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Abstract

This study investigated several food safety criteria in 38 different commercial
products of processed cereal-based foods (PCF) from the German market. Micro-
biological assessment, followed by 16S RNA gene sequencing of suspect colonies,
included aerobic mesophilic bacteria, moulds, Enterobacteriaceae, Cronobacter
spp., and presumptive Bacillus cereus. Mycotoxin analyses were performed by
enzyme immunoassays for deoxynivalenol (DON), zearalenone (ZEN), T-2/HT-
2 toxins (T-2/HT-2; oat containing products only), ergot alkaloids (EA), and
alternariol (AOH). No violative result above existing European Union regula-
tions or international guidelines was obtained. Most samples had very low aer-
obic mesophilic cell counts (<2.0 X 10' CFU/g), the maximum was 9.6 X 10?
CFU/g. A few samples contained low numbers of opportunistic pathogens, most
notably Cronobacter sakazakii, Acinetobacter spp., Pantoea spp., and enterotox-
igenic Bacillus wiedmannii. Levels of mycotoxin contamination were very low,
well below European Union maximum limits. DON was found in 10 samples, at
levels of 9-35 pug/kg. T-2/HT-2 were found in all 15 oat-based products (1-8 pug/kg).
All samples were negative for ZEN and EA. A high number (n = 25) of samples
yielded weakly positive results for the nonregulated AOH (0.4-2 pg/kg), but just
three samples exceeded a level of 1 pug/kg. No relationship between cereal com-
position and analytical findings for microbiological parameters and mycotoxins
could be found. As long as PCF meals are freshly prepared and consumed imme-
diately after preparation, the risk from sporadically occurring opportunistic bac-
teria appears to be minimal.
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1 | INTRODUCTION

Complementary feeding is defined as the period when
complementary foods are given together with either breast
milk or formula or both. Typically beginning at an age
between 4 and 6 months, complementary foods are grad-
ually introduced into the diet of infants, and commercial
cereal-based foods play a major role during this period
(EFSA, 2019). Processed cereal-based foods (PCF) are
defined as containing simple or mixed cereals, which are
ready to eat after reconstitution with milk or water (EU,
2013). PCFs are not sterile products, and microbial con-
tamination of cereal grains may occur at various stages of
production (Los et al., 2018). With a total revenue in 2020
of, for example, 6.4 billion US$ (United States) and 0.6
billion US$ (Germany), “baby food” (total) constitutes just
a minor (~0.5%) part of the total revenues of food industry
in industrialized countries (Pham, 2021). No market data
for PCF could be obtained from published literature. How-
ever, infant food in general is a highly sensitive market
segment, which has to deal with the vulnerability of babies,
and with the attitude of parents with regard to food quality
and safety. Therefore, the number of companies producing
and distributing such products is quite small, just a few dif-
ferent brands dominate the German market, and different
brands may in fact have be produced in the same factory.
In contrast to commercial milk-based powdered infant
formulae, pathogenic bacteria in PCFs are not specifically
regulated within the European Union, except of the more
general commitments arising from the “precautionary
principle.” For example, notorious pathogenic/toxigenic
bacteria occurring in cereals are Cronobacter spp. and
Bacillus cereus (Akineden et al., 2015; Kim et al., 2011; Lou
et al., 2019), both regulated in infant formulae, but not in
PCF, by the European Commission (EC, 2005).
Concerning mycotoxins, a substantial reduction may
be achieved during cereal processing for some com-
pounds, but not all mycotoxins can be completely removed
(Karlovsky et al., 2016). Maximum levels (ML) have been
set for some mycotoxins in PCFs, including aflatoxins
(0.1 pg/kg), ochratoxin A (OTA, 0.5 ug/kg), deoxynivalenol
(DON, 200 pg/kg), zearalenone (ZEN, 20 ug/kg), fumon-
isins (200 pg/kg), and, most recently, ergot alkaloids
(EA, sum of 12 congeners, 20 pg/kg) (EC, 2006b). With
regard to T-2/HT-2 toxins (T-2/HT-2), an “indicative level”
of 15 ug/kg, from which onwards further investigations
should be performed, was published for PCFs for infants
and young children (EC, 2013). No specific regulations
have been issued for alternariol (AOH), or other Alternaria
toxins, in any country of the world. However, risk and
exposure assessments published by the European Food
Safety Authority (EFSA), underlined the need to further
consider AOH as a relevant mycotoxin, and established a
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preliminary “threshold of toxicological concern” (TTC) of
2.5 ng/kg body weight (b.w.) and day (EFSA, 2011, 2016).

Although the importance of commercial PCF for infant
nutrition certainly is high in industrialized countries, the
number of published studies dealing with the microbi-
ological and mycotoxicological quality of such products
is surprisingly small, and just one study dealt with both
(Assuncio et al., 2021).

