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Abstract. In this paper, we address the issue of how Gelfond and Lifschitz’s answer set semantics
for extended logic programs can be suitably modified to handle prioritized programs. In such pro-
grams an ordering on the program rules is used to express preferences. We show how this ordering
can be used to define preferred answer sets and thus to increase the set of consequences of a pro-
gram. We define a strong and a weak notion of preferred answer sets. The first takes preferences
more seriously, while the second guarantees the existence of a preferred answer set for programs
possessing at least one answer set. Adding priorities to rules is not new, and has been explored in
different contexts. However, we show that many approaches to priority handling, most of which
are inherited from closely related formalisms like default logic, are not suitable and fail on intuitive
examples. Our approach, which obeys abstract, general principles that any approach to prioritized
knowledge representation should satisfy, handles them in the expected way. Moreover, we investig-
ate the complexity of our approach. It appears that strong preference on answer sets does not add on
the complexity of the principal reasoning tasks, and weak preference leads only to a mild increase
in complexity.
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1 Introduction

Preferences among default rules play an important role in applications of nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity [45, 54, 55]. In case of a conflict between
defaults we tend to prefer the more specific one since this default provides more reliable information.

Specificity is an important source of preferences, but not the only one. In the legal domain it may, for
instance, be the case that a more general rule is preferred since it represents federal law as opposed to state
law [47]. In these cases preferences may be based on some basic principles regulating how conflicts among
legal rules are to be resolved. Also in other application domains, like model based diagnosis, configuration
or decision making, preferences play a fundamental role and their relevance is well-recognized.

Prioritized versions for most of the existing nonmonotonic formalisms have been proposed, e.g., priorit-
ized circumscription [24], hierarchic autoepistemic logic [29], prioritized default logic [39, 7, 2], prioritized
theory revision [5, 40], or prioritized abduction [18]. Somewhat surprisingly, preferences have received less
attention in logic programming. This may be explained by the fact that for a long period, logic program-
ming was mainly conceived as a logical paradigm for declarative programming, and to a less extent as a
tool for knowledge representation and reasoning. However, in the recent past, it has become evident that
logic programming can serve as a powerful framework for knowledge representation, cf. [21, 3]. If logic
programming wants to successfully stand this challenge, it must provide the features which have been re-
cognized as indispensable in the context of knowledge representation. One such feature is the possibility to
handle specificity and priority of knowledge.

This motivates an investigation of the possibilities to enhance logic programs with priorities. In a previ-
ous paper [8], one of the authors has defined a prioritized version of well-founded semantics for extended
logic programs. In the present paper, we investigate prioritized programs under answer set semantics [23],
which is regarded as the second standard semantics for extended logic programs. Notice, however, that the
approach in the present paper is not a simple extension of the previous approach: it is based on different
philosophical grounds.

Let us first characterize somewhat more precisely what we want to achieve. We consider programs sup-
plied with priority information, which is given by a supplementary strict partial ordering of the rules. This
additional information is used to solve potential conflicts; that is, we want to conclude more than in stand-
ard answer set semantics. On the other hand, unless the program with the given preference information is
unsatisfiable (in a sense to be made precise) we want to conclude only literals that are contained in at least
one answer set. The best way to achieve these goals is to use the preferences on rules for selecting a subset
of the answer sets, which we call the preferred answer sets. The definition of preferred answer sets is thus
one of the main contributions of this paper.

To give the flavor of our approach, we consider a simple motivating example. The following logic program
represents the classical birds & penguins example:

(1) ���������
	��
����	������
(2) ���������
	��
����	������
(3) �����
� ��!"�
#$�%�'&�(�)����
� �*!%�
#���+,���������
#$�
(4) ���
� �*!%�
#����'&�(�)������
� ��!"�
#$��+-�.�/�0���
#��

This program has two answers sets: 13254768���9�����
	 �:�*�9	 ����+-���������
	��
�*�9	 ����+������
� ��!"�
	��
����	����.; and 1
<=468���������
	��
����	�����+>���������
	 �:�*��	�����+>���?���*!%�
	 �:�*��	����.; (for precise definitions, see Section 2).
Now let us assume that the rule numbers express priorities, such that rule (1) has the highest priority and
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rule (4) the lowest. Then, the answer set 1@< is no longer intuitive: indeed, ���
� ��!"�
	��
����	���� is concluded
by applying rule (4); on the other hand, the rule (3) has higher priority than (4), and thus �����
� �*!%�
	 �:�*�9	 ���
should be concluded. Our approach handles this example as desired, as 1=2 is the preferred answer set.

As mentioned before, a number of prioritized versions of default logic [49] have been defined. It is well-
known that extended logic programs can be translated to default theories in a straightforward manner, cf.
[23, 39], and that the answer sets of a program are in one-to-one correspondence with the extensions of the
respective default theory. One may thus conclude that the existing proposals for prioritized default logics,
e.g. [39, 7, 2, 50, 14], are sufficient to specify preferred answer sets. However, it turns out that all these
approaches are unsatisfactory. This will be demonstrated in Section 3 and Section 9. The intuitive reason
for the failure of these approaches is that some of them implicitly recast Reiter’s default logic to a logic
of graded beliefs, while others do overly enforce the application of rules with high priority, which leads to
counterintuitive behavior.

Our approach takes a different perspective, which is dominated by following two main ideas. The first
is that the application of a rule with nonmonotonic assumptions means to jump to a conclusion, and this
conclusion is yet another assumption which has to be used globally in the program for the issue of deciding
whether a rule is applicable or not. The second is that the rules must be applied in an order compatible with
the priority information. We take this to mean that a rule is applied unless it is defeated via its assumptions
by rules of higher priorities. This view is new and avoids the unpleasant behavior which is present with
the other approaches. Our formalization of these ideas involves a dual of the standard Gelfond-Lifschitz
reduction and a certain operator used to check satisfaction of priorities.

At this point the reader might ask a methodological question: how can we be sure that the approach
presented here, even if it performs better than existing approaches on several examples, will not fail on
future examples? Is what we propose an ad hoc fix that will need further fixing after a short period of time
in the light of new examples?

This is certainly a concern which needs to be taken very seriously. In order to base our approach on firmer
ground we set forth some abstract principles that any formalization of prioritized logic programs should
satisfy, and in a wider context related formalisms for knowledge representation as well. We demonstrate that
our approach satisfies these principles, while other approaches fail on them. The investigation of abstract
principles for priorities in knowledge representation formalisms is to the best of our knowledge novel and
constitutes another contribution of this paper. We certainly do not claim our principles to be complete in any
reasonable sense – an exhaustive investigation of this issue is a comprehensive task of its own, comparable
to analogous studies in the field of nonmonotonic reasoning [1, 15, 16, 31, 28, 34]. Nevertheless, we believe
that considering such abstract principles as a coherence check is an important step into the right direction,
leading to a more effective and focussed development of prioritized frameworks.

The remainder of this paper is organized as follows. The next section recalls the definitions of extended
logic programs and introduces basic notations. Section 3 introduces two basic principles for preference
handling in rule based nonmonotonic systems, reviews some approaches to prioritized default logic and
demonstrates that they fail to satisfy the principles.

In Section 4, we then present our approach, by introducing the concept of preferred answer sets. We
demonstrate the approach on a number of examples, and investigate in Section 5 its properties. As it appears,
preferred answer sets are in some contexts too strict, and a program which has an answer set may lack having
a preferred one. In order to handle this problem, we define in Section 6 also a weak notion of preferred
answer sets. Intuitively, the strong notion of answer sets takes preferences more seriously, which may lead
to a situation in which the priorities are incompatible with the answer set condition; this is avoided in the
weaker notion.
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In Section 7, we address the issue of computing preferred and weakly preferred answer sets. We describe
algorithms and analyze the complexity of our approach, where we focus on the propositional case. It appears
that strong preference does not add to the complexity of answer sets in the most important reasoning tasks,
and that weak preference leads only to a mild increase of complexity. In particular, all considered reasoning
problems are in the polynomial time closure of ACB . Section 8 demonstrates how the preferred answer set
approach can be applied to problems in qualitative decision making. Section 9 discusses related work, and
Section 10 concludes the paper by considering possible extensions and outlining further work.

In order to increase readability and not to distract from the flow of reading, proofs of technical results
have been moved to the appendix, with the exception of short proofs and those which, as we think, should
be seen together with the result.

2 Preliminaries and Notation

We assume that the reader is familiar with the basic concepts of logic programming; see [33] for background.
In the present paper, we focus on extended logic programs, which have two kinds of negation, as described
in [23].

As usual, let D be an underlying countable first-order language. Unless stated otherwise, D is the language
generated by the program or rule base under consideration.

A rule � is a formulaE �GF 2 +�H�H�H*+IF"J-+I&�(�)K� 2 +�H�H�H*+I&�(�)���L (1)

where the F%M +.�ON and E are classical literals, i.e., either positive atoms or atoms preceded by the classical
negation sign � . We denote by P-�*F"���
�>� the head of rule � . The symbol &�(�) denotes negation by failure (weak
negation), while � denotes strong negation (sometimes called explicit negation). We will call FQ29+�H�H�H*+IF J the
prerequisites of the rule and use �����"�
�>� to denote the set of prerequisites of � . A rule is called prerequisite-
free, if �R4TS .

A rule base U is a (possibly infinite) collection of rules; an extended logic program (logic program or
program, for short) V is a finite rule base.

As usual, a rule (resp. rule base, program) is ground, if no variable occurs in it; a rule base (resp., program)
is prerequisite-free, if all rules in it are prerequisite-free.

For a rule base U , we denote by UXW the ground instantiation of U over the Herbrand universe of the
language D . Moreover, we denote by YK��	8! the set of all classical ground literals of D .

We say a rule � of the form (1) is defeated by a literal Z , if ZC4[� M for some �]\^6>_0+�H�H�H`+8ab; , and we say it
is defeated by a set of literals c , if c contains a literal that defeats � .

Let us recall the definition of the answer set semantics for extended logic programs [23]. Answer sets are
defined in analogy to stable models [22], but taking into account that atoms may be preceded by classical
negation.

Definition 2.1 Let U be a collection of ground rules, and let ced'Yf��	O! be a set of ground literals. The
reduct of U with respect to c (for short, c -reduct of U ), denoted U3g , is the collection of rules resulting
from U byh deleting each rule which is defeated by c , andh deleting all weakly negated literals from the remaining rules.
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This reduction of U is often called Gelfond-Lifschitz reduction, after its inventors [22].

Definition 2.2 Let U be a collection of ground rules without weak negation. Then, i:�f�jUk� denotes the
smallest set lmdnYf��	O! of ground literals such that

1. l is closed under U , i.e., for any rule Fo�pF�2�+�H�H�H*+IF J in U , if F�29+�H�H�H9+IF J \ql , then F=\bl ; and

2. l is logically closed, i.e., either l is consistent or l^4TYf��	O! .

Definition 2.3 Let U be a collection of ground rules. Define an operator r�st�
cb� on the sets c of ground
literals as follows:r�sf�
cu�f4[iv�f�jU g �
Then, a set c of ground literals is an answer set of U iff cw4xr�sf�
cb� .

The collection of answer sets of U is denoted by y5zC�jUk� . For an arbitrary logic program V , the collection
of answers sets y5z
�jVX� is given by y5zC�jVX�K4TyXz:�jV W � .

A ground literal Y is a consequence of a program V under answer set semantics, denoted V|{ 4}Y , iff Y is
contained in all answer sets of V . For more on answer sets, consult [23].

We illustrate the definitions using the birds & penguins example from above.

Example 2.1 Consider the program V containing the following rules:���������
	��
����	������ �����
� �*!%�
#����~&�(�)����
� ��!"�
#$��+����������
#�����������
	��
����	������ ���
� �*!%�
#����~&�(�)������
� ��!"�
#$��+-���������
#��
This program has two answer sets, namely 1 2 4�68���9�����
	 �:�*�9	 ����+-���������
	��
�*�9	 ����+-�����
� �*!%�
	��
�*�9	 ���.; and1
<�4�68���������
	 �:�*��	�����+>�.�/�0���
	 �:�*�9	 ����+,���?���*!%�
	 �:�*��	����.; . Indeed, the 1X2 -reduct of VXW is the program:���9�����
	 �:�*�9	 ���-��.�/�0���
	 �:�*�9	 ���-������
� �*!%�
	��
�*�9	 ���������������
	��
����	����
Applying iv�f����� to this program yields i:�f�jV3W����I�34�68���9�����
	 �:�*�9	 ����+����������
	��
����	�����+������
� �*!%�
	 �:�*�9	 ���.;4�1@2 . Thus, r����0�j1@2��t4}1k2 , which means that 1X2 is an answer set of V . Similarly, the 1@< -reduct of V W is

the program: ���9�����
	 �:�*�9	 ������.�/�0���
	 �:�*�9	 ��������
� �*!%�
	 �:�*�9	 �����'���������
	��
����	����
Applying iv�f����� to this program yields 68���������
	 �:�*��	�����+.�.�/�0���
	 �:�*�9	 ����+.���
� �*!%�
	 �:�*�9	 ���.; . Thus, r-���0�j1
<*��41 < , and hence 1 < is an answer set of V . Clearly no further answer set exists.
Therefore, neither V�{ 4����
� ��!"�
	��
����	���� nor V�{ 4������
� ��!"�
	��
����	���� holds; both literals ���
� ��!"�
	��
����	���� and�����
� ��!"�
	��
����	���� are unknown.

3 Why Existing DL-Approaches Do Not Work

Different prioritized versions of Reiter’s default logic [49] have been proposed in the literature, e.g. [39, 7,
2, 50, 14]. We will show that all of them suffer from weaknesses and thus cannot serve –via the standard
translation from extended logic programs to default theories– as a satisfactory specification of preferred
answer sets.
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3.1 Principles for priorities

Before discussing these approaches, we want to formulate two principles which as we believe should be
satisfied by any system which is based on prioritized defeasible rules. Since we want our principles to
cover different approaches like default logic, prioritized logic programs, etc. we use in this section the
generic terms belief set (for extension, answer set, . . . ) and prioritized theory (for prioritized default theory,
prioritized logic program,. . . ) in our formulations.

The first principle can be viewed as a meaning postulate for the term “preference” and states a minimal
requirement for preference handling in rule based systems:

Principle I. Let � 2 and � < be two belief sets of a prioritized theory �?��+��
� generated by the (ground)
rules Ux�u6*��2�; and UT�b6*�"<0; , where ��29+I�><q�\�U , respectively. If �-2 is preferred over �%< , then �v< is
not a (maximally) preferred belief set of � .

In this context, a rule � is said to generate a belief set � , if the prerequisites of � are in � and � does not
defeat � . It is hard to see how the use of the term “preference among rules” could be justified in cases where
Principle I is violated.

The second principle is related to relevance. It tries to capture the idea that the decision whether to believe
a formula � or not should depend on the priorities of rules contributing to the derivation of � only, not on the
priorities of rules which become applicable when � is believed:

Principle II. Let � be a preferred belief set of a prioritized theory �?��+��
� , � a (ground) rule such that at
least one prerequisite of � is not in � . Then � is a preferred belief set of �?���R69�%;,+��k��� whenever ���
agrees with � on priorities among rules in � .

Thus, adding a rule which is not applicable in a preferred belief set can never render this belief set non-
preferred unless new preference information changes preferences among some of the old rules (e.g. via
transitivity). In other words, a belief set is not blamed for not applying rules which are not applicable.

We will see that each of the existing treatments of preferences for default logic, described in [39, 7, 2, 50,
14], violates one of these principles.

3.2 Control of Reiter’s quasi-inductive definition

The first group of proposals [39, 7, 2] uses preferences to control the quasi-inductive definition of extensions
[49]: in each step of the generation of extensions the defaults with highest priority whose prerequisites have
already been derived are applied. Now what is wrong with this idea? The answer is: the preferred extensions
do not take seriously what they believe. It may be the case that a less preferred default is applied although
the prerequisite of a conflicting, more preferred default is believed in a preferred extension. As we will see,
this can lead to situations where Principle I is violated.

The mentioned approaches differ in technical detail. We do not want to present the exact definitions here.
Instead, we will illustrate the difficulties using an example for which all three approaches obtain the same
result.

Example 3.1 Assume we are given the following default theory:1

(1) F��"���0�
1We assume that the reader knows the basic concepts of standard default logic [49]; informally, a default rule � : �8�I� corresponds

to the clause �� [¡`¢.£ ¤��.¥¦� .
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(2) 	��0§��@�"���������
(3) 	��0§��@�,F��`F

Assume further that (1) is preferred over (2) and (2) over (3). This default theory has two Reiter extensions,
namely ¨@2©4ª�
P«� 6*F-+.�*;`� , which is generated by rules (1) and (3), and ¨v<n4¬�:P�� 6*F�+����*;`� , which is
generated by rules (2) and (3). The single preferred extension in the approaches mentioned above is ¨ < .
The reason is that the prerequisite of (2) is derived before the prerequisite of (1) in the construction of
the extension. The approaches thus violate Principle I. Also the recent approach in [14], which is briefly
reviewed in Section 9, yields ¨v< as the result.

This unpleasant behavior of selecting ¨v< in the previous example was already observed in [7]. In that
paper, the author tried to defend his approach arguing that there is only weak evidence for the literal F in
our example. We revise our view, however, and do not support this argument any longer. After all, default
logic is not a logic of graded belief where degrees of evidence should play a role. Default logic models
acceptance of belief based on defeasible arguments. Since F is an accepted belief, rule (1) should be applied
and ¨@2 should be the preferred extension in the example.

3.3 Rintanen’s approach

An entirely different approach was proposed in [50]. Rintanen uses a total order on (normal) defaults to
induce a lexicographic order on extensions.

Call a default rule �=4­F : ���0� applied in a set of formulas ¨ (denoted �®\�F9�>���8�j¨5� ), if F and � are in ¨ .
An extension ¨ is then preferred over extension ¨o� , if and only if there is a default �5\RF9�,���O�j¨3��¯fF*�,���8�j¨5�°�
satisfying the following condition: if �"� is preferred over � and �,��\RF9�,���O�j¨k�±� , then �0��\²F*�,���8�j¨5� .

Unfortunately, also this approach leads to counterintuitive results and to a violation of our principles.

Example 3.2 Consider the following default theory, which is similar to the one in Example 3.1:

(1) F��>�³�0�
(2) 	��`§��v�"��F�����F
(3) 	��`§��v�,F��`F

Again (1) is preferred over (2), and (2) over (3). The default theory has two Reiter extensions, namely¨v2�4[�
P�� 6`��F�;`� and ¨C<v4��
P�� 6*F�+.�*;`� . Intuitively, since the decision whether to believe F or not depends
on (2) and (3) only, and since (2) is preferred over (3), we would expect to conclude ��F , in other words, to
prefer ¨@2 .

Rintanen, however, prefers ¨:< . The reason is that in ¨
< default (1) is applied. Belief in F is thus accepted
on the grounds that this allows us to apply a default of high priority. This is far from being plausible and
amounts to wishful thinking. It is also easy to see that Principle II is violated: ¨=2 clearly is the single
preferred extension of rules (2) and (3) in Rintanen’s approach. Adding rule (1) which is not applicable in¨v2 makes ¨@2 a non-preferred extension.

Since all these approaches suffer from serious drawbacks, they cannot serve as a basis for a satisfactory
definition of preferred answer sets. Our new proposal will be developed in the following section.

4 Prioritized Programs and Preferred Answer Sets

In this section, we present our approach for incorporating priorities into extended logic programs. In this
approach, priorities are specified like in other approaches by an ordering of the rules. This ordering will
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be used to test if an answer set is constructed by applying the rules in a proper order. However, and this is
the salient point of our approach, the proper order of rule application will not be enforced during a quasi-
inductive construction of an answer set, but will rather be ensured in a separate additional condition which
requires a dual reconstruction of the answer set. Our approach derives from the following two underlying
ideas:

(1) Applying rules with default negation means to jump to conclusions, and any such a conclusion has to
be used globally throughout the program when the applicability of a rule is tested.

(2) Rules must be applied in an order compatible with the priorities. It appears that this is intuitively the
case if each rule whose prerequisites are true and whose assumptions are not defeated by the rules
with higher priority, is applied.

Based on these considerations, we develop our approach.

4.1 Prioritized extended logic programs

We start with the syntactical part of our framework for specifying priorities on extended logic programs, and
define the concepts of prioritized rule bases and extended logic program as follows.

Definition 4.1 A prioritized rule base is a pair ´µ4��jU3+��
� where V is a rule base and � a strict partial
order on U . In particular, ´ is a prioritized (extended) logic program, if U is an (extended) logic program.

Recall that a strict partial order is an irreflexive ( Fx¶��F , for all elements F ) and transitive relation. The
order � is used to express preference information: �%2
�T�*< stands for “ �,2 has higher priority than �0< ”. Our
goal is to use this information to define the notion of a preferred answer set.

We use here a partial order rather than a total order on the rules, which is appropriate for different reas-
ons. The first reason is that in some scenarios it may be unwanted or even unnatural to specify an order
between rules. E.g., if we have the facts ���������
	��
�*�9	 ��� and ���������
	 �:�*��	���� , then the ordering of these facts
is intuitively irrelevant, and we do not want to care about it.

A second reason is that, as rules represent their ground instances, we can pass easily from a program V
with variables to its ground instantiation V W while the intuitive meaning of priorities on rules is preserved.
E.g., if we have rules��2 : ���
#����~·��
#$��*< : ���
#������K!"�
#«+8���
such that �,2¸�n�*< , then by passing to the ground instances, the naturally induced partial order says that every
instance of �,2 has higher priority than any instance of ��< , while no priorities are given between the instances
of �,2 and of ��< , respectively.

