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1 Introduction

Probabilistic propositional logics and their various dialects are thoroughly studied in the literature
(see especially [27] and [9]; see also [21] and [22]). Their extensions to probabilistic first-order
logics can be classified into first-order logics in which probabilities are defined over the domain and
those in which probabilities are given over a set of possible worlds (see especially [2], [3], and [13]).
The first ones are suitable for describing statistical knowledge, while the latter are appropriate for
representing degrees of belief. The same classification holds for existing approaches to probabilistic
logic programming: Ng [23] concentrates on probabilities over the domain. Subrahmanian and his
group (see especially [24], [25], [26], and [7]) focus on annotation-based approaches to degrees of
belief. Poole [32], Haddawy [12], and Jaeger [14] discuss approaches to degrees of belief close to
Bayesian networks [31]. Finally, another approach to probabilistic logic programming with degrees
of belief, which is especially directed towards efficient implementations, has recently been introduced
in [20].

Usually, the available probabilistic knowledge does not suffice to specify completely a distri-
bution. In this case, applying the principle of mazimum entropy is a well-appreciated means of
probabilistic inference, both from a statistical and from a logical point of view. Entropy is an
information-theoretical measure [36] reflecting the indeterminateness inherent to a distribution.
Given some consistent probabilistic knowledge, the principle of maximum entropy chooses as the
most appropriate representation the one distribution among all distributions satisfying that know-
ledge which has maximum entropy (ME). Within a rich statistical first-order language, Grove,
Halpern and Koller [11] show that this ME-distribution may be taken to compute degrees of be-
lief of formulas. Paris and Vencovska [29] investigate the foundations of consistent probabilistic
inference and set up postulates that characterize ME-inference uniquely within that framework.
A similar result was stated in [37], based on optimization theory. Jaynes [16] regarded the ME-
principle as a special case of a more general principle for translating information into a probability
assignment.

The main idea of this paper is to combine probabilistic logic programming with the principle
of maximum entropy. We thus follow an old idea already stated in the pioneering work by Nilsson
[27], however, lifted to the first-order framework of probabilistic logic programs. At first sight,
this project might seem an intractable task, since already probabilistic propositional logics under
maximum entropy suffer from efficiency problems (which are due to an exponential number of
possible worlds in the number of propositional variables). In this paper, however, we will see
that this is not the case. More precisely, we will show that the efficient approach to probabilistic
logic programming in [20], combined with new ideas, can be extended to an efficient approach
to probabilistic logic programming under maximum entropy. Roughly speaking, the probabilistic
logic programs presented in [20] generally carry an additional structure that can successfully be
exploited in both classical probabilistic query processing and probabilistic query processing under
maximum entropy.

The main contributions of this paper can be summarized as follows:

e We define probabilistic queries to probabilistic logic programs and their correct and tight
answer substitutions under maximum entropy.

e We present an efficient linear programming characterization for the problem of deciding
whether a probabilistic logic program is satisfiable.
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¢ We introduce an efficient technique for approximative probabilistic logic programming under
maximum entropy. In detail, this technique reduces the original entropy maximizations to
relatively small optimization problems, which can easily be solved by existing ME-technology.

The rest of this paper is organized as follows. Section 2 introduces the technical background.
In Section 3, we focus on deciding the satisfiability of probabilistic logic programs. In Section 4, we
discuss probabilistic logic programming under maximum entropy itself. Section 5 finally summarizes
the main results and gives an outlook on future research.

2 Technical Preliminaries

In this section, we introduce the technical background.

2.1 Probabilistic Logic Programs

We define the syntax and the semantics of probabilistic logic programs [20]:

Let @ be a first-order vocabulary that contains a finite and nonempty set of predicate symbols
and a finite and nonempty set of constant symbols (that is, we do not consider function symbols in
this framework). Let X be a set of object variables and bound variables. Object variables represent
elements of a certain domain, while bound variables describe real numbers in the interval [0, 1].

