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Abstract

Plasmids are extrachromosomal genetic elements that replicate independently of the chromosome and play a vital role in 
the environmental adaptation of bacteria. Due to potential mobilization or conjugation capabilities, plasmids are important 
genetic vehicles for antimicrobial resistance genes and virulence factors with huge and increasing clinical implications. They 
are therefore subject to large genomic studies within the scientific community worldwide. As a result of rapidly improving 
next-generation sequencing methods, the quantity of sequenced bacterial genomes is constantly increasing, in turn raising the 
need for specialized tools to (i) extract plasmid sequences from draft assemblies, (ii) derive their origin and distribution, and 
(iii) further investigate their genetic repertoire. Recently, several bioinformatic methods and tools have emerged to tackle this 
issue; however, a combination of high sensitivity and specificity in plasmid sequence identification is rarely achieved in a taxon-
independent manner. In addition, many software tools are not appropriate for large high-throughput analyses or cannot be 
included in existing software pipelines due to their technical design or software implementation. In this study, we investigated 
differences in the replicon distributions of protein-coding genes on a large scale as a new approach to distinguish plasmid-
borne from chromosome-borne contigs. We defined and computed statistical discrimination thresholds for a new metric: the 
replicon distribution score (RDS), which achieved an accuracy of 96.6 %. The final performance was further improved by the 
combination of the RDS metric with heuristics exploiting several plasmid-specific higher-level contig characterizations. We 
implemented this workflow in a new high-throughput taxon-independent bioinformatics software tool called Platon for the 
recruitment and characterization of plasmid-borne contigs from short-read draft assemblies. Compared to PlasFlow, Platon 
achieved a higher accuracy (97.5 %) and more balanced predictions (F1=82.6 %) tested on a broad range of bacterial taxa and 
better or equal performance against the targeted tools PlasmidFinder and PlaScope on sequenced Escherichia coli isolates. 
Platon is available at: http://​platon.​computational.​bio/.

Data Summary
(1)	 Platon was developed as a Python 3 command line 

application for Linux.
(2)	 The complete source code and documentation are availa-

ble on GitHub under a GPL3 license: https://​github.​com/​
oschwengers/​platon and http://​platon.​computational.​bio.

(3)	 All database versions are hosted at Zenodo (DOI: 
10.5281/zenodo.3349651).

(4)	 Platon is available via the bioconda package platon.
(5)	 Platon is available via the PyPI package cb-platon.
(6)	 The bacterial representative sequences for UniProt’s 

UniRef90 protein clusters, complete bacterial genome 
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sequences from the National Center for Biotechnology 
Information (NCBI) RefSeq database, complete plasmid 
sequences from the NCBI genomes plasmid section, 
created artificial contigs, replicon distribution score 
(RDS) threshold metrics and raw protein replicon hit 
counts used to create and evaluate the marker protein 
sequence database are hosted at Zenodo (DOI: 10.5281/
zenodo.3759169).

(7)	 Twenty-four Escherichia coli isolates sequenced with 
short-read (Illumina MiSeq) and long-read sequencing 
technologies (Oxford Nanopore Technology GridION 
platform) used for real data benchmarks are available 
under the following NCBI BioProjects: PRJNA505407 
and PRJNA387731.

Introduction
Plasmids are bacterial extrachromosomal DNA elements that 
replicate independently of the chromosome. They are mostly 
circular, have characteristic copy numbers per cell and carry 
genes that are usually not essential under normal conditions 
but rather allow bacteria to adapt to specific environments 
and conditions [1]. These genes, for instance, provide anti-
biotic or heavy metal resistance, are involved in alternative 
metabolic pathways or encode for virulence factors [2]. As 
plasmids are not only inherited by daughter cells, but can 
also be dispersed by horizontal gene transfer, they can spread 
rapidly within and between bacterial populations [3–5]. For 
example, identical antibiotic resistance plasmids have already 
been isolated from humans and animals [6]. Thus, plasmids 
are important mediators of antibiotic resistance spread and 
recent findings have confirmed that they frequently play a 
major role in clinical outbreaks [7, 8]. Therefore, it is of huge 
importance to properly identify and analyse plasmids.

Such analysis can be performed by plasmid DNA isolation 
followed by sequencing [9]. However, due to decreased 
sequencing costs, it is now affordable and often easier to 
sequence the entire genome of bacterial organisms using 
next-generation whole-genome shotgun sequencing [10]. 
Furthermore, this approach allows the reanalysis of already 
sequenced genomes to identify plasmids that have not been 
detected before. Unfortunately, this introduces a new issue 
that needs to be addressed: plasmid and chromosomal 
contigs are mixed in draft assemblies and need to be distin-
guished from each other.

