animal artifacts 

provide evidence of animal husbandry since ancient times (Lordkipanidse 1991), at first their 

number is likely to have been low due to the limited fodder resources during winter times 

(Itonishvili 1970). Over time, humans exploited the mountain forests and particularly 

replaced the subalpine birch forests by pastures, meadows, and arable fields (Nakhutsrishvili 

1999). Nowadays, in the Aragvi and Tergi valley the once widespread deciduous, coniferous 

and mixed mountain forests of the high-montane and subalpine belt can only be found in 

small remaining patches within protected areas and remote places (Khetskhoveli et al. 1975; 

Parolly 2014). Due to the limited resources of mountain grassland for hay production as 

winter fodder, a transhumance system of pastoralism evolved with alternating grazing of 

northern grounds in the high-montane to alpine belt during summer times and winter 

grazing on the southern Georgian and Russian lowlands. Furthermore, the Russian 

annexation of Georgia in the early nineteenth century enabled the sheepherders to use 

grazing grounds in the northern Caucasian territory (Plachter and Hampicke 2010). In 1861, 

the construction of the military road was finished (Kerashvili 2012; Schmerling and Dolidze 

1991), which connected Tbilisi, the capital of Georgia, and Russia and enabled further local 

economic growth and development of the mountain region. The sheep husbandry profited 

from infrastructural developments and many arable fields were turned into pastures and 

meadows (Itonishvili 1970). Due to the collectivization during the Soviet period, the 
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sheepherders took care of large state-owned flocks. Herding very large sheep herds through 

the mountain regions had consequences for the landscape, as was observed on the steep 

slopes along the migration routes of the upper Aragvi valley (Körner 1980). The upper Aragvi 

valley is asymmetrically shaped by an east side (south facing) that consists of andesite-basalt 

and a west side (north facing) which comprises clay-shale, shale marls and enclosures of 

limestone and sandstone (Gobejishvili et al. 2011; Khetskhoveli et al. 1975). The slightly 

inclined, north facing side is covered by loose sediment which is prone to erosion and 

mudflows (Lichtenegger et al. 2006). For the upper Aragvi valley, a comparison of aerial 

images from the years 1958 and 2011 displayed a 10% increase in degraded and un-

vegetated terrain (Klein 2011). This indicates ongoing erosion processes which are currently 

initiated by unregulated cattle grazing and logging of protected forests (Ministry of 

Environment Protection et al. 2009). The long lasting negative effects of the previous 

herding system collectivization followed by a de-collectivization, have been reported for 

several grassland ecosystems of former Soviet Union countries (Food and Agriculture 

Organization of the United Nations 2003). Additionally, recent development of an 

unrestricted increase in recreational activities (e.g. hiking) are further contributing to 

persisting erosion processes (Wiesmair et al. 2016).  

 In the Greater Caucasus, overgrazed grassland display vast areas of infestations by 

unpalatable plant species such as Veratrum lobelianum and Cirsium obvallatum (Callaway et 

al. 2000; Magiera et al. 2015). Veratrum lobelianum is closely related to Veratrum album 

which occurs in Central Europe and is, due to its acute toxicity and high abundance, a grazing 

weed of major concern (Schaffner et al. 2001). Cirsium obvallatum features sharp spines 

along its leaves and stems which protect the plant from being grazed (Callaway et al. 2000).  

 

 



Chapter 3 

47 

 

Figure 3.1 Localization of Georgia and the study region within the Caucasus biodiversity 
hotspot with visualizations of montane pine forests combined with montane, submontane fir 
and mixed fir forests (Forest), and subalpine vegetation together with alpine grassland 
(Grassland). Inlet showing a contour map of the upper Aragvi valley, with 500 m contour 
intervals starting from 1000–1500 m (light grey). Sources Caucasus Biodiversity Hotspot 
(Critical Ecosystems Partnership Fund), Map of the natural vegetation of Europe (BfN, 
Federal Agency for Nature Conservation Germany) 

 

3.2.2 Study sites and field sampling  

The village Mleta is divided into the two settlements Kvemo (Lower) Mleta (42°25’40”N, 

44°29’52”E, 1455 m above sea level [m a.s.l.]) and Zvemo (Upper) Mleta (42°25’45”N, 

44°29’23”E, 1535 m a.s.l.) which are situated on a talus fan in the upper Aragvi valley (Figure 

3.1). A large net of animal tracks and vegetation damage spots which were caused by cattle 

and sheep grazing, can be observed on the slopes next to Mleta (Figure 3.2a). Minor 

construction works for hiking trails and forestation with maple (Acer platanoides) for wood 

production have been going on in the study region. Previous reforestation with coniferous 

trees (Pinus sp.) and leguminous bushes (Amorpha fruticosa) has failed to stop further land 

degradation and especially the planting of exotic plant species seems to be highly unsuitable 

for slope protection (Figure 3.2b). Due to its accessibility from the military road and the 

occurrence of mass wasting events on a large scale, Mleta is a perfect study region for 

erosion processes from overgrazing. Furthermore, grassland on the north facing slope next 

to Mleta consists of a uniform geological layer of slate with homogeneous soil layers of 

Cambisol under grassland and Leptosol on eroded sites.  
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 In July 2012 and 2013, we sampled 97 plots next to the village Mleta for vegetation and 

environmental parameters. We selected the plots according to their total vegetation cover in 

order to sample a gradient of grassland coverage (0–100%). Due to the high correlation of 

vegetation cover to slope inclination, we used a digital elevation model to predefine 

sampling areas. For our study area we sought for the full range of slope inclination and 

vegetation cover. Heterogeneous topographic conditions determined sampling at a 

minimum distance of 5 m to bordering habitat patches. All plots were located on the slope 

(3–43° inclination) whereas the flat valley ground and wetland were not sampled. Each plot 

covered 25 m2, within which we arranged three 1 m2-subplots. Species abundance was 

estimated for each 1 m2-subplot with the modified Braun-Blanquet cover-scale (Barkman et 

al. 1964). In order to include all occurring plant species on the plot without occurrences on 

the subplots, we assigned the lowest cover value (r) to species that were exclusively found 

on plot level. Vegetation, soil, rock and moss cover were visually estimated for each subplot. 

Maximum plant height was measured separately for grasses and herbs on subplot level. The 

subplot values were averaged to obtain a single plot value. Botanical nomenclature followed 

‘‘The Plantlist’’ (The Plant List 2013).  

 Moreover, five samples of the top soil were randomly taken from each plot and pooled. 

Due to a very high stone content, we used a hand shovel to sample the upper soil layer (0–5 

cm). The mixed samples were air- dried for 96 h. We sieved the soil samples to 2 mm to 

separate the coarse soil material from the fine soil. Coarse soil material was washed, all 

plant material removed, air-dried and weighed. We weighed the fine and coarse soil 

fractions in order to determine the percentage of stone content (> 2 mm). The fine soil 

fraction was used for further chemical analyses. Soil samples were analyzed for their C and N 

values at the Institute of Soil Science and Soil Conservation at the University of Giessen, to 

retain information on total nitrogen (Nt) and total carbon (Ct). Calcium carbonate (CaCO3) 

was determined using the Scheibler apparatus method and was used to calculate the ratio of 

organic carbon (Corg) to the total amount of carbon. C/N was calculated from the ratio of 

organic carbon to total nitrogen. Plant available phosphorus (PCAL), potassium (KCAL) and 

magnesium (Mg) were analyzed at the Agrofor Lab, Wettenberg, Germany. We determined 

pH-value in CaCl2.  

 For each plot we measured the inclination with the SUUNTO PM-5 C 360 clinometer and 

the four coordinates of our plot corners with a GARMIN GPS62s. We marked the plot center 



Chapter 3 

49 

with magnetic markers to re-locate the plots. The geographic direction was recorded to 

calculate the exposition values of northness (cosine of aspect) and eastness (sine of aspect) 

for each plot.  

 

 

Figure 3.2 Degradation- and grassland types of the upper Aragvi valley. a) vegetation 
damage spot on highmontane pasture; b) open soil on a site with Amorpha fruticosa; c) 
Seseli transcaucasica-cluster with infestation of Veratrum lobelianum; d) Cynosurus 
cristatus-cluster; e) Briza media-cluster; f) Parnassia palustris-cluster 

 

3.2.3 Analysis of functional plant groups  

Following de Bello et al. (2010), we grouped plant species with similar responses to external 

factors and effects on ecosystem processes as functional plant groups. Therefore, the plant 

groups were first defined as herbs, graminoids (all grasses, including sedges) and woody 

plants (regenerating trees and shrubs). The herb group was further differentiated into 

Fabaceae, Orchidaceae and ruderal pasture weeds (Cirsium obvallatum, Rumex obtusifolius, 

and Veratrum lobelianum). Fabaceae play an important role in the input of nutrients due to 

their nitrogen-fixing capability. Plants of the Orchidaceae family belong to a group which has 

become endangered in many European grasslands due to the decline of suitable habitats 

(Calaciura and Spinelli 2008). Due to the high sensitivity of this plant family towards 

anthropogenic influences, conservation measures to protect these habitats would be as well 

necessary in Georgia (Akhalkatsi et al. 2003). Ruderal pasture weeds have the potential to 
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replace grassland communities under intensive grazing when neglected by grazers 

(Vallentine 2001).  

 According to previous studies dealing with grassland conditions (Gao et al. 2006; Liu et al. 

2007; Purevdorj et al. 1998), our dataset was classified into four vegetation cover intensities: 

80–100% = dense, 60–79% = moderate, 30–59% = light, and 0–29% = sparely. We used the 

classification scheme to further analyze the abundance and species-richness of functional 

plant groups within a gradient of vegetation cover. Therefore we calculated the relative 

contribution of each functional plant group to the whole species number and abundance.  

 

3.2.4 Analysis of vegetation and environmental data  

We transformed the Braun-Blanquet cover values to percentage scale (r = 0.3, + = 0.5, 1 = 

2.5, 2 m = 4.0, 2a = 8.75, 2b = 18.75, 3 = 37.5, 4 = 62.5, 5 = 87.5), which was further log-

transformed. To reduce noise in the data (in total 171 species), we omitted species with less 

than three occurrences prior to ordination analyses. Three outlier plots were detected with 

nearest single linkage/nearest neighbor classification and were removed from further 

analyses. Following analyses were run with a dataset of 94 plots (1505–2183 m a.s.l.) and 

127 species. We used the ‘‘vegan’’ R-package (Oksanen et al. 2013) for Ward’s classification 

and Non-metric dimensional scaling (NMDS) ordination, both was performed with Bray–

Curtis distance. The settings for the NMDS were: global Multidimensional scaling using 

monoMDS; two convergent solutions reached after twelve tries; scaling of centering, PC 

rotation and halfchange scaling. A detrended correspondence analysis (DCA) was performed 

to receive information on gradient length. To gain information about the indicator species of 

each vegetation cluster, we performed an indicator species analysis (Dufrêne and Legendre 

1997) using the ‘‘indval’’ function of the ‘‘labdsv 1.7’’ R-package (Roberts 2013). Species-

richness, Shannon and evenness diversity indices were derived with the ‘‘vegan’’ R-package. 

