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1. Introduction 

1.1 Pulmonary physiology and microanatomy 

The lungs form a delicate interface between host and environment, exchanging inhaled 

atmospheric oxygen and metabolism derived carbon dioxide. The distal lung therefore 

comprises large surface area of >80m2 directly exposed to pro-inflammatory material (> 

10,800l of gas volume/day), which renders the alveolar-capillary barrier an important site 

for initial pathogen-host interactions (1, 2). The alveoli are very closely associated with a 

network of capillaries and the distance of the alveolar space to the vascular compartment is 

<1µm, allowing rapid exchange of gases by passive diffusion along concentration 

gradients.   

 

Figure 1-1 Microanatomy of the alveolus. The thin squamous type 1 alveolar epithelial cell (AEC I) in 
the alveolus and the endothelium of the pulmonary microvasculature are separated by the basement 
membrane form an ultra-thin alveolar capillary blood-gas barrier. The rounded alveolar epithelial type 2 
cells (AEC II) are critical for surfactant production and can serve as a source of AEC I restoration after 
lung damage. Alveolar macrophages are resident in the alveolar space and maintain alveolar homeostasis 
by processing surfactant and scavenging foreign particles and cellular debris. Further macrophage subsets 
are recruited from the circulating monocyte pool upon inflammatory injury of the alveolus. 
 
The proximal airways of the murine lung are lined by cuboidal club cells that secret mucus, 

thus preventing desiccation of the airway but also trapping incoming agents, and by 

ciliated cells that help to push the trapped foreign agents out of the lung along with the 

mucus. The human airway contains only a rare club cell population and consists of mucus 

secreting goblet cells together with ciliated cells. The microanatomy of the distal lung 

compartment consists of alveoli (Fig.1-1) the surface of which is covered by the alveolar 

epithelium which provides the initial barrier to environmental influences. Lung-resident 

macrophages in the alveoli clear particles and debris that reach the distal lung. Alveolar 

macrophages also secrete soluble mediators that contribute to the maintenance of 

homeostasis, including enzymes, cytokines, chemokines, arachidonic acid derivatives and 
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glycoproteins such as fibronectin (3). The alveolar surface is lined to  97% by  type I 

alveolar epithelial cells (AEC I) which provide a thin surface for optimal gas diffusion (4). 

They form the alveolar capillary blood-gas barrier together with pulmonary microvascular 

endothelial cells. Due to their large surface, AEC I are sensitive to damage by e.g. 

inflammatory or mechanical stress. The type II alveolar epithelial cells (AEC II) cover  3% 

of alveolar surfaces and secrete pulmonary surfactant which is essential for reducing the 

alveolar surface tension thus preventing alveolar collapse during exhalation (5). They have 

proliferative potential and serve as precursors for type I cells during repair after lung 

injury.  

 

1.2 Pulmonary homeostasis and response to infection   

In general, most humans do not develop chronic inflammation of the lung irrespective of 

the continuous exposure to the atmospheric toxins, pollutant, irritants, etc., which indicates 

that protective mechanisms are effective to ensure lung homeostasis. The immune system 

at the mucosal surface involves multiple layers of innate and adaptive immune processes 

that together with the physical barrier contribute to maintain lung integrity. Special 

anatomical features of the lung mucosa prevent access of the inspired luminal contents to the 

sub-epithelium. In addition, the epithelium orchestrates the initial responses to both infectious 

and noninfectious stimuli in the lung (6). Moreover, AEC II play a role in recognition of 

pathogens and initiation of innate immune responses (7). Both AEC I and AEC II are well-

polarized and tightly interconnected cells, thus providing a structural and functional barrier 

tightly regulating alveolar fluid homeostasis as well as transport of proteins and solutes in 

the lung (8). In the alveolar epithelium, these tight junctions are formed by E-cadherin and 

proteins of the catenin family (8, 9). The tight junctions are apically located multiprotein 

complexes consisting of claudins, occludins and scaffolding proteins such as zona-

occludins protein 1 (ZO-1). Tight junctions (TJ) are essential for limiting para-cellular 

transport and as well as for maintenance of cell polarity (10).  The alveolar mononuclear 

phagocyte system is a major part of the front line defense in the lung. Resident alveolar 

macrophages (rAM) originate from fetal liver monocytes that initially colonize the lung 

during embryonic development (11). Under steady-state conditions, the rAM is a long-

lived cell and remains sessile in close connection to the alveolar epithelial cells (12-16). Its 

task is to elicit immediate innate immune responses towards invading pathogens, but at the 

same time remain relatively inactive towards innocuous stimuli (17). The rAM 

inflammatory response is dampened by a number of blocking inhibitory molecules such as 

epithelial expressed CD200, SIRPα (signal-regulatory protein alpha), MARCO 



3 
 

(macrophage receptor with collagenous structure) and surfactant proteins A and D, and 

also by macrophage autocrine anti-inflammatory signaling elicited by TGF-β (transforming 

growth factor beta) and IL-10 (interleukin-10) (17, 18–23). During infection the loss of 

epithelial regulatory ligands, presence of necrotic cells and signaling by diverse pattern 

recognition receptors (PRR) (24, 25) like toll-like receptors (TLR) (26, 27), nucleotide 

oligomerization domain (NOD)-like receptors (28, 29), intracellular helicases like retinoic 

acid inducible gene I (RIG-I) (30, 31) and protein kinase R (PKR) (32, 33) lead to 

production of a range of inflammatory cytokines and chemokines (e.g. CCL2, CX3CR1, 

tumor necrosis factor-alpha (TNF)-α, TGF-β) which further promote the innate immune 

response. This leads to recruitment of polymorphonuclear leukocytes (PMNs), exudate 

macrophages (ExMa) and lymphocytes to the alveolar compartment (24, 34, 35).  

 

1.3 Acute Respiratory distress syndrome/ acute lung injury 

Acute lung injury (ALI) and its extreme form, the acute respiratory distress syndrome 

(ARDS) are syndromes of acute respiratory failure with substantial morbidity and 

mortality (36, 37). In 1967, Ashbaugh and colleagues (38) first used the term ´adult 

respiratory distress syndrome´ (ARDS) to describe a group of 12 critically ill patients with 

acute respiratory failure. After different definitions had been proposed for a decades, in 

1994 the American-European consensus conference committee recommended the 

definition which was globally accepted but had limitations (39–43). Recently, a definition  

known as “Berlin Definition” published in 2013 was created by a consensus panel of 

experts who convened in 2011 (an initiative of the European Society of Intensive Care 

Medicine endorsed by the American Thoracic Society and the Society of Critical Care 

Medicine). This definition includes acute onset, the presence of bilateral opacities on chest 

radiographs consistent with pulmonary edema and a value of the PaO2/FiO2 (arterial 

oxygen tension/inhaled oxygen fraction) ratio of below 300 mmHg (44). The disease is 

categorized by the degree of hypoxemia as mild (PaO2/FiO2 ratio between 300 and 200 

mmHg), moderate PaO2/FiO2 ratio between 200 and 100 mmHg) or severe (PaO2/FiO2 

ratio below 100 mmHg). Patients with ARDS require urgent admission to critical care units 

for advanced life support and utilize considerable health care resources. ARDS can 

develop as a result of direct injury to the lungs, such as viral or bacterial pneumonia, 

aspiration of gastric contents, or smoke or toxic gas inhalation. Alternatively, ARDS can 

occur indirectly during the course of systemic inflammation, such as during sepsis, after 

polytrauma or following transfusion called TRALI (45). The mortality rate of ARDS is 27-
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45% with multi-organ failure as the most common cause of death (46, 44). Fatality risk 

depends on the nature of the underlying disorder (36, 47) and is influenced by age and 

race. Younger patients have lower mortality rates and Afro-Americans or Hispanics have 

increased risk of death when compared to Caucasians (36, 47). To date, no 

pharmacological treatment options are available for the therapy ARDS. Therefore, there is 

an urgent medical need for the development of novel therapies to further improve clinical 

outcomes (48). 

 

1.3.1 Pathology of ARDS/ALI 

ARDS/ALI is an acute inflammatory disorder that disrupts the lung epithelial and 

endothelial barriers with influx of edema fluid as well as of various inflammatory cells and 

mediators (Fig. 1-2). The alveolar endo/epithelial barrier is composed of adjacent layers of 

the alveolar epithelium and the microvascular endothelium only separated by the basement 

membrane. Maintaining the integrity of this barrier is crucial for liquid homeostasis and 

effective gas exchange in the lung.  Cellular characteristics of ALI include functional and 

structural loss of epithelial integrity and disruption of the basement membrane which lead 

to the efflux of protein-rich fluid into the distal airspaces of the lung (49). This is 

accompanied by an excessive extravasation of neutrophils and inflammatory monocytes 

releasing various pro-inflammatory mediators (45, 50). Elevated plasma levels of 

interleukin (IL)-6, 8, and TNF-α were found to be markers for mortality prediction (51, 

52). In addition, lower plasma levels of protein C and higher plasma levels of plasminogen 

activator inhibitor-1 were strong independent predictors of mortality, as well as for 

ventilator-free days and organ failure (53).  Excessive and prolonged activation of 

neutrophils and monocytes in the alveolar space contributes to basement membrane 

destruction and increased membrane permeability. Neutrophils release elastase which in 

turn degrades epithelial junctional proteins, possesses pro-apoptotic properties, and thus 

damages the alveolar epithelium (54-58). In consequence, this uncontrolled feed-forward 

mechanisms result in barrier dysfunction that eventually leads to respiratory failure (45). In 

some animal models of ARDS, neutrophil depletion was shown to be protective (59- 62), 

however, even in the absence of circulating neutrophils, ALI can occur (63). Bone marrow 

derived monocytes recruited during injury (termed exudate macrophages) are an important 

source of pro-inflammatory mediators and thus may contribute to barrier disruption. 

CCR2-/- animals which lack monocyte/macrophage recruitment during lung infection, 
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were shown to maintain barrier integrity after influenza virus (IV) induced ALI (64) in 

contrast to wild type animals.  

Under homeostasis, type I and type II alveolar epithelial cells (AEC) form tight junctions 

with each other to maintain epithelial barrier integrity. During the acute phase of 

pneumonia-associated lung injury, infected or injured AEC lose tight junction integrity and 

partially undergo apoptosis that leads to increased permeability and in severe cases 

eventually to a  denuded basement membrane (Fig. 1-2) (45, 49). Recently, it has also been 

reported that alveolar edema fluid from ALI patients down regulated the expression of ion 

transport genes that are involved in fluid reabsorption when added to primary cultures of 

human alveolar epithelial type II cells (65). Patients who survive the acute stage of ARDS 

enter a proliferative response phase, which is characterized by the presence of hyperplastic 

alveolar epithelial type II (AECII) cells and fibroblasts. The AECII migrate along alveolar 

septa and proliferate in order to reconstitute junctional epithelial integrity (66). The effort 

of epithelial repair undertaken during the proliferative phase may result in complete 

restoration of lung function. However, proper re-epithelialization is frequently prolonged 

and even disturbed which can result in progression to the fibrotic phase of ARDS/ALI 

(45). In this case, the alveolar space is filled with proliferating fibroblasts, abnormal 

amounts of extracellular matrix and new blood vessels, collectively described as fibrosing 

alveolitis (67, 68).  
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Figure 1-2 Schematic overview of alveolar compartment in homeostasis (left side) and during acute 
phase of ARDS (right side).  The left-hand side depicts the healthy alveolus with an intact epithelial barrier 
consisting of type I and type II epithelial cells. The right side shows the injured alveolus with leukocytes and 
red blood cells intravasated into the alveolar airspace. Disruption of the endothelial and epithelial barrier leads 
to edema formation, inflammatory activation of alveolar macrophages, and infiltration of additional 
leukocytes which drives further damage of alveoli. Adapted from Matthay and Zimmerman 2005 (50) 

 

1.4 Influenza A Virus 

1.4.1 Structure 

Influenza A viruses (IAV) are classified together with influenza B, influenza C and 

Thogoto virus as orthomyxoviridae. They are characterized by a single stranded, negative 

oriented and segmented RNA genome. The structure of IAV (Fig. 1-3) consists of a host 

cell-derived lipid coated bi-layer membrane. The genera can be differentiated by the 

molecular and serological characteristics of the viral matrix und nucleoproteins and have 

different amounts of gene segments (69), of which IAV possess eight. IAV are further 

separated into subtypes by antigenic characteristics displayed by their hemagglutinin (HA) 

and neuraminidase (NA) proteins, of which we know 18 and 11 subtypes, respectively, 

found circulating in wild birds and waterfowl (70), as well as a unique HA-NA 

combination found recently in bats (H17N10 and H18N11) (71). IAV are named by genus, 

host species (if not human), place of isolation, number of the isolate, year of isolation and 

its subtype (for example: A/Puerto Rico/8/34 (H1N1) - PR8). IAV form pleomorph 

particles of 80-120nm diameter. Inside, the viral RNA is complexed with the viral 

nucleoprotein (NP) and the polymerase complex, generating the viral ribonucleoprotein 

(RNP). The viral RNA consists of 13.6 kilobase (kb) which encode 11 viral proteins: non-

strucutral (NS) proteins NS1 and NS2 which are important for regulation of host innate 

immune responses and export of viral RNA from the nucleus, respectively, matrix proteins 

M1 and M2, NA, NP, HA and the polymerase subunits PA, PB1 and PB2  (72-75).  
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Figure 1-3 Structure of influenza A virus. Three viral proteins are exposed on the outside of virus particles: 
haemagglutinin (HA, which forms trimers), neuraminidase (NA) (which forms tetramers) and M2 (which 
forms tetramers that make up ion-channels). Upon proteolytic cleavage, HA0 (not shown) is processed to 
HA1 and HA2. The influenza virus matrix protein M1 associates inside the viral membrane, and the viral 
genome consists of eight negative-strand RNA segments and is packaged into the particle as a 
ribonucleoprotein in complex with nucleocapsid protein (NP) and the viral polymerases PA, PB1 and PB2. 
On average, the number of HIV-1 envelope glycoprotein spikes is thought to be considerably lower than the 
number of HA molecules per influenza A virion. Adapted from Karlsson Hedestam GB et al 2008 (76). 
 

1.4.2 Epidemiology  

IAV cause morbidity and mortality worldwide in animals and human beings and continue 

to impose a major burden on healthcare systems (77). IAV infection may also lead to 

severe respiratory disease and admission to the intensive care unit (78). IAV are transmitted 

by respiratory droplets and primarily infect the epithelium of the proximal as well as distal 

respiratory tract which  results in a primary viral pneumonia causing severe damage to the 

alveolar compartment and acute respiratory distress syndrome (ARDS) (79- 81). Often, 

additional secondary super-infections with Streptococcus pneumonia, Staphylococcus 

aureus and Haemophilus influenzae worsen outcome substantially (82, 83). The genetic re-

assortment is an important way to promote the evolution of new IAV subtypes. Novel re-

assortment of virus in animal reservoirs may generate pandemic IAV strains in humans. In 

history, several human pandemic influenza viruses were assembled by genetic re-

assortment between avian, human and swine influenza viruses. In 2009, pandemic (H1N1) 

2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes, one 

avian and one human influenza virus gene, highlighted the crucial role of genetic re-

assortment in generation of novel pandemic IAV strains. 

 

1.4.3 Host-Virus Interactions 

Replication of IAV in a host cell greatly impacts on cellular function and structure. In the 

lung, IAV infection can activate epithelial cells and alveolar macrophages, leading to 

release of various cytokines and chemokines. These large amounts of pro-inflammatory 

mediators further impact on the functional integrity of the alveolar epithelium. IAV directly 

affect tight junction stability, through the action of NS1. Its carboxyl terminus domain 

contains a PDZ-ligand binding motif that can interact with host factors scribble and Dlg1 

(Disks large homolog 1), leading to tight junction disruption accompanied by lower trans-

epithelial resistance (TER) and higher protein diffusion rates of the epithelial cell layer 

(84). M2 expression leads to enhanced levels of reactive oxygen species (ROS) formation 

and subsequent protein kinase C (PKC) activation (85). The cellular recognition of 

pathogen-/danger-associated molecular patterns (PAMPs/ DAMPs) by diverse pattern 
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recognition receptors (PRRs) induces the activation of inflammatory, anti-viral signal 

cascades. Detection of uncapped 5´-triphosphorylated RNA by RIG-I (RNA helicases 

retinoic acid inducible gene-I) and subsequent interaction with MAVS (mitochondria 

associated antiviral signaling protein), TRIM25 (Tripartite motif-containing protein 25) and 

IPS-1 (Interferon-beta Promoter Stimulator-1) leads to an IRF-3 and IRF-7 (interferon 

regulatory factor)-dependent transcription and translation of type I interferons (IFN) (30, 

86). Furthermore, recognition of viral patterns by protein kinase R (PKR) activates NF-κB 

(nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) translocation to the 

nucleus and transcriptional activation of pro-inflammatory, pro-apoptotic and anti-viral 

gene clusters (87, 88). The RIG-I, PKR, NLRP3 (NOD-like receptor family, pyrin domain 

containing 3) inflammasome and endosomally located TLR3 and TLR7 (89- 92) contribute 

to sensing IAV infection. Activation of NLRP3 induces caspase-1 dependent release of pro-

inflammatory IL-1β and IL-18 (93), whereas TLR3/TLR7 act via IRF-3, IRF-7 and NF-κB, 

again triggering the induction of the IFN and pro-inflammatory cytokine responses (94). In 

addition to the epithelial response, IAV infection induces release of pro-inflammatory 

mediators by alveolar macrophages that amplify lung injury after IAV-infection (95- 98). In 

particular, exuberant production of IFN and IFN-dependent TNF-related apoptosis-

inducing ligand (TRAIL) has been demonstrated to promote epithelial barrier failure and 

lung tissue injury, to hamper resolution of inflammation and to increase mortality (64, 79, 

99-101). 

 

1.5 Current treatment of ARDS and  therapeutic perspectives 

ARDS is the leading cause of death in critical care, with mortality rates of 40 to 60%. 