This task, however, is hard to achieve for biological and 
technical reasons [11]. Plasmids often contain mobile 
genetic elements, e.g. transposons and integrons, which 
are drivers for the genetic exchange between different 
DNA replicons and regions [12, 13]. Hence, these genetic 
elements are often encoded on both replicon types and thus 
the origin of DNA fragments encoding such elements is 
hard to predict. Modern short-read assemblers add addi-
tional intricacy, further aggravating these issues, as they are 
notoriously hard pressed to correctly assemble repetitive 
regions such as the aforementioned DNA elements [14]. 
To tackle this issue, many new bioinformatic tools have 

recently been developed, following different approaches: 
(i) Recycler and plasmidSPAdes [15, 16] exploit coverage 
variations of sequenced DNA fragments within a genome; 
(ii) PLACNET investigates paired-end reads linking contig 
ends [17]; (iii) PlasmidFinder searches for plasmid specific 
motifs, i.e. incompatibility groups [18]; (iv) cBar, PlasFlow 
and mlPlasmids use machine learning methods to classify 
k-mer frequencies [19–21]; (v) PlaScope and PlasmidSeeker 
perform fast k-mer-based database searches of known 
plasmid sequences [22, 23]; Recycler additionally exploits 
information on circularization [15]. Overall, each approach 
provides unique advantages and drawbacks. For example, 
approaches based on sequencing coverage variations are 
unable to detect plasmids with copy numbers equal to the 
chromosome, whereas sequence motif- and k-mer-based 
methods tend to identify only known plasmids. This often 
leads to distinct profiles in terms of sensitivity and speci-
ficity, which are often biased towards one of the metrics, and 
as this impacts on the conducted analysis a choice must be 

Impact Statement

Plasmids play a vital role in the spread of antibiotic resist-
ance and pathogenicity genes. The increasing numbers 
of clinical outbreaks involving resistant pathogens 
worldwide pushed the scientific community to increase 
their efforts to comprehensively investigate bacte-
rial genomes. Due to the maturation of next-generation 
sequencing technologies, entire bacterial genomes, 
including plasmids, are now sequenced on a huge scale. 
To analyse draft assemblies, a mandatory first step is to 
separate plasmid from chromosome contigs. Recently, 
many bioinformatic tools have emerged to tackle this 
issue. Unfortunately, several tools are only implemented 
as interactive or web-based tools, making them unavail-
able for the necessary high-throughput analysis of large 
datasets. Other tools providing such a high-throughput 
implementation, however, often come with certain 
drawbacks, e.g. providing taxon-specific databases 
only, not providing actionable, i.e. true, binary classifi-
cation, or showing classification performance that is 
biased towards either sensitivity or specificity. Here, we 
introduce the tool Platon, implementing a new replicon 
distribution-based approach combined with higher-level 
contig characterizations to address the aforementioned 
issues. In addition to the plasmid detection within draft 
assemblies, Platon provides the user with valuable infor-
mation on certain higher-level contig characterizations. 
We show that Platon provides a balanced classification 
performance as well as a scalable implementation for 
high-throughput analyses. We therefore consider Platon 
to be a powerful, species-independent and flexible tool 
to scan large quantities of bacterial whole-genome 
sequencing data for their plasmid content.
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made between conservative or more aggressive classifica-
tions [11].

A further aspect of growing importance is ‘big data’ aware-
ness. Due to increasing quantities of generated sequence data 
[24], there is a growing need for automated high-throughput 
analysis tools. Unfortunately, not all of the currently avail-
able bioinformatics software tools are suitable for high-
throughput analysis, let alone technical integration into 
larger analysis pipelines [25–27] due to interactive designs 
or web-based implementations [17, 18, 21, 28]. Taxon-
specific database designs also pose additional barriers, as 
users might not have sufficient computational resources or 
bioinformatics support to build customized or large multi-
taxon databases [20, 22]. Furthermore, dependence on raw 
or intermediate data such as sequence reads and assembly 
graphs might impede analyses, as such data might not be 
available [15, 16]. In order to allow for big data scaling 
necessities, bioinformatic software tools should therefore 
be designed and implemented in a high-throughput savvy 
manner, including: (i) where possible a taxon-independent 
database design; (ii) a non-interactive command line imple-
mentation; and (iii) an actionable classification output, i.e. 
a true binary classification.

To address these issues we present Platon, a new bioin-
formatics software tool to distinguish and characterize 
plasmid contigs from chromosome contigs in bacterial 
draft assemblies following a new approach: analysis of the 
replicon distribution differences of protein-coding genes, 
i.e. frequency differences for being encoded on plasmid 
or chromosome contigs. The rationale behind this protein 
sequence-based replicon, i.e. chromosome vs plasmid, clas-
sification is a natural distribution bias of certain protein-
coding genes. For instance, essential housekeeping genes 
that are mandatory for bacterial organisms are mostly 
encoded on chromosomes [2]. In contrast, genes providing 
an evolutionary advantage under distinct situations are 
quite widespread on plasmids, e.g. antibiotic resistance and 
virulence genes. Here, we introduce the replicon distribu-
tion score (RDS), a new metric to express the measured 
bias of protein-coding genes’ replicon distributions to 
distinguish plasmid- from chromosome-related contigs.

Methods
Marker protein sequences and computation of 
replicon distribution scores
To build a database of marker protein sequences (MPSs) we 
collected all bacterial representative sequences of UniProt’s 
UniRef90 protein clusters (n=69 803 841) [29] and analysed 
their replicon distributions, i.e. the normalized plasmid vs 
chromosome abundance ratios. Therefore, we conducted a 
homology search via Diamond [30] of all MPS against coding 
sequences (CDSs) predicted via Prodigal [29] on two refer-
ence replicon sets, i.e. all National Center for Biotechnology 
Information (NCBI) plasmid sequences from the bacterial 
NCBI Genomes plasmid section (n=17 369) (ftp://​ftp.​ncbi.​
nlm.​nih.​gov/​genomes/​GENOME_​REPORTS/​plasmids.​txt) 

and the chromosomes of all complete bacterial NCBI RefSeq 
release 98 genomes. To prevent potential plasmid contamina-
tion in the chromosome set, all replicons shorter than 100 kbp 
were excluded, resulting in 17 430 chromosome sequences. 
The resulting alignment hit counts (A) of the single best hit 
per sequence with a sequence coverage ≥80 % and a sequence 
identity of at least 90 %, as well as the number of replicons (R) 
for both plasmids (p) and chromosomes (c) were integrated 
into a normalized, transformed and scaled RDS for each 
cluster, defined by:
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of elements of the MPS database and pval is the P value of a 
two-sided Fisher’s exact test using a contingency table of hit 
and no-hit counts for both replicon types.

