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Abstract: The purpose of this study is to investigate the effect of tourism on Land Surface Temper-
ature (LST), an issue which has rarely been considered in the tourism development literature. In
this research, remote sensing techniques have been used to analyze the changes in the LST and
spectral indices including the Normalized Difference Vegetation Index (NDVI), Modified Normalized
Difference Water Index (MNDWI) and Enhanced Built-Up and Bareness Index (EBBI). The data used
were based on Landsat Collection 1 Surface Reflectance (SR) images taken in June and August. They
were analyzed over 32 years in the years 1987, 1993, 1999, 2009, 2014 and 2019. The study area
included the cities of Babolsar and Fereydonkenar and their suburbs in Mazandaran Province in
the north of Iran and south of the Caspian Sea. First the tourism zones were separated from other
land use zones and then the changes in land use and LST in each of the zones were studied for each
year based on the trend of 32-year change. The results of Pearson correlation in the whole area for
each main land use zone showed that there was a significant inverse relationship between the LST
and the NDVI and MNDWI indices. This relationship was direct and significant for the EBBI index.
Moreover, the results of one-way analysis of variance (ANOVA) and Tukey test showed that the LST
changes in the tourism zones during the study period were significantly different from the other
zones, so that the tourism zones always experienced lower LST. The findings also showed that, in the
tourism zones, the values of the NDVI and MNDWI indices showed an increasing trend compared to
the urban zone. Therefore, increasing the values of these indices due to the development of green
space and its regular irrigation in tourism zones has led to a significant decrease in the LST. The
applied results of this research in the urban planning and tourism literature indicate that any model
of physical development such as urban development does not necessarily lead to an increase in the
LST, and this is entirely dependent on the physical design strategies.

Keywords: tourism; LST; second home; Babolsar; Fereydonkenar

1. Introduction

Climate change implication has been one of the primary research topics in the field
of tourism that has attracted many researchers in recent years. The focus of such studies
is on climate change’s significant role in the tourism sector [1–5]. This is important be-
cause climate change vulnerabilities have negative consequences for the future of tourism,
especially in areas such as Africa, the Middle East, South Asia, and the small island de-
veloping states [6]. In this regard, the dominance of studies on the effects of climate
change in tourism has led to the neglect of the other side of this relationship, namely the
effects of tourism on climatic parameters. Tourism has significant influence on climate
parameters [7–9]. It is, mainly through transportation, a major contributor to greenhouse
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gas emissions, for example [10]. However, the other side of this relationship-which is
focused on in this research—are changes in LST due to tourism.

Tourism spatial development creates and extends new a built environment consisting
of hotels, restaurants, shopping centers, entertainment spaces, roads and second homes.
Indeed, tourism-induced construction similar to the urbanization process causes extended
changes in land use, land cover and physical morphology of destinations. In turn, spatial
and physical changes in destinations lead to changes in climatic parameters, such as LST,
due to Albedo changes in the local environment. In this regard, the role of tourism in
increasing the LST and the formation or frequency of Heat Islands (HI), as a complex
environmental issue, can be one of the interesting interdisciplinary research topics that
have been neglected to some extent in the tourism literature.

Increasing LST is a risk arising from uncontrolled growth of the built-up environ-
ment [11–15], which severely affects the quality of human life [16–22], and is linked to
many adverse environmental conditions. This escalates heat waves and storms, exacerbates
air and water pollution, heightens cooling energy demands, and ultimately raises the threat
of heat-related illness [23–25]. In contrast, the effects of high LST have benefits for tourism,
including lower demand for environmental heating, improved outdoor comfort, and longer
growing seasons for plants in cold climates [26].

It has been confirmed that, compared to the effects of global warming, Heat Islands
and LST affected by built-up environments have more serious and profound effects at
local scales [27–29]. Even if the global climate does not warm up, urban environments are
currently facing the problem of rising temperatures [30–36].

LST and its relationship to the built-up environment have become a major concern
in environmental studies [23,29,37–40]. Previous studies have indicated that built-up
environment factors such as population density, building coverage ratio, floor area ratio,
and anthropogenic heat significantly exacerbate Surface Urban Heat Islands (SUHI) and
LST [40–58]. The characteristics of man-made surfaces differ from natural surfaces in the
absorption of short- and long-wave radiation, evaporation and release of heat [23,59–62].
Dark and impermeable surfaces with low vegetation cover have high heat capacity and
thermal conductivity rates [28,63–65]. These surfaces affect turbulent transport radioactive
heat exchange and hydrological processes [66]. This effect not only causes less incoming
solar radiant energy to be reflected, but also less energy is converted to latent heat associated
with evaporation and transpiration [67]. Man-made materials, especially dark impermeable
surfaces, absorb short-wave radiation and store heat during the day, and then slowly release
long-wave radiation during the night, causing the lower atmosphere to heat up [66,68].

This is especially important in tourism destinations with high rates of spatial and
land use changes. The reason is that the strong “lock-in” effects on the spatial changes are
almost impossible to significantly modify the physical structure of the destinations, and in
the worst case, the its modification requires huge costs and is largely irreversible [69,70].