Surveys on PCF studying microbiological criteria with
a broader scope are rare (Kim et al., 2011), but Cronobac-
ter spp. (Kim et al., 2011; Ziver et al., 2020) and B. cereus
(Assuncio et al., 2021) have been detected with some fre-
quency. The number of published mycotoxin surveys in
PCF is also limited, and even fewer recent data are avail-
able (Mallmann et al., 2020). Most studies so far included
DON, which was found in up to 50% of PCF samples world-
wide (Assuncdo et al., 2018; Braun et al., 2020; Herrera
et al., 2019; Juan et al., 2014; Oueslati et al., 2018; Pereira
et al., 2015). The average DON contamination was at 10-
100 pg/kg, but in some cases exceeded 200 pg/kg. Depend-
ing on the type of cereal, other mycotoxins have been
reported with varying frequency over the last 20 years. T-
2/HT-2 were predominantly found in oat-containing PCF
(Al-Taher et al., 2017; Assuncdo et al., 2018; Braun et al.,
2020; Gotthardt et al., 2019; Juan et al., 2014; Oueslati
et al., 2018; Pereira et al., 2015). For AOH and EA, just a
small number of published studies is available (Lombaert
et al., 2003; Mulder et al., 2015; Reinhard et al., 2008; Scott
et al., 2012). Gotthardt et al. (2019) analyzed 25 samples
of PCF from the German market for AOH and five other
Alternaria toxins, the most abundant compound was tenu-
azonic acid, while low levels (0.76-7.17 ug/kg) of AOH were
detected in just six samples.

Considering the scarcity of analytical data, the aim of
this study was to elucidate the safety of PCF from the Ger-
man market with regard to microbiological criteria and
mycotoxin contamination, including both known oppor-
tunistic pathogens and notorious mycotoxins, plus some
less well-studied parameters (Gram-negative bacteria, pre-
sumptive B. cereus, EA, AOH).

2 | MATERIALS AND METHODS

2.1 | Sample materials and sampling

Between November 2019 and March 2020, 38 dairy-free
samples of PCF, recommended age of consumption “after
the fourth month” up to “after the sixth month,” were
purchased from local retail stores, drugstores, and spe-
cialized organic retail stores in the area of Giessen, Ger-
many. According to product labels, the samples originated
from 12 companies (trade names), most were labeled as
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German produce, but 10 samples were from four other
countries within the European Union. The samples were
collected with the aim that all dairy-free PCF brands from
all producers were included in the study. The majority of
PCF products is marketed countrywide, so the collection of
samples can be attributed as typical for dairy-free PCFs as
available from the German market. Nowadays, all brands
of PCFs available in Germany are labeled as of “organic
produce.” Single-grain products (n = 25) contained mil-
let, spelt, oats, wheat, barley, rye, rice, or maize. Multi-
grain products (n = 13) contained at least two, up to seven,
of these cereals. All products were supplemented with
thiamine (vitamin B;) according to Commission directive
2006/125/EC (EC, 2006a). All products were available in
dry form, either as powder or as granulate material, ready
for consumption after the addition of 10 volumes of milk,
water, or milk diluted with water (1 + 1, by volume). All
samples, which contained one to two portions (150-250 g
each) of PCF in sealed sachets (paper or aluminum-coated
foil), encased in a cardboard package, were stored dry
at room temperature until testing. Before opening, each
sachet was manually shaken to enhance homogeneity of
the material thoroughly homogenized by swiveling the
package. The test portion for microbiological analyses was
taken out of this sachet under sterile conditions. For micro-
biological analysis, approximately 50 g were taken from
each package under antiseptic conditions, and transferred
to a sterile sealable glass bottle. The remaining material
was filled into sealable plastic cans and used for mycotoxin
analysis.

2.2 | Mycotoxin analysis
221 | Chemicals, reagents, and buffers
Ergometrine (synonym: ergonovine), ergocristine,

DON, and ZEN were purchased from Sigma-Aldrich
(Taufkirchen, Germany). AOH was obtained from Cay-
man Chemicals (Hamburg, Germany). T-2 toxin was from
Biopure (Tulln, Austria). Ergotamine D-tartrate (Fluka®))
and methanol (Riedel-de Haén(®)) were from Honeywell
(Charlotte, NC, USA). Acetonitrile and ethyl acetate
were purchased from Merck (Darmstadt, Germany). All
reagents used were at least of analytical grade. For the
analysis of EA, a toxin standard mixture of ergometrine,
ergocristine, and ergotamine D-tartrate in a ratio of
1:10:14 (w/w/w; Gross et al., 2018) with a total alkaloid
concentration of 25 ug/ml was prepared. All mycotoxin
stock solutions (except T-2/HT-2) were checked for purity
and correct concentration by UV spectroscopy (Shimadzu,
Duisburg, Germany), using published spectra and absorp-
tion coefficients (Cole et al., 2003). Phosphate-buffered

saline (PBS) contained 6.79 g of NaCl, 1.47 g of Na,HPO,,
and 0.43 g of KH,PO, in 1 L of a. dest. (0.01 mol/L,
pH 7.3). For AOH extraction, PBS consisted of 6.79 g of
NacCl, 2.94 g of Na,HPO,, and 0.86 g of KH,PO, in 1 L
of a. dest. (pH 7.2). Sodium bicarbonate buffer contained
1.59 g of Na,CO; and 2.93 g of NaHCO; in 1 L of a. dest.
(0.05 mol/L, pH 9.6). Washing solution contained 8.5 g
NaCl and 0.25 ml of Tween in 1 L of a. dest. For the enzyme
substrate/chromogen solution, H,O,-citrate buffer (8.3 g
citric acid, 49 ml KOH (1 mol/L), 72 pl 30% aqueous
H,0,, 160 ml a. dest; pH 3.9) and TMB solution (50.4 mg
3,3',5,5-TMB, 1 ml acetone, 9 ml methanol) were used.
The enzyme substrate/chromogen solution was prepared
according to Ackermann et al. (2011). Shortly before use,
0.5 ml of TMB was added to 10 ml of H,O,-citrate buffer.

