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1. INTRODUCTION 

 

1.1. Glioblastoma multiforme – one of the most lethal brain 

tumors 

1.1.1. Classification of glioblastoma multiforme 

After a long history of neurosurgery, in the beginning of the 20th century Bailey and 

Cushing were the first neurosurgeons to classify brain tumors histologically and to 

describe GBM (glioblastoma multiforme). The name derives from both, the cell type the 

cancer arises from, so called glia cells, and the fact that the tumors are characterized by a 

variable appearance in morphology and histology [1]. 

Glia cells are non-neuronal brain cells and constitute a group with distinct morphology and 

function. Whereas neurons are responsible for the transfer of information, glia cells are 

considered to be nutrient suppliers as well as to provide structural and metabolic support 

to neurons [2]. Astrocytes represent the majority of glia cells in the brain and have been 

found to additionally play a role in synaptic transmission and information processing [3]. 

Other types of glia cells are for instance microglia [4], oligodendrocytes [5], and satellite 

cells [6]. 

The WHO (World Health Organization) classification of gliomas defines three categories: 

astrocytic, oligodendroglial and oligoastrocytic gliomas [7]. Furthermore, a grading system 

that considers malignancy and histological alterations specifies four grades (WHO grade 

I – IV) of glioma tumors where grade I (pilocytic astrocytomas) and grade II (diffuse 

astrocytomas) represent low-grade gliomas with a comparatively good prognosis, 

whereas grade III covers anaplastic astrocytomas. WHO grade IV is referred to as GBM 

[8]. In general, GBM can be divided into primary and secondary glioblastoma depending 

on the precursor cells and genetic properties [9-11]. Primary glioblastomas develop de 

novo after multiple genetic alterations and represent the majority of all GBM cases. On the 

other hand, about 5% of glioblastomas are derived from lower grade astrocytomas (WHO 

grade II - III) and therefore display a different pattern of genetic alterations. This type is 

referred to as secondary glioblastoma [11]. 

Glioblastoma multiforme is one of the most common brain cancer types and accounts for 

16% of all primary brain tumors in the United States with an incidence rate of 3.19 per 
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100,000 inhabitants [12]. GBM is also one of the most lethal brain tumors. Depending on 

grade and genetic alterations, the prognosis of glioblastoma is very poor. Ohgaki et al. 

reported a median survival of around 4.7 months after diagnosis for patients with primary 

GBMs and 7.8 months for patients with secondary GBMs [13]. However, the difference in 

survival between primary and secondary GBM is rather due to the age of patients, since 

secondary glioblastomas have been shown to be more prevalent in younger aged patients 

[11]. Younger age has been associated with longer survival in glioblastoma patients [13]. 

Treatment of glioblastoma with standard therapies merely prolongs the survival up to 12 –

 15 months [14]. The five-year survival rate of glioblastoma patients is even less than 5% 

[12]. 

1.1.2. Genetic and molecular alterations in glioblastoma multiforme 

Genetic and molecular alterations in GBM have been extensively studied within the last 

decades. Some widely spread changes will be subsequently described. 

The tumor suppressor p53 is a transcription factor that responds to DNA damage and 

leads to the expression of genes that are involved in the regulation of cellular processes 

such as apoptosis and cell cycle inhibition [15]. Because of its key role in apoptosis, p53 

mutations are involved in a wide range of cancers [16]. Here, p53 undergoes loss-of-

function mutations or even deletions, resulting in increased proliferation and survival [17]. 

p53 mutations are also frequently detected in GBM [18]. Two-third of precursor 

astrocytomas exhibit TP53 mutations and potentially develop to secondary GBM [11]. The 

occurrence in de novo developed GBM (primary GBM) is lower [11]. Also a complete loss 

of p53 function has been discovered in GBM [10]. 

Another comparatively common alteration among primary and secondary glioblastomas 

occurs at the PTEN (phosphatase and tensin homolog) gene. Mutations in this tumor 

suppressor have been reported in 15% (primary) - 40% (secondary) of glioblastomas [19]. 

Loss of PTEN functionality thereby leads to an activation of PI3K-Akt (phosphatidyl-

inositide 3-kinase - Akt) signaling [20, 21]. This activation of Akt promotes cell 

proliferation, cell growth [22] as well as survival [23]. On the other hand, also PI3K itself 

can be mutated in GBM. Kita et al. reported a low frequency of PIK3CA mutations 

(mutations in the catalytic subunit of PI3K) in about 5% (primary) and 3% (secondary) of 

glioblastoma [23]. Also somatic mutations of PI3KR1 (mutations in the regulatory subunit 

of PI3K) are known to be involved in gliomagenesis by activating PI3K and subsequently 

Akt [24]. Additionally, the amplification of the Akt1 gene in glioblastomas has been 

reported by Knobbe et al. [25]. Taken together, genomic alterations occur at several steps 
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of the PI3K-Akt pathway which lead to increased survival and proliferation of degenerated 

glia cells. 

The EGFR (epidermal growth factor receptor) regulates growth, proliferation and survival 

as well as angiogenesis and migration by the activation of several signaling pathways 

such as Akt, STAT3 and MAPK signaling [26] upon binding of ligands such as growth 

factors [11]. The amplification of EGFR can be detected in about 50% of primary 

glioblastomas [10], while these mutations are found less often in secondary glioblastomas 

[27]. Besides, the mutation variant EGFRvIII, where 801 base pairs are deleted, leading to 

continuous autophosphorylation and activation of the receptor [28], occurs in 20 – 50% of 

glioblastomas with EGFR amplification [29]. It has been shown that the amplification of the 

EGFR gene results in resistance to common chemotherapeutic treatment [30, 31]. 

Continued and uncontrolled proliferation is one hallmark of cancer [32]. Glioblastomas 

frequently show loss of the RB1 (retinoblastoma protein 1) gene and amplification of the 

CDK4 and CDK6 (cyclin-dependent kinases) genes [9, 11, 27]. Rb1 controls the 

progression of the cell cycle in G1-phase in either a HDAC (histone deacetylases) -

dependent or -independent manner [33]. The direct E2F inhibition by Rb1 is abrogated 

upon the phosphorylation of Rb1 by the CDK4/cyclin D1 complex leading to the release of 

E2F1 transcription factor which activates the expression of genes controlling G1-to-S 

transition [11, 34-37]. So, increased levels of phosphorylated Rb1 consequently result in 

ongoing cell cycle progression and thus in increased proliferation. On the other hand, 

active gene repression by binding of an HDAC-Rb-E2F complex to promoters of cell cycle 

genes plays an important role in the regulation of the cell cycle [36, 38-40]. About 25% of 

glioblastoma cases are marked by a loss of Rb1 expression due to promotor 

hypermethylation resulting in ongoing cell cycle progression and proliferation [41]. 

Other known defects in GBM are the loss-of-heterozygosity especially of chromosome 10 

[9, 11, 42, 43], resulting in loss of tumor suppressors such as LGI1 (Leucine-rich, glioma 

inactivated 1) [44], BUB3 (budding uninhibited by benzimidazole 3) [45] or MXI1 (MAX-

interacting protein 1) [46]. Furthermore, IDH (isocitrate dehydrogenase) mutations can 

lead to a hypermethylation of promotors resulting for instance in the repression of 

CDKN2C (p18) transcription [10, 47]. The hypermethylation is caused by the IDH product 

2-HG (R-2 hydroxyglutarate) which inhibits the function of α-KG (α-ketoglutarate)-

dependent enzymes such as dioxygenases that are involved in the demethylation of DNA 

and histones [48, 49]. Besides, heterozygous deletions of NFKBIA (nuclear factor of 

kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) have been described in 

glioblastomas by Bredel et al. This deletion is associated with increased disease 
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progression and seems to be associated with reduced sensitivity to the chemotherapeutic 

drug TMZ (Temozolomide) [50, 51]. The most frequent mutations and their prevalence in 

either primary or secondary glioblastoma are summarized in figure 1.1.  

 
 

Fig. 1.1: Genetic alteration leading to initiation and progression of primary and secondary 

glioblastoma. Mutations as well as amplifications or loss of certain genes and their occurrence in 

gliomagenesis are depicted. More detailed information are given in the text. (modified from [10, 11]) 

 

Besides genetic alterations also epigenetic changes play a role in the development and 

progression of GBM. Especially the hypermethylation of CpG island promoters leads to 

inactivation of tumor suppressors such as RB1 and RASSF1A (Ras Association Domain 

family 1 alpha), cell cycle regulators such as p16INK4a and p15INK4b, apoptosis regulators 

including DAPK (death-associated protein kinase) and TIMP3 (metalloproteinase inhibitor 

3), as well as DNA repair enzymes as for example MGMT (O6-alkylguanine DNA 

alkyltransferase) [52, 53]. 

The genetic and molecular heterogeneity in GBM described above does not just 

complicate the classification of the tumors, but does also affect treatment outcome in 

patients. General treatment strategies of GBM will be described in the following section. 

1.1.3. Cancer therapy for glioblastoma multiforme 

In general, cancer therapy consists of three main distinct approaches which are also 

implemented in the treatment of glioblastoma: surgery, radiotherapy and chemotherapy 

[54]. Surgery is one of the initial steps in the treatment of GBM [9], but is depending on the 

indication based on localization of the tumor, age of the patient, and diagnosis [55]. Tumor 

resection leads to reduction of tumor mass, relief of intracranial pressure and re-

establishment of neuronal functions [9, 55]. The removal of >98% of tumor cells is 

associated with increased survival and improved response to radiation and chemotherapy 

[56]. A second important step in the treatment of cancer is radiation and has also been 

precursor cells/astrocytes
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shown to further prolong survival of glioblastoma patients for approximately 5 months after 

surgery [57]. The most studied field in the treatment of glioblastoma is chemotherapy. The 

standard-of-care treatment is comprised of the administration of either Gliadel or TMZ 

after resection [9, 58]. The chemotherapeutic drug Gliadel, also called carmustine, is an 

alkylating agent that can be supplied as polymer wafer for a local treatment of brain 

tumors after surgery and is usually combined with radiotherapy [59]. TMZ is a prodrug that 

gets converted into the active compound within the systemic circulation and is able to 

cross the blood-brain barrier [9]. The active compound (MTIC, 3-methyl-(triazen-1-

yl)imidazole-4-carboxamide) causes base-pair mismatch in the DNA by methylating the O6 

position of guanine [60, 61]. The resulting DNA damage triggers apoptosis [62]. However, 

not just tumor cells but all rapidly dividing cells are affected by TMZ [9]. Combined therapy 

with surgery, radiation and chemotherapeutic treatment increases mean survival of 

glioblastoma patients merely about 14 months [14, 63]. Nevertheless, patients with MGMT 

methylation respond better to TMZ [64]. O6-methyl guanine methyltransferase is an 

enzyme that removes alkyl groups from the O6 of guanine thereby preventing DNA 

damage and compromising the cell response to TMZ [53].  

A major problem in the treatment of GBM is the occurrence of innumerable resistances 

against radiation and/ or chemotherapeutic drugs. As already mentioned, the expression 

of MGMT interferes with TMZ treatment [64]. Most studies, mainly performed in tumor 

stem cells, revealed the role of efflux pumps as well as multiple dysregulated signaling 

pathways to lead to the development of resistances [65, 66]. 

At present, promising clinical studies deal with implementation of small molecular 

inhibitors, novel immunotherapeutic approaches, growth factor targeting and gene therapy 

as well as with combinations of drugs against distinct targets [9]. New treatments need to 

be developed based on genetic and molecular changes in every individual case. Since 

there are multiple, redundant signaling pathways involved in initiation and progression of 

GBM, a reasonable combination of therapies needs to be employed for each patient [9]. 

 

1.2. The non-canonical IKK complex in oncogenesis 

The innate immune system senses PAMPs (pathogen-associated molecular patterns) and 

subsequently induces a variety of transcription factors that mediate the first defense 

against pathogens [67, 68]. NF-κB (nuclear factor kappa-light-chain-enhancer of activated 

B cells) is one of the most important transcription factors that can be triggered by bacterial 

and viral pathogens leading to expression of pro-inflammatory cytokines [69]. Also IRF 



INTRODUCTION 

 

6 
 

TBK1

IKKε

TANK

KD

KD

100 aa

ULD

CC TBD Znf

LZ HLH

ULD LZ HLH

1

1

1 448

716

730

CC CC

CC CC

(interferon regulatory factor) transcription factors respond to viral pathogens and 

contribute to the expression of the type I IFN (interferon) gene as well as genes encoding 

pro-inflammatory cytokines [67, 70]. Both NF-κB and IRF signaling pathways depend on 

signal transduction via IKKs (inhibitor of κB kinases) and IKK-related kinases. 

1.2.1. The IKK-related kinases and their adaptor TANK 

Both IKK-related kinases have been discovered in 1999. A yeast two-hybrid screen using 

TANK (TRAF family member-associated NF-κB activator) as a bait revealed TBK1 (TANK 

binding kinase 1) as a kinase interacting with this adaptor which modulates NF-κB 

function [71]. IKKε (IκB-kinase ε) has been identified in a subtractive cDNA hybridization 

screen of LPS (lipopolysaccharide)-treated macrophages [72]. Furthermore, Peters and 

colleagues identified IKKε as a homolog to IKKα and IKKβ that phosphorylates IκBα in 

response to PMA (phorbol-12-myristate-13-acetate) [73]. While TBK1 is expressed 

ubiquitously [74], IKKε has been found to be expressed in pancreas, spleen and thymus 

as well as peripheral blood leukocytes [72]. The transcription of IKKε is enhanced upon 

the exposure to LPS or viral infection, therefore IKKε is also called IKK-i (IKK-inducible) 

[72, 75]. Both kinases exhibit a close structural similarity to the canonical IKKs, IKKα and 

IKKβ. While the kinase domain of IKKε displays a similarity of 30% with IKKα and IKKβ 

[72, 73, 76], the TBK1 kinase domain shares 27% identity with both kinases [71, 74]. 

TBK1 and IKKε share 64% sequence identity among each other [77]. The domain 

structure of IKKε as well as TBK1 and their adaptor protein TANK is depicted in figure 1.2. 

The kinases are composed of an N-terminal kinase domain, a subsequent ULD (ubiquitin-

like domain), a LZ (leucine zipper) and HLH (helix-loop-helix) region [78, 79]. The C-

terminal coiled-coil domains facilitate binding to adaptor proteins [80] such as NAP1, 

SINTBAD or TANK. 

 

 

 

Fig. 1.2: Schematical structure of the IKK-related kinases TBK1 and IKKε as well as their adaptor 

TANK. Abbreviations: KD: kinase domain; ULD: ubiquitin-like domain; LZ: leucine zipper; HLH: helix-loop-

helix; CC: coiled-coil; TBD: TBK1/IKKε binding domain; Znf: Zinc finger. (modified from [78, 79, 81]) 
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Both kinases are bound by adaptor proteins such as NAP1 (NAK associated protein 1), 

SINTBAD (similar to NAP1 TBK1 adaptor) and TANK [81]. All three adaptors compete for 

the binding to the kinases [80]. TANK has first been described by Rothe et al. in 1996 as a 

protein that interacts with TRAFs (tumor necrosis factor receptor associated factors) and 

prevents activation of NF-κB. Therefore, TANK was first named I-TRAF (inhibitor of TRAF) 

[82]. The assembly of the non-canonical IKK complex by TANK is necessary to activate 

TBK1 and IKKε leading to phosphorylation of several downstream targets such as IRF3, 

IRF7 and IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

alpha) [67, 80, 83, 84]. The impact of the complex on IRF as well as NF-κB signaling 

pathways will be described in detail subsequently. 

1.2.2. Involvement of the non-canonical IKK complex in NF-κB and IRF 

transcription factor signaling pathways 

The NF-κB signaling pathway is involved in the innate immune system to defend the 

organism against viral and bacterial pathogens [69, 85]. Ligand binding to TLRs (toll-like 

receptors) such as TLR1,2 and 5-9 triggers a signaling cascade via the adaptor molecule 

MyD88 which results in the activation of the IKK complex formed by IKKα, IKKβ and their 

adaptor protein NEMO (NF-κB essential modulator) [86]. The active kinases subsequently 

phosphorylate IκBα which retains the NF-κB dimer in the cytosol in unstimulated cells. 

This phosphorylation leads to the polyubiquitination and proteasomal degradation of IκBα 

[79, 85, 87]. The released NF-κB dimer then translocates into the nucleus and induces the 

expression of pro-inflammatory cytokines such as IL-6 (interleukin 6) and COX2 

(cyclooxygenase 2) [88, 89]. TBK1 as well as IKKε are also able to phosphorylate IκBα at 

S36 thereby activating NF-κB target gene expression in vitro [71, 72]. However, in MEFs 

(mouse embryonic fibroblasts) deficient for IKKε and TBK1 the expression of certain NF-

κB target genes is decreased, even though IκBα is degraded normally [90, 91]. 

Furthermore, IKKε as well as TBK1 target the NF-κB subunit p65 at residue S536 [92, 93]. 

Upon T cell costimulation, IKKε is able to additionally phosphorylate p65 at S468 [94] 

which allows IKKε to be translocated into the nucleus where it contributes to gene 

transcription of NF-κB target genes [95]. Furthermore, IKKε, that can translocates into the 

nucleus upon genotoxic stress exposure, has been found to repress apoptosis in 

response to DNA-damage by the phosphorylation of p65 at S468 [96]. The NF-kB 

signaling pathway is summarized in figure 1.3.A. 

Both IKK-related kinases are more prominently involved in the activation of IRF 

transcription factors [97, 98]. Here, TLRs [99] as well as intracellular receptors, that 

recognize double stranded RNA, such as RIG-I (retinoic acid-inducible gene 1) [100] or 
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MDA5 (melanoma differentiation-associated protein 5) [101], or receptors detecting 

double stranded DNA such as DAI (DNA-dependent activator of IFN-regulatory factors) 

[102] are triggered by infections. Figure 1.3.B illustrates the pathway that is activated upon 

the stimulation of TLRs. The stimulation of TLR4 by LPS (or TLR3 by viral dsRNA) 

induces the recruitment of the adaptor molecules TRAM (TRIF-related adaptor molecule) 

and TRIF (TIR-domain-containing adapter-inducing interferon-β) [103, 104]. TRIF 

subsequently recruits TRAF3 which mediates the activation of the non-canonical IKK 

complex composed of TANK, IKKε and TBK1 [83, 104]. Besides, LPS-induced TLR4 

signaling through MyD88 can lead to the recruitment of TRAF6 which also assembles with 

the non-canonical IKK complex. Subsequently, the IKK-related kinases TBK1 and IKKε 

phosphorylate cytoplasmatic IRF3, 5 or 7 [97, 98, 105, 106] leading to their homo- or 

heterodimerization and nuclear translocation [97, 107]. In the nucleus, IRF dimers 

associate with the IFN enhanceosome at ISREs (interferon-stimulated response 

elements) and induce the expression of type I interferon [108-110]. A second pathway 

activating the non-canonical IKK complex is triggered by viral infections. Here, intracellular 

sensors such as MDA-5 and DAI (figure 1.3.C) facilitate the activation of the non-

canonical IKK complex by MAVS (mitochondrial antiviral signaling adaptor) resulting in 

subsequent phosphorylation of IRF transcription factors by the activated kinases TBK1 

and IKKε [101, 102, 111]. This phosphorylation leads to the dimerization of IRF 

transcription factors which translocate into the nucleus and induce the expression of type I 

IFN gene [109, 112, 113]. 

Besides IRF transcription factors, both IKK-related kinases have further distinct 

downstream targets. TBK1 phosphorylates Sec5 at the Ral binding domain resulting in 

interferon induction [114]. IKKβ is phosphorylated by TBK1 in the activation loop 

promoting its kinase activity [74]. Furthermore, the insulin receptor is phosphorylated by 

TBK1 at S994 resulting in insulin resistance [115]. IKKε mediates STAT1 (signal 

transducer and activator of transcription 1) phosphorylation at S708 resulting in ISGF3 

(interferon-stimulated gamma factor 3) stabilization [116] and also phosphorylates CYLD 

(cylindromatosis) at S418, thereby decreasing its deubiquitinase activity [117]. 
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Fig. 1.3: The role of the non-canonical IKK complex in the network of NF-κB signaling. (A) The 

canonical NF-κB signaling is stimulated by ligand-binding to specific TLRs. This results in subsequent 

activation of the adaptor protein MyD88 which leads to further activation of IRAKs. Subsequently, TRAF6 

gets activated and recruits the TAK1/TAB2/TAB3 complex which in turn phosphorylates and activates the 

canonical IKK complex consisting of NEMO, IKKα and IKKβ. The two kinases then phosphorylate IκB leading 

to its ubiquitination and proteasomal degradation which results in the release of NF-κB heterodimer p65/p50. 

The NF-κB dimer translocates into the nucleus and induces the transcription of pro-inflammatory genes. (B) 

In an alternative pathway, activation of TLR (e.g. TLR3 or 4) activates TRAM/TRIF adaptors that recruit 

TRAF3 (or TRAF6 in response to TLR4 activation) which then activates the non-canonical IKK complex 

consisting of an adaptor protein such as TANK and the kinases IKKε and TBK1. The two kinases 

phosphorylate IRF transcription factors resulting in dimerization and translocation of the IRF dimers into the 

nucleus where type I interferon expression is induced. Besides, IKKε and TBK1 have an impact on the 

canonical NF-κB pathway. (C) The pathway described in (B) can also be triggered by intracellular dsRNA and 

dsDNA originated from viruses. Here sensors such as MDA5 (dsRNA) and DAI (dsDNA) activate signaling 

adaptor MAVS which leads to subsequent activation of TRAF3 and the non-canonical IKK complex. Both 

IKK-related kinases phosphorylate cytosolic IRF transcription factors that dimerize and translocate into the 

nucleus where interfon type I expression is induced. Abbreviations: TLR: toll-like receptor; MyD88: myeloid 

differentiation primary response gene (88); IRAK: interleukin-1 receptor-associated kinase; TRAF: TNF 

receptor-associated factor; TAB: TAK1-binding protein; TAK1: TGF-β-activating kinase; NEMO: NF-κB 

essential modulator; IKK: IκB kinase; IκB: inhibitor of NF-κB; TRAM: TRIF-related adaptor molecule; TRIF: 

TIR domain-containing adaptor-inducing IFNβ; TANK: TRAF family member-associated NF-κB activator; 

TBK1: TANK binding kinase 1; IRF: interferon regulatory factor; MDA5: melanoma differentiation-associated 

protein 5; DAI: DNA-dependent activator of interferon-regulatory factors; MAVS: mitochondrial antiviral-

signaling protein. (modified from [67, 70, 79, 118]) 
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1.2.3. IKKε and TBK1 in cancer 

The relation between NF-κB-mediated regulation of inflammation and cancer is 

elaborately described [119-123]. Besides, the IKK-related kinases TBK1 and IKKε recently 

have been shown to be involved in a wide range of signaling cascades which lead to 

oncogenic transformation. 

TBK1 has been reported to be over-expressed in lung, colon and breast cancer and to be 

mutated in lung cancer [69, 79]. Moreover, TBK1 is involved in Ras-induced oncogenetic 

transformation. RasGEF (Ras guanine nucleotide exchange factor) can be activated by a 

variety of extracellular stimuli leading to the transformation of Ras into its active form. 

Activated Ras then activates RalGEF (Ras-like-guanine nucleotide exchange factor) 

leading to RalB-induced (Ras-related protein Ral-B) TBK1 activation and complex 

assembly with Sec5 which is part of the exocyst complex. This in turn activates Akt and 

leads to tumorigenic transformation [69, 79, 114, 124, 125]. 

IKKε attracted much importance in breast cancer. The kinase is over-expressed in about 

two-third of analyzed human breast cancer tissues as well as in most breast cancer cell 

lines [126, 127]. A copy-number amplification of IKBKE has been reported for 16.3% of 

breast cancer cell lines [127]. On the other hand, expression of CK2 (casein kinase 2) 

seems to be involved in increased expression of IKKε in breast cancer tissues [126]. IKKε 

has been found to replace activated Akt kinase and to cooperate with constitutive active 

MAPK pathway resulting in tumorigenesis and enhanced proliferation and survival in 

breast cancer cell lines [127, 128]. Moreover, IKKε-dependent NF-κB signaling is also 

important in breast cancer. In line with the finding that IKKε is able to phosphorylate p65 at 

S536, NF-κB target genes MMP9 (matrix metallopeptidase 9) and BCL2 (B-cell lymphoma 

2) expression is enhanced in breast cancers where IKKε is over-expressed [127]. While 

MMP9 is involved in the degradation of collagen IV leading to tumor progression [129], 

Bcl-2 mediates the inhibition of apoptosis [130]. Furthermore, IKKε phosphorylates ERα 

(estrogen receptor α) resulting in increased expression of cyclin D1 in breast cancer [131] 

which is necessary for G1-to-S transition in the cell cycle and thereby influences 

proliferation ability [132]. 