Currently, the only non-pharmacologically treatment with proven efficacy is the use of 

lung-protective mechanical ventilation with low-tidal-volume ventilation (6 ml/kg of ideal 

body weight) and maintaining a plateau pressure of 30 cm of water or less, together with 

appropriate fluid management. This strategy has been proven to effectively reduce 

mortality in ARDS clinical trials by reducing lung injury and down regulating pro-

inflammatory cytokines (102, 103). Despite ongoing intensive research efforts over four 

decades, there are no pharmacologic therapies available till now (103). Several 

pharmacological treatment trials with e.g. corticosteroids, beta-adrenergic agonists, 

anticoagulants, vasodilators, anti-oxidants, immune-modulating agents such as IL-10, and 

surfactant failed to show an overall improvement in mortality during clinical trials (104), 

irrespective of their experimental/preclinical success (105-110). In addition, various 

pharmacologic agents such as ketoconazole, pentoxifylline, and N-acetylcysteine (NAC) 
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have been investigated for the reduction of pulmonary damage in ALI/ARDS. But none of 

these therapies has demonstrated a reduction in mortality (107, 111). Treatments with 

recombinant human activated protein C (112) or  HMG-CoA reductase inhibitors (statins) 

were found to significantly reduce mortality in some subgroups of patients (113-115) but 

recombinant human activated protein C was associated with an increased risk of bleeding 

(112, 116). Novel therapeutic approaches have shown promising results in animal models. 

For example, bone marrow derived mesenchymal stem cells (MSCs) were found to possess 

anti-inflammatory properties both in vitro and in vivo (117). Endothelial progenitors, 

embryonic and induced pluripotent stem cells are at an earlier stage in the translational 

process, but offer the hope of directly replacing injured lung tissue (118). In another cell 

therapy study, macrophages were used as vehicles to deliver keratinocyte growth factor 

(KGF) expression to injured lungs (119). In future, experimental therapies could include 

cells or cell derived pharmacological compounds to enhance edema clearance, stimulate 

repair pathways, inhibit pro-inflammatory transcription factors, and target inflammatory 

cytokines. 

 

1.6 Macrophages   

Since Elie Metchnikoff first described the macrophage as phagocyte in 1882 this cell type 

has been reported to reside in almost every part of the body as large, tissue resident myeloid 

cell characterized by the presence of pseudopodia and phagocytic granules and by distinct 

functional profiles.  As central part of the innate immune system they have a crucial host 

defense function but also contribute to the maintenance of tissue homeostasis through the 

clearance of apoptotic and damaged cells. Macrophages also play an essential role during 

organogenesis in embryonic development, where they are highly concentrated at sites of 

high cell death, such as developing limb buds (120). These tissue re-modeling functions are 

found to be conserved in the adult life thereby supporting wound healing and tissue 

repair/remodeling processes after infection and injury. Macrophages are also known to 

acquire tissue-specific phenotypes and functions in different organs (Fig. 1-4). For 

example, liver macrophages (Kupffer cells) remove toxins, lung macrophages (alveolar & 

interstitial) are highly equipped with clearance machineries to eliminate inhaled 

environmental particles, bone macrophages (osteoclasts) are essential for bone re-modeling, 

placenta macrophages (Hofbauer cell) are involved in preventing the transmission 

of pathogens from the mother to the fetus and renal macrophages (intra-glomerular 

mesangial cells) play a role in filtration, structural support, and phagocytosis of debris in 

the glomerulus. Although they exert tissue specific functions, all of these tissue 
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macrophages also release common soluble mediators including enzymes, cytokines, 

chemokines, arachidonic acid derivatives and glycoproteins such as fibronectin, that 

contribute to maintenance of homeostasis and tissue repair (121,122). 

 
Figure 1-4 Macrophages in different tissues. Mononuclear phagocytes are generated from committed 
haematopoietic stem cells located in the bone marrow. Macrophage precursors are released into the 
circulation as monocytes and quickly migrate into nearly all tissues of the body, where they differentiate into 
mature macrophages. Macrophages are found in every organ and in different tissues where they have 
specialized functions. Adapted from Murray PJ and Wynn TA 2011 (123). 

 

1.6.1 Macrophage origin, differentiation and development 

Ontogeny and differentiation of tissue macrophages are briefly summarized in Fig. 1-5.  

Macrophages may originate at the prenatal stage from the yolk sac and fetal liver, and 

during the postnatal stage from the bone marrow (124, 125). Alveolar macrophages belong 

to the tissue macrophage type shown to arise from embryonic progenitors that seed the 

organ and mature locally before and shortly after birth and are maintained by proliferative 

self-renewal throughout life, largely independent of replenishment by blood monocytes in 

the steady state (126, 127).  However, during inflammation, blood monocytes are recruited 

from bone marrow to inflamed lung tissue where they give rise to exudate macrophage 

(ExMa) populations. Under these conditions, the macrophage composition of the lung 

reflects a dynamic balance of recruited and tissue-resident macrophages. These cells with 
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distinct ontogenetic and proliferative histories are exposed to regional signals in inflamed 

lung tissue, but their distinct responses and further programming is largely unresolved.  

Tissue resident macrophages originate from both yolk sac and fetal liver in pre-natal stage, 

while during inflammation/injury, ExMa originate from bone marrow (128). These ExMa 

infiltrate to inflamed tissues via chemokine/chemokine receptor axis CCL2/CCR2 

dependent way not occurring in CCR2-deficient mice (129, 130). After extravasation, these 

ExMa are exposed to the respective organ microenvironment, correspondingly adapt their 

functional repertoire and may differentiate into organ-specific resident macrophages if 

these are depleted by inflammatory stimuli or infection (131).  

 
Figure 1-5 Macrophage origin, differentiation and plasticity. Macrophages may originate both at the 
prenatal stage from the yolk sac and fetal liver, and during the postnatal stage from the bone marrow. In 
specific tissue contexts, macrophages are programmed by local factors. Here they may be both long-lived 
self-renewing cells or replenished from the blood monocyte pool. The macrophage activation states in tissues 
can be loosely equated to macrophages in disease tissues, but they are heterogeneous in origin and 
phenotypically plastic, with variable contributions to disease progression. MØ, macrophage. Adapted from 
Liddiard and Taylor 2015 (128) 
 

In mice, two blood monocyte subsets have been distinguished based on differential 

expression of Ly6C (or Gr-1) and CX3CR1 (132). Monocytes that express high levels of 

Ly6C and intermediate levels of CX3CR1 as well as high levels of CCR2 are termed 

Ly6Chi monocytes. They are also known as inflammatory monocytes due to their ability to 

migrate to sites of inflammation and to produce pro-inflammatory cytokines during 

infection or tissue damage (132, 129, 133, and 134). The second major monocyte subset in 

mice characterized by low expression of Ly6C, high expression of CX3CR1 and low 

expression of CCR2 is termed Ly6Clow patrolling monocytes, acting to maintain capillary 

integrity (135). After extravasation, Ly6Chi monocytes differentiate into ExMa and 

monocyte-derived dendritic cells (Mo-DC).  
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It also been shown that ExMa can complement the prenatally established macrophage 

compartment, especially under conditions of severe depletion of the rAM population (such 

as irradiation and infection). Thus, depending on the organ and its inflammatory history, 

rAM may have a chimeric origin, being derived from both yolk sac/fetal liver as well as by 

bone marrow monocytes, (125, 136).  Despite their longevity and self-renewing property 

during homeostasis (137), rAM  were shown to be depleted  in severe inflammatory 

conditions, e.g. influenza A infection  (138). This depleted pool of rAM is replenished 

during later stages of injury/infection by either self-renewal of CD11chiCD11b- rAM or 

differentiation of lung recruited CD11clowCD11bhi ExMa derived from circulating blood 

Ly6Chi monocytes (139).  

 

1.6.2 Macrophage activation  

Diverse terms have been applied to describe macrophage activation and polarization first 

studied in vitro where a stimulus such as cytokines or toll-like receptor (TLR) agonists 

were observed to produce distinct patterns of gene and protein expression (140). This led to 

a widespread use of different definitions of macrophage activation, combining terms such 

as M1 (classical) and M2 (alternative) activation. The origins of these terms was first 

coined in the early 1990s when differential effects of IL-4 compared to IFN-γ and/or 

lipopolysaccharide (LPS) on macrophage gene expression were described (141,142). IL- 4 

was described to induce alternative activation compared to the effects of IFN-γ. After 

several years once again, Mills proposed the M1–M2 terminology (143). This concept 

originated from the differential arginine metabolism between macrophages from C57BL/6 

and Balb/c mice, an effect which was correlated with differences between Th1 and Th2 cell 

responses in the same strains. Mills and colleagues further proposed that the M1–M2 

dichotomy was an intrinsic property of macrophages associated with transitions from 

inflammation to healing that would occur in the absence of an adaptive immune response 

and arose early in evolution (144). A third set of nomenclature expanded the M1–M2 

definitions to account for different activation scenarios (M2a, M2b etc), balanced by the 

idea that activation exists on a spectrum and cannot easily be binned into defined groups 

(145-149). A fourth definition refers to macrophages grown in GM-CSF-1 as M1 and CSF-

1 as M2 (150). Notably, significant differences have been documented in the 

transcriptomes of macrophage populations primarily generated with the use of CSF-1 or 

GM-CSF, without and with exogenous perturbation (151) but no substantial evidence 

exists. Although the M1/M2 macrophage polarization concept was originally deduced from 

in vitro experiments and may reflect only a small part of the plasticity of macrophage 
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function in vivo, it is considered as a valid starting point to characterize the dynamics of 

macrophage function. 

 

1.6.2.1 Classically activated M1 macrophages  

Inflammatory monocytes (GR-1hi/MHCII low/CD11clow/CD11bhiC/CCR2hi/CX3CR1low) enter 

the site of infection and recognize PAMPs that triggers via Toll-Like-Receptors (TLR’s) 

and other PRR inflammatory signaling cascades. This leads to the priming of macrophages 

by IFN-γ via IFN-γ receptor (152, 153) controlled by transcription factors such as STAT1, 

STAT3, IRF3, IRF5 and IRF7 (154,155). If primed macrophages subsequently encounter 

an appropriate stimulus, such as bacterial LPS or other pro-inflammatory cytokines and 

chemokines (156) in the local micro-environment they get shaped to a classically activated 

(CAM) or M1 phenotype (Fig. 1-6). Upon acquiring the CAM (M1) phenotype, further pro-

inflammatory mediators such as IL-1 β, IL-6, TNF-α (157-159) and chemokines like IL-

8/CXCL8, IP-10/CXCL10, MIP-1 alpha/CCL3, MIP-1 beta/CCL4, and RANTES/CCL5 

(160) are released. This leads to increased recruitment of inflammatory leucocytes such as 

monocytes and neutrophils, which are known to exaggerate the inflammatory response. In 

addition, CAM (M1) generate increased levels of nitric oxide (NO) from L-arginine via 

inducible nitric oxide synthase (iNOS or NOS2) which causes DNA damage and is 

essential for the elimination of intracellular pathogens (161). Moreover, CAM (M1) have 

the ability to upregulate the expression of MHC class II and co-stimulatory molecules such 

as CD40, CD80 and CD86 which allows them to act as antigen presenting cells (APC) 

(162). These pro-inflammatory properties of CAM (M1) are important for host defense but 

when uncontrolled they cause significant host tissue damage by exaggerated leukocyte 

infiltration as well as by tissue flooding with inflammatory mediators, pro-apoptotic factors 

and matrix degrading proteases. In addition, CAM (M1) release proteolytic enzymes 

including MMP-1, -2, -7, -9, and -12, which degrade collagen, elastin, fibronectin, and 

other ECM components (163, 164). TNF-α also contributes to the pro-apoptotic activity of 

the CAM (M1) (165, 166) through Fas Ligand/TNFSF6 secretion (165).  

 

1.6.2.2  Alternatively activated M1 macrophage  

In vitro studies have demonstrated that T helper cell type 2 (TH2) derived cytokines such as 

IL4 or IL13 are the key triggers for macrophages to polarize to an alternatively activated 

macrophage (AAM) or M2 phenotype (Fig. 1-6).  This mechanism was found to be 

controlled by transcription factors like IRF4, STAT6 and PPAR-γ (167, 168). AAM are 

characterized by their high phagocyte activity and high expression of CD206 (mannose 
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receptor), FIZZ1 and Ym-1 (158). In contrast to CAM (M1), AAM (M2) secret various 

immune-modulatory cytokines and chemokines like IL10, TGF-β, and CCL17, CCL18, 

CCL22 and CCL24 (169-171). Further, AAM (M2) are known to be poor scavengers of 

reactive oxygen and nitrogen species. Instead they have been shown to express high levels 

of arginase-1 (172). Pro-angiogenic factors like vascular endothelial growth factor (VEGF) 

(173) and platelet-derived growth factor (PDGF) secreted by AAM (M2) has been shown to 

be involved in tissue remodelling (174,175). AAM (M2) are commonly found during 

parasitic infection, allergy and in repair phase after tissue damage (158).  

Well balanced M1 versus M2 macrophage polarization in vivo contribute to maintainance 

of host homeostasis as well as to achieving pathogen elimination and tissue recovery during 

disease. However, tissue specific mechanisms that regulate M1 and M2 phenotype in 

different organs in vivo are largely unknown.  

 
 
Figure 1-6 Macrophage activation phenotypes. Macrophages are activated either classically (M1 
phenotype) or alternatively (M2 phenotype). M2 polarized macrophages express high levels of CD206, CD71 
and TGF-βR while M1 express high levels of CD40, CD80, and CD86 on the cell surface. STAT1, 3 are 
highly activated in M1 phenotype and STAT6 in M2 phenotype. Interferon regulatory factors (IRF) 3, 5, 7 are 
active in M1phenotype while IRF4 in M2 phenotype. The cytokines and chemokines like TNF-α, IL-1β, IL-6, 
iNOS, CXCL10, CCL2 are in high levels in M1 phenotype and IL-10,IL-1ra, Ym-1, FIZZ-1, Arg-1, CX3CR1 
are highly expressed by M2 phenotype. 
 

1.6.3  Regulators of macrophage activation 

Macrophages can be activated to acquire either M1 or M2 phenotypes, based on micro- 

environmental signals. The M1 macrophages are highly pro-inflammatory and help in 

defending host against pathogens. In contrast, the M2 macrophage highly expresses growth 

factors (GF’s) and anti-inflammatory mediators that promote in tissue repair and 

remodeling after injury. An unbalanced M1 vs M2 polarization could impair host defense 

or lead to the significant host tissue damage (176-180). Therefore, a tight regulation of 

macrophage activation and deactivation is required. M1 polarized macrophages recognize 



15 
 

TLR ligands via extracellular leucine rich repeat (LRR) elements which by conformational 

change brings intracellular Toll and IL1 receptor (TIR) domains together. Thereafter, the 

MyD88 adaptor molecule is recruited to the TIR domain, which in turn recruits IL1 

receptor associated kinase (IRAK) 4 (181). IRAK4 causes phosphorylation of IRAK1, 

which then binds TNF receptor activated factor-6 (TRAF6). The IRAK1-TRAF6 complex 

then dissociates from MyD88 and activates TGFβ-activated kinase 1 (TAK1) and TAK1 

binding protein 2 (TAB2). This leads to the phosphorylation of the inhibitory κB (IKK) 

complex which in turn phosphorylates IκB, causing the release of NF-κB from inhibition 

and the activation of IFN regulatory factors (IRFs), especially IRF7 and IRF5. NF-κB then 

translocates to the nucleus and induces the transcription of pro-inflammatory cytokines, 

chemokines and co-stimulatory molecules. MyD88 independent TLR3 pathway recruits 

TIR-domain containing adaptor protein inducing IFNβ (TRIF) that induces the expression 

of the transcription factor IRF3, leading to the production of type I IFN. TLR4 signals via 

MyD88 or TRIF dependent routes, causing activation of the TRIF-related adaptor molecule 

(TRAM), which in turn leads to activation of IRF3 and NF-κB. These pathways integrate to 

generate massive pro-inflammatory waves. In contrast to M1 macrophages, M2 

macrophages have in-built negative feedback loops that terminate TLR signaling. For 

example, LPS stimulation of M2 macrophages has been reported to induce MyD88s, a 

splice variant of the MyD88 protein that lacks the domain necessary to interact with 

IRAK4, thus preventing TLR signaling (182). Similarly, IRAK-M is a TLR-inducible 

molecule that inhibits the dissociation of IRAK1-IRAK4 complexes from MyD88, thereby 

preventing further signaling (183). In addition to regulation of TLR signalling, 

macrophages express further inhibitory receptors that control their activation. Many of 

these inhibitory receptors are paired with structurally related receptors involved in 

activation, such as those belonging to the immunoglobulin domain superfamily and the C-

type lectin family (184).  Within the immunoglobulin superfamily, these include signal 

regulatory proteins (SIRP), triggering receptors expressed by myeloid cells (TREM) and 

the CD200 receptor (CD200R) family. TREM-1 is a potent amplifier of pro-inflammatory 

responses in monocytes, macrophages and some granulocytes (185), whereas TREM-2 has 

been shown to attenuate macrophage activation. In an in vivo study, TREM2 KO mice 

showed enhanced pro-inflammatory cytokine release in response to TLR stimulation (186). 

Recently, it has been shown that M2 macrophages produce soluble TREM2 (sTREM2) that 

supports macrophage pool preservation after inflammatory insults (187). 
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1.7  Pulmonary Macrophages in ALI/ARDS 

Resident lung macrophages are crucial for maintaining tissue homeostasis and are actively 

kept silent in steady state conditions (126, 188). Disruption of tissue homeostasis by 

infection or inflammation results in macrophages activation with phenotypic and functional 

modifications (189). Under these conditions resident pulmonary macrophages are critically 

involved in lung host defense as sentinels for pathogens and through initiation and control 

of innate and adaptive immune responses. To respond to threatening changes of their 

environment resident macrophages possess various PRRs such as TLRs, NLRs and retinoic 

acid inducible-I (RIG-I)-like receptors (190), as well as the scavenger receptors such as 

CD163, CD36, MARCO, mannose receptor (CD206) (191). In addition, macrophages 

express Fc and complement receptors that allow them to recognize and engulf opsonized 

foreign particles (190,191). At the site of infection/inflammation, macrophages are exposed 

to various inflammatory signals sensed by the above mentioned receptors which induce 

macrophage activation crucial for their host defense functions. During influenza virus 

infection, the main antiviral functions of resident alveolar macrophages are considered 

phagocytosis of viral particles and release of a plethora of inflammatory cytokines and 

chemokines to initiate and drive the immune response (192, 193). Resident alveolar 

macrophages (rAM) may either phagocytose collectin-opsonized viruses or virus-bearing 

apoptotic cells, thereby contributing to IV clearance even when they are not themselves 

infected (194, 195). Depletion of resident alveolar macrophages prior to infection resulted 

in higher viral load, increased mortality, and decreased type I IFN production (196). 