An object term is a constant symbol from ® or an object variable from X. An atomic formula
is an expression of the kind p(t1,...,t;) with a predicate symbol p of arity £ > 0 from ® and
object terms %q,...,t;. A conjunctive formula is the false formula 1, the true formula T, or the
conjunction A; A --- A A; of atomic formulas Aq,...,A; with [ > 0. A probabilistic clause is an
expression of the form (H|B)[c1, c2] with real numbers ¢;,co € [0,1] and conjunctive formulas H
and B different from L. A probabilistic program clause is a probabilistic clause (H|B)|c1, c2] with
c1 < ca. We call H its head and B its body. A probabilistic logic program P is a finite set of
probabilistic program clauses.

Probabilistic program clauses can be classified into facts, rules, and constraints as follows:
facts are probabilistic program clauses of the form (H|T)[ci, co] with ¢o > 0, rules are of the form
(H|B)[c1,c2] with B # T and ¢z > 0, and constraints are of the kind (H|B)[0,0]. Probabilistic
program clauses can also be divided into logical and purely probabilistic program clauses: logical
program clauses are probabilistic program clauses of the kind (H|B)[1, 1] or (H|B)[0, 0], while purely
probabilistic program clauses are of the form (H|B)[c1,c] with ¢; < 1 and ¢a > 0. We abbreviate
the logical program clauses (H|B)[1,1] and (H|B)[0,0] by H <— B and L < H A B, respectively.

The semantics of probabilistic clauses is defined by a possible worlds semantics in which each
possible world is identified with a Herbrand interpretation of the classical first-order language for
® and X (that is, with a subset of the Herbrand base over ®). Hence, the set of possible worlds
Ts is the set of all subsets of the Herbrand base HBg. A wariable assignment maps each object
variable to an element of the Herbrand universe HU & and each bound variable to a real number
from [0, 1]. For Herbrand interpretations I, conjunctive formulas C, and variable assignments o,
we write I =, C to denote that C' is true in I under o.

A probabilistic interpretation Pr is a mapping from Zg to [0, 1] such that all Pr(I) with I € Zg
sum up to 1. Pr is extended to conjunctive formulas C as follows. The probability of C' in the
interpretation Pr under a variable assignment o, denoted Pr,(C), is defined by (we write Pr(C)
if C is variable-free):
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Pr,(C) = > Pr(I).

I€Te,IE,C

Pr is extended to probabilistic clauses (H|B)[c1,co] as follows: (H|B)[ci,c2] is true in the prob-
abilistic interpretation Pr under a variable assignment o, denoted Pr |=, (H|B)[c1,c2], iff ¢1 -
Pry(B) < Pry(H A B) < ¢y Pry(B). A probabilistic clause (H|B)[c1, c2] is true in Pr, denoted
Pr = (H|B)la1, c2), iff Pr =, (H|B)|c1, c] for all variable assignments o.

The notions of models and of satisfiability for probabilistic clauses are defined as usual. A
probabilistic interpretation Pr is a model of a probabilistic clause F' iff Pr |= F. It is a model of a
set of probabilistic clauses F, denoted Pr = F, iff Pr is a model of all probabilistic clauses in F.
A set of probabilistic clauses F is satisfiable iff a model of F exists.

Object terms, conjunctive formulas, and probabilistic clauses are ground iff they do not contain
any variables. The notions of substitutions, ground substitutions, and ground instances of probab-
ilistic clauses are canonically defined. Given a probabilistic logic program P, we use ground(P) to
denote the set of all ground instances of probabilistic program clauses in P. Moreover, we identify
® with the vocabulary of all predicate and constant symbols that occur in P.

2.2 Maximum Entropy

We now introduce maximum entropy models of sets of probabilistic clauses. The application of
the principle of maximum entropy (see especially [36] and [15]) to probabilistic reasoning in the
artificial intelligence context has a long history (see, for example, [5], [28], [30], and [33]). Recently,
the principle of maximum entropy has been proved to be the most appropriate principle for dealing
with conditionals [18] (that is, using the notions of the present paper, ground probabilistic clauses
of the form (H|B)l[c1, c2] with ¢1 = ¢3).

The mazimum entropy model (ME-model) of a satisfiable set of probabilistic clauses F, denoted
ME(F], is the unique probabilistic interpretation Pr that is a model of F and that has the greatest
entropy among all the models of F, where the entropy of Pr, denoted H(Pr), is defined by:

H(Pr) = —Ig Pr(I) -log Pr(I).