A novel target of IKKε is STAT1 which is involved in tumorigenesis. Tenoever and 

colleagues showed the phosphorylation of STAT1 at S702 by IKKε and subsequent 

formation of the ISGF3 (interferon-stimulated gene factor 3) complex which consists of a 

STAT1-STAT2 heterodimer and IRF9 transcription factor [116]. The role of STAT1 in 

oncogenesis is contradictory. On the one hand, STAT1 transcription factors are 

associated with inhibited tumorigenesis. For instance, STAT1 has been shown to 
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negatively regulate the cell cycle by inducing p21 in ovarian cancer [133], thus blocking 

cell cycle progression and proliferation. On the other hand, STAT1 also enhances tumor 

progression. Constitutive over-expression of STAT1 has been demonstrated to reduce 

apoptosis in several cancer types by the induction of anti-apoptotic genes [134, 135]. 

Finally, both IKK-related kinases have been found to directly phosphorylate and activate 

Akt at T308 and S473, thereby promoting tumorigenic transformation [125, 136, 137]. The 

role of oncogenic Akt signaling will be described in the following chapter. 

 

1.3. The Akt signaling pathway in cancer 

1.3.1. Akt is a node in signaling and influences many cellular processes 

The serine/threonine protein kinase Akt, also called protein kinase B (PKB), represents a 

node in signaling and is involved in the regulation of survival, proliferation, migration and 

metabolism [22, 138-142]. Dysregulated Akt kinase signaling is associated with the 

development of many diseases such as diabetes [143] and particularly cancer [144, 145]. 

Akt kinase, that belongs to the AGC (cAMP-dependent protein kinase/ protein kinase G/ 

protein kinase C) family of kinases, has been discovered independently by three groups in 

1991 [22]. While Bellacosa et al. found Akt to be an oncogene in mouse leukemia virus 

AKT8 [146], Jones et al. as well as Coffer and colleagues used an homology-based 

approach to find a new cellular homolog of protein kinase C resulting in the identification 

of protein kinase B [147, 148]. So far, three isoforms have been identified, all share the 

same structural organization that is highly conserved: the N-terminal PH (pleckstrin 

homology) domain facilitates binding to 3-phosphoinositides which is necessary for the 

activation of Akt [149, 150]; the PH domain is followed by a kinase catalytic domain that is 

conserved among the members of AGC kinases [151]. The phosphorylation of Akt within 

the activation loop at T308 is crucial for the activation of the kinase [150, 152]. 

Furthermore, phosphorylation at S473 within the C-terminal hydrophobic tail, containing a 

regulatory domain, supports the full activation of Akt [142, 152, 153]. 

1.3.1.1. Activation of Akt 

The activation of Akt is a multistep process and typically mediated by PI3K 

(phosphoinositide 3-kinase) which can be activated by RTK (receptor tyrosine kinase) and 

GPCR (G-protein-coupled receptors) [154-156]. Growth factors, cytokines as well as other 

extracellular stimuli like insulin or stressors such as oxidative stress trigger those 

receptors [22, 152, 156]. Their activation leads to the recruitment of PI3K to the plasma 

membrane and subsequent phosphorylation of PIP2 (phosphatidylinositol-4,5-bisphosphat) 
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at the 3-OH group which results in the generation of PIP3 (phosphatidylinositol-3,4,5-

triphosphat) [157, 158]. Phosphatases such as PTEN (phosphatase and tensin homolog) 

or SHIP (SH2-domain-containing inositol phosphatases) mediate dephosphorylation of 

PIP3 and thereby negatively regulate the activation of Akt [159-162]. PIP3 induces the 

recruitment of Akt to the plasma membrane dependent on its PH domain [163, 164]. PI3K-

dependent activation of Akt is typically mediated by PDK1 and 2 (phosphoinositide-

dependent kinase 1 and 2) that are also recruited to the membrane by PIP3 and facilitate 

the direct phosphorylation of Akt at T308 (by PDK1) and S473 (by PDK2), respectively 

[165-167]. Besides PDK2, Akt can be phosphorylated at S473 by ILK (integrin-linked 

kinase) [168, 169] as well as by autophosphorylation [170]. Phosphorylated and thereby 

activated Akt kinase translocates from the membrane to the cytoplasm or to the nucleus to 

phosphorylate its substrates [163, 171, 172]. Dephosphorylation of Akt by PP2A (protein 

phosphatase 2A) inactivates the kinase [171, 173]. The process of Akt activation is 

depicted in figure 1.4. 

 
 

Fig. 1.4: The mechanism leading to Akt activation. Following ligand binding, RTK recruits and activates 

PI3K leading to phosphorylation of PIP2 to PIP3. PIP3 recruits inactive Akt kinase as well as PDK1/2 to the 

membrane where Akt is phosphorylated by PDK1 at T308 and PDK2 at S473 for full activity. Active Akt can 

be inactivated by dephosphorylation by PP2A. Abbreviations: RTK: receptor tyrosine kinase; PI3K: 

phosphatidylinositol 3-kinase; PIP2: phosphatidylinositol-4,5-bisphosphat; PIP3: phosphatidylinositol-3,4,5-

trisphosphat; PDK1/2: phosphoinostide-dependent kinase 1 or 2; PP2A: protein phosphatase 2A. (modified 

from [138, 140, 153, 174]). 
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[179, 180]. As already mentioned, also both IKK-related kinases, TBK1 and IKKε, have 

been reported to phosphorylate Akt depending on its PH domain and PI3K signaling [136]. 

1.3.1.2. Cellular functions of activated Akt 

Once activated, Akt influences many different signaling pathways by phosphorylation of 

intermediates and thereby has a great impact on cellular functions. Most important 

downstream substrates and the consequences of their phosphorylation will be described 

subsequently.  

Akt kinase is involved in the regulation of metabolism by phosphorylation of its 

downstream substrates. GSK3 (glycogen synthase kinase-3), for instance, plays a role in 

lipid and glucose metabolism [141]. Phosphorylation of GSK3 by Akt results in its 

inactivation [181]. Active GSK3 induces proteasomal degradation of its substrates such as 

the transcription factor SREBP (sterol regulatory element-binding protein) which initiates 

the expression of genes involved in cholesterol and fatty acid biosynthesis [182, 183]. 

Thus, activation of Akt stabilizes SREBP and enhances lipid production. The Akt substrate 

GSK3 also modulates glucose metabolism by inhibiting glycogen synthase [184]. 

Furthermore, glycolysis is increased by phosphorylation of phosphofructokinase upon Akt 

activation [185, 186] and activation of hexokinase [187]. Moreover, glucose uptake is 

modulated by Akt upon insulin stimulation in insulin responsive tissue. Whereas the 

transcription and translation of glucose transporters GLUT1 and GLUT3 is increased by 

Akt downstream target mTORC1 [188-190], GLUT4 is recruited to the plasma membrane 

to support glucose uptake [191-193]. The phosphorylation of transcription factor FOXO1 

(Forkhead box protein O1) by Akt leads to its degradation resulting in decreased 

transcription of glucose-6-phosphatase [194, 195]. 

Other members of the transcription factor family Forkhead box such as FOXO3 and 

FOXO4 can be directly phosphorylated by Akt [196-198] which results in decreased 

transcription of genes involved in apoptosis such as Fas ligand, TRAIL (tumor necrosis 

factor-related apoptosis-inducing ligand), TRADD (tumor necrosis factor receptor type 1-

associated death domain protein), BIM and BCL-6 (B-cell lymphoma 6) [198-205]. 

Besides Forkhead box, other transcription factors are indirectly influenced by Akt. The NF-

κB transcription factor has been shown to be activated by phosphorylation of IKKα by Akt 

which results in transcription of anti-apoptotic and pro-survival genes [206-209]. 

Furthermore, CREB (cAMP-responsive element binding protein) is phosphorylated by Akt 

resulting in enhanced transcription of MCL-1 (myeloid leukemia cell differentiation protein) 

which promotes cell survival by inhibiting apoptosis [210-212]. Phosphorylation of the Akt 

substrate GSK3 is known to inhibit DNA binding of c-Jun and in turn of the AP-1 (activator 
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protein 1) transcription complex [213, 214]. Besides transcription, Akt also plays a role in 

translational control. Induction of mRNA translation is amongst others facilitated by Akt-

dependent phosphorylation of eukaryotic translation initiation factor 4EBP (4E-binding 

protein) and eIF4E (eukaryotic initiation factors 4E) [215] as well as by indirect 

phosphorylation of eIF2B (eukaryotic initiation factor 2B) [216]. 

The regulation of apoptosis and cell survival are the most considerable functions of Akt in 

cancer. Akt has emerged as a general inhibitor of apoptosis. Besides its impact on the 

regulation of anti-apoptotic gene transcription (Forkhead box, NF-κB) and translational 

control, Akt targets several proteins involved in the apoptotic machinery. The Bcl-2 family 

member BAD (Bcl-2-associated death promoter) is a direct target of Akt and inhibited by 

phosphorylation [217-219]. Akt substrate GSK3 phosphorylates and inhibits MCL-1, a pro-

survival Bcl-2 family protein [212, 220]. Furthermore, phosphorylation of pro-caspase-9 by 

Akt prevents its cleavage and thereby its pro-apoptotic activity [221]. Moreover, MAP 

(mitogen-activated protein) kinases JNK and p38 have been reported to be negatively 

affected by Akt. Here, the phosphorylation of upstream kinases such as ASK1 (apoptosis 

signal-regulating kinase 1), MLK3 (mixed lineage kinase 3) or SEK1 (SAPK/Erk kinase 1) 

leads to the repression of the MAPKs and eventually to the inhibition of apoptosis [222-

226].  

Besides apoptosis, Akt is also involved in the regulation of proliferation. Cell cycle 

progression and thereby cell proliferation is generally regulated by cyclins [227]. Akt 

promotes the expression of cyclin D1 and D3 by enhancing their translation [228]. The Akt 

substrate GSK3 additionally promotes the degradation of cyclin D1 by its phosphorylation 

at T286 which leads to the translocation of cyclin D1 into the cytosol where it gets 

degraded [229]. Thus, Akt, which inhibits GSK3, has a stabilizing effect on cyclin D1. 

Furthermore, cyclin-dependent kinase inhibitors p21 and p27 are negatively influenced by 

Akt leading to a relieve of cell cycle inhibition [230, 231]. Phosphorylation of p27 by Akt 

induces its sequestration in the cytosol thus preventing its cell cycle inhibitory effect [230, 

232-234]. Also p21 translocation to the nucleus is prevented by Akt-mediated 

phosphorylation [235]. Moreover, expression of p21 is influenced by Akt via MDM2 

(mouse double minute 2 homolog). Phosphorylation of MDM2 by Akt leads to p53 

ubiquitination and subsequent degradation which in turn attenuates p21 transcription [236-

238]. Important features of the complex downstream network of Akt are summarized in 

figure 1.5. 
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Fig. 1.5: Akt kinase is a node in signaling and mediates several cellular functions. Besides regulation of 

transcription, translation, cell growth, migration and angiogenesis, the major functions of Akt signaling are the 

promotion of cell survival by inhibition of apoptosis (green), the facilitation of proliferation (yellow) and the 

control of glucose and lipid metabolism (purple). A detailed description of Akt substrates and their role for 

certain signaling pathways is given in the text. Arrows indicate activation and blunt end arrows represent 

inhibition of the substrates by their phosphorylation. Abbreviations: GSK3: glycogen synthase kinase 3; 

MDM2: mouse double minute 2 homolog; BAD: Bcl-2-associated death promoter; JNK: c-Jun N-terminal 

kinases; SAPK/ MAPK: stress/ mitogen-activated protein kinases; IKK: IκB kinase; IκB: inhibitor of NF-κB, 

NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; CREB: cAMP response element-

binding protein; Bcl2: B-cell lymphoma 2; MCL-1: induced myeloid leukemia cell differentiation protein; 

FOXO: Forkhead box O; BIM: Bcl-2-like protein 11; TRADD: tumor necrosis factor receptor type 1-associated 

death domain; SREBP: sterol regulatory element-binding proteins. (modified from [22, 139, 153]) 

 

Taken together, Akt is a signaling node that influences different pathways and many 

cellular functions. Thereby, Akt plays a great role in tumorigenesis by promoting hallmarks 

of cancer such as cell survival and proliferation. 

1.3.2. Akt signaling in cancer 

The role of Akt in tumorigenesis has been extensively studied. Already when it was 

discovered as the retroviral oncogene v-Akt, a potential role in human cancer was 

supposed [146].  

Oncogenic deregulation of Akt in human cancers is due to either gene amplifications, the 

activation of upstream signaling or a loss of function of negative regulators [239]. Akt gene 

amplification has been described especially for ovarian [240], gastric [241] and pancreatic 

cancer [242-244], whereas over-expression of Akt occurs frequently in prostate cancer 

[245] as well as colorectal cancer [246]. However, in most cases Akt hyperactivity is 

caused by dysregulation of upstream oncogenes or tumor suppressors [247]. Gene 
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amplification of PI3K subunit p110 (PIK3CA) has been observed in ovarian [248] and 

cervix [249] tumors. Furthermore, PI3K can be constitutively activated by active Ras [250, 

251] or by over-expression of receptors such as human HER2 (epidermal growth factor 

receptor 2, also known as erbB2) [252, 253]. Besides, loss-of-function of tumor 

suppressor PTEN is a common alteration in tumors that affects Akt signaling by promoting 

its activation and has been shown to occur in prostate [254], lung [255], breast [256] and 

pancreatic cancer [257], as well as GBM [258-261]. 

Likewise, PI3K-independent mechanisms promote Akt activation and contribute to 

oncogenic transformation. The interaction of Akt with Ack1 (activated Cdc42-associated 

kinase) has been discovered by Mahajan et al. and has been shown to induce PI3K-

independent phosphorylation of Akt at Y176 and subsequent phosphorylation at T308 and 

S473 [262]. Autoactivating Ack1 mutations resulting in activated Akt have been found in 

ovarian cancer [262, 263]. Furthermore, DNA double strand break response via ATM 

(ataxia telangiectasia mutated) has been found to activate Akt via phosphorylation at 

S473 in a PI3K-independent manner to support survival [264]. It is believed, that those 

alternative mechanisms in Akt activation serve as backup pathways that, when aberrantly 

activated, promote Akt-driven transformation [265]. 

 

1.4. Tumorigenic ERK1/2 signaling 

Signaling by the serine and threonine protein kinases of the MAPK family regulates a 

large variety of cellular processes such as proliferation, apoptosis, cell cycle progression, 

differentiation, migration, metabolism and transcription [266-270] in response to a wide 

range of stimuli such as cytokines, growth factors, antigens, toxins as well as chemical 

and physical stresses [271, 272]. In general, MAPK pathways are three tiered cascades 

involving a MAP3K (MAP kinase kinase kinase) that phosphorylates MAP2K (MAP kinase 

kinase) that in turn phosphorylates MAPK. Three main subfamilies of MAPK namely p38, 

JNK (c-Jun N-terminal kinase) which is also referred as to SAPK (stress-activated protein 

kinase) [273], and ERK (extracellular signal-regulated kinase), are known and depicted in 

figure 1.6. [266, 267]. 
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Fig. 1.6: Conventional MAPK signaling pathways proceed in three-tiered modules. Ligand binding to 

cell surface receptors such as GPCR or RTK lead to activation of small GTPases such as Ras, Rac, Src or 

other activating adaptor proteins. Their activation results in initiation of the typical three-tiered MAPK 

signaling and finally to the activation of either p38, JNK or ERK MAPK. Activated MAPK in turn phosphorylate 

and activate distinct transcription factors which induce the production of cytokines, proliferation, 

angiogenesis, apoptosis, development, differentiation and migration. Abbreviations: TRAF: TNF receptor 

associated factor; TAB: TAK1-binding protein; Ras: Rat sarcoma; MAP3K; mitogen-activated protein kinase 

kinase kinase; TAK1: TGF-β-activating kinase; ASK1: apoptosis signal-regulating kinase 1; MEKK = MAP3K; 

Raf: rapidly accelerated fibrosarcoma; MAP2K: mitogen-activated protein kinases kinase; MKK = MAP2K; 

MEK = MAP2K; MAPK: mitogen-activated protein kinases; JNK: c-Jun N-terminal kinases; ERK: extracellular 

signal-regulated kinase. (modified from [223, 274]) 

 

Both, p38 and JNK, are activated in response to pro-inflammatory cytokines or cellular 

stresses [275-277] by distinct three tiered MAPK signaling. While p38 plays a role in the 

production of cytokines, proliferation and angiogenesis [278], JNK is important for 

apoptosis and development [279]. Activation and consequences of ERK1/2 signaling as 

well as its role in cancer will be described in more detail in the following section. 

1.4.1. The Ras-Raf-MEK-ERK signaling pathway 

Among the three main MAP kinases, ERKs are the best studied [280]. The isoforms ERK1 

(p44) and ERK2 (p42) share 84% sequence identity and fulfill more or less the same 

functions [281-283], so they will be referred to as ERK1/2 subsequently. The 

serine/threonine kinases have a size of 44 and 42 kDa, respectively, and are expressed in 

all tissues [266, 274, 282, 283]. 

The ERK1/2 signaling cascade is initiated by a variety of stimuli such as growth factors, 

cytokines, mitogens as well as hormones [284]. Binding of those stimuli to either RTK 

receptors or GPCR triggers the autophosphorylation of the receptors which creates 

p38

TRAF6

TAB1/2

MKK3/6

TAK1/

ASK1

MAPK

activator

MAP2K

MAP3K

JNK

Rac/Src

MKK4/7

MEKK1/4

ERK1/2

Ras

MEK1/2

Raf

stimuli

response

stress

cytokines

growth factors

hormones

cytokines,

proliferation

angiogenesis

proliferation

dif ferentiation

migration

apoptosis

develpoment



INTRODUCTION 

 

18 
 

binding sites for the adaptor protein Shc (SHC-transforming protein) [285-287]. Interaction 

of Shc with Grb2 (growth-factor-receptor-bound 2) leads to the binding and activation of 

GEF (guanine nucleotide exchange factors) proteins such as SOS (son of sevenless) 

[288]. SOS gets activated and further activates small GTP binding protein Ras [289], a 

subfamily of small GTPases that is composed of the members H-Ras, K-Ras and N-Ras 

[290, 291]. Activated Ras in turn leads to the activation of Raf kinase [289, 292]. This 

kinase phosphorylates and thereby activates MEK1 and MEK2 which in turn 

phosphorylate ERK1/2 [293-295]. The phosphorylation of ERK1/2 at T202/T204 and 

T185/Y187 leads to dimerization and nuclear translocation where ERK1/2 phosphorylates 

its substrates [296]. Additionally, scaffold proteins such as KSR (Kinase suppressor of 

Ras) [297] enable the cytoplasmic retention of the dimers resulting in the phosphorylation 

of cytosolic substrates [298, 299]. Usually, scaffold proteins are required to form a multi-

enzyme complex with the involved MAPKs to provide signal fidelity [299]. The classical 

Ras-Raf-MEK-ERK pathway and selected substrates are summarized in figure 1.7.  

Besides the described classical MAPK signaling pathway, further kinases have been 

identified to influence the phosphorylation of ERK1/2 or its upstream kinases. PKC 

(Protein kinase C) [300] and MLK3 [301] phosphorylate Raf proteins which results in 

ERK1/2 activation. MAP3K of the p38 or the JNK pathway facilitate the activation of 

ERK1/2 indirectly by the phosphorylation of MEK1/2 [226, 302]. However, also kinases 

such as TPL2 (tumor progression locus 2) [303], MLTK (MLK-like mitogen-activated 

protein triple kinase) [304] or IRAK (interleukin-1 receptor-associated kinase) [305] are 

able to activate ERK1/2 by phosphorylation of upstream MAPKs. 

So far, more than 150 substrates of ERK1/2 have been discovered [306]. In the nucleus, 

ERK1/2 are mainly involved in the activation of transcription factors. The direct binding 

and phosphorylation of Elk1 by ERK1/2 induces its binding to DNA as well as to the co-

activators CBP (CREB-binding protein) and p300, thus resulting in dramatic increase of 

transcriptional activity [306, 307]. Elk1 induces the expression of c-Fos, EGR-1 (Early 

growth response protein 1) [308, 309], as well as p21 and other genes involved in cell 

cycle regulation and proliferation [310]. Furthermore, the c-Fos transcription factor is a 

substrate of nuclear ERK1/2 and the ERK1/2 substrate RSK (ribosomal S6 kinases) [311, 

312]. Phosphorylation of c-Fos by ERK1/2 and RSK results in its stabilization and 

dimerization with c-Jun to form AP-1 transcription factor which is responsible for the 

expression of genes involved in proliferation and survival [313]. Another transcription 

factor family that is phosphorylated by ERK1/2 is FOXO. The phosphorylation of FOXO3a 

increases its binding to MDM2 and thereby promotes its degradation which results in the 

prevention of apoptosis [314]. 
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The binding of ERK1/2 to scaffold proteins allows its retention in the cytosol [299] which 

leads to the phosphorylation of cytoplasmatic substrates such as PDE4 

(phosphodieesterase 4) [315], cytosolic phospholipase A2 [316], as well as cytoskeletal 

proteins such as paxillin [317] and MLCK (myosin light chain kinase) [318]. Moreover, 

RSK is also a cytosolic target for ERK1/2 [319, 320]. As for ERK1/2, a part of cytosolic 

RSK is able to translocate into the nucleus to facilitate the phosphorylation of transcription 

factors. Transcription factors, that are regulated by RSK, are for example CREB, NF-κB 

and NFAT3 (nuclear factor of activated T cells 3) [321-323]. In the cytosol, proteins 

involved in apoptosis such as BAD and DAPK are phosphorylated by RSK [274, 324, 

325]. BAD is suppressed by this phosphorylation [326], and phosphorylated DAPK retains 

ERK1/2 in the cytosol, thus preventing ERK1/2 activity in the nucleus, and promotes 

apoptotic function [327]. How pro- and anti-apoptotic functions of ERK1/2 are linked has 

not been clarified so far, but seems to depend on the specificity of the stimuli as well as on 

the cell type. In general, cell death promoting functions of ERK1/2 are not yet well 

understood [274]. 

Some selected substrates of ERK1/2 are displayed in figure 1.7. Taken together, the Ras-

Raf-MEK-ERK pathway plays a pivotal role in the regulation of apoptosis and proliferation 

and therefore has a major role in tumorigenesis and cancer progression. 

 
 

Fig. 1.7: The Ras-Raf-MEK-ERK pathway. Ligand binding to RTK leads to activation of adaptors such as 

Shc and Grb2 resulting in SOS activation and subsequent activation of Ras. Ras in turn phosphorylates Raf, 

a MAP3K inducing the three-tiered pathway of MAPK resulting in the phosphorylation and activation of 

ERK1/2. Examples for cytosolic substrates of ERK1/2 are PDE4, MLCK and RSK. RSK phosphorylates BAD 

and DAPK which are involved in the regulation of apoptosis. Nuclear substrates of ERK1/2 are the 

transcription factors c-Fos and Elk1 as well as CREB which is phosphorylated by ERK1/2 substrate RSK. 

Arrows indicate activation and blunt end arrows represent inhibition of the substrates. Abbreviations: RTK: 

receptor tyrosine kinase; Shc: SHC-transforming protein; Grb2: growth factor receptor-bound protein 2; SOS; 

Son of Sevenless; Ras: Rat sarcoma; GDP/GTP: guanosine diphosphate/ triphosphate; MEK: MAP2K; ERK: 
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extracellular signal-regulated kinase; MLCK: myosin light-chain kinase; RSK: ribosomal s6 kinase; BAD: Bcl-

2-associated death promoter; DAPK: death-associated protein kinase; PDE4: phosphodiesterase 4; 

FOXO3a: Forkhead box O 3a; CREB: cAMP response element-binding protein; Elk1: ETS domain-containing 

protein. CBP: CREB-binding protein. (modified from [328, 329]) 

 

1.4.2. The role of Ras-Raf-MEK-ERK pathway in cancer 

The Ras-Raf-MEK-ERK pathway has been shown to be important for many types of 

cancers. Mutations and dysregulations at several steps of the signaling cascade are 

known to result in increased activity of ERK1/2. 

Receptors that trigger the Ras-Raf-MEK-ERK pathway can be dysregulated which leads 

to tumorigenesis. For instance, over-expression of EGFR has been shown in many 

cancers such as breast [330] lung [331] or colorectal cancer [332]. Furthermore, mutations 

of the receptor, which lead to constitutive activation of the receptor independent of any 

stimuli, have been identified [333]. The so called EGFRvIII mutation, that was first found in 

GBM [334-336], is lacking parts of the extracellular domain responsible for ligand binding 

[337] and has also been reported in breast, ovarian, prostate and lung cancer [338-340]. 

EGFRvIII has been demonstrated to be constitutively associated with the downstream 

adaptor protein Grb2 leading to Ras activation [341-343]. Other RTKs or GPCR that 

influence the initiation and progression of tumors are also affected in cancer by over-

expression or mutation [344, 345]. In about 30% of all cancers members of the Ras family 

are mutated [346, 347]. K-Ras mutations occur in about 85% of tumors, N-Ras in 15% 

and H-Ras in less than 1% [348]. Pancreatic, lung and colon cancer are most affected by 

K-Ras mutations [348]. In general, mutations of Ras lead to constitutive binding of GTP 

which results in stimulus-independent and continuing activation of downstream cascades 

as Raf-MEK-ERK [346, 349]. Raf proteins play an important role in cancer as well. In 

particular, the family member B-Raf is known to be mutated in approximately 8% of 

human cancers, most frequently in thyroid cancer (45%) and melanoma (41%) [348, 350]. 