Cytokines released by activated rAM stimulate neighboring alveolar cells to produce 

chemokines which in turn mediate the recruitment of neutrophils, and later on, further 

MonPh populations as well as lymphocytes (197, 198).  
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Figure 1-7 Macrophage activation and polarization. Different extracellular signals are integrated to shape 
pulmonary macrophage phenotypes during lung inflammation. Growth factors such as GM-CSF, M-CSF, or 
type I interferons (IFN) drive differentiation and activation of macrophage progenitors or lineage precursors, 
Macrophages obtain signals from chemokines or cellular adhesion molecules upon transendo/epithelial 
recruitment to the alveoli. Macrophages receive signals from cytokines like GM-CSF and interferons integrate 
to drive towards M1 phenotype or IL-4, IL-13, IL-25, or IL-33 drive towards M2 phenotype. Pathogens, 
PAMPs, or DAMPs deliver signals via TLR, NLR, or other pattern recognition receptors. Cell–cell 
communications during phagocytosis of apoptotic neutrophils (PMN) or via CD200–CD200R interaction with 
AEC add on these signals and may support an anti-inflammatory macrophage phenotype. JAMs, junctional 
adhesion molecules; HSP, heat shock proteins; HMGB-1, high mobility group box-1; S. pn. Streptococcus 
pneumoniae; K. pn., Klebsiella pneumoniae; AEC, alveolar epithelial cells. Adapted from Herold et al 2011 
(24). 

As outlined above, resident alveolar macrophages form the first line of defense towards 

infectious challenge in the lung, but pathogen elimination and restoration of homeostasis 

following infection and tissue damage additionally requires the coordinated mobilization of 

two circulating MonPh subsets defined according to lineage marker (GR-1) and chemokine 

receptor expression, namely the GR-1low/CCR2low/CX3CR1hi and the GR-

1hi/CCR2hi/CX3CR1low peripheral blood monocytes (PB-Mo). GR-1low/CCR2low/CX3CR1hi 

PB-Mo patrols the resting vasculature, populate normal or inflammatory sites CX3CR1-

dependently and participate in resolution of inflammation and tissue repair (132, 199). GR-

1hi/CCR2hi/CX3CR1low PB-Mo are predominantly inflammatory and migrate to injured and 

infected sites. CCR2 and its major ligand, CCL2 (also known as MCP-1) are evidently 

important in both emigration of these cells from the bone marrow into the blood stream and 

their immigration into inflamed tissues. During immigration to the inflamed lung, and upon 

contact with the local inflammatory milieu GR-1low/CD11blow-

hi/CD11chi/MHCII low/SiglecFhi (ExMa) recruited from the circulating Ly6chi monocyte pool 

receive a variety of signals depending on the type of infection and on the state of tissue 

inflammation. It also has been shown that, the activated macrophages in response to injury 
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can undergo differentiation into two broad but distinct subsets of macrophages that are 

categorized as either classically activated (CAM or M1) and alternatively activated (AAM 

or M2) macrophages (Fig. 1-7). The emerging concept of macrophage plasticity is largely 

based on the effects of cytokines on monocytes observed in vitro. In such experiments, 

GM-CSF was found to induce an M1-like phenotype in macrophages, a process which was 

mediated by the transcription factor IRF-5, whereas M2 macrophages showed IRF-4 

activation (200). Recently, a critical role for type I IFN/IFNAR signalling in differentiation 

of PB-Mo towards defined lung macrophage phenotypes was demonstrated in an influenza 

pneumonia mouse model (201).  

As a key component of the inflammatory response that determines tissue destruction or 

recovery, increasing evidence suggests that macrophages do not remain committed to a 

single activation state. They may regress to a resting state and can subsequently be 

reactivated in a different direction, as recently demonstrated (202). Following phagocytosis 

of apoptotic cells, classically activated M1 macrophages may revert to an M2 activated 

state. These results suggest that macrophages are phenotypically polarized by the 

microenvironment to mount specific functional profiles (203), and this process depends on 

activation of distinct transcriptional programs. However, the heterogeneity of macrophages 

in the lung, their diverse role in lung inflammation and tissue remodeling, and the 

coordinated activation and programming by other inflammatory and parenchymal cells are 

not fully understood. In particular, the cell specific tasks of macrophage subsets and their 

progeny within the lung microenvironment during bacterial and viral infection are largely 

unknown. Therefore, a more precise knowledge of the molecular signals co-ordinating 

spatial and temporal macrophage differentiation and fine tuning of the functional response 

in infection that resolves the division of labor between the various macrophage subsets are 

needed to develop clinically useful intervention strategies. Analysis of the molecular basis 

of signal integration during macrophage polarization opens the perspective for 

interventional approaches to polarize/repolarize macrophage phenotypes for therapeutic 

purposes to target host defense, termination of inflammation and tissue repair in the time 

course of bacterial or viral infections. 
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2. Hypothesis and aims of the study 

As discussed in the previous sections, during inflammation such as influenza-induced lung 

injury the macrophage composition of the lung reflects a dynamic balance of recruited and 

tissue-resident macrophages. These macrophage populations with distinct ontogenetic 

histories are exposed to various regional signals in the inflamed lung tissue, but their 

distinct response and further functional programming remained unresolved. Therefore, the 

central goal of the current study was to develop a flow-cytometry based protocol to 

characterize macrophage activation profiles separately for resident and recruited lung 

macrophages during early and late phases of influenza virus pneumonia. Hypothesizing  

that macrophage phenotypes differ at early vs. late infection states, further goals were to 

characterize the gene expression profile/transcriptome of these different macrophage 

subtypes in detail and to further investigate their functional capacities in vivo by adoptive 

cell transfer experiments. Finally, this project aimed at identifying crucial effector 

molecules for distinct macrophage subtype functions defined by the outlined approach in 

the course of IAV induced lung injury.  

  
Figure 2-1 Composition of lung macrophages in homeostasis and during injury. In steady state, resident 
alveolar (rAM) and interstitial macrophages derived from precursors of fetal liver origin are a central part of 
the distal airway organotypic milieu.  During inflammation, exudate macrophages (ExMa) originating from 
bone marrow migrate via blood stream into the inflamed lung tissue. These, resident and recruited lung 
macrophages with different ontogenetic and migration histories are exposed to dynamically changing regional 
signals which impact on their functional profile.   
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3. Materials and Methods 

3.1. Materials 

3.1.1 Mice 

C57BL/6 wildtype (wt) mice, B6.SJL-Ptprca mice expressing the CD45.1 alloantigen 

(Ly5.1 PTP) on circulating leukocytes (with C57BL/6 genetic background) were purchased 

from Charles River Laboratories. CCR2-/- mice were generated as described previously 

and backcrossed to the C57BL/6 background (204). Mice were bred under specific 

pathogen-free conditions and were used between 8 and 12 weeks of age, unless specified 

otherwise. 

 

3.1.2 Influenza A virus (PR8) propagation 

Influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) was propagated on canine epithelial 

MDCK II cells. Cells were passaged in a T75-cell culture flask at a ratio of 1:3 a day prior 

to infection to achieve an 85-90% confluency of the cells at the time point of infection. 

Cells were washed with PBS and infected with a multiplicity of infection (MOI) of 0.001. 

The virus dilution was prepared in MDCK II infection media (MDCK medium as described 

above but supplemented with 0.2% BSA instead of FCS). Cells were inoculated with 5ml 

virus dilution for 1h at 37°C and 5% CO2, were then washed and further incubated with 

10ml infection medium. Cell culture supernatants containing virus particles released from 

the infected cells were harvested after 72hrs and centrifuged at 3000rpm at 4°C for 30min. 

Supernatants were stored as aliquots at -80°C. 

 

3.2 Reagents 

Table-1 Chemicals and consumables 

Chemical and consumables company 

Ampicillin Sigma-Aldrich, GER 

Atropin B.Braun, GER 

BSA (bovine serum albumin) Sigma-Aldrich, GER 

Cell culture flasks 75cm2 Greiner, GER 

Cell culture plates, single- and multi-well Greiner, GER 

Cell scaper, 28cm and 40cm handle Greiner, GER 
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Cell strainer filters 40, 70 and 100µm   BD Biosciences, USA 

Cell nylon filters 20µM Merck Millipore, GER 

Dispase Corning Life Sciences, USA 

Dispase II Böhringer, GER 

DNase Serva, GER 

DNase Serva, GER 

DMEM Gibco Carlsbad, USA 

dNTP's (desoxynucleoside triphosphate) Thermo Scientific, USA 

Dithiothreitol (DTT) Thermo Scientific, USA 

EDTA (Ethylenediaminetetraacetic acid) Roth, GER 

Ethanol  Sigma-Aldrich, GER 

FITC tagged albumin Sigma-Aldrich Chemie GmbH, GER 

GentleMACS C tubes Miltenyi Biotec, GER 

Haematoxylin, eosin Bayer AG,  GER 

MLV-RT Life Technologies, USA 

L-Glutamin [200mM] Gibco BRL, GER 

FCS (fetal calf serum) Life Technologies, USA  

HEPES Merck Millipore, GER 

Magnesium sulfate Sigma-Aldrich, GER 

PBS Life Technologies, USA 

PBS++ (containing MgCl) PAN-Biotech, GER 

Parafilm American National, USA 

Paraformaldehyde (PFA) Merck, GER 

Penicillin/Streptomycin [5000 U/ml] Gibco BRL, GER 

Polystyrene tubes, 15ml and 50ml  Greiner, GER 

Polystyrene round-bottom tubes 5ml BD Biosciences, USA 

Ketaminhydrochloride (Ketavet) Pharmaci & Upjohn, USA 

Paraformaldehyde (PFA) Merck, GER 

Methanol  Roth, GER 
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Sandoglobulin Novartis,  CH 

Saponine Merck Millipore, GER 

Annexin V binding buffer BD Pharmingen, GER 

7-AAD BioLegend, GER 

SYBR Green I Life Technologies, USA 

Reaction tubes 0.5ml and 1.5ml Eppendorf, GER 

Syringe 1ml, 10ml and 20ml  B.Braun, GER 

Transwell permeable supports Corning Life Sciences, USA 

Trypsin-EDTA Merck Millipore, GER 

Trypsin-TPCK Worthington Biochemical, USA 

RNase Serva, GER 

Trypsin-TPCK Worthington Biochemical, USA 

RNase Serva, GER 

DNase Serva, GER 

recombinant mouse Plet1 Cusad, GER 

RPMI Life Technologies Carlsbad, USA 

RNeasy Kit Qiagen, GER 

 

Table-2 Buffers and compositions 

 

Buffer/medium composition 

FACS PBS, 5% FBS, 1% EDTA 0.1% NaN3 sodium azide 

MACS PBS, 5% FBS, 1% EDTA 

Mu AEC medium DMEM, 10%FCS, 1% Penicillin/Streptomycin, 1% L- Glutamine, 2.5% HEPES 

Mu AM medium RPMI, 2%FCS, 1% Penicillin/Streptomycin, 1% L- Glutamine, 2.5% HEPES 

PBS-EDTA 2mM EDTA in PBS 
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Table-3 Antibodies   

The following anti-mouse mAbs were used in flow cytometry analysis. * Antibodies used 

in plet1 protein validation experiments (Table-3).  

Antibodies Dillution Company 

CD11c FITC 1:20 Miltenyi Biotec, GER 

Siglec-F PE 1:50 Miltenyi Biotec, GER 

CD45-APC-Cy7/FITC 1:100 BD Pharmingen,  GER 

CD45.1-FITC 1:100 BD Pharmingen, GER 

CD45.2-APC-Cy7 1:100 BioLegend, GER 

GR1-PE-Cy7 1:100 BioLegend, GER 

CD11c-FITC/ PE-Cy5.5 1:20 Biolegend, GER 

SiglecF-PE/Pacific blue 1:50 BD Pharmingen, GER 

CD11b-Pacific blue/ BV421 1:50 Biolegend, GER 

MHCII-FITC/ PE-CF594 1:100 BD Pharmingen, GER 

CD206-APC 1:20 Biolegend,  GER 

CD40-Pe-Cy5 1:50 Biolegend, GER 

CD326- APC-Cy7 1:100 BioLegend, GER  

CD31-FITC 1:50 BD Pharmingen, GER 

CD24-Pe-Cy7 1:50 BioLegend, GER 

CD49f-Pacific blue 1:50 BioLegend, GER 

annexin V-Alexa Fluor 647 1:20 Invitrogen,  GER 

anti-influenza NP-FITC 1:50 abcam, USA 

Ki67-PE 1:10 BD Pharmingen, GER 

*Plet1 20µg/ng R&D Systems, Inc., GER 

Active-caspase3 1:50 R&D Systems, Inc., GER 

ZO-1 / TJP1 1:200 Life technologies, GER 

APC Rat IgG2a,k Isotype 1:500 BioLegend, GER 

Pe-Cy5 Rat IgG2a,k Isotype 1:500 BioLegend, GER 

*Rat IgG1 Isotype Control 20µg R&D Systems, Inc., GER 
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PE Mouse IgG1,k Isotype control 1:500 BD Pharmingen, GER 

Alexa Fluor 488 goat anti-rabbit IgG 1:400 Invitrogen,  GER 

 

 

Table- 4 RT-PCR primers 

Genes Primers 

Forward (5′-3’) Reverse (5′-3’) 

β-Actin accctaaggccaaccgtga cagaggcatacagggacagca 

Mu FIZZ-1  tcctgccctgctgggatgac ggcagtggtccagtcaacga 

Mu IFN-γ gccacggcacagtcattgaaagc caccatccttttgccagttcctcca 

Mu IL1-β tacctgtggccttgggcctcaa gcttgggatccacactctccagct 

Mu IRF4 tgacgtttggcccacgaggc ggttcctgtcacctggcaaccatt 

Mu Mrc1 gggacgtttcggtggactgtgg ccgcctttcgtcctggcatgt 

 Mu Klf4 ctgcgaactcacacaggcgaga agcgggcgaatttccaccca 

Mu iNOS  ttggaggccttgtgtcagccct aaggcagcgggcacatgcaa 

Mu Arg1 accacagtctggcagttggaagc agagctggttgtcaggggagtgt 

Mu Ym-1 gcactgacaggctttgcggt aagcttccaacgccttcccg 

Mu IL-10 ggcagagaagcatggcccagaa aatcgatgacagcgcctcagcc 

Mu IL-1ra tgcctgatcactctggccatca tgtctccttctactgtacaccctgc 

Mu TNF cggtccccaaagggatgagaagt acgacgtgggctacaggctt 

Mu CD206 atggattgccctgaacagca tgtaccgcaccctccatcta 

Mu CD40 gtttaaagtcccggatg ga ctcaaggctatgctgtctgt 

Mu CD86 ttacggaagcacccacgatg ctccacggaaacagaatctga 

Mu CD80 tggcccgagtataagaaccg tatgtgccccggtctgaa 

Mu PPAR-G ttgctgtggggatgtctcac aacagcttctccttctcggc 

Mu Bax gctggacactggacttcctc gaggccttcccagccac 

Mu Bcl2  ctgagtacctgaaccggcat agttccacaaaggcatcccag 

Mu Trem2 cccgaggagtcatcgagtttc cacaggatgaaacctgcctgga 

Mu Cldn1 cgacattagtggccacagca tggccaaattcatacctggca 

ZO-1 gcttctcttgctggccctaa gggagcctgtagagcgtttt 
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Mu Ocln tctttccttaggcgacagcg agataagcgaacctgccgag 

Mu Cdh1 aacccaagcacgtatcaggg gagtgttgggggcatcatca 

Mu EpCam tgctccaaactggcgtctaa ttgttctggatcgccccttc 

Mu PDGF-a agaggtccaggtgaggttaga acctcacatctgtctcctcctc 

Mu PDGF-b  ctgctagcgtctggtca catcaaaggagcggatggag 

Mu PDGF-c aattgtgcctgttgtctcca tat gcaatcccttgactcca 

Mu EGF  tcgttgttagcaccatccctc ggcacaaccaggcaaaggat 

Mu FGF 7  catgcttccacctcgtctgt cagttcacactcgtagccgt 

Mu FGF 10  gctcccaggagaggacaaaaa catccaccaacagcgttttct 

Mu IGF 2  tcggtttgcatacccgcag gggatccccattggtacctgg 

Mu Vopp1  cttcggacggtcctcgc tcagtgcactccactagcag 

Mu Ccpg1  caattcaagaagcgcccagc tgaaaagacgggttctggct 

Mu VEGF-b  ccctggaagaacacagccaa agaggatcctggggctgtc 

Mu Notch1   caactgccagaaccttgtgc tggtactgcgtgttggtctg 

Mu Plet1  tcctcatcgtcgtcaatcgc tgaggctgagggttgtacttg 

Mu IRF7  accgtgtttacgaggaaccc gctgcgctcggtgagag 

Mu CcnD1  tcaagtgtgacccggactgc ccttggggtcgacgttctg 

 

 

3.3 Methods 

3.3.1 Influenza A virus titration  

To determine the amount of virus particles capable of multicycle replication (plaque 

forming units, pfu), MDCK II cells were seeded in 6-well plates one day prior to infection 

to achieve a confluency of 85-90% at the time point of infection. Cells were washed with 

PBS and infected with 333µl of subsequent 1:10 dilutions of the virus stock in 

PBS/0.2%BSA, covering a range of dilutions from 1:103 to 1:109. Virus dilutions were 

inoculated at 37°C 5% CO2 for 1h, cells were then washed and covered with 1.5ml Avicel 

medium (2xMEM, 1% Penicillin/Streptomycin, 0.1% NaHCO3, 0.2% BSA, 2µg/ml 

Trypsin-TPCK, 1.25% Avicel). Due to its high viscosity, Avicel prevents viral spread 

through the cell culture by diffusion of viral particles in the surrounding media and only 

allows virus spread from cell to cell. Cells were incubated for further 48h at 37°C 5% CO2 

to allow formation of plaques caused by local cell death of infected MDCK II cells. After 



26 
 

this incubation, cells were fixed with 4% PFA for 20min at 4°C followed by 

permeabilization by 0.3% Triton-X-100 for 15min at RT. Blocking of unspecific antigenic 

epitopes was performed using Normal Horse Serum (NHS) diluted 1:100 in PBS/ 0.2% 

BSA. Plaques were visualized by immunohistochemical staining with anti-Influenza NP 

antibody diluted 1:100 in PBS/10% NHS/0,05% Tween 80 for 1h at RT followed by a 

Horse raddish peroxidase (HRP)-marked secondary anti-mouse antibody diluted 1:200 for 

1h at RT. Addition of TrueBlue, an HRP-substrate yielding a blue colour after enzymatic 

progressing, allowed counting of plaques per well. 