2.3 Probabilistic Logic Programs under Maximum Entropy

We now define the notions of ME-consequence, tight ME-consequence, probabilistic queries, correct
and tight ME-answer substitutions, and ME-answers.

A probabilistic clause F' is a mazimum entropy consequence (ME-consequence) of a set of prob-
abilistic clauses F, denoted F =* F, ifft ME[F] = F. A probabilistic clause (H|B)[c1, c2] is a tight
mazimum entropy consequence (tight ME-consequence) of a set of probabilistic clauses F, denoted
F Iziight (H|B)[c1,c2], iff ¢; is the minimum and ¢y is the maximum of all ME,[F|(H A B)/
ME;[F|(B) with ME;[F](B) > 0 and variable assignments o.

A probabilistic query is an expression of the form 3(H|B)[c1, c2] or of the form 3(H|B)[z1, z2]
with real numbers c1,co € [0, 1] such that ¢; < ¢, two different bound variables z1,z9 € X, and
conjunctive formulas H and B different from 1. A probabilistic query 3(H|B)|t1,t2] is object-
ground iff H and B are ground.



IFIG RR 9903 5

Given a probabilistic query 3(H|B)[c1, ¢2] with ¢1,¢o € [0,1] to a probabilistic logic program
P, we are interested in its correct mazimum entropy answer substitutions (correct ME-answer
substitutions), which are substitutions 6 such that P =* (H0|B0)[c1,co] and that 6 acts only on
variables in 3(H|B)[c1, c2]. Its ME-answer is Yes if a correct ME-answer substitution exists and No
otherwise. Whereas, given a probabilistic query 3(H|B)[z1,z2] with 1,29 € X to a probabilistic
logic program P, we are interested in its tight mazimum entropy answer substitutions (tight ME-
answer substitutions), which are substitutions § such that P ’:Z‘ght (HO|BO)[z10,x20], that 6 acts
only on variables in 3(H|B)|[z1,z2], and that 210, z20 € [0,1]. Note that for a probabilistic query
3(H|B)[z1,z2] with 1,29 € X, there always exists a tight ME-answer substitution.

2.4 Example

We give an example adapted from [20]. Let us assume that John wants to pick up Mary after she
stopped working. To do so, he must drive from his home to her office. However, he left quite late.
So, he is wondering if he can still reach her in time. Unfortunately, since it is rush hour, it is very
probable that he runs into a traffic jam. Now, John has the following knowledge at hand: given
a road (r0) in the south (so) of the town, he knows that the probability that he can reach (re) S
through R without running into a traffic jam is 90% (1). A friend just called him and gave him
advice (ad) about some roads without any significant traffic (2). He also clearly knows that if he
can reach S through 7' and T through R, both without running into a traffic jam, then he can also
reach S through R without running into a traffic jam (3). This knowledge can be expressed by the
following probabilistic rules (R, S, and T" are object variables):

(1) (re(R,S)|ro(R,S) A so(R,S))[0.9,0.9]
(2) (re(R,S)|ro(R,S) A ad(R,S))[1,1]
(3) (re(R,S)|re(R,T) A re(T, S))[1,1].

Some self-explaining probabilistic facts are given as follows (h, a, b, and o are constant symbols;
the fourth clause describes the fact that John is not sure anymore whether or not his friend was
talking about the road from a to b):

(ro(h,a)| T)[1,1], (ad(h,a)| T)[1,1]
(ro(a,b) | T)[1,1], (ad(a,b)| T)[0.8,0.8]
(ro(b,0)| T)[1,1], (so(b,0)| T)[1,1].

John is wondering whether he can reach Mary’s office from his home, such that the probability of
him running into a traffic jam is smaller than 1%. This can be expressed by the probabilistic query
3(re(h, 0))[.99,1]. His wondering about the probability of reaching the office, without running into
a traffic jam, can be expressed by 3(re(h, 0))[ X1, X2], where X; and X5 are bound variables.