Most of the 40 known mutations of B-Raf result in constitutive activation and downstream 

signaling [348]. The prevention of Raf inactivation by conformational changes, as seen for 

B-Raf V600E mutation, could be a cause of constitutive activation [351, 352]. 

Furthermore, over-expression of wild-type B-Raf has been reported in melanoma cell lines 

[353]. Another family member of the Raf kinases, Raf-1, has been shown to be mutated in 

cancer cell lines resulting in transformation, but those mutations were not confirmed in 

primary tumor tissue [354-356]. Hyperactivity of Raf-1 is likely caused by over-expression 

and dysregulation of upstream receptors as well as oncogenic Ras [357-360]. In contrast 

to Ras and Raf, mutations of MEKs are rather uncommon [348, 361]. Gain-of-function 
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mutations leading to the activation of MEK1/2 and consequently of ERK1/2 have been 

described in 3% of melanomas and 2% of colon cancers [361]. 

Usually mutations that activate a certain signaling pathway do not occur in parallel within 

the same tumor because they are redundant [348]. However, all of the described 

mutations can lead to increased activation of ERK1/2 and thereby influence cellular 

functions. On the one hand, hyperactive ERK1/2 results in increased proliferation by 

promoting transcription factors such as c-Fos and Elk1 [307, 313]. On the other hand, 

reduced apoptosis and thereby increased survival is mediated by ERK1/2 substrates such 

as FOXO3a and RSK [314, 319]. 

 

1.5. The crosstalk between Akt and ERK1/2 signaling 

The complex crosstalk between the Akt and ERK signaling cascades comprises cross-

inhibition and cross-activation as well as converging of the pathways in the same 

substrates [362]. The initiation of both signaling pathways is facilitated by similar stimuli. 

Besides growth factors that trigger EGFR receptors, also IGF-1 (insulin-like growth factor 

1) [363, 364] and oxidative stress [365, 366] induce Ras as well as PI3K activation [367]. 

Besides the activation of the Ras-Raf-MEK-ERK pathway, Ras has been demonstrated to 

also activate the PI3K-Akt pathway [368, 369]. Moreover, PTEN, a negative regulator of 

Akt, has been identified to also negatively influence Ras activation. Gu et al. as well as 

Thomas and colleagues showed PTEN to dephosphorylate Shc adaptor protein causing 

decreased ERK1/2 activation in glioblastoma [370, 371]. Akt has been shown to 

phosphorylate Raf-1 at S259 resulting in a reduced activity of Raf-1 and inhibition of 

ERK1/2 signaling [372, 373]. Nevertheless, this direct interaction seems not to be 

mandatory as Rommel and colleagues showed the interaction of Raf and Akt for 

differentiated myotubes but could not verify this in undifferentiated myoblasts indicating a 

stage-specific crosstalk [374]. Besides, Raf can be phosphorylated by PKC which is also a 

PI3K substrate [375, 376]. Downstream of Akt and ERK1/2 kinases, both pathways 

converge in some mutual substrates. Especially proteins mediating apoptosis are 

regulated by both signaling pathways. For instance, Akt as well as ERK1/2 phosphorylate 

transcription factors such as FOXO3a and CREB (see 1.3.1.2 and 1.4.1) which leads to 

the expression of Bcl-2 family members [218, 377, 378]. Key components of the apoptosis 

cascade, as for example BAD and BIM, are phosphorylated by Akt and ERK1/2, thereby 

repressing apoptosis [218, 379-382]. Furthermore, proliferation is regulated by both 

cascades. Akt and ERK1/2 downstream kinase RSK phosphorylates YB1 (Y box binding 
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protein 1) [383-385] as well as ERα [386-388] and thereby enhances transcription of 

genes involved in proliferation. Other common substrates of Akt and ERK1/2 are: TSC2 

[389, 390], p70S6K [391], GSK3 [181, 392] and p27 [393-395]. The crosstalk between 

ERK1/2 and Akt signaling cascades as well as their mutual substrates are illustrated in 

figure 1.8. 

 
 

Fig. 1.8: The crosstalk between Ras-Raf-MEK-ERK and PI3K-Akt pathways. The schematic 

representation illustrates both pathways as shown before (Fig 1.4 and Fig. 1.7). Possible cross regulations 

are indicated with arrows whereas arrows stands for activation and blunt end arrows represent inhibition of 

the substrates. Examples of common substrates of both signaling cascades responsible for the regulation of 

either apoptosis or proliferation are listed in the box. Abbreviations: RTK: receptor tyrosine kinase; SOS; Son 

of Sevenless; Shc: SHC-transforming protein; Grb2: growth factor receptor-bound protein 2; Ras: Rat 

sarcoma; MEK: MAP2K; ERK: extracellular signal-regulated kinase; PTEN: phosphatase and tensin 

homolog; PI3K: phosphatidylinositide 3-kinases; PKC: protein kinase C; BAD: Bcl-2-associated death 

promoter; FOXO3a: Forkhead box O 3a; CREB: cAMP response element-binding protein; YB1: Y box binding 

protein 1; ERα: estrogen receptor alpha. (modified from [367, 368, 377, 396]) 

 

Another consequence of ERK1/2 and Akt signaling is the development of 

chemotherapeutic drug resistance. Whereas ERK1/2 mediates a resistance by increased 

expression of efflux pumps such as MDR-1 (multi-drug-resistant 1) [397], Akt facilitates 

the resistance via suppression of p53 induced apoptosis [398-400]. Additionally, the 

cooperation of both signaling cascades complicates cancer therapy. Since Akt and 

ERK1/2 signaling pathways have common substrates, they can easily fill in for the other 

[377]. Furthermore, other pathways such as Jak-STAT and NF-κB are also involved in the 
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complex interplay of signaling pathways [378, 401, 402] and therefore represent possible 

ways to bypass targets of chemotherapeutic drugs. 

 

1.6. Aim of this study 

Glioblastoma multiforme is one of the most common and lethal brain tumors. Many 

signaling pathways such as the Akt and ERK1/2 pathways have already been described 

to play a role in tumorigenesis. The aim of this study was to examine the expression levels 

of members of the non-canonical IKK complex in cancer. It was also planned to identify 

the importance of the non-canonical IKK complex for proliferation of glioma cell lines and 

to study the involved signaling cascades. In addition to knock-down experiments, the 

function of IKKε and TBK1 should also be revealed after their pharmacological inhibition 

with a small molecule inhibitor. Here, also Akt and ERK1/2 signaling cascades should be 

included using specific inhibitors. Furthermore, it was planned to further examine the 

reasons for a potential over-expression of the components of the non-canonical IKK 

complex by measurement of de novo transcription, mRNA stability and protein stability in 

glioma cell lines. It was then interesting to address the consequences of TANK or TBK1 

knock-down on the cell cycle and cell migration. Understanding of the molecular changes 

in GBM can help to improve treatment and survival of patients. 
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2. MATERIALS AND METHODS 

 

2.1. Materials 

2.1.1. Eukaryotic cell lines 

Name Description 

A172 Human glioblastoma cells 

A271 Human glioblastoma cells 

A549 Human lung carcinoma cells 

A764 Human glioblastoma cells 

HeLa Human cervix carcinoma cells 

HCT116 Human colorectal carcinoma cells 

HEK293T 
Human embryonic kidney cells stably expressing the large T 

antigen of the SV40 virus 

Ln229 Human glioblastoma cells 

MCF7 Human breast adenocarcinoma cells 

Phoenix Ampho™ 
Second-generation retrovirus producing, amphotropic packaging 

cells based on HEK293 cells 

SNB19 Human glioblastoma cells 

T98G Human glioblastoma cells 

U118 Human glioblastoma cells 

U251 Human glioblastoma cells 

U343 Human glioblastoma cells 

U373 Human glioblastoma/astrocytoma cells 

U87MG Human glioblastoma/astrocytoma cells 

 

2.1.2. E.coli strains 

Name Description Source 

TOP10 
F– mcrA Δ(mrr-hsdRMS-mcrBC) ϕ80lacZΔM15 
ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK 
rpsL (StrR) endA1 nupG 

Invitrogen 

XL10 Gold 
Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 
supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB 
lacIqZΔM15 Tn10 (Tetr) Amy Camr] 

Stratagene 
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2.1.3. Antibodies 

2.1.3.1. Primary antibodies for immunoblotting 

Name Species Source 

anti-Akt  rabbit polyclonal Cell Signaling 

anti-IKKε (12142)  mouse monoclonal Abcam 

anti-p44/42 MAPK (Erk1/2)  rabbit polyclonal Cell Signaling 

anti-Phospho-Akt (Ser473) rabbit polyclonal Cell Signaling 

anti-Phospho-Akt (Thr308) rabbit polyclonal Cell Signaling 

anti-Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204)  
rabbit polyclonal Cell Signaling 

anti-TANK (47632) rabbit polyclonal Abcam 

anti-TANK (D2) mouse monoclonal Santa Cruz 

anti-Phospho-IRF-3  rabbit monoclonal Cell Signaling 

anti-Phospho NF-κB p65 (Ser536) rabbit monoclonal Cell Signaling 

anti-Ubiquitin (P4D1) mouse monoclonal Cell Signaling 

anti-TBK1/NAK (D1B4)  rabbit monoclonal Cell Signaling 

anti-β-Actin (1801)  rabbit polyclonal Abcam 

 

2.1.3.2. Secondary antibodies for immunoblotting 

Name Species Conjugated to Source 

anti-mouse IgG  goat Horseradish peroxidase Dianova 

anti-rabbit IgG  goat Horseradish peroxidase Dianova 

 

2.1.3.3. Antibodies used for co- and chromatin-immunoprecipitation 

Name Species Source 

anti-Akt  rabbit polyclonal Cell Signaling 

anti-IKKε (12142)  mouse monoclonal Abcam 

anti-TANK (D2) mouse monoclonal Santa Cruz 

anti-TBK1/NAK (D1B4)  rabbit monoclonal Cell Signaling 

anti-normal IgG (2025) mouse Santa Cruz 

anti-normal IgG (2027)  rabbit  Santa Cruz 

anti-RNA polymerase II 

CTD phospho S2 
Rabbit polyclonal Abcam 

anti-IgG rabbit Cell Signaling 
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2.1.4. Expression plasmids 

cDNA/ construct/ name Vector Source 

pHCMVG  Addgene 

pMDLg/pRRE  Addgene 

pRSV-Rev  Addgene 

pMD2.G  Addgene 

psPAX2  Addgene 

shScramble pSIREN M.L. Schmitz 

shTANK #1 pSIREN Julia Stellzig 

shTANK #2 pLL3.7 Alain Chariot 

shTBK1 #1 pSIREN Julia Stellzig 

shTBK1 #2 pLKO1 Alain Chariot 

TANK siBlock 
290-pHAGE-hEF1aCAR-PGK Puro-

Linker 
Julia Stellzig 

 

2.1.5. Synthetic oligonucleotides 

2.1.5.1. Oligonucleotides for shRNA cloning 

Primer Sequence (5’3’) 

sh-hTBK1-f GATCCCCGGAGCTACTGCAAATGTCTTTCAAGAGAAGACATTTGCAGTAGCTCCTTTTTGGAAA 

sh-hTBK1-r AGCTTTTCCAAAAAGGAGCTACTGCAAATGTCTTCTCTTGAAAGACATTTGCAGTAGCTCCGGG 

 

2.1.5.2. Oligonucleotides for real-time PCR 

Primer Sequence (5’3’) 

IKKe-2-qRT-fw GCTCAGCTCCTGGACGTGCC 

IKKe-2-qRT-rev TGCCCTGAGCTGGCTGGTCA 

TBK1-qRT2-for GGCGGAGACCCGGCTGGTAT 

TBK1-qRT2-rev ACATTTGCATAGCTCCTTGGCC 

5’UTR-TANK-r TTCCTCTTCGTCCTGTAGCA 

5’UTR-TANK-f AGGATTGTTAGAGCCTGTGGA 

huActin-qPCR-f TCCCTGGAGAAGAGCTACGA 

huActin-qPCR-r AGGAAGGAAGGCTGGAAGAG 

TNF_FW GTGATCGGCCCCCAGAGGGA 

TNF_RV ACTGGAGCTGCCCCTCAGCT 

IL-6_FW CCTGCACGGCATCTCAGCCC 
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IL-6_RV TGCCAGTGCCTCTTTGTCGTC 

Vcam_FW ACGCTGACCCTGAGCCCTGT 

Vcam_RV ACGAGGCCACCACTCATCTCGA 

TBP_FW GAGCTGTGATGTGAAGTTTCC 

TBP_RV TCTGGGTTTGATCATTCTGTAG 

HPRT1_FW TGAGGATTTGGAAAGGGTGT 

HPRT1_RV GAGCACACAGAGGGCTACAA 

 

2.1.5.3. Oligonucleotides for site-directed mutagenesis 

Primer Sequence (5’3’) 

TANK shRNA res-1 AAGACTGAGAATTACGAGCAGAGAATACGTG 

TANK shRNA res-2 TTCTCTGCTCGTAATTCTCAGTCTTTTGCTG 

 

2.1.5.4. Oligonucleotides for chromatin-immunoprecipitation 

Primer Sequence (5’3’) 

GAPDH-UP TACTAGCGGTTTTACGGGCG 

GAPDH-LO TCGAACAGGAGGAGCAGAGAGCGA 

ChIP_hTANK_FW1 TTTGTATGCGTGAGCGAGAG 

ChIP_hTANK_RV1 CGACGATGCTATGCTGACAT 

ChIP_hTANK_FW2 TCTTACCGCGGTTGGAATAC 

ChIP_hTANK_RV2 CAACTGGGGAGAGGACTGAG 

 

2.1.6. Antibiotics 

Name Final concentration Source 

Ampicillin  100 µg/ml Sigma 

Puromycin 1 – 2 µg/ml Invitrogen 

Penicillin / Streptomycin 100 IU / 100 µg/ml Cell Concepts, PAA 
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2.1.7. Inhibitors 

Name Final 

concentration 

Target Source 

1-β-D-Arabinofuranosyl-

cytosine (Cytarabine, AraC) 
1 µM DNA synthesis Calbiochem 

5Z-7-oxozeaenol 1 µM TAK1 Sigma 

Actinomycin D 1 µg/ml 
DNA-dependent RNA 

synthesis 
Sigma 

Akt Inhibitor VIII 

(Isozyme-selective, Akti-1/2) 
5 µM Akt Calbiochem 

Aphidicolin 2 µg/ml DNA polymerase A,D Sigma 

Aprotinin  10 µl/ml 

Serine proteases 

(Trypsin, Chymotrypsin, 

Plasmin) 

Sigma 

BX795  1 µM IKK-related kinases 
Axon 

Medchem 

Complete ULTRA tablets 1 x Proteases Roche 

Cycloheximide 10 µg/ml Ribosomes Roth 

Leupeptine 10 µl/ml Proteases (Lysosomal) Sigma 

PD98059 20 µM MEK1/2 Cell Signaling 

Temozolomide 100 µM DNA replication Sigma 

U0126 5 µM MEK1/2 Cell Signaling 

 

2.1.8. Enzymes 

Name Source 

Calf intestine alkaline phosphatase (CIAP) Fermentas 

Long Range PCR enzyme mix (DNA 

polymerase) 
Qiagen 

Pfu Ultra DNA polymerase Stratagene 

Restriction enzymes Fermentas 

RiboLock R1 RNase Inhibitor Fermentas 

SuperScript™ II reverse transcriptase Invitrogen 

T4 DNA Ligase Fermentas 

T4 polynucleotide kinase (PNK) Fermentas 

RNase A Sigma 
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Taq DNA polymerase Fermentas 

 

2.1.9. Kits 

Name Source 

RNeasy Mini Qiagen 

ABsolute™ qPCR SYBR green ROX mix Thermo (ABgene) 

JETquick gel extraction spin kit Genomed 

JETquick PCR purification kit Genomed 

JETstar 2.0 Plasmid Mini/Midi/Maxi Genomed 

Vybrant® MTT Cell Proliferation Assay Kit Invitrogen 

Long Range PCR kit Qiagen 

QuickChange II site-directed mutagenesis Stratagene 

Pierce® BCA protein assay kit Thermo 

 

2.1.10. Chemical reagents 

Name Source 

1,4-Dithiothreitol (DTT) Invitrogen 

Acetic Acid Roth 

Acrylamide/ Bisacrylamide mix (Roti-

phorese) 
Roth 

Adenosine triphosphate (ATP) Sigma 

Agarose AppliChem 

Ammonium persulfate (APS) Bio-Rad 

Becton™ krypton BD Bioscience 

Bovine serum albumin (BSA) Sigma 

Bromphenol blue Merck 

Calcium Chloride (CaCl2) Roth 

Chloroform Merck 

Cupric sulfate Roth 

Deoxycholat Sigma 

deoxyribonucleotide triphosphates (dNTP) 

mix 
Fermentas 

Dimethyl 3,3-dithiobispropionimidate (DTBP) Therma 

Dimethyl sulfoxide (DMSO) Sigma 
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di-Sodium hydrogen phosphate (Na2HPO4) Roth 

Doxycycline Sigma 

Ethanol Roth 

Ethidium bromide Roth 

Ethylendiamintetraacetic acid (EDTA) Roth 

Ficoll 400 Sigma 

Gelatin Roth 

Glycerine Roth 

Glycerol Roth 

Hexadimethrine bromide (Polybrene) Sigma 

Hydrochloride acid 37% (HCl) Roth 

Isopropanol Roth 

Lithium chloride (LiCl) Merck 

Magnesium chloride (MgCl2) Merck 

Magnesium sulfate (MgSO4) Merck 

Methanol Roth 

N,N,N‘,N‘-Tetramethylethylendiamine 

(TEMED) 
Bio-Rad 

Nonident P40 (NP40) Roche 

Phenylmethanesulfonyl fluoride (PMSF) Fluka 

Polyethylenimine (PEI) Roth 

Potassium chloride (KCl) Roth 

Potassium dihydrogen orthophosphate 

(KH2PO4) 
Roth 

Potassium hydroxide (KOH) Merck 

Propidium iodide (PI) Sigma 

Skim milk powder Merck 

Sodium azide (NaN3) Roth 

Sodium chloride (NaCl) Roth 

Sodium dihydrogen phosphate (NaH2PO4) Merck 

Sodium dodecyl sulfate (SDS) Bio-Rad 

Sodium fluoride (NaF) Roth 

Sodium hydroxide (NaOH) Merck 

Sodium orthovanadate (Na3VO4) Sigma 

TRIS Roth 

Triton X-100 Sigma 
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TRIzol® Ambion 

Tryptone AppliChem 

Tween 20 Gerbu 

Yeast extract Roth 

β-Mercaptoethanol Roth 

 

2.1.11. Other reagents 

Name Source 

Enhanced chemiluminiscence (ECL) solution GE Healthcare 

Fetal calf serum (FCS) Cell concepts 

Generuler™ 1 kb DNA ladder Fermentas 

Generuler™ 100 bp DNA ladder Fermentas 

L-Glutamine (200 mM) Cell Concepts 

Lipofectamine 2000 Invitrogen 

Oligo(dT)12-18 Primer Invitrogen 

PageRuler™ prestained protein ladder Fermentas 

Protein A/G agarose beads Santa Cruz Biotech 

Roti®fect Roth 

TrypLETM Express Gibco 

First Strand Buffer Fermentas 

T4 ligase buffer Fermentas 

FACS Flow™ BD Bioscience 

FACS Clean BD Bioscience 

FACS Rinse BD Bioscience 

Trypsin/EDTA Cell Concepts 

 

2.1.12. Media, buffers and solutions 

2.1.12.1. Media for cultivating prokaryotic cells 

Bacteria were cultured either in Luria Bertani broth (LB) medium or on LB agar plates 

supplemented with an appropriate antibiotic. LB medium was assembled as follows: 

Bacto-trypton 1% (w/v) 

Yeast extract 0.5% (w/v) 

NaCl 1% (w/v) 

LB agar plates additionally contained 1.6% (w/v) agar. 
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2.1.12.2. Media for cultivating eukaryotic cells 

Most eukaryotic cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM), but 

MCF7 cells were kept in RPMI 1640 medium. 

Name Source 

DMEM high glucose Cell concepts 

RPMI 1640 Cell concepts 

DMEM as well as RPMI 1640 medium were supplemented with 10% (v/v) FCS, 1% (v/v) 

penicillin/streptomycin and 2 mM L-glutamine. Decomplementation of FCS was done at 

56 °C for 30 min to inactivate heat-labile complement proteins. 

2.1.12.3. Buffers and other solutions 

All buffers that are described subsequently were prepared using deionized water when 

nothing else is indicated. Water used for buffers in molecular biological methods was 

additionally autoclaved. 

Phosphate Buffered Saline (PBS) (pH 7.4) 137 mM NaCl 

 8.1 mM Na2HPO4 

 2.7mM KCl 

 1.5 mM KH2PO4 

   

TRIS Buffered Saline (TBS-T) (pH 7.4) 250 mM TRIS 

 1.37 M NaCl 

 50 mM KCl 

 7 mM CaCl2 · 2H2O 

 1 mM MgCl2 · H2O 

 0.1% (v/v) Tween 20 

   

TRIS-Acetate-EDTA (TAE) (pH 8.3) 0.05 M EDTA 

 2 M TRIS 

 1 M Acetic acid 

   

5 x SDS sample buffer 250 mM TRIS-HCl (pH 6.8) 

 15% (v/v) β-Mercaptoethanol 

 40% (v/v) Glycerin 

 10% (w/v) SDS 

 0.1% (w/v) Bromphenol blue 

   

SDS stacking gel (5%) 125 mM TRIS-HCl (pH 6.8) 

 5% (v/v) Acrylamide/Bisacrylamide 

 0.1% (w/v) SDS 

 0.04% (v/v) APS 

 0.3% (v/v) TEMED 
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SDS separating gel (8 or 10%) 350 mM TRIS-HCl (pH 8.8) 

 8 or 10% Acrylamide/Bisacrylamide 

 0.1% SDS 

 0.04% APS 

 0.075% TEMED 

   

5 x SDS Running Buffer 125 mM TRIS 

 960 mM Glycerine 

 0.5% (w/v) SDS 

   

Transfer Buffer (Semi-dry Blot) 48.5 mM TRIS 

 39 mM Glycerine 

 20% (v/v) Methanol 

 0.038% (w/v) SDS 

   

NP40 lysis buffer 20 mM TRIS-HCl (pH 7.5) 

 1% (v/v) NP40 

 150 mM NaCl 

 10% (v/v) Glycerol 

 prior to use:  

 25 mM NaF 

 1 mM Na3VO4 

 1 mM PMSF 

 10 µg/ml Aprotinin 

 10 µg/ml Leupeptin 

   

TE buffer 10 mM TRIS-HCl (pH 7.5) 

 1 mM EDTA 

   

6 x DNA sample buffer (pH 8) 15% (w/v) Ficoll 400 

 10 mM EDTA 

 0.1% (w/v) Bromphenol blue 

   

ChIP-SDS buffer 1% SDS 

 10 mM EDTA 

 50 mM TRIS-HCl (pH 8.1) 

 prior to use:  

 10 µg/ml Aprotinin 

 10 µg/ml Leupeptin 

 1 mM PMSF 

   

ChIP Dilution buffer 0.01% SDS 

 1% Trition X-100 

 1.2 mM EDTA 

 16.7 mM TRIS-HCl (pH 8.1) 

 16.7 mM NaCl 

   

ChIP low salt buffer 0.1% SDS 

 1% Triton X-100 

 2 mM EDTA 

 20 mM TRIS-HCl (pH 8.1) 

 150 mM NaCl 
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ChIP high salt buffer 0.1% SDS 

 1% Triton X-100 

 2 mM EDTA 

 20 mM TRIS-HCl (pH 8.1) 

 300 mM NaCl 

   

ChIP LiCl buffer 0.25 M LiCl 

 1% NP40 

 1 mM EDTA 

 20 mM TRIS-HCl (pH 8.1) 

 1% Sodium deoxycholat 

   

Annealing buffer 100 mM Potassium acetate 

 2 mM Magnesium acetate 

 30 mM HEPES-KOH (pH 7.4) 

 

2.2. Methods 

2.2.1. Methods in cell biology 

2.2.1.1. Eukaryotic cell culture 

Human cell lines cultures were grown in appropriate medium in 175 cm² flasks at 37 °C in 

a humidified 5% CO2 incubator. Confluent cells were trypsinized. Therefore, old medium 

was removed, cells were washed with 10 ml prewarmed 1 x PBS and 5 ml Trypsin was 

added. After incubation for 2 – 4 min. at 37 °C, cells were resuspended in complete 

medium to stop trypsinization. A small aliquot of cell suspension was added into a new 

flask with 20 ml of complete medium. 

2.2.1.2. Freezing and thawing 

To store cells for a longer term, they were frozen at -150 °C in 1 ml FCS with 10% (v/v) 

DMSO (freezing medium). Therefore cell suspension was centrifuged for 3 min at 

1300 rpm and the pellet was resuspended in freezing medium. The resulting suspension 

was transferred into labeled freezing vials and gradually cooled down to -150 °C. 