The titer of the virus stock was calculated by: 

number of plaques per well*dilution-1*1ml/333µl = pfu/ml 

 

3.3.2  In vivo infection protocol 

Mice were pre-administred with Atropin (application 0.05mg/kg; diluted in 0.9% sterile 

NaCl to 0.05mg/ml and applied subcutaneously at 0.02ml per 20g body weight) and 

anesthesized with Xylazine hydrochloride (application 16mg/kg; diluted in 0.09% 

sterile NaCl to 3.33mg/ml) and Ketamine hydrochloride (application 100mg/kg; diluted 

in 0.09% sterile NaCl plus 3.33mg/ml Xylazine hydrochloride to a concentration of 

25mg/ml) applied intraperitoneally at 0.2ml per 20g body weight. Mice were kept on a 

heating pad to minimize loss of body temperature. Achieved anesthesia was verified by 

pinching of the tip of the tail. Mice were then fixed at the upper teeth and hindlegs in 

supine position on an intubation stand, and an endotracheal tube was inserted orally, 

passing the vocal chords into the trachea. Using a Hamilton syringe, mice were 

inoculated with 250pfu (plaque forming units) of PR8 or diluted in 70µl sterile PBS-/-. 

Control groups were inoculated with 70µl of sterile PBS without additives. Infected 

mice were monitored 1-3 times per day. 

 

3.3.3 Isolation of alveolar macrophages by magnetic assisted cell sorting (MACS) 

Mice were sacrificed by cervical dislocation and the trachea was exposed to insert a 21-

gauge cannula via a small incision. Mice were then lavaged with 10x 500µl PBS/ 2mM 

EDTA. Bronchoalveolar lavage fluid (BALF) was stored on ice until further processing. 

Cells in BALF were pelleted by centrifugation at 1400rpm for 10min at 4°C and 

resuspended in MACS buffer (Phosphate-buffered saline (PBS), 2% calf serum, 1 mM 

EDTA). These cells were pelleted and incubated with mouse Fc-blocking reagent for 

10mins at 4°C. Then the cells were stained with fluorescein isothiocyanate (FITC)-
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conjugated anti-CD11c antibody followed by magnetic labelling with Anti-FITC MultiSort 

MicroBeads. Following positive selection, the magnetic particles are removed from the 

cells by using the MultiSort Release reagent according to the manufacturer instructions. 

The CD11c positive cell populations were then stained with phycoerythrin (PE) conjugated 

anti-SiglecF antibody followed by magnetic labelling with anti-PE MultiSort MicroBeads. 

Finally the double positive (CD11c and SiglecF) cells were magnetically isolated to obtain 

the total alveolar macrophage population. 

 

3.3.4 Preparation of BALF  and  lung homogenates for flow cytometry 

Mice were sacrificed by exsanguination. BALF were collected and cells were pelleted as 

described above in section 3.2.3, then resuspended in FACS buffer (PBS, 5-10% FBS, 

0.1% NaN3 sodium azide) and stored on ice for flow cytometry analysis. Lavaged lungs 

were perfused with sterile PBS via right heart ventricle puncture. The lungs are filled 

slowly with 800-1500µL of dispase using a 21-gauge cannula via a small incision into 

trachea and tied with a suture thread to avoid the leakage of dispase. The lungs were then 

removed, after carefully dissecting out the heart and incubated for 40 min at room 

temperature in dispase. The lungs are then subjected to a MACS tissue dissociator and 

filtered using 100µm and then 40µm filters. Obtained cells were pelleted by centrifugation 

at 800rpm for 8min at 4°C, re-suspended in 1ml PBS, counted and adjusted to 107cells/ml 

and stored on ice for flow cytometry analysis. 

 

3.3.5 Flow cytometry analysis of alveolar and interstitial macrophages 

1–5×105 cells were resuspended in FACS buffer and stained directly after isolation from 

BAL or preparation of single cell suspensions from lung tissue in 96-well plates and 

incubated with 10µl Sandoglobulin® to block Fc-receptors. Cells were then incubated with 

the respective antibodies for 20min at 4°C or resuspended in annexin V staining buffer (10 

mM HEPES, 140 mM NaCl and 2.5 mM CaCl2) to analyse apoptosis. The rest of the cells 

were fixed in 1%PFA/PBS for later analysis. Flow cytometric analysis was performed 

using a BD LSRFortesa flow cytometer (BD Biosciences, Heidelberg, Germany) and FACS 

Diva Software. 
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3.3.6 Purification of M1 and M2ExMa by fluorescence activated cell sorting (FACS) 

Wild type mice were infected with 250pfu of PR8 and lavaged to obtain BALF (as 

described in 3.2.3) on D7, D10, D14 and D21pi. The BALF was then centrifuged at 

1400rpm for 10min at 4°C and the pelleted cells were blocked with 10µl Sandoglobulin® 

and incubated with a mixture of antibodies (CD45, Gr-1, CD11b, SiglecF, CD11c, CD206 

and CD40) in 250µl MACS-buffer (PBS, 7.4% EDTA, 0.5% FCS pH 7,2) for 20min at 

4°C. The cells were washed to remove unbound antibodies and resuspended in 3ml of 

MACS-buffer.  7-AAD (1:10) was added to each sample, 10min before sorting. M1 

ExMa’s (CD40hi CD206low CD11b+ CD11c+ SiglecFlow) from D7, D10, D14pi and M2 

ExMa’s (CD206hi CD40lowCD11b+ CD11c+ SiglecFlow) from D21, D10, D14pi were then 

flow sorted into alveolar macrophage medium using a BD FACSAria™ III Cell Sorter. The 

purities of sorted M1 and M2ExMa were assessed by flow cytometry analysis which 

showed a purity ≥ 90% in all samples. Sorted M1 and M2ExMa were centrifuged at 

1400rpm for 10min at 4°C and pellets were resuspended in 350µL of RLT buffer and stored 

at -80°C for RNA isolation. 

 

3.3.7 Adoptive transfer  

For adoptive transfer of M1 and M2ExMa, the cells were sorted from D7pi or D21pi as 

described in 3.2.6. 50.000 sorted cells of M1 and M2ExMa were resuspended in 60µl 

sterile PBS-/- only or together with anti-Plet1 antibody or IgG isotype and transferred 

orotracheally to PR8-infected CCR2-deficient mice on D3pi. Thereafter the effects of the 

adoptive cells transfers with respect to inflammation and alveolar barrier protection were 

analyzed at D7pi. 

 

3.3.8 Generation of bone marrow chimeric mice 

Bone marrow (BM) cells were isolated under sterile conditions from the tibias and femurs 

of wt C57BL/6  donor mice (expressing the CD45.2 alloantigen) as previously described 

and transferred to CD45.1 alloantigen-expressing recipient mice which had received  total 

body irradiation (6 Gy) [76]. To assess BM engraftment the proportion of donor CD45.2-

expressing leukocytes in blood, BALF and lung homogenate was analyzed by flow 

cytometry. Two weeks after transplantation, regularly >90% of circulating leukocytes were 

of donor type (CD45.2) whereas >90% lung-resident myeloid cells were of recipient type 

(CD45.1) determined by FACS analyses of the proportions of CD45.1 vs. CD45.2 cells. 
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Chimeric mice were housed under specific pathogen free conditions for 14 days before 

PR/8 infection. 

 

3.3.9  Administration of recombinant Plet1 in vivo 

Mice were prepared as described in 3.2.2. Using a Hamilton syringe, recombinant 

murine plet1 (R&D Systems, 5µg in 50 µl PBS) was orotracheally delivered to infected 

mice on D3pi. Control groups were inoculated with 50µl of sterile PBS. Treated mice 

were monitored 1-3 times per day. 

 

3.3.10 FITC albumin alveolar leakage 

Alveolar leakage was analyzed by the lung permeability assay with  i.v. injection of FITC-

labeled albumin (Sigma-Aldrich, Taufkirchen, GER) and detection of FITC-fluorescence in 

serum and BALF, as previously described (64) or by determination  of total protein 

concentrations in BALF by a commercially available spectrophotometric assay (BCA 

assay, Biorad, München, Germany).  

 

3.3.11 Isolation of primary murine alveolar epithelial cells 

Murine alveolar epithelial cells (AEC) were isolated based on the protocol developed by 

Corti et al (205). Mice were sacrificed by cervical dislocation. The chest cavity was opened 

and lungs were perfused with sterile HBSS via the right ventricle. To insert dispase into the 

lung, a small incision was made into the trachea to insert a shortened 21-gauge cannula. 

This cannula was fixed and 1.5ml of sterile dispase was administered into the lungs to 

allow enzymatic separation of distal epithelial cells. The lungs and trachea were dissected 

out, washed in PBS and placed in dispase for 40min at room temperature (RT). The heart, 

trachea and large airways were removed and the remaining lung tissue was dissected in 

DMEM/ 2.5% HEPES plus 0.01% DNase in C tubes using the gentle MACS dissociator. 

(Milteny Biotec). Cells were filtered through 100, 40 and 20µm cell filters, washed, 

resuspended in DMEM/ 2.5% HEPES and counted. Then cells were incubated with 

biotinylated anti-mouse CD31, CD16/32 and CD45 antibodies for 30 min at 37°C to 

remove remaining endothelial and lymphoid cells. Antibody amounts were calculated by 

following equations: 

number cells/1,000,000 *0,9 = µl of CD45 antibody 
number cells/1,000,000 *0,675= µl of CD16/32 antibody 
number cells/1,000,000 *0,4 = µl of CD31 antibody 
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After incubation, cells were washed and streptavidin-linked magnetic beads (washed thrice 

with 1ml PBS) were added for 30 min at room temperature with gentle rocking. Amounts 

of magnetic beads were calculated by following equation: 

number cells/1,000,000 /3*50µl = µl of magnetic beads 

After incubation, magnetic separation was performed for 15 min and remaining cells were 

washed and resuspended in mAEC medium. The purity of freshly isolated mAEC was 

assessed by flow cytometry for murine EpCAM (staining epithelial cells) and pro-

surfactant protein C (staining type II AEC). Cell suspensions with a purity ≥ 90% were 

used for further experiments. Cell viability was examined by trypan blue staining and was 

≥95%. Murine AEC were seeded at a density of 120-150,000 cells/cm2 and grown for 3 

days to confluency prior to use. For analysis of AEC apoptosis, lungs were digested by 

intratracheal application of Dispase and processed as outlined previously (64). 

 

3.3.12  Influenza A infection of cultured cells 

To infect murine alveolar epithelial cells (mAEC) with PR8, the virus stock was diluted in 

PBS++, 0.2% BSA to the indicated multiplicity of infection (MOI). The final concentration 

of the inoculum was calculated as follows: 

Number of cells/well*MOI*1ml/inoculation volume µl = pfu/ml 

The cells were washed with PBS and inoculated with the final virus dilution for 1h at 37°C/ 

5% CO2. Thereafter the virus dilution was removed and replaced by infection medium 

containing 0.2% BSA instead of FCS. Chemicals were added together with the infection 

medium at the indicated concentrations. Infected cells were kept at 37°C/ 5%CO2 

throughout the course of infection. 

 

3.3.13 Trans-epithelial resistance  

Trans-epithelial resistant (TER) on cell layers of mAEC was determined by changes of the 

flow of ions across the cell layer in apical and basal cell culture media. mAEC were seeded 

as described in 3.2.12 in 0,4µm pore size transwell cell culture dishes and cultured until 

achieving electrochemical resistances of ≥600Ω /cm2 as measured by Millicell-ERS2 

device. Cells were infected with PR8 at MOI 0.5 or mock infected for 1h at 37°C and then 

supplied with 20ng/ml recombinant (r) murine  Plet1 (Cusad, GER) or mock treated. The 

TER was recorded by Millicell-ERS2 device at 4, 6, 8, 12, 16, 24 and 30hrs of post 

infection. The recorded values are multiplied with the area of the transwell to obtain the 

TER value. 
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3.3.14 RNA isolation 

For RNA isolation, cells were washed with PBS and then incubated in 350µl RLT buffer 

provided by the RNeasy Kit (Qiagen), leading to cell lysis, protein denaturation and thus 

RNase deactivation. Samples were processed according to the manufacturer’s instructions. 

By adding 350µl of 70% ethanol, RNA was precipitated and then bound to a silica 

membrane, washed and finally eluted in small volumes. RNA amounts were measured 

using the spectrophotometer Nanovue Plus (GE Healthcare). 

 

3.3.15 cDNA synthesis 

For cDNA synthesis 150- 250ng of isolated RNA plus dH2O in a total volume of 13.5µl 

were heated up to 70°C for 5min to break up secondary RNA structures and linearize the 

RNA. Samples were then put on ice for 3-5min. Then 11.5µl of PCR Master Mix were 

added including a reverse transcriptase needed for transcription of RNA into cDNA 

according to the manufacturer’s instructions. Samples were kept at 37°C for 1h and then 

heated up to 95°C for 5min to inactivate the reverse transcriptase. All incubation steps 

were performed in a PeqSTAR thermocycler (Peqlab, Erlangern, GER).  

 

3.3.16 Quantitative real-time polymerase chain reaction (RT-PCR) 

RT-PCR was performed with SYBR green in the AB Step one plus Detection System 

(Applied Bioscience) using the reaction setup provided by the manufacturer’s instructions. 

β-actin expression served as normalization control. Data are presented as ∆Ct or fold 

change (2∆∆Ct) as described (206). The primers used were listed in the table- 4. 

 

3.3.17 Transcriptome analysis by genome array 

For genome array of M1 and M2 ExMa, the cells were sorted as described in 3.2.6. The 

sorted M1 ExMa from D7pi and the M2 ExMa from D7pi and D21pi were re-suspended in 

RLT buffer and stored at -80°C until RNA isolation and further processing for 

transcriptome analysis. The isolated RNA was amplified by Ribo-SPIA technology using 

the Ovation PicoSL WTA v2 kit (NuGen). The amplified cDNA was Cy3-labelled using 

the Genomic DNA Enzymatic Labeling kit (Agilent). 2µg labelled cDNA was hybridized 

on SurePrint G3 Mouse GE 8x60K Microarrays (Agilent, Design ID 028005) following the 

Agilent protocol. Washed slides were dried with acetonitrile and treatment with Agilent 

dye-stabilization solution. Slides were scanned at a resolution of 2 µm/pixel with an 

InnoScan 900 instrument. Image analysis was done with Mapix 6.5.0. Further data analysis 
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was done using R 3.1.0 (207) and the limma package (208) from BioCondurctor. Mean spot 

signals were quantile-normalized. Log-signals of replicate spots were averaged. Gene set 

tests were based on rank-sum statistics of the moderated t-values. Pathway definitions were 

taken from the KEGG database (http://www.kegg.jp) (209, 210). 

 

3.3.18 Cytospin staining 

Aliquots of FACS-purified cells (0.5-1x105 cells) were spun onto Polysine TM glass 

microscope slides (VWR International) at 300 RPM for 6 minutes using a cyto-centrifuge 

(Shandon, Runcorn, UK). Cells were then allowed to air dry for 10 minutes and then 

stained using May Gruenwald and Giemsa stain for 5min and 10min, respectively with a 

thorough distilled water wash at the end of each staining step.  Then, slides were allowed to 

air dry and mounted in DPX mountant (BDH, UK) under glass. Stained cells were assessed 

for morphology using an Olympus BX41 microscope. 

 

3.3.19 Fixation and preparation of lung tissue for histology 

For histological staining of mouse lung tissue, lungs were clipped at the trachea before 

opening of the chest cavity, then perfused, removed and fixed for 24h in 4% PFA. 

Lungs were embedded in Parrafin (Leica ASP200S), cut into 3-5µm thick sections and 

stained with hematoxylin and eosin in the following procedure: 

Xylene 5min (twice), 100% ethanol 30sec (twice), 96% ethanol 30sec, 96% ethanol 

30sec, 70% ethanol 30sec, 70% ethanol 30sec, hematoxylin 3min, 0.1% HCl 2sec, H2O 

5min, Eosin G solution 3min, H2O 30sec, 70% ethanol 30sec, 90% ethanol 30sec, 100% 

ethanol 30sec (twice), xylene 5min (twice). Analysis was performed with a Leica DM 

200 microscope. 

 

3.3.20 Fixation of cell cultures for immunofluorescence microscopy 

For immunofluorescence microscopy, cells were washed with PBS and then air-dried 

for 1min at RT. Cells were fixed and permeabilized by a pre-cooled (-20°C) 1:1 

acetone/methanol suspension that was left on the cells for 3min at RT. Cells were then 

washed thrice with PBS/0.3% BSA and blocked with 3% BSA in PBS over night at 

4°C. 
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3.3.21 Statistical analysis 

All data are given as mean ± standard deviation. Statistical significance between two 

groups was estimated using the two-tailed paired or the unpaired student's t-test for paired 

or unpaired samples, respectively. For comparison of > two groups with each other one-

way ANOVA was applied. Significances were calculated with the prism or with MS-xl for 

windows software program. A value of p<0.05 was considered as significant. 
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4.  Results 

4.1 Polarization profile of total alveolar macrophages in IAV induced ALI 

To evaluate the dynamics of  alveolar macrophage polarization during IAV induced ALI,   

alveolar macrophages were isolated from bronchoalveolar lavages (BAL) obtained from  

PR8 (250pfu) infected mice at different time points post infection (pi) (D0, D2, D7, D14, 

D21) by magnetic assisted cell sorting (MACS). The purity of the isolated macrophage 

population was evaluated by flow cytometric immuno-phenotyping using CD11c and 

SiglecF as macrophage markers and by morphology in Pappenheim stained cytospins. Both 

evaluations showed enrichment of the macrophage proportion to > 90 % (Fig. 4-1 A, B). 

A.                

 
B. 

 

Figure 4-1 Isolation of alveolar macrophages by immuno-magnetic cell sorting from BAL in IAV 
induced ALI.  Bronchoalveolar lavage (BAL) were collected from  mice infected with PR8 (250pfu) at D0, 
D2, D7, D14 and D21 post infection (pi) and  alveolar macrophages were enriched using CD11c and SiglecF 
antibodies tagged magnetic beads by magnetic assisted cell sorting (MACS). A. Flow cytometry dot plots 
show the proportion of  alveolar macrophages (CD11c+, SiglecF+) before and after MACS enrichment B. 
Papenheim staining of cytospins  before and after MACS enrichment. Representative experiments for D0, D2, 
D7, D14 and D21 post infection (pi) days with 4n/each pi time point. 
 

The mRNA expression of prototypic markers for M1 and M2 macrophage polarization in 

MACS enriched total alveolar macrophages was analyzed by RT-PCR at different time 

points pi. The gene expression of both M1 and M2 polarization markers was found to be 
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slightly increased in the early phase of infection and returned to the baseline at later stages 

of pi (Fig. 4-2) suggested the presence of both M1 and M2 phenotypes during the course of 

infection.  