2.2.2 | Sample extract preparation

In general, sample extract preparation for all mycotoxins
was performed as described by Liesener et al. (2010), except
for AOH which was extracted by a modification of the
procedure described by Ackermann et al. (2011). All pro-
cedures had to be adopted to meet the requirements of
the highly absorptive PCF matrix. All primary extractions
were done with 5 g of sample material mixed with 50 ml
of solvent in a beaker and magnetic stirring at full speed
(400 rpm) for 30 min. For some toxins, extraction was fol-
lowed by a centrifugation step (10 min at 3000 X g for DON
and ZEN; 4 min at 11,000 X g for EA). Filtration was done
using paper filters.

T-2/HT-2 were extracted with 50 ml of water containing
70% methanol. A 2 ml portion of the filtered extract was
mixed with 2 ml of distilled water and extracted twice by
liquid-liquid partitioning with each 3 ml portions of ethyl
acetate. The two ethyl acetate phases were removed after
centrifugation (3000 X g, 15 min) and combined, then the
solvent was evaporated at 50°C in a rotary evaporator. The
residue was dissolved with 0.2 ml of methanol and 1.8 ml
of PBS (pH 7.3), using ultra-sonication in a water bath for
2 min. This extract was mixed with 1 ml of n-heptane on
a wrist-action shaker. The phases were separated by cen-
trifugation (3000 X g, 15 min). The lower aqueous phase
was collected and analyzed by enzyme immunoassay (EIA)
either directly (sample dilution factor: 10), or after dilution
with PBS (pH 7.3) containing 10% methanol.

DON was extracted essentially by the same procedure
as for T-2/HT-2, except that extraction solvent was PBS
containing 10% methanol, and that no extract defatting
step with n-hexane was necessary. After rotary evapora-
tion, the residue was dissolved with 1 ml of PBS (pH 7.3).
This extract was analyzed either directly (sample dilution
factor: 5), or after dilution with PBS (pH 7.3).
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ZEN was extracted with distilled water containing 84%
acetonitrile. After centrifugation and filtration, 100 ul of
the filtrate was mixed with 1.58 ml PBS (pH 7.3) to obtain a
5% acetonitrile/PBS solution for EIA analysis (sample dilu-
tion factor: 168). Further dilutions were made with 5% ace-
tonitrile/PBS.

EAs were extracted with PBS pH 6.0 containing 60%
acetonitrile and stirred for 30 min on a magnetic stirrer
(400 rpm). After the solid particles had settled, 2 ml of this
extract were transferred into a 2 ml Eppendorfvial and cen-
trifuged (11,000 X g, 4 min, 20°C). For EIA analysis, 100 pl
of this extract was mixed with 0.9 ml PBS, pH 6.0 (sample
dilution factor: 100). Further dilutions were made with 5%
acetonitrile/PBS pH 6.0.

AOH was extracted with PBS containing 70% methanol,
the apparent pH value was adjusted to approximately 7.0
with 3 mol/L NaOH. The extract was filtrated and 2 ml
was mixed with 2 ml of distilled water. The mixture was
extracted twice by liquid-liquid partitioning with each
3 ml of ethyl acetate followed by centrifugation. The two
organic phases were pooled, the solvent evaporated, and
the residue dissolved with 1 ml of PBS for 2 min by ultra-
sonication in a water bath. The resulting extract was ana-
lyzed either directly (sample dilution factor: 5), or after
dilution with PBS.

Recovery was tested by adding toxin standard solutions
to dry sample materials before extraction. Three different
toxin levels, and three different sample materials per level,
were tested for each mycotoxin. The lowest concentration
used for fortification of samples was 3-10 times the calcu-
lated LOD of each method. T-2/HT-2 were analyzed only in
products, which were labeled as containing oats (n = 15).
Further, the test samples, which gave the highest toxin
results in the enzyme immunoassays (EIAs) for DON, T-
2/HT-2, and AOH, were each spiked with the respective
toxin at the same level, to double the natural amount of
toxin, and then were reanalyzed.

2.2.3 | EIA analyses

All competitive EIAs were performed as microtiter plate
(MaxiSorp, Nunc, Roskilde, Denmark) assays as described
previously for DON, ZEN, T-2/HT-2, EA, and AOH
(Grossetal., 2018). Some important EIA test characteristics
are compiled in Table 1. Four replicate wells were tested for
each standard concentration and for each dilution of sam-
ple extract solution. The resulting EIA absorbance values
at 450 nm were measured with a model Sunrise microplate
reader (Tecan, Crailsheim, Germany) and evaluated by
Magellan EIA calculation software (Tecan). All values
were then standardized as percent relative absorbance of
the blank (B), by dividing the mean absorbance values of

standard or sample solutions through the absorbance of
By, multiplying by 100 (B/B, X 100). The standard curve
detection limits were set as cut-off values of 70% -80%
as described for each EIA in the original studies. Recov-
ery was routinely checked, before the start and during
the analyses of each series, by addition of 50-100 ul of
toxin standard solution at appropriate concentrations to
dry samples before extraction, and allowing for the sol-
vent to evaporate. Each three samples with different matrix
composition were tested for each test system. The calcu-
lated mean detection limit of each test system for PCF
was derived from the mean standard curve detection limit,
multiplied by the minimum sample dilution factor, with-
out considering recovery. All toxin concentrations for nat-
urally contaminated samples were reported without cor-
rection for the analytical recovery.