To thaw frozen cell aliquots, vials were placed in a 37 °C water bath until suspension was 

thawed completely. Then cells were immediately resuspended in prewarmed culture 

medium and pelleted to remove DMSO. Culture medium was added to the cell pellet and 

cells were seeded into a new flask. After cells attached to the ground, medium was 

changed to remove dead cells. 
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2.2.1.3. Transfection of eukaryotic cells 

Eukaryotic cells were transfected by liposomes using either PEI, Roti®-Fect or 

Lipofectamine according the manufacturer’s instructions. The plasmid DNA as well as 

transfection reagent were mixed with 100 µl DMEM each without any additives. After 

5 min both solutions were mixed and further incubated for 20 min at room temperature. 

Meanwhile seeded cell were prepared by washing them with 2 ml of 1 x PBS and adding 

of fresh antibiotic-free medium. The DNA-liposome mix was added on the cells drop wise 

and mixed gently. The cells were incubated at 37 °C in a humidified 5% CO2 incubator for 

4 hs. Then medium was exchanged to culture medium and cells were allowed to grow for 

at least 24 hs.  

2.2.1.4. Retro- and lentiviral infection of glioblastoma cell lines 

The introduction of DNA into glioblastoma cell lines was not possible as described above. 

Therefore those cell lines had to be infected with retro- or lentiviruses to express desired 

DNA. Retroviruses were produced in Phoenix Ampho cell line by transfecting pSIREN-

vector containing desired shRNA constructs with Roti®-Fect according to manufacturer’s 

instructions. The produced retroviruses were used to silence proteins in infected 

glioblastoma cell lines by RNA interference. The binding of shRNA to corresponding 

mRNA within the cell leads to degradation of the mRNA by ribonuclease. In order to 

exclude off-target effects, alternative constructs for shTANK and shTBK1 were delivered 

by lentiviral transduction. Thus, HEK293T cells were transfected with either pLL3.7-

shTANK or pLKO1-shTBK1 together with packaging plasmid psPAX2 (encoding HIV-1 

Gag, Pol, Tat and Rev proteins) as well as envelope plasmid pMD2.G (encodes for 

VSVG) using lipofectamine according the manufacturer’s instructions. Furthermore, over-

expression experiments for TANK were also performed using lentiviruses to infect 

glioblastoma cell lines. Lentiviruses were also produced in HEK293T cells by transfecting 

290-pHAGE-hEF1aCAR-PGK Puro-Linker TANK vector together with the packaging 

vectors pMDLg/pRRE, pRSV-Rev and pHCMVG using lipofectamine according the 

manufacturer’s instructions. Two days after transfection of the virus producing cells, the 

virus containing supernatant was collected and filtered through a 0.45 µm filter. After 

adding Polybrene to a final concentration of 5 µg/ml, the supernatant was added to the 

glioblastoma cell lines for 24 hs. Then medium was changed back to culture medium. 

Three days after infecting glioblastoma cell lines were treated with 2 µg/ml Puromycin for 

at least 5 days to select cells containing the desired DNA constructs. 
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2.2.1.5. MTT cell viability and proliferation assays 

To determine cell viability and indirectly the proliferation ability, the Vybrant® MTT cell 

viability assay was performed. Glioblastoma cell lines where either TANK or TBK1 was 

silenced or scrambled control cells were counted and 1 x 10³ cells per well were seeded in 

96-well plates. At the next day, cells were treated with either the cytostatics TMZ and 

AraC or the inhibitor BX795. After 3 days the assay was performed as described in the 

manufacturer’s instructions. Water soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) was solubilized in 1 ml PBS by sonification and 10 µl of it 

was added to each well containing 100 µl new complete DMEM medium. Within 4 hs of 

incubation at 37 °C the living cells took up the MTT and converted it into the insoluble 

formazan. To stop the reaction and to lyse the cells, 100 µl SDS-HCl solution was added 

to each well. The plate was then further incubated at 37 °C in a humidified chamber to 

dissolve the formazan. The absorbance of formazan was measured 16 hs later on an 

Ultra Microplate Reader EL-808i at a wavelength of 562 nm. 

2.2.1.6. Proliferation assays 

To measure proliferation of Glioblastoma cell lines, cells were counted in a FACSCalibur. 

Cells were seeded at a density of 5 x 10³ on 6 and 10 cm² plates, respectively, and were 

allowed to grow for either 72 or 120 hs. To harvest the cells, they were first washed with 

1 x PBS and subsequently trypsinized with TrypLETM Express for 5 min. Trypsinization 

was stopped by adding complete medium on the plate. Cell suspension was then 

transferred to round-bottom tubes. The number of cells was counted by FACSCalibur over 

a constant time of 60 sec at medium flow rate (35 ± 5 µl/min) with following settings: 

Param Detector Voltage Amp Gain Mode 

P1 FSC E00 1.00 lin 

P2 SSC 310 1.00 lin 

P3 FL1 394  log 

P4 FL2 340  log 

P5 FL3 200  log 

 

2.2.1.7. Cell migration assays 

The wound-healing assay, also called scratch assay, is a method to determine cell 

migration where an area of a cell layer is scraped off and the migration of cells into this 

gap is monitored microscopically. Knock-down and control glioblastoma cells were seeded 

at a density of 1.5 – 2 x 105 cells per well in 6-well pates and grown to 80% confluence. 

Cells were then kept in serum-reduced complete medium supplemented with 2 µg/ml 
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aphidicolin to prevent proliferation. At text day, a scratch was gently made with a yellow 

pipette tip. The cells were washed twice with prewarmed PBS to remove loose cells and 

serum-reduced medium supplemented with 2 µg/ml aphidicolin was added again. Directly 

after scratching as well as 10 and 24 hs after pictures of the gap were taken with a life cell 

imaging technique using a NIKON Inverted Research Microscope Eclipse TE2000-E to 

retain migration. Taken pictures were analyzed using NIKON NIS-Elements AR 3.22. 

2.2.1.8. Cell cycle analysis by flow cytometry 

A cell cycle profile displays the DNA content of a cell population and thereby provides 

information about the four characteristic phases of the cell cycle. Whereas G1 phase is 

characterized by a diploid set of chromosomes (2N) and S phase by an aneuploid (2N – 

4N), cells in G2 have a fourfold amount of DNA [227]. The DNA amount can be measured 

by flow cytometry after staining with propidium iodide, a fluorescent dye that intercalates 

into DNA. The measured fluorescence then is directly proportional to the DNA content of 

the cells. Either knock-down or control cells were seeded on 10 cm dishes and if required 

treated with 0.3 µM vinblastine for 24 hs to arrest the cell cycle in late G2 phase. After 

collecting the culture medium in a 15 ml tube, cells were detached using TrypLETM 

Express. Detached cells were then transferred to the corresponding tube and pelleted at 

3,000 rpm at 4 °C for 5 min. Cells were washed with PBS and the cell pellets were taken 

up in 300 µl PBS. Cell were fixed by dropwise adding of 1 ml ice-cold ethanol (70%) while 

the suspension was vortexed to avoid the formation of cell clumps. After not less than 1 h 

cells were pelleted again and washed once with PBS. Cell pellets were then resuspended 

in 500 µl PI-TritonX100-RNaseA solution and incubated for 15 min at room temperature in 

the dark. To stop this staining reaction, tubes were put on ice. The emission of propidium 

iodide was then analyzed using a FACSCalibur with different settings for each cell line. 

Percentages of cells in certain cell cycle phases were determined by ModFit LT™ 

software. 

2.2.2. Methods in biochemistry 

2.2.2.1. Preparation of protein extracts 

In order to analyze expression levels of proteins as well as their phosphorylation state 

they first need to be extracted from either eukaryotic cells or patient samples. 

2.2.2.1.1. Protein isolation from patient samples 

Patient tissue of glioblastoma multiforme, astrocytoma grade III and normal brain were 

kindly provided by Prof. Dr. Axel Pagenstecher. Frozen tissue was cutted in a cryo bench, 

weighted and transferred to microcentrifuge tubes. To extract the proteins, 10 x volume of 
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cold NP40 extraction buffer containing a mix of protease inhibitors (1 x Complete ULTRA 

tablet and 5 µg/ml Pepstatin A) was added and the tissue was homogenized by using a 

Turrax. Samples were frozen immediately on dry ice and transferred to -80 °C. 

2.2.2.1.2. Determination of protein concentration 

To determine the protein concentration of homogenized patient tissues, the Pierce® BCA 

protein assay was performed in 96-well plates following the manufacturer’s instructions. 

BSA stocks (2 mg/ml) were used to prepare a set of nine diluted standards ranging from 

0 – 2000 µg/ml. The working reagents were prepared by mixing 50 parts BCA reagent A 

with one part of BCA reagent B. In each well of a 96-well plate 10 µl of either the 

standards or the sample with unknown protein concentration was mixed with 200 µl of the 

working reagent. After incubating the plate at 37 °C for 30 min the plate was cooled down 

to room temperature. The absorbance was measured on an Ultra Microplate Reader EL-

808i with a wavelength of 562 nm within 10 min after cooling. Each measurement was 

carried out in triplicates. The standard curve was used to determine the protein 

concentration of the samples extracted from patient tissue. Before Western blot analysis 

of the samples, they were mixed with 5 x SDS sample buffer to a final concentration of 

1 x SDS. 

2.2.2.1.3. Lysate preparations from eukaryotic cells 

Proteins from glioblastoma cell lines were extracted by SDS lysis to get proteins from all 

the compartments within the cell and even membrane-bound proteins. Cells were first 

washed once with ice-cold PBS, harvested by scraping and then transferred to 

microcentrifuge tubes. After pelleting the cells at 3,000 rpm for 5 min, cells were 

resuspended in 1 x SDS sample buffer. After heating the suspension to 95 °C they were 

sonicated twice for 20 sec to shear the genomic DNA. The samples were then heated 

again to 95 °C for 5 min and frozen at -80 °C. 

2.2.2.2. Co-immunopecipitation 

The interaction of cellular proteins were determined by co-immunoprecipitation. To 

increase the binding stability of the interactions, the proteins were crosslinked before the 

actual precipitation. For the crosslinking, cells were first washed once with cold 1 x PBS 

on the dish. A freshly prepared 0.5 mM DTBP solution in 1 x PBS was added to the cells 

and incubated for 30 min at room temperature. After removing the DTBP solution cells 

were washed two times with PBS containing 200 mM TRIS/HCl (pH 7.5) for 10 min to stop 

the crosslinking reaction. Then cells were harvested by scraping in PBS with TRIS/HCl 

(200 mM, pH 7.5). Harvested and washed cells were lysed under native conditions by 
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resuspending the pellet in NP40 buffer containing protease inhibitors and incubated on ice 

for 20 min. Nuclear DNA was shared by two times sonification for 20 sec. To spin down 

cellular debris, the sonicated lysate was centrifuged 10 min at 13,000 rpm and the 

supernatant was transferred to new tube. After taking out 10% of the lysate as input 

control, the samples were incubated with A/G sephasose for 60 min at 4 °C to prevent 

nonspecific binding. After spinning down the beads by centrifugation, the supernatants 

were transferred to a new tube and 1 - 2 µg of primary antibody or control IgG were 

added. The antibodies were allowed to bind the proteins in the samples overnight at 4 °C 

on a spinning wheel. At the next day, 25 µl of A/G sepharose was added and samples 

were again incubated at 4 °C gently rocking for 2 hs. The supernatant was discarded and 

the beads were washed 5 times with NP40 buffer containing protease inhibitors. To elute 

bound proteins from the beads they were boiled at 95 °C in 2 x SDS sample buffer for 

4 min. The eluates were then further analyzed by SDS-PAGE and Western Blot. 

2.2.2.3. Polyacrylamide gel electrophoresis  

In order to separate equally charged proteins by their molecular weight a discontinuous 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed. Samples were mixed 

with 5 x SDS sample buffer to a final concentration of 1 x SDS. Cells were already lysed in 

1 x SDS sample buffer as described in 2.2.2.1.3. This sample buffer contains SDS to 

denature and negatively charge the proteins as well as β-mercaptoethanol to reduce 

disulfide bonds. SDS polyacrylamide gel contained a separating gel with an acrylamide 

concentration between 8 and 15%, depending on the expected size of the proteins, and a 

stacking gel containing 5% acrylamide which is necessary to focus the proteins in a single 

sharp band. This stacking of proteins was performed at 80 V. Once the separation of 

proteins started, the current was increased up to 120 V. To estimate the approximate size 

of various proteins, a pre-stained protein marker was loaded on the polyacrylamide gel 

next to the samples. Proteins were visualized by Western blotting. 

2.2.2.4. Western blot and immune detection 

Western Blot is a method to detect proteins by transferring them on a membrane and 

identify the proteins by binding of specific antibodies. Separated proteins from the SDS-

PAGE were transferred to and immobilized on polyvinylidene difluoride (PVDF) 

membranes using a semi-dry transfer method. Therefore, the PVDF membrane was 

activated by methanol for a few seconds and whatman papers were incubated in transfer 

buffer. Two of those whatman papers were placed into the electroblotting device. The 

activated PVDF membrane, the SDS polyacrylamide gel and another whatman paper 

were added on top. After removing carefully air bubbles between the layers, the device 
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was closed and a constant voltage of 24 V was applied. Depending on percentage of the 

SDS polyacrylamide gel, the size of the protein of interest and the number of gels per 

device, the transfer was performed for 40 to 195 min. The membranes with the transferred 

proteins were blocked by incubating for at least 30 min in blocking solution containing 

either 5% skim milk powder or BSA dissolved in TBS-T. After washing the membrane 

twice in TBS-T, the incubation with primary antibodies was carried out overnight at 4 °C. 

After washing three times with TBS-T for 10 min., the membranes were incubated with 

secondary peroxidase-coupled antibody for 1 h at room temperature. The non bound 

antibody was removed from the membranes by washing again three times for 10 min with 

TBS-T. Proteins with bound antibodies were then detected by autoradiography using an 

enhanced chemiluminiscence (ECL) system. 

2.2.3. Methods in molecular biology 

2.2.3.1. Preparation of competent E.coli 

E.coli stains were used to amplify plasmid DNA in high copy numbers. To ensure the 

uptake of the DNA bacteria were made chemically competent using the CaCl2 method. An 

Erlenmeyer flask with 10 ml LB medium was inoculated with E.coli and incubated 

overnight shaking at 37 °C. Next day, additional 90 ml of prewarmed LB medium were 

added and cells were allowed to grow further for approximately 70 min. Bacteria were 

cooled down and harvested by centrifugation at 4,000 g for 15 min at 4 °C. Cell pellets 

were resuspended in 50 ml ice-cold 0.1 M CaCl2 solution and incubated at 4 °C for 

30 min. Bacteria were again pelleted by centrifugation and resuspended in 3 ml of a 10% 

glycerol/0.1 M CaCl2 solution. Competent E.coli were aliquoted at 100 µl and stored at  

-80 °C. 

2.2.3.2. Competent E.coli transformation 

Various chemically competent E.coli stains were transformed to amplify plasmids. An 

aliquot of 50 µl of E.coli, which was thawed on ice, was mixed with 1 µg of the DNA and 

incubated for 20 min on ice. To induce the uptake of DNA into the bacteria via heat-shock, 

they were placed at 42 °C for 90 sec. After incubating the suspension for additional 5 min 

on ice, LB medium was added and the bacteria were allowed to grow shaking for 1 h at 

37 °C. Finally the transformed bacteria were plated out on LB agar plates supplemented 

with appropriate antibiotic to select for transformed cells. Plates were incubated overnight 

at 37 °C. 
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2.2.3.3. Plasmid DNA Purification 

Isolation of DNA from transformed E.coli was either performed by miniprep to identify the 

right clones or by maxiprep for large-scale preparations of highly pure DNA for 

transfection of eukaryotic cells. Both protocols follow the principles of alkaline lysis by 

Birnboim and Doly [403]. Minipreps were done by inoculation of bacteria in 3 ml of LB 

medium and further growth overnight at 37 °C. Next day, they were transferred to a tube 

and pelleted by centrifugation for 5 min at 5,000 rpm. LB medium was aspirated and 

bacteria were resuspended on ice in 200 µl buffer P1. To lyse the cells, 200 µl of buffer P2 

was added and mixture was incubated for 5 min at room temperature. After neutralization 

with 200 µl precooled buffer P3, tubes were incubated for 20 min. on ice. Thereafter the 

solution was centrifuged 10 min at 13,000 rpm and the supernatant was transferred to a 

new tube. To precipitate the DNA 350 µl isopropanol was added and the well mixed 

solution was centrifuged 15 min at 13,000 rpm. The supernatant was discarded and DNA 

washed with 500 µl 70% ethanol. DNA was pelleted, air-dried and redissolved in 30 µl TE 

buffer. 

For Maxiprep the Jetstar 2.0 Plasmid Mini/Midi/Maxi kit was used according the 

manufacturer’s instructions. Pelleted bacteria cells, that were grown overnight at 37 °C in 

250 ml LB medium supplemented with antibiotics, were resuspended in 10 ml buffer E1 

containing 100 µg/ml RNase. Suspension was then mixed with 10 ml buffer E2 in order to 

lyse cells. After incubation for 5 min at room temperature, lysates were neutralized by 

adding 10 ml buffer E3. Cell debris was spinned down and supernatant was applied to a 

Jetstar 2.0 column pre-equilibrated with 30 ml buffer E4. Once lysate ran through the 

column by gravity flow, it was washed once with 60 ml of buffer E5. After elution of DNA 

from the column by adding 15 ml of buffer E6, DNA was precipitated with 0.7 volumes of 

isopropanol and centrifuged for at least 30 min at 12,000 x g. The formed pellet was 

washed once with 5 ml of 70% ethanol and recentrifuged. Air dried DNA was dissolved in 

a suitable volume of TE buffer and quantified spectrophotometrically. 

2.2.3.4. Introduction of DNA fragments in vector molecules – cloning 

Plasmids are commonly used to introduce a desired DNA into eukaryotic cells. This 

certain DNA first has to be cloned into a suitable vector. 

2.2.3.4.1. Polymerase chain reaction 

The DNA fragment that will be cloned into a vector can be produced either by 

amplification by PCR (polymerase chain reaction) method or by annealing of two 

oligonucleotides. Polymerase chain reaction is a common method to amplify defined DNA 
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sequences. To minimize the risk of unwanted point mutations the Long Range PCR Kit of 

Qiagen was used that contains a DNA polymerase with an 3’-5’ exonuclease activity for 

proof-reading. The PCR reaction was set up on ice as followed: 

 Template DNA 20 ng 

 10x LongRange PCR buffer 5 µl 

 dNTP mix 0.5 mM 

 forward primer 0.4 µM 

 reverse primer 0.4 µM 

 Long Range PCR enzyme mix 2 units 

 RNase-free water to a total volume of 50 µl 

The amplification of the DNA in a Bio-Rad thermocycler was carried out under following 

conditions: 

 Initial activation: 3 min 95 °C 

 Denaturation: 15 sec 95 °C 

 Annealing 30 sec 55 - 62 °C (~5 °C below Tm of primers) 

 Extension: 1 min/kb 68 °C 

After 35 cycles an additional elongation step at 68 °C for 5 - 7 min was added. The 

annealing temperature depends on the melting point of the designed primers that usually 

contain a further non-complementary sequence coding for specific endonuclease 

restriction sites that are used to ligate the DNA into a vector that was opened with the 

same restriction enzymes. 

For smaller DNA fragments it is also possible to anneal oligonucleotides to get fragments 

that can be ligated into an opened vector. Therefore 5 µg of each oligonucleotide were 

mixed in annealing buffer to a total volume of 50 µl. The mixture was incubated 5 min at 

95 °C and then slowly cooled down by shutting off the heating block. After cooling down of 

the annealed oligonucleotides to room temperature, they were stored at -20 °C. 

2.2.3.4.2. Restriction enzyme digestion, agarose gel electrophoresis and gel 

extraction 

Vectors are used as vehicles to bring desired DNA into eukaryotic cells. Both DNA 

fragments and vectors first need to be cut with certain restriction endonucleases to 

generate compatible ends before they can be ligated. Restriction enzymes commonly 

used for digestions recognize and cut short palindromic sequences of 4 to 7 base pairs. In 

order to digest DNA the following mixture was prepared on ice and incubated for 2 hs at 

the enzyme specific optimal temperature: 
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DNA 3 µg 

10 x restriction buffer 1 µl 

restriction enzyme 1 (10 U/µl) 0.5 µl 

restriction enzyme 2 (10 U/µl) 0.5 µl 

MilliQ water to a total volume of 10 µl 

The digested products were analyzed by agarose gel electrophoresis. To separate DNA 

fragments according to their size, 0.8 – 2% (w/v) agarose was melted in TAE buffer. To 

visualize the DNA under UV light 0.5 µg/ml ethidium bromide was added to the liquid gel. 

Ethidium bromide intercalates in DNA double strands and emits fluorescent light when 

exposed to UV light. Before loading DNA samples on the gel they were mixed with 

6 x Loading Dye. Then the gels was run at a constant voltage of 80 V in TAE buffer.  

For further cloning desired fragments were excised from the agarose gel under reduced 

UV exposure using a clean scalpel. The JETquick gel extraction kit was used according to 

the manufacturer’s instructions to isolate the DNA from the gel slice. Therefore the 

excised gel was melted at 50 °C in buffer L1 for 15 minutes. The mixture was loaded on a 

spin column where the DNA binds to the resin. After washing the DNA with solution L2, it 

was eluted in 30 µl sterile water and stored at -20 °C. 

2.2.3.4.3. Dephosphorylation and 5’-phosphorylation of DNA 

To obviate the religation of plasmid DNA that was digested with just one restriction 

enzyme, the 5’-phosphates were removed using calf intestine alkaline phosphatase 

(CIAP). Following mixture was therefore prepared: 

Linearized plasmid DNA (1 µg/µl) 1 - 3 µl 

10 x CIAP reaction buffer 1 µl 

CIAP (1 U/µl) 1 µl 

MilliQ water to a total volume of 10 µl 

This mixture was then incubated at 37 °C for 30 min. After stopping the reaction by 

heating at 85 °C for 10 min the plasmid DNA could be used for ligation reaction or stored 

at -20 °C. 

The dephosphorylation of plasmid DNA necessitate the 5’-phosphorylation of the DNA 

fragment that shall be ligated into the vector. The transfer of γ-phosphate of ATP to the 5’-

OH group the DNA was accomplished by T4 polynucleotide kinase (PNK) according the 

subsequent procedure. First, the following mixture was prepared: 
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Purified PCR products 1 – 5 µl 

10 x reaction buffer A 2 µl 

ATP (10 mM) 2 µl 

PNK (10 U/µl) 1 µl 

MilliQ water to a total volume of 20 µl 

The reaction mixture was incubated at 37 °C for 20 min. Heating the solution at 75 °C for 

10 min inactivates the kinase. Products can be directly used for ligation reaction or stored 

at -20 °C. Sometimes it can be useful to repeat the agarose gel electrophoresis and gel 

extraction at this step to remove the enzyme when it is not completely inactivated. 

2.2.3.4.4. Ligation of DNA fragments 

Finally the opened and dephosphorylated plasmid DNA and the 5’-phosphorylated DNA 

fragment can be ligated to create a new plasmid used for transferring DNA into eukaryotic 

cells. 

The ligation reaction was set up with different molar ratios of plasmid to insert to assure 

the best outcome. Vector:Insert mixtures with ratios ranging between 1 : 1 and 1 : 10 were 

mixed with 1 µl 10 x T4 DNA ligase buffer and 1 µl T4 DNA ligase (1 U/µl) and were filled 

up with sterile water to a final volume of 10 µl. Samples were then either incubated for 

2 hs at room temperature or slowly cooled down to 4 °C overnight. Ligation reaction mix 

was directly used for the transformation of appropriate E.coli stains and remaining mixture 

was stored at -20 °C. 

2.2.3.4.5. Site-directed point mutagenesis 

In order to alter the function of proteins, single amino acids can be changed by mutating 

one or several base pairs in the sequence of the protein of interest. Besides it is possible 

to create proteins that are resistant to silencing by certain siRNA or shRNA by introducing 

a silent mutation that has no influence on the amino acid sequence and thereby does not 

alter the function of the protein. 

To introduce silent mutations the site-directed mutagenesis was performed using the 

QuickChange II site-directed mutagenesis kit from Stratagene according the 

manufacturer’s suggestions. The design of two synthetic complementary primers 

containing the single point mutations was carried out according to the manufacturer’s 

instructions. The following mixture was prepared for a typical PCR reaction: 
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Template DNA (100 ng/µl) 1 µl 

10 x reaction buffer 5 µl 

Quick solution 3 µl 

dNTP mix (10 mM) 1 µl 

Forward primer (10 µM) 1.2 µl 

Reverse primer (10 µM) 1.2 µl 

Pfu ultra DNA polymerase 1 µl 

MilliQ water to a total volume of 50 µl 

The linear amplification of PCR products containing the desired mutation was performed 

with the following PCR parameters for 18 cycles: 

 Initial activation 2 min 95 °C 

 Denaturation 50 sec 95 °C 

 Annealing 30 sec 60 °C  

 Extension 1 min/kb 68 °C 

After the 18th cycle an additional elongation step at 68 °C for 5 min was carried out to 

ensure the generation of full-length products. To digest the methylated template DNA, 1 µl 

of DnpI restriction enzyme (10 U/µl) was added and the samples were incubated for 2 hs 

at 37 °C. Unmethylated DNA resulting from polymerase chain reaction is not affected by 

this digestion. Finally the PCR product was directly transformed into highly competent 

XL10 Gold E.coli that were provided with the kit. 