To investigate the effects of tourism spatial changes on LST, the present study is
conducted in one of the popular tourism destinations in Iran, Babolsar, Fereydonkenar and
their hinterland in Mazandaran Province. Mazandaran province in the southern region of
the Caspian Sea in Iran is among the most popular domestic tourism destinations, hosting
more than thirty million domestic tourists yearly and accommodating thousands of second
homes [71]. The rate of second homes to native homes has reached more than 50% in some
areas of the province [71,72]. During the last 40 years, this region, and especially the study
area, have experienced vast and unprecedented spatial changes due to the development
of tourism, both in the form of second homes and overnight tourism. In addition, this
province in general and the case study in particular are not only counted among the top
popular domestic tourism destinations in Iran, but also function as an agricultural hub at
the national level [71,72]. This point makes it crucial that the pattern and environmental
impacts of the spatial development of tourism in the area are investigated.

Accordingly, the present study pursues two main goals: first, to open a new discourse
focusing on the effects of tourism on climatic parameters, especially LST, which has been
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neglected so far in tourism literature; second, to provide scientific evidence from a devel-
oping country from which there is little information regarding tourism effects on climate
parameters. This article consists of several sections: the introduction section describes LST
and its relationship to built-up environments, and is focused on filling a research gap in
tourism literature. In the research method section, data collection and analysis techniques
are described. In the results and discussion section, the spatiotemporal changes of LST in
the study area and its relationship with tourism spatial changes are reviewed and analyzed.
Finally, the results are summarized and synthesized in the conclusion section.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1), the coastal cities of Babolsar, Fereydonkenar and their
hinterlands, are located in Mazandaran Province, in the North of Iran and South of the
Caspian Sea. These cities, with a population of about 100,000 people [73], have been one of
the most popular domestic tourism destination in Iran for the past 50 years due to their
proximity to the Caspian Sea, their well-developed tourism services and their hospitable
communities. According to the results of a survey in Mazandaran Province, Babolsar
is the second most attractive destination for domestic tourism after Ramsar [74,75]. As
coastal cities with agricultural hinterlands, they have experienced increasing demand for
tourism over recent decades. According to survey estimates, the area was the destination
for nearly six million domestic tourists in 2017 [74]. The most important attractions in
this area according to the survey are the sea, the climate and the variety and abundance
of shopping centers. Using important climatic parameters such as temperature, relative
humidity, wind, radiation and bio-climatic indicators presented by Baker et al., the climatic
features of Babolsar and Fereydoonkenar show that, from May to November, Babolsar
has optimal natural conditions for tourist activities in open space in terms of thermal
comfort. Although in the two months of July and August due to the relative increase of
temperature and high relative humidity, a sultry state prevails in these cities, the wind
blowing, especially in the coastal area, make this situation tolerable and even optimal [76].

Figure 1. The study area in Iran (a) and Mazandaran Province (b) and the main land use/cover
zones (c).
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The growing trend of tourism in the study area over the past ten years has been
such that the area has changed from a mostly agricultural area to a multi-functional area
focusing on tourism and university education services [74].

The growth of tourism in the area in the two main forms of overnight stay and second
homes has led to significant spatial changes. Tourism-induced spatial changes are mainly
caused by the change of the coastal areas and bare land into second homes, shopping
malls, hotels, restaurants, entertainment centers, urban public spaces and development of
infrastructure such as roads, water and electricity [74].

Before addressing the effects of tourism in the study area, it is important to describe
the main types of tourism development. As mentioned earlier, Babolsar and Fereydonkenar
have two main types of tourism, overnight tourists and second home tourists. The main
services to the overnight tourists have been developed in the coastal zone of the area,
including hotels, inns, restaurants, shopping and entertainment centers. However, second
home tourists are divided into two different categories, detached second homes, and
attached second homes. The detached second homes have been developed mainly in the
western wards of Babolsar, detached from the main urban area; their main feature is low
density as well as vast yards and green space. In contrast, the attached second homes
with higher density have been developed in the northern area and are attached to the
urban zone.

2.2. Data and Methods

In this research, the relationship between the spatial changes in tourism and changes
in LST has been investigated using remote sensing techniques (Figure 2). It should be noted
that all the analyses related to the land use/cover and LST changes were done during
32 years and in 6 periods, i.e., in the years 1987, 1993, 1999, 2009, 2014 and 2019 (Table 1).
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To classify the images and calculate the main spectral indices and LST (Figure 3),
the data were obtained from Landsat Collection 1 SR images taken in June and August
(Table 1). SR improves comparison between multiple images taken from the same area by
considering atmospheric effects such as aerosol scattering and thin clouds. This can signifi-
cantly contribute to the detection and characterization of the land surface change [77,78].
In addition, the images have been selected carefully to observe two important points:
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(1) images with the least cloudiness and (2) images belonging to summer, because in this
season the study area has the least cloudiness and the vegetation of the region is in its
optimal condition in terms of components affecting growth (temperature and humidity).
According to the physical characteristics of the area, all the land uses/cover was classified
into three main categories: vegetation, built-up and bare lands.

Table 1. Satellite images used in the research *.

