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DEUTSCHE ZUSAMMENFASSUNG

Ziel dieser Arbeit ist es, die Struktur von Gebäude-Automorphismen besser zu ver-
stehen. Dazu wird insbesondere für einen Automorphismus θ auf einem Gebäude B
mit Weylgruppe W und Weylmetrik δ die Menge Wθ untersucht. Dies ist die Menge
aller Elemente der zugrundeliegenden Weylgruppe, welche Abstand von einer Kam-
mer zu ihrem Bild sind. Wir bezeichnen die Elemente in Wθ als Verschiebungsab-
stand (für θ). Es wird zuerst gezeigt, dass für Gebäude mit unendlicher irreduzibler
Weylgruppe und typerhaltendem Automorphismus θ die Menge Wθ nicht identisch
mit W ist. Weiter wird auch gezeigt, dass Wθ 6= W gilt, falls θ ein Automorphismus
eines affinen Gebäudes ist. Im darauffolgenden Teil wird mit der CAT(0)-Struktur
von Gebäuden gearbeitet.
Sei MC(θ) die Menge der Verschiebungsabstände von Kammern, deren geometrische
Realisierung einen Punkt enthält, der minimal verschoben wird. Wir zeigen, dass
für jeden Automorphismus θ einer CoxetergruppeW die Weylverschiebungen genau
die θ-Konjugate der Worte in MC(θ) sind. Weiter wird eine Bedingung für Auto-
morphismen von Gebäuden angegeben, unter welcher eine analoge Aussage für
diese Automorphismen richtig ist.
Im Anschluss werden Graphen definiert, welche eine Baumstruktur für ein Gebäude
beschreiben. Wenn solch ein Graph (V,E) für ein Gebäude B existiert und ein
Automorphismus θ von B auf diesen Baum operiert, so sei M die Menge der Kam-
mern, die in Knoten von V liegen, die minimalen Abstand zu ihrem Bild haben.
Dann entspricht die Menge Wθ den θ-Konjugaten von Verschiebungsabständen von
Kammern in M . Wir zeigen, dass für alle nicht-zwei-sphärischen Gebäude so ein
Baum existiert. Ein Spezialfall von diesen Bäumen sind die Residuenbäume, für
welche alle Knoten Residuen des Gebäudes sind und die ungerichteten Kanten den
Inklusionen entsprechen. Die Existenz eines Residuenbaumes für ein Coxetersys-
tem (W,S) impliziert bereits die Existenz eines Residuenbaumes für jedes Gebäude
vom Typ (W,S).

Im letzten Abschnitt der Arbeit wird die Struktur von affinen Gebäuden bzgl.
der Gruppe SLn(K) für diskrete Bewertungskörper K beschrieben. Für solch ein
Gebäude B wird die Wirkung von GLn(K) auf B analysiert. Wir beschreiben
einen Algorithmus, welcher es ermöglicht, den Weylabstand von zwei Kammern zu
bestimmen, wenn diese Kammern als Bilder der fundamentalen Kammer für zwei
Matrizen in GLn(K) gegeben sind. Dieses Resultat ist die Grundlage für das im
Anhang beschriebene Programm für Sage, mit dem Weylabstände von Kammern
in B berechnet werden können.
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If someone was about to ask me: What is the most essential part in modern
mathematical research? My answer would probably be: The interaction of different
fields enriching each other, providing new tools and a new point of view.
To gain access to the knowledge of a different field, a transition of the concepts and
structures has to be found. The theory of buildings can be seen as a framework
for such a transition. For example, the theory of buildings provides a metric space
for several algebraic structures such as semisimple algebraic groups. This is one of
the reasons I became so fascinated by this theory.

Some History

Invented by Jacques Tits in 1950’s and 1960’s to understand finite semisimple com-
plex Lie groups, the theory of buildings applies to a far wider class of objects than
those groups. At first buildings were seen as simplicial structures arising from Weyl
groups which may be understood as groups of reflections on a tiling of some space.
The maximal simplices are called chambers and a building is covered by apart-
ments which are subsets isomorphic to a simplicial realization of the corresponding
Weyl group. These buildings are called simplicial buildings. In the 1980’s came
a different approach towards buildings. A building admits a metric, called Weyl
metric, measuring distances between chambers as elements of the corresponding
Weyl group W . One can also define a W -metric building as a set of chambers
together with a metric into W satisfying certain conditions. It turns out that both
concepts are equivalent and a building admits a realization as a chamber complex
and a simplicial complex. After Davis and Moussong showed that every building
admits a CAT(0)-structure (see [Dav08, Dav98]), a third realization for buildings
was found which allows a very geometric analysis and gives new tools to work with.
An example of such a very important tool is Bruhat-Tits’ fixed point theorem, see
3.6.9.
Bruhat and Tits developed the concept of affine buildings based on their analysis
of affine BN -pairs in [BT66]. These buildings correspond to semisimple algebraic
groups over fields with discrete valuation (see also part V of this thesis). As a
generalization of spherical buildings which are the buildings whose corresponding
Weyl group is finite, the concept of twin buildings was invented. The idea behind
this is a twinning of two buildings given by an opposition relation. Twin build-
ings correspond to Kac-Moody groups which are infinite, finitely generated, but
possibly not finitely represented groups. These groups can be seen as an infinite
dimensional analogue of the initially studied objects.
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This Thesis

In the following let B be a building with Weyl group W and Weyl metric δ. The
Weyl metric δ induces a metric d on the set of chambers of B and an automorphism
of B is a map θ : B → B mapping chambers to chambers, preserving the metric d.
During the study of buildings there arises a natural and often researched question,
which is the central question of this thesis:

What can one say about θ?

Is it possible to ”classify” all automorphisms of B? Can we say something about
properties / orbits / fixed points of a given class of automorphisms or a specific
automorphism?

This thesis represents our own little contribution to this question. In particular,
the reader should keep the following question in mind while reading this thesis,
which drove much of the research in it:

What can we say about the set Wθ of (Weyl) displacements of θ?

Here, the set Wθ is the set of all elements in W which are the distance of (at
least one) chamber C ∈ B to its image θ(C), i.e.

Wθ := {w ∈ W | ∃ C ∈ B : δ(C, θ(C)) = w}.

This set might consist of exactly one element, it might be infinite, and it might
be anything else in between. Therefore it is natural to ask, how does this set look
like for a specific automorphism θ and on the other hand given a subset X ⊂ W ,
is there an automorphism with Wθ = X?

A general concept of this thesis is to find a small subset C of the chambers of
B such that the Weyl displacements in Wθ can be attained from C. [See theorems
11.5.1, 12.1.32, 13.1.9].

As to why we consider the set Wθ to be interesting: One motivation for this
comes from Deligne-Lusztig theory:

For a split connected reductive group G over a finite field, let B be a fixed Borel
subgroup, T a maximal split torus, and W the corresponding Weyl group. In 1976
Deligne and Lusztig constructed a family of algebraic varieties given the Frobenius
automorphism σ:

Xw := {g ∈ G/B | g−1σ(g) ∈ BwB}.

The structure of G/B is a building corresponding to the Weyl group W and the
set Xw is the set of all chambers which have displacement w. For a fixed w this
classical Deligne-Lusztig variety is smooth and equidimensional of dimension l(w).
Such varieties are used to define Deligne-Lusztig characters as in [Car93, section
7.2]. The varieties used there are given in the form Gσ := L−1(1) for the Lang
map L(g) := g−1σ(g). At the moment there is some interest in generalizing this
setup to the theory of affine root systems, based on their relation to the reduction
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modulo p of Shimura varieties 1 (see [Bea12, GHKR10, GH10, He14, Rap05]).
In the affine case, the group G is defined over a field with discrete valuation. In
particular: Let Fq be an algebraic closure of a finite field with q elements. Let O
be the valuation ring of Fq corresponding to a uniformizing parameter. Then G
is defined over the fraction field of O. The affine building (Bruhat-Tits building)
corresponding to this group is G/I, where I is the standard Iwahori-subgroup G
(see part V). The affine Deligne-Lusztig varieties for w ∈ W and b ∈ G are defined
as:

Xw(b) := {g ∈ G/ I | g−1bσ(g) ∈ Iw I}.
The main problem in this setup is to know when Xw(b) is empty.

Structure and scope

The first part of this thesis is a summary of the basic objects needed for this
work. It contains definitions of graphs, Cayley graphs, (free) amalgamated prod-
ucts, graph products, CAT(0) spaces, the gate property, simplicial complexes, and
chamber systems. Everything is only given in the most essential way to allow us to
work with them. Afterward, in the second part, the main objects, Coxeter systems
and buildings are introduced. As we work mainly on buildings, the section about
Coxeter systems is relatively short compared to its important role in the theory
of buildings. Nevertheless it covers everything we need to work with them. Part
I and part II might serve as a reminder for those familiar with these topics. The
reader not familiar with the subjects should find everything needed, but it is rec-
ommended to take a look at more detailed works. A very good reference for those
areas is [AB08]. At the beginning of the third part we will give some examples to
indicate that it is not easy to obtain general answers to the above questions. In
particular it will turn out that affine buildings have a very special behavior con-
cerning automorphisms. One might understand the problem in the following way:
It does not matter how far we zoom out, the structure (of the building and of any
isomorphism on it) will always look the same. Whereas for example the structure
of PGL(2,Z) looks from far away like a tree and all isomorphisms behave like iso-
morphisms on trees. This observation is the foundation of the tie tree approach in
chapter 12.

This work follows two different concepts to answer the above mentioned ques-
tions and presents an algorithmic approach for certain affine buildings, namely the
Bruhat-Tits buildings of SLn over the Laurent series of finite fields.

A geometric approach

The first approach (chapter 11) uses the complete CAT(0) structure of buildings.
The existence of a CAT(0) realization X shows that a building only admits auto-

1 Shimura varieties are an infinite dimensional analogue of modular curves related to a quotient
of Hermitian symmetric spaces by an congruence subgroup of a reductive group defined over Q.
They are used in several areas of number theory and play an important role in the Langlands
program.
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morphisms which induce hyperbolic or elliptic isometries on X . The first means
that we find geodesics in the given realization, on which θ acts as a translation and
the elements on these geodesics are exactly the elements with minimal distance to
their image. An isometry is elliptic if it has a fixed point. The set Min(θ) is defined
as the set of all points with minimal distance to their image. A geodesic ray on
which θ acts as a translation is called translation axis.
Let MC(θ) be the set of all chambers D of B whose geometric realization |D| in-
tersects Min(θ) non-trivially. We show that given any automorphism of a building
B for every chamber C ∈ B there exists a minimal gallery (C, . . . , D, . . . , θ(D))
for some chamber D ∈ MC(θ). In other words: We can always construct a min-
imal gallery coming as close as possible to the set Min(θ). If for every chamber
C ∈ B there exists an apartment ΣC containing the chamber θ(C) and a gallery
(C, . . . , D, . . . , θ(D)) for some D ∈ MC(θ), then the elements of Wθ are the θ-
conjugates of the displacements of elements in MC(θ). One conclusion of this is
that the Weyl displacements for an automorphism θ of a Coxeter system are exactly
the θ-conjugates of the displacements of chambers in MC(θ). A crucial aspect of
this geometric approach is the existence of an apartment containing a given cham-
ber and a subray of a translation axis. This might be understood in the following
way: The further we go along a translation axis, the smaller become the angles of
the remaining ray and geodesics issuing from the given chamber going through the
remaining ray. Thus after some point there cannot be any wall separating a proper
subray of the remaining ray from the given chamber.

An approach using tree-like structures

The second approach (chapter 12) uses tree-like structures called tie trees. Tie trees
relate to a coarser structure on a building (as a chamber system) identifying vertices
with gated sets, called knots and ties whose edges correspond to the containment
relation. These trees are a reasonable structure for us, as we can ensure that
minimal galleries in the building relate to minimal paths in the tree. Given a tie
tree, we can simplify our analysis of Wθ using the tree-like structure. The set
Min(θ) for the induced action on the tree does not have to contain any vertex, but
we might take the support supp(Min(θ)) which has the property that every path
from a vertex to its image has to pass through it. Therefore we can easily calculate
all Weyl displacements, once the displacements inside supp(Min(θ)) are known.
We will see that such a structure can be obtained (if it exists) for a building of
type (W,S) directly from a tie tree structure of (W,S) (if it exists). Examples for
such buildings are all non 2-spherical buildings.

Affine buildings and an implementation

A rather important class of buildings are the affine buildings. Sadly, most of the
given results can not be adapted to affine buildings. A first result that can be
applied to some class of automorphisms of affine buildings is a structure theorem
for automorphisms stabilizing a connected subset C which separates every chamber
outside of C from its image. In part V we will introduce the affine buildings B
corresponding to SLn(K) for a field K with discrete valuation. For this group
together with the group GLn(K) acting on B we describe an algorithm which
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computes the distance w = δ(C,D) of two chambers C,D in B. The first amounts
to finding a monomial matrix representing the same Iwahori-double coset as w.
This procedure can be understood as the retraction of D onto the fundamental
apartment based at the chamber C. The second step is an algorithm computing an
expression v for the word w from the monomial matrix of the first procedure. These
results led to the implementation of a program for computating Weyl distances in
B (see Appendix A, B, C).

Results overview

At the end of this introduction we want to mention the most relevant results of
this thesis.
Discussing some introductory examples in section 10 we show

Theorem 10.1.15. For every automorphism θ of an affine building B with Cox-
eter system (W,S) one has W 6= Wθ.

and

Corollary 10.1.11. By 10.1.10 every infinite Coxeter systems contains straight
elements. In particular, for any type-preserving automorphism θ of a building of
type (W,S) with infinite Coxeter group W , one has W 6= Wθ.

It is known that for any geodesic ray inside (the Davis realization of) a building
there exists a geometric apartment containing this ray (see [CH09, 6.3]). In section
11.3 we show

Proposition 11.3.11. Let θ be an hyperbolic action on a building B. Let C be a
chamber of B and let γ be a translation axis of θ. There exists a geometric apart-
ment |Σ′| containing |C| and γ((z,∞)) for some z ∈ R.

Working with the geometric structure of buildings we obtain our main result of
chapter 11:

Theorem 11.5.1. If an automorphism θ on a building B satisfies (MW ), then
any displacement w ∈ Wθ is a θ-conjugate of some displacement w′ ∈ WMin(θ), i.e.
w = w1 · w2 · θ(w1)−1 for some w2 ∈ WMin(θ).

The (MW ) condition ensures that for any chamber C ∈ B there exists a chamber
D ∈ B whose geometric realization contains a point with minimal displacement
such that D lies on a minimal gallery from C to θ(D). Examples for this are
all automorphisms of Coxeter systems, as well as all autormorphisms of buildings
whose Coxeter group is universal, and elliptic actions on affine building fixing ex-
actly one (geometric) wall.

The main result on tie trees is the following:

Theorem 12.1.32. If an automorphism θ of a building B admits a tie tree T ,
then the displacements of θ on B are exactly the θ-conjugates v · w · θ(v−1) of the
displacements w of chambers in SM(θ) such that l(vwθ(v−1)) = 2l(v) + l(w).

We obtain several examples for those buildings from section 12.2, where we take
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a closer look at a specialization of tie trees. It’s worth to mention here that all
non-2-spherical buildings admit a tie tree structure.

This slightly weaker result in section 13 gives us some information about au-
tomorphisms of affine buildings stabilizing exactly one apartment (see 13.2.6) and
automorphisms preserving the wall tree of an affine building (see 13.3.4):

Theorem 13.1.9. Let θ be an automorphism of a building B. If there exists a
θ-invariant connected subset Y of B such that for every chamber C ∈ B a minimal
gallery from C to θ(C) has to contain an element of Y , then every displacement
of θ is a reduced word of the form w1w0ŵ1, where w0 is an element of WSM(θ) and
w1 is a Weyl distance of a chamber to projY (C).

In part V let K be a field with discrete valuation and let B be the affine
building associated to SLn(K). We obtain a formula how to compute the Weyl
displacements of chambers in B under the action of elements in GLn(K):

Theorem 14.5.29. Let g ∈ GLn(K) and let Md =

(
πl1

...
πln

)
be a diagonal

matrix with M := Md · Mŵ ∈ I ·g · I for some word ŵ over {s1 . . . , sn}. For
k ∈ {0, . . . , n}, let Lk :=

∑k
i=1 li and set L0 := 1. Then for every chamber C ∈ B:

δ(C, g(C)) =
n∏
i=1

(
(σLi−1(w−1

i−1)) · σLi−1(wl·(n−1)) · σLi(wi−1)
)
· σLn(ŵ).

Using this very last result, we developed some software tools to compute displace-
ments in certain affine buildings. The code of the main tools can be found in
Appendix A, B, C. Some explanations are given in section 15.
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CHAPTER

ONE

PAIRS, GRAPHS AND GRAPHS OF GROUPS

1.1 Pairs and Graphs

This section is based on [AB08, Kra08, Dav08, Ser03]

Definition 1.1.1. Let V be a set. An undirected or unordered pair of V (or
2-element subset) is a set {v1, v2} of two (not necessarily distinguished) elements
v1, v2 of V . An ordered or directed pair of V is a set {{v1}, {v1, v2}} of (not
necessarily distinguished) elements v1, v2 of V . A pair (v1, v2) of V is either a
directed pair ((v1, v2) = {v1, v2}) or a undirected pair ({{v1}, {v1, v2}}).

Definition 1.1.2. A graph is an ordered pair (V,E), where V is a set, and E is
a set of pairs of V . The elements of V are called vertices. The elements of E are
called edges. A graph is called undirected if the elements of E are undirected.
It is called directed if the edges are directed.

Definition 1.1.3. Let (V,E) be a graph. A subgraph of (V,E) is a graph (V ′, E ′)
with V ′ ⊆ V and E ′ ⊆ E.

Definition 1.1.4. A graph (V,E) is called simple if it is an undirected graph
without loops and with unique edges. This means that E does not contain any
edges of the form (v, v) for v ∈ V and given any edge e = (v, v′) then e is the only
edge with vertices v and v′.

Definition 1.1.5. The set of edges E of an undirected graph (V,E) induces a
relation ∼ on V , by defining

v1 ∼ v2 ⇔ (v1, v2) ∈ E.

In this case we say that v1 and v2 are adjacent. This symmetric relation is called
adjacency relation.

Definition 1.1.6. Let (V,E) be a graph. A path Γ in (V,E) is a finite sequence
of vertices v0, . . . , vn such that (vi, vi+1) ∈ E for i ∈ {0, . . . , n − 1}. The length
l(Γ) of Γ is defined to be n. We say that two vertices v1, v2 are connected by a
path if there exists a path in (V,E) from v1 to v2. A graph is called connected
if any two vertices can be connected by a path.

1
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Definition 1.1.7. A cycle in a graph is a closed path without any interiour
repetitions, this means that it is a path v0, . . . , vn issuing and ending with the
same vertex v0 = vn such that vi 6= vj for all i 6= j ∈ {0, . . . , n− 1}.

Definition 1.1.8. A tree is a connected simple graph (V,E) where the path
connecting two vertices is unique. This means that a tree is a connected simple
graph without cycles.

Definition 1.1.9. Let (V,E) be an undirected graph. A spanning tree for (V,E)
is a subgraph (V ′, E ′) of (V,E) with V ′ = V which is a tree.

1.2 Cayley Graphs

Let G be a group and S a symmetric set of generators of G, i.e. S = S−1 which
does not contain the identity.

Definition 1.2.1. The Cayley graph of (G,S) is the (undirected) graph whose
vertices are the elements of G, and whose edges are the (unordered) pairs (g, gs),
for s ∈ S and g ∈ G. Let s ∈ S. Two elements g1, g2 in G are called s-adjacent
g1 ∼s g2 if g1 = g2 · s.

Definition 1.2.2. Two elements g1, g2 of G are adjacent with respect to S if they
are s-adjacent for some s ∈ S.

Remark 1.2.3. Two elements of G are adjacent with respect to S if and only if
the corresponding elements in the Cayley graph of (G,S) are adjacent.

Definition 1.2.4. Let Γ = (g0, . . . , gn) be path in the Cayley graph of (G,S). The
type τ (Γ) of Γ is the word w = s1 . . . sn, where gi ∼si gi−1, for i ∈ {1, . . . , n}.

Definition 1.2.5. Let g ∈ G. We call an expression s1 · · · sn a decomposition
for g if there exists a path from 1G to G in the Cayley graph of (G,S) of type
s1 · · · sn. The length of such a decomposition is n.

Definition 1.2.6. The minimal length lS(g) of an element g ∈ G in (G,S) is the
length of a minimal path from 1G to g in the Cayley graph of (G,S).

Definition 1.2.7. Let g ∈ G. A decomposition s1, . . . , sn for g in (W,S) is called
reduced if n = lS(g).

1.3 Ends of Groups

The notion of Ends is used in proposition 1.3.3 which will be used in 5.2.21. We do
not use this concept any further in this thesis, thus we will only give the definition
and the used proposition. One might think of the ends of groups being the number
of connected components at infinity.
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Definition 1.3.1. Let G be a finitely generated group with a finite generating
set S. Let Ω be its Cayley graph and let C be the posets of subgraphs ordered
by inclusion. The ends of Ω is the inverse limit of the path components over the
system {Ω \ C}C∈C

Ends(G) := Ends(Ω) := lim←− π0(Ω \ C).

Remark 1.3.2 (see [Dav08, G.1]). The set C ′ := {Ω \ C}C∈C carries a poset
structure (with relation ≤) with respect to the containment relation which yields
an inverse system given the natural embeddings ιC1

C2
: C1 ↪→ C2 for all pairs C1 ≤ C2,

i.e. for every C ∈ C ′ : ιCC = idC , and for all C1 ≤ C2 ≤ C3 : ιC2
C3
◦ ιC1

C2
= ιC1

C3
. The

inverse limit lim←−C
′ is the subset of the direct product

∏
C∈C′

C consisting of all tupels

(aC)C∈C′ such that ιC1
C2

(aC1) = aC2 for all C1 ≤ C2.
The inverse limit exists and is unique up to canonical isomorphism.

Proposition 1.3.3 ([Dav08, 8.6.1] originally [Hop44, Hauptsatz, Satz 1]). Suppose
G is a finitely generated group. Then G has either 0, 1, 2 or infinitely many ends.

(i) G is 0-ended if and only if G is finite.

(ii) G is 2-ended if and only if G is virtually infinitely cyclic, i.e. G has an infinite
cyclic subgroup of finite index.

(iii) If G has infinitely many ends then the number of ends is uncountable. More-
over, each point of Ends(G) is an accumulation point.
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AMALGAMATED PRODUCTS

For further references and detailed proofs, one may look at [Rob96] and [Ser03].

2.1 Free Group

Definition 2.1.1. A free group F(S) over a set S is defined by the following
universal property: For any group G and any map φ : S → G, there exists a unique
group homomorphism φ′ : F(S)→ G whose restriction to S equals φ:

S
φ //� _

��

G

F(S)
∃!φ′

==

Definition 2.1.2. A presentation 〈S | R〉 for a group G is a set of generators S
and a set of relations R ⊂ F(S) such that G is the quotient F(S)/〈〈R〉〉, where 〈〈R〉〉
is the smallest normal subgroup of F(S) containing R, called the normal closure of
R in F(S). A group G is called finitely generated if there exists a presentation
for G with a finite generating set. A group G is called finitely presented if there
exists a presentation 〈S,R〉 for G with finite sets S and R.

2.2 Free Product

Let {Gi}i∈I be a collection of groups.
The idea of the free product of {Gi} is to construct a group whose set of generators
is the union of the generators of the Gi as disjoint sets, and having the relations
given by the Gi.

Definition 2.2.1. The free product
∐

i∈I Gi is a group G and a collection of
homomorphisms ιi : Gi → G with the following property. Given a set of homomor-
phisms φi : Gi → H into a group H, then there exists a unique homomorphism

5
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G → H such that ιi ◦ φ = φi. This means that the diagram below commutes for
all i ∈ I.

Gi
φi //

ιi
��

H

G
∃!φ

>>

Remark 2.2.2. The free product of groups equals the coproduct in the category
of groups.

Notation 2.2.3. We will denote the free product of two groups G1 and G2 by
G1 ∗G2.

Proposition 2.2.4. The free product of groups exists and is unique up to isomor-
phism.

Remark 2.2.5. The existence of the free product can be shown, by a direct con-
struction. One takes the union U of the groups Gi assuming the given groups are
pairwise disjoint. The multiplicative structure on the set of all words F (U) over
U and defines an equivalence relation ∼ on those words in the following way: Let
g, f ∈ F (U), then g ∼ f if one can pass from g to f by applying a finite sequence
of the following operations:

(i) Inserting the element 1Gi for an i ∈ I.

(ii) Deleting the element 1Gi for an i ∈ I.

(iii) Replacing consecutive elements g1g2 which belong to the same group by their
product g′ = g1g2. (Contraction)

(iv) Replacing an element g′ of Gi by two elements g1, g2 ∈ Gi, where g′ = g1g2.
(Expansion)

The group of these equivalence classes is a free product of the groups Gi together
with the natural embeddings Gi → G, where x ∈ Gi is mapped to the equivalence
class containing the word x.

2.3 Amalgamated Products

The concept of amalgamated free products generalizes the concept of free products.

Definition 2.3.1. Let {Gi}i∈I be a non-empty set of groups. Let H be a group
together with monomorphisms ϕi : H → Gi for each i ∈ I. Let F =

∐
i∈I Gi and

let 〈〈N〉〉 the normal closure of N := {ϕi(h) · ϕj(h)−1 | i, j ∈ I, h ∈ H}, i.e. the
smallest normal subgroup of F containing N . Then the amalgamated (free)
product of {Gi}i∈I along H (with respect to {φi}i∈I) is defined as F/〈〈N〉〉.
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Notation 2.3.2. Let φ1 : A ↪→ G1 and φ2 : A ↪→ G2 be two monomorphisms of
groups A,G1, G2. We will denote the amalgamated (free) product of G1 and G2

along A (with respect to ϕ1 and ϕ2) by G1 ∗A,{ϕ1,ϕ2} G2. In case ϕ1 and ϕ2 are
known, we omit them and write G1 ∗A G2. In the same way, we will denote for
some index set I the amalgamated product of {Gi}i∈I along A by ∗A,{ϕi}{Gi}.

Remark 2.3.3. The idea of the amalgamated product is to find a group G which
is generated by the Gi such that the images of the Hi are identified inside G.

Remark 2.3.4. The free amalgamated product G := G1 ∗A,{ϕ1,ϕ2} G2 of groups
G1, G2, A satisfies the following universal property:
Let H be a group and let ψ1 : G1 → H,ψ2 : G2 → H be homomorphisms such that

G1

ψ1

&&
A

ϕ1

>>

ϕ2   

	 H

G2

ψ2

88

commutes, then the following diagram commutes everywhere.

G1

ψ1

++
ι1   

A

ϕ1

>>

ϕ2   

G
∃!φ

// H

G2

ψ2

33
ι2

>>

Definition 2.3.5. Let {Gi}i∈I be a family of groups and let Fi,j be a set of ho-
momorphisms from Gi to Gj. The direct limit lim−→Gi is a group G and a family of
homomorphisms ιi : Gi → G such that ιj ◦ f = ιi for all f ∈ Fi,j, satisfying the
following universal property:
Let H be a group and let hi : Gi → H be a family of homomorphism satisfy-
ing: hj ◦ f = hi for each f ∈ Fi,j, then there exists exactly one homomorphism
h : G→ H such that hi = h ◦ ιi.
This means: If the diagram

Gi

f

��

hi

''
	 H

Gj

hj

77

commutes for all i, j ∈ I, and all f ∈ Fi,j, then there exists a unique homomorphism
h : G→ H such that
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Gi

f

��

hi

++
ι1   

G
∃!h

// H

Gj

hj

44
ι2

>>

commutes everywhere for all i, j ∈ I, and all f ∈ Fi,j.

Remark 2.3.6. The amalgamated (free) product of the groups Gi along the group
A equals the direct limit lim−→{A} ∪ {Gi}i∈I , where the homomorphisms used are
just the embeddings of A into the given groups.

2.4 Reduced Words

We follow the chapter 1.2 in [Ser03]. LetG be the amalgamated product ∗A,{φi}{Gi}
and let A denote its image in each of the Gi. For all i ∈ I, let Si denote a set of
right-coset representatives for Gi/A and assume 1 ∈ Si. The map (a, s) 7→ as is a
bijection of A× Si onto Gi mapping A× (Si \ A) onto Gi \ A.
Let i = (i1, . . . , in) be a sequence of elements of I (for n ≥ 0) satisfying:

im 6= im−1 for 1 ≤ m ≤ n− 1. (∗)

Definition 2.4.1. A reduced word of type i is any family m = (a, s1, . . . , sn)
where a ∈ A, s1 ∈ Si1 , . . . sn ∈ Sin and sj 6= 1 fro all j.

Let f denote the canonical homomorphism of A into G and fi the canonical
homomorphism of Gi into G.

Theorem 2.4.2 ([Ser03, Theorem 1]). For all g ∈ G, there is a sequence i satis-
fying (∗) and a reduced word m = (a, s1 . . . , sn) of type i such that

g = f(a)fi1(s1) . . . fin(sn).

Furthermore, i and m are unique.

2.5 Word Problem

Let G be a finitely presented group, say G = 〈S | R〉, where S is a finite set, R is
a finite subset of the free group F(S) on S. Let π : F(S)→ G be the natural map.

Definition 2.5.1 (Word Problem). A finitely presented group G = 〈S | R〉 has a
solvable word problem if there exists an algorithm which decides for any w ∈ F(S)
whether or not π(w) = 1.
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2.6 Graph of Groups

The concept of graphs of groups is based on the Bass-Serre theory. They will
appear later in one of the main results 5.2.21. We will also use them to show that
buildings whose Coxeter group is virtually admit a tie tree structure.
Let (V,E) be a graph.

Definition 2.6.1. A graph of groups G over (V,E) is an assignment of groups
structures to (V,E) as follows: For each vertex v ∈ V , let G(v) be a group and
for each edge e ∈ E let G(e) be a group. Further let G(e, 0) : G(e) → G(v0) and
G(e, 1) : G(e) → G(v1) be monomorphisms for each edge e ∈ E with initial vertex
v0 and end vertex v1.

Definition 2.6.2. Let G be a graph of groups over a graph (V,E) and let (V ′, E ′)
be a spanning tree of (V,E). For each edge e ∈ E, let ye denote a symbol. The
fundamental group GG is the quotient of

∐
v∈V

Gv ∗F({ye | e ∈ E}) by the normal

subgroup generated by the relations:

(i) ye = y−1
e for any edge e if e is the edge e with reversed orientation,

(ii) yeG(e, 0)(a)y−1
e = G(e, 1)(a) for all a ∈ G(e),

(iii) ye = 1 if e ∈ E ′.

Notation 2.6.3. Once we fix a graph of groups G over (V,E), we use the following
notation for the group G = GG:

• For every vertex v ∈ V , the image of the vertex group G(v) under the natural
embedding in G will be denoted by Gv.

• For every edge e ∈ E, the image of the edge group G(e) under the natural
embedding in G will be denoted by Ge.

• For every edge e = (v0, v1) ∈ E, the monomorphisms G(e, 0) and G(e, 1)
induce monomorphisms from Ge into Gv1 and Gv2 which will be denoted by
ψe,0 and ψe,1.

Remark 2.6.4. The fundamental group of a graph of groups is independent of
the choice of the spanning tree. (See also [Bas93, Theorem 1.17, Remark 1.18,
Section 2 ] for a second version of a definition for the fundamental group using a
base vertex.)

Definition 2.6.5. We call a graph of groups non-trivial if the underlying graph
consists of more than one vertex and none of its monomorphisms G(e, 0) or G(e, 1)
is the identity.

Definition 2.6.6. A group G is said to decompose as a graph of groups if
there exists a non-trivial graph of groups G over a graph (V,E) with GG = G. If
the graph (V,E) is a tree, the group G decomposes as a tree of groups.
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CAT(0) SPACES

CAT(0) spaces are a generalization of non-positively curved manifolds, describing
metric spaces sharing essential attributes with those manifolds. They are uniquely
geodesic spaces, the distance function is convex and they are contractible. Exam-
ples of such spaces are Euclidean spaces, hyperbolic spaces, and symmetric spaces
without a compact factor. The important condition for CAT(0) spaces can be in-
terpretet as: Every geodesic triangle is thinner than a comparison triangle in the
Euclidean plane.
The definitions and notations are taken from [BH99].

3.1 Metric Spaces

Definition 3.1.1. Let X be a set. A pseudometric on X is a real-valued function
d : X ×X → R satisfying the following properties, for all x, y, z ∈ X :

Positivity: d(x, y) ≥ 0 and d(x, x) = 0.

Symmetry: d(x, y) = d(y, x).

Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y).

A pseudometric is called a metric if it is positive definite, i.e

d(x, y) > 0 if x 6= y.

Notation 3.1.2. We will call d(x, y) the distance of x and y.

Definition 3.1.3. A metric space is a pair (X, d), where X is a set and d is a
metric on X. A metric space is said to be complete if every Cauchy sequence in
(X, d) converges. If Y is a subset of X for a metric space (X, d), then the restriction
of d to Y ×Y is the induced metric on Y . If not stated otherwise, we will assume
a subset to carry the induced metric.

11
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Definition 3.1.4. A map f : (X, dX)→ (Y, dY ) from a metric space (X, dX) to a
metric space (Y, dY ) is called isometric if dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X.
An isometry is a isometric bijection f : X → Y . If such a map exists, (X, dX)
and (Y, dY ) are said to be isometric.

Notation 3.1.5. If no ambiguity may arise, a metric space X refers to a metric
space (X, d).

3.2 Geodesics

Definition 3.2.1. Let (X, d) be a metric space. A geodesic path joining x ∈ X
to y ∈ X (or geodesic from x to y) is an isometric map γ from a closed interval
[0, l] ⊂ R to X such that γ(0) = x, γ(l) = y. If γ(0) = x, then we say that γ issues
from x. The image of γ is called geodesic segment with endpoints x and y. It
will be denoted by [x, y] or by |γ].
A geodesic ray in a metric space (X, d) is an isometric map γ : [0,∞)→ X. Its
image [γ] will also called geodesic ray.
A geodesic line in a metric space (X, d) is a isometric map γ : R→ X. Its image
[γ] will also be called geodesic line.

Definition 3.2.2. A metric space (X, d) is called a geodesic metric space (or
geodesic space) if every two points of X can be joined by a geodesic. It is called
unique geodesic space if every two points can be joined by exactly one geodesic.

Definition 3.2.3. A subset of a metric space C is called convex if every pair of
points x, y ∈ C can be joined by a geodesic in X and if every such geodesic is
contained in C.

3.3 Gate Property

The standard reference to gated sets is the work [DS87] by Dress and Scharlau.
Their motivation was to generalize the known gate property of lower-dimensional
stars in buildings using the projection maps, which were introduced by Tits in
[Tit74] (as a product of simplices). The concept of gated sets was already known
(see [GW70, Isb80, Hed83]).

Definition 3.3.1. A subset Y of a metric set (X, d) is called gated (in (X,d)) if
the following holds:

Gate Property: For every x ∈ X, there exists a yx ∈ Y such that

d(x, y) = d(x, yx) + d(yx, y) for all y ∈ Y.

The element yx is called the projection (or gate) of x onto Y . It will be denoted
by projY (x).

Remark 3.3.2. The gate projY (x) is uniquely determined by x.
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Y1 Y2

projY1
(Y2) projY2

(Y1)

Figure 3.1: Projection maps. (The idea of the image is taken from [DS87])

Remark 3.3.3. For unique geodesic spaces, it is possible to define a geodesic
segment using the gate condition. Let x, y be elements of a unique geodesic space
(X, d), then

[x, y] := {z ∈ X | d(x, y) = d(x, z) + d(z, y)}.

Remark 3.3.4 ([DS87, Proposition 1]). Every gated subset is convex.

Definition 3.3.5. Let A,B be two subsets of a metric space (X, d). We define
their distance by:

d(A,B) := inf{d(x, y) | x ∈ A, y ∈ B}.

Remark 3.3.6. Let Y be a gated subset of a metric space (X, d) and let x ∈ X.
The projection projY (x) is the unique element of Y such that d(x, projY (x)) =
d(x, Y ).

Remark 3.3.7. Let Y ⊂ (X, d), x ∈ X. The existence of a unique element in Y
closest to x does not imply the gate property.
One may look at the closed disk of radius 1 in R2.

Proposition 3.3.8 ([DS87, Proposition 2], also [Hed83, Theorem 1.9], [Isb80,
1.8]). Let Z ⊂ Y be gated sets of a metric space (X, d). Then Z is gated in Y and
projZ = projYZ ◦ projY , where projYZ denotes the projection onto Z inside Y .

Lemma 3.3.9. If Y is a gated subset of a metric space (X, d) and x ∈ X, then:

for all z ∈ [x, projY (x)] : projY (z) = projY (x).

Theorem 3.3.10 ([DS87, Theorem]). Let Y1, Y2 be two gated sets in a metric space
(X, d). Let Z1 := projY1(Y2) and Z2 := projY2(Y1). Then
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(i) The projections projY1 and projY2 induce isometries between Z1 and Z2 which
are inverse to each other.

(ii) For x1 ∈ Y1, x2 ∈ Y2, the following two statements are equivalent:

(a) d(x1, x2) = d(Y1, Y2).

(b) x1 = projY1(x2) and x2 = projY2(x1).

(iii) The sets Z1 and Z2 are gated. The projection projY1 equals projY1 ◦ projY2
and projY2 = projY2 ◦ projY1.

3.4 The CAT (0) Inequality

For the general definition of CAT(κ) spaces, see [BH99, chapter II.1]. The present
work only deals with CAT(0) spaces, thus only the CAT(0) inequality will be given.
Throughout this section let X be a metric space.

Definition 3.4.1. A geodesic triangle in X consists of three points x, y, z ∈ X,
called vertices, and a choice of three geodesic segments [x, y], [y, z], [z, x], called the
sides. It will be denoted by ∆([x, y], [y, z], [z, x]). For a unique geodesic space X,
the choices of the geodesic segments are unique and we will write ∆(x, y, z). An
element p ∈ X is said to be in ∆ = ∆([x, y], [y, z], [z, x]) if p is an element of the
union of [x, y], [y, z], and [z, x]. In this case we write x ∈ ∆.

Definition 3.4.2. Let ∆ = ∆([x, y], [y, z], [z, x]) be a geodesic triangle in X. A
comparison triangle (in (R2, dR2) for ∆ is a geodesic triangle ∆(x̄, ȳ, z̄) in R2

with d(x, y) = dR2(x̄, ȳ), d(y, z) = dR2(ȳ, z̄), d(z, x) = dR2(z̄, x̄). A point p̄ ∈ [x̄, ȳ] is
called comparison point for p ∈ [x, y] if dR2(x̄, p̄) = d(x, p). Comparison points
for elements on [y, z] and [z, x] are defined in the same way.