We used the Wilcoxon rank sum test with Bonferroni correction method for posthoc class 

comparison after Kruskal–Wallis cluster comparison. All analyses were performed using the 

R project statistical computing software (R Core Team 2014). Environmental percentage and 

degree values (slope, vegetation, soil, rock, moss and stone content) were arcsine 

transformed prior to analyses of cluster comparison and NMDS.  
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3.3 Results  

 

3.3.1 Vegetation types and site condition  

The Ward classification resulted in four distinct clusters, which were plotted in an NMDS 

ordination (Figure 3.3). The classification separated subalpine (Seseli transcaucasica-cluster, 

Figure 3.2c) from high-montane grassland. Within the high-montane sites, the classification 

further differentiated between nutrient-rich pastures (Cynosurus cristatus-cluster, Figure 

3.2d), poor grassland (Briza media-cluster, Figure 3.2e), and scree vegetation (Parnassia 

palustris-cluster, Figure 3.2f). The NMDS included 127 plant species and revealed a stress 

level of 13.6. Environmental vectors were fitted against NMDS ordination and most 

important variables (p < 0.001) are shown in the ordination graph (Figure 3.3). The 

corresponding vector values for the correlations of environmental vectors to the first and 

second NMDS axis are given in Table 3.1. The first axis displays a gradient of cover values 

(vegetation, soil and moss) and nutrient availability. The second axis represents a gradient of 

species diversity. Other variables such as canopy height, altitude, slope and rock cover 

display vectors in-between both axes. Northness, eastness and total carbon do not 

significantly correlate with the first two NMDS axes. Due to an intercorrelation of the 

environmental variables and for better visualization some of the variables were excluded 

from the ordination graph, as follows (Spearman correlation index, p < 0.05): Calcium 

carbonate (R = 0.80) with stone content; Moss cover (R = 0.52) with rock cover; species-

richness (R = 0.91) and evenness (R = 0.64) with Shannon diversity; Maximum height of 

graminoids (R = 0.63) with maximum height of herbs. The DCA showed a gradient length of 

4.1, which indicates a complete species turnover.  

 The ordination shows that the nutrient-rich sites are restricted to the Seseli 

transcaucasica- and Cynosurus cristatus-cluster. These sites have higher contents of 

magnesium, potassium, phosphorus, total nitrogen, and organic carbon. The Seseli 

transcaucasica-cluster displays a higher maximum vegetation height. The Briza media- and 

Parnassia palustris-cluster display low nutrient values and can be characterized as nutrient-

poor. These sites are characterized by a lower vegetation cover with conversely higher soil, 

rock, and moss cover values. Furthermore, these sites display higher stone contents with 

increased pH and CaCO3 values. Additionally, these plots are characterized by a higher slope 

inclination. In total we revealed a median of 36 species per plot. Species-richness was 
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highest for the Cynosurus cristatus- and Briza media-cluster, which differed significantly from 

the Seseli transcaucasica- and Parnassia palustris-cluster. The clusters differed significantly 

in 21 parameters (Table 3.2). A complete species list and environmental variables are shown 

in the Appendix (Electronic Supplementary Material).  

 

Table 3.1 Direction cosines of 
the environmental vectors to 
the first and second axis of 
NMDS ordination and 
corresponding squared 
correlation coefficient (r2) 

 

 

 

 

 

 

 

 

 

 
* p < 0.05; 

** p < 0.01; 

*** P < 0.001 

 

 

NMDS1 NMDS2 r
2
 

 

 

 Altitude -0.68 -0.73 0.66 ***  

 Slope 0.66 -0.75 0.52 ***  

 Cover vegetation -0.87 0.49 0.76 ***  

 Cover soil 0.98 -0.20 0.58 ***  

 Cover rock 0.80 -0.60 0.73 ***  

 Cover moss 1.00 -0.02 0.21 ***  

 Height forbs -0.71 -0.70 0.29 ***  

 Height graminoids -0.91 -0.42 0.18 ***  

 Content stone 1.00 -0.09 0.51 ***  

 pH 1.00 -0.04 0.75 ***  

 CaCO3 0.97 -0.24 0.45 ***  

 P2O5 -0.99 -0.13 0.49 ***  

 K2O -0.89 0.45 0.25 ***  

 Mg -0.89 0.45 0.55 ***  

 N(total) -0.96 0.30 0.59 ***  

 C(total) -0.92 0.40 0.03 

 

 

 C(org) -0.97 0.26 0.60 ***  

 C/N -0.65 0.76 0.11 **  

 Northness -0.73 -0.68 0.07 

 

 

 Eastness 0.60 0.80 0.04 

 

 

 Shannon diversity -0.13 0.99 0.21 ***  

 Species richness -0.14 0.99 0.17 ***  

 Evenness -0.01 1.00 0.10 **  
 

 

 The Indicator species analysis (ISA) identified 78 species as indicators of the four clusters. 

29 species were assigned to the Seseli transcaucasica-cluster, 29 species to the Cynosurus 

cristatus-cluster, 9 species to the Briza media-cluster and 11 species to the Parnassia 

palustris-cluster. Species that occurred in the ISA with a relative frequency of ≥ 50% were 

used to describe our clusters (Table 3.3), as follows: the Seseli transcaucasica-cluster is 

characterized by species of the subalpine tall herb vegetation such as Astrantia maxima, 

Betonica macrantha, Cephalaria gigantea, Geranium ibericum, Hypericum bupleuroides, 

Inula orientalis, Seseli transcaucasica, and by ‘‘real’’ grassland species such as Anthoxanthum 
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odoratum, Bromus variegatus, and Dactylorhiza euxina. Further, Cirsium obvallatum, Rumex 

obtusifolius, and Veratrum lobelianum are ruderal species indicative of overgrazed grassland. 

Cynosurus cristatus-cluster, the nutrient-rich high-montane pasture, is dominated by 

Cynosurus cristatus and further characterized by Alchemilla caucasica, Carex caryophyllea, 

Plantago lanceolata, Prunella vulgaris, and Trifolium repens. The nutrient-poor Briza media-

cluster is characterized by Anthyllis variegata, Briza media, Leucanthemum vulgare, Linum 

catharticum, Polygala transcaucasica, and Thymus collinus. Typical for the scree sites of the 

Parnassia palustris-cluster are the pioneer species Campanula alliarifolia, Lactuca racemosa, 

Parnassia palustris, Trisetum rigidum, and Tussilago farfara which are characterized by a 

rapid establishment due to their abundant, anemochorious seed dispersal with further 

spread through water runoff.  

 

 

Figure 3.3 NMDS ordination of 94 grassland plots and 127 species, displaying the first and 
second axis. The stress level revealed at 13.6, environmental variables are indicated by 
arrows. Abbreviations: C Organic carbon, Diversity Shannon diversity, Mg magnesium, N 
total nitrogen, P phosphorus, stones stone content, K potassium, height vegetation max. 
height herbs 

 

 Species that occurred within the densely vegetated plots (Seseli transcaucasica- and 

Cynosurus cristatus-cluster) at a relative frequency of ≥ 50 % were Anthoxanthum odoratum, 

Campanula glomerata ssp. caucasica, Centaurea salicifolia, and Luzula stenophylla. Species 

that we found within the high-montane plots (Cynosurus cristatus-, Briza media-, and 
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Parnassia palustris-cluster) at a relative frequency of ≥ 50% were Cruciata laevipes, 

Euphrasia sp., Leucanthemum vulgare, Linum catharticum, Phleum pretense, Prunella 

vulgaris, Trifolium pretense, and Thymus collinus. Species that displayed a relative frequency 

of ≥ 50% within the nutrient-poor plots (Briza media- and Parnassia palustris-cluster) were 

Anthyllis variegata, Briza media, Campanula alliariifolia, Parnassia palustris, Polygala 

transcaucasica, and Salvia verticillata. Common grassland species which occurred within all 

plots at a relative frequency of ≥ 50% were Agrostis vinealis, Festuca pratensis, Leontodon 

hispidus, Lotus corniculatus, Pimpinella rhodanta, Plantago lanceolata, Ranunculus 

caucasicus, and Veronica gentianoides.  

 

Table 3.2 Median values and quartiles of environmental variables from vegetation type 
clusters 

 
Vegetation cluster 

Seseli transcaucasica 
(n = 16) 

Cynosurus cristatus  
(n = 20) 

Briza media  
(n = 37) 

Parnassia palustris 
(n = 21) 

 

 Altitude (m a.s.l.) * 1,989.5 ± 111.5 
a
 1,747.0 ± 266.5 

b,c
 1,689.0 ± 258.0 

b
 1,640.0 ± 252.0 

c
  

 Slope (°)* 22.5 ± 15.3 
a
 17.5 ± 7.5 

a
 37.0 ± 10.0 

b
 37.0 ± 5.0 

b
  

 Cover vegetation (%) * 100 ± 5 
a
 93.5 ± 6.5 

b
 60 ± 40 

c
 28 ± 31 

d
  

 Cover soil (%) * 0 ± 5 
a
 5 ± 3 

a
 15 ± 10 

b
 18 ± 7 

b
  

 Cover rock (%) * 0 ± 0 
a
 1 ± 5 

a
 15 ± 23 

b
 40 ± 17 

c
  

 Cover moss (%)  * 0 ± 0 
a
 1 ± 2 

b
 5 ± 4 

b,c
 5 ± 9 

c
  

 Height forbs (cm)* 69.2 ± 18.3 
a
 28.3 ± 18.8 

b
 35.0 ± 15.0 

b
 31.7 ± 21.7 

b
  

 Height graminoids (cm)* 76.7 ± 8.3 
a
 39.2 ± 23.2 

b
 41.7 ± 20.0 

b
 45.0 ± 33.3 

c
  

 Content stone (%)* 4.1 ± 2.0 
a
 11.4 ± 8.8 

b
 19.3 ± 17.1 

b
 31.3 ± 13.8 

c
  

 pH (Ca Cl2)* 4.49 ± 0.77 
a
 5.47 ± 2.17 

a
 7.11 ± 0.31 

b
 7.35 ± 0.39 

c
  

 CaCO3 (%) * 0.00 ± 0.00 
a
 0.14 ± 3.58 

b
 13.40 ± 23.73 

c
 32.46 ± 25.82

d
  

 P2O5 (mg/100g) * 3.04 ± 2.15 
a
 1.60 ± 1.91 

a
 0.42 ± 0.60 

b
 0.20 ± 0.38

b
  

 K2O (mg/100g) * 11.13 ± 3.40 
a
 7.88 ± 4.89 

a,b
 7.73 ± 5.36 

b
 5.56 ± 2.49 

c
  

 Mg (mg/100g) * 9.06 ± 3.46 
a
 9.23 ± 5.87

a
 3.99 ± 1.80

b
 2.94 ± 0.99 

b
  

 N(total) (%) * 0.74 ± 0.17 
a
 0.52 ± 0.16 

b
 0.34 ± 0.21

c
 0.19 ± 0.09 

d
  

 C(total) (%) * 7.08 ± 1.38 
a,c

 4.98 ± 1.91 
b
 5.21 ± 2.66 

b,c
 5.44 ± 2.42 

b,c
  

 C(org) (%) * 6.83 ± 1.63 
a
 4.83 ± 1.64 

b
 3.12 ± 2.36 

c
 1.53 ± 0.68 

d
  

 C/N (%) * 9.41 ± 0.56 
a
 9.05 ± 1.07 

a
 8.91 ± 1.69 

a
 7.68 ± 1.31 

b
  

 Northness 0.53 ± 0.47 
a
 0.53 ± 0.14 

a
 0.53 ± 0.14 

a
 0.67 ± 0.47 

a
  

 Eastness 0.85 ± 0.85 
a
 0.85 ± 0.11 

a
 0.85 ± 0.11 

a
 0.75 ± 0.85 

a
  

 Shannon * 3.00 ± 0.21 
a
 3.15 ± 0.16  

b
 3.18 ± 0.31 

b
 2.95 ± 0.36 

a
  

 Richness * 34 ± 4 
a
 38 ± 7 

b
 39 ± 13 

b
 32 ± 9 

a
  

 Evenness * 0.84 ± 0.04 
a
 0.87 ± 0.02 

a,b
 0.87 ± 0.02 

b
 0.84 ± 0.04 

a,b
  

a, b, c, d indicate significant variable differences for the Wilcoxon rank sum test of a posthoc 
cluster comparison using Bonferroni correction method (p < 0.05). * indicates significant 
differences between clusters from Kruskal–Wallis comparison (p < 0.05) 
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Table 3.3 Indicator species analysis of vegetation types ordered by relative frequency 
 

  Cluster 
Species name 

I 
(n=16) 

II 
(n=20) 

III 
(n=37) 

IV 
(n=21) IndVAL 

 

 

 Agrostis vinealis Schreb. 88 100 70 62 44 **  
 Seseli transcaucasica (Schischk.) M.Hiroe 81 10 5 0 77 ***  