Spacecraft Sensor DATE

Landsat 5 TM 1987-06-21

Landsat 5 TM 1993-07-23

Landsat 5 TM 1999-06-06

Landsat 5 TM 2009-07-19

Landsat 8 OLI 2014-06-15

Landsat 8 OLI 2019-07-31
* The images in Table 1 are presented as reflectance and brightness temperature (BT).
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Figure 3. Calculation of the NDVI, MNDWI and EBBI and LST indices from satellite images. Nor-
malized Difference Vegetation Index (NDVI), also called the standardized vegetation index, is a
comprehensive reflection of vegetation type, coverage form, and growth conditions in unit pixel [79];
Modified Normalized Difference Water Index (MNDWI) uses green and SWIR bands for the enhance-
ment of open water features. It also diminishes built-up area features that are often correlated with
open water in other indices [80]; Enhanced Built-Up and Bareness Index (EBBI) is able to map built-up
and bare land areas using a single calculation. The EBBI is the first built-up and bare land index
that applies near infrared (NIR), short wave infrared (SWIR), and thermal infrared (TIR) channels
simultaneously [81]; Proportional Vegetation (PV) gives the estimation of area under each land cover
type. The vegetation and bare soil proportions are acquired from the NDVI of pure pixels [82]; Land
Surface Emissivity (LSE) is an essential parameter for retrieving LST. The LSE indicates the actual
ability of an object to emit energy relative to a black object with the same temperature [83].

Based on the reflectance characteristics and the NDVI, MNDWI, EBBI as well as the
LST indices, the satellite images of the study area were finally classified (Figure 4). In this
regard, first, the educational points with suitable distribution were selected for three main
land use/cover classes (built-up, bare land, vegetation). For this purpose, as shown in
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Table 2, the MNDWI, NDVI and EBBI spectral indices were used to identify the training
points of water bodies, vegetation, built-up and bare lands, respectively [78–80]. Then,
the satellite images were classified using a supervised classification method and Support
Vector Machine (SVM) Algorithm. The results of the classifications were evaluated using
130 well-distributed land sampling points based on the images belonging to the year 2019
(Figure 3). In this regard, the overall accuracy and kappa coefficient were obtained and
the results confirmed the acceptable accuracy of the method used (overall accuracy = 96.07
and kappa coefficient = 0.93).
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Table 2. Different types of land use/cover classes and related indices in the studied area.

LULC Description Identification Reference

Vegetation

All areas covered with green
space including agricultural

lands, parks, urban green
spaces and forests

NDVI > 0.35 [84]

Water All water-covered areas (sea,
river and dam) MNDWI > 0 [80]

Built Up
Man-made lands including

city, village and related
infrastructure

0 < EBBI < 0.35 [81]

Bare Lands Bare lands EBBI ≥ 0.35 [81]

After identifying and classifying the various classes of land use/cover, the LST charac-
teristics and its changes were studied separately for each land use class over the six time
periods. Then, in order to investigate the probability of a significant difference between
the 32-year averages of the LST of the three land use classes, vegetation, built-up and
bare lands, one way ANOVA and Tukey technique were used. Moreover, to examine the
relationship between the LST and the corresponding values of the NDVI, MNDWI and
EBBI indices in each cell, Pearson correlation method was used for each year. In other
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words, the relationship between the type of land use/cover and the LST was investigated
for each cell.

In order to investigate the relationship between the spatial changes in tourism and
changes in the LST, first based on the 2019 images, the area of land uses related to the
tourism sector, including second villa homes, second apartment homes and tourism ser-
vices, were separated from the other land uses, especially urban spaces. Due to the relatively
similar physical characteristics of the tourism and urban space, in order to separate these
two zones two fieldwork steps were taken.

In the first step, eight real estate dealers and investment consultants with more than
10 years of experience in the area were selected using the snowball sampling technique
and they were interviewed through open interview questions. The interviewees were
asked to separate tourism spaces from the urban space according to their experience and
in accordance with the map (Scale = 1:10,000). In order to verify the opinion of the real
estate consultants, they were also asked about the address of the streets separating the
tourism blocks. As mentioned, the development pattern of second homes in the study
area includes second villa homes detached from the urban area and second apartment
homes attached to the urban area. Thus, during the interview process, the two spaces were
separated from each other. The experience and high mastery of real estate consultants,
who even participated in many tourism projects in the region, provided the research
team with accurate information on identifying areas for tourism development and their
historical trends.

After receiving the views of the real estate consultants and confirmatory opinions
from the last interviewed consultants, in order to control and verify the interviewees’ ideas,
the plotted areas were re-examined by the research team. In the study area, it was relatively
easy to distinguish second homes from native urban wards since the first preference of
tourists is not to interfere with the native urban wards. Therefore, tourism spaces are
separated from the native spaces using the streets as borders and sometimes fencing. On
the other hand, the architecture of tourism spaces with the characteristic of more durable
materials, modern design, use of new technology in construction and greater area, can be
distinguished from the main urban wards. At the same time, in the case of blocks in which
there was some interference between the urban and tourism spaces, if more than 70% of
the land use in the block was dedicated to tourism activities or second homes, then that
block would be included in the tourism zone. It is noteworthy that only a few blocks had
this condition. However, due to the considerable physical distance from the main urban
area, fencing and even the presence of security at the entrances, the identification of the
detached tourism zone was made with great care, relying on the opinion of real estate
consultants and field examinations. At the end of this stage, a vector border layer was
created for all land uses in the form of four main zones: the urban zone, vegetation zone,
detached second home zone (detached from urban area) and attached second home zone
(attached to urban zone). This vector layer was used to analyze all pixels along with the
LST values and land use characteristics in the next steps.