If we adopt the view that rules should be applied one at a time, then a partial ordering � on the rules
is a representative of all possible refinements of � to total orderings. However, not all total orderings are
intuitively acceptable. It is natural to assume that in any totally ordered rule base, some rule has highest
priority. This reflects the view of proceeding from most important to less important matters, and means
that infinitely decreasing chains �%25¹­�*<�¹��*º�¹~H�H�H of rules are excluded. Formally, this amounts to the
condition that the ordering � on U is well-founded, i.e., to satisfaction of the second-order axiom�°»�c¼d½Uk��H°�
c¾¶4}¿kÀÁ��Â�#²\Ãcu�³�°»���\²cb��H°�
#²4x�@ÄÅ#²�½���8��H
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Any such ordering is called a well-ordering; notice that well-orderings are customary with infinite rule
systems, cf. [35, 39].

Each total ordering of a finite set is trivially a well-ordering, while this is not true for infinite sets. It is
well-known that each well-ordering � of a set Æ corresponds by its order type to a unique ordinal numberÇ �������
� , and thus to a (possibly transfinite) enumeration abÈ`+8ab29+�H�H�H9+8aÃÉ�+�H�H�H of the elements in Æ , whereÊ is an ordinal number such that SuË Ê � Ç �������
� ; we use the notation �jÆ�+��
�k4Ì69auÉ�;�Í for this. For
example, Ç �����¦¿,�o47S , Ç ����� 6*F-;`�o4¼_ , Ç ����� 68�Q�jF���+,�Q�¦���jF��8� , �Q�¦���¦���jF��8�8�8��+ÎH�H�H±; = Ï and so on. Moreover,
every well-ordering � induces on every nonempty subset Æ � dGÆ a unique well-ordering � � . For a
background on well-orderings, see e.g. [53].

Definition 4.2 Let Ð�4Ì�jVÑ+��
� be a prioritized logic program. Then, the ground instantiation of Ð is the
prioritized rule base Ð W 47�jV W +�� W � where � W is the relation on V W satisfying � W2 � W � W< iff � W2 and � W< are
instances of rules � 2 and � < in V , respectively, such that � 2 �½� < .

Note that in general, the relation �@W in �jVXW`+��CW�� is not a partial ordering; this happens if the priorities� are not consistent, in the sense that ground instances of rules may lead to a priority conflict. E.g., if we
have rules �,23�9�Q�
#$�
�Ò·��
#�+IF�� and �*<��9���¦�³�:�Ò·��
��+8#$� where ��25�­�*< , then the rule �`º��9�Q�¦���:�Ò·��¦��+IF��
is a common instance of �>2 and �*< , which raises the contradicting priority �,º�� W �*º . Such contradictions
can be effectively recognized from �jVÑ+��
� , however, and we thus may assume that � W is in fact a partial
order. Moreover, it is easy to avoid such conflicts, by tagging rules with dummy literals such that common
rule instances are not possible. An alternative would be to incorporate implicit contradiction removal into
the definition, by adding the constraint ��W2 ¶4Ó�,W< . However, it seems more appropriate that syntactically
inconsistent priorities should raise an exception which is handled in an explicit way, rather than by some
implicit procedure.

Definition 4.3 A full prioritization of any ordered ground rule base ´74|�jU3+��
� is any pair ´q��4|�jU3+��¸�°�
where ��� is a well-ordering on U compatible with � , i.e., � 2 �~� < implies � 2 �¸�f� < , for all � 2 +8� < \}U .
By ÔoÐ��
´Õ� we denote the collection of all full prioritizations of ´ . We say that ´ is fully prioritized, ifÔoÐ��
´Õ�f4�69´Ã; , i.e., ´ coincides with its unique full prioritization.

Thus, a prioritized program �jVÑ+��
� reduces in general to an infinity of well-ordered rule bases �jVÕW`+�� � � .
This raises the question of how these alternative well-orderings should be handled. A possible solution
is that some canonical ordering � W is chosen, based on some principle (e.g., lexicographic ordering); this
pragmatic approach is plausible for implementation, where often ties between alternatives are broken in
some specified way. On the other hand, every well-ordering �v� which refines � is compatible with the
priority specification, and if some answer set is acceptable under � � , it should be acceptable under � as
well; we thus will define the concept of preferred answer set under this credulous view of priorities. The
investigation of the properties of preferred answer sets in Section 5, in particular the observation in the
paragraph after Proposition 5.4, provides support for this decision.

4.2 Preferred answer sets

We will first formulate the criterion which an answer set must satisfy in order to be preferred, given a fully
prioritized rule base ´~4Ö�jU3+"�
� .

Recall that in the definition of answer sets, the case of rules with weak negation is reduced to a particularly
easy special case, namely to rules without weak negation. To check whether 1 is an answer set of such a
rule base U of ground rules, we must reduce it with 1 , and then check whether the resulting rule set has
consequences 1 .
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Similarly, there is a special case where it is particularly easy to check for an answer set 1 whether a
full prioritization �jU3+��
� was taken into account adequately: ground rule bases U without prerequisites, i.e.
collections where the bodies of all rules contain only weakly negated literals. In this case, we simply have
to check whether each rule in U whose head is not in 1 is defeated by the consequences of applied rules of
higher priority.

To model this, we associate with each fully prioritized rule base ´ of prerequisite-free ground rules an
operator i]×��-Ø0Ù MÛÚ°Ü ÀÁØ0Ù MÛÚ°Ü . An answer set 1 satisfies the priorities, in case it is a fixpoint of i�× . In the
construction of i × �j1v� , rules are applied in the order of their priorities. In each step, the head of the current
rule � is added to the collected literals, if (1) � is not defeated by literals collected so far, and (2) it is not the
case that P-�9F%���
�>�Ñ\R1 yet � is defeated in 1 . Note that condition (2) is necessary to avoid situations where
a rule defeated in 1 nevertheless increases the priority of a different derivation of its head through another
rule (an illustration which also demonstrates that omitting (2) would lead to a violation of Principle I will
be given later, see Example 5.3). The formal definition is as follows.

Definition 4.4 Let ´74Ý�jU3+��
� be a fully prioritized rule base of prerequisite-free ground rules, l a set of
literals, and let ´~4�69� É ; . We define the sequence l É , SoË Ê � Ç �0�����
� , of sets l É dnYf��	O! as follows:

l É 4
Þßà ßáãâXä Í-É l ä + if ��É is defeated by âXä Í-É l ä orP-�9F%���
� É �t\ql and � É is defeated by l�+

âXä Í-É l ä �q6�P-�9F%���
��É��.;,+ otherwise.

The set i × ��lK� is the smallest set of ground literals such that�
��� â É%Í-å�æ8ç³è°Í�é l�ÉÅdxi × ��lK� , and�
�/���²i × ��lK� is logically closed.

Note that for Ê 4ÖS , âXä Í-É l ä 4�¿ holds. Moreover, for each successor ordinal ÊRê _ , the definition ofl É,ë«2 can be simplified by replacing â5ä Í-É,ë«2 l ä with l É ; the above definition is uniform and more succinct,
however. The sequence lÎÉ monotonically increases and converges to â É%Í-å�æ8ç³è°Í�é l�É .i × is not meant to return consequences of U . It may well be the case that a rule �"É is applied in the
production of it×@��lK� although the rule is later defeated by some less preferred rule � ä , i.e., Ê �nì . However,
if some answer set 1 of U is a fixpoint of i × , then we can be sure that all preferences in � were taken into
account adequately, that is, a rule whose head is not in 1 is defeated by a more preferred rule applied in 1 .

To see this it is helpful to note that an answer set 1 divides the rules U into three groups, namely generating
rules, which are applied and contribute to the construction of 1 , dead rules, which are not applicable in 1
but whose consequences would not add anything new if they were applied since they appear in 1 anyway,
and zombie rules, which are those not applicable in 1 and whose consequence does not belong to 1 . Only
zombie rules have the potential to render answer sets non-preferred. This is the case if at least one zombie is
not “killed” by a generating rule of higher priority. By examining rules with decreasing priority, collecting
heads of generating rules and neglecting dead rules during this process the construction of i × guarantees
that indeed all zombies are defeated by rules with higher preference whenever 1 is a fixpoint of iv× .

We therefore define preferred answer sets as follows:

Definition 4.5 Let ´74|�jU3+��
� be a fully prioritized rule base of prerequisite-free ground rules, and let 1
be an answer set of U . Then 1 is the preferred answer set of ´ , if and only if i × �j1v�K4T1 .

To illustrate this definition, let us consider a simple example.

Example 4.1 Let ´�4��jU3+��
� where U consists of the following two rules:
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(1) FÑ�'&�(�)-� ,
(2) �Î�'&�(�)�F ,

and the ordering � says �O_*�
�Ý�¦Ø,� . The above program has the two answer sets 1=2C4Ý6*F�; and 1
<k4�6��*; .
The set 1 2 is a preferred answer set. Indeed, the computation of i�×@�j1 2 � yields l È 4p6*F-; (rule (1) is
applied and F is included) and l�2:4Ýl�ÈX4|6*F-; (as rule (2) is not applicable with respect to (1)); note thatÇ �������
�K4[Ø . Hence, i × �j1k2���4[l«2t4�6*F-; = 1 .

On the other hand, 1 < is not a preferred answer set, since i¸×v�j1 < �®4ª6*F-; . Thus, ´ has the unique
preferred answer set 152 .

Let us check that the existence of a single preferred answer set as in the previous example is not incidental,
and that the use of the term “the” preferred answer set is justified in Definition 4.5.

Lemma 4.1 Let ´'4��jU3+��
� be a fully prioritized rule base of prerequisite-free ground rules, ´ possesses
at most one preferred answer set.

Proof. Let 1X2 and 1
< be two answer sets of U , 1X2Å¶4�1
< , and assume both are fixpoints of i × . Let �
be the � -least rule such that � is applied in one of the answer sets but P��9F%���
�>�
4­� is not contained in the
other. Without loss of generality we assume ��\R1 2 . Since �í¶\q1 < , � must be defeated by the head of a rule� � applied in 1 such that � � �x� . But since � is the � -least rule whose head is in exactly one of 1î2 and 1
< ,
the head of ��� must be in 1k2 , so � cannot be applied in 152 , contrary to our assumption.

In the case of a rule base U of arbitrary ground clauses, we perform a reduction which can be viewed
as dual to the Gelfond-Lifschitz reduction: given a set of ground literals 1 , we eliminate rules whose
prerequisites are not in 1 and eliminate all prerequisites from the remaining rules. This yields a rule base
of prerequisite-free ground rules ´Õ�$4Ý�jU:�
+��¸�°� , together with an ordering �
� that is inherited from ´ . We
then can check whether a given answer set is a fixpoint of i3�× .

Intuitively, our construction amounts to guessing provable prerequisites and checking whether the assump-
tion that exactly these prerequisites hold is possible under the prioritized interpretation of rules. We need
some formal definitions.

Definition 4.6 Let �jU3+��
�í4�69�`É�;�Í be a fully prioritized set of ground rules, and let c be a set of ground
literals. Let g�´ï4p�
g�U3+ðgX�
� be the fully prioritized set of ground rules such that g�U is the set of rules
obtained from U by

1. deleting every rule having a prerequisite Z such that Z3¶\Ãc , and

2. removing from each remaining rule all prerequisites,

and g«� is inherited from � by the map ���>g�U�ñ�ÀïU , i.e., � � 2 g���� �< iff ���
� � 2 �������
� �< � , where ���
� � � is the� -least rule ��É in U such that ��� results from � by step 2.

It is easily seen that g � is indeed a well-ordering on g U .
The definition of g�� may look somewhat involved, but we have to respect a possible clash of rule priorities

due to Step 2 of the reduction. Observe that we could alternatively, similar as in [32], consider programs as
multisets of rules, such that common rule instances are possible. However, we prefer to keep the familiar
framework of programs as sets of rules; the elimination of duplicate rules is simple and intuitive, and does
not lead to technical problems.

Example 4.2 Consider the prioritized rule base ´ï4p�jU3+��:� , where U is the ground instantiation of the
rules
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(1) ���jF-+.���jF��8���
(2) ·��¦���jF��8���
(3) ���
#$���~·��
#���+I&�(�)��Q�
#�+.���jF��8��+
(4) ���
�������Q�jF�+8����+I&�(�)��Q�
��+.���
���8�

and � orders the ground rules such that instances of a rule with lower number are before instances of rules
with a higher number, and instances from the same rule are ordered by increasing depth of the ground term
replacing the variable, i.e.,�Q�jF-+.���jF��8��� ,·��¦���jF��8��� ,���jF����¼·��jF���+I&�(�),�Q�jF�+.���jF��8� ,���¦���jF��8���¼·��¦���jF��8��+I&�(�),�Q�¦���jF���+.���jF��8� ,

. . .���jF������Q�jF�+IF���+I&�(�),�Q�jF�+.���jF��8� ,���¦���jF��8�����Q�jF�+.���jF��8��+I&�(�),�Q�¦���jF���+.���¦���jF��8�8� ,

. . .

The order type of � is Ï ê Ïm4�Ø�Ï , i.e., Ç �������
�]4�Ø�Ï . Let cÓ4�6*·��¦� M �jF��8��+,�Q�jF-+.� M �jF��8�C{,�]òxS%; . Then,
the dual reduct g ´'4�� g U3+ g �C� is the following totally ordered rule base:�Q�jF-+.���jF��8��� ,·��¦���jF��8��� ,���jF����¼&�(�)����jF-+.���jF��8� ,���¦���jF��8���¼&�(�)����¦���jF���+.���jF��8� ,

. . .���jF����¼&�(�)����jF-+.���jF��8� ,���¦���jF��8���¼&�(�)����¦���jF���+.���¦���jF��8�8� ,

. . .

Note that the rule �Q�jF��K�p&�(�)��Q�jF�+.���jF��8� results from the dual reduction of different ground instances of (3)
and (4). The map � selects for the ordering g � the reduct of the instance of �¦ó,� .

With these definitions, we are prepared for generalizing the notion of preferred answer sets to arbitrary
programs:

Definition 4.7 A set of ground literals 1 is a preferred answer set of a fully prioritized set of ground rules´'4��jU3+��:� , if 1 is a preferred answer set of � ´ .
A set of ground literals 1 is a preferred answer set of a prioritized logic program Ð , if 1 is a preferred

answer set for some ´7\®ÔoÐ��
Ð5W9� .
The collection of all preferred answer sets of ´ (resp. Ð ) is denoted by Ð$y5z
�
´Õ� (resp. Ð$y5z
�
ÐX� ).
Notation. For convenience, we introduce an operator ô × as follows: ô × �
cb�í4�i]õ × �
cb� . An answer set

is then obviously preferred if and only if it is a fixpoint of ô$× . In other words, 1 is a preferred answer set
iff it is a fixpoint of Gelfond and Lifschitz’s operator r�s (see Definition 2.3) and a fixpoint of ô × .

To see how our approach works, let us discuss a first simple example. More examples will be discussed
in the following sections. For simplicity, unless specified otherwise we will assume that the rules in each
example are ordered by the numbering of the rules, i.e., rules with lower numbers are preferred over those
with higher numbers.
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Example 4.3 Let us consider the classical Tweety example, but impose some preferences on the rules as in
Section 1:

(1) ���������
	��
����	������
(2) ���������
	��
����	������
(3) �����
� ��!"�
#$���~&�(�)����
� ��!"�
#$��+0���������
#��
(4) ���
� ��!"�
#$���~&�(�)��K���?���*!%�
#���+-���������
#$�

As mentioned above, V has two answer sets: 1o2t4�68���9�����
	 �:�*�9	 ����+0���������
	 �:�*��	�����+������
� ��!"�
	��
����	����.; and1
<�4�68���������
	 �:�*��	�����+>�.�/�0���
	 �:�*�9	 ����+,���?���*!%�
	 �:�*��	����.; .
Notice that V W contains besides (1) and (2) the rules (3) and (4) instantiated with #½4~	��
�*�9	 � , and the

inherited ordering �:W on VXW is already a well-ordering. Thus, Ð3W¸4��jVXW`+��CW9� is fully prioritized.
Let us first check whether 1X2 is a preferred answer set. First, we have to determine the dual reduct ��� Ð W .

It contains the following rules:

(1) ���������
	 �:�*��	����-�
(2) ���������
	 �:�*��	����-�
(3) �����
� �*!%�
	 �:�*�9	 �����~&�(�)-���
� ��!"�
	��
����	����
(4) ���
� �*!%�
	 �:�*�9	 �����~&�(�)��K���?���*!%�
	 �:�*��	����

Now, let us determine ô�ö � �j1k2��K4 â É 1k28÷ É , by constructing the sequence 1328÷ È`+I1@28÷ð29+�H�H�H We have Ç �������
W9�
= 4 and obtain

1k28÷ Èø4 68���9�����
	��
�*�9	 ���.;,+1k28÷ð2Á4 68���9�����
	��
�*�9	 ����+.���������
	��
����	����.;,+1k28÷ <ø4 68���9�����
	��
�*�9	 ����+.���������
	��
����	�����+������
� ��!"�
	��
����	����.;,+ and1k28÷ ºø4 1k28÷ <�4 ùÉ%Í-å�æOç�è°Í��Ié 1k28÷ É�H
Thus, ô-ö«�0�j1@2��K4x68���������
	��
����	�����+����������
	��
����	�����+������
� �*!%�
	 �:�*�9	 ���.;:4T1k2 ; consequently, the answer set 152
is preferred.

On the other hand, let us compute ô�ö«�0�j1
<*� . The dual reducts ��ú ÐkW and �Î� ÐkW coincide, and ô-ö«�0�j1
<*�¸41k2 . Hence, 1:< is not preferred.
Thus, 1 2 is the unique preferred answer set of V , which is intuitive.
Notice that we have a similar behavior if we introduce other individuals in this scenario, e.g. by adding

a fact Ç !*	 �0� E P«�¦!*F"aR� or a rule ���������¦��F"	8P-�����
#$�8�5� ���������
#$� . In the latter case, the ground version of the
program is not fully prioritized, and different fully prioritized versions have to be explored. However,
for each of them, we obtain the same unique preferred answer set, which contains 1�2 . Thus, the way of
resolving unspecified priorities does not matter in this case.

5 Properties of Preferred Answer Sets

In this section, we show that the preferred answer set approach has several appealing properties, which make
it particularly attractive.

First of all, we show that the problems with existing DL-approaches discussed in Section 3 are resolved
in our approach.
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Example 5.1 Consider the logic programming version of the example we used in Section 3.2 to demonstrate
the violation of Principle I in the first group of DL-proposals:

(1) �$�~&�(�)�����+IF
(2) �K���~&�(�)��
(3) Fí�~&�(�)���F

The program has two answer sets: 152t4�6*F�+.�*; and 1
<�4�6*F�+����*; . As intended, 1:< is not preferred sinceô�ö¸�j1
<*�K4T1k2 . The single preferred answer set is 132 .
Example 5.2 Let us turn to the problematic example for Rintanen’s approach. Also this case is handled
adequately:

(1) �$�~&�(�)³����+IF
(2) ��Ft�~&�(�)�F
(3) FÑ�~&�(�)³��F

We obtain the two answer sets 152b4ï6`��F�; and 1
<�4ï6*F�+.�*; . The answer set 1X2 is preferred: ��� Ð
contains merely rules (2) and (3), and 132 is fixpoint of ô-ö . On the other hand, 1:< is not preferred sinceô ö �j1 < �K4�6���+���F-; . This is exactly what we expect.

The desired behavior of our approach on the problematic examples for the other approaches is not in-
cidental. In fact, it satisfies the Principles I and II which we have introduced above, as we demonstrate
next.

We start by showing that our approach captures a natural and intuitive idea about preferences. Recall that
a rule � is generating in 1 exactly if �-�,�>�
�>�]dn1 and � is not defeated in 1 .

Proposition 5.1 Let ´~4��jU3+��:� be a fully prioritized rule base of ground rules, and let 1�\ÃyXz:�jUk� . Then,1 is a preferred answer set of ´ , if and only if for each rule �o\²U which is a zombie, i.e., �����"�
�>�]dã1 andP-�9F%���
�>�v¶\²1 , there is a generating rule � � \²U such that � � �½� and P-�9F%���
� � � defeats � .

The proposition formalizes our intuitive explanation of the definition of preferred answer sets for prerequisite-
free ground programs (cf. the discussion preceding Definition 4.5), and extends it to the case with prerequis-
ites.

For the proof of this proposition, the following lemma is useful. Slightly abusing notation we use � � to
denote the prerequisite-free part of rule � whenever �����"�
�>�]\²1 . If �-�,�>�
�>�C¶\²1 then � � is undefined.

Lemma 5.2 Let ´û4Ì�jU3+��
� be a fully prioritized rule base of ground rules, and let 1'\üyXz:�jUk� . Then,
the following are equivalent:

�
���®1 is a preferred answer set of ´ .

�
�/��� For every ��\^U , the reduct � � is defined and fires in the construction of ô × �j1v� , if and only if � is a
generating rule of 1 .

Proof. (of Proposition 5.1).
( ý ). Assume the condition of the right hand side is violated. Let � be the � -least rule violating this

condition. Clearly, � � is contained in � ´ . Since 1 is a preferred answer set, it follows from Lemma 5.21 that � � does not fire in the construction of ô × �j1v� . Hence, � � must be defeated by some rule in � ´
with higher priority. From Lemma 5.2 again, it follows that � � is defeated by the reduct � �`� of some rule
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�0��\�U such that ���Q��� and �0� is a generating rule of 1 . It follows that � is defeated by �"� , which raises a
contradiction.
( þ ). Suppose that the right hand side holds, and assume further that 1 is an answer set which is not
preferred. We derive a contradiction. Since 1 is not an answer set, by Lemma 5.2 there must exist a � -least
rule �3\²U such that � � is applied in the construction of ô × �j1v� iff � is not applied in 1 . There are two cases:

Case 1: � is not applied in 1 . Then, � � fires in the construction of ô × �j1:� . By choice of � , for every rule�0�]\ãU with �0�t�Ö� it holds that ��� is a generating rule of 1 iff � �0� fires in the construction of ô�×@�j1:� . It
follows that � is not defeated by any � � �ã� which is applied in 1 . However, this � violates the condition of
the right hand side, which is a contradiction.