Thus, the RDS value of a protein sequence represents its replicon 
distribution bias as both the ratio and the absolute difference of 
hit count frequencies as well as its statistical power. As a first 

factor of the formula, the hit count frequency ratio ﻿‍

(
Fp(
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)
)
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is transformed by the minuend −0.5 and the factor 2 to the 
range [−1,1] and hence, shifts the RDS values of chromosomal 
proteins to a negative range [−1,0] and to a positive value range 
[0,1] for proteins with a positive plasmid bias. To integrate the 
scale of the difference in the hit count frequencies, we added 
the absolute difference of replicon hit count frequencies (﻿‍Fp − Fc

‍) normalized to the mean difference of hit count frequencies 
of all MPSs (φ) as a second factor. In order to also include a 
measure of statistical confidence in the new RDS metric, a 
third factor (﻿‍1− pval‍) was added, taking the P value of a two-
sided Fisher’s exact test using a contingency table of hit and 
non-hit counts of both replicon types under the assumption 
that these are not equally distributed – the main idea behind 
the RDS metric. Thus, RDS values resulting from statistically 
insignificant hit count numbers are minimized towards zero. In 
order to finally classify entire contigs, the mean RDS of all the 
per-protein-sequence RDS values of each contig is calculated 
and then tested against defined thresholds. Predicted CDSs, for 
which no MPS can be identified are assigned the neutral default 
RDS value of zero.

Evaluation of replicon distribution scores
In order to assess the discriminative power of protein 
sequence based RDS, we created 10 random fragments of 
each sequence in the reference replicon sets for each of the 
following lengths: 1, 5, 10, 20 and 50 kbp. For each random 
fragment, a mean RDS was computed and tested against a 
range of discrimination thresholds between −50 and 10 with 
a step size of 0.1. For each discrimination threshold, a confu-
sion matrix was set up upon which sensitivity [tp/(tp+fn)], 
specificity [(tn/(tn+fp)] and accuracy [(tp+tn)/(tp+tn+fp+fn)] 
metrics were calculated, where tp, tn, fp and fn are the number 
of true positives, true negatives, false positives and false nega-
tives, respectively.

ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/plasmids.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/plasmids.txt
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Higher-level contig characterization
The comprehensive characterization of contigs by higher-
level plasmid-related sequence analysis often requires many 
specialized command line and web-based tools and thus is a 
time-consuming task. To streamline this process, we imple-
mented and included many higher-level sequence analyses 
in the workflow. Hence, Platon provides valuable contig 
information and can take advantage thereof by integrating 
applied heuristics into the classification process. Contigs are 
comprehensively characterized using different approaches: 
(i) testing for circularization; (ii) detection of incompat-
ibility groups; (iii) detection of rRNA genes; (iv) detection of 
antimicrobial resistance genes; (v) homology search against 
reference plasmid sequences; (vi) detection of oriT sequences; 
(vii) detection of plasmid replication genes; (viii) detection 
of mobilization genes; (ix) detection of conjugation genes.

Contigs are tested for circularization by aligning sub-
sequences from both ends against each other using nucmer 
from the MUMmer package [31]. Contig ends with overlaps 
larger than or equal to 100 bp and an identity >95 % are 
considered to be circularizable. To detect incompatibility 
groups, Platon conducts a homology search using the Plas-
midFinder database (n=273) [18] via blast+ [32] against 
contigs filtering for query coverages ≥60 % and percentage 
sequence identities >90 %. Although rare exceptional cases 
are described in the literature [33], the majority of ribosomal 
genes are encoded on chromosomes [33]. In order to exploit 
this distribution bias, ribosomal genes are detected via Rfam 
and Infernal [34]. As antimicrobial resistance genes are often 
encoded on mobile genetic elements (e.g. plasmids), Platon 
uses the NCBI ResFam hidden Markov models (HMM) data-
base [35] and HMMER [36] to detect potential antimicrobial 
resistance genes. In order to detect contigs as sub-sequences 
of larger plasmids or entire plasmids with known sequences, 
Platon conducts a homology search via blast+ [30] against 
the RefSeq plasmid sequence database [37] filtering for query 
coverages and percentage sequence identities ≥80 %, setting 
a dynamic -word_size parameter to 1 % of the query contig 
length. To detect oriT sequences, Platon conducts a blast+ 
[32] homology search against oriT sequences of the MOB 
suite database [38] filtering for both 90 % sequence coverage 
and identity.