The area of different land use/cover classes (vegetation, built-up and bare lands) and
LST were re-calculated separately for each of the four main zones (urban zone, vegetation
zone, detached second home zone and attached second home zone). These calculations
were repeated for all six time periods to obtain land use/cover changes in each zone over
time. Thus, for each image pixel, the values related to the land use class, zone name, values
of each of the NDVI, MNDWI and EBBI indices and finally the LST were recorded. Since
Landsat images were presented in 30-m pixels (thermal images were also resized with 30-m
pixels), the study area included 207,870 pixels. The values of each pixel were recorded in
a table for statistical analysis. Thus, it was possible to run statistical analyses on the LST
value and its relationship with the spectral indices at the level of each pixel, separately for
the four main zones.
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In order to calculate the rate of land use change from 1987–2019 for each zone, the
following formula was used:

Change Rate =
(Class Area2019 −Class Area1987)

Class Area1987
(1)

where Change Rate indicates the rate of change; Class Area2019 indicates the area of land
use class in 2019 at the related zone; Class Area1987 indicates the area of land use class in
1987 at the related zone.

The linear trend (α) formula presented below was also used to calculate the annual
rate of change of the NDVI, MNDWI, EBBI and LST time series for each pixel.

y = αx + β

α =
n ∑ xy− (∑ x ∑ y)

n ∑ x2 − (∑ x)2 (3)

where α is the slope of the line, β is a constant, n is the number of years, y indicates the
numerical value of the indices and the LST and x indicates the years studied.

After calculating the annual rate of change of the NDVI, MNDWI, EBBI and LST at
the level of each cell separately for the four main zones, Pearson correlation coefficient was
used to investigate the relationship between the LST changes and changes in the spectral
indices. The purpose of this stage was to investigate in more detail the effect of spatial
changes in tourism on changes in the LST. To further clarify this issue, one-way ANOVA
and Tukey technique were used to investigate the significant differences in the LST changes
and the NDVI, MNDWI and EBBI indices in the four main zones. The results of this section
helped the researchers to investigate the effect of the spatial changes in the attached and
detached tourism zones on changes in the spectral indices and the LST, and compare the
results with the effect of the spatial changes in the urban zone and vegetation zone.

In addition to statistical analysis, according to the relationship between the mean and
standard deviation of the annual change rate, the spatial and temporal patterns of the LST
changes in the study area were divided into three categories: usual temperature changes,
unusually high or low temperature changes, very unusually high or low temperature
changes. In this regard, the values between X± σ were considered as usual changes, values
greater than X + σ and smaller than X + 2σ were considered as unusually high changes and
values greater than X + 2σ were considered as very unusually high changes. On the other
hand, values smaller than X− σ and greater than X− 2σ were considered as unusually low
changes and values smaller than X − 2σ were considered as very unusually low changes.

3. Results
3.1. Land Use Changes in the Study Area

In this study, in order to investigate the possible impact of tourism on changes in
the LST, first land use changes in the area were analyzed over a period of 32 years (in six
time periods) from 1987 to 2019. In this regard, first the land use/cover changes in the
area were analyzed in three classes, i.e., built-up, bare lands and vegetation, and then, by
separating the area of tourism spaces from other land uses, the effect of the spatial changes
in tourism on land use changes and changes in the LST were examined.After the easing of
economic and security unrest caused by the Iran–Iraq war, from 1987 onwards the entry
of domestic tourists, both as overnight and second-home tourists, gradually increased in
study area [74]. In the development process of tourism spaces, proximity to the coastal area
and relative distance from native settlements have been the criteria for investors of second
homes and tourism services [74]. On the other hand, due to the relative salinity (unsuitable
for agriculture), first bare lands with a suitable location were transformed into projects
for the construction of second home complexes and tourism services. Between 1987 and
2019, the area of bare land decreased from 49 to 35 km2 with a negative annual change
rate of 2.53 km2. Vegetation coverage also decreased with a negative annual change rate
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of 2.41 km2, while the area of built-up land use increased with an annual change rate of
4.62 km2 from 9.5 to 32.26 km2. This shows that the area of built-up land use has increased
by about 340% from 1987 to 2019 (Figures 5 and 6).
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3.2. The Impact of Land Use Changes on LST Changes

At this stage of the research, to investigate the relationship between the land use/cover
and the LST, the LST changes associated with each of the land use classes (built-up, bare
land and vegetation) were examined for six time periods from 1987 to 2019 (32 years). For
this purpose, first the six-period average of the LST was calculated separately for each
pixel and then the results were compared based on the three main land use classes. The
results show that, in general, the average LST of all land use classes displayed a decreasing
trend from 1987 to 1999. However, from 1999 to 2019, they increased. In the meantime,
due to shading and evapotranspiration processes, the vegetation class has been cooler in
all the years under study with a difference of 5 ◦C between the built-up and bare lands
(Figures 7 and 8).
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The results of ANOVA test showed that there was a statistically significant difference
between the mean of the LST of the studied land use classes (1987–2019) (F = 14.033,
p < 0.0001). In a more detailed investigation, the results of the Tukey HSD test also showed
that the LST values in the vegetation class significantly differed (difference ' 5.5 ◦C) from
the LST in the bare lands and built-up area during the six periods studied (p = 0.001).
However, this difference was insignificant between the bare lands and the built-up area
(p = 0.998) (Tables 3 and 4). In this regard, the highest values of the LST were observed in
the bare lands in 1987 and 1999, while in 2014 and 2019 the built-up lands had the highest
LST values (Figure 7). The bare lands became warmer in 1987 and 1999 due to their sand
cover, which had to support construction in the following years, with the development
of tourism, especially in the coastal lands. At the same time, a large part of the bare
lands identified in the images of 2014 and 2019 were related to farmlands. The crops were
harvested earlier than planned due to the earlier start of the hot season.

