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Abstract

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton
and Ion Research (FAIR) complex will investigate the phase diagram of strongly inter-
acting matter at high baryon density and moderate temperatures in A+A collisions. The
beam energy will range from 2 up to 11 AGeV for the heaviest nuclei at the SIS 100 ac-
celerator set-up. Due to their penetrating nature, electromagnetic probes are particularly
interesting, as they deliver undistorted information from the fireball, unveiling properties
of the created hot and dense matter.

To cope with the CBM physics program, an efficient and clean electron identification
and pion suppression (for momenta up to 8 GeV/c) will be provided by the CBM-RICH
(Ring Imaging Cherenkov) detector. In the SIS 100 set-up, the RICH detector together
with four layers of Transition Radiation Detector, should reach a combined pion suppres-
sion factor of 1000 to 5000 in a wide acceptance. The RICH detector will be made of
a CO2 gaseous radiator, Multi-Anode Photo-Multipliers (H12700 MAPMTs from Hama-
matsu) for photon detection and 80 trapezoidal glass mirror tiles, equally distributed in
two half-spheres and used as focusing elements with spectral reflectivity down to the UV
range.

One of the technical challenges emerging, while interchanging the RICH with the
MuCh (Muon Chambers) presumably on a yearly basis, is a rigid and stable mechani-
cal design along with a mirror alignment monitoring system. The latter combines two
methods used in the COMPASS and HERA-B experiments and was adapted to the CBM-
RICH detector geometry. In addition, a correction cycle was designed, which guarantees a
proper operation of the detector even though mirrors are misaligned. These developments
are the subject of the presented thesis.

The first method to determine mirror rotations is the Continuous Line Alignment
Monitoring (CLAM) method. It uses a dedicated equipment: cameras with good pixel
resolution, LEDs as light source and a grid made of retroreflective material. The principle
relies on the fact that the reflected grid on the mirrors will appear broken at mirror edges,
if the neighbouring mirrors are misaligned with one another. This is the fast qualitative
variant of the method.

Furthermore, it can be used as a quantitative method to determine mirror rotations.
In this case a previous laboratory calibration is prerequisite, which consists in measuring
the pixel shift generated by given mirror rotations for a single mirror tile. This calibration
has to be conducted on all mirrors to allow a complete measurement of mirror rotations.
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The second technique adapted for the CBM-RICH detector uses data in software. The
principle is to measure, for a high enough number of cumulated rings reflected on a single
mirror tile, two quantities referred to as the ‘Cherenkov distance’ and ‘Cherenkov angle’.
In case of mirror misalignment, plotting the ‘Cherenkov distance’ as a function of the
‘Cherenkov angle’, reveals a sinusoidal behaviour. After a fitting procedure, the extracted
parameters can be related to the mirror rotations, allowing an accurate quantification of
mirror rotations.

The performances of this technique were investigated. For a horizontal rotation of
the mirror tile, the technique works for misalignments ranging between 0.3 and 14 mrad.
For a vertical rotation of the tile, the technique yields accurate results for misalignments
ranging from 0.4 mrad up to 15 mrad. It is more reliable for tiles located in the centre of
the mirror wall than for tiles in the outer region.

A mirror correction cycle specifically designed for the CBM-RICH detector is intro-
duced. It uses the mirror rotation information from the two presented methods to correct
the track extrapolation on the MAPMT planes. Thus the distance between the extrapo-
lated track and the reconstructed ring centre is reduced. It was added inside the CbmRoot
framework and can run automatically in the reconstruction procedure.

The correction cycle was tested in simulations. The mirror tiles were artificially mis-
aligned on both their axes following a Gaussian distribution with a standard deviation of
1 mrad. The mean ring-track distance then amounts to 0.47 cm, while being 0.14 cm in
the aligned case. Applying the correction cycle reduces this number to 0.17 cm, which is
close to the ideal case. In addition, it corrects the matching efficiency of the CBM-RICH
and the electron identification efficiency with respect to the misaligned case. Even with
a standard deviation of 3 mrad, the results obtained remain within the specifications
required by the technical design report of the CBM-RICH detector.
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Zusammenfassung

Das ‘Compressed Baryonic Matter’ (CBM) Experiment an der zukünftigen ‘Facility for
Antiproton and Ion Research’ (FAIR) Anlage hat zum Ziel, das Phasendiagramm von
stark wechselwirkender Materie in A+A Kollisionen bei hoher baryonischer Dichte und
moderater Temperatur zu untersuchen. Die Strahlenergie wird von 2 bis 11 AGeV für
die schwersten Kerne an der SIS 100 Beschleunigeranlage reichen. Aufgrund ihrer durch-
dringenden Natur sind elektromagnetische Sonden wie Photonen oder e-/e+ Paare beson-
ders interessant um die erzeugte Materie zu untersuchen, da sie nicht mit dem erzeugten
Feuerball stark wechselwirken. Durch ihr Studium sollten die Eigenschaften der erzeugten
heißen und dichten Materie besser verstanden werden.

Eine der Voraussetzungen zur Durchführung des Physikprogramms von CBM ist eine
effiziente und saubere Elektron Identifizierung zusammen mit einer Pionen Unterdrück-
ung für Impulse bis zu 8 GeV/c. Diese werden durch einen ‘Ring Imaging CHerenkov’
(RICH) Detektor erreicht. Zusammen mit vier Schichten eines ‘Transition Radiation De-
tectors’ soll der RICH Detektor einen kombinierten Pion Suppression Faktor von 1000 bis
5000 in einer breiten Akzeptanz an der SIS 100 Anlage erreichen. Der Detektor wird aus
einem gasförmigen CO2 Radiator, ‘Multi-Anode Photo-Multipliers’ (H12700 MAPMTs
von Hamamatsu) und 80 trapezförmigen Spiegelkacheln aus Glas bestehen. Die Kacheln
werden in zwei Halbkugeln gleichmäßig verteilt und als Fokussierelemente mit einem spek-
tralen Reflektionsvermögen bis hinunter in den UV Bereich genutzt.

Eine der technischen Herausforderungen stammt von dem angestrebten jährlichen Aus-
tausch des RICH Detektors und des MuCh Detektors (Muon Chambers). Dafür sind eine
starre und stabile mechanische Konstruktion zusammen mit einem Überwachungssystem
für die Spiegelausrichtung notwendig. Das Spiegelüberwachungssystem kombiniert zwei
Methoden, die bereits in den COMPASS und HERA-B Experimenten genutzt werden und
an die Geometrie des CBM-RICH Detektors angepasst wurden. Darüber hinaus wurde
ein Korrekturzyklus entwickelt, der einen vorgabengemäßen Betrieb des Detektors sicher-
stellt, selbst bei falscher Ausrichtung der Spiegel. Diese Entwicklungen sind das Thema
der vorliegenden Dissertation.

Die erste Methode ist die ‘Continuous Line Alignment Monitoring’ (CLAM) Methode.
Sie kommt aus dem COMPASS Experiment und wird genutzt, um die Spiegelorientierung
zu bestimmen. Sie benötigt eine spezifische Ausrüstung: Kameras mit guter Pixelauflö-
sung, LEDs als Lichtquellen und ein Gitter aus retroreflektierendem Material. Das Prinzip
der schnellen qualitativen Variante der Methode ist Folgendes. Falls angrenzende Spiegel
zueinander verstellt sind, wird das reflektierte Gitter an den Spiegelkanten gebrochen
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aussehen.
Außerdem kann die CLAMMethode genutzt werden, um Spiegeldrehungen quantitativ

zu bestimmen. In diesem Fall ist eine vorherige Laborkalibration Voraussetzung. Durch
die Kalibrierung werden Pixelverschiebungen mit gegebenen Spiegeldrehungen für jede
einzelne Kachel verbunden. Diese Kalibrierung muss an allen Spiegelkacheln durchgeführt
werden, damit eine vollständige Messung ermöglicht wird.

Die zweite Methode, die an den CBM-RICH Detektor angepasst wurde, benötigt
Daten in der CbmRoot Software. Das Prinzip besteht darin, zwei Größen bezeichnet
als ‘Cherenkov Abstand’ und ‘Cherenkov Winkel’ zu bestimmen. Dazu braucht man eine
genügend große Anzahl von kumulierten Ringen, die auf einer einzelnen Spiegelkachel
reflektiert wurden. Falls die Spiegelkachel nicht ausgerichtet ist, wird die Darstellung
des ‘Cherenkov Abstandes’ als Funktion des ‘Cherenkov Winkels’ sinusförmig sein. Die
Parameter der sinusförmigen Funktion können gefitted werden und stehen in direktem
Verhältnis zu der Spiegeldrehung, was eine präzise Quantifizierung der Spiegeldrehung
ermöglicht.

Die Leistungsfähigkeit dieser Methode wurde in Simulationen untersucht. Die Meth-
ode funktioniert für Drehungen einer Spiegelkachel um ihre horizontale Achse zwischen 0,3
und 14 mrad. Für eine vertikale Drehung des Spiegels, ergibt die Methode genaue Ergeb-
nisse für falsche Spiegeljustierungen zwischen 0,4 und 15 mrad. Die Methode ist genauer
für Spiegelkacheln, die sich im Zentrum der Spiegelwand befinden, als für Kacheln, die in
dem äußeren Bereich der Spiegelwand liegen.

Als dritter Schritt wurde ein Korrekturzyklus für die Spiegeljustierung in der Cbm-
Root Software eingeführt, der gezielt für den CBM-RICH Detektor gestaltet wurde. Der
Korrekturzyklus verwendet die Spiegeldrehungswerte aus den zwei vorgelegten Methoden,
um die Extrapolation der Spuren auf die MAPMT Ebene zu korrigieren. So wird der Ab-
stand zwischen der extrapolierten Spur und dem rekonstruierten Ring Zentrum verringert.
Der Korrekturzyklus kann automatisch in der Rekonstruktion der Ereignisse in CbmRoot
mitlaufen.

Der Korrekturzyklus wurde in Simulationen getestet. Die Spiegelkacheln wurden kün-
stlich um beide Drehachsen mit einer Gaußschen Verteilung mit einer Standardabweichung
von 1 mrad verstellt. Der typische Ring-Spur Abstand beträgt damit 0.47 cm, mit dem
Korrekturzyklus läßt er sich auf 0.17 cm reduzieren, was nahe an dem idealen Fall von
0.14 cm liegt. Der Zyklus korrigiert damit auch die Matching Effizienz und die Elektron-
identifizierungseffizienz. Auch wenn die Standardabweichung der Gaußschen Verteilung
auf 3 mrad erhöht wird, bleiben die Ergebnisse innerhalb der Spezifikationen, die in dem
CBM-RICH Technical Design Report gefordert wurden.
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Chapter 1

State of the art physics of strong
interactions

1.1 Major achievements in particle physics

1.1.1 From nuclear to particle physics

Mankind has always been eager to understand its surrounding world. What are the
predominant processes in nature, how do they function, what is matter made of, what lies
behind the beauty of the universe ... ? To be able to give an objective interpretation to
those questions, the introduction of standard fields of study as well as the establishment
of basic rules had to be performed.

This triggered the emergence of several research activities such as philosophy, biology,
chemistry, mathematics and also physics. The latter aims at the comprehension and
explanation of nature and natural phenomena, incorporating and synthesizing them in
models. One of its fields, called nuclear physics, focuses in particular on the structure of
matter.

This field has allegedly started in ancient Greece during the 5th century BCE, with
Leucippe, and later carried on by his disciple Democrite. Matter was defined as an
aggregation of tiny grains, the atoms. Over two millennia later this assumption was taken
over by Dalton, who published an essay in 1805 summarizing his experiments and laying
the grounds of his atomic theory [1]. Chemists have thereafter tried to enumerate each
existing atom. Their answers was summed up in a table in 1869, whose name comes from
its creator: Mendeleïev.

The first real proof of the existence of atoms was given in 1895 by Crookes, who used
an experiment with cold cathode tubes. Two years later its composition was completed
by Thomson, who used Crookes’ tubes and showed that the rays emitted by the cathode
could be deflected when applying a magnetic field. He introduced the Thomson model,
which considered atoms as a neutrally-charged entity, where the negative electrons revolve
in a uniform positively-charged sphere [2]. A few years later followed a new model,
postulated by Rutherford, who compared the nucleus to a solar system, where electrons
are supposed to circle around the positively charged nucleus [3]. He used a scattering

1
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experiment to show that most of the mass was concentrated in the core of the atom,
the nucleus. However according to this model, the electrons must eventually crash on
the surface of the nucleus. In 1913 Bohr completed this model, using his results from
hydrogen atom experiments, claiming that electrons revolve on stable orbitals, with given
energy level, on which electrons can transfer [4, 5, 6]. With the discovery of the neutron
in 1932, Chadwick refined the nucleus structure, finalizing the classical atomic model [7,
8].

Nevertheless this classical vision does not account for all observed phenomena and
a more abstract description has been later given by Heisenberg and Schrödinger, using
a quantum-based definition and introducing occupation probabilities of electrons in the
atom.

With the improvements of the detection technology, new particles were discovered
afterwards. First the muon (member of the lepton family, the light-weight particles)
in 1936 and later the pi-mesons (middle-weight particles) in 1947 were discovered with
experiments conducted on cosmic rays.

In Dirac’s study to establish a relativistic quantum mechanics theory, he formulated
the Dirac equation [9]:

(iγµδµ −m) ·Ψ(x) = 0 (1.1)

Where µ is the implied summation parameter, γµ is the corresponding gamma matrix,
δµ is the covariant derivative and Ψ is the wave function.

Strikingly, not only did this equation have positive energy solutions, it also had nega-
tive ones.

E = ±
√
p2 · c2 +m2 · c4 (1.2)

This opened the door to a new kind of particles, the antiparticles and it proved right in
1932, with the discovery of the positron by Anderson, using a cloud chamber. In accor-
dance with these new notations, the constituents of the nucleus were declared members
of the hadrons (strongly interacting particles).

From around 1950 on, an increasing number of new hadron particles were found by
several experiments, such as the neutral and positive kaons in 1947 and 1949, respectively,
and later the ρ, η, ω and φ mesons as well. At the same time, new baryons (heavy-weight
particles) like the Λ, Σ and Ξ were discovered.

This huge number of new particles puzzled the physics community, who had no tools
to arrange all the discovered particles in a logical way. Until Gell-Mann addressed this
problem.

1.1.2 Quark model

In 1961, Gell-Mann established the Eightfold Way, a new theory organizing the hadrons
into mathematical shapes, on which particles are placed based on their charge and strange-
ness number. Particles were organised in so called hadron multiplets, such as the octets
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sketched in Figure 1.1. Just like the periodic table in chemistry, these multiplets classify
all known particles in physics. This theory was confirmed, when the baryon decuplet
predicted the existence of the Omega minus particle (Ω-), as well as its main characteris-
tics, which was discovered in 1964. The Eightfold Way was a major milestone in particle
physics, even though some physicists remained sceptical at that time [10].

Figure 1.1: Meson (left) and baryon (right) octets. They gather the lightest mesons and
baryons on a hexagonal shape. The hadrons are classified according to their strangeness
number in the horizontal direction and their charge in the diagonal direction (brown
arrows).

Gell-Mann and Zweig went furthermore deeper in the understanding of the hadrons
constitution and postulated independently in 1964 the existence of quarks, elementary
fermionic constituents [11, 12]. They theorised the existence of three entities: the ‘up’,
‘down’ and ‘strange’ quarks. Moreover, these particles have particular behaviours. They
cannot be observed in a free form, a phenomenon called confinement, and they carry an
additional degree of freedom, referred to as colour [13]. Each quark carries a single colour,
‘red’, ‘green’, or ‘blue’. This property introduces a restriction in hadron composition, as
any hadron has to either display a combination of colour and anti-colour or a combination
of all three colours or anti-colours. According to colour theory these combinations are
considered as ‘white’ and seem to be prerequisite to form a stable hadron.

In 1974, the J/Ψ (cc̄) particle was discovered by Ting’s and Richter’s groups indepen-
dently at Brookhaven [14] and SLAC [15], followed in 1977 by the Υ (bb) at Fermilab
[16]. They are bound state of ‘charm’ and ‘bottom’ quarks. The last bound state made
of the ‘top’ quark is not generated in the laboratory, due to the high top mass. Before
forming a bound state, the t quarks decay via the electroweak interaction.

Quarks are nowadays considered as the smallest existing and so far discovered con-
stituents of matter.

1.1.3 Lepton family

First hints for the existence of neutrinos appeared in the year 1930, while studying the
radioactive beta decay.

A
ZX→ A

Z+1X
′ + e− (1.3)

It was found, that the energy of the outgoing electron varies when the experiment is



4 Sect. 1.1 - Major achievements in particle physics

repeated, although when considering the conservation of energy it should not be the case.
While some physicists argued at that time the veracity of the conservation of energy,
others (including Pauli) suggested that the emission of a third particle was the reason of
this phenomenon.

A
ZX→ A

Z+1X
′ + e− + ν̄e (1.4)

Experiments for instance on pion and muon decays also suggested the existence of a
neutral and very low mass particle [17, 18]. The existence of the neutrino and its anti-
particle, the antineutrino, was finally experimentally confirmed in 1953 by Reines and
Cowan with the reversed beta decay reaction [19].

Following this experiment a new quantum number, called lepton number, was intro-
duced to explain whether a decay involving leptons is allowed or not. To each known
leptons, the electron, muon and tau, a corresponding neutrino was introduced.

1.1.4 Four fundamental forces and their mediators

The four known fundamental forces in nature are the gravitational, the electromagnetic,
the weak and the strong forces. They are summarised in Table 1.1. To act on matter,
these forces require force carriers, called mediators, which are defined in each physical
theory, where the forces were introduced.

The mediator of the electromagnetic interaction, the photon, was the first to be dis-
covered and extensively studied. In 1900 Planck proposed at first that the electromagnetic
radiation was quantified, which would solve the ultraviolet catastrophe [20]. He argued
that light is emitted in small quanta of energies, illustrated in the following equation:

E = hν (1.5)

E stands for the energy of the photon, h is the Planck constant and ν the frequency
of the photon.

In 1905 Einstein adapted this idea to explain the photoelectric effect, which accounts
for the pull-off of electrons in a metal at precise energy quanta [21]. Although his theory
met quite a hostile opinion, it always proved to be right in the various experiments,
which were subsequently realised. In 1923, Compton and Debye yielded independently a
nuanced picture of light, as we know it today [22]. From their experiments, light can be
seen as an electromagnetic radiation and as a particle of zero rest mass. The Compton
effect gave birth to the concept of wave-particle duality.

In order to explain the stability of the nucleus, the strong interaction force was in-
troduced. The exchange particle of this force is named gluon. It binds quarks together
in nuclei and more generally speaking in hadrons. The underlying theory characterizing
the interaction between quarks and gluons is called quantum chromodynamics (QCD).
First traces of gluons were revealed by the PLUTO detector in three-jet events resulting
from the Υ(9.46) resonance in 1978 at DORIS in the DESY accelerator facility [23]. It
was confirmed in 1979 by the PLUTO, MARK-J and TASSO experiments at PETRA in
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Interaction Theory Mediator
Particles cou-
pling to the
interaction

Range (m) Relative
strength

Electroma-
gnetism

Quantum
electrody-
namics

Photon
All electromag-
netically charged
particles

∞ ∼ 1036

Strong
Quantum
chromody-
namics

Gluon Quarks and glu-
ons 10-15 ∼ 1038

Weak Electroweak
theory

W+, W−,
Z0

Quarks and lep-
tons 10−18 ∼ 1025

Gravitation General rel-
ativity Graviton All massive parti-

cles ∞ 1

Table 1.1: The four known fundamental forces and their main properties.

three-jet events due to gluon bremsstrahlung in e-/e+ collisions [24, 25, 26].

The weak force has multiple force carriers, namely the W+, W- and Z0 bosons, also
called intermediate vector bosons. They mediate the weak interaction and are described
by the electroweak theory, developed by Weinberg, Glashow and Salam. First hints of
weak neutral currents were shown in the Gargamelle bubble chamber at CERN in 1973.
The particles were finally confirmed in 1983 in the SPS at CERN by the UA1 and UA2
experiments [27, 28, 29].

In Einstein’s general theory of relativity, the gravitational force is introduced. This
force is not included in the standard model of elementary particles, as it cannot be for-
mulated as quantum field theory. The mediator of gravity is named graviton. So far its
existence is still controversial, although first observation of gravitational waves have been
realised and made public in 2016 by the LIGO and Virgo collaborations [30].

1.1.5 Standard Model

To finalise the classical picture of particle physics, a last particle has to be included,
the Higgs scalar boson. This particle was discovered in 2012 at CERN by the CMS and
ATLAS experiments [31, 32]. The Higgs boson is responsible for the mechanism giving
mass to particles.

The theory classifying all known elementary particles, while incorporating three of the
four known fundamental forces, gravitation being left aside, is the Standard Model. It is
summarised in Figure 1.2.

This model describes elementary components of matter and stands as the reference
for particle physicists. It is though not considered as complete, as it does not incorporate
all phenomena, such as the theory of gravitation or dark matter particle candidates.
Figure 1.2 shows in total 18 particles. To complete this picture of particle physics, it can
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be added, that all quarks come in three different colours, that there are six antileptons
and six antiquarks, each carrying one of three anticolours and that gluons come in eight
different colour combinations. Thus 61 particles are in total counted and supposedly held
as elementary particles. Some have argued, that at least some of those particles must be
composite of more elementary particles [10].

Nevertheless, the standard model remains a solid ground, on which more exotic theories
can be built.

Figure 1.2: Standard model of elementary particles. It includes three generations of
quarks (in green) and leptons (in purple), the gauge bosons (in orange) and the scalar
Higgs boson (yellow). Masses (m) are indicated in MeV/c2, charges in units of the absolute
value of the electron charge. In total 61 particles can be counted, when considering colour
combinations and antiparticles.
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1.2 Investigation of the QCD phase diagram

The Compressed Baryonic Matter experiment (CBM), presented in Section 2.3, aims at
the exploration of the QCD phase diagram. This section will describe the phase diagram,
as well as its importance for the physics of the strong interaction.

A tool used to characterise matter and its possible phases is a phase diagram. The
different regions in the diagram correspond to different external conditions applied to the
studied system. In the particular case of QCD, the system is made of quarks and gluons.
The first phase diagram of QCD was proposed in 1975 [33]. Cabibbo and Parisi proposed
in their paper a plot summing up the phases of quark matter, in a diagram of temperature
versus baryon density. At that time, hadronic matter was thought to be either confined,
or unconfined, with a transition boundary in between.

Figure 1.3 represents the current conjectured QCD phase diagram of strongly interact-
ing matter, showing temperature T versus baryon chemical potential μB [34]. Compared
to the early version, it exhibits a more complex structure of the possible phases of mat-
ter, with the expected boundaries between them. However it is still a rather theoretical
picture with little experimental information.

Figure 1.3: Sketch of the conjectured QCD phase diagram of strongly interacting matter.
Figure taken from [34].

Many regions can be identified in this diagram. First, in the region of low baryon
densities and low temperatures, cold nuclear matter is in a hadronised state, which consists
of quarks and gluons bound together and forming hadrons. In these conditions, the quarks
are confined in the hadrons and the number of particles and antiparticles is supposed to
be almost the same.
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Through an increase in the temperature, hadrons start melting and quarks and gluons
behave quasi-freely in a quark-gluon plasma (QGP) phase, forming a deconfined state.

Intuitively, hadrons can be seen as bags containing quarks and gluons. Deconfinement
is the point at which the external conditions of temperature and baryon density reach
values, such that the ‘hadron bags’ start overlapping and become permeable. In terms of
the partition function of the system, when the temperature reaches a threshold value, also
called Hagedorn temperature, thermodynamic parameters of the system like the pressure
and the energy density start diverging [35].

Experiments at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion
Collider (RHIC) are exploring the low baryon density and high temperature region in the
QCD phase diagram, using high energy heavy-ion collisions (see Section 1.3.1) [36, 37,
38]. The QGP and its final hadronic state can be observed, via the measurement of the
produced hadrons, leptons and photons, along with their phase space distributions. The
transition from QGP to hadrons is what happened a few microseconds after the big bang.
At low density, calculations show that the phase transition should be a crossover from
hadronic to partonic matter [39].

The hadronisation temperature, also called freeze-out temperature, was determined at
LHC energies to be T = 156 MeV/c at µB = 0 MeV/c [40]. Alternatively, using a thermal
model from fluctuation observables, a freeze-out temperature of T = 161 ± 4 MeV/c at
µB = 0.8+1.2

−0.6 MeV/c was extracted [41, 42]. These values coincide with the predictions
from Lattice QCD calculations, for which the critical temperature is calculated to be
T = 165± 8 MeV/c at µB = 0 MeV/c [43, 44].

A critical point is expected to appear at a slightly lower freeze out temperature, but
at higher baryon chemical potential. This is under investigation by the STAR experiment
at RHIC [45] as well as the NA61 collaboration at CERN-SPS [46].

In a region of even larger baryon chemical potential, the nature of the transition
between the hadronic and hadronic gas phase is supposed to be first order [44, 47, 48].

Along with the deconfinement phase transition, chiral symmetry breaking is taking
place. A famous example of spontaneous symmetry breaking is the Mexican hat potential,
where the potential V is plotted versus Φ. This potential is symmetric with respect to its
vacuum state at Φ = 0, however the ground state is not at Φ = 0. A system exhibiting
this potential, is unstable at Φ = 0 and reaches a stable position for Φ > 0. However, if
referring to this new ground state at Φ > 0, the potential becomes asymmetric. A similar
process of spontaneous symmetry breaking happens in QCD with the chiral symmetry,
when matter hadronises.

An evidence of chiral symmetry breaking can be seen in the generation of hadron
masses. In the example of the proton, present in each atomic nucleus, the sum of its bare
valence quarks equals to: 2 ∗mu + md = 9.4 MeV/c, although the proton mass has been
measured to be 938 MeV/c. This excess mass comes from the chiral symmetry breaking,
related to the binding energy of QCD. Another illustration of chiral symmetry breaking
is given in Figure 1.4. The spectral functions of the chiral partners, the ρ and a1 mesons,
are depicted in the τ-lepton decay [49]. Those are results obtained from the ALEPH [50]
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and OPAL experiments. When chiral symmetry is restored, the spectral functions of ρ
and a1 should be the same. On the right side, potential scenarios are illustrated for chiral
symmetry restoration. The two extreme scenarios are the dropping mass and the melting
resonances [51]. In both cases the spectral functions are the same in a system where chiral
symmetry is restored.

Figure 1.4: Left: measurements of vector and axial-vector spectral functions in τ-decays.
The coloured lines represent model fits from the spectral functions of ρ and a1. Right:
predicted consequences from chiral symmetry restoration. Figures taken from [49].

In addition to the phases described before, a new phase, the so called quarkyonic phase
might exist. This phase would consist of baryonic matter with the properties of deconfined
and chirally symmetric matter [52, 53]. If quarkyonic matter were to be discovered the
critical endpoint would be considered as a triple point [54].

To explore in detail the phase transition in the region of moderate temperature and
high baryon chemical potential of the QCD phase diagram, new projects are planned.
The NICA project at JINR, as well as the CBM experiment at FAIR are being designed
[55, 56].

At very high densities and low temperatures the Colour Flavor Lock (CFL) phase is
expected, which corresponds to a colour superconducting phase. Those conditions could
be met in the core of neutron stars [57].

Many questions can be raised concerning the QCD phase diagram, especially in the
region of the phase transition at moderate temperature and high baryon chemical poten-
tial, which are of particular interest to the CBM experiment (see Section 2.3). Some of
them can be addressed experimentally by the SIS100 accelerator set-up, which will be
built at the Facility for Antiproton and Ion Research facility (FAIR) (see Section 2.1).
The main themes tackled are [49, 56]:
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• In the region of high net-baryon densities

– What is the equation of state of QCD matter at high net-baryon densities?

– What are the relevant degrees of freedom near the deconfinement phase and at
high net-baryon densities?

• In the phase transition region

– Is there a phase transition from quark-gluon plasma to hadronic matter, or a
region of phase coexistence?

– How are the properties of hadrons affected in dense baryonic matter?

– Are there indications of chiral symmetry restoration and is it possible to detect
evidence of this process?

• In producing heavier particles or states

– Do exotic QCD phases exist?

– Does strange matter exist in the form of multi-strange objects?

– How is charm produced at threshold beam energies and how does it propagate
in QCD matter?

The two following sections will present major probes on which the CBM experiment
will focus to obtain a better understanding of the properties of matter in the high net-
baryon density region of the QCD phase diagram.
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1.3 Heavy ion collisions

1.3.1 Evolution of a Heavy Ion collision

To study elementary constituents of matter and explore the QCD phase diagram, particle
accelerators are used. They accelerate charged particles using electromagnetic fields.
These particle beams are directed towards another and collide, hence producing new
particles, which are measured and analysed in experiment to characterise the created
matter. Depending on how particles interact, two types of collisions are distinguished:

• Fixed target experiment: An accelerated beam interacts with a fixed target, which
consists in a fixed thin foil of matter suited for the experiment. The target is placed
at the end of an extraction line or also inside the accelerator.

• Collider experiment: Two beams of particles or nuclei collide with each other.
Mostly these experiments take place at ring colliders, such that the beams go in op-
posite directions using the same, or two different beam pipes. This process greatly
increases the collision energy, for example up to 13 TeV in the second run of LHC.

Whereas the first generation of accelerators used static high voltage cavities to ac-
celerate the charged ions inside the beam-line, the development of dynamic fields in the
acceleration cavities allowed the use of electrodynamic particle accelerators [58]. They are
employing oscillating radio frequency fields to bring the acceleration cavities to resonance.
This system can be used for linear as well as circular accelerators, requiring magnetic fields
in between cavities to bend particles in the case of circular accelerator.

Once accelerated, particles can be guided towards multiple lines of experiments with
the use of magnets. This allows multiple experiments to share the same beam produced
in an accelerator facility and work alternately with it.

Figure 1.5 sketches the collision of two nuclei (labelled 1 and 2 in the figure) moving
along the beam axis. It either illustrates the case of a collider, or of a fixed target in the
centre of mass frame. In the interaction region each nucleus gets stripped of nucleons,
called participants, while the nucleons carrying on their paths are called spectators.