 Betonica macrantha C. Koch. 75 0 3 0 75 ***  

 Astrantia maxima Pall. 75 5 3 0 75 ***  

 Anthoxantum odoratum L. 75 60 16 0 43 ***  

 Dactylorhiza euxina (Nevski) Czerep. 75 25 22 19 42 ***  

 Cirsium obvallatum (M.Bieb.) M.Bieb. 69 20 22 10 64 ***  

 Trifolium caucasicum Tausch 69 40 46 10 48 **  

 Centaurea salicifolia M.Bieb. 69 50 24 29 41 **  

 Carex umbrosa ssp. huetiana (Boiss.) Soó 69 35 19 5 29 **  

 Cephalaria gigantea (Ledeb.) Bobrov 63 5 19 10 54 ***  

 Rumex obtusifolius L. 63 5 0 0 51 ***  

 Hypericum bupleuroides Griseb. 63 10 14 5 46 ***  

 Bromus variegatus M.Bieb. 63 45 35 29 40 ***  

 Veratrum lobelianum Bernh. 56 0 0 0 56 ***  

 Inula orientalis Lam. 50 0 5 0 50 ***  

 Geranium ibericum Cav. 50 15 3 0 49 ***  

 Cynosurus cristatus L. 38 100 46 14 76 ***  
 Trifolium repens L. 81 100 57 24 52 ***  

 Festuca pratensis Huds. 56 100 70 71 49 ***  

 Leontodon hispidus L. 81 100 95 100 38 ***  

 Carex caryophyllea Latourr. 6 95 54 19 55 ***  

 Plantago lanceolata L. 56 95 97 81 55 ***  

 Alchemilla caucasica Buser 50 95 89 43 46 ***  

 Prunella vulgaris L. 31 95 84 71 41 **  

 Pimpinella rhodantha Boiss. 100 95 89 86 39 *  

 Gentiana septemfida Pall. 50 95 54 33 36 *  

 Cerastium fontanum  

ssp. vulgare (Hartm.) Greuter & Burdet 38 90 27 14 57 *** 
 

 Phleum pratense L. 31 85 59 52 49 ***  

 Trifolium pratense L. 25 85 62 57 44 **  

 Euphrasia sp.  0 85 62 90 37 ***  

 Poa alpina L. 25 75 70 48 36 **  

 Achillea millefolium L. 6 70 43 29 48 ***  

 Festuca ovina L. 25 70 46 14 36 **  

 Phleum alpinum L. 50 55 14 0 25 *  

 Nardus stricta L. 13 50 3 0 49 ***  

 Medicago lupulina L. 0 50 70 48 32 *  

 Luzula stenophylla Steud. 69 50 19 0 32 **  

 Thymus collinus M.Bieb. 19 70 97 86 52 ***  
 Leucanthemum vulgare (Vaill.) Lam. 6 90 95 86 40 ***  

 Linum catharticum L. 19 70 92 100 40 **  

 Polygala transcaucasica Tamamsch. 6 45 84 86 40 ***  

 Briza media L. 25 45 81 76 39 **  

 Anthyllis variegata Grossh. 0 15 59 52 45 ***  

 Trisetum rigidum (M.Bieb.) Roem. & Schult. 56 45 84 100 37 **  
 Parnassia palustris L. 6 10 49 86 48 ***  

 Campanula alliariifolia Willd. 0 0 68 81 47 ***  

 Lactuca racemosa Willd. 13 0 41 76 40 **  

 Alchemilla cf. laeta Juz. 38 0 16 71 28 *  

 Tussilago farfara L. 0 0 19 57 53 ***  
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Table 3.3 continued 
 

  Cluster 
Species name 

I 
(n=16) 

II 
(n=20) 

III 
(n=37) 

IV 
(n=21) IndVAL 

 

 

 No group assigned, non-significant 
indicator values 

 

      

 

 Ranunculus caucasicus M.Bieb. 100 100 97 90 31   

 Lotus corniculatus L. 75 90 97 100 29   

 Veronica gentianoides Vahl 56 95 76 43 32   

 Rhinanthus minor L. 88 35 54 29 28   

 Campanula glomerata  

ssp. caucasica (Trautv.) Ogan. 50 60 32 5 22  
 

 Cruciata laevipes Opiz 44 50 76 62 26   

 Salvia verticillata L. 13 30 57 62 22   

 Origanum vulgare L. 25 40 43 57 18   

Species with a relative frequency of ≥ 50% (grey shading) and highly significant indicator 
values (***) are shown as indicator species (bold). Boxes indicate cluster assignment of 
indicator species, cluster I: Seseli transcaucasica, cluster II: Cynosurus cristatus, cluster III: 
Briza media, cluster IV: Parnassia palustris. * p < 0.05; ** p < 0.01; *** p < 0.001 

 

3.3.2 Functional plant groups  

The relative abundance and species-richness of functional plant groups were calculated for 

each of the vegetation cover classes (Figure 3.4). Due to a contribution of high-montane and 

subalpine vegetation to the plant composition within the densely vegetated class, we 

separately visualized the Seseli transcaucasica-cluster. The herbs’ contribution to the overall 

abundance increases with decreasing vegetation cover from 47% on dense sites of the high-

montane zone up to 62% on sparely vegetated plots. Further, the proportion of graminoid 

abundance decreases from 35% on dense sites to 22% on lightly vegetated sites, whereas 

the relative abundance of the Fabaceae group remains stable at 15–16% throughout the 

same vegetation cover ranges. Sparely vegetated sites display a different trend for Fabaceae 

(10% abundance) and graminoids (26% abundance). Woody species (Betula litwinowii, 

Daphne glomerata, Fagus orientalis, Prunus cerasifera, Pyrus caucasica, Salix caprea, Salix 

kazbekensis, Sorbus aucuparia), orchids and ruderal pasture weeds contribute each to less 

than 1% abundance for the high-montane zone. However, for the subalpine Seseli 

transcaucasica-cluster, ruderal pasture weeds display about 10% relative abundance. 

Further, abundance of the Seseli transcaucasica-cluster is comprised by the overall lowest 

abundance value for the Fabaceae group (9%) in addition to herb and graminoid abundance 

which is similar to the densely vegetated high-montane sites.  



Chapter 3 

57 

 Generally, herbs contribute most to overall species-richness which indicates the 

abandonment of former grassland management (haymaking). The herb species-richness 

ranges from 57% for the densely vegetated sites of the high-montane zone up to 61% at the 

sparely vegetated sites and densely vegetated Seseli transcaucasica-cluster. Graminoids 

contribute to the second largest proportion of species-richness of 19–21% for open 

vegetation cover and 25% for the densely vegetated sites. Fabaceae contribute 8% of 

species-richness at the sparely and lightly vegetated sites and display the lowest value of 5% 

on the densely vegetated Seseli transcaucasica-cluster sites. Orchidaceae show the lowest 

contribution to the species-richness on sparely vegetated sites (3%), whereas the other 

vegetation cover classes display a relative species-richness of 5 and 4% for the Seseli 

transcaucasica-cluster. The highest shares of woody species to species-richness show the 

lightly (8%) and sparely vegetated sites (6%). Woody species (Sorbus aucuparia) contribute 

only 1% to the relative species-richness on the densely vegetated Seseli transcaucasica- 

cluster sites. However, the Seseli transcaucasica-cluster displays the highest proportion of 

ruderal pasture weeds (4%). Whereas the plant group of ruderal pasture weeds is absent on 

the sparely vegetated sites.  

 

 

Figure 3.4 Relative abundance (a) and species-richness (b) within varying vegetation cover 
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3.4 Discussion 

Our study has examined the vegetation which develops under characteristic site conditions 

of overgrazed and eroded sites in order to establish conservation measures for mountain 

grassland within the Caucasus biodiversity hotspot.  

 

3.4.1 Site condition and vegetation types  

Our ordination results indicate the changeover of species composition and site conditions of 

the subalpine and high-montane zone which is in accordance with the well-known altitudinal 

gradient of mountain vegetation (Ozenda 1988). In our data set, the altitudinal gradient can 

be further seen in an overlap of shared species within the nutrient-rich sites of the subalpine 

and high-montane zone. Nevertheless, the distinct position for most of the Seseli 

transcaucasica-cluster sites is further confirmed by the ISA that shows most of the subalpine 

species at highest frequency. Besides altitudinal influences, changes in land use have further 

affected the subalpine sites in our research area (Tephnadze et al. 2014). The laborious 

haymaking on remote slopes of the subalpine zone was replaced by hay production at more 

favorable locations near the villages which were former used as arable fields. Indicators for 

hay production in the subalpine belt are Agrostis vinealis, Bromus variegatus, and to a 

smaller extent Hordeum brevisubulatum which are typical hay meadow species of the 

Kazbegi region (Tephnadze et al. 2014; Magiera et al. 2013). Ruderal species such as Cirsium 

obvallatum and Veratrum lobelianum are zoochorously dispersed by grazing animals and are 

therefore characteristic for grazed habitats. Callaway et al. (2000) discovered so-called safe 

sites in the surrounding of these species where certain species (e.g. Trifolium ambiguum and 

grasses) benefit from the protection of herbivory. These safe sites on overgrazed grassland 

are characterized by high plant diversity whereas the subalpine grassland of our study region 

is dominated by highly competitive tall herbs such as Seseli transcaucasica, Betonica 

macrantha, Astrantia maxima, or Cephalaria gigantea which infest the abandoned hay 

meadows. However, we found a single specimen of Traunsteinera sphaerica, a considerably 

rare orchid species (Akhalkatsi et al. 2003), within the Seseli transcaucasica-cluster. Further, 

the subalpine meadows of the Kazbegi region have been described to substantially 

contribute to the phytodiversity on a landscape level (Tephnadze et al. 2014). Therefore 

future development of the productive subalpine grassland will be of interest as the low 
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occurrence of meadow species indicates the loss of a valuable subalpine hay meadow 

habitat.  

 Our class comparison of environmental variables illustrates the changing site conditions 

along the slope of the high montane zone. Although we found a changing high-montane 

vegetation composition along the slope, these changes most likely contributed to a gradient 

of land use intensity. Tasser et al. (2003) identified effects related to a change in land use as 

an additional factor contributing to topographical factors causing the loss of vegetation 

cover and erosion events. We assume a higher grazing pressure within the slopes nearby the 

villages as it is known from former Soviet Union countries (Food and Agriculture 

Organization of the United Nations 2003). Furthermore, the altitudinal differences of 

vegetation types correspond to the distance from settlements and therefore the site 

conditions of the lower slope display lower vegetation cover. The location of erosion events 

on the lower part of the mountain slope was also found on steep overgrazed slopes of the 

Alps (Dommermuth 1995). In the high-montane zone, we observed the Cynosurus cristatus 

grassland vegetation which develops under less inclined, dense site conditions of the upper 

slope. This vegetation type displays a high vegetation cover density and high species-

richness. As we further approach downslope, the Briza media-cluster indicates a transition 

towards the Parnassia palustris-cluster. As the slope ascents we found less vegetation cover 

on Briza media grassland and the lowest coverages on the lower slope at Parnassia palustris-

cluster vegetation. Although the site conditions of slope inclination, stone content and 

phosphorus content are in accordance with the sparely vegetated sites, a higher vegetation 

cover and a lower rock cover distinguish the unique features of the Briza media-cluster from 

the Parnassia palustris-cluster. Due to its low nutrient values and high species-richness, the 

Briza media-cluster of our study area has to be recognized as a habitat as valuable as poor 

grassland of other mountain regions. This is further confirmed by the occurrence of one 

native Gladiolus population, a genius which has become particularly endangered in the 

European Alps. The Parnassia palustris-cluster sites carry the first stage of vegetation 

succession on habitats of scree. Other than the species-rich habitats of rock and scree of the 

Kazbegi region which are considered as valuable habitats for Georgia (Nakhutsrishvili et al. 

2006), our described scree habitats are neither of any danger nor of conservation value. 

Considering the long-lasting period of soil formation in mountainous regions, the long-term 
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loss of diverse grassland and the development towards habitats of no conservation value has 

to be expected once the vegetation cover is removed. 