Table 3. ANOVA test results in examining the significance of LST difference between the studied
land use classes (1987–2019).

Source DF * Sum of Squares Mean Squares F Sig **

Model 2 119.334 59.667 14.033 0.000
Error 15 63.776 4.252

Corrected
Total 17 183.110

* Degree of freedom. ** The mean difference is significant at the 0.01 level.

Table 4. Results of Tukey HSD paired comparisons to investigate the significance of LST difference
between the studied land use classes (1987–2019).

Contrast Difference Standardized
Difference Critical Value Sig *

Built Up vs. Vegetation 5.498 4.618 2.597 0.001
Built Up vs. Bare land 0.073 0.061 2.597 0.998

Bare land vs. Vegetation 5.425 4.557 2.597 0.001

Tukey’s d critical value: 3.673
* The mean difference is significant at the 0.01 level.

As described in the research method section, in the next stage the correlation between
the LST values and the corresponding values of the NDVI, MNDWI and EBBI indices
were calculated at the pixel level (Table 5). The results of this stage showed that, in all the
six time periods studied, there was a direct and significant correlation between the LST
and EBBI index, indicating that the LST increases with increases in built-up and bare land
areas. Due to the decrease of bare land area during the studied periods, it can be found
that the positive correlation between the LST and EBBI is mainly due to the built-up area
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expansion. In contrast, the results showed that there is a significant inverse relationship
between the LST and the NDVI and MNDWI indices, which indicate the vegetation and
water bodies, respectively.

Table 5. Correlation between the LST and the EBBI, MNDWI and NDVI indices per year in the
study area.

Year Pearson NDVI MNDWI EBBI

2019 Correlation
R2

−0.42
0.18

−0.28
0.08

0.69
0.48

2014 Correlation
R2

−0.69
0.47

−0.04
0.00

0.78
0.61

2009 Correlation
R2

−0.75
0.56

−0.07
0.00

0.84
0.70

1999 Correlation
R2

−0.40
0.16

−0.57
0.33

0.73
0.53

1993 Correlation
R2

−0.74
0.55

−0.02
0.00

0.83
0.69

1987 Correlation
R2

−0.79
0.63

−0.14
0.02

0.88
0.77

This study shows that the correlation between the LST and NDVI changed from −0.4
in 1999 to −0.79 in 1987. The correlation values of these two variables during the six time
periods studied show a significant inverse correlation. In contrast, the correlation between
the LST and EBBI was significant and direct, so that in all the six time periods studied, the
correlation between these two variables was at least from 0.69 to 0.88.

3.3. The Impact of Tourism Spatial Changes on LST

To investigate the effects of spatial development in tourism on the LST, the whole
study area was divided into four zones including the urban zone, vegetation zone, the
second home zone detached from the urban zone (with all surrounding tourism services),
and the second home zone attached to the urban zone based on the images of 2019 (research
method section). By separating the tourism areas, it was possible to study the impact of
tourism on the spatial changes of the region and finally on the changes of the LST. Findings
show that the built-up area in the two tourism zones increased from 1.32 km2 to 9.32 km2

from 1987 to 2019. Compared to the total built-up area in the region in these two years,
tourism zones made up 14.57% and 30.18%, respectively. On the other hand, the built-up
area in the urban zone increased from 5.92 to 14.74 km2 from 1987 to 2019 which made up
65.59% and 47.74% of the total built-up area in the region, respectively. In other words, the
built-up area in the two tourism zones increased by 708.1% from 1987 to 2019, while this
increase was 248.8% in the urban zone. Therefore, the expansion of the built-up area in the
tourism zones was more than 2.5 times as much as in the urban zone. This indicates the
role of tourism in the occurrence of significant spatial changes in the study area (Table 6).

Table 6. The built-up area in each of the main zones in the study area (1987–2019).

Year 1987 1993 1999 2009 2014 2019

Detached Tourism
Zone

km2 0.66 1.56 1.41 2.20 4.41 5.42
% 7.28 16.71 11.37 12.80 17.95 17.55

Attached Tourism
Zone

km2 0.66 0.95 1.35 2.76 3.60 3.90
% 7.30 10.14 10.85 16.03 14.64 12.63

Urban Zone
km2 5.92 5.68 7.38 10.54 14.08 14.74

% 65.60 60.82 59.50 61.30 57.22 47.74

Vegetation Zone km2 1.79 1.15 2.27 1.70 2.51 6.81
% 19.82 12.32 18.28 9.86 10.19 22.08