To characterise the centrality of the collisions, an impact parameter has been intro-
duced, being defined as the vector between the nuclei centres and perpendicular to the
beam axis. If the nuclei completely overlap, the collision is called head-on and the impact
parameter is zero. In the other cases the impact parameter represents how central (or
peripheral) the studied collision is.

Calculating the impact parameter, as well as reconstructing the reaction plane are
two essential tasks in heavy ion collisions, in order to characterise the overall collision
geometry. In the case of the CBM experiment, these tasks are done by the PSD detector
(see Section 2.3.8).

After a nuclei collision has happened, one needs to analyse, whether a state of matter
was produced and if so, to be able to characterise it. In particular one looks for signs
of a system-like behaviour, which would be a first hint to support that a QGP has been
created.
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Figure 1.5: Sketch of a heavy ion collision. Two nuclei (labelled 1 and 2) collide after
acceleration and leave each participants in the interaction region. In each collisions an
impact parameter and a reaction plane can be reconstructed. The red arrows around
the interaction region illustrate the elliptic flow generated in the collision and were only
represented in the upper right corner, for better clarity.

To address this question, an observable called collectivity (see Section 1.4.1) was in-
troduced, which serves for the analysis and investigation of the pressure or equation of
state in the created matter. The asymmetry in the interaction region translates to an
anisotropy in space-momentum, due to the pressure difference in the system (illustrated
as red arrows on Figure 1.5). The underlying effects of the anisotropy in pressure come
from two geometrical factors [59]. The velocity of the emitted particles in-plane should
be greater than the one from particles created outside of the reaction plane. And the
number of created particles should be bigger in-plane than out of plane. The collective
phenomenon at the source of these space-momentum correlations, is called elliptic flow
(see Section 1.4.1). Furthermore, the magnitude of the elliptic flow depends on the cen-
trality and can be used to measure the pressures which were created during the collision.

In addition to the elliptic flow, one can look at the size, shape and homogeneity regions
of the created system [59].

Figure 1.6 illustrates the different collision stages from a heavy ion collision. Two
nuclei are in a first step approaching and look like flat objects, due to the velocities at
which the nuclei are moving and thus the length contraction. During the collision phase,
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Figure 1.6: Evolution in a heavy ion collision sketched for high energy collisions. After
the initial collision, a hydrodynamical expansion of the system takes place. This process
is followed by hadronisation at freeze-out temperature. Figure taken from [59].

participants from each nucleus start colliding with each other with an energy coming from
the accelerated nuclei.

In case a thermalised system has been formed, quarks and gluons generated by these
first interactions keep colliding, potentially forming a thermalised system. In this so called
fireball, deconfinement is thought to happen. Hydrodynamical models can reproduce the
evolution of the system.

After further expansion and cooling down, hadronisation will occur at the so called
freeze-out temperature. At this stage hadrons and mesons are created and emitted into
the detectors. The chemical composition of the hadron gas is fixed but elastic collisions
might still happen on the hadrons way to the detectors.

1.3.2 Lepton pairs

The CBM Ring Imaging CHerenkov (RICH) detector (see Section 3.3) is built in order
to measure dielectrons. They are of particular interest to characterise the matter created
in heavy ion collisions.

Real and virtual photons are emitted throughout the full evolution process of heavy
ion collisions (Figure 1.6). Due to their penetrating nature, photons and dielectrons or
dimuons leave the created fireball undistorted. The information carried by the lepton
pairs is not altered by the strong interaction, thus the leptons reach the detector with
negligible final-state interactions.

That is why a dilepton invariant-mass spectrum is a useful observable, revealing in-
medium spectral functions of hadrons in the dense and hot matter, as well as measuring
the temperature of the fireball [60].

The identification of these probes is however complicated. First, they are produced
at a quite low multiplicity, due to the relatively low temperature of the plasma produced
in ultrarelativistic nuclear collisions (T ranges from ∼ 200-300 MeV/c, up to ∼ 500-800
MeV/c [61]). Thus dileptons from the created plasma are often buried under a large
background.

Considering the case of dielectrons, the relevant electrons stemming from the hot and
dense matter are overwhelmed by electron pairs coming from gamma conversions in the
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target and from Dalitz decays of π0 and η [56].
Another factor limiting the identification of electron pairs is the misidentification of

π, due to the performances of the detectors involved with the task.

Figure 1.7 shows a simulated invariant mass spectrum of dielectrons, with the different
sources and no background. It displays three main mass regions, which will be probed via
dilepton conversions. The first two regions will be reached with the SIS100 accelerator
set-up at FAIR, while the high-mass region will be achieved at the SIS300 energies.

Figure 1.7: e-/e+ invariant-mass spectrum of Au+Au collisions at 25 AGeV, where no
background but only sources are simulated. Several mass regions can be identified on the
plot, corresponding to different hadronic contributions (see text for details). Results are
obtained from theoretical model calculations [62]. Figure taken from [63].

In the low-mass region (me-e+ 6 1 GeV/c2), the main contributions come from π0, η,
ρ, ω and φ. In particular, this region will be used to probe the ρ spectral function [56].
The ρ spectral function might give hints to chiral symmetry restoration via the ρ-a1 chiral
mixing (Figure 1.4).

The intermediate-mass region (1 GeV/c2 6 me-e+ 6 3 GeV/c2) is expected to give
access to the fireball temperature, which is directly correlated with the slope of the spec-
trum. The intermediate-mass region measurement might also provide some insights to the
landmarks of the QCD phase diagram, such as the measurement of a critical endpoint, a
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quarkyonic phase, or the onset of deconfinement, as additional radiation is expected to
show at these landmarks [64].

The high-mass region (me-e+ > 3 GeV/c2) can be used to investigate the charm quark
propagation among hadrons, using for example the J/Ψ dielectron decay-channel.

For a high quality dielectron measurement, the aim is to reach a signal to background
(S/B) ratio of about 1/100 in the ρ mass region. Thus, to hope measuring these sig-
nals with accuracy, it is necessary to overcome the low cross-sections, the small decay
probabilities as well as the high background.

Figure 1.8 shows simulated invariant mass spectra for dielectrons using the CbmRoot
framework. The simulation was done with 1 million central Au+Au collisions at 8AGeV
energy, with a 25 μm target and background from UrQMD. ω, φ and in medium ρ signals
were added with the PLUTO generator.

(a) Before the pt cut. (b) After the pt cut.

Figure 1.8: Invariant mass spectra of dielectrons after all cuts, left still excluding the
transverse momentum cut and right also including the later. Contributions are shown
in different colours. The spectra are shown for 1 million central Au+Au collisions at 8
AGeV beam energy. Figures taken from [65].

The analysis was done using the RICH, TRD and ToF detectors of the CBM experi-
ment. Several cuts were applied to remove the background and get a cleaner signal. On
the figure, all contributions are represented with different colours. The main contributions
are coming from e-/e+ from π0 Dalitz decays, γ conversions and misidentified electrons
from π+.

Table 1.2 shows the reconstruction efficiencies and signal to background ratios obtained
at the end of the analysis.
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ω φ

efficiency (%) 4.63 5.93
Signal/Background 0.445 0.030

Table 1.2: Reconstruction efficiencies of ω and φ mesons and their respective signal to
background ratios after all cuts have been applied.
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1.4 Other probes to study the QGP

In addition to the dileptons and especially dielectrons, which are particularly important
for the CBM RICH detector (see Section 3.2.1), other important probes essential to the
understanding of the QGP will be investigated in CBM. The following sections will briefly
present some of them.

1.4.1 Collective flow

To study the collective flow in a nuclear collision, two observables were formulated in [66],
the ‘in-plane’ or ‘directed flow’, v1, and the ‘elliptic flow’, v2. These coefficients correspond
to the Fourier decomposition of the azimuthal distribution of the emitted particles:

dN/dΦ ' 1 + 2 ·
∞∑
n=1

vn · cos(n · (Φ−Ψn)) (1.6)

Where Ψn represents the collision symmetry plane. The directed flow is a measure of
the bounce-off, while the elliptic flow is a measure of the squeeze-out. They are defined
as [49]:

v1 =

〈
px
pt

〉
, v2 =

〈
px

2 − py2

px2 + py2

〉
(1.7)

Where px and py correspond to the transverse momentum in the reaction plane and
out of reaction plane, respectively. pt is the total transverse momentum defined as:

pt =
√
px2 + py2 (1.8)

Given that these observables are created in the very early phase of a collision, this
makes them very promising to comprehend the properties of the hot and dense created
matter. It has been shown, that the elliptic flow takes negative values (for example in
proton collisions at energies below 5 AGeV beam energy [49]), confirming the squeeze-out
prediction from hydrodynamics.

The flow might also give hint to the nature of the phase transition to the QGP, as the
disappearance of flow and the prediction by hydrodynamical calculations of a third flow
component, called ‘antiflow’, are considered as signatures for a first order phase transition.
In particular, a clear indication of strongly reduced proton flow has been seen by NA49
[67].

In addition, the collective flow is influenced by the pressure in the created fireball.
Thus understanding it might help understanding the equation of state of QCD. Hints
of hot and dense matter might also be shown indirectly by flow. This was revealed by
measurements conducted at the RHIC in high energy Au+Au and Cu+Cu collisions and
at the LHC in high energy p+p and Pb+Pb collisions. There a ‘ridge’-like structure was
observed in Δη-ΔΦ angular correlations [68, 69]. The ‘ridges’ appear at ΔΦ ∼ 0 and at
ΔΦ ∼ π and were both seen with and without a pt trigger.
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1.4.2 Fluctuations and correlations

Consider a system in thermal equilibrium characterised by a partition function, Z, defined
as:

Z = Tr

[
exp

(
−H −

∑
iQiµi

T

)]
(1.9)

Here Qi and µi stand for the conserved charges and the corresponding chemical po-
tentials, H is the Hamiltonian of the system.

By deriving the mean and covariances, as derivatives of the partition function, one
can introduce the susceptibilities χi,j [49]:

χi,j =
T

V
· ∂2

∂µi∂µj
log (Z) (1.10)

The diagonal susceptibilities χi,i are used to determine the fluctuations of the system,
while the non-diagonal susceptibilities χi,j, (i 6= j) are used to correlate between the
conserved charges Qi and Qj.

The measured quantities are conserved for the entire system, however they might
fluctuate if measured in a reduced phase space either by applying cuts or limiting the
acceptance [49].

Different fluctuations can then be investigated, such as fluctuations of the particle
multiplicity, the mean transverse momentum, the electric charge, the baryon number or
strangeness (the last three correspond to the conserved charges in the case of three flavour
QCD) [56]. The measurements of kinematic and chemical observables might provide hints
for a first order phase transition and a critical end point [49].

The measurement in STAR of the energy dependence of the product κσ2 (excess
kurtosis times squared standard deviation) of the net-proton multiplicity distribution in
Au+Au collision is an example of the search for the critical end point [70] (see Figure 1.9).
In the absence of an end point, this quantity should remain constant, which was not
observed by the experiment at lower energies. CBM will allow in this case a more precise
study of this region.
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Figure 1.9: Energy dependence of the volume independent cumulant ratio of the net pro-
ton distribution. 0-5% central (red stars), 5-10% (green squares) and 70-80% peripheral
(black circles) collisions are displayed. Poisson expectations and UrQMD calculations are
represented in dotted lines and blue bands, respectively. Figure taken from [70].

1.4.3 Charm production

Particles containing charm quarks are produced during the early stage of the fireball
from hard processes only. This makes it an interesting probe, as it allows to determine
the degrees of freedom of heavy ion collisions over its entire evolution. Once created,
the charm (and anti-charm) quarks will hadronise in D mesons, charmed baryons or
charmonium.

The latter presents an attractive characteristic, as it is suppressed (J/Ψ and Ψ’ are
dissociated) in the deconfined phase. This suppression is sensitive to the created fireball.
Separating charm absorption in hadronic matter from colour screening of the heavy quark
in the deconfined phase is the key to study the created system with charmonium. Indeed
the charmonium suppression due to colour screening has been predicted as a signature
for the formation of a QGP [56].

In addition to the degrees of freedom of the hot and dense matter, its transportation
properties can be investigated via the propagation of open charm and elliptic flow of
charm.

At FAIR energies charm measurements close to threshold energies will be possible,
which is particularly sensitive to the condition in the fireball, as the cc̄ pair produc-
tion threshold is lower than the energy required for the production of a pair of charmed
hadrons.

Understanding the effects of absorption mechanisms in proton-nucleus collisions on
J/Ψ and comparing them to data obtained in A+A collisions, could hint effects from
colour screening. In NA38, NA50 and later confirmed by the NA60 experiment, J/Ψ
suppression was observed (Figure 1.10a) for semi-central and central collisions by looking
at the ratio of measured over expected J/Ψ mesons [49].

The nuclear modification factor, RAA, was also introduced to visualise absorption
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effects of the hot and dense created matter. This factor is defined as the ratio between
the charmonium yield in A+A collisions and that of p+p collisions, scaled by the number
of participants.

RAA =
N
J/Ψ
AA

N
J/Ψ
pp ·Npart

(1.11)

(a) Measured over expected J/Ψ ratio ver-
sus number of participants in A+A collisions
at various energies and experiments. Figure
taken from [49].

(b) Upper panel: RAA versus Npart for central
Au+Au collisions at

√
s = 200GeV . Lower

panel: RAA ratio of forward over mid rapidity
versus Npart. Figure taken from [71].

Figure 1.10

The upper part of Figure 1.10b shows the nuclear modification factor in Au+Au
collisions as a function of the number of participants for mid and forward rapidity. Here
RAA decreases with an increasing number of participants. The lower part of Figure 1.10b
displays the ratio of RAA at forward rapidity over RAA at mid rapidity. A plateau is
reached for Npart > 100 with a value of around 0.6. Thus J/Ψ suppression is revealed in
both cases.

At the foreseen energies of CBM, measurements on the excitation function of the ratio
Ψ’ over J/Ψ will help understand the absorption processes in dense matter. However,
detailed charm measurements would require the SIS300 accelerator set-up.

1.4.4 Strangeness

Another probe of interest for CBM is particles containing strange quarks. First through
the measurements of the yield of the Ω and Ω̄ and then with the measurements in the
yield of Ξ−. In the HADES experiment it was shown that the yields exceeded that of
the chemical equilibrium [56]. For higher energies however the yields correspond to that
of equilibrium. Thus measurements of excitation functions of multi-strange hyperons in
A+A collisions will be undertaken at SIS100 energies to study the equilibration degree of
the hot and dense matter and look for the onset of deconfinement.
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1.4.5 Hypernuclei and strange objects

The relatively high energy regime offered by the SIS100 accelerator of FAIR (see Sec-
tion 2.1) will yield high baryon densities, where strange composite hypernuclei are ex-
pected to be produced. Thermal model calculations indeed show that the excitation
function of hypernucleus production peaks in the energy range of SIS100 [56]. Under-
standing their formation will be carried out in CBM via the measurements of the light
double-Λ hypernuclei: 5

ΛΛH and 6
ΛΛHe. According to the used thermal model [72], a yield

of about 5 and 0.1 of each of these particles is expected for one million events with a beam
energy of about 10 AGeV. Thus 3,000 5

ΛΛH and 60 6
ΛΛHe should be produced per week of

operation in CBM.
Furthermore, other exotic forms might be measured such as dibaryon states with

strangeness, giving insights to, for example, the equation of state of nuclear matter at
high densities.
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Chapter 2

The FAIR facility and the CBM
experiment

2.1 FAIR Motivations

The Gesellschaft für Schwerionenforschung (GSI) and nowadays referred to as GSI Helm-
holtzzentrum für Schwerionenforschung is located in Darmstadt and was founded in 1969.
It was created as a research centre for the Hessian universities and became with the FAIR
project a worldwide association, coping with increasing technical challenges emerging in
physics [73]. The GSI research program is strongly oriented towards nuclear physics, but
meanwhile extended to the heavy-ion and hadron physics, through several upgrades of
the accelerator facilities.

It is supported by the Bundesrepublik Deutschland, the Bundesländer Hessen and
Rheinland-Pfalz and the Freistaat Thüringen. In 2018, GSI counts about 1,400 employees,
1,200 visiting scientists and worldwide cooperation with approximately 400 institutes from
over 50 countries.

The Facility for Antiproton and Ion Research (FAIR) complex will be built as an
extension of the GSI research center. The official start of the project was November
7th 2007. The project was at the time ratified by nine countries (in alphabetical order:
Finland, France, Germany, India, Poland, Romania, Russia, Slovenia and Sweden) and
was later joined by the United Kingdom. In 2018, FAIR counts about 3,000 scientists from
over 50 countries. Its physics objectives are divided into four pillars, corresponding to
four grouped experiments. Each will focus on particular physics cases, requiring dedicated
detectors (see Section 2.2).

Due to long lead times for civil construction planning and a reorganisation of the FAIR
management board, the project is, at the time of writing of this thesis, expected to deliver
its first beams by 2025. Moreover, the Modularized Start Version (MSV [74]) is estimated
to be fully operational by 2025, too [75, 76].

The layout of the GSI and FAIR projects is shown in Figure 2.1a. In addition, a
satellite view from both complexes is modelled in Figure 2.1b.

The existing GSI installations are represented in blue on the left side of Figure 2.1a.

23
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The linear accelerator (UNILAC) and synchrotron SIS18 will be used as injectors for the
ring accelerator of FAIR. The new FAIR installations are shown in red on the right side of
Figure 2.1a. The incoming particles will be further accelerated in the SIS100 synchrotron.
This accelerator will have a circumference of 1,100 meters and will be provided with 100
Tm rigidity magnets. It will be the crucial centre piece of equipment of FAIR. Particles
will then be distributed to the different experiment lines, detailed on Figure 2.2.

(a) Sketched GSI and FAIR complexes. The left
side in blue corresponds to the currently exist-
ing GSI facility. The right side in red shows the
new accelerator layout. The future experiments
involved with FAIR are represented in black.

(b) Modelling of a satellite view of the current
GSI and future FAIR complexes.

Figure 2.1: Different views of the current GSI and future FAIR facilities in Darmstadt.
Figures taken from [77].

Figure 2.2 illustrates the construction plan of the FAIR complex. It will be built
in several coloured steps corresponding to different operation phases. The SIS100 syn-
chrotron is shown in green and the CBM/HADES, NuSTAR and PANDA experiments
are represented in red, yellow and orange, respectively. APPA, the fourth pillar of FAIR
is not highlighted on this plan.

One of the major enhancement provided by FAIR is an increase in the beam intensities,
by a factor of 100 for primary beams and 10,000 for secondary beams, with respect to
the current state in GSI [76]. Furthermore an improvement in the beam luminosity by a
factor of 10,000 will allow to observe extremely rare physics processes and explore unique
physics cases [73]. The energies reached at SIS100 will range from 2 to 11 AGeV/c for
the heaviest nuclei. A future synchrotron SIS300 will allow to access even larger energies
up to 35 AGeV/c.

Using the UNILAC and the SIS18 synchrotron, along with already available instru-
mentations, such as the Cryring, R3B magnet, or the HADES experiment, a so called
FAIR phase 0 will take place. This will allow the different experiments to test their
hardware set-up and readout systems in the best case already in running experiments
delivering physics outputs.
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Figure 2.2: Scheme of the GSI and future FAIR facilities. On the left side in white, GSI.
On the right side, the different modules included in the Modularized Start Version of
FAIR. The SIS100 synchrotron is shown in green (module 0). The CBM and HADES
caves are sketched in red (module 1). The NuSTAR area is represented in yellow (module
2). The PANDA and antiprotron region is in orange (module 3). Additional domain for
the APPA experiment is not indicated (module 1). Figure taken from [73]
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2.2 Four pillars

This section will not give an extended survey on the different experiments taking place
at FAIR and their tackled physics cases, but a global overview. For a deep insight on the
physics programs, the reader is recommended to the given references.

Experiments taking place at FAIR are grouped into four scientific pillars, listed in
alphabetical order:

• Atomic Plasma Physics and Applications (APPA), grouping several experiments,
such as BIOMAT, FLAIR, HED@FAIR and SPARC. It will study atomic and ma-
terial physics, as well as biophysics [78]. APPA will try to bring an answer to
questions like: Which fundamental symmetries define our universe? What are the
properties of high density plasmas, present inside large planets? How can parti-
cles be used to cure illnesses? How can astronauts be protected against cosmic
radiations? Can ion beams be used to change specific properties of materials?

• Nuclear Matter Physics, grouping the High Acceptance DiElectron Spectrometer
(HADES) and the Compressed Baryonic Matter (CBM). The project will look at
the properties of hadrons in the region of high temperature and pressure [49, 79].
Here questions like what is the landscape of the QCD phase diagram in the region
of high baryon density and moderate temperatures and in what form does matter
exist in neutron stars will be tackled.

• Nuclear STructure, Astrophysics and Reactions (NuSTAR), grouping several exper-
iments, such as DESPEC/HISPEC, ELISe, EXL, ILIMA, LaSpec, MATS and R3B.
It will focus on nuclear physics and astrophysics [80, 81]. At NuSTAR questions
like how are heavy elements created in stars and stellar explosions are addressed.

• antiProton ANnihilation at DArmstadt (PANDA). This experiment will aim at un-
derstanding the structure of hadrons and their properties in vacuum and matter and
searching for exotic phases of matter in the form of for instance glueballs or hyper-
nuclei [82]. PANDA will investigate how can antimatter help understand massive
matter and the strong force.
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2.3 Compressed Baryonic Matter

In 2018, the CBM experiment consists of more than 460 scientists from 54 institutes and
11 countries (see Figure 2.3). Left of Figure 2.3 shows a 3D schematic view of the CBM
building.

Figure 2.3: Left: 3D schematic view of the CBM building. At the lowest level, the HADES
and CBM experiments will run. Figure taken from [83]. Right: Pie chart showing the
scientific diversity among the CBM experiment in 2017. Figure inspired from [84].

The physics objectives of the CBM experiment have been explained in detail in Sec-
tions 1.3.2 and 1.4. The list below sums up the most promising observables, which will
be investigated in CBM at SIS100 and, hopefully, later at SIS300 energies:

• Photons, giving information on the early stages in the fireball

• Low mass vector mesons, ρ, ω and φ, via their dilepton decay pairs, investigating
in-medium spectral functions

• Collective hadron flow, yielding equation of state information

• Strange and multi-strange hyperons, Λ, Ξ and Ω, for the understanding of the fireball
evolution and possible thermal equilibrium

• D-mesons and charmonium, as probes of compressed matter on a large mass/energy
scale and below production threshold

• Dynamical fluctuations, possibly hinting towards a phase transition or a critical
point

• Two-particle correlations, carrying information on the time evolution and size of the
fireball

In order to answer the questions raised above and investigate the addressed probes,
CBM needs to measure rare probes and perform systematic studies. The resulting quest
for high rates puts a technical challenge: reaction rates from 0.1 up to 10 MHz with
charged particle multiplicities of up to 1,000 per event [49] have to be reached, which would
be the highest achieved in the world of heavy ion collision (see Figure 2.4a). Figure 2.4b
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(a) Interaction rate of CBM in dependence
on the collision energy and compared to other
heavy ion experiments. The foreseen inter-
action rate is about two orders of magnitude
higher than the second highest interaction rate
reached in a heavy ion experiment. This rate
will allow the search for new physics observ-
ables.

(b) Multiplicity times branching ratio for rare
probes of interest for CBM in central Au+Au
collisions at 4 AGeV/c. The calculations were
done according to the HSD transport code and
the statistical model from [49]. All particles
above the horizontal line have already been
measured.

Figure 2.4: Left figure taken from [56]. Right figure taken from [49].

illustrates how ‘rare’ the probes investigated in CBM are, by calculating the product of
their multiplicity by the branching ratio. Particles above the horizontal line have already
been detected by other experiments at energies of 4 AGeV [85]. To measure the missing
particles, high rates combined with a dedicated high precision and fast timing of the
instrumentation are required.

Beam energy (AGeV) Anti-Λ Ξ
+

Ξ
-

Ω
+

Ω
-

4.0 9.8× 104 8.9× 104 1.7× 107 1.2× 103 2.3× 105

6.0 2.5× 105 2.3× 105 4.3× 107 3.6× 103 6.8× 105

8.0 3.5× 106 3.7× 106 6.9× 107 8.0× 104 1.9× 106

10.7 6.8× 106 7.1× 106 9.2× 107 1.6× 105 3.0× 106

Table 2.1: Predicted hyperon yields obtained per week in CBM, with a reaction rate of
104/s in central Au+Au collisions. Table inspired from [49].

An example emphasising the need for such high reaction rates is the measurement
of multi-strange hyperons. For Au+Au collisions at 6 AGeV/c, corresponding to SIS100
energies, reconstruction efficiencies of multi-strange hyperons have been calculated. They
include geometrical acceptance, track reconstruction efficiency and background cuts. The
simulations yielded detection efficiencies of ε(Λ) = 7.4%, ε(Ξ) = 2.6% and ε(Ω) = 2.0%.
The measurements of these probes at these energies would require a beam intensity of
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107 ions/s and a 1% interaction target, corresponding to a rate of 104/s for the 10%
most central events [49]. Table 2.1 summarises the hyperon yields for central Au+Au
collisions at energies between 4 and 10.7 AGeV. The discussed detection efficiencies and
the multiplicities per event calculated with a statistical model have been used. Aiming
at systematic measurements and multi-differential analysis, such rates are indispensable.

For those reasons, fast and radiation hard detectors and electronics are demanded to
ensure a proper functioning during data recording. The high speed data taking has to be
backed up by fast online data processing and trigger decisions. Subsequently the detectors
involved in CBM will be briefly introduced. The full set-up of the experiment is repre-
sented in Figure 2.5 in the SIS100 configuration and for the case of electron identification.
The most recent advancements are summarised in [86].

Figure 2.5: Experimental set-up of the CBM experiment in the electron detection con-
figuration. From left to right, Magnet, MVD, STS, RICH, MUCH, TRD, TOF, ECAL,
PSD. The MUCH is placed at a parking position next to the beamline and at the side of
the RICH detector. Figure taken from [87].
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2.3.1 Dipole magnet

A superconducting dipole magnet, surrounding the interaction region, will induce a bend-
ing power of 1 Tm. A magnetic field of 3.9 T is reached on the coils [88]. The left-hand
side of Figure 2.6 presents a design of the dipole magnet realised in 2018 by BINP. The
poles and coils have a cylindrical shape and the field clamps are modified, so that they fit
with the shielding box of the RICH detector. The right-hand side of Figure 2.6 illustrates
the chosen cooling strategy for the coils. The design of the magnet is still subject to
optimisations in 2019.

Figure 2.6: Left: Engineering design of the CBM magnet. The poles (central part) and
coils (in green) are cylindrical and the field clamps (in blue-grey) shape fits with the
shielding box of the RICH detector. Right: 3D model of the magnet mounted on a
support structure and connected to a cooling system. Figures taken from [89].

2.3.2 Micro Vertex Detector

The Micro Vertex Detector (MVD) will be placed inside the dipole magnet aperture. It
will consist of four stations placed at 5, 10, 15 and 20 cm from the interaction point (see
Figure 2.7). Main tasks of the MVD detector will be the highest precision tracking and
excellent secondary vertex finding closest to the main vertex.

This capability will then be used for the reconstruction of conversion and Dalitz-pair
suppression in light vector meson analysis, low momentum particle tracking multi-strange
particles and hyperons detection and open charm decays.

In addition and due to the high rates of the CBM experiment, the MVD detector
should achieve a relatively high rate capability.

To evacuate a heat of about 350 mW/cm2/sensor and keep an operation temperature at
-20◦C, the sensors will be mounted on high heat-conductive carriers, clamped into liquid
cooled heat sinks, located outside the detector acceptance [90]. To validate the MVD
concept, a PRESTO (PREcursor of the Second sTatiOn) board was designed, made of 15
thin (50 μm) MIMOSA-26 sensors, nine of which are glued on the front and six on the
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Figure 2.7: The Micro-Vertex Detector of CBM.

back side of the PRESTO. The readout is done with 10 FPCs (Flex Print Cables) per
PRESTO.

The MIMOSA-26 sensors are fabricated in a CMOS 0.35 μm technology, with a pixel
size of 18.4× 18.4 μm2 and a sensitive surface of 10.6× 21.2 mm2 [91]. They will provide
a hit resolution from 3.5 μm to 6 μm, yielding a secondary vertex resolution of 50 μm2 up
to 100 μm2 in the beam axis direction [92].

Each PRESTO requires a material budget of X/X0 ≥ 0.5%, the sensor tolerance to
non-ionizing radiation has to be kept below 1013 neutron equivalent per cm2 (neq/cm2),
while the tolerance to ionizing radiation amounts to ∼ 3 Mrad.

2.3.3 Silicon Tracking System

The Silicon Tracking System (STS) will be placed behind the MVD detector and also
inside the aperture of the magnet. It is represented in Figure 2.8a.

Two of the most important requirements imposed by the CBM conditions are excellent
track reconstruction efficiency and momentum resolution. They have to be maintained
at 95% and ∆p/p = 1%, respectively, for tracks with momenta greater than 1 GeV. The
principle of momentum reconstruction via only tracking in magnetic fields is based on the
combination of the Lorentz force and circular movement:

−→
F =

m · v2

R
= q−→v ×

−→
B =⇒ p = q ·B ·R (2.1)

Where p is the particle momentum, q the particle charge, B the magnetic field and R
the radius of the particle trajectory. To meet with these requirements, a spatial resolution
of 25 μm is foreseen to be used, which can be achieved with a 58 μm read-out strip pitch
[92, 93].

Moreover a full coverage from centre of mass rapidity, to close to beam rapidity is
required over a wide center-of-mass energy range. To fulfil this constraint, a polar angular
coverage of 2.5◦ ≤ θ ≤ 25◦ was chosen. Figure 2.8b shows reconstructed charged π±, K±
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and protons in the pt versus ycm plane. Those were reconstructed with the STS detector
for simulated Au+Au collisions at 6 AGeV.

(a) Engineering view of the STS de-
tector.

(b) From left to right: distribution of reconstructed
charged pions, kaons and protons in the pt-ycm plane. The
histograms are shown for Au+Au collisions at 6 AGeV
with a beam rapidity of 1.28.

Figure 2.8: Figures taken from [93].

Single hit detection efficiency should remain close to 100% and the equipment should
be fast to cope with the hit rates, while withstanding high levels of radiation up to 1014

neq/cm2.