Remark 3.4.3. A comparison triangle (in the above sense) is unique up to isom-
etry.

Definition 3.4.4. A geodesic triangle ∆ in X is said to satisfy the CAT(0) in-
equality if for a comparison triangle ∆̄, all p, q ∈ ∆, and all comparison points
(p̄, q̄) of ∆̄,

d(p, q) ≤ dR2(p̄, q̄).

Definition 3.4.5. A CAT (0) space is a metric space X whose geodesic triangles
satisfy the CAT(0) inequality.

3.5 The Alexandrov Angle

Definition 3.5.1. Let ∆(x̄, ȳ, z̄) be a comparison triangle for points x, y, z ∈ X.
The interior angle at x̄ in ∆(x̄, ȳ, z̄) is called the comparison angle between y
and z at x. It will be denoted by ]x(y, z).
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Definition 3.5.2. Let γ1, γ2 be two geodesics in a CAT(0) space X, issuing from
the same point p. The Alexandrov angle ](γ1, γ2) between γ1 and γ2 is defined
by

](γ1, γ2) := lim sup
t,t′→0

]p(γ1(t), γ2(t′)).

Proposition 3.5.3 ([BH99, Proposition 3.1]). One can express the angle in a
CAT(0) space in the following way:

cos(](γ1, γ2)) = lim
t→0

2 arcsin
1

2t
d(γ1(t), γ2(t)).

3.6 Properties of CAT (0) Spaces

Let X be a CAT(0) space.

Lemma 3.6.1 ([BH99, II.1.4]). X is a unique geodesic space.

Remark 3.6.2 ([BH99, II.2.2]). The metric on a CAT(0) space is convex, i.e. any
two geodesics γ1 : [0, 1]→ X, γ2 : [0, 1]→ X satisfy for all t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

Theorem 3.6.3 (The Flat Strip Theorem, [BH99, II.2.13]). Let γ1, γ2 be two
geodesics lines in X. If γ1 and γ2 are asymptotic, i.e. there exists a constant
K such that d(γ1(t), γ2(t)) ≤ K for all t ∈ R, then the convex hull of γ1(R)∪γ2(R)
is isometric to a flat strip R× [0, D] ⊂ R2.

Remark 3.6.4. In a CAT(0) space the terms asymptotic and parallel are used
synonymously.

Proposition 3.6.5 ([BH99, I.2.4]). Let X be a CAT(0) space, and let C be a
convex subset which is complete in the induced metric. Then,

(i) for every x ∈ X, there exists a unique point projC(x) ∈ X such that
d(x, projC(x)) = d(x,C) := infy∈C d(x, y);

(ii) if x′ belongs to the geodesic segment [x, projC(x)], then projC(x′) = projC(x);

(iii) given x /∈ C and y ∈ C if y 6= projC(x) then ∠projC(x)
(x, y) ≥ π/2;

(iv) the map x 7→ projC(x) is a retraction of X onto C which does not increase
distances; the map H : X × [0, 1] → X associating to (x, t) the point at
distance t · d(x, projC(x)) from x on the geodesic segment [x, projC(x)] is a
continuous homotopy from the identity map of X to projC.

Definition 3.6.6. Let B be a non-empty bounded set of X. The midpoint of the
closed ball containing B of minimal radius is called the circumcenter of B.
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Theorem 3.6.7 ([AB08, 11.26]). Let X be a complete CAT(0) space, let A be a
nonempty bounded subset. Then A admits exactly one circumcenter.

Theorem 3.6.8 ([AB08, 11.27]). Let X be a complete CAT(0) space, let A be a
nonempty bounded subset, and let Y be the smallest closed convex subset of X that
contains A. Then the circumcenter of A is contained in Y .

Theorem 3.6.9 (Bruhat-Tits Fixed-Point Theorem, see [AB08, 11.23]). Let
X be a complete CAT(0) space and let B be a bounded subset of X. If a group G
of isometries of X stabilizes B, then G fixes the circumcenter of B.

Notation 3.6.10. We will also call the circumcenter of a bounded set its barycen-
ter if X is a complete CAT(0) space.

3.7 Isometries of CAT (0) Spaces

Definition 3.7.1. Let X be a metric space and let θ be an isometry of X. The
displacement function of θ is the function dθ : X → R≥0, defined by dθ(x) =
d(x, θ(x)). The translation length of θ is the number |θ| := inf{dθ(x) | x ∈ X}.
The set of points with minimal displacement {x ∈ X | dθ(x) = |θ|} will be denoted
by Min(θ). An isometry is called

semi-simple if Min(θ) 6= ∅,

elliptic if θ has a fixed point, i.e. Min(θ) 6= ∅ and |θ| = 0,

hyperbolic if Min(θ) 6= ∅ and |θ| > 0,

parabolic if Min(θ) = ∅.

Every isometry is either elliptic, hyperbolic or parabolic.

Proposition 3.7.2 ([BH99, II.6.2]). Let X be a metric space with an isometry θ.

(i) The set Min(θ) is θ-invariant.

(ii) If X is a CAT(0) space, then the displacement function is convex, i.e. given
any geodesic γ : I → X, for all t, t′ ∈ I and all s ∈ [0, 1] the following
inequality holds:

dθ(γ( (1− s)t+ st′) ) ≤ (1− s)dθ(γ(t)) + s dθ(γ(t′)).

Hence Min(θ) is a closed convex set.

Proposition 3.7.3 ([BH99, II.6.8]). Let X be a CAT(0) space.

(i) An isometry θ of X is hyperbolic if and only if there exists a geodesic line
c : R → X which is translated non-trivially by θ, namely θ(c(t)) = c(t + a),
for some a > 0 and all t ∈ R. The set c(R) is called axis of θ. For any such
axis, the number a is actually equal to |θ|.
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(ii) If X is complete and θm is hyperbolic for some integer m 6= 0, then θ is
hyperbolic.

Let θ be a hyperbolic isometry of X.

(iii) The axes of θ are parallel to each other and their union is Min(θ).

(iv) Min(θ) is isometric to a product Y × R, and the restriction of θ to Min(θ)
is of the form (y, t) 7→ (y, t+ |θ|), where y ∈ Y and t ∈ R.

(v) Every isometry α that commutes with θ leaves Min(θ) = Y × R invariant,
and its restriction to Y × R is of the form (α′, α′′), where α′ is an isometry
of Y and α′′ a translation of R.

Corollary 3.7.4. For any metric space X and any isometry θ on X , the following
holds:

(i) Min(θ) = Min(θ−1).

(ii) x ∈ Min(θ)⇔ θ(x) ∈ Min(θ).

Proof. (i): Min(θ) = {x ∈ X | d(x, θ(x)) = d} = {y ∈ X | d(θ−1(y), y) = d} =
Min(θ−1).
(ii): By [BH99][II.6.2] the set Min(θ) is θ-invariant. Therefore x ∈ Min(θ) yields
θ(x) ∈ Min(θ). Now θ(x) ∈ Min(θ) implies θ(x) ∈ Min(θ−1) and x = θ−1(θ(x)) ∈
Min(θ−1) = Min(θ).

Lemma 3.7.5. For any isometry θ of a metric space X , projθ and θ commute.
I.e. for any element x ∈ X , we have

θ(projMin(θ)(x)) = projMin(θ)(θ(x)).

Proof. Let d := d(x, projMin(θ)(x)) = d(projMin(θ)(θ(x)), θ(x)) and let z ∈ Min(θ)
with d(z, θ(x)) ≤ d. Then θ−1(z) is an element of Min(θ) and d(θ−1(z), x) ≤
d which shows θ−1(z) = projMin(θ)(x). Thus z = θ(projMin(θ)(x)) is the unique
element of Min(θ) with minimal distance to θ(x) and thus θ(projMin(θ)(x)) =
projMin(θ)(θ(x)).

Corollary 3.7.6 ([BH99][II.2.8]). If X is a complete CAT(0) space, and if Γ is
a group of isometries of X with bounded orbit, then the fixed-point set of Γ is a
non-empty convex subspace of X .

Proposition 3.7.7 (Flat Triangle Lemma, see [BH99][I.2.9]). Let ∆ be a geodesic
triangle in a CAT(0) space X . If one of the vertex angles of ∆ is equal to the
corresponding vertex angle in a comparison triangle ∆̄ ⊂ E2 for ∆, then ∆ is flat,
i.e. the convex hull of ∆ in X is isometric to the convex hull of ∆̄ in E2.
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FOUR

SIMPLICIAL STRUCTURES

This section is taken from [AB08, Appendix A].

4.1 Simplicial Complexes

Definition 4.1.1. A simplicial complex with a set V of vertices is a collection Σ
of finite subsets of V (called simplices) such that every singleton {v} is a simplex
and every subset of a simplex A is a simplex (called face of A).

Definition 4.1.2. The rank of a simplex A is its cardinality, and its dimension
is defined to be its rank −1.

Remark 4.1.3. In this work, the empty set is considered to be a simplex. It has
rank 0 and dimension −1.

Definition 4.1.4. A subcomplex of a simplicial complex Σ is a subset Σ′ of Σ
containing every face for each simplex its contains. Thus a subcomplex is again a
simplicial complex.

Remark 4.1.5. The relation A ≤ B if A is a face of B turns a simplicial complex
into a poset. Therefore:

(a) Any two elements A,B ∈ Σ have a a greatest lower bound A ∩B.

(b) For any A ∈ Σ, the poset Σ≤A of faces of A is isomorphic to the poset of
subsets of {1, . . . , r} for some r ≥ 0.

Remark 4.1.6. A non-empty poset Σ satisfying (a) and (b) is a simplicial complex.
The elements of Σ are the simplices and the elements of rank −1 are its vertices.

Definition 4.1.7. Two simplices A,B of a simplicial complex Σ are called join-
able if they have an upper bound, i.e. there exists a simplex C ∈ Σ, with A and
B being faces of C. In particular, if A and B are joinable the least upper bound
A ∪B is the simplex whose vertex set is the union of the vertices of A and B.

19
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Definition 4.1.8. Let Σ be a simplicial complex. The star stΣ(A) (or just st(A))
of a simplex A in Σ is the set of all simplices B ∈ Σ having a face in A. The link
lkΣ(A) (or just lk(A)) of a simplex A in Σ is the subcomplex of Σ consisting of all
simplices in Σ which are disjoint, but joinable with A.

Remark 4.1.9. We can use the definition of the star of a simplex A to define its
link lk(A) by lk(A) = st(A) \ A.

Remark 4.1.10. We can turn lk(A) into a poset by the identification of an ele-
ment C ∈ lk(A) with its union C ∪A with A. In particular, the maximal simplices
in lk(A) are in one-to-one correspondence with the maximal simplices of Σ con-
taining A.

4.2 Flag Complexes

Definition 4.2.1. Let P be a set. A binary relation is called incidence relation
if it is reflexive and symmetric.

Definition 4.2.2. A flag of a set P with an incidence relation ∼ is a set of pairwise
incident element of P .

Definition 4.2.3. A flag complex F(P ) associated to a set P with an incidence
relation ∼ is the simplicial complex Σ(P ), where P is the set of vertices and the
simplices are the sets of finite flags.

Definition 4.2.4. A flag complex of dimension 2 is called incidence graph.

4.3 Chamber Complexes

Definition 4.3.1. A gallery in a simplicial complex is a sequence of maximal
simplices such that two consecutive elements are distinct and share a common
maximal proper face.

Definition 4.3.2. Let Σ be a finite-dimensional simplicial complex. We call Σ a
(connected) chamber complex if it satisfies:

(i) All maximal simplices have the same dimension.

(ii) Every two maximal simplices can be connected by a gallery.

Definition 4.3.3. A chamber of a chamber complex is a maximal simplex. A
panel is a codimension-1 face of a chamber.

Definition 4.3.4. Let d : Cham(Σ)×Cham(Σ)→ N be the well-defined distance
function on Cham(Σ) given by the minimal length of the galleries joining two
chambers. The diameter diam(Σ) is the diameter of the metric space (Cham(Σ), d)

Remark 4.3.5. The metric in 4.3.4 is the standard metric on the chamber graph
of Σ.
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Definition 4.3.6. Let Σ be a chamber complex of rank n and let I be a set with
n elements. A type function on Σ is a function τ on Σ with values in I that
assigns to each vertex v an element τ(v) ∈ I such that for every maximal simplex
∆ the vertices of ∆ are mapped bijectively to I. For a simplex A, the image τ(A)
is called the type of A. The cotype of a simplex A is the set I \ τ(A).

Definition 4.3.7. A chamber complex is called colorable, if it admits a type
function.

Definition 4.3.8. A chamber subcomplex of a chamber complex Σ is a sub-
complex of Σ which is also a chamber complex of the same dimension as Σ. The
chambers of a chamber subcomplex Σ′ are chambers of Σ which can be connected
via a gallery inside Σ′.

Definition 4.3.9. If Σ and Σ′ are chamber complexes of the same dimension,
then a simplicial map θ : Σ → Σ′ is called a chamber map if it maps chambers to
chambers.

Remark 4.3.10. One may note that a chamber map maps adjacent chambers to
acjacent chambers. The image of a chamber map is always a chamber subcomplex.

4.4 Chamber Systems

Definition 4.4.1. A chamber system over a non-empty set I is a set C with
an equivalence relation ∼i on C for each i ∈ I. The elements in C are called
chambers and two chambers C,D are called i-adjacent if C ∼i D. We call two
chambers C,D adjacent if they are adjacent for some i ∈ I and write C ∼ D. The
equivalence classes with respect to the i-adjacent relation are called i-panels. A
panel is an i-panel for some i ∈ I.

Notation 4.4.2. If X is a structure carrying the structure of a chamber system,
then the set of chambers of X will be denoted by Cham(X).

Definition 4.4.3. The rank of a chamber system over I equals the cardinality of
I.

Definition 4.4.4. A gallery in a chamber system is a finite sequence (C0, . . . , Cn)
of elements in C with Ci ∼ Ci−1 for i ∈ {1, . . . , n}. A gallery is of type i1 . . . in
(as a word in the free monoid over I) if Cj ∼ij Cj−1 for i ∈ {1, . . . , n}. A gallery
(C0, . . . , Cn) is called stuttering if Ci = Ci−1 for some i ∈ {1, . . . , n}.

Notation 4.4.5. In this work a gallery is always a non-stuttering gallery, unless
stated otherwise.

Definition 4.4.6. A gallery Γ = (C0, . . . , Cn) is called a J-gallery for some J ⊆ I
if Γ is of type i1 . . . in and ij ∈ J for j ∈ {1, . . . , n}.

Remark 4.4.7. The type of a gallery in a chamber system does not need to be
unique. But in the theory of buildings, two adjacent chambers will be i-adjacent
for exactly one i ∈ I.
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Definition 4.4.8. A chamber system C is called connected or (J-connected for
some J ⊆ I) if any two chambers of C can be joined by a gallery (by a J-gallery).

Definition 4.4.9. Let J ⊆ I. A J-residue (or residue of type J) of a chamber
system C, is a J-connected component of C. A residue, is a J-residue of C for some
J ⊆ I.

Remark 4.4.10. Every J-residue is a connected chamber system and the i-panels
are the residues of type {i}. The rank 0-residues of a chamber system are exactly
its chambers.

Definition 4.4.11. Let C be a chamber system over a set I and let D be a chamber
system over a set J .
A morphism ϕ : C → D from C to D is a map ϕ : C → D which preserves
adjacency, i.e. if C ∼ D, then ϕ(C) ∼ ϕ(D).
If I equals J , then a morhpism ϕ : C → D is called type-preserving morphism if
it preserves the i-adjacency relation for all i ∈ I, i.e. if C ∼i D, then ϕ(C) ∼i ϕ(D).
An isomorphism of chamber systems is a morphism of chamber systems admitting
a two-sided inverse morphism. An automorphism of chamber systems is a isomor-
phism from a chamber system onto itself.

Proposition 4.4.12 ([AB08, A.20]). Let Σ be a colorable chamber complex. As-
sume that the link of every simplex is again a chamber complex and that every panel
is a face of at least two chambers. Then Σ is determined (up to isomorphism) by
its chamber system Cham(Σ). More precisely:

(i) For every simplex A, the set C≥A of chambers having A as a face is a J-
residue, where J is the cotype of A.

(ii) Every residue has the form C≥A for some simplex A.

(iii) For any simplex A, we can recover A from C≥A by

A =
⋂
C≥A

C

(iv) The chamber complex Σ is isomoprhic (as a poset) to the set of residues in
Cham(Σ) ordered by reverse inclusion.



PART IIIPART III

Introducing The Main Objects





CHAPTER

FIVE

COXETER SYSTEMS

Let W be a group with a symmetric set 1 /∈ S of involutory generators, i.e. elements
of order 2. Let l = lS be its length function. We want to have a closer look at the
following conditions:

(A) The Action Condition:
Let T be the set of conjugates of elements of S. There is an action of W on
T × {±1} such that a generator s ∈ S acts as the involution ρs given by

ρs(t, ε) =

{
(sts, ε) if s 6= t,

(s,−ε) if s = t.

(C) The Coxeter Condition:
W admits the presentation 〈

S | (st)m(s,t) = 1
〉
,

where m(s, t) is the order of st and there is one relation for each pair s, t with
m(s, t) <∞.

(D) The Deletion Condition: If w = s1 · · · sm with m > l(w), then there
are indices i < j such that

w = s1 · · · ŝi · · · ŝj · · · sm,

where ŝ indicates an deleted element.

(E) The Exchange Condition:
Given w ∈ W , s ∈ S, and any reduced decomposition w = s1 · · · sd of w,
either l(sw) = d+ 1 or else there is an index i such that

w = ss1 · · · ŝi · · · sd,

where ŝ indicates an deleted element.

(F ) The Folding Condition:
Given w ∈ W and s, t ∈ S such that l(sw) = l(w) + 1 and l(wt) = l(w) + 1,
either

l(swt) = l(w) + 2 or else swt = w.

25
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5.1 Conditions on (W,S)

Coxeter systems play a very important role in the theory of buildings. One might
at this point think of a building being a set of isomorphic Coxeter systems glued
together in a nice way. Whenever we look at a path from one element of a building
to another one, then this path is a path inside one of those Coxeter systems. We see
that understanding Coxeter systems is a crucial part of understanding buildings.
The idea of Coxeter systems is an abstraction of reflection groups which are discrete
groups generated by reflection of a finite dimensional Euclidean space ([Cox34]).
Despite their significance for buildings, we will only give a short overview about
Coxeter systems, listing the things of major importance needed in this thesis. It
may be taken as a reminder for the reader familiar with Coxeter systems. For the
interested reader, not familiar with this topic, we suggest to take a closer look at
[AB08, chapter 1-4], or [Hum90].

Theorem 5.1.1 ([AB08, 2.49]). The conditions (A), (C), (D), (E), and (F ) are
equivalent.

Definition 5.1.2. A pair (W,S) of a group W and a set S of generators of order 2
for W is called a Coxeter system if the equivalent conditions in 5.1.1 are satisfied.
A group W for which a generating set S exists such that (W,S) is a Coxeter system
is called Coxeter group. The matrix (m(s, t)) will be called Coxeter matrix of
(W,S), and the cardinality of S will be called the rank of (W,S).

Definition 5.1.3. Let (W,S) be a Coxeter system and let (V,E) be a graph whose
vertex set is S and where the edges are given by:

• If s and t commute (i.e. mst = 2) then there is no edge between the corre-
sponding vertices.

• If mst = 3 for s, t ∈ S, then the corresponding vertices are connected by an
edge.

• If mst > 3 for s, t ∈ S, then the corresponding vertices are connected by an
edge which is labeled by mst.

The graph Γ is called the Dynkin diagram (or Coxeter diagram) for (W,S).

Definition 5.1.4. For a subset T ⊂ S, we define WT := 〈T 〉. These sets are
called standard subgroups (or standard parabolic subgroups) (or special
subgroups) of W .

Definition 5.1.5. A subset T ⊂ S is spherical if WT is a finite subgroup of W .
In this case WT is called spherical subgroup of W .

Definition 5.1.6. A coset of W of the form wWT , where w ∈ W,T ⊂ S is called
standard coset of W .
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Remark 5.1.7. Following the concept of elementaryM -operations onW by Jacques
Tits [Tit69], one can show that the word problem for Coxeter groups is solvable.
The elementary M -operations are two kinds of operations on expressions over S:

(i) Deleting a subword of the form ss for some s ∈ S.

(ii) Replacing an alternating subword of the form sts · · · of length mst by the
word tst · · · of length mst.

5.2 Coxeter Complex

Definition 5.2.1. The Coxeter complex of a Coxeter system (W,S) is the poset
Σ(W,S) of standard cosets in W ordered by reverse inclusion is a simplicial com-
plex. The maximal simplices are the singletons {w} and can be identified with the
elements of W . The simplices of the form w〈s〉 = {w,ws} are the panels. The
chamber 1W is called the fundamental chamber.

Remark 5.2.2. The relation B ≤ A holds in Σ(W,S) if and only if A ⊆ B in W .

Theorem 5.2.3 ([AB08, Theorem 3.5]). The Coxeter complex Σ(W,S) is a sim-
plicial complex. It is a thin chamber complex of rank |S|. It is colorable and the
action of W on Σ(W,S) is type-preserving.

Definition 5.2.4. A simplicial complex Σ is called a Coxeter complex if it is
isomorphic to the Coxeter complex Σ(W,S) of a Coxeter system (W,S). It is
called spherical if it is finite.

Remark 5.2.5. A Coxeter complex has no specific chamber with the property of
being fundamental (a chamber in Σ(W,S) which corresponds to 1W ∈ W ). This
allows us to choose a chamber in Σ as a fundamental chamber.

Definition 5.2.6. Let Σ be a thin chamber complex. A root (or half-apartment)
is a subcomplex α whose set of chambers is of the form

Cham(α) = {D ∈ Cham(Σ) | d(D,C) < d(D,C ′)},

where C and C ′ are two adjacent chambers. The root −α is defined by

Cham(−α) = {D ∈ Cham(Σ) | d(D,C) > d(D,C ′)}, .

It is called the root opposite to α.

Definition 5.2.7. A wall is the intersection of a root α and its opposite root −α.
If it is given by a root α, then it will be denoted by ∂α or α.

Remark 5.2.8 ([AB08, Section 3.4]). A wall ∂α determines an automorphism sα
of Σ which has the properties:

(i) The automorphism sα is the unique non-trivial automorphism of Σ which
fixes the wall ∂α pointwise.
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(ii) The roots α and −α are interchanged by sα.

Remark 5.2.9. The roots α and −α are given by the wall ∂α and any panel in ∂α
determines the same pair of roots, i.e. if P is a panel in ∂α, then the two chambers
C,C ′ of P determine α and −α.

Theorem 5.2.10 ([AB08, 3.65]). A thin chamber complex Σ is a Coxeter complex
if and only if every pair of adjacent chambers is separated by a wall.

Theorem 5.2.11 ([AB08, 3,72]). Let Σ be a Coxeter complex and let C be an arbi-
trary chamber in Σ called the fundamental chamber. Let S be the set of reflections
of Σ interchanging C with an adjacent chamber. Let W ≤ Aut(Σ) be the subgroup
generated by S. The pair (W,S) is a Coxeter system.

To show this theorem, the following results were used:

Lemma 5.2.12 ([AB08, 3.66]). The group W acts transitively on Σ.

Theorem 5.2.13 ([AB08, 3.67]). A Coxeter system is colorable.

Lemma 5.2.14 ([AB08, 3.69]). If Γ = (C0, . . . , Cn) is a minimal gallery, then the
walls crossed by Γ are distinct and are precisely the walls separating C0 from Cn.
Hence the distance of two chambers is the number of walls separating them.

Theorem 5.2.15 ([AB08, 3.68, 3.71]). The action of W on Σ is type-preserving
and W acts simply transitive on the chambers of Σ.

Theorem 5.2.16 ([AB08, 3.85]). Let τ be a type function for a Coxeter system
Σ with values in a set S. The Coxeter matrix defined by (ms,t)s,t∈S with ms,t =
diam(lk(A)) determines a Coxeter system (WM , S). The Weyl group of Σ is defined
as WM . There exists a type-preserving isomorphism Σ ∼= Σ(WM , S).

Definition 5.2.17. Let (W,S) be a Coxeter system with Coxeter matrix M . A
Coxeter complex Σ is said to be of type (W,S) (or of type M) if Σ admits a type
function with values in S such that the corresponding Coxeter matrix is M . This
is equivalent to the existence of a type-preserving isomorphism Σ ∼= Σ(W,S).

Remark 5.2.18. Let C,D be two chambers in the chamber system of a Coxeter
complex Σ. By Σ ∼= Σ(W,S) for some Coxeter system (W,S), we have a canonical
type function. Let δ(C,D) be the type of a minimal gallery from C to D. The
chambers in Σ(W,S) correspond to the elements in W and thus a gallery of type
s1 . . . sd with s1, . . . , sd ∈ S from w1 to w2 has the form w1, w1s1, . . . , w1s1 · · · sd =
w2 and we get δ(C,D) = w−1

1 w2 which is independent of the choice of the gallery.
We see that after choosing a fundamental chamber C ∈ Σ we can define a distance
function δ on the chamber system of Σ by δ(w1C,w2C) := w−1

1 w2

Definition 5.2.19. Let Σ be a Coxeter complex of type (W,S), and let A and
B be arbitrary simplices. Then there is an element δ(A,B) in W with δ(A,B) =
δ(C0, Cl) for a minimal gallery C0, . . . , Cl from A to B. In particular

d(A,B) = l(δ(A,B)).
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Proposition 5.2.20 ([AB08, Corollary 3.17]). The Coxeter complex Σ = Σ(W,S)
is completely determined by its underlying chamber system. More precisely, the
simplices of Σ are in 1− 1 correspondence with the residues in Cham(Σ), ordered
by reverse inclusion.
A simplex ∆ corresponds to the residue Cham(Σ)≥∆, consisting of all chambers
containing ∆ as a face.

Proposition 5.2.21 ([Dav08, 8.8.2]). Any Coxeter system decomposes as a tree of
groups, where each vertex group is a 0- or 1-ended special subgroup and each edge
group is a finite special subgroup.

Proposition 5.2.22 ([Dav08, 8.8.2]). A Coxeter group W is two-ended if and
only if (W,S) decomposes as (W1, S1)× (W2, S2), where W1 is finite and W2 is the
infinite dihedral group.

Corollary 5.2.23 ([Dav08, 8.8.5]). A Coxeter group is virtually free if and only if
it has a tree of groups decomposition.

Remark 5.2.24. A Coxeter group is virtually free if it can be written as an iterated
amalgamated product of finite special subgroups along finite special subgroups.
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BUILDINGS

Buildings can be seen as a rich tool for studying semisimple algebraic groups over
arbitrary fields. They provide a simplicial structure, a CAT(0) space, and a com-
binatorial structure. Hence they play an important role as trees do in the theory
of free groups. We will introduce buildings as they evolved. Starting with the sim-
plicial approach we will go over to the combinatorial approach and show that both
concepts coincide (as long as we assume the generating set S of the underlying Cox-
eter group to be finite). According to our study aim we then discuss some aspects
of groups acting on buildings before we present the Davis realization of buildings.
A typical example for a building is the coset space SLn(k)/B, where B is the sub-
group of upper triangular matrices in SLn(k).

6.1 Buildings as Simplicial Complexes

The definitions are taken from [AB08, Chapter 4].

Definition 6.1.1. A building is a simplicial complex B that can be expressed as
the union of subcomplexes Σ (called apartments) satisfying the following axioms:

(B0): Each apartment Σ is a Coxeter complex.

(B1): For any two simplices A,B ∈ B, there exists an apartment Σ containing
both of them.

(B3): If Σ and Σ′ are two apartments containing two simplices A,B, then there
exists an isomorphism Σ→ Σ′ fixing A and B pointwise.

Remark 6.1.2. By taking the simplices A,B in (B3) to be the empty simplex,
one sees that all apartments are isomorphic. Further B is finite dimensional and
its dimension is the common dimension of its apartments.

Remark 6.1.3. A building B is a chamber complex. Its chambers are the maximal
simplices. For any two maximal simplices, there exists an apartment containing
them. Thus they have the same dimension and are connected by a gallery.
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Definition 6.1.4. Let B be a building. Then every set of subcomplexes satisfying
the axioms (B1), (B2), and (B3) is called a system of apartments for B.

Definition 6.1.5. A building is called thick if every panel is a face of at least
three chambers. It is called thin if every panel is a face of exactly two chambers
and weak if every panel is a face of at least two chambers. We further say that a
building is locally finite if every panel is a face of only finitely many chambers.

Proposition 6.1.6 ([AB08, Remark 4.3, Remark 4.4]). The axiom (B2) can be
replaced by one of the following axioms:

(B2’): Let Σ and Σ′ be two apartments containing a simplex A and a chamber C
(i.e. a maximal simplex C of Σ). Then there exists an isomorphism Σ→ Σ′

fixing A and C pointwise.

(B2”): Let Σ and Σ′ be two apartments containing a chamber C. Then there exists
an isomorphism Σ→ Σ′ fixing Σ ∩ Σ′ pointwise.

Remark 6.1.7. A Coxeter complex is a thin building with exactly one apartment.

Remark 6.1.8 ([AB08, Proposition 4.6]). A building is colorable and the isomor-
phisms Σ→ Σ′ in axiom (B2) can be taken to be type-preserving.

Remark 6.1.9. All apartments of a building have the same Coxeter matrix. Thus
we can define the Coxeter matrix of a building to be the Coxeter matrix of any of
its apartments. Further we have a Coxeter system of a building. One may note
that these properties are independent from the given apartment system.

Remark 6.1.10. Let (W,S) be the Coxeter system associated to the Coxeter
matrix of a building B. For any apartment Σ of B, there exists a type-preserving
isomorphism from Σ to the Coxeter complex Σ(W,S).

Proposition 6.1.11 ([AB08, Corollary 4.11]). A building B is completely deter-
mined by its underlying chamber system. More precisely, the simplices of B are in
1 − 1 correspondence with the residues of its chamber systems Cham(B), ordered
by reverse inclusion. A simplex A corresponds to the residue C≥A of all chambers
having A as a face.

Remark 6.1.12. Let (W,S) be a Coxeter system with Coxeter matrix M . A
building B is said to be of type (W,S) if it admits a type function with values in
S such that the Coxeter matrix of B is M .

Proposition 6.1.13 ([AB08, 4.9]). If B is a building and A is a simplex in B,
then lk(A) is a building. In particular lk(A) is a chamber complex.

The Complete System of Apartments

Theorem 6.1.14 ([AB08, 4.54]). If B is a building, then the union of any family
of apartment systems is again an apartment system. Consequently, B admits a
largest system of apartments.
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Figure 6.1: δ(C,D) = w, δ(D,E1) = δ(D,E2) = s

Definition 6.1.15. For a building B, the maximal apartment system will be called
the complete apartment system or complete system of apartments. We
denote this apartment system by A(B).

Proposition 6.1.16 ([AB08, 4.59]). If Σ is a subcomplex of a building B of type
M which is isomorphic to ΣM , then Σ is an apartment in the complete system of
apartments.

Definition 6.1.17. A root in a building B is a subcomplex which is contained in
an apartment Σ of B and which is a root inside Σ.

6.2 Buildings as W -Metric Sets

Definition 6.2.1. A building of type (W,S) is a pair (C, δ) with a non-empty set
C and a map δ : C × C → W , satisfying the following properties:

(i) δ(C,C ′) = 1 if and only if C = C ′.

(ii) If δ(C,D) = w ∈ W and δ(C,C ′) = s ∈ S then δ(C ′, D) ∈ {w, sw}. Further-
more, if l(w) < l(sw), then δ(C ′, D) = sw.

(iii) If w = δ(C,D) for C,D ∈ C and s ∈ S, then there exists a chamber C ′ ∈ C
with δ(C ′, D) = sw.

The elements of C are called chambers and the map δ is called the Weyl distance
function on C.

Definition 6.2.2. Let s ∈ S. Two chambers C,D are called s-adjacent if
δ(C,D) ∈ {1, s} and we write C ∼s D. We call two chambers adjacent if they
are s-adjacent for some s ∈ S and we write C ∼ D.

Lemma 6.2.3 ([AB08, Lemma 5.3]). Let C,D,E be chambers of a building (C, δ).
If δ(C,D) = s then δ(D,C) = s. If δ(C,D) = δ(D,E) = s ∈ S, then δ(C,E) ∈
{1, s}.

With the previous lemma we can define panels:
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Definition 6.2.4. Let s ∈ S. A panel (or s-panel) is an equivalence class under
the adjacency relation (or s-adjacency relation).

Definition 6.2.5. A sequence Γ = (C0, . . . , Cn) of of chambers with Ci ∼si Ci+1 6=
Ci for 0 ≤ i < n− 1 is called a gallery of length n. The word s0 · · · sn−1 is called
the type of Γ. If there exists no gallery of length < n from C0 to Cn, we say that
C0 and Cn have distance n. If n is the distance of C0 and Cn, we say that Γ is a
minimal gallery.

Lemma 6.2.6 ([AB08, 5.17]). For any two chamber C,D ∈ B, we have

δ(C,D) = δ(D,C)−1.

Remark 6.2.7 ([AB08, Proposition 4.41]). Let Γ = (C0, . . . , Cn) be a gallery of
type w = s1 · · · sn. Then Γ is a minimal gallery if and only if w is a reduced word.

Definition 6.2.8. The Weyl distance function δ of a building (C, δ) induces a
metric d : C × C → N on (C, δ) by

d(C,D) := l(δ(C,D)).

Definition 6.2.9. Let J ⊂ S. A J-residue R of a building B is defined as a
J-connected component. It is a set of chambers such that

R = {D ∈ Cham(B) | δ(D,C) ∈ WJ}

for some chamber C in B. A residue is a J-residue for some J ⊂ S.

Proposition 6.2.10 ([AB08, 5.30]). A J-residue R together with the Weyl metric
δ restricted to R is a building of type (WJ , J)

Definition 6.2.11. A subset C ⊂ Cham(B) of a building B is called convex if for
any two chambers C,D ∈ C every minimal gallery from C to D is also contained
in C. The convex hull conv(C) of a subset C ⊂ Cham(B) is the smallest convex
subset of Cham(B) containing C.

Remark 6.2.12. Residues are convex subsets.

Definition 6.2.13. A building of type (W,S) is a connected chamber system (see
4.4). Thus we can define a building morphism φ : (C, δ) → (C ′, δ′) of buildings
to be a morphism φ : (C, δ) → (C ′, δ′) of chamber systems. The definition of a
building isomorphism and building automorphism follow directly.

Definition 6.2.14. Let θ be an automorphism of a building (C, δ). The set

Wθ := {w ∈ W | ∃ C ∈ (C) : δ(C, θ(C)) = w}

is called the Weyl displacement set. The elements in Wθ are called Weyl
displacements.
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6.3 Simplicial Complexes vs. W-Metric

We will follow [AB08, section 5.6] to show that the simplicial approach and the
Weyl metric approach for buildings yield the same objects. To do so, we will con-
struct a simplicial complex corresponding to a building of type (W,S) as a chamber
system with Weyl metric δ and we will obtain a Weyl metric δ on the set of cham-
bers for a building as a simplicial complex.

Remark 6.3.1. We have to restrict the type of the building to be of finite rank,
i.e. the generating set S for the pair (W,S) is finite. This is due to the structure
of simplicial complexes.

We have seen that a building (as a simplicial complex) has a unique Coxeter
matrix which yields a Coxeter group W . Furthermore for the coloring in 6.1.8, the
set of colors can be taken to be the set S for a Coxeter system (W,S).
By 6.1.11 we get a chamber system Cham(B) for B. Apartments are convex,
i.e. every minimal gallery of Cham(B) is contained in an apartment and every
apartment Σ carries a well-defined Weyl distance function δΣ : Σ × Σ → W . If
C,D are chambers of B, then by definition there exists an apartment Σ containing
both chambers and we can define δ(C,D) := δΣ(C,D). By 6.1.8 this definition is
independent from the choice of Σ. From this we get a function δ : B × B → W
which we will call the Weyl distance function of B.

Proposition 6.3.2 ([AB08, 4.84]). The Weyl distance function on a building B as
a simplicial complex satisfies the conditions for (Cham(B), δ) to be a building as a
W -metric set.

Definition 6.3.3. Let B = (C, δ) be a building of type (W,S) (of finite rank). We
define a poset

∆(B) := {R | R is a residue of B},

with partial order
R ≤ R′ ⇔ R ⊇ R′.

We define a map
τ(R) = S \ J,

where J is the type of R

Remark 6.3.4. Following section 5.6 in [AB08], the poset ∆(B) is a colorable
chamber complex whose chambers are exactly the chambers of B and τ is a type-
function. In the simplicial complex ∆(B) one might understand the residue R as
the simplex whose link corresponds to the chambers in R (seen as a residue in B).

Theorem 6.3.5 ([AB08, 5.93]).

(i) Let B be a building (as a simplicial complex) of type (W,S), and let (Cham(B), δ)
be the W -metric building associated to B (see 6.3.2). Then the chamber com-
plex ∆(Cham(B)) is canonically isormorphic to B.
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(ii) Let (B, δ) be a building (as a W -metric set) of type (W,S), and let ∆(B)
be the corresponding simplicial building of type (W,S). Then the W -metric
building associated to ∆(B) is equal to the original building (B, δ).
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SEVEN

BUILDINGS AND GROUPS

7.1 Weyl Transitive Action

Let B be a building of type (W,S). Let G be a group acting on B type-preservingly.

Definition 7.1.1. An action of G on B is chamber transitive if it acts transi-
tively on the set Cham(B). It is Weyl transitive if for each w ∈ W , the action is
transitive on the set of ordered pairs (C,D) of chambers with δ(C,D) = w.

Proposition 7.1.2 ([AB08, 6.11]). Let G be a group acting chamber transitively
on B. Let C be a chamber and Σ a apartment containing C (in the complete
apartment system of B). Let B be the stabilizer of C in G. Then the action of G
on B is Weyl transitive if and only if

B =
⋃
b∈B

bΣ.

Remark 7.1.3. Assume G acts Weyl transitively on B. Let C be a chamber and
let B be its stabilizer in G. We can identify the set Cham(B) of chambers with
G/B of left cosets gB via gC ↔ gB for g ∈ G. By the Weyl transitive action, the
B-orbits in Cham(B) are in 1 − 1 correspondence with the elements of W , with
the orbit of a chamber D corresponding to w = δ(C,D). But the B-orbits in in
Cham(B) correspond to the B-orbits in G/B and hence to double cosets BgB.