 
 
Figure 4-2 mRNA expression levels of prototypic M1 and M2 markers in MACS enriched alveolar 
macrophages from BAL during IAV induced ALI. MACS enriched alveolar macrophages from 
bronchoalveolar lavages (BAL) of PR8 infected (250pfu) mice at D0, D2, D7, D14 and D21 post infection 
(pi)  were analyzed for the expression of the prototypic M1 (TNF-α, IL-1β, iNOS) and the M2 markers (IL10, 
IL-1ra, Arg-1 Ym-1, TGF-β and FIZZ-1) by RT-PCR. The graphs are represented with ∆CT relative 
expression normalized to β-actin with means ± SD of 3 independent experiments.  
 
 
4.2 Polarization profile of FACS separated alveolar macrophage subsets in IAV 

induced ALI  

During inflammation such as influenza induced lung injury the macrophage composition of 

the lung reflects a dynamic balance of recruited and tissue-resident macrophages both 

exposed to various regional signals in the inflamed lung tissue. To dissect the functional 

programming of these macrophage populations with distinct ontogenetic histories with 

respect to M1 vs. M2 profiles, we developed a flow cytometry based protocol to 

characterize macrophage activation profiles separately for resident and recruited lung 

macrophages during early and late phases of influenza virus pneumonia.  To discriminate 

rAM and ExMa subsets, a previously established gating strategy was used (Fig. 4-3 A).  To 

screen for phenotypic plasticity of the different macrophage subsets during infection, the 

expression of prototypic surface markers related to M1 vs. M2 polarization was evaluated 

on alveolar macrophages isolated from the BAL of PR8 infected mice on D7pi and D21pi 

by flow cytometry. The prototypic markers CD40 for M1 and CD206 for M2 polarization 
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were found to be differentially expressed at distinct time points during IAV induced ALI. 

Additionally, RT-PCR analysis of alveolar macrophages from BAL of PR8 infected mice at 

D0, D2, D7, D14 and D21 pi days showed increased mRNA expression of CD206 in the 

early and late phase of infection, whereas CD40 was strongly upregulated during the acute 

phase of infection (Fig. 4-3 B, C).  Therefore, CD206 and CD40 were selected as surrogate 

markers for potential M1 vs. M2 polarization, respectively and employed to investigate the 

dynamics of macrophage plasticity separately in rAM and ExMa during IAV induced ALI 

(Fig. 4-4). 

A.  

 
B.                                                                      C.     

 
 
Figure 4-3 Gating strategy to discriminate rAM vs. ExMa and expression of prototypic M1 and M2   
markers in alveolar macrophages during IAV induced ALI. A. Representative dot plots of multicolour 
stained BAL cells obtained on D7pi. The gating strategy was used to differentiate rAM and ExMa. CD45+ 
live cells (7-AAD-) were differentiated according to CD11c and Gr-1 expression, whereby CD11c+Gr-1low 
cells represent the mononuclear phagocyte (MonPh) pool. Differentiation of resident alveolar macrophages 
(rAM) and exudate macrophages (ExMa) was achieved by gating for SiglecF and either CD11c or CD11b. 
rAM were identified as SiglecFhiCD11chiCD11blow and ExMa as SiglecF-CD11clowCD11bhi. B. Flow 
cytometric analysis showing the surface expression of M2 (CD71, CD206) and M1 markers (CD40, CD86) 
on alveolar macrophages at D7pi and D21pi respectively from PR8 infected (250pfu) mice.  C.  The bar 
graphs represent the mRNA expression of M2 markers (CD71, CD206) and M1 markers (CD40, CD86) in 
alveolar macrophages from bronchoalveolar lavage (BAL) of PR8 infected (250pfu) mice at D0, D2, D7, D14 
and D21 post infection (pi) days. The bar graphs are presented as ∆CT relative expression normalized to β-
actin with means ± SD of 3 independent experiments. *p˂0.05; **p˂0.01; ***p˂0.001.  
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Figure 4-4 Phenotype of alveolar macrophage subsets in IAV induced ALI.  Alveolar macrophages from 
bronchoalveolar lavage (BAL) of PR8 (250pfu) infected mice were analyzed for surface expression of CD40 
and CD206 on resident alveolar macrophages (rAM) and exudate macrophages (ExMa). The rAM and ExMa 
subsets were discriminated by the gating strategy shown in Fig 4-3 A. Surface expression of CD206 and 
CD40 on both rAM and ExMa were compared to isotype controls at different time points post infection (pi) 
and shown in representative dot plots.  Flow cytometry plots represent the gatings of M1 and M2 phenotype 
based on CD40 and CD206 expression.  
 

Quantification of CD40 and CD206 expression cells within the rAM and ExMa 

populations, respectively were analyzed at different time points post PR8 infection and 

revealed that, ExMa displayed a M1 polarized (CD40hi) phenotype in the acute phase of 

infection at D2 and D7. In the early repair phase (D14pi), both M1 and M2 polarized cells 

were observed in the ExMa population which completely shifted to a M2 (CD206hi) 

phenotype during the late repair phase (D21pi) of infection. In contrast to this plasticity 

with respect to CD40 and CD206 expression observed in the ExMa subset, rAM showed 

constant CD206 expression and lack of CD40 in all phases of IAV infection.  
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A.                                                              B.  
  

 

C.                                                                   D.  

 
Figure 4-5 Depletion of resident macrophages and plasticity of exudate macrophages during the time 
course of IAV induced ALI. The total number of A. resident alveolar macrophages (rAM) in 
bronchoalveolar lavage (BAL) and  B. resident interstitial macrophages (rIM) in lavaged lung homogenates 
were quantified at D0, D2, D7, D14 and D21 post PR8 infection (250pfu). The percentage of C. alveolar 
exudate macrophages (ExMa- alveolar) from BAL and D.  lavaged lung homogenates (ExMa- interstitial) was 
analyzed at D0, D2, D7, D14 and D21 post PR8 infection. The red bars represent the percentage of CD40hi 
ExMa while the green bars represent the percentage of CD206hi ExMa. Bar graphs show means ± SD of 4n / 
each time points. 
 
 

4.3 Gene expression of further prototype markers for M1 and M2 polarization in 

sorted CD40hi  and CD206hi  exudate macrophages  in IAV induced ALI 

To verify the plasticity of ExMa, M1 and M2ExMa from D10pi were flow sorted using the 

established gating strategy (Fig.4-3 A and 4-4).  The mRNA levels of prototypic genes for 

M1 and M2 polarization were analyzed. RT-PCR quantification revealed a significant 

increase of IL-1β, iNOS, CD40 in CD40hi ExMa and of Arg-1, FIZZ-1, TGF-β and CD206 

in CD206hi ExMa confirming the respective M1 and M2 polarization of CD40hi and 

CD206hi ExMa.   



39 
 

 
Figure 4-6 Gene expression of prototypic M1 and M2 markers in flow sorted CD40hi and CD206hi 
ExMa during IAV induced ALI. mRNA levels of prototypic  markers for M1 vs. M2 polarization were 
quantified by RT-PCR in flow sorted CD40hi and CD206hi, exudate macrophages (ExMa) derived from 
bronchoalveolar lavage (BAL) of PR8 infected (250pfu) mice at D10pi. The green bar represents the CD206hi 
ExMa and the red bars show the CD40hi ExMa subset. The graphs are presented as ∆CT relative expression to 
normalized β-actin and represent means ± SD of 3 independent experiments. *p˂0.05; **p˂0.01; ***p˂0.001.  
 

4.4 Relationship between bone marrow derived  ExMa and rAM in IAV induced ALI 

addressed in a chimeric mouse  (CD45.1/CD45.2) model 

To further investigate the relationship between recruited and resident macrophage 

populations and particularly the contribution of ExMa in replenishing the depleted rAM 

pool after IAV infection, bone marrow chimeras of CD45.2 donor mice and irradiated 

CD45.1 recipient mice were generated.  In chimeric animals  >90% of circulating blood 

cells displayed the CD45.2 donor phenotype  whereas the rAM population was of recipient 

(CD45.1) phenotype at 2 week (w) post bone marrow transplantation (BMT). Chimeric 

mice  were infected with PR8 (250pfu) and the proportions of CD45.2 donor vs. CD45.1 

recipient cells were flow cytometrically quantified separately in the  rAM and in the ExMa 

fraction at different time points pi (Fig 4-7). Recipient CD45.1 AM were found to be 

completely replaced by donor type cells starting at D10pi. As expected, bone marrow 

derived ExMa were found to be of CD45.2 donor type and displayed a CD40hi M1 

phenotype in the early phase of infection until D10pi and increasingly a CD206hi M2 

phenotype in the late phase of infection. Although a direct transition of donor ExMa into 

the rAM pool was not formally demonstrated, the increasing emergence of donor type cells 

in the rAM fraction at late time points and the donor type ExMa present in the alveolar 

space express a CD206hi M2 phenotype, suggests that CD206hi ExMa might contribute to 

replace the depleted rAM pool after IAV infection.  
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A.  

 
B.  

 

  
Figure 4-7 M2ExMa replenishes the rAM after IAV infection in vivo. Wildtype (wt) donor (CD45.2) bone 
marrow was transplanted into recipient (CD45.1) mice and infected (*) with PR8 (250pfu). The 
bronchoalveolar lavage (BAL) was collected from the infected recipient mice at different post infection (pi) 
time points (D0, D4, D7, D10, D14 and D21) and analyzed for resident alveolar macrophage (rAM) pool and 
exudate macrophages (ExMa) phenotypes. A. Represents the percentage of rAM, the black bar represents 
recipient (CD45.1) and blue bar represents the donor (CD45.2) rAM. B. Represents the phenotype of ExMa, 
the green bar represents M2 and red bar represents M1 phenotype of donor (CD45.2) ExMa, the grey bar 
represents the M1 and black bar represents M2 phenotype of recipient (CD45.1) ExMa . Irradiated but 
uninfected mice were used as controls in all the above mentioned time points in parallel. Bar graphs show 
means ± SD of 5n/group in all the mentioned time points pi.  
 

4.5 Effect of M1 vs. M2ExMa adoptive transfer on IAV induced ALI in CCR2-/- mice   

To investigate the functional capacity of M1 vs. M2ExMa in IAV induced ALI, wt mice 

with CD45.1 phenotype were infected with PR8 and M1 and M2ExMa were flow sorted 

from infected animals at D7pi and D21pi, respectively.  Flow sorted M1 and M2ExMa 

(50,000 cells) were transferred orotracheally to IAV infected CCR2-/- mice (defective in 

CCR2/CCL2 dependent exudate macrophage recruitment) on D3pi.   Alveolar macrophage 

quantification in adoptively transferred (CCR2-/-) mice at D7pi revealed significantly 

higher rAM numbers in M2ExMa transferred (M2T) mice when compared to the un-

transferred (UT) or M1ExMa transferred (M1T) animals. To evaluate whether the increased 
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rAM numbers in the M2T group was due to increased rAM proliferation the rAM 

proliferation rate at D7pi was measured after Ki67 staining by flow cytometry. M2T 

transferred mice showed no significant increase of rAM proliferation compared to UT or 

M1T animals, indicating that, the increased rAM numbers in M2T animals were not due to 

increased local rAM proliferation at the analyzed time point but may rather reflect reduced 

rAM loss in M2T animals.   

A.                                                                      B.            

 

 C. 

 
Figure 4-8 Preservation of rAM by adoptively transferred M2ExMa in IAV infected CCR2-/- mice.  
Flow sorted M1 (obtained at D7pi) and M2 exudate macrophages (ExMa) (obtained at D21pi) from the 
bronchoalveolar lavage (BAL) of IAV infected wt mice were transferred into IAV infected CCR2-/- mice at 
D3pi and at D7pi. The resident alveolar macrophages (rAM) population of un-transferred (UT), M1ExMa 
transferred (M1T) and M2ExMa transferred (M2T) groups was analyzed. A. The bar graph represents the 
absolute numbers of flow cytometrically identified rAM in BAL of M1T, M2T and UT groups. B. Represents 
dot plot of mononuclear phagocytes (MonPh- CD45+, CD11chi, GR-1low) gated for rAM (SiglecFhi and 
CD11blow) from M1T and M2T animals showing the preservation of the rAM pool in M2T group. C. The bar 
graph represents the percentage of Ki67 positive rAM in UT, M1T and M2T mice analyzed by flow 
cytometry. Bar graphs show means ± SD of (A) 10n; (C) 3n in M1T and M2T groups, 4n in all UT groups. 
*p˂0.05; **p˂0.01; ***p˂0.001.  
 

In addition to the increased rAM numbers, M2T animals showed significantly less barrier 

FITC-albumin leakage when compared to M1T mice (Fig. 4-9 A). Alveolar leakage in UT 

CCR2-/- is known to be low due to lack of exudate macrophage recruitment. Moreover, in 

M2T animals the AEC proliferation rate determined by Ki67 staining was significantly 

increased when compared to UT or M1T mice (Fig. 4-9 B). These data demonstrate  that 

M2ExMa transfer to CCR2-/- mice attenuates  IAV induced ALI compared to M1ExMa 
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transfer, suggesting a differential functional repertoire of  M2ExMa vs. M1ExMa in IAV 

induced ALI.  

A.                                                                   B. 

 

 
Figure 4-9 Adoptively transferred M2ExMa attenuate alveolar albumin leakage compared to 
transferred M1ExMa and increased AEC proliferation in IAV infected CCR2-/- mice.  Flow sorted M1 
(D7pi) and M2 exudate macrophages (ExMa)  (obtained from D21pi) from the bronchoalveolar lavage (BAL) 
of IAV infected wt mice were transferred to IAV infected CCR2-/- mice at D3pi and albumin leakage as well 
as AEC proliferation  were analyzed at D7pi in  un-transferred (UT), M1ExMa transferred (M1T) and 
M2ExMa transferred (M2T) animals. A. Alveolar albumin leakage analyzed in UT, M1T and M2T groups at 
D7pi after intravenous injection of FITC-labeled albumin and depicted as ratio of serum and BALF FITC- 
fluorescence in arbitrary units (AU). B. In lung homogenates of UT, M1T and M2T groups, AEC (EpCam+) 
proliferation was analyzed by flow cytometry based on the Ki67 expression. Bar graphs show means ± SD of 
(A) 6n; (B) 10n in M1T and M2T group, 4n in all UT groups. *p˂ 0.05; **p˂0.01; ***p˂0.001. 

 

4.6 Transcriptome analysis of M1 and M2ExMa in mice with IAV induced ALI 

Due to the functional diversity of M1 vs. M2ExMa demonstrated in adoptive transfer 

experiments, it was speculated that M2ExMa may provide factors and mediators which 

could be directly or indirectly involved in repair mechanisms. To investigate the gene 

expression pattern in M1 and M2ExMa and to determine key mediators of M2ExMa that 

are possibly involved in attenuating IAV induced ALI, a transcriptome analysis was 

performed on flow sorted  M1 and M2ExMa derived from infected wt mice at D7pi and 

D21pi respectively. The relative gene expression of M2 compared to M1ExMa revealed 

that, among 3404 total expressed genes, 2291 showed an upregulation and 1113 genes were 

found to be downregulated. For subsequent analysis, the differentially expressed genes 

were divided into different categories, based on known phenotypic profiles and biological 

activities (Fig. 4-10). The genome-array confirmed the dichotomy of M1 and M2ExMa by 

showing differential expression of prototypic M1 vs M2 markers. In addition, M2ExMa 

showed increased gene expressions of pro-survival mediators (Fig. 4-10 B) and growth 

factors (Fig. 4-10 C).  
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A.                             B.                                      C.  

      

D.                                         E.                                       F.  

 
Figure 4-10 Heat maps showing gene expression patterns obtained by transcriptome analysis of M1 and 
M2ExMa in IAV induced lung injury. Flow sorted M1 (D7pi) and M2 (D21pi) exudate macrophages 
(ExMa) from bronchoalveolar lavage (BAL) of infected (PR8-250pfu) mice were subjected to transcriptome 
analysis as described in materials and methods. Heat maps show A.  differentially expressed prototypic M1 
and M2 markers, B.  pro-survival genes highly expressed in M2ExMa compared to M1ExMa, C. growth 
factors highly expressed  in M2ExMa compared to M1ExMa, D. molecules involved steroid biosynthesis 
highly expressed  in M2ExMa,  E. tight junction (TJ) regulating molecules  highly  expressed of in M2ExMa 
compared to M1ExMa and F. top 5 most  highly expressed genes of M1and M2ExMa. The array data was 
developed from 4n samples of M1ExMa and M2 ExMa.  
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In addition, genes involved in steroid biosynthesis were also observed to be highly 

expressed in M2ExMa compared to M1ExMa (Fig. 4-10 D), which could be related to the 

release one of the initial stimuli (gluco-corticosteroids, prostaglandin E2 (PGE2)) to drive 

the M2 phenotype. There was a striking increase of genes potentially involved in formation 

of tight junctions (TJ) during macrophage/epithelium cross talk in M2ExMa compared to 

M1ExMa (Fig. 4-10 E). Some of the genes differentially expressed showed  ≥ 6 fold 

increase or decrease in gene expression levels in  M2ExMa compared with M1ExMa (P < 

0.001) (Fig. 4-10 F). Among them, the gene (Placenta expressed transcript 1- Plet1) with 

the highest fold increase of 7.001 compared with M1ExMa (p < 0.001) was selected for 

further evaluation.  

 

4.7 Validation of  highly upregulated genes of pro-survival mediators and growth 

factors in M1 and M2ExMa from IAV induced ALI 

Some of the highly expressed genes on M1 and M2ExMa identified in the transcriptome 

screen were validated by the RT-PCR in flow sorted M1 and M2ExMa derived from IAV 

infected mice at D7pi and D21pi respectively. The pro-apoptotic and pro-inflammatory 

genes like TRAIL, IRF7, BAX and Daxx were found to be upregulated in M1ExMa 

compared to M2ExMa (Fig. 4-11 A).  While  PDGF-α, IGF-1 and EGF failed to show a 

significant increase, other growth factors like PDGF-β, FGF-7 and 10 were found to be 

significantly increased in M2ExMa compared to the M1ExMa (Fig. 4-11 B).  Similarly, 

pro-survival genes like BCL2, Notch1, CcnD, TREM-2 and Vopp1 showed a significant 

increase in M2ExMa compared to M1ExMa (Fig. 4-11 C). 

A.  
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B. 

 

C. 