Case 2: � is applied in 1 . Then, � � is not applied in the construction of ô × �j1v� . A similar argument shows
that � must be defeated by some rule �>����� which is applied in 1 . This means that � is not applied in 1 ,
which is a contradiction.

With this result we can show that the behavior observed in Examples 5.1 and 5.2 is not incidental: our
approach actually satisfies the desired principles introduced in Section 3.1.

Proposition 5.3 The preferred answer set approach satisfies Principles I and II as described in Section 3.1.

Proof.

Principle I: Let ´Ì4~�jU3+�� × � be a prioritized logic program and let 132 and 1
< be two answer sets of U
generated by the (ground) rules Uk�%�b6*��2�; and U:�"�u6*�><`; , respectively. Moreover, assume that ��2k� × �"< .
We show that 1
< is not a preferred answer set of ´ using the characterization of Proposition 5.1.

Since ��2 and �"< are applied in 1X2 and 1
< , respectively, their prerequisites must be provable using the
rules in U:� . Now assume 1 < is a preferred answer set of ´ . Then 1 < is a preferred answer set of someÐ�4��jV¸+��
��\qÿ@V��
´ÅW9� . Since the prerequisites of ��2 are in 1
< Proposition 5.1 implies that ��2 is defeated
by a rule in Uv�,�R6*�><`; with higher priority than ��2 . Since we have �-2¸� × �>< and thus ��2¸�n�"< this rule can
only be in U � . But then 1k2 cannot be an answer set of U , contrary to our assumption.

Principle II: Let 1 be a preferred answer set of a prioritized logic program ´p4µ�jVÑ+��k×C� . Then 1 is a
preferred answer set of some Ð�4Ý�jV¸+��
�C\uÿ@V=�
´ÃW9� . Let � be a rule such that at least one prerequisite of� is not contained in 1 . Furthermore, let ´®��4'�jV[�q69�%;,+�� ×�� � where � ×�� agrees with � × on rules in V .
Then there exists some Ð � 4Ö�jVm�Õ69�";,+�� � �]\Rÿ@V=�
´ � W9� such that � � agrees with � on rules in V . We show
that 1 is a preferred answer set of ÐX�-4��jVã�R69�%;,+��¸�°� and thus a preferred answer set of ´Õ� .

Clearly, 1 is an answer set of Vã�b69�%; since r��Ñ�j1v�Q4Tr ����� æ�� �j1v� whenever some prerequisite of � is not
in r%�Ñ�j1v� . Moreover, since 1 does not contain all prerequisites of � this rule is not contained in the dual1 -reduct of Ð@� . We thus have i	� × � �j1:�f4[i
� × �j1v�K4T1 , that is 1 is a preferred answer set of ÐX� .

Tracing back the proof of this proposition reveals that the clause “ P-�*F"���
� É �R\Ýl and � É defeated byl ” is needed in the definition of the sequence l«É in Definition 4.4. It would have been tempting to omit
this clause, and in many cases the resulting modified definition amounts to the same as the original one.
However, there are cases in which the modified, simpler definition is not satisfactory.

Example 5.3 Consider the following program:

(1) �:�~&�(�)-·
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(2) ·K�~&�(�)���·
(3) ���
�~&�(�)��
(4) �v�~&�(�)����

Again, we assume that �
��� is preferred over ���"� if �5�
� . The proposed variant of the definition would
select from the answer sets 15234w68��+I·"; and 1
<�4 6`����+I·"; the set 1X2 as preferred answer set; however,
this violates Principle I. Indeed, 132 has the generating rules U32�4Ó6"�¦Ø,��+*���"�.; and 1
< has the generating
rules U < 4�6"�¦Ø,��+*�¦ó,�.; ; thus, by Principle I, 1 2 must not be preferred over 1 < . The reason 1 2 is a preferred
answer set according to the modified definition is that rule (1) fires in the construction of the sequence l]É
for l}4Ý1k2 ; however, this firing is unwanted, since rule (1) is defeated by the answer set which is finally
constructed. This shows that the proposed “simplification” of our definition does not work.

The following property, which is easily verified, confirms that our reduction of partial orders to full prior-
itizations works as intended.

Proposition 5.4 Let � 2 and � < be partial orders on a program V such that � < refines � 2 , i.e., � 2 d^� < .
Then, Ð$yXz:�jVÑ+��C<��íd½Ð$yXz:�jVÑ+��v2�� .

Thus, as desired, removing priorities between rules does not affect a preferred answer set of a program
and adding additional preference information can never lead to the loss of a conclusion.

Proposition 5.5 Let U be a collection of ground rules, and let 1|\^y5zC�jUk� be an answer set. Then, there
exists some well-ordering � of U such that 1�\²Ð$yXz:�
´Õ� where ´'4��jU3+��
� .
Proof. A suitable well-ordering � can be constructed as follows. Let 1K�>� be the collection of all rules� in U which are applied in 1 , i.e., generating in 1 . Now let � be an arbitrary well-ordering of U such
that �,2:�ã�*< holds for all �>2
\b1f�,� , ��<k\uUã¯¸1K�,� , i.e., the rules in 1f�,� are ordered before all other rules.
Then, clearly for every zombie rule ��\ãU with respect to 1 , i.e., �-�,�>�
�>�5d~1 , while � is not applied in1 and P��9F%���
�>�²�\ã1 , there is some rule �,�t��� which is applied in 1 and P-�*F"���
�,��� defeats � . Hence, by
Proposition 5.1, 1 is a preferred answer set of ´ .

An immediate consequence of this property is that prioritized logic programs are a conservative general-
ization of extended logic programs.

Corollary 5.6 Let Ð�4��jVÑ+��
� without priorities, i.e., � is empty. Then, Ð$y5z
�
ÐX�]4xy5zC�
ÐX� .
Another property is that an inconsistent answer set is insensitive to any rule ordering.

Proposition 5.7 Let Ð�4Ö�jVÑ+��
� be a prioritized program such that ÔoÐ��
ÐX�v¶4}¿ . If 1[4TYK�/	O! is an answer
set of Ð , then Yf��	O! is the unique preferred answer set of Ð .

Proof. The set YK�/	O! is an answer set of V , if and only if i:�f�jV ë �Ñ4�YK�/	O! is inconsistent, where V ë are
the rules in V without weak negation. Every such rule E �ªF$29+�H�H�H*+IF J survives the dual reduction, and the
literal E is in � V . Hence, for any full prioritization ÐX��\RÔoÐ��
ÐX� , clearly ô ö � �jYK��	8!0�]4�YK��	8! , which implies
that YK�/	O! is a preferred answer set.

Preferred answer sets are not always unique, even for totally ordered programs.

Example 5.4 Consider the following program:

(1) �$�~&�(�)�����+IF
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(2) E �'&�(�)��
(3) FÑ�'&�(�) E
This program has two answer sets: 132t4�6*F-+.�*; and 1
<�4�6 E ; . Both are preferred.

On the other hand, it is not difficult to see that there are also programs that have answer sets but for which
no preferred answer set exists.

Example 5.5 Consider the following program:

(1) E �~&�(�)��
(2) �$�~&�(�)�F

The single answer set of this program is 1T4�6��9; . However, i�� ö �j1v�K4�6 E +.�*; and thus 1 is not preferred.

Two views seem possible here: one might say that this is exactly what is expected in a situation like this;
the priorities cannot be satisfied and thus the prioritized program should be considered inconsistent. This
corresponds to a rather strict interpretation of the meaning of priorities.

However, one might also argue that the preference information should help us in selecting an answer set
from all existing answer sets, but never render an otherwise consistent program inconsistent. For example,
the above program is stratified and thus has a clear generally accepted semantics in which the evaluation
order of the rules is intuitively determined. The user-defined priority of the second rule over the first one is
not compatible with this natural order, and one might simply ignore it. In the next section, we show how
this view of relaxing priority information can be implemented in our approach.

6 Weakly Preferred Answer Sets

As we have seen in the previous section, there are prioritized programs which have answer sets, but no
preferred answer set, a situation which may be counterproductive in certain scenarios. To address this
problem, we propose a relaxation that gives us exactly the preferred answer sets whenever they exist and
some approximation, called weakly preferred answer sets, in the other cases.

Before we present the relaxation we want to point out that there is a price to pay: consistency preservation
turns out to be incompatible with our principles, at least under rather natural conditions for approximating
answer sets. We have the following proposition:

Proposition 6.1 Let U@�9� be a relaxation of the notion of preferred answer sets, that is a function assigning
to each prioritized rule base ´ a subset of yXz
�
´Õ� such that

1. U@�*�O�
´®�K4xÐ$y5z
�
´®� whenever Ð$y5z
�
´®�
¶4}¿ , and

2. U@�*�O�
´®�
¶4}¿ whenever y5z
�
´Õ�:¶4}¿ .

Defining the preferred belief sets of ´ as U@�*�8�
´Õ� violates Principle II from Section 3.1.

Proof. Consider Example 5.5. The program, let’s call it Ð , has a single answer set 1Ó4¼6��*; which,
according to clause Ø in the proposition, is contained in U@�9�8�
ÐX� . Let Ð � be Ð extended by the rule �54TFo� E
with highest priority. Note that � ’s prerequisite is not in 1 . Nevertheless, according to clause _ , 1Ý¶\²U@�9�8�
Ð��?�
since Ð@� has the single preferred answer set 6*F-+ E ; . Principle II is thus violated.



18 IFIG RR 9807

This shows that we will have to trade satisfaction of Principle II for consistency of the semantics. We
remark that technically, some preference ����� which satisfies Principle I can always be constructed, though
such a preference need not be appealing in general.

The basic idea of our relaxation is to consider in the comparison of answer sets the degree to which
preferences are violated. Intuitively, the degree depends on how much of the current priority information
has to be changed in order to obtain a preferred answer set. To measure this appropriately, we need a suitable
notion of distance between two well-orderings of the same set.

With an eye on our application, we may consider the distance from a well-ordering �=2 of a set Æ to
another well-ordering �:< of Æ as the number of pairs au+8a²� such that a �@2@a®� but aÃ�Ñ��<3a , i.e., the
number of violations (or inversions) of the ordering � < in � 2 .
Example 6.1 Consider Æ 4�6*F-+.��+ E +I��; and the two orderings E �52íF²�v2¸�®�v2¸� and F²��<v�k��< E ��<:� ;
then the pairs � E +IF�� , � E +.��� , and �j��+.��� are the inversions of �v< in �@2 .

What we want to do is basically counting these inversions in a way. This leads us to the following defini-
tion.

Definition 6.1 Let �@2 and ��< be well-orderings of the set Æ with corresponding enumerations �jÆ�+��o2��f469� É ; Í � and �jÆ�+�� < �K4�6�! ä ; Í ú , respectively. Denote by �,������� 2 +�� < � the set of all inversions of � < in � 2 ,
and let � ä ���v29+��C<�� denote the well-ordering induced by �52 on the set69�*É²{`��É��@2]! ä +*�
�*É�+.! ä �t\��,�������v29+���<*�.;,+
i.e., the elements of Æ which are in �X2 before the element ! ä and in �C< after ! ä .

Then, the distance from �X2 to ��< , denoted �����@2�+���<*� , is defined as the ordinal�����v29+���<*��4 �
ä Í-å�æ8ç³è°Í ú é Ç �0����� ä ���v29+���<`+��8��H

In the previous example, we have �,�������529+���<9�f4�6"� E +IF���+�� E +.��� , �j��+.���.; and �-È����v29+���<9� = E , ��2����@2³+��C<*�
= E �n� , �-<����v29+���<9� = ¿ , and �-º,���v2�+���<*��4}¿ ; hence, �����@29+���<9�K4­_ ê Ø ê S ê Sk4[ó .

The definition of �����k29+���<9� involves ordinal arithmetic, which may be less familiar to the reader; see e.g.
[53] for a detailed treatment. Informally, addition Êbê ì of ordinals amounts to appending an ordering of
type ì to an ordering of type Ê . Note that ordinal arithmetic generalizes familiar integer arithmetic to the
infinite, and has there different properties. E.g., _ ê Ïn4½Ï , which is different from Ï ê _ ; hence, addition
of ordinals is not commutative in general.

The value of �����@29+���<9� is indeed well-defined, as every element of the infinite sum is an ordinal and the
sequence is well-founded; for such sums, the result is an ordinal [53]. Intuitively, Ç ������� ä ���v2�+���<*�8� is the
number of violations of the priority of the element ! ä which is at position ì in � < , and ����� 2 +�� < � counts in a
way all these violations. Counting them is easy if the underlying set Æ is finite, while it is not in the infinite
case. The problem is that in the latter case, the order in which a collection of ordinals is summed matters
in general; the result may even be undefined. Our selection in the definition of �����î29+��C<*� is driven by our
application, and sums the violations in order of decreasing position with respect to the violated ordering �o< .

In general, ����� 2 +�� < � is a transfinite ordinal which is bounded by Ç ������� 2 �Q� Ç ������� < � . Thus, if the under-
lying set is countable (as in our application), then �����329+���<*� is countable.

Example 6.2 Suppose we have ground atoms � and ·��jF���+I·��¦���jF��8��+�H�H�H which are ordered as follows:�v2�� ��+�·��jF���+-·��¦���jF��8��+-·��¦���¦���jF��8�8��+ÎH�H�H� < � ·��jF���+-·��¦���jF��8��+�·��¦���¦���jF��8�8��+ÎH�H�H��
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Then, �����@29+���<*�34¼_ ê _ ê ����� ê S�4�Ï ; for every · -atom, there is one violation of �@< in �@2 , and no
violation for atom � . On the other hand, �����:<0+��@2��¸4�Ï ê S ê S ê �����$4�Ï ; the ordering �
< has Ï many
violations of the ordering of � in �X2 , and no violations for the · -atoms.

Clearly, �����@+��
�Å4ûS holds for any well-ordering � , while symmetry does not hold in general. E.g.,
consider the following orderings of ground atoms �Q�
#$� , ·��
#�� over terms F�+.���jF���+�H�H�H :�@2³� �Q�jF���+,�Q�¦���jF��8��+,�Q�¦���¦���jF��8�8��+�H�H�H-·��jF���+�·��¦���jF��8��+-·��¦���¦���jF��8�8��+ÎH�H�H�C<�� �Q�jF���+�·��jF���+��Q�¦���jF��8��+-·��¦���jF��8��+��Q�¦���¦���jF��8�8��+-·��¦���¦���jF��8�8��+ÕH�H�H
i.e., �@2 orders first, increasing by depth, all atoms �Q�¦� M �jF��8� and then all atoms ·��¦� M �jF��8� , while �C< orders
all atoms by depth and breaks ties by preferring � -atoms over · -atoms; thus, Ç ������� 2 �Ñ4�Ï ê Ïx4ÖØ�Ï andÇ ��������<9�K4ãÏ . We have�����v2�+���<*��4TS ê Ï ê S ê Ï ê S ê Ï ê �����%4ãÏ < +
while ������<`+��v2���4TS ê _ ê Ø ê ����� ê S ê S ê S ê �����%4ãÏ¸H
If we wish, we can make the distance symmetric by choosing the smaller of �����î29+���<*� and ������<`+��v2�� .
Or, we cast �����@+�� � � to its associated cardinal; this is sufficient to make the distance symmetric for our
application. In particular, for finite distance values, symmetry is automatically given.

Proposition 6.2 Let �k2�+���< be well-orderings of the same set Æ such that �����529+���<*�C�}Ï is finite. Then,� is symmetric on ���k29+���<9� , i.e., �����C<0+��v2���4ã�����v29+���<9� .
Proof. Clearly, �>�������
<`+��v2���4 6"�
au+8a � �q{C�
a � +8aR�²\��>�������v29+��C<��.; . Observe that if �����k29+���<*� is
finite, then only finitely many � ä ���v29+���<9� are nonempty, and each of them is finite. It follows that also only
finitely many nonempty ��ÉÎ����<`+��v2�� exist, and each of them is finite; thus, also �����v<0+��@2.� is finite. Since�����@29+���<9� is finite, �����@29+���<*� amounts to the number of elements in �,�������X2�+���<*� ; since { �,�������C<`+��v2���{%4{ �,������� 2 +�� < ��{ and ����� < +�� 2 � is finite, it follows ����� 2 +�� < ��4T����� < +�� 2 � .
Corollary 6.3 On the full prioritizations of a ground rule base, the distance measure � � which is defined by�,�����v2�+���<*��4 E F"�0���j�����v29+��C<*�8� , where E F"����� Ê � is the cardinal associated with the ordinal Ê , is symmetric.

Proof. If �����@29+��C<�� is finite, this holds by the previous proposition. If �����329+���<9� is infinite, then also�����C<0+��v2�� is infinite, and since Ç �0�����k2�� and Ç �������C<9� are countable, both �����k29+���<9�fË Ç �������@2.��� Ç �0������<*�
and ������<0+��@2.�KË Ç �0������<9�Q� Ç �������v2�� are countable; hence, E F"�0���j�����k2�+���<9�8� = E F>�����j������<0+%�v2��8�K4��$È .

Note that using �>� is particularly useful, if we want to avoid a fine-grained distinction of priority violation
and we are only interested whether a finite or infinite number of priority violations is present; � � ���v29+���<9� is
either finite or �ÎÈ , the smallest uncountable cardinal.

The value of �����k29+���<*� has an alternative, transformation-based interpretation which intuitively alludes to
the amount of work that is needed in order to transform the ordering �o2 into the ordering �C< ; � ä ���v2�+���<*�
says how many elements �0É must be moved behind ! ä . In particular, in the finite case, �����X2�+���<*� amounts to
the smallest number of successive switches of neighbored elements which are needed to transform � 2 into��< . In fact, this is precisely the number of switches executed by the well-known bubble-sort algorithm.2

2Recall that bubble-sort runs through the list of elements and switches neighbored elements which are in the wrong order; this
process is repeated, until the list is sorted.
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E.g., for the orderings E �X2�F²�v2��q�v2�� and Fq�C<@�5��< E ��<v� from Example 6.1, bubble-sort performs
in sorting �k2 into �C< three switches ( E with F , � with � , and E with � ); this yields �����329+���<9�v4~ó . In the
infinite case, a similar interpretation does not apply in all cases; we come back to a transformational view
of distance at the end of this section.

It can be checked that � verifies all axioms of a standard metric in the finite case, i.e., �����@+��
�®4ûS ,�����v29+���<*��4}������<0+��v2�� , and �����@29+���º*�KËü�����v29+���<*� ê ������<0+���º9� .
With the above notion of distance from one well-ordering to another, we can weaken the definition of

preferred answer sets as follows.

Definition 6.2 Let ´ 4'�jU3+��
� be a partially ordered ground rule base, and let 1|\uy5z
�jUk� . The prefer-
ence violation degree of 1 in ´ , denoted � �%� × �j1v� , is the minimum distance possible from any full prior-
itization of ´ to any fully prioritized rule base ´®��4��jU3+��¸�°� such that 1 is a preferred answer set of ´Õ� ,
i.e., �!�"� × �j1v�K4#"%$�&�6*�����v2*+��C<���{��jU3+��v2��]\®ÔoÐ��
´Õ��+I1­\²Ð$yXz:�jU3+���<*�.;,H
Moreover, let � �"���
´Õ�]4#"&$�& �('*)(+ è±s�é � �"� × �j1:� be the preference violation degree of ´ .

For any answer set 1 of a prioritized program ÐÌ4Ó�jVÑ+��
� , the preference violation degree of 1 in Ð ,
denoted � �"�>ö¸�j1v� , is defined as � �"�"ö¸�j1:�C4ã� �%�,ö«�0�j1v� , and the preference violation degree of Ð , denoted� �"���
ÐX� , is �!�"���
ÐX�]4©� �%���
ÐkW�� .

Note that � �%� × �j1:� is indeed well-defined. This is a consequence of Proposition 5.5, which says that for
every answer set 1 there exists a total ordering of the rules such that 1 is preferred.

Based on the definition of preference violation degree, we formalize the concept of weakly preferred
answer sets as follows:

Definition 6.3 Let ÐÓ4¼�jVÑ+��
� be a prioritized logic program. Then, an answer set 1 of V is a weakly
preferred answer set of Ð if and only if � �%��ö��j1:�C4x� �%���
ÐX� . By ,RyXz:�
ÐX� we denote the collection of all
weakly preferred answer sets of Ð .

Example 6.3 Consider the following program Ð :

(1) Fí�'&�(�) E
(2) E �'&�(�)��
(3) ���t�'&�(�)��
(4) ���'&�(�)�����+IF

This program has two answer sets, namely 132�4Ó6*F�+.�*; and 1
<Õ4Ó6 E +�����; ; however, none of them is
preferred. We have � �"� ö �j1 2 �X4�Ø , because (2) and (3) are zombie rules which can be defeated only by
(4), which must be moved in front of these rules; this takes two switches. On the other hand, we have� �"�>ö��j1C<*�C4'_ , since the single zombie rule (1) is defeated if (2) is moved in front of it (note that (4) is a
dead rule for 1:< ). Hence, � �"���
ÐX�f4­_ , and 1:< is the weakly preferred answer set of Ð .

The following results are easily verified.

Proposition 6.4 Let Ð 4 �jVÑ+��
� be a prioritized logic program. If Ð$y5z
�
ÐX�}¶4Á¿ , then Ð$y5z
�
ÐX�ü4,²y5z
�
ÐX� .
Preferred answer sets are just those with preference violation degree zero.

Proposition 6.5 Let Ð�4��jVÑ+��
� be a prioritized logic program. If y5z
�
ÐX�:¶4}¿ , then ,RyXz:�
ÐX�:¶4}¿ .