Theorem 7.1.4 ([AB08, 6.17]). Assume that the action of G on B is Weyl tran-
sitive, and let B be the stabilizer of a chamber C. Then there is a bijection
B\G/B → W given by BgB 7→ δ(C, gC). Hence G =

∐
w∈W

C(w), where w 7→ C(w)

is the inverse bijection.

7.2 Bruhat Decomposition

Let G be a group, B ≤ G a subgroup, (W,S) a Coxeter system.

Definition 7.2.1. If there exists a bijection C : W → B\G/B satisfying:
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(B): For all s ∈ S,w ∈ W :

C(sw) ⊂ C(s)C(w) ⊂ C(sw) ∪ C(w),

and if l(sw) = l(w) + 1, then C(s)C(w) = C(sw),

then C is said to provide a Bruhat decomposition of type (W,S).

Definition 7.2.2. Given a Bruhat decomposition C for G,B, let T ⊂ S and let
A be a face of the fundamental chamber of cotype T . The stabilizer of A in G is

PT :=
⋃

w∈WT

C(w).

By [AB08, 6.27] the sets PT are groups. We call these groups standard parabolic
subgroups of W and their left cosets standard parabolic cosets. We denote by
B(G,B) the poset of standard parabolic cosets, ordered by reverse inclusion.

Proposition 7.2.3 ([AB08, Proposition 6.34]). Given a Bruhat decomposition for
(G,B), the poset B(G,B) is a building, and the natural action of G on B by left
translation is Weyl transitive and has B as the stabilizer of a fundamental chamber.
Conversely, if a group G admits a Weyl transitive action on a building B and B is
the stabilizer of a fundamental chamber, then (G,B) admits a Bruhat decomposition
and B is canonically isomorphic to B(G,B).

Axioms 7.2.4. Let G be a group, B a subgroup, (W,S) a Coxeter system, and
C : W → B\G/B a function. Consider the following axioms:

(Bru 1) C(w) = B if and only if w = 1.

(Bru 2) C : W → B\G/B is surjective, i.e.

G =
⋃
w∈W

C(w).

(Bru 3) For any s ∈ S and w ∈ W :

C(sw) ⊂ C(s)C(w) ⊂ C(sw) ∪ C(w).

(Bru 3′) For any s ∈ S and w ∈ W :

C(ws) ⊂ C(w)C(s) ⊂ C(ws) ∪ C(w).

Proposition 7.2.5 ([AB08, Proposition 6.36]). Let G be a group and B a subgroup.
Suppose we are given a group W , a generating set S consisting of elements of order
2, and a function C : W → B\G/B satisfying (Bru 1), (Bru 2), and (Bru 3).
Then the six conditions below are satisfied.
In particular, C provides a Bruhat decomposition for (G,B) if (W,S) is a Coxeter
system.
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(i) C is a bijection, i.e.

G =
∐
w∈W

C(w).

(ii) C(w)−1 = C(w−1) for all w ∈ W . Consequently, (Bru 3′) holds.

(iii) If l(sw) ≥ l(w) with s ∈ S and w ∈ W , then C(s)C(w) = C(sw).

(iv) Given a reduced decomposition w = s1 · · · sl of an element w ∈ W , we have
C(w) = C(s1) · · ·C(sl).

(v) If l(sw) ≤ l(w) with s ∈ S and w ∈ W , and if [C(s) : B] ≥ 2, then
C(s)C(w) = C(sw) ∪ C(w).

(vi) Let J ⊂ S be an arbitrary subset. Then PJ :=
⋃

w∈WJ

C(w) is a subgroup of G.

It is generated by the cosets C(s) with s ∈ J .

7.3 BN-Pairs

Definition 7.3.1. A pair of subgroups B,N of a group G is a BN -pair if B
and N generate G, the intersection T := B ∩N is normal in N , and the quotient
W := N/T admits a set of generators S satisfying:

BN1: For all s ∈ S,w ∈ W :

sBw ⊂ BswB ∪BwB.

BN2: For all s ∈ S:
sBs−1 6≤ B.

Theorem 7.3.2 ([AB08, Theorem 6.56]).

(i) Given a BN-pair (B,N) in G, the generating set S is uniquely determined,
and (W,S) is a Coxeter system. Define ∆(B,N) as the set of B-cosets with
Weyl metric δ(gB, hB) := w ⇔ Bg−1hB = BwB. Then ∆(B,N) is a thick
building that admits a strongly transitive G-action such that B is the stabilizer
of a fundamental chamber and N stabilizes a fundamental apartment and is
transitive on its chambers.

(ii) Conversely, suppose a group G acts strongly transitively on a thick building
B with fundamental apartment Σ and fundamental chamber C. Let B be the
stabilizer of C and let N be a subgroup of G that stabilizes Σ and is transitive
on the chambers of Σ. Then (B,N) is a BN-pair in G, and B is canonically
isomorphic to ∆(B,N).
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7.4 Gate Property of Residues

Proposition 7.4.1 ([AB08] 5.34). Let R be a residue and D a chamber of a
building. Then there exists a unique chamber C1 of R such that d(C1, D) = d(R,D).
The chamber C1 has the following properties:

(i) δ(D1, D) = min(δ(R,D)).

(ii) δ(C,D) = δ(C,C1)δ(C1, D) for all C ∈ R.

(iii) d(C,D) = d(C,C1) + d(c1, D) for all C ∈ R.

Corollary 7.4.2. Residues are gated sets.

7.5 Isometries

Definition 7.5.1. An isomorphism of Coxeter systems σ : (W,S) → (W ′, S ′) is
a group isomorphism σ : W → W ′ such that σ(S) = S ′.

Remark 7.5.2. An isomorphism σ : (W,S) → (W ′, S ′) of Coxeter systems can
be seen as a relabeling of the generator set S. Thus it can be identified with an
isomorphism of the Coxeter diagrams.

Definition 7.5.3. Let (B, δ) be a building of type (W,S) and (B′, δ′) be a building
of type (W ′, S ′) and let σ be an isomorphism of (W,S) to (W ′, S ′). A σ-isometry
from B to B′ is a map φ : B → B′ satisfying

δ′(φ(C), φ(D)) = σ(δ(C,D)),

for all C,D ∈ B. If (W,S) = (W ′, S ′) and σ is the identity, we call φ an isometry.

Lemma 7.5.4 ([AB08, Lemma 5.61]). Let (B, δ) be a building of type (W,S) and
let (B′, δ′) be a building of type (W ′, S ′). Let σ be an isomorphism from (W,S) to
(W ′, S ′). Then a map φ : B → B′ is a σ-isometry if and only if it takes s-adjacent
chambers to σ(s)-adjacent chambers for all s ∈ S.

Definition 7.5.5. A simple root corresponding to s ∈ S of a Coxeter system
(W,S) is a set of the form

αs := {w ∈ W | l(sw) > l(w)}.

A root of a building B of type (W,S) is a subset α ⊂ B if it is isometric to a simple
root αs ⊂ W for some s ∈ S.

Proposition 7.5.6 ([AB08, Proposition 5.82]). Let α be a root of a building B.
Then

(i) α is a convex subset of B.

(ii) α is contained in an apartment of B.
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(iii) If B is a thin building of type (W,S), then α = wαs for some s ∈ S and
w ∈ W .

Proposition 7.5.7 ([AB08] 5.73). Let (X, δ) be a building of type (W,S), and let
V ⊂ W be an arbitrary subset. Then any isometry θ : V → X can be extended
to an isometry θ̄ : W → X. Consequently, any subset of X that is isometric to a
subset of W is contained in an apartment.
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EIGHT

CAT(0) REALIZATION

Davis showed in [Dav98] that buildings carry a CAT(0) metric. This result is based
on the work by Moussong presenting a CAT(0) realization for Coxeter systems.

8.1 The Geometric Realization of a Simplicial

Complex

Definition 8.1.1. Let ∆ be a simplex with vertex set V . Let V be a vector space
with basis V . The geometric realization of a simplex A ∈ ∆ is the convex hull
of the element of V associated to its vertices, i.e.

|A| :=
∑
v∈A

λvv with λv ≥ 0 and
∑
v∈A

λv = 1.

Let Σ be a simplicial complex with vertex set V . For each simplex A in Σ let
V(A) denoted the vertex set of A. Let Ṽ be a vector space with V as a basis. The
geometric realization of Σ (over Ṽ ) is defined as

|Σ| :=
⋃

∆∈Σ

|∆|,

where |A| is the geometric realization of |A| over the subspace of Ṽ with basis
V(A).

8.2 The Davis Realization of a Building

We will sketch a geometric realization for buildings which is CAT(0). This realiza-
tion will be called the Davis realization.
Let (W,S) be an arbitrary Coxeter system, and let B be a building of type (W,S).
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Notation 8.2.1. Let S be the poset of spherical subsets of S, ordered by inclusion.
Let Z be the geometric realization |F(S)| of the flag complex F(S). For s ∈ S,
let Ss be the elements of S containing s and let Zs := |F(Ss)|. For z ∈ Z, let
Sz := {s ∈ S | z ∈ Zs} and define Wz := 〈Sz〉.
On the product Cham(B)×Z we define ∼ to be the equivalence relation given by

(C, z) ∼ (D, z′) ⇔ z = z′ and δ(C,D) ∈ Wz. (∗)

Definition 8.2.2. The Z-realization Z(B) of a building B is the quotient of
Cham(B)× Z by the equivalence given in (∗). The equivalence class of (C, z) will
be denoted by [C, z] and we define Z(C) := {[C, z] | z ∈ Z} for any chamber C of
B.

Definition 8.2.3. The type function on Z(B) is the map τ : Z(B)→ Z defined
by τ([C, z]) := z. For any x ∈ Z(B), the image τ(x) is called the type of x.

Remark 8.2.4. The type function induces a bijection from every Z(C) to Z.

Definition 8.2.5. The dual Coxeter complex Σd(W,S) is a regular cell complex
whose cells are the cells of the form

eA := |F(Σ(W,S))≥A|.

Its (nonempty) cells correspond to the finite standard cosets in W , ordered by
inclusion. The stabilizers are the finite parabolic subgroups of W , i.e. conjugates
of the finite standard parabolic subgroups.

Remark 8.2.6 ([AB08, section 12.3.3]). If Σ(W,S) is finite, then |Σd(W,S)| is
topologically the cone over Σ(W,S).

Proposition 8.2.7 ([AB08, Proposition 12.55]). As a set, |Σd(W,S)| is canonically
in 1− 1 correspondence with Z(W,S).

Definition 8.2.8. Let (W,S) be a finite Coxeter system. Let x be a point in the
interior of the fundamental chamber in the canonical linear representation of W ,
i.e. on RS, with basis (es)s∈S together with a bilinear form B(es, et) = − cos( π

mst
).

The Coxeter polytope associated (W,S) is the convex polytope CW defined as
the convex hull of W.x (a generic W -orbit). The action of W is given by s.v :=

v − 2 B(es,v)
B(es,es)

es.

Definition 8.2.9. The nerve L(W,S) of the Coxeter system (W,S) is the abstract
simplicial complex S>∅ of all nonempty spherical subsets.

Proposition 8.2.10 ([Dav08] 7.3.4). There is a natural cell structure on Σd(W,S)
so that its vertex set is W , its 1-skeleton is the Cayley graph (for the generating set
S), and its 2-skeleton is the Cayley 2-complex, i.e. the Cayley graph with a 2-cell
attached for each relation in R for W = 〈S | R〉.

Theorem 8.2.11 ([AB08, Theorem 12.58]). The space |Σd(W,S)| with its piece-
wise Euclidean metric is a CAT(0) space.
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Remark 8.2.12. There exists a distance function on Z(B) which is given as fol-
lows:
A finite sequence of point γ := x1, . . . , xn in Z(B) is called a chain if there exists
a chamber Ci with xi, xi+1 ∈ Z(Ci) for each i ∈ {1, . . . , n − 1}. The length of a
chain is defined by

l(γ) :=
n−1∑
i=1

dZ(τ(xi), τ(xi+1)),

where dZ : Z(B)→ R is the metric on Z coming from the Euclidean metric on Σd.

Proposition 8.2.13 ([AB08, Proposition 12.10]). The distance function on Z(B)
given by d(x, y) := inf

γ
l(γ), where γ ranges over all chains from x to y, is a metric.

Definition 8.2.14. The Davis realization for a building B is the geometric
realization Z(B) together with the metric in 8.2.13 and will be denoted by X (B),
or just X if B is known.

Theorem 8.2.15 ([AB08, 12.66]). For any building B, its Davis realization is a
complete CAT(0) space.

Proposition 8.2.16 ([AB08, 12.3.4]). Let X be the Davis realization of a Coxeter
system (W,S). The group W operates on X , and the cell stabilizers are the finite
parabolic subgroups of W .

Proposition 8.2.17 ([AB08, 12.16]). Given a type-preserving chamber map φ :
B → B′, the induced map φ : X → X ′, [c, z] 7→ [φ(c), z] is distance-decreasing,
i.e.

d(φ(x), φ(y)) ≤ d(x, y)

for all x, y ∈ X .

Corollary 8.2.18. For any type-preserving building automorphism φ : B → B, the
induced map φ : X → X is an isometry.

Proof. We use 8.2.17 for φ and φ−1 and get

d(x, y) ≤ d(φ(x), φ(y)) ≤ d(φ−1(φ(x)), φ−1(φ(y))) = d(x, y),

for all x, y ∈ X .

8.3 Geometric Counterparts

Let X be the Davis realization of a building B.

Definition 8.3.1. For any element z ∈ X , we define a spherical residue

R(x) := {C ∈ Cham(B) | x ∈ |C|}.
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Definition 8.3.2. Let [γ] be a geodesic segment, ray, or line in X . We define a
relation on the elements in [γ] by:

For all x, y ∈ [γ] : x ≤ y if and only if γ−1(x) ≤ γ−1(y).

As γ is an isometry, one sees that this relation is independent of the choice of γ
describing the segment [γ].
Let a be the infimum and b be the supremum of the domain of γ. For any z ∈ [γ],
we define:

γ+
z :=

{
γ([t, b]) if the domain of γ has a maximum

γ([t, b)) else

and

γ−z :=

{
γ([t, a]) if the domain of γ has a minimum

γ([t, a)) else,

where t := γ−1(z) ∈ R. We say γ+
z is the positive subgeodesic of γ starting at z

and γ−z is the negative subgeodesic of γ starting at z.

Definition 8.3.3. For any convex subset C of X , we denote by R(C) the union⋃
x∈C

R(x) and by R(C) the set {R(x) | x ∈ C}.

Definition 8.3.4. For any subset C of B, we define |C| :=
⋃⋃⋃

C∈Cham(C)

|C|.

A subset E ⊆ X is called geometric apartment if there exists an apartment Σ
such that |Σ| = E.

Notation 8.3.5. The set of all roots inside a given apartment Σ in B will be
denoted by Φ(Σ).

Notation 8.3.6. For any root α, the associated geometric root is the convex hull
of {|C| | C ∈ α}. It will also be denoted by α.
Let X be the Davis realization of a Coxeter system (W,S), and let α be a root
inside (W,S). The reflection sα mapping α to −α induces a reflection s̃α in X . We
call the fixed point set of s̃α the wall corresponding to α. A wall in X is a wall
corresponding to a root α in (W,S).
If a root α is determined by the chambers corresponding to 1W and s, we call sα a
simple reflection.

Definition 8.3.7. A (geometric) n-flat is a closed convex subset of X which is
isometric to En.

Lemma 8.3.8 ([CH09, 6.2]). Let Σ be an apartment of a building and let C be a
set of chambers in Σ. Suppose there exists a residue R and a chamber C ∈ C such
that C ∈ R and projR(D) = C for all chambers D ∈ C. Then, for any chamber
E ∈ R \ {C}, there exists an apartment Σ′ containing C ∪ {E}.
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Theorem 8.3.9 ([CH09, 6.3] ). Let (W,S) be a Coxeter system and B be a building
of type (W,S). Let F ⊂ X be a geometric n-flat and let c0 be a chamber such that
dim(F ∩ |c0|) = n.
Define

C(F, c0) := {projR(x)(c0) | x ∈ F}.

Then there exists a geometric apartment |Σ| such that C(F, c0) ⊂ Σ. In particular,
we have F ⊂ |Σ|.



48 CHAPTER 8. CAT(0) REALIZATION



CHAPTER

NINE

AFFINE BUILDING

As stated in the introduction, affine buildings behave very special concerning our
guiding questions. A very important part of their structure are the wall trees. The
cases where an action preserves such a wall tree provide examples for some of the
presented results. We will not use any further properties of affine buildings and
thus give a very short definition based on their classification (see[Tit86]).
A Coxeter system (W,S) is called affine if its Coxeter diagram is one of the ones
in figure 9.1 or if it is a direct product of such groups. A building is called affine
if its Coxeter system is affine.
These objects are called affine, as the corresponding Coxeter complex carries a
Euclidean metric and one might think of W inducing a tiling of an Euclidean space
by (compact) polytopes.

9.1 Wall Trees in Affine Buildings

This section is based on [Wei09].

Definition 9.1.1 ([Wei09, 29.32]). Let B be a building and let α be a root in
some apartment of B. Then µ(α) denotes the set of all panels P of B such that
|P ∩ α| = 1. The set µ(α) is called wall of the root α.

Definition 9.1.2. A wall M is said to be contained in an apartment Σ if there
exists a root α contained in Σ such that M = µ(α). A wall M is said to be
contained in a root β if there exists a root α properly contained in β such that
M = µ(α).

Reminder 9.1.3. Recall that in this thesis we always consider buildings equipped
with their complete system of apartment.

Definition 9.1.4. Two walls M and M ′ are said to be adjacent if there exists an
apartment Σ containing roots α and α′ such that M = µ(α),M ′ = µ(α′) and α′ is
contained maximally in α. If two walls M,M ′ are adjacent, we write M ∼M ′.
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Ã1
∞

Ãn(n ≥ 2)

B̃n(n ≥ 3)

C̃n(n ≥ 2)

D̃n(n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

F̃4

G̃2
6

Figure 9.1: The irreducible affine Coxeter diagrams

Remark 9.1.5. If α′ is maximally contained in α, then −α is maximally contained
in −α′. Adjacency of walls is a symmetric relation. Furthermore by [Wei09, 1.46]
adjacent walls are parallel.

Definition 9.1.6. Let M and M ′ be adjacent walls and let Σ and α be as in 9.1.4.
We set

[M,M ′] := −α′ ∩ α.

Lemma 9.1.7 ([Wei09, 10.10]). The complete apartment system for B is full, i.e.
if α is a root in some apartment Σ, P is a panel determined by the wall ᾱ and if C
is a chamber in P \α, then the set of all apartments containing α∪C is non-empty.

Proposition 9.1.8 ([Wei09, 10.14]). Let m be a parallel class of walls. Define Tm
to be the graph whose vertices are the walls in m and where two vertices M,M ′ are
connected if and only if M ∼M ′. Then Tm is a tree.
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TEN

INTRODUCTORY EXAMPLES

The main goal of this thesis is to understand automorphisms of buildings in terms
of Weyl displacements. To give some idea about this problem, this part starts with
some examples which will motivate the two questions mentioned in the introduc-
tion:

What can we say about a given automorphism of a building?

and

What can we say about Wθ?

At the beginning we show that it is generally not possible to have an action on a
building such that every element of the corresponding Weyl group is a displacement
for this action. In particular, for every automorphism θ of an affine building B:

Wθ := {w ∈ W | ∃ C ∈ B : δ(C, θ(C)) = w} 6= W.

10.1 Some Preliminaries

Definition 10.1.1. Let (W,S) be a Coxeter system. A Coxeter element is an
element of W , for which every expression contains each generator in S exactly
once. An element v = s1 · · · sl ∈ W with s1, . . . , sl ∈ S such that l(vk) = lk for all
k ∈ N>0 is called logarithmic or straight (see [Mar14, BBE+12, Kra08]). This
means that any power of the expression s1 . . . sl is a reduced expression.

Lemma 10.1.2. Let B be a building and θ a type-preserving automorphism of B.
If a chamber D has a straight displacement, then the orbit of D under the action
of 〈θ〉 is unbounded.

Proof. Let D be a chamber with a straight displacement v. Then δ(D, θk(D)) = vk

is a reduced word of length k · l(v). Thus d(D, θk(D)) = k · l(v) and hence the orbit
of D is unbounded.

Lemma 10.1.3. Let B be a building and θ a type-preserving automorphism of B,
then the following statements are equivalent:
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(i) θ stabilizes a spherical residue.

(ii) Wθ contains a spherical element.

(iii) For all C ∈ B, the θ-orbit of C is bounded.

Proof. (i) ⇔ (ii) follows directly as θ is type-preserving. Let D be an arbitrary
chamber in B and assume (i) holds, then there exists a chamber E ∈ B whose orbit
lies inside a spherical residue R. Let dR be the diameter of R. For l ∈ Z, k ∈ N>0,
we compute:

d(θl(D), θl+k(D)) = d(D, θkD)

≤ d(D,E) + d(E, θk(D))

≤ d(D,E) + d(θk(E), θk(D)) + dR

= d(D,E) + d(E,D) + dR = 2 · d(D,E) + dR.

Hence the orbit of D is bounded and thus (i)⇒ (iii) holds. Now assume (iii) holds
and let E ∈ B. Then the orbit 〈θ〉 of the barycenter of |E| in the Davis realization
of B is bounded. By Bruhat-Tits fixed-point theorem (3.6.9) the action of 〈θ〉 has
a fixed point, say y. We conclude that 〈θ〉 stabilizes R(y), the spherical residue
consisting of all chambers D ∈ B with y ∈ |D|, hence (iii) implies (i).

An immediate consequence of the proof is:

Corollary 10.1.4. Let B be a building and θ an automorphism of B, then the
following statements are equivalent:

(i) θ stabilizes a spherical residue.

(ii) For all C ∈ B, the θ-orbit of C is bounded.

Remark 10.1.5. The statements in 10.1.3 are not equivalent given a non type-
preserving automorphism θ. Let (W,S) be the Coxeter system 〈s, t | s2 = t2 = 1〉
of type Ã1. The displacements of the (building) automorphism θ given by

w 7→

{
sw `(w) even

tw `(w) odd

are either t or s and thus spherical. But θ2k(w) is either (st)kw or (ts)kw and both
have distance of length 2k to w. Thus 〈θ〉 has no spherical orbits.

Corollary 10.1.6. Let B be a building and θ a type-preserving automorphism of
B. If Wθ contains a straight element, then Wθ does not contain spherical elements.
And if Wθ contains a spherical element, then Wθ does not contain straight elements.

Lemma 10.1.7. Let B be a building and let θ be an automorphism of B. If the
orbits of θk are unbounded, so are the orbits of θ.

Proof. This follows directly as every orbit of θk is contained in an orbit of θ.
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Corollary 10.1.8. Let B be a building and θ an automorphism of B. If there exists
some k ≥ 1 such that θk is type-preserving and Wθk contains a straight element,
then Wθ does not contain spherical elements.

Corollary 10.1.9. Let B be a building of type (W,S) and θ an automorphism of
B. If for some k > 0 the automorphism θk is type-preserving and Wθk contains a
straight element, then W 6= Wθ.

In the first example we will use use the following theorem for Coxeter elements:
We will use the following theorem for Coxeter elements in most examples:

Theorem 10.1.10 ([Spe09, Theorem 1] see also [BBE+12, Theorem 3.1]). Let W
be an infinite, irreducible Coxeter group and let (s1, . . . , sn) be any ordering of the
simple generators. Then the word s1 . . . sn . . . s1 . . . sn is reduced for any number of
repetitions of s1 . . . sn, i.e. s1 . . . sn is straight.

Corollary 10.1.11. By 10.1.10 every infinite Coxeter systems contains straight
elements. In particular, for any type-preserving automorphism θ of a building of
type (W,S) with infinite Coxeter group W , one has W 6= Wθ.

Remark 10.1.12. The next example was first done for locally finite buildings. In
a discussion, Timothée Marquis pointed out that one can avoid a this condition.

Example 10.1.13. Let (W,S) be a Coxeter system with a straight element v ∈ W .
Let B be a building of type (W,S) and let θ be a type-preserving automorphism
of B. If v ∈ Wθ, then 1 /∈ W by 10.1.9, hence W 6= Wθ.

Let θ be non-type-preserving. We want to look at all irreducible affine cases:

(i) Assume there exists a straight element of the form s1 . . . sn for some n > 1,
where si 6= sj for i 6= j and the induced action of θ on S has the property:
θ(si) = si+k (mod n) for some fixed k > 0, where s0 := sn. If a chamber D of B
has displacement s1 · · · sk, then θn is type-preserving and (s1 · · · sn)k ∈ Wθn

is a power of a straight element and thus straight itself. Hence 1W /∈ Wθ by
10.1.9. We conclude Wθ 6= W .

(ii) Let B be a building of type Ã2n+1 and let θ induce a reflection on the cor-
responding Dynkin diagram interchanging s0 and s2n+1 as well as sn and
sn+1.

s0

s2n+1 s2n

s1

sn+1

sn

Suppose there is a chamber D with displacement s0 · · · sn. Then θ(D) has
displacement s2n+1 . . . sn+1. The word w = s0 . . . sns2n+1 . . . sn+1 is a Coxeter
element. By 10.1.10 the word w is straight. Hence Wθ2 contains the straight
element w. The automorphism θ2 is type-preserving and by 10.1.9 Wθ 6= W .
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(iii) Let B be an affine building with an automorphism θ corresponding to one of
the following diagrams, where the marked vertices are the ones fixed by θ:

Let V1, . . . , Vl be the set of orbits of θ on the generating set S. All generators
inside an orbit commute and hence given an orbit Vi, every element of W ,
expressed by a word containing each generator of Vi exactly once, is invariant
under the action of θ. For each orbit Vi, let vi be such a word and let w be
the product v1 · · · vl. The element w is invariant under θ and it is a Coxeter
element. Hence by theorem 10.1.10 w is straight. If w ∈ Wθ, then wl ∈ Wθl

for l ∈ N with θl type-preserving and by 10.1.9 W 6= Wθ. This implies
Wθ 6= W .

(iv) Let B be a building of type C̃2n+1 or D̃2n+1
1 with an automorphism θ without

a fixed point on the corresponding diagram. Let Γ1,Γ2 be the two maximal
subdiagrams which are interchanged by θ.

Γ2Γ1 Γ2Γ1

The word w = w1 · θ(w1), where w1 is a Coxeter element for the Weyl group
corresponding to Γ1, is a Coxeter element for W which is straight by 10.1.10.
If w ∈ Wθ2 , then by 10.1.9 Wθ 6= W . We conclude Wθ 6= W .

For the next cases we will use the structure of W as monomial matrices acting on
lattice classes, see part V of this thesis.2 As before, we will show the existence of a
straight element w′ = w · θ(w) which implies the unboundedness of some orbit.

(v) Let B be a building of type Ã2n+1 and let θ induce a reflection on the corre-

1The rank of those systems is even, i.e. they have an even number of generators.
2The expressions used in these cases were found using the program given in appendix VI.
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sponding Dynkin diagram fixing s0 and sn+1 and interchanging s2n+1 and s1.

s0

s2n+1 s2n

s1

sn+1

sn

Let D be a chamber with displacement s0s1 · · · sn+1. Then θ(D) has displace-
ment s0s2n+1 . . . sn+1. The word w = s0s1 . . . sn+1s0s2n . . . sn+1 corresponds
to a monomial matrix of the form:

Mw :=



−1 0
0 0 −π−1

0 1
...

1
−1

−1

0
...
−1

−π


,

where the entry −π−1 is in the column (n + 1) and the entry −π in column
(n+ 3). Mw)2n is of the form

(Mw)2n =


1
π−2

...
π−2

1
π2

...
π2

 .

As the matrix M2n
w shows, w2 acts on W as a translation, where every element

of W lies on a translation axis. This means that w2n ∈ Wθ2n is straight and
by 10.1.9 W 6= Wθ. We conclude W 6= Wθ.

3

(vi) Let B be a building of type Ã2n and let θ induce a reflection on the corre-
sponding Dynkin diagram fixing s0 and interchanging s1 and s2n.

s0

s1

s2n s2n−1

s2

sn+1

sn

3The element w itself is already logarithmic. Thinking of the generators acting on the set
of rows or columns of a matrix, one can show that erasing any two of the generators of the
expression w2n yields a matrix which acts differently from (Mw)2n. The resulting matrix is either
not a diagonal matrix or its entries have different valuations. Thus we cannot apply the deletion
condition which implies that this expression is reduced.
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Let D be a chamber with displacement s0s1 · · · sn. Then θ(D) has displace-
ment s0s2n . . . sn+1. The word w = s0s1 . . . sns0s2n . . . sn+1 corresponds to a
monomial matrix of the form:

−1
0 0 −π−1

0 1
...

1
0 −1

0
...
−1

−π

 ,

where π is a uniformizing parameter for a field with discrete valuation. The
entry −π−1 is in column (n + 1) and the entry −π in column (n + 2). Its
(2n)th power has the form:

1
π−2

...
π−2

π2

...
π2

 .

As in the previous case, this matrix shows that w2n acts onW as a translation,
where every element of W lies on a translation axis. Therefore w2n is straight
and the same argument as before shows Wθ 6= W .

Remark 10.1.14. Every non-type-preserving action induces a graph automor-
phism on the corresponding Coxeter diagram. In the case of affine buildings, the
only types allowing such automorphisms are those discussed in the previous exam-
ples: Ãn, B̃n, C̃n, D̃n, Ẽ6 and Ẽ7.

We come to the following conclusion:

Theorem 10.1.15. For every automorphism θ of an affine building B with Coxeter
system (W,S) one has W 6= Wθ.

Remark 10.1.16. One might ask whether it is possible to apply [BBE+12] to the
last two cases in order to obtain straight displacments. The answer is: No. The
words used in those examples are equivalent to expressions starting with s0s1s0

which allows the use of a non-short Braid relation by replacing s0s1s0 with s1s0s1.
But the results in [BBE+12] are for CFC elements which are elements that do not
allow non-short Braid relations, in particular given a CFC element w, for any pair
s, t ∈ S with ms,t > 2, no expression for w contains an alternating subword of the
form sts.. of length ms,t.

Reminder 10.1.17. The projective line P 1(Fq) is the set of all one-dimensional
subspaces in the vector space F2

q.
4

4The projective line can be seen as a line consisting of elements in Fq extended by a point at
infinity. Inside a building, this reflects the concept of the root groups (one-parameter subgroups
of Gq over Fq) fixing a chamber D of a panel P and acting transitively on P \ {D}.
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Example 10.1.18. 5 Let Bq be the affine building corresponding toGq := SL4(Fq((t)))
(see part V). This means that Bq is of type Ã3 and the panels carry the structure
of P 1(Fq).

Let Ms1 :=

(
0 −1
1 0

1
1

)
∈ Gq and consider the action of Gq on B (see 14.4 and

14.5 for more information about the action of GL4(Fq((t)) or SL4(Fq((t))) on B).
We are going to compare the action of Ms1 for different values of q.6 We check for
every reduced word of length ≤ 2 in W if this word appears as a Weyl displacement
for a chamber in Bq(C, 4) := {C ∈ B | d(C,D) ≤ 4}.

w q ∈ {2, 4} q ∈ {3, 7} q ∈ {5, 9}
1W X 7 X
s0 X X X
s1 X X X
s2 X X X
s3 X X X

s0s1 7 X X
s0s3 7 X X
s1s0 7 X X
s1s2 7 X X
s2s0 7 7 X
s2s1 7 X X
s2s3 7 X X
s3s0 7 X X
s3s1 7 7 X
s3s2 7 X X

Explanation
We can define the matrix Ms1 for each of the Gq. It represents a simple reflection
inside the fundamental apartment Σ of the building (its stabilizer is the set of
monomial matrices). The differences in the given cases relate to the following
observations:
The existence of fixed chambers: Let C be the fundamental chamber and let P be the
s1-panel containing C. Then Ms1 fixes a chamber in P if and only if Fq contains
an element which squares to −1 (see 14.8). In the case of F4 there are exactly two
chambers of P outside of Σ which are not fixed. In the case of F5,F9 we get exactly
two fixed chambers.
Now we want to explain the existence/non-existence for Weyl displacements of
length 2. Let D /∈ Σ be s-adjacent to C with mss1 = 3,7 let P1 be the s1-panel
containing D and let P2 be its image. In the case of characteristic 2 there exists
exactly one chamber E inside P1 such that C, E and the image of E lie in a common
apartment. Thus E has displacement s and Ms1 interchanges the two projections

5The calculations for this example were done using the program in the appendix.
6The characteristic polynomial for F9 used by the program is x2 − x− 1.
7 If mss1 = 2, then these generators commute and the corresponding Weyl displacements are

either s or 1W .
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s1 s1D

E ′

E Ms1(E)

Ms1(E
′)

Ms1(D)

s2

Figure 10.1: Behavior of Ms1 in characteristic 2

s1 s1D

E ′

E Ms1(D)

Ms1(E
′)

Ms1(E)

s2

Figure 10.2: Behavior of Ms1 in characteristic 6= 2

projP2
(P1) and projP1

(P2) = E. If the characteristic of the given field is not 2
then the action of Ms1 looks like a translation restricted to P1: The panels are not
parallel and Ms1 does not interchange the projections projP2

(P1) and projP1
(P2).

In terms of matrices we end up calculating the Weyl elements similar to the
following case: Let D be the chamber which we obtain by using the root group
element corresponding to the parameter 1 (see 14.7.3 and 14.7.4). Then D is s2

adjacent to C. The Weyl displacements for the elements in P1 correspond to double

cosets represented by matrices of the form:

(
1

0 x
2 1

1

)
,

(
1
2 0 x
0 1

1

)
and

(
1

1
1

1

)
.

Here x ∈ Fq is some element 6= 0. The latter matrix corresponds to the word
s1s2s1, but for the first two matrices, depending on the characteristic of the given
field, the result is either s2 for both or s2s1 and s1s2 respectively.
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A GEOMETRIC APPROACH

We will use the CAT(0) structure of buildings to show that given any automor-
phism θ on a building B, for every chamber C in B there exists a minimal gallery
of the form (C, . . . , D, . . . θ(D)) where D is a chamber whose realization contains
an element of Min(θ) (an elements with minimal displacement). Among other
things, this will yield a structure theorem for Weyl displacements in Coxeter sys-
tems (11.6.1).

11.1 A Minimal Gallery along a CAT (0) Geodesic

In this section we will show how to construct a minimal gallery from a chamber C
to a chamber D along the geodesic γ between their barycenters. Furthermore this
gallery will lie entirely inside R(γ), the set of the (spherical) residues which are
given as the support of an element of γ.
Let X be the Davis realization of a building B of type (W,S).

Reminder 11.1.1 (see 8.2.12 and 8.2.14). A chain in X is a finite sequence of
points γ := x1, . . . , xn in X , where two consecutive elements xi, xi+1 are contained
in a common cell. The length of a chain l(γ) is the sum

∑n−1
i=1 d(xi, xi+1) and the

distance of two elements x, y is the infimum inf
γ

l(γ) where γ ranges over the set

of chains from x to y.

Lemma 11.1.2. Let X be the Davis realization of a building B with an automor-
phism θ. The induced map θ′ on X is an isometry.

Proof. The image of X is the Davis realization of the building θ(B) and the induced
map θ′ : X → θ′(X ) gives a one-to-one correspondence from the geodesic segments
inside a cell |C| to the geodesic segments inside the cell θ′(|C|). Let x, y ∈ X and
let x1 = x, . . . , xn = y be a chain. As θ is a chamber map, the image of (x1, . . . , xn)
is a sequence of points θ′(xi) such that two consecutive points θ′(xi) and θ′(xi+1)
are contained in a common (geometric) chamber. Thus for i ∈ {1, . . . , n − 1}
the geodesic segment [xi, xi+1] is mapped to the geodesic segment [θ′(xi), θ

′(xi+1)]
and hence θ′(x1), . . . , θ′(xn) is a chain in θ′(B) with the same length as the chain
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x1, . . . , xn. As θ−1 is again a chamber map, we conclude that we have a length-
preserving one-to-one correspondence from the chains from x to y to the chains
from θ′(x) to θ′(y). Hence d(θ′(x), θ′(y)) = d(x, y) by the definition of d(x, y) and
d(θ′(x), θ′(y)) as the infimum of those lengths.

Reminder 11.1.3. An isometry is called semi-simple if it is elliptic (has a fixed
point) or if it is hyperbolic (the set of displacements has an minimum 6= 0).

Proposition 11.1.4 ([Bri99, Theorem A]). Let K be a connected Mκ-polyhedral
complex (in our case a Euclidean cell complex). If the set of isometry classes of
cells is finite, then every cellular isometry of K is semi-simple.

Lemma 11.1.5. Let B be a building and let X be its Davis realization. For every
automorphism θ of B, the induced isometry on X is semi-simple.

Proof. By the definition of the Davis realization 8.2.14 (see also the definition of
a Z-realization 8.2.2) the geometric realization of all chambers in X are isometric.
The induced map is an isometry 11.1.2 (for type-preserving automorphisms also by
8.2.17) and preserves the cellular (piecewise Euclidean) structure of X . By 11.1.4
this action is semi-simple.

Reminder 11.1.6. A geodesic segment/ray/line [γ] is a convex set and the set
R(γ) is defined by R(γ) :=

⋃
x∈[γ]

R(x), where R(x) is the support of x, i.e. the set

of all chambers whose geometric realization contains x.

Lemma 11.1.7. Let x, y be two arbitrary elements of X . The set of (spherical)
residues in R([x, y]) has a natural order along [x, y]:

R([x, y]) = (Ri)i∈{1,...,n}.

Proof. Let [x, y] ⊂ X be the geodesic joining two elements x, y. Let (Rλ)λ∈Λ be
the spherical residues in R([x, y]). We can order the family (Rλ)λ∈Λ, by Ri ≤ Rj

if and only if for any z1, z2 ∈ [x, y] with Ri = R(z1), Rj = R(z2), we have z1 ≤ z2

and this is well-defined. As the set of generators S is finite, any (spherical) residue
Rλ contains only finitely many residues of R([x, y]). With the distance of x and y
being finite, the set Λ is a finite set.

Lemma 11.1.8. Let x, y be two arbitrary points in X . The intersection of two
consecutive residues Ri, Ri+1 ∈ R([x, y]) is either Ri or Ri+1.

Proof. Let Ri, Ri+1 be two consecutive residues in R([x, y]). Let x′ ∈ [x, y] ∩ |Ri|
and y′ ∈ [x, y] ∩ |Ri+1|. For any element z ∈ [x′, y′], the residue R(z) equals either
Ri or Ri+1. Furthermore, as Ri ∩ Ri+1 cannot be empty, there exists a z ∈ [x′, y′]
which lies in this intersection. But R(z) is a proper subresidue of Ri or Ri+1. Thus
either Ri ( Ri+1 or Ri+1 ( Ri.