 
Figure 4-11 mRNA expression of growth factors and pro-survival mediators in flow sorted M1 and 
M2ExMa. Flow sorted M1 (D7pi) and M2 (D21pi) exudate macrophages (ExMa) from bronchoalveolar 
lavage (BAL) of infected (PR8-250pfu) mice were processed for RT-PCR analysis. The Bar graph represents 
the A. mRNA expression of highly upregulated genes on M1ExMagrowth factors (PDGF-α, PDGF-β, FGF-
10, IGF-1, FGF-7, and EGF) and B. pro-survival mediators (Aven, BCL2, Notch1, CcnD1, Vopp1 and 
TREM-2) in M1 and M2 ExMa. The mRNA analysis on M1 and M2ExMa genes is presented as ∆CT 
relative expression normalized to β-actin. The Bar graphs represent means ± SD of 3 independent 
experiments. *p˂0.05; **p˂0.01; ***p˂0.001. PDGF, platelet-derived growth factor; FGF, fibroblast growth 
factors;  IGF, insulin-like growth factor; EGF, epidermal growth factor; Aven, apoptosis, caspase activation 
inhibitor; BCL, B-cell lymphoma; CcnD, cyclin-D; Vopp, vesicular, overexpressed in cancer, prosurvival 
protein 1; TREM-2, Triggering receptor expressed on myeloid cells 2; IRF7, Interferon regulatory factor 7; 
TRAIL, TNF-related apoptosis-inducing ligand; BAX, Bcl-2-associated X protein; Daxx, Death domain-
associated protein 6. 

 

When the gene (Plet1) with highest fold increase in the transcriptome screen was validated 

by RT-PCR in flow sorted M1 and M2ExMa derived from IAV infected mice at D7pi, 

D14pi and D21pi. M2ExMa were found to express significantly increased Plet1 mRNA 

levels when compared to M1ExMa (Fig. 4-12)  
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Figure 4-12 High mRNA expression of Plet1 in flow sorted M2ExMa. mRNA expression of Plet1 in flow 
sorted M1 and M2 exudate macrophages (ExMa) obtained from mice at D7pi, D14pi and D21pi were 
analyzed by RT-PCR. The mRNA analysis of Plet1 in M1 and M2ExMa was performed with ∆CT relative 
expression normalized to β-actin. Bar graphs represent means ± SD of 3 independent experiments. *p˂0.05; 

**p ˂0.01; ***p˂0.001. 
 
 
4.8 Evaluation of the protective effect of M2ExMa derived Plet1 in IAV induced ALI 

The genome array screen  (Fig 4-10 F) and the upregulation of Plet1 mRNA in M2ExMa 

confirmed by RT-PCR (4-12) suggested M2ExMa derived Plet1 as a potential candidate for 

the observed  protective effects, when M2ExMa were adoptively transferred (orotracheally) 

in IAV induced ALI (Fig. 4-8, 4-9). Therefore, to evaluate the protective effect of M2ExMa 

derived Plet1 in the IAV induced ALI, M2ExMa were flow sorted from IAV infected wt 

(CD45.1 phenotype) mice at D21pi  and adoptively transferred via orotracheal application 

along with 5µg of anti-Plet1 antibody (M2-ab)  or with 5µg IgG isotype control (M2-iso) 

into  IAV infected CCR2-/- mice (45.2 phenotype) at D3pi.  The number of rAM was 

analyzed at D7pi in the M2-ab and M2-iso groups. The results showed significant increased 

numbers of rAM in the M2-iso group compared to the M2-ab group (Fig. 4-13), which 

indicates that M2ExMa derived Plet1 is involved in preserving the rAM pool during IAV 

induced ALI. 
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Figure 4-13 Effect of Plet1 inhibition by neutralizing antibody on the rAM pool size after adoptive 
transfer by of M2ExMa   IAV infected CCR2-/- mice. Flow sorted M2 exudate macrophages (ExMa)  
(obtained from D21pi) from the bronchoalveolar lavage (BAL) of PR8 (250pfu) infected wt mice were 
transferred along with the anti-Plet1 antibody (M2-ab) or IgG isotype (M2-iso) orotracheally into PR8 
(250pfu) infected CCR2-/- mice at D3pi. Bar graphs represent the total number of the resident alveolar 
macrophages (rAM) in BAL at D7pi of M2-iso and M2-ab groups. Bar graph show means ± SD of 3n in each 
group.  
 

In addition, alveolar albumin leakage analysis of these mice (M2-iso and M2-ab groups) at 

D7pi, showed a significant decrease in albumin leakage in the M2-iso group when 

compared with the M2-ab group (Fig. 4-14). Thus confirming the protective role of 

M2ExMa derived Plet1 on lung barrier function in the adoptive transfer model 

 
Figure 4-14 Plet1 inhibition by neutralizing antibody abolished the attenuating effect on alveolar 
albumin leakage of M2ExMa transferred into IAV infected CCR2-/- mice. Alveolar albumin leakage was 
analyzed in M2-iso and M2-ab groups at D7pi by intravenous injection of FITC-labelled albumin and was 
depicted as ratio of serum and bronchoalveolar lavage fluid (BALF) FITC- fluorescence in arbitrary units 
(AU). Bar graphs show means ± SD of minimum 3n each in M2-iso and M2-ab group. 
 
To evaluate the effect of M2ExMa derived Plet1 on TJ proteins of AEC in IAV induced 

ALI, the lungs were harvested from M2-iso and M2-ab groups and AEC from lungs were 

flow sorted. The mRNA expression of TJ proteins in the flow sorted AEC (Fig. 4-15 A) 

from M2-iso and M2-ab groups were analyzed by RT-PCR. The mRNA levels of TJ 

proteins such as ZO-1, Claudin-1 and Occludin were found to be significantly higher in the 

M2-iso group compared to the M2-ab group at D7pi of PR8 infection. 

A.  
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B.  

 
Figure 4-15 Effect of Plet1 inhibition by neutralizing antibody on AEC TJ molecule gene expression 
after adoptive transfer by of M2ExMa into IAV infected CCR2-/- mice. A. Representative flow cytometry 
gating for AEC sorting of lung homogenates (LH) of the superior right lobe of mice from M2-iso and M2-ab 
treated groups. The upper panel (LH before sorting) shows  representative dot plots before sorting,  the lower 
panel (LH after sorting) represents  dot plots after sorting showing  that  live cells (7-AAD-) AEC  (CD31- , 
45- , EpCam+ ) were sorted with a purity of ≥ 97%. B. mRNA expression of ZO-1, E-Cadherin (E-Cad), 
Occludin and Claudin-1 in AEC derived from the M2-iso vs. M2-ab group. The mRNA analysis of genes 
encoding TJ proteins were normalized by   relative expression normalized to β-actin and are presented as fold 
change (2∆∆Ct) of the M2-iso to M2-ab group. Bar graphs show means ± SD of minimum 3n each in M2-iso 
and M2-ab group. 
 

To investigate the effect of M2ExMa derived Plet1 on   AEC proliferation and apoptosis, 

AEC proliferation apoptosis analyzed by Ki67 and annexin V staining were compared in 

lung homogenates of M2-iso and M2-ab groups.  The M2-iso group showed significantly 

increased Ki67 expressing AEC proportions compared to the M2-ab group (Fig. 4-16 A) 

whereas the proportion of Annexin V stained AEC was significantly decreased in the M2-

iso group (Fig. 4-16 B) indicating that, the M2ExMa derived Plet1 is involved in enhancing 

the proliferation and attenuating apoptosis of AEC during IAV induced ALI in the adoptive 

transfer model. 

A.                                                                B.  

 
Figure 4-16 Effect of Plet1 inhibition by neutralizing antibody on AEC proliferation and apoptosis after 
adoptive transfer by of M2ExMa into IAV infected CCR2-/- mice. Lung homogenates from M2-iso and 
M2-ab groups obtained at D7pi were gated for alveolar epithelial (AEC- EpCam+) by flow cytometry 
analysis. A. Bar graphs represent the percentage of AEC stained for Ki67. B.  Bar graph represents the 
percentage of apoptotic AEC based on Annexin V expression. Bar graphs show means ± SD of minimum 3n 
each in M2-iso and M2-ab group.  
 
 
 



49 
 

To evaluate the role of M2ExMa derived Plet1 in resolving the lung inflammation after 

IAV induced ALI, the total number of PMNs and lymphocytes in the BAL were analyzed 

by flow cytometry (Fig. 4-17 A, B). The results showed a significant decrease in the 

number of both PMNs and lymphocytes in the M2-iso group compared to M2-ab group. 

Additionally, hematoxylin and eosin (H&E) stained lung sections from M2-iso group 

showed largely reduced infiltrations in the peri-bronchiolar space compared to the M2-ab 

group (4-17 C). These results suggest that the M2ExMa derived Plet1 has a role in 

attenuating inflammatory responses in IAV induced ALI. 

A.                                                               B.                                             

 

C. 

 

 

 



50 
 

Figure 4-17 Effect of Plet1 inhibition by neutralizing antibody on inflammatory cell infiltration after 
adoptive transfer of M2ExMa into IAV infected CCR2-/- mice. The bar graphs represent the number of A.  
PMNs and B. lymphocytes determined by flow cytometry analysis in bronchoalveolar lavage (BAL) obtained 
at D7pi from CCR2-/- mice, adoptively transferred with anti-Plet1 antibody+M2ExMa (M2-ab) or IgG-
isotype antibody+M2ExMa (M2-iso) at D3pi. Bar graphs show means ± SD of 3n in the M2-iso and M2-ab 
group. *p˂ 0.05; *p˂0.01; *p˂0.001. C. Representative lung sections from M2-iso and M2-ab groups stained 
with hematoxylin and eosin (H&E) on D7pi. Boxes represent regions magnified in the lower panel. 3n mice 
were used in each group. 
 
 
4.9 Effect of Plet1 on primary mAEC infected with IAV 

Plet1 was predicted to be co-expressed and functionally related to TJ proteins (211) that are 

associated with the alveolar epithelial barrier. In addition, Plet1 was shown to be highly 

expressed in M2ExMa (Fig. 4-10 F and 4-12), suggesting a role of Plet1 in maintaining the 

epithelial barrier function in IAV induced ALI. To investigate the effect of Plet1 on trans-

epithelial resistance (TER) and TJ proteins, primary murine AEC (mAEC) were isolated 

from uninfected wt mice, cultured in transwell plates and infected in vitro with PR8 (0.5 

MOI) or mock infected and treated with recombinant (r)Plet1 (20ng/ml) or control buffer.  

TER was measured in transwells at different time points post infection (0, 4, 6, 8, 12, 16, 24 

and 30hr).  TER  dropped in mAEC after 4hrs post infection, but addition of  rPlet1 to 

infected  mAEC significantly attenuated  TER reduction at 6, 8, 12, 16, 24 and 30hr post 

infection compared to the untreated  IAV infected mAEC (Fig. 4-18) indicating a protective 

effect of  Plet1 on  epithelial barrier integrity of  infected mAEC in vitro.  

 

 
Figure 4-18 rPlet1 improves TER in primary mAEC after IAV infection in vitro in a transwell model. 
Primary murine alveolar epithelial cells (mAEC) were cultured on transwells (0.3 × 105 cells/insert). After 3-5 
days, when the trans epithelial resistance (TER) reached a plateau of  ≥600Ω /cm2,  confluent mAEC were 
mock (control) or PR8 infected and left untreated (control, PR8(0.5 MOI) and treated with rPlet1 (20ng/ml) 
(PR8+rPlet1). TER was measured at different time points post infection (0, 4, 6, 8, 12, 16, 24, 30hrs).  
Baseline TER is determined in transwells without mAEC (Transwells wo cells). Results are the means ±SD of 
at least 3 independent experiments. *p˂0.05; **p˂0.01; ***p˂0.001. 
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To determine whether the protective effect of rPlet1 on TER in IAV infected cells was 

related to preserved TJ function, we studied the effect of rPlet1 on TJ proteins such as ZO-

1, claudin1, occuludin and E-cadherin in IAV infected primary mAEC. Mock or PR8 

infected AEC either rPlet1 treated or untreated  were collected from transwells at 0, 4 and 

12hrs post infection and mRNA was extracted and processed for RT-PCR analysis.  rPlet1 

treatment significantly increased mRNA expression of ZO-1 and E-cadherin at 12hrs, and 

of Claudin-1 and Occludin at 4hrs pi compared to untreated IV-infected AEC,  suggesting  

that Plet1 induced  the expression of TJ proteins  contributes to  maintaining  TER of 

primary mAEC after IAV infection in vitro. 

A.                                                                        B.   

 

C.                                                                      D.        

 
Figure 4-19 rPlet1 upregulated the mRNA expression of TJ proteins in primary mAEC after IAV 
infection in vitro. Bar graphs represents mock infected (control) and treated with rPlet1- 20ng/ml (rPlet1) or 
PR8 infected (MOI 0.5; PR8) and treated with rPlet1 (PR8+rPlet1) mAEC. mRNA expression of A. ZO-1 B. 
Claudin-1 C. Occludin D. E-Cadherin at different time points post infection (PR8- MOI 0.5).  The mRNA 
analysis on ZO-1, Claudin-1, Occludin and E-cadherin was performed with ∆CT relative expression 
normalized to β-actin. Results are represented as the mean ±SD of at least 3 independent experiments. 
*p˂0.05; **p˂0.01; ***p˂0.001. 
 

To investigate the effect of rPlet1 on the membrane expression of TJ protein ZO-1, cultured 

mAEC were mock infected or infected with PR8 (MOI 0.5) and treated with or without 

rPlet1 (20ng/ml). Immunofluorescence staining with anti-ZO-1 antibodies showed 

increased ZO-1 surface expression in mAEC at 12hrs post infection after rPlet1 treatment 

compared to un-treated infected mAEC. 
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Figure 4-20 rPlet1 increased the expression of TJ protein ZO-1 in primary mAEC after IAV infection 
in vitro. mAEC were mock infected (control) and treated with rPlet1- 20ng/ml (rPlet1) or PR8 infected (MOI 
0.5; PR8) and treated with rPlet1 (PR8+rPlet1). The cells were then fixed at 12hrs post infection and stained 
with ZO-1. The nuclei were stained with DAPI. Images represent 3 independent experiments. 
 

To elucidate the effect of Plet1 on apoptosis and viral replication, caspase 3 activation and 

expression of IAV nucleoprotein (NP) were analyzed in mock or PR8 (MOI 0.5) infected 

mAEC treated with rPlet1 (20ng/ml) or left untreated, respectively. The cells were fixed at 

6 and 12hrs post infection and analyzed by immunofluroscence for caspase 3 and IAV 

nucleoprotein (NP). Expression of active caspase 3 (Fig. 4-16 A) and NP (Fig. 4-16 B) was 

found to be reduced in rPlet1 treated mAEC at 6 and 12hrs post infection indicating an  

anti-apoptoic effect of Plet1 in IAV infected mAEC associated with reduced IAV 

replication.  
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A. 
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B.  

 

 
Figure 4-21 rPlet1 treatment reduces apoptosis and viral replication in primary mAEC after IAV 
infection in vitro. Murine alveolar epithelial cells (mAEC) were mock infected without (control) and with 
addition of rPlet1- 20ng/ml (rPlet1) or PR8 (MOI 0.5) infected without (PR8) and with addition rPlet1 
(PR8+rPlet1). Cells were fixed at 6 and 12hrs post infection and stained with A. rabbit anti-mouse active 
caspase3 antibody and  phycoerythrin (PE) labelled secondary anti rabbit Ig antibody and B. mouse 
monoclonal anti- NP antibody labelled with Fluorescein isothiocyanate (FITC). The images are representative 
of 3 independent experiments. IAV NP, influenza A virus nucleo-protein. 
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4.10  Therapeutic intervention with rPlet1 in IVA induced ALI 

The protective effects of M2ExMa (section 4-5) adoptive transfer were largely abolished 

when the M2ExMa were transferred (orotracheally) along with neutralizing anti-Plet1 

antibody in vivo (section 4-7). In addition, rPlet1 treatment of PR8 infected mAEC 

increased the TJ proteins expression, improved TER, and reduced apoptosis and IAV 

replication in vitro (Fig. 4-19, 20, 21). These results identified Plet1 as promising candidate 

for therapeutic intervention in IAV induced ALI.  

To determine the effect of rPlet1 in IAV induced ALI in vivo, wt mice were infected with 

PR8 (250pfu) and PBS or rPlet1 (5µg) in total volume of 60µl were delivered orotracheally 

on D3pi. The total number of rAM in BAL was analyzed at D7pi of both PBS and rPlet1 

treated groups by flow cytometry. The rPlet1 treated group showed a tendency of increase 

in number of rAM compared to PBS treated group (Fig. 4-22). 

 
Figure 4-22 rPlet1 showed a trend of increase in total number of rAM in IAV infected mice. A. The bar 
graph represents the total number of the resident alveolar macrophages (rAM) in bronchoalveolar lavage 
(BAL) at D7pi of PBS or rPlet1 (5µg) treated groups by flow cytometry analysis. The bar graphs show means 
± SD of 8n each in PBS and rPlet1 treated group. 
 

 Alveolar albumin leakage analysis of PBS and rPlet1 treated groups at D7pi, showed a 

significant decrease in albumin leakage in the rPlet1 treated group compared to the PBS 

treated group (Fig. 4-23) 

 
Figure 4-23 rPlet1 treatment reduced alveolar albumin leakage in the IAV infected mice.  Alveolar 
albumin leakage was analyzed in PBS and rPlet1 treated groups at D7pi by intravenous injection of FITC-
labeled albumin and is depicted as ratio of serum and BALF FITC- fluorescence in arbitrary units (AU). Bar 
graphs show means ± SD of minimum 6n each in PBS and rPlet1 treated group.  
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In addition, AEC proliferation and apoptosis in the lung homogenates of PR8 (250pfu) 

infected and rPlet1 (5µg) or PBS treated mice was analyzed by flow cytometry. Animals 

treated with rPlet1animals showed a significantly increased proportion of Ki67 stained 

EpCam+ AEC and a reduced proportion of annexinV stained AEC indicating a   pro-

proliferative and anti-apoptotic effect of orotracheal Plet1 application on AEC in IAV 

infected mice.      

A.                                                             B.               

 
Figure 4-24 rPlet1 increased the proliferation and decreased the apoptosis of AEC in IAV induced ALI. 
Alveolar epithelial cells (AEC-EpCam+) gated by flow cytometry analysis from lung homogenates from PBS 
and rPlet1 (5µg) treated groups on D7pi were analyzed for A. proliferation based on the expression of Ki67 
and B. apoptosis based on the expression of Annexin V. Bar graph represents the percentage of AEC Bar 
graphs show means ± SD of minimum 6n each in PBS and rPlet1 treated group.  
 