IFIG RR 9807 21

Proof. Since every set of ordinals has a minimum, "&$°&�68� �"��ö��j1v�
{>1Ö\qy5z
�jVX�.;X4�� �%�,ö��j1v� holds for
some 1�\Ãy5zC�jVX� . Hence, from the definition, 1 is a weakly preferred answer set of Ð .

In particular, whenever V has a unique answer set, this set will be weakly preferred.
Let us now turn to the question whether Principles I and II are preserved when we switch from strongly

preferred answer sets to weakly preferred ones. Unfortunately, this is not the case.

Proposition 6.6 The weakly preferred answer set approach does not satisfy Principle I from Section 3.1.
Proof. Consider the following program Ð :

(1) FÑ�~&�(�)���F (4) E �~&�(�)�� E
(2) ��FÑ�~&�(�)-F (5) ��FÑ�~&�(�)���+IF
(3) ��FÑ�~&�(�) E +IF (6) �$�~&�(�)��

This program has two answer sets, namely 132k4�6*F-+.��+ E ; , which is generated by U32@4�6"�O_*��+*���"��+*�.-,�.; ,
and 1 < 4Ì6`��F-+.��+ E ; , which is generated by U < 476"�¦Ø,��+*���"��+*�.-,�.; . Assuming that �
���3�7���"� if �k�/� , we
have that none of these answer sets is strongly preferred. The set 15< is a weakly preferred answer set, since
after switching rules (1) and (2), 1@< is a preferred answer set (thus �!�"�%ö¸�j1
<*��4~_ ), while � �%�>ö��j1@2���4ÖØ
(switch rules (3),(4) and (5),(6)). Since rule (1) is preferred over (2), by Principle I, 13< must not be selected
as a weakly preferred answer set.

The failure of Principle II is immediate from Prop. 6.1. We believe that the use of weakly preferred answer
sets is justifiable even in the light of these properties. In fact, we have defined the concept as an approxima-
tion of preferred answer sets; if no preferred answer set exists, then we must relax the requirements and this
may include Principles I and II; we trade this for consistency of the semantics.

In the above example programs, we have argued that an answer set 1 of a program Ð is weakly preferred
by moving generating rules forward such that all zombies are defeated. We now establish that this intuitive
way of making 1 weakly preferred is in fact legal. We start with some formal notions on well-orderings.

A switch on a well-ordering � of a finite set Æ is a pair !C4��
�I+8� ê _*� of positions in � such that SîË�� and� ê _vË�{ Æ'{ . The result of applying ! on � , denoted !"���:� , is the well-ordering resulting from �
4�69� É ; Í by
interchanging � M and � M ë«2 . A switching sequence is finite sequence 0m4Ý!%2�+.!�<0+�H�H�H9+.! J of switches, whose
application on � , denoted by 0K���
� , is defined as 0K���
�C4¼! J �¦! J21 2*�������`�¦!,2*���
�8�������Û�8� ; the length of 0 is
denoted by { 0f{ .

Suppose ��� is a well-ordering of Æ . Then, �
� can be obtained from � as follows. Let � 1 2 be � and
denote by ��M the ordering resulting from �
M�1 2 by applying the switching sequence 3*M , which switches the � -
th element of � � from its position � M in � M�1 2 to position � , for ��4TS�+�H�H�H�+�{ Æ~{?ñ=_ . Then, � � is identical to �54 ,
where 6î4Ö{ Æ'{�ñ�_ . Observe that � M ò½� holds for all � , and that 374 is void. The sequence 0R4#3�2�+�3�<0+�H�H�H9+�3�4
is called the canonical switching sequence of � � . Intuitively, in 0 the ordering � � is built from � by a kind
of reverse bubble-sort, where the next iteration starts at some point in the sequence � M�1 2 rather than at its
end.

Example 6.4 For the orderings E �nFÅ�n�î�ã� and F�� � �
� � E � � � as in Example 6.1, we have:� 3 M � M
-1 — E +IF-+I�-+.�
0 �jS�+9_*� F�+ E +I��+.�
1 �¦Ø%+.ó,��+*�O_0+.Ø,� F�+.��+ E +I�
2 void F-+.��+ E +I�
3 void F-+.��+ E +I�
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Thus, the canonical switching sequence is 0²4��jS�+9_*��+*�¦Ø%+.ó,��+*�O_0+.Ø"� .
The following property is easily seen.

Proposition 6.7 Let 0 be the canonical sequence transforming � into �@� . Then, { 0f{>4T�����@+����°� .
Proof. Observe that starting from � , each switch in 0 reduces the number of inversions for �X� by one.
Hence, the length of 0 is the number of inversions of � � in � , which coincides with �����@+�� � � .

Let ÐÌ4µ�jV¸+��
� be a fully prioritized finite ground program, and let 1 be an answer set of Ð . We call
a well-ordering �C� such that 1 is a preferred answer set of �jVÑ+��
�°� and �����@+������X4­� �"� ö �j1:� an optimal
ordering for 1 .

Lemma 6.8 Let 1­\qy5zC�
ÐX� , where Ð�4��jV¸+��
� is a fully prioritized finite ground program, and let � � be
an optimal ordering for 1 . If 3 M from the canonical switching sequence 0 of �:� is nonvoid, then � M�1 2 has at
position � a nondefeated zombie.

The lemma implies that in the canonical transformation of � into an optimal ordering � � of 1 , we never
move a rule to the position � unless there is a nondefeated zombie. The next result tells us that without loss
of generality, we may assume that only a rule defeating this zombie is moved to this position.

Theorem 6.9 Let 1�\qyXz
�
ÐX� , where ÐÖ4|�jVÑ+��
� is a fully prioritized finite ground program. Then, there
exists an optimal ordering �
� for 1 such that 3 M from the canonical switching sequence 0 of �:� is nonvoid if
and only if � M�1 2 has at position � a nondefeated zombie 8 , and every nonvoid 3 M moves a rule defeating 8 to
position � .

The first part of this theorem follows from the previous lemma, while the second is established by modi-
fying an optimal ordering such that only rules defeating zombies are moved. As a consequence, a weakly
preferred answer set of �jVÑ+��
� can be obtained by eliminating all nondefeated zombies through moving gen-
erating rules defeating them ahead as economically as possible. This justifies the informal argumentation in
Example 6.3 and the proof of Proposition 6.1.

Notice, however, that it is not true that a rule defeating a zombie is moved to position � in every optimal
ordering for 1 .

Example 6.5 Consider the following program Ð :
(1) FÑ�~&�(�)-�
(2) E �
(3) �$�

where �O_*�C�Ö�¦Ø,�C���¦ó,� . The set 1­4�6��*+ E ; is the unique answer set of Ð , and both �¦ó,�C�:�Q�O_*�C�¸�Q�¦Ø,� and�¦Ø,�
�¸� �K�¦ó,�
�¸� ���O_*� are optimal orderings for 1 ; however, 3-� �È 4��jS�+9_*� in the canonical switching sequence0 � � 4��jS�+9_*��+*�O_0+.Ø,� of � � � moves �¦Ø,� to position 0, which does not defeat the zombie (1).

We conclude this section with some comments on possible alternative ways to define weakly preferred
answer sets. First, let us remark that a distance measure between well-orderings may be defined which is
strictly guided by a transformation-oriented view, based on a proper formalization of the notion of switch.
The distance from �k2 to ��< can then be chosen as the shortest sequence which transforms �o2 into ��< .
However, the formal definition is, due to the need for executing transfinite switches in general, more involved
than the one from above. In several cases, the measures do coincide, but there are cases in which the
transformation-based distance value is not much intuitive. E.g., in Example 6.2, the transformation-based
distance from �k2 to ��< would be Ï , since we must move atom � with a transfinite switch in Ï many steps
behind all other atoms; the distance from � < to � 2 would be Ï < , however, since we must first move ·��jF��
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behind � , then ·��¦���jF��8� , and so on; this needs Ï many transfinite switches, i.e., Ï < switches in total. However,
this value is not much appealing. We therefore prefer the simpler function for measuring the distance from
above.

Our approach takes the view that the quality of the approximation of a preferred answer set is given by
the number of preference violations, and we do not distinguish between violations of high priority and low
priority. In particular, it may be the case that a single violation is present, and regardless of whether this
violation involves the two top-ranked rules or the two bottom-ranked ones, this violation counts the same.

An alternative, strictly hierarchic view of violations would be considering the first violation of the priority
ordering as decisive for how far two orderings are from each other. Then, an answer set is selected, if the
highest priority violation compared to a preferred answer set occurs as late as possible, i.e., it is possible
to keep the ordering of priorities as long as possible. However, this approach has some drawbacks. In the
infinite case, the existence of a weakly preferred answer set is a priori not guaranteed, since no longest
sequence of obeyed priorities might exist. Another aspect is that a single violation may weigh more than a
large – even infinite – number of other violations; it is questionable whether this is satisfactory in certain
situations. These considerations led us to not consider such an approach to weakly preferred answer sets
here.

An intermediate approach, which actually generalizes both approaches discussed above would be assign-
ing penalties to the violation of priorities, and selecting the answer sets which have the smallest penalty.
However, this approach requires knowledge about how priority violations should be mapped into penalty
values, and it is often not clear how such values should be reasonably assigned. For this reason, we believe
that currently the development of such a framework is not a major issue.

7 Algorithms and Computational Complexity

In this section, we address the issue of computing preferred and weakly preferred answer sets, and analyze
the complexity of the main computational tasks in this context.

We assume that the reader is familiar with the basic concepts of complexity theory; [27, 44] are good
sources. For a background on complexity results in logic programming, refer to [51, 17, 13]. In our ana-
lysis, we focus on the case of finite propositional (ground) prioritized programs, but we will also address
nonground programs.

We briefly recall the definitions of the complexity classes that we need for assessing the complexity of pre-
ferred and weakly preferred answer sets. B (resp., ACB ) is the class of decision problems, i.e., Yes/No prob-
lems, which are solvable in polynomial time on a deterministic (resp., nondeterministic) Turing machine; the
class B:9 ; (also denoted <>= < ) contains the decision problems solvable on a deterministic Turing machine in
polynomial time with access to an oracle for problems in A
B ; B 9!;@?BA �DC�(FEf�«�HG (alias <>= < ?BA �DC±(FEf�«�HG , IJ= < ? 57 G )
denotes the subclass of B	9!; in which the oracle access is limited to A �DC±(FE]�«� many queries, where � is the
size of the problem input. As usual, for a complexity class i , the class of the complementary problems
is denoted by co- i ; note that co- B'4 B , co- B	9!; ?BA �DC±(FE]�«�HG = B:9 ; ?BA �DC±(FE]�«�HG , and co- B
9 ; = B:9 ; . The
inclusion relationship of these classes is shown in Figure 1, where each inclusion is generally believed to be
proper.

For measuring the complexity of computational problems with output, we use the concept of a search
problem, in which an arbitrary solution out of a set of possible solutions must be computed; here, a Turing
machine has an output tape whose contents is the result of the computation if the machine halts in an
accepting state. In case of a nondeterministic machine, output of different solutions in different runs is
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Figure 1: Relationship of complexity classes

admissible. The search analogues of the decisional classes B , A
B , B\9!; etc are denoted by prefixed “F”.

7.1 Preferred answer sets

Of course, since extended logic programs without priorities are a special case of prioritized programs, all
lower complexity bounds for answer sets of extended logic programs carry over to preferred answer sets.
In particular, by the complexity results on the stable models of a general propositional logic program V
[37, 38, 6] and the obvious correspondence between the preferred answer sets of the prioritized programÐª4¾�jVÑ+��
� where � is empty (cf. Corollary 5.6) and the stable models of V , we obtain that deciding
whether a prioritized program has a preferred answer set is A
B -hard, and, moreover, that inference of a
literal from all preferred answer sets of a prioritized program is a co-NP-hard problem.

Natural questions are now whether preferred answer sets are harder than answer sets in general and,
moreover, how the complexity is affected if we have programs with a particular priority ordering. Intuitively,
the many possible total refinements of a partial ordering � on the rules are a source of complexity; since a
full prioritization unambiguously fixes the order in which the rules have to be considered, we might expect
that for fully prioritized programs the complexity is lower than for general programs. This intuition may
be nurtured by the fact that in some nonmonotonic formalisms, full prioritization leads to a decrease in
complexity, cf. [40].

The first result is that priorities do fortunately not increase the complexity of extension checking for a
program, i.e., given a set 1 of literals and a prioritized program Ð , deciding whether this set constitutes a
preferred answer set of the program. We first note that this holds in the case where the program is fully
prioritized. The result can be derived from known results and an inspection of the definitions.

Proposition 7.1 Given a fully prioritized (finite) propositional program Ð�4��jVÑ+��:� and a set 1'd­YK��	8! ,
both deciding whether 1¼\�y5zC�jVX� and 1¼\�Ð$yXz:�
ÐX� is possible in polynomial time. Moreover, these
problems are complete for B (under logspace-reductions).

We have added in this proposition the matching lower bound of the complexity, to sharply characterize the
computational properties of preferred extension checking; B -completeness of this problem tells us, adopting
a general belief in the complexity theory community, that this problem is not amenable to parallelization.

For deriving an analogous result in the case of arbitrary rather than full prioritization, we note the following
key lemma. Recall that we have divided in Section 4 the rules of a prerequisite-free prioritized programÐG4¬�jVÑ+��
� with respect to an answer set 1 into generating rules (those which are applied in 1 ), dead
rules (those which are not applicable in 1 , but the head is from 1 ), and zombie rules (those which are not
applicable in 1 , and whose head is not in 1 ), and that only zombie rules can prevent preference of 1 .

For a propositional prioritized program Ðû4¼�jVÑ+��
� and 1µ\}y5zC�
ÐX� , we construct a labeled directed
graph ]î�
Ðo+I1v� as follows. The vertices are the rules V , and an edge is directed from � to ��� if �m�7�0� .
Moreover, label each vertex � as follows: if the dual reduct � � is a generating rule of � V , then label � with
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(a)

^`_ba Vdc*e ^
e2f _ba Vdc ^ ÷gf

f _ha Vdc7eif j _ba Vdckj
eif _ba Vdc7j�÷gf

(3) (5)

(1) (4) (6)

e2f _ba Vdckf
(2)

g gg

z z z

� � l �mf�÷Dj�÷ ^ �
(b)

� únl �deif9÷Dj�÷ ^ �
^`_oa Vdc7e ^
eif _ha Vdc ^ ÷gf

f _ba Vdc*e2f j _ba Vdc7j
eif _ba Vdckj�÷�f

(3) (5)

(1) (4) (6)

eif _ba Vdc7f
(2)g

z g

i

g

i

Figure 2: Examples of graph ]î�
Ðo+I1v� (transitive edges are omitted)

“g”; if � � is a zombie rule, then label � with “z”; otherwise, i.e., � � is a dead rule or � vanishes in the dual
reduction, then label � with “i” (for irrelevant). Figure 2 shows some examples.

From ] , we construct a full prioritization Ð � 4Ì�jVÑ+�� � � of Ð which proves that 1 is a preferred answer
set, by employing a modified topological sorting procedure as follows.

Algorithm FULL-ORDER

Input: Propositional prioritized program Ð�4��jVÑ+��
� , answer set 1�\Ãy5z
�
ÐX� .
Output: Full prioritization ÐX�$\ÕÔoÐÅ�
ÐX� such that 1�\®Ð$yXz:�
Ðv�?� , if 1�\²Ð$yXz:�
ÐX� ; otherwise, “no”.

Method:
Step 1. Construct graph ]�4p]î�
Ðo+I1v� , and initialize ����4}¿ , �:�
��4}¿ .
Step 2. If ] is empty, then output Ðk��4Ö�jVÑ+��¸��� and halt;
Step 3. Pick any source of ] , i.e., a vertex � which has no incoming edges, such that either � is not

labeled “z”, or � is defeated by � ; if no such � exists, then output “no” and halt.
Step 4. if � is labeled “g”, then set ����4ã�m�R6�P«�
�>�.; where P��
�>� is the head of � ;
Step 5. remove � from ] , and continue at step 2.

Notice that this algorithm is nondeterministic, since in Step 1, in general different vertices � can be selec-
ted, which leads to different outputs.

Example 7.1 Consider the prioritized program Ð which is represented by the graph ]=�
Ðo+I1�2�� in Figure 2.a,
and the answer set 1X2 . In step 3 of FULL-ORDER, (1) and (2) are sources; since (1) is labeled “g” and (2)
is labeled “z” but not defeated by ��4�¿ , the algorithm selects (1) and sets in Step 4 �­��4­6*F-; . In the next
iteration, rule (2) is the only source and selected, as it is now defeated by � ; � is not updated. In the next
iteration, rule (3) is the only source; however, (3) is labeled “z” and not defeated by �|476*F-; . Thus, the
algorithm outputs “no” and halts. Observe that 1o2 is not a preferred answer set of Ð .

Now consider the reordered program Ðv2 represented by the graph in Figure 2.b, and the answer set 1X< .
In step 3, rules (1) and (2) are the sources; (2) is selected and �|��4~6`��F-; in step 4. Thereafter, rule (1) is
selected, as it is now defeated by � . In the next round, both (3) and (4) are selectable; suppose (4) is selected
first, which results in �Ý��4Ý6`��F�+ E ; , and thereafter (3) is selected (which leaves � unchanged). Now, both
(5) and (6) are selectable; suppose (5) is chosen and finally (6), which effects the update �'��4�6`��F-+.��+ E ; .
Since ] is empty now, the algorithm outputs Ð5�2 , where �¦Ø,�v�����O_*�Ñ�¸�K���"�t�¸�K�¦ó,�í�¸���.q,�í�����.-,� and halts.
As easily checked, 1 < is a preferred answer set of Ð 2 .
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The next lemma states that the algorithm works in fact properly.

Lemma 7.2 Let Ð be a propositional prioritized program, and let 1�\ÃyXz
�
ÐX� . Then, 1�\ÃÐ$y5z
�
ÐX� , if and
only if some execution of FULL-ORDER outputs a fully prioritized program Ðî� . Moreover, Ð@�f\©ÔoÐ��
ÐX�
and 1�\ÃÐ$y5z
�
Ð � � hold for every such Ð � , and either all runs output some Ð � , or all output “no”.

From this lemma, it is not hard to prove the previously announced result on recognition of preferred answer
sets.

Theorem 7.3 Let ÐG4ª�jVÑ+��
� be a prioritized finite logic program, and let 1pdÌYf��	8! . Then, deciding
whether 1�\ÃÐ$yXz:�
ÐX� is polynomial (more precisely, complete for B ).

Proof. By Lemma 7.2, 1µ\TÐ$y5z
�
ÐX� can be decided by checking whether 1Ó\TyXz:�
ÐX� and running
a deterministic variant of FULL-ORDER on Ð ; the former check is polynomial (Proposition 7.1), and it
is not hard to see that any run of FULL-ORDER is polynomial-time bounded. Hence, the problem is inB . Hardness for B (under log-space reductions) is inherited from the subcase of fully prioritized programs
(Lemma 7.2).

Thus, model checking is polynomial, and priorities do not affect the complexity. We remark that using
proper data structures, algorithm FULL-ORDER can be implemented so that it runs in linear time. Since
also 1'\my5z
�
ÐX� can be decided within the same time, recognition of a preferred answer set can be done
efficiently.

Let us see whether we have a similar behavior for deciding the consistency of a prioritized program, i.e.,
the existence of a preferred answer set. As discussed above, this problem is intractable in the general case,
which is inherited from the complexity of stable models. However, this does not rule out the possibility
that the consistency check and finding some preferred answer set is polynomial, if we have a fully prior-
itized program; notice that in case of prerequisite-free programs, there is at most one preferred answer set
(Lemma 4.1). Unfortunately, also in this case, a polynomial time algorithm is unlikely to be found.

Theorem 7.4 Given a finite propositional prioritized program Ð�4��jVÑ+��:� , deciding whether Ð$yXz:�
ÐX�:¶4}¿
is NP-complete. The problem is NP-hard even if � is a total order and V does not involve strong negation.

The proof of this result is by a reduction from the satisfiability problem. We remark that our reduction is
parsimonious [27], i.e., the number of solutions is preserved in the reduction. This implies that counting the
number of preferred answer sets is a difficult problem. We obtain from Theorems 7.3, 7.4 and well-known
results about the satisfiability problem the following side result. The class #P (see [27]) contains the search
problems for which the number of solutions of each instance can be expressed by the number of accepting
computations of a nondeterministic polynomial time Turing machine.

Corollary 7.5 (proof of Theorem 7.4) Given a finite propositional fully prioritized program Ð'4��jVÑ+��
� ,
counting the number of preferred answer sets of Ð is #P-complete.

It is easy to see that in the proof of Theorem 7.4, a satisfying assignment for the clause set r in the
reduction can be easily constructed from any arbitrary preferred answer set of the program Ð . Hence,
computation of an arbitrary satisfying truth assignment is polynomial-time reducible to the computation of
a preferred answer set. Therefore, we obtain the following result.

Corollary 7.6 (proof of Theorem 7.4) Given a finite propositional prioritized program ÐÖ4Ý�jV¸+��
� , com-
puting an arbitrary preferred answer sets of Ð is FNP-complete.
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Finally, let us turn to the problem of inference. We consider here cautious inference; for brave inference,
we obtain dual complexity results.

A literal Y is a consequence of a prioritized program Ð , denoted Ð�{ 4�Y , if Y belongs to every preferred
answer set of Ð . The set of all consequences of Ð is denoted by i:�f�
ÐX� .

Like in many other nonmonotonic systems, also in case of prioritized logic programs the complexity of
inferencing is related to the complexity of consistency, and can be reduced to the complementary problem.
In fact, from Theorem 7.4 it is not difficult to derive the following result.