To meet the requirements, a STS detector with 8 planar tracking stations was chosen
and will be placed from 30 cm to 1 m, in 10 cm steps, downstream of the target.

To fulfill the very low material budget constraint, micro-strip sensors have been se-
lected. They will be double-sided with a stereo angle of 7.5◦, a strip pitch of 58 μm and
strip lengths ranging from 20 to 60 mm. The front-end electronics will be placed outside
the active area of the detector and low mass cables will transport the information to a
readout chip placed outside of the acceptance. A CO2 cooling system, will be placed out-
side the acceptance as well, to keep the temperature to -5 ◦C and a maximum non-ionizing
dose for the sensors closest to the beam line should not exceed 1014 neq/cm2 [93].

The number of read-out channels was also optimised, while minimizing the read-out
pitch size and the read-out strips length. A total of 1,835k channels will be required to
ensure a proper detector operation (the first station has 156k channels and the last 279k).
With this configuration a material budget ranging from 0.3 % X0 to 1.2 % X0 is achieved
[93].

2.3.4 Ring Imaging Cherenkov

Following the STS downstream of the beamline the RICH detector will be placed. The
main properties of the detector are summarised here, but a more extensive description is
given in Section 3.3.

The RICH detector will be used in the electron configuration of CBM to reconstruct
dileptons radiating off the created fireball, yielding information for example on low mass
vector mesons. It will use CO2 as a gaseous radiator, with a radiator length of 1.7 m,
yielding in simulation a mean of 28 hits per electron ring on the photon detector plane.
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The latter is made of Multi-Anode Photo-Multiplier Tubes (MAPMT). About 80 spherical
mirror tiles, with an Al+MgF2 coating and a radius of curvature of 3 m, will be used to
reflect and focus photons onto the PMT plane. A magnetic shield will also be used to
protect the MAPMTs from the residual magnetic fields emanating from the dipole magnet,
thus ensuring a proper operation of the detector [94].

Under these conditions the detector will be able to clearly identify electrons up to 7-8
GeV/c.

2.3.5 Muon Chamber

The counterpart to the RICH detector is the MUon CHamber (MUCH), employed for
muon detection. This detector will be positioned after the STS detector and interchanged
with the RICH. While interchanging the two detectors, RICH will be transported by crane
and MUCH will slide on a railway system.

Analogous to the RICH, the MUCH will aim at detecting dimuons to provide a com-
plete picture of emanating dileptons. To do so, GEM (Gas Electron Multipliers) chambers
placed between absorber layers will be used to facilitate continuous tracking through the
absorber. This conception of the detector allows also for low momentum muon detection.
Optimisations on the absorber length have been conducted with simulations of Au+Au
collisions from 4 to 25 AGeV/c. The muons coming from ω mesons get suppressed by a
factor of 10 after 250 cm of absorber, whereas the ones from J/Ψ are merely affected [95].

Figure 2.9: Left: cut view of the MUCH detector, with the screw and captive nut option
for the drive unit. Right: Di-muon simulation for central Au+Au collisions at 8 AGeV,
with the SIS100-B set-up [95]. Combinatorial background (black histogram) along with
the invariant mass spectrum of reconstructed muon pairs from decays of low mass vector
mesons. Each signal spectrum is colour coded: in light blue η-Dalitz, in magenta ρ, in
dark blue ω-Dalitz, in green ω, in yellow φ and in red η. Figures taken from [95].

Figure 2.9 shows the MUCH detector, where the first and last absorption layers are
visible. They will be made of carbon and iron with different thicknesses. 4 detection layers
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are represented, which are gaseous tracking chamber triplets, either made of GEM or straw
tubes, depending on the track density. For the last station the first Transition Radiation
Detector layer may be used. For J/Ψ measurements, only the last 3 chamber triplets
would be sufficient at SIS100 energies. The drive unit variant shown is using screw and
captive nut, but another option with rack and pinion is also being studied. Additionally,
Figure 2.9 shows the invariant mass spectrum obtained from simulated Au+Au collisions
at 8 AGeV/c energy.

2.3.6 Transition Radiation Detector

The next detector placed downstream of the target will be the Transition Radiation
Detector (TRD). An engineering rear view is shown on the top left of Figure 2.10. It will
also serve for electron identification, to complete the RICH information for momenta in
particular larger than 7 GeV/c.

The detector has been designed to help giving insights to the dense quark and nuclear
matter generated. Identifying high momentum electrons gives in particular access to
intermediate mass dileptons (in the range between the Φ and J/Ψ). The dilepton spectrum
in this range allows to directly access the fireball temperature [96]. The overall improved
electron purity will allow for an improved signal to background ratio in the dielectron
measurement also at low masses.

Moreover the detector allows to measure nuclear fragments together with the Time of
Flight detector information, in order to study hyper-nuclei and anti-nuclei.

To answer the challenges raised by electron identification at high momenta, the TRD
will consist of four to five detector layers grouped into one station in the SIS100 configu-
ration and 10 detector layers grouped into three stations in the SIS300 configuration [97].
Every second layer is rotated by 90◦.

The bottom left of Figure 2.10 illustrates how the TRD completes the ToF information
for particle identification.

The detector readout will be constructed with rectangular pads, providing a resolution
of 3 to 30 mm along the pad and ∼ 300 μm across it. Gas mixtures of either Xe (85%)
and CO2 (15%), or Ar (80%) and CO2 (20%) will be employed.

The achieved pion suppression factor at 90% electron efficiency and for a momentum
higher than 8 GeV/c is at around 15. This value increases to 50 with an electron efficiency
of 80%. In this momentum region and for an electron efficiency of 80%, additional infor-
mation from the RICH and ToF detectors increases this value to about 80. The energy
resolution for momenta above 1 GeV/c will be around 25%.
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Figure 2.10: Top left: Engineering rear view of the transition radiation detector for
the CBM experiment. Bottom left: Mass squared measured by the ToF detector in
dependence of the TRD signal for central Au+Au collisions at 8 AGeV. Top right: Electron
identification efficiency. Bottom right: Pion suppression factor versus momentum. Results
of the two right histograms were obtained for the 10% most central Au+Au collisions at 8
AGeV beam energy. The colour code is similar: TRD and RICH performances are shown
separately (red and blue curves, respectively) and together (black curves). In green, the
Time of Flight detector information is added to the TRD and RICH. Figures taken from
[97].
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2.3.7 Time Of Flight

Behind the TRD, a Time of Flight (ToF) detector will be employed. The detection princi-
ple relies on the accurate measurement of a particle’s momentum and velocity, that is its
time of flight, assuming a track trajectory has been reconstructed. The two parameters
give access to the mass of the particle, calculated as:

m2 = p2

(
1

β2
− 1

)
(2.2)

The right-hand side of Figure 2.11 shows the distribution of m2 in dependence of
momentum for an ideal detector and positively charged particles. The resolution in m2

measurement has a quadratic dependence on the momentum. This translates into a quick
decrease in the particle identification capability with increasing momentum. π+, K+ and
protons can be separated up to roughly 3 GeV/c momentum.

An array of Multi-Gap Resistive-Plate Chambers will be employed to identify hadrons
via the time of flight information (see left-hand side of Figure 2.11). To cover polar angles
of 2.5 ≤ θ ≤ 25, an active area of around 120 m2 will be built. A total number of 226
modules separated into six different types will be operated.

To keep a time resolution of about 80 ps and sustain rates up to 25 kHz/cm2, low-
resistive glass has been designed, still delivering time resolution on the order of 60 ps.
The size of the pad is, for small deflection angles, around 5 cm2, corresponding to an
occupancy below 5% for central Au+Au collisions [98].

Figure 2.11: Left: time of flight detector and its different modules. Right: distribution of
m2 versus momentum for positively charged hadrons, for an ideal detector. The distance
to the target is 10 m and the time resolution 80 ps. Figures taken from [98].
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2.3.8 Calorimeters

Two calorimeters will be used in the CBM experiment, an Electromagnetic CALorimeter
(ECAL) and a Projectile Spectator Detector (PSD), placed subsequently behind the ToF
detector.

The aim of the ECAL is to identify photons and electrons and measure their energy
and position. The direct measurement of photons allows to access additional hadrons
decaying electromagnetically [99].

(a) Optimised ECAL for SIS100 ener-
gies.

(b) Invariant mass spectra of reconstructed photon
pairs after background subtraction. The top his-
togram shows results in the π0 mass region. The bot-
tom histogram shows reconstructed photon pairs from
MC-truth η-mesons. 1.5 million UrQMD events were
simulated for central Au+Au collisions at 10 AGeV
beam energy.

Figure 2.12: Electromagnetic calorimeter of the CBM experiment. Figures taken from
[99].

The ECAL will be made of 140 layers of lead absorbers, separated by scintillator sheets
used as active material. The plates will be assembled together in a ‘shashlik ’ structure
Figure 2.12a. For SIS100 1,088 modules made of 60×60 mm2 cells will however not cover
the full angular acceptance, due to financial reasons.

Figure 2.12b shows invariant mass distributions of reconstructed photon pairs using
the ECAL detector in simulation of 1.5 million UrQMD events in central Au+Au collisions
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at 10 AGeV beam energy. The mass peak of the π0 is well pronounced, while the used
statistics is insufficient for a proper η-meson reconstruction. Here, the significance of the
η-meson peak is 2.7 and increasing the statistics to about 107 central Au+Au collisions
at 10 AGeV beam energy should yield a satisfying reconstruction of the η-meson [99].

The PSD is designed to reconstruct the centrality and the reaction plane, along with its
orientation for each events, which makes it decisive for event-by-event observable analysis,
flow and centrality selection. It will determine the energy distribution of the projectile
spectators and the forward going particles produced close to the beam rapidity during a
collision.

Some of the main constraints, which needs to be fulfilled by the PSD are the following.
First the detection of spectators in the range of 2-35 AGeV/c has to be achieved. Then
the reaction plane should be reconstruct with an accuracy better than 40 degrees. In
addition, the determination of the collision centrality should be given with an accuracy
better than 10%.

To meet with these requirements, the PSD will use, like the ECAL, layers of lead
and scintillator materials in a ‘shashlik ’ structure, providing a very good and uniform
energy resolution. 44 individual modules will be mounted together, each consisting of
60 lead/scintillator layers. A transverse area of around 1.5 × 1.5 m2, with a transverse
granularity of 20 × 20 cm2, will allow to measure the collision spectators down to beam
energies of a few AGeV/c. The performances of the detector [100] show that an energy
resolution of σE/E < 60%

√
E(GeV ) is achieved. In addition, high-rate capabilities and

radiation hard photon detectors will be employed.

The left-hand side of Figure 2.13 represents the mechanical design of the PSD. The
right-hand side illustrates the energy deposition from hadrons and positrons inside the
PSD module at 30 GeV beam energy.



Chapter 2 - The FAIR facility and the CBM experiment 39

Figure 2.13: Left: Engineering view of the projectile spectator detector of CBM. Right:
energy deposition in the full PSD module from hadrons and positrons at 30 GeV/c energy.
Figures taken from [100].

2.3.9 Data Acquisition System

To hope observing rare probes of interest for CBM, such as dileptons, or multi-strange
particles (Ξ, Ω) at SIS100 energies and ultimately D-mesons or J/Ψ at the SIS300 energy
regime, interaction rates up to 10 MHz are required, due to the small branching ratios
and cross sections of the mentioned particles. At this interaction rate, a raw data rate
of up to 1 TB/s is expected from the detector frond end electronics. The limiting factor
comes from the storage capacity, which requires an archival rate not exceeding about 3
GB/s. The raw data rate online thus have to be reduced by a factor of more than 300
[101].

The experimental challenge of CBM is the selection for archival of complex event
topologies and signal signatures, using specific online triggers. For this purpose a dedi-
cated data acquisition (DAQ) system has been designed. It is based on a self-triggered and
free-streaming front-end electronics, delivering all signals above a pre-defined threshold to
the DAQ. Together with the detector signals, a precise time stamp is added, which allows
the grouping of the individual hits to separate events. Event selection and reconstruc-
tion will then be performed in software on a high performance computer farm (FLES),
equipped with many-core CPUs and GPUs in the GSI Green-IT Cube.

The planned DAQ chain for the CBM experiment at SIS100 is illustrated in Fig-
ure 2.14. A prototype version will be tested during phase II of mCBM (see Section 3.3.6).

For this concept to work, partial event reconstruction in real time is required. Highly
efficient reconstruction algorithms need to be developed, too. For example, track recon-
struction, one of the most time consuming operation of the event reconstruction, will be
performed with parallel algorithms for track finding and fitting.
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Figure 2.14: CBM DAQ chain for SIS100. A Common Readout Interface (CRI) will
combine the functionalities of a Data Processing Board (DPB) and a First Level Event
Selection (FLES) Input Boards (FLIB) in a single FPGA. It will serve as interface between
the GigaBit Transciever (GBT) links and FLES input nodes. Long range EDR InfiniBand
will be used to transfer the micro-slices sent from the FLES input nodes to the Green IT
Cube, where the data stream will be combined to time slices from the FLES computing
nodes. Figure adapted from the mCBM@SIS18 proposal [102].
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The RICH detector of CBM

3.1 Principle of RICH detectors

3.1.1 The Cherenkov effect

RICH detectors are based on the Cherenkov effect, discovered by P. Cherenkov in 1934
[103]. His work on the Cherenkov radiation allowed him to become the winner of the
Nobel Prize in physics in 1958 along with I. Frank and I. Tamm.

Figure 3.1: Experimental set-up used by P. Cherenkov for the characterisation of the
radiation. A phial containing radium as gamma source is placed at R1, in a wood block.
The liquid of interest is put in A. An optical system made of a collimator, a reflecting
prism and a telescope was used to observe the radiation at E. A graded wedge, filters and
a Nicol prism were used to determine its main properties. Figure taken from [104].

First documented observations of the emission of Cherenkov radiation were conducted
by the French physician L. Mallet in 1926. Independently Cherenkov studied this phe-
nomenon in his lab, too. Figure 3.1 illustrates Cherenkov’s first experiment, with which
he could observe Cherenkov radiation. He observed the Cherenkov light emitted from a
phial containing radium, placed under different liquids. With an optical system made of

41
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a collimator, a reflecting prisme and a telescope he measured the relative intensities of
the light from the studied liquids. He also examined the polarisation of the emitted light
and made a spectral analysis [104].

A qualitative description of the effect is given hereafter [104]. Suppose a charged
particle entering a medium. At the atomic level, in the region close to the passage of the
particle, the medium becomes polarised. At low velocities, the local polarisation vanishes,
as the particle polarises another region of the medium. Due to the complete symmetry
of the polarisation field, there will be no resultant field at large distances and thus no
emission of radiation. At high velocities however, for a particle’s velocity comparable to
that of light, an asymmetry in the particle axis of propagation takes place. In this case a
resulting dipole field will appear and each polarised atom will radiate an electromagnetic
pulse one after the other. If the particle velocity is even higher than that of light, the
radiated pulses will interfere constructively, similarly to wave interferences.

Figure 3.2: Illustration of a charged particle traversing a medium from A to B. At low
velocities (a), the medium is locally polarised but no global effect is observed. At high
velocities (b), the polarisation asymmetry is the source of an electromagnetic radiation.
Right: Formation of the plane wave front (BC) at an angle θ. The wave front is formed
from wavelets stemming from emission points located along the particle path (P1, P2 and
P3). Figures taken from [104].

The left and middle pictures of Figure 3.2 illustrate the polarisation phenomenon
happening in the case of a charged particle travelling at low (left) and high (middle)
velocities.

The right part of Figure 3.2 sketches how wavelets coherently interfere to form a plane
wave front (BC). Each point located along the particle path (P1, P2 and P3) emits wavelets
at a particular angle θ, for which the wavelets will be coherent and combine on the plane
wave front. The required condition for coherence to take place is that the particle travels
from A to B in the same amount of time as light travels from A to C.
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Geometrical calculations yields the Cherenkov relation:

cos θCh =
∆t · c

n(E)

∆t · βc
=

1

β · n(E)
(3.1)

Equation 3.1 shows the dependence between the polar emission angle of Cherenkov
photons (θCh) produced by a charged particle and the refractive index (n(E)) of the
medium. β is the velocity of the particle relative to that of light.

The phenomenon was theoretically derived by I. Frank and I. Tamm afterwards. They
calculated the number of photons produced by a charged particle per unit path length
and per unit of energy [105]:

d2N

dEdx
=
αZ2

~c
sin2 θCh =

αZ2

~c

(
1− 1

(β · n(E))2

)
(3.2)

Where α is the fine structure constant, Z is the electric charge of the particle in units
of the elementary charge, ~ = h

2π
is the reduced Planck constant, N is the number of

photons emitted with energy in the interval [E;E + dE] and l is the particle path length
in the medium.

Applying the relation E = hc
λ

to Equation 3.2 yields:

d2N

dλdl
=

2παZ2

λ2
sin2 θ (3.3)

Where λ is the wavelength of the emitted photons.

From Equation 3.1 and Equation 3.3, the following information can be extracted:

• Equation 3.1 shows that there is a threshold velocity βmin = 1/n below which no
radiation can be emitted. In this case θCh = 0, that is the Cherenkov photons are
produced in the direction of travel of the particle.

• A maximum emission angle can also be computed for ultra-relativistic particles from
the relation: θCh,max = cos−1( 1

n
)

• Equation 3.3 reveals that the number of photons emitted per wavelength step dλ

and per radiator length dl is inversely proportional to the square of the wavelength.
The Cherenkov radiation is thus mostly emitted in the ultra-violet region. It can
also be added that for the x-ray emission range the refractive index of media drops
below 1, hindering Cherenkov emission.

• The number of emitted Cherenkov photons is proportional to the length of the
medium, which is crossed
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3.1.2 Evolution of detectors relying on the Cherenkov effect

The discovery of the Cherenkov effect lead the way to new detector developments. The
first use of Cherenkov radiation in particle physics coincides with the development of the
first vacuum photomultiplier (PM). Getting and Dicke proposed and demonstrated an
original focusing system coupled to a PM in 1947, the first Cherenkov differential counter
[106, 107]. Shortly after several types of Cherenkov counters were designed and improved,
such as threshold Cherenkov counters, along with differential isochronous self-collimating
(DISC) counters [105].

With an appropriate choice of the refractive index of the radiator and based on the
particle momentum, threshold Cherenkov counters can differentiate light particles emit-
ting Cherenkov radiation from heavy ones, which do not emit any radiation. The relation
giving the threshold momentum in dependence on the particle mass and radiator refractive
index is:

p =
m√
n2 − 1

(3.4)

The common part of these detectors is the use of a chamber filled with a radiator
(for example Ne, Ar, CO2 or N2), coupled to one or more photon sensors (for example
PhotoMultiplier Tubes (PMTs)). Those Cherenkov counters are grouped in a category,
which is called proximity focusing Cherenkov detectors, or threshold counters.

The combination of the good phase space acceptance of threshold counters with the
better β resolution of differential counters was proposed by Roberts in 1960 [105, 109] (see
Figure 3.3c). This association marked the beginning of Ring Imaging Cherenkov (RICH)
counters, whose first practical prototype was developed by Seguinot and Ypsilantis [110].
Unlike the DISC detectors described above, which use annular diaphragm and chromatic
corrector at the mirror focal plane, RICH counters make use of an additional focusing
optical system. This method is called projective RICH detectors. Different types of
focusing for RICH detectors are illustrated in Figure 3.3.

A special type of RICH detector is the Detection of Internally Reflected Cherenkov
light (DIRC). For those RICH, the emitted Cherenkov photons are kept inside the radiator
by total internal reflection and propagate to the photon sensors in a zigzag pattern,
conserving their angle of reflection with the radiator surface. Those detectors are used
for particle identification. They are compact and thus reduce both the material budget
and the needed size of the subsequent detectors.

The first DIRC was proposed in 1994 for particle identification in B factories [111]
and the design was first employed in the BaBar collaboration, which used the pinhole
or proximity focusing technique to separate pions from kaons up to a momentum of
4.2 GeV/c [112]. Two other designs were later developed: the lens focusing and mirror
focusing designs.



Chapter 3 - The RICH detector of CBM 45

(a) Proximity focusing RICH
(b) Mirror focusing RICH

(c) Focusing RICH in its original version proposed by Roberts. 1: stage image intensifier, 2:
2-stage gated intensifier, 3: 3-stage intensifier, 4: photo-camera.

Figure 3.3: Different types of focusing RICH detectors. Figures takes from [105, 108].

The PANDA experiment, one of the pillars of FAIR (see Section 2.2), will employ a
DIRC detector in the lens focusing mode with a lens made of LaK33B to improve the
focusing. It will separate pions from kaons up to 3.5 GeV/c in an angular coverage ranging
from 22◦ up to 140◦.

The design of the barrel DIRC is presented in Figure 3.4. The Endcap Disc DIRC will
encompass four identical quadrants made of a large fused silica radiator and 27 readout
modules. The achieved Cherenkov angle resolution is foreseen to range between 1.2 and
2 mrad for a track with 16 to 25 detected photons. The Cherenkov opening angle θc of a
charged particle entering a radiator can be determined by the relation [113]:

θc = arccos(sin(θn) · cos(Φaz) · cos(φ) + cos(θn) · sin(φ)) (3.5)

where θn is the particle angle relative to the normal of the radiator plane, Φaz the
azimuthal angle between the photon path and the particle trajectory on the radiator
plane and φ the angle between the photon path and the radiator surface.
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Figure 3.4: Schematic baseline design (left) and mechanical design (right) of the PANDA
barrel DIRC. Figures taken from [114].

3.1.3 Functioning principle of the CBM RICH detector

The CBM RICH is based on the projective RICH principle and employs a radiator with
spherical mirrors as focusing elements. Cherenkov photons are emitted in the form of a
cone throughout the passage of the particle in the radiator. The cone is reflected by the
spherical mirrors and focused on a photon detector plane placed at the mirror focal length,
corresponding to half the spherical radius. In this configuration, the cone is observed as a
ring on the photon sensor plane. The ring radius is in first approximation given by [110]:

r = f · tan(θCh) =
R

2
· tan(θCh) (3.6)

Where r is the ring radius, f the focal length of the mirrors, θCh the Cherenkov
emission angle of the particle and R the radius of curvature of the mirrors.

In the approximation of small angles and the mirror focal length being constant, it
can be derived from Equation 3.6 [115]:

r = f ·

√√√√
2− 2

n

√
1 +

(
mc

p

)2

(3.7)

With m and p the particle mass and momentum, respectively.

Thus, knowing the particle momentum and the ring radius resulting from the passage
of the particle through the detector, the CBM RICH can be used for particle identifica-
tion. For the CBM experiment, the momentum of the particle is given by the tracking
information from the STS detector (see Section 2.3.3).
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Integrating the Frank-Tamm relation (Equation 3.2), over the energy E and the path
length l and supposing a constant Cherenkov angle (that is nβ constant and neglecting
the dispersion of the medium), it can be derived:

N = N0 · L · sin2(θCh) (3.8)

Where N corresponds to the number of detected photons and L the radiator length.
N0 is the so called ‘figure of merit’, first introduced in [110] and describing the quality of
RICH detectors. It is used as a mean of comparison between different RICH detectors.
It is defined as:

N0 =
α

~c

∫ E2

E1

ε(E)εT (E)εR(E)dE (3.9)

Where ε is the quantum efficiency for photon detection, εT the transmittivity of the
optical medium and εR the reflectivity of the mirrors.

In Equation 3.2, the number of photons produced by a charged particle per unit path
length and per unit of energy depends on the refractive index, which, due to the chromatic
dispersion effect, depends on the energy as well. Equation 3.7 links the refractive index
with the ring radius and can thus imply a loss in the ring radius resolution. The first
Cherenkov counters, like DISC counters, corrected directly for this error. For RICH
detectors usually a compromise has to be made between the photon yield and the ring
radius resolution.
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3.2 Physics objectives and detector requirements of the
CBM RICH detector

RICH detectors have already been used in a wide variety of experiments, with various
physics programs [116].

RICH detectors are used for example for flavours physics and CP violation measure-
ments, via the hadron identification, such as in the ALICE, BaBar, BELLE, LHCb and
NA62 experiments. COMPASS, MIPP and PANDA use RICH for the measurements of
particle production rates and the study of hadron spectroscopy. In COMPASS and HER-
MES, RICH detectors are used to improve the charmed-hadron purity, via the separation
of pions from kaons. RICH principles are also employed in neutrino physics, where a
water Cherenkov detector is used for neutrino measurements in K2K and T2K.

In heavy ion physics, electrons are used as probes of the created fireball and are iden-
tified by RICH detectors. The pioneer experiment, who employed for the first time RICH
detectors for electron identification is the CERES experiment. Other experiments fol-
lowed, like JLAB, RHIC and soon CBM. The CBM-RICH requirements are reviewed in
detail in the technical design report [94]. Some of the physics prerequisite and environ-
mental limitations are specified in the following.

3.2.1 Physics objectives

One of the key probes for the CBM experiment are lepton pairs due to their penetrating
nature, as discussed in Section 1.3.2. In the particular case of the RICH detector, ded-
icated to the identification of dielectrons, light vector mesons (such as the ρ0, ω and φ
mesons), charmonium and direct photons via their conversion pairs can be investigated.

A key factor in the measurement of the low mass vector mesons is the pion suppres-
sion power of the detector. A study on the impact of the pion suppression factor on
the combinatorial background underlying the low mass vector meson measurement has
been conducted [94]. The pion suppression factor is defined as the number of pions re-
constructed in the STS detector, with a track projection lying in the RICH acceptance
divided by the number of pions wrongly identified as electrons. For this study the elec-
tron identification in the RICH software was performed using Monte-Carlo information.
A certain pion suppression factor of 100; 500; 1,000; 2,500; 5,000; 10,000 and ‘ideal case’
was assumed. Figure 3.5a depicts the situation after all reconstruction cuts were applied
for different pion suppression factors. Clearly a factor 1/5,000 is desirable, as with such a
factor the background is not dominated by pion misidentification. Figure 3.5b shows, as
a comparison, the invariant mass spectrum of electron pairs with the contributions from
each physical signals in different colours for a full simulation of 100,000 events central
Au+Au collisions at 8 AGeV beam energy after applying all reconstruction cuts.
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(a) Combinatorial background for different
pion suppression factors after all reconstruction
cuts are applied for central Au+Au collisions at
8 AGeV beam energy.

(b) Invariant mass spectra after all recon-
struction cuts are applied for 100,000 central
Au+Au collisions at 8 AGeV beam energy.

Figure 3.5: Figures taken from [94].

(a) Momentum distribution for electrons from
the decay of ρ (red) and J/Ψ (blue) mesons for
Au+Au collisions at 25 AGeV (SIS300 regime).
The parameters of the PLUTO generation can
be found in [94].

(b) Transverse momentum vs rapidity for the ρ
meson. The lines represent constant momenta
for the decay electrons. The centre of mass
rapidities for 8, 15 and 25 AGeV beam energies
amounts to 1.42, 1.75 and 2 respectively.

Figure 3.6: Figures taken from [94].

The momentum distribution of the ρ and J/Ψ mesons for Au+Au collisions at 25
AGeV is depicted in Figure 3.6a and shows the momentum range necessary for the electron
identification. A momentum range up to 8 GeV/c will allow a measurement of the ρ meson
in the full forward hemisphere also at lower energies. At these energies, the nominal
magnetic field of CBM may be reduced to 70% in order to increase the acceptance for low
momentum electrons while still keeping sufficient momentum resolution [94].
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Several transverse momentum distributions in dependence on rapidity for the decay
electrons of the ρmeson are shown in Figure 3.6b. Feasibility studies on the measurements
of other physics signals such as the charmonium and direct photons are presented in [94].

The CBM RICH detector will thus provide electron identification for momenta up to
8 GeV/c with a pion suppression factor of at least 100. Its combination with the TRD
increases the momentum range even further and the pion suppression factor up to 1,000
- 5,000.

3.2.2 Environmental conditions

In addition to the requirements expected to be achieved for the study of the discussed
physics signals, the CBM RICH must satisfy specifications imposed by the environment
of the CBM experiment.

First the high interaction rates, up to 10 MHz, are the source of high radiation levels
and will produce about 1,000 charged particles per collisions in central Au+Au collisions
at SIS300. These charged particles include secondary electrons, but also neutron. They
are produced upstream of the detector and cause a high track density, translating into a
high ring density in the RICH detector.

Figure 3.7: Typical event displays recorded by the upper and lower photon detector plane,
for central Au+Au collisions at 8 (left) and 25 (right) AGeV beam energies. Blue circles:
reconstructed rings, red points: photon detector hits, green points: reconstructed track
projections. Figures taken from [94].

The secondary particles might decrease the detector efficiency, damage the mirror
reflective coating and the glue used for fixing the mirrors, decrease the lifetime of the
photon detectors and harm the electronics. It might also dissociate the radiator gas.
Figure 3.7 shows the high ring densities seen by the upper and lower photon detectors
in the RICH detector for simulated central Au+Au collisions at 8 (left-hand side of the
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figure) and 25 (right-hand side) AGeV beam energies.
In order to limit the production of secondary particles by the detector, the material

budget needs to remain as low as possible for both the RICH detector and the beam pipe.
This will thus reduce background for the detectors positioned downstream of the CBM
RICH. Figure 3.8 illustrates the material budget of the RICH detector, for the RICH
set-up presented in [94] (left and middle) and for an optimised RICH geometry specified
in [117].

Furthermore a full azimuthal angle coverage is required as well as a polar angle coverage
of 2.5◦ ≤ θ ≤ 25◦ with a factor 1.5 in the x-direction due to the bending power of
the magnet. Simulations of single particles stemming from the primary vertex with a
transverse momentum pt ≤ 3 GeV/c were conducted to compute the acceptance of the
RICH detector.

Figure 3.8: Material budget of the RICH detector. Left: Material budget at the time of
writing of the RICH Technical Design Report, as seen for inclined particles coming from
the primary vertex. Middle: Material budget at the time of writing of the RICH Technical
Design Report, as seen for parallel tracks. Right: Material budget of the RICH detector
for a more recent geometry. The major elements contributing to the material budget
belong to the mirror supporting structure. This matter is still a subject of optimisation.
The red frame at the edges of the figure is not in the acceptance any more. Figures taken
from [94] (left and middle) and [117] (right).