Notation 11.1.9. For two galleries Γ1 = (C0, . . . , Cn) and Γ2 = (D0, . . . , Dm) with
Cn = D0, we define the product Γ1 ·Γ2 to be the gallery (C0, . . . , Cn = D0, . . . Dm).
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Lemma 11.1.10. Let R1, . . . , Rn be a sequence of spherical residues and for i ∈
{1, . . . , n} let Di ∈ Ri such that projRi(D1) = Di and let Dn+1 ∈ Rn. If Di+1 ∈ Ri

for all i ∈ {1, . . . , n − 1}, then there exists a minimal gallery Γ from D1 to Dn+1

of the form Γ = Γ1 ·Γ2 · · ·Γn, where Γi is a any minimal gallery inside Ri from Di

to Di+1.

R1 R2 Rn−1 Rn

D1 D2 D3 Dn−1 Dn Dn+1

Γ1 Γ2 Γn−1 Γn

Proof. The statement holds for n = 1, because D2 ∈ R1. Let n > 1. For i ∈
{1, . . . , n}, let Γi be a minimal gallery from Di to Di+1. If Γ1 · · ·Γn−1 is a minimal
gallery from D1 to Dn = projRn(D1), then this gallery extends to a minimal gallery
from D1 to any chamber inside Rn (see 7.4.1). By assumption Dn+1 ∈ Rn and thus
Γ1 · · ·Γn−1 · Γn is a minimal gallery.

Lemma 11.1.11. Let x, y be two arbitrary elements of Xand let (Ri)i∈{1,...,n} be the
ordered set of residues in R([x, y]). Then for all i ∈ {1, . . . , n} and any chamber
C in R(x):

projRi+1
(C) ∈ Ri.

Proof. Let (Ri)i∈{1...n} = R([x, y]). As the Ri are (spherical) residues, there exists
a unique projection Ci of C onto each Ri (see 7.4.1).
As C is contained in R(x), the projection of C onto R1 is C. Using induction over
the index i > 1, we will show Ci+1 ∈ Ri.
If Ri+1 is contained in Ri then Ci+1 ∈ Ri+1 ⊂ Ri, and Ci+1 ∈ Ri.
If Ri ⊂ Ri+1, assume Ci+1 /∈ Ri. By 11.1.10 there exists an apartment Σ, containing
C and {projRj(C) | 1 ≤ j ≤ i}. As Ri ⊂ Ri+1, there exists a minimal gallery from
C to Ci containing Ci+1 by the gate property of residues. Therefore also Ci+1 is
contained in Σ.
As Ci /∈ Ri+1 we get Ci 6= Ci+1, which shows that there exists a chamber D in
Ri+1∩Σ which is adjacent to Ci and satisfies d(C,Ci) + 1 = d(C,D), and therefore
D ∈ Ri+1 \Ri.
Let α ∈ Φ(Σ) be a root containing C and D, but not Ci. It follows from C ∈ α
that x ∈ α. Let yD ∈ |D| ∩ [x, y] and yi ∈ |Ci| ∩ [x, y] such that R(yD) = Ri+1 and
R(yi) = Ri. By the convexity of α we have d(yD, x) < d(yi, x) which contradicts
the order of Ri+1 and Ri in R([x, y]).

Proposition 11.1.12. For two arbitrary elements x, y ∈ X and any chamber
C ∈ R(x), there exists a minimal gallery from x along R([x, y]) to any chamber D
in R(y), i.e. there exists a minimal gallery from C to D which is entirely contained
in R([x, y]).
In particular, for two arbitrary chambers C,D ∈ B there exists a minimal gallery
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from C to D along R([x, y]), where x and y are arbitrary elements of |C|, |D|
respectively.

Proof. From 11.1.11 and 11.1.10, we get a minimal gallery from C to projR(y)(C)
which lies entirely in R([x, y]). This gallery can be extended to a minimal gallery
from C to any chamber inside R(y) by 7.4.1.

11.2 Definitions and the Elliptic case

Let θ be an automorphism of a building B and let X be the Davis realization of B.
Let θ also denote the induced isometry of X . For every chamber C of B, we define:

bC := the barycenter of |C|,
Min(θ)C := conv({θz(projMin(θ)(bC)) | z ∈ Z}),

MC(θ) := R(Min(θ)).

Remark 11.2.1. If θ is elliptic, Min(θ)C equals projMin(θ)(bC).
If θ is hyperbolic, Min(θ) is the translation axis of θ containing projMin(θ)(bC).

Proposition 11.2.2. Let θ be an elliptic automorphism of a building. For any
chamber C ∈ B, there exists a chamber D ∈ MC(θ) and a minimal gallery from C
to θ(D) containing D.

Proof. If C ∈ MC(θ) the statement follows directly. Let C /∈ MC(θ). For any
z ∈ Min(θ), the residue R(z) will be stabilized by θ. Thus the statement follows
for D = projR(z)(C), because θ(D) ∈ R(z) and any minimal gallery from C to D
can be extended to a minimal gallery from C to any chamber inside R(z).

To give a similar result in the hyperbolic case, we need the main result of the
following section:

11.3 The Translation-Cone of a Chamber

The aim of this section is to show that for any given chamber C in a building B
and a translation axis of an action γ : R → X = X (B), there exists a geometric
apartment containing |C| and γ+

z for some z ∈ R.
Let θ be an hyperbolic action on a building B. Let γ be a translation axis of θ,

let bC be the barycenter of |C|, and let p be the projection of bC onto γ. Let Σ be
an apartment containing γ (see 8.3.9).

Reminder 11.3.1. For a geodesic ray γ and an element z = γ(t) ∈ [γ], the
geodesic ray γ−z is defined by γ−z := γ([t,−∞)).
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Definition 11.3.2. Let γ : R → X be a geodesic line in a CAT(0) space X and
let C be a convex subset of X. If [γ] ∩ C 6= ∅, we can define the angle ](γ, C) in
the following way: Let x ∈ [γ] such that [γ−x ] ∩ C = {x}: Then

](γ, C) := inf
y∈C\{x}

]x(γ
−
x , [x, y]).

Definition 11.3.3. An element x ∈ γ is called chamber cut of γ if there exists
a chamber C ∈ B such that x lies in the interior of a maximal facet F of |C| with
γ−x ∩ F = {x}.

Lemma 11.3.4. Let x be a chamber cut of γ. Then θ(x) is a chamber cut of γ
and there are only finitely many chamber cuts on [x, θ(x)].

Proof. Let x be a chamber cut for γ, and let |C|,F be a corresponding chamber
and maximal facet of |C| such that γ−x ∩ F = x. As θ is a cellular isometry on
X , θ(x) lies in the maximal facet θ(F) of θ(|C|). Assume θ(F) contains another
element of γ−θ(x), say y. Then θ−1(y) lies in θ−1(F) = F . As γ is a translation axis

for θ, the element θ−1(y) lies in γ−x and therefore θ(x) = γ−θ(x)∩ θ(F). The geodesic

segment [x, θ(x)] intersects finitely many maximal facets of chambers non-trivially,
as all chambers are isometric. Hence the statement.

Lemma 11.3.5. Let x be a chamber cut of γ and let F be a maximal facet of a
chamber intersecting γ in x. Then the angle ](γ,F) equals the angle ](γ, θ(F)).

Proof. The action of θ induces an isometry of F to θ(F). Thus the geodesics of
the form [x, y] with y ∈ F are mapped to the geodesics of the form [θ(x), y′] with
y′ ∈ θ(F ′). Further every geodesic of the form [θ(x), y′] with y′ ∈ θ(F ′) is mapped
to the geodesic [x, y] with y ∈ F by θ−1. As the angles in a CAT(0) space are given
by distances (see 3.5.3), any isometry preserves the angles of geodesics and hence
the statement follows.

Definition 11.3.6. Let x be a chamber cut of γ. A chamber cut angle (of γ) at
a chamber cut x is an angle ](γ,F) for a maximal facet F corresponding to the
chamber cut x.

Lemma 11.3.7. Let x, y be a chamber cuts of γ and let F ,F ′ be corresponding
facets. The angle of γ with F ′ in y equals a chamber cut angle for γ at some point
in [x, θ(x)].

Proof. The geodesic segment [x, θ(x)] is a weak fundamental domain for the action
of the group spanned by θ on γ. Thus x′ := γk(y) ∈ [x, θ(x)] for some k ∈ Z and
x′ is a chamber cut of γ. Now the previous lemma shows that γk preserves the
chamber cut angle and the statement follows.

Lemma 11.3.8. Let x be a chamber cut for γ. The number of facets F with
F ∩γ 3 x is finite and thus the number of different angles of facets with γ is finite.
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Proof. The number of facets containing a common point is bounded by the rank of
the building. All chamber cut angles of γ equal an chamber cut angle in [x, θ(x)]
for any chamber cut x. But the number of chamber cuts in [x, θ(x)] is finite and
thus there are only finitely many chamber cut angles for γ.

Lemma 11.3.9. A chamber cut angle is always non-zero.

Proof. If two geodesics have angle zero, then they coincide on a certain interval.
Thus if a chamber cut angle ](F , γ) at a point x was zero, then there exists an
y ∈ F such that ]x([x, y], γ−x ) = 0.
One may note that this statement uses that facets are complete and convex.
But then there exists an element y′ ∈ [x, y] with y′ ∈ γ−x which contradicts the
conditions for a chamber cut.

Proposition 11.3.10. Let ∆(x, y, z) be a geodesic triangle with α := ]z̄(x̄, ȳ) for
a comparison triangle ∆(x̄, ȳ, z̄) in R2. Then for any point u in the convex hull of
x, y, z we have ]z(x, u) ≤ α.

Proof. This follows as a comparison point ū lies inside the triangle ∆(x̄, ȳ, z̄) and
thus ]z̄(x̄, ū) ≤ α and hence ]z(x, u) ≤ α.

Proposition 11.3.11. Let θ be an hyperbolic action on a building B. Let C be
a chamber of B and let γ be a translation axis of θ. There exists a geometric
apartment |Σ′| containing |C| and γ+

z for some z ∈ R.

Proof. Let bC be the barycenter of |C|, and let p be the projection of bC onto γ. Let
Σ be an apartment containing γ (see 8.3.9). Let ]1 be the minimum of all chamber
cut angles 6= 0 of γ. Let x ∈ [γ] such that ]x̄(p̄, b̄C) ≤ ]1 for a comparison triangle
∆(x̄, p̄, b̄C) in R2. Then the angle ]y(p, bC) is less or equal ]1 for all y ∈ γ+

x . Let
D be a chamber satisfying the following conditions:

(i) D is a chamber in Σ

(ii) D intersects γ+
x non-trivially

(iii) D contains a maximal facet F such that ](γ,F) > 0.

Let α+ be the root of Σ determined by F , with θ(α+ ∩ γ) ⊂ α+ and let z ∈ F ∩ γ.
Let P be the panel determined by F and let D be the projection of C onto P . Let
Γ = (D′ = D0, D1 = D,D2, . . . , Dn = C) be a minimal gallery.
Assume there exists a root αi containing Di, Di−1, . . . , D0 and γ+

z , for some i > 0.
Then the projection of all chambers of αi onto the panel containing Di and Di+1

is Di. Thus by 8.3.8 there exists an apartment containing αi and Di+1.
This shows that we obtain an apartment Σ′ containing Γ, starting from the root
α+. We want to show that Σ′ contains γ+

z . By the construction of Σ′, either γ+
z

is contained in Σ′ or there exists an element z′′ ∈ γ such that z′′ lies on a wall ∂β
separating C from D and γ+

x ∩ Σ = {x}.
As ∂β separates D from C, this wall intersects the geodesic segment [bC , bD] joining
the barycenters of C and D in a point z′. Thus in the latter case, the angle of
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z′′

z′
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](∂β, γ)

∂β

Figure 11.1: Angles within a triangle in a CAT(0) space.

](γ, ∂β) which is a chamber cut angle, equals ]z′′(z′, p). As z′′ ∈ γ+
z the angle

](z′′, bC , p) ≤ ](z, bC , p) and as the geodesic triangle ∆(z′′, bC , p) contains the
point z′, we can apply 11.3.10 to see that this angle is less or equal ]1. By the
convexity of the wall ∂β, the angle ](γ, ∂β) is less or equal to ]z′′(bC , p) which
contradicts that chamber cut angles along γ are greater than ]1. This shows that
Σ′ contains γ+

z .

11.4 Hyperbolic Actions

This section is about the existence of a minimal gallery of the form (C, . . . , D, . . . θ(D))
for any chamber C ∈ B.
Let B be a building with an hyperbolic action θ on its Davis realization X .

Proposition 11.4.1. Let Σ be an apartment of B with θ(Σ ∩Min(θ)C) ⊂ Σ and
Σ ∩Min(θ)C 6= ∅. For any root α in Σ with Min(θ)C ∩ α 6⊆ ᾱ, either

(i) θ(α ∩Min(θ)C) ⊂ α, or

(ii) θ(−α ∩Min(θ)C) ⊂ −α.

Proof. Let α be a root of Σ with Min(θ)C 6⊆ ᾱ. Assume there exists a y ∈
α ∩ Min(θ)C with θ(y) ∈ −α. Let γ : [0,∞] → Σ be the geodesic ray issuing
from y containing θ(y). For z := mint∈[0,∞){γ(t) ∈ −α}, the ray γ([z,∞)) equals
Min(θ)C ∩ −α, and the statement follows.

Definition 11.4.2. Let C ∈ B. We define ΣC to be the set of all apartments Σ of
B, containing C with the following properties:

(i) |Σ| ∩Min(θ)C 6= ∅, and

(ii) θ(|Σ| ∩Min(θ)C) ⊂ |Σ|.
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For each Σ ∈ ΣC , define α(Σ, C) to be the set of all (geometric) roots α ∈ Σ
containing C, with

(i) Min(θ)C ∩ α 6⊆ ᾱ,

(ii) θ(α ∩Min(θ)C) ⊂ α, and

(iii) α ∩Min(θ)C 6= ∅.

Further define SΣ(C) :=
⋂
{α ∈ α(Σ, C)}.

By 11.4.1 and 11.3.11 such roots exist. As C is contained in each of these roots,
this set is not empty. Now we can define SM(θ)(C,Σ) := MC(θ) ∩ SΣ(C).

Lemma 11.4.3. If an apartment Σ contains a chamber C and a point x, then Σ
also contains projR(x)(C).

Proof. If a point x is contained in Σ, then Σ has to contain at least one chamber
D of R(x). The support R(x) is a spherical residue, thus projR(x)(C) is contained
in the chamberwise convex hull of C and D which is contained in Σ.

Lemma 11.4.4. For every Σ ∈ ΣC, there exists a chamber D ∈ SM(θ)(C,Σ) with
D = projR(y)(C) for some suitable y ∈ |B|.

Proof. Let y ∈ Min(θ)C ∩ SΣ(C). Assume that there is a root α ∈ α(C,Σ) which
does not contain D.
If α contains any other chamber of R(y) then it has to contain D, because α is
chamberwise convex and D is the projection of C onto R(y). So the root α does
not contain any other chamber of R(y). Thus α does not contain any point inside
R(y) which contradicts y ∈ α.

Remark 11.4.5. By 11.3.11 the set SM(θ)(C,Σ) ∩Min(θ)C is not empty.

Assume D ∈ SM(θ)(C,Σ) and D ∈ Σ′ for some other apartment Σ′ ∈ ΣC . If
D /∈ SM(θ)(C,Σ′) then there is a root β′ ∈ Σ′ which contains C and a subray of
Min(θ)C , but not D. Let y′ be a point of Min(θ)C which is contained in Σ and Σ′

such that D /∈ R(y′) and E := projR(y′)(D) ∈ β′.
As both apartments contain C,D and y′, there is an isomorphism from Σ′ to Σ
fixing conv(C,D,E). The root β′ is mapped to a root β which contains C and E
but not D. Furthermore θ(β ∩Min(θ)) has to be a subset of β which contradicts
D ∈ SM(θ)(C,Σ). We conclude

Proposition 11.4.6. If a chamber D is contained in SM(θ)(C,Σ) for some apart-
ment Σ ∈ ΣC, then D ∈ SM(θ)(C,Σ′) for every Σ′ ∈ ΣC containing D.

Let D ∈ SM(θ)(C,Σ) with D := projR(y)(C) for some y ∈ SΣ(C) ∩Min(θ)C .

Proposition 11.4.7. There exists a minimal gallery from C to θ(D) containing D.
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Proof. For y ∈ SΣ(C) ∩ Min(θ)C , the geodesic segment [y, θ(y)] is contained in
Σ. Let Γ be a minimal gallery from D to θ(D) along [y, θ(y)], let (Ri)i∈{1,...,n} =
R([y, θ(y)],Σ) as in 11.1.12, and let Γ′ be a minimal gallery from C to D. We want
to show that Γ′.Γ is a minimal gallery. The we have to show that the projections
projRi(C) and projRi(D) coincide for every i ∈ {1, . . . , n}. Using 11.4.3 we see that
both projections lie in Σ.
By the condition D := projR(y)(C), we get projR1

(C) = projR(y)(C).
Assume the statement holds for j < i , but Ci := projRi(C) 6= projRi(D) =: Di.
Then there exists a root α in Σ containing Di and D but not Ci and C. Thus −α
contains Ci and C. As ᾱ separates C and D, and as D is the projection onto the
support of a point in Min(θ) we have Min(θ)C ∩ α 6⊂ ᾱ. Thus by 11.4.1 we get
θ(−α ∩Min(θ)) ⊂ α, as y ∈ |α| and θ(y) ∈ | − α|. This means D /∈ SM(θ)(C,Σ)
which contradicts the conditions.

Proposition 11.4.8 (see also [AB09]). Let w be a θ-displacement in B. If there is
an s ∈ S with l(swθ(s)) = l(w) + 2, then the word swθ(s) is also a θ-displacement
in B.

Proof. Let C ∈ B with displacement w. Let C ′ be a chamber in the s-panel P
containing C. Then θ(C ′) and θ(C) lie in a common θ(s)-panel P ′ = θ(P ). As
l(wθ(s)) > l(w), the chamber θ(C) is the projection of C onto P ′, and as l(sw) >
l(w), the chamber C is the projection of θ(C) onto P and we get a minimal gallery
from C ′ to its image, containing C and θ(C). Thus δ(C ′, θ(C ′) = swθ(s).

An immediate consequence of this proof is:

Corollary 11.4.9. If C ∈ B is a chamber with displacement w such that l(swθ(s)) =
l(w) + 2, then the displacement of any chamber D in the s-panel containing C is
swθ(s).

Lemma 11.4.10. Let w be a θ-displacement in a B. If there exists s ∈ S with
l(sw) = l(w) + 1, l(wθ(s)) = l(w)− 1, then swθ(s) and sw are θ-displacements.

Proof. Let C ∈ B be a chamber with displacement w. Then for any chamber
E 6= C in the s-panel P containing C, we have δ(E, θ(C)) = sw and thus C is the
projection of θ(C) onto P . On the other hand, l(wθ(s)) = l(w) − 1 shows that
θ(C) is not the projection of any chamber E ∈ P onto θ(P ). Let D ∈ P be the
preimage of projθ(P )(C) = projθ(P )(P ) under θ. Then δ(D, θ(D)) = swθ(s). Let E
be a chamber in P \ {C,D}, then there exists a minimal gallery from E to θ(E)
passing the projection C = projP (θ(E)) and projθ(P )(E) = θ(D). This gallery is
of type sw.

An immediate consequence of this proof is:

Corollary 11.4.11. If C ∈ B is a chamber with displacement w such that l(sw) =
l(w) + 1 and l(wθ(s)) = l(w) − 1, then there exists a unique chamber E in the
s-panel P containing C with displacement swθ(s) and every chamber in P \{C,E}
has displacement sw.
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11.5 The (MW) Condition

Let θ be an action on a building B and let θ also denote its induced action on the
Davis realization X of B. We define the following sets:

• Wθ := {w ∈ W | ∃ D ∈ B : δ(D, θ(D)) = w}, the set of displacements of θ
on B, and

• WMin(θ) := {w ∈ W | ∃ C ∈ B, D ∈ MC(θ) : δ(D, θ(D)) = w}, the set of
displacements of θ on chambers in

⋃
C∈B

MC(θ).

• For all C ∈ B we define:
Cham(C, θ) := {D ∈ MC(θ) | D lies on a minimal gallery from C to θ(D)}.

We have already shown that Cham(C, θ) is non-empty for any chamber C in B.
For the main statement, we need the following condition on θ:

(MW ) For every chamber C ∈ B, there exists a chamber D ∈ Cham(C, θ) and an
apartment Σ such that Σ contains C, θ(D), and θ(C).

Theorem 11.5.1. If an automorphism θ on a building B satisfies (MW ), then
any displacement w ∈ Wθ is a θ-conjugate of some displacement w′ ∈ WMin(θ), i.e.
w = w1 · w2 · θ(w1)−1 for some w2 ∈ WMin(θ).

Proof. Let Σ be an apartment containing C, θ(C), and θ(D). As D is an element
of Cham(C, θ), also D ∈ Σ. From θ(δ(C,D)) = δ(θ(C), θ(D)), we get δ(C, θ(C)) =
δ(C,D) · δ(D, θ(D)) · θ(δ(D,C)) which proves the statement.

11.6 Displacements in Coxeter Systems

Let (W,S) be a Coxeter system. We can view (W,S) as a thin building B and
(MW ) is satisfied.

Corollary 11.6.1. For any Coxeter system (W,S) and any isomorphism θ on
(W,S), the displacements in Wθ are exactly the words w · w′ · θ(w−1), where w′ ∈
WMin(θ) and l(w′w) = l(w) + l(w′).

Proof. Let w′ ∈ WMin(θ) and w ∈ W with l(ww′) = l(w)+ l(w′). From w′ ∈ WMin(θ)

it follows that there exists an element D ∈ W with displacement w′. Furthermore
from l(ww′) = l(w)l(w′) there exists a chamber C with δ(C,D) = w and δ(C, θ(D)
= ww’. Now δ(θ(D), θ(C)) = θ(w) and the result follows.
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An Open Question:

Find non-trivial necessary and / or sufficient conditions on the build-
ing B which ensure that (MW) is satisfied for every (type-preserving)
automorphism.

Here, by a trivial condition we mean something like ”the building satisfies (MW)
for every automorphism”. Of course conditions which are both necessary and suf-
ficient would be most interesting, but also partial results (i.e conditions which are
just necessary, or just sufficient) are of interest. An example for such conditions
can be derived from section 11.7: If the underlying Coxeter group of a building B
is universal, the condition (MW) is satisfied for every automorphism of B.

A closely related open question to the given one is following:
Given a building, find a non-trivially characterization of all automor-
phisms satisfying (MW).

One conclusion of the next chapter is that for a class of buildings (the ones
admitting a tie tree) a similar result holds. The set used to obtain all displacements
as θ-conjugates will be a lot bigger than R(Min(θ)), but for these cases an analogue
of the (MW )-condition (the existence of an apartment containing C,D, θ(D), and
θ(C)) will always be satisfied.

11.7 Buildings with Universal Coxeter Group

A universal Coxeter group W is a (Coxeter) group of the form

W = 〈S | s2 = 1 for all s ∈ S〉.

Let B be a building with an universal Coxeter group. Let (V,E) be the adjacency
graph whose vertices are the chambers of B and whose edges correspond to adjacent
chambers. Then (V,E) is a tree. Indeed, the type of any sequence of adjacent
chambers (C1, C2, . . . , Cl) in this graph with δ(Ci−1, Ci) 6= δ(Ci, Ci+1) for 1 < i < l
is a reduced word and hence the sequence is a minimal gallery and cannot be a
cycle. Any automorphism θ of B has to preserve the adjacency relation and thus
induces a graph automorphism θ̃ on (V,E). Let C be an arbitrary chamber of B.
The tree structure of (V,E) implies that MC(θ) is gated and the unique gallery
from C to D := projMC(θ)(C) extends uniquely to a minimal gallery from C to
θ(D). With MC(θ−1) = MC(θ), we obtain a unique minimal gallery from θ(C) to
D containing θ(D). Thus there exists a (unique) gallery from C to θ(C) which
contains θ(D). Therefore there exists an apartment contains those chambers and
hence θ satisfies (MW ).
We conclude:

Lemma 11.7.1. Let B be a building with universal Coxeter group. Then (MW )
is satisfied for every automorphism of B.
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11.8 Fixing Exactly One Wall

Let θ be an elliptic action on an affine building B, with Min(θ) = M for a wall M .
Let C be a chamber in B and let p := projM(bC). Then p determines a spherical
residue RC and as θ stabilizes RC , for D := projRC(C) we get a minimal gallery
from C to θ(D) containing D. This means D ∈ M(θ). Furthermore we see, using
9.1.7, that there exists an apartment Σ containing C and θ(C) with |M | ⊂ |Σ|.
This implies that also D and θ(D) are contained in Σ and we conclude:

Lemma 11.8.1. Let θ be an elliptic action on an affine building B fixing exactly
one wall. Then θ satisfies the (MW ) condition.

If θ is a hyperbolic action of an affine building fixing exactly one wall M , then
θ does not generally satisfy (MW ). We will see later (13.3) that we can adjust this
idea, so we don’t need D to lie on a minimal gallery from C to θ(D), but we will
use another chamber D′ which will be a projection of θ(C) onto M such that there
exists a minimal gallery from C to D′ containing D. This will also mean that the
displacement is not of the form ww2θ(w

−1) as before, as the gallery from θ(C) to
D′ is in general not the image of the gallery from C to D.

We will also explain in 14.8, given the affine building B corresponding to
GLn(K) for a field K with discrete valuation and finite residue field k, when the

canonical reflection

 0 −1
1 0

1
...

1

 acting on B fixes exactly one wall.



CHAPTER

TWELVE

TREE-LIKE STRUCTURES

The concept of tie trees was developed to obtain a framework containing every
building admitting a meaningful tree-like structure. It is based on the following
observation on PGL(2,Z): The graph whose vertices are the maximal spherical
residues and their intersections and whose (undirected) edges correspond to the
containment relation is a tree. Tie trees have the crucial property that minimal
galleries in the building relate to minimal paths in the tree. Furthermore the vertices
are gated sets, so that we can use a projection of a chamber onto such a vertex.
We will see that we can obtain a tie tree structure for a building of type (W,S)
if (W,S) itself admits such a structure. Theorem 12.1.32 is a structure theorem
for Weyl displacements of automorphisms of such buildings. A specialization of tie
trees are residue trees. For those trees, all vertices are residues.

12.1 Tie Trees

Let B be a building of type (W,S).

Definition 12.1.1. A tie of a building B is a proper subset of Cham(B) (i.e. it is
not empty and not the whole building). We call a tie a knot if it contains exactly
one chamber. The set of knots will be denoted by K. We say that an intersection
of two ties is knotted if their intersection is a knot.

Definition 12.1.2. A tie graph (of B) is a graph (V,E), satisfying the following
properties:

(TG1) The vertices of (V,E) are non-trivial pairwise different ties of B.

(TG2) V is closed under non-trivial, non-knotted intersections, i.e. if v, w ∈ V
and v ∩ w /∈ {∅} ∪ K (i.e. (|v ∩ w| ≥ 2) then v ∩ w ∈ V .

(TG3) For (v, w) ∈ E : v ⊂ w or w ⊂ v.

(TG4) If v, w ∈ V with v ⊂ w1 then v = w1 ∩ w2 for some w1, w2 ∈ V and
(w1, v), (v, w2) ∈ E. If v /∈ K, then w1 can be chosen to be w.

1The notation v ⊂ w means a proper inclusion.

73
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(TG5) If v0 ⊂ v1 ⊂ v2 then (v0, v1) /∈ E.

Lemma 12.1.3. A tie graph satisfies:

(TG6) For v, w ∈ V \ K : (v, w) ∈ E ⇔ (v ⊂ w or w ⊂ v).

Proof. Let v, w ∈ V \ K. If (v, w) ∈ E, then by (TG3) we get v ⊂ w or w ⊂ v. If
v ⊂ w, then by ((TG4)) v = w ∩ w2 for some w2 ∈ V and (v, w) ∈ E.

Definition 12.1.4. Let θ be a building automorphism of a building B. A tie graph
(V,E) (of B) is called tie tree for θ if it satisfies the following properties:

(TT1) For every panel P of B, there exists a tie v ∈ V with Cham(P ) ⊂ v.

(TT2) For any edge (v, w) ∈ E, the intersection v ∩ w satisfies the gate property
(and thus is chamberwise convex).

(TT3) The graph (V,E) is a tree.

(TT4) The action θ on B induces a graph automorphism on (V,E).

From now on consider T = (V,E) to be a tie tree for an autormophism θ on a
building B.

Example 12.1.5. Let B be a building of type 3 ∞
s1 s2 s3

. The corresponding

Coxeter group is isomorphic to PGL2(Z). The graph whose vertices are the maxi-
mal spherical residues (the residues of type {s1, s2}, {s1, s3}) and their intersections
(the residues of type {s1}) form a tree if we consider the edges are given by the
containment relation. (We will see later in 12.3.7 that the graph is a tree.) Any
action on B preserves this tree structure (as it has to be type-preserving) and any
a building of type PGL(2,Z) admits a tie tree for every automorphism.

Explanation (The definition of tie trees)
The aim of the definition of tie trees is to obtain minimal galleries in the build-
ing using minimal paths in the tree. For two ties v, w with minimal path v =
v1, . . . , vn = w and chambers C ∈ v,D ∈ w, the gallery determined by minimal
galleries from projvi(C) to projvi+1

(C) for i ∈ {1, . . . , n−1} and a minimal gallery
projw(C) to D is a minimal gallery from C to D and further every minimal gallery
from C to D has to contain a chamber of each of the vi. Hence for every chamber
C we obtain a minimal gallery from C to θ(C) using a tie v containing C and the
minimal path in T from v to θ(v).

We give some examples for graphs satisfying all, but one of the given conditions:

(TG2) Consider the Coxeter system of type
s1 s2 s3 s4

∞∞ . Chose a chamber

C and let P be the set of panels parallel to the s1 panel containing C. Let
V be the set of the {s1, s2, s3}- and the {s1, s2, s4}- residues together with
the panels in P. And let the edges correspond to the inclusion. For every
automorphism preserving P, this graph satisfies all conditions to be a tie tree
but (TG2).
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(TG3) Consider a tie tree (V,E) for some automorphism θ of a building B fixing
a tie v which is contained in two ties w1 and w2 and which is not connected
to any other tie of V . Add a new tie w1 ∪ w2 and replace all edges of the
form (v′, w1) or (v′, w2) by (v′, v). Remove the ties w1 and w2 and add the
edge (w1∪w2, v). The automorphism θ induces a graph automorphism on the
resulting tree which does not satisfy condition (TG3).

(TG4) Let (V,E) be a tie tree for an automorphism θ on a building B fixing a
vertex v with v ⊂ w for some w ∈ V . Let t be the union of all ties connected
to v. We construct a new graph (V ′, E ′) as follows: We take V and E and
replace every edge of the form (v1, v2) by (v1, t) if v2 is connected to v in
E. We remove every edge with a vertex v and add the edge (t, v). Then θ
induces a graph automorphism on the tree (V ′, E ′), but the tie v is not the
intersection of two ties.

(TG5) Let (W,S) be a Coxeter system of type PGL(2,Z) with generators chosen
as in example 12.1.5. Let C be the chamber corresponding to 1W and let R be
the s1-panel containing C. Let C be a set of chamber containing exactly one
chamber for every s1-panel in (W,S) such that the reflection rs3 stabilizing the
s3-panel containing C preserves C. Let V be the set of all maximal spherical
residues together with their intersections and all chambers of C. We connect
every chamber in C to all residues containing it. The resulting graph is a tree
and rs3 induces a graph automorphism on it. But the graph does not satisfy
(TG5).

(TT1) Consider the Coxeter system (W,S) of type
s1 s2 s3 s4

∞∞ . Chose a

chamber C and let R be the {s3, s4}-residue containing C. Let V be the set
of all {s1, s2}- residues together with R and all chambers in R. Let the edges
correspond to the containment relation. For every automorphism θ of (W,S)
preserving R, the resulting graph satisfies all conditions to be a tie tree for θ
on B, but (TT1).

(TT2) Consider a Coxeter system (W,S) of type Ã2. For every wall β, let Cβ be
set of all chambers which lie in a panel determined by β. Let α be a wall and
let V be the set of all Cβ for all β parallel to α and their intersections. Let
(V,E) be a graph, where the edges correspond to the inclusion relation. For
every automorphism of (W,S) preserving the parallel class [α], the resulting
graph satisfies all conditions to be a tie tree, but (TT2).

(TT3) Consider a building B of type Ã2 and let V consists of all maximal spherical
residues and all panels. The graph (V,E), with edges corresponding to the
inclusion relation is not a tree but satisfies all conditions but (TT3)to be a
tie tree for any automorphism of B.

(TT4) Consider the Coxeter system (W,S)of type
s1 s2 s3 s4

∞∞ . Let B

be a building of type (W,S). The graph consisting of all {s1, s4, s2}-and
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{s1, s4, s3}-residues and their intersections, where the edges correspond to
the inclusion relation is a tie tree for every type preserving automorphism,
but not for a non-type-reserving automorphism.

Definition 12.1.7. A tie is called maximal if it is not contained in any other tie.
It is called gated/convex if it is gated/convex as a subset of Cham(B).

Definition 12.1.8. Let C ∈ B, v a tie. If v is a gated, we denote the gate for C
onto v by projv(C). This gate will also be called the projection of C onto v.

Lemma 12.1.9. For (v, w) ∈ E, either v or w is maximal.

Proof. From (v, w) ∈ E it follows v ⊂ w or w ⊂ v. We may assume v ⊂ w. If w
was not maximal, then there exists a tie v′ containing w. As v is a proper subset
of w, the tie w is not a knot, and thus (v′, w) ∈ E by (TG6). But then v is also a
subset of v′ and by (TG5) we get (w, v) /∈ E which contradicts the choice of v and
w. Thus w has to be maximal.

Lemma 12.1.10. For (v, w) ∈ E, the tie v ∩ w equals either v or w.

Proof. This follows directly from the condition (TG3).

Lemma 12.1.11. For (v, w) ∈ E, at least one of v and w is gated and convex.

Proof. This follows from (TG4) as either v = v ∩ w or w = v ∩ w.

Lemma 12.1.12. If a tie t contains two adjacent chambers C,D, then t contains
the whole panel containing C and D.

Proof. Let P be a panel containing two chambers C and D and let t be a tie
containing C and D. If t is gated, then every chamber of the panel P needs to
have a unique gate onto t which implies P ⊆ t. Let t be a non-gated tie containing
C and D and let t′ be a tie containing the panel P which exists by (TT1). If t′ ⊆ t
we are done by (TG6) and (TT2). The intersection t′′ := t ∩ t′ is a gated tie
containing C and D. Hence, by the above, P ⊂ t′′.

Proposition 12.1.13. Let v0, . . . , vn be an arbitrary path in T . Then for all
i ∈ {0, . . . , n− 2}:

(i) If vi ⊂ vi+1 then vi+1 ⊃ vi+2.

(ii) If vi ⊃ vi+1 then vi+1 ⊂ vi+2.

In particular, we get an alternating relation of containment along any path in T .

Proof. From (TG5) in the definition of a tie graph, we cannot have a sequence of
the form v1 ⊂ v2 ⊂ v3. Thus by (TG3) the relations along the path need to be
alternating.

Definition 12.1.14. A minimal gallery Γ is said to be contained in a minimal
path γ of T , if for every two consecutive chambers of Γ, there exists a tie in γ
containing those chambers.
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Definition 12.1.15. For two paths γ1 = (v1,1 . . . , v1,n1), γ2 = (v2,1, . . . , v2,n2) in T
with v1,n1 = v2,1, we define γ1.γ2 := (v1,1, . . . , v1,n1 = v2,1 . . . , v2,n2).

Lemma 12.1.16. For every minimal gallery Γ in B, there exists a path in T
containing Γ.

Proof. Let Γ = (C0, C1, . . . , Cn) be a minimal gallery. For any two consecu-
tive chambers Ci, Ci+1 of Γ, there exists a tie vi containing the panel Pi with
Ci, Ci+1 ∈ Pi, by (TT1). Let γi be the minimal path from vi to vi+1, then the
path γ = γ1.γ2 . . . γn−1 contains the gallery Γ.

Proposition 12.1.17. For any minimal gallery in B, there exists a (uniquely
determined) minimal path in T containing this gallery.

Proof. Let Γ = (C0, . . . , Cn) be a minimal gallery and let v, w be ties with C ∈ v
and D ∈ w. There exists a unique minimal path γ := v0, . . . , vn, n > 0 from v to
w in the tie tree T . Let v = u0, . . . , ul = w, l > 0 in T be the path containing the
minimal gallery Γ, as constructed in 12.1.16. If γ equals u0, . . . , ul, we are done.
Assume the two paths do not coincide. As there are no cycles inside a tree, the
path v0, . . . , vn(= ul), . . . u0 cannot contain any cycle. Therefore ui = vji,1 = vji,2
for some ji,2 ≥ ji,1 and ji,2 + 1 = ji+1,1 for 0 < i < n − 1. If ui is convex, all
chambers in Γ which are contained in the ties vji,1 , . . . , vji,2 are contained in ui.
If ui = vji,1 is not convex, then vji,1+1 is a convex tie by 12.1.11. Furthermore
using (TT2), we see that vji,1+1 is a tie contained in vji,1 = ui. Thus all chambers
of Γ which are contained in vji,1 , . . . , vji,2 are contained in ui and furthermore by
12.1.12 each panel determined by consecutive chambers of Γ inside vji,1 , . . . , vji,2 is
contained in ui. We see that every panel containing two consecutive chambers of
Γ is contained in a tie of γ and thus γ contains Γ.

Observation 12.1.18. For any two chambers C,D and two ties v, w with C ∈ v
and D ∈ w, the unique path from v to w contains every minimal gallery from C
to D.

Proposition 12.1.19. Ties of a tie tree are convex.

Proof. Let v be a tie of a tie tree T and let C,D be two arbitrary chambers inside
v. By 12.1.18 the path (v) contains every minimal gallery from C to D and hence
the tie v is convex.

Definition 12.1.20. If (V,E) is tie tree for each automorphism of B, then it is
called tie tree (for B).

Definition 12.1.21. Let Γ = (C0, . . . , Cn) be a gallery in B. We say Γ is a
minimal gallery from v to v′ for v, v′ ∈ T if Γ is minimal and C0 ∈ v, Cn ∈ v′.