2.2.3.5. RNA extraction 

2.2.3.5.1. TRIzol® RNA extraction from patient tissue 

In order to isolate total RNA from patient samples, frozen tissue was prepared as 

described for protein extraction in 2.2.2.1.1 and then homogenized in 500 µl TRIzol®. 

After adding of 100 µl chloroform and vigorously agitation, samples were incubated at 

room temperature for phase separation. Samples were then centrifuged for 10 min at 

13,000 rpm at 4 °C. The mixtures should be separated in three phases where the RNA 

resides in the upper aqueous phase which was transferred to a new tube. RNA was then 

precipitated by adding of 250 µl isopropanol (100%) and incubated at room temperature 

for 10 min. Precipitated RNA was pelleted by centrifugation for 10 min at 13,000 rpm and 

washed with 150 µl 70% ethanol. The pellet was air dried and resuspended in 20 µl 

RNase-free water. Samples were stored at -80 °C. 

2.2.3.5.2. RNA isolation from eukaryotic cells 

Total RNA was isolated from eukaryotic cells using the RNeasy kit from Qiagen following 

the manufacturer’s instructions. Cells were washed with PBS and harvested by scraping. 

Cells were lysed by adding 600 µl of RLT buffer containing β-Mercaptoethanol (10µl/ml) 
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and passing them trough a blunt 20-gauge needle for at least five times. Lysates were 

then mixed with 600 µl ethanol (70%) and loaded on a provided spin column. The column 

was first washed once with 700 µl RW1 buffer and afterwards twice with 500 µl RPE 

buffer. To remove remaining ethanol of buffer RPE, the column was centrifuged without 

adding further buffers. RNA was then eluted by adding 30 µl RNase-free water on the 

column and centrifugation. RNA concentration and purity was measured in a 

spectrophotometer, afterwards 1.5 µl RiboLock R1 was added to prevent RNA 

degradation. RNA was stored at -80 °C. 

2.2.3.6. Synthesis of complementary DNA 

Before the expression of mRNA of interest can be analyzed by semi-quantitative real-time 

PCR, mRNA was transcribed into cDNA. The CDNA synthesis was performed using the 

SuperScript™ II reverse transcriptase kit by Invitrogen. The following reaction mix was set 

up: 

Template RNA  1 µg 

dNTP mix (10 mM) 1 µl 

Oligo(dT)12-18 primer 1 µl 

MilliQ water to a total volume of 12 µl 

By using Oligo(dT)12-18 primer, that bind to the poly(A)-tail of mRNAs, it is ensured that 

whole mRNA is transcribed into cDNA. For certain questions it can be necessary to use 

specific primers for any mRNA. The reaction mixture described above was incubated at 

70 °C for 5 min and immediately put on ice. Then following reagents were added to each 

reaction: 

5 x First-strand buffer  4 µl 

DTT (100 mM) 2 µl 

RiboLock R1 1 µl 

SuperScript II reverse transcriptase 1 µl 

MilliQ water to a total volume of 20 µl 

Samples were the further incubated in a thermocycler at 42 °C for 55 min. The reaction 

was stopped by heat inactivation at 70 °C for 15 min. The resulting cDNA was diluted to a 

final volume of 100 µl with sterile water and stored at -20 °C. 

2.2.3.7. Semi-quantitative real-time polymerase chain reaction 

The semi-quantitative real-time PCR is a common method to quantify changes of gene 

expression of target genes between different samples. By adding the fluorescent reagent 

SYBR green to the reaction that intercalates with double stranded DNA the amplification 

of synthesized DNA can be measured. 
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Real-time PCRs were performed by preparing the following reaction mixtures per well in 

triplicates on a 96-well plate: 

Template cDNA (10 ng/µl) 2 µl 

Absolute SYBR green ROX mix 12,5 µl 

Forward primer (5 μM) 0.5 – 1.5 µl 

Reverse primer (5 μM) 0.5 – 1.5 µl 

MilliQ water to a total volume of 25 µl 

Following, amplification and analyzes were executed using an Applied Biosystems 7300 

real-time PCR system with the following parameters for PCR reaction: 

Initial activation: 15 min 95 °C  

Denaturation: 15 sec 95 °C  

Annealing 30 sec 60 °C 40 cycles 

Extension: 30 sec 72 °C  

    

Data were normalized to the mRNA levels of the house-keeping genes β-Actin or Tbp and 

Hprt1 and relative changes in expression levels compared to any calibrator (e.g. with 

shScramble silenced cells, untreated cells or healthy brain samples) were calculated by 

the ΔΔCt method.  

2.2.3.8. Chromatin-immunoprecipitation 

In order to analyze the de novo transcription of the Tank gene in different glioblastoma cell 

lines, a chromatin-immunoprecipitation (ChIP) was performed. Thereby, active 

polymerase II, which was bound to the DNA, was precipitated. Co-precipitated DNA was 

then determined by real-time PCR. To crosslink the proteins that are bound to the DNA, 

10 ml of a 1% formaldehyde solution was added to confluent grown cells and incubated 

for 10 min at room temperature. Formaldehyde was then neutralized by adding 1 ml of 

1.25 M glycine, followed by an incubation at room temperature for 2 minutes. After 

washing cells were washed twice with ice-cold PBS, they were harvested by scraping and 

pelleted by centrifugation at 1,500 rpm for 5 min. Pelleted cells were lysed in 1,600 µl 

ChIP-SDS buffer supplemented with Aprotinin (10 µg/ml), Leupeptin (10 µg/ml) and PMSF 

(1 mM), and incubated for 10 min on ice. To shear genomic DNA, lysates were sonicated 

intervallic (4 times for 1 minute with 1 min breaks). Cell debris was removed by 

centrifugation of the lysate for 20 min at 13,200 rpm. The supernatant was transferred to a 

new tube. Aliquots of the lysates were frozen at -80 °C and 100 µl was taken as input 

control. To examine the quality of DNA shearing as well as the amount of DNA, the input 

control was first reverse crosslinked. Therefore, input was mixed with 100 µl ChIP TE 

buffer and 2 µl RNase A and incubated at 37 °C for 30 minutes. Following, 5 µl of a 

10% SDS solution and 5 µl Proteinase K was added and further incubation at 37 °C for at 
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least 4 hs and subsequently at 65 °C for 6 hs. DNA was then isolated using the Jet PCR 

Purification Kit according to the manufacturer’s instructions. DNA concentration was 

determined by spectrophotometry. The shearing of DNA was controlled by agarose gel 

electrophoresis. Fragments should appear between 300 - 800 bp. To precipitate active 

polymerase II, cell lysates were thawed on ice and mixed with ChIP dilution buffer to a 

final volume of 1 ml. To reduce non-specific binding at the A/G sepharose beads, lysates 

were pre-cleaned by adding the beads and subsequent incubation for 1 h at 4 °C in a 

rotating wheel. Beads were pelleted and supernatant was agitated with 35 µl A/G 

sepharose as well as 2 µg of either active polymerase II or IgG antibody. The mixture was 

incubated rotating overnight at 4 °C. At the next day, beads were washed consecutively 

with 1 ml ChIP low salt buffer, 1 ml ChIP high salt buffer, 1 ml ChIP LiCl buffer and two 

times with 1 ml ChIP TE buffer. Then beads were resuspended in 100 µl ChIP TE buffer. 

Finally, samples were reverse crosslinked as described before and DNA was extracted. 

Purified DNA was then used as template for real-time PCR analysis using specific primers 

for either GAPDH or TANK whereas two distinct regions of the Tank gene were chosen for 

the analysis. All data were fist normalized to IgG as negative control for each ChIP pull-

down and eventually to GAPDH to exclude differences between the cell lines. 
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3. RESULTS 

 

3.1. The expression of the non-canonical IKK complex in 

glioblastoma multiforme 

3.1.1. Protein and mRNA levels of the non-canonical IKK complex in primary 

patient tissue samples 

The kinases of the non-canonical IKK complex are already known to be involved in the 

oncogenesis of different types of cancer such as breast, lung and colon cancer [404]. A 

database research using the integrated cancer database Oncomine 

(http://www.oncomine.org) turned out an over-expression of the adaptor protein TANK 

(Fig. 3.1.A-B). Here, an in silico expression analysis was performed by comparing 

different microarray studies of various normal and glioma tissue samples. In order to 

confirm the expression of the adaptor protein TANK as well as the two IKK-related kinases 

TBK1 and IKKε in primary glioma tumors, proteins were extracted from patient tissue 

samples, that were kindly provided by Prof. Dr. Axel Pagenstecher, and analyzed by 

Western blot (Fig. 3.1.C). Elevated protein levels of TANK but also of TBK1 and IKKε 

indicate that some cancers show over-expression of components of the non-canonical IKK 

complex in GBM and astrocytoma grade III. Considerable fluctuation of the measured 

protein levels further indicate a great variance between different patients. In addition, the 

expression of Akt and ERK1/2 kinases was examined, since both play a crucial role in the 

development and progression of GBM (see 1.1.2). Akt kinase as well as ERK1/2 also 

show increased protein levels in some gliomas compared to normal brain as well as a 

great variance among the patients. Akt is constitutively phosphorylated at T308 and S473. 

Additionally, ERK1/2 was phosphorylated in the investigated primary brain tissues. The 

phosphorylation of both kinases is higher in normal brain tissue compared to 

glioblastomas/astrocytomas whereas the expression is elevated in 

glioblastomas/astrocytomas tissue. The complete set of analyzed patient samples are 

shown in supplementary figure S1, further illustrating variable expression and 

phosphorylation levels.  

In parallel, RNA was isolated from the patient tissue samples and mRNA levels of TANK, 

TBK1 and IKKε were determined by real-time PCR (Fig. 3.1.D). Consistent with the 

findings for protein levels, also the mRNA levels were elevated in 

glioblastoma/astrocytoma patient samples in comparison with normal brain tissue. The 
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variance of mRNA levels was even more striking compared to protein levels. Besides 

TANK, also mRNA levels of IKKε varied a lot whereas mRNA levels of TBK1 show less 

variability among the analyzed patient samples. To visualize and compare this variance, 

mRNA levels were displayed as boxplots (Fig. 3.1.E) indicating increased mRNA levels of 

IKKε and TANK and to a lesser extent of TBK1 compared to normal brain. The variance 

between the values was most remarkable for TANK. 
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Fig. 3.1.: Expression analysis of members of the non-canonical IKK complex in primary patient 

tissues. (A) The expression of TANK was analyzed by an in silico expression analysis of normal brain (light 

blue, n=10) and GBM patient samples (dark blue, n=515) using the database Oncomine. Each bar 

represents an individual tissue sample (Reporter ID: 209451_at; Nucleotide Acc. No.: U59863). (B) The data 

of (A) were summarized in boxplots. The box illustrates the interquartile range (75
th

 to 25
th

 percentile). The 

upper part of the bar shows the 90
th

 percentile and lower bar the 10
th

 percentile. The dots stands for 

outliners. The graph was created using the Oncomine 3.0 software. (C) Patient tissue samples of normal 

brain (NB), glioblastoma multiforme (GBM) and astrocytoma grade III (A III) were (if possible) divided in two 

parts and either protein or RNA was extracted. Proteins were extracted from patient tissues by homogenizing 

of the material in NP40 lysis buffer and using a Turrax. Endogenous protein expression was then analyzed 

by Western blot using the indicated antibodies for endogenous proteins. More GBM and A III patient samples 

are shown in supplementary figure S 1. (D) Total RNA was extracted by TRIzol® and translated into cDNA 

using Oligo(dT) primers. The amount of mRNA was quantified by real-time PCR using specific primers for 

either TANK, TBK1 or IKKε. Expression levels of NB were set as 1. Housekeeping genes Tbp and Hprt1 

were used to normalize values. Error bars express the standard deviation of two experiments performed in 

triplicates. The variation of mRNA levels of TANK, TBK1 and IKKε were further visualized in boxplots (E), in 

which the box represents the interquartile range with median, error bars show the overall range of values and 

dots symbolize outliners. 

 

Taken together, the analysis of patient tissues from GBM and astrocytoma grade III 

validate an over-expression of the non-canonical IKK complex in some cases, but apart 

from that, highly variable levels of the proteins were found. As during resection of cancer 

tissue usually transformed and non-tumorigenic cells are gathered together, expression 

levels might be biased. Therefore, also glioblastoma cell lines were analyzed for the 

expression of the non-canonical IKK complex. 

3.1.2. Protein and mRNA levels of the non-canonical IKK complex in glioma cell 

lines 

Next, glioblastoma cell lines were analyzed and protein as well as mRNA levels of TANK, 

TBK1 and IKKε were determined. Therefore, 11 glioma cell lines were lysed and analyzed 

by Western blot (Fig. 3.2.A). The levels of TANK protein were elevated in most of the 

glioma cell lines. The expression was especially high in the cell lines Ln229, U118, U343, 

U373 and U87MG. Both IKK-related kinases were as well expressed, but the observed 

high variability in TANK protein levels was not seen for the kinases. Moreover, protein 

levels of Akt and its phosphorylation status were analyzed. The kinase was expressed in 
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all examined cell lines, but Ln229 and T98G showed remarkable high protein levels of Akt. 

The residue S473 is highly phosphorylated among all cell lines whereas the 

phosphorylation at the main activation site T308 was found in 9 of 11 cell lines. In 

contrast, the phosphorylation of ERK1/2 was inversely correlated with Akt T308. 

Furthermore, the expression of the non-canonical IKK complex was examined on mRNA 

levels (Fig. 3.2.B). Thus, total RNA was isolated from all analyzed glioma cell lines and 

real-time PCR was performed to detect mRNA levels of TANK, TBK1 and IKKε. Reflecting 

the results observed for protein levels (Fig. 3.2.A), mRNA levels of TANK were 

exaggerated and highly variable. The mRNA levels of TBK1 and IKKε showed less 

variability (see also supplementary Fig. S2). The variance of mRNA levels is further 

visualized as boxplots in figure 3.2.B. Since TANK forms a complex with IKKε and TBK1 

[67, 81, 405], it was interesting to investigate whether this complex also occurs in GBMs. 

To address this question, co-immunoprecipitation experiments were performed 

(Fig. 3.2.D). Two cell lines were chosen and endogenous proteins were precipitated with 

anti-TANK antibody. The following analysis of the eluates by Western blot revealed the 

co-precipitation of TBK1 and IKKε in both cell lines, confirming the formation of the non-

canonical IKK complex with the adaptor protein TANK. As the IKK-related kinases can 

phosphorylate Akt [125, 137], it was also interesting to test whether Akt co-

immunoprecipitates with IKKε and TBK1. However, co-immunoprecipitation experiments 

failed to detect such an interaction. 

 

A

anti-β-Actin

anti-Akt ℗ T308

anti-Akt ℗ S473

anti-Akt

anti-TBK1 

anti-IKKε

anti-TANK

anti- ℗ ERK1/2



  RESULTS 

53 
 

 

 

Fig. 3.2.: Expression analysis of members of the non-canonical IKK complex in glioma cell lines. (A) 

Proteins were extracted from 11 glioma cell lines in 1 x SDS sample buffer and analyzed by Western blot 

using the indicated antibodies to detect either endogenous proteins or their phosphorylation. (B) Total RNA 

was extracted and translated into cDNA using Oligo(dT) primers. The amount of mRNA was further semi-

quantitatively analyzed by real-time PCR using specific primers for either TANK, TBK1 or IKKε. Expression 

levels of T98G were set as 1 after normalization to the housekeeping gene β-Actin. Error bars express the 

standard deviation of three independent experiments performed in triplicates. The variation of mRNA levels 

of TANK, TBK1 and IKKε were further visualized in boxplots (C), in which the box represents the interquartile 

range with median, error bars show the overall range of values and dots symbolize outliners. (D) T98G and 

U251 cells were lysed and endogenous proteins were precipitated using anti-Akt and anti-TANK antibodies 

as well as anti-IgG as negative control. Eluates were analyzed by Western blot using the indicated 

antibodies, input samples of the cell lysates are shown to confirm expression of the proteins. 

 

In summary, the results for mRNA and protein levels are consistent with the findings for 

patient tissue samples, indicating TANK to be dysregulated in GBM. 

3.1.3. The interplay of gene transcription and mRNA stability in the regulation of 

TANK expression 

The measured mRNA levels of TANK do not exactly correlate with protein levels in each 

cell line. For instance, the cell line U87MG shows high protein levels and low mRNA levels 

for TANK. The A764 cell line contains high mRNA levels and moderate protein levels of 

TANK (Fig. 3.2. A and C). In order to explain this discrepancy of mRNA and protein levels 

of TANK in the glioma cell lines, mechanisms of mRNA and protein regulation were 
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examined. In general, the steady-state level of a certain mRNA is defined by mRNA 

synthesis and simultaneously occurring mRNA decay [406, 407]. Similarly, the steady-

state levels of proteins is regulated by the relative rates of protein synthesis and decay 

[408]. 

To determine ongoing transcription of the Tank gene as possible explanation for 

considerable differences in mRNA levels of TANK between distinct glioma cell lines, a 

chromatin-immunoprecipitation was performed (Fig. 3.3.A). Since elongation of the 

transcript is associated with the occupancy of the gene by active RNA polymerase II, that 

is phosphorylated at S2, this occupation can be seen as indicator for active transcription 

[409]. Thus, a chromatin-immunoprecipitation using a specific antibody for RNA 

polymerase II phosphorylated at S2 (Pol II S2p) was performed using cell lines with high 

(A764) and low (U251, U87MG) mRNA levels of TANK. The amount of precipitated 

genomic DNA was measured by real-time PCR using specific primers that cover two 

distinct regions in intron 1 (TANK#1 and TANK#2). In line with the findings for mRNA 

levels, the de novo transcription of TANK was higher in A764 cells when compared to 

U251 and U87MG cells that showed reduced de novo transcription and steady-state 

mRNA levels. To measure the stability of TANK mRNA, the analyzed cell lines were 

treated with Actinomycin D to inhibit the de novo transcription. The amount of mRNAs was 

measured at various time points, as displayed in figure 3.3.B. The relative mRNA stability 

of TANK was different for every cell line. In U87MG cells associated with high protein but 

low mRNA levels of TANK (Fig. 3.2. A and C), a high mRNA stability was observed. In 

contrast, A764 cells with high mRNA levels (Fig. 3.2.C) revealed a high rate of mRNA 

decay resulting in lower protein levels (Fig. 3.2.A). Although the mRNA stability of TANK 

was higher in the U251 cell line than observed in A764 (Fig. 3.3.B), the protein level in 

U251 was lower in the end (Fig. 3.2.A). Interestingly, the mRNA stability of TBK1 was 

similar in all analyzed cell lines (Fig. 3.3.B, right panel). Additionally, a possible regulation 

of protein levels by protein turnover was analyzed. Through the inhibition of the protein 

synthesis with cycloheximide (CHX) the protein decay can be followed. Three glioma cell 

lines were treated for various periods with CHX and the protein abundance was examined 

by Western blot (Fig. 3.3.C). U251 and U87MG cells displayed a stable protein level of 

TANK and TBK1 within the observed time, indicating that TANK and TBK1 are not 

regulated at protein levels to an appreciable extent. Only TBK1 protein levels decrease 

after 12 hs treatment with CHX in U87MG cells. The T98G cell line with low TANK protein 

levels was chosen as a positive control for the CHX treatment. Here TANK and TBK1 

were already degraded after 2 hs treatment with CHX. 
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Fig. 3.3.: The interplay of gene transcription and mRNA stability in the regulation of TANK protein 

levels. (A) A764, U251 and U87MG cell were analyzed for de novo transcription of the Tank gene by ChIP. 

After crosslinking of proteins to the DNA, ChIP assays were performed using either a Pol II S2p antibody or 

an unspecific IgG control antibody. Binding of actively elongating polymerase to two distinct regions of the 

Tank gene as well as Gapdh as housekeeping gene was determined by real-time PCR using specific 

antibodies. The amount of Pol II S2p associated with the indicated genomic region is calculated as fold 

enrichment over IgG control and enrichment in Gapdh gene was set as 1 to compare different cell lines 

among each other. (B) A764, U251 and U87MG cells were treated with 1 µg/ml Actinomycin D for the 

indicated times. Total RNA was extracted and translated into cDNA using Oligo(dT) primers. The mRNA 

stability of either TANK (left panel) or TBK1 (right panel) mRNA was examined by real-time PCR using 

specific primers. Values were calculated by the ΔΔCt method and normalized to β-Actin. Untreated cells were 

set as 100%. Mean values ± SD of three independent experiments performed in triplicates are shown. (C) 

The protein stability of TANK and TBK1 was assessed in U251, U87MG and T98G cells by treating the cells 

with 50 µg/ml Cycloheximide (CHX) for the indicated times. Cells were lysed in 1 x SDS sample buffer and 

lysates were analyzed by Western blot using the indicated antibodies. Anti-β-Actin was used to confirm equal 

protein loading. 

 

In summary, these findings show that the variable levels of the TANK protein in glioma 

result from differences at all analyzed gene expression levels (de novo transcription, 

mRNA stability and protein stability). 
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3.2. The influence of TANK and TBK1 on cellular functions of 

glioma cell lines 

3.2.1. The role of the non-canonical IKK complex in proliferation 

Cancer cells are usually characterized by high proliferation rates. Several factors 

dysregulating the healthy balance between proliferation and apoptosis are already known 

[410]. Proliferation assays were performed, in order to validate the role of the non-

canonical IKK complex in this context, and revealed a great diversity among the glioma 

cell lines (Fig. 3.4). 

 
 

Fig. 3.4.: The proliferation of different glioma cell 

lines. Diverse glioma cells were seeded at a density 

of 5x10
4
 cells. Number of cells was determined with 

a FACSCalibur 72 and 120 hs after seeding. Mean 

values ± SD are shown of three independent 

experiments.  

 

Subsequently, components of the complex were silenced and the effects on the cell 

proliferation were determined. Retroviral knock-down was performed for the adaptor 

TANK as well as the kinase TBK1. Clark and colleagues demonstrated that the absence 

of the adaptor destroys the complex and impairs the function of TBK1 whereas the 

function of IKKε is completely abrogated [411]. TANK or TBK1 were silenced in 11 glioma 

cell lines using retroviral gene transfer of shRNA to induce RNA interference. Proliferation 

assays were performed as described above. Additionally, MTT assays were carried out for 

all cell lines. By measuring the metabolic activity of cells, the MTT assay provides 

information about the cell viability and proliferation. The effects of either TANK or TBK1 

silencing on glioma cell lines are summarized in figure 3.5.D. The results shown in 

figure 3.5.A-C exemplify the proliferation and MTT assays for three cell lines. The full data 

set is depicted in supplementary figure S3. The proliferation ability of A172 cells was 

affected remarkably by silencing either TANK or TBK1. The same was true for the 

metabolic activity measured by MTT assay (Fig. 3.5.A). The cell lines U343 and U87MG 

showed the same effects (Fig S3). TBK1 had a much lesser impact on proliferation and 

metabolism in the SNB19 cell line when compared to TANK (Fig. 3.5.B). This was also 

seen in the cell lines A764 and U251. Interestingly, just the A271 cell line showed the 

opposite - a major decrease in proliferation when TBK1 was silenced compared to the 

TANK knock-down. However, the U373 cell line represents a group of 3 cell lines where 
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the effect of silencing TANK or TBK1 on proliferation were low (Fig. 3.5.C). Only in the 

T98G cell line the influence of TANK or TBK1 on proliferation was not detectable probably 

due to an insufficient knock-down. 

 
 

Fig. 3.5.: The role of TANK and TBK1 in the proliferation ability of glioma cell lines. (A) A172 cells were 

retrovirally transduced to express shRNAs leading to a knock-down of TANK, TBK1 or a scrambled shRNA 

as a control. Transduced cells were selected with puromycin and used to determine cell proliferation (upper 

graphs) or alternatively cell viability (lower left graph). Proliferation was measured by seeding cells at a 

density of 5x10
4
 cells, followed by determination of cell numbers after 72 and 120 hs using a FACSCalibur. 

Error bars show standard deviations from three independent experiments. Aliquots of the cells were lysed 

and tested by Western blotting for efficient knock-down (lower right). MTT assays were performed by seeding 
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knock-down cells at a density of 1x10
3
 cells/well, followed by further growth for 4 days and performance of 

the MTT assay according to the manufacturer’s instructions. Relative metabolic activity of control cells was 

arbitrarily set as 1, error bars show standard deviations of three independent experiments. (B) Experiments 

of A were performed for SNB19 cells. (C) Experiments of A were performed for U373 cells. (D) Results from 

proliferation assays from all cell lines are summarized. Symbols indicate strength of influence on 

proliferation: - no, + low, ++ great influence and nd not detectable. 

 

Taken together, 10 out of 11 examined cell lines display an impact of TANK or TBK1 

knock-down on proliferation. Thus, these experiments revealed an important role of the 

non-canonical IKK complex in proliferation of glioma cell lines. 