Finally, the detector is placed in the vicinity of the magnetic stray field. The stray field
might reduce the collection efficiency at the dynodes of the photon detectors, reducing
the detection efficiencies. The RICH detector will also be exchanged approximately on
a yearly basis with the MUCH detector, for independent dilepton measurements in the
CBM energy range. The movements and stress applied during the exchange of the RICH
with the MUCH may misalign the individual mirror tiles.
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3.3 Detector design

To meet the physics and environmental specifications, a dedicated RICH detector has been
designed and is being built for the future CBM experiment [118, 119]. The detector will
consist of gaseous CO2 as radiator, spherical mirrors with reflective coating as focusing
elements and a cylindrical photon detector plane, made of multianode photomultiplier
tubes (MAPMT). Figure 3.9 represents the latest geometry of the RICH detector used in
the simulation framework of CBM.

Figure 3.9: Front (left) and side (right) views of the CBM RICH detector designs. The
geometrical acceptance is coloured in transparent grey, the mirror wall in yellow and the
photon detector structure in blue. The detector and mirror supporting structures can be
visualised, along with the photon sensor designs. Figures taken from [120].

An overview of the main components of the RICH detector is given in Table 3.1. In
the following the different detector parts are discussed and performances are illustrated.
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Concept RICH gaseous detector
Dimensions 2 m × 5.14 m × 3.93 m (length × height × width)
Acceptance 0 - 35◦ (horizontal) and 0 - 25◦ (vertical)
Radiator CO2 gas at slight overpressure of ∼ 2mbar
Radiator volume ∼ 34 m3

Radiator length 1.7 m
Focussing elements Spherical mirrors
Mirror design Glass mirror (SIMAX), 6 mm thick Al+MgF2 coating
Mirror effective area 14.4 m2

Focal length 1.5 m
Photon sensor MAPMTs (H12700B-03 from Hamamatsu)
Active camera area 2.4 m2

Number of channels ∼ 70,000 channels

Table 3.1: Summary of the CBM-RICH detector main components. Table inspired from
[94].

3.3.1 Detector geometry and mechanics

The dimensions of the RICH detector will be 2 m × 5.14 m × 3.93 m (length × height
× width) [94], which has a total volume of roughly 40 m3. The entrance window of the
detector will offer an acceptance, which covers a range of scattering angles of up to 35◦ in
the horizontal plane and up to 25◦ in the vertical plane, with respect to the target position.
The angle in the horizontal plane is extended due to the widening of the particle tracks
from the magnetic field. The detector will be filled with CO2 gas with a slight overpressure
of a few mbar (∼ 2 mbar). A radiator length of 1.7 m and a radiator volume of about 34
m3 are provided.

The refractive index of the radiator equals to n = 1.000449 (at 0◦C and atmospheric
pressure), giving a Lorentz factor of γth = 1/

√
1− 1/n2 = 33.4 and yielding a saturated

Cherenkov angle of cos−1(1/n) = 1.72◦. Thus the Cherenkov threshold momentum for
pions amounts to [94]:

pth = γth ·m0 ·
c

n
= 4.66 GeV/c (3.10)

In comparison the Cherenkov threshold momentum for electrons and kaons is p =

17.1 MeV/c and p = 16.5 GeV/c, respectively. Furthermore the emitted Cherenkov
radiation is absorbed by CO2 for λ ≤ 180 nm, which coincides with the wavelength
region, where effects of chromatic dispersion become more severe [94].

Figure 3.10 shows the ring radius versus the particle momentum in both the simulated
and the beam test cases. In the shown momentum range (1 ≤ p ≤ 10 GeV/c) electrons
emit Cherenkov photons and can be identified to 100% up to 4.7 GeV/c. At this point
pions start emitting Cherenkov photons. For momenta below 10 GeV/c, the radii from
pions remain small relative to the radii from electrons.
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Figure 3.10: Radius versus incident particle momentum distributions in the simulation
(left) case and with collected data from beam test (right). Figures taken from [121].

A good qualitative agreement is observed between the two cases of Figure 3.10. In
addition, a pion identification efficiency was introduced to quantify the performances of
the detector. It is defined as the number of pions identified as electrons over the total
number of pions, at an electron efficiency of 95%. The pion suppression factor is defined
as the inverse value of the pion identification efficiency.

In the beam test at CERN in 2012, the RICH test box yielded a pion efficiency
below 0.00025 for all momenta below 10 GeV/c. These results are consistent with the
results obtained from simulations and reveal a very good pion suppression capability of
the detector.

Figure 3.11: RICH mirror supporting structures. Prototypes of supporting pillar (left)
and mirror supporting frame (middle) are built and undergo tests. Right: detector and
mirror supporting structures implemented in a detector model. Figures taken from [120].

The radiator box needs to be reinforced to allow its craning, when exchanging the
RICH and MUCH detectors. The decided solution is the use of a frame reinforced with
channel bars covered with rigid panels. Some panels can be removed to perform mainte-
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nance works on the equipment placed inside. The front and rear panels are planned to be
made out of kapton foil or, for the rear panel, to be a thin PCB plate. The supporting
frame of the detector is sketched on the right-hand side of Figure 3.11.

In addition to the detector frame, a supporting frame for the reflective mirrors was
developed. Figure 3.11 illustrates the latest prototypes of the RICH mirror supporting
pillar (left) and the mirror support and mounts (middle). It also displays the mirror and
detector supporting frames (right). The supporting structure will be made of pillars, each
pillar supporting two mirror columns. This design will allow for a structure weight of 125
kg, which is an estimated weight for the pillars and mirror supporting frames without the
mirror mounts and which provides a radiation length of ∼ 4.4% on average. Glue studies
are also conducted to select a glue, which is resistant to mirror loads and radiation hard.
Prototypes of both frames were produced and are being optimised by the PNPI institute.

3.3.2 Mirror wall

The mirror wall (visible on Figure 3.9) consists of 80 glass mirror tiles divided into two
halves made of 40 tiles each. The halves are split into four rows of ten tiles each. The
spherical focusing mirror tiles have a radius of curvature of 3 m and are made of a
SIMAX glass substrate. They will be coated with a thin aluminium layer, providing good
reflection properties in the UV-region. An additional layer of MgF2 is applied to prevent
the oxidation of the aluminium layer, which strongly absorbs the Cherenkov emission in
the UV region. Following mirror reflectivity studies [94], mirrors from JLO Olomouc have
been ordered to be used in the beam test (see Section 4.2.2).

The mirror tiles will be trapezoidal and grouped into two categories depending on their
dimensions. The two inner mirror rows will comprise trapezoidal mirrors of 430/425.6
mm × 425 mm with a reflective surface of 0.182 m2. The two outer mirror rows will have
dimensions of 425.5/412.6 mm × 425 mm, yielding a reflective surface of 0.178 m2. The
total effective mirror area will thus be 14.4 m2. Figure 3.12 summarises the dimensions
of the two tile types.

Figure 3.12: Dimensions of the mirror tiles. Figure taken from [94].

Shrinking the dimensions of the mirror segments makes the manufacturing easier and
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reduces the gaps between mirrors down to 3 - 4 mm.

The mirror mounts (Figure 3.11, middle) will be fixed at three points on the back side
of the tiles, forming a triangle. This will allow single tile rotations around the x and y
axes of each individual tile to ensure global alignment between the mirrors. For optimal
detector operation, an alignment of the mirror wall in two steps is foreseen, inspired by
the strategy of the COMPASS experiment [122, 123].

Studies in beam time were conducted to determine the tolerated values of mirror
displacements [124]. A mirror system with displacements of about 1 mrad around both
the horizontal and vertical axes of mirror tiles relative to the neighbouring ones is accepted.

The principle of the alignment is to orient each mirror tile, such that the centre of
curvature of all tiles coincide in one virtual point. During the initial mirror alignment,
at the time of the detector assembly or during shut-down periods, a theodolite in auto-
reflection method is planned to be employed [125]. This method provides a global accuracy
of 0.1 mrad, ensuring an aligned mirror wall for optimal detector operation.

However this procedure is very time consuming (about 10 mirrors per day can be
aligned) and access to the mirrors is required, exposing the mirrors to potential damages
and pollution [126]. In order to monitor the mirror alignment, two approaches from the
COMPASS [127] and the HERA-B [128] experiments will be employed in parallel. Their
functioning principles and results obtained in the case of the CBM RICH detector are
presented in Chapters 4 and 5.

3.3.3 Photon detector plane

A crucial requirement for the operation of the CBM RICH detector is a high efficiency in
single photon detection. To that extent Multi-Anode Photomultiplier Tubes (MAPMTs)
were selected as photon sensors. The photon sensor chosen for the CBM RICH is the
H12700 MAPMT from Hamamatsu. Its inner structure and functioning principle is illus-
trated on Figure 3.13.

MAPMTs are PMTs with a quadratic photocathode window and a separated dynode
and anode design. The H12700 has 8 × 8 quadratic pixels with a surface of 6 × 6 mm2 and
a total effective area of 48.5 × 48.5 mm2. A blue-enhanced super-bialkali photocathode
is used in parallel with a UV glass, to improve photon detection, given that Cherenkov
radiation is mainly emitted in the ultra-violet region.

The main characteristics of the chosen H12700 MAPMT along with the requirements
on the performances are listed below [131]:

• Quantum efficiency. The ring finding and ring resolution efficiencies rise up with an
increased number of photons detected per ring, therefore increasing the efficiency
of the ring-track matching algorithm and the performance of the detector (see Sec-
tion 3.3.5). For those reasons a high quantum efficiency and single photon detection
efficiency are required. More than 25% peak quantum efficiency for the bialkali
photocathode type is required.
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Figure 3.13: Left: Inner structure of the Multi-Anode Photomultiplier (MAPMTs) H12700
from Hamamatsu and typical electron trajectories. The illustrated metal channel dynodes
present very low crosstalk during the multiplication stages, compared to other dynode
types. Figure taken from [129]. Middle: front and rear views of the MAPMT. Right:
single photoelectron spectrum. Figure taken from [130].

• Collection efficiency. This is the probability that a photoelectron produced by the
photoelectric effect in the photocathode reaches the first dynode and creates an
output signal.

• Dark current. This is the result of thermal electrons created from the photocathode,
when high voltage is applied on a PMT. The electrons are accelerated to the first
dynode and are responsible for a measurable current at the anode, referred to as
dark current. At a supply voltage of 1kV, a limit for the dark current of less than 5
nA is specified. Moreover a very low dark count rate (average ≤ 100 Hz/pixel and
individual ≤ 1kHz/pixel) is required, given the self-triggered DAQ system of CBM.

• Single photoelectron spectrum. It corresponds to the output signal collected at the
anode, which is seen as a pulse, whose shape depends on the PMT characteristics. A
parameter of interest used to characterise single photoelectron spectra is the peak-
to-valley ratio. It is the ratio between the single photoelectron peak and the valley
separating it from the noise. A clear single photon peak and a peak-to-valley ratio
larger than 1.2 in 61 out of 64 channels is needed (Figure 3.13, right).

• Afterpulsing. Sometimes, shortly after a pulse is measured at the anode, a secondary
pulse can also be observed. Those pulses come from the positively charged ions,
generated by thermal electrons or photoelectrons. The ions hit the photocathode,
producing additional electrons, which are accelerated in the dynode structure and
are a source of additional signals in the anode. These signals are called afterpulses.
An afterpulse probability below 5% in a time span from 70 ns up to 1.7 μs after the
signal is required.

• Time resolution. The time resolution is characterised by two parameters. The rise
time, corresponding to the time for the output signal to rise from 10% to 90% of the
peak amplitude. The transit time is the time interval between the photon arrival
on the entrance window and when the corresponding peak is read out at the anode.
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At the highest rate in CBM, the time interval between events will be less than 100
ns. A typical transit time spread of ∼ 1 ns is required and compatible with the
Hamamatsu data sheets, revealing a transit time spread of 0.35 ns [130].

• Life time. It corresponds to the integrated anode charge within one year of operation
at maximum hit rates. A life time superior than 10 C/cm2 is required.

• In addition, an average gain at a supply voltage of 1 kV larger than 0.8×106 at an
operation rate up to 700 kHz is required.

Table 3.2 summarises the main properties of the H12700 MAPMT:

Multi-Anode PMT H12700B-03

Photocathode material Blue-enhanced
Super-Bialkali

Window material UV glass

Dynode structure 10-stage metal
channel

Spectral response range 185 nm to 650 nm
Peak quantum efficiency at about 380 nm 33%

Anode

Gain 1.5× 106 (typ.)

Dark current
per channel 0.1 nA (typ.)
in total 6 nA (typ.)

Time response
rise time 0.52 ns

transit time 4.9 ns (typ.)
transit time spread 0.35 ns (typ.)

Table 3.2: Hamamatsu H12700 main specifications. The figures are obtained for a tung-
sten filament lamp operated at 2,856 K and a MAPMT supply voltage of 150 V at the
first dynode. Table inspired from [130].

Thorough measurements have been conducted, comparing the H12700 MAPMT to
other PMTs, in particular also the H8500, the previous MAPMT of reference for the
CBM RICH detector. The tests showed superior performances in most aspects, allowing
an overall higher quantum efficiency and very good improvements in the UV region, better
spacial resolution, less crosstalk, shorter after pulsing and improvements in the single
photon response. Figure 3.14a shows a quantum efficiency comparison of the H12700
MAPMT with two differently configured photocathodes to the H8500 MAPMT.

Wavelength shifting (WLS) films are also planned to be employed on some MAPMTs to
increase the quantum efficiency in the UV region. The p-terphenyl WLS films are organic
materials absorbing incoming photons and re-emitting them via fluorescence to larger
wavelength values. The performances of MAPMTs coated with WLS films revealed a
significant increase in the wavelength region 180 nm ≤ λ ≤ 280 nm, while no modifications
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in the quantum efficiency were observed in the wavelength region λ > 280 nm. Compared
to uncoated PMTs, the photon yield increases by ∼ 20% [132, 133]. Figure 3.14b displays
the quantum efficiency for bare and WLS coated H12700 MAPMTs.

(a) Comparison of quantum efficiencies for sev-
eral H12700 MAPMTs and one H8500, used as
reference. Two of the H12700 MAPMTs have a
so-called blue shifted or blue enhanced super-
bialkali photocathode for higher quantum effi-
ciency at low wavelengths. An overall higher
quantum efficiency is observed for the H12700
MAPMT, due to the super-bialkali photocath-
ode. Figure taken from [119].

(b) Impact of wavelength shifting films on the
QE of the H12700 MAPMT. The solid lines
shows the QE for a MAPMT without the WLS
film, the dashed line shows the QE with the
WLS film. The colours correspond to differ-
ent measurement positions on the photocath-
ode: blue in the lower right corner, green in
the center, red in the upper left corner. Figure
taken from [134].

Eleven hundred H12700 MAPMTs were ordered for the CBM RICH detector and a list
of specifications was set to ensure a high quality [135]. Upon delivery the MAPMTs were
tested and those fulfilling the requirements kept. To that end, a single photon scanning
test bench was built for the characterisation of each MAPMT [86].

The MAPMTs are planned to be distributed over two cylindrical shapes (one per
mirror half), which was decided due to an overlap of the electronics modules placed
behind them and is the result of an optimisation study [86]. The dimensions of the
cylinders were adjusted to cover the detector acceptance and to be integer multiples of
the readout modules presented in the following section. It was decided to distribute the
MAPMTs over 14 strips in the horizontal direction, each with 7 modules spread in the
vertical direction.

3.3.4 Readout chain and electronics

The MAPMTs will be read out with so-called DIRC RICH (DiRICH) readout modules, a
common development for the CBM-RICH, HADES-RICH and PANDA-DIRC detectors
[136, 137] (see Figure 3.15 and Figure 3.16). One such MAPMT readout module combines
6 MAPMTs and the readout on one PCB board (also referred to as the backplane),
providing mechanical fixation for the PMTs. The PCB design is also gas and light tight,
thus serving as border to the radiator gas volume. On its rear side, the backplane serves
as interface for the readout front-end electronics, linking the different front-end electronics
modules, which are plugged in. The PCB board thus minimises electronic cables, as it
transfers data, power and clock information between the front-end modules. This makes
the overall design very compact.
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Three different front-end electronic modules are connected to this PCB board and are
used in the readout chain: 12 DiRICH modules, a combiner module and a power module.
Together they form the so-called DiRICH family illustrated in Figure 3.16.

Figure 3.15: MAPMT readout module developed for data digitisation and treatment of
6 MAPMTs. It is made of a PCB board, on which 6 MAPMTs are plugged on one side.
One data combiner module, one power module and 12 DiRICHs (two per MAPMT) are
connected on the other side.

Figure 3.16: DiRICH family. Left: DiRICH readout module developed for data digitisa-
tion and treatment of 32 channels. Middle: data combiner module. Right: power module
to supply the readout electronics with low voltage and distribute the high voltage to the
6 MAPMTs.

Each DiRICH module, the heart of the readout chain, is a front-end module made
of analogous pre-amplifiers, a discriminator and a time to digital converter (TDC) [135].
The concept is optimised for low noise and good timing resolution. Each module reads out
32 individual channels. The analog MAPMT signal is amplified (×25) and shaped with
a high bandwidth transistor amplifier stage. The signal is then discriminated via input
comparators of a low voltage differential signaling line from an on-board FPGA. Data from
all 12 DiRICH (that is from six connected MAPMTs) is transmitted via the backplane to
the data combiner module with a 2 Gbps serial link. The data combiner module gathers
data from all PMTs to a signal output link. The link speed can be increased to 2.4
Gbps, which still needs enhancement to cope with the high data stream required in CBM.
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The output data are currently read out with Go4 (GSI Object Oriented On-line Off-line
system). All modules are powered via the backplane by the power module, distributing
1.1 V / 1.2 V / 2.5 V / 3.3 V DC power supply from external cables to the backplane. The
external power supply lines are measured by the power module, which makes a remote
supply voltage regulation easier. The power module also delivers high voltage (max -1,170
V) to the PMTs, via a high voltage supply line connected on the backplane.

In the CBM RICH detector, the MAPMT modules will be placed at the focal length
of the mirror wall, for sharp ring detection. The assembly will follow a cylindrical shape,
whose orientation and position has been optimised to yield minimal ring ellipticity and
maximal ring resolution [135].

The DiRICH modules were successfully produced and tested under beam time condi-
tions at the COSY accelerator located in the Jülich research center. The set-up employed
was reduced to 2 PMT readout modules of 3 by 2 MAPMTs and used a lens and a quartz
plate as radiators. Simulations in CbmRoot were conducted to determine key parameters
of the set-up, such as the spacing between the modules and the position and thickness
of the radiator material. Figure 3.17 shows the 2 configurations as mounted in the beam
line, along with an integrated ring collected in the quartz plate configuration. The results
obtained with this set-up were promising and confirmed the feasibility of the designed
readout chain and electronics.

Figure 3.17: Set-up used in the COSY accelerator facility made of 2 DiRICH modules
and a lens (left, focussing set-up) or a quartz plate (middle, proximity focussing set-up)
used as radiators. The beam went between the two modules through the radiator. Right:
Integrated ring collected in the quartz configuration.

Simulations done with the FLUKA software, assuming a realistic CBM operation
scenario for 20 years, yield an estimated ionizing radiation dose of up to 100 Gy, at
the place of the MAPMT plane. MAPMTs can be damaged by radiation in several
parts, such as the photocathode, the entrance window, the housing made of COVAR (via
60Co production from neutron capture), the electronics and potential wavelength shifting
films [135]. Both neutrons and gammas (from Co60 source) were employed to radiate
the MAPMTs. A slight increase in the dark rate with radiation is seen, but both the
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PMT gain and spectral shape were not affected after a 145 Gy irradiation dose. At 100
Gy radiation dose, a few percent loss of transmission in the window was noticed, which
resulted in a slight decrease (∼ 6%) in single photon efficiency. Furthermore no impact
was observed on the dynode chain with this radiation dose.

Another issue for the MAPMT plane comes from the residual stray field from the
dipole magnet. The photon detector plane will be positioned close to the dipole magnet,
inducing a residual stray field of 50 to 100 mT, which is too high for good photon detection
efficiencies of the MAPMTs. To reduce the stray field in the region of the MAPMT plane
a magnetic shielding box has been designed and optimised [138]. Figure 3.18 presents
preliminary engineering drawings of the shielding box and a magnetic field map in the
upper photon detector plane, obtained from calculations with the OPERA software. The
residual stray field is reduced to 0.3 mT in the central part at the surface of the pho-
ton detector plane, which fulfils the specification of a magnetic field below 1 mT in the
MAPMT region. The shielding box also has room for the readout modules and lateral
holes for electronics cables and cooling. This part is still being optimised, according to
the latest developments in the dipole magnet design.

Figure 3.18: Front (left) and rear (middle) engineering drawings of the shielding box. The
magnetic field map in the upper photon detector (right) is given in Tesla.

3.3.5 RICH Software

To embed experiment conditions and detector responses as close as possible to reality, a
software framework has been developed for the CBM experiment, named CbmRoot. It
combines the ROOT functionality for data analysis (developed in 1995 at CERN by R.
Brun), with GEANT (used for detector simulation) and inputs (such as event generators)
in order to simulate full events in the CBM detector set-up. Like ROOT for CERN,
CbmRoot provides the scientific community of CBM a tool for specific physics simulation,
big data processing, statistical analysis and visualisation and storage.

Each detector of CBM is being designed with computer-aided design (CAD) softwares,
including the detailed detector geometry and the materials to be used. Based on these
CAD models or even more simple designs, the detectors are implemented into CbmRoot.

In the case of the RICH detector, the geometry is designed with AutoCAD and trans-
formed to CATIA from Dassault Systèmes. The CATIA geometry is then converted to
a gdml file, used in the CbmRoot framework. Figure 3.19 represents a simplified CAD
view of the RICH detector in CATIA. The corresponding simulation views in CbmRoot
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are illustrated in Figure 3.20. The coordinate system of the RICH is the same as in CBM,
which has the z axis towards downstream of the beam line, the y axis vertical positive to
the top and the x axis, such as the (xyz) basis is right-handed. The centre (0; 0; 0) is
located in the centre of the target.

Figure 3.19: RICH geometry within the CATIA software. These are simplified models
ready to be converted for CbmRoot. The supporting structure is coloured in light blue,
the mirror wall in orange, the mirror supporting structure in blue, the MAPMTs in dark
blue and the shielding box in green. The required acceptance is shown in beige: polar
angle 0◦ ≤ θhor ≤ 35◦ in the horizontal direction and 0◦ ≤ θver ≤ 25◦ in the vertical
direction and the azimuthal angle 0◦ ≤ φ ≤ 360◦.

Figure 3.20: Front (left) and rear (right) views of the RICH detector in the simulation
framework of CBM. The beam pipe is coloured in white, the supporting structure in
light blue, the mirror tiles in orange, the mirror supporting structure in magenta and the
MAPMTs grouped in two cylinders in blue. The shielding box is not yet included.

This geometry is the result of several optimisations, which were the subject of a thesis
occurring during the presented thesis [139]. Therefore some results presented in the
subsequent sections use an older version of the RICH geometry. This version is shown
in Figure 3.21. It had a different mirror supporting structure and the MAPMTs were
distributed over two rectangular planes per mirror sphere, thus its denomination: ‘two-
wing geometry’.
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Figure 3.21: Front (left) and side (right) view of the RICH old two-wing geometry within
the CATIA software. The beam pipe is coloured in white, the RICH box in light blue, the
mirror wall in orange, the MAPMTs in blue and the shielding box in green. The detector
and mirror supporting structures have been removed on purpose for better visualisation.

Figure 3.22 sketches the event reconstruction of the RICH software. Based on the
information from the STS detector, particle tracks are extrapolated and projected on
the photon detector plane, as if the tracks had been reflected by the mirrors (a). The
MAPMT plane is scanned to search for rings and reconstruct them (b). The found rings
are attached to incoming tracks, based on their projections (c). The latter process is
referred to as ring-track matching.

Figure 3.22: Reconstruction process of the RICH software. Incoming STS tracks are
extrapolated and projected on the photon detector plane (a). Rings are searched for and
reconstructed based on the photon hits on the MAPMT plane (b). The found rings are
fitted to the projected tracks (c). Figure taken from [94].

To reconstruct rings, the Hough Transform method is employed to combine hit triplets
forming potential rings. A ring rejection algorithm is used afterwards to reject fake rings,
based on characteristics defining the quality of the found rings, such as the number of
hits in the ring, the ring radius and the hit distribution uniformity on the ring [94]. For
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the ring quality determination, an artificial neural network (ANN) is used.
The found rings, which are accepted by the ANN, are considered to have an elliptic

shape. An ellipse fitting algorithm is applied with 5 characterisation parameters: the
centre coordinates (X; Y), the major (A) and minor (B) semi-axes and a rotation angle.
The reconstructed rings are then matched to the projected tracks on the MAPMT plane,
which are obtained from the extrapolation of the STS detected tracks. To match the
reconstructed ring and the projected track, the distance between the ellipse centre and
the projected track coordinates is minimised. The correctly found and matched ring-
tracks have a typical distance peaking at around 0.2 cm, and the wrong matched pairs
usually have a distance larger than 1 cm.

(a) Ring reconstruction efficiencies for primary
electrons with respect to momentum. The red
points show the reconstruction efficiency for
rings with at least 5 hits, whereas the blue
points illustrate the reconstruction efficiency for
rings with at least 15 hits.

(b) Matching efficiency between the STS and
the RICH detectors for primary electrons versus
momentum. The red points indicate the STS
tracking efficiency, while the blue ones represent
the matching efficiency between the STS and
RICH detectors.

Figure 3.23: Ring reconstruction and STS-RICH matching efficiencies obtained for simu-
lations of 16,000 events containing 5 electrons and 5 positrons (0 ≤ p ≤ 9.5 GeV/c, polar
angle 2.5◦ ≤ θ ≤ 25◦ and azimuthal angle 0◦ ≤ φ ≤ 360◦) embedded in Au+Au collisions
at 10 AGeV beam energy.

The electron identification is done with an additional ANN and uses several parame-
ters, such as the major and minor semi-axes, the rotation angle of the ellipse, the χ2 of
the ellipse fit, the radial angle and radial position of the ring, the number of hits, the
distance to the closest track and the momentum of the track [94]. Using the radius of the
reconstructed ring in dependence on the momentum of the matched track obtained from
the STS detector, the particle can be identified. Electron rings have a constant radius, as
their Cherenkov opening angle is maximum, regardless of the momentum. Yet, a source
of pion misidentification comes from the combination between pions stemming from the
primary vertex with a momentum below the Cherenkov threshold and secondary electrons
produced somewhere in CBM. If these electrons are not seen in the tracking systems but
leave rings in the RICH, wrong ring-track matches can accidentally occur.

Figure 3.23 illustrates the performances in ring reconstruction (left) and STS-RICH
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matching (right) for simulations of 5 electrons and 5 positrons (momentum from 0 up to
9.5 GeV/c, polar angle 2.5◦ ≤ θ ≤ 25◦ and azimuthal angle 0◦ ≤ φ ≤ 360◦) embedded in
UrQMD (Ultrarelativistic Quantum Molecular Dynamics) background, for 16,000 central
Au+Au collisions at 10 AGeV beam energy. The set-up employed for this simulation
contains the following: Magnet (version v15a, with the magnetic field map v12b), STS
(version v16x), RICH (v17a_1e) and beam pipe (v16c_1e). In addition, the mirrors were
all aligned and default parameters for characteristics of the MAPMTs were chosen.

Ring reconstruction efficiencies of 93.4% and 94.4% are obtained for rings with at least
5 hits and 15 hits per ring, respectively. The STS reconstruction efficiency for primary
electrons is 98.5%. This figure decreases to 87.3% when combining information from
the STS and RICH detectors. The latter efficiency corresponds to matching between
reconstructed STS tracks and detected RICH rings. Efficiency losses are a combination
of losses from ring finding and ring-track matching. These losses can for instance stem
from high ring density, low number of reconstructed hits or rings, multiple scattering and
high track density.

Figure 3.24: Electron identification efficiency (left) and pion suppression factor (right)
achieved for simulations of 16,000 events containing 5 electrons and 5 positrons (0 ≤ p ≤
9.5 GeV/c, polar angle 2.5◦ ≤ θ ≤ 25◦ and azimuthal angle 0◦ ≤ φ ≤ 360◦) embedded in
Au+Au collisions at 10 AGeV beam energy.

Figure 3.24 shows the electron identification and pion suppression capabilities with
identical simulation parameters to the ones detailed in Figure 3.23. The electron identi-
fication efficiency amounts to 84.6% and the pion suppression factor is 210.3. For these
numbers a RICH cut of -0.4 on the artificial neural network was applied. The same cut
is used for all results presented later in this thesis.

Table 3.3 sums up the computed efficiencies for central Au+Au collisions at beam
energies of 8 and 10 AGeV. In each event, 5 electrons and 5 positrons are embedded with
the following parameters: momentum from 0 up to 9.5 GeV/c, polar angle 2.5◦ ≤ θ ≤ 25◦

and azimuthal angle 0◦ ≤ φ ≤ 360◦. In addition, simulations were performed with only
10 electrons and positrons each per event. For these particles identical momentum range,
polar and azimuthal angles were chosen.
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Increasing energies generate in particular higher track and ring densities, which trans-
lates in a decrease in the efficiencies.

Efficiencies 8 AGeV 10 AGeV single e-/e+

Ring reconstruction (≥ 5 hits) 95.5% 93.4% 96.8%
Ring reconstruction (≥ 15 hits) 96.4% 94.4% 97.5%
STS track reconstruction 98.9% 98.5% 99.8%
STS-RICH reconstruction
and matching 90% 87.3% 90.7%

RICH identification 87.1% 84.6% 86.7%
Pion suppression factor
(0 GeV/c ≤ p ≤ 6 GeV/c) 285.3 210.3 01

Table 3.3: Comparison of efficiencies for different simulations. Electrons were either
embedded into UrQMD events at different beam energies, or simulated as only source
(right column), with a momentum 0 ≤ p ≤ 9.5 GeV/c, a polar angle 2.5◦ ≤ θ ≤ 25◦ and
an azimuthal angle 0◦ ≤ φ ≤ 360◦. 16,000 events were simulated for each simulation run.

3.3.6 Real-size projects

Several RICH prototypes have already been tested successfully [94, 140]. As a next step
for the construction of the CBM RICH and due to delays in the construction of the FAIR
facility, components from the RICH detector will be used in other projects, namely the
HADES experiment and the mini-CBM (mCBM) set-up.