Theorem 7.7 Given a finite propositional prioritized program Ð­4��jVÑ+��
� and a literal Y , deciding whetherÐû{ 4|Y is co-NP-complete. The problem is co-NP-hard even if � is a total order and V does not involve
strong negation.

7.2 Weakly preferred answer sets

As we have seen in the previous subsection, adding priorities to programs is computationally speaking well-
behaved, in the sense that selecting preferred answer sets among all answer sets under consideration does
not add to the complexity of the main computational problems. Let us now see whether this pertains if we
consider weakly preferred answer sets instead of strongly preferred ones.

As we will see, weak preference increases the complexity of the main computational tasks on prioritized
programs. The reason is that weak preference bears an implicit A
B optimization problem, whose compu-
tation is slightly harder than A
B . However, the increase in complexity is rather small and does not lift the
problems to higher regions of the polynomial hierarchy; they stay within the polynomial time closure ofA
B , i.e, B 9!; (resp., s�B 9 ; ). A precise account of the decisional problems shows that they do in fact belong
to B:9!; ?BA �DC�(FEf�«�HG ; we discuss implications thereof below.

Recall that an answer set 1 of a prioritized program Ð is weakly preferred, if its preference violation
degree � �"�>ö��j1v� is smallest over the preference violation degrees of all answer sets of Ð , i.e, coincides with� �%���
ÐX� . Thus, for the recognition of a weakly preferred answer set, the relationship of � �"��ö¸�j1:� to �!�"���
ÐX�
is important.

A natural algorithm for deciding whether 1 is weakly preferred is the following.

Algorithm REC-WAS

Input: Propositional prioritized program Ð�4��jVÑ+��
� , answer set 1�\Ãy5z
�
ÐX� .
Output: “yes”, if 1�\�,RyXzC�
ÐX� ; otherwise, “no”.

Method:
Step 1. compute � �"�"ö��j1v� ;
Step 2. compute � �"���
ÐX� ;
Step 3. if � �%�>ö¸�j1:�K4ü� �"���
ÐX� , then output “yes”, otherwise output “no”.

This algorithm calls subroutines for computing � �%��ö��j1:� and � �%���
ÐX� , which must be refined. For this
aim, let us first see over which values the preference violation degree may range.

As discussed in Section 6, for a fully prioritized program Ð�4��jVÑ+��:� the value � �"�-ö��j1:� amounts to the
smallest number of switches of neighbored rules in � such that 1 is a preferred answer set of the resulting
program Ð@�-4��jVÑ+������ ; Moreover, we know from Proposition 6.5 that such a switching is always possible.
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For the smallest number of switches, { V�{ < is an obvious upper bound. This bound can be tightened to

!:4Ö{ V�{�ñn_ ê { V�{�ñ©Ø ê H�H�H ê _C4Ö{ V�{Û�I{ VÅ{`ñn_*�8�0ØX4 A �I{ V�{ < ��+
which is the maximal number of switches performed by bubble sort when it sorts the input ordered by �
into � � . Thus, �!�"�>ö¸�j1:� , and hence also � �"���
ÐX� ranges over the segment ? S�+.!�G of the integers.

In terms of a decision problem, the problem of computing � �"��ö��j1v� can be rephrased as deciding whether� �"� ö �j1:� is smaller than a given bound 6 . If a procedure for solving this problem is available, then we can
actually compute �!�"�"ö��j1v� in a binary search over ? S�+.!kG . As it turns out, deciding whether � �"��ö¸�j1:�ÑËt6 is
a problem in A
B . Thus, we can compute �!�"�%ö��j1v� by making A �DC±(FEv{ V�{ < � many calls to an NP oracle.

The value of � �"���
ÐX� can be computed similarly, if a subroutine solves the problem whether � �"���
ÐX��Ëu6
holds; also the latter problem is in NP. We thus obtain the following result.

Proposition 7.8 Given a finite propositional prioritized program Ð­4Ö�jVÑ+��
� and 1�\Ãy5z
�jVX� , computing� �"�>ö��j1:� is in sv<>= < ?BA �DC�(FEf�«�HG , i.e., possible in polynomial time with A �DC±(FE]�«� many oracle queries, where� is the input size. Moreover, also computing � �"���
ÐX� is in sv<w= < ?BA �DC�(FEf�«�HG .
A more precise account of computing � �%�%ö��j1v� and � �%���
ÐX� shows that the problems are complete for

subclasses of s�< = < ?BA �DC±(FE]�«�HG under appropriate reductions, but we are less interested in such results here.
Thus, in the light of Proposition 7.8, we obtain that algorithm REC-WAS can be implemented such that it

runs in polynomial time while making A �DC±(FE]�«� accesses to an A
B oracle. As a consequence, recognition
of a weakly preferred answer set is in B 9!;x?BA �DC±(FEt�«�HG . The question is whether this rather straightforward
upper bound can be improved by a more sophisticated algorithm, e.g., by one which uses only a constant
number of calls to an NP-oracle, or, even an NP style guess-and-check algorithm. The next theorem tells us
that the B 9!;@?BA �DC±(FEf�«�HG upper bound is paralleled by a matching lower bound, and hence such an improved
algorithm is unlikely to exist.

Theorem 7.9 Given a prioritized propositional program Ðp4ª�jVÑ+��
� and a set of 1pdÌYf��	O! of ground
literals, deciding whether 1Ì\y,RyXz:�
ÐX� is BJ9 ; ?BA �DC±(FE]�«�HG -complete. Hardness for B	9 ; ?BA �DC±(FE]�«�HG holds
even if � is a total ordering and V does not contain strong negation.

The proof of the hardness part of this theorem, in particular under the asserted restriction, is rather tech-
nical and exploits particular properties of the distance measure �����@+�� � � from the definition of weakly
preferred answer sets. Let us try to give an intuitive account of why the problem is that complex, even if the
rules are fully prioritized.

For determining � �%�"ö¸�j1:� of any answer set 1 of Ð , we must switch as few rules in � as possible such
that 1 becomes a preferred answer set; this means that some appropriate generating rule ��� must be moved
in front of every zombie rule � which is not defeated along the ordering � . However, in general several
generating rules �,� for defeating � exist; moving the “right” generating rules such that the overall switching
cost is minimal amounts to an optimization problem, which does not have a unique solution in general. For
example, consider the following simple program:

�O_*���Ñ�p&�(�)-F-+I&�(�) E �¦Ø,� E � �¦ó,�K�
�p&�(�)-F-+I&�(�)-� ���"��Fo� �.q,�«�5�
Assuming as usual that �
�O�C�Ý���"� for �¸�u� , after moving E � in front of (1) and �Å� in front of (3), the
unique answer set 1[4�6*F�+ E +I��; is preferred. However, moving Fo� in front of (1) is another possibility for
making 1 preferred; both possibilities require three switches. In a more complicated setting, overlapping
possibilities must be combined, which turns out to be difficult. Indeed, deciding whether a certain number of
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rule switches is sufficient for turning an answer set 1 into a preferred answer set is an intractable problem.
(Observe that if computing the value of � �%��ö¸�j1:� for any 1 were polynomial, then deciding 1�\�,²y5z
�
ÐX�
would be in co-NP.)

Before we turn to the inference problem, let us consider the problem of actually computing a weakly
preferred answer set, rather than recognizing it. It is not hard to see that given a prioritized logic programÐ , we can compute a weakly preferred answer set of Ð in polynomial time with the help of an A
B oracle,
i.e., the problem is in s�B 9!; . Indeed, the problem can be solved by computing first �!�"���
ÐX� , and then
constructing some 1­\z,RyXz:�
ÐX� by stepwise extending a partial weakly preferred answer set 1 � using the
oracle. More formally, this algorithm is as follows.

Algorithm COMPUTE-WAS

Input: Propositional prioritized program Ð�4��jVÑ+��
� .
Output: Some 1�\�,RyXz
�
ÐX� , if ,RyXz:�
ÐX�:¶4}¿ ; otherwise, “no”.

Method:
Step 1. check if yXz:�
ÐX�K4}¿ ; if true, then output “no” and halt, else compute � �"���
ÐX� , and set 1���4}¿ ,l���4TYK�/	O! ;

Step 2. If l^4}¿ , then output 1 and halt, else choose some Y½\bl ;

Step 3. Check if some 1 � \{,²y5z
�
ÐX� exists such that 1²�o6*YÑ;kdã1 � ; if true, then set 1���4}1²�o6*YÑ; ;

Step 4. Set lm��4[l²¯C6*YÑ; , and continue at step 2.

It is easily seen that this algorithm is correct. Moreover, the checks in steps 1 and 3 are in NP; in step 3, this
is true because if � �%���
ÐX� is known, together with 1 � a polynomial-size proof of the fact that 1 � \�,RyXz:�
ÐX�
can be guessed and verified in polynomial time.

The reader might guess that computing a weakly preferred answer set is complete for s�B 9!; ; however,
this intuition is elusive, and there is no evidence of completeness for sQB 9 ; . The reason is that intuitively,
in the second phase of algorithm COMPUTE-WAS (steps 2–4) the access to the NP oracle has much of a
deterministic reconstruction of a nondeterministic computation, in which, given Ð and � �"���
ÐX� , a weakly
preferred answer set 1Ö\|,²y5zC�
ÐX� may be guessed and verified in polynomial time. The above algorithm
deterministically reconstructs a successful guess for 1 step by step; intuitively, the oracle accesses in this
phase are “weak” in a sense. On the other hand, the oracle accessed in the first phase (step 1) are “strong”,
since computing � �%���
ÐX� requires the full power of A �DC±(FE]�«� many oracle calls. Overall, in total onlyA �DC�(FEf�«� many strong oracle accesses are made. Problems of a similar characteristics are not known to
be complete for s�B 9 ; .

From these observations, one may next guess that the problem is probably in sQB 9 ; ?BA �DC±(FE]�«�HG , if we
do some clever packing of oracle calls in phase two such that A �DC�(FEf�«� overall oracle calls are sufficient.
Unfortunately, this intuition is elusive; in fact, even if the optimal preference violation degree � �%���
ÐX� is
known, it is not clear how to construct a weakly preferred answer set in polynomial time using only A �DC�(FEf�«�
many NP oracle calls.

The precise complexity of computing a weakly preferred answer set can be assessed in terms of the
less familiar complexity class sQA
B //OptP ?BA �DC±(FEf�«�HG introduced in [11, 12]. This class contains the search
problems such that for each instance � , an arbitrary solution for � can be computed by a nondeterministic
Turing machine in polynomial time, if the machine receives as additional input the value ���D�%� of a fixed
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function � from the class OptP[ A �DC±(FEf�«� ]; the latter class contains all functions � , whose value ���
#$� hasA �DC±(FE]�«� many bits, where � is the size of # , and such that ���
#�� can be obtained as the “optimal” (i.e.,
minimal or maximal) value computed by some nondeterministic polynomial-time Turig machine in all runs
on input # . Well-known problems in OptP[ A �DC�(FEf�«� ] are e.g. computing the size of a maximum clique in a
graph, or computing the size of a smallest vertex cover for a graph (i.e., a subset of the vertices which meets
each edge). The precise technical definition of s�A
B //OptP ?BA �DC�(FEf�«�HG can be found in [12]. Notice that few
natural problems complete for this class are known.

It is easy to see that computing an arbitrary weakly preferred answer set of a propositional priorit-
ized program ÐÓ4¼�jVÑ+��
� belongs to the class s�ACB //OptP ?BA �DC±(FE]�«�HG . Indeed, the function � �%���
ÐX� is in
OptP[ A �DC±(FEf�«� ] (with obvious extensions for the case where Ð has no weakly preferred answer sets), and
if � �"���
ÐX� is known, a full prioritization ÐX�34ø�jVÑ+������ of Ð and an 1Á\~Ð$yXz:�
Ðv�?� such that �����@+�����ÕËÖ�!�"���
ÐX� can be nondeterministically generated and verified in polynomial time. On the other hand,
it can be shown that computing a weakly preferred answer set for Ð is among the hardest problems insQA
B //OptP ?BA �DC±(FEf�«�HG .
Theorem 7.10 Given a prioritized propositional program Ð 4 �jVÑ+��
� , computing an arbitrary 1 \,²y5z
�
ÐX� is complete for sQA
B //OptP ?BA �DC±(FEf�«�HG . Hardness holds even if � is a total ordering and V does
not contain strong negation.

Let us finally consider the inference problem. Analogous to inference from preferred answer sets, we say
that a literal Y is a weak consequence of a prioritized program Ð , denoted ÐÌ{ 4w}©Y , if Y belongs to every
weakly preferred answer set of Ð . We denote by i:�@}f�
ÐX� the set of all weak consequences of Ð .

For the problem of inference, we obtain a complexity result analogous to the one for model checking.

Theorem 7.11 Deciding, given a finite prioritized propositional program Ð 4ø�jVÑ+��
� and a literal Y ,
whether Ð�{ 4~}uY is B 9!;@?BA �DC�(FEf�«�HG -complete. Hardness for B 9!;@?BA �DC±(FEf�«�HG holds even if � is a total order
and V does not have strong negation.

Notice that the proof of the theorem shows that reasoning from weakly preferred answer sets remains
a hard problem, even if all answer sets are known and are part of the problem input. Thus, theoretically
speaking, by first computing all answer sets and then selecting the weakly preferred ones among them, we
might face in the second step still the full intrinsic complexity of the problem.

The results on weakly preferred answer sets can be interpreted as follows. Informally, they show that
this semantics is amenable to parallelization, if an NP oracle is available. In fact, it is known that the classB 9!;@?BA �DC�(FEf�«�HG coincides with the class B 9!;� , in which a polynomial-time bounded Turing machine may
access an NP oracle, but all queries must be prepared before the first call; thus, all oracle queries can be
solved in parallel. As a consequence, both recognition of a weakly preferred answer set and weak inference
from a prioritized logic program can be parallelized to NP. This can be regarded as a positive property, even
if we lack efficient parallelization hardware for NP problems to date.

For the computation of a weakly preferred answer set, we obtain a similar parallelization property. How-
ever, from the above results it is not known that this problem is in s�B 9!;� , the search analogue of B	9 ;� . In

fact, the class s�B 9!;� is contained in s�A
B //OptP ?BA �DC�(FEf�«�HG , but it is believed that this inclusion is strict. In
particular, no s�ACB //OptP ?BA �DC±(FE]�«�HG -complete problem is known to be in s�B 9!;� . Nonetheless, it is known
that the problems in s�B 9!; ?BA �DC±(FEf�«�HG are in ��B=��s�B 9 ;� , which is a randomized variant of s�B 9!;� ; informally,
this class contains the problems for which a solution can be randomly generated with very high probability
in polynomial time, if a call to a problem in s�B 9!;� is admitted. Thus, a weakly preferred answer set can be
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randomly computed with high probability using parallel NP oracle calls; since the success probability can
be pushed higher than the reliability of hardware, this is in practice as good as nonrandomized computation.

7.3 Nonground programs

Before closing this section, we briefly address the complexity of preferred and weakly preferred answer sets
for nonground programs.

For function-free programs, the complexities of the decisional problems from above intuitively increase
as usual by one exponential, from B to EXPTIME, A
B to NEXPTIME, etc. A particular interesting case is
inference from the weakly preferred answer sets, however. The complexity increases in this case to the class
PSPACE 9 ; , i.e., polynomial space with an oracle for NP where the oracle space is unbounded. Indeed,
the class PSPACE 9 ; is the exponential analogue of LOGSPACE 9!; , and LOGSPACE 9!; coincides withB�9!; ?BA �DC±(FEf�«�HG (see e.g. [57]). Notice that that membership algorithm for Ð|{ 4�}RY which we have described
in the proof of Theorem 7.11 actually can be implemented to run in logarithmic space; properly adapted
for function-free programs (writing the ground instance Ð W of the input Ð to the query tape instead of
nonground Ð ), it works in polynomial space. However, we omit the technical details and do not investigate
into upgrading complexity results; this can be done utilizing the methods developed in [19, 26]. For the
search problems, we have to respect that the output size is in general exponential in the input size; the study
of respective complexity classes is less developed, and we do not head in this direction here. However, we
may expect that an analogous exponential complexity increase is present with function-free programs.

For programs with functions, we obtain from the complexity of stable models [52, 51, 36] that preferred
answer set semantics can express � 22 -complete sets over the Herbrand universe generated by the program,
and that existence of a preferred answer set can express � 22 -complete sets on this universe. On the other
hand, � 2< resp. � 2< is an upper bound for deciding existence of a preferred answer set and inference from the
preferred answer sets, respectively; an answer set 1 with a proper well-ordering � such that ô«ö¸�j1v�
4|1
can be expressed in � 2< . It remains to see, however, in which cases the same upper bounds as for stable
models, i.e., � 22 and � 22 , can be obtained. For weakly preferred answer sets, the complexity in the case with
functions may be higher. These interesting issues are left for further study.

8 An Application: Qualitative Decision Making

In this section we want to discuss how our approach can be used to handle problems in qualitative decision
making. Assume you want to buy a car. You have collected the following information about different types
of cars:

�9#,���9��!9�H�%�>���x�����7�Y����������+.!�F��$�>���x�O���7�Y�����k�.��+.!*F��$�>�F� �������%��+8�$� E �"�������������O�,��+.��F�!9	������F�������O���
Your decision which car to buy is based on different criteria. We can use rules corresponding to normal

defaults [49] in order to represent the properties which you consider relevant. Let’s assume you like fast and
nice cars. On the other hand, your budget does not allow you to purchase a very expensive car. Moreover,
you have to take your wife’s wishes into account, and she insists on a car which is known to be safe.

(1) ����§-�$�
#����~&�(�)-�.§����
#$��+���#>������!*�����>�
#��
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(2) ��§����
#$���~&�(�)�����§����
#$��+�!*F��$�>�
#$�
(3) ��§����
#$���~&�(�)�����§����
#$��+��$� E �>�
#$�
(4) ��§����
#$���~&�(�)�����§����
#$��+���F%!*	��
#��

Since buying more than one car is out of the question these different decision criteria may obviously lead
to conflict, and a preference ordering is necessary. Since there is not much you can do about your restricted
budget, rule �O_*� gets highest preference. Moreover, since your wife is very concerned about safety you better
give �¦Ø,� higher priority than �¦ó,� and ���"� . Since there is tremendous traffic on highways in your area, �¦ó,� is
more important to you than ���"� . This means we have

�O_*�t���¦Ø,�Ñ���¦ó,�t�����"�
We still have to represent that you cannot afford more than one car. A straightforward idea would be to

use the rule

(0) �K�.§����
�����'��§-�$�
#���+-#�¶4x�
with highest priority. Unfortunately, this does not work. The reason is that the high priority of the instances
of this rule would allow us to defeat instances of �¦Ø,� , �¦ó,� and ���"� even if this is not intended. In our example
we would obtain two preferred answer sets, the intended one containing ��§-�$�F�`���U����� , but also an unintended
one (at least from your wife’s point of view) containing ��§-�$�����F�������O�0� . In the latter, the instance of �¦Ø,� with#Õ4��`�F����� would be defeated by the instance of �jS>� with #Õ4��\���������O� and �î4��`�F����� .

To represent our problem adequately, we have to make sure that the consequences of a certain decision,
namely that certain cars are not purchased, do not have higher priority than the decision itself, that is, the
decision to buy a specific car. Instead of adding the single rule �jS>� we therefore represent our criteria for
buying a car as pairs of rules. To each rule of the form

(r) ��§-�$�
#��-�~&�(�)�����§����
#$��+ E 2��
#���+ÎH�H�H�+ E J �
#��
we add a second one of the form

(r’) �K�.§����
����� E 2��
#$��+ÎH�H�H9+ E J �
#���+���§-�$�
#���+-#©¶4x�
with the same priority as �
�>� . In our example we have to add

(2’) �K�.§����
�����'!�F%�$�"�
#���+���§����
#$��+�#�¶4x�
(3’) �K�.§����
�����|�$� E �"�
#���+���§����
#$��+�#�¶4x�
(4’) �K�.§����
�����'��F�!9	��
#���+-��§����
#$��+�#�¶4x�

and use the following preferences

�O_*�t�}6"�¦Ø,��+*�¦Ø � �.;5�T6"�¦ó,��+*�¦ó � �.;k�}6"���"��+*��� � �.;
Given this information we obtain a single preferred answer set containing ��§-�$�F�`���U���%� .

This leaves you somewhat dissatisfied since you really like the Porsche. You might try to convince your
wife that in case a car is both nice and fast you would have heard about any safety problems. That is, you
would like to add the following pair of rules:

(1.5) ��§-�$�
#����'&�(�)�����§-�$�
#���+-&�(�)��K!*F��$�>�
#$��+��$� E �>�
#���+���F%!*	��
#��
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(1.5’) ����§����
�����~&�(�)��K!*F��$�>�
#$��+��$� E �>�
#���+���F%!*	³�
#$��+-��§-�$�
#���+-#©¶4x�
If your wife accepts this rule with preferences 6"�O_0H�q,��+*�O_0H�q"�¦�.;î��6"�¦Ø,��+*�¦Ø`�j�.; you are happy since now the

single preferred answer set contains �.§������\������������� .
9 Related Work

Apart from the approaches in the context of default logic which we have reviewed in Section 3, several
approaches treating preferences in the context of logic programming have been described in the literature.
In this section, we discuss how they relate to our approach.

Kowalski and Sadri. In [30], Kowalski and Sadri have proposed to consider rules with negation in the
head as exceptions to more general rules and to give them higher priority. Technically, this is achieved by a
redefinition of answer sets. It turns out that the original answer sets remain answer sets according to the new
definition whenever they are consistent. The main achievement is that programs whose single answer set is
inconsistent become consistent in the new semantics. The approach can hardly be viewed as a satisfactory
treatment of preferences for several reasons:

1. Preferences are implicit and highly restricted; the asymmetric treatment of positive and negative in-
formation in this context seems unjustified from a knowledge representation perspective.