Lemma 12.1.22. Let v, v′ be ties containing a common chamber C. Then any tie
inside the minimal path from v to v′ contains C.
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Proof. Let v, v′ be two ties containing a common chamber C and let
v = v0, . . . , vn = v′ be the minimal path between them.If there exists a tie inside
this path, not containing C, we may assume, by shortening the path if necessary,
that v0 and vn are the only ties in this sequence containing C.
Now n needs to be larger than 1 and we see that v1 ⊂ v0 and vn−1 ⊂ vn. As
vn−1 ⊂ vn, the tie vn−1 is gated by (TT2) and there exists a minimal gallery
Γ = (C0, . . . , Cl) from C to projvn−1

(C) which lies entirely inside the convex set
vn, see 12.1.19. By 12.1.18, this gallery has to lie inside the path v0, . . . vn−1, i.e.
every pair of consecutive chambers in this gallery is contained in one of the ties
v0, . . . , vn−1. Thus one of the ties v0, . . . , vn−1 has to contain the chambers C0, C1.
By assumption, the only tie in this path containing C is v0. Hence v0 ∩ vn con-
tains C0 and C1. By (TG2) v0 ∩ v1 is an element of V with edges (v0 ∩ v1, v0) and
(v0∩v1, v1) by (TG6). Now v0, v0∩vn, vn is the minimal path from v0 to vn and vn−1

contains C. This contradicts our assumption that only v0 and vn contain C.

Corollary 12.1.23. For any chamber C, the set of all ties containing C spans a
connected subtree of T . In particular, for any tie v and any chamber C there exists
a unique tie w containing C which is closest to v.

Proof. By 12.1.22 the set V ′(C) of all ties containing a common chamber C is
connected and as V ′(C) spans a connected subgraph of a tree, it spans a subtree.
For any subtree T0 of T , (or a tree in general) and any tie v in T , there exists a
unique tie in T0 closest to v. This implies that for any tie v in T there exists a
unique tie w containing a given chamber C which is closest to v.

Lemma 12.1.24. Let v1, . . . , vn be a minimal path in T with n > 1. Then any
minimal gallery from v1 to vn has to contain a chamber of vn−1.

Proof. The statement is always true if vn ⊂ vn−1 or n ≤ 3. Now let n > 3. Let
Γ = (C0, . . . , Cl) be a minimal gallery from v1 to vn. By 12.1.18 the chambers of
Γ are contained in the path v1, . . . , vn. Let Ci be the first chamber of Γ which lies
inside vn. If Ci lies inside vn−1 we are done. Now assume Ci /∈ vn−1. The panel
containing Ci−1 and Ci is contained in at least one of the ties in the given path,
see 12.1.18. Let v′ be the last of such ties. By 12.1.22 every tie on the minimal
path from v′ to vn contains Ci and thus vn−1 contains Ci.

Proposition 12.1.25. Let v, v′ be two arbitrary ties in T . For any C ∈ v, D ∈ v′
and any tie ṽ on the minimal path from v to v′, every minimal gallery from C to
D has to contain a chamber of ṽ.

Proof. Let Γ be a minimal gallery from C ∈ v to D ∈ v′ and let v1 = v, . . . , vn = v′

be a minimal path. By 12.1.24 the tie vn−1 contains a chamber Dn−1 of Γ. Now we
can apply the same argument to the gallery we get from Γ by ending this gallery
at Dn−1. We see that every tie on the minimal path from v to v′ has to contain an
element of Γ and the statement holds.

Lemma 12.1.26. For any tie v in T and any chamber C in B, there exists a
unique projection of C onto v. In particular, each tie is gated.
We say T satisfies the gate property.
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Proof. Let C be a chamber in B and let v be a tie of T . In the case, where C
is contained in v we are fine. Assume v is not gated. Let v′ be the (unique) tie
closest to v containing C (see 12.1.23). By 12.1.18 there exists a unique minimal
path (v = v0, . . . , vn = v′) from v to v′ containing every minimal gallery from C
to any chamber in v′. As v is not gated, the tie v1 is gated and contained in v0 by
(TG3) and (TT2). Let D be an arbitrary chamber in v. By 12.1.24 any minimal
gallery from C to D has to meet v1. As v1 is gated, we may adjust any such gallery
to meet projv1(C). This means that for any chamber D in v, there exists a minimal
gallery from C to D containing projv1(C) which shows that projv1(C) is a gate for
C onto v.

An immediate consequence of this proof is:

Lemma 12.1.27. Let v 6= v′ ∈ T and let C ∈ v. Let (v = v0, . . . , vn = v′) be the
unique minimal path from v to v′. Then projv′(C) ∈ vn−1.

Proposition 12.1.28. Let v, v′ be two distinct ties in T and let v̄ be a tie lying
on a minimal path between v and v′ in T .
Then for each chamber C ∈ Cham(v) and each chamber D ∈ Cham(v′) there exists
a minimal gallery from C to D that contains projv̄(C) and projv̄(D).

Proof. Let Γ = (C = C0, . . . , Cn = D) be a minimal gallery from C to D. We can
assume that Ck = projv̄(C) for some k ∈ {1, . . . , n}, as Γ has to meet every tie
on the minimal path from v to v′ by 12.1.25 and as all ties are gated by 12.1.26.
From the gate property of v̄ there also exists a minimal gallery Γ′ from Ek to D
containing projv̄(D). Thus (C = C0, . . . , Ck) · Γ′ is a minimal gallery from C to D
containing projv̄(C) and projv̄(D).

Definition 12.1.29. Let θ be an automorphism of a building B. If T is a tie tree for
θ on B, then it admits a CAT(0) structure such that θ induces an isometry on T . We
will make no difference in the notation for ties and edges and their corresponding
realizations. Therefore we have the non-empty, convex set Min(θ)(T ) of all points
with minimal displacement by 3.7.2 (ii) and 11.1.4.
If the set of ties inside Min(θ)(T ) is empty, then θ stabilizes an edge (v, w) ∈ T ,
but does not fix it. From the convexity we get that the midpoint of the realization
of this edge is the only fixed point for θ and thus the only element of Min(θ)(T ).
Therefore we can define the following:
The support SM (θ)(T ) of Min(θ)(T ) is either

(i) the set {v ∈ T | v ∈ Min(θ)(T )}, or

(ii) it is the set {v, w} for an edge (v, w) which is stabilized but not fixed by θ.

For a chamber C in Cham(SM(θ)), we also write C ∈ SM(θ).

Remark 12.1.30. As Min(θ)(T ) is a convex set, we see that SM(θ)(T ) is a convex
set, i.e. if v, w ∈ SM(θ)(T ), then any tie u which lies on the minimal path from v
to w is also contained in SM(θ)(T ).
It follows from 3.7.2 (i) that θ stabilizes SM(θ)(T ).
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Furthermore, for any tie v ∈ T , there exists a unique tie in SM(θ)(T ) which is
closest to v. This follows directly from the tree structure of T and the convexity
of SM(θ)(T ).

Proposition 12.1.31. Let C /∈ SM(θ)(T ) be a chamber of a building B with an
automorphism θ and a tie tree T for θ. Let v be a tie containing C and let u be
the unique tie of SM(θ)(T ) closest to v. Then

θ(proju(C)) = projθ(u)(θ(C))

Proof. If projθ(u)(θ(C)) has a shorter distance to θ(C) as θ(proju(C)), then its
image under θ−1 is an element of u which has a shorter distance to C as proju(C).
But this contradicts the definition of the projection.

Theorem 12.1.32. If an automorphism θ of a building B admits a tie tree T ,
then the displacements of θ on B are exactly the θ-conjugates v · w · θ(v−1) of the
displacements w of chambers in SM(θ) such that l(vwθ(v−1)) = 2l(v) + l(w).

Proof. Let C be a chamber of B. Assume C /∈ SM(θ) and let v be a tie containing C.
As T is a tree, there exists a unique tie u of SM(θ) which is closest to v (see 12.1.30).
Let D := proju(C) and let u′ := θ(u). From 12.1.31 we get θ(D) = proju′(θ(C)).

By the convexity of SM(θ) there exists a minimal path in T from v to u′ contain-
ing u and by 12.1.28 there exists a minimal gallery from C to θ(D) containing D.
Now we have two cases:

u′ 6= u: The tree structure of T shows that there exists a minimal path in T from
v to θ(v) containing u and u′. By 12.1.28 we obtain a minimal gallery from
C to θ(C) containing D and θ(D).

u′ = u: For this case, let (u = v0, . . . , vn = v) be the minimal path from u to v and
let (u = w0, . . . , wn = θ(v)) be the minimal path from u′ to θ(v).

v1 6= w1: As u connects the two paths (v1 . . . , vn) and (w1, . . . , wn), the tree
structure yields that vn, . . . , v1, u, w1, . . . , wn is a minimal path in T and
by 12.1.28 we get a minimal gallery from C to θ(C) containing D and
θ(D).

v1 = w1: In this case v1 is a fixed point of the action of θ on T and thus v1

is an element of SM(θ) closer to v than u, which contradicts the choice
of u. So this case does not happen.

This shows that we get a minimal gallery from C to θ(C) containing D and θ(D).
The type of this gallery is a word of the form vwθ(v−1) with l(vwθ(v−1)) = 2l(v) +
l(w). Thus every displacement is a reduced word of such a form.
Now let w be a displacement for a chamber C ∈ SM(θ)(T ) and let v be a word with
l(vwθ(v−1)) = 2l(v) + l(w). This means that a gallery of type vwθ(v−1) is minimal
as its type is a reduced word. Let Γ1 be a minimal gallery from a chamber E to
C of type v and let Γ2 be a minimal gallery from C to θ(C) of type w. The image
θ(Γ−1

1 ) is a minimal gallery of type θ(v−1) and the concatenation Γ1 · Γ2 · θ(Γ−1
1 ) is

a gallery of type vwθ(v−1) and thus a minimal gallery.
This shows that every word with the desired conditions is a displacement for θ.
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Example 12.1.33 (Free Products). In this section, we will have a closer look at
Coxeter systems which split as a free product of Coxeter systems. Buildings of these
types are examples for which a tie tree will have knots. An attempt to construct
a tie tree by taking the maximal spherical residues and their intersections, as we
did for PGL(2,Z), will not work. Those intersections can be knots and connecting
the knots to the ties containing them will generally yield cycles in the graph. This
is where we need the condition (TG5): If v0 ⊂ v1 ⊂ v2 then (v0, v1) /∈ E. The
Coxeter system (W,S) with

W := 〈s1, s2, s3, s4, s4, s5 |
s2

1 = s2
2 = s2

3 = s2
4 = s2

5 = s2
6 = 1

= (s1s2)3 = (s2s3)3 = (s4s5)3 = (s5s6)3〉

can be decomposed as a tree of groups in the following way:

W{s1,s2} W{s2,s3}

W{s2}

W{s4,s5} W{s5,s6}

W{s5}W∅

We see that this group decomposes as the free product of W{s1,s2,s3} ∗W{s4,s5,s6}.
Removing the edge corresponding to the trivial group yields a decomposition of
the tree into two separate trees:

W{s1,s2} W{s2,s3}

W{s2}

W{s4,s5} W{s5,s6}

W{s5}

There are several ways to connect the two components, for example:

W{s1,s2} W{s2,s3}

W{s2}

W{s4,s5} W{s5,s6}

W{s5}

W∅

Using the special subgroups corresponding to the edge and vertex groups in the
tree of groups decomposition and connecting them corresponding to the given tree,
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we derive a tree structures as follows:

W{s1,s2} = R12(1W )

W{s2} = R2(1W )

W{s2,s3} = R23(1W )

{1W }

W{s4,s5} = R45(1W )

W{s5} = R5(1W )

W{s5,s6} = R56(1W )

W{s1,s2} = R12(1W )

W{s2} = R2(1W )

W{s2,s3} = R23(1W )

{1W }

W{s4,s5} = R45(1W )

W{s5} = R5(1W )

W{s5,s6} = R56(1W )

Graph in the 1st case Graph in the 2nd case

Here we denote a residue corresponding to a special subgroup of type si1 , . . . sil ,
with i1 . . . , il ∈ {1, . . . , n} by Ri1,...,in . This structure yields the same graph as the
one given in the tree of groups decomposition.
We extend this tree to a tree structure on the whole Coxeter group by translating
these residues along the whole Coxeter group. This means, we multiply the given
residues which each element of the Coxeter group. By identifying two vertices
in the resulting graph if and only if they describe the same residue, we yield the
connectedness of the graph. (see figure 12.1).

Remark 12.1.34. If a Coxeter system decomposes as a graph of groups, some edge
groups might be trivial groups. Examples are the universal the Coxeter systems
which are of the form G := 〈s1, . . . , sn | s2

1 = s2
2 = · · · = s2

n = 1〉. One can describe
such groups as a graph of groups with n vertices, one for each special subgroup
corresponding to a generator si, i = 1, . . . , n, and no edges.
It is also possible to decompose this group as a tree of groups, with the same set
of vertex groups, but adding trivial edge groups such that the resulting graph is a
tree. It is clear that adding trivial edge groups has no effect on the resulting group.

If a group decomposes as a tree of groups, we might remove all edges which
correspond to trivial edge groups. This yields a set of connected components of the
graph which are again trees. If there is more than one connected component, the
given group splits as a free product of the groups corresponding to the connected
components.
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Figure 12.1: Excerpt of a residue tree for Example 12.1.33. The thick lines come
from the tree of groups decomposition. For readability, a different notation as usual
is used in this graph. The number 45 in R45(13) represents the set {s4, s5} and the
number 13 in R45(13) represents the word s1s3 ∈ W , where 0 represents its neutral
element 1W .
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12.2 Residue Trees

Let’s have a closer look at a specialization of tie trees. Instead of defining them
as tie trees with additional conditions, we present a definition which will make it
easier to work with them later on.

Definition 12.2.1. Let (W,S) be a Coxeter system. A residue graph for a
building B of type (W,S) is a simple graph (V,E) with the following conditions:

(RG1) The vertices are distinguished residues ∅ 6= R 6= B of B.

(RG2) The set V is closed under intersections of rank ≥ 1, i.e. for all v, w ∈ V
with rank(v ∩ w) ≥ 1: v ∩ w ∈ V .

(RG3) If a vertex is a residue of type J ⊂ S, then every J-residue is a
vertex of (V,E).

(RG4) If (v, w) ∈ E, then either v ⊂ w or w ⊂ v.

(RG5) Every panel is contained in at least one vertex v ∈ V (and thus every
chamber is contained in at least one vertex).

(RG6) If v, w ∈ V with v ⊂ w then v = w1 ∩ w2 for some w1, w2 ∈ V and
(w1, v), (v, w2) ∈ E. If rank v ≥ 1, then w1 can be chosen to be w.

(RG7) If v0 ⊂ v1 ⊂ v2, then (v0, v1) /∈ E.

A Residue graph which is a tree is called residue tree.

Lemma 12.2.2. A residue graph satisfies

(RG8) If v, w ∈ V with v ⊂ w and rank(v) ≥ 1, then (v, w) ∈ E.

Proof. Let v, w ∈ V with v ⊂ w and rank(v) ≥ 1. Then by (RG6) v = w ∩ w2 for
some w2 ∈ V and (v, w) ∈ E.

Remark 12.2.3. A residue graph (V,E) of a Coxeter system (W,S) determines
a unique residue graph (V ′, E ′) for any building of type (W,S) by choosing the
vertices of (V ′, E ′) to be the set of residues whose type is the same as a vertex of
V and the edges in E ′ connecting incident residues if the vertices of V with the
same types are connected in E.

Lemma 12.2.4. A residue tree (V,E) for a building B is a tie tree for any type-
preserving action on B.

Proof. There are several direct equalities: (TG2) and (RG2), (TG3) and (RG4),
(TG4) and (RG6), (TG5) and (RG7), (TT1) and (RG5), as well as (TT3) and the
condition that a tie tree is a tree. There are only a few remaining conditions to
check:

(TG1) Every residue is a proper subset of B and thus a tie.
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(TT2) Every residue is gated.

(TT4) Assume θ is a type-preserving automorphism of B. This means that θ
preserves the set of J-residues for any J ⊂ S. Therefore θ preserves the
residue tree structure.

Definition 12.2.5. Let G be a tree of groups decomposition of a Coxeter system
(W,S). If G contains more than one vertex, it is said to be non-trivial.
If every vertex of G is a special subgroup of (W,S), and if no vertex group of G
embeds into any other vertex group of G, then G is called a special tree of groups
decomposition for (W,S).

Definition 12.2.6. Let G be a non-trivial special tree of groups decomposition for
a Coxeter system (W,S), and let B be a building of type (W,S).
A residue graph of B associated to G is a residue graph (V,E) for B, where the
vertices are the residues of B whose type is the type of some vertex or edge group
of G.

Lemma 12.2.7. Let G be a non-trivial special tree of groups decomposition of
a Coxeter system (W,S). Let B be a building of type (W,S). If no edge of G
corresponds to the trivial group, then the residue graph of B associated to G is
unique.

Proof. We need to show that the set of edges E is uniquely determined.
As there are no trivial edge groups, every vertex is a residue of rank ≥ 1. Thus
the edges are uniquely given by the relation (v, w) ∈ E ⇔ v ⊂ w or w ⊂ v.

Lemma 12.2.8. Let (V,E) be a residue tree for a Coxeter system (W,S) corre-
sponding to a tree of groups decomposition. For any building B of type (W,S), the
residue graph (V ′, E ′) associated to (V,E) is a tree.

Proof. Let v1, . . . , vn be an arbitrary path in (V ′, E ′) without any repetitions and
v2 ⊂ v1. Let n′ be the maximal even number in {1, . . . , n}, let C1 be a chamber in
v1, Cn+1 a chamber in vn and let Ci be the projection of C1 onto vi for the even
values in i ∈ {2, . . . , n′}. For each even number i ∈ {2, . . . , n′ − 2}, let Γ′i be a
minimal gallery from Ci to Ci+2 and let Ci+1 be the first chamber of Γ′i contained
in vi+1\vi. Let Γ′n+1 be a minimal from Cn′ to Cn+1. Now for i ∈ {1, . . . , n′} let Γi
be a minimal gallery from Ci to Ci+1, and let wi be their types. Further let Γ be the
gallery Γ1 · · ·Γn′+1. The type of this gallery is the expression w1w2 . . . wn′ · wn′+1

which is an element of the free amalgamated product W0 ∗W1 W2 ∗W3 . . . , where
Wi is the special subgroup whose type is the type of the residue vi. But this is a
reduced word2 which means that it describes a minimal gallery and thus C 6= D
which shows that v1, . . . , vn cannot be a cycle. Thus (V ′, E ′) does not contain any
cycles. It remains to show that (V ′, E ′) is connected, but this follows directly from
the covering of B by apartments.

2A (free) amalgamated product W1∗W2
W3 has the property, that a word which is a product of

reduced words w1w2w3 · · · is reduced, if w1, w4, · · · ∈W1\W2, w2, w5, · · · ∈W2 and w3, w6, · · · ∈
W3, see 2.4.
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v

C1

vC1

vC2

vC3

C2

C3

C4

Figure 12.2: An example, where Γ \ {v} splits into 4 connected components.

Theorem 12.2.9. Let G be a non-trivial special tree of groups decomposition for
a Coxeter system (W,S). Let v be a vertex of G. Then V (G) \ {v} with

E(G) \ {(v1, v2) ∈ E | v1 = v or v2 = v or G(v1,v2) = {1W}}

yields a graph of groups G ′ whose connected components are trees of groups. The
group corresponding to G ′ is the free product of those collection of tree of groups
which are again special subgroups of W . If every building of type of one of those
special subgroups admits a residue tree associated to the corresponding tree, then B
admits a residue tree associated to G.

Proof. The idea of the proof is the following: We use the graph Γ of the non-
trivial special tree of groups decomposition for W and construct an new graph Γ′

whose vertices are the connected components of Γ \ {v} and {v}. The graph Γ′

will be extended to a graph covering the whole building, where every vertex of the
extended graph has the same type set as a vertex of Γ′. In the last two steps we
will show that the extended graph is a tree and that it satisfies the conditions to
be a residue tree.
A graph (V ′,E′) whose vertices are the connected components and v:
Let C be the family of connected components of G ′. For each connected component
C, the vertex v is connected to at most one vertex vC of C. If no vertex of C is
connected to v, then C is a factor for W as a free product. In this case we chose
an arbitrary vertex of C for vC. In the other case, v and vC intersect non-trivially,
but the intersection of v with any other vertex of C is 1W .
Let J be the type set of v, KC be the type set of the special subgroup corresponding

to C and let JC := J ∩KC. Let (V ′, E ′) be the graph whose vertices are the residues
whose type set is an element of

{J} ∪ {KC | C ∈ C} ∪ {JC | C ∈ C},

where (w,w′) ∈ E ′ if and only if one of the following holds:

(i) w ⊂ w′ and w′ is of type J .
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(ii) w′ ⊂ w and w is of type J .

(iii) w ⊂ w′, w′ is not of type J and w is maximal in w′.

(iv) w′ ⊂ w, w is not of type J and w′ is maximal in w.

Here maximal means the following: The vertex w is maximal in w′ if for any vertex
w′′ ∈ V ′ with w ⊂ w′′ ⊆ w′, we have w = w′′.
The condition on the maximality is needed as a vertex corresponding to a trivial
group should not be connected to a connected component which has non-trivial
intersection with v.

KC3

KC4

KC1

KC2

KC2

J

JC2
JC2

JC2

J

JC2

J

JC2

J
JC1

JC1

J

JC1

J

JC1

J

J

JC2
JC2

JC2
JC3 JC3

JC3
JC3

JC4
JC4

JC4
JC4

J
J

JJ

J

J

J
J

J

Figure 12.3: Excerpt of (V ′, E ′) corresponding to figure 12.2

A finer structure on (V ′,E′):
We substitute a vertex v′ corresponding to a connected component C, i.e. v′ is of
type KC for some C ∈ C, with a copy T (v′) of the residue tree corresponding to the
residue associated to C.

Each residue of type τ(vC) inside T (v′) contains a residue of type JC which is
a vertex of the ambient tree. The tree T (v′) itself does not contain any vertex
of type JC. The only possibility for such a vertex would be a residue of type ∅,
i.e. a single chamber. But as we erased all edges which correspond to the trivial
group, there are no such vertices in any connected component. As T (v′) does not
contain such a vertex, we can connect the residue corresponding to vC with each
of its subresidues of type JC. If we do this procedure for any vertex corresponding
to a connected component of G, we get a connected graph. If (V ′, E ′) is a tree,
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extending vertices by trees and connecting them without constructing cycles yields
again a tree. There we need to show that there are no cycles inside (V ′, E ′).

The tree structure on (V ′,E′):
Let v1, v2, . . . , vn be a path in (V ′, E ′) such that (vi, vj) ∈ E ⇔ j = (i ± 1) for
i = 2, . . . , n − 1 and v2 ⊂ v1. Let J1 . . . , Jn denote the type set of v1, . . . , vn
respectively.
As v2 ⊂ v1 it follows also that v2 ⊂ v3. If v2 is a single chamber, say C, then
moving from any chamber in v1 \ {C}, to any chamber in v3 \ {C} yields a Weyl
distance of the form ww′, where every generator in w has no relation with any
generator in w′.

If J2 6= ∅, then the Weyl distance from any chamber in v1 \ v2 to any chamber
in v3 \ v2 is a word of the form wsw̃tw′, where w̃ is a word in J2 = J1 ∩ J3 and
s ∈ J1, t ∈ J3. The elements s, t have no relation in W .

We are looking at the amalgamated product W = Wk ∗W0 W
′, where W ′ is

the free product of the groups corresponding to the elements in C and W0 is the
free product of the groups of the form WJC , where C runs over the set C. For
the given path v1, . . . , vn, we can find a gallery in the following way: We take
a chamber C1 inside v1 and a minimal gallery from C1 to its projection P1 onto
v2. Then we extend this gallery with a minimal gallery from P1 to its projection
P ′1 onto v4. Let D1 be the first chamber inside this gallery, lying inside v3 \ v2.
Its projection onto v4 is also P ′1. Now we can take a minimal gallery from P ′1 to
its projection P2 onto v6. Here we take C2 as the first chamber of this gallery,
which lies inside v5 \ v4. Now we can iterate this procedure and get a sequence of
chambers (C1, P1, D1, P

′
1, . . . , Cl, P̂l, D̂l, P̂

′
l ), with 1 < l < n, where ˆ denotes that

this chamber possibly does not exists.

C1

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

P1 P ′1D1 P2 P ′2C2 D2 P3C3

Figure 12.4: Example for the construction of the gallery

The given gallery is of type

(û1k̂1ŵ1j1) (u2k2w2j2) · · · (ulk̂lŵlk̂l),

where ui, wi ∈ W0, ki ∈ W1 \W0 and ji ∈ W ′ \W0, here the ˆ denotes that these
elements possibly do not appear.
Furthermore we see that uikiwi and wijiui+1 are reduced words. Now the structure
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of amalgamated products shows that this expression is a reduced word. (One may
take uiki as a representative for a right-coset of W0 in K and wiji as a represen-
tative of W0 in W ′.) Thus it is not possible to reach any element of vi again, by
moving away from vi in (V ′, E ′) and this means that (V ′, E ′) contains no cycles.

Conditions for a residue graph:

(RG1) By construction, all vertices are distinguished residues.

(RG2) To see that the set of vertices is closed under intersections of residues of
rank ≥ 2, we note that the intersections of rank ≥ 2 correspond exactly to
the non-trivial edges of G. By assumption, this condition is satisfied for the
connected components. Thus we only need to check the non-trivial edges
in the tree of groups decomposition where one of the vertices is v. But
by definition, the special subgroups corresponding to those edges determine
some JC which are vertices of the tree.

(RG3) Also, by construction: If a vertex is a residue of type J ⊂ S, then every
J-residue is a vertex of (V,E).

(RG8) If v′, w′ ∈ V with v′ ⊂ w′ and rank(v′) ≥ 1 then (v′, w′) ∈ E ′ if w′ 6= v
and v′ 6⊆ v. If w′ = v, then v′ is the intersection of v with an connected
component and thus v′ is an vertex of the graph (V ′, E ′) connected to v. If
v′ ⊂ v and w′ is not v, then v′ is the intersection of v and w which is added
in (V ′, E ′) and connected to w and v′.

(RG4) If (v, w) ∈ E, then by construction either v ⊂ w or w ⊂ v.

(RG5) From the tree of groups decomposition G we see that every generator s ∈ S
is contained in at least one vertex of G and thus every panel is contained in
at least one residue of the given tree.

(RG6) The vertices of the resulting graph correspond to the vertices and edges of
G. Therefore, every vertex contained in some other vertex is the intersection
of two ambient vertices.

(RG7) The last thing to check is: Given v0 ⊂ v1 ⊂ v2, then (v0, v1) /∈ E.
A sequence of residues v0 ⊂ v1 ⊂ v2 in the tree shows that there exist vertex
and edge groups G0 ⊂ G1 ⊂ G2 of G. We may assume G2 is a vertex group
by extending to some ambient vertex group if necessary. As we have a non-
trivial tree of groups decomposition, the groups G0 and G1 are edge groups
and thus G0 = G2 ∩G′ and G1 = G2 ∩G′′ for two vertex groups G′ and G′′.
If G0 is not of rank 0 we get a cycle G2 ⊃ G1 ⊂ G′ ⊃ G′ ∩ G′′ ⊆ G0 ⊂ G2

which does not exist.
Now we assume that one of the groups G2, G

′, G′′ corresponds to the vertex
v and that G0 is the trivial group. As seen before, the trees corresponding to
connected components do not contain any copies of the trivial group. ThusG0
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corresponds to the edge of v to some connected component C. This implies
that also G1 corresponds to the edge of v to some connected component
C ′ 6= C. By our construction, there is no edge connecting C and C ′ and thus
such a sequence cannot appear.

Corollary 12.2.10. There exists a residue tree for every non-trivial special tree
of groups decomposition (even with infinite set S).

Proof. Let G be an arbitrary non-trivial special tree of groups decomposition. Let
v be any vertex of G. Then the graph (V ′, E ′) in the proof of 12.2.9 is a tree.
Furthermore the last part of that proof shows that (V ′, E ′) is a residue graph.

Corollary 12.2.11. Let B be a building of type (W,S). We get a tie tree T for
any non-trivial special tree of groups decomposition G, where the vertices of T are
exactly the residues of B whose type sets are the typesets of some vertex or edge
group of G.

Proof. As for a building the set S is finite, we can apply the previous proposition
iterating over the set S and get a tree structure whose residues correspond exactly
to the vertices of the non-trivial tree of groups decomposition.

Theorem 12.2.12. Let (W,S) be a Coxeter system which splits as a free product
of special subgroups (W1, S1) ∗ · · · ∗ (Wn, Sn) such that none of the given factors
splits as a free product of special subgroups. Let B be a building of type (W,S).
The graph (V,E), where V is the set of all S1, . . . , Sn-residues and all chambers
of B and where the (undirected) edges correspond to the inclusion relation, is a tie
tree for any action θ on B.

Proof. We can adjust the proof of 12.2.9 by adding an additional vertex v corre-
sponding to the trivial group to the non-trivial special tree of groups decomposition.
The same construction of the graph (V ′, E ′) as in the proof gives a graph (V ′, E ′)
by using v and the factors of W . The proof shows, that (V ′, E ′) is a tree. But
furthermore, in this case (V ′, E ′) equals (V,E) and this is a residue graph for B.
Now any action on B has to preserve the given decomposition as free products, and
hence (V,E) is a tie tree for any action on B.

Corollary 12.2.13. A Coxeter system (W,S) admits a non-trivial special tree of
groups decomposition if and only if its diagram is not 2-spherical.

Proof. Assume the diagram is not 2-spherical, then there are generators s, t ∈ S
without any relation. Let W1,W2,W0 be the special subgroups of W generated by
S \ {s}, S \ {t} and S \ {s, t} respectively. Then W is the amalgamated product
W1 ∗W0 W2 which gives us a special tree of groups decomposition for W .
On the other hand if we have given a non-trivial special tree of groups decomposi-
tion for W , let W1 6= W2 be the special subgroups corresponding to two arbitrary
vertices of the given decomposition. As the decomposition is non-trivial, there
exists s ∈ W1 \ W2 and t ∈ W2 \ W1 and thus s and t have no relation which
means that their corresponding vertices in the Coxeter diagram are connected by
an infinity.
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Lemma 12.2.14. Any action on a building preserves the set of maximal spherical
residues.

Proof. Let R be a maximal spherical residue. Then θ(R) is again a residue and it
needs to be spherical. If θ(R) is not maximal spherical then there exists a spherical
residue R′ containing θ(R) and θ−1(R′) is a spherical residue containing R properly
which does not exist.

Lemma 12.2.15. Every building of type (W,S) with W virtually free admits a tie
tree for any action.

Proof. A virtually free Coxeter system admits a non-trivial (special) tree of groups
decomposition G whose vertex groups are all spherical. All of these vertices corre-
spond to maximal spherical subgroups. Indeed, if v ∈ G is not a maximal spherical
special subgroup, let J be its type set and let J ⊂ J ′ be a maximal spherical type
set. For s ∈ J ′ \ J , there exists a vertex v′ ∈ G containing s. As we do not allow
any embeddings, the two vertices v, v′ of G show that the order of st needs to be
infinite which contradicts the sphericity of J ′.
Now by 12.2.14 any action on B preserves the structure of maximal spherical
residues and thus it preserves the unique residue tree associated to G for B.

Definition 12.2.16. A tie tree for some action θ on a building B is called residual
if its set of vertices is the set of all J1, . . . , Jn-residues, for some J1, . . . , Jn ⊂ S.

Lemma 12.2.17. Let T be a residual tie tree for some action θ on a building B.
Every maximal spherical residue of B is contained in at least one tie of T

Proof. Assume J ⊂ S is maximal spherical and J is not contained in any typeset
of the residues of T . Let s, t ∈ J such that s ∈ J1 \ J2 and t ∈ J2 \ J1 for two
typesets J1, J2 of residues of T . Let C be a chamber in B and let v be a residue
of type J1 containing C. As o(ts) = n for some n > 0, we can construct a gallery
of type (ts)n from C to itself. This gallery gives a sequence of J1 and J2-residues
of length 2n from v to v which is a cycle. As cycles do not exist in T , it is not
possible to find such s and t which proofs the statement.

Lemma 12.2.18. Let T be a residual tie tree for some action θ on a building B of
type (W,S). Then (W,S) admits a non-trivial special tree of groups decomposition.

Proof. Let J1, J2 be two different types of residues of T . Let s ∈ J1 \J2, t ∈ J2 \J1.
Let C be a chamber in B. Let v a residue of T containing C. Then any gallery of
type (st)n describes a path in T along J1 and J2 residues issuing at v. As there
are no cycles inside T , this path cannot end in v again. And thus the element st
has order infinity.
Thus there exists a non-trivial special tree of groups decomposition for (W,S).

12.3 Examples

Example 12.3.1 (Right-Angle Attached Generators). This example shows the
existence of non-residual tie trees for some action.
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Definition 12.3.2. Let (W,S) be a Coxeter system. An element s of S is said to
be right-angle attached to (W,S) if the order o(st) ∈ {2,∞} for all t ∈ S \ {s},
and if there exists an t ∈ S with o(st) =∞.

Let (W,S) be Coxeter system with some right-angle attached generator s ∈ S.
For every s-panel P in B, we define RP to be the chamberwise union of all S \{s}-
residues intersecting P non-trivially. Let (V,E) be the graph where the vertices
are the RP for all s-panels P in B together with all S \{s}-residues of B, and where
the (undirected) edges correspond to the inclusion relation.

We show that (V,E) is a tie tree for B for any action which preserves the
type {s}.

Lemma 12.3.3. If two distinct S \ {s}-residues of some RP intersect an s-panel
P ′ non-trivially, then RP = RP ′.

Proof. Let v, v′ be two distinct S \ {s}-residues of RP which both intersect an
s-residue P ′ non-trivially. The intersection of v and v′ is empty and they intersect
each panel P and P ′ in exactly one chamber. Let C := v ∩ P,C ′ := v ∩ P ′ and let
E := v′ ∩ P,E ′ := v′ ∩ P ′. Then there exists a gallery from C to C ′ over E and E ′

of type δ(C,E) = sws and s has to commute with w. Thus P and P ′ are parallel
with a Weyl distance in WS\{s} and the S \{s} residues intersecting P non-trivially
are exactly the S \ {s} residues intersecting P ′ non-trivially.

Theorem 12.3.4. The graph (V,E) is a tie tree for any action on B preserving
the element s ∈ S.

Proof. The conditions (TG1), (TG3), (TG4), (TG5) follow directly.

(TG2) V is closed under non-trivial and non-knotted intersections:
As residues of the same type are either equal or intersect trivially, we only
have to check that for two s-panels P 6= P ′ the intersection RP ∩RP ′ is either
empty or a S \ {s}-panel.

Assume RP ∩ RP ′ contains a chamber C, then the unique S \ {s}-residue
R containing C is contained in RP ∩ RP ′ . Assume there exists a chamber
D ∈ RP ∩RP ′ with D /∈ R. From the definition of RP , the chamber D lies in
a S \{s}-residue R′ such that R and R′ intersect an s-panel P ′′ non-trivially.
This shows that RP = RP ′′ = RP ′ .

Connectedness of (V,E) Let v, v′ ∈ V . Let C ∈ v, D ∈ v′ be arbitrary cham-
bers. Let Γ be a minimal gallery from C to D. Let w = δ(C,D) and let
w1, . . . , wn be the subwords of w such that w = w1sw2s · · · swn. Let Ci be
the unique chamber in Γ with δ(C,Ci) = w1sw2s · · ·wi−1s. We can construct
a path in (V,E) from v to v′ in the following way: Let v0 = v. Let vi := RPi

where Pi is the unique s-panel containing Ci. Then the vi intersects vi−1

non-trivially for 0 < i < n. Now v0 and v1 are either equal, v0 is contained
in v1 or they intersect non-trivially. Same holds for vn and v′. Therefore we
get a path from v to v′ along the vi.
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(TT1) Every panel is contained in a tie:
If P is a panel of type s, then RP contains P .
If P is a panel of type s′ 6= s, then it is contained in a S \ {s}-residue.

(TT2) For any edge (v, w), the intersection v ∩ w is convex and gated:
As seen before, v ∩ w is a residue and therefore convex and gated.

(TT3) (V,E) is a tree: Let (V ′, E ′) be the residue tree which is associated to the
decomposition of (W,S) as an amalgamated product 〈S \{s}〉∗〈S′〉 〈{s}∪S ′〉,
where S ′ := {t ∈ S | st = ts}. As every element of S ′ commutes with s, the
{s} ∪ S ′-panels are two S ′-panels along a set of parallel s-panels.
Let P be an s-panel and let v′P ∈ V ′ be the unique vertex in the residue tree
containing P . The set RP equals the set V (P ) of all S \ {s}-residues which
are connected to v′P in (V ′, E ′). If we identify for each s-panel P the set RP

with V (P ) and connect any two elements V (P ) and V (P ′) if and only if they
intersect in an S \ {s}-residue, we get a tree (V ′′, E ′′).
Now, for each edge (v1, v2) ∈ E ′′ we add the element v1∩v2 to V ′′ and replace
any edge (v1, v2) of E ′′ with edges (v1, v1 ∩ v2) and (v1 ∩ v2, v2).
The resulting graph equals (V,E), and as it is again a tree, (V,E) is a tree.

(TT4) Let θ be any action on B preserving the element s ∈ S. Then θ has to
stabilize the set S \ {s} and therefore it preserves the structure (V,E).

Remark 12.3.5. If the vertex corresponding to the generator s is not right-angle
attached, i.e. there exists an element t ∈ S with o(st) = n /∈ {2,∞}, then the
graph (V,E) is not a tree. One may take a chamber C and an S \ {s} residue R
containing C. Let Σ be an apartment containing C, and let (C,C1, . . . , C2n) be
a gallery inside Σ of type (st)n. This gallery gives a sequence of S \ {s}-residues
along some s-residues. But C2n = C and thus this sequence is a cycle.

Example 12.3.6 (Universal Coxeter Groups). A universal Coxeter group W of
rank n is generated by n reflections s1, . . . , sn which have pairwise no relation.
The Cayley graph of such a Coxeter group corresponding to the generator set
{s1, . . . , sn} is a n-valent tree. Let B be a thick building of type (W, {s1, . . . , sn}).
Let (V,E) be the graph, where the vertices are the panels in B, and their pairwise
non-empty intersections, and where the (undirected) edges correspond to the in-
clusion relation. As W is the free product of the groups 〈s1〉 ∗ · · · ∗ 〈sn〉, we can
apply theorem 12.2.9 to see that (V,E) is a residue tree for B. As any action on B
preserves the set of panels and the set of chambers, this is a tie tree for any action
θ on B.