2.3 | Microbiological analyses
Microbiological parameters included nonspecific hygiene
indicators (aerobic mesophilic plate count (APC), Enter-
obacteriaceae, moulds) and specific pathogenic (Cronobac-
ter spp.) or enterotoxin-producing enterotoxigenic bacteria
(presumptive B. cereus).

All sample materials were prepared for analysis accord-
ing to ISO 6887-4:2017. For all tests, a 10 g test portion
was mixed with 190 ml of 0.1% sterile peptone water
(Oxoid, Wernigerode, Germany) in a sterile plastic bag and
homogenized in a paddle blender (Stomacher). Two fur-
ther decimal dilutions (2 X 107%; 2 x10~3) were prepared
with sterile peptone water (Oxoid). Each 100 ul of the orig-
inal homogenate and the two dilutions were spread onto
two plates and 1 ml of the original homogenate onto four
plates of the appropriate media. All sample homogenates
were analyzed in duplicate. Taking into account the min-
imum dilution factor, the detection limit was 2.0 x 10!
colony forming units (CFU)/g. All incubation of plates
were done under aerobic conditions.

The number of aerobic mesophilic bacteria was deter-
mined on plate count agar (PC agar, Oxoid) plates accord-
ing to ISO 4833-2:2014, incubation was at 30°C for 24-48
h.

The enumeration of Enterobacteriaceae was done on
Violet Red Bile Glucose (VRBG) agar plates according to
ISO 21528-2:2017, incubation was 37°C for 24-48 h.

Mould counts were determined on Sabouraud agar
plates with chloramphenicol 0.5 g/L (Oxoid), with an incu-
bation at 25°C for 3-5 days.

Presumptive B. cereus were isolated by surface plat-
ing on polymyxin egg yolk mannitol bromthymol blue
agar, PEMBA (Oxoid) according to ISO 7932:2004, and
incubation at 30°C for 24 h. Colonies showing typical
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TABLE 1 Overview of enzyme immunoassays (EIAs) used in this study and test performance in relationship to benchmark values
EIA system Test sensitivity achieved
Mean LOD, standard
Known relevant curve cut-off value LOD in PCF Benchmark
Name cross-reactions Reference (ng/ml) (ug/kg) value, ug/kg
DON DON and its (Usleber et al., 1991; 2+0.5 10 2004
8-ketotrichothecene Curtui et al., 2003)
analogues
ZEN ZEN and their analogues (Usleber et al., 1992; 0.04 + 0.02 7 20*
Seidler, 2007)
T-2/HT-2 T-2, HT-2 (Esgin et al., 1989) 0.05 + 0.01 0.5 15°
EA All EAs and isomers (Gross et al., 2018) 0.3 +0.05 30 20%
AOH None (Ackermann et al., 0.4 + 0.05 0.3 1¢
2011)
2EC (2006b).
YEC (2013).

¢Estimated from threshold of toxicological concern (TTC) value (2.5 ng/kg body weight (b.w.) and day; EFSA, 2011), assuming a b.w. of 10 kg and a daily consumption

of 25 g dry product.

Abbreviations: DON, deoxynivalenol; ZEN, zearalenone, EA, ergot alkaloids; AOH, alternariol.

morphology, blue color, and a precipitation zone were
transferred to Columbia agar supplemented with 5% of
sheep blood (30°C, 24 h). Isolates identified as presump-
tive B. cereus on PEMBA were tested for toxin production
(hemolysin BL [Hbl]; nonhemolytic enterotoxin [Nhe])
with the Duopath® Cereus Enterotoxins immunoassay
(Merck).

Cronobacter spp. were qualitatively detected by method
ISO 22964:2017. A 10 g portion of the sample was reconsti-
tuted with 190 ml buffered peptone water (Oxoid, Thermo
Fisher Scientific, Waltham, MA, USA) according to ISO
6887-4:2017, and pre-enriched at 37°C for 18 h. Then, 0.1 ml
was added to 10 ml of Cronobacter Selective Broth (CSB;
Oxoid Thermo Fisher) and cultured at 41.5°C for 24 h. A
10 pl portion was streaked onto Chromogenic Cronobac-
ter Isolation agar (CCI Agar; Oxoid Thermo Fisher) with
a loop, and incubated at 41.5°C for 24 h. Colonies which
were identified as tentative Cronobacter were further char-
acterized by a commercial biochemical identification sys-
tem (API32E; bio-Mérieux, Marcy I’Etoile, France), and
then identified on species level by analyzing the fusA
gene sequences as described previously by Akineden et al.
(2017).

Further characterization of randomly chosen isolates
was done if a noticeable colony growth was observed on PC
agar, VRBG agar, PEMBA, or CCI Agar, excluding typical
aerobic spore forming bacteria on PC agar, which fre-
quently grew on PC agar in low densities. One or more typi-
cal, morphologically distinct colony was selected and puri-
fied by streaking onto Columbia blood agar. The genomic
DNA was extracted from single colonies with a commercial
test system (DNeasy blood and tissue kit, Qiagen). Species
identification of isolates was done by amplification and

sequencing of the 16S rRNA gene (Kuhnert et al., 1996).
For species identification, sequences were compared using
the “Basic Local Alignment Search Tool” (BLAST) at the
National Centre for Biotechnology Information (NCBI)
website (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

3 | RESULTS AND DISCUSSION

3.1 | Microbiological analyses

The vast majority of samples were negative for Enterobac-
teriaceae, moulds, and for presumptive B. cereus (Table 2).
Each sample yielded visible colony growth on VRBG
(sample #6) and PEMBA (#20), respectively. Four samples
had mould counts at the detection limit of (2.0-4.0 x 10*
CFU/g), and only one sample (#17) was moderately pos-
itive for moulds at 2.0 x 10> CFU/g. On CCI agar, two
samples (#6, #17) resulted in colony growth, indicative for
Cronobacter spp.