Figure 3.25: Left: Front view of the HADES RICH detector with the mounted H12700
Hamamatsu MAPMT. The central MAPMTs are coated with WLS films. Right: Close-up
view of the MAPMTs.

1No pions were simulated



68 Sect. 3.3 - Detector design

Figure 3.26: Rear view of the HADES RICH detector with electronics and cooling cables.

The upgrade of the HADES RICH detector was successfully carried out in a beam
time in March of 2019 in GSI. One of the objectives was to change the reflective CsI
photocathodes and corresponding gas detector with H12700 MAPMTs (see Figure 3.25).
The HADES RICH detector uses C4F10 as gas radiator and is thus blind to hadrons at
HADES energies. With this upgrade, the number of photon hits per ring should increase
from 3 - 4 hits with the aged set-up, to about 10 - 12 hits per ring, depending on the
polar angle. These parameters were obtained with simulations.

Taking part in this real physics project is also a good opportunity for the RICH group
to test the newly developed readout chain and electronics concept (see Section 3.3.4),
whose successful assembly is shown on Figure 3.26.

A second project, in which the CBM-RICH detector will take part from summer 2019
on, is the mCBM at SIS18 energies at the GSI/FAIR facility [141]. The purpose of this
project is mainly to test the self-triggered CBM DAQ system running with the different
detectors involved. Also online and offline data processing and analysis will be tested.

The set-up of the mCBM project is presented on Figure 3.27. The RICH detector will
use aerogel as radiator. A feasibility study with this set-up was successfully carried out in
a beam time at the COSY accelerator facility. It will separate low momenta pions from
kaons and from protons. In the basic set-up, two MAPMT readout modules will be used
and the DiRICH data transfer between the TRBNet based DiRICH and the CBM DAQ
will be established.

In addition, a mini-RICH was already implemented in the CbmRoot framework to run
simulations of Au+Au collisions at 1.24 AGeV. Figure 3.28 shows a ring produced by a
negatively charged pion in simulation in one of the four mRICH stations, along with an
identification histogram, showing a clear separation between pions and kaons for momenta
up to 3.5 GeV/c and allowing protons identification for momenta up to 5 GeV/c.
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Figure 3.27: Left: Design of the detector test area HTD for the mCBM experiment at
SIS18. Right: Top view of the mCBM test set-up. The coordinate axes are coloured in
red (X), green (Y) and blue (Z). The detector subsystems are aligned at an angle of 25◦,
with respect to the beam pipe. Figures taken from [141].

Figure 3.28: Left: Four simulated mRICH stations, where the dark blue, yellow and green
parts correspond to the aerogel radiator, the photon sensors and a ring produced by a
π

-, respectively. The coloured lines represent particle tracks. Right: Radius versus mo-
mentum histogram. A good separation between pions and kaons is observed for momenta
below 3 GeV/c and pions and kaons are well separated from protons for momenta up to
5 GeV/c. Figures taken from [142].
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3.4 The importance of mirror alignment - Scope of this
work

One of the challenges for the RICH detector with respect to mirror alignment is the
expected relatively high ring density. To that end a perfectly aligned and stable mirror
system is required for an accurate and efficient ring reconstruction.

The simulated mirror system, as implemented for the RICH detector in the CbmRoot
framework, provides, when mirrors are perfectly aligned, a ring reconstruction efficiency of
95.5% for at least 5 hits per ring and a STS-RICH reconstruction and matching efficiency
of 90%. This was obtained in simulation of 16,000 events, each containing 5 electrons and
5 positrons embedded in UrQMD central Au+Au collisions at 8 AGeV beam energy (see
Table 3.3).

A theodolite in auto reflection mode will be employed to ensure the initial mirror
alignment, yielding a 0.1 mrad global accuracy (see Section 3.3.2).

However this method requires space to operate (at least the radius of curvature of the
mirrors, which is for the CBM RICH detector 3 meters) and will be conducted outside
of the experiment line. The detector will be thus craned after the initial alignment. In
addition, the RICH detector will be craned out of the beam line when an exchange with
the MUCH detector is required (on a yearly/biyearly basis).

This could harm the stability of the mirror system, which could consequently harm
the detector overall performance.

In the case of misalignments, the Cherenkov angle measurement might be altered,
which translates in efficiency losses in ring reconstruction. These efficiency losses might
be caused by ring distortion, ring splitting and ring-track mismatching, which might in
turn cause particle misidentification. This is detrimental to a good operation of the
detector, as reduced ring finding efficiencies will harm the performances of the RICH.

Figure 3.29: Integrated rings in the case of mirrors rotated around the horizontal (left)
and vertical (right) axes. Figures taken from [94].

Figure 3.29 illustrates the ring splitting effect obtained from simulation. For this study
the particle beam was oriented towards the middle of the two lower mirrors of the RICH
prototype (see Section 4.2.1 and Figure 4.3). One of the mirrors was rotated, so that the
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cone half reflected by it was shifted in the vertical direction or in the horizontal one.

Figure 3.30 shows the impact of misalignments on the ring reconstruction efficiency
and on the STS-RICH reconstruction and matching efficiency.

Simulations have been carried out with a random mirror misalignment applied on all
tiles in any direction, following a Gaussian distribution (see Section 6.2.2 for a definition
of the induced misalignment). The mean misalignment was 0 mrad and the standard
deviation was 5 mrad.

Figure 3.30: Ring reconstruction efficiencies (left) and STS reconstruction and STS-RICH
matching efficiencies (right) for a 5 mrad Gaussian misalignment of the mirror wall. 16,000
events containing 5 electrons and 5 positrons embedded in Au+Au collisions at 10 AGeV
beam energy were simulated. The colour code follows the one from Figure 3.23.

In this case and compared to the aligned case (Figure 3.23), the STS reconstruction
efficiency is not affected. The ring reconstruction efficiency is only a little affected and still
amounts to 92.5% for rings with at least 5 hits. However the STS-RICH reconstruction
and matching efficiency drops down to 68.2%. As the ring reconstruction efficiency is
almost constant, the ring shapes are not much altered by misalignments, due to ring
distortions.

Instead mirror misalignments must perturb the ring-track matching, because of the
decrease in the STS-RICH reconstruction and matching efficiency. Misalignments trans-
late into rings being projected on the MAPMT plane in locations which do not match
with the projected tracks obtained from the STS detector and calculated in the software.
This overall increase in the ring-track distances results in losses in matching, which will
cause losses in electron identification and pion suppression.

A more detailed study was conducted to investigate the impact of misalignments on
different reconstruction efficiencies of the RICH detector and is presented in Table 3.4.

The results are displayed for two different beam energies: 8 and 10 AGeV. The mis-
alignment values correspond to the standard deviations of the Gaussian distributions used
to induce mirror rotations.

Just like in the case of Figure 3.30, the ring reconstruction efficiency and the STS
reconstruction efficiency are not harmed by an increase in the mirror misalignment. But
a clear drop can be observed already for a 2 mrad Gaussian misalignment in the STS-
RICH reconstruction and matching efficiency, as well as for the electron identification
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efficiency and the pion suppression factor.
This clearly shows the importance of mirror alignment in the performance of the CBM

RICH detector.

UrQMD beam en-
ergies

8 AGeV 10 AGeV

Misalignments 1 mrad 2 mrad 3 mrad 5 mrad 1 mrad 2 mrad 3 mrad 5 mrad
Ring reconstruc-
tion (≥ 5 hits) 95.2 95.1 94.9 94.8 93.3 93 92.9 92.5

Ring reconstruc-
tion (≥ 15 hits) 96.3 96.1 96 96 94.4 94 93.9 93.6

STS reconstruc-
tion 98.9 98.9 98.9 98.8 98.5 98.5 98.5 98.5

STS-RICH re-
construction and
matching

88.9 86.1 82.2 72.5 86.3 83.1 78.8 68.2

RICH e- identifi-
cation 85.4 78.5 68 47.2 82.9 76 65.3 45.2

Pion suppression
factor 265.4 212.8 186.7 164.8 190.6 162.4 143 128.8

Table 3.4: Comparison of efficiencies for different geometries and simulation inputs. Two
simulations are compared: central Au+Au collisions at 8 and 10 AGeV beam energy
with 5 embedded electrons and 5 embedded positrons (momentum from 0 up to 9.5
GeV/c, polar angle 2.5◦ ≤ θ ≤ 25◦ and azimuthal angle 0◦ ≤ φ ≤ 360◦). For each of
these simulations, several misaligned geometries were produced. Mirrors were randomly
misaligned with values following a Gaussian distribution, whose mean was set to 0 mrad
and whose standard deviation amounts to the values given in line 2 as ‘Misalignments’.
16,000 events were simulated for both energies. All numeric values are expressed in %,
apart from the pion suppression factor.

A mirror alignment and control system was thus deemed necessary to allow proper
operation of the CBM RICH detector under misalignments during the experiment data
taking. It has been developed to tackle the revealed and explained efficiency losses and
misidentification problems coming from mirror misalignments [143, 144].

In this thesis two methods are presented to determine possible mirror misalignments.
They are inspired from other RICH detectors from two different experiments and were
adapted to the RICH detector of CBM.

The first method relies on hardware and is inspired from the COMPASS RICH de-
tector. It is presented in Chapter 4. The second method is based on the software and
is adapted from the HERA-B experiment. Chapter 5 illustrates this method. In case
of mirror misalignments the two methods allow for a double-check, making thus a more
stable mirror system.

An alignment correction cycle is introduced in a third step in Chapter 6. It uses the
inputs of the two determination methods to correct for the detected misalignment.
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Determination of mirror rotations with
hardware

4.1 Principle of the method

The Continuous Line Alignment Monitoring (CLAM) method [127] was originally devel-
oped for the RICH-1 detector system of the COMPASS experiment [145]. The fundamen-
tal principle of the method is to use an object’s reflection by a surface made of mirror
tiles. In the case of misalignments between adjacent tiles, the image of the reflected object
will appear broken [126, 146].

The equipment required to implement the CLAM method is listed below:

• Stripes and targets made of retroreflective material
• Camera(s) to image the mirror reflections of the retroreflective material
• Lightning system to illuminate the stripes and targets

A rectangular grid made of retroreflective stripes is placed near the entrance of the
RICH vessel. Additionally, retroreflective targets are glued on the grid (for example at
the stripes crossing) and close to the mirrors (for example on the mirror frame). Cameras
(four in the case of COMPASS) are fixed inside the vessel, such that they point to the
spherical mirrors and see the retroreflective grid by reflection. The lightning system (LEDs
for COMPASS) are installed such that they illuminate the grid through the mirrors.
Figure 4.1 sketches the apparatus and the principle of the CLAM method.

The method consists of two different approaches to estimate mirror misalignments.
The first step supposes a previous initial alignment of all mirrors, such that the centres of
curvature of the mirrors coincide in one point in space. This alignment is usually realised
with a theodolite in autoreflection method [125]. In this configuration pictures are taken
to show the reflected grid with an aligned mirror system. These pictures are used as
references for later comparisons. If at some point mirrors are displaced, the picture of the
reflected grid changes and grid stripes will appear broken. Here the relative alignment of
adjacent mirrors is measured. This step yields a quick qualitative assertion, as to whether
mirrors are aligned or not.

73
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Figure 4.1: Sketched apparatus and
principle of the CLAMmethod in the old
two-wing geometry of the CBM-RICH
detector. The mirror wall is in light
blue, the outer mirror frame in salmon,
the vessel frame in dark blue, the pho-
ton sensors in yellow and the beam pipe
in light purple. LEDs are fixed close to
the cameras (in orange) and shine light
on the rectangular retroreflective grid
(white) via the mirrors. The light is re-
flected back to the cameras and the lines
reflected by misaligned mirrors will ap-
pear broken. Retroreflective target dots
are also glued at the mirror and vessel
frames for photogrammetry.

It is all the more possible, in a second step, to determine mirror rotations around
the horizontal and vertical axes of the tile. To do so a previous calibration of mirror
rotation is required. For this calibration mirrors are artificially rotated with a known
rotation angle. A picture is taken after the rotation and is subtracted to the reference
picture. A pixel shift between the stripes is extracted. This procedure is applied for
several mirror rotations on both rotation axes. Thus, should the mirror pivot, its rotation
can be determined by comparing the current grid reflection with the reference picture and
extracting the corresponding pixel shift. Sections 4.4 and 4.5 focus on the quantification
of mirror misalignments using this technique.

The feasibility of the CLAM method has already been shown by the COMPASS ex-
periment [127, 147].

This strategy is however limited by several factors. Mirrors are supposed to be initially
perfectly aligned, mirror rotations on both axes cannot be easily disentangled and the
position of the cameras might be altered during the detector operation, too [126].

In addition to this method, photogrammetry can be employed, involving the targets
and exact determination of their positions in space. This option requires the calibration
of the CLAM cameras, to determine their interior orientation parameters and an external
calibration, to establish the spatial position and orientation of the cameras in a global
coordinate system. Analytical photogrammetry algorithms, such as collinearity equations
[148], can be applied to derive the positions of all objects in the cameras’ field of view.
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4.2 CBM RICH prototype in 2014 beam time at CERN

4.2.1 Real size RICH prototype

To prove the feasibility of the proposed RICH detector design, several prototypes were
realised. Among them, one was used in beam time conditions at CERN in 2011, 2012
and 2014 (see Figure 4.2). This prototype is of particular interest, as it complies with the
real size radiator length, directly related to the number of emitted Cherenkov photons.
Furthermore, the prototype is true to most of the components foreseen for the full RICH
detector and defined in Section 3.3, such as the CO2 gas system and the mirror tiles.

Figure 4.2: Technical drawing of the CBM-RICH prototype vessel. The mirrors and
the rotation system are also drawn. The hatched area represents the emitted Cherenkov
photon cone and its reflection by the mirror system onto the photon detector plane (upper
right). Figure taken from [94].

Figure 4.2 sketches a side view of the RICH prototype, whose dimensions (2.4 m × 1.2
m × 1.4 m) provide a radiator length of about 1.7 m. The box is made of stainless steel
and its front and rear sides consist of 10 mm and 20 mm thick plastic plate, respectively.
An entrance and an exit window, each made of 2 mm thick plastic plate, are added to
minimise multiple scattering.

4.2.2 2014 beam time set-up at CERN PS/T9 beamline

The prototype was filled with CO2 by a computer-controlled gas system, in an overpressure
of 2 mbar. The system guaranteed a stable gas supply, maintaining oxygen contamination
to 100 ppm and water contamination to 200 ppm. This system provided a pion Cherenkov
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threshold of 4.65 GeV/c, corresponding to the expected value used in the CBM-RICH
detector [94].

Four 6 mm thick SIMAX glass mirror tiles manufactured by JLO Olomouc, Czech
Republic, and coated with a protective layer of Al + MgF2 constitute the mirror system
(see Figure 4.3). Each mirror tile is held by the aluminium frame and controlled by three
actuators. The actuators allow forward and backward tile movements within 3 cm, on the
contact points, permitting mirror rotations. The whole frame can also rotate around a
horizontal and vertical axis via motors (blue parts on the left side of Figure 4.3), controlled
by a dedicated EPICS program described in Appendix A. During the detector operation,
the mirrors are rotated by 7.65◦ around the horizontal axis to focus the Cherenkov photons
on the photon sensor plane (see Figure 4.2). The rotation value was computed, considering
an opening angle of 1.72◦ in CO2 for relativistic electrons and pions.

Figure 4.3: Front (left) and rear (right) view on the four mirror tiles mounted on the
frame inside the CBM-RICH prototype.

The photon detector plane is located at a distance of about 1.5 m to the mirrors and is
tilted to face the mirrors. One of the many goals of the 2014 CERN PS beamtime was an
in-beam comparison between the Hamamatsu H8500, the MCPs XP85012 from Photonis
and the newly released H12700 MAPMTs. In addition, a fully FPGA-based readout
chain developed in the lab was also tested [117]. This readout chain is the predecessor
of the finally developed DiRICH readout system. The MAPMTs were mounted on a gas-
tight carrier board, acting as interface between the inner part of the prototype and its
surroundings. The total coverage area of the carrier board was 21.4 cm × 21.4 cm and the
spacing between the PMTs was 2 mm. Figure 4.4 shows the set-up in the beam line. The
left-hand side represents a reflection on the mirror frame of the photon detector plane,
along with the CLAM camera. The right-hand side shows the readout chain connected
to the carrier board.

The signals were first processed by 64 PADIWA front-end modules, each PADIWA
having 16 channels. The PADIWAs were used as signal discriminators and signals were
further transported via flat cables to a second readout element. The second readout
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(a) Mirror frame holder inside the CBM-RICH pro-
totype. The photon sensor plane is also visible on
the mirrors via reflection. Retroreflective target dots
are visible on the frame, as well as the camera and
LEDs to apply the CLAM method.

(b) Front side of RICH vessel with the
readout electronics plugged in the pho-
ton detectors.

Figure 4.4: Mirror frame and readout system.

boards were made of TRB3 FPGA-TDCs and extrapolated several information from the
input signal, such as leading and trailing time and thus also time over threshold. This
idea was later abandoned and the much more compact DiRICH concept (see Section 3.3.4)
was developed. The DiRICH readout system drastically reduces the equipment and cable
loads (see Figure 4.4b) and thus reduces sources of background and signal losses during
signal analysis.

This opportunity of a beam test was also used to test the impacts of mirror rotations on
ring characteristics. For that purpose, two positions of the mirror frame were introduced.
In the first one, the frame was placed such that the particle beam was passing in between
the two lower mirrors. In the second position, the beam was crossing the mirror frame at
its center, that is in between the four mirrors.

Figure 4.5: Front view of one mirror. Mir-
ror rotation axes defined to artificially
misalign mirrors during beamtime. The
horizontal axis (brown) passes through the
two lower actuators, the vertical (yellow)
through the rightmost actuator and the
diagonal (red) links the two mirror edges
passing through the leftmost actuator.
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To imply artificial misalignments, the mirrors were remotely controlled with actua-
tors. Three rotation axes were defined: horizontal, vertical and diagonal (see Figure 4.5).
Mirrors were rotated in several positions to investigate the impact of misalignments on
ring characteristics.

The subsequent section presents results obtained with the presented prototype in real
conditions at CERN.
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4.3 Results from beam time at CERN

For the beam-test an initial mirror alignment was conducted. The procedure consists in
aligning the reflection of a laser source (assumed to be point-like) by all four tiles on a
single point at the focal plane of the mirrors.

The CLAM equipment is represented in Figure 4.6. A camera was mounted next to
the photomultiplier plane and its position and orientation remained fixed until the end
of the measurements (see Figure 4.6a). It was surrounded by three LEDs, which were
supplied with a voltage of 3.2 V. For the CLAM measurements, the PMTs were turned
off and the LEDs were switched on. The LEDs shined light through the mirrors on a grid
of retroreflective stripes, glued at the entrance of the RICH vessel (see Figure 4.6b).

Figure 4.6c represents the reference CLAM picture, taken after the initial alignment
procedure. The mirror edges appear as black cuts on the stripes. All stripes are continu-
ous, which shows that the mirror system is aligned. In the following, mirrors will rotate
and the stripes will appear broken at the mirror edges, indicating misalignments. This
thus allows for a fast qualitative assessment regarding mirror alignment.

(a) CLAM camera.

(b) Retroreflective grid. (c) Reference CLAM picture.

Figure 4.6: CLAM equipment and reference picture.

The vessel was placed in the beamline such that the beam passed in between the
two lowest mirrors at their half-height. Figure 4.7 represents different histograms of ring
characteristics in this configuration and for the case of an aligned mirror system. The sub-
histograms represent the integrated rings (4.7a), the number of hits per photon sensor
(4.7b), the radius (4.7c), the major semi-axis A (4.7d) and minor semi-axis B (4.7e)
distributions and the B/A ratio (4.7f). The integrated rings histogram shows the sum of
all events recorded in the aligned mirror configuration. The integrated ring resolution in
this picture displays smearing, due to a diffuse beam. The rings do not appear elliptical,
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as the mean values of the minor and major semi-axes are very close (Figures 4.7d and
4.7e).

(a) Integrated ring (b) Number of hits per PMT
(c) Radius distribution

(d) Major semi-axis: A axis (e) Minor semi-axis: B axis (f) B/A ratio

Figure 4.7: Distributions of main ring parameters with an aligned mirror system. The
mean radius is 4.63 cm, the mean A and B axis are 4.75 cm and 4.49 cm, respectively.
The number of events recorded is 90,669 with one ring per event.

The lower left mirror (in beam direction) was rotated afterwards, first around the
vertical axis, defined as RotY in Figure 4.5. In this configuration half of the Cherenkov
cone emitted by a particle crossing the vessel was reflected by the misaligned mirror, while
the other half was reflected by an unchanged mirror.

In the cases reviewed here, the lower left mirror was rotated such that its left side
rotated towards the observer (looking downstream). Thus the ring half reflected by this
mirror would come closer to its other half reflected by the aligned lower right mirror
on the photon detector. The ring in the MAPMT plane is thus squeezed. In order to
improve the beam focussing and select only beam particles going exactly in between the
two mirrors, a finger scintillator detector placed behind the mirror gap was additionally
used as triggering device.

Figure 4.8a illustrates the mirror configuration after the initial alignment and a typical
reconstructed single event ring. The situation once the mirror tile was rotated around
its vertical axis, as described above, is depicted in Figure 4.8b, with a corresponding
reconstructed single event ring. In the rotated configuration, misalignment is clearly
visible, as the grid lines appear broken at the mirror edges, while the ring becomes more
elliptical, as the two ring halves come closer to one another.
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(a) Picture of the retroreflective grid reflected
by the mirrors after the initial alignment
(top). A corresponding single event ring re-
constructed in this configuration is also shown
(bottom).

(b) Picture of the retroreflective grid once the
lower left mirror was rotated, along with a sin-
gle event ring. Mirror misalignment is observ-
able, as the grid lines appear broken at the mir-
ror edges.

Figure 4.8: Impact of mirror rotation. For single event rings, the black and blue lines cor-
respond to a ring and an ellipse shape, respectively. The fitted ring and ellipse parameters
are drawn below the reconstructed ring.

Figure 4.9 shows analogous histograms to Figure 4.7 in the case of a rotation of 4 mrad
of the lower left mirror around its vertical axis. As expected, rings seem more elliptical in
the integrated ring picture (Figure 4.7a). The ring resolution is worse, which is a partial
effect of misalignment, but also due to a dispersed beam. The increased ellipticity is
measured by the mean values of the A and B axes. Their difference increased from 0.26
cm in the aligned case up to 0.43 cm. This increased ellipticity is also seen in a reduced
B/A ratio (Figure 4.7f).

A split in two peaks in the B axis histogram is also observed. The first peak is reached
for a B axis of about 3.95 cm, while the second one is located at around 4.45 cm. This
feature suggests that two types of events were recorded. The first type (B = 3.95

cm) corresponds to the actual misaligned case. Here one ring half was reflected by the
misaligned mirror closer to the other half. The second type of events (B = 4.45 cm)
corresponds to cases where the Cherenkov cone was mainly reflected by one mirror (either
misaligned or aligned). This is due to a rather unfocussed beam and reveals that the
scintillator finger trigger was not sufficient to enhance the beam focussing.

Subsequently a cut on the data was applied to select only events, where the misalign-
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ment is clearly seen. In this case, a B axis cut of 4.25 cm was implemented. This value was
chosen, as it lies between the two observed peaks, allowing a rough separation between
the two types of events. For the further discussion, the two types of events are called
‘misaligned’ and ‘aligned’. Comparing with the values obtained in the reference case, it
can be assumed that events in which the B axis of the reconstructed ring is bigger than
this threshold value are considered as ‘false’ misaligned events, while events with a B axis
below the threshold are ‘true’ misaligned events.

(a) Integrated ring (b) Number of hits per PMT
(c) Radius distribution

(d) Major semi-axis: A axis (e) Minor semi-axis: B axis (f) B/A ratio

Figure 4.9: Distribution of main ring parameters with the lower left mirror rotated by 4
mrad around its vertical axis. The mean radius is 4.39 cm, the mean A and B axes are
4.52 cm and 4.09 cm, respectively. The number of events recorded is 121,849 with one
ring per event.

Figure 4.10 illustrates the ring radius, the ellipse major semi-axis and the ring ellip-
ticity histograms. In all the histograms the reference data set (black curve) is compared
with the data set for which a 4 mrad rotation around the vertical axis of the mirror was
carried out (coloured curves). The colour code correlates to different triggers used to
select between rings strongly affected (B axis ≤< 4.25 cm) and rings only little affected
(B axis > 4.25 cm) by misalignment.

When applying a cut using the information from the finger scintillator detector, the
number of ‘misaligned’ events extracted in the data set increases. This can be observed,
for example, in the ring radius distribution, which compares the red (no trigger on finger
scintillator) and the green lines (trigger on finger scintillator). As described the misalign-
ment was done such that the ring is squeezed, thus the reconstructed ring should have a
smaller radius. This effect is clearly seen and enhanced by selecting events more precisely
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going in between the two mirrors with the finger scintillator. As a result, the lower val-
ues of the ring radius histogram from Figure 4.10 should correspond to the ‘misaligned’
events. For these events the Cherenkov cone was partially reflected on the aligned mirror
and partially on the rotated one.

This described phenomenon is observed in all presented histograms.

Top left: Ring radius distributions. Top right:
Ellipse major semi-axis A. Lower left: Ring el-
lipticity B/A.

Figure 4.10: Histograms of ring radius, A axis and ring ellipticity B/A. The reference
data for an aligned system (black curves), the selected data without (red curves) and with
(green curves) triggering and the data obtained above (blue curves) and below (magenta
curves) the proposed cut (4.25 cm on the B axis). The histograms were normalised to the
number of entries. The number of events recorded is 145,676 with one ring per event.

Furthermore, implementing the proposed cut on the B axis (B axis ≤ 4.25 cm), the
selection of ‘misaligned’ events can be enhanced. This statement is supported by all
histograms and in particular by the ring ellipticity histogram, in the lower left panel of
Figure 4.10. The ring ellipticity, B/A, gives information on the shape of the reconstructed
ring. For ‘aligned’ events (the blue line), the reconstructed ring should not be elliptical
and should thus have an ellipticity close to 1. For ‘misaligned’ events (the magenta curve),
the ellipticity increases thus B/A becomes smaller.

Indeed the blue curve lies closely to the black one (reference data set) and peaks at
around 0.95 in B/A, while the magenta curve is the furthermost curve on the left side,
peaking at around 0.9 and thus gathering all elliptical events from the misaligned data
set.

The study was extended to smaller rotation values and different rotation axes as well.
Figure 4.11 shows results from the lower left mirror after rotation around its vertical axis,
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however in the opposite direction than for the previous case (Figure 4.10), thus stretching
the reflected rings. The rotation values were 1, 2 and 4 mrad. The beam diffusion
translated into two peaks visible in the A axis distribution. The histogram presented in
the upper left panel of Figure 4.11 illustrates the 4 mrad rotation. In the cases of 1 and
2 mrad rotations the peaks were still distinguishable but less pronounced.

In this example, a cut on the A axis at 5 cm was chosen, to differentiate the ‘misaligned’
events from the ‘aligned’ events. The same was done for the 1 and 2 mrad data set. The
resulting ellipticities are plotted in the top right and the lower left panels of Figure 4.11.
The reference data set is plotted as a mean of comparison (black line). The 1, 2 and 4 mrad
rotations (red, green and blue curves, respectively) are superimposed on the histogram,
too. Events below the threshold correspond to the ‘aligned’ events, while the ones above
correspond to the ‘misaligned’ case.

Top left: A axis histogram. Top right:
Ellipticity histogram for ‘aligned’ events.
Lower left: Ellipticity histogram in ‘mis-
aligned’ events.

Figure 4.11: Results from a misalignment study applying different rotations around the
lower left mirror tile. In the A axis distribution the red curve corresponds to data and the
black line to a Gaussian fit of the data. In the ellipticity histograms (top right and lower
left panels), the reference data set is represented in black, the 1, 2 and 4 mrad rotations
are in red, green and blue, respectively.

Analogous studies were conducted for mirror rotations around the horizontal and di-
agonal axes, with various rotation values. Studies were also done in the case of a beam
passing between the four mirror tiles. Similar behaviours and results were detected and
obtained, when applying threshold on ring parameters to select misaligned events.
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Figure 4.12 displays integrated rings obtained in different rotation cases. The inte-
grated ring obtained in the aligned case (Figure 4.12a) is also shown for comparison.
Notable consequences of misalignment are ring half shifts, or ring splits.

Effects of misalignments on rings were observed, only if rings are equally split be-
tween two (or four) mirrors. If the two halves are unequally distributed, the largest half
dominates, which reduces the impacts of misalignments on the reconstructed rings. Mis-
alignment effects remain however small for rotations of 1 mrad, which goes along with
the detector specifications.

(a) (b)

(c) (d)

Figure 4.12: Integrated rings for different configurations of the rotated mirror wall. Upper
left: Aligned mirror wall. Upper right: 4 mrad rotation around the horizontal axis of the
lower left mirror tile. Lower left: 4 mrad rotation around the diagonal axis of the lower
left mirror tile. Lower right: 4 mrad rotation around the vertical axis of the upper left
mirror tile and 2 mrad rotation around the diagonal axis of the lower left mirror tile.
The number of events acquired to obtain the figures are 90,669 (Figure 4.12a), 80,900
(Figure 4.12b), 64,783 (Figure 4.12c) and 18,205 (Figure 4.12d).
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4.4 Mirror calibration for the CLAM method

As explained in Section 4.1, it is possible to infer the mirror rotations directly from
CLAM pictures. To do so, a laboratory calibration is required and was conducted for the
prototype set-up.

For the laboratory calibration, a reference image is taken when the mirrors are aligned
and is used as comparison with pictures of the same mirrors, once they were rotated with
defined rotation values. The reference and rotated pictures are subtracted and a threshold
is applied on the resulting image. Thus only pixels which do not coincide between the
reference and rotated pictures and whose levels of white exceed the applied threshold are
observed on the resulting image. In case of misalignments, the resulting image exhibits
duplicated bands. These image processing operations were carried out with the program
Mathematica.