3 Satisfiability

In this section, we concentrate on the problem of deciding whether a probabilistic logic program
is satisfiable. Note that while classical logic programs without negation and logical constraints
(see especially [19] and [1]) are always satisfiable, probabilistic logic programs may become unsatis-
fiable, just for logical inconsistencies through logical constraints or, more generally, for probabilistic
inconsistencies in the assumed probability ranges.
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3.1 Naive Linear Programming Characterization

The satisfiability of a probabilistic logic program P can be characterized in a straightforward way
by the solvability of a system of linear constraints as follows.
Let LC4 be the least set of linear constraints over y; >0 (I € Zg) containing:

(1) ZIELD yr = 1

(2) e ZIqu),I\:B yr < ZIELI),I\: HAB YI < C2- ZIEL;,,II:B Y1
for all (H|B)lc1,c2] € ground(P).

It is now easy to see that P is satisfiable iff LC g is solvable. The crux with this naive characterization
is that the number of variables and of linear constraints is linear in the cardinality of Zg and of
ground(P), respectively. Thus, especially the number of variables is generally quite large, as the
following example shows.

Example 3.1 Let us take the probabilistic logic program P that comprises all the probabilistic
program clauses given in Section 2.4. If we characterize the satisfiability of P in the described naive
way, then we get a system of linear constraints that has 264 ~ 18- 10'8 (!) variables and 205 linear
constraints.

3.2 Reduced Linear Programming Characterization

We now present a new system of linear constraints to characterize the satisfiability of a probabilistic
logic program P. This new system generally has a much lower size than £Cg. In detail, we combine
some ideas from [20] with the idea of partitioning ground(P) into active and inactive ground
instances, which yields another substantial increase of efficiency. We need some preparations:

Let P denote the set of all logical program clauses in P. Let P denote the least set of logical
program clauses that contains H < B if the program P contains a probabilistic program clause
(H|B)[c1, c2] with cg > 0.

We define a mapping R that maps each ground conjunctive formula C to a subset of HBe U {L}
as follows. If C' = L, then R(C) is HBoU{L}. If C # L, then R(C) is the set of all ground atomic
formulas that occur in C.

For a set L of logical program clauses, we define the operator TzTw on the set of all subsets
of HBg U {L} as usual. For this task, we need the immediate consequence operator T, which is
defined as follows. For all I C HBg U {L}:

T:(I) = U{R(H)|H « B € ground(L) with R(B) C I'}.

For all I C HBg U {L}, we define Tyt w(I) as the union of all Tyt n(l) with n < w, where
Te10(I) =1 and Tet (n+ 1)(I) = Te(Tetn(I)) for all n < w. We adopt the usual convention to
abbreviate T 1T a(0) by T,T a.

The set ground(P) is now partitioned into active and inactive ground instances as follows. A
ground instance (H|B)[c1, c2] € ground(P) is active if R(H)UR(B) C T5Tw and inactive otherwise.
We use active(P) to denote the set of all active ground instances of ground(P).

We are now ready to define the index set Zp of the variables in the new system of linear
constraints. It is defined by Tp = I, N Zg, where T/, is the least set of subsets of HBo U {L} with:
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(o) Tptw € Ip,
(B) Tptw(R(B)),Tptw(R(H) U R(B)) € T/ for all purely probabilistic program
clauses (H|B)lc1, 2] € active(P),
(v) Tptw(I UIy) € I) for all I, I € TF,.
The index set Zp just involves atomic formulas from 7’51 w:
Lemma 3.2 It holds I C Tt w for all I € Zp.
Proof. The proof is given in full detail in the appendix. O

The new system of linear constraints LCp itself is defined as follows: LCp is the least set of
linear constraints over y; >0 (I € Zp) that contains:

(1) ZIeIp yr = 1

(2) c1- ZIEIP,H:B yr < ZIeIp,H:H/\B yr < c2- ZIEIP,H:B Yr
for all purely probabilistic program clauses (H|B)[c1, c2] € active(P).

We now roughly describe the ideas that carry us to the new linear constraints. The first idea is to
just introduce a variable for each I C T557 w, and not for each I C HBg anymore. This also means
to introduce a linear constraint only for each member of active(P), and not for each member of
ground(P) anymore. The second idea is to exploit all logical program clauses in P. That is, to
just introduce a variable for each T'ptw(I) with I C T5Tw. This also means to introduce a linear
constraint only for each purely probabilistic member of active(P). Finally, the third idea is to
exploit the structure of all purely probabilistic members of active(P). That is, to just introduce a
variable for each I € Zp.
The following important theorem shows the correctness of these ideas.