With regard to aerobic mesophilic bacteria, the major-
ity of samples (24 of 38) were negative, six were weakly
positives (10'-10> CFU/g). However, eight samples had
colony counts of >10* CFU/g, highest result was obtained
for sample #6 (9.6 X 10> CFU/g). As far as we know, no
specific regulation for aerobic colony counts in PCF exist,
neither in the European Union nor elsewhere. However,
this parameter has been addressed as a “useful testing”
criterion by the International Commission on Microbio-
logical Specifications for Foods (ICMSF), and limits/g in
arange of m = 1 X 10°-5 x 10° to M = 1 x 10*-5 x 10*
have been suggested (ICMSF, 2011). The ML obtained in
our study were 1-2 orders of magnitude lower than that,
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cereal-based foods (PCF) (n = 38), number of sample per interval
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Quantitative results for aerobic mesophilic bacteria, Enterobacteriaceae, moulds, and presumptive Bacillus cereus in processed

Aerobic mesophilic Presumptive
CFU/g interval bacteria Enterobacteriaceae Moulds Bacillus cereus
Negative, < 2.0 X 10! 24 37 33 37
10'-< 10? 6 0 4 il
10*-<10° 8 1? 1 0

adentified as Acinetobacter baumannii (non-Enterobacteriaceae).
bIdentified as Bacillus wiedmannii.

TABLE 3
the 16S rRNA gene
No. of
sample No. of
and isolate Phylogenetic Designation of
isolate analyzed affiliation isolate
3 3 Moraxella osloensis BBK 10/20
Moraxella osloensis BBK 14/20
Moraxella osloensis BBK19/20-pca2
2 2 Acinetobacter BBK 6/20
baumannii
Acinetobacter BBK12/20-cci
nosocomialis
1 1 Pantoea brenneri BBK17/20
1 1 Microbacterium zeae ~ BBK13/20
1 1 Chryseobacterium BBK18/20-pca2
hominis
1 1 Janibacter melonis BBK19/20-pcal
1 1 Micrococcus BBK18/20-pcal
aloeverae
4 1 Bacillus subtilis BBK12/20-pca

supporting the conclusion that for this parameter, a good
overall quality of all products could be assumed. Neverthe-
less, each one to two characteristic isolates representing
the dominant type of colony morphology per PC agar plate,
from a total of 14 positive samples, were further identified,
using biochemical methods and 16S rDNA sequencing, to
obtain some preliminary information about the spectrum
of bacterial species in PCF (Table 3). The dominant isolates
from four samples were identified as Bacillus subtilis. For
colony growth on the remaining 10 PC agar plates, non-
spore forming bacteria dominated. The identified species
presented a very diverse spectrum of bacteria and included
Gram-negative (Acinetobacter nosocomialis, Chryseobac-

Identification of isolates from plate count agar (PC agar) of processed cereal-based foods (PCF) based on partial sequencing of

Identity %

Sequence (query Closest species (NCBI

length (bp) coverage) accession number)

1304 99.23 (99) Moraxella osloensis DSM 6998"
(NR_104936.1)

1304 99.69 (100) Moraxella osloensis DSM 6998
(NR_104936.1)

1310 99.54 (99) Moraxella osloensis DSM 6998
(NR_104936.1)

1308 99.85 (99) Acinetobacter baumannii DSM
30007 (NR_117677)

1312 99.62 (99) Acinetobacter nosocomialis DSM
102856 (NR_117931.1)

1181 99.41 (100) Pantoea brenneri DSM 242327
(NR_116748.1)

1294 99.07 (99) Microbacterium zeae DSM
1007507 (NR_149816.1)

1238 98.54 (100) Chryseobacterium hominis DSM
30866 (NR_042517.2)

1293 99.61 (100) Janibacter melonis DSM 16063
(NR_025805.1)

1295 99.77 (99) Micrococcus aloeverae DSM
274727 (NR_134088.1)

1324 99.85 (99) Bacillus subtilis DSM 10T

(NR_027552.1)

terium hominis, Moraxella osloensis, Pantoea brenneri) and
Gram-positive (Janibacter melonis, Microbacterium zeae,
Micrococcus luteus [syn. M. aloeverae]) species (Table 3).
All these species have been isolated from various envi-
ronmental habitats including plants, but also from infant
formulae and from clinical specimen, some as commen-
sal bacteria, but some have been involved in nosocomial
human infectious diseases (Rajili¢-Stojanovi¢ & de Vos,
2014).