Let θ be an action on a thick building B of type of a universal Coxeter system
(W,S). Let (V,E) be the residue graph of B whose vertices are all panels and
chambers, with (undirected) edges corresponding to the inclusion relation.
If θ acts on (V,E) as a translation, then there exists a unique axis γ for this action
in (V,E). Let C be a chamber of B with minimal Weyl displacement and define
d := l(δ(C, θ(C))). Let

Wd := {w ∈ W | l(w) = d}
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θ is hyperbolic and θ is elliptic and

type-preserving not type-preserving type-preserving not type-pres.

1W (fixed chamber) 1W

(ts)lt(st)n(st)l (st)lst(st)n(st)l (ts)lt(st)l, t ∈ S ′ (ts)lt(st)l

s(ts)lt(st)n(st)ls t(st)lst(st)n(st)ls s(ts)lt(st)ls, t ∈ S ′ s(ts)lt(st)lt

(st)ls(ts)n(ts)l (ts)lts(ts)n(ts)l (st)ls(ts)l, s ∈ S ′ (st)ls(st)l

t(st)ls(ts)n(ts)lt s(ts)lts(ts)n(ts)lt t(st)ls(ts)lt, s ∈ S ′ t(st)ls(ts)tl

Table 12.1: Weyl displacements in the case of Ã1 (l is arbitrary ≥ 0).

and

W ′
θ := {w ∈ W | ∃v, v′ ∈ V ∩γ : v, v′ ∈ Cham(B), δ(v, v′) = w, l(δ(θ(v), v′)) < l(w)}.

The minimal displacements of θ are the elements inWd∩W ′
θ. And the displacements

of θ are the words of the form

w1swθ(w
−1
1 ) with l(w1sw) = l(w1) + 1 + l(w), w ∈ Wd ∩W ′

θ.

Indeed, if C is any chamber of B which is not a vertex of γ, then let D be its
projection onto the vertex of γ which is closest to C. Then D is contained in some
s-panel which is a vertex of γ, and its displacement is s · w, where w ∈ Wd ∩W ′

θ.
Applying now theorem 12.1.32 shows the statement.

If θ has a fixed point on (V,E), then

(i) either no vertex is fixed and θ stabilizes a s-panel for some s ∈ {s1, . . . , sn}.
In this case s is the only minimal Weyl displacement, where s is the type of
the stabilized panel. The displacements of θ are the words of the form wsw−1

where l(ws) = l(w) + 1.

(ii) or θ fixes a chamber and 1W is the only minimal Weyl displacement. If
the action is not type-preserving, there is exactly one fixed chamber and
the displacements of θ are the words of the form 1W , wsθ((ws)

−1), where
l(ws) = l(w) + 1. If the action is type-preserving, then the displacements of
θ are the words of the form 1W , wsw−1, where l(ws) = l(w) + 1, and where
s is the type of a panel which is stabilized, but not fixed by θ.

If B is of type Ã1, i.e its Coxeter group is generated by two elements s, t without
any relation, then we can write down all Weyl displacements more explicitly. In
the case, where θ is hyperbolic, the words in Wd ∩W ′

θ are of the form (st)n, (ts)n

if θ is type-preserving, and (st)ns, (ts)nt if θ swaps s and t.
In the case, where θ is elliptic and not type-preserving the Weyl displacements are
1W and all reduced words of the form wsθ(w) and wtθ(w)−1. If θ is elliptic and
type-preserving, then the Weyl displacements are exactly the reduced words of the
form ws′θ(w)−1 where s′ ranges over the types S ′ of stabilized but not fixed panels
and 1W if there exists a fixed chamber. The element s′ can be just s, just t or both.
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Example 12.3.7 (PGL(2,Z)). Let B be a building of type 3 ∞
s1 s2 s3

. Here s3

is right-angle attached generator. The Coxeter system admits a non-trivial special

tree of groups decomposition of the following form: 〈s1〉
〈s1, s2〉 〈s1, s3〉

. Thus we get

a residue graph whose vertices are the residues of type J1 := {s1, s2}, J2 := {s1, s3}
and J0 := {s1}. The residues of type J1 and J2 are the maximal spherical residues
in B. By 12.2.14, any action on B preserves this structure. Thus a building of type
PGL(2,Z) admits a tie tree. Its vertices are exactly the maximal spherical residues
and their intersections.

Example 12.3.8 (Right-Angled Buildings). Let B be a right-angled non-spherical
building. As the building is not spherical, there exist generators s, t whose product
has infinite order. Thus s is a right-angle attached generator of W and we get a
tie tree for any action which preserves the type s.
Furthermore, we get a residue graph containing all S \ {s}-,S \ {t}- and S \ {s, t}-
residues which yields a tie tree for any action preserving the set {s, t}.

Example 12.3.9 (The direct product of two Ã1-Coxeter systems). This example
will show that it is generally not possible to construct a residue tree whose vertices
are 2-spherical.

Let (W,S) be a Coxeter system of type
s1 s2 s3 s4

∞∞ . The group W is

the amalgamated product W{s1,s2,s3} ∗W{s1,s2} W{s1,s2,s4} and thus we get a residue
tree, by taking the residues of type {s1, s2, s3}, {s1, s2, s4} and {s1, s2}. In figure
12.3.9 the 1-skeletons of the cubical complexes are shown inside an excerpt of the
Cayley graph of W with respect to S. Of course we might also take the type sets
{s3, s4, s1}, {s3, s4, s2} and {s3, s4}.

The 2-spherical type sets are exactly the spherical type sets:

{s1, s3}, {s2, s3}, {s1, s4}, {s2, s4}, {s1}, {s2}, {s3}, {s4}.

If we could get a residue tree with 2-spherical residues, we will have to take at least
2 residues of rank 2.
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2 rank 2-types given: If {s1, s3} and {s2, s4} are two of the given type sets, then
any path in W of type s3s2s3s2, yields a cycle in the given residue graph.

s3

s2

s2

s3

s2

s2

s2

s3

s2

s3

s3 s3

s4

s1

s4

s1

s1

s4s4

s1

All rank 2 types given: If all rank 2-residues are vertices of the residue graph,
then the set of all vertices sharing a common chamber describe a cycle.

3 rank 2 types given: If {s1, s3}, {s1, s4} and {s2, s4} are the type sets for the
residue graph, then any word of type s2, s3, s2, s3 yields a cycle in the residue
graph.

s3

s2

s2

s3

s2

s2

s2

s3

s2

s3

s3 s3

s4

s1

s4

s1

s1

s4s4

s1

We conclude the following lemma:

Lemma 12.3.10. There are buildings admitting a residue tree, but not admitting
a residue tree whose residues are all 2-spherical.



12.3. EXAMPLES 97

{s
1
,s

3
,s

4
}-

re
si

d
u
e

{s
1
,s

3
,s

4
}-

re
si

d
u
e

{s
2
,s

3
,s

4
}-

re
si

d
u
e

{s
2
,s

3
,s

4
}-

re
si

d
u
e

s1

s3 s3

s1

s4 s4

s2

s2 s1

s3

s1

s4

s2

s2 s1

s1

s3

s3 s3
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{s1, s2, s3}-residue

{s1, s2, s4}-residue

{s1, s2, s3}-residue

{s1, s2, s4}-residue
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s3 s3
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s4 s4
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s2 s1
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s1

s4
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s2 s1
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s3 s3

s1s1

Figure 12.5: Two possibilities for a residue tree on the direct product Ã1 × Ã1.
The small cubes are the maximal spherical residues and the corners of the cubes
are the chambers of the building.
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CHAPTER

THIRTEEN

STABILIZED CONNECTED SUBSETS

In this chapter we will give a structure result on Weyl displacements under the
following condition: Given an action θ on a building B there exists a proper subset
C such that for every chamber C every minimal gallery from C to its image has to
pass through C. One may think of C as a set separating every chamber outside of
C from its image. The result we obtain is a lot weaker than the previous results as
we will not obtain the Weyl displacements as θ-conjugates of other displacements.

13.1 Basics

Let B be a building.

Definition 13.1.1. A subset Y of B is called connected if for two elements
C,D ∈ Y there exists a minimal gallery from C to D entirely contained in Y .

Definition 13.1.2. Let Y be a connected subset of B and let C be a chamber in
B. We define the projection of C onto Y by

projY (C) := {D ∈ Y | for every minimal gallery Γ = (C, . . . , D) : Γ ∩ Y = {D}}.

We call the elements in projY (C) the pre-gates for C onto Y .

Remark 13.1.3. If the set Y is gated, then projY (C) is the gate for C onto Y .

Lemma 13.1.4. Let Y be a connected subset of B and let C ∈ B. For every
chamber E ∈ Y , there exists a minimal gallery from C to E containing an element
of projY (C).

Proof. Let E ∈ Y and C ∈ B. Let Γ be a minimal gallery from C to E and let
D1 be the first chamber in Γ which lies inside Y . If there exists a minimal gallery
from C to D1 which contains another element D2 of Y , than there exists a minimal
gallery from C to E containing D2 and D1. As the distance of C to E is finite, we
can iterate this process until we find a chamber Dl ∈ Y which lies on a minimal

99
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gallery from C to E, containing Di for i ∈ {1, . . . , l− 1} such that for any minimal
gallery Γ′ from C to Dl the only chamber inside Γ′ intersecting Y is Dl. Thus Dl

is a projection of C onto Y .

Lemma 13.1.5. In the situation of 13.1.4, there exists a minimal gallery from C
to E containing an element of projY (C) with minimal distance to E.

Proof. The statement holds for all chambers in projY (C). We use induction over
the minimal distance of a chamber in Y to C. Assume the statement holds for all
chambers in Y of distance l to C. Let E ∈ Y \ projY (C) with d(C,E) = l+ 1. Let
E ′ be a chamber in Y adjacent to E with d(C,E ′) = l and let D be an element
of projY (C) with minimal distance to E ′. Then E ′ is the projection of C onto the
panel containing E and E ′ and it is the projection of D onto this panel. Thus D
lies on a minimal gallery from C to E ′.

Lemma 13.1.6. Let Y be a connected subset of B, C ∈ B. The pre-gates for C in
Y do not need to have the same distance to C.

Proof. Let R be a spherical residue inside a Coxeter group and let D,D′ be two
opposite chambers in R. Let Γ be a minimal gallery from D to D′. And let C be a
chamber in R adjacent to D but not contained in Γ. The gallery Γ is a connected
set but the pre-gate D does not lie on a minimal gallery from C to D′ which means
that D is not a pre-gate for D′ and thus the pre-gate for D′ has distance greater
than d(C,D).

Lemma 13.1.7. Let θ be an automorphism of a building B and let Y be θ-invariant
connected subset of B. Let C ∈ B and D ∈ projY (C), then θ(D) ∈ projY (θ(C)).

Proof. Assume there exists a minimal gallery Γ from θ(C) to θ(D) which contains
some element E of Y . Then θ−1(Γ) is a minimal gallery from C to D containing
θ−1(E) ∈ Y . But then θ−1(E) equals D and thus E = θ(D).

Definition 13.1.8. Let θ be an automorphism of B with an θ-invariant connected
subset Y . For every C ∈ B, we define

WC
SM(θ) := {w ∈ W | w = δ(D,E), D ∈ projY (C), E ∈ projY (θ(C))},

WSM(θ),C := {w ∈ WC
SM(θ) | for all w′ ∈ WC

SM(θ) : l(w) ≤ l(w′)}, and

WSM(θ) :=
⋃
C∈B

WSM(θ),C .

Let C ∈ B, D ∈ projY (C), E ∈ projY (θ(C)) with δ(D,E) ∈ WSM(θ),C . If w =
δ(C,D), we define ŵ := δ(θ(C), E).

Theorem 13.1.9. Let θ be an automorphism of a building B. If there exists a
θ-invariant connected subset Y of B such that for every chamber C ∈ B a minimal
gallery from C to θ(C) has to contain an element of Y , then every displacement
of θ is a reduced word of the form w1w0ŵ1, where w0 is an element of WSM(θ) and
w1 is a Weyl distance of a chamber to projY (C).
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Proof. If C ∈ Y the statement follows directly as C is its own (pre-)gate and θ(C)
is its image.
Let C /∈ Y and let D ∈ projY (C), E ∈ projY (θ(C)) such that δ(D,E) ∈ WSM(θ),C .
Then by 13.1.6 D lies on a minimal gallery from C to E and E lies on a minimal
gallery from θ(C) to D. Thus we can construct a minimal gallery from C to E
containing D and can extend to a gallery from C to θ(C). By the condition that
every minimal gallery from C to θ(C) has to pass through Y , we see that this
gallery cannot be shortened and thus is a minimal gallery.

Remark 13.1.10. The condition that for every chamber C a minimal gallery
from C to θ(C) has to contain an element of Y is similar to the (MW )-condition
of theorem 11.5.1.

An example for this are automorphisms of affine buildings which preserve a wall
tree.

13.2 Examples

Example 13.2.1 (Stabilizing Exactly One Apartment). Let θ be a hyperbolic
action on a thick building B with the following properties:

(i) There exists an apartment Σ which is covered by translation axes of θ, i.e.
|Σ| ⊆ Min(θ).

(ii) No wall of Σ is stabilized.

Remark 13.2.2. The condition to avoid stabilized walls is needed to avoid any
kind of parallelity of residues. This will enable us to ensure that |Σ| equals Min(θ).
For example: If there is a stabilized wall it might happen that for a panel de-
termined by this wall, there exists a chamber outside of Σ which is contained in
Min(θ).

Lemma 13.2.3. We have |Σ| = Min(θ).

Proof. Let D be a chamber of B with |D| ∩Min(θ) 6= ∅ and |D| 6⊂ Min(θ). The
support of |D| ∩ Min(θ) is a spherical residue R whose intersection with Σ is a
residue of the same type. Let y be an element of |D| \ |Σ| and let D′ ∈ R ∩ Σ.
There exists an element x ∈ |D′| \ |D| such that the geodesic from x to y has to
pass a chamber adjacent to D′. If y ∈ Min(θ) then γ ⊂ Min(θ). Thus it suffices to
show:
For any chamber E /∈ Σ which lies inside a panel of R containing a chamber of Σ,
we have

for all y ∈ |E| : y ∈ Min(θ)⇔ y ∈ |Σ|.

Let E1, E2 be two adjacent chambers of Σ and let E1 ∼ D ∼ E2. As θ does not
preserve any wall of Σ, the panel P containing these three chambers cannot be
parallel to its image. We can assume E2 to be the projection projP (θ(P )). Then
θ(E1) is the projection projθ(P )(P ) as action is hyperbolic and stabilizes |Σ|. If
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y ∈ |D \ |Σ| lies in Min(θ) then it has minimal distance to its image and thus
θ(y) has to lie in projθ(P )(P ). But then θ(D) = θ(E1) which is not possible. Thus
y /∈ Min(θ).

Corollary 13.2.4. The apartment Σ is uniquely determined by θ.

Remark 13.2.5. By 3.7.3 the set Min(θ) is isometric to the product R × Y . We
can conclude that the apartments of B are isometric to R× Y .

Lemma 13.2.6. Let B be an affine building and θ as in 13.2.1. Then for every
chamber C ∈ B every minimal gallery from C to θ(C) has to contain a chamber of
Σ. In particular, we can apply 13.1.9 to θ and Min(θ) = Σ.

Proof. The statement holds for any chamber in Σ. Let C be an arbitrary chamber
of B \ Σ and let bC be its barycenter. The projection projMin(θ)(bC) lies in Σ and
its support is a spherical residue R of rank > 1. Let D := projR(C). As a first
observation, we see that θ(D) is the projection projR′(θ(C)), where R′ = θ(R)
is the support of projMin(θ)(bθ(C)), where bθ(C) is the barycenter of θ(C). As Σ is
covered with translation axes, the walls of Σ determined by R are parallel to the
walls of Σ determined by R′. Let P be a panel in R containing two chambers in
Σ. Let α be a root of Σ determined by P . As θ does not preserve any wall, we
know that either θ(α) ⊂ α or θ(−α) ⊂ −α. Thus we may assume θ(α) ⊂ α. Let
E ′ := P ∩ α and let E be the projection of C onto P . Then E lies on a minimal
gallery from D to E ′ and E /∈ Σ. By 9.1.7 we can find an apartment Σ1 containing
α and E. Let β be the root of Σ1 containing α minimally, then D ∈ β, as at
most one wall of a parallel class can separate a spherical residue. We can iterate
this procedure along the walls parallel to ᾱ separating C from E ′ to obtain an
apartment Σl containing a root β′ which contains C and β. Now we can use the
same procedure starting at θ(P ) and the root θ(−α′) of Σl to obtain an apartment
Σ′l containing C,D, θ(D), and θ(C).
By the convexity of apartments, every minimal gallery from C to θ(C) has to lie
in Σ′ and thus every minimal gallery Γ from C to θ(C) has to contain an element
of Σ′l or more specific: Γ intersects α ∩ θ(−α) non-trivially.

13.3 Tree Structures from Connected Subsets of

Wall Trees

Let B be an affine building and let T = Tm be the thick wall tree corresponding
to a parallel class m of walls.

Definition 13.3.1. For every wall M ∈ m, we denote the set
⋃

M ′∼M
[M,M ′] by vM .

Remark 13.3.2. Let M 6= M ′ ∈ m. Then vM∩vM ′ is either empty or it is [M,M ′].
In particular, if vM ∩ vM ′ is non-empty, then it is connected.

Proof. Let M = M0, . . . ,Mn = M ′ be the unique path in Tm from M to M ′.
By [Wei09][10.11] there exists an apartment Σ containing roots α0, . . . , αn such
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that Mi = µ(αi) for all i ∈ {0, . . . , n} with αi containing αi−1 minimally for all
i ∈ {1, . . . , n}. Therefore [Mi,Mi+1] ∩ [Mj,Mj+1] 6= ∅ if and only if i = j. If
vM ∩ vM ′ 6= ∅, then there exist walls M̃ ∼ M and M̃ ′ ∼ M ′ such that [M, M̃ ] and
[M ′, M̃ ′] intersect non-trivially. Now we get a minimal path in Tm containing these
walls. But from M 6= M ′ we see that M = M̃ ′ and M ′ = M̃ . Thus the statement
holds.

Observation 13.3.3. Two strips [M0,M1] and [M1,M2] intersect non-trivially if
and only if they are equal.

Corollary 13.3.4. Let θ be an automorphism preserving Tm, then it preserves the
set of connected subsets vM . As θ induces a graph automorphism on Tm, we have
set of vertices with minimal displacement in Tm. This θ-invariant set is convex
and thus it determines a θ-invariant connected subset SM(θ) of B. Then we can
apply 13.1.9 to θ and SM(θ).

Proof. Wee need to show that for any chamber C ∈ B, every minimal gallery from
C to θ(C) has to contain an element of SM(θ). We have seen in the proof of 13.2.6
that we can reach every chamber C by extending a root α corresponding to a wall
M ∈ m, with θ(αMin(θ)) ⊂ α. The existence of such a root follows by 9.1.7 as
θ preserves the tree Tm. Let v be a vertex of Tm containing C and let v′ be the
projection of v onto Min(θ)(Tm). Then θ(v′) is the projection onto Min(θ)(Tm)
of θ(v). By 9.1.7 there exists an apartment containing C and θ(C) and every
minimal gallery from C to θ(C) has to contain a chamber corresponding to convex
hull conv(v, v′).
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CHAPTER

FOURTEEN

THE BRUHAT-TITS BUILDING FOR GLn(K)

For a better understanding of actions on affine buildings, a program modeling the
Bruhat-Tits building of SLn(K) over a discrete valuation ring K was implemented.
This chapter will give the basic definitions of the related objects together with some
observations which make it possible to develop such a program.
The mathematical background for this concept is mainly taken from chapter 6 in
[AB08].

14.1 Discrete Valuations

Let K be a field.

Definition 14.1.1. A discrete valuation on K is a surjective homomorphism
v : K∗ � Z from the multiplicative group K∗ of K into Z which satisfies the
following inequality:

v(x+ y) ≥ min{v(x), v(y)}
for all x, y ∈ K∗ with x+ y 6= 0.

Notation 14.1.2. We define v(0) := +∞ in order to extend a discrete valuation
to K.

Definition 14.1.3. The ring Av := {x ∈ K | v(x) ≥ 0} is called the valuation
ring associated to K. Any ring that arises from a discrete valuation in this way is
called (discrete) valuation ring. For every (discrete) valuation ring A let K be
the corresponding field and v the corresponding valuation.

Remark 14.1.4. The group A∗ of units of a valuation ring A is precisely the
kernel v−1(0). Let π be an element with v(π) = 1, then every x ∈ K∗ is uniquely
expressible in the form x = u · πk with u ∈ A∗ and k := v(x) ∈ Z.

Definition 14.1.5. Let A be a valuation ring. An element of valuation 1 in A
is called uniformizing parameter. A uniformizing parameter π generates the
unique maximal ideal πA = {x ∈ K | v(x) > 0} of A. The field k := A/πA is
called the residue field of K associated to the valuation v.

107
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Definition 14.1.6. A discrete valuation v on K induces a real valued absolute
value on K defined by

|x| = e−v(x)

which has the following property:

|xy| = |x| · |y| and |x+ y| ≤ |x|+ |y| .

Remark 14.1.7. The absolute value | · | : K → R induces a metric d on K defined
by d(x, y) := |x− y|. This gives the possibility to define completeness in the sense
of converging Cauchy sequences. The completion of K with respect to this metric
is obtained by adding the limits of all Cauchy sequences to K. It will be denoted
by K̂. All field operations and the valuation v extend onto K̂ and K̂ is a field with
discrete valuation. Its valuation ring is Â, the closure of A in K̂. The residue field
of K̂ is again k.

Example 14.1.8. k(t): Let k(t) be the function field over a field k.
We want to have a look at two discrete valuations v0 and v∞ on k(t), the
order of vanishing at 0 and the order of vanishing at ∞.

Two discrete valuations: Let f ∈ k(t) and let gf , hf ∈ k[t] such that f = tn g1
g2

and t does not divide g1 or g2. We define v0(f) := n. For g1, g2 ∈ k[t] with

f = g1(t)
g2(t)

we define v∞(f) := deg(g2)− deg(g1).

One can show that v∞(f(t)) = v0(f(t−1)).

The completion: The completion of k(t) corresponding to v0 can be identified
with k((t)), the ring or formal Laurent series

∑
i∈Z

ait
i with ai ∈ k and an = 0

for n� 0. Similarly, the completion of k(t) corresponding to v∞ is k((t−1)).

14.2 The Affine Building of SLn(K)

Let K be a field with a discrete valuation v and let A be its valuation ring, π an
uniformizing parameter, and k its residue field. We get the following diagram of
matrix groups:

SLn(A)

ρ

��

� � ι // SLn(K)

SLn(k)

Definition 14.2.1. Let B be the upper triangular subgroup of SLn(k) which is
called the standard Borel subgroup of SLn(k). The standard Iwahori sub-
group I of SLn(K) is defined as

I := ι ◦ ρ−1(B).
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Remark 14.2.2. The standard Borel subgroup of SLn(k) is of the form

B =


v = 0

v = 0 v ≥ 0
. . .

0 v = 0
v = 0


=


 a1,1 . . . a1,n

...
...

an,1 . . . an,n


∣∣∣∣∣∣∣ v(ai,i) = 0, v(ai,j) ≥ 0 for j > i, ai,j = 0 for j > i

 .

The Iwahori subgroup I is of the following form:

I = ι ◦ ρ−1(B)

=


v = 0

v = 0 v ≥ 0
. . .

v ≥ 1 v = 0
v = 0

 ,

which is the set
 a1,1 . . . a1,n

...
...

an,1 . . . an,n


∣∣∣∣∣∣∣ v(ai,i) = 0, v(ai,j) ≥ 0 for j > i, v(ai,j) ≥ 1 for j > i

 .

Proposition 14.2.3 ([AB08, 6.9.2]). Let I be the standard Iwahori subgroup of
SLn(K) and let N be the set of monomial matrices in SLn(K). Then (I, N) is a
BN-pair for SLn(K).

Reminder 14.2.4. There exists a building corresponding to the BN -pair (I, N),
see 7.3.2.

Definition 14.2.5. The building ∆(I, N) from the BN -pair in 14.2.3 will be called
the affine building (or Bruhat-Tits building) associated to SLn(K).

14.3 The Affine Weyl Group

Let B be the affine building associated to SLn(K). This section will introduce a
factorization for the Weyl group of ∆(I, N). Later on we will give a rough idea of
how one can see this factorization on the lattice classes and its geometric realization.

Notation 14.3.1. Let G := SLn(K) and let

• I be the standard Iwohori subgroup,
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• B be the standard Borel subgroup,

• N be subgroup of monomial matrices,

• T (K) be the group of diagonal matrices,

• T (A) be the group of diagonal matrices of SLn(A),

• W := N/T (A) be the Weyl group of ∆(I,N),

• W := N/T (K) be the symmetric group on n letters (the Weyl group of
∆(B,N) of type An−1), and

• F := T (K)/T (A) ∼= Zn−1.

Remark 14.3.2. The matrices in T (A) are of the form
v = 0

v = 0 0
v = 0

0 v = 0
v = 0

 .

Notation 14.3.3. For M ∈ N we denote its image in W = N/T (A) by [M ]. If a

monomial matrix is given in the form

( a11 ... a1n
...

...
...

an1 ... ann

)
, its image will be denoted by[ a11 ... a1n

...
...

...
an1 ... ann

]
.

Notation 14.3.4 (cite[6.9.3]AB08). As in [AB08, 6.9], we choose the following set
of generators for W :

si = [Msi ] for i ∈ {0, . . . , n}

where

Ms0 :=

 0 −π−1

1
...

1
π 0

 ,Ms1 :=

 0 −1
1 0

1
...

1

 , . . . , Msn−1 :=

 1
...

1
0 −1
1 0



14.4 Lattice Classes

This section introduces the concept of lattices and lattice classes in order to under-
stand the structure of the affine building corresponding to SLn(K).
Let K be a field with discrete valuation v, A its valuation ring and π a uniformizing
parameter. Let V := Kn with standard basis e1, . . . , en.

Definition 14.4.1. A lattice (or A-lattice) of V is an A-submodule L < V of
the form Ab1 ⊕ · · · ⊕ Abn for some basis b1, . . . , bn for V . In particular, L is a free
A-module of rank n. The lattice An = Ae1 ⊕ · · · ⊕ Aen is called the standard
lattice of V .
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Lemma 14.4.2. Let L,L′ be two lattices in V . There exists a basis b1, . . . , bn for
V with L = Ab1 ⊕ · · · ⊕ Abn such that L′ = A(a1b1) ⊕ · · · ⊕ A(anbn) for suitable
a1, . . . , an ∈ K∗.

Proof. We take two bases B = b1, . . . , bn and B′ = b′1, . . . , b
′
n for V with

L = Ab1⊕· · ·⊕Abn and L′ = Ab′1⊕· · ·⊕Ab′n. Expressing every basis element in B
as a linear combination of the elements in B′, we obtain a matrix BMB′ in GLn(K).
We can transform BMB′ to a monomial matrix by multiplying elementary matrices
of SLn(A) from left and right. (See the proof of 14.5.12.)
The row and column operations correspond to base changes for L and L′ respec-
tively. This means that turning BMB′ into a monomial matrix corresponds to
replacing the two bases for L and L′ such that the new basis elements of L′ are
scalar multiples of the new basis elements of L.

Definition 14.4.3. Two lattices L,L′ are called equivalent if L = a ·L′ for some
a ∈ K∗. The equivalence class [L] of a lattice L will be called a lattice class. If
a lattice L is given as Ab1 ⊕ · · · ⊕Abn for some basis b1, . . . , bn of Kn then [L] will
also be denoted by [[b1, . . . , bn]].

Remark 14.4.4. Note that the scalar a in definition 14.4.3 can always be chosen
to be a power of the uniformizing parameter π.

Remark 14.4.5. The canonical action of GLn(K) on the set of lattice classes of
V is transitive. The stabilizer of the lattice class of An is K∗ · GLn(A) and the
determinants of the elements in this subgroup have valuation 0 mod (n).

Definition 14.4.6. Let Λ = [[f1, . . . , fn]] be a lattice class and let gΛ ∈ GLn(K)
be the matrix whose columns are the fi. The type of a lattice class Λ is defined as
type(Λ) := v(det(gΛ)) + nZ.

Remark 14.4.7. Note that the element gΛ in 14.4.6 has the property

gΛ.[A
n] = Λ.

Definition 14.4.8. Two lattice classes Λ1 6= Λ2 are said to be incident if there
exist L1 ∈ Λ1, L2 ∈ Λ2 with

πL1 < L2 < L1.

It follows that πL2 < πL1 < L2, thus the incidence relation is symmetric.

Remark 14.4.9. The flag-complex F arising from the incidence structure on the
set of lattice classes is a simplicial complex where the vertices are the lattice classes
and the simplices are the sets of pairwise incident classes, see 4.2. The flag complex
F is a chamber complex and the action of GLn(K) (and thus of SLn(K)) on the
lattice classes induces a chamber map on F .

Proposition 14.4.10 ([AB08, Section 6.9]). The flag complex arising from the
incidence structure on the set of lattice classes is isomorphic to the building ∆(I,N)
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of 14.2.3. The fundamental chamber C of ∆(I, N) corresponds to the simplex
determined by the vertices

[[e1, . . . , ei, πei+1, . . . , πen]], i = 1, . . . , n

where (e1, . . . , en) is the standard basis in V . The stabilizer of C in SLn(K) is the
intersection of the stabilizer of all of its vertices and equals the standard Iwahori
subgroup I.

Remark 14.4.11. The vertices of the fundamental apartment are exactly the
lattice classes of the form [[πd1e1, . . . , π

dnen]] where d1, . . . , dn ∈ Z. The stabilizer
of the fundamental apartment is the set of monomial matrices and every apartment
of the above building is determined by a basis b1, . . . , bn.

Remark 14.4.12. The stabilizer of [An] is the subgroup SLn(K) ∩K∗GLn(A) =
SLn(A). The stabilizer of the lattice g.[An] is the subgroup of the form

StabGLn(K)(g.[A
n]) = g. StabGLn(K)([A

n]).g−1 = g. SLn(A).g−1.

Remark 14.4.13. The (affine) Weylgroup W corresponding to B splits as a semi-
direct product F oW where F is a free abelian group of rank n− 1 and W is the
span of the generators {s1, . . . , sn−1} of W . We can identify the elements of the

factor F by coordinates of the form (x1, x2, . . . , xn) ∈ Zn with
n∑
i=1

= 0. We obtain

an equivalence relation on F .

Notation 14.4.14. We denote the {s1, . . . , sn−1}-residue containing the element
corresponding to the coordinates (x1, . . . , xn) by R([x1, . . . , xn]).

Explanation (A geometric description for F oooW )
Let (D,w) ∈ FoW . The element w determines a chamber C in R([0, . . . , 0]). The
action of D on the vertices (as lattices classes) of C determines a unique chamber
in R(D) (see also figure 14.1). This can be seen geometrically as shifting C along
the direction of D.
Consider the product (1, w).(D, 1) = (Dw, w) in the case where w = si for some
i ∈ {1, . . . , n}. For D corresponding to (x1, x2, . . . , xn), the conjugation Dsi inter-
changes the coordinates xi and xi+1. Thus for every s ∈ {s1, . . . , sn}, the conjuga-
tion Ds reflects the barycenter of R(D) along the hyperplane determined by s. It
follows that (Ds, s) is the element of W which we obtain by reflecting the element
1W by s, shifting the residue containing 1W by D and then reflecting this residue
along the hyperplane corresponding to s. This means that (Ds, s) is the reflection
of the element D along the hyperplane corresponding to s.

Example 14.4.16. To understand the factor F in the Weyl group W of type Ã2,
look at figure 14.1: The coordinates of the form [ a1a2 ] correspond to the lattice
classes [πa1b1, π

a2b2, b3] for some basis b1, b2, b3. The filled chambers are images of
a chosen base chamber C under the action of F and the thickened hexagons bound
the residues of type {s1, s2}.



14.5. THE ACTION OF GLn(K) 113

[ 0
0 ]

C

[ −3
0 ][ 3

0 ]

[ 2
1 ] [ −1

1 ]

[ 1
−1 ]

[ −2
−1

]

[ 1
2 ] [ −2

2 ]

[ −1
−2

]

[ −4
1 ]

[ −5
−1

]
[ 2
−2 ]

[ 0
3 ][ 3

3 ]

[ 0
−3 ]

[ −4
−2

]

[ 4
2 ]

[ −3
3 ]

[ −3
−3

] [ −6
−3

]

Figure 14.1: The action of F on W .

14.5 The Action of GLn(K)

Let C be the fundamental chamber of the building B = ∆(I, N) with Weyl metric
δ. The canonical action of GLn(K) on the lattice classes of Kn induces an action
on the affine building B in the following way:

Definition 14.5.1. For any chamber C in B let Λ(C) be the set of lattice classes
which correspond to the vertices of C. For every set Λ of lattice classes with
Λ = Λ(C) for some chamber C in B, we define [Λ] := C.

Definition 14.5.2. Let g ∈ GLn(K) and C ∈ Cham(B). We define an action of
GLn(K) on Cham(B) given by:

GLn(K)× Cham(B)→ Cham(B) (g, C) 7→ g(C) = [g.Λ(C)].

Remark 14.5.3. This action is well defined as the action of GLn(K) on the lattice
classes induced from the action of GLn(K) on Kn is well defined.

Lemma 14.5.4. The action defined in 14.5.2 extends the action of SLn(K) on B.

Proof. Let g ∈ SLn(K), C ∈ Cham(B), then g(C) = [g.Λ(C)] = [Λ(g.C)] =
g.C
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Figure 14.2: Elements of W in the form f.w with f ∈ F , w ∈ W .

Definition 14.5.5. We define

Mσ :=


0 1
0 0 1

. . . . . .

0 1
−π 0 0

 ∈ GLn(K), thus M−1
σ =


0 −π−1

1 0
0 1

. . . . . .

1 0

 .

This matrix is called the shift matrix.

Lemma 14.5.6. The matrix Mσ fixes C.

Proof. The fundamental chamber C is the simplex corresponding to the vertices

[[e1, . . . , ei, πei+1, . . . , πen]], i = 1, . . . , n

where (e1, . . . , en) is the standard basis of Kn. Let i ∈ {2, . . . , n}, then Mσ · ei =
ei−1, Mσ · (π · ei) = π · ei−1, and Mσ · e1 = πen. Hence

Mσ.[[e1, . . . , en]] = [[e1, . . . , en−1, πen]]

Mσ.[[e1, . . . , en−1, πen]] = [[e1, . . . , en−2, πen−1, πen]]

Mσ.[[e1, . . . , ei, πei+1, . . . , πen]] = [[e1, . . . , ei−1, πei, . . . πen]]

Mσ.[[e1, πe2, . . . , πen]] = [[πe1, . . . , πen]] = [[e1, . . . , en]].

The matrix Mσ permutes the lattice classes corresponding to the fundamental
chamber, mapping the lattice class of type i to the one of type i+ 1 (mod n).
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Notation 14.5.7. For i 6= j ∈ {1, . . . , n}, a ∈ K, let Ei,j(a) be the elementary
matrix in GLn(K) whose entry in row i and column j is a.

Lemma 14.5.8. Let M = (bij) be an arbitrary matrix in GLn(K). For every
l ∈ {1, . . . n} let m ∈ {1, . . . , n} with bl,m being the entry in column m which
has minimal valuation in its column such that v(bi,m) > v(bl,m) for i < l. Then
I ·M contains a matrix (cij) where cl,m is the only non-zero entry in column l and
cl,j = bl,j for all j ∈ {1, . . . , n}.

Proof. For a ∈ K the left multiplication Ei,j(a) ·M adds the a - multiple of the
row j of M to the row i of M . The matrix Ei,j(a) is an element of I if i < j and
v(a) ≥ 0 or if i > j and v(a) ≥ 1. Let bl,m be the entry in column m of M which
has minimal valuation in its column such that v(bi,m) > v(bl,m) for i < l. Then
for i ∈ {1, . . . , n} the elementary matrix Ei,m(−bi,m · b−1

l,m) is an element of I. Thus
multiplying M with those elementary matrices from left results in a matrix whose
column m contains exactly one non-zero entry.

Lemma 14.5.9. Let M = (bij) be an arbitrary matrix in GLn(K). The set I ·M · I
contains a matrix (cij) such that there exist k, l ∈ {1, . . . , n} with cl,m being the
only non-zero element in row l and column m.

Proof. Let bl,m be the entry satisfying:

(i) bl,m has minimal valuation among the entries in column m.

(ii) v(bi,m) > v(bl,m) for i < l.

(iii) bl,m has minimal valuation among the entries in row l.

(iv) v(bl,j) > v(bl,m) for j > m.

By 14.5.8 there exists an element in I ·M with cl,m being the only non-zero entry in
its row and cl,j = bl,j for j ∈ {1, . . . , n}. Thus cl,m has minimal valuation among the
entries in row l and v(cl,j) > v(cl,m) for j > m. We see that for j ∈ {1, . . . , n} the
matrix El,j(−cl,j ·c−1

l,m) is an element of I. The right multiplication M ·El,j(−cl,j ·c−1
l,m)

adds the (−cl,j · c−1
l,m) - multiple of column l of (cij) to column j of (cij). Hence

applying those right multiplications results in a matrix whose entry in row l and
column m is the only non-zero element in its row and column. The statement
follows.

Definition 14.5.10. We denote by Nπ the set of monomial matrices of GLn(K)
whore non-zero entries are of the form πk for some k ∈ Z.

Remark 14.5.11. The set Nπ is a subgroup of N and NπT (A) = N as every
element of K can be expressed as a product of an element of A and a power of π.
Hence by the second isomorphism theorem W ∼= N/T ∼= Nπ/T ∩Nπ.

Lemma 14.5.12. Every I-double coset of GLn(K) has representative in Nπ.
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Proof. Let M = (aij) ∈ GLn(K) and let k, l ∈ {1, . . . , l} such that ak,l is not
the only non-zero element in its row and its column and such that ak,l satisfies
the conditions in 14.5.9. Following the proofs of 14.5.9 and 14.5.8, the set IM I
contains a matrix (ci,j) with ck,l being the only non-zero element in its row and
column and for all k′, l′ with ak′,l′ being the only non-zero entry in its row and
column, the same holds for ck′,l′ . We can iterate this process to obtain a monomial
matrix M ′ in IM I. For every element f ∈ A with v(f) = z the element f ·π−z has
valuation 0 and thus is lies in A. For i ∈ {1, . . . , n} let fi be the non-zero entry
of M ′ in row i. The matrix D1 := diag((f1 · π−v(f1))−1, . . . , (fn · π−v(fn))−1) is an
element of I and D1 ·M ′ is a monomial matrix in IM I whose non-zero entries are
powers of π.