 Seseli transcaucasica- and Cynosurus cristatus-cluster display acidic soil conditions 

whereas the high stone content on Briza media- and Parnassia palustris-cluster creates basic 

substrates. The content of calcium carbonate content indicates a mixture of calcareous and 

alkaline parent rock material, as it has been described for the study area (Gobejishvili et al. 

2011; Khetskhoveli et al. 1975). Soil phosphorus content is generally very low, whereas 

potassium and magnesium values seem to be sufficient compared to grassland nutrient 

demands of managed European grassland (VDLUFA 1997, 1999). The strong decline of 

nutrients from vegetated to open sites that we observed was also reported from sites of the 

Alps (Florineth et al. 2002; Zöttl 1952). Nutrient values of our sparely vegetated study sites 

are comparable to site conditions which were recorded on a comparable study site in Italy 

(Florineth et al. 2002). However, phosphorus content within poor grassland (Briza media-

cluster) and scree sites (Parnassia palustris-cluster) was several times lower compared to the 

Alps and similar low values were observed on study sites within the nearby Kazbegi region 

(Tephnadze et al. 2014). Additional factors such as the upper soil horizon thickness and 

fractions of coarse soil material where not incorporated into our soil analyses and might 

further influence the nutrient availability for plants.  

 

3.4.2 Functional plant groups  

Differences between the functional plant groups can be explained by the varying structural 

conditions of different vegetation cover classes. Graminoids play an important role to 

benefit the density of vegetation structure on densely vegetated sites where they are 

responsible for the higher abundance and species-richness. Accordingly, a sparely vegetated 

structure enables the establishment of higher herb abundance. The Fabaceae is a light-

demanding plant group which therefore seems to be most affected by the structure and site 

conditions of sparely vegetated sites and densely vegetated Seseli transcaucasica cluster 

sites. Fabaceae play an important role in the revegetation of sparely vegetated sites due to 

their nitrogen-fixing capabilities (De Deyn et al. 2011). Due to their low competitiveness their 

relative abundance needs to be increased when considering restoration efforts. The 

decrease in the number of species of Orchidaceae on vegetation cover < 30% indicates the 

decline of a species group of high conservation value once the soil layer has been completely 
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eroded. These outcomes support the demand for the protection of valuable and diverse 

grassland habitats in Georgia.  

 The occurrence of ruderal pasture weeds is largely restricted to the Seseli transcaucasica- 

cluster. We conclude for our study region that the high abundance of ruderal pasture weeds 

indicates a high competiveness to tall herb vegetation. The open vegetation structure of 

sparely vegetated sites seems to enable more shrub and tree species to regenerate. Further, 

we assume that a high grazing pressure prevents further reforestation as the abundance of 

woody species is generally very low. The occurrence of woody species (Sorbus aucuparia) in 

the subalpine zone is a remnant from the original forest which indicates the potential for 

reforestation in the subalpine belt. However, the distance to mature trees influences the 

process of seedling recruitment and was not tested within our study.  

 

3.4.3 Potential plant species for ecosystem restoration  

Due to the tolerance to varying site conditions of plant species which we could find within all 

vegetation types of the high-montane zone, we assume these species to be suitable for 

grassland restoration in the Greater Caucasus. Although some single species may possess the 

capability to quickly restore vegetation cover, the necessity to restore species-rich grassland 

for erosion control has been reported (Martin et al. 2010; Pohl et al. 2009). From the plant 

species’ characteristics to grow on nutrient-poor sites, we suggest grasses which form the 

matrix of grassland such as Agrostis vinealis, Briza media, Festuca pratensis, and Poa alpina. 

Additionally Festuca ovina might be suitable for revegetation, as the closely related Festuca 

valesiaca has been found to secure erosion edges in subalpine grassland of the Georgian 

Caucasus (Caprez et al. 2011). Moreover we suggest the following herb species which also 

grow under poor soil conditions: Anthyllis variegata, Campanula alliariifolia, Leontodon 

hispidus, Leucanthemum vulgare, Lotus corniculatus, Medicago lupulina, Pimpinella 

rhodantha, Polygala transcaucasica, Ranunculus caucasicus, Salvia verticillata and Trifolium 

pratense. However, due to small biomass we assume that Parnassia palustris, and Veronica 

gentianoides can be neglected for revegetation. In comparison to other species suggestions 

for restoration of mountain grassland (Krautzer et al. 2004), we further assume that Achillea 

millefolium, Koeleria luerssenii, Phleum alpinum, and Trifolium repens might be appropriate 

species. Further, Trifolium ambiguum, a native Fabaceae species of the Georgian mountain 

region, is globally used for grazing in permanent pastures and forms dense structures once 
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established (Cuomo et al. 2003). Although Festuca varia plays an important role for slope 

protection in the Alps we do not recommend this species for the Caucasus region as it has 

the potential to replace grassland communities under intensive grazing (Nakhutsrishvili 

1999). We further identified Trisetum rigidum as being able to take the ecological position of 

pioneer on high-montane scree habitats as it is known for Trisetum distichophyllum in the 

subalpine region of the European Alps. The seed production and suitability of the proposed 

species for restoration measures in the Caucasus region should be further tested in field 

studies.  

 

 

3.5 Conclusion for grassland management and conservation  

We found four major vegetation types which have developed under the site conditions of 

overgrazing and erosion in the upper Aragvi valley. Our results indicate the loss of species-

rich high-montane pastures once the vegetation cover is damaged. This is further confirmed 

by Tasser et al. (2003) who described larger erosion events on steep slopes after damage 

being done to the vegetation cover. Furthermore, Klug et al. (2002) reported little 

revegetation potential after the vegetation cover has been trampled. Due to the observed 

low individual numbers on sparely vegetated sites, we assume also a low potential for the 

natural succession through seed production on these sites. Therefore, indigenous, site 

specific seed material has to be produced to ensure restoration success. We strongly 

recommend applying our suggested native plant species and neglecting exotic species [e.g. 

Chrysopogon zizanoides] for revegetation. Therefore, for the Cynosurus cristatus pastures on 

steep slopes nearby the settlements we suggest focusing on early grassland revegetation 

once the vegetation cover gets damaged. Immediate seeding and grazing enclosures on 

vegetation damage spots are essential for grassland restoration success and slope protection 

(Krautzer and Wittmann 2006). Due to the high costs of large scale restoration methods we 

suggest putting emphasis on restoring recent small scale damages of pastures and 

recreational areas for the region of interest and other transition countries of the Caucasus 

region to stop land degradation and further habitat loss. The poor grassland vegetation of 

our study area showed the highest diversity and proved to also be habitat of specialist plants 

of high conservation value. Therefore the loss of these valuable stands needs to be halted. 

Further, these sites of Briza media-cluster displayed a median vegetation cover of 60% which 
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should be the minimum goal for restoration management since Moismann (1984) proposed 

70% vegetation cover to secure mountain slopes.  

 Due to site conditions, the highly productive Seseli transcaucasica grassland seems to be 

most suitable for grazing or haymaking. However, the high infestation with ruderal pasture 

weeds reduces the value as animal fodder. Therefore, strategies to reduce ruderal pasture 

weed abundance and to maintain the subalpine vegetation for animal use would be highly 

advisable. Further, on the more favorable, less inclined slopes of the subalpine zone cutting 

and haymaking should be again intensified towards the re-establishment of diverse Hordeum 

and Bromopsis community meadows in order to conserve habitat diversity. Overall, we 

suggest establishing an appropriate management plan on collective land of Caucasian 

grassland as it has been proposed for other countries which experienced collectivization 

(Food and Agriculture Organization of the United Nations 2003).  
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Abstract 

Vegetation cover has often been used as an indicator to detect grassland degradation in 

studies relying on remote sensing technologies. However, grassland degradation comprises 

not only the loss of vegetation cover but also the loss of phytodiversity, productivity, and a 

shift in vegetation composition. Due to the strong relationship between environmental 

conditions and species composition within mountain grassland a combination of 

environmental variables may improve the early detection of mountain grassland 

degradation. In our study region, the Caucasus, Georgia overgrazing and erosion events have 

degraded large grassland areas and methods to evaluate grassland condition on a large scale 

are needed. The aim of our study was to test the combination of vegetation cover and 

vegetation types to detect mountain grassland degradation with multispectral sensors of 

high spatial resolution. We combined vegetation cover and vegetation types as indicators for 

the detection of grassland degradation from remote sensing. Therefore, we used a hand-

held field spectrometer to simulate the multispectral World View 2 (WV2) sensor in order to 

calculate multispectral vegetation indices. Further, we classified 139 grassland vegetation 

subplots according to species composition into 3 vegetation types with Ward clustering. We 

used random forest regression models to predict vegetation cover by WV2 wavebands and 

vegetation indices. Additionally, we included environmental variables into a random forest 

classification to predict the vegetation types. Finally, we combined the predicted vegetation 

cover and vegetation types to classify degraded sites. Therefore we set a threshold value for 

the vegetation cover of each vegetation type. We used NMDS ordination to display 

vegetation composition, vegetation types, environmental variables and predicted grassland 

degradation. From an overall accuracy of 75%, we assume that the combination of 

vegetation cover and vegetation types is a promising tool for the evaluation of grassland 

condition by multispectral remote sensing.  
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4.1 Introduction 

Grassland degradation comprises a loss of vegetation cover, plant diversity, productivity and 

changing vegetation composition. These interrelated processes lead to a strong modification 

of landscape patterns and services provided from grassland ecosystems. In particular, 

grassland degradation has a strong destabilizing consequence on mountain slopes where a 

dense vegetation cover with a diverse root system is an essential prerequisite for erosion 

control (Martin et al. 2010; Pohl et al. 2009). Though erosion events are a natural 

phenomenon within mountain landscapes, cultural, social and economic causes are 

contributing to the complex reasons for erosion (Holzner and Kriechbaum 2001) which are 

further accelerating grassland degradation processes. For instance, changes in grazing 

systems have contributed to overgrazing followed by grassland degradation in many former 

Soviet Union states and Asian countries (Food and Agriculture Organization of the United 

Nations 2003). In the democratic republic of Georgia, a former member of the Soviet Union, 

the past farming collectivization had long lasting impacts to the grassland ecosystem. 

Nowadays, the previously overgrazed pastures on less inclined plateaus are highly infested 

with ruderal pasture weeds (Callaway et al. 2000) and on steep slopes overgrazing resulted 

in heavily eroded sites. As the local mountain population strongly relies on the productivity 

of healthy grassland ecosystems, methods to detect degradation are needed in order to 

apply a sustainable land use management.  

 To detect the grassland condition of large mountain terrains, remote sensing (RS) 

approaches are particularly beneficial and highly time-saving compared to fieldwork 

assessments. Grassland degradation was successfully detected from fractions of vegetation 

cover with high resolution satellite images (Lehnert et al. 2015; Wiesmair et al. 2016). 

Furthermore, biomass loss or slope have been widely used as indicators to estimate 

grassland degradation (e.g. Pickup and Chewings 1996). However, Liu et al. (2015) suggested 

that vegetation cover may fail to assess grassland degradation. Particularly, unpalatable 

weeds which infest and degrade grassland ecosystems contribute to a high vegetation cover 

(Vallentine 2001). For the Georgian Greater Caucasus, Wiesmair et al. (2016b) described high 

vegetation cover and variance in slope inclination for subalpine grassland which was highly 

infested by ruderal pasture weeds such as Veratrum lobelianum. Furthermore, they 

described poor grassland which naturally occurs on sites of high rock and soil cover even if 

not degraded. Therefore the indication of grassland degradation from the single values of 
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vegetation cover, slope inclination or vegetation type seems to be insufficient. 

Correspondingly, the combination of indicators, such as cover, biomass, proportion of edible 

plants and plant height, into a regional grassland degradation index has been presented for 

Asian grassland as a powerful tool to overcome such uncertainties and to further distinguish 

the grassland for degraded and non-degraded sites (Wen et al. 2010). Such an approach 

seems to be more precise as it is additionally including information of certain indicator 

species such as ruderal pasture weeds. However, the degradation intensity from vegetation 

cover has not yet been further differentiated for individual grassland types. To evaluate the 

grassland degradation processes of the Caucasus and other affected regions, more precise, 

regional information on the grassland status is needed. To increase the information of RS 

data, the good separability of hyperspectral reflectance has already been used to distinguish 

mountain grassland types (Magiera et al. 2013), grassland successional stages (Möckel et al. 