Theorem 3.3 P is satisfiable iff LCp is solvable.
Proof. The proof is given in full detail in the appendix. O
We give an example to illustrate the new system of linear constraints LCp.

Example 3.4 Let us take again the probabilistic logic program P that comprises all the probabil-
istic program clauses given in Section 2.4. The system LCp then consists of five linear constraints
over four variables y; > 0 (i € [0:3]):

yot+yitytys = 1
0.9 -(yo+y1+y2+wys) < y1+uys
0.9 - (Yo+yi+v2+ys) > yi+uys
08 - (yo+y1+y2+y3) < ya+uys3
08-(yo+y1+y2+ys) > y2+us

More precisely, the variables y; (i € [0:3]) correspond as follows to the members of Zp (written in
binary as subsets of T5tw = {ro(h,a),ro(a,b),r0(b,0), ad(h,a), ad(a,b), so(b,0), re(h,a), re(a,b),
re(b,0), re(h,b), re(a,0), re(h,0)}):

40 =111101100000, 3; =111101101000
20 =111111110100, y3=111111111111.



IFIG RR 9903 8

Moreover, the four linear inequalities correspond to the following two active ground instances of
purely probabilistic program clauses in P:

(re(b,0) | ro(b,0) A so(b,0))[0.9,0.9], (ad(a,b)| T)[0.8,0.8].

4 Probabilistic Logic Programming under ME

In this section, we concentrate on the problem of computing tight ME-answer substitutions for
probabilistic queries to probabilistic logic programs. Since every general probabilistic query can
be reduced to a finite number of object-ground probabilistic queries, we restrict our attention to
object-ground queries.

In the sequel, let P be a satisfiable probabilistic logic program and let Q@ = 3(G|A)[z1,x2] be
an object-ground query with z1,2o € X. To provide the tight ME-answer substitution for @), we
now need ME[P](A) and ME[P](G A A).

4.1 Exact ME-Models

The ME-model of P can be computed in a straightforward way by solving the following entropy
maximization problem over the variables y; > 0 (I € Zs):

(4) max —y, yrlogyr subject to LCo.

I€Ty
The crux with this optimization problem (4) is that especially the number of variables is generally
quite large (see also Section 3.1):

Example 4.1 Let us take again the probabilistic logic program P from Section 2.4. The entropy
maximization (4) is done subject to a system of 205 linear constraints over 264 ~ 18-10'® variables.

4.2 Approximative ME-Models

We now introduce approximative ME-models, which are characterized by optimization problems
that generally have a much smaller size than (4).

Like the linear programs in Section 3.1, the optimization problems (4) suffer especially from
a large number of variables. It is thus natural to wonder whether the reduction technique of
Section 3.2 also applies to (4).

This is indeed the case, if we make the following two assumptions:

(1) All ground atomic formulas in @ belong to T51 w.

(2) Instead of computing the ME-model of P, we compute the ME-model of active(P) (that is,
we approzimate ME[P]| by ME[active(P)]).

Note that both assumptions (1) and (2) are just small restrictions, if we consider that the logical
approximation P of the probabilistic logic program P does not logically entail any other ground
atomic formulas than those in T’51T w.

We now have to adapt the technical notions of Section 3.2 as follows. The index set Zp must
be adapted by also incorporating the structure of the query @ into its definition. More precisely,
the new index set Zpq is defined by Zpqg = I 5 N Zs, where I}, is the least set of subsets of
HBg U {1} with:
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(@) Tptw, Tptw(R(A)), Tptw(R(G) U R(A)) € Ipq,
(8) Tptw(R(B)), Tptw(R(H) U R(B)) € I for all purely probabilistic
program clauses (H|B)[c1, 2] € active(P),
(7) Tptw(li VD) € I for all I+, Ir € Tip .
Also the new index set Zp g just involves atomic formulas from 7551 w:
Lemma 4.2 It holds I C Tt w for all I € Ipyg.
Proof. The proof is given in full detail in the appendix. O

The system of linear constraints LCp must be adapted to LCpg, which is the least set of linear
constraints over yr > 0 (I € Ipg) that contains:

(]‘) ZIEI’P’Q yr = 1

(2) e ZIEIP,Q,UZB yr < Z[EIp,Q,I': HAB YI < C2- ZIEIP,Q,U:B yr

for all purely probabilistic program clauses (H|B)[c1, c2] € active(P).