sum 9.03 9.34 12.41 17.20 24.60 30.87
100 100 100 100 100 100
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In addition, the 32-year changes in the three classes of land use/cover, built-up, bare
land and vegetation, in each of the four zones revealed more detailed information about
the spatial changes within each zone (Figures 9 and 10). Findings show that the area of bare
land in the attached tourism zone, with an annual change rate of −0.65, decreased from
4.62 km2 in 1987 to 1.26 km, while in the detached tourism zone the annual change rate
was −0.79. In contrast, the area of vegetation coverage in the two tourism zones increased.
The vegetation area in the detached tourism zone increased by an annual growth rate of
1.98, from 0.76 km2 in 1987 to 2.26 km2 (Figure 9).
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In this stage of the research, in order to distinguish the effects of tourism on LST from
other land uses, paired comparisons were made between the main zones. In this regard,
first the correlation between the annual change rate of the LST and the annual change rate
of the NDVI, MNDWI and EBBI indices was calculated in the studied zones during the six
time periods (from 1987 to 2019) (Table 7). The results of the Pearson correlation test show
that there was a significant direct relationship between the trend of changes in the LST and
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the trend of changes in the EBBI index. However, this relationship was inverse in the trend
of changes in the NDVI and MNDWI indices. This shows that the rising trend of the LST
is directly related to the expansion of built-up and bare lands. In contrast, in areas with
increasing vegetation and water body, the LST tended to decrease over the 32-year period
(Table 7 and Figure 11).
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Table 7. Pearson correlation between the annual rate of change in the LST and the annual rate of
change in the NDVI, MNDWI and EBBI indices (1987–2019).

NDVI MNDWI EBBI

LST
Correlation
(Pearson): −0.435 −0.148 0.532

R2 0.189 0.022 0.283
Values in bold are different from 0 with a significance level alpha = 0.05.

In the next step, using an ANOVA statistical test, the trend of changes in the LST and
NDVI, MNDWI and EBBI indices were compared statistically between the main zones in
the area. The results showed that the 32-year trend in changes in the LST was significantly
different in all four main zones, with 95% confidence. This result is also true for the trend
of changes in the spectral indices (Table 8 and Figure 12).

Table 8. Summary of ANOVA test results regarding the trend in annual changes in each of the LST,
NDVI, MNDWI and EBBI indices in the main zones.

LST NDVI MNDWI EBBI

F 7685.340 831.241 389.064 1907.658
Sig <0.0001 <0.0001 <0.0001 <0.0001
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The results show that the trend in annual changes in the LST is increasing in the whole
study area, but its values show a significant difference between the main zones, so that the
increasing trend of the LST in the urban and vegetation zones was higher than that of the
tourism zones. This indicates that the nature of spatial development of tourism, although
seemingly similar to the nature of urban development, has an inverse effect on the LST in
the tourism zones. It is noteworthy that the record of higher LST in the vegetation zone,
which mainly includes farmlands, is due to the bareness of these lands after harvest at
the time of study. Therefore, the result of the analysis of the above statistical test on the
difference in the LST of the vegetation zone and tourism zones is invalid.
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At the beginning of the research, with the aim of investigating the effect of tourism
on the LST in more detail, two separate tourism zones were selected, as attached to and
detached from the urban area. Thus, if the results are mixed with the urban zone, it is
possible to separate these two types of tourism development model. Although the results
of the paired comparisons show a significant difference in the changes in the LST and the
spectral indices between the two tourism zones, a comparison of the results of the Tukey
test makes it clear that both tourism zones have a different effect from that of the urban
zone on changes in the LST. By examining the impact of tourism on the spectral indices
(Table 9), the reason for this difference becomes clear.

Table 9. Pair comparison of the average trend of 32-year changes in the LST, NDVI, MNDWI and
EBBI indices in the zones based on Tukey (HSD) test (1987–2019).

Difference

LST NDVI MNDWI EBBI

DTZ vs. ATZ 0.020 −0.001 0.001 −0.004
DTZ vs. UZ −0.092 0.002 0.001 −0.019
DTZ vs. VZ −0.069 0.001 0.001 −0.007
ATZ vs. UZ −0.112 0.003 0.000 −0.015
ATZ vs. VZ −0.090 0.002 0.001 −0.003
UZ vs. VZ 0.022 −0.001 0.001 0.012

1. Values in bold are different from 0 with a significance level alpha = 0.05; 2. Detached Tourism Zone (DTZ),
Attached Tourism Zone (ATZ), Urban Zone (UZ), Vegetation Zone (VZ).

According to what has been said, tourism has moderated the LST in tourism zones
both through the development of sandy bare lands and the development of green spaces
(increase of the NDVI index). In contrast, in the urban zone, the NDVI index with a negative
change rate and the EBBI index with a higher positive change rate show a significant
difference to the tourism zone. In contrast to tourism development, the urban development
model had a higher EBBI rate on the one hand, and on the other hand the development of
the urban zone on the agricultural lands and the neglect of green space development has
caused a continuous decrease in the NDVI index. Therefore, during the study period, the
LST of the urban zone has always been higher than that of the tourism zones.

In the following, in addition to the above-mentioned statistical tests, first, the annual
trend of the LST changes in the whole area was calculated (at the pixel level) to depict
the spatial pattern of 32-year changes in the LST, and then the distribution pattern of
the usual/unusual and very unusual values was shown (research method section). By
adapting the boundaries of the four main zones with their trend values, the majority of
pixels with very unusually low and unusually low values trend belonged to the tourism
zones. This result shows that, during the 32-year period, with the development of tourism
spaces on bare lands and the development of green spaces in the tourism areas, the LST
experienced a declining trend with a significant difference from the other zones. In contrast,
the majority of pixels with a very unusually high value (warmer) were seen in the urban
zone (Figure 13).