2014), single grassland indicator plant species (Liu et al. 2006; Wang et al. 2010) and 

degrading Asian mountain grassland types (Liu et al. 2015). However, due to the current 

coarse spatial resolution of hyperspectral imagery and the absence of flight campaigns with 

hyperspectral sensors the practical utilization of such data is limited in the Greater Caucasus 

and other remote, high-mountain regions. A high spatial resolution is particularly important 

for the heterogeneous mountain terrain where variations occur within meters (Asner and 

Lobell 2000). Therefore, multispectral sensors which record reflectance at a very high spatial 

resolution have gained importance for RS assessments. Particularly, the implementation of 

several multispectral indices has been found beneficial for further discriminations of 

grassland degradation from vegetation cover at high altitude (Lehnert et al. 2015; Liu et al. 

2015). As a substitute for airborne hyperspectral sensors, portable spectrometers offer the 

possibility to record spectral data with a similar spectral coverage to test their applicability 

for a desired research question. The aim of our study was to test the combination of 

vegetation cover and vegetation types to detect mountain grassland degradation with 

multispectral sensors of high spatial resolution. Therefore we used a hand-held field 

spectrometer to simulate the multispectral World View 2 (WV2) sensor which provides 8 

spectral bands at a high spatial resolution of 1 m. In a landscape which is frequented by 

overgrazing, erosion and mass wasting events, we addressed the following research 

questions: 
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 To which extent can spectral and environmental variables predict vegetation cover and 

grassland types and which predictor variables are most important? 

 Can grassland degradation, represented by grassland types and coverage be detected in 

multispectral data?  

 

 

4.2. Methods 

 

4.2.1 Study area 

The study was conducted in the upper Aragvi valley in the vicinity of the village Mleta 

(42°25'40"N, 44°30'23"E, 1450 m above sea level [m a.s.l.]) in the Greater Caucasus in 

Georgia. The climate station at the valley bottom of the upper Aragvi valley (Pasanauri) 

displays a mean annual temperature of 8.2°C and a mean annual precipitation of 1011 mm. 

January, the coldest month, has a mean temperature of -3.3°C and 50 mm mean 

precipitation. The hottest month, July, is characterized by a mean temperature of 18.9°C and 

a mean precipitation of 103 mm. Climate data was contributed by the National 

Environmental Agency and modified by Ina Keggenhoff. 

 The upper Aragvi valley is built up from Andesite-Basalt in alternation with clay-shale, 

shale marls and enclosures of limestone and sandstone (Gobejishvili et al. 2011; 

Khetskhoveli et al. 1975). Close to Mleta, the upper Aragvi valley is asymmetrically shaped. 

The slightly inclined, north facing slope is covered by loose sediment which is prone to 

erosion and mudflows (Lichtenegger et al. 2006). Within the Aragvi valley, the grassland 

includes soil types of Leptosols, Cambisols and Cryosols. 

 The slopes next to Mleta range from the river bed at approximately 1500 m a.s.l. up to 

the mountain ridges at about 2200 m a.s.l. The north facing slopes are characterized by 

beech forests (Fagus orientalis), large erosion gullies and pastures which are mainly grazed 

by cattle and to a minor extent by sheep and horses. Uncontrolled cattle grazing can be 

observed close to the settlements (Wiesmair et al. 2016). High-montane grassland of our 

study site is characterized by strong gradients from densely vegetated pastures towards 

poor grassland and eroded sites of little vegetation cover. Pastures are characterized by 

Cynosurus cristatus, Alchemilla caucasica, Carex caryophyllea, Plantago lanceolata, Prunella 

vulgaris and Trifolium repens. Poor grassland is characterized by Briza media, Anthyllis 
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variegata, Leucanthemum vulgare, Linum cartharticum, Polygala transcaucasica and Thymus 

collinus. These sites display a lower vegetation cover with patches of higher soil cover. Sites 

of highest rock cover and stone content can be considered as highly degraded and are 

vegetated by few pioneer plant species with high seed dispersal rates such as Trisetum 

rigidum, Campanula alliarifolia, Lactuca racemosa, Tussilago farfara and Parnassia palustris. 

These stands show the lowest plant diversity. However, some of the mentioned grassland 

species display a high variance of environmental condition which results in a gradual 

changeover from these vegetation types and complicates the definition of grassland 

degradation from individual indicator species. For further information of vegetation 

composition and related environmental variables of the study region see Wiesmair et al. 

(2016b). 

 

Figure 4.1 Map of the study 
area. A) showing its location 
within the Caucasus region, the 
inset displays the upper Aragvi 
valley which is shown in B) at 
contour zones of 500 m C) 
displays plot allocation along 
the slope next to Mleta 
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4.2.2 Vegetation data and environmental variables 

In July 2012, we sampled 48 plots (5 m x 5 m) next to the village Mleta for hyperspectral 

reflectance, vegetation composition and environmental parameters (inclination, altitude and 

total vegetation cover). In our study area, July is the month of peak plant development; thus, 

that period offered ideal conditions for vegetation sampling and we assumed highest 

separability of green vegetation cover from soil/rock cover. We selected the plots according 

to their total vegetation cover in order to sample a gradient of 0-100% coverage. Due to the 

high correlation of vegetation cover to slope inclination, we used a digital elevation model to 

predefine sampling areas covering the full range of slope inclination and vegetation cover. 

All plots were located on the slope (3–43° inclination) whereas the flat valley ground was not 

sampled. Each plot covered 25 m², within which we arranged three 1 m²-subplots. For each 

plot we measured inclination with the SUUNTO PM-5 C 360 clinometer and altitude with the 

GARMIN GPS62s. We photographed the ground vegetation cover of each subplot and further 

used these digital images to determine vegetation cover. Therefore each subplot was 

photographed with a hand-held digital camera (Panasonic LUMIX DMC-TZ1, 5 Megapixel). 

Photos of the vegetation canopy were taken from 140 cm distance to the ground at nadir. 

We used the image processing program Photoshop CS5 version 12 (Adobe Systems, 

Mountain View, CA) to calculate the vegetation cover of each subplot. Within each subplot 

image, we identified pixels that represented vegetation and used the ratio of vegetation 

pixels to total image pixels to define the percentage of vegetation cover. Mosses 

considerably contribute to the greenness of sparsely vegetated terrain but moss cover 

cannot be used as an indicator of grassland degradation (Karnieli et al. 2002, 1996). 

Therefore, we further distinguished between the cover of vascular plants and mosses. 

 Vascular plant species abundance was estimated for each 1 m²-subplot with the modified 

Braun-Blanquet cover-scale (Barkman et al. 1964). We transformed the Braun-Blanquet 

cover values to percentage scale (r = 0.3, + = 0.5, 1 = 2.5, 2m = 4.0, 2a = 8.75, 2b = 18.75, 3 = 

37.5, 4 = 62.5, 5 = 87.5) which was further log-transformed. To reduce noise in the data (in 

total 136 species), we omitted species with less than three occurrences prior to ordination 

analyses. Following analyses were run with a dataset of 104 species. We used the “vegan” R-

package (Oksanen et al. 2013) for Ward classification and Non-metric dimensional scaling 

(NMDS, Kruskal 1964) ordination, both was performed with the Euclidean distance which 

showed a better dispersal than Bray Curtis distance. The cluster tree was cut after visual 
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inspection to result in three classes. The settings for the NMDS were: global 

Multidimensional scaling using monoMDS; 3 dimension; no convergent solutions - best 

solution after 20 tries; scaling of centering and PC rotation. NMDS is an ordination technique 

which is widely used in ecological studies to graphically display the similarity of data. 

Therefore a distance measure is calculated which is stepwise placed into a multidimensional 

space to keep the original distances. The goodness of fit, or how well the configuration fits 

the data, is measured as stress (Kruskal 1964). All analyses were performed using the R 

Project statistical computing software (R Core Team 2014). 

 

4.2.3 Spectral data 

To simulate the spectral canopy reflectance signal as measured by the spaceborne 

multispectral WV2 sensor at a high spatial resolution, we recorded hyperspectral reflectance 

with a portable spectrometer. With clear sky between 10h00 and 15h00 local time, we 

measured the canopy reflectance of our subplots. We used a FieldSpec® Hand-held 2 

Portable Spectroradiometer (HH2, ASD Inc., Boulder, CO) which covers the spectral range 

from 350 nm to 1050 nm with a spectral resolution of less than 3 nm. We defined the 

internal averaging setting of the HH2 at 60 spectra for each measurement of reflectance, 

dark current and white reference. The reflectance spectra were measured relative to a white 

reference panel (Spectralon®, Labsphere Inc., North Sutton, NH), which was taken anew 

prior to each plot measurement. The height of measurements over ground was at nadir 140 

cm. To capture the whole extent of a 1 m²-subplot, we performed five measurements. For 

each subplot, we calculated the mean value of these five spectral measurements. Outliers 

were visually detected and removed from further analysis. The final analyses comprised the 

hyperspectral data out of 139 subplot measurements. Prior to further analyses we applied 

the Savitzky-Golay (Savitzky and Golay 1964) filter using the R-package “signal 0.7-4” (Signal 

developers 2013), fitted over 51 nm with a first order polynomial to smooth our dataset. The 

smoothing process with Savitzky-Golay filter is appropriate to reduce oscillating noise which 

results from outdoor conditions in the vegetation spectrum (Schmidt and Skidmore 2004). 

We used the hyperspectral signal to simulate the signal of the multispectral World View 2 

sensor based on its band-specific spectral response functions. Therefore we implemented 

our spectral signal into the R-“simulatoR” function (Feilhauer et al. 2013). Further we used 

these simulated sensor bands to calculate the vegetation indices given in table 4.1. 
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Table 4.1 Spectral bands and vegetation indices used in the random forest modeling of 
vegetation cover and vegetation types 

Full name Abbreviation Definition Quotation 

Spectral bands 

Coastal Blue Blue1 400-450 nm  

Blue Blue2 450-510 nm  

Green  510-580 nm  

Yellow  585-625 nm  

Red  630-690 nm  

Red Edge  705-745 nm  

Near Infrared Band1 NIR1 770-895 nm  

Near Infrared Band2 NIR2 860-1040 nm  

Vegetation Indices 

Atmospherically resistant 
vegetation index2 

ARVI2 −0.18 + 1.17(
𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅2 + 𝑅𝑒𝑑
) 

Kaufman and 
Tanre 1992 

Enhanced Vegetation Index EVI 2.5(
𝑁𝐼𝑅2 − 𝑅𝑒𝑑

(𝑁𝐼𝑅2 + 6𝑅𝑒𝑑 − 7.5𝐵𝑙𝑢𝑒1) + 1
) 

Huete et al. 
1999 

Green Optimized Soil 
Adjusted Vegetation Index 

GOSAVI 
𝑁𝐼𝑅2 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅2 + 𝐺𝑟𝑒𝑒𝑛 + 0.16
 

Cao et al. 
2013; 
Rondeaux et 
al. 1996 

Green Atmospherically 
resistant Vegetation Index 

GARI 
𝑁𝐼𝑅2 − (𝐺𝑟𝑒𝑒𝑛 −  𝐵𝑙𝑢𝑒1 − 𝑅𝑒𝑑 )

𝑁𝐼𝑅2 − (𝐺𝑟𝑒𝑒𝑛 +  𝐵𝑙𝑢𝑒1 − 𝑅𝑒𝑑 )
 

Gitelson et al. 
1996; 
Gitelson et al. 
2003 

Green Soil Adjusted 
Vegetation Index 

GSAVI 
𝑁𝐼𝑅2 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅2 + 𝐺𝑟𝑒𝑒𝑛 + 0.5
(1 + 0.5) 

Sripada et al. 
2006; Huete 
1998 

Modified Soil adjusted 
Vegetation Index 

MSAVI 2𝑁𝐼𝑅2 + 1 −  2 𝑁𝐼𝑅2 + 1 ² − 8(𝑁𝐼𝑅2 − 𝑅𝑒𝑑)

2
 Qi et al. 1994 

Normalized Difference 
Vegetation Index 690-710 

NDVI 

690-710 

𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅2 + 𝑅𝑒𝑑
 

Gitelson and 
Merzlyak 
1997 

Normalized vegetation 
index 

NDVI 
𝑁𝐼𝑅1 − 𝑅𝑒𝑑

𝑁𝐼𝑅1 + 𝑅𝑒𝑑
 

Krieger et al. 