Depending on their genetic backbone, plasmids can be 
mobilizable or conjugative [4]. The presence or absence of 
specialized proteins involved in the replication, mobiliza-
tion and conjugation processes plays an important role as a 
determinant for the classification of plasmids. Platon takes 
advantage of the highly plasmid-specific nature of these 
proteins by scanning predicted CDSs against a custom 
HMM database. Therefore, we extracted relevant RefSeq 
PCLA protein clusters via text mining and subsequently built 
HMM models on aligned protein sequences per cluster (Table 
S1, available with the online version of this article), creating 
two distinct HMM databases: replication and conjugation, 
comprising 257 and 1 663 HMM models, respectively. To take 
advantage of the expert knowledge and manual efforts that led 

to the high-quality relaxase HMM profiles of the MOBscan 
database [39], these were incorporated into this workflow. A 
scan against each HMM database is integrated into the clas-
sification process.

Platon analysis workflow
Platon combines the analysis of the replicon distribution bias 
of protein sequences with a set of higher-level contig charac-
terizations to predict the replicon origin of contigs (Fig. 1). In 
a first step, Platon classifies all contigs with a length smaller 
than 1 kbp or larger than 500 kbp as chromosomal. The 
rationale behind this heuristic is that sequences with <1 kbp 
seldom host either a CDS or other exploitable information 
that would permit reliable classification. On the other hand, 
from our experience, contigs >500 kbp rarely or never origi-
nate from plasmids, as those often encode genetic features 
hindering the assembly of larger sequences, for example 
transposons and integrons. Thus, this heuristic enhances the 
overall analysis runtime performance without unduly sacri-
ficing classification performance.

In a second step, CDSs are predicted via Prodigal [40] and 
searched against a database of MPS via Diamond [30], 
applying rigorous detection cutoffs in line with the cluster 
specifications of the underlying UniRef90 clusters, i.e. a 
coverage of at least 80 % and a sequence identity of at least 
90 %. For each contig, the mean RDS of all detected MPSs 
is computed. Contigs with a mean RDS lower than the 
sensitivity threshold (SNT) are classified as chromosomal 
sequences. The remaining contigs are then comprehensively 
characterized as described in the previous section.

Contigs are subsequently classified as plasmid sequences if 
one or more of the following conditions are met: the contig 
(i) has a mean RDS larger than the specificity threshold (SPT); 
(ii) can be circularized; (iii) provides at least one replication or 
mobilization protein; (iv) contains an incompatibility factor; 
(v) contains an oriT sequence; (vi) has a mean RDS larger 
than the conservative threshold (CT) and a blast+ [32] 
hit against the RefSeq plasmid database without encoding 
ribosomal genes.

Performance benchmarks
The overall replicon classification performance of Platon 
v1.3.1 was benchmarked against PlaScope 1.3.1, PlasFlow 
1.1.0 and the PlasmidFinder database (version 2018-11-20) 
in two setups: a targeted benchmark comparing Platon against 
PlaScope and PlasmidFinder on sequenced Escherichia coli 
isolates and an untargeted benchmark comparing Platon 
against PlasFlow on simulated short-read assemblies of all 
complete RefSeq genomes. PlaScope and PlasFlow were used 
with default parameters and publicly provided prebuilt data-
bases. As PlasmidFinder is currently only available as a web 
tool or via Docker, which is not usable in our HPC cluster 
setup, its workflow was reimplemented in bash using equal 
blast+ parameters (-perc_identity 90; query coverage >=60 
%). As both PlaScope and PlasFlow allow a third classification 
label, i.e. unclassified, and thus are not true binary classifiers, 
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Fig. 1. Flowchart describing the workflow implemented in Platon. ORF, open reading frames; MPS, marker protein sequence; RDS, 
replicon distribution score; SNT, sensitivity threshold; SPT, specificity threshold; incomp. groups, incompatibility groups; CT, conservative 
threshold.

replicon fragments were treated as being classified as chromo-
somes as long as they were not explicitly classified as plasmid 
for the sake of comparability. For each benchmark, we calcu-
lated sensitivity, specificity and accuracy metrics as described 
above. To also include statistically balanced metrics, we calcu-
lated the positive predictive power (PPV) [tp/(tp+fp)], the 
negative predictive power (NPP) [tn/(tn +fn)] as well as F1 
score and Matthews correlation coefficient (MCC) using the 
SciKit-learn Python package. For the simulated benchmark 
dataset, we used all bacterial NCBI RefSeq genomes (release 
98) at the assembly level ‘Complete Genome’ (n=13 930) to 
generate artificial short reads via ART (2.5.8) [41] with read 
lengths of 150 bp, 40-fold coverage, 500 bp mean insert size 
and 10 bp insert size standard deviation. Simulated reads were 
then assembled with SPAdes (3.12.0) [42] using the --careful 
and --cov-cutoff auto parameters. The resulting contigs (n=820 
932) were aligned against original genomes with blast+ 

(2.7.1) [32] and finally labelled either as chromosome or 
plasmid according to the single best blast+ hit.