A more detailed study of the spatiotemporal pattern of the trend in LST changes in the
study area shows that the pixels with the usual change value had a LST change between
0.057 to 0.181 ◦C per year. Peng et al. [85] also reported similar amounts of long-term LST
change as usual in a study on Chinese cities.

In the study area, most of the pixels with usual LST changes included parcels with
no land use change during the 32-year period, and therefore it can be said that they have
become warmer in line with global warming. In contrast, pixels with unusually high and
very unusually high (warmer) changes were divided into two groups. The first group
included parcels with vegetation cover that went under construction between 1987 and 2019.
These areas included parcels integrated in the urban zone or parcels with changed land
use as a result of the development of infrastructures, e.g., Fereydonkenar ring road. Other
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pixels with unusually high LST changes included infrastructure development projects such
as ports, piers, and offshore access routes (in the north at the coastal line) that have created
new built-up areas inside the sea.
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There were two areas with unusually and very unusually low (colder) LST changes.
The first area includes bare lands which changed to vegetation coverage during the study
period. These areas mainly included agricultural lands located in the east and southeast
of Babolsar. The second area was located in the tourism zones (detached and attached
zones). The bare lands in these zones were used for tourism-related infrastructure. These
constructions included second homes, green space in the tourism zone, shopping and
recreation centers. This finding is further evidence for the significant impact of spatial
changes in tourism on changes in the LST.

4. Discussion

The main results of this study showed that tourism, especially second homes, over
a period of almost 30 years, as a strong driving force, has caused widespread land use
change in the study area. As a result, the spatial changes caused by the development of
tourism, in subsequent years, have caused significant changes in the LST of the region.

Previous research has repeatedly shown that the amount of outgoing energy (Albedo
and Outgoing Longwave radiation (OLR)) is strongly influenced by the physical characteris-
tics of the land surface. Thus, any change in land surface characteristics will lead to changes
in the properties of radiation and ultimately changes in temperature [35–39,86–110]. In
this regard, the LST has been considered as an important indicator in environmental
studies [93].

In this study, the results of the ANOVA test showed the significant effect of three
main land use/land cover classes, including built-up, bare land and vegetation on the LST.
Accordingly, due to evapotranspiration and shading processes, vegetation has a significant
effect in reducing the LST by 5 ◦C. The results of the correlation test also confirmed a
significant inverse relationship between the LST and NDVI and MNDWI indices. The
correlation between the LST and NDVI during the six study periods also showed a strong
relationship from −0.4 to −0.79. A review of similar research also shows that, first, the
relationship between the LST and NDVI is significant and inverse. The value of this
correlation has been reported to be −0.4 and more [100,101,107,110]. In contrast, the
correlation between the LST and EBBI was significant and direct, so that in all six time
periods studied, the correlation between these two variables was from at least 0.69 to 0.88.
Peng et al. [85] have also confirmed such a strong correlation between these two variables
in their research.

This result shows that the LST has increased with increases in the area of built-up and
bare lands, while increasing the area of vegetation and water bodies has reduced the LST
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in the study area. These particular results is in line with previous research showing the
significant effect of vegetation on the LST [37,100–110]. In this regard, Rahman et al. [97], by
modeling the spatial changes in the coastal lands and their effects on the LST characteristics,
showed that physical changes due to urban development and built-up lands have a direct
and significant effect on the LST, and this could pose a challenge for the residents of the
studied areas in the future. The warmer built-up surfaces and the moderating role of
vegetation on the LST were also confirmed in this study. Hellings et al. [99] referred to the
impact of urban development and built-up space on increasing the LST in European cities,
showing that green spaces and vegetation coverage reduce the LST by between 4 to 6 ◦C
compared to built-up spaces and impermeable urban surfaces. The results of the study by
Maheng et al. [37] of the city of Colombo in Sri Lanka show that a 30% increase in green
space in a built-up urban environment moderates the average air temperature by 0.1 ◦C. In
contrast, changing the use of suburban vegetation to urban spaces will increase the average
temperature from 27.73 to 27.75 ◦C. Although this research has been carried out in different
geographical conditions, its results are in line with the results of research from major
European cities [99], Sri Lanka [37] and Indonesia [39] with temperate climates, showing a
significant effect of vegetation in decreasing the surface temperature in different climates.