1969; Rouse 

et al. 1973 

Optimized soil adjusted 
Vegetation Index 

OSAVI (1 + 0.16)
𝑁𝐼𝑅1 − 𝑅𝑒𝑑

𝑁𝐼𝑅1 + 𝑅𝑒𝑑 + 0.16
 

Rondeaux et 
al. 1996 

Simple Ratio 801/670 
NIR/Red 

NIR/Red 
𝑁𝐼𝑅1

𝑅𝑒𝑑
 

Daughtry et 
al. 2000 

Simple Ratio NIR/Red 
Difference Vegetation 
Index 

DVI 
𝑁𝐼𝑅2

𝑅𝑒𝑑
 Jordan 1969 

Soil Adjusted Vegetation 
Index 

SAVI 
𝑁𝐼𝑅1 − 𝑅𝑒𝑑

𝑁𝐼𝑅1 + 𝑅𝑒𝑑 + 0.5
(1 + 0.5) Huete 1988 
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4.2.4 Random forest model 

The dataset was analyzed with random forest (RF, Breimann 2001) regression and 

classification towards a prediction of vegetation cover and the vegetation types derived from 

Ward classification. The RF approach has previously been successfully used to analyze 

remote sensing data (Feilhauer et al. 2014; Lawrence et al. 2006; Rodriguez-Galiano et al. 

2012; Stefanski et al. 2014). A RF is an ensemble of individual regression trees (Grömping 

2009), which are constructed by repeatedly splitting the dataset into homogeneous groups 

in order to explain the response variable (De’ath and Fabricius 2000). By doing so, the out-

of–the-bag (OOB) samples are left out of the model to test how the RF performs by variable 

predictor permutations and cross validation. The significance of predictor variables is 

provided by the measure of variable importance. Variable importance can be calculated 

from the error on the OOB data (error rate for classification, MSE for regression) or the 

decrease in node impurity from splitting on the variable over all trees (Gini index for 

classification and residual sum of squares for regression) (Liaw and Wiener 2002). The 

decrease in node impurity indicates the quality of homogeneity of one variable within its 

group (Breiman 1984). We calculated both importance variables in the following referred to 

as ‘importance’ and ‘purity’. From the R-package “randomForest 4.6-7” (Liaw and Wiener 

2002) we chose the default setting for the number of predictors sampled for the splitting at 

each node (mtry) (Breiman and Cutler 2012). The number of trees to grow (ntree) was set to 

5000 trees which achieved stable values. For the RF regression model of vegetation cover we 

chose the 8 bands of WV2 in combination with several vegetation indices (see Table 4.1) 

which are appropriate for agriculture, vegetation and soil applications ([1]). Additionally, we 

included the environmental variables altitude and slope to our RF classification model of 

vegetation types. 

 We used 100 times bootstrapping to validate our model results. The training samples 

were drawn with replacement from the plot samples. The RF regression model fit was 

validated through a linear regression of the predicted vegetation cover versus the observed 

ground true values. The RF classification model was validated with a confusion matrix. 

Therefore we used the R-package “caret 6.0-71“ (Kuhn et al. 2016). Further we calculated 

the total root mean square error of prediction (RMSEP) in order to evaluate RF regression 

accuracy. RMSEP is a commonly used criterion for judging the performance of a multivariate 

calibration model (Faber 1999). The RMSEP is calculated following equation 1: 
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 𝑅𝑀𝑆𝐸𝑃 =     𝑋𝑖 − 𝑌𝑖 2 𝑛  𝑛
𝑖=0   (1) 

𝑋 is the predicted value from the model, 𝑌 the ground-true observed value and 𝑛 the 

number of predictions. 

 

4.2.5 Grassland degradation classification 

In order to evaluate grassland degradation we implemented the predicted bootstrapped 

vegetation cover values and vegetation types into a classification (Figure 4.2). Therefore, we 

set for each vegetation type a threshold of vegetation cover which indicates grassland 

degradation. For the pastures, we used the threshold of 70% vegetation cover which is a 

common restoration goal to control erosion in high-montane grassland (slopes (Krautzer and 

Klug 2009). For the poor grassland we defined the vegetation cover below 35% as being 

degraded, which we determined from photographs. Sites which already display vegetation of 

eroded sites were generally assigned to the class of degradation and therefore the threshold 

of 100% vegetation cover was chosen. The grassland degradation classification with the 

predicted values was validated with the observed true values in a confusion matrix. 

 

Figure 4.2 Classification 
scheme of grassland 
degradation (isDegraded 0/1) 
by including the predicted 
values of vegetation cover and 
vegetation type. 
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4.3. Results 

 

4.3.1 Vegetation and environmental data 

The gradual change of vegetation composition was visualized in the NMDS and revealed a 

stress of 14.6 (Figure 4.3). The Ward classification resulted in three distinct clusters which 

are in the following named after the indicator species of previous studies (Wiesmair et al. 

2016b): Cynosurus cristatus (n = 21), Briza media (n = 56) and Parnassia palustris (n = 62). 

Environmental vectors were fitted against NMDS ordination and are shown in the ordination 

graph. The first axis displays a gradient of vegetation cover and slope. The second axis 

represents a gradient of altitude. The Parnassia palustris-type displays highest slope 

inclination and lowest vegetation cover. Plots of the Cynosurus cristatus-type occur on 

highest altitude at high vegetation cover. The Briza media-type appears on the transition 

between the other vegetation types as individual plots overlap with the other types. 

 

 

Figure 4.3 NMDS ordination of 139 subplots and 104 species displaying first and second axes, 
environmental variable gradients are indicted by arrows. Vegetation types are grouped by 
color and the prediction of grassland degradation is shown by symbols. 

 

4.3.2 Random forest models 

We used random forest regression and classification models to predict vegetation cover and 

vegetation types. The vegetation indices and band contribution to the RF models were 
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visualized in figure 4.4. We found EVI and GARI to be most important vegetation indices for 

both models. The red edge and both NIR bands showed highest importance from the group 

of WV2 bands. For both models, the remaining wavebands (blue1, blue2, green, yellow and 

red) displayed a higher importance than the remaining vegetation indices. However, for the 

RF regression model EVI and GARI displayed highest variable purity whereas certain WV2 

bands (blue1, blue2, green, yellow, red and red edge) showed lowest purity. Furthermore, 

for the RF classification of vegetation types, the environmental variables (altitude and slope) 

contributed most importance to the model. The same pattern was observed for the variable 

purity of the RF classification model.  

 We used only the above mentioned variable predictors of highest importance for our RF 

models. Validated results of RF regression models were calculated from all bootstrapped 

predicted versus observed data. The prediction of vegetation cover resulted in a model fit of 

R² = 0.80 and RMSEP = 12.25%. The RF classification model for the prediction of vegetation 

types had an overall accuracy of 76% at a Kappa statistic value of 0.60. The confusion matrix 

displayed a balanced accuracy between 76 and 87% (Table 4.2). The lowest accuracy was 

achieved for the Briza media-type and the highest accuracy for the Cynosurus cristatus 

grassland. Omitting predictors of least importance reduced our regression model (vegetation 

cover) results (R² = 0.82, RMSEP = 11.63%), while the classification model (vegetation types) 

results improved (74% overall accuracy, Kappa = 0.56). 

 

Table 4.2 Confusion matrix of bootstrapped random forest classification model to predict 
vegetation types from simulated multispectral World View 2 bands, vegetation indices and 
environmental variables (altitude and slope). Overall accuracy = 76%, Kappa = 0.60 

 Vegetation type Balanced Accuracy Precision Sensitivity  

 Briza media 76 72 72  

 Parnassia palustris 80 76 79  

 Cynosurus cristatus 87 90 76  
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Figure 4.4 Importance (%IncMSE, MeanDecreaseAccuracy) and purity (IncNodePurity, 
MeanDecreaseGini) of vegetation indices, wavebands and environmental variables for 
random forest models to predict vegetation cover (A, B) and vegetation types (C, D). Full 
names of abbreviations are given in table 4.1.  

 

4.3.3 Classifying grassland degradation 

We implemented the predicted values of vegetation cover and vegetation types into a 

classification. The predictions were based on the variables of highest importance: EVI, GARI, 

red edge, NIR1, NIR2 and for the classification additionally altitude and slope. The 

classification of grassland degradation displayed an overall accuracy of 75%. The confusion 

matrix shows an accuracy of 72–79% for the given threshold levels within each vegetation 

type (Table 4.3). Lowest accuracy revealed the Briza media-type. To visualize the grassland 

condition of each subplot (Figure 4.3), grassland degradation was calculated from the 

average values of each bootstrap sample from predicted vegetation type (mode value) and 

vegetation cover (mean value). 

 

Table 4.3 Confusion matrix of a grassland degradation classification from predicted values of 
vegetation types and vegetation cover 

 Threshold Accuracy (%)  

 Briza media & < 35% cover 72  

 Parnassia palustris & < 100% cover 79  

 Cynosurus cristatus & < 70% cover 72  

 Overall 75  
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4.4. Discussion 

Grassland degradation emerges as a process which alters the appearance of a landscape and 

can therefore be detected by RS methods. Vegetation composition and vegetation cover 

have been used as RS indicators to assess grassland condition on a large scale. Due to the 

heterogeneity of mountain landscapes, the discrimination of beginning small scale 

degradation is essential to apply early restoration management in the Caucasus region. 

Therefore, the aim of our study was to test the combination of vegetation cover and 

vegetation types to detect mountain grassland degradation with multispectral sensors of 

high spatial resolution. 

 From our good model fits we conclude that the gradient of vegetation cover was 

successfully predicted from the RF regression of multispectral bands and vegetation indices. 

Further, we could improve the results that were achieved by Wiesmair et al. (2016) when 

only single vegetation indices (NDVI or MSAVI2) were used to map the vegetation cover of 

our study region. This is in accordance to Liu et al. (2015) and Lehnert et al. (2015), who 

proposed the combination of several indices to evaluate grassland condition. Lehnert et al. 

(2015) received similar results for their Partial least square regression (PLSR) model and 

could further improve their results by using support vector machine (SVM) regression. RF 

and SVM have both found to be very robust and non-parametric methods which are not 

prone to overfitting and to handle the multicollinearity of the predictor variables quite well 

(Belgiu and Drăguţ 2016; Mountrakis et al. 2011). However, RF is easier to use as fewer 

parameters need to be tuned (Chan et al. 2012). 

 In our study the vegetation classification resulted in three distinct vegetation types which 

were thoroughly described in a previous study (Wiesmair et al. 2016b). From the short 

ordination gradient and the overlapping vegetation types in the NDMS graph, we conclude a 

high share of plant species between the vegetation types which was further described by 

Wiesmair et al. (2016b). However, from the long vectors within our NMDS ordination we 

conclude a strong correlation of species composition to environmental gradients which is 

further clearly distinguishing our vegetation types. From our good RF classification results we 

assume that we could overcome the difficulties in RS to predict vegetation composition from 

short gradients due to the structural differences of our vegetation types. The accuracy of our 

RF vegetation type classification is in accordance to the results of Möckel et. al (2014) who 

received 77% accuracy in the classification of successional grassland stages. However, they 
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used hyperspectral reflectance and could further increase the classification accuracy when 

the number of predictor bands was reduced with backward selection. This was not the case 

for our model when only highly important predictors were used. Möckel et al. (2014) found a 

high amount of important hyperspectral bands within the Short wave infra red (SWIR) region 

which was neither covered by the simulated WV2 bands nor by the original spectrometer 

data. Consequently, we assume that additional IR bands might improve our model as the 

multispectral WV2 bands in the red edge and NIR region were most important for our 

models. Additionally, the environmental variable importance of slope and altitude seems to 

be significantly improving our classification model as the highest importance was assigned to 

those predictors. The information of slope has been included into previous grassland 

assessments (e.g. Pickup and Chewings 1996) and was already suggested for management 

recommendations of degraded grassland by Wiesmair et al. (2016).  