Lemma 14.5.13. Let g ∈ GLn(K). Then for every element g′ ∈ I ·g · I:

δ(C, g(C)) = δ(C, g′(C)).

Proof. Suppose g1, g2 ∈ I. Since g1 ∈ SLn(K) we have

δ(C, (g1 · g · g2)(C)) = δ(g−1
1 (C), g−1

1 · g1 · g · g2(C)) = δ(C, g(C)).

Corollary 14.5.14. For every g ∈ GLn(K) there exists Mg ∈ Nπ such that
δ(C, g(C)) = δ(C,Mg(C)).

Proof. By 14.5.12 there exists Mg ∈ (I ·g · I) ∩ Nσ. By 14.5.13 the Weyl distance
δ(C, g(C)) equals δ(C,Mg(C)).

Lemma 14.5.15. For all i ∈ {0, . . . , n− 1} the following equation holds:

MσMsi = Ms(i−1 (mod n))
Mσ.

Proof. We calculate the Mσ conjugates of the matrices Ms0 , . . . ,Msn−1 .
Let i ∈ {2, . . . , n− 1}, then

Mσ ·Msi · (Mσ)−1

=


0 1
0 0 1

. . . . . .

0 1
−π 0 0





1
. . .

0 −1
1 0

. . .

1




0 −π−1

1 0
0 1

. . . . . .

1 0



=


0 1
0 0 1

. . . . . .

0 1
−π 0 0





0 −π−1

1
. . .

0 −1 0
1 0 0

1
. . .

1 0


= Msi−1

.
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For the conjugation of Ms1 we obtain:

Mσ ·Ms1 · (Mσ)−1

=


0 1
0 0 1

. . . . . .

0 1
−π 0 0




0 −1
1 0

1
. . .

1




0 −π−1

1 0
0 1

. . . . . .

1 0



=


0 1
0 0 1

. . . . . .

0 1
−π 0 0




−1 0

0 −π−1

1 0
. . .

1 0

 = Ms0 .

And in the case of Ms0 :

Mσ ·Ms0 · (Mσ)−1

=


0 1
0 0 1

. . . . . .

0 1
−π 0 0




0 −π−1

1
. . .

1
π 0




0 −π−1

1 0
0 1

. . . . . .

1 0



=


0 1
0 0 1

. . . . . .

0 1
−π 0 0





0 −π−1

1 0
1 0

. . .

1 0
−1


= Msn−1 .

Definition 14.5.16. We define

• We denote the diagonal matrix with diagonal (a1, . . . , an) by diag(a1, . . . , an).

• D := diag(1, . . . , 1, (−1)n−1) and MD := D ·Mσ.

• For i ∈ {1, . . . , n− 1} let εi :=

{
−1 for i ∈ {n− 1, 0},
1 else .

• We define D := {diag(a1, . . . , an) | ai ∈ {1,−1}}.

Remark 14.5.17. The matrix MD is an element of SLn(K) although
Mσ ∈ SLn(K) if and only if n is odd.

Lemma 14.5.18. For i ∈ {0, . . . , n− 2} let j := i− 2. Then

(D ·Mσ)Msi = (Msj)
εj(D ·Mσ).
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Proof. The result follows as the conjugation by D multiplies the n-th row and the
n-th column with −1.

Definition 14.5.19. Let σ be the n-cycle (n, n − 1, . . . , 1) ∈ Sym(n). We let σ
act on W by acting on the indices of the generators of S, i.e.

σ(w) = σ(si1 · · · sil) = sσ(i1) · · · sσ(il).

Corollary 14.5.20. Given a product Msi1
. . .Msil

with i1, . . . , il ∈ {0, . . . , n − 1}
there exists an element D′ ∈ D such that the following equation holds:

MD ·Msi1
. . .Msil

= Mσ(si1 ) . . .Mσ(sil )
·D′ ·MD

= Msσ(i1)
. . .Msσ(il)

·D′ ·MD.

Definition 14.5.21. Let ŵ = si1 . . . sil be an reduced expression for an element
w ∈ W . We define the matrix Mŵ := Msi1

· · ·Msil
. For ŵ = 1W we define Mŵ to

be the identity in GLn(K).

Lemma 14.5.22. Let ŵ1, ŵ2 be two different expressions of the same element
w ∈ W . Then Mŵ1(C) = Mŵ2(C).

Proof. The two expressions ŵ1 and ŵ2 represent the same coset in N/T (A). Hence
the two matrices Mŵ1 and Mŵ2 differ by only a factor in T (A). But T (A) ⊂ I and
thus the elements in T (A) stabilize C. The statement follows.

Lemma 14.5.23. The following equation holds:(
0 −1
1 0

... ...
1 0

)
= Ms1 . . .Msn−1 ·D.

Proof.

Ms1 · · ·Msn−1 =

 0 −1
1 0

1
...

1

 ·
 1

0 −1
1 0

...
1

 · · ·
 1

1
...

0 −1
1 0


=


0 0 −1 0
1 0 0 0
0 1 0 0
0 0 0 1

...
1

 ·


1
1

0 −1
1 0

...
1

 · · ·
 1

1
...

0 −1
1 0



=


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

1
...

1

 · · ·
 1

1
...

0 −1
1 0

 =

 0 0 (−1)n−1

1 0
1 0

... ...
1 0


Multiplying both sides with D from the right yields the statement.

Notation 14.5.24. • For i, j ∈ Z with j ≥ i we define si . . . sj :=
j∏
z=i

sz (mod n).

• For i, j ∈ Z with j ≤ i we define si . . . sj := (sj . . . si)
−1
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• For z ∈ Z we define wz :=


1W if z = 0

s1 . . . sz if z > 0

s0 . . . sz if z < 0.

• For l ∈ N and a word w = si1 . . . sil over S, let

Mw :=
l∏

j=1

Msij
.

Proposition 14.5.25. For all l ∈ Z and all chambers C ∈ Cham(B) the following
equation holds: (

πl
1

...
1

)
(C) =

(
Mwl·(n−1)

·D′ · (MD)l
)

(C)

with D′ ∈ D.

Proof. Let C be an arbitrary chamber of B.

The case l = 0: In the case of l = 0 choose D′ = id = M1W .

Positive exponents: We calculate:(
πl

1
...

1

)
=

( π
1

...
1

)l

=

((
0 −1
1 0

...
1 0

)
·Mσ

)l

14.5.23
=

(
Ms1 · · ·Msn−1 ·D ·Mσ

)l
=

(
Ms1 · · ·Msn−1 ·MD

)l
Hence: (

πl
1

...
1

)
(C) =

(
Ms1 · · ·Msn−1 ·MD

)l
(C).

We apply 14.5.20 and use that for i ∈ {1, . . . , n− 1} the matrix M−1
si

equals
Msi ·D′ for some D′ ∈ D and for every D1 ∈ D, we get D1Msi = MsiD2 for
some D2 ∈ D.(

πl
1

...
1

)
(C)

14.5.20
= (Ms1 · · ·Msn−1) · (Ms0Ms1 · · ·Msn−2) ·D1 · (MD)2

·
(
Ms1 · · ·Msn−1 ·MD

)l−2
(C)

for some D1 ∈ D and(
πl

1
...

1

)
(C) = Ms1···sl·(n−1)

·D′ · (MD)l(C) = Mwl(n−1)
·D′ · (MD)l(C)

for some D′ ∈ D.
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Negative exponents: We calculate(
π−l

1
...

1

)
=

(
πl

1
...

1

)−1

=
((
Ms1 · · ·Msn−1 ·D ·Mσ

)l)−1

=
(
(MD)−1 · (Msn−1)

−1 · · · (Ms1)
−1
)l
.

Hence:(
π−l

1
...

1

)
(C) =

(
(MD)−1 · (Msn−1)

−1 · · · (Ms1)
−1
)l

(C)

=
(
(MD)−1 ·D1 ·Msn−1 · · ·Ms1

)l
(C)

14.5.20
= Msn · · ·Ms2 ·D2 ·M−1

D

·
(
(MD)−1 ·D1 ·Msn−1 · · ·Ms1

)l−1
(C)

for some D1, D2 ∈ D and(
π−l

1
...

1

)
(C) = (Msn · · ·Ms2Ms1Msn · · ·Ms3) ·D3 · (MD)−2

·
(
(MD)−1 ·D1 ·Msn−1 · · ·Ms1

)l−2
(C)

= Ms0···s−l·(n−1)
·D′ · (MD)−l(C)

= Mw−l(n−1)
·D′ · (MD)−l(C)

for some D3, D
′ ∈ D.

Lemma 14.5.26. Let M be a diagonal matrix in GLn(K) with diagonal (a1, . . . , an)
and let i ∈ {1, . . . , n− 1}. Then the product (Msi)

−1 ·M ·Msi is the diagonal ma-
trix obtained from M by interchanging ai and ai+1. In particular, the conjugate of
(Ms1...si)

−1 ·M ·Ms1···si is the diagonal matrix

• diag(a2, . . . , ai+1, a1, ai+2 . . . an) for i < n− 2, and

• diag(a2, . . . , an, a1) for i = n− 1.

Proof. The statement follows directly from the following computation:

(Msi)
−1

( a1
...

an

)
·Msi =


a1

...
0 ai+1

−ai 0

...
an

 ·Msi

=


a1

...
ai+1

ai
...

an

 .
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Notation 14.5.27. For i ∈ {2, . . . , n} let Si := s1 · · · si−1 and S1 := 1W .

Theorem 14.5.28. Let l1, . . . , ln be elements in Z and let Md be a diagonal matrix
diag(πl1 , . . . , πln). Let ŵ be a word over S and let M be the product M ·Mŵ. For
k ∈ {0, . . . , n} let Lk :=

∑k
i=1 li and set L0 := 1. Then M(C) = Mv̂(C) where

v̂ =
n∏
i=1

(
(σLi−1(w−1

i−1)) · σLi−1(wli·(n−1)) · σLi(wi−1)
)
· σLn(ŵ).

Proof. For i ∈ {1, . . . , n−1} let Mi be the diagonal matrix in GLn(K) whose diago-
nal entry i is πli and all other diagonal entries are 1. The matrix Md equals the pro-

duct
n∏
i=1

Mi and by 14.5.26 this equals
n∏
i=1

(Mwi−1
)−1

(
πli

1
...

1

)
Mwi−1

. By 14.5.25

the action of

(
πli

1
...

1

)
on Cham(B) equals the action of

(
Mwli·(n−1)

·Di · (MD)l
)

for some Di ∈ D. Furthermore the M−1
si

= MsiDsi for some Dsi ∈ D. Then

Md =

(
n∏
i=1

Mw−1
i−1
·

(
πli

1
...

1

)
·Mwi−1

)

=

(
n∏
i=1

Mw−1
i−1
·
(
Mwli·(n−1)

·Di · (MD)li
)
·Mwi−1

)

=

(
n∏
i=1

Mw−1
i−1
·
(
Mwli·(n−1)

)
·Mσli (wi−1) ·D′i · (MD)li

)
for some D′i ∈ D for i ∈ {1, . . . , l}. Moving the D′i and the (MD)Li out of the
product yields

Md =

(
n∏
i=1

(MσLi−1 (w−1
i−1)) ·

(
MσLi−1 (wli·(n−1))

)
· (MσLi (wi−1))

)
·
(
D′ · (MD)Ln

)
for some D′ ∈ D. As D′ ·MLn

D ·Mŵ = MσLn (ŵ) ·D′′ ·MLn
D for some D′′ ∈ D and as

MD and D′′ fix C (note that D′′ ∈ T (A)), we conclude

M(C) = (Md ·Mŵ)(C)

=

(
n∏
i=1

MσLi−1 (w−1
i−1) ·

(
MσLi−1 (wli·(n−1))

)
·MσLi (wi−1)

)
·MσLn (ŵ)(C).

Lemma 14.5.29. Let g ∈ GLn(K) and let Md =

(
πl1

...
πln

)
be a diagonal

matrix with M := Md · Mŵ ∈ I ·g · I for some word ŵ over {s1 . . . , sn}. For
k ∈ {0, . . . , n} let Lk :=

∑k
i=1 li and set L0 := 1. Then

δ(C, g(C)) =
n∏
i=1

(
(σLi−1(w−1

i−1)) · σLi−1(wl·(n−1)) · σLi(wi−1)
)
· σLn(ŵ).
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Proof. By 14.5.14 we get δ(C,M(C)) = δ(C, g(C)) and by 14.5.28: M(C) =

Mv̂(C), where v̂ :=
n∏
i=1

(σLi−1(w−1
i−1)) ·σLi−1(wl·(n−1)) ·σLi(wi−1) ·σLn(ŵ). The matrix

Mv̂ is an element of SLn(K) and thus δ(C, g(C)) = δ(I,Mv̂. I) = I \Mv̂/ I = v̂.

Lemma 14.5.30. Let g ∈ GLn(K) and k := v(det(g)). For the automorphism of
W given by (si)

g := si−k (mod n) we get

δ(g(C), C) = δ(C, g−1(C))g.

In particular, for two chamber C,D ∈ B: δ(g(C), D) = δ(C, g−1(D))g.

Proof. Let Mg := diag(det(g ·M−k
σ )−1, 1, . . . , 1). The action of Mg on the lattice

classes preserves every lattice classes of the form Ae1⊕· · ·⊕Aen as Mg(π
lei) = πlei

for i ∈ {2, . . . , n} and Mg(Aπ
le1) = Aπle1 for every l ∈ Z. Thus Mg fixes C. The

product g · (Mσ)−k ·Mg is an element of SLn(K), hence

δ(g(C), C) = δ(
(
g · (M−k

σ ) ·Mg

)
.C, C) = δ(C,

(
M−1

g · (Mσ)k · g−1
)
.C).

The chamber g−1(C) equals Mv̂.C for some word v̂ over S. Thus

(M−1
g ·Mk

σ · g−1)(C) = M−1
g (Mσ)k(g−1(C))

= M−1
g · (Mσ)k(Mv̂.C)

= (M−1
g (Mσ)k ·Mv̂)(C)

14.5.20
= (M−1

g ·Mσk(v̂).(Mσ)k)(C))

= (M−1
g ·Mσk(v̂))(C)

= (Mσk(v̂) ·M ′)(C)

where M ′ is a diagonal matrix whose diagonal is a permutation of the diagonal
of Mg. There exists some j ∈ {1, . . . , n} such that for all l ∈ Z, the matrix M ′

stabilizes Aπlej and fixes ei for i 6= j. Thus M ′ fixes the lattices classes of the form
Ae1 ⊕ · · · ⊕ Aen, hence M ′ fixes C. We conclude

δ(g(C), C) = δ(C,Mσk(v̂).C) = σk(v̂)

= σ−kδ(C,Mv̂ · C) = σkδ(C, g−1(C))

= δ(C, g−1(C))g.

Let C,D ∈ Cham(B). Then δ(g(C), D) = δ(g(g1.C), g2.C) for some g1, g2 ∈
SLn(K) and

δ(g(g1.C), g2.C) = δ((g−1
2 · g · g1)(C), C)

= δ(C, ((g−1
2 · g · g1)−1(C)(g−1

2 ·g·g1)

= δ(C, (g−1
1 · g−1 · g2)(C))g

= δ(g1.C, g
−1(g2.C))g = δ(C, g−1D)g.
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14.6 Examples

Example 14.6.1. Consider a thick building B of type Ã2 with fundamental cham-
ber C.

(
1
π

1

)
(
π

1
1

)(
π2

1
1

) (
π−1

1
1

)C

D
s2s1 s0 s1

s1

s2

Let g :=
(
π−1

1
1

)(
1

1
π 1

)(
−π−1

1
π

)
We calculate δ(C, g(C)):

δ(C, g(C)) =̂ δ

C,
π−1

1
1

1
1

π 1

 −π−1

1
π

 (C)


= δ

C,
 −π−2

1
π 0 −1

 (C)


monomial in

=
I g I

δ

C,
 −π−2

1
π

 (C)


= δ

C,
−π−2

1
π

 ·Ms1s2s1(C)


= δ

C,
−π−3

π−1

1

 ·Ms1s2s1(C)


= w−3·2 · σ−3(s1) · σ−3(w−1·2) · σ−4(s1) · σ−4(s!s2s1)

= s0s2s1s0s2s1 · s1 · s0s2 · s2 · s2s0s2

= s0s2s1 · s0s2s2s0

= s0s2s1.
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As a last step we calculate δ(gC, gD). The valuation of the determinant of g is −1
and we get:

δ(gC, gD) = δ(C, g−1gD)g = δ(C,D)g

= (s0)g = s0+1 (mod n) = s1.

Example 14.6.2. In this example we will show three ways to move to a specific
chamberD in the fundamental apartment starting from C. LetD := Ms1s2s0s1s2s1(C).
For a reminder about the action of F (shifting a chamber) take a look at 14.4.16.

(i) First we act with s0s1 on C and then shift this chamber by the matrixπ2

1
1

.

(ii) First we shift C by the matrix

π−2

π−1

1

 (see d1 in the figure), and

then we act by s2 following by the action of s1.

(iii) First we shift C by the matrix

π2

π3

1

 (see d2 in the figure) and then

we act by s1 following by an action of s2.

C

D

s1 s0
s2[

1
1
1

] [
π−1

1
1

]
[
π−1

π−1

1

]
d1

s2.d1

s2

s1

d2[
π2

π3

1

]

s0s1

s1.d2 s1

s2

14.7 The Blueprint Construction

This section is taken from [Ron09, Chapter 7]. The blueprint construction allows
us to realize every chamber of the building ∆(I,N) as a product of root group
elements and reflections (acting on the fundamental chamber).
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β

α −β

−α

γ
−γ

α ∩ β (−α) ∩ (−β) α β

α ∩ β (−α) ∩ (−β)

γ

Figure 14.3: Visualizations of a prenilpotent roots α, β with a root γ ∈ (α, β)

α β

α β
−(α) ∩ (−β)

α β

−α −β
α ∩ β

Figure 14.4: Visualizations of a two roots α, β which are not prenilpotent

Let B be a building, I its type-set (its set of adjacency relations), W its Weyl
group, Σ its fundamental apartment, C its fundamental chamber and Φ the set of
roots in Σ.

Definition 14.7.1. Two roots α, β ∈ Φ are called prenilpotent if α ∩ β 6= ∅ and
(−α) ∩ (−β) 6= ∅. For a prenilpotent pair α, β we define

[α, β] := {γ ∈ Φ | α ∩ β ⊆ γ and (−α) ∩ (−β) ⊆ −γ},

and
(α, β) = [α, β] \ {α, β}.

Remark 14.7.2. Two roots are prenilpotent if their walls intersect or one of them
is contained in the other one.
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Definition 14.7.3. A building B is called Moufang if there exists a set of groups
(Uα)α∈Φ satisfying:

M1 If P is a panel of ∂α, and D ∈ Cham(P ∩ α), then Uα fixes all chambers of α
and acts simple-transitive on Cham(P ) \ {D}.

M2 If {α, β} is a prenilpotent pair of distinct roots, then
[Uα, Uβ] ≤ U(α,β) := 〈Uγ | γ ∈ (α, β)〉.

M3 For each u ∈ Uα \ {1} there exists m(u) ∈ U−αuUα stabilizing Σ, i.e. inter-
changing α and −α.

M4 If n = m(u) then for any root β, nUβn
−1 = Unβ.

The groups Uα are called root groups.

Proposition 14.7.4 ([Ron09, Proposition 6.14]). A root group Uα fixes every
chamber having a panel in α \ ∂α.

For the following definition we identify W with the automorphism group of Σ.

Definition 14.7.5. Let w = si1 . . . sil ∈ W be a reduced expression. If β ∈ Φ
denotes the unique root of Σ containing wj−1(C) but not wj(C), then the βj are
precisely the roots containing C but not w(C) and we define:

Uw := Uβ1 . . . Uβl .

Theorem 14.7.6 ([Ron09, Theorem 6.15]). If B is a Moufang building, then Uw
acts simple-transitively on the set of chambers D such that δ(C,D) = w. In par-
ticular if (B,N) is a BN pair of B with B stabilizing C and N stabilizing Σ, then
every such chamber can be written uniquely as a coset uwB where u ∈ Uw.

Let Pi be the panel of type i containing C and define αi ∈ Φ to be the root
containing C with Pi ∈ ∂αi. Let si denote the reflection interchanging αi and −αi
and write Ui := Uαi . For each i ∈ I select some element ei ∈ Ui \ {1}.

Lemma 14.7.7 ([Ron09, 7.3]). For ni := m(ei) we get:

ninj · · · = njni . . .

for mij alternating terms of ni and mi on both sides. Further, for any w ∈ W
there exists a unique n(w) stabilizing Σ, with

n(w) = ni1 . . . nil for w = si1 . . . sil

Lemma 14.7.8 ([Ron09, Section 7.2]). Each chamber D ∈ B can be written as an
equivalence class un(w) of elements of the form u1ni1 . . . uknuk

Let R be an arbitrary i-residue of B and let projR(C) = D, δ(C,D) = w. As
cosets of B (or the standard Iwahori subgroup I), chambers may be written as
un(w)B (for D) and un(w)vni with u ∈ Uw and v ∈ Ui.
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Remark 14.7.9. If B is a Moufang building with fundamental chamber C, fun-
damental apartment Σ, and a system (Uα)α∈Φ of root groups. We define:

• G := 〈Uα | α ∈ Φ〉,

• N := 〈m(u) | u ∈ Uα, α ∈ Φ〉,

• H := {h ∈ N | h.D = D for all D ∈ Cham(Σ)},

• Φ+ := {α ∈ Φ | C ∈ Cham(α)},

• B := 〈H,Uα | α ∈ Φ+〉.

Then (B,N) is a BN pair for G and B ∩N = H.

Example 14.7.10. We consider K to be k(π) for some transcendent element π
over k. We give an example for a system of root groups for the affine building
∆(I,N) corresponding to SLn(K).

We define:

u1(a) :=


1 a

1
. . .

1

 u−1(a) :=


1
a 1

. . .

1



u2(b) :=


1

1 b
1

. . .

1

 u−2(b) :=


1
b 1

. . .

1
1


...

un(c) :=


1

1
. . .

cπ 1

 u−n(c) :=


1 cπ−1

1
. . .

1


where a, b, c range over the residue field k of K. And for i ∈ {1, . . . , n} we define
Ui := {ui(a) | a ∈ k}. These are the fundamental roots of the building.
Every root group Uα of the fundamental apartment can be described as a transla-
tion of a root group corresponding to a wall separating the {s1, . . . , sn−1}-residue
R containing C which we obtain by taking commutators of the fundamental root
groups U1, . . . , Un−1. The tanslations of the fundamental root groups look as fol-
lows: 

1 aπz

1
. . .

1

 =


1

πz

. . .

1

 ·U1·


1

π−z

. . .

1


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1
aπz 1

. . .

1

 =


1

πz

. . .

1

 ·U−1·


1

π−z

. . .

1


1

1 bπz

. . .

1

 =


πz

1
. . .

1

 ·U2·


π−z

1
. . .

1



=


1

π−z

. . .

1

 ·U2·


1

πz

. . .

1


...

1
1

. . .

cπz+1 1

 =


1

1
. . .

πz

 ·Un·


1

1
. . .

π−z



=


π−z

1
. . .

1

 ·Un·


πz

1
. . .

1


1 dπz−1

1
. . .

1

 =


1

1
. . .

πz

 ·U−n·


1

1
. . .

π−z



=


π−z

1
. . .

1

 ·U−n·


πz

1
. . .

1


where a, b, c, d range over k. The wall corresponding to the root group of Un does
not separate chambers the maximal spherical residue R. But the wall correspond-
ing to the reflection interchanging C and its opposite chamber in P is a translate
of U−n:
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1 k

1
. . .

1

 =


π

1
. . .

1

 ·U−n·


π−1

1
. . .

1



=


π

1
. . .

1




1 aπ−1

1
. . .

1



π−1

1
. . .

1


where a ranges over all elements in k.

Remark 14.7.11. The last example is very close to the concept of affine exten-
sions for spherical Weyl groups. For further information about this, one might
have a look at [Bou68][VI, §4 , section 3].

14.8 An Example

Let K := k(π) be an extension of k with π transcendent over k and let B be the
affine building corresponding to SLn(K).

The matrix Ms1 =

 0 −1
1 0

1
...

1

 represents a fundamental reflection, i.e. a reflec-

tion in the fundamental apartment along a wall ∂αs1 determined by the fundamen-
tal chamber C. This means that the action θ of Ms1 on B interchanges C = I and
s1C = Ms1 I and it satisfies:

|∂αs1 | ⊆ Min(θ).

Let P be the panel determined by ∂αs1 and C. If there exists an element
y ∈ Min(θ) with y /∈ |∂αs1 |, then there exists an element z ∈ |P | \ |∂αs1| which
is fixed by θ. This is due to the fact that Min(θ) is convex (see 3.7.2) and the
convex hull of |∂αs1| and y intersects the interior of one (geometric) chamber |D|
inside |P | non-trivially. The action θ is type-preserving, as the determinant of Ms1

has valuation 0, see 14.5.30. Hence |D| is fixed by θ. We conclude that θ fixes
exactly |∂αs1| if and only if θ does not fix any chamber of P . We will show that
the existence of a fixed chamber in P is equivalent to the existence of an element
a ∈ k with a2 = −1.

Let’s calculate the displacements for the chambers in P . We can represent each
of those chambers by an element of U1 times Ms1 or by the identity (for C). The
elements of U1 are given by their parameter a (see 14.7.10). We calculate the Weyl
element δ(D, θ(D)) for all chambers D in P :

(i) For the two chambers in P which lie the fundamental apartment and which
are represented by the identity and Ms1 , we get the displacement s1.
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(ii) If D = u1(a) ·Ms1 we get

δ(D,Ms1 .D) = δ(u1(a)Ms1I,Ms1u1(a)Ms1I)

= δ(I, (u(a)Ms1)
−1Ms1u1(a)Ms1I)

= δ(I,M−1
s1
u(a)−1Ms1u1(a)Ms1I)

= δ(IM−1
s1
u(a)−1Ms1u1(a)Ms1I).

For the double coset I M−1
s1
u(a)−1Ms1u(a)Ms1 I we find a representative by:

M−1
s1
u(a)−1Ms1u(a)Ms1

=


0 1
−1 0

1
. . .

1




1 −a

1
1

. . .

1



·


0 −1
1 0

1
. . .

1




1 a

1
1

. . .

1




0 −1
1 0

1
. . .

1



=


0 1
−1 a

1
. . .

1




−1

1 a
1

. . .

1




0 −1
1 0

1
. . .

1



=


1 a
a 1 + a2

1
. . .

1




0 −1
1 0

1
. . .

1

 =


a −1

1 + a2 −a
1

. . .

1


If a2 = −1, this matrix lies in I and thus the chamber D has Weyl displace-
ment 1W , i.e. δ(D,Ms1 .D) = 1W . Otherwise a monomial representation for
this double coset has the form of Ms1 and thus δ(D,Ms1 .D) = s1.

This shows that the action of Ms1 fixes exactly the (geometric) wall |∂αs1 | if and
only if the residue field k contains an element a with a2 = −1.

The same result holds for the other fundamental reflections by analog compu-
tations.
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FIFTEEN

THE IMPLEMENTATION

This section gives an algorithmic version of the two main important steps for cal-
culating a Weyl element corresponding to an I-double coset. Further some expla-
nations on the internal structures of the program, the usage and its performance
are given.

The program for the calculations is written for Sage (http://www.sagemath.
org). The version used for the implementation is 6.3.

15.1 Algorithms

To make the first algorithm more readable, one step will be defined here as an
external function:
Let Find Entry With Lowest Valuation(M ,R,C) be a function which returns
for a given matrix M and two subsets R,C of {1, . . . , n} (n being the rank of M)
a pair (i, j) with the following properties:

(i) The entry aij has minimal valuation in the ith row and jth column.

(ii) If an entry ail has the same valuation as aij, then l > j.

(iii) If an entry amj has the same valuation as aij, then m < i.
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Algorithm 1: Transforming a matrix of GLn(K) to a monomial matrix
- An algorithmic version of Lemma 14.5.12

input : A matrix M of GLn(K)
output: A monomial matrix M ′ with M ′ ∈ I ·M · I whose entries are

powers of π.

1 M’ ← Change_Entries(M) Remaining Rows ← {1, . . . , n}
Remaining Columns ← {1, . . . , n}

2 foreach counter in {0,. . . , n} do
3 (i, j) ← Get_Entry_With_Lowest_Valuation (

M’,Remaining Rows,Remaining Columns) // The ith row and
the jth column will have exactly one element 6= 0
after this.

// Adjust the row and column index sets
4 Remaining Rows ← Remaining Rows.Remove(−i)
5 Remaining Columns ← Remaining Columns.Remove(−j)

// Turn the other entries in the corresponding row and
column to zero.

6 if aij = cπl is not the only non-zero element in its row then
7 foreach k in Remaining Rows do
8 if akj = c′πl

′ 6= 0 then
9 Subtract the (c)−1 · c′ · πl′−l multiple of the ith row from

the kth row.
10 else
11 foreach l in Remaining Columns do
12 ail ← 0

// Apart from aij the entries in column j are all
zero. Thus subtracting a multiple of column j
from any other column has only an effect on
the ith entry.
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Algorithm 2: Calculating the Weyl element
- An algorithmic version of Theorem 14.5.29

input : The result M ′ of Algorithm 1 for a matrix of GLn(K).
output: A word w over the alphabet S with M ∈ I ·Mw · I.

1 Mw ← permutation matrix, s.th. M ′ · Mw is diagonal
2 w′ ← a word over S \ {s0} describing Mw M

′ ← M ′ · Mw

// Store the diagonal entries of the given matrix
3 foreach i in {0,. . . , rank(M)} do

// A matrix is internally stored as a two-dimensional
array

4 ai ← v(M [i][i])

5 Si ←
∑i

l=0 ai
// Reminder: σ is the permutation on W induced by the

cycle (s1, . . . , sn1 , s0).
6 w ← 1W
// Iterate through the diagonal entries of the given matrix

7 foreach i in {0,. . . , rank(M)} do
8 if ai 6= 0 then
9 w = w · σSi(si−1 · · · s1) if (a1 > 0) then

10 w ← w · σSi((s1 · · · sn−1s0)(ai(n−1)/n)s1 · · · sai%n)
// in the case of (ai%n) = 0 the last term vanishes

11 else
12 w ← w · σSi((s0sn−1 · · · s1)(−ai(n−1)/n)s0sn−1sn+1−(−ai%n))

// in the case of (−ai%n) = 1, the last term is just
s0 if (−ai%n) = 0 it vanishes.

13 w ← w · σSi+1(si−1 · · · s1)

14 return w · σSn (w′)
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15.2 The Program

The program uses matrices defined over the rational function field K = k(t) of a
finite field k.

Definition 15.2.1. For i ∈ {1, . . . , n} we define:

Ms1 =


0 −1
1 0

1
. . .

1

 , . . . ,Msn =


1

. . .

1
0 −1
1 0

 ,

Ms0 =


0 −π−1

1
. . .

1
π 0


(see also 14.3.4). For i ∈ {1, . . . , n}, α ∈ k we define

us1(α) =


1 α

1
1

. . .

1

 , . . . , usn(α) =


1

. . .

1
1 α

1



us0(α) =


1

1
. . .

1
α · t 1

 .

Definition 15.2.2. In the program, a chamber D of ∆(I, N) corresponds to the
equivalence class of matrices M with M(C) = D where C denotes the fundamental
chamber.

Explanation (The chamber representations)
The chambers of ∆(I, N) can be represented by a sequence of products xi(α) :=
Rsi(α)·Msi. This allows us to use an easy description for chambers in terms of lists
[i1, a1, . . . , il, al] representing the product xi1(a1) · · ·xil(al). Internally chambers are
stored as matrices over K which allows the user to use actions on the building in
terms of matrix operations.
Given an arbitrary matrix M of GLn(K), we can compute a chamber description,
i.e. a list of the form [i1, a1, . . . , il, al] for the chamber D represented by M . For
this, we first calculate the Weyl distance of the fundamental chamber (the identity
matrix) to M . This will give us a sequence of types of panels and we can move
along those panels searching for the unique chamber on that panel with minimal
distance to D - the projection of D onto the panel.
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Explanation (Calculating the action on S)
If an automorphism θ on the building is not given as the left multiplication by a
matrix, we cannot obtain the action of θ on S directly as in 14.5.30. But we can
look at the chamber descriptions for the image of the identity matrix and for the
images of the generators. From these descriptions we obtain matrices representing
those images and we can compute their Weyl distances which gives the induced
action on S.

Explanation (The choice of the rational function field)
In terms of buildings, one might prefer to work with the ring over (formal) Laurent
series (see [GH10, GHKR10, He14, Bea12]) as it is complete (see 14.1.8). But
internally (in the used version of Sage) these series are truncated.Thus the inverse
of 1 + t will be stored in the form 1 + t+ t2 + t3 + O(4), depending on the chosen
precision depth. This will result in wrong calculations as (1 + t) · (1 + t)−1 will
never return 1 in this case.

Explanation (Performance)
The goal of this implementation is to get Weyl distances for given chambers as
quickly as possible. The main calculations were optimized in the following ways:

(i) Replace matrix multiplications by list comprehension if possible. This applies
for the multiplication with the generators and the root group elements.

(ii) Once a chamber is given as a matrix M , use the matrix inversion of Sage for
the computation of Weyl distances. Here the given inversion is much faster
than constructing a new object corresponding to the inverse M−1.

(iii) Using 14.5.12 we transform the given matrix into a monomial one without
any matrix multiplications.

(iv) Using algorithm 2 we get an expression for the desired Weyl element by just
extending precalculated lists. In order to obtain a reduced word for this ex-
pression we only need to transform the resulting list at the very end into an
element of the affine permutation group corresponding to W . Sage already
provides a function returning a reduced expression for such a list.

One of the purposes of this program was to be able to calculate the Weyl displace-
ments of all chambers within a certain radius around a given chamber. In the
affine building ∆(I, N) of rank 4 over a field with 25 elements, a ball of radius 4
contains already more than 13.5 million chambers. Therefore going through ev-
ery single chamber is far too time consuming for this approach to be a useful tool.
Using the presented implementation, the test-computer, an Intel i7-4770K (3.50
GHz) 32GB RAM running Sage on an Oracle VM VirualBox (v 4.3.10) inside
Windows 7 64bit) can calculate per kernel the Weyl distances for about 160.000
pairs of chambers within one hour. Although parallel computations on n kernels
reduce this time nearly by the factor n, as the computations on each kernel are
independent from each other, this will still be far from being fast.
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Explanation (Displacment Balls)
We want to calculate the Weyl displacements of all chambers inside some ball
around a given chamber C within an acceptable time range. To do so, one can
reduce the amount of chambers needed to obtain the desired results. Let s ∈ S and
let D be a chamber, for which we already know its Weyl displacement, say w. When
we look at 11.4.9 and 11.4.11 we see that we already have some information about
the possible Weyl displacements for the s-panel P containing D. In particular:

(i) If l(swθ(s)) = l(w)+2, then every chamber in P \{D} has Weyl displacement
swθ(s).

(ii) If l(sw) = l(w) + 1 and l(wθ(s)) = l(w)− 1, then the Weyl displacements in
P \ {D} are wθ(s) (for exactly one chamber) and sw for all others.

(iii) If l(sw) = l(w)− 1 and l(wθ(s)) = l(w) + 1 then the Weyl displacements in
P \ {S} are swθ(s) (for exactly one chamber) and wθ(s) for all others.

(iv) If l(swθ(s)) = l(w)− 2 we need to find the projection of θ(P ) onto P and for
this element, we can apply one of the previous statements.

(v) If swθ(s) = w, we have to calculate all chambers of P \ {D}. The panels D
and θ(D) are parallel and the given information is not enough for any kind
of reduction.

We see that depending on the amount of panels being mapped to parallel panels, we
can immensely reduce the set of chambers to be considered during the calculations.







The essence of mathematics lies entirely in its freedom.