Species identification after 16S RNA gene analysis of
one suspect colony growth on VRBG (sample #6) revealed
that this was not caused by a member of the Enter-
obacteriaceae family but by Acinetobacter baumannii.
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Interestingly, the same species was identified from plate
count agar of sample #6, indicating that A. baumannii
was a major bacterial species in this particular sample
material. Furthermore, species identification of suspect
Cronobacter spp. from CCI of sample #6 showed that it was
C. sakazakii, thereby confirming co-contamination with
both opportunistic pathogens, which both have a history
of causing foodborne infectious disease in newborns and
infants <6 months of age (Amorim & Nascimento, 2017;
Taylor et al., 2021).

Cronobacter spp. was isolated from the CCI plate of a
second sample (#17), and this isolate also turned out to be
C. sakazakii. Another isolate from this sample, collected
from PC agar, was identified as Pantoea brenneri. Most
Pantoea spp. are ubiquitous on plants and in water, but
also have been frequently isolated from infant formulae
(Estuningsih et al., 2006), and have been associated with
very rare but severe cases of septicaemia in newborn or
immunocompromised infants (Bergman et al., 2007).

Cronobacter spp., specifically C. sakazakii, probably
have been the most notorious foodborne pathogens in
commercial, milk-based powdered infant formulae in the
last decades (Muytjens et al., 1988; Taylor et al., 2021).
Cronobacter spp. have also been isolated from various
cereal-based foods (Akineden et al., 2017; Friedemann,
2007; Lou et al., 2019; Silva et al., 2019), but little infor-
mation about the frequency in PCF is available. In our
study, colony forming units of Cronobacter spp. were
obtained only by using 10 g test portions, and including
a pre-enrichment step. Low levels of contamination, usu-
ally lower than 1 CFU/g (Al-Holy et al., 2011; Muytjens
et al., 1988), seem to by typical for Cronobacter in dried
foods. In the European Union, PCF for infants and young
children are regulated under the Commission Directive
2006/125/EC (EC, 2006a), but this does not include micro-
biological criteria. Cronobacter spp., presumptive B. cereus,
and Enterobacteriaceae in milk-based commercial formu-
lae for infants <6 months of age are covered by European
Union regulation No. 2073/2005 (EC, 2005), but this regu-
lation does not apply to PCF.

Four samples yielded a weakly positive result for
moulds, all near the detection limit (2.0 x 10! CFU/g) of
the method. By microscopy, all were tentatively identified
as Penicillium spp. No further attempt was made to identify
and characterize these colonies at the species level.

Only one sample (#20) yielded colony growth on
PEMBA (2.0 x 10' CFU/g), indicative for presumptive
B. cereus. Further 16S rDNA sequence analysis identified
this isolate as Bacillus wiedmannii, which is a member of
the B. cereus group (Miller et al., 2016). This isolate also
showed hemolytic activity on blood agar and was positive
for Nhe and Hbl in the Duopath®) Cereus Enterotoxins test
(Merck). Toxigenic strains of the B. cereus group species

have previously been reported in infant foods, including
cereal-based products (Kim et al., 2011; Sadek et al., 2018).
Severe outbreaks of intoxication associated with enterotox-
igenic B. cereus spp. in food consumed by children have
been reported (Delbrassinne et al., 2015; Dierick et al.,
2005), but these cases were also characterized by improper
food handling. At such alow level of contamination, which
would have been well below even the European Union
requirements for infant formulae (EC, 2005), this does not
appear to be a food safety issue.

Summarizing the results of the microbiological analyses,
all samples had low or very low colony counts, and five
out of 38 PCF products were found to be positive, at low
level, for one or two bacterial species that have been associ-
ated with rare cases of newborn or preterm infant disease.
Nine other samples contained moulds or commensal bac-
teria at low numbers. We agree with the opinion expressed
by the ICMSF (2011) that findings in such a range can-
not be regarded as a direct threat to the health of infants
>4 months of age, as long as the product is prepared and
handled according to the recommendations. Further, no
clear association between a specific PCF ingredient or mix-
ture of ingredients and the occurrence of specific bacte-
ria could be detected, also because the majority of prod-
ucts contained mixed cereals. These products yielded most
remarkable findings, including both C. sakazakii isolates,
A. baumannii, P. brenneri, and B. wiedmannii (Table 4).

3.2 | Mycotoxin analyses

3.21 | Method validation

All PCF products under study were dried powdery or gran-
ular products of similar appearance, the ingredients pre-
sented a wide variety of different cereals as ingredients
or ingredient mixtures. The majority of products in this
study contained cereal mixtures, similar as observed from
the display of products in eight local retail shops. Prod-
uct labels listed up to seven different cereals, providing
multiple potential sources for mycotoxin contamination.
Out of the Fusarium mycotoxins under study, DON and
ZEN were analyzed in all samples, T-2/HT-2 were ana-
lyzed in oat-containing products only, because oats appear
to be by far the most relevant source in middle Euro-
pean cereals (EFSA, 2017). For each mycotoxin EIA, the
mean limit of detection (LOD) as indicated by Liesener
et al. (2010) was checked and verified, using spiked PCF
sample material. The recovery experiments showed that
the mean recovery rates for DON, T-2/HT-2, and AOH in
spiked samples were in the range of 69%-120% (Table 5).
For EA and ZEN, which were also analyzed in all sam-
ples, higher recoveries ranging from 115% to 160% were
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TABLE 4 Compilation of samples which yielded highest or else remarkable results, with regard to either microbiological contamination