To benchmark on real data, we isolated 24 multidrug-resistant 
E. coli genomes in Germany from humans, dogs and horses 
[43] (Table S2). Isolates were sequenced on the Illumina MiSeq 
platform using the Nextera XT sequencing kit (2×250 or 
2×300 nt) as well as the Oxford Nanopore GridION platform 
using a SpotON Mk I R9 version flow cell (FLO‐MIN106), 
native barcoding kit (EXP-NBD103) and 1D chemistry (SQK-
LSK108). Oxford Nanopore raw data (fast5) were basecalled 
using Albacore (1.11.8) (https://​community.​nanoporetech.​
com). For each isolate, two assemblies were performed: (i) a 
hybrid assembly using Unicycler v0.4.6 [44] and (ii) a short 
read-only assembly with SPAdes. For 21 isolates, the hybrid 
assembly resulted in circular chromosomes, which were 
used as the benchmarking ground truth, as the majority of 

https://community.nanoporetech.com
https://community.nanoporetech.com
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Fig. 2. Replicon distribution and alignment hit frequencies of marker 
protein sequences. Shown here are summed plasmid and chromosome 
alignment hit frequencies per marker protein sequence plotted against 
plasmid/chromosome hit count ratios scaled to [−1, 1]; Hue: normalized 
replicon distribution score values (min=−100, max=100), hit count 
outliers below 10−4 and above 1 are discarded for the sake of readability.

remaining contigs thus originate from unclosed plasmids. 
The remaining three isolates with unclosed chromosomes 
were excluded from the benchmark dataset, as the former 
requirement was not fulfilled. Short-read contigs <1 kbp 
were discarded. The remaining contigs (n=1 337) were then 
aligned against closed hybrid assemblies as described above. 
The raw sequencing data for all 24 isolates are available as 
NCBI BioProjects (PRJNA505407, PRJNA387731).

Results and discussion
Creation of the MPS database and RDS-based 
inference of contig origins
The proposed new metric RDS exploits the natural distribu-
tion biases of protein-coding genes between chromosomes 
and plasmids to classify the origin of contigs from short-read 
assemblies. In order to investigate and test this rationale, we 
aligned a broad range of bacterial protein sequences (n=69 
803 841) from UniProt’s UniRef90 protein cluster repre-
sentative sequences against a set of known chromosome 
and plasmid reference replicons from the NCBI RefSeq and 
NCBI Genomes databases and 12 795 544 of these protein 
sequences could be aligned to at least 1 replicon. For each of 
these protein sequences, a two-sided Fisher’s exact test was 
conducted and sequences with a P value of 1 were excluded. 
The remaining protein sequences (n=4 108 727), along with 
their RDS values, product description and sequence lengths, 
were then used to compile the final MPS database. For 99.5 
% of these protein sequences (n=4 089 068) a transformed 
hit count ratio smaller than −0.5 (n=3 600 927) or larger than 
0.5 (n=488 141) was computed, indicating a rather unequal 
distribution between chromosomes and plasmids (Fig. 2). 
However, only a minor fraction of 7.8 % (n=322 151) of all 

MPSs had a normalized alignment hit count sum regarding 
both replicon types larger than 0.001. Hence, the majority 
of MPS database sequences were relatively rarely detected 
on average. These findings endorse the incorporation of the 
statistical significance of each MPS replicon distribution as 
well as the scaling by the absolute difference of replicon hit 
count frequencies in order to raise the contribution of abun-
dant protein sequences and decrease the contribution of rare 
protein sequences, for which insufficient data are available in 
the reference replicon sets.

In order to assess the discriminative performance of RDS 
regarding the replicon origin of contigs, we tested a broad 
range of thresholds computing sensitivity, specificity and 
accuracy metrics. The sensitivity, specificity and accuracy 
values for a range of RDS thresholds are plotted in Fig. 3. 
The sensitivity and specificity curves follow a sharp inflec-
tion point near the default RDS value, i.e. 0. We attribute this 
behaviour to contigs harbouring protein sequences that are 
not covered by the MPS database. To overcome this limita-
tion and achieve both sensitive and specific classifications, we 
defined three distinct thresholds: (i) an SNT; (ii) an SPT; (iii) 
a CT set to 95 % sensitivity, 99.9 % specificity and the highest 
accuracy, respectively. Thus, contigs with an RDS smaller than 
the SNT can be classified as chromosomal while still retaining 
95 % of all plasmid contigs. Correspondingly, contigs with 
an RDS larger than the SPT can be classified as plasmid frag-
ments achieving a specificity ≥99.9 %. To compute actual 
values for these thresholds, we conducted classifications of 
Monte Carlo replicon fragment simulations (n=1 564 639) 
by which the following values were established: SNT=−7.7, 
SPT=0.4 and CT=0.1 at a maximal accuracy of 84.1 %. These 
values surround the inflection point near 0 and were hence-
forth used as the final discrimination thresholds in the Platon 
implementation.

To finally assess the RDS-based contig classification, a compre-
hensive performance benchmark was conducted. To do this, 
we created simulated short reads based on all complete NCBI 
RefSeq genomes (n=13 930) covering a broad range of bacte-
rial taxa. The resulting short reads were then reassembled into 
contigs (n=820 392), which were aligned back to the original 
genomes, thus creating our ground truth. This benchmark 
dataset comprised a total of 63 107 true plasmid contigs. All 
contigs were classified by their mean RDS value, applying 
the computed SNT and SPT thresholds. This RDS workflow 
classified 38 197 plasmid contigs and 754 082 chromosomal 
contigs correctly, thus achieving an accuracy of 0.966 and 
a sensitivity of 0.605, as well as an F1 score of 0.731 and an 
MCC of 0.732, calculated using the following confusion 
matrix: tp=38 197, tn=754 082, fp=3 203, fn=24 910.