Finally, we need the following definitions. Let 75 = {L|L C Tptw} and let a; (I €Zpg) be
the number of all possible worlds J € Tptw(Z5) NZ5 that are a superset of I and that are not a
superset of any K € Zpq that properly includes I.

Roughly speaking, Zpg defines a partition {S;|I € Ipq} of Tptw(Zp) NIz and each af
with I € Zpg denotes the cardinality of S;. Note especially that a; >0 for all T €Zpg, since

We are now ready to characterize the ME-model of active(P) by the optimal solution of a
reduced optimization problem.

Theorem 4.3 For all ground conjunctive formulas C with Tptw(R(C)) €EZpg:

ME[active(P)[(C) = Yiezpq 12 Y1

where y7 with I € Ipg 1is the optimal solution of the following optimization problem over the vari-
ables yr > 0 with I € Lpg:

(5) max — », yr(logyr —logar) subject to LCpq.
IEI’p,Q

Proof. The proof is given in full detail in the appendix. O

The tight ME-answer substitution for the probabilistic query @ to the ground probabilistic logic
program active(P) is more precisely given as follows.

Corollary 4.4 Let y; with I € Ipg be the optimal solution of (5).

a) If yj = 0 for all I€Tpg with I = A, then the tight ME-answer substitution for the query
3(G|A)[z1,z2] to active(P) is given by {z1/1,z2/0}.

b) If y3 > 0 for some I €Lpg with I |= A, then the tight ME-answer substitution for the query
3(G|A)[z1,z2] to active(P) is given by {x1/d, z2/d}, where

d = EIeIp,Q,I\:G/\A 7/ ZIEpr’Q,I':A Y7 -
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We give an example to illustrate the optimization problem (5).

Example 4.5 Let us take again the probabilistic logic program P from Section 2.4. The tight ME-
answer substitution for the query 3(re(h, 0))[ X1, X2] to active(P) is given by {X1/.9353, X2 /.9353},
since ME[active(P)](re(h,0)) = y3 + yi + y5 + yg = 9353, where y7 (i € [0:6]) is the optimal
solution of the following optimization problem over the variables y; > 0 (i € [0:6]):

6
max — Y y; (logy; — loga;) subject to LCp,
i=0
where (ag, a1, az, a3, a4, as, as) is given by (3,1,1,1,6,5,2) and LCpg consists of the following five
linear constraints over the seven variables y; > 0 (i € [0:6]):

Yot+yit+yetystyatystys = 1
0.9 -(wo+y+y+ys+ytys+us) < n+ys+us
0.9 (wo+yi+yo+ys+vatys+vs) > y1+ys+ys
0.8 (yo+yi+y2+ys+yatuys+us) < y2+ys+us
08-(yo+wy1+y2+ys+tystys+us) > y2+ys+ys

More precisely, the variables y; (i € [0:6]) correspond as follows to the members of Zp ¢ (written
in binary as subsets of 51w = {ro(h,a), ro(a,b), ro(b, 0), ad(h, a), ad(a,b), so(b, 0), re(h,a), re(a, b),
re(b,0), re(h,b), re(a,0), re(h,0)}):
10 =111101100000, y; =111101101000, y» =111111110100
y3=111111111111, y4=111101100001, y5=111101101001
146 =111111110101

Furthermore, the variables y; (i € [0:6]) correspond as follows to the members of Tpt w(Z5) N T
(written in binary as subsets of 57T w). Note that a; with i € [0:6] is given by the number of
members associated with ;.

=(111101100000,111101100100,111101110100)

Yo = (

y1 =(111101101000)
y2 =(111111110100)
y3 = (
ya =

>

111111111111)

111101100001,111101100011,111101100101,
111101100111,111101110101,111101110111)

ys=(111101101001,111101101011,111101101101,
111101101111,111101111111)

ys =(111111110101,111111110111)

~
~

Finally, the four linear inequalities correspond to the following two active ground instances of purely
probabilistic program clauses in P:

(re(b,0) | ro(b,0) A s0(b,0))[0.9,0.9], (ad(a,b)]| T)[0.8,0.8].