To evaluate the effect of rPlet1 treatment on TJ proteins of AEC in mice infected with PR8 

(250pfu), the superior right lung lobes were harvested from PBS and rPlet1 treated groups 

and processed for single cell suspension and flow sorting of AEC (Fig. 4-18 A). Flow 

sorted AEC from PBS and rPlet1 treated groups were then analyzed by RT-PCR for mRNA 

expression of TJ proteins (Fig. 4-18 B). Levels of   ZO-1 and Claudin1 mRNA were found 

to be significantly increased in the rPlet1 treated group compared to the PBS treated group 

at D7pi.  

 
Figure 4-25 rPlet1 treatment increased mRNA expression of TJ proteins on flow sorted AEC from IAV 
infected mice. Bars represent the mRNA expression of TJ proteins (ZO-1, E-Cadherin (E-Cad), Occludin and 
Claudin-1) in flow sorted alveolar epithelial cells (AEC) from lung homogenates of PBS and rPlet1 (5µg) 
treated groups. The mRNA analysis on the genes of TJ proteins was normalized by relative expression 
normalized to β-actin and is presented as fold change (2∆∆Ct) of the rPlet1 compared to PBS treated group. 
The Bar graphs represent means ± SD of minimum 6n each in PBS and rPlet1 treated group. 
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Anti-Plet1 antibody treatment diminished the anti-inflammatory effect of transferred 

M2ExMa in the adoptive transfer approach (Fig 4-17). Therefore, we investigated the effect 

of orotrachally delivered rPlet1 on resolving the lung inflammation in after IAV infected 

mice by analyzing the total number of PMNs and lymphocytes in the BAL by flow 

cytometry (Fig. 4-25 A, B). In addition, the lungs were harvested from PBS and rPlet1 

treated groups and processed for H&E staining. Number of both PMNs and lymphocytes 

were found to be significant decreased in the rPlet1 treated group compared to the PBS 

treated group. Accordingly, H&E staining of the lung sections showed reduced cell 

infiltrations in the peri-bronchiolar space in the rPlet1 treated group compared to the PBS 

treated group (Fig. 4-25 C). These results demonstrate the anti-inflammatory effect of 

orotracheal rPlet1 treatment in IAV induced ALI. 

A.                                                               B.                                             
 

 

C. 
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Figure 4-26 rPlet1 attenuate lung inflammation in IAV infected mice. The bar graph represents the 
number of A. PMNs and B. lymphocytes in bronchoalveolar lavage (BAL) on  D7pi of PBS and rPlet1(5µg) 
by flow cytometry analysis. Bar graphs show means ± SD of 8n in PBS and rPlet1 treated group. *p˂0.05; 

*p˂0.01; *p˂0.001. C. Lung sections stained with hematoxylin and eosin (H&E) from PBS and rPlet1 treated 
groups on D7pi. Boxes represent regions magnified in the lower panel. 8n mice were used in each group. 
 

The effect of rPlet1 on the survival rates and their corresponding body weight loss during 

IVA induced ALI was investigated in the PR8 (500pfu) infected wt mice. The rPlet1 (5µg) 

or PBS was delivered orotracheally on D3pi and monitored daily twice for their 

physiological and clinical scores. Accordingly, the mice that received rPlet1 survived better 

with corresponding increase in the body weight compared to PBS received mice, which 

indicated that rPlet1 as a potential candidate that can reduce the outcome of mortality 

during IAV induced ALI (Figure 4-27 A, B) 

A.                                                                          B. 

         
Figure 4-27 rPlet1 improved body weight and survival rate in IAV induced ALI. wt mice were infected 
with 500pfu PR8 and treated with PBS or rPlet1 (5µg) on D3pi by orotracheal administration. A. Body weight 
(%) of mice in PBS and rPlet1 group (10n in each group). B.  Represents survival rates (%) of mice in PBS 
and rPlet1 group (Kaplan-Maier curve; 6n in each group). Mantel-Cox Chi square test was used to calculate 
the significance for survival rates *P < 0.05, ***P < 0.0001. 
 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

5. Discussion 

The pulmonary immune system is constantly responding to pathogenic insult. Adequate 

immune responses are crucially dependent on distinct discrimination between non-

pathogenic and pathogenic antigens in the lung. Pathogen sensing results in the 

development of acute inflammation which may lead to ALI/ARDS upon severe infection 

by lung pathogens such as IAV, or when pulmonary inflammation is not adequately 

controlled by anti-inflammatory and injury-resolving counter-mechanisms. Pulmonary 

macrophages are known to be crucially involved in balancing pro-inflammatory host 

defense mechanisms and anti-inflammatory responses with inflammation resolution and 

repair processes, in a well-coordinated action during the course of pneumonia, and 

therefore represent key players in orchestrating these processes in the alveolus (12, 13, 24).  

Accumulating evidence suggests that, apart from their well-known role in phagocytosis and 

recognition of foreign antigens, alveolar macrophages are endowed with high functional 

plasticity allowing them to acquire different pro- or anti-inflammatory as well as tissue-

reparative phenotypes during the course of inflammation, dependent on the signals they 

receive from surrounding cells or from the pathogen itself. The ability to integrate these 

various signals in the course of inflammation and to mount a differential response 

empowers the M2 polarized, alternatively activated macrophage to terminate and resolve 

alveolar inflammation in the later phases of ALI/ARDS and to tightly coordinate 

parenchymal repair processes that are essential for return to homeostasis (147, 189, 212, 

213). Given that the injury specific signals derived from the local alveolar 

microenvironment are integrated to generate specific macrophage polarization patterns, it is 

hypothesized that different injuries (eg. pathogenic versus sterile inflammation; viral vs 

bacterial challenge, etc) generate unique macrophage polarization patterns at defined time 

points during lung inflammation or infection to serve the particular needs of the 

infected/inflamed alveolar niche. Previous work from our research group suggested that 

particularly the ExMa, in contrast to the tissue-resident macrophages revealed a broad 

functional plasticity (64, 130, 32). A better understanding of these processes would allow to 

selectively target macrophage pool for better host defense and accelerated lung repair to 

improve outcome of ALI/ARDS. However, a systemic approach to define these 

macrophage phenotypes, particularly during pneumonia-induced ALI in vivo, has not been 

established yet. Therefore, the first aim of the presented work was to develop a protocol to 
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distinguish pulmonary M1- versus M2ExMa in a time course-dependent manner during 

IAV infection in vivo. 

 

5.1 Definition of M1 versus M2 polarization phenotypes of ExMa in IAV-induced 

ALI/ARDS by FACS reveals distinct gene expression profiles 

To estimate M1 and M2 macrophage presence in the BALF of IAV-infected mice, a first 

approach was to isolate the total alveolar macrophage fraction by positive selection using a 

MACS technique allowed to isolate these cells to high purity using antibodies against the 

alveolar macrophage markers CD11c and SiglecF (214). Analysis of well-known M1 

versus M2 marker expression by RT-PCR in the course of infection (D0 to D21pi), 

however, revealed that expression of these markers did not substantially change over time. 

These data suggested that the macrophage pool was not uniquely polarized towards a 

defined phenotype, but suggested simultaneous recruitment or presence of M1 and M2 

macrophages in the alveolar air space. Also, many studies recently revealed that there is a 

notable difference between the rAM and the ExMa pool with respect to functional 

phenotypes and polarization capacity (215-217). Therefore, a multi-colour FACS protocol 

was used which allowed definition of alveolar (BALF) versus lung-interstitial (lung tissue) 

ExMa and rAM, respectively, and establishment of a gating strategy to define M1 versus 

M2 macrophage subsets in lungs of IAV infected mice over time. Established lineage 

markers for rAM (CD45+,GR-1-, SiglecFhi, CD11chi, CD11blow) and ExMa (CD45+, GR-1-, 

SiglecFlow, CD11chi, CD11bhi) (64, 218) were used to define both alveolar and interstitial 

ExMa and rAM. To evaluate the efficient markers among different M1 (CD40, CD86, 

CD80, ICAM-1, iNOS, TNF-α) and M2 (CD71, CD163, CD206) markers, combined 8-

colour flow cytometry approach including a dead cell exclusion marker were used (219-

224). As a result, two M1 (CD86, CD40) and two M2 (CD71, CD206) markers were found 

to be differentially expressed particularly on the interstitial and alveolar ExMa population, 

whereas the rAM populations did not reveal phenotype plasticity, at least not with the 

markers used. As CD40 (M1) and CD206 (M2) were found to be the most robust antigens 

differentially expressed on the surface of the respective ExMa phenotype both in the 

interstitial and alveolar space, they were further used to analyse ExMa polarization profiles 

after IAV infection in mice over time.  Of note, expression of various M1 and M2 

phenotype associated genes was analyzed on macrophage phenotypes, flow sorted 

according to this gating strategy on D10pi, a time point where both M1 and M2ExMa were 

present in BALF. The data revealed that expression levels of selected M1 markers (iNOS, 
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IL-1β, TNFα) were significantly higher in CD40hi compared to CD206hi ExMa, and 

expression of the M2 markers Arg-1, Fizz-1, and TGF-β were significantly increased in 

CD206hi versus CD40hi ExMa, confirming that the established FACS approach represented 

a valid strategy to define M1 and M1ExMa.  

Application of this multi-color antibody staining method and gating strategy to quantify 

M1/M2 ExMa and rAM numbers in the course post IAV infection revealed that, during the 

acute phase of IAV infection (until D7pi), the rAM were depleted and newly recruited M1 

polarized ExMa (CD40hi) infiltrated the lung, particularly the alveoli, to high numbers. In 

the early repair phase (until D14pi), both M1 and M2 polarized ExMa were found to be 

present (CD40hi and CD206hi, respectively), whereas exclusively M2ExMa were found at 

low numbers at D21pi in the late repair phase. These results demonstrate successful 

establishment of a novel, robust gating strategy to define functional phenotypes of ExMa in 

murine in vivo lung infection model, and reveal substantial plasticity of ExMa in IAV 

infection. Preliminary data recently showed that this gating strategy is also applicable to 

mouse pneumonia models induced by Streptococcus peumoniae and Klebsiella pneumoniae 

with different kinetics and quantities of M1/M2ExMa accumulation (Selvakumar, B et al, 

unpublished). This is of particular interest, as none such elaborated FACS strategy has been 

accessible to date. Plenty of studies have used in vitro polarization protocols for ExMa. 

These protocols usually involve cytokines/PAMPs such as IFN-γ, LPS, and GM-CSF 

versus IL-4, IL-13, and G-CSF to artificially generate M1 and M2 macrophages, 

respectively, for further functional studies. As a result, depending on the polarization 

protocol used, the M1 vs. M2 gene expression profiles vary substantially among each other 

and do not reflect macrophage M1/M2 programming observed in lung inflammation 

models in vivo (225, 226), as such approaches do not take into account that injury-

/pathogen-specific mediators are released from the infected alveolar cells, nor the direct 

cell-cell interactions occurring during the different stages of infection/inflammation in the 

alveolus, resulting in an injury and infection specific macrophage polarization pattern in 

different models of ALI/ARDS (24). 

 

5.2 Functional plasticity of M2-polarized ExMa involves rAM replenishment, 

protection of the rAM pool and restoration of epithelial barrier function  

It has become increasingly evident that, although of different ontogeny, macrophage 

populations recruited from the bone marrow can replenish an emptied niche of tissue-

resident macrophages in different organs, such as the lung and the liver (127).  
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Therefore, an important task of an ExMa population of high functional plasticity would be 

to replenish the IAV depleted pool of rAM after recruitment to the alveolar air space. To 

address this in the current model, bone marrow chimeric mice expressing the CD45.1 

alloantigen on tissue-resident leukocytes (such as rAM) and the CD45.2 alloantigen on 

bone-marrow/ circulating leukocytes (such as blood monocytes, the ExMa precursors) 

were infected by IAV and the quantity of CD45.2 (donor, circulation-derived) vs. CD45.1 

(recipient, tissue-resident) rAM was quantified during the course of infection. The data 

revealed that indeed, CD45.2 alveolar recruited ExMa had the capacity to differentiate into 

a macrophage population of rAM phenotype (CD45.2+,GR-1-, SiglecFhi, CD11chi, 

CD11blow). Although the presented data cannot completely rule out that these cells might 

still differ from the preexisting, yolk sac-/fetal liver-derived CD45.1+ rAM pool (227, 228) 

with respect to gene expression profiles or epigenetic landscapes (229). They demonstrate 

that their surface antigen phenotypes are identical, and there is evidence in the literature 

that they also display a functional profile equal to tissue-resident macrophages in lung and 

other organs (35, 228, 230). Of interest, the rAM replenishment occurred between D14 to 

D21pi where primarily M2ExMa are present in the alveoli, suggesting that rAM 

replenishment is a feature attributed to the M2 rather than the M1ExMa phenotype. Future 

experiments using orotracheal transfer of flow sorted CD45.1+ M1 vs. M2 ExMa into 

rAM-depleted CD45.2+ CCR2-/- (ExMa recruitment–deficient) mice will provide further 

insight into the properties of ExMa polarization phenotypes with respect to replenishment 

of an empty rAM niche, and into putative genetic and epigenetic changes associated with 

this process, in ALI/ARDS models.  

Adoptive orotracheal transfer of flow sorted M1 vs. M2ExMa into IAV infected (ExMa 

recruitment-deficient) CCR2-/- mice furthermore revealed that M2ExMa increased, 

whereas M1ExMa decreased the numbers of rAM at D7pi. This was not due to early 

replenishment or induction of proliferation of rAM by M2ExMa resulting in increased 

rAM numbers, but likely due to release of anti-apoptotic/pro-survival factors promoting 

survival of rAM. One such factor, TREM-2 was recently identified to maintain the alveolar 

macrophage pool after sendai virus infection in mice (187, 231). This is of particular 

importance, as rAM depletion has been described as critical event in driving outgrowth of 

colonizing bacteria such as Streptococcus pneumoniae or Staphylococcus aureus, resulting 

in fatal bacterial super-infection, a frequent event following viral pneumonia (138, 232). 

Indeed, mRNA expression levels of TREM-2 were strongly increased in M2ExMa as 

compared to M1ExMa, and alveolarly released TREM-2 protein analyses revealed 
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corresponding results. Although it is likely that further factors are involved in preventing 

rAM cell death by M2ExMa, and vice versa in pro-inflammatory/pro-apoptotic depletion 

of rAM by M1ExMa, it seems that TREM-2 is involved in a protective ExMa-rAM cross-

talk (data in progress) 

Importantly, flow sorted M2ExMa were found to prevent loss of alveolar epithelial barrier 

function (alveolar albumin leakage) and to induce proliferation of AEC, whereas M1ExMa 

increased barrier leak and did not induce AEC proliferation substantially when transferred 

into IAV infected CCR2-/- mice. These data suggest that M2 in contrast to M1ExMa 

protected the alveolar barrier by acting in an anti-apoptotic and/or pro-proliferative way on 

the lung epithelium, to prevent epithelial injury and/or to drive epithelial repair. 

Furthermore, the data reveal a profound functional difference in the two ExMa polarization 

phenotypes, which were likely associated with distinct transcriptomic profiles. Moreover, 

DNA microarray analyses comparing the transcriptomes of M1 vs. M2ExMa flow sorted 

from BALF of IAV infected mice, revealed striking differences between the two 

macrophage phenotypes. First of all, heat map clustering of known M1 and M2 marker 

genes confirmed the distinct phenotypes of M1 versus M2ExMa and provided further 

evidence that the established FACS gating strategy defining the two polarization subsets 

was highly valid. Furthermore, genes preferentially expressed in M2ExMa were 

particularly associated with termination of inflammation (steroid biosynthesis), with 

epithelial repair and tight junction formation, and with cellular growth and survival. RT-

PCR confirmation of some of the highly regulated genes confirmed increased expression of 

the growth factors PDGFα/β (platelet-derived growth factor alpha/beta), IGF-1 (insulin-

like growth factor-1), EGF (epidermal growth factor), and FGF7/10 (fibroblast growth 

factor 7/10), and of the pro-survival genes Aven (apoptosis and caspase activation 

inhibitor), Bcl2 (B cell lymphoma 2), Notch1, Ccnd1 (Cyclin D1), TREM-2 (Triggering 

receptor expressed on myeloid cells 2) and Vopp1 (Vesicular, overexpressed in cancer, 

survival protein 1), in M2 compared to M1ExMa. Vice versa, M1ExMa highly expressed 

genes involved in antigen processing, pattern recognition pathways (e.g., IRF7, Interferon 

regulated factor 7), and inflammation (e.g., CXCL10, CXC chemokine ligand 10/IP-10) 

(heat maps not shown). One particular gene highly expressed in M1 compared to M2 

ExMa was the pro-apoptotic TRAIL (TNF-related apoptosis-inducing ligand), which is 

directly inducing alveolar epithelial cell apoptosis, inflammatory injury and loss of barrier 

function in IAV pneumonia (Fig. 4-11 A) (64, 101, 233). Importantly, a substantial number 

of the highly differentially regulated genes was associated with tissue development and 

repair, and expressed in M2ExMa, such as Sort1 (Sortilin1, involved in neuronal 
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development) or Kazald1/IGFBP (insulin-like growth factor binding protein). Among 

these, Placenta-expressed transcript 1 (Plet1) was the most differentially expressed gene 

(+7.0380 Log FC). In summary, these results indicate that the functionally different M1 vs. 

M2 phenotypes have distinct gene expression profiles, with the M1ExMa upregulating 

inflammatory/pro-apoptotic and host defense pathways, whereas the M2ExMa expressing 

anti-inflammatory, pro-survival and repair pathways.  

 

5.3 Epithelial barrier-protective properties of M2ExMa are widely mediated by Placenta-

expressed transcript 1 (Plet1)  

Plet1 (RIKEN cDNA 1600029D21) also known as C11orf34 is a 

glycosylphosphatidylinositol (GPI)-anchored glycoprotein with N-linked carbohydrates in 

addition to other post-translational modifications (234, 235). Mature mouse Plet1 shares 

less than 60% amino acid (aa) sequence identity with the most closely related rat or human 

equivalent. A potential 194 aa mouse splice variant diverges after aa 149 but still contains 

a hydrophobic sequence at the C-terminus. Placenta expressed transcript 1, opposite strand 

(Plet1os) exist with 2 transcripts (splice variants). This protein is usually translated from 

the Plet1 opposite reading frame. Plet1 was found to be localized at the leading edge of 

epidermal wounds, and modulates keratinocyte migration and cellular adhesion to matrix 

proteins during wound-healing responses and thereby promotes wound repair (236, 237). 