 Grassland degradation was sufficiently assessed from the combination of vegetation 

cover and vegetation types. The vegetation types which are by itself considered as degraded, 

such as the Parnassia palustris-type, most likely reveal the highest classification accuracy. In 

such cases the decision if degraded or not is consistent to the accuracy of the vegetation 

type classification. For the vegetation types where a vegetation cover threshold for 

grassland degradation is set, in our case the Briza media- and Cynosurus cristatus-type, the 

classification precision is further reduced from the inaccuracy of the predicted vegetation 

cover. However, the low accuracy to predict grassland degradation on the Briza media-type 

supposedly results from the highest classification error rate of this vegetation type. Wen et 

al. (2010) overcame a similar problem, where Ligularia virgaurea occurred as a dominant 

and subdominant indicator species for degraded and non degraded sites, by the 

establishment of a grassland degradation index. To further distinguish the grassland 

condition, they calculated a weighted index from visible indicators such as cover, biomass, 

proportion of edible plants and plant height. However, as the RS assessment of biomass and 

cover proportions involves further inaccuracies we assume that our predictions of 

vegetation cover and vegetation types result in a more precise degradation index. 

Furthermore, our approach to include environmental variables into RF classification might 

decrease uncertainties from spectral similarity where ruderal pasture weeds simultaneously 

build up biomass and reduce grassland condition at high vegetation cover. 
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 Hyperspectral reflectance and hyperspectral indices seem to be inadequate to represent 

the spatial scale of the environmental pattern that needs to be analyzed for grassland 

assessment. Rahman et al. (2003) determined the optimum spatial resolution at 6 m for a 

hyperspectral aircraft sensor, to represent most ecosystem functions of a Californian 

grassland. However, the costly hyperspectral aircraft sensors are unsuitable for transitioning 

countries of the Caucasus region where satellite sensors are beneficial for large scale 

grassland assessments. Moreover, our ordination results displayed strong environmental 

gradients which assist in the detection of beginning vegetation damage spots at a higher 

spatial resolution. Due to the increasing number of high resolution multispectral sensors, our 

study is contributing to future developments of landscape assessments by RS.  

 We conclude that a combination of spectral and environmental variables is essential to 

predict vegetation cover and grassland types, in particular of similar spectral reflectance. 

Further, we state that grassland degradation represented by grassland types and coverage 

can be detected by multispectral sensors. Moreover, we assume that the model accuracy 

will further increase with more advanced sensors such as the World View 3 (WV3). An 

improvement of the World View 3 sensor is its extension of spectral band information in the 

SWIR region and therefore we suggest testing the WV3 sensor for the modeling of 

vegetation cover and vegetation types. However, to put our approach into practice further 

tests are needed as the results of our study are based on a hand-held spectrometer. 

Therefore, the atmospheric transmission and topographic influence of steep slopes was not 

part of our study and needs to be studied in detail.  

 

 

4.5. Conclusions for practicability 

Vegetation cover is a strong indicator for grassland degradation from satellite images. Due to 

the increasing resolution of multispectral sensors, additional options to observe grassland 

condition have emerged. We recommend detecting grassland degradation from a 

combination of vegetation cover and vegetation types at high spatial resolution. Therefore 

we recommend including several multispectral bands such as NIR1, NIR2 and red edge, and 

the vegetation indices EVI and GARI to predict vegetation cover and vegetation types by 

means of remote sensing. Further, we suggest incorporating environmental variables, which 

display a strong gradient along the species composition and can be easily derived from 
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elevation models such as slope and altitude, into the prediction of vegetation types. 

Therefore, we propose modeling by random forest or support vector machine with the first 

being easier to use. Due to the increasing resolutions of multispectral sensors we suggest 

testing World View 3 images with its additional SWIR bands for the detection of grassland 

degradation. The outcomes of this study represent important information to further 

enhance assessments of Caucasian grassland condition with means of multispectral remote 

sensing imagery. 

  



Chapter 4 

86 

References 

Asner GP, Lobell DB. 2000. A Biogeophysical Approach for Automated SWIR Unmixing of 
Soils and Vegetation. Remote Sensing Environment 74:99–112. 

Barkman JJ, Doing H, Segal S. 1964. Kritische Bemerkungen und Vorschläge zur quantitativen 
Vegetationsanalyse. Acta Botanica Neerlandica 13:394–419. 

Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: A review of applications and 
future directions. ISPRS Journal Photogrammetry Remote Sensing 114:24–31.  

Breiman L. (Ed.) 1984. Classification and regression trees, The Wadsworth 
statistics/probability series. Wadsworth International Group, Belmont, Calif. 

Breiman L. 2002. Random forests. Machine Learning 45:5-32. 

Breiman L, Cutler A. 2012. Random forests. URL http://stat-
www.berkeley.edu/users/breiman/RandomForests (accessed 12.19.14). 

Callaway RM, Kikvidze Z, Kikodze D. 2000. Facilitation by unpalatable weeds may conserve 
plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos 89:275–282. 

Cao Q, Miao Y, Wang H, Huang S, Cheng S, Khosla R, Jiang R. 2013. Non-destructive 
estimation of rice plant nitrogen status with Crop Circle multispectral active canopy 
sensor. Field Crops Research 154:133-144.  

Chan JCW, Beckers P, Spanhove T, Borre JV. 2012. An evaluation of ensemble classifiers for 
mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral 
(CHRIS/Proba) imagery. International Journal Applied Earth Observation Geoinformation 
18:13–22. 

Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey III JE. 2000. Estimating 
Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance, Remote Sensing 
Environment 74:229-239. 

De’ath G, Fabricius KE. 2000. Classification and regression trees: a powerful yet simple 
technique for ecological data analysis. Ecology 81:3178–3192. 

Faber N. 1999. Estimating the uncertainty in estimates of root mean square error of 
prediction: application to determining the size of an adequate test set in multivariate 
calibration. Chemometric Intelligent Laboratory Systems 49:79–89. 

Feilhauer H, Dahlke C, Doktor D, Lausch A, Schmidtlein S, Schulz G, Stenzel S. 2014. Mapping 
the local variability of Natura 2000 habitats with remote sensing. Applied Vegetation 
Science 17:765–779. 

Feilhauer H, Thonfeld F, Faude U, He KS, Rocchini D, Schmidtlein S. 2013. Assessing floristic 
composition with multispectral sensors - a comparison based on monotemporal and 
multiseasonal field spectra. International Journal Applied Earth Observation 
Geoinformation 21:218-229. 

Food and Agriculture Organization of the United Nations (Ed.). 2003. Transhumant grazing 
systems in temperate Asia, plant production and protection series. Food and 
Agricultural Organization of the United Nations, Rome. 

Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of 
global vegetation from EOS-MODIS. Remote Sensing Environment 58:289–298. 



Chapter 4 

87 

Gitelson AA, Merzlyak MN: 1997. Remote estimation of chlorophyll content in higher plant 
leaves. International Journal Remote Sensing 18:2691–2697. 

Gitelson AA, Viña A, Arkebauer TJ, Rundquist DC, Keydan G, Leavitt B. 2003. Remote 
estimation of leaf area index and green leaf biomass in maize canopies. Geophysical 
Research Letters 30:52/1-52/4. 

Gobejishvili R, King L, Lomidze N, Keller T, Tielidze L, Polenthon I. 2011. Relief and 
Geodynamic Processes of High Mountainous Region of Caucasus (Stepantsminda region) 
(New Series No. 3 (82)), Collected Papers. Ivane Javakhishvili Tbilisi State University, 
Vakhushti Bagrationi Institute of Geography, Publishing House of Tbilisi State University. 

Grömping U. 2009. Variable Importance Assessment in Regression: Linear Regression versus 
Random Forest. American Statistician 63:308–319.  

Holzner W, Kriechbaum M. 2001. Pastures in south and central Tibet (China) II. Probable 
causes of pasture degradation. Bodenkultur 52:37–44. 

Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing Environment 
25:295–309. 

Jordan CF. 1969. Derivation of leaf-area index from quality of light on forest floor. Ecology 
50:663-666. 

Karnieli A, Gabai A, Ichoku C, Zaady E, Shachak M. 2002. Temporal dynamics of soil and 
vegetation spectral responses in a semi-arid environment. International Journal Remote 
Sensing 23:4073–4087. 

Karnieli A, Shachak M, Tsoar H, Zaady E, Kaufman Y, Danin A, Porter W. 1996. The effect of 
microphytes on the spectral reflectance of vegetation in semiarid regions. Remote 
Sensing Environment 57:88–96. 

Kaufman YJ, Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-
MODIS. IEEE Transactions Geoscience Remote Sensing 30:261–270. 

Khetskhoveli NN, Kharadze AL, Ivanishvili MA, Gagnidze R. 1975. Botanical description of the 
Georgian military road. (Tbilisi-Kazbegi-Ordjonikidze). Presented at the XII. International 
Botanical Congress, The Academy of Sciences of the Georgian SSR, The Institute of 
Botany, Leningrad. 

Krautzer B, Klug B. 2009. Renaturierung von subalpinen und alpine Ökosystemen. In: Zerbe S, 
Wiegleb G, editors. Renaturierung von Ökosystemen in Mitteleuropa. Spektrum, 
Heidelberg: pp 209-234. 

Kruskal JB. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric 
hypothesis. Psychometrika 29:1–27. 

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A. 2016. caret: Classification and 
Regression Training. 

Lawrence RL, Wood SD, Sheley RL. 2006. Mapping invasive plants using hyperspectral 
imagery and Breiman Cutler classifications (randomForest). Remote Sensing 
Environment 100:356–362. 

Lehnert LW, Meyer H, Wang Y, Miehe G, Thies B, Reudenbach C, Bendix J. 2015. Retrieval of 
grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor 
and multi-method approach. Remote Sensing Environment 164:197–207. 



Chapter 4 

88 

Liaw A, Wiener M. 2002. Classification and Regression by randomForest. R News 2:18–22. 

Lichtenegger E, Bedoschwili D, Hübl E, Scharfetter E. 2006. Höhenstufengliederung der 
Grünlandvegetation im Zentralkaukasus. Verhandlugen Zoologisch-Botanischen 
Gesellschaft Österreich 143:43–81. 

Liu B, You G, Li R, Shen W, Yue Y, Lin N. 2015. Spectral characteristics of alpine grassland and 
their changes responding to grassland degradation on the Tibetan Plateau. 
Environmental Earth Science 74:2115–2123. 

Liu Z, Huang J, Wu X, Dong Y, Wang F, Liu P. 2006. Hyperspectral remote sensing estimation 
models on vegetation coverage and natural grassland. Chinese Journal Applied Ecology 
17:997–1002. 

Magiera A, Feilhauer H, Otte A, Waldhardt R, Simmering D. 2013. Relating canopy 
reflectance to the vegetation composition of mountainous grasslands in the Greater 
Caucasus. Agriculture Ecosystems Environment 177:101–112. 

Martin C, Pohl M, Alewell C, Körner C, Rixen C. 2010. Interrill erosion at disturbed alpine 
sites: Effects of plant functional diversity and vegetation cover. Basic Applied Ecology 
11:619–626. 

Möckel T, Dalmayne J, Prentice H, Eklundh L, Purschke O, Schmidtlein S, Hall K. 2014. 
Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery. 
Remote Sensing 6:7732–7761. 

Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. 
ISPRS Journal Photogrammetry Remote Sensing 66:247–259. 

Oksanen J, Balnchet G, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, 
Stevens H, Wagner H. 2013. vegan: Community Ecology Package. 

Pickup G, Chewings VH, 1996. Correlations between DEM-derived topographic indices and 
remotely-sensed vegetation cover in rangelands. Earth Surface Processes Landforms 
21:517–529. 