Note that we used the ME-system shell SPIRIT (see especially [33] and [34]) to compute the ME-
model of active(P).
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4.3 Computing Approximative ME-Models

We now briefly discuss the problem of computing the numbers a; with I € Zp g and the problem
of solving the optimization problem (5).

As far as the numbers a; are concerned, we just have to solve two linear equations. For this
purpose, we need the new index set I; o defined by I; 0= I%q N Zs, where I7 , is the least set
of subsets of HBg U { L} with:

(a) 0,R(A), R(G) UR(A) € Ip,,
(8) R(B), R(H) U R(B) € Tl,, for all (H|B)[c1, 5] € active(P),
(’}’) LUL e !IID,Q for all I, I, € I%’Q.

We start by computing the numbers s; with J € I;';, 0 which are the unique solution of the following
system of linear equations:

ZJ€I+

— T —\|I +
4o JCT 5T = 2Tetwl=IT1 for all I € Iy

We are now ready to compute the numbers a; with J € Zp g, which are the unique solution of the
following system of linear equations:

ZJGI'p,Q,JQI aj = ZJEI+ JCI,J=P sy forall I € IP,Q .

PQ

As far as the optimization problem (5) is concerned, we can build on existing ME-technology.
For example, the ME-system PIT (see [10] and [35]) solves entropy maximization problems sub-
ject to indifferent possible worlds (that is, certain possible worlds are assumed to have the same
probability). It can thus directly be used to solve the optimization problem (5).

Note also that if the probabilistic logic program P contains just probabilistic program clauses
of the form (H|B)lc1, c2] with ¢; = cg, then the optimization problem (5) can easily be solved by
standard Lagrangean techniques (as described in [34] and [35] for entropy maximization).

5 Summary and Outlook

In this paper, we discussed the combination of probabilistic logic programming with the principle of
maximum entropy. We presented an efficient linear programming characterization for the problem of
deciding whether a probabilistic logic program is satisfiable. Furthermore, we especially introduced
an efficient technique for approximative query processing under maximum entropy.

A very interesting topic of future research is to analyze the relationship between the ideas
of this paper and the characterization of the principle of maximum entropy in the framework of
conditionals given in [18].

Appendix

Proof of Lemma 3.2: The claim is proved by induction on the definition of 7% as follows. Let
I €I} with I # HBp U {L}.
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(@) If I = Tptw, then I C T5tw, since Tptw C Tt w.

(B) I I =Tptw(R(B)) or I =Tptw(R(H)UR(B)) for some purely probabilistic (H|B)[ci,c2] €
active(P), then I C T5Tw, since R(H) U R(B) C T5T w.

(v) I = Tptw(l; UIy) for some Iy, Iy € I}, then I C T5tw, since I, o # HBg U {1} and
thus I; U Iy C Tt w by the induction hypothesis. O

Proof of Theorem 3.3: We first need some preparation as follows. We show that all purely
probabilistic program clauses from active(P) can be interpreted by probability functions over a
partition {S;|I € Zp} of Tptw(Zs) NZe. That is, as far as active(P) is concerned, we do not need
the fine granulation of Zg.

For all I € Zp let St be the set of all possible worlds J € Tptw(Zs) NZp that are a superset
of I and that are not a superset of any K € Zp that properly includes I. We now show that
{811 € Ip} is a partition of Tptw(Zs) NZs. Assume first that there are two different I1, Iy € Zp
and some J € Tptw(Zs) NZp with J € S;, N Sr,. Then J D I U Iy and thus J D Tptw(l) U I).
Moreover, it holds TptTw(I1 UIy) € Zp by () and Tptw(l1 Uly) D I or Tptw(ly UIlz) D Ir. But
this contradicts the assumption J € Sy, NSy,. Assume next that there are some J € Tpt w(Ze) NZe
that do not belong to |J{Sr|I € Zp}. We now construct an infinite chain Iy C I; C --- of elements
of Zp as follows. Let us define Iy = Tptw. It then holds Iy € Zp by («) and also J D I. But,
since J ¢ Sy, there must be some I1 € Zp with J D I1 and I; D Iy. This argumentation can now
be continued in an infinite way. However, the number of subsets of HBg is finite and we are thus
arrived at a contradiction.