Although the RDS approach achieved an accuracy of 0.966, 
it still misclassified 24 910 true plasmid contigs and 3 203 
true chromosomal contigs. It is common knowledge that 
certain proteins are encoded on both replicon types, for 
instance, relaxases and type4-coupling proteins (T4CP) – key 
proteins of integrative conjugative elements [45]. To assess the 
discriminative power of the RDS metric on these widespread 
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Fig. 3. Evaluation statistics for replicon distribution score thresholds. Sensitivity, specificity and accuracy values are plotted against 
replicon distribution score threshold ranges. (a) Overview threshold range [−50,10]. (b) Detailed threshold range [−1,1]. Sensitivity is 
in black, specificity is in brown and accuracy is in blue. Red vertical lines from left to right: sensitivity threshold (−7.7), conservative 
threshold (0.1) and specificity threshold (0.4).

protein classes we extracted a set of 4 683 relaxase and 2 151 
T4CP clusters from the MPS database by MOBscan [39] and 
TXSscan [46] HMM profile searches and investigated the 
range of related RDS values (Fig. S1); 73 and 66 % from the 
relaxase (n=3 321) and T4CP (n=1 436) protein clusters had 
an RDS between −0.5 and 0.5 and thus can be considered to 
be quite equally distributed. Small contigs solely or mainly 
encoding these protein sequences could therefore be espe-
cially hard to classify by the RDS metric. However, we also 
found 817 and 411 protein clusters that were quite chromo-
somally biased with a related RDS below −0.5 and extremes 
reaching values of −64.96 and −37.47 for the relaxases and 
T4CP, respectively. In addition, 445 and 304 protein clusters 
were quite plasmid biased with a related RDS above 0.5 and 
extremes reaching values of as high as 109.60 and 79.76 for the 
relaxases and T4CP, respectively. The latter protein clusters 
constitute approximately a quarter and a third of all relaxase 
and T4CP MPS subsets and have highly discriminative 
related RDS values. Hence, although there are protein classes 
harbouring many fairly equally distributed protein clusters, 
e.g. the analysed relaxases and T4CP, which are often encoded 
in very-hard-to-classify integrative conjugative elements, we 
still found MPSs with a strong predictive power regarding the 
replicon origin of a contig.

Performance of the entire Platon workflow
As shown in the simulated short-read benchmark, the RDS 
metric achieved a high accuracy (ac=0.966) but rather 
moderate sensitivity (sn=0.605) due to the high number of 
false negatives (fn=24 910). In order to increase the detection 
rate of true plasmid contigs, the Platon workflow additionally 
comprises higher-level plasmid-related contig characteriza-
tions that serve as a basis for several heuristics. As both the 
protein homology search and the contig characterizations 

of large plasmids are computationally expensive, contigs 
>500 kbp are automatically assigned to the chromosome. To 
assess the potentially negative impact of this heuristic on the 
classification performance, contig length distributions for 
both replicon types within the simulated short-read dataset 
(Fig. S2) were investigated. In line with the smaller plasmid 
contig length on average, only 119 of 63 107 plasmid contigs 
were actually larger than 500 kbp compared to 15 750 of 757 
285 chromosome contigs. Hence, only 0.19 % of all plasmid 
contigs were erroneously assigned to the chromosome, but 
99.25 % of all contigs larger than 500 kbp were correctly 
classified by this heuristic, which thus qualifies as an eligible 
tradeoff between sensitivity and runtime.

To measure and assess the overall classification performance 
of the entire implemented workflow (Fig. 1), we conducted 
two benchmarks against contemporary command line 
tools: an untargeted benchmark against PlasFlow on the 
aforementioned simulated short-read dataset as well as a 
targeted benchmark against PlaScope and PlasmidFinder on 
sequenced E. coli isolates.

Performance benchmark on taxonomically diverse 
simulated short-read assemblies
To assess the performance of the extended Platon workflow in 
an untargeted, i.e. taxon- independent, setup, we conducted a 
comprehensive benchmark against PlasFlow, a contemporary 
plasmid prediction tool for metagenomics that was presented 
to also be eligible for the recruitment of plasmid contigs from 
isolates. For this benchmark, all complete bacterial NCBI 
RefSeq genomes (n=13 930) covering a broad range of bacte-
rial taxa were used to simulate short reads that were de novo 
assembled. The resulting contigs were then aligned back onto 
original genomes. A confusion matrix as well as common 
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Table 1. Performance benchmark results computed contig-wise on 
simulated short-read data

Metric PlasFlow Platon

Accuracy 0.871 0.976

Sensitivity 0.729 0.766

Specificity 0.883 0.993

PPV 0.341 0.902

NPV 0.975 0.981

F1 0.465 0.828

MCC 0.440 0.818

TP 45 999 48 333

TN 668 573 752 080

FP 88 712 5 277

FN 17 108 14 774

Fig. 4. Performance benchmark metrics on simulated short-read data. A performance benchmark was conducted on all complete 
bacterial genomes of the NCBI RefSeq database, assembling simulated short reads and subsequently realigning them onto original 
genomes. For scaling reasons and the sake of readability, true negatives were discarded. (a) Benchmark results calculated contig-wise. 
Horizontal red line, total number of true plasmid contigs. (b) Benchmark results calculated nucleotide-wise. Horizontal red line, total 
number of true plasmid DNA nucleotides.

classifier performance metrics aggregated for all contigs 
(n=820 392) are shown in Table 1. In this benchmark Platon 
recruited 48 333 and PlasFlow 45 999 true plasmid contigs, 
resulting in comparable sensitivity and negative predictive 
values (NPV) of 0.762 and 0.729 and 0.98 and 0.975, respec-
tively. However, PlasFlow predicted 17 times more false posi-
tives (fp=88 712) than Platon (fp=5 277). Due to the notably 
lower number of false positives, Platon clearly outperformed 
PlasFlow in terms of accuracy, specificity and positive predic-
tive value (PPV), as well as the balanced metrics F1 score and 
Matthew’s correlation coefficient (MCC). An overview of how 
many contigs could be classified by which RDS threshold and 
heuristic filter is given in Table S3.