If double bands are obtained after the image processing, band widths are calculated.
They are defined as the difference in pixels between the leftmost and rightmost lines
for vertical mirror rotations and between the lowermost and the uppermost lines for
horizontal mirror rotations (see Figure 4.15). In total four band widths are measured on
four points of measurement chosen on the resulting picture either along the pixel rows or
the pixel columns, depending on the applied rotations. Mirror rotations ranging from 0
to 5 mrad in both directions around the vertical and horizontal axes were applied and the
corresponding pixel bands were measured.

Upper actuator Lower left actuator Lower right actuator
Upper right mirror 1.65 2.35 0.67
Upper left mirror 2.838 3.76 2.278
Lower right mirror 1.72 2.3 0.26
Lower left mirror 4.04 3.88 2.73

Table 4.1: Reference actuator values of different mirrors for the mirror calibration study.
The actuator values are given in volts and were applied to the system to obtain the initial
alignment.

these steps are illustrated in a study conducted in the laboratory. For this study the
LEDs were powered with 0.12A × 3.3V = 0.4W . The mirror outer frame was rotated
by -30.5◦ around its horizontal axis and -14.65◦ around its vertical axis1. The mirror tile
actuator values are given in Table 4.1. They were obtained after the mirror alignment
procedure conducted at CERN.

Figure 4.13 shows a picture obtained after the initial alignment and which was used
as reference for this study (left), along with a picture obtained after a 3 mrad rotation
of the lower left mirror (right) around the vertical axis (such a rotation is illustrated on
Figure 4.5 as RotY). To achieve the 3 mrad rotation of the lower left mirror tile, a voltage

1In EPICS the corresponding rotation values for the mirror frame are 329.5◦ around the horizontal
axis and 345.35◦ around the vertical one.
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of 4.1, 4.01 and 2.73 Volts were applied on the upper, lower left and lower right actuators,
respectively. On the rotated picture the stripes clearly appear broken, revealing quickly
the presence of misalignment.

Figure 4.13: Left: Reference picture obtained after the initial alignment in the laboratory.
Right: Picture obtained after a 3 mrad rotation of the lower left mirror around its vertical
axis. The stripes appear broken at the mirror edges, revealing quickly the presence of
misalignment.

Figure 4.14: Left: Subtraction between the two pictures presented in Figure 4.13, where
a 3 mrad rotation of the lower left mirror around its vertical axis has been applied. Right:
Picture obtained after application of an appropriate threshold on the subtracted picture.

On the left side of Figure 4.14, the subtraction of the two CLAM pictures from Fig-
ure 4.13 is shown. To obtain this picture, pixel values between the reference picture and
the misaligned one are compared and the relative difference is plotted in a gray scale. The
right side of Figure 4.14 displays the subtracted figure after an appropriate threshold was
applied. There only black and white pixels are visible. The application of the threshold
facilitates the measurement of the different pixel bands, which corresponds to the next
step of the calibration.
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The rows and columns, where the band widths are measured are defined on Figure 4.15.
The width of the pixel bands are measured either horizontally (Figure 4.15a) or vertically
(Figure 4.15b) or both in the indicated areas, depending on the applied mirror rotations.

(a) Chosen measurement bands on the thresh-
old picture for a horizontal rotation.

(b) Chosen measurement bands on the thresh-
old picture for a vertical rotation.

Figure 4.15: For both pictures a rotation of 5 mrad was induced.

For rotations around the vertical axis of the mirror tile (Figure 4.15a), four measure-
ment rows are chosen along the middle stripe. For rotations around the horizontal axis
(Figure 4.15b), two measurement columns are chosen along the second stripe and the
third stripe, counting from the top one.

Thus a mirror rotation in mrad corresponds to a width of pixels. This measurement is
done automatically from the first until the last detected white pixel in an area surrounding
the band to be measured.

Figure 4.16: Band widths (in pixel) obtained for the measurement on the band number
2 (see Figure 4.15a) for vertical rotations ranging from 0 to 5 mrad applied on the lower
left mirror tile. The data are well described by a linear fit, plotted with black dots and
whose fit is given. The intercept of 38.4 corresponds to the width of a single band.
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Figure 4.16 displays for example a band width obtained for the second measurement
row (Figure 4.15a, measurement band number 2) for a vertical rotation ranging from 0 to
5 mrad. A linear fit is plotted, with a determination coefficient of nearly one, showing a
very close to ideal fit. The parameters extracted from the fit are plotted, too.

The dependence of the band width on the mirror rotation is shown in Figure 4.17.
All four measurement points for vertical and horizontal rotations are displayed. A linear
trend is observed for all measurements, which agrees with the report from the COMPASS
experiment [127]. This makes it possible to infer the applied rotation from a rotated
picture, provided that a previous calibration measurement has been performed.

Figure 4.17: Relation between the band widths and the horizontal (left) and vertical
(right) rotations for all measurement rows and columns for the lower left mirror of the
wall. The same linear behaviour is observed in all positions of each applied rotations.

A similar study has been carried out for the lower right mirror tile and fit results
are presented in Figure 4.18. In this case the linear fits were slightly worse than in the
previous one. For all measurement bands, the fits yield good results, even though the
data points do not seem to lie on a straight line.

For the lower right mirror, a loss in the intensity of the grid was observed. This caused
fluctuations in the threshold picture for smaller rotations. Increasing the power of the
LEDs to 0.19A × 3.7V = 0.7W did not solve the problem. The band widths were thus
measured manually.
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Figure 4.18: Upper panel: Band widths obtained for the measurement band number 3
(see Figure 4.15a) for vertical rotations of the lower right mirror tile ranging from 0 to
5 mrad. Two lower panels: Relation between the band widths and the horizontal (left)
and vertical (right) rotations for all measurement rows and columns for the lower right
mirror of the wall. A linear behaviour is still visible, although it is slightly worse than in
the previous example.
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4.5 Application of the CLAM calibration on pictures
taken at CERN

The previously presented calibration of the mirror wall with the CLAM method was
subsequently used on pictures taken during the beam time at CERN (see Section 4.2.2).
From these pictures, mirror rotations were deduced in order to test the method, even
though the calibration was carried out at a later time and with a slightly different set-up.

Figure 4.19 exhibits pictures of the mirror wall taken after the initial alignment (top
left), after a 4 mrad rotation around the vertical axis (top right) and after a subtraction
between the two pictures and once a threshold has been applied (lower picture).

Figure 4.19: Pictures obtained after the initial mirror alignment (top left), after a 4
mrad rotation around the vertical axis of the lower left mirror tile (top right) and after
subtraction of the two upper pictures and application of a threshold (lower picture).

The band widths of each measurement points used in the case of a vertical rotation
(defined on Figure 4.15a) were measured in pixels. From the fits obtained for each mea-
surement band during the calibration in the laboratory (see for example the equation
on Figure 4.16 for the measurement band number 2), the following rotation values were
retrieved:

– point 1: 4.09 mrad
– point 2: 4.08 mrad
– point 3: 3.98 mrad
– point 4: 4.3 mrad
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The mean of these values amount to 4.11 mrad, which is only 2.75% more than the
actual applied rotation.

these results are obtained with the fit curves extracted for a rotation around the
vertical axis in the same direction. In this case the left side of the mirror comes towards
the observer and the right side of the mirror goes away from him (called ‘Backward’
rotation). In addition, the measured band widths (in pixel) were fit to the results obtained
for the same vertical rotation in the different direction. In this case, the left side of the
mirror goes away from the observer and the right side of the mirror comes towards him
(called ‘Forward’ rotation). The following rotations were extracted:

– point 1: 4.01 mrad
– point 2: 4.1 mrad
– point 3: 3.98 mrad
– point 4: 4.25 mrad

The mean of these values amount to 4.09 mrad, which is 2.25% more than the applied
rotation and lies even closer than the value obtained previously.

The same study has been conducted in the case of a 2 mrad ‘Forward’ rotation and a
1 mrad ‘Backward’ rotation around the vertical axis of the lower left mirror. The results
are displayed in Table 4.2.

2 mrad rotation ‘Forward’ 1 mrad rotation ‘Backward’
‘Backward’ cal-
ibration

‘Forward’ cali-
bration

‘Backward’ cal-
ibration

‘Forward’ cali-
bration

Measurement
point 1 2.35 2.22 0.98 0.81

Measurement
point 2 2.56 2.51 1.03 0.92

Measurement
point 3 2.34 2.23 0.94 0.86

Measurement
point 4 2.56 2.46 1.13 1

Mean 2.45 2.36 1.02 0.9

Table 4.2: Retrieved mirror rotations in the case of a vertical rotation of the lower left
mirror. The numbers are given in mrad.

In this case, the rotation values obtained for a 2 mrad rotation diverge more from
the applied rotation. The mean is about 22.5% more than the applied rotation for the
‘Backward’ calibration and about 18% more for the ‘Forward’ rotation. In the case of the 1
mrad rotation, the calculated rotations are in very good agreement with the applied ones.
They diverge by 2% and 10% for the ‘Backward’ and ‘Forward’ calibrations, respectively.

The discrepancy shown for the 2 mrad rotation can be due to a slightly different
mirror set-up used during the laboratory calibration from the one employed at CERN.
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For example the orientation of the camera could not be exactly reproduced. Also the light
intensity was different.

For comparison purposes, Table 4.3 shows the equations obtained once the presented
image processing operations have been applied to the pictures taken at CERN and fit-
ted with a linear fit. They are similar to the equations retrieved from the laboratory
calibration displayed on Figures 4.16 and 4.18.

Measurement
point 1

Measurement
point 2

Measurement
point 3

Measurement
point 4

Equations
from the
‘Backward’
calibration

y = 13.2x+ 36 y = 13.1x+36.5 y = 12.8x+ 36 y = 12.6x+34.8

Equations
from the
‘Forward’
calibration

y = 12.8x+38.6 y = 12.6x+38.4 y = 12.5x+37.3 y = 12.3x+36.7

Table 4.3: Equations obtained from the pictures taken at CERN, once the image pro-
cessing operations have been applied and the resulting threshold pictures have been fitted
with a linear fit. x represents the mirror rotation values in mrad and y the corresponding
pixel width values. The equations can be compared to the ones obtained in Figures 4.16
and 4.18 from the previous section.

The same study was carried out for a ‘Backward’ diagonal rotation of 4 mrad of the
lower left mirror, that is, a rotation on both the vertical and the horizontal axes in the
‘Backward’ direction. Figure 4.20 illustrates the mirror wall after initial alignment (top
left), after the rotation was applied (top right) and after the subtraction and threshold
were implemented (lower figure).

The rotation values of the mirrors retrieved from the pixel shifts are presented in
Table 4.4. The calculated vertical rotation is consistent with the applied one. The overes-
timation amounts to 1.75% of the applied rotation, in the case of the ‘Backward’ calibra-
tion, which corresponds to the actual direction of rotation. In the case of the horizontal
rotation, a discrepancy appears, which translates to 14.25% and 9.75% of the applied
mirror rotation in the ‘Backward’ and ‘Forward’ calibrations, respectively.

In this case, the pictures taken at CERN look quite different from the ones taken in the
laboratory during the calibration. Figure 4.21 displays the two different pictures taken
at CERN (left) and in the laboratory (right). This reveals that the vertical rotation is
not so much affected by the conditions under which the calibration is carried out, such as
camera orientation and light intensity. However the horizontal rotation seems to be more
sensitive to the calibration set-up.
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Figure 4.20: Pictures obtained after the initial mirror alignment (top left), after a 4
mrad rotation around the diagonal axis of the lower left mirror tile (top right) and after
subtraction of the two upper pictures and application of a threshold (lower picture).

Vertical rotation Horizontal rotation
‘Backward’ cal-
ibration

‘Forward’ cali-
bration

‘Backward’ cal-
ibration

‘Forward’ cali-
bration

Measurement
point 1 4.09 4.02 4.55 4.38

Measurement
point 2 4.24 4.25 4.62 4.38

Measurement
point 3 4.02 4.14 4.48 4.34

Measurement
point 4 3.94 4.17 4.64 4.45

Mean 4.07 4.15 4.57 4.39

Table 4.4: Retrieved mirror rotations in the case of a diagonal rotation of the lower left
mirror. The vertical and horizontal components of the applied rotation are separated.
The numbers are given in mrad.
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Figure 4.21: Mirror system as observed by the CLAM camera at CERN (left) and during
the calibration in the laboratory (right), after a ‘Backward’ diagonal rotation of 4 mrad
induced on the lower left mirror tile.

Another technique to quantify mirror rotations would be to use photogrammetry cal-
culations, which is briefly discussed in Section 7.2.

In summary, the so-called CLAM method was successfully implemented in the CBM-
RICH prototype. The method yields a quick qualitative assertion to monitor mirror align-
ment. In addition, it can be used to quantify mirror rotations, provided that a previous
laboratory calibration was conducted. This calibration is required for each mirror, which
can be time consuming. Also the conditions during the calibration (camera orientation,
illumination) have to stay stable, so that the yielded results remain comparable.

Moreover in the event that mirror rotations are detected and calculated with the
CLAM method, the rotation values can be written to a text file. This file is then used as
input for the correction cycle presented in Chapter 6 to allow a proper operation of the
RICH detector with mirror misalignments.
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Chapter 5

Quantification of mirror rotations with
software

5.1 Principle of the technique

In addition to the CLAM method employing an external hardware, a technique inspired
from the HERA-B experiment was implemented in the CbmRoot simulation framework for
the CBM-RICH detector [128, 149]. This technique aims at quantifying mirror rotations,
based on software and recorded data. Its principle is illustrated in Figure 5.1.

Figure 5.1: Principle of the quantification technique developed by the HERA-B experi-
ment.

Assume an event, where a Cherenkov cone is reflected on one particular mirror tile,
focused on the MAPMT plane as a ring and reconstructed by the software. The red crosses
in Figure 5.1 represent photon hits on the MAPMT plane and are fitted by the software
into a ring (dashed black line), whose centre is denoted C’. If the track, which produced
this ring, had been reflected by the same mirror in its aligned position, its extrapolation
on the MAPMT plane, as it is implemented in the RICH software, is indicated as C. For
a perfectly aligned system, C and C’ would overlap. If misalignments are present, C’ is
shifted horizontally (Δλ ) and vertically (ΔΦ ), depending on the rotation angles of the

97
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misaligned mirror tile. These shifts, when combined together, correspond to the distance
a between C and C’.

Subsequently two parameters are measured, namely the Cherenkov distance and the
Cherenkov angle, defined as θCh and ΦCh in Figure 5.1. θCh (in violet) is the distance
between each photon hit (red cross) and the extrapolated track hit C. ΦCh (in brown) is
calculated as the angle between θCh and the vertical passing through C. In parallel θ0 is
defined as the distance between a photon hit and the reconstructed ring center.

In case of mirror rotations, a sinusoidal behaviour is revealed when plotting θCh − θ0 ver-
sus ΦCh. This sinusoid can be used to extract the rotation values of the mirror tile. Indeed,
it has been demonstrated that [128]:

θCh = θ0 + ∆Φ · cos ΦCh + ∆λ · sin ΦCh (5.1)

Δλ and ΔΦ are illustrated in Figure 5.1 and correspond to the horizontal and vertical
projections of the distance between C and C’ : a. These shifts can be correlated to mirror
rotations around a vertical axis and a horizontal axis, with the rotation axes passing
through the center of the mirror tile.

To compute the correlation between a shift on the MAPMT plane and a mirror rota-
tion, the following formula can be derived, using geometric considerations:

shift = tan(2.σ) ·R (5.2)

Shift is the shift on the photon detector plane in meter (Δλ or ΔΦ for example), R is
the radius of curvature of the mirror in meter and σ the rotation applied on one axis of
the mirror tile in mrad.

A rotation around the horizontal axis of the mirror tile will induce a shift along the
vertical axis on the photon detector plane, while a rotation around the vertical axis of the
tile will induce a shift along the horizontal axis.

Thus, for a sufficient number of accumulated events fully hitting a particular mirror
tile, mirror rotations around a horizontal and a vertical axis can be quantified by the
software. The right side of Figure 5.1 gives a first example. It represents in a histogram
θCh − θ0 as a function of ΦCh in the case of a mirror rotated by 5 mrad around its vertical
axis and after a threshold was applied to enhance the sinusoidal behaviour. Fitting
the data to Equation 5.1, misalignments of 0.29 mrad and 5.24 mrad were reconstructed
around the horizontal and vertical axes, respectively. The red curve illustrates the sinusoid
with these parameters.
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5.2 Implementation of misalignments in the RICH ge-
ometry

The implementation of the RICH geometry in the CbmRoot framework was presented
in detail in Section 3.3.5. In addition to the presented RICH detector geometry, the
possibility of mirror rotation was implemented, using the CATIA software. This feature
allows for artificial mirror tile rotations around the horizontal and vertical axes of the tile,
both independently and simultaneously. The rotation axes are defined locally for each
tile as the tangent (for the horizontal axis) and the binormal (for the vertical axis) of the
tile passing through its center. Horizontal and vertical mirror rotations are illustrated on
Figure 5.2, where two rows of mirrors have been rotated.

Mirror rotations can be set in a .gdml file, which first needs to be converted to the
.root format, before being used for simulations. Studies have shown [94] that, during the
operation of the RICH detector, a mirror misalignment of 1 mrad per axis is tolerated.

Figure 5.2: Mirror rotations around the horizontal (left) and vertical (right) axes. The
misaligned row of mirrors are coloured in blue, while the aligned rows are in yellow.
The beam-pipe, mirror supporting frame and holding structure were removed and an
exaggerated rotation value of 100 mrad was applied for better visualisation.

As explained in Section 3.4, inducing misalignments will alter the reconstruction pro-
cess of the RICH software illustrated in Figure 3.22. Indeed the reflection of an incoming
track extrapolated from the STS detector is calculated by the software, supposing mirrors
in their ideal aligned configuration. However, the emitted Cherenkov photons will be
reflected by the mirrors in their actual state, which is rotated in case of misalignments.
This will lead to shifts between the reconstructed ring centres C’ and the extrapolated
track positions C, corresponding to an increase in a from Figure 5.1.

Figure 5.3 represents four situations of mirror misalignments. Four different mirror
tiles (marked by the red boxes) were rotated by 3 mrad around a single axis.
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As explained in the previous section, a vertical rotation, corresponding to a rotation
around the Y axis, should induce a shift only (in the ideal case) in the horizontal direction
(ΔΦ on Figure 5.1, while Δλ remains unchanged). Analogously, a horizontal rotation,
referred to as a rotation around the X axis, should induce a shift only in the vertical
direction (Δλ on Figure 5.1, while ΔΦ remains unchanged).

In addition, a direction of rotation is defined. A positive rotation around the Y axis
(for example +3 mrad around the Y axis) is such that when looking at the front of a
mirror tile, the right side of the tile will rotate towards the observer and the left side of
the tile will rotate away from him. Analogously, a positive rotation around the X axis
(for example +3 mrad around the X axis) is such that the upper part of the mirror tile
will rotate towards the observer and the lower part will rotate away from him.

Figure 5.3: Reconstructed rings (blue) and measured photoelectrons (red) in the MAPMT
plane for different mirror rotations and mirror tile positions, as depicted on the left figure.
Right, from top left (Ring 1) to bottom right (Ring 4): -3 mrad around the X axis, +3
mrad around the X axis, -3 mrad around the Y axis, +3 mrad around the Y axis. Ring
centres are depicted with the blue cross, extrapolated tracks with the green stars. A
3 mrad rotation corresponds to a shift of 0.9 cm of the ring centre C’ on the photon
detector plane. In all cases the ring centre was shifted in the expected direction from the
extrapolated track hit by around 1 cm.

The rings reflected by the different mirror tiles are labelled from 1 to 4 on Figure 5.3.
The ring centres were shifted by 1.3 cm in the horizontal direction in the case of rings 1
and 2 and by 0.8 cm and 0.7 cm in the case of rings 3 and 4, respectively. Moreover, a
shift in the other direction was observed, which amounts to 0.1 cm for rings 1 and 2 and
0.2 cm for rings 3 and 4.



Chapter 5 - Quantification of mirror rotations with software 101

Using the Equation 5.2, a rotation of 3 mrad is equivalent to a shift of 0.9 cm on the
photon detector plane. The errors observed in Figure 5.3 amount in average to 44% of
the calculated value for a horizontal rotation, while for a vertical rotation they amount
to 17% of the calculated value.

The observed discrepancies can be attributed to the detector geometry, such as the
cylindrical shape of the photon detectors.
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5.3 Quantification of mirror rotation

In this first example, a single mirror tile, whose ID number is 5_3, was rotated by 4 mrad
around its vertical axis. 2,500 events were simulated, each event containing 1 electron
shot directly at the tile of study. The following lists the set-up used on CbmRoot for this
study: Magnet (version v15a, with the magnetic field map v12b), STS (version v16x),
RICH (version v17a_1e) and beam pipe (version v16c_1e).

The minimum number of points required for the STS detector was four and it was
seven for the RICH detector. The standard routines of the RICH detector for ring finding
and ring-track matching were employed. The results presented were obtained with the
class CbmRichMirrorSortingAlignment, with a threshold of 400 to reduce the background.

The intersection between the track and the photomultiplier is done by computing
first the intersection between the particle and the mirror tile. This is implemented using
a particle propagation method from the Geometry Manager class. Then the reflection
on the mirror is calculated from the mirror normal computed at the intersection point.
Finally the intersection with the MAPMT is calculated, by extrapolating the reflection
to the MAPMT plane.

Figure 5.4: Left: Histogram of θCh − θ0 versus ΦCh in the case of a mirror tile rotated
by 4 mrad around its vertical axis. The distribution is clearly that of a sinusoid. Right:
Resulting sinusoidal fit from the left histogram coloured in red. The extracted rotation
parameters around the horizontal and vertical axes are -0.39 mrad and 3.56 mrad respec-
tively. The blue curve represents the maximum of each vertical slice from the histogram
on the left-hand side. 2,500 electrons were simulated and a threshold of 400 was applied.

From the accumulated statistics, the variables θCh − θ0 and ΦCh were calculated.
They were put together in a histogram, shown on the left side of Figure 5.4. A sinusoidal
behaviour is apparent.

To fit the resulting histogram with a sinusoid from Equation 5.1, a preliminary search
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of maximum was conducted for each vertical slice of the histogram. The resulting sinusoid
is shown on the right side of Figure 5.4. The extracted rotation values are -0.39 mrad
around the X axis and 3.56 mrad around the vertical axis.

According to Figure 5.3, a vertical rotation will mostly translate in an increase in
ΔΦ , while Δλ remains unchanged. This implies, according to Equation 5.1 that the
fitted curve will mainly look like a cosine function, which is the case on Figure 5.4.

The binning of the histogram on Figure 5.4 can be tuned to optimise the quantification
of mirror rotations. A finer binning yields more reliable results but also requires more
statistics, which can become difficult to achieve for example for mirrors located away from
the beam pipe. In the end a trade-off needs to be found.

The rotation values do not correspond exactly to the applied rotation, partially due to
the RICH detector geometry. Indeed a rotation around a single axis implies both vertical
and horizontal displacements of C’ on the PMT plane, which is detected from the sinusoid
shape. This phenomenon is more apparent for the CBM RICH detector, as the radius of
curvature of the mirrors is 3 m and the mirror wall is tilted by 10◦ around the horizontal
axis, whereas the radius of curvature is 11.4 m in the case of the HERA-B RICH and the
mirrors are tilted by 9◦.

The technique has been also adapted to the RICH detector geometry nomenclature,
such that the mirror tile name from the geometry file is extracted and used. It was also
further improved to detect misalignments on different mirror tiles simultaneously. These
changes have been included in the class CbmRichMirrorSortingAlignment in the Exec and
DrawFitAndExtractAngles methods.
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5.4 Performances of the technique

The performances of the quantification technique were further investigated. Simultane-
ous misalignments on both rotation axes of a given mirror tile can be extracted. The
situation is illustrated in Figure 5.5. In this example, the mirror tile 5_3 was rotated by
4 mrad around its horizontal axis and by 2 mrad around its vertical axis. The simulation
parameters were identical to the ones detailed in the previous section. A rotation of 3.96
mrad around the horizontal axis and 1.97 mrad around the vertical axis were calculated
by the software.

Figure 5.5: Detection of misalignments on both mirror tile axes simultaneously. Left:
histogram obtained from data. Right: corresponding sinusoid. Rotation values were 4
mrad around the horizontal axis and 2 mrad around the vertical axis. Detected values
are 3.96 mrad and 1.97 mrad, respectively.

The detection limits and the performances in the inner and outer regions of the mirror
wall are reviewed in the following subsections.

5.4.1 Detection limits

The detection limits of the technique were examined, namely the minimal and maxi-
mal misalignments on a mirror tile, which can be correctly derived. Misalignments were
applied on the tile 5_3 and 2,500 events, each containing one electron for better recon-
struction, were simulated and shot towards the mirror tile. The chosen set-up in CbmRoot
is similar to the one already presented in the previous section.

For rotations only around the horizontal axis of the mirror tile, misalignments down to
0.3 mrad and up to 14 mrad can be retrieved. The reconstruction errors amount to 19.7%
of the applied rotation for the 0.3 mrad misalignment case and it amounts to 16% of the
applied rotation for the 14 mrad misalignment case. The sinusoids and fits obtained in
these two cases are represented on Figure 5.6.
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For rotations only around the vertical axis of the mirror tile, misalignments down to
0.4 mrad and up to 15 mrad can be reconstructed as well, with reconstruction errors equal
to 21% and 19.3% of the applied rotation, respectively. The two cases are illustrated on
Figure 5.7.

Figure 5.6: Minimal (left) and maximal (right) detected misalignments on the mirror
tile 5_3 for a horizontal rotation. In the minimal case, a rotation of 0.3 mrad around
the horizontal axis was applied on the mirror 5_3, yielding a reconstructed misalignment
of 0.24 mrad around the horizontal axis and -0.02 mrad around the vertical axis. In
the maximal case, a rotation of 14 mrad around the horizontal axis was applied. The
reconstructed values amount to 11.74 mrad for the horizontal axis and 0.55 mrad for the
vertical one.

Figure 5.7: Minimal (left) and maximal (right) detected misalignments on the mirror
tile 5_3 for a vertical rotation. In the minimal case, a rotation of 0.4 mrad around the
horizontal axis was applied, yielding a reconstructed misalignment of -0.1 mrad around
the horizontal axis and 0.32 mrad around the vertical axis. In the maximal case, a rotation
of 15 mrad around the horizontal axis was applied. The reconstructed values amount to
-1.13 mrad for the horizontal axis and 12.05 mrad for the vertical one.

For lower mirror rotations, a sinusoid is still detected (see Figure B.1). However the
reconstructed values contain huge errors (∼ 70% of the applied rotation) on both axes of
the mirror tile with respect to the actually applied misalignments. Thus the technique is,
for these rotation values, not reliable any more. The sinusoids corresponding to a 0.1 mrad
rotation around the horizontal and vertical mirror axes are shown in the appendix B.1.

For misalignments of more than 14 mrad for a horizontal rotation and of more than 15
mrad for a vertical one, the technique reaches a maximum value for the detected mirror
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misalignment. The calculated mirror rotation for higher rotation values stagnate around
this maximum. In fact the point C (from Figure 5.1) does not lie within the ring radius
any more. This distorts the resulting sinusoid, thus higher offsets appear in the fits, which
makes the technique not applicable any more.

In the RICH technical design report [94], the maximum mirror misalignment to be
tolerated is specified to 1 mrad on average, which lies within the working range of the
quantification technique.

5.4.2 Performances in the inner and outer regions of the mirror
wall

Due to the observed dependence of the technique on the CBM-RICH detector geometry,
causing a reduced precision in the quantification of mirror misalignments, a subsequent
study was conducted to compare the performances of the technique between the inner
and the outer regions of the mirror wall. The main concern was that tracks reflected
by mirrors situated in the outer region of the mirror wall could be more influenced by
the detector geometry. This may be attributed to the low momentum of the majority of
tracks reaching the outer mirrors, combined with the large reflection angles.

For this study, a previous geometry of the RICH detector was used, named rich_v16a_1e.
In this geometry, the photon sensors were grouped in rectangular planes. Two MAPMT
planes were installed per mirror half, that is four planes in total. They are partially
represented in dark blue on the upper and lower edges of Figure 5.8a. The set-up used
differs from the previous one: Magnet (version v15a, with the magnetic field map v12b),
STS (version v15c), RICH (version v16a_1e) and beam pipe (version v14l). In addition,
the number of events was increased to 5,000 per mirror tile, to collect sufficient statistics.

Additionally the previous nomenclature going along with the detector geometry was
used for mirror labelling. The mirrors used for this study are labelled 1_4 for the inner
part and 2_1 and 0_8 for the outer part of the mirror wall. Their locations are highlighted
on Figure 5.8a. With the new nomenclature, these mirrors would have the labels 5_4,
6_1 and 4_8, respectively.

Misalignments ranging from 0.1 mrad up to 5 mrad with a step of 0.1 mrad in the
interval [0.1 mrad; 2 mrad] and a step of 1 mrad in the interval [3 mrad; 5 mrad] were
applied on mirror tiles located in the inner (mirror 1_4) and outer (mirrors 2_1 and
0_8) regions of the mirror wall. Rotations on separate axis and on both axes simulta-
neously were implemented. The class used to quantify mirror misalignments was called
CbmRichAlignment. The mirror nomenclature from the rich_v16a_1e geometry was im-
plemented accordingly in the class.

Figure 5.8 shows the applied and reconstructed misalignments for different types of
mirror rotations applied on an inner and an outer mirror tile. Figure 5.9 displays the
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deviations between the applied and reconstructed misalignments.

For the inner mirror tile 1_4 and for mirror rotations applied on the X axis only,
the reconstructed misalignments on the rotated axis is excellent, while the reconstructed
misalignment on the non-rotated axis is negligible. The error on the misalignment re-
construction on the X axis is 3.3% on average of the applied rotation and the average
reconstructed misalignment on the Y axis amounts to 0.1 mrad. The errors obtained
for rotations and misalignment reconstruction on the X axis are illustrated in yellow on
Figure 5.9a.

For mirror rotations applied on the Y axis of the same mirror tile, a small discrepancy
is observed on the rotated axis, where an error of 18.9% on average of the applied rotation
is observed for mirror rotations ranging from 0.3 mrad up to 5 mrad. The errors on the
misalignment reconstruction for vertical rotations are represented in purple on Figure 5.9a.
The higher the applied rotation, the smaller the reconstruction errors. In this case, the
reconstructed misalignment on the non-rotated axis is negligible and close to 0 mrad.