Georg Cantor
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APPENDIX

ONE

THE MAIN PROGRAM CODE

Aff Buildings.sage

1 ###### SETTING SOME BASIC VARIABLES ####
from time import gmtime, strftime

3 global FundamentalMatrix
global folderstring

5 folderstring = "/Data/"
print("Ensure, you are using version 6.3 or later")

7 print("Use load_attach_path(_path_) to tell sage the directory _path_,")
print(" which contains the files of this package")

9 print("Type Weylrepinfo() for further information")
load (’Chamber_based_Functions.sage’)

11

###### THE MAIN CALCULATIONS ###########
13 def GetRepWithDiagonalMat(matrix):

""" matrix has to be a monomial matrix.
15 Returns a pair w1, DiagonalValues, where w1 represents a permuta-

tion matrix as a product of generators, such that matrix * w1 is
17 the diagonal matrix whose non-zero entries are the entries in

DiagonalValues """
19 w1 = []

diagonalValues = []
21 columnPositions = []

# compute the non-zero entries and their positions
23 for i in range(globalrank):

for j in range(globalrank):
25 if matrix[i][j] != 0:

diagonalValues.append(_myval(matrix[i][j]))
27 columnPositions.append(j)

break
29 # compute the permutation to turn matrix into a diagonal matrix

for i in range(globalrank-1):
31 position = columnPositions[i]

_list = range(i,position)
33 _list.reverse()

for j in _list:
35 w1.append(j+1)

l = columnPositions.index(j)

143
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37 m = columnPositions.index(j+1)
columnPositions[l], columnPositions[m] = \

39 columnPositions[m], columnPositions[l]
return w1, diagonalValues

41

def GetWordForSingleEntry(diagval, shiftval):
43 """ Returns the word corresponding to diagonal matrix

diag(diagval,1,..,1) (see 14.5.25) """
45 if (diagval >0):

return [Modulo(1+val-shiftval)
47 for val in range(diagval * (globalrank -1))];

return [Modulo(-val-shiftval)
49 for val in range(-diagval * (globalrank -1))];

def GetWeylRepresentativeForMonomialMatrix(matrix):
51 """ Returns a word w in W such that the corresponding matrix M_w

represents the same Iwahori double coset as matrix (see 14.5.29).
"""

53 # turn the matrix into diagonal matrix:
w1, diagonalValues = GetRepWithDiagonalMat(matrix)

55 w=[]
shiftlist =[0]

57 shiftsum = 0;
# calculate the Weyl word corresponding to the diagonal matrix

59 for i in range(globalrank):
shiftlist.append(i)

61 if (diagonalValues[i] == 0):
continue;

63 shiftlist.reverse()
w.extend(SigmaShift(shiftlist,-(shiftsum)))

65 w.extend(GetWordForSingleEntry(diagonalValues[i], shiftsum))
shiftsum += diagonalValues[i]

67 shiftlist.reverse()
w.extend(SigmaShift(shiftlist, -(shiftsum)));

69 # extend w with the correctly shifted w1
w1.reverse();

71 w1 = SigmaShift(w1, -shiftsum);
w.extend(w1);

73 WeylRepresentant = W.from_reduced_word(w)
return WeylRepresentant.reduced_word()

75

def GetMonomialRepresentative(matrix):
77 """ Returns a monomial matrix representing the same Iwahori- double

coset as matrix - see Algorithm 1 on page 132.
79 """

return EraseInList([[y for y in row ] for row in matrix.rows()])
81

def EraseInList(matrix, rows = [],cols = []):
83 """ __ internally used function __

this is the main function for computing a monomial representative """
85 if rows ==[]:

rows = range(len(matrix))
87 cols = rows[:]

pair = GetLowValuation(matrix,rows,cols)
89 row = pair[0]

col = pair[1]
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91 cols.remove(col)
integralval = (matrix[row][col] *\

93 t^(-_myval(matrix[row][col])))^-1
# multiply the col’s column such that matrix[row][col] is a monomial

95 for i in rows:
matrix[i][col] = matrix[i][col] *integralval

97 # remove the other entries in the row’s row
for j in cols:

99 if matrix[row][j] == 0:
continue

101 factor = (matrix[row][col])^(-1) * matrix[row][j]
for i in rows:

103 if matrix[i][col] == 0:
continue

105 matrix[i][j] -= matrix[i][col] * factor
rows.remove(row)

107 # remove the remaining entries in the column
for i in rows:

109 matrix[i][col] = 0
if len(rows)>1:

111 return EraseInList(matrix,rows,cols)
else:

113 return matrix

115 ###### IMPORTANT SUB-ROUTINES ##########
def DiagonalMatrix(list):

117 """ Returns a diagonal matrix, whose diagonal equals list """
n = len(list)

119 list = [list[i] if i<n else 1 for i in range(globalrank)]
return matrix(K, [[list[i] if i == j else 0 for i in range(globalrank)]

121 for j in range(globalrank)])

123 def MakeGeneratorList():
""" Returns a list of the generators of W, as they are used in this

125 program, where the 0th entry corresponds to the affine extension """
global globalrank

127 GeneratorList = []
return [MakeGenerator(i) for i in xrange(globalrank)]

129

def MakeGenerator(x):
131 """ Returns the generator (element of S) corresponding to the value x """

m = identity_matrix(K, globalrank)
133 MultWithGenFromLeft(x,m)

return m
135

def MultWithGenFromRight(type,Matrix):
137 """ Changes Matrix to ( Matrix *s_{type} ) """

if type == 0:
139 firstcolumn = Matrix.column(0)

Matrix.set_column(0,t * Matrix.column(globalrank-1))
141 Matrix.set_column(globalrank-1,-t^-1*firstcolumn)

else:
143 firstcolumn = Matrix.column(type-1)

Matrix.set_column(type-1, Matrix.column(type))
145 Matrix.set_column(type, -1 * firstcolumn)
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147 def MultWithRootElementFromRight(type, val, Matrix):
""" Changes Matrix to (Matrix * u_{type}(val)) """

149 if val == 0:
return

151 if type == 0:
Matrix.set_column(0,

153 val * t * Matrix.column(globalrank -1)+\
Matrix.column(0))

155 else:
Matrix.set_column(type,

157 Matrix.column(type)+ \
val*Matrix.column(type-1))

159

def MultWithGenFromLeft(type,Matrix, factor = 1):
161 """ Changes Matrix to ( s_{type} * Matrix) """

if type == 0:
163 firstrow = Matrix.row(0)

Matrix.set_row(0,factor * -t^-1 * Matrix.row(globalrank-1))
165 Matrix.set_row(globalrank-1,factor * t * firstrow)

else:
167 firstrow = Matrix.row(type-1)

Matrix.set_row(type-1, factor * -1 * Matrix.row(type))
169 Matrix.set_row(type, factor * firstrow)

171 def MultWithGenFromLeftInverse(type,Matrix):
""" Changes Matrix into (s_{type] * Matrix)^-1 """

173 MultWithGenFromLeft(type, Matrix, -1)

175 def Modulo(x):
""" Returns x (mod n) """

177 if (x <0):
return globalrank-((-x)%globalrank)

179 else:
if (x >= globalrank):

181 return (x%globalrank);
else:

183 return x

185 def SigmaShift(list,k):
""" returns a the list {(x + k ) mod globalrank | x in list} """

187 return [Modulo(y+k) for y in list]

189 def RootElement(type,value):
""" Returns u_{type}(value)

191 w.r.t the fundamental chamber, this returns the matrix
one needs to go to the type-adjacent chambers corresponding

193 to the parameter value """
m = identity_matrix(K, globalrank)

195 MultWithRootElementFromLeft(type, value, m)
return m

197

def GetNeighbour(matrix,type_of_panel,field_value):
199 """ Returns a matrix representing the chamber corresponding to

u_{type_of_panel}(fieldval)(C), where C corresponds to matrix """
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201 m = copy(matrix)
MultWithRootElementFromRight(type_of_panel, field_value, m)

203 MultWithGenFromRight(type_of_panel,m)
return m

205

def GoToNeighbour(matrix, type_of_panel, field_value):
207 """ For the chamber C represented by matrix:

Changes matrix into the matrix representing the chamber corresponding
209 to u_{type_of_panel}(fieldval)(C) """

MultWithRootElementFromRight(type_of_panel, field_value, matrix)
211 MultWithGenFromRight(type_of_panel,matrix)

213 def GetLowValuation(vals,rows=[],cols=[]):
""" Returns the index pair of an entry, such that this entry

215 has lowest valuation in its row and column and among those
has lowest row index and greatest column index

217 then i’ > i """
if rows == []:

219 rows = range(len(vals))
cols = rows[:]

221 startvalfound = False
pair = GetNonZeroIndex(vals,rows,cols)

223 newval = True
while True:

225 new_index = LowestValuationInList(
vals[pair[0]], cols, False)

227 if new_index <> pair[1]:
pair[1] = new_index

229 continue
pair[1] = new_index

231 # check the row
new_index = LowestValuationInList(

233 [v[pair[1]] for v in vals], rows, True)
if new_index == pair[0]:

235 return pair
pair[0] = new_index

237

def LowestValuationInList(vals,indices, _is_column):
239 """_is_column == True: return the greatest index of an entry

with minimal valuation
241 _is_column == False: return the lowest index of an entry

with minimal valuation """
243 resultindex = -1

for index in indices:
245 if vals[index] == 0:

continue
247 if resultindex == -1:

val = _myval(vals[index])
249 resultindex = index

continue
251 compval = _myval(vals[index])

if compval < val:
253 val = compval

resultindex = index
255 elif _is_column == True:
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if compval == val:
257 resultindex = index

return resultindex
259

def GetNonZeroIndex(matrix, rows, cols):
261 for row in rows:

for col in cols:
263 if matrix[row][col] != 0:

return [row,col]
265 break

return pair
267

def _myval(f):
269 """ If f is an element of tha basefield, it is not interpreted as an

element of K or L and thus doesn’t have a valuation. """
271 try:

return f.valuation(t)
273 except:

return 0
275

#### WHAT ARE ROOTS AND GENERATORS ####
277 """ Example for globalrank = 3

The generators are:
279

s_0 s_! s_2
281

/ 0 0 -t^-1\ / 0 -1 0 \ / 1 0 0 \
283 | 0 1 0 | | 1 0 0 | | 0 0 -1|

\ t 0 1 / \ 0 0 1 / \ 0 1 0 /
285

The roots (with value val) denoted by u_{type}(val) are:
287

u_0(val) u_1(val) u_2(val)
289

/ 1 0 0 \ / 1 val 0 \ / 1 0 0 \
291 | 0 1 0 | | 0 1 0 | | 0 1 val|

\val*t 0 1 / \ 0 0 1 / \ 0 0 1 / """
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TWO

THE CODE INTERFACE FOR THE USER

Chamber based Functions.sage

def WeylrepSettings(rank,field):
2 """ Sets the basic Data. Example: MyField.<a> = FiniteField(25)

WeylrepSettings(3,MyField,’alph’) sets SL_3(F_7(t))
4 as the building of rank 3 """

global GeneratorList, globalrank, ShiftDisplacement
6 globalrank = rank

global L,t, K, ProgrammMyField, W, inverseShiftDisplacement
8 ProgrammMyField = field

L.<t> = LaurentPolynomialRing(field)
10 K.<t> = FractionField(L)

W = AffinePermutationGroup(["A",globalrank-1,1])
12 GeneratorList = MakeGeneratorList()

inverseShiftDisplacement = range(1,globalrank)
14 ShiftDisplacement = range(1,globalrank)

ShiftDisplacement.reverse()
16

def GetWeylelement(matrix):
18 """ return the type of a gallery from the fundamental chamber

to the chamber represented by matrix """
20 return GetWeylRepresentativeForMonomialMatrix(

GetMonomialRepresentative(matrix))
22

def GetWeylelements(list_of_matrices):
24 """ Returns a list of list of the following form:

[matrix from the list, reduced word, length of the word] """
26 return [[A, GetWeylelement(A)] for A in list_of_matrices]

28 def WeylDistance(chamber_one,chamber_two):
""" Returns the type of a gallery from the chamber represented by

30 chamber_one to the chamber represented by chamber_two """
return GetWeylelement(chamber_one^(-1) *chamber_two)

32

def GetDisplacement(Chamber,action):
34 """ Returns the type of a gallery from the chamber represented by

Chamber to its image under action """
36 return GetWeylelement(Chamber^(-1) *(action(Chamber)))

149
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38 def ChamberOfRep(matrix):
""" Returns an element of the building corresponding to the given matrix

40 -- it may be needed if one changes the type-set,
the fundamental chamber, or the fundamental apartment """

42 return GetChamber(GetChamberRepresentation(matrix))

44 def CalculateImagesOfGenerators(Function):
global TypeImages

46 TypeImages = []
M = (ChamberOfRep(

48 Function(DiagonalMatrix([]))))^(-1)
for i in range(globalrank):

50 TypeImages.append(GetWeylelement(
M*GetChamber(

52 GetChamberRepresentation(
Function(GeneratorList[i])))))

54 return TypeImages

56 def GetProjection(panel_chamber, paneltype, chamber):
""" Computes the projection of chamber onto the paneltype-panel

58 containing panel_chamber
Returns the projection and the corresponding field value """

60 distance = len(GetWeylelement(panel_chamber^(-1)* chamber))
return GetProjection_p(panel_chamber, paneltype, chamber, distance)

62

def GetProjection_p(panel_chamber, paneltype, chamber, distance):
64 """ Computes the projection of chamber onto the panel of type

paneltype containing the chamber panel_chamber
66 returns the pair D,val if

D = GetNeighbour(panel_chamber, paneltype, val)
68 is closer to chamber than panelchamber

else returns the panel_chamber and an empty list """
70 for __,val in enumerate(ProgrammMyField):

D = GetNeighbour(panel_chamber,paneltype, val)
72 if (len(WeylDistance(D,chamber)) < distance):

return D, val
74 return panel_chamber, []

76 def GetChamberRepresentation(matrix):
""" Returns a gallery describing the chamber corresponding to matrix

78 the gallery can be used as a parameter GetChamber """
Wdistance = GetWeylelement(matrix)

80 C = DiagonalMatrix([])
gallery=[]

82 n = len(Wdistance)
for i in range(len(Wdistance)):

84 gallery.extend([Wdistance[i]])
C, val = GetProjection_p(C, Wdistance[i], matrix, n-i)

86 if val == []:
raise Exception(’could not determine a projection.\r\n’+\

88 ’the gallery is:’ +str(gallery) +’\r\n’ +\
’the Weyldistance is: ’ + str(Wdistance))

90 gallery.append(val)
if len(gallery) < 2* n:
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92 raise Exception (’could not determine a minimal gallery.’+\
’the gallery is:’ +str(gallery) +’\r\n’ +\

94 ’the Weyldistance is: ’ + str(Wdistance))
return gallery

96

def GeneratorProduct(List):
98 """ Returns the product of the generators

s_(i_1) .... s_(i_l) if list == [i_1,...,i_2] """
100 m = identity_matrix(K, globalrank)

for x in List:
102 MultWithGenFromRight(x,m)

return m
104

def GetRandomGallery(pathlength, showpath = False):
106 """ Returns a random list, which can be used as a chamber description """

pathList = []
108 printList = []

list = W.random_element_of_length(pathlength).reduced_word()
110 for i in range (pathlength):

printList.append(list[i])
112 pathList.append(list[i])

pathList.append(ProgrammMyField.random_element())
114 if showpath =="path":

print(pathList)
116 if showpath =="gallery":

print(printList)
118 return pathList

120 def GetRandomChamber(pathlength,basechamber =None, showpath = False):
""" Returns a random chamber of the building, by constructing a gallery

122 from the fundamental chamber of length $pathlength """
if basechamber == None:

124 basechamber = DiagonalMatrix([])
return GetChamber(GetRandomGallery(pathlength, showpath),basechamber)

126

def GetDisplacementForFunction(Function,A):
128 """ Returns the Weyldistance of the given matrix A

to its image under the map Function """
130 return GetWeylelement(A^(-1) * Function(A))

132 def GetAllNeighbours(matrix,type_of_panel):
""" Given the matrix A and i in the Typeset of W,

134 we calculate all neighbours w.r.t. the given Weylgroup """
C = []

136 for j,x in enumerate(ProgrammMyField):
C.append(GetNeighbour(matrix,type_of_panel,x))

138 return C

140 def GetChamber(arglist, basechamber =None):
""" Returns a matrix, which represents the chamber C, whose path

142 from the baseChamber is given by the argument list[],
i.e. list = [s_n,a_n,...,s_2,a_2, s_1,a_1] or

144 [[s_n,a_n],...,[s_1,a_1]], where w = s_1...s_n is the
Weyldistance of the chamber to the base chamber

146 The parameter a_i is an element of the given field -
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it determines the parameter of the rootgroup action
148 correponding to the simple root associated to s_i """

if basechamber == None:
150 basechamber = DiagonalMatrix([])

B = copy(basechamber)
152 if len(arglist) == 0:

return B
154 for i in range(len(arglist)//2):

B = GetNeighbour(B,arglist[i*2],arglist[i*2+1])
156 return B

158 def GetChamberInverse(arglist, baseChamber = None):
""" Returns the inverse of GetChamber(arglist, basechamber)

160 !! If a chamber is given as a matrix M using M^-1 is in most
cases a faster option """

162 if baseChamber == None:
baseChamber = DiagonalMatrix([])

164 B = copy(baseChamber)
if len(arglist) == 0:

166 return B
for i in range(len(arglist)//2):

168 GoToNeighbourInverse(B,arglist[i*2],arglist[i*2+1])
return B
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THREE

DISPLACEMENT BALL VERSION ONE

This code provides a routine for calculating Weyl displacements. It reduces the
amount of calculations by comparing the possible Weyl displacements with Weyl
displacements which already occurred. The calculations are very fast for a small
radius, but the overall time increases a lot if a panel gets mapped onto a parallel
panel and one of the possible Weyl displacements has not been a Weyl
displacement before. The output which will be stored directly into a file, contains
information about every step the algorithm went through.

1 load(’Aff_Buildings.sage’)
nr_of_processes = 3, break_at_maxvals = True, quick = True, startlength = 1

3 maxFieldElements= 0, _initialpath =[], precalculate=True, preList=[]
use_reduction = True, _do_parallel = True, _parallel_threshold = 40

5 """ About some parameters:
initialpath - will be placed in front of every gallery

7 quick = True - step over computations if the list
displacementslist contains already all possible results

9 precalculate = True - works together with the quick option,
some random chambers are calculated at the beginning of the

11 main computation
- preList is added to _kowngalleries at the beginning of the computations

13 - maxFieldElements - the maximal amount of galleries per gallery
type. If set to 0: no restriction is applied """

15

def GetDisplacementOfRandomChamber(radius, action,
17 basechamber = None, showpath = false):

""" Computes the displacement of a randomly chosen chamber corresponding
19 to action. The choice of the chamber is limited by the radius around

fundamental chamber or the basechamber, if given. """
21 if basechamber is None:

basechamber = DiagonalMatrix([])
23 D = GetRandomChamber(radius, basechamber, showpath)

return GetWeylelement(D^(-1)*action(D))
25

def MakeDisplacementList(radius, steps, action, basechamber = None):
27 """ Computes the displacements of steps random chambers in the Ball of

radius radius around the basechamber """
29 if basechamber is None:

153
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basechamber = DiagonalMatrix([])
31 list = []

for i in range(steps):
33 D = GetRandomChamber(radius, basechamber)

list.append(MatrixInvert(action(D))*D)
35 return list

37 def SetFunction(_Function):
global Function

39 Function = _Function

41 def InitDisplacmentBall():
""" Initializes certain parameters for the main computations """

43 global filetext
filetext = ""

45

# a counter for testing purposes
47 global valuesovermaxval

valuesovermaxval = 0
49

#compute the action of _Function on the set of generators
51 global TypeImages

TypeImages = CalculateImagesOfGenerators(Function)
53 print("The images of the Types are:")

for i in range(globalrank):
55 print(str(i)+ "<-->" + str(TypeImages[i]))

filetext = AddInitToFiletext(description, _displacementSet)
57

# set some global variables for counting
59 global _count_calculated_chambers

_count_calculated_chambers = 0
61 global _count_calculated_chambers_per_gallery

_count_calculated_chambers_per_gallery =0
63

# Compute the displacment of the basechamber
65 w = GetDisplacement(basechamber, Function)

_displacementSet.append(w)
67

#initialize the dictionary for the computed galleries
69 global _knowngalleries

_knowngalleries = dict({"":[w]})
71 filetext += str(w) +"-\t- [] -\t- []\r\n"

73 def GetDisplacementBall(_Function,
maxpathlength, _basechamber = None,

75 _description = ""):
""" This function computes all displacements corresponding Function

77 that appear inside a ball of
radius maxpathlength around the basechamber

79 The parameter: description - is used for the stored file """
global basechamber

81 if _basechamber == None:
basechamber = DiagonalMatrix([])

83 else:
basechamber = _basechamber
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85 global description
description = _description

87 SetFunction(_Function)
#reset the _displacementSet

89 global _displacementSet
_displacementSet = []

91

# apply some reduction for the computations
93 if quick == True:

# add previously computated displacements
95 _displacementSet += preList

if precalculate==True:
97 # compute the displacements for a random set of chambers

PreCalculation(globalrank**2 * maxpathlength*5,
99 maxpathlength)

101 # initialize computation - get Images of the generators
# compute the displacement of the basechamber

103 InitDisplacmentBall()

105 # passing through all chambers in a Ball of diameter pathlength
# around BaseChamber in the following way:

107 # We start with the BaseChamber itself
# We will use the method elements_of_length(n) to describe

109 # the chambers around the base chamber

111 # use the pathlength as a global parameter for the calculations
global pathlength

113 for pathlength in range(startlength,maxpathlength+1):
CalculatePathlength()

115

# computation is finished - save filetext to disc
117 print("Done.")

PrintDataInFile(filetext, _displacementSet)
119 return

121 def CalculatePathlength():
""" Computes the displacements for the chambers with distance

123 pathlength from basechamber """
print("pathlenght: " +str(pathlength))

125 global filetext
filetext += "\r\n pathlength: "+str(pathlength) +"\r\n=====\n"

127 filetext += "Displacement \t Type of Gallery \t Gallery\r\n"
paths = W.elements_of_length(pathlength)

129

# The list fieldlementslists contains all sequences of
131 # length pathlength of elements in the given field

global fieldelementlists
133 fieldelementlists = MakeFieldelementLists(

maxFieldElements, pathlength)
135

# iterate through all paths of length pathlength
137 for path in paths:

# CalculatePath checks whether a complete computation is needed
139 if CalculatePath(path) == True:
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InternalDisplacementCalculations()
141

def CalculatePath(path):
143 """ Returns False if internal computations can be avoided """

_count_calculated_chambers_per_gallery =0
145 # tmp_dict stores the displacements, which can be computed by

# comparing given words. If a complete computation can be avoided
147 # tmp_dict will be added to _known_galleries

global tmp_dict
149 tmp_dict = dict()

# pathword is a list describing the type of path
151 global pathword

pathword = path.reduced_word()
153 global pathstring

pathstring = ""
155

# boolean variables to check whether a complete computation is needed
157 check_path_is_extended =False

check_extension_works = True
159

# maxvals is the maximal possible number of displacements to be
161 # obtained from a given gallery

global maxvals
163 maxvals = []

for pos in range(pathlength-1):
165 pathstring += str(pathword[pos])

_len = len(pathstring)
167 global extensionstring

extensionstring = ""
169 # filetext - for writing information on disk

global filetext
171 for key in _knowngalleries:

if len(key) == _len:
173 # _check all possible new displacements

_CheckKey(key)
175 if check_path_is_extended == True:

break
177 if check_path_is_extended ==True and \

check_extension_works == True:
179 _knowngalleries.update(tmp_dict)

filetext += extensionstring
181 if use_reduction == True:

# no need for internal calculations
183 return False

pathstring += str(pathword[-1])
185 _knowngalleries.update({pathstring:[]})

global maxvalnumber
187 maxvalnumber = len(maxvals)

filetext += "maximal possible values: \r\n"
189 for l in maxvals:

filetext+= str(l) +"-"
191 filetext += "\r\n"

if quick == True:
193 maxvals_in_displacementSet = True

for val in maxvals:
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195 if val not in _displacementSet:
maxvals_in_displacementSet = False

197 if maxvals_in_displacementSet == True:
filetext += "All displacements are known \r\n"

199 for val in maxvals:
_knowngalleries[pathstring].append(val)

201 # no need for internal calculations
return False

203 return True

205 def AddInitToFiletext(description, _displacementSet):
filetext = "globalrank: " + str(globalrank) +"\r\n"

207 filetext += "fieldsize:" + str(ProgrammMyField) +"\r\n"
filetext += "Extra description: " +description+"\r\n"

209 filetext += "displacementSet at start (after PreCalculation):\r\n"
for val in _displacementSet:

211 filetext += " - " + str(val) + "\r\n"
print("pathlenght: 0")

213 filetext += "\r\n pathlength: " +str(0) +"\r\n=============\r\n"
filetext += "Displacement \t Type of Gallery \t Gallery\r\n"

215 return filetext

217 def PrintDataInFile(filetext, _displacmentSet):
filestring =load_attach_path()[-1] + "/" +\

219 folderstring+getCurrentTimeString()
file = open(filestring+".txt",’w’)

221 file.write(filetext)
file.close()

223 _displacementSet.sort(lambda x,y: cmp(len(x), len(y)))
file = open(filestring+"_Results.txt",’w’)

225 file.write("globalrank: " + str(globalrank) +"\r\n")
file.write("fieldsize:" + str(ProgrammMyField) +"\r\n")

227 file.write("Extra description: " +description +"\r\n")
file.write("The images of the Types are:\r\n")

229 for i in range(globalrank):
file.write(str(i)+ "<-->" + str(TypeImages[i])+"\r\n")

231 file.write("Values over maxval during calculations: " +\
str(valuesovermaxval)+"\r\nDisplacments:\r\n")

233 for x in _displacementSet:
file.write(str(x) +"\r\n")

235 file.close()

237 def InternalDisplacementCalculations():
global maxvalreached, len_fieldvals

239 maxvalreached = False
len_fieldvals = len(fieldelementlists)

241 if _do_parallel == True and\
len(fieldelementlists) > 2* _parallel_threshold:

243 ParallelComputation()
return

245 SequentielComputation()

247 def SequentielComputation():
# declaring global variables which may be altered

249 global _count_calculated_chambers, filetext
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global maxvalreached, filetext, maxvals
251 global valuesovermaxval

global _knowngalleries, _displacementSet
253 additionalvalues =0

newvalues = []
255 for fieldelementlist in fieldelementlists:

# user information about the amount of done calculations
257 if _count_calculated_chambers % 10000 == 9999:

print("calculated " +str(_count_calculated_chambers)+\
259 "chambers.")

print("Current memory usage: " + str(get_memory_usage()))
261 print("Current number of chambers per gallery: "+\

str(len(fieldelementlists)))
263 _count_calculated_chambers +=1

265 if maxvalnumber >0 and len(newvalues) == maxvalnumber and\
maxvalreached == False:

267 # check if computations shall be finished at maxvals
if break_at_maxvals:

269 return
filetext += "Reached maxvals\r\n"

271 maxvalreached = True
gallery = _initialpath

273

for i in range(pathlength):
275 gallery = gallery+[pathword[i], fieldelementlist[i]]

C = GetChamber(gallery, basechamber)
277 w = GetDisplacement(C, Function)

if w not in newvalues:
279 newvalues.append(w)

if maxvalreached == True:
281 valuesovermaxval +=1

if w not in _knowngalleries[pathstring]:
283 _knowngalleries[pathstring].append(w)

if (w not in _displacementSet):
285 _displacementSet.append(w)

filetext += str(w) +"-\t-" +\
287 str(pathword) +"-\t-" +\

str(gallery)+ "\r\n"
289 for b in newvalues:

if b in maxvals:
291 maxvals.remove(b)

filetext += "values that did not appear: "+\
293 str(maxvals)+"\r\n"

295 def ParallelComputation():
#declaring the global variables, which may be altered

297 global filetext, valuesovermaxval
global _knowngalleries, _displacementSet

299 global valuesovermaxval
maxcount = len(maxvals)

301 newvalues = []
filetext += "parallel\r\n=============\r\n"

303 fullparts = len_fieldvals // _parallel_threshold
# construct the argumentslist for parallel processing
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305 # each list contains a pair (x,), where
# x = [Function, pathword, list], where the list contains at most

307 # _parallel_threshold number of entries

309 _splittedlist = [([Function, pathword,
fieldelementlists[i*_parallel_threshold:\

311 (i+1)*_parallel_threshold]],)\
for i in range(fullparts)]

313

# split the argumentlist in nr_of_processes parts
315 # to be able to break the parallel processing if maxvals is reached

for i in range(len(_splittedlist)/nr_of_processes +1 ):
317 # check if the number of maximal possible new values

# has been reached
319 if len(newvalues) >= maxvals:

if break_at_maxvals:
321 filetext += "Reached maxvals \r\n"

return
323 _biglist = list(

GetDisplacmentsForList(
325 _splittedlist[i*nr_of_processes: \

(i+1)*nr_of_processes]))
327 for partresult in _biglist:

for w in partresult[1]:
329 if w not in newvalues:

newvalues.append(w)
331 filetext += str(w) +"-\t-" +\

str(pathword) +"-\t-" +"\r\n"
333 if w not in _knowngalleries[pathstring]:

_knowngalleries[pathstring].append(w)
335 if w not in _displacementSet:

_displacementSet.append(w)
337

valuesovermaxval += len(newvalues) - maxcount
339 return

341 def MakeFieldelementLists(maxFieldElements, pathlength):
""" Constructs a list containing all lists needed to describe every

343 chamber (up to the maxFieldElements restriction) corresponding
to a given gallery:

345 Example:
For pathlength = 3 and FiniteField(3) the function returns:

347 [ [0,0,0], [0,0,1], [0,0,2], [0,1,0], [0,1,1], [0,1,2], ...
[2,1,0], [2,1,1], [2,1,2], [2,2,0], [2,2,1], [2,2,2] ] """

349 if maxFieldElements == 0 or pathlength <3:
fieldelementlists = [[]]

351 for i in range(pathlength):
fieldelementlists =[

353 [x]+y for j,x in enumerate(ProgrammMyField)\
for y in fieldelementlists]

355 return fieldelementlists
# no restriction on the amount of lists

357 fieldelementlists = []
max = maxFieldElements * pathlength

359 for i in range(max):
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tmplist = []
361 for j in range(pathlength):

tmplist.append(ProgrammMyField.random_element())
363 fieldelementlists.append(tmplist)

return fieldelementlists
365

def PreCalculation(amount, _maxpathlength):
367 """ compute some displacements before the main computation """

global _displacementSet
369 for i in range(amount):

w = GetDisplacementOfRandomChamber(
371 randint(0,_maxpathlength), Function, basechamber)

for w1 in W.from_reduced_word(w).reduced_words():
373 if w1 not in _displacementSet:

_displacementSet.append(w1)
375

def _CheckKey(key):
377 """ Given a key, i.e. a string describing a gallerytype,

Checks if computations are needed or can be derived by the
379 previously computed displacements """

if W.from_word([int(c) for c in key]) != \
381 W.from_word(pathword[:-1]):

return
383

global filetext, keyname
385 global tmp_dict, keycount

keyname = pathstring + str(pathword[-1])
387 tmp_dict.update({keyname :[]})

keycount = len(_knowngalleries[key])
389 global valcounter

valcounter = 0
391 filetext += "======\r\n"+str(keycount)+" pregalleries inside ["+\

str(key)+ "]:\r\n"
393 for val in _knowngalleries[key]:

filetext += str(val ) + " -- "
395 filetext += "\r\n"

global pregallery
397 for pregallery in _knowngalleries[key]:

valcounter+=1
399 if (CheckTrivialPath() == True):

continue
401 if (CheckWordOfLengthOne() == True):

continue
403 w = W.from_word([pathword[-1]]+\

pregallery+\
405 TypeImages[pathword[-1]]).reduced_word()

if (CheckTwoSidedProjection(w) == True):
407 continue

w1 = W.from_word([pathword[-1]]+\
409 pregallery).reduced_word()

w2 = W.from_word(pregallery+\
411 TypeImages[pathword[-1]]).reduced_word()

if (CheckTwoSidedReduction(w,w1,w2) == True):
413 continue

if (CheckExtendingOnTheLeft(w,w1,w2) == True):
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415 continue
if (CheckExtendingOnTheRight(w,w1,w2) == True):

417 continue
# the remaining case of parallel panels:

419 CaseNoExtension(w,w1,w2)

421

def CheckTrivialPath():
423 """ A special treatment for the empty list """

if (pregallery != [] or \
425 [pathword[-1]] != TypeImages[pathword[-1]]):

return False
427 global maxvals, check_extension_works, filetext

if [] not in maxvals:
429 maxvals.append([])

if [pathword[-1]] not in maxvals:
431 maxvals.append([pathword[-1]])

check_extension_works=False
433 filetext +="no extension for trivial path[type 1]:\r\n"

return True
435

def CheckWordOfLengthOne():
437 """ A special treatment for a list of length 1 """

if (len(pregallery) !=1 or \
439 [pathword[-1]] != pregallery or\

pregallery != TypeImages[pathword[-1]]):
441 return False

global maxvals, check_extension_works, filetext
443 if [] not in maxvals:

maxvals.append([])
445 if [pathword[-1]] not in maxvals:

maxvals.append([pathword[-1]])
447 check_extension_works=False

filetext += "no extension for path[type 2]"+\
449 "(mingallery has same type as extending generator):\r\n"

return True
451

453 def CheckTwoSidedReduction(w,w1,w2):
""" For non-parallel panels:

455 There are two cases:
1:

457 Some chamber D in the (pathword[-1]panel P containing C is the
projection of its image onto P and its image D’

459 is the projection of D onto the image of P.

461 C--D --......-- D’--C’ (D is a chamber in P and D’ its image)
2:

463 Some chamber D in the (pathword[-1]panel P containing C is the
projection of its image onto P, but its image D’

465 is not the projection of P onto its image.

467 D’
/

469 C--D --......-- E’--C’ (D is a chamber in P and D’ its image)
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471 Without knowing the image of the projection, we cannot do a
reduction """

473 if (len(w) != len(pregallery)-2):
return False

475 global check_path_is_extended, extensionstring, filetext
global check_extension_works

477 check_path_is_extended =True
check_extension_works = False

479 AddValues([pregallery,w,w1,w2])
# adjust text based variables

481 extensionstring+= str(w) +"-\t-"+\
str(pathword) +"-\t- extending"+\

483 str(pregallery)+" ("+str(valcounter)+\
" of "+str(keycount)+") \r\n"

485 filetext += "reduction (two sided)\r\n"
return True

487

def CheckTwoSidedProjection(w):
489 """ The previously computed chamber, say C, is the projection of its

image onto the (pathword[-1]panel P containing C and its image C’
491 is the projection of C onto the image of P

493 D--C --......-- C’--D’ (D is a chamber in P and D’ its image) """
if (len(w) != len(pregallery)+2):

495 return False
global check_path_is_extended, extensionstring, filetext

497

check_path_is_extended =True
499 AddValues([w])

501 # adjust text based variables
extensionstring+= str(w) +"-\t-"+\

503 str(pathword) +"-\t- extending"+\
str(pregallery)+" ("+str(valcounter)+\

505 " of "+str(keycount)+") \r\n"
filetext += "extension (two sided)\r\n"

507 return True

509 def CheckExtendingOnTheLeft(w,w1,w2):
""" The previously computed chamber, say C, is the projection of its

511 image onto the (pathword[-1]panel P containing C, but its image C’
is not the projection of C onto the image of P

513

D--C --......-- D’--C’
515 (D is a chamber in P and D’ its image) """

if (len(w1) != len(w) +1 or\
517 len(w2) != len(w) -1):

return False
519 global extensionstring, check_path_is_extended, filetext

check_extension_works = False
521 check_path_is_extended = True

AddValues([w1,w])
523

# adjust text based variables
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525 extensionstring+= str(w) +"-\t-" +str(pathword) +"-\t- extending"+\
str(pregallery)+" ("+str(valcounter)+ " of "+str(keycount)+\

527 ") - left sided [the projection preimage] \r\n"
extensionstring+= str(w1) + "-\t-" + str(pathword) +\

529 "-\t- extending"+str(pregallery)+" ("+str(valcounter)+" of "+ \
str(keycount)+ ") - left sided [the rest]\r\n"

531 filetext += "Extension (only left):\r\n"
return True

533

def CheckExtendingOnTheRight(w,w1,w2):
535 """ The previously computed chamber, say C, is not the projection of

its image onto the (pathword[-1]panel P containing C, but its image
537 C’ is the projection of C onto the image of P

539 C--D --......-- C’--D’
(D is a chamber in P and D’ its image) """

541 if (len(w1) != len(w) -1 or\
len(w2) != len(w) +1):

543 return False
global extensionstring, check_path_is_extended, filetext

545

check_path_is_extended = True
547 AddValues([w2,w])

549 # adjust text based variables
extensionstring+= str(w) +"-\t-" +str(pathword) +"-\t- extending"+\

551 str(pregallery)+" ("+str(valcounter)+ " of "+str(keycount)+\
") - right sided [the projection preimage] \r\n"

553 extensionstring+= str(w2)+"-\t-" + str(pathword) +"-\t- extending"+\
str(pregallery)+" ("+str(valcounter)+" of "+str(keycount)+\

555 ") - right sided [the rest]\r\n"
filetext += "Extension (only right):\r\n"

557 return True

559 def CaseNoExtension(w,w1,w2):
global maxvals

561 check_extension_works=False
extends = [pregallery, w1, w2,w]

563 UpdateMaxVals(extends)
global filetext

565 filetext += "no extension for path[type 3]:\r\n"

567

def AddValues(valuelist):
569 """ Adds the given words in valuelist to tmp_dict and _displacementSet

-- adjust maxvals """
571 global tmp_dict, _displacementSet

for word in valuelist:
573 if word not in tmp_dict[keyname]:

tmp_dict[keyname].append(word)
575 if word not in _displacementSet:

_displacementSet.append(word)
577 UpdateMaxVals(valuelist)

579
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def UpdateMaxVals(valuelist):
581 global maxvals

for word in valuelist:
583 iscontained = False

w12 = W.from_reduced_word(word)
585 for val in maxvals:

if w12 == W.from_reduced_word(val):
587 iscontained =True

if iscontained == False:
589 maxvals.append(word)

591 @parallel
def GetDisplacmentsForList(parameterlist):

593 """ The parameterlist: [Function,pathword, fieldlementlists]
Computes the displacements for all chambers corresponding to

595 the parameterlist """
l = parameterlist

597 returnlist = []
pathlength = len(l[2][0])

599 for _fieldlist in l[2]:
gallery = []

601 for i in range(pathlength):
gallery = gallery+[l[1][i], _fieldlist[i]]

603 C = GetChamber(gallery)
returnlist.append(GetWeylelement(C^-1 * l[0](C)))

605 return returnlist

607 ###### FUNCTIONS FOR INTERNAL DATA #####

609 def ChangeFolderForStream(folder):
folderstring = folder

611

def getCurrentTimeString():
613 return strftime("%Y-%m-%d-%H-%M-%S",gmtime())

615 # About some global variables
"""

617 filtetext - contains a string about the computations
it will be saved as a file at the very end

619 tmp_dict - a temporary dictionary about displacements
pathstring - a string describing the type of a gallery

621 pathword - a list describing a sequence of panel types
_knowngalleries - a (string, list) dictionary

623 where the keys describe gallery types and the values
describe the displacments of chambers that can be reached

625 from the basechamber along a gallery of type "key"
maxvals - the maximal number of displacements to appear within an

627 internal computation - this helps to break certain loops
newvalues - a temporary list of displacements used to determine

629 the amount of different displacements within an internal
computation

631

valuesovermaxval - parameters used for testing """
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tèmes de racines, Actualités Scientifiques et Industrielles, No. 1337,
Hermann, Paris, 1968. MR 0240238 (39 #1590)

[Bri99] Martin R. Bridson, On the semisimplicity of polyhedral isometries,
Proc. Amer. Math. Soc. 127 (1999), no. 7, 2143–2146. MR 1646316
(99m:53086)

[BT66] François Bruhat and Jacques Tits, BN-paires de type affine et données
radicielles, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A598–A601. MR
0242833 (39 #4160)

171



172 BIBLIOGRAPHY

[Car93] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library,
John Wiley & Sons, Ltd., Chichester, 1993, Conjugacy classes and
complex characters, Reprint of the 1985 original, A Wiley-Interscience
Publication. MR 1266626 (94k:20020)

[CH09] Pierre-Emmanuel Caprace and Frédéric Haglund, On geometric flats
in the CAT(0) realization of Coxeter groups and Tits buildings, Canad.
J. Math. 61 (2009), no. 4, 740–761. MR 2541383 (2010k:20051)

[Cox34] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of
Math. (2) 35 (1934), no. 3, 588–621. MR 1503182

[Dav98] Michael W. Davis, Buildings are CAT (0), Geometry and cohomology
in group theory (Durham, 1994), London Math. Soc. Lecture Note Ser.,
vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 108–123. MR
1709955 (2000i:20068)

[Dav08] , The geometry and topology of Coxeter groups, London Mathe-
matical Society Monographs Series, vol. 32, Princeton University Press,
Princeton, NJ, 2008. MR 2360474 (2008k:20091)

[DS87] Andreas W. M. Dress and Rudolf Scharlau, Gated sets in metric spaces,
Aequationes Math. 34 (1987), no. 1, 112–120. MR 915878 (89c:54057)
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Ich erkläre:
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