Pohl M, Alig D, Körner C, Rixen C: 2009. Higher plant diversity enhances soil stability in 
disturbed alpine ecosystems. Plant Soil 324:91–102. 

Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S. 1994. A modified soil adjusted 
vegetation index. Remote Sensing Environment 48:119–126. 

R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing. URL http://www.R-project.org. 

Rahman AF, Gamon JA, Sims DA, Schmidts M. 2003. Optimum pixel size for hyperspectral 
studies of ecosystem function in southern California chaparral and grassland. Remote 
Sensing Environment 84:192–207. 

Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. 2012. An 
assessment of the effectiveness of a random forest classifier for land-cover 
classification. ISPRS Journal Photogrammetry Remote Sensing 67:93–104. 

Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. 
Remote Sensing Environment 55:95–107. 

Rouse JW Jr, Haas RH, Schell JA, Deering DW. 1973. Monitoring the vernal advancement and 
retrogradation (green wave effect) of natural vegetation. Progress Report RSC 1978-1. 



Chapter 4 

89 

Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least 
squares procedures. Analytical Chemistry. 36:1627–1639. 

Schmidt KS, Skidmore AK. 2004. Smoothing vegetation spectra with wavelets. International 
Journal Remote Sensing 25:1167–1184. 

Signal developers. 2013. signal: Signal processing URL http://r-forge.r-
project.org/projects/signal. 

Sripada RP, Heiniger RW, White JG, Meijer AD. 2006. Aerial color infrared photography for 
determining early in-season nitrogen requirements in corn. Agronomy Journal 98:968–
977. 

Stefanski J, Chaskovskyy O, Waske B. 2014. Mapping and monitoring of land use changes in 
post-Soviet western Ukraine using remote sensing data. Applied Geography 55:155–164. 

Vallentine JF. 2001. Grazing management, 2nd ed. ed. Academic Press, San Diego. 

Wang H, Wen-jie F, Yao-kui C, Lei Z, Bin-yan Y, Dai-hui W, Xi-ru X. 2010. Hyperspectral 
Remote Sensing Monitoring of Grassland Degradation. Spectroscopy Spectral Analysis 
30, 2734–2738. 

Wen L, Dong SK, Zhu L, Li XY, Shi JJ, Wang YL, Ma YS. 2010. The construction of Grassland 
Degradation Index for Alpine Meadow in Qinghai-Tibetan Plateau. Procedia 
Environmental Science 2:1966–1969. 

Wiesmair M, Feilhauer H, Magiera A, Otte A, Waldhardt R. 2016. Estimating Vegetation 
Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the 
Georgian Caucasus. Mountain Research Development 36:56–65. 

Wiesmair M, Otte A, Waldhardt R. 2016b: Relationships between Plant Diversity, Vegetation 
Cover, and Site Conditions: Implications for Grassland Conservation in the Greater 
Caucasus. Biodiversity Conservation 26:273-291. 

[1] Indexdatabase. A database for remote sensing indices. www.indexdatabase.de; accessed 
on 17 October 2016. 

 

 

 

 



Summary 

90 

Summary 

The Caucasus region is one of the global biodiversity hotspots which further comprises highly 

diverse mountain grasslands. These grassland ecosystems were shaped from a long tradition 

of human land use and provide multiple ecosystem services such as food supply for grazing 

animals, recreational sites and erosion control. However, changes of land use practices have 

induced grassland degradation in the Georgian Caucasus regions. Overgrazing during Soviet 

period and recent increases in recreational activities resulted in a reduced grass cover, an 

increased abundance of unpalatable plant species and soil erosion. Due to an expansion of 

grassland degradation, the loss of services provided by healthy ecosystems can be expected. 

To protect Georgian mountain grasslands, detailed information about ecological 

relationships within the ecosystem and methods to monitor grassland conditions are 

urgently needed. 
 This thesis investigated grassland degradation within the upper Aragvi valley of the 

Greater Caucasus, in the Republic of Georgia. Field studies were conducted in the vicinity of 

the village Mleta, in a landscape which is frequented by overgrazing, erosion and mass 

wasting events. The aim of this thesis was to develop site-specific methods to prevent 

further degradation in the Caucasus region. Therefore we implemented the commonly used 

feature of vegetation cover to assess the extent of grassland degradation by remote sensing 

imagery. We used random-forest regression to estimate vegetation cover from the 

Normalized Difference Vegetation Index (NDVI) derived from multispectral WorldView-2 

data. The good model fit of R2 = 0.79 indicates the great potential of a remote-sensing 

approach for the observation of grassland cover. The presented vegetation cover map shows 

grassland degradation on steep slopes close to human settlements and along hiking trails. 

Further, we investigated the relationships between plant diversity, site conditions and 

vegetation cover on overgrazed and eroded sites. We used non-metric dimensional scaling 

ordination and cluster comparison of functional plant groups to describe a gradient of 

grassland vegetation cover. For our study region, we identified four major vegetation types 

and performed an indicator species analysis. On abandoned hay meadows of the subalpine 

zone we identified tall herb vegetation with increasing occurrence of ruderal pasture weeds. 

Within high-montane grassland a decline of plant diversity can be observed on sites of 

reduced vegetation cover. Based on the results of the indicator species analysis, a list of 22 
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recommended native plant species to revegetate beginning small scale damage patches was 

elaborated and is presented in this thesis. In the last chapter, we improved the detection of 

grassland degradation by multispectral satellite sensors as we implemented vegetation 

cover and vegetation types into a classification model. Therefore, we used a hand-held field 

spectrometer to simulate the multispectral World View 2 sensor. A selection of predictors 

(vegetatation indices, spectral bands and environmental variables) was implemented into 

random forest models to predict the vegetation cover and vegetation types. The outcomes 

were further combined to estimate the grassland condition of our research area. Our results 

showed an overall accuracy of 75% and were displayed in an NMDS ordination graph. 

 To prevent further large scale erosion events and the loss of precious mountain 

grasslands we conclude that the presented remote sensing methods are promising tools for 

the early detection of beginning vegetation damage spots. Previous reforestation efforts for 

slope protection have failed due to the lack of an appropriate grazing management. Due to a 

low potential of the grassland ecosystem to balance further vegetation cover damage, the 

long-term loss of diverse habitats can be expected. Consequently, to conserve precious 

Georgian mountain grasslands a sustainable landscape management for the collective 

mountain grasslands is mandatory. The results of this thesis serve for the implementation 

into sustainable agricultural and touristic development plans of mountain regions which 

suffer from grassland degradation. 
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Zusammenfassung 

Die Kaukasus-Region ist einer der globalen Biodiversitätshotspots. Innerhalb des Ökosystems 

wurde das Berggrünland durch eine traditionelle menschliche Nutzung geprägt und weist 

heute eine hohe Biodiversität auf. Das Grünland stellt für die Bevölkerung verschiedene 

Ökosystemdienstleistungen, wie z.B. die Nahrung für Weidetiere, menschlichen 

Erholungsraum und Erosionsschutz, bereit. Dennoch haben historische und aktuelle 

Landnutzungsänderungen eine Grünlanddegradation im georgischen Kaukasus verursacht. 

Während der Sowjetzeit wurden die Viehweiden stark überweidet, aktuell bewirkt ein 

Anstieg der Freizeitaktivitäten einen hohen Nutzungsdruck auf das Berggrünland. Dadurch 

wurden die Vegetationsdeckung reduziert, die Abundanz von Weideunkräutern erhöht und 

Bodenerosion gefördert. Wegen der Ausbreitung der Degradation kann eine Abnahme der 

vom Grünland zur Verfügung gestellten Ökosystemdienstleistungen erwartet werden. Um 

das georgische Berggrünland zu erhalten, sind detaillierte Informationen über die 

ökologischen Wechselwirkungen innerhalb des Ökosystems sowie Monitoringmethoden des 

Grünlandzustands dringend notwendig. 

 Gegenstand dieser Arbeit ist die Untersuchung der Grünlanddegradation des oberen 

Aragvital im Großen Kaukasus in der Republik Georgien. Die Feldstudien dazu fanden in der 

Umgebung des Dorfes Mleta in einer Landschaft, die durch Überweidung, Erosion und 

Massenabtragungen gekennzeichnet ist, statt. Ziel dieser Arbeit war die Entwicklung 

standortspezifischer Methoden zur Verhinderung weiterer Degradation im Kaukasus. Dafür 

wurde der häufig für Grünlanddegradation benutzte Indikator Vegetationsdeckung 

verwendet, um das Ausmaß der Degradationserscheinungen mit WorldView-2 

Satellitenbildern abzubilden. Die Vegetationsdeckung wurde dabei durch den Normalized 

Difference Vegetation Index (NDVI) mittels random-forest Regression modelliert. Die guten 

Modellergebnisse von R² = 0,79 lassen auf ein großes Potential der Schätzung von 

Vegetationsdeckung mit Fernerkundungsdaten schließen. Die präsentierten Ergebnisse 

zeigen für das obere Aragvital eine niedrige Vegetationsdeckung auf Steilhängen nahe der 

Siedlungen und entlang von Wanderwegen an. Weiter wurde der Zusammenhang zwischen 

Phytodiversität, Standortbedingungen und Vegetationsdeckung auf überweideten und 

erodierten Flächen untersucht. Um den Gradienten der Vegetationsdeckung zu beschreiben, 

wurden Ordinationsverfahren (Non-metric dimensional scaling) und ein Vergleich 
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funktioneller Pflanzengruppen angewendet. Für die Untersuchungsregion konnten dabei vier 

Vegetationstypen unterschieden werden, für die eine Indikatorartenanalyse durchgeführt 

wurde. Innerhalb der Hochstaudenvegetation aufgelassener subalpiner Weiden zeigte sich 

ein vermehrtes Auftreten von Weideunkräutern. Für die Vegetation des hochmontanen 

Grünlandes wurde auf Standorten mit verringerter Vegetationsdeckung eine Abnahme der 

Phytodiversität beobachtet. Auf Grundlage der Indikatorartenanalyse wurde eine Liste mit 

22 einheimischen Pflanzenarten, die ein Potenzial zur Begrünung dieser kleinen Schadstellen 

aufweisen, dargestellt. Im letzten Teil der Arbeit wurde durch die Verknüpfung von 

Vegetationsdeckung und Vegetationsklassen die Fernerkundungsmethodik zur 

Klassifizierung des Grünlandzustandes weiterentwickelt. Dafür wurden die Daten des 

multispektralen WorldView 2 Sensors aus den räumlich hochaufgelösten Reflexionsdaten 

eines tragbaren Feldspektrometers (Handheld 2 ASD) simuliert. Aus einer Vielzahl an 

Prädiktoren (Vegetationsindices, Spektralbänder und Umweltvariablen) wurden die 

Parameter Vegetationsdeckung und Vegetationstypen mit random forest modelliert, um aus 

dieser Information den Grünlandzustand zu schätzen. Diese Ergebnisse zeigen eine 

Genauigkeit von 75 % und wurden in einer NMDS Ordination dargestellt. 

 Um großflächige Erosion und den Verlust von artenreichem Berggrünland zu verhindern, 

werden die vorgestellten Fernerkundungsmethoden als Werkzeuge zur frühzeitigen 

Erkennung kleiner Vegetationsschadstellen empfohlen. Frühere 

Wiederbewaldungsmaßnahmen zum Erosionsschutz sind aufgrund von fehlendem 

Beweidungsmanagement gescheitert. Zusätzlich kann auf den Flächen, auf denen die 

Vegetationsdecke verletzt wurde, von einem langfristigen Verlust der Phytodiversität 

ausgegangen werden. Infolgedessen wird die Erhaltung des wertvollen georgischen 

Berggrünlands maßgeblich davon abhängen, ein nachhaltiges Pflege- und 

Managementkonzept für die gemeinschaftlich genutzen Bergweiden zu entwickeln. Die 

Erkenntnisse dieser Arbeit dienen dazu, sie in die nachhaltigen Entwicklungspläne für 

Landwirtschaft und Tourismus der von Grünlanddegradation betroffenen Bergregionen zu 

implementieren. 
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The electronic supplementary material can be downloaded from: 

http://geb.uni-giessen.de/geb/volltexte/2017/12922 
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