Applying the same mirror rotation on both axes of tile 1_4 yields errors in the recon-
structed misalignments on the X axis of about 3% of the applied rotation for misalignments
ranging between 0.3 and 5 mrad. On the Y axis, the errors obtained in the calculation of
mirror misalignments amount to 16.9% within the same rotation range. These errors are
illustrated in Figure 5.9b.

As shown in the previous subsection, the method works for the inner mirror tile 1_4
with acceptable errors for misalignments starting at 0.3 mrad on the horizontal axis and
0.4 mrad on the vertical one. Furthermore, the errors in the misalignment reconstruction
decrease with increasing mirror rotations. The deviations for small mirror rotations are
large, however the corrections are anyway tiny in this range, thus no large influence is
expected.

The study of the software-based method performances for an outer mirror tile has
been conducted with the tile 2_1. In this case, larger errors in the calculation of mirror
rotations on the rotated and non-rotated axes than in the inner mirror tile case are
observed.

For mirror rotations applied only on the X axis, errors on the reconstructed misalign-
ments on the X axis amount to 28.6% of the applied rotation on average, over the complete
mirror rotation range. In addition, rotations on the non-rotated Y axis are detected and
keep increasing with increasing rotations around the X axis. On average a misalignment
of 0.1 mrad is calculated on the Y axis and errors amounting to 7.9% are calculated. The
errors obtained for rotations and misalignment reconstruction on the horizontal axis are
shown in yellow on Figure 5.9c.
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(a)
(b)

(c) (d)

(e) (f)

(g)

Inner (1_4) and outer (2_1 and 0_8) mir-
ror tiles used to conduct the study (a). Ap-
plied and reconstructed misalignments for ro-
tations around the horizontal and vertical axes
are shown for an inner tile (b, c and d) and an
outer tile (e, f and g). The applied misalign-
ment is coloured in purple, the reconstructed
mirror rotation around the horizontal axis in
orange and the reconstructed mirror rotation
around the vertical axis in green.

Figure 5.8
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For mirror rotations on the Y axis of the tile 2_1, errors in the misalignment recon-
struction on the rotated as well as the non-rotated axes are larger than in the case of
a horizontal rotation. The errors on the misalignment reconstruction on the Y axis are
47.1% of the applied rotation on average, for mirror rotations ranging between 0.5 and 5
mrad. An average misalignment of 0.2 mrad on the non-rotated X axis is calculated for
the same rotation range. The errors for rotations on the Y axis are displayed in purple
on Figure 5.9c.

For a simultaneous rotation applied on both axes of the same outer mirror, errors on
the reconstructed misalignment on the X and Y axes amount to 43.5% and 36.4% of the
applied rotation on average, respectively. In this case, the chosen mirror rotation range
goes from 0.3 mrad up to 5 mrad. The errors in the misalignment reconstruction on both
axes are represented on Figure 5.9d. For the 5 mrad rotation case, reconstruction errors
might cancel each other out, which translates in the observed behaviour (see last point of
the green curve on Figure 5.8g).

(a) (b)

(c) (d)

Figure 5.9: Difference between the applied and reconstructed mirror rotations obtained
by the software technique for rotations applied on the inner mirror tile 1_4 (a and b) and
on the outer mirror tile 2_1 (c and d). Errors for single axes rotations (left column) and
for mirror rotations on both axes (right column) are displayed. For single axis rotations,
the errors on the X axis are represented in yellow and the errors on the Y axis in purple.
For simultaneous rotations the errors on the X axis are in blue and the errors on the Y
axis in orange.
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A similar study conducted on another outer mirror tile labelled 0_8 is detailed in
the appendix B.2. Results are shown on Figure B.2. Errors on the rotated axis were
smaller than for the mirror tile 2_1, meanwhile larger errors on the non rotated axis were
reconstructed. For simultaneous mirror rotations, errors on separate axes reach a plateau
and amount to 32.2% and 33.9% of the applied rotation for the X and Y axes, respectively.

In summary, this study demonstrates that the software-based technique yields better
results for an inner mirror tile than for an outer mirror. This is observed for misalignment
reconstruction on the rotated axis as well as on the non-rotated one.

Furthermore, the errors in the calculations of misalignments decrease with increasing
mirror rotation for both mirror tile types. Also for both mirror types, the calculation of
the mirror rotation is better for horizontal than for vertical rotations.

Yet the method still works for misalignments within the working range of the CBM-
RICH detector, starting at 0.3 mrad for a horizontal rotation and 0.4 mrad for a vertical
rotation.

The detector geometry plays an important role in the quantification of misalignments
for the proposed software-based technique. The RICH geometry has been subject to
optimisations, resulting in a cylindrical shape for the photon detector. A study showing
the variations of the ring-track distance on the photon detector plane in different regions
has been conducted on a more global scale (for a complete mirror half) with this geometry
and is shown in Section 6.2.1.

In this chapter, it has been demonstrated that the quantification technique inspired
from the HERA-B experiment yields overall satisfying results for the CBM RICH detector
and a reasonable precision for mirror misalignments ranging between 0.3 mrad and 5 mrad.
The misalignment information is written in an output text file, where the tile name and
corresponding mirror rotations on both axes are listed. This text file will be later used
as input in an alignment correction cycle, which was subsequently developed and is the
subject of the following chapter.
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Correction cycle developed for the
RICH software

6.1 Correction cycle with the former RICH geometry

The correction cycle employs the two presented methods from Chapters 4 and 5 to detect
and calculate mirror misalignments. If misalignment is detected and quantified, the infor-
mation is used to correct the track extrapolation onto the photon detector plane, which
reduces the distance between the reconstructed ring centre and the track extrapolation
hit, denoted a in Figure 5.1. This correction will thus reduce the impact of misalignments
on the RICH detector performance.

6.1.1 Principle of the correction cycle

As explained in Section 5.1 and illustrated on Figure 5.3, in case of mirror rotations, the
reflected ring is shifted on the photon detector plane. However, the extrapolated track hit
does not change, as it is calculated from the ideal mirror position. Therefore the distance
a between ring center and track extrapolation increases.

In principle two approaches could be applied to correct for the misalignment. The
first one would work on either the position of the ring centre alone, or the positions
of the photon hits and thus of the ring center. This approach would aim at correcting
these positions by shifting them of the photon sensor plane. The second approach would
displace the track extrapolation as if it were reflected by a rotated mirror tile similar to
the one which shifted the ring on the MAPMT plane.

It turns out it is easier to proceed with the second strategy, as only single tracks need
to be corrected and a single track can be clearly allocated to a certain mirror. For photons
from one track however, they may be reflected by more than one mirror tile. Furthermore
it might not always be clear which photon corresponds to which ring under the CBM
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conditions.
The second strategy, which was chosen for the correction cycle, is sketched in Fig-

ure 6.1. The ideal track extrapolation (point C in blue) is recomputed, as if the mirror
was rotated, which shifts it closer to the ring center. This is illustrated on the right-hand
side of Figure 6.1, where the point C (in green) lies closer to the ring center (in red).

Figure 6.1: Sketched correction method, which is based on the correction of the track
extrapolation. The blue elements represent the ideally aligned mirrors used for the track
extrapolation (point C in blue on the left). In case of a misaligned mirror (in red on the
left), the reflected ring (in dashed black) is shifted on the MAPMT plane (in orange).
After correction, the mirror orientation is adjusted closer to the misaligned mirror (in
green on the right). This shifts the track extrapolation (point C in green on the right)
closer to the ring center (point C’ in red) and thus reduces the distance a between them
(in light blue).

The correction cycle as implemented in the software for simulation and reconstruction
runs is illustrated in the case of the software-based technique in Figure 6.2. It depicts the
underlying implemented classes and their interlacing and gives a detailed description of
the different implemented methods.

For the hardware-based method, the first reconstruction run is replaced by the CLAM
measurement, as explained in Section 4.4 and a text file containing the mirror rotations
has to be manually created.

For the software-based method, the correction cycle occurs with two instances of the
event reconstruction. The misalignment information is determined in a first reconstruction
run (third brown box in Figure 6.2), employing the technique described in Chapter 5. It
is stored as an array in a text file, where the tile name, along with the measured rotations
around the horizontal and vertical axes of each mirror tile are written. In the case of
the software-based method, a threshold on the number of measurements per tile can be
set to ensure enough statistics are obtained for each tile and optimise the quantification
technique.
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The misalignment information can be subsequently used during a second reconstruc-
tion run to correct the track projections. From the text file created for both the hardware-
based and the software-based methods, the misalignment information is extracted and
stored in a correction map.

The corrections are applied when a track is reflected on a mirror tile. To calculate
mirror reflections, the crossing points between a given track reflected by a given mirror
are calculated. The normal of the mirror at this point is then computed. If a correction
information is available in the correction map, it is at this step used to modify the mirror
normal. Thus the track projection is calculated with the misaligned mirror tile and it
gets shifted on the photon detector closer to its corresponding ring, which decreases the
ring-track distance a.

Figure 6.2: The correction cycle as implemented for the software-based technique occurs
during a first and a second reconstruction run. The text file path is provided in the first
event reconstruction and read in the second event reconstruction. The sequence in which
the functions are called inside the classes is from left to right. In the hardware-based
method, the first reconstruction run is replaced by the CLAM measurement and a text
file has to be manually written.
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6.1.2 Correction cycle for a single mirror tile

To quantify the performances of the correction cycle, single mirror tiles were first investi-
gated. For this study, the geometry version used is the rich_v16a_1e with four MAPMT
wings. This geometry is described in detail in Section 5.4.2 and so the previous mirror
tile nomenclature is used. The resulting distance between fitted ring center and track
extrapolation, a, is projected along the horizontal and vertical axes and is in the follow-
ing referred to as ‘Difference in X’ and ‘Difference in Y’, respectively. These projections
correspond to the variables ΔΦ and Δλ introduced in Figure 5.1.

In the following, first horizontal and vertical projections without corrections are plot-
ted. Then the evolution of these projections when corrections are implemented is displayed
for a mirror tile located in the central region of the mirror wall and a mirror tile located
in the outer region. For the corrections, the software-based quantification technique pre-
sented in Section 5.3 was employed in a first reconstruction run to derive mirror rotations.
The rotation values were stored in an output text file and used as input in a second re-
construction run to calculate the new intersection point of the incoming track with the
photon detector plane, as illustrated in Figure 6.1 and explained in Figure 6.2.

Figure 6.3 represents horizontal and vertical projections of the ring-track distance a
for rotations around a single axis, ranging from 0 to 4 mrad with a step of 1 mrad. The
mirror tile used for this study is located in the centre of the mirror wall and labelled 1_3.
The expected behaviour is observed for both induced rotations. Namely the rotation of
the mirror tile around its vertical axis (upper histograms in Figure 6.3), entails a shift in
the horizontal direction (X direction), while no shift is observed in the vertical direction
(Y direction). Similarly a mirror tile rotation around its horizontal axis (lower histograms
in Figure 6.3) results in a shift in the vertical direction and no changes are observed in
the horizontal one.

Using Equation 5.2, a one mrad rotation corresponds to a shift of 0.3 cm on the photon
detector plane. This is observed on the top left and lower right histograms of Figure 6.3,
where the distribution peaks are spaced by about 0.3 cm. In addition, a rotation around
the horizontal axis hardly induces a shift in the horizontal direction, which is expected.
However a vertical rotation does imply a shift in the vertical direction, as seen on the top
right histogram of Figure 6.3, in particular for the three and four mrad rotation cases.
For these cases, a shift of approximately 0.1 cm was detected, which is in agreement with
the results from the study conducted in Section 5.4.2 and shown on Figure 5.8d.
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Figure 6.3: Horizontal and vertical projections of the ring-track distance a for rotations
ranging between 0 and 4 mrad with a step of 1 mrad. The mirror tile used for this study
lies in the central region of the mirror wall and is labelled 1_3. The upper histograms
depict the horizontal and vertical projections of the ring-track distance for a tile rotation
around its vertical axis. The lower histograms display the same projections for a tile
rotation around its horizontal axis.

Figure 6.4 shows projections of ring-track distances obtained before (coloured in red
in Figure 6.4) and after (in green) the presented correction cycle has been applied. In
addition, the ideal correction case is plotted (in blue). The ideal correction was calculated
with the mirror tile center directly extracted from the geometry (with the TGeoManager
class) and stored in the text file. Two mirror rotations are presented: a 4 mrad rotation
around the horizontal axis of the mirror tile (upper histograms in Figure 6.4) and a 1
mrad rotation around the vertical axis of the tile (lower histograms). The same mirror
tile was investigated, which lies in the centre of the mirror wall and is labelled 1_3.

In both examples, the corrected values are in good agreement with the ideal ones,
revealing a proper operation of the correction cycle. In the upper example, where a
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rotation of 4 mrad around the vertical axis of the mirror tile was induced, the software-
based quantification technique yields mirror rotations of 0.05 mrad around the horizontal
axis and 3.76 mrad around the vertical one. Even though a discrepancy of 6% of the
applied rotation is measured, the ring-track distances along the vertical and the horizontal
axes in the corrected case lie close to the ideal distances. The bottom example shows the
results obtained for a 1 mrad rotation around the X axis, where rotations angles of 0.06
mrad and 1.02 mrad around the X and Y axes were reconstructed, respectively. In this
case a clear improvement brought by the correction cycle is observed as well.

Figure 6.4: Uncorrected (red), corrected (green) and ideally corrected (blue) projections
of the ring-track distance in the horizontal (left) and vertical (right) directions. The
applied misalignments are 4 mrad around the horizontal axis (up) and 1 mrad around the
vertical axis (bottom). The mirror tile used for this study lies in the central region of the
mirror wall and is labelled 1_3.
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The results obtained with the correction cycle for a mirror tile located in the outer
region of the mirror wall are displayed in Figure 6.5. In this study, the mirror tile labelled
2_8 was investigated. It is located in the upper left corner of the mirror wall when
looking in beam direction. A misalignment of 5 mrad was induced on the X axis only
(upper histograms in Figure 6.5), on the Y axis only (middle histograms) and on both
axes simultaneously (lower histograms). Similarly to the previous studies, the mirror
rotations were derived with the software-based technique to correct the track reflection
by the mirror and its intersection with the photon detector plane.

For both cases, where a rotation around a single axis was carried out (upper and middle
histograms in Figure 6.5), it can be first noticed that the ring-track distances increased
with mirror misalignments (red curves) along both directions, unlike for the more central
tile 1_3. This correlates with the results displayed in Figures 5.8e and 5.8f. Once the
corrections are applied, residuals of misalignments can still be observed, such as in the
upper right and lower left histograms in Figure 6.5. In other cases no clear improvements
are noticed, that is on the top left and middle right histograms.

These problems are caused by the software-based quantification technique, whose per-
formances for mirror tiles located in the outer region of the mirror wall become less
reliable, as already demonstrated in Section 5.4.2. The tracks hitting the outer mirror
tiles have a low momentum and are thus strongly bent by the magnet field. In addition
and due to the detector geometry, these tracks have large reflection angles. These factors
make the track extrapolation on the photon detector plane less accurate and make it thus
more difficult to disentangle rotations around the horizontal axis from rotations around
the vertical one. As a consequence, the performances of the software-based technique are
harmed and those of the correction cycle, too.

Moreover, for the software-based technique to yield reliable results, mirror tiles should
be hit by tracks as uniformly as possible. The mirrors located in the outer region of the
mirror wall can however be only partially illuminated and present a lack of statistics. This
also affects the performances of the quantification technique.

Nevertheless, as the track and ring densities are lower in the outer region of the mirror
wall, looser cuts on the ring-track distance can be applied. This, combined with the partial
correction brought by the correction cycle could enhance the ring-track matching efficiency
of the RICH detector. Also, a new version of the RICH geometry named rich_v17a_1e
was designed. It includes a cylindrical shape of the photon detector plane, which reduces
the detector geometry effects mentioned above. In the following section, the correction
cycle was tested with this new geometry.
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Figure 6.5: Performances of the correction cycle for the outer mirror tile labelled 2_8.
A rotation of 5 mrad was induced around the horizontal axis only (upper histograms),
around the vertical axis only (middle histograms) and on both the horizontal and vertical
axes simultaneously (lower histograms). For all histograms the same colour code is used,
namely: the red, green and blue lines correspond to the uncorrected, corrected and ideally
corrected cases, respectively.
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6.2 Results with the RICH geometry v17a_1e

6.2.1 Identical rotation of each mirror tile in the upper half of
the mirror wall

The presented correction cycle, implemented in the RICH software, has been adapted
to the most recent RICH geometry named rich_v17a_1e and automatised for the full
mirror wall of the RICH detector. The performances of the correction cycle were further
investigated with this new geometry, on which the MAPMTs were distributed over a
cylindrical shape. For this study, 100,000 events were simulated, each containing 10
electrons and 10 positrons with a momentum ranging from 0.5 GeV/c up to 9 GeV/c,
a polar angle varying between 2.5◦ up to 25◦ and an azimuthal angle varying between
0◦ and 180◦. These parameters allowed a full coverage of the upper half of the mirror
wall within the acceptance of the CBM experiment. In addition to these parameters, the
following set-up was employed: Magnet (version v15a with the magnetic field map v12b),
STS (version v16x), RICH (version v17a_1e) and beam pipe (version v16b_1e).

Figure 6.6 shows, in the case of an aligned mirror wall, the average distance between the
fitted ring centres and the extrapolated track hits (ring-track distance a from Figure 5.1)
together with the projections of the ring-track distance along the horizontal and vertical
axes. The upper left histogram illustrates the average ring-track distance over the upper
photon detector plane. The horizontal and vertical components of the average ring-track
distances are displayed on the upper middle and right histograms, respectively. The lower
histograms in Figure 6.6 reveal the horizontal and vertical projections of the ring-track
distance distribution. In each figure, the local mean distance is shown in dependence on
the position of the photon detector plane.

For an aligned mirror wall, the average ring-track distance amounts to 0.3 cm in the
central region of the photon detector plane. The distance a increases on the borders,
along the horizontal and vertical directions, up to roughly 1 cm. From the upper right
histogram in Figure 6.6, a dependence along the vertical direction is observed, which
can be attributed to the detector geometry and the tilt of both the mirror wall and the
photon detector plane. In addition, an increase in the ring-track distance at the edges of
the MAPMT plane is observed, which can be attributed to insufficient statistics but also
to the ring reconstruction limit at the edges of the photon sensor plane.

All mirrors were afterwards rotated by -3 mrad around their horizontal axis and by +3
mrad around their vertical axis in two different simulation runs. The resulting ring-track
distance distributions before the corrections were applied are shown in Figures 6.7 and
6.8. The arrangement of the figures is identical to that of Figure 6.6.

For both rotations an increase in the ring-track distance is observed. For the horizontal
rotation of -3 mrad, the ring-track distance rose in average up to more than 1 cm in the
central part of the photon detector. For the vertical rotation of +3 mrad, an increase in
the ring-track distance of 0.9 cm is observed in the central part of the photon detector.
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This is consistent with the expected shift induced by a 3 mrad mirror rotation, which
corresponds to a translation of 0.9 cm of the ring center from the extrapolated track hit.

Figure 6.6: Histograms of the mean distances between fitted ring centres and extrapolated
track hits for the aligned mirror wall. The upper histograms display from left to right,
the distribution of the local average ring-track distance on the upper photon detector
plane and the ring-track distance projected horizontally and vertically. For the projection
histograms, black dots represent the mean ring-track distance obtained for each vertical
slice. However the maximum of the distribution lies around 0.14 cm. The lower histograms
represent the horizontal (left) and vertical (right) projections of the average ring-track
distances.

As already illustrated in Section 5.2, the histograms showing the horizontal and vertical
components of the ring-track distance in Figure 6.8 reveal that a vertical rotation of each
mirror tiles translates into an increase in the ring-track distance along the horizontal
direction and thus a horizontal shift of the ring centre on the photon detector plane.
Thus the histogram corresponding to the vertical component of the ring-track distance
for a vertical rotation by +3 mrad appears empty (lower right histogram in Figure 6.8).

Analogously, a horizontal rotation translates into an increase along the vertical direc-
tion and thus a vertical shift of the ring centre, as observed on the lower right histogram
in Figure 6.7.

Furthermore, the vertical dependence of the ring-track distance, already observed in
the aligned case, is in opposite direction in both rotated cases. For the horizontal rotation,
the asymmetry is increased, while it is less pronounced with the vertical rotation. This
behaviour is observed for rotations in both directions, in particular a +3 mrad rotation
around the horizontal axis and a -3 mrad rotation around the vertical axis.
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Figure 6.7: Histograms of the mean distances between fitted ring centres and extrapolated
track hits for a rotation of all tiles of the upper mirror wall around the horizontal axis by
-3 mrad and before the correction cycle was applied.

Figure 6.8: Histograms of the mean distances between fitted ring centres and extrapolated
track hits for a rotation of all tiles of the upper mirror wall around the vertical axis by
+3 mrad and before the correction cycle was applied.
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Figures 6.9 and 6.10 display the ring-track distance for the rotation cases presented
above, once the correction cycle has been applied. In both cases, the overall ring-track
distance was reduced to about 0.35 cm in the central region of the photon detector plane,
which is close to the average distance of 0.3 cm obtained in the aligned case. Also the
direction of the vertical dependence of the ring-track distance has become identical to
the one from the aligned figure. Overall the pictures obtained after corrections for both
rotation cases are similar to the ones from the aligned case in Figure 6.6. This thus
demonstrates a good operation of the correction cycle for an identical rotation applied on
all mirrors.

Yet the average ring-track distance appears to be not fully corrected at the edges of the
photon detector plane. These residual distances at the edges are however not necessarily
critical to the performances of the RICH software, as less track and ring densities are
observed in these regions. Thus, looser cuts on the ring-track distance can be applied
during the ring-track matching phase in the RICH software.

Figure 6.9: Histograms of the mean distances between fitted ring centres and extrapolated
track hits for a rotation around the horizontal axis of all tiles of the upper mirror wall by
-3 mrad, once the correction cycle has been applied.
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Figure 6.10: Histograms of the mean distances between fitted ring centres and extrapo-
lated track hits for a rotation around the vertical axis of all tiles of the upper mirror wall
by +3 mrad, once the correction cycle has been applied.
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6.2.2 1 mrad Gaussian misalignment

A subsequent study was conducted in which all 80 mirror tiles were rotated randomly
around their horizontal and vertical axes. The applied misalignment values followed a
Gaussian distribution, whose standard deviation was chosen as 1 mrad. For each tile, two
rotation values were randomly extracted from the Gaussian and applied on one rotation
axis. Mirror misalignment with this technique will be called in the following a ‘1 mrad
Gaussian misalignment’.

For this study, 100,000 events were simulated, each containing 10 electrons and 10
positrons with a momentum ranging from 0.5 GeV/c up to 9 GeV/c. The angular and
azimuthal angles were chosen such that the full mirror wall was illuminated within the
acceptance of the CBM experiment (θ ∈ [0◦; 180◦] and Φ ∈ [0◦; 360◦]). The following set-
up was employed: Magnet (version v15a with the field map v12b), STS (version v16x),
RICH (version v17a_1e) and beam pipe (version v16c_1e).

Figure 6.11 shows the average ring-track distance, denoted hereafter a, distribution
obtained with the ‘1 mrad Gaussian misalignment’ geometry. The upper row shows the
absolute value of a for the upper (left) and lower (right) MAPMT planes. The middle and
bottom rows display the horizontal and vertical projections of a for the upper (middle
row) and lower (bottom row) MAPMT planes.

The rotated mirrors can be distinguished on the photon planes as coloured slabs, whose
values indicate the local mean value of a. In the upper row the average a ranges from 0.2
cm up to more than 1 cm. The middle and lower rows reveal the projection components
of a in both directions, which shows an applied misalignment different on the two rotation
axes of all mirror tiles.

Figure 6.12 depicts the situation after the correction cycle has been implemented.
The mosaic-like structure has disappeared in the global picture (top row) as well as in
the histograms of the projections of a (middle and lower rows).

The mean values of a distributed over the complete MAPMT plane are presented in
Figure 6.13 for the aligned, misaligned and corrected cases. A Gaussian fit is applied on
the ring-track distance distributions. The mean of the Gaussian fit allows the extraction
of the maximum of the distribution. In the aligned ring-track distance distribution, the
mean of the Gaussian fit amounts to 0.14 cm. With the ‘1 mrad Gaussian misalignment’
geometry, the mean of the Gaussian fit is 0.47 cm. It decreases to 0.17 cm in the corrected
case, which is close to the ideal case. The specifications for the RICH detector required
mirror misalignments to be kept below 1 mrad (see Section 3.3.2), which corresponds to
an average 0.3 cm shift on the photon detector plane. Thus the correction cycle fulfils the
RICH specifications.
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Figure 6.11: Average a distribution for a randomly rotated mirror wall. The mean of a is
presented in the upper row, where the upper photon detector plane is shown on the left
side and the lower photon detector plane on the right side. The horizontal projections of
a are illustrated in the middle and lower left histograms for the upper and lower MAPMT
planes, respectively. The vertical projections are displayed in the middle and lower right
histograms for the upper and lower MAPMT plane, respectively. The applied mirror
rotations are extracted from a Gaussian distribution, whose standard deviation amounts
to 1 mrad. The rotation values on both tile axes are different. Individual mirror tiles are
well visible on the photon sensor plane.
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Figure 6.12: Average a distribution after the correction cycle has been applied, using
the ‘1 mrad Gaussian misalignment’ geometry. The a distribution is more uniform and
reduced to 0.2 – 0.3 cm in the central region of the photon sensor planes. Edge effects are
still visible.
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Figure 6.13: a distribution over the complete MAPMT plane for the aligned (left), rotated
with a ‘1 mrad Gaussian misalignment’ geometry (middle) and corrected (right) cases.
A Gaussian fit was applied on the data (black curves). The mean (left number) and
standard deviation (right number) of the fitted Gaussian are displayed on the top of each
histogram. The mean of the Gaussian fits roughly corresponds to the maximum of the
distributions.

6.2.3 3 mrad Gaussian misalignment

Similar to the ‘1 mrad Gaussian misalignment’, a study has been carried out for misalign-
ments following a Gaussian distribution whose standard deviation amounts to 3 mrad.
Identical simulation parameters and statistics have been used. Analogous histograms to
the ones presented in the previous subsection are shown in Figures 6.14, 6.15 and 6.16. In
Figures 6.14 and 6.15, the scale range of a has been increased by a factor of two to avoid
saturation in the histogram: a ∈ [-2 cm; +2 cm].

The observed shifts with a ‘3 mrad Gaussian misalignment’ geometry are significantly
larger than in the previous misalignment case. Even with such shifts, the correction cycle
greatly reduces the average distance a, except at the edges of the photon sensor plane,
where the situation is slightly worse than the previous case. The mean of the Gaussian fit
applied on the ring-track distance distribution before the corrections are implemented is
1.3 cm. Once the correction cycle has been used, the mean of the Gaussian fit is reduced
to 0.25 cm, which still fulfils the detector requirements.

Edge effects are still visible but not detrimental to the detector operation. The situa-
tion in the corners of the photon detector plane could be enhanced with higher statistics
and by extending the lower momentum range of the particles to p ∈ [0 GeV/c; 9 GeV/c].
In addition a second iteration of the correction cycle on the corrected geometry could be
applied.
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Figure 6.14: Average a distribution for a randomly rotated mirror wall following a ‘3
mrad Gaussian distribution’. The mean of a is presented in the upper row, where the
upper photon detector plane is shown on the left side and the lower photon detector plane
on the right. The horizontal projections of a are illustrated in the middle and lower left
histograms for the upper and lower MAPMT planes, respectively. The vertical projections
are displayed in the middle and lower right histograms for the upper and lower MAPMT
plane, respectively. The rotation values on both tile axes are different. Individual mirror
tiles are well visible on the photon sensor plane. The scale range of a has been increased
by a factor of 2 in all histograms, with respect to Figure 6.11.
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Figure 6.15: Average a distribution after the correction cycle has been applied, for the
‘3 mrad Gaussian misalignment’ geometry. The a distribution is more uniform, although
a mosaic-like structure can still be observed. The mean a is reduced to 0.2 – 0.3 cm
in the central region of the photon sensor planes, where misalignment residuals can still
be observed. Edge effects are slightly more pronounced than for the aligned case. The
scale range of a has been increased by a factor of 2 in all histograms, with respect to
Figure 6.12.
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Figure 6.16: a distribution over the complete MAPMT plane for the aligned (left), rotated
with a ‘3 mrad Gaussian misalignment’ (middle) and corrected (right) cases. A Gaussian
fit was applied on the data (black curves). The mean (left number) and standard deviation
(right number) of the fitted Gaussian are displayed on the top of each histogram. The
mean of the Gaussian fits roughly corresponds to the maximum of the distributions.
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6.3 Improvements from the correction cycle on recon-
struction efficiencies

In Section 3.4 and Table 3.4, the impact of mirror misalignments on the STS-RICH
matching, combined with the ring finding efficiency, and RICH identification efficiencies
has already been demonstrated.

This study was conducted for 16,000 central Au+Au collisions at 10 AGeV beam
energy, with 5 embedded electrons and 5 embedded positrons. It showed a clear drop
in the STS-RICH matching and ring finding efficiency with both the ‘1 mrad Gaussian
misalignment’ and ‘3 mrad Gaussian misalignment’ geometries (see Section 6.2.2 for a
definition of the implemented mirror rotation). The efficiency was reduced from 87.3% in
the aligned case to 86.3% and 78.8% for the 1 and 3 mrad cases, respectively. Similarly,
this study showed a decrease in the RICH identification efficiency from 84.6% at a pion
suppression factor of 210.3 in the aligned case to 82.9% with a pion suppression factor
of 190.6 and 65.3% with a pion suppression factor of 143 with the ‘1 mrad Gaussian
misalignment’ and ‘3 mrad Gaussian misalignment’ geometries, respectively.

Thus mirror misalignments are clearly harming the operation of the detector under
real data taking, as physics signals are lost. In the following the impact of the correction
cycle on these reconstruction efficiencies will be investigated.