or maximum mycotoxin levels

Sample #
Parameter 6 12 17 20 24 30 34
Composition Oats, wheat, Wheat Oats, einkorn  Oats, wheat, rye, Rice, maize, = Wheat, oats, =~ Wheat
barley, spelt, wheat, barley, spelt sorghum rye, barley,
rye barley, rye sorghum,
rice, maize
Recommended age, >6 >4 >6 >6 >4 >6 >4
months
Microbiology
Aerobic mesophilic 9.6 X 10? 3.6 X 10? 1.2 x 10? <2.0 x 10! <2.0 x 10! <2.0 x 10! <2.0 x 10!
bacteria, CFU/g
Specific isolates C. sakazakii, A. A. nosocomialis, B. C.sakazakii, P. B.wiedmannii - - -
baumannii subtilis brenneri
Mycotoxin EIA
results, ug/kg
DON <9 <9 15 <9 <9 1 35
T-2/HT-2 4 n.a. 5 5 n.a. 8 n.a.
AOH 1 <0.3 0.5 0.7 2 2 <0.3

Abbreviations: AOH, alternariol; DON, deoxynivalenol; EIA, enzyme immunoassay; n.a., not analyzed.

TABLE 5
triplicate
Test system for Spiked level (ug/kg)
DON 30
50
150
ZEN 20
50
100
T-2/HT-2 10
20
50
EA 100
200
500
AOH 3
5
10

Recovery of mycotoxins from artificially contaminated processed cereal-based foods (PCF) samples. Each level was spiked in

Toxin found

Mean recovery (%) RSD (%)
69 4
78 4
70 9
155 9
133 10
127 5
99 10
120 19
96 17
160 29
130 18
115 9
72 18
85 3
75 10

Abbreviations: AOH, alternariol; DON, deoxynivalenol; EA, ergot alkaloids; RSD, relative standard deviation; ZEN, zearalenone.

determined. The high recoveries obtained for ZEN may
be explained by some remaining matrix interference in
the three selected materials, because the blank materials
used for spiking were clearly below the LOD but yielded
absorbance values of 93%-98% B/B, x 100. Likewise, the
high recovery rates for EA may also be explained by some

remaining matrix effects. Since both tests yielded toxin-
negative results for all samples, no attempt was made to
further improve sample extract preparation. Further stud-
ies will aim at optimizing the overall analytical strategy,
including sample extraction and confirmation of positive
results by, for example, an LC-MS/MS reference method.
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Relative standard deviations (RSDs) of <10% were found
for DON and ZEN, whereas RSDs <20% could be achieved
for all other mycotoxins except for the 100 ug/kg spiking
level of EA (29%). Further, three samples containing each
of the highest toxin level (Table 4) of DON (#34), T-2/HT-2
(#30), and AOH (#24) were spiked with the respective toxin
and reanalyzed. After subtracting the measured toxin con-
tent of the nonspiked sample, recoveries of 77%-106% were
obtained, which demonstrates a toxin-dependent addi-
tive effect and further indicates the suitability of the EIA
methods.

While the sample extraction methods, and the overall
method performance were considered to be sufficient, the
relative cross-reactivities of the EIAs, specifically for T-
2/HT-2 and EA may present some underestimate of the
true toxin content, while the DON and AOH results could
be an overestimate due to reactivity with toxin analogues.
The LOD of the EIA method for EAs (30 ug/kg) did not
fully meet the recently published European Union ML for
this group of toxins in PCF (20 pg/kg), but still are at a very
similar level.

3.2.2 | Mycotoxin frequency and levels

All samples, even rye-containing products, yielded clearly
EA-negative results, which indicates that this group of
mycotoxins does not play a relevant role in PCF from the
German market (Table 6). EAs in cereals, even if present
in the harvested lots, can easily be removed during the
cleaning process, allowing selection of low-contamination
batches for production of PCF. It could also be assumed
that PCF producers were already aware of “soon to come”
European Union regulations for EAs in 2019/2020. This
could explain why the contamination situation as found
in our study was better than that reported in a few previ-
ous studies. For example, breakfast cereals, biscuits, and
cookies from the Dutch market 2010-2014 had mean total
EAs levels of 10 pg/kg, with some products exceeding
100 pg/kg (Mulder et al., 2015). Apparently, dedicated PCF
products were not included in this study. Similar results
were reported in a 1997-1999 survey for Canadian products
(Lombaert et al., 2003).

Like EAs, ZEN was also not detected in any sample.
Although ZEN is a common contaminant in most cere-
als at the time of harvest, it is largely eliminated during
the grain cleaning processes. Our results on the absence
of ZEN at <7 pg/kg are supported by others who also
found no ZEN, or just traces near 1 pg/kg, in PCF from
other European countries (Braun et al., 2020; Juan et al.,
2014), while slightly higher concentrations were reported
for such products from the United States (Al-Taher et al.,
2017).

DON was found with relatively high frequency (26%) but
at low levels (maximum concentration: 35 ug/kg) in PCF
products, regardless of cereal composition (Table 6). While
most samples were negative (<9 pg/kg), the majority of
positive samples contained levels of just DON, probably the
most frequent Fusarium toxin in cereals in Germany, and,
in contrast to ZEN, removal during cereal processing is not
fully efficient (Karlovsky et al., 2016), which may explain
our findings. Similar findings have been reported by oth-
ers (Herrera et al., 2019; Juan et al., 2014; Pereira et al.,
2015).