Due to different contig lengths, the mere number of correctly 
classified contigs might not always be congruent with the 

recruited plasmid content, which could play a vital role 
in downstream analyses, e.g. the recruitment of plasmid-
borne genes or sequence motifs, such as oriT and oriV. 
Hence, benchmarks that only measure the number of clas-
sified contigs might, to some extent, be misleading, and so 
we complemented the former benchmark with a genomic 
content-based view calculating an additional confusion 
matrix based on classified DNA nucleotides (Table S4). Fig. 4 
provides a combined view on both benchmark setups. In this 
complementary benchmark, the specificity values for PlasFlow 
increased from 0.883 contig-wise to 0.979 nucleotide-wise 
compared to stable and higher values for Platon (contig-
wise=0.993; nucleotide-wise=0.995). The accuracy values also 
increased from 0.871 contig-wise to 0.974 nucleotide-wise for 
PlasFlow, whereas the accuracy values achieved by Platon only 
improved slightly (contig-wise=0.976; nucleotide-wise=0.99). 
Taking into account the genomic content of classified contigs 
revealed a performance improvement of PlasFlow in terms of 
accuracy and specificity, but it still fell slightly below Platon. 
However, PlasFlow predicted 4.3 times more false-positive 
plasmid nucleotides (fp=1 115.3 mbp) than Platon (fp=260.9 
mbp), in line with the contig-wise benchmark.

The taxonomic compositions of training datasets for machine 
learning approaches and prebuilt databases can have a severe 
impact on benchmark performance and the results of analyses. 
To assess a potential bias towards certain taxa we additionally 
analysed the taxonomic distribution of the recruited plasmid 
contigs of the simulated short-read dataset binned to the genus 
level (Fig. 5). The underlying benchmark dataset contained 
true plasmid contigs from 469 distinct genera and 1234 
species. From these, Platon recruited plasmid contigs from 
434 genera, whereas PlasFlow recruited plasmid contigs from 
384 genera (Table S5). For both tools, the three taxa Escheri-
chia, Klebsiella and Enterococcus accounted for nearly 40 % 
of the recruited sequences alike the taxonomic profile of the 
underlying benchmark dataset in which the aforementioned 
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Table 2. Performance benchmark results contig-wise on sequenced 
isolate short-read data

Metric PlaScope PlasmidFinder Platon

Accuracy 0.901 0.841 0.915

Sensitivity 0.684 0.223 0.699

Specificity 0.952 0.987 0.966

PPV 0.771 0.803 0.829

NPV 0.927 0.843 0.931

F1 0.725 0.349 0.758

MCC 0.666 0.368 0.711

TP 175 57 179

TN 1 029 1 067 1 044

FP 52 14 37

FN 81 199 77

Fig. 5. Taxonomic distribution of recruited plasmid contigs. The taxonomic distribution of the recruited plasmid contigs for the simulated 
benchmark dataset is shown binned to the genus level. Taxa accounting for less than 2 % are grouped as ‘others’. (a) PlasFlow; (b) Platon.

taxa accounted for 26 %. On a species level, Platon and 
PlasFlow recruited plasmid contigs from 1 128 and 1 014 
distinct species, respectively, in line with the aforementioned 
genus-level results. Although PlasFlow was developed as an 
untargeted tool for metagenomics, Platon recruited plasmid 
contigs from a wider taxonomic range, thus demonstrating 
the competitive edge of the taxon-independent RDS approach 
complemented by contig characterization heuristics.

Targeted performance benchmark on sequenced E. 
coli isolates
Simulated data seldom reflect the existing biological and 
technical complexity and the plethora of potential pitfalls. 
Hence, we additionally benchmarked the Platon workflow on 
real data in a targeted setup. We compared the performance of 
Platon against PlaScope and PlasmidFinder, which were both 
published as targeted approaches for the plasmid prediction 
within whole-genome sequencing data. PlaScope provides a 
precompiled E. coli database for download, which was used in 
this benchmark, and PlasmidFinder was specifically designed 
for the analysis of Enterobacteriaceae genomes. As the Plas-
midFinder database is part of Platon’s contig characterization, 
we assessed its performance to transparently compare both 
tools side by side. For this benchmark the genomes of 24 E. 
coli isolates were sequenced using both Illumina short-read 
and Oxford Nanopore long-read technologies. For 21 isolates 
the hybrid assemblies resulted in closed chromosomes, which 
were used as the ground truth data. Contigs from short 
read-only assemblies (n=1 337) were aligned to the closed 
assemblies and used as the actual benchmark data. Table 2 
shows the confusion matrix as well as computed benchmark 
metrics. PlasmidFinder achieved the lowest false-positive rate 
(fp=14) resulting in the highest specificity of 0.987, closely 
followed by Platon (sp=0.966) and PlaScope (sp=0.952), but 
showed the lowest true-positive rate (tp=57) and sensitivity 
(sn=0.223), thus performing worse than Platon (sn=0.699) 
and PlaScope (sn=0.684). With regard to accuracy, PPV, NPV, 

F1 score and MCC metrics, Platon and PlaScope performed 
nearly on par, although Platon was slightly ahead on each. 
Both tools performed better than PlasmidFinder on these 
metrics. This was especially true for the balanced metrics 
F1 score and MCC, for which Platon and Plascope clearly 
outperformed PlasmidFinder.