We next show that for all I € Zp, all possible worlds J € Tptw(Zs) NZs, and all ground
conjunctive formulas C with Tptw(R(C)) € Zp, it holds J = C for some J € Sy iff J |= C for
all J€ 8y. Let J |= C for some J € 8. It then holds J DI, JD R(C), and thus JOTptTw(R(C)).
We now show that I DTptw(R(C)). Assume first I C Tptw(R(C)). But this contradicts J € Sy.
Suppose next that I ¢ Tptw(R(C)) and I 2 Tptw(R(C)). Since J 2O I U Tptw(R(C)), we
get J DO Tptw(I UTptw(R(C))). Moreover, it holds Tptw(I U Tptw(R(C))) € Zp by (y) and
Tptw(I UTptw(R(C))) D I. But this contradicts J € S;. Hence, we get I D Tptw(R(C)). Since
J DI for all J € S, we thus get JD R(C) for all J € S;. That is, J = C for all J € S;. The
converse trivially holds.

We are now ready to prove the theorem as follows. Let Pr be a model of P. Let yr (I € Zp)
be defined as the sum of all Pr(J) with J € S;. It is now easy to see that yr (I € Zp) is a solution
of LCp.

Conversely, let y; (I €Zp) be a solution of LCp. Let the probabilistic interpretation Pr be
defined by Pr(I) = yr if I € Zp and Pr(I) = 0 otherwise. It is easy to see that Pr is a model of all
logical program clauses in P and of all purely probabilistic program clauses in active(P). Let us
now take a purely probabilistic program clause (H|B)|c1, c2] from ground(P) \ active(P). Assume
that R(B) contains some B; ¢ Tt w. By Lemma 3.2, we then get B; ¢ I for all I € Zp. Hence,
Pr(B) = 0 and thus Pr = (H|B)[c1,c]. Suppose now that R(B) C Tt w and that R(H) contains
some H; ¢ Tt w. But this contradicts the assumption ¢ > 0. That is, Pr is a model of P. O

Proof of Lemma 4.2: The claim can be proved like Lemma 3.2 (by induction on the definition
of Tpq). The proof makes use of R(G) U R(A) C Tptw. O
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Proof of Theorem 4.3: Since active(P) does not involve any other atomic formulas than those
in T5Tw, we can restrict our attention to probability functions over the set of possible worlds
T5 = {L| L C Tt w}. Like in the proof of Theorem 3.3, we need some preparations as follows. We
show that all purely probabilistic program clauses from active(P) can be interpreted by probability
functions over a partition {Sy|I € Zpg} of Z5:

For all I € Zpg let St be the set of all possible worlds J € Tptw(Z5) N I that are a superset
of I and that are not a superset of any K € Zpg that properly includes I. By an argumentation
like in the proof of Theorem 3.3, it can easily be shown that {S;|I € Ipg} is a partition of
Tptw(Zp) NI and that for all I € Zpg, all possible worlds J € Tptw(Z5) NI, and all ground
conjunctive formulas C' with Tptw(R(C)) € Ipy, it holds J = C for some J € St iff J |= C for
all J € Sr.

Given a model Pr of active(P), we can thus define a model Pr*of active(P) by Pr*(L) =1/ar -
Y sesPr(J) if L € Tptw(Zp) NI, where I € Zpq such that L € Sy, and Pr*(L) =0 otherwise.
Hence, for all I € Zpg and all Ji, J2 € Sr: ME[active(P)](J1) = ME[active(P)](J2).

Hence, for all ground conjunctive formulas C with TptTw(R(C)) € Ipg:

ME(active(P)](C) = ZIEIP,Q,I\ZC arcy,

where z7 with I €Zpg is the optimal solution of the following optimization problem over the
variables 7 > 0 with I € Zpg:

max — Y, ayzrlogzy subject to ECQD,Q,
IeIpq

where [,C;;,Q is the least set of constraints over x; > 0 with I € Zp containing:
(1) ZIEIP,Q arrr = 1

(2) - ZIGIP,Q,u:B arzr < Zlerp,Q,u: HAB OITI < Co- ZIGIP,Q,u:B arxr

for all purely probabilistic program clauses (H|B)[c1, c2] € active(P).

Thus, we finally just have to perform the variable substitution z; = y;/a;. O
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