T-2/HT-2 were found in all 15 oat-containing products,
but again at very low concentrations between 1 and 8 pg/kg
(Table 6). This was not unexpected, as previous surveys
have shown that oat is the major, if not only, relevant
cereal in Europe in aspects of T-2/HT-2 contamination
(Curtui et al., 2009; Gottschalk et al., 2009; Kirin¢ic et al.,
2015). None of the samples exceeded the guideline value
of 15 pg/kg. Our results are consistent with the findings of
Al-Taher et al. (2017), who reported low levels of T-2/HT-
2 (<10 pg/kg) in oat-based and mixed-grain infant cereals
from the U.S. market.

It was not surprising that a considerable part of the sam-
ples (66%) from each of the six product categories was
positive for AOH (0.4-2 pg/kg) (Table 6), because AOH is
the most frequent occurring Alternaria mycotoxin in food
(EFSA, 2011). Similar levels of AOH (<10 ug/kg) in single
grain as well as in multi-grain baby foods had also been
reported by Scott et al. (2012) and Gotthardt et al. (2019).
However, the AOH levels in positive samples consistently
were very low. In the absence of a full toxicological risk
assessment, it is difficult to evaluate the relevance of these
findings. Applying (i) the TTC recommended for AOH by
EFSA (2.5 ng/kg b.w. and day; EFSA, 2011), (ii) assum-
ing that 25 g PCF (dry product) is a reasonable daily serv-
ing size, and (iii) using a b.w. range (6-12 months) of 5-
10 kg, the critical AOH concentration in PCF would be at
0.5-1 pg/kg. This means that several samples would have
approached or even exceeded this critical concentration,
similar as estimated by EFSA in 2011 (EFSA, 2011). It has to
be emphasized that the TTC approach for AOH is affected
by several uncertainties, including the lack of in vivo toxi-
cological data.

Co-occurrence of DON and AOH was observed in five
samples (13%). Out of 15 oat-containing samples, which
were all positive for T-2/HT-2, one additionally contained
DON (oat-based product) and eight contained AOH (four
oat-based products + four mixed-grain products). All three
toxins were found in three oat-containing samples (mixed-
grain products). This is not surprising, as the majority
(n = 7) of these 12 co-contaminated oat-containing sam-
ples were composed of mixed cereals, providing different
sources for contamination of fungal toxins, and similar
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TABLE 6
market based on six product categories
DON

Spelt-based cereals (n = 5)
Positive (%) 40 -
Mean® + SD 12+3 <7
Range*® 11-14 <7
Wheat-based cereals (n = 5)
Positive (%) 20 -
Mean® + SD 35 <7
Range® = <7
Oat-based cereals (n = 6)
Positive (%) 17 -
Mean® + SD 17 <7
Range*® - <7
Millet-based cereals (n = 3)
Positive (%) - -
Mean® + SD <9 <7
Range*® <9 <7
Rice-based cereals (n = 6)
Positive (%) 17 -
Mean® + SD 11 <7
Range*® - <7
Mixed-grain cereals (n = 13)
Positive (%) 38 -
Mean® + SD 13+2 <7
Range*® 11-15 <7

Note: Concentration values as mean =+ standard deviation (SD) expressed in g/kg.

ZEN

Mycotoxin contamination in processed cereal-based foods (PCF) for infants and young children (n = 38) from the German

T-2/HT-2 EA AOH
n.a. - 60

n.a. <30 0.7+0.2
n.a. <30 0.5-0.9
n.a - 40

n.a. <30 0.7+0.2
n.a. <30 0.6-0.8
100 - 67

4+1 <30 0.6 +£0.1
3-6 <30 0.4-0.7
n.a. - 100

n.a. <30 0.6 +£0.1
n.a. <30 0.5-0.7
n.a. - 33

n.a. <30 1+0.2
n.a. <30 1.1-1.5
100° = 85

4+2 <30 09+ 0.6
1-8 <30 0.4-2

Abbreviations: AOH, alternariol; DON, deoxynivalenol; EA, ergot alkaloids; n.a., not analyzed; ZEN, zearalenone.

2Positive samples only.
bp=9.

findings have been reported for PCF products previously
(Juan et al., 2014; Zhang et al., 2018).

Concluding the results of the mycotoxin analyses, con-
tamination frequency of PCF with DON, T-2/HT-2, and
AOH was within a span, which was expected from
previous studies, but levels of contamination were all
in the low range, well below the ML. The complete
absence of detectable levels of ZEN and EAs may be
explainable by careful cereal cleaning and selection and
procedures.

4 | CONCLUSION

This is the first analysis of the PCFs from the Ger-
man market, and the second one worldwide (Assuncio
etal., 2021), in which two major food safety categories have
been studied, namely microbiological quality and contami-

nation with mycotoxins. Of course pathogenic, opportunis-
tic, or spoilage bacteria have no direct relationship with
fungal toxins. However, it may be argued that an overall
deficit in maintaining effective measures to ensure food
safety and quality in PCF production facilities may neg-
atively impact both areas. Our study, although limited in
sample number, included products of all major companies
offering PCF products on the German market. All products
fully complied with present European Union regulations
of microbiological criteria and mycotoxin contamination.
Very few samples (Table 4) yielded results which, in one
or more parameters, surfaced the generally unremarkable
data set of analytical findings. The risk from low levels of
Cronobacter spp. and enterotoxigenic Bacillus spp., which
are a major concern in infant formulae for preterm infants
and neonates, can easily be avoided if PCF are prepared
freshly for each meal and consumed immediately there-
after.
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