Unspecific side effects of shRNA constructs, also called off-target effects, are a well 

described problem of RNA interference [412] that is usually excluded by confirming the 

effects with a second shRNA construct containing a distinct binding sequence. Within the 

scope of this work, off-target effects were excluded using alternative shRNAs for either 

TANK or TBK1 (Fig. 3.6). For that purpose, U251 cells were infected with the viruses 

carrying the distinct shRNAs to silence either TANK (Fig. 3.6.A) or TBK1 (Fig. 3.6.B) and 

proliferation assays were performed to determine the functional outcome. Decreased 

proliferation rates were observed for TANK or TBK1 knock-down to a comparable extent 

for each construct, indicating that the observed effect is not due to artificial side effects. 

 
 

Fig. 3.6.: shRNAs for TANK and TBK1 do not induce unspecific side effects. U251 cells were infected 

with either retro- (#1) or lentiviruses (#2) to express shRNA targeting either TANK (A) or TBK1 (B) as well as 

scrambled shRNA as control. After selection with puromycin, cells were seeded at a density of 1x10
4
. The 

amount of cells was determined with FACSCalibur 72 and 120 hs after seeding to further follow the 

proliferation. Mean values ± SD are shown of three independent experiments. An aliquot of cells was lysed in 

1 x SDS sample buffer and analyzed by Western blot for efficient knock-down. 
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3.2.2. The role of the non-canonical IKK complex in cell cycle progression 

A role of the non-canonical IKK complex in the regulation of cell cycle progression has 

been described before [69]. The decreased proliferation ability after silencing TANK or 

TBK1 raises the question whether those effects are caused by an impact of either TANK 

or TBK1 on the cell cycle. 

For that purpose, cell cycle profiles were recorded for three selected glioma cell lines by 

propidium iodide staining and subsequent analysis by flow cytometry (Fig. 3.7). The 

distribution of cells within the cell cycle phases was illustrated in stacked-bar graphs 

(middle panels). The cell cycle profiles for A764 cell line (Fig. 3.7.A) did not reveal any 

differences between TANK-depleted cells and the control cells. Also U251 cells 

(Fig. 3.7.C) showed just slight changes. Here, the silencing of TANK led to an increasing 

number of cells in G1 and S phase. In contrast, U373 cells (Fig. 3.7.B) revealed an 

accumulation of cells in S phase after the knock-down of TANK. For most of the 

investigated cell lines no changes in cell cycle profile after TBK1 knock-down were 

observed, apart from A764 where the knock-down of TBK1 led to slightly increased cell 

number in G1 phase. 
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Fig. 3.7.: Cell cycle analysis of glioma cell lines after TANK or TBK1 knock-down. (A) TANK or TBK1 

were knocked down as described previously in A764 cell line. After selection with puromycin, DNA content of 

the cells was measured by staining with propidium iodide and subsequent analysis by flow cytometry (left 

panel) using FACSCalibur. Amount of cells in certain phases of the cell cycle were quantified by ModFit 

software and depicted as stacked-bar graph (middle panel). Aliquots of cells were lysed and analyzed by 

Western blots for efficient knock-down (right panel). Those experiments were also done for U373 (B) as well 

as U251 (C) cell lines. 

 

In summary, TANK is able to influence the cell cycle by inhibiting the progression from S 

to G2 phase, but not all glioma cell lines show this altered cell cycle profile. In order to 

investigate the impact of the TANK or TBK1 knock-down on cell cycle progression, the 

kinetic parameters of cell cycle were examined. Therefore, knock-down cells were treated 

with vinblastine to block progression of the cell cycle in late G2 phase and cell cycle 

profiles were analyzed by propidium iodide staining as described above after 10 or 24 hs 

(Fig. 3.8). Confirming the previous results, the knock-down of TANK caused an arrest in S 

phase in the U373 cell line, but did not alter the cell cycle profile in the A764 cell line. The 
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cell cycle profiles of both cell lines were also not altered upon silencing of TBK1. As the 

arrest in late G2 phase was more pronounced in the U373 cell line compared with the 

A764 cell line, it is conclusive that the U373 cell lines progresses faster in the cell cycle 

(Fig. 3.4). This indirectly indicates that the U373 cell lines proliferates faster. The 

treatment of TANK-depleted cells with vinblastine did not result in further changes of the 

cell cycle profile in both investigated cell lines which indicates a stop of cell cycle 

progression. This also suggests a repressive effect on the cell proliferation by the knock-

down of TANK. Additionally, TBK1 silencing also resulted in inhibited cell cycle 

progression after vinblastine treatment in the A764 cell line, but failed to lead to an arrest 

in late G2 phase in the U373 cell line. So, the cell cycle progression and eventually the 

proliferation of the U373 cell line does not depend on TBK1. Finally, vinblastine has been 

described to induce apoptosis [413, 414], explaining sub G1 peaks in both cell lines after 

treatment. 

 
 

Fig. 3.8.: The influence of TANK and TBK1 on the cell cycle progression of glioma cell lines. (A) TANK 

or TBK1 were knocked down as described previously for the A764 cell line. After selection with puromycin, 

cells were treated with 0.3 µM vinblastine to arrest cells in M/ late G2 phase of the cell cycle. Shifts in cell cycle 
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profiles to the G2 phase were followed by measuring the DNA content of the cells by staining with propidium 

iodide and subsequent analysis by flow cytometry (upper panel) using FACSCalibur after 10 or 24 hs 

treatment with vinblastine. Aliquots of cells were lysed and analyzed by Western blot for efficient knock-down 

(lower panel). Those experiments were also done for U373 cell line (B). 

 

Taken together, the ability of glioma cell lines to progress in cell cycle is affected by the 

depletion of TANK or TBK1. Interestingly, TANK knock-down can also lead to an S phase 

arrest is some glioma cell lines. 

3.2.3. The role of the non-canonical IKK complex in migration 

Formation of metastases and invasion into tissues are further important hallmarks of 

cancer [410]. Invasion is well described for GBM in particular. In order to evaluate the role 

of the non-canonical IKK complex in the migration of glioma cell lines, either TANK or 

TBK1 were silenced by shRNA as described before and wound-healing assays were 

performed (Fig. 3.9). For all investigated cell lines, control knock-down cells were found to 

close the scratch almost completely within 24 hs. However, the knock-down of TANK had 

a great impact on the migration ability of the analyzed cell lines. Except for U251, also 

TBK1 knock-down prevented the closure of the scratch. In summary, TANK but also TBK1 

influence the migration ability of glioma cells. 
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Fig. 3.9.: The influence of TANK and TBK1 on the migration ability of glioma cell lines. (A) Knock-down 

and control A764 cells were seeded at densities between 1,5-2x10
5
 in a 6 well plate and allowed to grow to 

80% confluency. To prevent proliferation cells were cultured in serum-free medium supplemented with 1 µg/ml 

aphidicolin over night before the assay was carried out (left panel). A scratch was gently made with a pipette 

tip. The cells were then washed two times with PBS and serum-free medium was added. Immediately, after 10 

and after 24 hs a picture of the scratched area was taken with a NIKON Inverted Research Microscope 

Eclipse TE2000-Ea. The size of the scratch was quantified (upper right panel). Mean values ± SD of three 

independent experiments are shown. Aliquots of cells were lysed and analyzed by Western blot to ensure 

efficient knock-down (lower right panel). Experiment was also performed with U373 (B) and U251 (C) cell 

lines. 
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3.3. The influence of the non-canonical IKK complex on cell 

death induced by chemotherapeutic drugs 

In the treatment of GBM a lot of chemotherapeutic drugs have been developed [415]. In 

this work, two commonly applied drugs were taken into consideration. Activated AraC is 

able to inhibit DNA replication by its incorporation into nascent DNA instead of CTP 

(cytidine triphosphate) [416]. This results in cell cycle arrest, reduced growth as well as 

apoptosis [417]. More often, TMZ is used in the treatment of GBM. TMZ is an alkylating 

agent which is able to damage the DNA, thereby leading to cell death [418]. 

Since TANK and TBK1 were influencing several hallmarks in cancer, it was interesting to 

investigate the role of the non-canonical IKK complex on drug sensitivity. For that 

purpose, the consequences of TANK or TBK1 knock-down on the sensitivity of tumor cells 

towards either AraC or TMZ was studied. First of all, the cytostatic function of both 

chemotherapeutic agents was validated by MTT assays (Fig. 3.10). Therefore, 11 glioma 

cell lines were plated out in 96-well plates and treated with either AraC or TMZ for three 

days, before the metabolic activity was measured. Compared to untreated control cells, all 

glioma cell lines were affected in their cell viability by both drugs to a similar extent. In line 

with the mechanisms behind the drugs, slowly growing cell lines such as A764 still reveal 

a higher cell viability compared to fast growing cell lines as for instance U251 (see also 

Fig. 3.4). This result illustrates the cytostatic function of both drugs for all examined cell 

lines. 

 
 

Fig. 3.10.: Analysis of the cell death induced by the chemotherapeutic drugs AraC and TMZ. All 

investigated cell lines were seeded at a density of 1x10
3 

cells, treated next day with 1 µM AraC or 100 µM 

TMZ. 72 h later, MTT assays were carried out according to the manufacturer’s instructions. Mean values ± SD 

are shown of three independent experiments 

 

Next, a potential contribution of TANK or TBK1 to the death-inducing effects of AraC and 

TMZ was investigated. Accordingly, either TANK or TBK1 were silenced by shRNA in 

A764, U251 or U373 cell lines and cells were treated with AraC or TMZ as described 
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above. Cell viability was again measured by MTT assays (Fig. 3.11). As shown afore, the 

treatment with either AraC or TMZ decreased cell viability for all investigated cell lines. In 

the same way, each knock-down was sufficient to diminish cell viability. While TANK 

knock-down further decreased the cell viability moderately in combination with AraC or 

TMZ in all cell lines, the effects of TBK1 silencing were not as pronounced. These 

experiments show that only the knock-down of TANK slightly increased drug induced cell 

death in the examined cell lines. 

 
 

Fig. 3.11.: The influence of TANK and TBK1 on drug-induced cell death in glioma cell lines. (A) A764 

were retrovirally infected with shRNA to knock-down either TANK or TBK1. Cells were seeded at a density of 

1x10
3
 cells and treated the next day with 1 µM AraC or 100 µM TMZ. 72 hs later MTT assays were 

performed, mean values ± SD from three independent experiments are shown. Western blot of lysed cell 

aliquots proved sufficient knock-down of TANK or TBK1 (lower panels). Experiments were also performed for 

U251 (B) and U373 (C) cell lines. 

 

3.4. The non-canonical IKK complex in Akt and ERK1/2 

signaling pathways 

Cell proliferation is a process influenced by many factors. On the one hand, intrinsic 

signaling leads to regulation of cell cycle and thereby controls the proliferation. On the 

other hand, transcription factors can induce expression and release of soluble factors 

such as growth factors and cytokines that influence the proliferation of surrounding cells. 

[419, 420] 

This raises the question whether the effects of TANK or TBK1 depletion are caused by 

intrinsic signaling or by soluble factors secreted in the culture medium. To address this 

question, the effect of medium from knock-down cells on cell proliferation was measured 

in proliferation assays (Fig. 3.12). The previously described repressive effect of either the 

TANK or TBK1 knock-down on cell proliferation of different glioma cell lines was 
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confirmed. In contrast, medium taken from TANK- or TBK1-silenced A764 cells did not 

result in decreased proliferation of control A764 cells, but even led to slightly increased 

proliferation. The same was true for U373 cell line, suggesting that the medium from 

knock-down cells does not contain soluble factors negatively affecting cell proliferation. 

Moreover, the slightly increased proliferation in response to the medium from knock-down 

cells suggests the presence of pro-proliferative factors. 

 
 

Fig. 3.12.: The influence of knock-down-induced spilled factors in the medium on the proliferation of 

control cells. (A) A764 cells were retrovirally infected with shRNA against TANK. After puromycin selection, 

proliferation assays were performed. Thereby, knock-down control cells were seeded in either fresh culture 

medium or in medium taken from cells with a TANK knock-down. Proliferation was measured as described 

previously. Mean values ± standard deviation of three independent experiments are shown. (B) Experiment 

was repeated as in (A) for A764 where TBK1 was silenced. Assay was also performed for U373 cell line with 

either TANK (C) or TBK1 (D) knock-down. (E) A part of the cells was lysed and further analyzed by Western 

blotting for efficient knock-down. 
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3.4.1. The effects of TANK on constitutive AKT and ERK1/2 signaling 

Akt as well as ERK1/2 are known kinases involved in the regulation of proliferation [419, 

420]. Since both of them are constitutively phosphorylated in glioma cell lines (Fig. 3.2.A), 

the influence of the non-canonical IKK complex on their activity was further analyzed. 

Therefore, the adaptor protein TANK was silenced in the glioma cell lines by retroviral 

infection with shTANK. Protein expression and phosphorylation of Akt and ERK1/2 were 

subsequently analyzed by Western blot (Fig. 3.13). The phosphorylation of Akt was 

altered at the two main activation sites S473 and T308 in a few cell lines. While the 

phosphorylation of S473 was reduced in 5 cell lines, T308 phosphorylation was alleviated 

in only 2 of 11 (Ln229 and U373) examined cell lines. The phosphorylation of ERK1/2 was 

reduced in 6 glioma cell lines. In three cell lines (SNB19, U251 and U373) the 

phosphorylation of Akt at S473 was correlated with the phosphorylation of ERK1/2. T308 

phosphorylation of Akt correlated with ERK1/2 phosphorylation in those 2 cell lines (Ln229 

and U373) that were shown to have reduced levels of T308 phosphorylation after 

silencing TANK.  

 

 

Fig. 3.13.: Analysis of the role of TANK on Akt and ERK1/2 phosphorylation in glioma cell lines. (A) 

TANK was silenced by shRNA as described before in 11 glioma cell lines. Cells were lysed in 1 x SDS 

sample buffer and protein expression as well as phosphorylation of Akt and ERK1/2 was analyzed by 

Western blot. (B) Results were summarized in tables showing the indicated correlations between Akt and 

ERK1/2 phosphorylation. 
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In summary, the repressive effect of TANK silencing on the phosphorylation of Akt and 

ERK1/2 kinases was found for about half of the examined cell lines. 

3.4.2. The effects of TBK1 on constitutive AKT and ERK1/2 signaling 

To measure the effect of the IKK-related kinase TBK1 on constitutive Akt and ERK1/2 

phosphorylation, TBK1 was knocked down in the glioma cell lines by shRNAs. The 

analysis of protein extracts for expression and phosphorylation of proteins showed that 

silencing of TBK1 resulted not just in reduced protein levels of TBK1 but also decreased 

IKKε protein levels. (Fig. 3.14). Silencing of TBK1 led to reduced phosphorylation of Akt 

and ERK1/2 in about half of the investigated cell lines but did not increase the 

phosphorylation in any case. In A171, A271 and Ln299 cell lines S473 phosphorylation of 

Akt was correlated with ERK1/2 phosphorylation. The same three cell lines and the U251 

cells additionally revealed a correlation between T308 phosphorylation of Akt and ERK1/2 

phosphorylation.  

 

 

Fig. 3.14.: Analysis of the role of TBK1 on Akt and ERK1/2 phosphorylation in glioma cell lines. (A) 

TBK1 was silenced by shRNA as described before in 11 glioma cell lines. Cells were lysed in 1 x SDS 

sample buffer and protein expression as well as phosphorylation of Akt and ERK1/2 was analyzed by 

Western blot. (B) Results were summarized in tables by correlation Akt and ERK1/2 phosphorylation. 
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In order to verify the results obtained upon TBK1 silencing, a pharmacological approach 

was used to inhibit the IKK-related kinases IKKε and TBK1 by treating the cells with the 

small molecule inhibitor BX795. Subsequent analysis by Western blot is shown in 

figure 3.15.A and summarized in tables in 3.15.B. The analysis of the phosphorylation 

status in BX795 treated glioma cell lines revealed similar effects as for TBK1 depletion. 

Reduced phosphorylation of Akt at S473 was observed in 7 of 11 cell lines and T308 

phosphorylation was alleviated in 8 of 11 cell lines. Also decreased phosphorylation of 

ERK1/2 was found in the majority of investigated cell lines. For five cell lines, the reduced 

phosphorylation of Akt at T308 and S473, respectively, was correlated with decreased 

ERK1/2 phosphorylation. In contrast, for two cell lines an increase in ERK1/2 

phosphorylation was detected (A271 and U343) in response to TBK1 silencing. 

While earlier results showed that the knock-down of TBK1 does not significantly change 

the sensitivity of cells towards chemotherapeutic drugs (Fig. 3.11), it was then interesting 

to investigate whether the activity of the IKK-related kinases has an impact on the 

response to chemotherapeutic drugs. Therefore, TBK1 as well as IKKε were inhibited 

using BX795. These cells were additionally treated with AraC or TMZ and cell viability was 

measured by MTT assays (Fig. 3.15.C-D). The treatment with BX795 alone resulted in 

decreased cell viability, also indirectly indicating a negative effect on the cell proliferation. 

The combination of BX795 and AraC treatments did not result in a further decrease of the 

cell viability compared to cells only treated with AraC. Similar findings were shown for the 

TMZ treatment. However, combined treatment of TMZ and BX795 in the cell lines T98G, 

U118 and U251 led to slightly further decreases of the cell viability compared to each 

compound alone. Interestingly, the knock-down of TBK1 in U251 cells had no additional 

effects on the drug-induced cell death, whereas the inhibition of both IKK-related kinases 

by BX795 resulted in a further decrease of the cell viability at least in the combination with 

TMZ. 
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Fig. 3.15.: Analysis of the role of the IKK-related kinases on Akt and ERK1/2 phosphorylation and 

drug-induced cell death in glioma cell lines. (A) Glioma cell lines were treated 24 hs with 1 µM BX795, 

lysed in 1 x SDS sample buffer and analyzed by Western blot using indicated antibodies to detect 

phosphorylation of Akt and ERK1/2. (B) Results from (A) were summarized in tables showing the indicated 

correlations between Akt and ERK1/2 phosphorylation. (C) MTT Assays were performed to determine cell 

viability. Cells were seeded at a density of 1x10
3
 cells/well and treated the next day with either 1 µM BX795 

and/or 1 µM AraC. 72 hs later cell viability was determined by MTT assays, mean values ± SD are shown 

from three independent experiments (D) The experiment was done as in (C) with the only difference that the 

glioma cells were treated with either 1 µM BX795 and/ or 100 µM TMZ. 
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In summary, TANK and TBK1 influence the phosphorylation of downstream kinases such 

as Akt and ERK1/2. The inhibition of the IKK-related kinases showed no or only weak 

effects on chemotherapeutic-induced cell death in glioma cell lines. 

3.4.3. The interplay of signaling pathways in glioma cell lines 

How can TANK and TBK1/IKKε regulate signaling to Akt and ERK1/2? To address this 

question, the signaling network was examined by combinatorial treatments with different 

kinase inhibitors. On the one hand, Akt inhibitor VIII was used to inhibit the 

phosphorylation of Akt at the two main phosphorylation sites that are crucial for proper 

activation of the kinase [421]. ERK1/2 phosphorylation was inhibited by U0126 which 

interferes with the activity of the direct upstream regulator MEK1/2 [422]. The TAK1 kinase 

which is involved in signaling pathways such as NF-kB and MAPK was specifically 

blocked with 5Z-7-oxozeaenol [423]. All inhibitors were applied either alone or together 

with BX795 to additionally block the non-canonical IKK complex. 

Eight glioma cell lines were treated with either BX795 and Akt inhibitor VIII alone or in 

combination. Phosphorylation of Akt and ERK1/2 were determined by subsequent 

analysis by Western blot and are shown in figure 3.16.A. The consequences of the 

treatments are summarized in tables (Fig. 3.16.B). As expected, the treatment with Akt 

inhibitor VIII led to blocked phosphorylation of Akt at both crucial phosphorylation sites. In 

5 of 8 cell lines also ERK1/2 phosphorylation was decreased (A271, A764, U251, U343 

and U373). An additional treatment with BX795 had contradictory effects on the ERK1/2 

phosphorylation. In some cell lines ERK1/2 phosphorylation was restored (U373), in 

others the reduced phosphorylation did not change further (A172, A764). 
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Fig. 3.16.: The effect of the Akt inhibitor VIII on the constitutive active signaling network in glioma cell 

lines. (A) Cells were treated for 24 hs with Akt inhibitor VIII (5 µM), BX795 (1 µM) or with a combination of 

both, lysed in 1 x SDS sample buffer and analyzed by Western blot using indicated antibodies to detect 

phosphorylation of Akt and ERK1/2. (B) Results from (A) were summarized in tables showing the correlations 

between Akt and ERK1/2 phosphorylation. 
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efficient to decrease ERK1/2 phosphorylation considerably, whereas the combination of 

both resulted in extensive reduction thereof, indicating two independent signaling axis that 

are able to compensate each other. 

 

 

Fig. 3.17.: The effect of the MEK1/2 inhibitor on the constitutive active signaling network in glioma 

cell lines. (A) Glioma cell lines were treated 24 hs with 5 µM U0126, 1 µM BX795 or in combination of both, 

lysed in 1 x SDS sample buffer and analyze by Western blot using indicated antibodies to detect 

phosphorylation of Akt and ERK1/2. (B) Results from (A) were summarized in tables showing the correlations 

between Akt and ERK1/2 phosphorylation. 
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phosphorylation. A correlation between Akt and ERK1/2 phosphorylation after the 

treatment with 5Z-7-oxozeaenol was not detected. The combined treatment of the glioma 

cells with 5Z-7-oxozeaenol and BX795 also had no further impact in most of the cell lines. 

However, in A271 cells an increased ERK1/2 phosphorylation after combined treatment 

with BX795 and 5Z-7-oxozeaenol was detected, whereas treatment with both inhibitors 

decreased ERK1/2 phosphorylation in U373 cell line. 

 

 

Fig. 3.18.: The effect of the TAK1 on the constitutive active signaling network in glioma cell lines.. (A) 

Cell lines were treated 24 hs with 1 µM 5Z-7-oxozeaenol, 1 µM BX795 or a combination of both, lysed in 

1 x SDS sample buffer and analyzed by Western blot using indicated antibodies to detect phosphorylation of 

Akt and ERK1/2. (B) Results from (A) were summarized in tables showing correlations between Akt and 

ERK1/2 phosphorylation. 
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MEK1/2-induced repression of the Akt phosphorylation indicates a possible negative 

feedback loop on the Akt-induced phosphorylation of ERK1/2. Finally, the loss of ERK1/2 

phosphorylation after inhibiting the TBK1/IKKε together with MEK1/2 lead to the idea of a 

MEK-independent ERK1/2 activation at least in some glioma cell lines. 

 

3.5. The effect of TANK and TBK1 on the pro-inflammatory 

microenvironment in glioma cell lines 

The link between inflammation and cancer is well documented [424]. GBM has been 

described to be associated with a pro-inflammatory microenvironment [425, 426]. Since 

the non-canonical IKK complex is involved in inflammatory signaling by modulating NF-κB 

and IRF transcription factors, the impact of TANK and TBK1 on these processes was 

studied. Therefore, in two cell lines (U373 and U251) either TANK or TBK1 were silenced 

as described before. Western blot analyses were performed to reveal the phosphorylation 

of NF-κB and IRF transcription factors, and mRNA levels of certain pro-inflammatory 

cytokines were measured by semi-quantitative real-time PCR (Fig. 3.19). The depletion of 

TANK resulted in reduced phosphorylation of IRF3 in U373 cells. In contrast, the 

phosphorylation of IRF3 was in general much lesser in this cell line compared to U87MG, 

where IRF3 phosphorylation was slightly increased upon TANK silencing. The constitutive 

phosphorylation of p65 at S536 was higher in the U87MG cell line compared to U373. 

Silencing of TBK1 markedly impaired p65 phosphorylation in U87MG cells. Additionally, 

real time PCR analysis of mRNA levels of pro-inflammatory cytokines was carried out 

(Fig. 3.19.B) in both cell lines. On the one hand, the U373 cell line was found to express 

increasing amounts of TNFα and Vcam1 mRNA after silencing TANK. On the other hand, 

the knock-down of TBK1 led to a slightly increased expression of IL-6 mRNA in U373 

cells. In contrast, the knock-down of either TANK or TBK1 in U87MG cells generally had a 

more repressive effect on the mRNA levels of TNFα, Vcam1 and IL-6. Just the knock-

down of TANK did not lead to changes in the TNFα mRNA levels in U87MG cells. In this 

cell line, the strongest effect was found for the IL-6 expression in response to a TBK1 

knock-down. 
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Fig. 3.19.: Analysis of the effect of TANK and TBK1 on the pro-inflammatory microenvironment in 

glioma cell lines. (A) U373 and U87MG cells were used to silence TANK or TBK1 as described above. One 

fraction of the knock-down cells was lysed in 1 x SDS sample buffer and subsequently analyzed by Western 

blot using indicated antibodies. (B) In parallel, another fraction of cells was used to measure mRNA levels of 

pro-inflammatory cytokines. Total RNA was isolated and transcribed into cDNA using Oligo(dT) primers. Real 

time PCR was carried out using specific primers for TNF, IL-6 and Vcam. Mean values ± SD of three 

independent experiments are shown. 