To do so, 16,000 events were simulated, each containing 5 electrons and 5 positrons
with a momentum ranging from 0 GeV/c up to 9.5 GeV/c and embedded in Au+Au
collisions at 10 AGeV beam energy. The angular θ ∈ [0◦; 180◦] and azimuthal Φ ∈ [0◦; 360◦]

angles were chosen to cover the complete mirror wall within the acceptance of the CBM
experiment. And the following set-up was employed: Magnet (version v15a with the
field map v12b), STS (version v16x), RICH (version v17a_1e) and beam pipe (version
v16c_1e).

The upper row of Figure 6.17 displays the STS reconstruction (red curve) and the STS-
RICH reconstruction and ring-track matching efficiency (blue curve). The STS-RICH
reconstruction combines the STS reconstruction efficiency with the RICH ring finding
efficiency. The middle and lower rows of Figure 6.17 show the electron efficiency and the
obtained pion suppression factor. These efficiencies are shown for the aligned case, with a
‘1 mrad Gaussian misalignment’ geometry and once the correction cycle has been applied.

It can be stressed, that even for small mirror rotations in the order of 1 mrad, the
STS-RICH reconstruction and ring-track matching efficiency is reduces by 1%, the electron
identification efficiency by 1.7% and the pion suppression factor by 10%. The difference in
these efficiencies after the correction cycle has been applied is reduced to 0.2% for the ring-
track matching efficiency, 0.4% for the electron identification efficiency and provides a pion
suppression factor similar to the one obtained in the aligned case. Thus an improvement
of the correction cycle is observed for these efficiencies.
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Figure 6.17: STS-RICH matching efficiency combined with the ring finding efficiency
(upper row), electron identification efficiency (middle row) and pion suppression factor
(lower row). The presented efficiencies are given for the aligned (left column), rotated
(middle column) and corrected (right column) cases. A ‘1 mrad Gaussian misalignment’
was induced.

A study with identical simulation parameters and an identical set-up has been carried
out for a ‘3 mrad Gaussian misalignment’ geometry. The results are shown in Figure 6.18.

Once the ‘3 mrad Gaussian misalignment’ has been applied, the STS-RICH recon-
struction and ring-track matching efficiency, the electron identification efficiency and the
pion suppression factor decreased to 78.8%, 65.3% and 143, respectively. With the cor-
rection cycle these efficiencies amount to 86%, 81.9% and the pion suppression factor is
202. This demonstrates an improvement in the reconstruction efficiencies and the pion
suppression factor back to a situation very close to the one with an aligned mirror wall.

In both cases, the effects of misalignments are largest on the electron identification
efficiency. This is due to the fact that the ring-track distance is used as input parameter
by the ANN employed for the electron identification (as explained in Section 3.3.5).

These results reveal a clear enhancement in the operation of the CBM-RICH detector
by the developed correction cycle, which was presented in this chapter.
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Figure 6.18: STS-RICH matching efficiency combined with the ring finding efficiency
(upper row), electron identification efficiency (middle row) and pion suppression factor
(lower row). The presented efficiencies are given for the aligned (left column), rotated
(middle column) and corrected (right column) cases. A ‘3 mrad Gaussian misalignment’
was induced.
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Chapter 7

Summary and outlook

7.1 Summary

The presented work and results in this thesis focus on the development of the Ring Imaging
Cherenkov detector for the CBM experiment. They aim at a proper detector operation
under possibly occurring mirror misalignments. To do so two techniques were investigated
to observe and quantify misalignments. Once the detected misalignments were measured,
the RICH reconstruction software was updated to correct them. The main results of this
thesis are summed up in the following.

The CLAM method introduced in Chapter 4 is inspired from the COMPASS exper-
iment and is based on hardware. It uses dedicated reflecting equipment and lighting
apparatus inside the RICH detector for a quick and qualitative mirror misalignment de-
tection. This method has been implemented during a beam time at CERN and tested in
detail.

The study shown in Section 4.3 focuses on the event, where the Cherenkov cone is
reflected by more than one mirror. The impact of such events on the histograms of the
main ring parameters has revealed the apparition of a two peak structure on the ring radius
distribution and on either the major or the minor semi-axis distribution (Figure 4.9).
However, only for very unlikely cases where the Cherenkov cone is reflected right in
between two or more mirrors, a large effect is seen.

In addition, the CLAM method can be employed to quantify mirror misalignments. It
requires a previous calibration in the laboratory, presented in Section 4.4. The feasibility
of the method has then been demonstrated on pictures taken during a previous beamtime
at CERN in 2014. The results are presented in Section 4.5. The method could reconstruct
mirror misalignments for single axis and diagonal rotations with errors amounting up to
18% of the applied mirror rotation (see Figures 4.19, 4.20 and Tables 4.2, 4.4). For
the calibration in the laboratory, the mirror frame position and mirror orientations were
chosen such that the CERN beamtime set-up was reproduced.

135
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A misalignment quantification technique developed by the HERA-B experiment has
been subsequently presented in Chapter 5. It is based on software and requires only
data. Its adaptation to the CbmRoot framework and the CBM-RICH geometry has been
demonstrated. The technique works for horizontal rotations ranging between 0.3 mrad
and 14 mrad, while keeping an error of 20% of the applied rotation (Figure 5.6). For
vertical rotations, the technique showed errors up to 20% of the applied rotation for
misalignments ranging from 0.4 mrad up to 15 mrad (Figure 5.7). In a last step the
behaviour of the technique for inner and outer mirror tiles has been studied (Figures 5.8
and B.2).

This method requires, when employed during real data taking, a clean electron sample
from the data. It also needs a sufficient number of particles reconstructed by the STS
and RICH detectors, which hit each individual mirror tile. The studies have shown that
2,500 electrons per mirror tile are enough to apply the technique. Azimuthal and polar
angles from the target towards each individual tile can be defined and applied as a cut
on the recorded data to select ‘good’ electrons or positrons. The ideal data taking case
would be experiments yielding low multiplicity electrons and positrons, to have a better
electron identification.

Given that possible misalignments can be measured, a correction cycle has been de-
veloped and is explained in Chapter 6. It includes the information of mirror tile rotations
calculated with the technique from Chapter 5 and uses it inside the RICH software rou-
tines. It could also use the mirror orientation information given by the CLAM method as
input for the RICH software. The misalignment information is used to correct track ex-
trapolations onto the photon sensor plane (Figure 6.1). The influence of the correction is
shown through the evolution of the distance between fitted ring centres and extrapolated
track hits on the photon plane (Figure 6.4).

Extensive studies have been conducted with various mirror rotations and the presented
correction cycle has been automatised for the full mirror wall (Figure 6.11 and 6.12).
The correction software improved the mean ring-track distance from 0.47 cm in the case
of a ‘1 mrad Gaussian misalignment’ down to 0.17 cm (Figure 6.13). For a ‘3 mrad
Gaussian misalignment’, the ring-track distance was corrected from 1.3 cm down to 0.25
cm (Figure 6.16). In the aligned case, the average distance amounts to 0.14 cm and
the average distance accepted in the detector specifications amounts to 0.3 cm, which
corresponds to a 1 mrad rotation angle.

The impact of the correction cycle in the STS-RICH reconstruction and matching
efficiency, the electron identification efficiency and in the pion suppression factor of the
RICH detector has also been examined. Clear losses in these efficiencies and in the pion
suppression factor have been shown, with different misaligned mirror geometries. However
the developed correction routine improves both efficiencies and the pion suppression factor
close to the values obtained in the aligned case, for a ‘1 mrad Gaussian misalignment’
(Figure 6.17) and for a ‘3 mrad Gaussian misalignment’ as well (Figure 6.18). Thus the
developed correction cycle allows a proper operation of the CBM RICH detector under
misalignments.
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7.2 Future developments to optimise the correction pro-
cedure

To improve the quantification of mirror misalignments using the CLAM technique, pho-
togrammetry can be employed (see Sections 3.3.2 and 4.2 of [148]). For this variant of
the method, an apparatus similar to the one presented in Section 4.1 is required, with,
in addition, calibrated cameras. From the calibration, the parameters of the camera’s in-
terior orientation, which describes the imaging process within the camera, are accessible.
Moreover, the exterior orientation of the camera needs to be established via six parame-
ters, characterizing the spatial position and orientation of the camera with respect to a
chosen global coordinate system. This can be done with target dots glued on the mirror
frame and on the RICH box. The defined parameters of interior and exterior orientation
of the camera can then be used to solve the collinearity equations.

Another option would be to use commercial software, such as the MoveInspect DPA
software module from Aicon. Here the main issue is that the software was not conceived
to work with mirrors. When mirrors are misaligned, it becomes unclear which target
moved in which direction. A possible workaround would be to have cameras looking at
the backside of the mirrors. There space is a constraint and one could resort to rails, so
that the cameras might still cover the full mirror wall.

Concerning the quantification technique using data, the next step would be to develop
a strategy on how to extract good particle candidates from the data collected in real beam
conditions. For example, the use of low multiplicity data would ensure a better electron
identification. Also the implementation of proper cuts on the azimuthal and polar angles
to help select particles for each mirror tile is required.

Furthermore, the technique has shown some limitations for the outer mirror wall re-
gion. An optimisation of the technique using data for mirrors located in this region could
be undertaken. Indeed, in this region, incoming particles have low momentum and are
thus more deviated by the remaining magnetic stray field. In addition, single axis rotations
imply shifts in both directions due to the detector geometry. These effects consequently
harm the performances of the technique.

A possible further development of the correction cycle would be to carry out multiple
runs to enhance the results. The correction cycle would be applied on a given misaligned
geometry first. The quantified mirror rotations would be used to correct the misaligned
geometry, producing a new corrected mirror geometry. The correction cycle would then
run on this new corrected geometry. This step could in turn produce a second corrected
geometry, on which the correction cycle could be run again. The number of iterations
required until the technique does not improve could also be examined.
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Appendix A

EPICS based control systems for the
CBM RICH prototype

In this appendix, control systems for the CBM-RICH prototype operated by EPICS are
presented. They were implemented for beamtimes at CERN in 2011 and 2012 and have
been updated for the 2014 beamtime (see Figures 4.3 and 4.4 from Section 4.2.2). They
were used to obtain, among other things, the results presented in Section 4.3.

First the hardware is presented. How to run the software TwinCAT on windows and
Linux is the subject of the two following sections. In a final section, the operation of the
high voltage with EPICS is shown.

A.1 Hardware installation

Connect the cables to the Beckhoff system (also called IPC, for industrial PC), as shown
in Figure A.1.

Figure A.1: Cabling of the IPC system.

Then connect the power supply cables for the motors (see Figure A.2).

139



140 Sect. A.1 - Hardware installation

Figure A.2: Cabling of the Motors to the Beckhoff system.

Start the Beckhoff system, by connecting the power supply cables of the whole Beckhoff
system into the wall sockets.

If the Windows computer workstation is not already running, turn it on. Do the same
for the Linux one. Then connect the Windows and Linux workstations and the Beckhoff
system together via a main switch (see Figure A.3).

Figure A.3: Switch (left) and High voltage (right) connections.
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A.2 Run TwinCAT on the windows machine

A.2.1 Numerical control (local without PLC program and with-
out EPICS)

On the windows machine, go to the:
‘Desktop/TwinCAT PLC Control Versions/Version_2012_CBM_RICH/’ folder. For the
local control, execute ‘Test_2Motors_without_Program’ (see Figure A.4).

Figure A.4: TwinCAT software interface.

When the TwinCAT window appears, check whether the status is in “run mode” or
“config mode” (configuration mode) - you can see the current status of the system on the
bottom right of the window (see Figure A.5).

Figure A.5: TwinCAT status in runtime mode (left) and config mode (right).

Figure A.6 illustrates the buttons used to switch between the run and configuration
modes. Below is a description of their functionality, the number corresponding to the
number on Figure A.6:

1. Activate Configuration
2. Restart in Run mode
3. Restart in configuration mode

If the system is not in configuration mode, select the button “2” to restart TwinCAT
in run mode.
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Figure A.6: Different modes in TwinCAT.

What to do if the computer cannot connect to the Beckhoff system?

In case the system status is “Time-Out”, this means that either:

• The Beckhoff system is not running (check if the system is on: check the power
supply cables and the circuit breaker)

• Or it is not connected to the windows workstation (then check the Ethernet cables
and the switch status. You can also check the connection between the Beckhoff
system and the windows PC, with the Cerhost program, located on the desktop)

• Or it has been recently connected (in this case the program is trying to find the
IPC).

If the two machines are well connected, go to the “SYSTEM – Configuration” entry of
the tree on the left. Click on the “Choose target” button (see Figure A.7). Click “Search
(Ethernet)”, then “Broadcast search”. The connection to the ipc001 should be established,
then press close. On the “Choose target system” window, select the ipc001 in the tree and
click OK.

Figure A.7: Searching for the IPC on the network in TwinCAT.

If everything is well installed and connected but there is no connection between the
IPC and the windows PC, try to disable the connection to the switch and enable it again.

You can also reset the router connection. To do so, right click on the icon called “Twin-
CAT Konfig Modus” (lower right on the windows desktop) and choose “Eigenschaften”
option. Then under the AMS router tab, in the Router window, select the current IPC
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Figure A.8: Reset the router connection on TwinCAT.

connection and delete it (entfernen). Add (hinfügen) a new connection to the IPC (see
Figure A.8).

In case the system is still not running after the previous steps have been conducted,
see the annex of this document ‘How to configure EtherCAT card’ to either check that
each parameter has the right value seen on the figures or to configure a new program from
zero.

Once the System Manager Program has been successfully launched and is in run mode,
the user finds several entries on the left tree.

1. System Configuration: TwinCAT PC.
Select the IPC using the ‘Choose Target’ button.

2. I/O – Configuration: Drive scan.
Scan the drivers connected to the system. On the left tree, right click on the icon
‘Device 1 (Ether-CAT)’ located under I/O Devices.

3. NC – Configuration: Drive.
Check connection between Drive and hardware under the entry “Axes”.

4. PLC – Configuration: TwinCAT PLC.
Connect the hardware (input/output) to the PLC Program. Check the project name
and PATH inside the IEC entry on the left tree, called:
‘MirrorControl_new_js_TT_ver3_withEPICS’.

Remarks on the possible movements of the system:

• Motor 1: Rotation around horizontal axis (when increasing the axis value, the upper
part comes towards the observer, when looking at the front of the mirror)
• Motor 2: Rotation around vertical axis (when increasing the axis value, the right

side comes towards the observer, when looking at the front of the mirror)
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A.2.2 TwinCAT with PLC program but without EPICS

On the ‘Desktop/TwinCAT PLC Control Versions/Version_2012_CBM_RICH/’ folder,
choose the program: ‘Test_2Motors_with_Program_v3’ and go to run mode. Then, in
the ‘Version_2012_CBM_RICH/’ directory, choose the ‘MirrorControl_new_js_TT_ver3’
program. On the right tree at the bottom, choose the ‘visualisation’ tab and double click
on the ‘CBM_MIRROR_CONTR’ entry. Figure A.9 shows the Graphical User Interface
(GUI), which should come up.

Figure A.9: TwinCAT PLC graphical user interface.

How to run the system?

In the ‘Online’ tab, on the top of the window, select the ‘login’ entry and when asked to
download the new program, answer ‘Ja’. Then select the ‘run’ entry in the ‘Online’ tab.
Now the PLC program should be running.

It is very important, when starting the PLC program, to first login and then run; and
when turning off, to stop the program and then logout!

To control the motors, click the ‘Start System’ rectangular button (this button should
become yellow). Then in the ‘Move to position’ window, switch the button to ‘ON’ (the
button becomes green). Set the horizontal and vertical positions to the desired values,
using the numerical pad and click the ‘Start’ button. The system should start moving.
In case the user wants to stop the motors while moving, click on the red ‘Stop System’
button.
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Below is a description of the main options, which can be used by the user (see Fig-
ure A.10).

Figure A.10: Detailed view of the PLC program.

On the left tree, choose the ‘POUs’ (Program Organisation Unit) tab, one can open
several windows:

• Main
• Act_DriveMotor1
• Act_DriveMotor2
• Convertion

In the ‘Main’ program under the tab POUs, there are many state functions, defined
as MOVESTATE_*, where * = [A-H and J]. These states correspond to the items (1-9),
which are stored inside the Preset Positions of the GUI. These positions correspond to
mirror adjustments, reflecting on defined areas of the PMT plane.

To add a function in the Act_DriveMotor1/2 or the Convertion windows, right click
on the left border of the window and choose the ‘Network before’ or ‘Network after’ option.
After changing anything in the code, go to the ‘Project’ tab (on top of the window) and
use the ‘Rebuild all’ function.

To simulate the program before testing it on the motors, one can run a ‘Simulation
Mode’, located in the ‘Online’ tab, once a ‘Login’ has been previously performed. The
function block MC_MoveModulo, using MC_Shortest_Way as Direction input moves
the motor to the requested position using the shortest way.

To stop the motor while moving, use MC_Aborting as input to the BufferMode of the
MC_Halt function.

On the ‘Date types’ tab, one can open the states window, where one can add new
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states to the program.
On the ‘Visualisations’ tab, a GUI is available. It can be modified using the upper

menu to add remove or change blocks and by double clicking on any box, to change its
characteristics.

When double clicking on a box, the ‘input’ and ‘variables’ entries are used to modify
the variable linked to this box. In the case of a box with input values, one can change
how the user enters a value inside the box, under the ‘Input’ entry and by ticking the
‘Text’ input of variable ‘Textdisplay’ option. Here one can specify the min and max values
accepted inside the box and choose how the text is entered using the drop-down menu
(with Numpad or Keypad, etc.).

On the ‘Resources’ tab, the ‘Globale_Variablen’ window can be opened, where one
can find all the variables linked to the program. While the system is running, the user
can check the states of each variable in this window as well.

Table A.1 explains the address rules and specifies the meaning of the values stored
inside the ‘Globale_Variablen’ window.

Prefix Description

I Input
O Output
M Memory location
X Single bit
B Byte (8 Bits)
W Word (16 Bits)
D Double word (32 bits)

Table A.1: Address ruling of the TwinCAT PLC system.

Reference values for the current system in the lab are for the horizontal axis 331.5◦

(or -28.5◦) and for the vertical axis 353.15◦ (or -6.85◦). They correspond to horizontal
and vertical rotations of the mirror frame.
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A.3 Linux with EPICS to run TwinCAT remotely

A.3.1 In the case EPICS is not installed

The following is described for a Linux OS, with 64 bit architecture. Use the text file
‘Cookbook_complete.txt’ in the ‘~/EPICS’ folder and follow the instructions, to install
the EPICS system, with its extensions and modules and also the CSS program.

In this file, the installation process is explained in details and one only needs to copy
and paste the commands on a terminal.

A.3.2 Run TwinCAT via EPICS

On the windows workstation, go first to the:
‘Desktop/TwinCAT PLC Control Versions/Version_2012_CBM_RICH/’ folder. Then
choose the ‘Test_2Motors_with_Program_v4_withEPICS’ program and go to run mode.
Execute also the ‘MirrorControl_new_js_TT_ver4_withEPICS’ PLC program. At the
top of the window, in the ‘Online’ tab, press ‘login’ and then ‘run’.

Note: in this program, you cannot use the GUI in the PLC to set position values of
the motors. The values can only be set from the CSS program on the Linux station. Now
on the Linux workstation, open a new terminal.

If the programs are not installed

Follow the instructions from the ‘Cookbook_complete.txt’ file.

If the programs are already installed

Go to the directory: ‘~/EPICS/’. In this directory, there is a hidden file, called ‘.profile’.
To set the environment variables, enter the command: ‘source .profile’ in the terminal.

Then change the IP address of the Beckhoff system on EPICS. Go to the directory
‘~/EPICS/modules/synApps_5_7/support/modbus_cbm_2014/iocBoot/iocModbus/’
and open the ‘cbm.cmd’ file with an editor (for instance ‘vi cbm.cmd’).

At the line ‘drvAsynIPPortConfigure’, change the IP address to the desired value.
Current set-up: drvAsynIPPortConfigure(‘cbm’,‘10.160.0.51:502’,0,0,1).

After that, go to the:
‘~/EPICS/modules/synApps_5_7/support/modbus_cbm_2014/iocBoot/iocModbus/’
directory and enter the command: ‘../../bin/linux-x86_64/modbusApp cbm.cmd’. The
connection via EPICS to the Beckhoff system should be settled.

Finally, start the CSS graphic user interface. Go to the:
‘~/Desktop/CSS_EPICS_3.1.2/’ folder and execute the program, by double clicking on
the script, called ‘start_css’.

If needed, click Browse to select the wanted workspace:
‘~/CSS-Workspace/SlowControlPanel’. To change the PC’s IP address, go to Preferences
in the edit tab. Choose the ‘CSS Core’ and ‘EPICS’ entries on the left tree and change
the IP address on the ‘addr_list’ field. The current set-up is represented in Figure A.11,
left. Then restart the CSS program.



148 Sect. A.3 - Linux with EPICS to run TwinCAT remotely

Figure A.11: EPICS default set-up (left) and switching to the edit mode (right).

In CSS there are two modes, the ‘edit mode’ and the ‘run mode’. To switch to the
edit mode, go to the window tab, choose open perspective and other. Then select the
‘OPI Editor’ entry (see Figure A.11, right).

On the left-side tree, select the ‘CBM_RICH_Mirror_2014_Validated.opi’ file in the
‘CBM_RICH_2014’ folder.

Figure A.12: EPICS editor view.

How to edit changes in the editor mode?

In the editor mode, when clicking on a box (containing a variable or entry), one can
change its value via the PV (Process Variable) name entry on the right-side window (this
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variable name can be retrieved from the ‘dbl’ command of EPICS in a terminal).
The min and max values can be changed on the right side window. The style can be

modified under the monitoring and/or control menu (click on the small white arrow on
the top left of the right-side window).

How to start the system?

Switch to run mode, (go to the window tab, choose open perspective – other and select
‘OPI Runtime’), or click on the green arrow (right side of the top menu bar). This window
should appear (see picture on the previous page).

To start the system, click the ‘Start System’ button; you should hear a click emitted
by the motors. Then switch the button to ‘ON’ in the ‘move to position’ window and set
the desired horizontal and vertical values you wish to position the frame to (click on the
box, enter the wished value and press ‘return’ key). To start rotating the frame, click on
the ‘Start’ button.

To see which way the mirrors will rotate when increasing or decreasing the horizontal
and/or vertical values, refer to the sketches in the centre of the Graphical Interface. To
stop the motors while the frame is moving, click on the ‘Stop System’ button, located
next to the ‘Start System’ one.

In the lab, the reference positions, also called zero positions, (that is when all frames
are flat) were recorded as follow: Motor 1: 331.5 (horizontal/motor1) ; Motor 2: 353.15
(vertical/motor2).

Additional commands

To control the system from the terminal, go to ‘~/EPICS/base/bin/linux’ to see the list
of commands to change variables from EPICS in a terminal.

Useful commands to run while EPICS is running on a terminal
(‘../../bin/linux86_64/modbusApp (or snmp) cbm.cmd’, command in a terminal from
‘/Modbus_cbm_2014/iocBoot/iocTest’ or from ‘/snmp_2014/iocBoot/iocsnmp’):

• ‘dbl’ (database list) command to see every current variables of the system
• ‘dbpr’ VAR_NAME: current position/status of the variable
• ‘dbpf’ VAR_NAME 1/0: set new value for the variable VAR_NAME

To change values from the CSS program, one needs to go to the
‘~/EPICS/modules/synApps_5_7/support/Modbus_cbm_2014/modbusApp/Db’ folder
and edit the changes inside the cbm_2014.substitutions file. Concerning the logical code, a
detailed description of the functions is available at this webpage: http://www.aps.anl.gov-
/epics/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-14.html. Once the
changes are done, save the file and go to previous directory and call ‘make’ to apply
the changes on the ‘cbm_2014.db’ file. The ‘.db’ file should have the same name as
the ‘.substitutions’ one. There are many templates inside the ‘.substitutions’ file, which
can be edited, such as the ‘ao2.template’ (send command value to TwinCAT) and the
‘ai2.template’ (read value from TwinCAT) blocks. These templates are defined inside the
‘Db/’ folder.
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For more information the Beckhoff and EPICS websites can be consulted. The possi-
bility to modify a CSS program is also included but not explained here.

A.4 Run high voltage via EPICS

First connect the router and High Voltage using Ethernet cables. Then turn on the main
switch of the High Voltage crate. The machine employed was a Wiener crate from ISEG.

Open a new terminal on the Linux workstation. Go to the directory ‘~/EPICS’. In
this directory, there is a hidden file, called ‘.profile’. To set the environment variables,
enter the command: ‘source .profile’ in the terminal.

Then change the IP address of the HV system on EPICS. Go to the directory
‘~/EPICS/modules/synApps_5_7/support/snmp_2014/iocBoot/iocsnmp/’ and open the
‘cbm.cmd’ file with an editor (using for example ‘vi cbm.cmd’).

At the line ‘dbLoadRecords’, change the IP address to the desired value. Current
set-up: dbLoadRecords (‘db/my_iseg2.db’,‘HOST=10.160.0.50’).

After that, go to the
‘~/EPICS/modules/synApps_5_7/support/snmp_2014/iocBoot/iocsnmp/’ directory and
enter the command: ‘../../bin/linux-x86_64/snmp cbm.cmd’. The connection via EPICS
to the windows system should be settled.

Finally, start the CSS graphic user interface. Go to the ‘~/Desktop/CSS_EPICS_3.1.2/’
folder and execute the program, by double clicking on the script, called ‘start_css’.

If needed, click ‘Browse’ to select the wanted workspace:
‘~/CSS-Workspace/SlowControlPanel’. Select the ‘CBM_RICH_HV_2014.opi’ file, which
is located in the ‘CBM_RICH_2014’ folder.

Then switch to run mode (go to the window tab, choose open perspective – other and
select ‘OPI Runtime’) to open a window analogous to Figure A.13.

Start the system by clicking on the ‘Main Switch’ button. To modify a value, enter
a number in the window (under the ‘Set Voltage’ column), then on the right side of the
window (not shown here), turn the button ON to increase the voltage.

To modify the fan speed, change the value in the ‘Set’ box (under the ‘Fan Speed
Control’ indicator). Put the wished value with the numerical pad and press the ‘return’
key.
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Figure A.13: EPICS high voltage GUI.
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Appendix B

Complements to Chapter 5

B.1 Reconstruction of mirror rotation for a 0.1 mrad
misalignment

In Section 5.4.1, it has been shown, that the minimal detected misalignment with recon-
struction errors within 20% of the applied rotation is 0.3 mrad for a rotation around the
horizontal axis and 0.4 mrad for a rotation around the vertical one.

For lower mirror rotations, a sinusoid is still observed and can still be fitted to calculate
the corresponding misalignment. However the errors obtained in these cases are such, that
the technique is not reliable any more.

(a) (b)

Figure B.1: Reconstructed misalignments for a 0.1 mrad rotation of the mirror tile 5_3
around its horizontal (left) and vertical (right) axes. For the horizontal rotation, recon-
structed misalignments of 0.034 mrad around the horizontal axis and -0.022 mrad around
the vertical axis were obtained. In the vertical rotation, reconstructed misalignments of
-0.067 mrad for the horizontal axis and 0.042 mrad for the vertical one were calculated.

153
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For these results, 2,500 events, each containing one electron sent towards the mirror
tile labelled 5_3 were simulated. The mirror tile was previously rotated by 0.1 mrad
either around its horizontal, or around its vertical axis. The following CbmRoot set-up
was employed: Magnet (version 15a, with the magnetic field map v12b), STS (version
16x), RICH (version 17a_1e) and beam pipe (version 16c_1e).

Figure B.1a illustrates the sinusoid obtained and fitted in the case of a horizontal rota-
tion. A reconstructed mirror rotation of 0.034 mrad was obtained, which corresponds to
a reconstruction error of 68% of the applied rotation. In addition, the calculated rotation
around the vertical axis amounts to -0.022. This shows that, for such small misalignments,
the reconstructed values are equally distributed on both axes by the software.

Figure B.1b shows a similar behaviour for a vertical rotation of 0.1 mrad, with an
even bigger reconstruction error, amounting to 72% of the applied rotation. On the non
rotated axis, a misalignment of -0.067 mrad is reconstructed by the software, which is
higher than the calculated rotation of 0.042 mrad for the rotated axis.

B.2 Calculation of mirror rotations with the software
for mirror tile 0_8

Analogously to the study presented in Section 5.4.2, results showing the mirror rotation
calculations for the outer mirror tile labelled 0_8 are shown on Figure B.2. Mirror
rotations range from 0.1 mrad up to 5 mrad and the set-up employed for this study is
identical to the one detailed in the afore-mentioned section.

For mirror rotations applied on the X axis, errors in the misalignment reconstruction
on the rotated axis amount to 8.9% of the applied rotation value for rotations ranging
between 0.3 and 5 mrad. Rotations on the non-rotated Y axis are detected and amount
in average to 27.4% of the applied rotation value in the range between 0.4 and 5 mrad.
The errors obtained for rotations and misalignment reconstruction on the horizontal axis
are illustrated in yellow on Figure B.2d.

For rotations around the Y axis, errors in the calculation of mirror rotation amount
to 13.8% of the applied rotation value in average in the rotation range of 0.3 mrad up to
5 mrad. On the non-rotated axis X and for the same mirror rotation range, the detected
rotations amount to 20.2% in average. The errors obtained for rotations and misalignment
reconstruction on the vertical axis are shown in purple on Figure B.2d.

For a simultaneous mirror rotation on both axes, errors in the misalignment recon-
struction amount in average to 32.2% and 33.9% of the applied rotation for the X and Y
axis, respectively. The mirror rotation range spans from 0.3 mrad up to 5 mrad. These
errors are illustrated in Figure B.2e.



Chapter B - Complements to Chapter 5 155

(a) (b)

(c)

(d)

(e)

Calculations of mirror rotations with the soft-
ware technique from Chapter 5 for the mir-
ror tile 0_8. Applied and reconstructed mis-
alignments for rotations around the horizon-
tal and vertical axes are shown (a, b and c).
The applied misalignment is coloured in pur-
ple, the reconstructed mirror rotation around
the horizontal axis in orange and the recon-
structed mirror rotation around the vertical
axis in green. The corresponding errors in cal-
culation of misalignments for single axis rota-
tions (d) and for simultaneous rotations (e) are
illustrated as well. For single axis rotations, the
errors on the X axis are represented in yellow
and the errors on the Y axis in purple. For si-
multaneous rotations, the errors on the X axis
are in blue and the errors on the Y axis in or-
ange.

Figure B.2
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