Similarly, with the simulated short-read benchmark we 
also compared the performances of Platon, PlaScope and 
PlasmidFinder, taking into account the amount of genomic 
content (Fig. 6) computed on a nucleotide-wise confusion 
matrix (Table S6). The nucleotide-wise results were in line 
with those calculated contig-wise: PlasmidFinder had the 
lowest number of false positives, but also detected remark-
ably fewer plasmid nucleotides than PlaScope and Platon. 
The latter two detected a nearly equal quantity of plasmid 
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Fig. 6. Performance benchmark metrics on real short-read data. A performance benchmark was conducted on 21 E. coli genomes, for 
which both short-read draft assemblies and complete genomes via hybrid assemblies were available. For scaling reasons and the sake 
of readability, true negatives were discarded. (a) Benchmark results calculated contig-wise. Horizontal red line, total number of true 
plasmid contigs. (b) Benchmark results calculated nucleotide-wise. Horizontal red line, total number of true plasmid DNA nucleotides.

content, with Platon predicting notably fewer false positives 
than PlaScope.

Conclusion
Due to the complex nature of plasmid fragments, replicon 
type classification, i.e. prediction of origin, for contigs 
resulting from short-read draft assemblies is a difficult 
task. Many different methods and tools have recently been 
described in the literature, but few work on draft assemblies 
only, are implemented in a high-throughput savvy manner or 
provide statistically balanced predictions in an untargeted, i.e. 
taxon-independent manner.

To tackle this issue, we investigated the natural distribution 
biases of protein-coding genes between chromosomes and 
plasmids for a large set of protein sequences in bacteria. 
In this study, we defined, computed and tested statistical 
discrimination thresholds for the introduced new metric 
RDS and showed that it is a feasible approach to the 
problem. However, small contigs without sufficient protein 
sequences or contigs encoding for protein sequences that 
were either not covered by the MPS database or equally 
distributed between chromosomes and plasmids remained 
hard to classify correctly. However, even for the protein 
classes relaxases and T4CP, which are often found on noto-
riously hard-to-classify integrative conjugative elements, 
we found protein sequences with strong predictive power. 
To mitigate these drawbacks and improve the overall 
sensitivity, we complemented this approach with several 
heuristics exploiting higher-level plasmid-related sequence 
characterizations. We implemented this new workflow in 
a software tool called Platon and conducted benchmarks 
against three contemporary software tools, i.e. PlaScope, 
PlasFlow and PlasmidFinder on both simulated short-read 
data and sequenced isolates.

Analysing a large set of diverse bacterial species, Platon 
achieved equal sensitivity but higher accuracy and specificity 
than PlasFlow, while the predictions made by Platon were 
more balanced in terms of F1 score and MCC due to a low 
number of false positives.

Even though the underlying MPS database follows an untar-
geted approach, i.e. it is not restricted to or focused on certain 
taxa, Platon achieved competitive results compared to the 
targeted tools PlaScope and PlasmidFinder in a benchmark 
using real sequencing data for E. coli isolates. In both bench-
marks Platon achieved the highest sensitivity and accuracy, 
thus endorsing the exploitation of the natural replicon distri-
bution biases of protein-coding genes as an eligible method 
for the large-scale, high-throughput, taxon-independent 
prediction of plasmid-borne contigs from short-read draft 
assemblies.

Implemented as a multithreaded, locally executable Linux 
command line application in Python 3, we also envision 
it as an appropriate fit for integration into larger analysis 
pipelines as well as an upfront tool for subsequent plasmid-
specific analyses. For the sake of a streamlined integration 
and installation, all necessary third party executables are 
bundled with the software. All source code and documenta-
tion are freely available under a GPL3 license and hosted at 
GitHub (https://​github.​com/​oschwengers/​platon) and http://​
platon.​computational.​bio/. For further convenience, Platon is 
also available as a BioConda package (platon) and via PyPI 
(cb-platon). A prebuilt database is hosted at Zenodo (DOI: 
10.5281/zenodo.3349652).

Future developments will include the addition of new higher-
level contig characterizations as well as further enhancements 
of applied heuristics.

https://github.com/oschwengers/platon
http://platon.computational.bio/
http://platon.computational.bio/
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Data Bibliography
1. Platon was developed as a Python 3 command line application for 
Linux.

2. The complete source code and documentation are available on 
GitHub under a GPL3 license: https://​github.​com/​oschwengers/​platon 
and http://​platon.​computational.​bio.

3. All database versions are hosted at Zenodo (DOI: 10.5281/
zenodo.3349651).

4. Platon is available via the bioconda package platon.

5. Platon is available via the PyPI package cb-platon.
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NCBI RefSeq database, complete plasmid sequences from the NCBI 
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technologies (Oxford Nanopore Technology GridION platform) used for 
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