Plet1 is known to be a specific marker of early thymic epithelial progenitor cells and is 

highly expressed in placenta of mouse and pig (234, 235). It is also found to be expressed 

during embryogenesis, specifically in the distal part of the extraembryonic ectoderm, 

adjacent to the epiblast, and is therefore a potential candidate for regulating early 

patterning events (238). The tissue distribution in healthy adult mice showes a widespread 

and unique expression in proliferating epithelia, such as the hair follicle cell, sebaceous 

gland of skin, ciliated epithelial cells of trachea and bronchial tube, striated portion of sub-

mandibular gland, distal convoluted tubule cells of kidney, ciliated epithelial cells of 

oviduct, medulla of adrenal gland and anterior lobe of the pituitary gland (236).  
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Table- 5 Predicted functional partners of Plet1 in mouse  

Co-expression with Plet1and the score represent the bits score of co expression (211) 
 

Gene Protein and known function  Co-expression Score 

 
Pqlc1 

 
PQ loop repeat containing 1 
 

  
0.73 

Cntd1 
 

cyclin N-terminal domain containing 1  0.632 

Tmed5 
 

transmembrane emp24 protein transport domain containing 5  0.551 

Wdnm1-like 
 

RIKEN cDNA 1100001G20 gene 
 

 0.567 

Wdr81 
 

WD repeat domain 81 
 

 0.595 

Cldn claudin; major role in tight junction formation yes 0.506 

Esrp1 
 

epithelial splicing regulatory protein 1 yes 0.475 

Cdh1 
 

cadherin 1; establishment and maintenance of epithelial cell 
morphology 
 

yes 0.468 

Epcam 
 

epithelial cell adhesion molecule; epithelial cell-cell adhesion yes 0.456 

 

Of note, the mammary epithelial transcriptome in mastitis-resistant and -susceptible sheep 

showed that Plet1 was one of the 20 genes that are highly expressed in Staphylococcus 

spp-induced mastitis-resistant animals (239). This suggests a role of Plet1 in host defense 

mechanisms. Interestingly, Plet1 has been shown to be specifically expressed in an 

intestinal dendritic cell subset that is in close contact with Rorγt-expressing innate 

lymphoid cells (ILCs) and seems to be involved in both positive and negative regulation of 

IL-22 derived mucosal innate immunity (240), suggesting that immune cell-expressed 

Plet1 might involved in epithelial repair processes mediated by ILCs and IL-22 (241, 242). 

The database of the human protein atlas shows that Plet1 is expressed in both respiratory 

epithelial cells and in lung macrophages (243). Plet1 was also predicted to functionally 

interact with proteins like claudin, cadherin-1, epithelial splicing regulatory protein 1, and 

epithelial cell adhesion molecule (EpCam) in mouse (Table-5) and with the unc-93 

homologue A and ferritin in humans (211).  The Plet1 receptor, however, is currently 

unknown. These data suggest that Plet1, which was most highly upregulated in M2 vs. 

M1ExMa in the current work, is similarly involved in repair and restoration of the alveolar 

epithelium after severe insult, particularly after IAV infection, and therefore represented a 

highly interesting candidate for further investigation.  
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Therefore, to confirm the inflammation resolving and epithelium repairing effects of M2 

ExMa derived Plet1, flow sorted M2ExMa from BALF of IAV infected wt mice, were 

adoptively transferred along with a neutralizing anti-Plet1 antibody or IgG isotype control 

antibody into IAV infected CCR2-/- mice at D3pi. The results showed that the rAM-

preserving effects of M2ExMa were related to Plet1 expression, and Plet1 mediated the 

beneficial effects of M2ExMa with regard to protection of epithelial barrier function 

(alveolar albumin leakage). However, it is speculated that the rAM-preserving effect might 

be a secondary event associated with reduction of injury-associated inflammation and its 

putative anti-viral activity, the epithelial-protective effect observed was likely due to its 

pro-proliferative and anti-apoptotic action towards AEC, known to be endogenous 

epithelial progenitor cells of the alveoli (244), and associated to upregulation of a variety 

of tight junctional proteins in flow sorted AECs of the recipient CCR2-/- mice. 

Noteworthy, the in vivo data were confirmed by an in vitro approach where isolated murine 

AECs in culture were IAV infected in presence or absence of Plet1. The results 

demonstrate that Plet1 indeed prevents IAV induced apoptosis (shown by inhibition of 

caspase 3 activation), and upregulates TJ gene and protein expression, resulting in 

significantly increased TER in transwell-cultured AEC monolayers. This is of particular 

interest in the context of IAV infection, as it was recently demonstrated that IAV disrupts 

epithelial TJ by direct virus-host interaction at the epithelial interface in the absence of 

inflammatory leukocytes (245). The Plet1 regulated TJ proteins have been recently 

associated with both tightness of epithelial layers and barrier properties, but also with 

proper polarization of the epithelium (246- 249). Such processes are of utmost importance 

once new epithelial cells are emerging from the proliferating stem cell niche, to build up a 

tight and functional epithelial barrier. 

Interestingly, the presented data also demonstrated that Plet1 treatment of AEC in vitro 

resulted in impairment of viral replication, as demonstrated by immunofluorescence 

staining for the IAV NP. This is likely due to modulation of various cellular signaling 

pathways by Plet1, such as pro-proliferative, anti-apoptotic or pro-survival pathways, or 

due to its effects on cellular polarization processes, all known to be centrally involved in 

proper propagation of IAV during the viral life cycle. In this respect, it has been recently 

demonstrated that apoptotic caspase activation is indespensable for IAV replication, as it 

mediates nuclear export of the viral ribonucleoproteins (250, 251).  
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These data suggest that Plet1 represents a therapeutic tool to attenuate epithelial injury in 

pneumonia induced by IAV or other pathogens. To verify a putative therapeutic effect of 

Plet1 in IAV-induced ALI/ARDS, infected wt mice were orotracheally treated with 

recombinant Plet1 at D3pi. Plet1 treatment resulted in improved lung barrier function, 

associated with increased expression of TJ proteins (particularly Claudin 1, ZO-1 and, to 

lesser extent, E-Cadherin), and induction of AEC proliferation as part of the epithelial 

repair response. Of note, Plet1 treatment resulted in significantly reduced lung 

inflammation, as demonstrated by the numbers of PMNs and lymphocytes in the BALF 

and by histology assessment. It remains currently unclear, whether Plet1 exerts a direct 

anti-inflammatory action towards the epithelium resulting in down regulation of 

chemokine and cytokine expression. More likely, the barrier-protective/-regenerative 

effects of Plet1 would result in earlier termination of inflammation due to i) closure of the 

epithelial barrier with impaired trans-epithelial migration, and due to ii) faster repair of 

injured epithelial cells with less release of danger-associated molecular patterns (DAMPs) 

such as HMGB1, IL-1α, and others, which are ligands for PRRs amplifying inflammation 

(252). Interestingly, Plet1 also increased the number of rAM in the BALF at D7pi, which is 

likely not due to a direct pro-survival effect (as Plet1 has been shown to exclusively target 

the epithelial compartment of various organs both during embryogenesis and organ repair), 

but might rather be related to earlier resolution of inflammation and the anti-viral 

properties of Plet1, which would protect the rAM pool. Nonetheless, the presented data 

cannot fully exclude that rAM are a direct Plet1 target, particularly as the Plet1 receptor 

has not been defined yet. Finally, orotracheal Plet1 treatment resulted in improved outcome 

after IAV induced lung injury in terms of morbidity (body weight) and, most importantly, 

mortality. These data clearly indicate that alveolar Plet1 deposition might represent a 

therapeutic strategy to attenuate ALI/ARDS induced by IAV or even by other pathogens or 

insults. 

 

In conclusion, the work presented provides evidence that, during IAV induced lung injury, 

different polarization phenotypes of ExMa with distinct gene expression and functional 

properties, defined by a newly established FACS gating strategy, are present in the lung 

during the course of infection. M2 polarized ExMa are endowed with the ability to 

preserve and replenish the rAM pool which was depleted upon IAV infection. Most 

importantly, M2ExMa act in an anti-inflammatory way and protect and regenerate the 

alveolar epithelial cell barrier, a function which is dependent on the epithelial growth 

factor Plet1. Orotracheal treatment of IAV infected mice with recombinant Plet1 
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significantly attenuates inflammation and improves alveolar barrier function and outcome, 

suggesting that Plet1 might represent a putative therapeutic option to treat humans with 

ALI/ARDS. 

 

Figure 5-1 Schematic overview of IAV induced alveolar barrier damage and M2ExMa derived Plet1 in 
attenuating the IAV induced ALI. The left side shows the alveolus during homeostasis with healthy 
epithelial, endothelial barrier and resident alveolar macrophages (rAM). The center part of the figure shows 
the acute phase of influenza A virus infection (IAV) demonstrated by disrupted epithelial, endothelial 
barriers, influx of polymorpho nuclear leukocytes (PMNs), inflammatory monocytes, apoptotic rAM and 
presence of M1 exudate macrophages (M1ExMa- CD206lowCD40hi) that releases huge pro-inflammatory 
cytokines like TNF-α, IFN-γ, iNOS associated with high expression of TRAIL and IRF7. The right side 
shows the resolving phase characterized by repaired epithelial barrier with increased tight junction (TJ) 
proteins on alveolar epithelial cells (AEC), presence of M2ExMa- CD206 hiCD40low that releases several 
growth factors (GFs) (PDGF- β, FGF7,10) associated with increased levels of Notch1 and TREM2. Anti-
inflammatory cytokines (TGF-β, IL1ra, FIZZ-1, and YM-1) were also found increased in M2ExMa. The 
M2ExMa also expressed placenta expressed transcript 1 protein (Plet1) that accelerated the barrier repair by 
increasing the proliferation, TJ proteins and reducing the apoptosis on AEC. Plet1 also showed antiviral 
effects, reduced the infiltration of polymorpho nuclear leukocytes (PMNs) leukocytes and improved outcome 
in IAV induced ALI. The round head arrow ( ) denotes the inhibition effects; the up arrow ( ) denotes the 
increased effects. 

 

 

 

 

 

 



69 
 

6. Summary 
Influenza A Virus (IAV)-induced acute lung injury/acute respiratory distress syndrome 

(ALI/ARDS) is a severe complication of IAV infection in humans with often fatal outcome 

due to lack of effective therapeutic options. It is characterized by severe inflammation in 

the alveolar compartment of the lung, associated with apoptotic injury of the alveolar 

epithelium, resulting in loss of barrier function, edema formation and impaired gas 

exchange capacity with respiratory failure. Alveolar exudate macrophages (ExMa) have 

been shown to be key players in both driving inflammatory injury to the alveolar 

epithelium, but also in promoting resolution of inflammation and driving tissue repair 

processes, and these different functions have been suggested to be associated with the M1 

versus M2 polarization phenotype of macrophages, respectively. However, to date, 

methods to define these phenotypes in pneumonia models in vivo have not been 

established, nor have the functional properties of M1 and M2ExMa and the signaling 

pathways or mediators associated with these functions been elucidated, particularly in the 

context of IAV infection. 

The presented data provide evidence that ExMa reveal high functional plasticity during 

IAV-induced ALI/ARDS. Different polarization phenotypes, M1 and M2ExMa, can be 

defined and separated by a newly established FACS gating strategy, allowing analyses of 

their gene expression profiles and correlation to their functional properties in IAV-induced 

lung injury. Quantitative analyses revealed that in the early, acute phase of IAV infection 

(D7pi), large numbers of M1ExMa infiltrate the alveolar and, to lesser extent, the 

interstitial space of the lung. Later on, ExMa numbers decline and increasing proportions 

of M2ExMa are present. By D21pi, low numbers of ExMa are present which are 

completely polarized towards an M2 phenotype. Of note, bone marrow chimeric mouse 

models and adoptive ExMa transfer studies into ExMa recruitment-deficient CCR2-/- mice 

demonstrated that the functional phenotype of M2ExMa is associated with both 

preservation and replenishment of the rAM pool depleted upon IAV infection, and with 

regeneration of the alveolar epithelium and improved epithelial barrier function in IAV-

induced ALI/ARDS. Transcriptomic profiling of M1 versus M2ExMa revealed highly 

distinct gene expression profiles, with M1ExMa expressing pro-inflammatory/pro-

apoptotic and host defense-associated genes, whereas M2ExMa upregulating anti-

inflammatory/anti-apoptotic genes and a high number of epithelial growth factors. The 

most highly regulated gene in M2 versus M1ExMa was found to be Placenta-expressed 

transcript 1 (Plet1), a growth factor previously associated with development of epithelial 

layers, epithelial cell proliferation and formation of epithelial tight junctions. In vitro 
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infection experiments using primary murine alveolar epithelial cells (mAEC) demonstrated 

that recombinant Plet1 prevented AEC apoptosis and IAV replication, upregulated tight 

junction-associated proteins and increased tightness of the AEC monolayer. Blockade of 

Plet1 in M2ExMa by neutralizing antibodies abolished the epithelial-protective properties 

of M2ExMa in IAV infection in vivo. Orotracheal treatment of IAV infected mice with 

recombinant Plet1 attenuated inflammation, induced AEC repair, improved alveolar barrier 

function and increased survival of IAV-induced ALI/ARDS. Together, these data indicate 

that M1 and M2ExMa are functionally distinct phenotypes evolving during IAV infection, 

and that M2 programming of ExMa in vivo is protective with respect to alveolar barrier 

function due to expression of Plet1. Moreover, therapeutic intervention using alveolar 

deposition of Plet1 might be a useful strategy to improve outcome after ALI/ARDS in 

humans. 
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7. Zusammenfassung 
Das Influenza A Virus (IAV) induzierte akute Lungenversagen/´Acute Respiratory 

Distress Syndrome` (ARDS) ist eine schwere Komplikation der humanen IAV Infektion 

mit häufig tödlichem Ausgang aufgrund fehlender effektiver therapeutischer Optionen. Es 

ist charakterisiert durch eine schwere Entzündung des alveolären Lungenkompartimentes 

mit apoptotischer Schädigung des Alveolarepithels, was zum Verlust der pulmonalen 

Schrankenfunktion mit Lungenödem und schwerer Gasaustauschstörung führt.  Alveolär 

rekrutierte (Exudate) Makrophagen (ExMa) sind zentral sowohl an der inflammatorischen 

Gewebsschädigung des Alveolarepithels als auch an der Entzündungsauflösung und 

Gewebereparatur beteiligt und diese differenten Prozesse wurden jeweils einer M1 bzw. 

M2 Polarisation der beteiligten ExMa zugeschrieben. Bisher wurden jedoch weder 

Methoden etabliert, die es erlauben, diese Polarisationsphänotypen in Pneumonie Modellen 

in vivo zu unterscheiden, noch wurden bislang insbesondere im Kontext der IAV Infektion 

das funktionelle Repertoire von M1 vs. M2 polarisierten ExMa und die daran beteiligten 

Signalwege und Mediatoren aufgeklärt. 

Die in dieser Arbeit präsentierten Daten geben Hinweise darauf, dass ExMa im Verlauf des 

IAV-induzierten Lungenversagens/ARDS eine hohe funktionelle Plastizität aufweisen. Mit 

Hilfe einer neu etablierten ´FACS- Gating´ Strategie ließen sich M1 und M2 ExMa als 

distinkte Polarisationsphänotypen identifizieren, durchflusszytometrisch separieren und 

hinsichtlich ihres Genexpressionsprofils sowie ihrer Funktion im IAV-induzierten 

Lungenversagen charakterisieren. Quantitative Analysen zeigten, dass in der frühen akuten 

Phase der IAV Infektion (Tag 7 nach Infektion) M1 ExMa in großer Zahl den 

Alveolarraum und in geringerem Ausmaß das Lungeninterstitium infiltrieren. Später im 

Infektionsverlauf sinkt die Zahl der ExMa während der Anteil der  ExMa mit M2 

Polarisierung zunimmt. An Tag 21 nach Infektion sind nur noch wenige ExMa 

nachweisbar, die alle einen M2 Phänotyp aufweisen. Durch Untersuchungen in 

Knochenmarks-chimären Mausmodellen und adoptiven Transfer von ExMa in CCR2-/- 

Mäuse mit einem endogenen ExMa Rekrutierungsdefekt ließ sich zeigen, dass der 

funktionelle Phänotyp von  M2ExMa zur Erhaltung und Regenerierung des durch die IAV 

Infektion depletierten Zellpools residenter Alveolarmakrophagen (rAM) beiträgt, was zur 

Regeneration des Alveolarepithels und verbesserter epithelialer Barrierefunktion im IAV 

induzierten Lungenversagen/ARDS führte. Transkriptomanalysen von M1 vs M2ExMa 

zeigten distinkte Genexpressionsprofile, wobei M1ExMa pro-inflammatorische/pro-

apoptotische und Wirtsabwehr-assoziierte Gene exprimierten, während in M2 ExMa anti-

inflammatorische/anti-apoptotische Gene sowie eine hohe Anzahl von Genen, die 
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epitheliale Wachstumsfaktoren kodieren, hochreguliert waren. Das am stärksten in M2 

versus M1ExMa hochregulierte Gen war ´Placenta-expressed transcript 1´ (Plet1), ein 

Wachstumsfaktor, dem bereits eine Rolle bei der Entwicklung von Epithelzellschichten, 

bei der Epithelzellproliferation und der Formierung von epithelialen ´Tight Junctions´ 

zugeschrieben worden war. In in vitro Infektionsexperimenten an primären murinen 

Alveolarepithelzellen (AEC) ließ sich zeigen, dass rekombinantes Plet1 die AEC Apoptose 

und IAV Replikation verhindert, ´Tight Junction` assoziierte Proteine hochreguliert und 

die Dichtigkeit von AEC Monolayern erhöht. Blockade von Plet1 in M2ExMa durch 

neutralisierende Antikörper führte zum Verlust der Epithel-protektiven Eigenschaften von 

M2ExMa im Rahmen der IAV Infektion in vivo. Intratracheale Behandlung von IAV 

infizierten Mäusen  mit rekombinantem Plet1 attenuierte die Inflammation, induzierte AEC 

Reparatur, verbesserte die alveoläre Barrierefunktion und erhöhte die Überlebensrate von 

Tieren mit  IAV-induziertem ALI/ARDS. Insgesamt zeigen diese Ergebnisse, dass M1 und 

M2 ExMa funktionell distinkte Phänotypen im Verlauf der IAV darstellen und dass eine 

M2 Programmierung von ExMa durch die Expression von Plet1 in vivo protektiv für die 

alveoläre Barrierefunktion ist. Die alveoläre Deposition von Plet1 als therapeutische 

Intervention könnte deshalb eine nützliche Strategie sein, um das Behandlungsergebnis bei 

Patienten mit ALI/ARDS zu verbessern. 
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