2. It is difficult to see how, for instance, exceptions of exceptions can be represented.

3. Fewer conclusions are obtained than in the original answer set semantics, contrary to what one would
expect when preferences are taken into account.

It is, therefore, more reasonable to view Kowalski and Sadri’s approach as a contribution to inconsistency
handling rather than preference handling.

Pradhan and Minker. In [46] Pradhan and Minker show how priorities can be used to combine different
potentially conflicting databases. Preference information is used to determine the information which has to
be given up in the merging process. Three different semantics of priorities are presented, two of them turn
out to be equivalent.

There are two major differences between this and our work:

1. Pradhan and Minker consider Datalog databases only, that is, neither explicit negation nor negation as
failure is admitted. Our approach is thus more general.

2. The underlying preference relation is a relation on atoms, not on rules as in our case. While this
appears to be adequate for merging Datalog databases we strongly believe that the more fine grained
distinctions which are possible in our approach are necessary for many knowledge representation
problems. For instance, it is difficult to see how our qualitative decision making example could be
represented based on preferences among atoms rather than rules.
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Buccafurri etal. An approach that is closer in spirit to ours is ordered logic programming as discussed by
Buccafurri, Leone and Rullo [9]. An ordered logic program is a set of components forming an inheritance
hierarchy. Each component consists of a set of rules. The inheritance hierarchy is used to settle conflicts
among rules: rules lower in the hierarchy have preference over those higher up in the hierarchy since the
former are considered more specific. A notion of a stable model for ordered logic programs can be defined
(see [9] for the details). There are two main differences between ordered logic programs and our approach:

1. The preferences of ordered logic programs are predefined through the inheritance hierarchy.

2. Ordered logic programs use only one kind of negation, the distinction between negation as failure and
classical negation is not expressible in the language.

Brewka. In the article [8], one of the authors of the present paper has described a prioritized version
of the well-founded semantics for extended logic programs. In that paper, the preference information was
expressed in the logical language and could thus be derived dynamically. Here we did not want to complicate
matters and used an additional ordering relation outside the language. However, the representation in the
language is not much more difficult and can be done along the lines of [7]: if preferences are represented in
the language, then an answer set 1 is preferred if there is a total order � of the program rules such that � is
compatible with the preference information in 1 and ôQÍf�j1:�f4T1 . Intuitively, � is compatible with 1 if the
addition of a syntactic representation of � to 1 does not lead to inconsistency.

Nute. An early approach to priorities on rules of a logic program is due to Nute in his formalization of
defeasible reasoning [41, 42], which has been further developed later on (see [43]). Nute’s approach divides
the rules into absolute and defeasible ones, the former being rules which apply under any circumstances and
the latter being rules which are applied by default; such rules also express subjunctive implications. Central
to Nute’s approach is an ordering of the rules by specificity and superiority of absolute rules. Rules with
contradictory conclusions are considered competitive, and a general superiority ordering between such rules
is defined based on their logical properties. A defeasible reasoning process is defined by a modification of
SLD resolution, in which superiority of rules is taken into account.

From this outline, it is evident that Nute’s approach is quite different from ours and other approaches
discussed. Indeed, in his approach, prioritization is implicitly determined by the logical entrenchment of
the rules in the theory represented by the program, and user-defined priority specification is not supported;
moreover, the evaluation is proof-theoretic (and thus to a great deal operational) rather than declarative.
Thus, Nute’s approach offers limited capability of expressing priorities, which is not sufficient for the need
in practice. Moreover, like with similar approaches, the operational nature of his approach makes it difficult
to assess the proper working on a complex program.

Zhang and Foo. In two subsequent papers [59, 58], Zhang and Foo have presented a framework for
prioritized logic programs which at the syntactical level is very close to ours. Also in that framework,
priorities are expressed by a strict partial ordering on the rules. However, the similarity is at the surface,
since the approach to the semantics followed by Zhang and Foo is fundamentally different. Their semantics
is operationally defined, in terms of a (nondeterministic) reduction of the initial prioritized program Ð ,
which is reduced to an extended logic program Ð=�jVX� , whose answers sets are preferred answer sets of Ð ; the
preferred answer sets of Ð are the answer sets of all programs V to which Ð may be (nondeterministically)
reduced. Roughly speaking, if we have priority �=�}�"� among rules of Ð , then ��� will be ignored only if �,�
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is defeated by Ðk��4xÐx¯C69�0�
; , i.e., every answer set of ÐX� defeats ��� ; otherwise, ��� is kept in Ð . Rules �,� are
removed from Ð subsequently until no longer possible (see [58] for more details and formal definitions).

In general, Zhang and Foo’s concept of preferred answer set is different from ours. Indeed, it is easy to
see from the definitions that if the program without priorities has an answer set, then also the prioritized
program has a preferred answer set; As we have seen above, this is not the case in our approach. For
example, consider the following simple program V :

(1) ���v�~&�(�)0�
(2) �v�~&�(�)�·

in which (1) is preferred over (2). The program V has the unique answer set 1µ4¼68��; , and Zhang and
Foo’s semantics returns 1 as the unique preferred answer set. However, in our opinion, if we take priorities
seriously, this is not acceptable straight away. The rule (1) has higher priority than the rule (2), and not
applying (1) because it is defeated after application of the lower ranked rule (2) seems hardly defensible;
therefore, (1) should be applied, and also (2) should be applied because application of (1) does not defeat
(2). The joint application of (1) and (2) results in an inconsistency, however, and thus no answer set taking
rule preference seriously exists. Observe that if we change the priority ordering, then 1[4�68�Î; is the unique
preferred answer set; this is exactly what is achieved by our preferred and weakly preferred semantics.

A moment of reflection should convince the reader that this is indeed the desired behavior. The first rule
is a CWA default which tells that � is explicitly false if it is not provable, which is more important than
the rest of the program; in fact, by this high priority, we must conclude that � is false, as there are no even
more important rules which allow to prove � . Such a CWA default should have low priority, however, since
a proof of ��� by failure to prove � is weaker than an explicit proof in terms of other rules. Therefore, the
priorities should actually be reversed.

Another example in which Zhang and Foo’s semantics differs from ours is the program discussed in
Example 5.3. Recall that this program (refer to it as Ð ) has the two answer sets 1=2î4µ68��+I·"; and 1
<Õ46`����+I·"; , none of which is preferred in our definition. However, according to the definition of Zhang and
Foo, the answer set 1 < is preferred over 1 2 . This seems hardly defensible, since the highest priority rule
of the program, �u�¾&�(�)�· , is executable if no other rules have been considered so far; hence, � should be
concluded, which rules out 1v< as a maximally preferred answer set.

Furthermore, Zhang and Foo’s concept of preferred answer set does not obey Principle II. This can be
shown by the same example which demonstrates the failure of Principle II for our weak preferred answer
set semantics in the proof of Proposition 6.1; in fact, our weak preferred answer sets coincide there with the
preferred answer sets of Zhang and Foo.

However, the concept is also different from weakly preferred answer sets, as for the previously considered
program Ð , both answer sets 1 2 and 1 < are weakly preferred. Notice that if we would use a stronger concept
of weak preference, in which switches of rules are weighted by priorities, then 1�2 would be ruled out; this
would not be much intuitive.

Zhang and Foo further introduce a concept of dynamic preferred answer sets, which allows for expressing
dynamic rule preference, i.e., the preference ordering of the rules can be specified by additional metarules
represented in the object language. The semantics of such dynamic prioritized programs is then based on
preferred answer sets for prioritized logic programs. This approach is very general, but we believe that
further investigation is needed to clarify relevant aspects. First, as in the case of programs without dynamic
preferences, an intuitive understanding of the global semantics of a program, due to its involved operational
definition, seems to require quite some acquaintance with the approach, and whether this approach imple-
ments strict obedience of preferences is doubtful (cf. example above). Moreover, little is known about the
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properties of this semantics, apart from the obvious requirement that the preferred answer sets should select
a subset of the answer sets of the prioritized program.

Gelfond and Son. In a recent paper, Gelfond and Son have also tackled the problem of adding priorities
on defaults in the language of extended logic programs [25]. Similar to the approach of dynamic preferred
answer sets by Zhang and Foo, their approach foresees the specification of preference over rules in the object
language. An important difference is that rules are, similar as in Nute’s approach (see above), divided into
definite rules and default (defeasible) rules. While definite rules must be strictly obeyed, default rules may
be ignored if reasonable in a given context.

Gelfond and Son’s approach has a multi-sorted logical language which has constants for individuals,
definite rules, and default rules, functions and relations for the domain as well as special predicates for
defining rules and expressing preference; for example, a default rule �R�ª�`+���!>+I&�(�)���· is expressed by the
formula �"����F>§��?	��j��+j�«+ ? ��+���!kG�+ ? ��·*G
�
where � is the name of the default rule; here, ? ��+��K!�G and ? ��·7G is Prolog-like list notation. Moreover, the
language allows to express exceptions to a default. The semantics of the language is defined in terms of
a transformation of any program Ð into an extended logic program 	��
ÐX� whose answer sets are, roughly
speaking, cast into answer sets of the program Ð . The transformation is basically a meta-interpreter for
programs.

An important feature of Gelfond and Son’s approach is an explicit distinction between provability by
default and “strong” provability in the construction of an answer set; a literal is strongly provable, if it is
provable from definite rules (whose application requires that all literals in the body are strongly provable),
and a literal is provable by default, if it is provable from default rules, where the rule bodies hold by default.

By this feature, Gelfond and Son’s approach and ours are fundamentally different in terms of their under-
lying philosophical principles. The former expresses a form of graded belief: strongly provable literals have
a higher degree of belief than those provable by default. Our approach is opposite and rejects such a view,
as it takes the point that if a literal is proved, it should be used like any other proved literal, regardless of the
way of derivation. Therefore, a comparison of our approach to the one of Gelfond and Son must be taken
with care.

In fact, Gelfond and Son point out that their approach is different from ours, and that it leads in general to
different results. In particular, they consider the following variant of the birds & penguins example:

(1) �������í�
(2) !*���/a²!Q�
(3) �����
� ��!Q�~&�(�)-���?���*!>+0�������
(4) ���
� ��!Q�~&�(�)������
� �*!>+-�������
(5) ���9���Ñ�~&�(�)�����������+���������+.!*����a²!

This program has two answer sets, namely 1 2 4­6���������+,!9�C��a²!>+0���
� ��!,+��������-; , and 1 < 4­6���������+,!9�C��a²!>+�����
� �*!>+9���9����; . Under usual priorities �
�O�@�����%� if �v��� , our approach yields 1k< as the unique preferred
answer set. In contrast, the approach of Gelfond and Son yields for this example a unique answer set which
contains 1 � 4�6*�%�*���¦�������%��+I�%�*���¦!*����a²!0��+I�"�����¦���?���*!0�.; , where �%�*���jÿX� means that ÿ holds by default. They
argue that rule (5) is blocked by (4); in our opinion, this is far from being obvious as it seems to involve
reasoning based on the contrapositive of �¦ó,� . Note that 1 � does not correspond to any of the answer sets
of the original program. The preferred answer set delivered by our solution is desired, if our underlying
philosophical principles are adopted. Anyway, as Gelfond and Son state, this example belongs to a gray area
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and different solutions may be plausible. Observe that if in the program the (transitive) priority �¦ó,�t���.q,� is
removed, Gelfond and Son’s approach yields another preferred answer set which is similar to 1Å2 .
Delgrande and Schaub. In a recent paper, Delgrande and Schaub have presented another approach for
adding priorities to default theories [14]. In this approach, a set of default rules � , a background classical
theory � , and a preference ordering � (which is a strict partial ordering) on the default rules are transformed
into a standard default theory �Ý4 �D� � +�� � � as described in [49], by naming the defaults and introducing
special purpose predicates. The latter include a binary predicate �n�.�*+��>�
� for expressing priority informa-
tion, Ç 6$�.�0� for controlling application of rule � , ���8�.�0� for expressing that rule � is blocked, and F9�Q�.�0� for
expressing that rule � is applied. The control of rule application is expressed by a first-order formula in the
theory � � , which essentially states that consideration (i.e., potential application) of a rule � is ok (repres-
ented by the fact Ç 6$�.�`� ), if every rule � � which has higher priority is either applied or blocked (expressed
by facts F*�Q�.�*�°� and ���8�.�*�?� , respectively, each of which requires that Ç 6$�.�0�?� is true). The extensions of the
ordered default theory ���^+��²+��:� are the extensions of � , restricted to the language of ���u+��®� ; these are al-
ways extensions of the unordered default theory ���^+��Õ� . An extended approach allows for the integration of
dynamic preferences into the language, by supporting the explicit representation of preference information
between defaults in � and � .

Schaub and Delgrande’s approach is different from ours; in fact, in our approach, a partial ordering is
reduced to all compatible total orderings, which is not the case in the approach of Delgrande and Schaub.
Moreover, it does not yield satisfactory results in all cases. This is shown by the default theory in Ex-
ample 3.1 from Section 3.2, which we recall for convenience:

(1) F��>�³�0�
(2) 	��`§��v�"���������
(3) 	��`§��v�,F��`F

Given preference �O_*�x� �¦Ø,�x� �¦ó,� , Schaub and Delgrande’s approach selects the extension ¨X<[4�
P«� 6*F-+����*;`� , which is counterintuitive, as ¨ 4Ý�
P�� 6*F�+.�*;`� is expected to be preferred; it shows that this
approach violates Principle I.

10 Further Work and Conclusion

In this paper, we have presented an approach for adding priorities to extended logic programs. Our approach
is based on the ideas that applying default rules means to jump to conclusions, and that rules must be applied
in an order compatible with the priorities. We have formalized this intuition by introducing the dual reduct
of an program, on which the obedience to the preference information which is declared on the rules can be
verified by means of a simple operator; the preferred answer sets are those answer sets which amount to
fixpoints of this operator. To overcome the situation in which, due to inappropriate priority information, no
answer set is preferred, we have proposed a concept of weakly preferred answer set, which can be seen as
an approximation of a preferred answer set.

In order to test the coherence of the preferred answer set approach, we have proposed two principles which,
as we believe, any formalism for prioritized knowledge representation should satisfy. We have shown that
preferred answer sets satisfy these principles, while a number of other approaches to priorities on logic
programs, many of which are inherited from prioritized versions of default logic [49], do not satisfy these
properties. This means that our approach avoids problems which are present in these other approaches.
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Furthermore, we have investigated the computational properties of our approach. We have described
algorithms for some of the computational tasks, and we accurately determined the computational complexity
of the main reasoning problems. It appeared that our approach has rather benign computationally properties,
in the sense that the preferred answer sets do not increase the complexity compared to standard answer sets,
and weakly preferred answer sets increase the complexity only marginally.

Several issues remain for further work. One such issue is the extension to a syntactically and semantic-
ally richer framework, which offers increased expressive capabilities. Such capabilities can be provided
by further extensions of logic programming beyond classical and default negation. For example, one such
extension is disjunction in the rule heads, which has been considered in the context of stable and answer set
semantics quickly after the invention of the stable semantics [48, 23]. From the technical side, a generaliza-
tion of our approach to disjunctive extended logic programs appears to be rather easy. The definition of dual
reduct need not be changed, and the definition of i
s]��lf� has to take disjunctive rule heads into account; this
can be handled similar to the construction of a model of disjunctive logic program. Concerning the compu-
tational impacts, we may expect an increase of the complexity by one level in the polynomial hierarchy in
the propositional case, analogous to the increase for answer set semantics [17].

Another possible extension are constructs for expressing dynamic preferences in the framework. Several
of the related approaches which we have discussed in Sections 3 and 9 foresee a possibility of explicitly
representing preference between rules at the level of the object language, such that rule preferences may
dynamically depend on a given context. As we have briefly mentioned above, there are no principal obstacles
to extending our approach in this direction, such that priority information comes dynamically into play. In
fact, in the extended approach, the priority information which is needed for evaluating the operator ô�s]�j1:�
on the dual program reduct is extracted from the answer set 1 , rather than taken from the meta-level.

For the implementation of our approach, we can take benefit from the complexity results which we have
established. They unveil a close computational relationship of prioritized logic programs to recent exten-
sions of the stable model semantics by constraints [10]. In the quoted paper, the authors define a concept of
weak constraint, which as opposed to traditional a constraint may be violated in a model; however, globally
as many constraints as possible should be satisfied. As shown in [10], stable models with weak constraints
allow for expressing problems which are B 9!;x?BA �DC�(FEf�«�HG -complete; hence, by our complexity results, a
polynomial-time translation of weakly preferred answer set semantics into stable models with weak con-
straints is feasible. An experimental implementation of preferred and weakly preferred answer sets on top
of the deductive reasoning system dlv [20] is planned for the future.

Acknowledgements. The authors thank M. Gelfond and H. Herre for helpful and clarifying discussions
on the topic of the paper. Furthermore, we are grateful to V. Marek for bibliographic hints on well-orderings,
to H. Blair and A. Nerode for discussions on this subject, and we thank N. Leone for his helpful comments
on a previous version of this paper.

A Appendix: Proofs

For convenience, we use in the following the notation U|��l , where U and l are sets of rules and � is an
ordering, as a shorthand for the property that �3�½�"� holds for all rules � in U and �,� in l .

Lemma 5.2 Let ´'4��jU3+��
� be a fully prioritized rule base of ground rules, and let 1�\²yXzC�jUk� . Then, the
following are equivalent:
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�
���Õ1 is a preferred answer set of ´ .

�
����� For every �Å\^U , the reduct � � is defined and fires in the construction of ô × �j1:� , if and only if � is a
generating rule of 1 .

Proof. ��þ½� . If �
����� is true, then clearly 1}4[ô × �j1v� , which means 1 is a preferred answer set of ´ .��ý½� . Assume that �
����� is false; hence, there are two cases.
(1) � is a rule which is not applied in 1 , but � � fires in the construction of ô × �j1:� . Since � �q\ � ´ , we

have �-�,�"�
�,��d}1 . Now if P��9F%���
�>�C\^1 then, according to the construction of i�ö , � cannot be defeated in1 . Hence � must be applied in 1 , which is contradiction to our assumption. Otherwise, if P-�9F%���
�>��¶\½1 ,
then 1 is not a fixpoint of ô × , and thus not a preferred answer set, which is a contradiction.

(2) � is applied in 1 , but � � does not fire in the construction of ô × �j1v� . Then, ô × �j1:� must contain a literal
defeating � . This literal is not contained in 1 , which implies that 1 is not a fixpoint of ô × and thus not a
preferred answer set, a contradiction.

Lemma 6.8 Let 1Ö\by5z
�
ÐX� , where ÐÝ4|�jVÑ+��
� is a fully prioritized finite ground program, and let �@� be
an optimal ordering for 1 . If 3 M from the canonical switching sequence 0 of � � is nonvoid, then � M�1 2 has at
position � a nondefeated zombie.

Proof. Suppose that 3�M moves a rule ��� to position � and ��M�1 2 has at this position a rule � which is either
not a zombie or already defeated. We derive a contradiction. The last step of 3 M , �
�I+8� ê _*� , switches � and�0� ; in � M , rules �0� and � are at positions � and � ê _ , respectively. Observe that since �%� is in its final position
for � � , either � � is not a zombie, or it is defeated in � M�1 2 by some rule at position �n� .

Consider the ordering � � � which coincides with � Mg1 2 up to position � , has � � at position � ê _ , and such
that its rest at positions � ê Ø%+8� ê ó%+�H�H�H coincides with the tail of �v� at positions � ê _0+8� ê Ø%+�H�H�H after
removal of � . Then, the canonical switching sequences transforming � into � � , respectively 0 � 4#3 �È +�H�H�H9+�3 �4
and 0$� �v4�3�� �È +�H�H�H*+�3�� �4 , are related as follows. Let � be the position of � in �:� . Then, 3�� �� 4�3��� , for allP�4ûS�+�H�H�H*+8�íñ­_ ; 3�� �M is void; 3�� �� 4�3��� 1 2 ¯��¦Pqñ­_0+.P�� , for all P�4Ó� ê _0+�H�H�H*+H� ; and 3�� �� 4�3��� , for allPÕ4o� ê _0+�H�H�H�+�6 . Consequently, the length of 0�� � satisfies

{ 0 � � {@4 4�� l È { 3 � �� {|4 M�1 2�� l È { 3 �� { ê S ê N�� l M ë«2 �I{ 3 �� {�ñã_*� ê 4�� l N ë«2 { 3 �� {
Ë 4�� l È { 3 �� {�ñn_
4 { 0 � {`ñã_

Hence, by Proposition 6.7, �����@+��
� �°�¸�}�����@+��¸�°� . Since clearly 1Ö\qÐ$y5z
�jV¸+���� ��� , it follows that ��� is not
an optimal ordering for 1 , which is a contradiction.

Theorem 6.9 Let 1Ö\uy5zC�
ÐX� , where ÐÝ4~�jVÑ+��
� is a fully prioritized finite ground program. Then, there
exists an optimal ordering � � for 1 such that 3 M from the canonical switching sequence 0 of � � is nonvoid if
and only if � M�1 2 has at position � a nondefeated zombie 8 , and every nonvoid 3 M moves a rule defeating 8 to
position � .
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Proof. We show that given an optimal ordering �:� which satisfies the property for all �®4�S�+�H�H�H*+8��ñT_ ,
we can construct another optimal ordering � � � which satisfies the property for all �34[S�+�H�H�H*+8� . By repeated
application for �Q4}S�+9_0+.Ø%+�H�H�H we obtain the result.