 

3.6. The influence of TANK protein levels on signal output 

Adaptor proteins such as TANK usually do not facilitate intrinsic enzyme activity but serve 

as bridges for proteins to ensure proper signaling. Nevertheless, a well balanced 

expression of such adaptors is necessary to form functional protein complexes. [427] In 

order to address the importance of stoichiometric amounts of TANK, U373 cells were 

infected with viruses either leading to the shRNA-mediated downregulation of TANK or 
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TANK resulted in reduced phosphorylation of IRF3, a downstream target of the non-
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as shown previously (Fig. 3.19.A). Additionally, the functional consequences of TANK 

expression were examined in U251 cells. TANK was either silenced or over-expressed 

and cell proliferation was analyzed (Fig. 3.20.B). Both over-expression and silencing 

revealed the same effects and led to decreased proliferation in the U251 cell line. Taken 

together, glioma cell lines depend on a stoichiometric expression of the adaptor protein 

TANK to mediate signal output from the non-canonical IKK complex. Too low as well as 

too high TANK levels presumably interfere with the correct formation of the complex and 

interrupt appropriate signaling. 
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Fig. 3.20.: Analysis of the functional consequences of the dysregulation of TANK in glioma cell 

lines(A) U373 cell lines were infected in order to over-express or silence TANK. Cells were lysed in 1 x SDS 

sample buffer and protein expression as well as phosphorylation of IRF3 and p65 were determined by 

Western blot. (B) U251 cells were also infected to induce TANK over-expression or silencing and were 

seeded at a density of 5x10
4
. Number of cells was determined with FACSCalibur 72 and 120 hs after 

seeding. Mean values ± SD of three independent experiments are shown. The right part shows a control 

Western blot ensuring reduced or increased protein expression.  

 

3.7. The role of the non-canonical IKK complex in different 

cancer types 

The non-canonical IKK complex is expressed in several tissues [72, 74]. As the data thus 

far indicate a role of TANK and TBK1 for the proliferation of GBM cells, it was interesting 

whether they may also regulate proliferation of other cancer types. 

In order to address this question, several cell lines derived from different types of cancer 

were taken into consideration. The HeLa cell line is a prominent cancer cell line used in 

research and derived from cervix carcinoma. MCF7 is a breast cancer cell line, HCT116 a 

colon cancer cell line and A549 cells are derived from a lung adenocarcinoma. 

Either TANK or TBK1 were silenced in those four cell lines as described previously to 

investigate their impact on signaling and cell function (Fig. 3.21). Western blot analysis 

revealed great differences in TANK expression among different cancer types, as it also 

occurred within several glioma cell lines (Fig. 3.2.A). Whereas HCT116 expressed high 

levels of TANK, A549 cells contained only little amounts of this adapter protein. Akt and 

ERK1/2 were expressed and constitutively phosphorylated in all of these cancer cell lines, 

although to a different extent. In contrast to glioma cell lines, their phosphorylation was not 

changed after silencing of TANK or TBK1, raising the possibility that TANK and TBK1 do 

not affect ERK1/2 and Akt signaling in all cancer types. Proliferation assays were 

performed with MCF7, HCT116 and A549 cell lines to analyze possible functional 

consequences of silencing TANK or TBK1 (Fig. 3.21.B-D). MCF7 breast cancer cells 
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showed a decreased proliferation upon reduced TANK or TBK1 levels, further supporting 

the idea, that the non-canonical IKK complex is involved in the regulation of proliferation in 

breast cancer cells [128]. In contrast, proliferation of colon colorectal cancer and lung 

adenocarcinoma cell lines was only weakly decreased upon silencing of either TANK or 

TBK1. 

 

 

 

Fig. 3.21.: Analysis of the role of the non-canonical IKK complex in other cancer types. (A) Either 

TANK or TBK1 were silenced in HeLa, MCF7, HCT116 and A549 cells by infecting with shRNA as described 

before. After puromycin selection cells were lysed in 1 x SDS sample buffer and subsequently analyzed for 

protein expression and phosphorylation by Western blot using the indicated antibodies. (B) Proliferation 

assays with control cells and cells silenced for TANK or TBK1 were performed with MCF7 cells by seeding 

selected cells at a density of 5 x 10
4 

cells. The number of cells was determined with FACSCalibur 72 and 

120 hs after seeding. Mean values ± SD are shown. Experiments were also carried out for HCT116 (C) and 

A549 (D) cell line. 
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4. DISCUSSION 

 

4.1. The expression of TANK is dysregulated in glioblastoma 

multiforme 

Glioblastoma multiforme is one of the most lethal brain tumors [13]. Here, many signaling 

pathways such as Akt and the Ras-Raf-MEK-ERK cascade have been discovered to be 

dysregulated leading to tumorigenesis [28]. To identify other molecular factors involved in 

gliomagenesis this study focused on the adaptor protein TANK, usually involved in TBK1 

and IKKε mediated IRF transcription factor activation after bacterial or viral infection [67], 

and its role in glioblastomas. 

The analysis of patient tissue samples as well as several glioma cell lines revealed a 

highly varying expression of the adaptor protein TANK (figures 3.1-2). This great variation 

is a feature that can also be observed for other proteins expressed in GBM. Mineo and 

colleagues investigated the expression of HER2 (epidermal growth factor receptor) in 57 

glioma tissues and found a fluctuation of HER2 expression in different GBM population 

samples which is caused by inter-individual variations and depends on the tumor types 

[428]. The clinical picture of GBM is chameleonic and exhibits a variable appearance in 

morphology and histology as Bailey and Cushing reported when they characterized GBM 

for the first time [1]. Of note, protein as well as mRNA levels were different between 

primary patient tissue and glioma cell lines (figure 3.1-2). GBM tissue is characterized by 

necrotic areas [27] and hyperplastic blood vessels [429]. In fact, glioblastoma is one of the 

most vascularized tumors [430]. Thus, the presence of distinct cell subpopulations could 

contort the expression levels of TANK, TBK1 and IKKε measured in patient tissue 

samples. Furthermore, post-surgical treatment and freezing of patient tissues could 

technically influence the amount of detectable protein and especially RNA levels and lead 

to contortion of the findings between patient tissue samples and glioma cell lines. Isolated 

cells from cancer tissues are immortalized and able to proliferate in culture but still reflect 

their genetic and molecular characteristics [431].  

Additionally, the findings of this study indicate an over-expression of TANK in many GBM 

cases (figure 3.1). A constitutive expression of TANK has been documented by Conti et 

al. in glioma patient tissues [432]. In general, there are several mechanisms which could 

lead to this over-expression. Gene amplification, epigenetic changes, increased 
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transcription, higher mRNA stability as well as greater stability of the proteins are possible 

alterations which could cause exaggerated TANK protein levels. 

Several numerical and structural changes of chromosomes appear in GBM. Besides gains 

and losses of chromosomes, also breakpoints in chromosomes have been discovered 

[433-435]. Rogatto and Casartelli identified a region in chromosome 2 where 6 out of 12 

human primary gliomas exhibit a specific recurrent chromosome break – 2q24-2q32 [436]. 

Interestingly, the Tank gene is located in this region. The break in chromosomes can lead 

to translocation of the genetic information behind a more active promoter or can even 

result in a duplication of the genetic information, both possible explanations for increased 

levels of TANK. However, Crespo et al. characterized the genome of 46 patients suffering 

from GBM and did not find gene rearrangements in the TANK-encoding region [437]. 

The transcriptional rate of the Tank gene has been assessed using ChIP technique 

revealing distinct intensities for transcription of TANK in different glioma cell lines 

(figure 3.3). The transcription of the Tank gene has shown to be induced by the 

transcription factor SOX11 (SRY-related HMG-box) [438]. However, the role of this 

transcription factor in tumorigenesis remains unclear, since on the one hand, it has been 

found to be over-expressed in glioma tissue [439], but on the other hand, it was shown to 

induce differentiation [440, 441] thereby preventing tumorigenesis [442]. In order to 

investigate ongoing transcription at the Tank gene by an alternative approach, a nuclear-

run-on-assay could be performed including a control cell line such as non-transformed 

human fibroblasts to conclude on changes of Tank gene transcription. Furthermore, it 

would be of interest to focus on the transcription factor SOX11, and if it is dysregulated in 

glioma cell lines. 

The mRNA stability of TANK was considerably higher in glioma cell lines with lower 

transcriptional activity (figure 3.3), indicating that TANK protein levels are also controlled 

by post-transcriptional processes. Hao and Baltimore found the expression of pro-

inflammatory molecules to be regulated by transcriptional control as well as mRNA 

stability [443]. Generally, the mRNA half-life is determined by cis and trans elements 

regulating either the decay of the mRNA or its stabilization. Important cis-acting elements 

that influence mRNA stability can be found in the 5’UTR and 3’UTR as well as in the 

coding sequence of mRNAs. Examples for cis elements are the poly(A)-tail, miRNA 

binding sites or AU-rich elements (ARE). AREs are found in the 3’UTR of many mRNAs 

with short half-lives such as transcription factors and cytokines, and were shown to target 

those mRNAs for rapid deadenylation and decay [444-446]. Additionally, decapping of the 

mRNA induces its subsequent degradation by exoribonucleases [447]. The influence of 
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cis-regulatory elements on the stability of mRNA in GBM has been addressed by 

Tsukamoto et al. who investigated the stability of GLUT1 mRNA. Here, the destabilization 

of the mRNA by instability determinants in the 3’UTR lead to under-expression of the 

glucose transporter [448]. The mRNA of human TANK contains 7 AUUUA pentamers in 

the 3’UTR (http://rna.tbi.univie.ac.at/cgi-bin/AREsite.cgi) which are a classical ARE 

feature. AREs are able to recruit several trans-acting factors such as the RNA binding 

protein HuR (human antigen R) [449]. The recruitment of this trans regulatory factor is 

known to stabilize mRNAs by protecting the mRNA body from degradative enzymes [450]. 

Bolognani et al. reported HuR to be over-expressed in glioma cancer tissues in correlation 

with the tumor grade. Higher levels of HuR have been found in higher grade gliomas 

[451]. Furthermore, Filippova and colleagues found HuR to be important for growth and 

survival of glioma cell lines [452]. In this context, over-expressed HuR could lead to an 

increased mRNA stability of TANK and in turn contribute to elevated protein levels of 

TANK in GBM. The investigation of other possible mechanisms regulating mRNA stability 

in GBM such as impaired binding of destabilizing factors will be an interesting challenge 

for the future.  

The protein stabilities of TANK and TBK1 were also taken into consideration. Here, all 

investigated glioma cell lines exhibit high stabilities for both proteins, but the protein 

stability of the adaptor protein TANK was higher compared to the kinase TBK1 

(figure 3.3). This is in accordance with the findings of Wu et al. who identified protein 

kinases to be less stable than other protein classes upon the release of their stabilizing 

binding partner [453]. Considering that a high expression of functional proteins does not 

consequently lead to their activation, it would be interesting to investigate the constitutive 

activation of the non-canonical IKK complex in GBM by a kinase activity assay. Finally, it 

would be of interest to determine post-translational modifications that are known to be 

involved in the activation of the non-canonical IKK complex such as phosphorylation or 

ubiquitination. 

The measured mRNA levels for TANK in different glioma cell lines were not always in 

accordance with the observed protein levels. This discrepancy is in line with the findings 

of Vogt et al. who observed a similar phenomenon when investigating the TERT gene 

(telomerase reverse transcriptase) amplification. This amplification was suggested to lead 

to enhanced mRNA and consequently protein levels, but Vogt et al. just found a little 

correlation between mRNA and protein levels [454]. 
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4.2. The non-canonical IKK complex influences cellular 

functions in glioma cell lines 

TANK has been found to be dysregulated in GBM. In order to address the consequences 

of this dysregulation, cellular processes such as proliferation and migration were 

investigated. TANK and TBK1 were identified to play an important role in mediating 

proliferation (figure 3.5). Among the three components of the non-canonical IKK complex, 

only the two kinases have been linked to proliferation so far. Qin and Cheng reported an 

anti-proliferative effect of IKKε knock-down in breast cancer cell lines [128]. Similarily, 

IKKε knock-down also led to decreased proliferation in glioma cell lines [455]. Since IKKε 

and TBK1 are structurally and functionally similar, it is likely that also TBK1 fulfills a role in 

promoting proliferation in cancer. For instance, Kim et al. described a decrease in 

proliferation after TBK1 knock-down in hepatocellular carcinoma cells [456]. The activity of 

both IKK-related kinases has further been shown to depend on an adaptor molecule such 

as TANK [80, 457], thus, its absence results in a decrease of IKKε and TBK1 activity and 

in turn in reduced proliferation. In order to investigate the reason for this anti-proliferative 

effect of the non-canonical IKK complex in gliomas, cell cycle analyses were performed. A 

vinblastine induced cell cycle arrest led to delayed or even rarely detectable accumulation 

of cells in G2 phase after silencing TANK and in some cell lines also for TBK1 silencing 

(figure 3.8). This confirms the inhibitory effects of the knock-down on proliferation. 

Furthermore, the knock-down of TANK or TBK1 in glioma cell lines led to a slightly 

increased proportion of cells in G1 phase in some cell lines (figure 3.7). This is in line with 

the findings of Kittler et al. who reported the TANK knock-down to induce G0/G1 arrest in a 

genome-scale RNAi profiling of HeLa cells [458]. Additionally, IKKε knock-down 

experiments in breast cancer lines and glioma cell lines have been found to induce a cell 

cyle arrest in G0/G1 phase which resulted in decreased proliferation [128, 455]. This arrest 

in G0/G1 has been associated with a decrease in NF-κB activation, thus leading to a 

reduced expression of cyclin D1 [455]. Furthermore, the phosphorylation of ERα by IKKε 

has been shown to induce the transcriptional expression of cyclin D1 [131] which has 

been demonstrated to be over-expressed in various cancers and to promote G1/S 

transition [459, 460]. In contrast to IKKε, the role of TBK1 in cancer cell proliferation is not 

that clear. The proliferation ability of some breast cancer cell lines seems to depend on 

TBK1 [127]. However, the suppression of TBK1 in cancer cell lines, which depend on 

oncogenic KRas expression, rather induces apoptosis than a decrease in proliferation. 

Here, TBK1 activates anti-apoptotic NF-κB signals [461].  

Interestingly, one of the investigated glioma cell lines accumulated in S phase after 

silencing TANK (figures 3.7-8). A defect in the transition from S to G2 phase has been 
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reported for cells over-expressing p21. The binding of p21 to PCNA (proliferating cell 

nuclear antigen) results in the inhibition of DNA synthesis [462-464]. The expression and 

activity of p21 can be modulated by Akt and ERK1/2 kinases [235, 310], both known to 

crosstalk and to be dysregulated in GBM. The role of the non-canonical IKK complex in 

this crosstalk of Ras-Raf-MEK-ERK and PI3K-Akt signaling pathways will be discussed 

later. 

Invasion is a multifactorial process involving interaction of cells with neighboring cells and 

the ECM (extra-cellular matrix) as well as biochemical processes leading to active cell 

movement [465]. In contrast to invasion which is defined as three dimensional movement 

of cells within a matrix, migration describes a two dimensional and directed motion which 

is necessary for invasion [466]. In the present study, the influence of TANK or TBK1 

knock-down regarding migration was investigated and revealed a great role of the non-

canonical IKK complex for the migration ability of glioma cells (figure 3.9.). Because 

effects of TANK silencing exceeded those of TBK1 silencing, it is likely that IKKε 

additionally plays a great role for cell migration of glioma cell lines. This is in accordance 

with the literature where inhibited migration upon IKKε silencing in glioma and breast 

cancer cell lines, respectively, has been described [128, 455]. Other components of the 

NF-κB signaling network are also associated with migration in cancer cells. Very recently, 

IKKα and IKKβ-induced NF-κB activation was identified to modulate migration in HNSCC 

(head and neck cancer) probably by affecting c-Jun [467]. Furthermore, both canonical 

IKKs are involved in NF-κB-mediated MMP9 expression (matrix metalloproteinase 9) 

which is necessary for migration [468]. MMP9 is a member of the MMP family which is 

responsible for the breakdown of the ECM [469]. Serving as type IV collagenase, MMP9 

secretion results in degradation of collagen of the ECM thereby providing space for 

invading cells [465]. Moreover, Akt kinase, that also can be directly phosphorylated by 

IKKε and TBK1, was identified to modulate MMP9 expression in cancer cells by inducing 

NF-κB activation [470]. The role of hyperactive Akt in migration has further been 

investigated by Zhang and colleagues. They reported that Notch1 is dysregulated in 

glioma which leads to an activation of Akt. Akt in turn increases the β-catenin activity 

which leads to the expression of genes that are necessary for the epithelial-to-

mesenchymal transition [471, 472]. Furthermore, increased β-catenin leads to a disruption 

of the cadherin-catenin complex and decreases the intercellular contact which promotes 

migration. One of the cadherins, that can be bound by β-catenin, is the transmembrane 

cell adhesion protein E-cadherin [473]. The role of E-cadherin in migration still seems to 

be controversial. On the one hand, Lewis-Tuffin et al. found E-cadherin to be over-

expressed in one third of glioma cases which leads to exaggerated growth, migration and 
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invasiveness [474]. On the other hand, reduced levels of the tumor supressor E-cadherin 

were reported to be associated with increased migration by disrupting intercellular 

contacts [475, 476]. The supression of E-cadherin in gliomas can be caused by the 

transcription factors ZEB1 [477] or ZEB2 (Zinc finger E-box-binding homeobox 1 and 2) 

[478] which results in increased migration. Edwards and colleagues investigated the 

relation between E-cadherin, ZEB transcription factors and NF-κB in glioblastoma and 

demonstrated that the activation of NF-κB can lead to the binding of ZEB1 to the E-

cadherin promotor which results in the supression of E-cadherin and subsequently in 

enhanced migration [477]. Qi and colleagues showed an increased expression of ZEB2 in 

glioma which they found to be responsible for migration by the repression of E-cadherin 

[478]. In future, it would be of interest to further address the role of the non-canonical IKK 

complex in invasion by either performing a transwell invasion assay to measure invasion 

in vitro or a spheroid confrontation assay in order to determine cell invasion into tissue.  

 

4.3. The importance of stoichiometric TANK expression 

Even though adaptor proteins such as TANK do not hold any catalytic function, their 

expression is necessary for signaling [427]. Thereby, the amount of the expressed 

adaptor protein can influence the fidelity of signaling as depicted in figure 4.1. 

 

Fig. 4.1: Model of the consequences of over- 

or under-expression of adaptor proteins 

such as TANK. The optimal amount of adaptor 

proteins is necessary for a high fidelity of the 

signal outcome. For instance, too high as well 

as too low levels of TANK lead to a disruption of 

the complex resulting in decreased downstream 

signaling. 

In accordance with this model, stoichiometric shifts within the complex by either silencing 

or substantial over-expression of TANK consequently resulted in reduced IRF activation 

as well as reduced proliferation in glioma cell lines (figure 3.20). In general, the observed 

phenomenon of decreased signal fidelity of a functional complex by over- and under-

expression of its scaffold proteins has been described by Burack and Shaw using the 

example of scaffold proteins in the MAPK signaling pathway [479]. Silencing of the 

scaffold protein MP1 (MEK partner 1) has been shown to reduce ERK activation in breast 

cancer cells [480]. Schaeffer et al. found, that the over-expression of the scaffold protein 

MP1 resulted in enhanced signaling output only when ERK1 kinase was additionally over-
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expressed [481]. Based on those findings, Burack and Shaw pointed out the importance 

of near-stoichiometric levels of the scaffold and the ligand for a functional complex and 

proper signaling [479]. 

The idea that TANK over-expression leads to a decrease in the signal fidelity of the non-

canonical IKK complex seems to be in contrast to the observation that TANK over-

expression results in promotion of proliferation and migration in GBM. As Goncalves and 

colleagues argued, the TANK adaptor protein competes with SINTBAD and NAP1 for the 

binding of the IKK-related kinases [80]. Those other possible adaptors are as well 

expressed in brain tissues [482, 483] and form alternative complexes with TBK1 and IKKε 

which have similar functions in the kinase activation [67, 80]. TANK has been shown to 

have the lowest affinity for TBK1- and IKKε-binding compared to SINTBAD and NAP1 

[80]. So, the more TANK is expressed in glioma cells, the more likely is the binding of 

TANK to both IKK-related kinases, until a certain maximum is reached and the complex 

cannot form properly. Furthermore, IKKε has been identified to be over-expressed in 

gliomas and to be responsible for increased proliferation and migration [455]. This 

suggests that TANK might assemble an alternative complex with an IKKε homodimer 

which is involved in gliomagenesis. This would also be in accordance with results in this 

study which demonstrate greater effects of TANK knock-down than of TBK1 silencing on 

cellular functions such as proliferation and migration. TBK1 has not been described to be 

over-expressed in GBM but in other cancer types such as lung, colon and breast cancer 

[69, 79]. 

Further experiments investigating the role of NAP1 and SINTBAD in glioma cell lines by 

measuring their expression and influence on cellular functions will help to estimate the 

role of the non-canonical IKK complex in GBM. In this context, it would be interesting to 

address the affinity of the three adaptor proteins for TBK1- and IKKε-binding in glioma cell 

lines. 

 

4.4. The non-canonical IKK complex is integrated in a complex 

network of signaling pathways 

4.4.1. The influence of TANK and TBK1 on the proliferation of glioma cell lines is 

regulated by intrinsic signaling 

In order to identify mechanisms by which the non-canonical IKK complex facilitates its 

function on proliferation, this study first determined whether the observed effects on 
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proliferation resulted from their influence on other signaling pathways or were an indirect 

consequence of secreted soluble factors. The treatment of control cells with supernatant 

of knock-down cells did not result in reduced proliferation, indicating that the influence of 

the non-canonical IKK complex on the proliferation of glioma cells is not a consequence of 

secreted factors but of altered intrinsic signaling (figure 3.12). In contrast, the cells treated 

with the supernatant showed a slightly increased proliferation. This could be caused by 

pro-proliferative factors in the extracellular environment such as growth factors and 

cytokines as IL-11, IL-6 and TNFα [426, 484, 485]. For instance, IL-6 has been shown by 

Qiu et al. to be over-expressed in glioma stem cells [486]. Furthermore, Kudo and 

colleagues reported high IL-6 expression in glioma cell lines to positively regulate 

proliferation by the activation of the JAK-STAT signaling pathway [487]. 

Predominantly, the decreased proliferation of glioma cell lines after silencing components 

of the non-canonical IKK complex seems to derive from changes in the intracellular 

signaling network. Since proliferation and migration in cancer cells often have been found 

to depend on Akt or ERK1/2 signaling [377, 398], it was interesting to assess, if and how 

the non-canonical IKK complex could be integrated into the signaling network described in 

1.5. 

4.4.2. TANK and TBK1 influence the phosphorylation of Akt and ERK1/2 in 

glioma cell lines 

Within the present study, endogenous levels of Akt and ERK1/2 proteins as well as their 

phosphorylation status were determined and their constitutive activation was revealed. 

Interestingly, the analyses of the glioma cell lines disclosed an inverse phosphorylation 

pattern of Akt T308 and ERK1/2, meaning that if Akt is highly phosphorylated, ERK1/2 

phosphorylation is decreased and in turn, if ERK1/2 is highly phosphorylated, Akt 

phosphorylation is decreased. The repressive effect of activated Akt on ERK1/2 activation 

has been shown by Mabuchi et al. in ovarian cancer cells as well as by Lee and 

colleagues in prostate cancer cell lines [372, 488]. Akt phosphorylates and inactivates 

Raf-1, thereby impairing ERK1/2 activation [372]. Taken together, Akt seems to have a 

suppressive effect on the phosphorylation of ERK1/2 in glioma cell lines. 

But what is the role of the non-canonical IKK complex in the phosphorylation of Akt and 

ERK1/2? Within the scope of this study, silencing of either TANK or TBK1 has been 

shown to reduce Akt as well as ERK1/2 phosphorylation (figures 3.13-14). Furthermore, 

the inhibition of the non-canonical IKK complex by BX795 confirmed this effects as 

summarized in figure 4.2.A. This is the first time the non-canonical IKK complex is linked 

to ERK1/2 signaling. Recently, Akt has been demonstrated to act downstream of TBK1 
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and IKKε [125, 136, 137]. Moreover, Akt is known to act upstream of ERK1/2 through the 

activation or inhibition of the upstream kinase Raf [372, 374]. Some substances have 

been shown to decrease the phosphorylation of Akt and ERK1/2 simultaneously in 

different cell lines [489-491]. Chai et al. reported Sorafenib, a multikinase inhibitor known 

to target Raf [492], to induce apoptosis in neuroblastoma cell lines by the down-regulation 

of Akt and ERK1/2 phosphorylation [490]. Also Fei et al. showed decreased ERK1/2 

phosphorylation in response to Perifosine [489] which is a Akt kinase inhibitor [493]. 