In this study, more detailed results were obtained by separating the tourism zone
from the urban zone and vegetation. Unlike urban development models, the tourism
development model in the study area has occurred in such a way that it did not increase
the LST, but moderated it. The results of ANOVA and Tukey tests showed that there is
a significant difference between tourism zones and other zones based on the LST, NDVI,
MNDWI and EBBI indices, so that during the 32-year period, the tourism zones showed
higher values of positive changes in the NDVI and MNDWI indices and lower values of
changes in the EBBI index. This means that tourism in the study area has improved and
has developed vegetation and water bodies in the tourism zones, but at the same time, the
area of vegetation coverage has declined in the region. Therefore, the LST values in tourism
zones have always been lower than in the other zones. This finding is fundamentally
different from the findings of Chu et al. [94] in Hainan Island, China. By dividing the
study area into two main zones, tourism and non-tourism, Chu et al. [94] showed that the
development of tourism over a period of 20 years has a direct and significant effect on
increasing the LST so that the average difference between the surface temperature of the
tourism zone and other areas was more than 1.2 ◦C per year. The tourism development
model in Hainan Island caused extensive destruction of vegetation in the region and
replaced it with impermeable surfaces related to tourism structures. In contrast, the
development of tourism in the Babolsar area, on the one hand, has occurred through
the change in use of bare lands that have been covered with sand. Sandy surfaces, with
lower specific heat capacity than built-up surfaces, have a greater effect on increasing the
LST. Therefore, the development of bare lands to the built-up tourism spaces has led to
a decrease in the LST. On the other hand, the development of tourism spaces in the area
has led to the development of green spaces that are irrigated regularly (Figures 9 and 12).
One of the most important marketing strategies of tourism investors in the study area
is the development of well-designed green spaces within tourism projects. Accordingly,
although the goal of investors is mainly advertising and beautification of tourism areas,
this measure has affected the microclimate of the tourism zone by reducing the LST. In this
regard, Goldblatt et al. [107] conducted a study of microclimate on the campus scale, citing
the relationship between the NDVI, NDBI and LST. They found that, in comparison with
the physical characteristics of the bare and built-up lands, developed vegetation within a
campus has a significant effect on cooling the LST.

The findings of this study showed that tourism with a specific physical development
pattern can have a significant effect on changes in the LST. However, it cannot be argued
confidently that tourism development reduces the LST because, as Chu et al. [94] in their
research on Hainan Island showed, that the effect of tourism on the LST depends on
its physical development pattern. In the case investigated in this study (Babolsar and
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Fereydonkenar), tourism had a significant moderating effect on the LST in the tourism
zones through developing green spaces that were constantly irrigated, and constructing
on bare lands that were generally covered with sand. Although this study focused on the
effects of the physical development of tourism instead of urban development, its results on
the correlation between the land cover indices such as NDVI, MNDWI and EBBI with the
LST are consistent with previous research [92–110].

The findings of this study are significant because, at the beginning of the research,
there was no similar study in the relevant literature and, so far, only one similar piece
of research has been published [94]. This research has tried to deal with the relationship
between the physical changes and changes in the LST from another perspective. On the
other hand, a large part of the research related to the relationship between land use/cover
characteristics and LST has been conducted in temperate and humid regions with rich
vegetation, and relatively less research has been done in countries with arid climates such
as Iran [96]. In this regard, providing evidence from different contexts will help to enrich
the relevant literature. This research faces limitations, which can be addressed in future
research. Although the temperature data and the related indices were analyzed in six time
periods (32 years) on a pixel level from the whole area, they all belonged to a limited period
of summer when the vegetation and cloud cover of the area were in optimal condition.
Therefore, it would be useful to obtain more data covering the other times of the year to
enrich the analysis, though this may increase the volume of data and input of the analysis.
Therefore, other researchers could contribute to the enrichment of the relevant literature by
providing new evidence through conducting a similar research over longer periods and in
different climates, according to different patterns of tourism development.

5. Conclusions

This study investigated the possible effect of spatial changes in tourism on the LST.
Although several studies have been conducted to investigate the effect of land use/cover
changes on the LST, only one study has been published before this article on the effect of
tourism. Thus, more evidence and different research conditions and methods are required.
In this research, in order to classify the satellite images, the Landsat Collection 1 SR images
taken in June and August were analyzed during 32 years in six periods, i.e., the years 1987,
1993, 1999, 2009, 2014 and 2019. In line with the purpose of the research in the first stage,
the spatial changes and then the LST changes were studied in the area over a period of
32 years and in the six time periods mentioned above. Then, the correlation between the
LST changes and the changes in the NDVI, MNDWI and EBBI indices was examined in the
area. In the second stage, with the aim of analyzing the effects of tourism on changes in the
LST, based on the field method, the whole area was divided into four main zones including
the urban zone, the vegetation zone, the tourism zone attached to the urban area and the
tourism zone detached from the urban area. Then, using the data belonging to the period
of 32 years, the LST changes and its relationship with the NDVI, MNDWI and EBBI indices
were calculated separately for each zone. Finally, the LST values and their relationship
with the spectral indices were statistically compared between the four main zones.

The results showed that tourism over a period of 32 years (1987–2019), along with a
significant change in land use/cover, has played an important role in the spatial changes
of the study area. Similarly, the results confirmed the significant correlation of LST changes
in tourism zones. The results showed that the nature of the effect of tourism on the LST is
different from the other types of physical change factors, such as urbanization. This means
that, in the study area, tourism did not increase the LST. Instead, cooler temperatures were
always recorded in the tourism zones compared to the other land use/cover zones. By
examining the reasons for this in more detail, the findings showed that the development
of tourism in the area with the development of green spaces has helped to increase the
NDVI index values. On the other hand, since the green spaces in the tourism zones were
regularly irrigated, this has helped to further decrease the temperature. The development
of tourism in the bare lands in the coastal areas is also another reason for this phenomenon.
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The bare lands in the tourism zones were mainly covered with sand, which increased the
LST due to low specific heat capacity. However, the replacement of the mentioned land use
with built-up area or green spaces has led to a decrease in the LST in the tourism zones.
The findings of this study showed that the factors affecting the spatial changes such as
urbanization and tourism cannot necessarily have similar effects on the environmental
indices such as the LST. In addition, not all tourism development patterns can have the
same effects. According to the results of this research, a tourism development model that
leads to the development of green space can lead to lower LST in the area.
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