From Lemma 6.8, it follows that 3 M is nonvoid if and only if � M�1 2 has a nondefeated zombie 8 at position� . Let � be the rule moved by 3 M to position � .
Suppose � does not defeat 8 . Then, � � and � � exist, ���u� � ��� � , such that 8 is at position � � in � � and the

leftmost killer of 8 , denoted � , is at position �%� in �¸� .
Let ��� � be the ordering which coincides with �:� on positions S�+9_0+.Ø%+�H�H�H0+8�"ñR_ , has at positions �.+8� ê _0+ and� ê Ø the rules �-+�8�+ and � , respectively, and whose rest � ê ó%+8� ê ��+�H�H�H coincides with the rest � ê _0+8� ê Ø%+�H�H�H

of ��� after removal of � and � ; schematically, �:� and ��� � look as follows:

ordering/position: 0 1 . . . ��ñn_ � � ê _ � ê Ø . . . �"� . . . � �/��¸M�1 2 � È � 2 . . . �-M�1 2 8 . . . �� � ��È$��2 . . . � M�1 2 � � � 2 � � < . . . � . . . . . . 8��� � ��È$��2 . . . � M�1 2 � 8 � �-� 2 �-�< . . .

Here, ��È`+�H�H�H*+j� Mg1 2 are the rules in the common prefix of � Mg1 2 , � � and � � � . For simplicity, � is not shown in�¸M�1 2 , and � � � �î�n� � is adopted in this figure (but neither � � � � nor �î�½� � must hold in general).
Since 1�\ÃÐ$y5z
�jV � +�� � � , it is easily seen that also 1�\ÃÐ$y5z
�jV � +�� � � � holds.

Claim A.1 � � � is an optimal ordering for 1 .

To prove the claim, consider a pair �"29+8�*< of rules such that �>2Õ� M�1 2X�*< holds. Let us count how often�*<:�¸�%��2 and �*<:��� �%��2 holds, i.e., determine the number of inversions of �v� (resp., ��� � ) in � Mg1 2 . We proceed
by analyzing different cases.

(0.) ��2 or ��< (or both) are from to ��È0+�H�H�H9+j� M�1 2 . Then, ��2C�¸���*< and �,2¸�¸� ���*< holds; hence, for both �C� and�¸� � , no inversion involving an element from � È +�H�H�H9+j�-M�1 2 exists. In the remaining cases of the analysis, we
assume that both �>2 and ��< are not from ��È`+�H�H�H9+j� M�1 2 .
(1.) �,2�+8�*<��\u6��-+�8�+8�%; . In this case, �>2¸�¸�%�*< and ��2¸��� �%�*< holds; hence, no inversions for �
� and �¸� � exist.

(2.) �,2t4#8 : Consider the following two cases for ��< .

(2.1) �*<¸4ã� : ��<:�¸�"�,2 and ��<:�¸� ����2 holds; thus, for both orderings we count one inversion.

(2.2) �*<5¶4ã� : There is no inversion for �
� � . For ��� , every rule moved to a position �I+8� ê _0+�H�H�H�+8����ñ½_ in �¸�
causes an inversion. Taking into account that � < ¶4ã� , this amounts to �
� ��ñ�_*��ñ²� ê _Kñ�_C4T���0ñÃ�-ñü_
inversions for � � .

(3.) � 2 4x� : There is no inversion for �
� � . The inversions for �C� are generated by the rules � < occurring at a
position ¹h� in � M�1 2 such that ��< is in � � at a position from �I+8� ê _0+�H�H�H*+H� � ñn_ . Let �C2 denote the number
of all such ��< .

(4.) ��2:4�� : For � � � , there is one inversion if �®� Mg1 2Ñ� , and no inversion if �q� M�1 2¸� . For � � , there is no
inversion.

(5.) Suppose � 2 �\u69�`+O�-+�8�; , and consider the following three subcases for � < :
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(5.1) ��<54�� : For ��� � , all rules �,2 at positions � ê _0+8� ê Ø%+�H�H�H�+H�3ñ}_ in � M�1 2 cause an inversion. Taking
into account that �>2@¶4x� , their number is ���Cñ©_*�$ñü�
� ê _*� ê _C4o�Cñ²��ñ©_ if ��� M�1 2�� , and �Cñ²��ñqØ ,
if �3� M�1 2�� . For �¸� , every rule �,2 from � ê _0+8� ê Ø%+�H�H�H*+H�kñã_ in � M�1 2 such that �,2@¶4T� and �,2 is at a
position ¹ �,� in �¸� causes an inversion; let � < be their number.

(5.2) � < 4#8 : this is impossible (as 8 is the first rule in �:M�1 2 after � È +�H�H�H9+j��Mg1 2 ).
(5.3) ��<X4�� : For � � � , all rules �,2î¶4­� at positions � ê _0+8� ê Ø%+�H�H�H*+�6=ñx_ , where 6 is the position of � in� Mg1 2 , cause an inversion. Their number is �.6oñã_*�Kñx�
� ê _*� ê _�ñã_@4¡6oñ©�«ñmØ , if �²� M�1 2]� , and�.6oñn_*�Qñã�
� ê _*� ê _ = 65ñ^��ñn_ , if �3�¸M�1 2 � . The inversions for �C� , where � 2 ¶4x� , are the same as

for � � � .
Let � � 4�{ �,������� Mg1 29+�� � ��{ and � � � 4Ö{ �,������� M�1 29+�� � � ��{ . If ��� M�1 2K� , then� � � 4 S ê _ ê S ê S ê S ê �@ñ^��ñn_ ê 63ñ^�Îñ©Ø4 6 ê �@ñüØ`��ñ©Ø (2)� � 4 S ê _ ê � � ñ^��ñn_ ê �C2 ê S ê �í< ê 65ñ^�ÎñüØ4 6 ê � � ñ©Ø`��ñüØ ê �C2 ê �í<4 � � � ê � � ñ¢� ê �C2 ê �í<�£ (3)

if �3� Mg1 2�� , then� � � 4 S ê _ ê S ê S ê _ ê �@ñ^��ñ©Ø ê 63ñ^�Îñn_4 6 ê �@ñüØ`��ñn_ (4)� � 4 S ê _ ê � � ñ^��ñn_ ê �C2 ê S ê �í< ê 65ñ^�Îñã_4 6 ê � � ñ©Ø`��ñã_ ê � 2 ê � <4 � � � ê � � ñ¢� ê �C2 ê �í<`H (5)

From (2)–(5), it follows that ����òy�>� � is equivalent to� � ê �
2 ê �í<:ò ��H (6)

Recall that �/� and �,� are the positions of respectively 8 and � in �:� , that � 2 is the number of rules at a
position ¹ � in � M�1 2 which are moved in front of � in �
� , and that �Ñ< is the number of rules ¶4x� at positions� ê _0+�H�H�H�+H�Xñn_ in �¸M�1 2 which are moved behind � in �C� .

We have � � ¹ � � . Thus, if � � ò �]ñR_ , then � � ò � holds and (6) is true. It remains to argue about � � � �]ñR_ .
Consider the two possible orderings of � and � in � M�1 2 .
1. ��� M�1 2K� : Then, �
2íò�_ and �í<:ò����kñn_*�Qñ¤��� ê _�4o�kñ¢��� . Since �/��¹¥�,� , we obtain� � ê �
2 ê �í<:¹ � � ê _ ê �@ñ¢� � 4o� ê _�£
thus, the inequality (6) holds.

2. �q� M�1 2v� : Then, trivially �:2=ò�S , and furthermore �¸<Õò7���îñ[_*�]ñb� � ê _:ñ[_Å4¦�=ñ¥� � ñ[_ . Since����ò �,� ê _ , we obtain � � ê � 2 ê � < ò � � ê _ ê S ê �@ñ¢� � ñn_
4o��£
hence, also in this case (6) holds.
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Consequently, �"��ò§�,� � holds. Since �"� (resp., �>� � ) is the length of the canonical transformation of � M�1 2 into� � (resp., � � � ), and since the canonical transformation of � into � � (resp., � � � ) amounts to the composition
of the canonical transformations of � into � M�1 2 and � M�1 2 into �¸� (resp., � Mg1 2 into ��� � ), it follows that�����@+��¸�°�kòÖ�����k+��¸� ��� . Since ��� is an optimal ordering for 1 , also �:� � is an optimal ordering for 1 . This
proves the claim. Moreover, � � � fulfills the property for all �=Ë½� . The result is proved.

Proposition 7.1 Given a fully prioritized (finite) propositional program Ð74 �jVÑ+��:� and a set 1�dÖYK��	8! ,
both deciding whether 1¼\�y5zC�jVX� and 1¼\�Ð$yXz:�
ÐX� is possible in polynomial time. Moreover, these
problems are complete for B (under logspace-reductions).

Proof. It is well known that testing whether a set of literals 1 is an answer set of a program V , i.e.,
condition r��Ñ�j1v�v4~1 , can be done in polynomial time (cf. [4, 17]); indeed, the Gelfond-Lifschitz reductV � is computable in polynomial time, and iv�f�jV � � is computable in polynomial time. Thus, deciding
whether 1�\ÃyXz:�
ÐX� is polynomial.

For deciding 1Ì\½Ð$y5z
�
ÐX� , we note that the additional condition ô�ö¸�j1v�k4'1 is also polynomial-time
checkable. Indeed, the dual reduct Ð � 4 � Ð can be clearly computed in polynomial time, and each lQÉ ,S½Ë Ê � Ç �������
� , can be computed in polynomial time. Since Ç �������
� is the number of rules in Ðo� , it
is thus clear that i ö � �j1:�X4�ô ö �j1:� is polynomial-time computable, from which membership of deciding1�\²Ð$yXz:�
ÐX� in B is immediate.

For establishing completeness, we observe that recognizing the (unique) preferred answer set of a prior-
itized program Ð 4Ó�jVÑ+��
� in which no negation (neither classical nor default one) occurs is hard for B ;
in fact, this preferred answer set trivially corresponds to the least model of V , and recognition of the least
model of V is easily proved hard for B from the well-known result that inference of a positive atom � from a
propositional logic program V is B -complete (see [13]). Indeed, construct a program V � from V by adding
all rules ·��ø� where · is a propositional atom from the underlying language. Then, the set V@Y of all
propositional atoms is the least model of V � , if and only if � is a consequence of V . Since V � is easily
constructed in logarithmic workspace, recognizing the least model of V , and as a consequence, recognition
of a preferred answer set of Ð is hard for B . This proves the result.

Lemma 7.2 Let Ð be a propositional prioritized program, and let 1�\²yXzC�
ÐX� . Then, 1�\ÃÐ$y5z
�
ÐX� , if and
only if some execution of FULL-ORDER outputs a fully prioritized program Ðî� . Moreover, Ð@�f\©ÔoÐ��
ÐX�
and 1�\ÃÐ$y5z
�
Ð � � hold for every such Ð � , and either all runs output some Ð � , or all output “no”.

Proof. ( þ ) Suppose that some execution of FULL-ORDER produces a prioritized program Ð=��4��jVÑ+��¸��� .
It is not hard to see that Ð � \TÔoÐ��
ÐX� . Moreover, from Proposition 5.1, we derive that 1µ\}Ð$y5z
�
Ð � � ;
indeed, by the construction of �
� , every zombie rule �Õ\�V for 1 is defeated by the set � , which contains
only heads of rules ����\xV which are generating for 1 and such that �"�¸�¸�K� . Thus, by Proposition 5.1,1�\²Ð$yXz:�
Ð � � , which means 1�\ÃÐ$y5z
�
ÐX� .

( ý ) Suppose 1�\�Ð$yXz:�
ÐX� . Then, by definition, there is a full prioritization Ðk2X4Ì�jVÑ+��v2��X\mÔoÐ��
ÐX�
such that 1�\ÃÐ$y5z
�
Ð 2 � . We claim that there is a run of FULL-ORDER which produces Ð 2 . Indeed, select
the rules � in Step 3 along the ordering �X2 . An easy induction, using Proposition 5.1, shows that every rule �
selected in Step 3 which is labeled “z” is defeated by the current set � . Therefore, this run of FULL-ORDER
outputs ÐC2 . This proves the first part of the lemma.

It remains to show that there are never runs of FULL-ORDER which output some prioritized programÐv�
4 �jVÑ+������ and “no” on the same input, respectively. Towards a contradiction, suppose this happens.
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Then, there exists a sequence of rules �%29+8�*<0+�H�H�H9+8�74 in V , 6ÅònS , such that after successive selection of these
rules in step 3 of FULL-ORDER, the current graph ] is nonempty and every source � of ] is labeled “z”
and not defeated by � . Let ¨ be the set of all these rules, and let � be the �@� -least rule in ¨ . Moreover,
let ���2 �¸�fH�H�Hf�¸�«�0�© 4Ý� be the initial segment of �
� up to � . Since the selection and removal of a source
from the graph ] never makes a selectable source unselectable, we conclude that all rules � �M , _ÕËÖ�k�­Z ,
must be among �,29+�H�H�H9+8�74 ; for, otherwise some selectable source in the modified graph ] would be found
in step 3. In particular, every � �M from � � 2 +�H�H�H9+8� �© which is generating for 1 is among �"29+�H�H�H9+8�74 . Since � is
defeated in the construction of �
� by the head of some generating �,�M , it follows that the current set � defeats� . However, by assumption � is not defeated by � ; we arrived at the desired contradiction. This concludes
the proof of the lemma.

Theorem 7.4 Given a finite propositional prioritized program Ð�4��jVÑ+��
� , deciding whether Ð$y5z
�
ÐX�:¶4[¿
is NP-complete. The problem is NP-hard even if � is a total order and V does not involve strong negation.

Proof. For deciding whether y5zC�jVX�@¶4[¿ , a proper fully prioritized version Ðo��4��jV¸+��¸�°��\RÔoÐ��
ÐX� and
an answer set 1�d}YK��	8! for Ð � may be guessed; the size of the guess is polynomial, and checking whether
the guess is proper can be done from Proposition 7.3 in polynomial time. Hence, the problem is in A
B .

To show the hardness part, we construct for a collection of nonempty propositional clauses r²4�6`i329+�H�H�H*+i L ; on atoms ��29+�H�H�H*+j� J a program V and a linear order � such that the preferred answer sets of �jV¸+��
�
correspond to the satisfying truth assignments of r . Since the construction is polynomial and propositional
satisfiability is a well-known NP-complete problem, this proves NP-hardness.

The program V involves the propositional atoms � M +�ª� M , �
4 _0+�H�H�H�+8� , as well as F-+.� , and §-��!�F"	 . It has
four groups of rules U529+�H�H�H9+IU5« as follows. The first group U32 contains the rules�-M,���-M , ª�-M,�¬ª�-M , for all ��4�_0+�H�H�H*+8� ;

(The use of these seemingly redundant clauses will become clear later.) The next group Uî< contains the
rules � M �~&�(�)�ª� M , ª� M �~&�(�)�� M for all � ;
The group Uvº contains for each clause i M 4�6�Z M ÷ð2�+�H�H�H*+OZ M ÷ 4,; from r a rule§-��!�F"	��ÝZ ëM ÷ð2 +�H�H�H�+OZ ëM ÷ L +
where Z ëM ÷ N 4®­ �!4,+ if YfM ÷ N�4[���¯4 , for some 6 ;ª�!4,+ if Y M ÷ N 4©�!4 , for some 6 .

The last group U « contains the rules

(1) FÑ�'&�(�)-�
(2) �Î�~§-��!�F>	

Notice that the program V�4 â «M l 2 U M does not involve strong negation.
It is easy to see that the answer sets of V correspond 1-1 to the truth assignments ° to the atoms �t29+�H�H�H9+j� J .

For each such ° , the corresponding answer set 1²± contains those atoms � M such that °���� M ��4³�D��´ � and all
atoms ª� M where °���� M �34¶µ�·F���k� ; if ° satisfies r , then 1~± contains F , and if ° does not satisfy r , then 1>±
contains §���!*F"	 and � .
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Now let us define priorities. Choose any total order � on V such that U M ��U N holds, for all ���#� , and
such that the rule (1) is ordered before rule (2).

For any answer set 1~± of V , let us trace the construction of ô�ö¸�j1�±��K4 â M l M . The dual reducts �¯¸ � of the
(surviving) rules �Å\©U52 are considered first; they fire and yield atom � M (resp. ª� M ), precisely if it occurs in1�± , for each �Q4­_0+�H�H�H�+8� . Next, the rules of U@< are examined, which all survive the dual reduction; however,
each of them is either a dead rule or a zombie, which is defeated by the union â N l N of the preceding setsl N . Therefore, none of them fires. In the next step, the reducts �!¸ � of the rules �3\²Uvº are considered. Some
of them fires and adds §-��!�F"	 , precisely if the truth assignment ° does not satisfy r (i.e., iff §���!*F"	C\©1w± ).
Consequently, on the atoms � M + ª� M , and §���!*F"	 , i]ö¸�j15±%� will coincide with 1~± ; it thus depends on the rules
of U5« whether all priorities are properly respected or not. Rule (1) fires and adds F to i=� � ¸ ÐX� , since it is not
defeated by the preceding sets l�N . If §���!*F"	:\©15± , then the dual reduct of (2) fires and adds � to i=� �!¸ ÐX� ;
this means ô-ö¸�j1�±���¶4|1�± , however, as in this case FT�\½1¹± . On the other hand, if §���!*F"	Õ�\½1¹± , then (2)
does not survive the dual reduction and ô�ö��j1�±%�K4T15± .

Hence, Ð$yXz:�
ÐX�¸4Ý6*1|\^y5zC�jVX�@{%Fq\^1X+8§-��!�F>	î�\�1k; , and there is a 1-1 correspondence between the
preferred answer sets of Ð and the satisfying truth assignments of r .

Clearly, the program Ð is constructible from r in logarithmic space (and thus in polynomial time); this
proves the result.

Theorem 7.7 Given a finite propositional prioritized program Ð­4��jVÑ+��
� and a literal Y , deciding whetherÐû{ 4|Y is co-NP-complete. The problem is co-NP-hard even if � is a total order and V does not involve
strong negation.

Proof. The membership part is similar as in Theorem 7.4, with the difference that for refuting Ð~{ 4TY , we
have to find a preferred answer set 1 which does not contain Y . Hardness follows from a simple reduction
of inference to the complement of the consistency problem; given a prioritized program V , let � be a fresh
propositional atom. Then, Ð|{ 4©� iff Ð has no preferred answer set.

Proposition 7.8 Given a finite propositional prioritized program Ð�4Ý�jV¸+��
� and 1�\byXz
�jVX� , computing� �"�>ö��j1:� is in sv< = < ?BA �DC�(FEf�«�HG , i.e., possible in polynomial time with A �DC±(FE]�«� many oracle queries, where� is the input size. Moreover, also computing � �"���
ÐX� is in sv<w= < ?BA �DC�(FEf�«�HG .
Proof. Given a prioritized program Ð¬4¾�jVÑ+��
� , an answer set 1 \­y5z
�j1v� and an integer 6�òwS ,
deciding whether �!�"�"ö¸�j1:�ÑËt6 is in ACB : we can guess a proper full prioritization Ð � 4��jVÑ+�� � �t\®ÔoÐ��
ÐX�
and a total ordering �C� � such that 1�\²Ð$yXz:�jVÑ+���� �±� and �����¸�
+��¸� �°�tËt6 , and check this guess in polynomial
time. Indeed, the guess has clearly polynomial size; computing �����k+�� � � is obviously polynomial, and
checking whether 1 is a preferred answer set of Ð5� is polynomial by Proposition 7.1.

As a consequence, the value of � �%� ö �j1v� is computable in a binary search on the range ? S�+.!kG , where!î4 A �I{ V�{ < � , by making A �DC±(FE
{ V�{ð�
4 A �DC±(FE:{ ��{ð� many calls to an NP oracle, where { ��{ is the size of the
input º
Ðo+I1X+�6`» . Hence, it follows that computing � �%��ö��j1:� is in s�B 9 ; ?BA �DC±(FE]�«�HG .

The value of � �%���
ÐX� can be computed similarly in a binary search. Indeed, given Ð and 6 , deciding
whether � �"���
ÐX�üË¼6 is also in NP: Since � �%���
ÐX�üË¼6 holds iff some 1Ò\'yXzC�
ÐX� exists such that� �"�>ö��j1:�
Ë�6 , simply extend the previous guess-and-check algorithm for deciding whether �!�"��ö��j1:�
Ë�6
by a guess for 1 ; observe that testing 1�\RyXzC�
ÐX� is polynomial. Hence, it follows that computing �!�"���
ÐX�
is in sv< = < ?BA �DC�(FEf�«�HG .
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Figure 3: Components of program Ð

Theorem 7.9 Given a prioritized propositional program Ð 4ª�jVÑ+��
� and a set of 1pdÌYf��	8! of ground
literals, deciding whether 1Ì\y,²y5z
�
ÐX� is B	9 ; ?BA �DC±(FE]�«�HG -complete. Hardness for B	9!; ?BA �DC±(FE]�«�HG holds
even if � is a total ordering and V does not contain strong negation.

Proof. From Proposition 7.8, it follows that algorithm REC-WAS can be implemented such that it runs in
polynomial time and makes A �DC±(FE]�«� many queries to an NP oracle. Thus, by Proposition 7.1, membership
in B 9!;@?BA �DC�(FEf�«�HG follows.

It remains to show the hardness part. To this aim, we reduce the problem PARITY(SAT) to our problem,
which is as follows [56]. Given instances �Õ4prÎ29+�H�H�H9+dr © of SAT (i.e., propositional clause sets r M ), decide
whether the number of Yes-Instances among them is odd.

We show how to construct from � a prioritized program Ð­4Ö�jV¸+��
� and a set of literals 1 in polynomial
time such that 1¬\¦,²y5z
�
ÐX� if and only if � is a Yes-Instance, provided that � satisfies the following
property: If r M is a No-Instance of SAT, then also r M ë«2 is No-Instance, for every �v4 _0+�H�H�H*+OZ
ñ[_ , whereZ©òÓó . Somewhat surprisingly, as shown in [56] this strong assertion suffices to prove B59!; ?BA �DC�(FEf�«�HG -
hardness.