Furthermore, Ellert-Miklaszewska and colleagues described a repressive effect on Akt 

and ERK1/2 phosphorylation in a rat glioma cell line after the treatment with Cannabinoids 

which resulted in cell death and decreased proliferation [491]. Those effects can be 

explained by the crosstalk among the MAPKs and the influence of Akt kinase on this 

crosstalk. Activated Akt has been shown to block the activity of JNK [224, 494]. In turn, 

JNK has been found to have a repressive effect on ERK1/2 within the MAPK crosstalk 

[495, 496]. So, if Akt is inhibited, JNK activity is exaggerated and the repressive effect of 

JNK on ERK1/2 is increased which results in reduced phosphorylation of ERK1/2. Another 

possible connection between the non-canonical IKK complex, Akt and ERK1/2 might lead 

through GSK3α. Gulen and colleagues found IKKε to inactivate GSK3α by 

phosphorylation at S21 in response to IL-1. Furthermore, GSK3α inhibits Akt by the 

phosphorylation within the substrate binding site at T312 [497]. Wang et al. identified 

GSK3 as a negative regulator of ERK1/2 phosphorylation in colon cancer cells in a PKC-

dependent manner [498]. Thus, the knock-down of IKKε would lead to increased GSK3 

activity and consequently reduced Akt as well as ERK1/2 phosphorylation. Finally, it is 

also possible, that TBK1/IKKε directly (independent of Akt) phosphorylate ERK1/2 or 

possibly the upstream kinase MEK1/2. But so far, there is no evidence for such an 

interaction in literature. Also database researches did not reveal phosphorylation motifs in 

ERK1/2 or MEK1/2 that could be target sites for TBK1 or IKKε. 

The negative correlation between Akt T308 and ERK1/2 phosphorylation in glioma cells 

shifted to a positive correlation upon silencing/inhibiting of the non-canonical IKK complex. 

In general, T308 is the major residue that needs to be phosphorylated to activate Akt, but 

full activation is known to additionally require S473 phosphorylation [153]. Both residues 

have been demonstrated to be phosphorylated by many kinases in response to different 

stimuli [247]. Moreover, the phosphorylation of tyrosine residues of Akt have been 

identified to be essential for its biological function [499]. This suggests the possibility that 

certain phosphorylation patterns determine whether Akt has a supportive or repressive 

effect on ERK1/2 phosphorylation. This distinct regulation of protein function by post-

transcriptional modification patterns, termed barcode hypothesis, has been described for 
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p53 [500]. p53 can be induced by a wide range of stress stimuli and finally lead to either 

apoptosis or DNA repair [238, 501]. The phosphorylation of p53 at certain sites thereby 

influences the cellular outcome. For instance, the phosphorylation of one residue can lead 

to changes in the subcellular localization and thereby results in altered function. The 

phosphorylation of p53 at S315 has been associated with the inhibition of p53 by its 

export to the cytosol and its degradation [500, 502]. p53 phosphorylation at S315 is 

additionally known to induce the binding of p53 to E2F1, which leads to its retention in the 

nucleus and to p53-dependent gene expression [503]. The term barcode hypothesis has 

already been adopted for other proteins such as p65. Moreno et al. found that the 

combination of post-translational modifications of p65 is important to direct its 

transcriptional activity in a target specific fashion [95]. 

Finally, combined inhibition of Akt and the non-canonical IKK complex did not have any 

further effect on the ERK1/2 phosphorylation, suggesting the IKK-related kinases and Akt 

to act upstream of ERK1/2 in one signaling path. 

4.4.3. The role of MEK1/2 and TAK1 in TANK/TBK1/IKKε-mediated ERK1/2 

phosphorylation 

The dependence of Akt-induced ERK1/2 phosphorylation on MEK1/2 has been 

investigated by MEK1/2 inhibition (summarized in figure 4.2.B). However, the treatment 

with U0126 failed to reduce ERK1/2 phosphorylation in most glioma cell lines 

(figure 3.17). On the one hand, Yip-Schneider and colleagues reported the development 

of a reversible resistance to U0126 within 24 hs in liver cancer cells as a consequence of 

feedback mechanisms to the Ras-Raf-MEK pathway [504]. Thus, it is possible that the 

investigated glioma cell lines also developed a resistance against the inhibitor U0126 

since they were also treated for 24 hs. On the other hand, the observed ERK1/2 

phosphorylation upon MEK1/2 inhibition could indicate the presence of an MEK1/2-

independent pathway to activate ERK1/2. The treatment with MEK inhibitor U0126 was 

also insufficient to block Akt phosphorylation, indicating that Akt acts upstream of ERK1/2 

in another signaling path (figure 3.17). Nevertheless, Akt phosphorylation was increased 

upon U0126 treatment suggesting the existence of a feedback loop from MEK1/2 or 

ERK1/2 to Akt. The paradox phenomenon of increased Akt phosphorylation after the 

treatment with MEK inhibitors has also been observed by Normanno et al. in breast 

cancer cell lines, and was found to result in proliferation and survival [505]. However, the 

underlying mechanisms still remain unclear and need to be investigated. A combined 

inhibition of MEK1/2 and the IKK-related kinases resulted in the abolishment of ERK1/2 

phosphorylation in some glioma cell lines (figure 3.17.). This result further supports the 
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idea of an alternative ERK1/2 activating pathway, which is independent of MEK1/2, to 

ensure proliferation in GBM. In future it would be of interest to identify the players of this 

pathway. In this context, Grammer and Blenis found the PI3K-Akt pathway as well as PKC 

to be linked to an MEK1/2-independent ERK1/2 activation [506]. However, so far there is 

no evidence for a direct phosphorylation of ERK1/2 by either PKC or Akt. Taken together, 

these findings support the idea of escape signaling mechanisms in GBM to maintain rapid 

proliferation. The simultaneous inhibition of participating pathways thereby could improve 

the treatment of cancer. 

Similar to the MEK inhibition, the treatment of glioma cell lines with a TAK1 inhibitor 

revealed an increased Akt phosphorylation in most cell lines as summarized in 

figure 4.2.D. This increased Akt phosphorylation did not correlate with ERK1/2 

phosphorylation which was found not to be altered. Whereas TAK1 has been shown to 

activate p38 and JNK MAP kinases, there is no evidence for ERK1/2 activation by TAK1 

[507]. The repressive effect of TAK1 on the phosphorylation of Akt is in contrast with the 

findings of Lee et al. who reported TAK1 to activate Akt in response to LPS in a PI3K-

dependent manner in pre-B cells [507]. Furthermore, the existence of a TAK1-MEK-Akt 

pathway involved in survival has been claimed by Gingery and colleagues in osteoclasts 

in response to TGF-β [508]. Since the combination of TAK1 inhibitor with BX795 did not 

show any further effects on the phosphorylation of Akt and ERK1/2 compared to the 

treatments only with BX795 or 5Z-7-oxozeaenol, it is likely that there is no crosstalk 

between the non-canonical IKK complex and TAK1 in glioma cell lines (figure 3.18). In 

order to confirm the role of TAK1 in Akt and ERK1/2 signaling in glioma cell lines, further 

investigations need to be done. Silencing of TAK1 followed by the measurement of Akt 

and ERK1/2 phosphorylation as well as the measurement of TBK1/IKKε activity could 

reveal better insights into the signaling crosstalk. Furthermore, it would also be interesting 

to assess the role of TAK1 in cellular functions in glioma cell lines by investigating 

proliferation, migration and apoptosis after silencing TAK1. 

The following figure summarizes the findings of this work (A-D) as well as the discussed 

crosstalk between the non-canonical IKK complex, Akt and ERK1/2 (E) and thereby 

shows a presumable model of signaling that occurs in GBM. 
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Fig. 4.2: Presumable signaling network regulating Akt and ERK1/2 in glioma cell lines. The effects of 

the indicated inhibitors on Akt and ERK1/2 phosphorylation in glioma cell lines are depicted in subfigures A 

to D. Here, the amount of arrows is representing the amount of glioma cell lines where the effect was 

detected. (E) The model of the signaling network in GBM how it could be explained by the literature. The 

non-canonical IKK complex has been identified to activate Akt. Akt in turn has distinct functions on ERK1/2 

activation. Whereas ERK1/2 phosphorylation is repressed by Akt phosphorylated at T308 in steady-state 

conditions, the inhibition of Akt phosphorylation at both activation sites likewise resulted in reduced ERK1/2 

phosphorylation. Underlying mechanisms are not clear so far but could depend on the crosstalk of MAP 

kinases with each other and Akt or on upstream GSK3, which in turn represses the activation of Raf-MEK-

ERK by inhibiting PKC as well as Akt. Furthermore, MEK1/2 and TAK1 have been discovered in the present 

study to repress Akt activation independently of the non-canonical IKK complex. Abbreviations: SOS; Son of 

Sevenless; Shc: SHC-transforming protein; Grb2: growth factor receptor-bound protein 2; Ras: Rat 

sarcoma; MEK: MAP2K; ERK: extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinases; PKC: 

protein kinase C;.GSK3: glycogen synthase kinase 3; TANK: TRAF family member-associated NF-κB 

activator; IKKε: IκB kinase epsilon; TBK1: TANK binding kinase 1; PI3K: phosphatidylinositide 3-kinases; 

TAK1: TGF-β-activating kinase. 

 

Of note, the proposed model is solely based on an approach using specific inhibitors, so it 

has to be validated by other techniques such as silencing experiments and kinase assays 

as well as by the determination of the cellular outcome such as proliferation and survival. 

Nevertheless, first hints disclose a network of signaling pathways in glioma involving 

ERK1/2, Akt and the non-canonical IKK complex to promote proliferation. 

4.4.4. The role of the non-canonical IKK complex in other cancer cell lines 

The influence of the non-canonical IKK complex on proliferation of cancer cell lines other 

than glioblastoma revealed a minor effect on HCT116 and A549 proliferation. In contrast, 

a profound decrease in proliferation has been observed in MCF-7 cell line after silencing 

either TANK or TBK1 (figure 3.21). Several groups found IKKε to induce transformation 

and further increase proliferation in some cancer types. Especially breast cancer is known 

to be dependent on IKKε-mediated transformation [127, 509]. Guo et al. showed this 

effect for breast cancer cell lines including MCF-7 [137]. Also Akt has been shown to 
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promote tumorigenic transformation in about 50% of breast cancer cases [510]. Boehm et 

al. showed in an integrative genomic approach, that IKKε is able to substitute Akt in 

cellular transformation [127] which would explain the influence of the non-canonical IKK 

complex on MCF-7 proliferation without changes in the Akt phosphorylation. Furthermore, 

Akt2 has been reported to act upstream of IKKε in breast cancer cell lines by influencing 

its expression [511]. Additionally, Kim et al. demonstrated that basal Akt phosphorylation 

was not altered after silencing of TBK1 in lung cancer cells [512]. In summary, this work 

did not show any influence of TANK or TBK1 silencing on the phosphorylation of Akt and 

ERK1/2 (figure 3.21), indicating that the described crosstalk of the non-canonical IKK 

complex, Akt and ERK1/2 is exclusively present in GBM. 

 

4.5. TANK and TBK1 regulate inflammatory signaling cascades 

in glioblastoma multiforme 

The importance of inflammation in cancer and especially GBM has been well described 

[425, 426]. The role of the non-canonical IKK complex in pro-inflammatory signaling in 

glioma cell lines was investigated. Thereby, a heterogeneous picture concerning the 

phosphorylation of IRF3 and p65 and the expression of pro-inflammatory cytokines was 

revealed (figure 3.19). A constitutive activation of NF-κB in GBM has been described by 

Raychaudhuri et al. as well as Tsunoda and colleagues [513, 514]. In many different types 

of cancers an aberrant NF-κB activation also leads to an increase in the expression of 

pro-inflammatory cytokines [119]. The mechanisms underlying the constitutive activation 

of NF-κB are still not clearly understood. In general, the constitutive phosphorylation and 

degradation of IκBα, which has been reported for instance in melanomas, results in 

nuclear translocation of the NF-κB dimer [515]. Furthermore, deletions or loss-of-function 

mutations of IκBα could induce this constitutive activation of NF-κB [516]. Such a deletion 

of NFKBIA has been found in glioblastomas [50]. Besides NF-κB, also other signaling 

cascades are involved in the expression of pro-inflammatory cytokines as for instance IL-

6. Here, dysregulated MAPK signaling has been found to be important. Yeung and 

colleagues identified p38 to be responsible for the over-expression of IL-6 in GBM cell 

lines. However, the underlying mechanism remain unclear [517]. Although, Zauberman et 

al. found the transcription factor STAT3 to be activated by p38 which results in increased 

IL-6 expression [518]. 

The pro-inflammatory transcription factor IRF3 is known as a tumor suppressor and 

consequently lowly expressed in GBM [519]. Furthermore, IRF3 expression suppresses 
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migration and proliferation of glioma cells [519]. In general, the non-canonical IKK 

complex is able to influence NF-κB and IRF3 transcription factors by modulating their 

phosphorylation. It still needs to be investigated in detail how the complex cytokine 

network is affected by the over-expression of the complex in glioma cell lines. Within the 

scope of this study, a controversial picture of the influence of TANK and TBK1 on the 

inflammatory signaling in GBM became apparent.  

 

4.6. The role of the non-canonical IKK complex in the treatment 

with chemotherapeutic drugs 

As GBM is one of the most aggressive brain tumors with a bad prognosis, great effort has 

been done during the last decades to develop new treatment possibilities. At present, 

eight open studies for glioblastoma are in phase III of clinical studies 

(http://clinicaltrial.gov). So far, only TMZ arose as standard-of-care in the 

chemotherapeutic treatment. The cell death-inducing feature of TMZ has been confirmed 

in this study. Furthermore, also physiological concentrations of AraC have been found to 

induce cell death in glioma cell lines (figure 3.10). AraC has been reported to induce 

phosphorylation of the checkpoint kinase Chk1, but has no activating effect on the 

ATM/Chk2 pathway [520, 521]. This results in cell cycle arrest, reduced growth as well as 

apoptosis [417]. 

The influence of the non-canonical IKK complex on AraC and TMZ-induced cell death has 

been investigated. Thereby, an additional effect of TBK1 has been found which was even 

more pronounced for TANK (figure 3.11 and 3.15). This suggests, that IKKε seems to be 

the kinase mainly responsible for the additional effect of the non-canonical IKK complex 

on the TMZ or AraC treatment, respectively. Indeed, IKKε has been shown to be involved 

in anti-apoptotic functions in response to DNA damage. Renner et al. identified IKKε to be 

activated in response to DNA damage induced by Etoposide which results in the 

prevention of cell death. Here, the phosphorylation of p65 at S468 by IKKε induced the 

expression of p21 and MDM2 [96]. Moreover, Guan and colleagues demonstrated an anti-

apoptotic state in glioma cells treated with UV light or Adriamycin (Doxorubicin) which was 

caused by IKKε-induced NF-κB signaling and subsequent Bcl-2 expression. In this 

context, the knock-down of IKKε further increased the cell death induced by the stimuli 

[522]. This is in line with the results of the present study and further underlines the anti-

apoptotic function of the non-canonical IKK complex. Additionally, NF-κB might be 

involved in the pro-apoptotic function of TMZ and AraC. Caparoli et al. reported TMZ to 
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induce ATR activation and subsequent Akt phosphorylation which results in pro-apoptotic 

NF-κB signaling [523]. Akt kinase has also been shown to induce apoptosis in response to 

DNA damage mediated by ATM [524]. Furthermore, ATM has been identified to be 

activated in response to TMZ and to interact with NEMO which leads to pro-apoptotic NF-

κB signaling [525, 526]. Taken together, cell death induced by TMZ could be mediated by 

NF-κB as well as suppressed by IKKε also depending on NF-κB signaling. In general, NF-

κB is known to support both pro- and anti-apoptotic signaling in response to DNA damage. 

The balance of pro-and anti-apoptotic signals depends on cell type and stimulus [527, 

528]. In order to receive a better impression of the role of the non-canonical IKK complex 

in the induction of apoptosis, the measurement of apoptosis by Annexin V/FITC staining 

after silencing components of the complex would be an interesting approach. The 

additional treatment of glioma cells with chemotherapeutic drugs such as TMZ or AraC will 

thereby verify the shown effect of the non-canonical IKK complex on the drug-induced cell 

death. Additionally, the identification of involved DNA damage sensors and signaling 

pathways would provide a better insight into the role of the non-canonical IKK complex in 

drug-induced apoptosis. 

In future, the development of new chemotherapeutic drugs for the treatment of GBM will 

be of great importance. This study revealed new insights in the complex signaling network 

in GBM. The non-canonical IKK complex as well as Akt signaling were identified to play a 

role in ERK1/2 phosphorylation. The activation of alternative pathways provides the cell 

with mechanisms to escape chemotherapeutic drugs. Thus, targeting several players in 

the network simultaneously could be an interesting approach for drug discovery studies. 

Treatments with special respect to genetic and molecular changes will play a crucial role 

to keep up with the diversity and multiform appearance of GBM and to avoid the 

development of drug resistances by escape mechanisms. 
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5. SUMMARY 

Glioblastoma multiforme is one of the most common and lethal brain tumors. Many 

genetic and molecular changes have been described to occur in this type of brain cancer. 

Within this work, the role of the non-canonical IKK complex in glioblastoma multiforme 

was investigated. The non-canonical IKK complex is composed of the IKK-related kinases 

TBK1 and IKKε as well as adaptor proteins such as TANK, and is usually involved in the 

defense against viral and bacterial pathogens by the induction of type I interferon 

expression. This work shows, that TANK is dysregulated and over-expressed in a wide 

range of GBM patient tissue samples as well as glioma cell lines. Several mechanisms 

have been found to be responsible for the greatly varying protein levels of TANK. Various 

experimental approaches showed, that differences in the de novo transcription of the Tank 

gene and differential stabilities of TANK mRNAs account for the variances in TANK 

protein levels in glioma cell lines. The influence of members of the non-canonical IKK 

complex on cellular functions of glioma cell lines was then investigated after the knock-

down of TANK or TBK1. Proliferation assays as well as MTT assays revealed a markedly 

reduced proliferation rate of some glioma cell lines after silencing of TANK or TBK1. The 

proliferation of other glioma cells was dependent on either TANK or TBK1. The 

proliferation of the minority of glioma cell lines was not affected by the knock-down of 

TANK or TBK1. Additionally, the ability of glioma cells to progress in cell cycle was found 

to be reduced upon TANK or TBK1 knock-down in those glioma cell lines where the 

knock-down caused a reduced proliferation ability. The migration ability was examined by 

wound-healing assays. These experiments showed that cells, which depend on TANK or 

TBK1 for proliferation, also need these proteins for cell migration. Usually those cellular 

functions are regulated by signaling pathways such as the Ras-Raf-MEK-ERK or PI3K-Akt 

signaling pathways. Therefore, the involvement of the non-canonical IKK complex in those 

signaling cascades was determined in this work. Akt as well as ERK1/2 have been shown 

to be constitutively phosphorylated and activated in some primary tissue samples of GBM 

or astrocytoma grade III patients as well as most of the glioma cell lines. The knock-down 

of either TANK or TBK1 as well as the inhibition of both IKK-related kinases (TBK1 and 

IKKε) by BX795 had a repressive effect on those phosphorylations in some of the glioma 

cell lines. Thus, an alternative signaling path for the activation of proliferation and survival 

signals in glioblastoma multiforme was identified which is dependent on the cell line. A 

pharmacological approach was applied to study the complex signaling network in detail 

and revealed a negative feedback loop from MEK1/2 to Akt as well as a MEK-independent 

signaling pathway to activate ERK. Whether the MEK-independent TBK1/IKKε-Akt 
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signaling axis leads to the phosphorylation and activation of ERK directly or indirectly still 

needs to be clarified in the future. However, this TBK1/IKKε-Akt-ERK pathway represents 

an alternative pathway to activate proliferation and survival signals in cancer, thus 

providing new opportunities in the discovery of treatments of glioblastoma multiforme. 
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6. ZUSAMMENFASSUNG 

Das Glioblastom zählt nachwievor zu einem der häufigsten und tödlichsten Hirntumoren. 

Bisher konnten einige genetischen und molekularen Veränderungen in diesem Tumor 

identifiziert werden, die für diese Tumorart charakteristisch sind. Ziel der vorliegenden 

Arbeit war es, die Rolle des nicht kanonischen IKK Komplex im Glioblastom zu 

charakterisieren. Der nicht kanonische IKK Komplex besteht aus den beiden Kinasen 

TBK1 und IKKε, die durch ein Adaptorprotein wie beispielsweise TANK 

zusammengehalten werden. In erster Linie ist der Signalweg über diesen Komplex für die 

Reaktion auf virale oder bakterielle Pathogene verantwortlich, und führt in dieser Folge 

zur Ausschüttung von Typ I Interferonen. Im Rahmen dieser Arbeit konnte gezeigt 

werden, dass die Expression des Adaptorproteins TANK in einer Vielzahl von Patienten 

und Gliomzelllinien dereguliert und erhöht ist. Dabei wurden eine unterschiedliche de 

novo Transkription und mRNA Stabilität als mögliche Ursachen für die schwankenden 

Proteinlevel von TANK in den Gliomzelllinien gefunden. Weiterhin wurde die Rolle des 

nicht kanonischen IKK Komplexes auf zelluläre Funktionen der Gliomzelllinien untersucht, 

indem das Adaptorprotein TANK sowie die Kinase TBK1 retroviral herunter reguliert 

wurden. Dabei verdeutlichten Proliferationsstudien und MTT-Tests eine deutlich 

reduzierte Proliferationsfähigkeit in einigen Gliomzelllinien. In anderen Gliomzelllinien war 

die Proliferation abhängig von TANK oder TBK1, und in einigen wenigen Zelllinien hatten 

beide Proteine keinen Einfluss auf die Proliferation. Auch der Zellzyklusverlauf war in den 

Gliomzelllinien vermindert, in denen der Knock-down von TANK oder TBK1 zu einer 

reduzierten Proliferation führte. Des Weiteren wurde die Abhängigkeit der Zellmigration 

von TANK und TBK1 mittels Wound-healing Experimente in Gliomzelllinien untersucht 

und zeigte, dass in einigen Zelllinien auch diese TANK und TBK1 benötigt. Grundsätzlich 

werden Zellfunktionen durch verschiedene Signalwege wie beispielsweise den Ras-Raf-

MEK-ERK- oder den PI3K-Akt-Signalweg reguliert. Deshalb wurde der Einfluss des nicht 

kanonischen IKK Komplexes auf diese Signalwege untersucht. Zunächst wurde 

festgestellt, dass sowohl Akt als auch ERK1/2 in einigen Gliomen und den meisten 

Gliomzelllinien konstitutiv phosphoryliert und damit aktiviert sind. Der Knock-down von 

TANK bzw. TBK1 wie auch die Inhibierung beider Kinasen (IKKε und TBK1) durch BX795 

führte in einigen Gliomzelllinien zu einer Reduzierung dieser Phosphorylierungen. Damit 

konnte ein alternativer Signalweg aufgezeigt werden, der zu einer Aktivierung von 

Proliferations- und Überlebenssignalen in einigen Gliomzelllinien führt. Um einen 

genaueren Einblick in die komplexe Vernetzung der beteiligten Signalwege zu 

bekommen, wurde ein pharmakologischer Ansatz gewählt. Hierbei wurden eine negative 
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Rückkopplung von MEK1/2 zu Akt gefunden sowie ein ERK1/2-aktivierender Signalweg, 

der unabhängig von MEK1/2 ist. Inwiefern dieser TBK1/IKKε-Akt-Signalweg direkt oder 

indirekt zur Phosphorylierung und Aktivierung von ERK1/2 führt, muss noch in 

weiterführenden Experimenten untersucht werden. Dennoch stellt der Signalweg eine 

Alternative zur Aktivierung von Proliferations- und Überlebenssignalen in Krebszellen dar, 

und liefert damit neue Möglichkeiten für die Entwicklung von Therapien zur Behandlung 

des Glioblastoms. 
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7. SUPPLEMENTARY FIGURES 

 

 

 

Fig. S1.: Analysis of the protein levels of members of the non-canonical IKK complex primary patient 

tissue samples. Patient tissue samples of normal brain (NB), glioblastoma multiforme (GBM) and 

astrocytoma grade III (A III) were kindly provided by Prof. Dr. Pagenstecher. Proteins were extracted from 

patient tissue by homogenizing of the material in NP40 lysis buffer and using a Turrax. Endogenous protein 

expression was then analyzed by Western blot using the indicated antibodies for endogenous proteins. A 

comparison of GBM/ A III with normal brain tissue is shown in figure 3.1.A. 

 

 

 

 

 

Fig. S2.: Analysis of the mRNA levels of the IKK-related kinases in glioma cell lines. Total RNA was 

extracted and translated into cDNA using Oligo(dT) primers. The amount of mRNA was further semi-

quantitatively analyzed by real-time PCR using specific primers for either TBK1 or IKKε. Expression levels of 

T98G were set as 1 after normalization to the housekeeping gene β-Actin. Error bars express the standard 

deviation of three independent experiments performed in triplicates. 
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Fig. S3: The role of TANK and TBK1 in the proliferation ability of glioma cell lines. (A) A172 cells were 

retrovirally transduced to express shRNAs leading to a knock-down of TANK, TBK1 or a scrambled shRNA 

as a control. Transduced cells were selected with puromycin and used to determine cell proliferation. 

Proliferation was measured by seeding cells at a defined density, followed by determination of cell numbers 

after 72 and 120 hs using a FACSCalibur. Error bars show standard deviations from three independent 

experiments. (B-K) Experiments of (A) were performed for indicated cell lines cells. (L) Results from 

proliferation assays from all cell lines are summarized. Symbols indicate strength of influence on proliferation: 

- no, + low, ++ great influence and nd not detectable. (M) MTT assay was performed by seeding knock-down 

cells at a density of 1x10
3
 cells/well, followed by further growth for 4 days and performance of the MTT assay 

according to the manufacturer’s instructions. Relative metabolic activity of control cells was arbitrarily set as 

1, error bars show standard deviations of three independent experiments. 
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