As outlined above, the computation of a weakly preferred answer set of a program Ð amounts to a com-
binatorial problem, in which generating rules must be moved using as few switches as possible in front of all
zombie rules for defeating them. The program Ð that we construct has several components (see Figure 3),
which serve for the following purposes.

The component Ð
È encodes the clauses of the SAT instances rÎ2�+�H�H�H*+dr © . For each r M , there is a collection
of rules in Ð:È . Some of them will be zombie rules, and for defeating them some generating rules from the
lower priority part ÐJÉ�fIæ have to be moved in front of them. In particular, some distinguished rule � M �
must be moved in front of them in any optimal solution, if r�M is unsatisfiable.

The component Ð = fIæ encodes the parity check on the number of satisfiable r M . In particular, it effects that
a weakly preferred answer set contains a designated atom Ç �>� , if this number is odd, and an atom ������� , if it
is even. Zombie rules in Ð = fIæ may be defeated by rules from Ð åYÊdË .

The component Ð ^ � is a “channel” which separates the components Ð�È and Ð = fIæ from the remaining
components Ð
É�f.æ and Ð åYÊdË , such that moving rules across this channel is very costly, and as few rules as
necessary are moved across it in any weakly preferred answer set. The design of the program is such that
the channel is unidirectional, i.e., in any weakly preferred answer set rules are moved from Ð¹É�fIæ and V ådÊdË
into Ð È and Ð = fIæ , but not vice versa.

The components Ð	É�f.æ and Ð åYÊdË contain rules which are potentially moved across the channel Ð ^ � , in order
to defeat zombie rules in Ð	È and Ð = f.æ .

After this rough outline, we describe the components in detail. We start with Ð5È . Without loss of general-
ity, we suppose that the SAT instances r M , �¸4'_0+�H�H�H*+OZ , are on disjoint sets of variables c M 4|69# M ÷ð2�+8# M ÷ J�Ì ;
and that Z is even.

Then, for every atom #�MBÍ , include in Ð È a rule

(1.1) ��F%�Ñ�~&�(�)�#�M ÷ N0+I&�(�)Jª#�M ÷ N
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where ��F%� and all ª# M ÷ N are new propositional atoms, and for every clause i�4�6�Z>2�+�H�H�H*+OZ�4>;3\|r M , include a
rule

(1.2) ��F"�í�ÝZ 12 +�H�H�H*+OZ 14 +I&�(�)�� M
where

Z 1N 4®­ &�(�)�# M ÷ � if Z N 4x# M ÷ � ,&�(�)
ª# M ÷ � if Z N 4[�Q# M ÷ � ;
the rules (1.1) are ordered before the rules (1.2).

The atom ��F%� will not belong to any answer set of the constructed program Ð . Hence, the rules in Ð~È are
all zombie rules, which must be defeated by moving rules from Ð�É�f.æ across the channel into VxÈ . Informally,
economical movings correspond to selecting truth assignments for the variables in all c M (defeat all rules
(1.1)), such that for each clause set r M , either r M is satisfied, or a particular rule � _ is moved; in a weakly
preferred answer set, assignments which satisfy r M will be preferred.

The channel Ð ^ � simply consists of a collection of rules� E PÎH�_*� E N �
where �34­_0+�H�H�H*+�Î for some large enough constant Î , which will be determined later.

The component Ð	É�f.æ contains the rules���-H�_*� � M ����-H Ø,� #�M ÷ NQ����-H ó,� ª# M ÷ N �
for all � and � ; the rules ���-H�_*� are ordered before all rules ���-H Ø,� and ����H ó,� .

Considering the program consisting of ÐJÈ�+�Ð:É�fIæ , and Ð ^ � ordered such that VxÈî�ãV(É�f.æv�nV ^ � , we can see
that this program has a unique answer set 1T4�69# M ÷ N +nª# M ÷ N +`� M , E N ; . This answer set 1 can be intuitively made
preferred by moving an appropriate collection of rules from V�É�f.æ across the channel in front of the zombie
rules in V(È . If the channel is large enough, it is economical to move precisely one of # M ÷ N � and ª# M ÷ N � ,
for every atom #�M ÷ N5\ucoM , which corresponds to selecting a truth assignment for the c®M ’s; the rule �0M�� is
then moved in additional if no truth assignment satisfies r M .

The component Ð = f.æ contains all rules

(2.1) ��F"�3�p��������+I&�(�)��%2�+I&�(�)�	�2
(2.2) ��F"�3� Ç �>��+I&�(�)��0<`+I&�(�)-	�<
. . . . . .�¦Ø%H°�¦Ø`�Qñã_*�8� ��F%�5�p�k�%�9��+I&�(�)�� < M�1 2 +I&�(�)�	 < Mg1 2�¦Ø%H Ø`��� ��F%�5� Ç �"��+I&�(�)�� M +I&�(�)�	 M
. . . . . .

for �Q4­_0+.Ø%+�H�H�H`+OZ9�0Ø , where 	�2³+�H�H�H�+8	 © are new propositional atoms. Moreover, Ð = fIæ contains the rules�¦Ø%H°�¦Ø�Z ê _*�8� 	�2K�p�k�%����¦Ø%H°�¦Ø�Z ê Ø,�8� 	 < � Ç �>�
. . . . . .
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�¦Ø%H°�¦Ø��?Z ê ����ñn_*�8� 	O< Mg1 2f�p��������¦Ø%H°�¦Ø��?Z ê ���8�8� 	O< M � Ç �>�
. . . . . .

for ��4­_0+.Ø%+�H�H�H�+OZ*�0Ø . The component Ð ådÊdË contains the rules:

(e.1) �������5�'&�(�) Ç �>�
(e.2) Ç �"�í�'&�(�)��������

Here, rules with lower number have higher priority.
Due to the component Ð åYÊdË , every answer set 1 of the program will contain either ������� or Ç �>� , but not

both. Accordingly, either all rules of Ð = fIæ with prerequisite Ç �>� are dead rules, or all with prerequisite �k�%��� ;
the other rules are zombie rules. Intuitively, each rule �"Mí� which is moved from Ð É�f.æ to Ð È in order to
kill zombies of Ð
È , may kill as a side effect a zombie in Ð = f.æ ; namely, the rule which contains the literal
“ &�(�)�� M ” in the body. The remaining zombies must be defeated by moving appropriate rules from the end ofÐ = fIæ to the front, which is assured by much higher cost of moving rules � M � over the channel Ð ^ � than
moving rules locally within Ð = fIæ .

In the construction of a weakly preferred answer set 1 for the global program Ð , by the assumption on
the satisfiability of the SAT instances rÎ2�+�H�H�H*+dr © , the rules � M ë«2í� , . . . , � © � will be moved from ÐJÉ�fIæ toÐ:È , if r�2�+�H�H�H9+dr M are satisfiable and r M ë«29+�H�H�H9+dr © , are unsatisfiable; thus, all zombie rules in Ð = f.æ with literal
“ &�(�)���N ” in the body, where � ê _=Ë#�RË�Z , are killed this way as a side effect. For the remaining zombie
rules, depending on whether �k�%�9� or Ç �>� is contained in 1 , either the rules 	�2X�e������� , 	Oºî�e������� , . . . ,	 < 4 ë«2 �G�k�%�9� , where ØF6 ê _@Ë½� , or the rules 	 < � Ç �"� , 	 « � Ç �>� , . . . , 	 < 4v� Ç �>� , where ØF6ÕË½� , must be
moved from the end of Ð = f.æ in order to kill them. Choosing �k�%��� for 1 will be economical, if � is even, and
choosing Ç �"� if � is odd. Thus, depending on the parity of � , 1 contains either �k�%��� or Ç �"� .

To conclude the exposition of the program Ð , it remains to fix the size Î of the channel Ð ^ � . We confine
here for convenience to choose a Î which serves the purpose, rather than choosing a minimal one.

Let a be the sum of the total numbers of variables and clauses in all r M . Then, Ð:È contains a rules; the
component Ð = f.æ contains Ø�Z rules. Hence, any arbitrary ordering of the rules in Ð È and Ð = f.æ can be achieved
within P��¦PÅñT_*�8�0Ø switches, where Pq4�a ê Ø�Z . Thus, if Î 4/�>P < , say, then moving any rule from Ð�É�fIæ
across the channel is much more expensive than reordering the rules within combined Ð5È and Ð = f.æ . This
holds, even if before the reordering a ê Z:�ãP rules are moved from Ð�É�f.æ across the channel (a trivial upper
bound on the number of rules which suffice to defeat all zombies in Ð�È
�ÅÐ = fIæ ).

Let the global program Ð be the union of the programs Ð È +�Ð = f.æ , Ð É�f.æ , Ð ^ � and Ð ådÊdË , where � is any full
prioritization of the combined local orderings as described in Figure 3.

It is easy to see that Ð has two answer sets, one containing �k�%��� (referred to by 1wËHÉ�Ë J ), and one containingÇ �>� ( 1 å�ç.ç ) thanks to the component Ð åYÊdË ; no answer set contains ��F"� . Notice that 1 åOçIç needs one rule
switch in the component Ð åYÊdË for being preferable, while 1¹ËÄÉ�Ë J needs zero switches.

Suppose 1�\^6*15ËÄÉ�Ë J +�1 åOçIç ; is a weakly preferred answer set of Ð . Applying Theorem 6.9, the following
can be easily established.

Claim A.2 There exists an optimal ordering � � on the set of rules of Ð for 1 , such that the following holds:V(È=�¸��V = f.æ:�¸�%V ^ � and V(È:�ÕV = f.æ��ÕV ^ � �ÕVxÉ�f.æv�¸�%V åYÊdË .
Hence, all zombies in Ð	È are eliminated in � � by killers from across the channel (more precisely, fromÐ
É�fIæ ), and all zombies in Ð = f.æ are eliminated by killers from ÐJÉ�f.æ and Ð = fIæ . Observe that by Theorem 6.9,

we may assume that in �C� only killers for the zombies are moved, which are eliminated left to right.
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The construction of Ð and the minimality of � �%��ö¸�j1:� imply that for each variable # M ÷ N precisely one of the
rules # M ÷ N � and ª# M ÷ N � is moved across the channel Ð ^ � into Ð:È for � � , as well as the rules � M ë«2¸� ,. . . ,� © � where r�2�+�H�H�H*+dr M are the satisfiable SAT instances and r M ë«2 ,. . . , r © are the unsatisfiable ones. Observe
that as a side effect, some of the zombies in Ð = fIæ are killed in �C� by the rules �0M ë«2 � ,. . . , � © � . Since� �"�>ö��j1:�K4ü� �"���
ÐX� is optimal, the cost of defeating the remaining zombies in the component Ð = fIæ by rules
from Ð = f.æ is minimal.

We claim that �������^\R1 if � is even, and Ç �>��\²1 if � is odd.
Consider first the case where � is even, i.e., ��4}ØF6 for some 6ÅònS , and consider two possible cases.�O_0H Ê � Suppose �k�%�9�^\Ã1 . Then the dual reduct � Ð contains the zombies �`< Nk1 2 = ��F%�o�p&�(�)-�0< Nk1 2�+I&�(�)�	O< N�1 2

and the rules 	O< Nk1 2í� , for all �î4Ö_0+�H�H�H�+OZ9�0Ø . For every Ø��Xñã_X¹TØF6 , the zombie �0< Nk1 2 is defeated by the
rule ��< N�1 2f� , while for Ø��kñn_v�xØF6 , it is defeated by the rule 	.< Nk1 2]� . The latter requires

Z ê Zíñ½_ ê Zíñ©Ø ê ����� ê Zíñã�.63ñ½_*�K4Ï6$�?Z ê 65ñã_Ø �
many switches (move the rules 	³2
�¾+8	Oºk�ï+�H�H�H�+8	 < 4 1 2 � straight ahead of the zombies in this order, cf.
Theorem 6.9; moving 	I< N�1 2]� in front of ��< N�1 2 requires Zíñã���@ñã_*� switches).�O_0HðìQ� Suppose Ç �>�Å\²1 . Then, the dual reduct � Ð contains the zombie rules �0< N 47��F%�3� &�(�)-�0< N +I&�(�)�	�< N
and the rules 	 < No� , for �Ã4�_0+�H�H�H�+OZ9�0Ø . Every zombie � < N where Ø��qË­ØF6 must be defeated by the rule	�< N � . This requires

Z ê Zíñ½_ ê Zíñ©Ø ê ����� ê Zíñã�.63ñ½_*�K4Ï6$�?Z ê 65ñã_Ø �
many switches (move 	8<�� , 	m«�� , . . . , 	 < 4v� in that order; moving 	I< N � in front of ��< N takes Z�ñ^���Ññu_*�
switches). Hence, the cost is the same as in case �O_0H Ê � ; however, Ç �>�Å\q1 requires an extra switch in Ð åYÊdË .
It follows from this that �k�%����\²1 must hold.

Consider now the case where � is odd, i.e., ��4}ØF6 ê _ , for some 6®ònS , and consider possible occurrence
of �k�%����+ Ç �"��\Ã1 .�¦Ø%H Ê � Suppose �k�%���n\©1 . Then, the cost of defeating the zombies ��< Nk1 2 = ��F%�Õ�¾&�(�)��0< Nk1 2�+I&�(�)-	�< Nk1 2
in � Ð = fIæ , where _vËãØ��kñn_vËxØF6 ê _ , by rules 	 < N�1 2 � is

Z ê Zíñn_ ê ����� ê Ztñ 6î4Ö�.6 ê _*�³�?ZÑñ 6 Ø ��H
(Observe that 6 ê _ rules must be moved, and moving 	�< Nk1 2f� in front of ��< Nk1 2 has cost Zíñã���@ñã_*� .)�¦Ø%HðìQ� Suppose Ç �>�Õ\b1 . Then, the cost of defeating the zombies �,< N = ��F"�=�ª&�(�)-��< N +I&�(�)�	O< N in � Ð = fIæ ,
where Ø��=ËãØF6 , by rules 	 < NC� is

Z ê Zíñn_ ê ����� ê Zíñã�.65ñn_*�K4Ï6$�?ZÑñ 65ñã_Ø ��4��.6 ê _*�³�?ZÑñ 6 Ø ��ñn�?Zíñb6���+
(here only 6 rules must be moved) and an extra switch in Ð åYÊdË is needed. Thus, if Ç �"�=\q1 , the overall cost
of defeating the zombies �0< N for Ø��=ËãØF6 is

�.6 ê _*�³�?ZÑñ 6 Ø �QñuZ ê 6 ê _0H
Since ØF6 ê _:Ë�Z and by our assumption Z is even, it follows that Ç �"�=\Ã1 must hold. This proves the claim.
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Consequently, the answer set 1 å�ç.ç is a weakly preferred answer set of Ð , if and only if the number of
satisfiable SAT instances among rÎ2�+�H�H�H*+dr © is odd.

It is easy to see that Ð can be constructed from � in logarithmic space (and thus in polynomial time). This
establishes the hardness part, and the theorem is proved.

Theorem 7.10 Given a prioritized propositional program Ð 4 �jVÑ+��:� , computing an arbitrary 1 \,²y5z
�
ÐX� is complete for s�ACB //OptP ?BA �DC±(FE]�«�HG . Hardness holds even if � is a total ordering and V does
not contain strong negation.

Proof. The proof of membership in s�ACB //OptP ?BA �DC±(FEf�«�HG is in the discussion preceding the theorem.
Hardness for s�A
B //OptP ?BA �DC±(FE]�«�HG can be shown by a reduction from the problem c -MAXIMAL MODEL

[11]: Given a set rÃ4�6`iC29+�H�H�H�+�i L ; of propositional clauses on atoms Ð�4�69�-2�+�H�H�H*+8� J ; and a set cûd§Ð ,
compute a model Æ (satisfying assignment) of r whose c -part is maximal, i.e., for every other model Æ �
of r such that Æ ¶4TÆ�� , there exists some atom � M \Ãc such that Æ { 4x� M and Æ���{ 4[�Q� M .

This problem is proved complete for s�ACB //OptP ?BA �DC±(FE]�«�HG in [11, 12], under the following concept of
reduction, called “metric reduction”. Problem � reduces to problem � � , if there are polynomial-time com-
putable functions ���
#�� and ���
#�+8��� , such that: �
��� for any instance � of � , ���D�%� is an instance of �X� , and���D�%� has a solution iff � has a solution; and �
����� for any arbitrary solution l of ���D��� , ���D�-+�lK� is a solution of� .3

We describe a reduction of c -MAXIMAL MODEL to computing an arbitrary weakly preferred answer
set. The reduction must comprise two polynomial-time computable functions ���grÎ� and ���grQ+I1v� , such that:�
���]���grÎ� is a prioritized program Ð , such that Ð has some weakly preferred answer set iff r is satisfiable,
and �
�/��� for every weakly preferred answer set 1 of Ð , ���gr�+I1:� is a c -maximal model of r .

The reduction is similar to the one in the proof of Theorem 7.4. We use fresh atoms §���!*F"	 and ª� M , for
every � M \zÐ , and define three sets of rules l�2 , l�< , and l$º as follows. The set l�2 contains all rules��M,�|��M , ª�,M��Ñª��M , for all �,MQ\zÐ}¯tc ;l�< contains all rules��M,�~&�(�)²ª��M , ª��M,�~&�(�)���M for all �,M«\¢Ð ;

and l$º contains for each clause i M 4�6�Z M ÷ð2�+�H�H�H�+OZ M ÷ 4�; from r a rule§-��!�F"	��ÝZ ëM ÷ð2 +�H�H�H�+OZ ëM ÷ 4 +I&�(�)�§-��!�F"	
where similar as above Z ëM ÷ N 4Ì� � if Z M ÷ N 4Ó�Q� � , and Z ëM ÷ N 4 ª� � if Z M ÷ N 4Ì� � , for any atom � � \pÐ . LetÐ­4��jVÑ+��
� , where V�4�lQ2«�²l�<K�²l$º and � is any total order on V such that l�2¸�Tl$<v�Tl�º and the rules
in l$< are ordered as follows:

� 2 �p&�(�)	ª� 2 � ª� 2 �p&�(�)�� 2 � � < �p&�(�)	ª� < � ª� < �p&�(�)�� < �[H�H�H-� ��J3�p&�(�)	ª��J�� ª��Jo�p&�(�)���J-H
It is easily seen that the answer sets 1 of Ð correspond 1-1 to the models Æ of r . Due the ordering of the
rules in l$< , by switching some rules � M �ø&�(�)	ª� M and ª� M � &�(�)�� M where � M \�c , every answer set of Ð
can be made preferred; by the rules in lK2 , no switch of the respective rules for � M \§Ð�¯Cc is necessary.
The preference violation degree � �%�%ö¸�j1:� amounts to the number of atoms � M \�c which are false in the

3In [12], a slightly stronger concept is used in which Ò�Ó�Ô7Õ must always have solutions, and ÖiÓ�Ô0¥�×`Õ is undefined if Ô has no
solutions; our reduction can be easily adapted to this setting.
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corresponding model Æ of r . Thus, the weakly preferred answer sets of Ð correspond 1-1 to the models Æ
of r in which a maximum number of atoms from c are true. Clearly, each of these models is a c -maximal
model of r .

Clearly, Ð is constructible from r in polynomial time, and from any 1�\�,²y5z
�
ÐX� , the corresponding c -
maximal model Æ of r is easily constructed in time polynomial in the size of 1 . Therefore, polynomial-time
functions ���grÎ� and ���gr�+I1:� as required exist, and problem c -MAXIMAL MODEL reduces to computing
an arbitrary weakly preferred answer set. This proves hardness for s�A
B //OptP ?BA �DC�(FEf�«�HG .

Call an model Æ of a set rÝ4ï6`i
2�+�H�H�H*+�i L ; of propositional clauses c -maximum, if it has largest
possible c -part, i.e., { ÆÙØ�cm{%ò­{ Æ��2ØÅc�{ for all other models Æ�� of r .

Lemma A.1 Given a set rã4�6`i
29+�H�H�H*+�i L ; of propositional clauses on atoms Ð , a set cød
Ð , and an
atom 1 , deciding whether 1 is true in all c -maximum models of r is < = < ?BA �DC±(FEf�«�HG -complete.

Proof. (Sketch) Easy reduction from e.g. deciding whether all truth assignments 3 which satisfy a max-
imum subcollection rÎ�íd¡r of a collection of clauses satisfy the same clauses of r ; this is < = < ?BA �DC±(FE]�«�HG -
complete.

Theorem 7.11 Deciding, given a finite prioritized propositional program Ð 4ø�jVÑ+��
� and a literal Y ,
whether Ð�{ 4~}uY is B 9!;@?BA �DC�(FEf�«�HG -complete. Hardness for B 9!;@?BA �DC±(FEf�«�HG holds even if � is a total order
and V does not have strong negation.

Proof. The inference problem Ð|{ 4>}²Y can be solved in polynomial time with A �DC±(FE:{ VÅ{ð� many NP oracle
calls: first compute � �%���
ÐX� and then query the NP oracle whether some answer set 1 with � �"��ö��j1:�ÕË� �"���
ÐX� exists such that Y¼�\�1 . The oracle is in ACB , since a proper full prioritization Ðo�C4G�jVÑ+������Õ\Ô3ÐÅ�
ÐX� , a total ordering �C� � , and set of literals 1 such that 1Ì\½Ð$y5z
�jVÑ+��
� �°� , Yw�\ã1 , and �������j+��¸� �±�oË� �"���
ÐX� can be guessed and checked in polynomial time (cf. proof of Proposition 7.8). Hence, the problem
is in B�9!; ?BA �DC±(FEf�«�HG .

The hardness part follows from the reduction in the proof of Theorem 7.10 and Lemma A.1. The weakly
preferred answer sets of the prioritized program Ð constructed there correspond 1-1 to the c -maximum
models of r in the obvious way; this implies BJ9!; ?BA �DC±(FEf�«�HG -hardness of weak inference under the asserted
restriction.
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